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Transmission line bolts and their
defects detection method based
on position relationship

Zhenbing Zhao1,2,3, Jing Xiong1,4, Yu Han1 and Siyu Miao1*
1School of Electrical and Electronic Engineering, North China Electric Power University, Baoding, China,
2Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of
Education, North China Electric Power University, Baoding, China, 3Hebei Key Laboratory of Power
Internet of Things Technology, North China Electric Power University, Baoding, China, 4Department of
Information Engineering, Sichuan Vocational and Technical College of Communications, Chengdu, China

Introduction: To solve the problems of small proportion of bolts in aerial images
of power transmission lines, small differences between classes, and difficulty in
extracting refined features, this paper proposes a method for detecting power
transmission line bolts and their defects based on positional relationships.

Methods: Firstly, a spatial attention module is added to Faster R-CNN, using two
parallel cross attention to obtain cross path features and global features
respectively, and spatial feature enhancement is performed on the features
output from the convolution layer. Then, starting from the spatial position
relationship of bolts and their defects, using the relative geometric features of
candidate regions as input, the spatial position relationship of bolts and their
defects on the image is modeled. Finally, the position features and regional
features are connected to obtain enhanced features. The bolt position
knowledge on the connecting plate is added to the detection model to
improve the detection accuracy of the model.

Results and discussion: The experimental results show that the mAP value of the
algorithm in this paper is increased by 6.61% compared to the Faster R-CNN
detection model in aerial photography of transmission line bolts and their defect
datasets, with the AP value of normal bolts increased by 1.73%, the AP value of pin
losing increased by 4.45%, and the AP value of nut losing increased by 13.63%.

KEYWORDS

transmission line bolts, bolts defects, target detection, attention mechanism, positional
relationship

1 Introduction

Under the urgent requirement of achieving carbon peaking and carbon neutrality goals,
the structure of China’s power system form is undergoing fundamental changes (Zhuo et al.,
2023).With the construction and development of new power systems, new power equipment
such as power electronics and large-scale energy storage devices will be widely used, and the
requirements for flexible and controllable and safe and stable power grids are becoming
increasingly high (Sheng et al., 2021). Bolts are present in large numbers in power
transmission lines and play a key role in fixing and connecting various components.
However, due to long -term working in the wild, various components will be affected by
natural environment and the external mechanical load tension and the internal power load of
the power system. These factors can cause the bolts connected to various components to
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produce defects such as loose nuts, losing, and stripped pins, which
seriously affects the stable transmission of electrical energy (Zhao
et al., 2021; Zhao and Ding, 2022). Therefore, in order to ensure the
safe operation of transmission lines, it is crucial to carry out regular
inspection of transmission line bolts and their defects.

Traditional transmission line inspection methods require
electric workers to climb the tower, and in order to accurately
record the cause of faults and carry out timely repairs, workers
need to carry a variety of working tools when climbing the tower,
which is not only economically costly, dangerous working
environment and extremely inefficient inspection. Therefore,
with the continuous development of deep learning technology,
more and more scholars have started to adopt deep learning for the
analysis and processing of transmission line images. Artificial
intelligence technology has become a current hotspot and has
performed powerfully in many fields, especially in target detection
with many excellent results (Ge et al., 2017). And the main task of
target detection is to find out all the targets of interest in the image
and determine their class and location. Deep learning-based target
detection algorithms are mainly divided into two categories, one is
the Faster R-CNN (Ren et al., 2017) (Faster Regions with
Convolutional Neural Network Features) series, a two-stage
detection model based on region suggestion. One is a
regression-based single-stage detection model based on the

YOLO (Redmon et al., 2016) (You Only Look Once) series and
the SSD (Liu et al., 2016) (Single Shot Detection) series.

To achieve automatic detection of transmission line bolts and
their defects, many scholars have introduced target detection
algorithms into the detection of bolts and their defects to reduce
the reliance on traditional manual inspection. A transmission line
bolt detection method for processing massive UAV (Unmanned
Aerial Vehicle) image data using UAV inspection images was
proposed by Feng et al. (2018). This method firstly establishes a
sample library, extracts HOG (Histogram of Oriented Gradients)
features and constructs SVM (Support Vector Machine)
classification to achieve recognition of high-resolution UAV
inspection images. However, this method is susceptible to the
influence of image illumination and effects. A deep learning-
based transmission line bolt detection system for transmission
line bolts with inconspicuous features, small size and difficult
detection in inspection images was proposed by Zhang et al.
(2021). This method adopts the principle of hierarchical
detection, using the SSD algorithm to locate the defective bolt
connection parts and cut out the connection parts, increasing the
proportion of bolts in inspection images. Secondly, this method uses
data augmentation to expand the dataset, and finally uses the
YOLOv3 algorithm to detect defective bolts. An automatic
detection model called Automatic Visual Shape Clustering
Network (AVSCNet) was constructed to detect losing pins for
transmission line bolts that are prone to losing pins by Zhao
et al. (2020). First, an unsupervised clustering method for
bolometric visual shapes is proposed and applied to construct
a defect detection model that learns differences in visual shapes.
Next, three deep convolutional neural network optimisation
methods are used in the model: feature enhancement, feature
fusion, and region feature extraction. Regression calculation and
classification are applied to the region features to obtain defect
detection results. However, during the training of the model,
many hyperparameters need to be set manually and do not have
automatic learning capabilities. To solve the problems of too
small bolt targets, small differences between different categories
and difficulty in extracting fine features, a detection method with
a dual attention mechanism was proposed by Qi et al. (2021).
This method analyzes and enhances visual features at different
scales and locations respectively. This method uses multi-scale
attention modules to enhance fine features in the bolt region and
spatial attention modules to increase the feature differences

FIGURE 1
Aerial photograph of the original bolts of the transmission line.

FIGURE 2
Transmission line bolts and their defects.
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between the bolt and the background to improve the prediction of
the bolt region. The Ultrasmall Bolt Defect Detection Model
(UBDDM) based on Deep Convolutional Neural Network
(DCNN) was proposed by Luo et al. (2023). Which included
Ultrasmall Object Perception Module (UOPM) and Local Bolt
Detection Module (LBDM), and introduces a hybrid attention
mechanism and multi-scale feature fusion to further improve the
network’s ability to extract shallow features. A novel and high-
accuracy defect detection method based on deep learning
technology, named insulator defect detection network (I2D-
Net) was proposed by Fu et al. (2023), which improves the
ability of defect location in the presence of interference
factors. An efficient and high-performance defect detection
model called DDNet is proposed by Gong et al. (2023) to
recognize defects from images of unmanned aerial vehicles.
The attention mechanism was adopted in the improved
detection model in order to enhance the representation
learning of the image. However, the model only focuses on

enhancing the bolt features, without incorporating the
inherent bolt position information into the detection.

Transmission lines have problems such as small targets for bolts
and their defects, limited information on targets, difficulty in feature
extraction, and small differences between target classes. To alleviate
these problems to a certain extent and promote the widespread
application of deep learning in the detection of bolts and their
defects in transmission lines, this article proposes the following
methods. Firstly, the spatial attention module is added to the Faster
R-CNN model to help the model acquire global features to achieve
the purpose of bolts and their defects feature enhancement. Then the
location inference module is used to add location relations to the
detection model to reduce the leakage and false detection of bolts
and their defects detection, which can improve the detection effect of
the model.

2 Research background

As a crucial connection component, bolts are present in large
numbers on all types of fixtures, which are widely distributed and
numerous in transmission lines. However, the bolts and their defects
account for a very small proportion of the aerial images, making
them easy to miss detection when they are directly detected together
with the fixtures. In Figure 1, the original bolt image is nearly
impossible to identify within the complicated background of the
aerial image. The detection model is often at risk of losing important
features when extracting bolt features, rendering bolt detection a
challenging task.

Therefore, this paper discards the idea of directly detecting bolts
and their defects on aerial images, but instead annotates the metal
tool targets, mainly joint plates, to build a dataset of bolts and their
defects. Afterwards, carries out the detection of transmission line
bolts and their defects afterwards. This designmethod can effectively

FIGURE 3
Structure of the transmission line coupling board.

FIGURE 4
Overall block diagram of the bolt and its defect detection model.
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increase the proportion of bolt targets in the image, reduce the
influence of complex background on bolt detection, and effectively
reduce the information loss of bolt targets. We add a spatial
attention module to the detection model to improve the model’s
ability to extract bolts and their defect features.

Figure 2 shows several sets of cropped yoke plate images. It can
be seen that the bolts and their defect targets in the image are
distributed in a triangular pattern, and the cropped image is clearer
than the original aerial image. The cropped image size is smaller,
which can make the detection speed faster.

As the bolts on the transmission line coupling plate generally have
a fixed position, the coupling plate target is chosen for the labeling of
transmission line bolts and their defect data sets. Figure 3 shows the
structure of the transmission line joint board, which is a board-shaped

connection for the parallel assembly of multiple branches, mostly used
for the parallel assembly of double insulator strings and multiple
insulator strings, the assembly of insulator strings with double and
multiple wires and the assembly of double pulling wires and other
connections. There are various types of plates, such as L-plate, LZ-
plate, LF-plate, LJ-plate and LE-plate, etc. The different types of plates
are subject to different forces depending on their structure. In this
paper we primarily focus on L-plates. The coupling plate in Figure 3 is
the most typical and common L-shaped coupling plate, which is used
for assembling double tension insulator strings with a single
conductor, single insulator strings with two split conductors, and
also for forming triple insulator strings in parallel. In Figures 3A–C are
bolt installation positions. It can be found that the position of the bolts
on the L-shaped coupling plate is fixed and the connection of the

FIGURE 5
Spatial attention module.

FIGURE 6
Structure of the cross-attention model.
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midpoints of each bolt can form a triangle. Therefore, a priori
knowledge can be added to the detection of the bolts and their
defects, and the inference of the bolt position relationship can be
added after the (Region Proposal Network) RPN generates the
candidate region in order to improve the fit of the bolt detection
frame to the target, and at the same time improve the detection
accuracy of the model.

3 Materials and methods

The overall block diagram of the bolt and its defect detection
model in this paper is shown in Figure 4. Firstly, to address the
problem of small differences between classes of bolts and their defects
and small bolt targets, spatial attention is added after the feature
extraction network ResNet-101 to help capture global dependencies
for each pixel through two crossover networks, so that the bolts and
their defect targets can obtain global contextual information efficiently
and quickly. The specific process is divided into two branches. One is
to obtain the feature map H by convolutional downscaling of the
features output from the convolutional layer, and then input H into
the cross-attention module to produce a new feature map H*. At this
point, H* contains horizontal and vertical contextual information,
after which H* is inputted again into the cross-attention module to
output the feature map H**. The other branch is to keep the output
features unchanged. Afterwards, the features of the two branches are
fused together to obtain global contextual information. Secondly, to
address the lack of inference capability for bolt and its defect detection,
a location relationship inference module is added after the model
generates the box of interest. The main approach is to take the
bounding box of the candidate region as input, learn the spatial
discrepancy of the region as the edge of the region node, then output
the location relationship knowledge to enhance the location features,
and finally connect the location features with the region features for
regression classification process to obtain the final detection results.

FIGURE 7
Transmission line bolts and their defect data set categories.

TABLE 1 Ablation experiment.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP (%)

Baseline 88.95 60.86 33.74 61.18

Baseline + spatial attention 89.57 54.90 46.57 63.68

Baseline + positional reasoning 89.40 65.21 43.43 66.02

Ours 90.68 65.31 47.37 67.79

TABLE 2 Model detection results before and after improvement of the backbone network for VGG16.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP

Faster R-CNN 88.62 28.75 26.26 47.88

Ours 88.06 37.37 74.71 66.71

TABLE 3 Multiple model detection accuracy.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP (%)

RetinaNet 95.7 23.2 56.4 58.4

Faster R-CNN 89.0 60.9 33.7 61.2

Cascade R-CNN 89.9 77.9 27.3 65.0

Sparse R-CNN 87.1 54.2 60.6 67.3

Ours 90.7 65.3 47.4 67.8
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3.1 Spatial attention

Bolts as a large number of fixed connection components in the
transmission line, their distribution exists in a certain pattern,
especially in the bolts on specific fixtures, the location of the
bolts is more basically fixed. The original Faster R-CNN only
focuses on the local area of the image when detecting, without
considering the spatial pattern of the transmission line bolt
distribution. Moreover, UAV aerial photographs the transmission
line bolt maps will be affected by lighting, equipment jitter and other
factors. This is not conducive to obtaining a finer feature map in the
convolution layer. Therefore, this paper adds spatial attention after

the convolutional layer, and by introducing the cross-attention
module twice, it helps the detection model to obtain contextual
information of the whole image, capture global dependencies, and
regions with similar features enhance each other, making the bolts
stand out in the full field of view and helping the convolutional layer
to obtain a feature map with more obvious features.

In order to help the model obtain global contextual information,
this paper introduces the Recurrent Criss-Cross Attention (RCCA)
module (Huang et al., 2019) to help feature enhancement of regional
features with similar characteristics in a more efficient way. In this
paper, we choose the Spatial Attention module, which works as
shown in Figure 5 and is composed by two cross-cross attentions, as
a simple and efficient way to perform feature enhancement.

Firstly, local features are transmitted through a cross attention
module to collect contextual information in both horizontal and
vertical directions. Then, by inputting the feature map generated by
the first cross attention module into another module, the additional
contextual information obtained from the cross path ultimately
enables each pixel to capture the full image dependency relationship.

The structure diagram of the cross-attention module is shown
in Figure 6. The input feature map is A3 ∈ RC×W×H, which is divided
into three branches: Q, K, and V. The feature maps Q and Κ are
obtained through the convolution operation of the 1 * 1 convolution
kernel, where Q、Κ} ∈ RC*×W×H{ , then the attention map
A ∈ R(H+W−1)×W×H is obtained through Formula 1 and softmax layer.

di,u � QuM
T
i,u (1)

where di,u ∈ D represents the weight of the relation between Qu and
Mi,u, D ∈ R(H+W−1)×W×H. Qu ∈ RC* is the value of u position in the
spatial dimension of the feature graph Q,Mu ∈ R(H+W−1)C* is the set
of peer or same column elements of u position on Κ, therefore
Mi,u ∈ RC* is the ith element in Mu.

The other branch V is obtained by 1*1 convolutionV ∈ RC×W×H,
and a new feature map is obtained between V and attention diagram
by Formula 2. Vu ∈ RC is the value of u position on the spatial
dimension of the feature graph V, and Nu ∈ R(H+W−1)C is the set of
peer or same column elements of u position on V.

N*
u � ∑H+W−1

i�0 Ai,uNi,u +Hu (2)

whereN*
u is the feature vector of position u inN* ∈ RC×W×H,Ai,u is the

ith value corresponding to the position u in the attention diagram A.
Finally, H* is output in the form of residual error, which enhances the
pixel-level expression ability, aggregates the global context information,
and improves the performance of bolt and its defect target detection.

3.2 Positional reasoning

Bolts on transmission line coupling plates generally have a fixed
position, geometrically in a triangle, and existing target detection
models are only for individual targets, with little attention paid to the
positional geometric relationships between targets. In this paper, we
choose a positional relationship inference module to improve the
detection accuracy of the model by using the fixed position
information of the bolts on the coupling plates. This is done by
using the feature Q � qi{ } as an input describing the geometric
features of each region to capture the spatial knowledge of the

FIGURE 8
Comparison of bolts defect detection results between Faster
R-CNN and the proposed method (A) Faster R-CNN (B) Ours (C)
Faster R-CNN (D)Ours (E) Faster R-CNN (F)Ours (G) Faster R-CNN (H)
Ours.
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target (Hu et al., 2018). The position relationship inference module
integrates inference from M regions to regions, which is constructed
intoM region graphs G (V,E) by stackingMMLPs, and uses the edge
E to combine the region features with the region spatial location V to
learn the position relationship between the regions.

First, the location features qi of region i and qj of region j are
extracted separately, and the edge values of the two regions are learned
using MLP:

êij � MLP a qi, qj( )( ) (3)

where a () indicates the difference between the two regions.
By stackingMMLPs to obtainM location-relative area maps, the

edge values of the M location-relative area maps are accumulated
and averaged, and they are summed with the unit matrix I to obtain
the edge connections:

eij � 1
M
∑M

m�1êij + I (4)

Afterwards, the location and area features are connected using
matrix multiplication to obtain the enhanced features Fs:

Fs � εFWs (5)
where ε ∈ RN×N is the set of edges of the location-relative region
graph, eij ∈ ε, F is the input region feature, and Ws is the
transformation weight matrix.

4 Experimental design and result
analysis

In this paper, the State Grid’s “Specification for Image
Labeling of Defects in Overhead Transmission Line
Equipment (Trial)” and the PASCAL VOC (Everingham et al.,
2010) dataset construction method are referred to when
constructing the dataset, and the data are annotated in strict
accordance with the annotation specification. The dataset is
mainly based on a large number of inspection images obtained
by UAV inspection with image acquisition equipment, and the
inspection image library is filtered and optimized according to
manual empirical knowledge, using the joint board target as the
main target, providing important data support for the
construction of the bolt and its defect detection database.

This paper uses the widely used Precision (P), Recall (R),
Intersection over Union (IoU), Average Precision (AP) and mean
Average Precision (mAP) in the field of object detection as an
evaluation indicator for the accuracy of bolts and their defective targets.

P, R, and IoU are defined in Eqs 6–8 respectively. APt
i is the

accuracy of the target in category i at an IoU threshold of t,
and is defined in Eq. 9 as the value of the area bounded by the
Precision-Recall (PR) curve and the coordinate axis. The final mAP
is the average of the accuracies of all classes at 10 different IoU
thresholds and is used to assess the overall accuracy of the model,
which is defined in Eq. 10.

P � TP

TP + FP
(6)

R � TP

TP + FN
(7)

IoU � Spre ∩ Sgt
Spre ∪ Sgt

(8)

APi
t � ∫1

0
Pi Ri( )dR (9)

mAP � 1
10

∑
t∈ 0.5{ ,0.55,...,0.95}

∑C
i�1APi

C
(10)

where TP denotes correct positive samples, FP denotes incorrect
positive samples, TN denotes correct negative samples, FN denotes
incorrect negative samples, Spre denotes detection results, Sgt denotes
actual results, i denotes the ith category of bolts or defects, t denotes
the threshold of IoU, and C denotes the total number of all categories.

In this paper, transmission line bolts and their defective datasets
are selected for experimentation, containing three categories of the
normal bolt, pin losing and nut losing, with the specific number of
labels for each category shown in Figure 7, with a total of 340 images.
It can be seen that the transmission line bolts and their defects dataset
constructed in this paper has fewer defective samples and more
normal samples, showing a serious long-tail distribution, which is
in line with the current general status quo of more normal samples
and fewer defective samples for transmission line bolt components.

4.1 Comparative experiment on
improvement methods

In order to verify the effectiveness of the method in this paper,
experiments were carried out using Faster R-CNN as the baseline
model and ResNet-101 as the backbone network. The commonly
used evaluation metrics in target detection models, mAP, as well as
AP, were selected to evaluate the model. The detection results before
and after adding the spatial attention module and position relation
inference are shown in Table 1. It can be seen that the detection of
bolts and their defects by the method in this paper is significantly
better than the traditional Faster R-CNN detection model, which
does not consider the spatial context information in the detection of
bolts and their defects, and only detects the bolts themselves without
inference capability The original Faster R-CNN detection model
does not consider the spatial context information in the detection of
bolts and their defects. Therefore, this paper adds a spatial attention
module and a position relationship inference module to the Faster
R-CNN detection model. The improved model improves the mAP
by 6.61%, which significantly improves the detection accuracy of the
model for transmission line bolts and their defect dataset, which
shows the superiority of the proposed improvement.

Table 1 also gives the results of AP values for the baseline model
with Faster R-CNN as the detection model and ResNet-101 as the
backbone network, the baseline model with spatial attention added,
the baseline model with positional relationship inference added, and
themethod in this paper. It can be seen that adding spatial attention to
the baselinemodel can effectively enhance the label features, especially
for the nut losing feature which is difficult to be detected by the
baseline model, the feature enhancement effect of spatial attention is
obvious, and the AP value of nut losing is improved by 12.83%.
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The addition of the location relationship inference module to the
baseline model can also effectively improve the detection effect of the
model. Especially for the pin losing and nut losing with a small
number of labels, the AP values increased by 4.35% and 9.69%
respectively. This indicates that the location relationship inference
module can effectively exploit the location relationship between bolts.
This improves the detection capability of themodel, alleviates the long
tail effect of the dataset and helps improve the detection accuracy of
targets with fewer labels. Finally, the baseline model with Faster
R-CNN as the detection model and ResNet-101 as the backbone
network is added to the proposed method with the spatial attention
module and the position relationship inference module respectively. It
can be seen that, on top of the baseline detection model, the AP values
of the three types of tags, namely, normal bolt, pin losing and nut
losing, increase in this paper method, where the baseline detection
The nut losing, which has a lower accuracy, has increased by 13.63%
and the mAP has increased by 6.61%.

It can be seen that the location relationship-based transmission
line bolt and its defect detection algorithm proposed in this paper are
very effective in detecting the state of the bolt. The spatial attention
module is used to effectively extract global context information and
capture global dependencies, which can effectively help themodel extract
finer and more comprehensive features. The location relationship
inference module is used to add detection box location information
to the detection model, which gives the model certain inference
capabilities. This method enables the model to use tags with good
detection effects and numerous tags, helping to improve detection
accuracy for tags with poor detection effects and a small number of
tags. Through the above methods, the overall detection ability of the
model is improved. In addition, this paper also adds spatial attention and
location relationship inference modules to the Faster R-CNN detection
model with VGG16 as the backbone network, and the experimental
results are shown in Table 2. The results show that the detection effect
of themodel with VGG16 as the backbone network is significantly worse
than that of the model with ResNet-101 as the backbone network. This
is because VGG16 performs poorly in feature extraction in the detection
of transmission line bolts and their defects, and is unable to extract
fine image features for the bolts and their defects. Therefore, the spatial
attentionmodule of the method in this paper effectively helps the feature
extraction network to perform feature enhancement. When the
Faster R-CNN detection model replaces the backbone network, the
improvements in this paper can still help the Faster R-CNN detection
model to improve its detection capability, especially for the defect samples
with few samples and difficult labels to identify, the improvements in
this paper can significantly improve its detection accuracy, for example,
the AP value of pin losing in this dataset, For example, the AP value
of pin losing in this dataset increased by 8.62%, the AP value of nut
losing increased by 48.45%, and the total mAP increased by 18.83%.

4.2 Comparative experiment between this
method and other methods

In order to further verify the effectiveness of the proposed
method for detecting bolts and their defects, experiments were
conducted to compare the proposed method with state-of-the-art
target detection methods on the same dataset of fixtures, and the
methods conducted for comparison included RetinaNet (Lin et al.,

2020), Faster R-CNN, Cascade R-CNN (Cai and Vasconcelos, 2018),
and Sparse R-CNN (Sun et al., 2021). As shown in Table 3, the
experimental results show that the method in this paper has a higher
accuracy for target detection of bolts and their defect datasets.

Table 3 presents several comparative methods, and without
considering the computational effort, this method has a
significant improvement in accuracy compared to other detection
methods, with the mAP of 67.8%. In Table 3, the accuracy of this
method is 9.4% higher than that of the single-stage detectionmethod
RetinaNet, 6.6% higher than that of the two-stage detection method
Faster R-CNN, 2.8% higher than that of the multi-stage detection
method Cascade R-CNN, and 0.5% higher than that of Sparse
R-CNN, so this method The performance of this paper is better
than other detection methods to a certain extent. The experimental
data in Table 3 demonstrates that the detection accuracy of this
method is generally higher than that of the comparative detection
methods and has some practical value.

As shown in Figure 8, several sets of images of the detection
results of bolts and their defects on the coupling plate from
different shooting angles. Among them, (A), (C), (E), and (G)
are the baseline detection results, and (B), (D), (F), and (H) are the
detection results of the proposed method. There are four sets of test
results in total. In the first set of results, the detection accuracy of
both normal bolt and pin losing increased, and the confidence of
individual labels increased up to 3.5%. Moreover, the detection
frame of each label in this paper fits the label better. In the second
set of detection results, the Faster R-CNN detection model failed to
detect the difficult samples in the lower left corner, while the
proposed method detected the normal bolts in the lower left
corner. This is because the spatial attention module added in
this article can effectively assist the model in detection, so that
smaller targets will not miss detection. In the third set of detection
results, both Faster R-CNN and the proposed method detected
three labels, but the confidence level of each detection frame of the
proposed method is higher, which indicates that the proposed
method has a better detection ability. In the fourth set of detection
results, the tail of the bolt appears in the Faster R-CNN detection
image. While in the actual annotation process, the tail of the bolt is
not involved in the annotation. However, Faster R-CNN
incorrectly detects the tail of the bolt as a losing pin bolt, and
the proposed method successfully avoids such misjudgment.

5 Conclusion

In order to accurately detect transmission line bolts and their
defects, this paper uses a joint board to construct a dataset of bolts and
their defects, and further conducts the detection of normal bolts, pin
losing and nut losing on the fixture. To address these problems of
small bolt targets, low image resolution and lack of inference
capability of the detection model, a Faster R-CNN detection model
based on location relationship inference is used for experimental
validation on the self-built dataset. It is demonstrated that adding a
spatial attention module after the feature extraction network can
effectively help the model enhance the global context information and
improve the feature extraction ability of the model; adding a location
relationship inference module after the region suggestion can increase
the inference ability of the model, help the dataset alleviate the long-
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tail effect and improve the AP value of the category with a small
number of labels. 6.61%, effectively improving the accuracy of bolt
and its defect detection, and laying a good foundation for the task of
transmission line bolt and its defect detection.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary materials, further inquiries can be
directed to the corresponding author.

Author contributions

ZZ: Conceptualization, Data curation, Funding acquisition,
Investigation, Project administration, Resources, Supervision,
Writing–review and editing. JX: Conceptualization, Methodology,
Validation, Visualization, Writing–original draft. YH: Writing–original
draft, Writing–review and editing. SM: Supervision, Writing–review and
editing.

Funding

The author(s) declare financial support was received for the research,
authorship, and/or publication of this article. This research is supported

by the National Natural Science Foundation of China (61871182,
U21A20486); Supported by Natural Science Foundation of Hebei
Province (F2020502009, F2021502008, F20211502013); Supported by
the Fundamental Research Funds for the Central Universities
(2023JC006).

Acknowledgments

Heartfelt thanks to everyone who contributed to this paper.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Cai, Z., and Vasconcelos, N. (June 2018). “Cascade R-CNN: delving into high quality
object detection,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (Salt Lake City, UT, USA, 6154–6162. doi:10.48550/arXiv.1712.00726

Everingham, M., Gool, V., Williams, C., Winn, J., and Zisserman, A. (2010). The
pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88 (2), 303–338. doi:10.
1007/s11263-009-0275-4

Feng,M., Luo,W., Yu, L., Zhang, P., Hao, X., Fan, Q., et al. (2018). A bolt detectionmethod
for pictures captured from an unmanned aerial vehicle in power transmission line inspection.
J. Electr. Power Sci. Technol. 33 (4), 135–140. doi:10.3969/j.issn.1673-9140.2018.04.019

Fu, Q., Liu, J., Zhang, X., Zhang, Y., Ou, Y., Jiao, R., et al. (2023). A small-sized defect
detection method for Overhead transmission lines based on convolutional neural
networks. IEEE Trans. Instrum. Meas. 72, 1–12. doi:10.1109/TIM.2023.3298424

Ge, W., Luo, H., Zhou, G., Fan, B., and Ma, Y. (June 2017). “The application of
internet of things technology in power transmission line condition monitoring system,”
in Proceedings of the International conference on fuzzy systems and data mining
(Hualien, Taiwan: IOS Press BV), 485–493. doi:10.3233/978-1-61499-828-0-485

Gong, Y., Zhou, W., Wang, K., Wang, J., Wang, R., Deng, H., Liu, G., et al. (2023).
Defect detection of small cotter pins in electric power transmission system from UAV
images using deep learning techniques. Electr. Eng. 105, 1251–1266. doi:10.1007/
s00202-022-01729-8

Hu, H., Gu, J., Zhang, Z., Dai, J., and Wei, Y. (June 2018). “Relation networks for object
detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (Salt Lake City, UT, USA: IEEE), 3588–3597. doi:10.48550/arXiv.1711.11575

Huang, Z., Wang, X., Wei, Y., Huang, L., Shi, H., Liu, W., et al. (2019). CCnet: criss-
cross attention for semantic segmentation. IEEE/CVF Int. Conf. Comput. Vis. Seoul,
South Korea 45 (6), 6896–6908. doi:10.1109/TPAMI.2020.3007032

Lin, T., Goyal, P., Girshick, R., He, K., and Dollár, P. (2020). Focal loss for dense object
detection. IEEE Trans. Pattern Analysis Mach. Intell. 42 (2), 318–327. doi:10.1109/
tpami.2018.2858826

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., and Fu, C. (2016). “Ssd: single
shot multibox detector,” in European conference on computer vision (Amsterdam,
Netherlands: Springer), 21–37. doi:10.1007/978-3-319-46448-0_2

Luo, P., Wang, B., Wang, H., Ma, F., Ma, H., and Wang, L. (2023). An ultrasmall bolt
defect detection method for transmission line inspection. IEEE Trans. Instrum. Meas.
72, 1–12. doi:10.1109/TIM.2023.3241994

Qi, Y., Wu, X., Zhao, Z., Shi, B., and Nie, L. (2021). Bolt defect detection for aerial
transmission lines using Faster R-CNN with an embedded dual attention mechanism.
J. Image Graph. 26 (11), 2594–2604. doi:10.11834/jig.200793

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
unified, real-time object detection,” in IEEE conference on computer vision and pattern
recognition (Las Vegas, NV, USA), IEEE, 779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Analysis Mach.
Intell. 39 (06), 1137–1149. doi:10.1109/TPAMI.2016.2577031

Sheng, G., Qian, Y., Luo, L., Song, H., Liu, Y., and Jiang, X. (2021). Key technologies
and application prospects for operation and maintenance of power equipment in new
type power system. High. Volt. Eng. 47 (9), 3072–3084. doi:10.13336/j.1003-6520.hve.
20211258

Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., et al. (June 2021). “Sparse
R-CNN: end-to-end object detection with learnable proposals,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (Nashville, TN,
USA, 14449–14458. doi:10.1109/CVPR46437.2021.01422

Zhang, S., Wang, H., Dong, X., Li, Y., Li, Y., and Wang, X. (2021). Bolt detection
technology of transmission lines based on deep learning. Power Syst. Technol. 45 (7),
2821–2829. doi:10.13335/j.1000-3673.pst.2020.1336

Zhao, Z., and Ding, J. (2022). Weakly supervised detection method for pin-missing
bolt of transmission line based on Improved PCL model. Sci. Technol. Eng. 22 (23),
10169–10178. doi:10.3969/j.issn.1671-1815.2022.23.035

Zhao, Z., Jin, C., Qi, Y., Zhang, K., and Kong, Y. (2021). Image classification of
transmission line bolt defects based on dynamic supervision knowledge
distillation. High. Volt. Eng. 47 (2), 406–414. doi:10.13336/j.1003-6520.hve.
20200834

Zhao, Z., Qi, H., Qi, Y., Zhang, K., and Zhao, W. (2020). Detection method
based on automatic visual shape clustering for pin-missing defect in transmission
lines. IEEE Trans. Instrum. Meas. 69 (9), 6080–6091. doi:10.1109/TIM.2020.
2969057

Zhuo, Z., Zhang, N., Kang, C., Jiang, W., and Wang, Z. (2023). Quantitative
attribution analysis method of power system planning scheme for carbon emission
peak and carbon neutrality goals. Automation Electr. Power Syst. 47 (2), 1–14. doi:10.
7500/AEPS20220110006

Frontiers in Energy Research frontiersin.org09

Zhao et al. 10.3389/fenrg.2023.1269087

13

https://doi.org/10.48550/arXiv.1712.00726
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.3969/j.issn.1673-9140.2018.04.019
https://doi.org/10.1109/TIM.2023.3298424
https://doi.org/10.3233/978-1-61499-828-0-485
https://doi.org/10.1007/s00202-022-01729-8
https://doi.org/10.1007/s00202-022-01729-8
https://doi.org/10.48550/arXiv.1711.11575
https://doi.org/10.1109/TPAMI.2020.3007032
https://doi.org/10.1109/tpami.2018.2858826
https://doi.org/10.1109/tpami.2018.2858826
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TIM.2023.3241994
https://doi.org/10.11834/jig.200793
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.13336/j.1003-6520.hve.20211258
https://doi.org/10.13336/j.1003-6520.hve.20211258
https://doi.org/10.1109/CVPR46437.2021.01422
https://doi.org/10.13335/j.1000-3673.pst.2020.1336
https://doi.org/10.3969/j.issn.1671-1815.2022.23.035
https://doi.org/10.13336/j.1003-6520.hve.20200834
https://doi.org/10.13336/j.1003-6520.hve.20200834
https://doi.org/10.1109/TIM.2020.2969057
https://doi.org/10.1109/TIM.2020.2969057
https://doi.org/10.7500/AEPS20220110006
https://doi.org/10.7500/AEPS20220110006
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269087


TYPE Original Research
PUBLISHED 03 November 2023
DOI 10.3389/fenrg.2023.1289641

OPEN ACCESS

EDITED BY

Fuqi Ma,
Xi’an University of Technology, China

REVIEWED BY

Xialei Zhang,
Shanxi University, China
Qian Lu,
Qingdao University, China

*CORRESPONDENCE

Dou An,
douan2017@xjtu.edu.cn

RECEIVED 06 September 2023
ACCEPTED 23 October 2023
PUBLISHED 03 November 2023

CITATION

Cui F, An D and Zhao Y (2023), A
two-stage distributed optimization
method for home energy management
systems via multi-modal data-driven
algorithm.
Front. Energy Res. 11:1289641.
doi: 10.3389/fenrg.2023.1289641

COPYRIGHT

© 2023 Cui, An and Zhao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

A two-stage distributed
optimization method for home
energy management systems via
multi-modal data-driven
algorithm

Feifei Cui, Dou An* and Yingzhuo Zhao

School of Automation Science and Engineering, Faculty of Electronics and Information Engineering,
Xi’an Jiaotong University, Xi’an, China

The home energy management system (HEMS), which utilizes multi-modal data
from multiple sensors to generate the knowledge about decision making, is
essential to the optimization of home energy management efficiency. Load
scheduling based on HEMS can improve the utilization efficiency of multi-
modal data and derived knowledge, achieve power supply-demand balance,
and reduce users’ electricity costs. This paper proposes a distributed load
optimization scheduling method for the load scheduling problem in HEMS
based on multi-modal data-driven algorithm. Additionally, a two-stage data-
driven optimization method is proposed, including a first-stage optimization
model based on minimizing electricity costs and a second-stage optimization
model based on minimizing system load fluctuations. In the first stage, cost self-
optimization is performed based on energy storage devices. In the second stage,
a load optimization instruction is issued by the control center, and each user
optimizes the load fluctuations based on the system load data. Compared to
centralized control methods, this approach reduces the computational overhead
of the control center. Finally, simulation experiments based on load scheduling
in the HEMS are conducted. The results of the first optimization stage show that
when the battery capacity integrated into the system increases from 3.68 kWh to
6.68 kWh, user costs can be reduced from 57.572 cents to 42.064 cents. It is not
only evident that the proposed method can effectively save users on electricity
costs, but the introduction of larger capacity batteries also lowers these costs.
The second stage of load fluctuation optimization results show that the proposed
method can effectively optimize the usage data of a group of users and decrease
the absolute peak-valley difference by 8.8%.
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multi-modal data, home energymanagement system, knowledge reasoning, distributed
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1 Introduction

1.1 Background

The next-generation smart grid is a network composed of
digital systems and electrical infrastructure, capable of detecting
multi-modal data from multiple sensors to monitor the status
of energy usage. Additionally, the smart grid enables decision
making technologies to reason the knowledge from multi-modal
data to implement demand response and load dispatching functions,
quickly and adaptively adjusting power generation and transmission
(Mahela et al., 2022). The residential load is an essential part
of the multi-modal data in smart grids, and as the application
of residential load facilities increases, the energy consumption
of residential loads continues to grow. Therefore, residential
energy management is an urgent and crucial field that can
enable end-users to actively participate in reshaping demand
patterns.

A home energy management system (HEMS) is the product
of the combination of smart grid intelligent communication and
data-driven decision-making technology (Lin, 2021). HEMSs can
effectively monitor household energy consumption through smart
sensors and electronic devices and predict and plan home energy
usage, thereby improving electricity utilization efficiency. To guide
users to participate in demand response, power companies have
introduced real-time pricing strategies in place of traditional fixed
prices (Li et al., 2019). Real-time pricing plays an essential role in
HEMSs, dividing the day into 24 or more time periods, achieving
intelligent meter billing based on real-time prices (Wei et al., 2019).
Governments and power grids collect detailed, real-time electricity
data from customers via smart meters. This aids in balancing
power generation with consumption, thereby stabilizing power
system operations and reducing long-term production costs. Power
companies set higher prices during peak hours and lower prices
during off-peak periods, encouraging users to participate in power
system operation management through real-time pricing. Users,
aiming to reduce their energy costs, tend to use energy-saving
appliances and shift their power usage from peak periods to non-
peak periods, thereby improving energy efficiency while reducing
electricity costs (Munankarmi et al., 2022). To promote two-way
communication, advanced metering infrastructure (AMI) is an
essential part of the smart grid’s HEMS (Lu et al., 2017), consisting
of home area network (HAN), building area network (BAN),
neighborhood area network (NAN), and other grid infrastructure
(Huang et al., 2021).

Load scheduling based on HEMS can reduce energy
consumption, save resources, save electricity costs for consumers
and utilities, reduce greenhouse gas emissions, and reduce peak
electricity demand. For example, Bejoy et al. (2017) proposed a
household appliance scheduling method considering customer
preferences and satisfaction to minimize energy consumption
without causing inconvenience to users. Pal et al. (2017) used
household electric vehicles to manage user load demand and
proposed a framework including different appliance energy
consumption loads, such as basic load, movable appliances, storage
systems, and electric vehicle loads.

Although many achievements have been made in load
scheduling based on HEMSs, the main method is to optimize

the system load fluctuation by using the centralized control
method, and the modeling of electrical equipment is not
practical enough. This paper established the basic equipment
and energy storage equipment models, and implemented
user load scheduling through two-stage distributed data-
driven optimization method. The main contributions are as
follows:

• A distributed load scheduling framework for HEMS is
proposed, and detailed modeling for various devices is
conducted. In the distributed scheme, optimization control
is decentralized to individual residential buildings or even
to each household user, aiming to reduce the computational
and communication overhead of the control center. HEMS
is employed to facilitate bidirectional communication and
distributed optimization.
• A data-driven two-stage optimization method is introduced. It

aims to achieve demand response by optimizing for minimal
user costs and minimal load fluctuations, respectively. In
the first stage of distributed optimization, users’ demand
response adjustments can create new peaks in the system
load curve. users’ demand response adjustments can create
new peaks in the system load curve. Users within an area
share their optimized consumption from smart meters,
and the control center releases system load directives. This
prompts a secondary optimization where users exchange
load data and iteratively adjust schedulable loads and
battery statuses until load fluctuations remain within defined
limits.
• Load scheduling simulation experiments were conducted,

and the influence of battery parameters was analyzed.
Simulation results indicate that, using the proposed method,
users can adjust the load based on comfort levels and
the urgency of device usage. The obtained scheduling
strategy can effectively reduce user costs and decrease load
fluctuations.

1.2 Research status

Residential users are a highly important component of the
smart grid, accounting for 33% of total electricity consumption.
Load scheduling based on home energy management systems
(HEMSs) implements demand response from the resident side,
and the implementation process faces many challenges, such as
privacy leakage, randomness and management complexity of
generation and consumption equipment. Therefore, researchers
have introduced solutions based on energy storage devices
(Seal et al., 2023), distributed energy (Chen and Chang,
2023), flexible loads (Yang et al., 2020), etc. Load scheduling
based on HEMS can reduce energy consumption, save
resources, save electricity costs for consumers and utilities,
reduce greenhouse gas emissions, and reduce peak electricity
demand.

Bejoy et al. (2017) proposed a household appliance scheduling
method that considers customer preferences and satisfaction to
minimize energy consumption without causing inconvenience to
users. Pal et al. (2017) used household electric vehicles to manage
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user load demand and proposed a framework that includes different
appliance energy consumption loads, such as basic load, movable
appliances, storage systems, and electric vehicle loads. In the
optimization process, each user can arrange their devices based
on actual electricity usage. The scheme adds a bias cost to the
objective function in the user cost minimization problem to
prevent the formation of new peaks during non-peak periods,
but using centralized control methods increases the computational
burden of the system. Jiang and Wu (2020) proposed a cost-
efficient load scheduling method considering user electricity
efficiency and satisfaction, balancing user cost and preferences
through fractional programming. Kou et al. (2019) introduced
a distributed control scheme based on aggregators to achieve
residential demand response. In this scheme, the power company
provides an incentive price to drive power consumption adjustment
based on the aggregated load information exchanged between the
utility system and users. Wang et al. (2020) proposed a stochastic
optimization method to solve the residential load scheduling
problem, establishing residential load models, generation cost
prediction models, and stochastic optimal load aggregation models.
They introduced a set of uniformly distributed scalars to the load
aggregation model to avoid load bounce, and experiments proved
that this method effectively reduced the system’s load peak-average
value. Yang et al. (2018) introduced a privacy-aware scheduling
model based on rechargeable batteries, introducing coefficients to
enable users to balance privacy protection and cost. The model
uses the storage and release of energy by rechargeable batteries to
flatten the user’s electricity curve and discusses the impact of battery
capacity on privacy protection effects. Sangswang and Konghirun
(2020) integrated solar energy, energy storage, and V2G. This study
provided an optimized control method for electric vehicles and
household batteries, enhancing the effectiveness of HEMS. Joo
and Choi (2017) proposed a two-stage optimization algorithm for
energy consumption scheduling in multiple smart homes under
distributed energy. However, this study only considered the interests
of consumers and overlooked the quality of the electrical grid.
Awad et al. (2015) proposed load scheduling privacy protection
methods based on rechargeable batteries and the maximum
difference method, using the demand response component to keep
the electricity curve constant, and proved that fuzzy processing of
smart meter values does not affect user billing. Ming et al. (2016)
introduced a user-side load scheduling method that considers
user satisfaction, achieving demand response and user cost
reduction through two-stage optimization, but did not consider
the impact of distributed energy on the smart grid’s demand
response. The model presented in this paper is a nonlinear
programming problem, with variables encompassing both binary
and continuous types, and it possesses complex constraints.
While some traditional optimization algorithms, such as simulated
annealing (Li et al., 2022) and particle swarm optimization (Zhao
and Li, 2020), exhibit strong global search capabilities when dealing
with nonlinear optimization problems, they encounter challenges
when addressing mixed variables, multiple constraints, or high-
dimensional problems. Genetic algorithms, on the other hand,
can handle both discrete and continuous variables, making them
suitable for a wide range of intricate optimization challenges.
Therefore, this paper employs the genetic algorithm for model
optimization.

2 Home energy management system

2.1 Framework of HEMS

The HEMS (Duman et al., 2021), an essential component of
the smart grid, is a microgrid system composed of renewable
energy generation equipment, energy storage devices, and various
common household appliances. HEMS enables residential end-
users to actively participate in reducing peak demand and carrying
out demand response. Energy use can be shifted to non-peak
periods by scheduling household appliances, reducing excessive
energy consumption at certain times. Meanwhile, device scheduling
operations must consider customer preferences and satisfaction
to achieve the best results in energy scheduling optimization, for
example, using air conditioning to maintain the indoor temperature
within an appropriate range. To ensure the secure transmission of
electricity data and costs between users and the smart gridwithin the
HEMS, advanced metering infrastructure (AMI) is the foundation
of HEMS. AMI consists of the home area network (HAN), building
area network (BAN), neighborhood area network (NAN), and other
grid infrastructure such as smart meters (Huang et al., 2021). The
framework of the HEMS is shown in Figure 1.

The framework includes smart meters (SMs), gateways (GWs),
control center (CC) of the power company, and users connected
to the meters. Smart meters (Fekri et al., 2021) act as a home local
area network, installed at the user’s end. They are connected to
sensor devices in the home and collect user power consumption
data through smart appliances, uploading it to the local gateway.
Users can monitor and optimize energy control of electrical
devices through the homemain controller, understand energy usage
and related data through smart meters, and choose appropriate
electricity usage based on this information to enjoy high quality
service. The gateway is a powerful entity used not only for relaying
but also for data processing. The control center processes user
electricity consumption, encrypted electricity costs, and other data
sent from the gateway, and updates real-time prices based on total
user electricity consumption, carrying out demand response to keep
the load within a certain range in the area, thereby ensuring safe and
reliable electricity use. During the transmission process of electricity
consumption, for electricity cost-related privacy data, both the
gateway and control center will carry out signature authentication
to ensure data security and integrity. Users can view their billing
accounts through the client andmay choose to apply for verification.

2.2 Types of HEMS devices

Thedevices ofHEMSs can be classified as basic devices or energy
storage devices.

Basic devices are primarily focused on heating, ventilation, and
air conditioning (HVAC), as well as washingmachines, refrigerators,
rice cookers, etc. Basic devices are divided into schedulable and
non-schedulable devices. Non-schedulable devices, such as laptops
and desk lamps, must meet users’ immediate usage needs, so their
operation time cannot be controlled; therefore, non-schedulable
devices are not modeled.

Energy storage devices can stitch together intermittent
renewable energy and enhance the security and stability of the power
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FIGURE 1
Framework of HEMS.

supply system.They can also charge energy storage devices using the
grid during off-peak electricity times, store electrical energy through
certainmediums, and release the stored energy for power generation
during peak electricity periods for household appliance use. This
promotes peak shaving and valley filling in the grid, improving the
reliability of the user’s power supply. Energy storage technologies
typically include physical energy storage (flywheel energy storage,
pumped hydro storage), chemical energy storage (various types
of batteries, renewable fuel cells, supercapacitors), and electrical
energy storage (superconducting electromagnetic energy storage).
As a load balancing device and backup power source, energy storage
systems are also essential equipment for smart grids and distributed
energy systems.

3 Distributed system devices model

In the distributed scheme, optimization control is dispersed to
individual residential buildings or even individual household users,
as shown in Figure 2. Assume that there are W household users in
the region, and in a household, in addition to basic electrical devices,
energy storage devices are equipped. The home management
system is used to provide two-way communication and distributed
optimization. In the distributed load scheduling model, the control
center is responsible for the publication of real-time electricity
prices, system load instructions, and system load data; users can
adjust their electricity usage patterns according to different electrical
devices in the home, conduct electricity cost self-optimization, and
then transmit the smart meter power consumption values to the
control center. Furthermore, users transmit system load data to each
other to perform system load fluctuation optimization sequentially.
Compared to the centralized control scheme, the distributed control

scheme reduces the computational and communication overhead of
the control center and provides a scalable architecture.

3.1 Schedulable devices model

Basic devices in the home, such as computers, incandescent
lights, televisions, and other appliances that users need to use at
any time, are considered non-schedulable devices. Adjusting their
usage time would seriously affect users’ comfort, so they are not
involved in load control. Schedulable devices, such as refrigerators
and dishwashers, are referred to as having flexible loads. They can
participate in demand response, and their flexibility can alleviate the
strain on the power grid during peak electricity usage periods.

In this paper, a day is divided into H intervals, where
h = 1,2,⋯H. The length of each interval is Δhstep =

24*60
H

minutes.
a ∈ A = {1,2,⋯A} represents the numbers of the electrical devices.
Variable sa(h) represents the working status of device a: when
sa(h) = 1, the device is in the working state; when sa(h) = 0, the
device is in the off state. [αa,βa] indicates the permissible working
time range for the device, and da represents the prescribed working
duration of the device. The allowable working time length should be
greater than the device’s working duration to ensure that theworking
time of the schedulable device can be rescheduled. Device a should
meet the following time constraints:

βa
∑
h=αa

sa (h) = da (1)

sa (h) = 0, h ∈H\[αa,βa] (2)

To make the model closer to the actual situation, consideration
is given to subdividing the devices.
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FIGURE 2
Distributed optimization-based load scheduling framework.

3.1.1 Non-interruptible devices
Among the schedulable appliances, devices such as washing

machines and rice cookers are considered non-interruptible devices.
During operation, they are continuously powered by distributed
energy or the grid, and once started, they cannot be stopped, as this
would affect the normal functioning of the device. Therefore, once
turned on within the schedulable range, they must continue for the
specified working duration to complete the corresponding tasks. In
addition to satisfying Eq. 1 and Eq. 2, they must meet the following
time constraints:

h+da
∑

τ=h+1
sa (τ) ≥ da [sa (h+ 1) − sa (h)] (3)

3.1.2 Interruptible devices
Interruptible appliances require intermittent power supply from

distributed energy or the grid. Each power supply duration should
not be less than the minimum supply time (typically the minimum
interval is 30 min or 15 min). With the condition of meeting the
minimum interval, these devices can be turned on or off at any
time. Examples includemicrowaves and air conditioners. In addition
to satisfying Eq. 1 and Eq. 2, they must meet the following time
constraints:

Pc (h) =
A

∑
a=1

sa (h) ⋅ Pa (4)

3.1.3 Constant power devices
Due to the significant proportion of HAVC equipment, such as

air conditioners, in household electricity consumption, its power
varies continuously over time. In contrast, appliances such as
refrigerators generally operate at their rated power. Therefore, they
are modeled separately. Assume that when a device starts, the power

is Pa, and when idle, the power is 0. The power of a constant power
device is given by:

Pc (h) =
A

∑
a=1

sa (h) ⋅ Pa (5)

3.1.4 Power-adjustable devices
Power-adjustable devices, such as temperature-controlled

appliances like air conditioners, have power needs that vary
continuously and are related to the outdoor temperature. The
input parameter for the air conditioner is the day-ahead outdoor
temperature, and its mathematical model is represented as:

Tin (h+ 1) = εTin (h) + (1− ε) ⋅ (Tout (h) ±A
PNC (h)

η
) (6)

where Tin(h) is the indoor temperature of time slot h; ɛ is the inertia
coefficient of the indoor temperature change; Tout(h) is the outdoor
temperature of time slot h; A is the thermal capacity of the room;
PNC(h) is the rated power of the air-conditioning appliance in time
slot h; η is the thermal conductivity efficiency of the room.

When the air conditioner operates in cooling mode, the value
of ± in the formula is set to −; when the air conditioner operates in
heating mode, the value of ± in the formula is set to +. Considering
user comfort, the indoor temperature should be maintained within
the range of user demand, and air-conditioning appliances must to
satisfy the following constraints:

Tmin
in ≤ Tin (h) ≤ T

max
in (7)

whereTmin
in is theminimum indoor temperature set by the user;Tmax

in
is the maximum indoor temperature set by the user. In addition, the
power consumption during operation of air-conditioning appliances
should satisfy the following constraints:

0 ≤ PNC (h) ≤ P
max
NC (8)
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wherePmax
NC is themaximumpower consumptionwhen the appliance

is operating, determined by the nameplate value.

3.2 Energy storage devices model

Energy storage devices can store electrical energy through a
certain medium, acting as a buffer between power generation
and consumption. This enables users to charge and store energy
during off-peak periods and utilize battery-released energy during
peak periods, enhancing electricity safety and stability. The
primary energy storage device used in homes is the lithium
battery.

The main parameters affecting battery operation include:
Capacity, State of Charge (SOC) andCharging orDischarging Power
of the Battery.

3.2.1 Capacity
Capacity refers to the quantity of electrical charge a battery

can store. It is denoted by Ebatt and is measured in ampere-hours,
abbreviated as Ah. Generally, the larger the battery volume, the
higher its capacity.

The rated capacity refers to the minimum amount of electrical
energy released by the battery at 25°C when discharged at a 10-h
rate.

The actual capacity represents the energy a battery can output
under certain conditions, equivalent to the product of the current
and time.

3.2.2 SOC
The state of charge reflects the ratio of the remaining battery

charge to the battery’s capacity. To extend a battery’s lifespan, its state
of charge must be considered during operation to ensure it remains
within a certain range. When SOC = 0, the battery is depleted, and
when SOC = 1, the battery is fully charged.

SOC (h) =
EB (h)
Ebatt

(9)

where SOC(h) represents the state of charge of the battery in time
slot h; EB(h) is the remaining charge of the battery in time slot h;
Ebatt is the battery capacity.

The charge of the battery in time slot h is calculated according to
Eq. (10):

EB (h) = EB0 +
h

∑
τ=1

PB (h) (10)

where EB0 is the initial charge of the battery; PB(h) is the
charge/discharge power of the battery in time slot h.

The state of charge of the battery is influenced by its charging
and discharging, and the dynamic change process is described in
Eq. (11):

SOC (h+ 1) = SOC (h) +
(PchB (h) − P

dch
B (h)) ⋅Δhstep
Ebatt

(11)

where PchB (h) is the charging power of the battery in time slot h;
PdchB (h) is the discharging power of the battery in time slot h.

An excessively high or low SOC is detrimental to the battery’s
lifespan. Therefore, constraints on the SOC range are shown in
Eq. (12):

SOCmin ≤ SOC (h) ≤ SOCmax (12)

where SOCmin is the minimum allowable state of charge for the
battery, SOCmax is the maximum allowable state of charge for the
battery. When the battery’s state of charge falls below SOCmin, the
battery will no longer discharge; when the state of charge exceeds
SOCmax, the battery will no longer charge.

3.2.3 Charging or discharging power of the
battery

When the battery is in operation, it is either in a charging
state or in a discharging state. A 0–1 variable a is introduced to
represent the state of the battery. b indicates the battery is in a
charging state during time slot h, while c indicates the battery is in a
discharging state during time slot h. To extend the battery’s lifespan,
one cannot arbitrarily switch between charging and discharging
states. Therefore, this paper maintains that a state switch can occur
only after controlling the charging or discharging state formore than
30 min.

The constraints for the charging and discharging power of the
battery in each time slot are shown in Eq. 13 and Eq. 14:

0 ≤
PchB (h)
ηch
≤ SB (h) ⋅ P

max
ch (13)

0 ≤ PdchB (h) ⋅ ηdch ≤ (1− SB (h)) ⋅ P
max
dch (14)

where ηch is the charging efficiency of the battery; Pmax
ch is the

maximum amount of electricity allowed to be charged in one time
slot; ηdch is the discharging efficiency of the battery; Pmax

dch is the
maximumamount of electricity allowed to be discharged in one time
slot.

The charging and discharging power of the battery is:

PB (h) =
PchB (h)
ηch
− PdchB ⋅ ηdch (15)

In the equation, when the battery is in a charging state, PdchB (h)
is 0, and at this time, the battery’s charging and discharging power is
the charging power PchB (h)

ηch
. When the battery is in a discharging state,

PchB (h) is 0, and at this time, the battery’s charging and discharging
power is the discharging power PdchB ⋅ ηdch.

4 Two-stage distributed optimization
model

4.1 First-stage optimization model

Each user household engages in flexible load scheduling,
autonomously choosing their electricity consumption time.They opt
to use electricity during low tariff periods, ensuring their electricity
needs are met and thereby reducing household electricity costs. In
the model of this paper, the smart grid can exchange electricity
bidirectionally with users. That is, users can sell their excess energy
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back to the main grid. The optimization objective for minimizing
electricity costs is expressed as:

minCostelec =min{
H

∑
h=1

RTP (h) ⋅ PMETER (h)} (16)

where RTP(h) is the real-time electricity price published by the
power grid company; PMETER(h) is the power consumption value
recorded by the smart meter during time slot h.

In a Grid-Feeding HEMS, PMETER(h) can take both positive
and negative values. When PMETER(h) is positive, the household is
purchasing electricity from the grid. Conversely, when PMETER(h) is
negative, the household is feeding electricity back to the grid. Users
can obtain real-time electricity prices RTP(h) in advance from the
power grid company.

The calculation method of PMETER(h) is shown in Eq. (17):

PMETER (h) = PLOAD (h) + PB (h)

= PM (h) + PC (h) + PNC (h) + PB (h) (17)

where PLOAD(h) represents the total load of basic household
electrical appliances; PB(h) represents the battery’s charging and
discharging quantity; PM(h) is the power consumption of non-
dispatchable loads; PC(h) is the power consumption of power-
stable devices among dispatchable loads; and PNC(h) is the power
consumption of power-adjustable devices among dispatchable loads.

4.2 Second-stage optimization model

Each household user, in order to save costs, participates in
demand response and adjusts their own electricity consumption
behavior, which might introduce new peak demand for the system.
To ensure the safe and stable operation of the grid and prevent
this situation, the model takes into account the collective residential
load in a specific region and incorporates system deviation costs
into the objective function to minimize. This approach reduces the
peak-to-average-power ratio (PAR) and prevents the system from
encountering new peaks during non-peak periods.

The optimization objective for minimizing load fluctuation is
expressed as:

min{γ ⋅Costelec + (1− γ) ⋅
H

∑
h=1
[ ∑
w∈W

PMETER,w (h)

− P̄TOTAL]
2
} (18)

where Costelec represents the user’s self-optimized electricity cost;
γ is the weight factor of the deviation cost; w refers to a user
in household w. The second term of the function, denoted as
VAR(PTOTALh ), is used to evaluate the load fluctuation of the user
group.

P̄TOTAL is calculated according to Eq. (19):

PTOTALh = ∑
w∈W

PMETER,w (h) (19)

P̄TOTAL =
1
H

H

∑
h=1
(PTOTALh )

= 1
H

H

∑
h=1
( ∑
w∈W

PMETER,w (h)) (20)

PTOTALh represents the power consumption of the system in time
slot h, which is the total power consumption of W household
users. The physical significance of P̄TOTAL is the average power
consumption of W household users in the region over H time
slots. By controlling the sum of power consumption in each
time slot for each household user to be close to P̄TOTAL, the
system load fluctuation can be reduced. Different values of γ
can be chosen to strike a balance between cost and system load
fluctuation.

Final model output:

1) The (A+ 3) ×H-dimensional flexible load state matrix XChrom
represents the working status of all flexible loads over a 24-
h day after participating in load scheduling, as shown in
Eq. (21):

XChrom =

[[[[[[[[[[[[[[[[[[[[[[[

[

XS1

XS2

⋮

XSa

⋮

XSA

XSB

XPT

XPB

]]]]]]]]]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[[[[[[[[[

[

x1
s1 x2

s1 ⋯ xHs1
x1
s2 x2

s2 ⋯ xHs2
⋮ ⋮ ⋮ ⋮

x1
sa x2

sa ⋯ xHsa
⋮ ⋮ ⋮ ⋮

x1
SA x2

SA ⋯ xHSA
x1
SB x2

SB ⋯ xHSB
x1
PT x2

PT ⋯ xHPT
x1
PB x2

PB ⋯ xHPB

]]]]]]]]]]]]]]]]]]]]]]]

]

(21)

where XChrom is a matrix composed of XSa, XSB, XPT and XPB. Matrix
XSa (a = 1,2,⋯A) represents the working status of device a, with
0 indicating working and 1 indicating idle. Vector XSB represents
the working status of the battery. Vector XPT represents the power
of adjustable power devices. Vector XPB represents the charge and
discharge power values of the battery.

2) All flexible load working states multiplied by the rated power
of the corresponding time slot result in the power consumption
of the adjustable device for each time slot in a day. This is
referred to as the power consumptionmatrix PChrom, as shown in
Eq. (22):

PChrom = X
a
Chrom ×Pa

=

[[[[[[[[[[[[[[[[[[[

[

x1
s1 ⋅ P1 x2

s1 ⋅ P1 ⋯ xHs1 ⋅ P1

x1
s2 ⋅ P2 x2

s2 ⋅ P2 ⋯ xHs2 ⋅ P2

⋮ ⋮ ⋮ ⋮

x1
sa ⋅ Pa x2

sa ⋅ Pa ⋯ xHsa ⋅ Pa
⋮ ⋮ ⋮ ⋮

x1
SA ⋅ PA x2

SA ⋅ Pa ⋯ xHSA ⋅ PA
x1
SB ⋅ x

1
PB x2

SB ⋅ x
2
PB ⋯ xHSB ⋅ x

H
PB

x1
PT x2

PT ⋯ xHPT

]]]]]]]]]]]]]]]]]]]

]

(22)

After HEMS load scheduling, the obtained adjustable device
state matrix XChrom and power consumptionmatrix PChrom represent
the optimal working state collection that satisfies both the device’s
inherent constraints and user comfort.
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5 Load scheduling based on
two-stage distributed optimization

5.1 Scheduling process based on
two-stage distributed optimization

One commonly used method to reduce user costs and
mitigate system load fluctuations through load scheduling is
centralized control. Power company control centers process the
power consumption values collected from smart meters in a given
region, thereby decreasing system peak averages and smoothing
the system load curve. However, centralized control methods
present certain challenges. The computational burden at the control
center, coupled with the communication overhead from each user
transmitting to the center, is considerable. This is primarily because
the load statematrixXChrom of (A+ 3) ×Hdimension for each user in
the region forms a three-dimensional matrix (A+ 3) ×H×W, where
W is the number of users. All require optimization computations
through the control center. As the number of users grows, the
computational scale of the aforementioned model substantially
increases. Employing distributed optimization control methods can
circumvent the curse of dimensionality. Additionally, distributed
optimization methods offer robust user privacy protection. Users
only need to upload the post-optimization smart meter values,
with each household independently optimizing load fluctuations.
The data transmitted between users pertains to system load,
negating the need for individual household power data. In contrast,
centralized control mandates not just the uploading of smart meter
consumption data, but also the power and status of each appliance
in a household. By readjusting the power and status of appliances,
the control center minimizes system load fluctuations. In doing so,
it gains access to granular user consumption data, which inevitably
breaches user privacy.

Distributed optimization facilitates a layered, phased approach
to the optimization process. In this paper’s distributed optimization
load scheduling model, the first phase encompasses users self-
optimizing for cost. Under the premise of ensuring user comfort,
the electricity usage time of flexible loads is adjusted to minimize
each household’s electricity cost. Subsequently, the optimized smart
meter consumption values are uploaded. Some of the literature
has explored the gradual processing of smart meter consumption
values to better safeguard user privacy. The second phase focuses
on optimizing system load fluctuations.The control center processes
the collected regional smart meter consumption values to obtain
aggregate area electricity consumption and system load fluctuation
data. The power company’s control center then releases system load
optimization command minVAR(PTOTALt ) and dispatches system
load fluctuation data P̄TOTAL, initiating the HEMS optimization
process. During the regulatory process, load data are transferred
among users. Initially, User 1 undergoes electricity optimization
through Eq. (18), altering the operational status of interruptible
appliances and overall electricity consumption behavior, before
relaying the post-optimization system load data to User 2. This
sequential process continues for W users, ceasing optimization
once the results align with predetermined criteria. The data shared
among users are system load data, offering a degree of user privacy
protection.Thedistributed control procedure is depicted in Figure 3.

FIGURE 3
Distributed optimization-based load scheduling process.

5.2 Model resolution based on hybrid
coding genetic algorithm

Eq. (18) is a nonlinear programming problem. Typical
optimization model solutions can use methods such as simulated
annealing or particle swarm optimization. However, due to the
uniqueness of variables in this paper’s model, as indicated by Eq. 21
and Eq. 22, the variables to be resolved include both binary 0–1
variables and continuous variables. Moreover, it possesses stringent
constraint conditions. When using a genetic algorithm, the total
number of 1’s in a chromosome represents the equipment’s operating
duration. By controlling the positions of 1’s in the chromosome, we
can set the equipment start and stop times, thus determining its
scheduling range, which is in line with the schedulable model. The
genetic algorithm demonstrates superior performance in handling
this paper’s model, hence its selection.

The use of genetic algorithms to solve optimization problems
comprises four main steps: potential solution encoding, initial
population gene initialization, fitness function computation, and
genetic operations. These operations include selection, replication,
crossover, and mutation. In this paper’s model, apart from the
conventional upper and lower limit constraints, there are some
unconventional constraints. All electric devices must adhere to
the constraints of Eq. 1 and Eq. 2. Non-interruptible devices must
comply with the constraints of Eq. (4), which restricts the number
and position of occurrences of 0 and 1 values in genes. Traditional
genetic algorithms cannot resolve this problem. Modifications are
required for potential solution encoding, population generation, and
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crossover mutation, necessitating the use of a hybrid coding genetic
algorithm.

5.2.1 Initial population
5.2.1.1 Hybrid encoding

In the HEMS model of this paper, the operating status of
schedulable devices is a discrete variable, represented by 1 when
in operation and 0 when idle. The battery’s working state is also
a discrete variable, represented by 1 during charging and 0 during
discharging. However, the power of adjustable power devices such as
air conditioners and the charging and discharging power of batteries
are continuous variables, denoted as XPT and XPB, respectively.
Therefore, the chromosome composition of an individual is shown
in Eq. (23):

XChrom =

[[[[[[[[[[[[[[[[[[[[[[[

[

XS1

XS2

⋮

XSa

⋮

XSA

XSB

XPT

XPB

]]]]]]]]]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[[[[[[[[[

[

x1
s1 x2

s1 ⋯ xHs1
x1
s2 x2

s2 ⋯ xHs2
⋮ ⋮ ⋮ ⋮

x1
sa x2

sa ⋯ xHsa
⋮ ⋮ ⋮ ⋮

x1
SA x2

SA ⋯ xHSA
x1
SB x2

SB ⋯ xHSB
x1
PT x2

PT ⋯ xHPT
x1
PB x2

PB ⋯ xHPB

]]]]]]]]]]]]]]]]]]]]]]]

](A+3)×H

(23)

where XChrom is a chromosome group composed of XSa, XSB,
XPT and XPB. H represents the day divided into H time slots.
The binary encoded chromosome XSa (a = 1,2,⋯A) denotes the
working status of device a. The binary encoded chromosome XSB
indicates theworking status of the battery.The real-number encoded
chromosome XPT is the power of adjustable power devices. The
real-number encoded chromosome XPB stands for the charging and
discharging power of the battery.

Suppose the initial population size is K and that the length of
each chromosome is H. The initial population can then be depicted
using a three-dimensional matrix X with a size of (A+ 3) ×H×K.
X(:, :,k) = Xk

Chrom, k = 1,2⋯K. XChrom represents the chromosome
set of an individual, comprising XSa, XSB, XPT and XPB. The initial
population is typically generated randomly, but it must adhere to the
relevant constraints.

XSa must satisfy the constraints of Eq. 1 and Eq. 2, where
the number 1 can only appear between the αa-th and βa-th
positions in XSa, and the total count of 1s is equal to da. For non-
interruptible appliances, Eq. (3) must be satisfied, where gene 1 can
only appear continuously between the αa-th and βa-th positions.
The interruptible appliances satisfy Eq. (4), with gene 1 appearing
randomly between the αa-th and βa-th positions. The operating
power of the air conditioner XPT and the charge-discharge power of
the battery XPB must also adhere to their respective upper and lower
power limits.

5.2.1.2 Fitness function
The fitness function is used to evaluate an individual’s

adaptability to its environment, determining the probability of
its genes being passed on. This directly affects whether the
optimal solution can be found and the convergence speed of the

algorithm. The design should be as simple as possible to minimize
computational complexity. To apply the genetic algorithm for
solution finding, the problem of maximizing the objective function
should be transformed into a minimization problem. In the model
presented in this paper, the objective functions F for the two phases
of distributed optimization take non-negative values. The fitness
function is chosen as the reciprocal of the objective function. In the
first phase, where users optimize themselves, the fitness function is
taken as the reciprocal of the cost function. In the second phase of
load fluctuation optimization, the fitness function is the reciprocal
of the variance of system load data. Therefore, the fitness function f
can be represented as:

f = 1
F

(24)

5.2.2 Genetic operations
5.2.2.1 Selection

After calculating the fitness of all individuals, the selection
process determines which individuals will participate in
reproduction and pass their genes on to the next-generation.
Individuals with a high fitness value have a greater chance of being
selected, while those with a low fitness value have a lesser chance.
Roulette wheel selection is commonly used for this purpose. The
probability Pxi of individual xi being selected is calculated according
to Eq. (25):

Pxi =
fi

N

∑
j=1

fi

, i = 1,2⋯,K (25)

where fi is the fitness of the first individual; K stands for the total
number of individuals in the population.

5.2.2.2 Crossover
Crossover, or genetic recombination, involves taking two parent

individuals and swapping portions of their chromosomes to produce
two new chromosomes, thereby creating new offspring individuals.
The crossover probability Pc is typically a random number between
0 and 1. Consequently, the probability of the parent chromosomes
being directly copied to the next-generation is 1− Pc.

In the model presented in this paper, there are both binary-
encoded chromosomes and real-number encoded chromosomes.
Accordingly, the crossover method should be chosen to match the
respective encoding types.

For binary-encoded chromosomes of basic devices, one or
multiple crossover points are selected on the parent chromosomes,
followed by a swapping operation. It is crucial to ensure that after
crossover, the constraints for non-interruptible devices given by
Eq. 3 and for interruptible devices given by Eq. (4) are still satisfied.

For chromosomes corresponding to power-adjustable devices
and rechargeable battery power encoded in real numbers,
calculations are performed with a random number between 0 and
1 and the parental chromosome. If the parental chromosome is

represented by
{
{
{

X1 = (x
(1)
1 ,x
(1)
2 ,…,x

(1)
m )

X2 = (x
(2)
1 ,x
(2)
2 ,…,x

(2)
m )

, the gene value of the

offspring chromosome
{
{
{

Y1 = (y
(1)
1 ,y
(1)
2 ,…,y

(1)
m )

Y2 = (y
(2)
1 ,y
(2)
2 ,…,y

(2)
m )

obtained from
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crossover is calculated according to Eq. (26):

{
{
{

y(1)i = αix
(1)
i + (1− αi)x

(2)
i

y(2)i = (1− αi)x
(1)
i + αix

(2)
i

, i = 1,2,…,m (26)

5.2.2.3 Mutation
Mutation refers to the periodic random updating of a gene on a

chromosome to refresh the population, exploring unknown areas in
the solution space.

In the model of this paper, for binary encoded chromosomes,
when a random number is less than the mutation probability Pm,
the corresponding chromosome’s binary string is flipped. When
the original gene value at the mutation point is 0, it is flipped to
1; when the original gene value at the mutation point is 1, it is
flipped to 0. For real-number encoded chromosomes, a uniformly
distributed random number within the value range replaces it,
namely, the uniform distribution method. The calculation method
for the mutated gene is based on Eq. (27):

x′k = L
k
min + β(L

k
max − L

k
min) (27)

where x′k represents the gene value after mutation; Lkmin is the lower
limit of the corresponding variable (power of the adjustable power
device) of the chromosome; β is a random value from a 0–1 uniform
distribution; and Lkmax is the upper limit of the corresponding
variable (power of the adjustable power device) of the chromosome.

The algorithmflowof the genetic algorithm is shown in Figure 4.

6 Simulation verification

To conduct research on load optimization scheduling for
the HEMS, this study designed a distributed optimization load
scheduling simulation experiment. In the first phase, users optimize
costs for themselves, while in the second phase, the optimization
focuses on reducing the system’s load fluctuations. The study
also investigates the impact of energy storage devices on load
scheduling.

6.1 Parameter settings

Dividing the 24-h day into 48 time intervals results in
Δhstep = 30 min. Python was used for modeling and solving. The
simulation platform was equipped with an Intel(R) Core(TM) i5-
10400 CPU at 2.90 GHz, 16 GB of RAM, and ran Windows 10
Home edition as its operating system. The output variables of the
experiment are the flexible load statusmatrix, fromwhich the power
consumption matrix of various electrical devices, the consumption
values of the smart meter, and the daily electricity costs can be
deduced. The data sources and settings are described as follows.

6.1.1 Electricity prices and outdoor temperature
data

The outdoor temperature data are taken from the temperature
readings of a particular summer day in Xi’an. The electricity
prices and outdoor temperature data are shown in Figure 5A, B,
respectively.

FIGURE 4
Genetic algorithm Flowchart.

6.1.2 Parameter settings for dispatchable devices
The primary device chosen for power-adjustable research is

the air conditioner. The temperature parameters ɛ, A and η for
the air conditioner are set to 0.93, 2.5, and 0.45, respectively. In
the summer, the air conditioner operates in cooling mode, and
its maximum allowed power output per time slot is 3.6 kWh. The
indoor temperature set by the user must be maintained between
24°C and 26°C.

Power-fixed devices include 20 basic devices, of which device
number 2, the washing machine, and device number 16, the rice
cooker, are non-interruptible devices. These devices must adhere to
the respective time constraints of non-interruptible devices; once
activated, they must complete their respective tasks before they
can stop. The remaining 18 devices are interruptible. All device
tasks are numbered, and the dispatch time range, working duration,
and power of dispatchable devices are presented, as shown in
Table 1:

6.1.3 Energy storage device parameter settings
The energy storage device selected is a household lithium

battery. There are two types of batteries: Battery A has a capacity
of 3.68 kWh and a maximum charging/discharging power of
2.5 kW; Battery B has a capacity of 6.68 kWh and a maximum
charging/discharging power of 5 kW. The SOC of the battery must
be maintained between 0.3 and 0.9.
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FIGURE 5
Electricity prices and outdoor temperature data: (A) real-time electricity price; (B) outdoor temperature variation curve.

TABLE 1 Parameter settings for dispatchable devices.

Appliance ID Appliance type Schedulable area/[αa, βa] Working duration/da Power/kW

1 Range hood or Exhaust hood 10:30:00 a.m.-2:00:00 p.m. 2 0.13

2 Washing machine 12:00:00 a.m.-11:30:00 p.m. 10 1.5

3 Vacuum cleaner 12:00:00 a.m.-11:30:00p.m. 6 0.3

4 Iodine tungsten lamp 8:00:00 p.m.-11:30:00 p.m. 1 0.5

5 Oven 7:00:00 a.m.-11:00:00 a.m. 2 3

6 Water pump 8:00:00 a.m.-11:30:00 p.m. 6 2

7 Microwave oven 7:00:00 a.m.-11:00:00 a.m. 1 1

8 Oil extractor 6:00:00 p.m.-11:30:00 p.m. 5 0.5

9 Air humidifier 5:00:00 a.m.-9:00:00 a.m. 3 0.5

10 Swimming pool pump 11:00:00 a.m.-3:00:00 p.m. 1 2

11 Refrigerator 12:00:00 a.m.-11:30:00p.m. 23 0.5

12 Disinfection cabinet 8:00:00 a.m.-11:30:00 p.m. 4 0.5

13 Printer 8:00:00 a.m.-11:30:00 p.m. 4 0.3

14 Dryer 12:00:00 p.m.-4:00:00 p.m. 4 1.5

15 Electric kettle 7:00:00 p.m.-11:30:00 p.m. 4 1.5

16 Rice cooker 6:00:00 a.m.-6:00:00 p.m. 12 0.5

17 Mixer 1 6:00:00 a.m.-12:00:00 p.m. 2 0.3

18 Mixer 2 6:00:00 a.m.-12:00:00 p.m. 2 0.3

19 Water heater 5:00:00 a.m.-8:00:00 p.m. 12 1.5

20 Hairdryer 5:00:00 a.m.-10:00:00 a.m. 4 0.5
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FIGURE 6
Electricity prices and outdoor temperature data: (A)initial electricity load curve; (B)operational status diagram of electrical devices.

FIGURE 7
Simulation results without energy storage battery integration: (A) indoor temperature variation curve; (B) electricity task scheduling results; (C)
operational status diagram of electrical devices; (D) convergence curve of genetic algorithm.

6.1.4 Genetic algorithm parameter settings
In the initialization parameters of the genetic algorithm,

the population size N = 50. Thus, the initial population can be
represented by a three-dimensionalmatrixX (size: 23× 48× 50).The
crossover probability Pc = 0.8, mutation probability Pm = 0.1, and
the maximum number of iterations is 150 times.

6.2 First-stage simulation results

The original electricity load curve of a household user within 48
time slots in a day is shown in Figure 6A. At this time, the electricity
cost is 115.566 cents. As can be seen from the figure, the user’s
electricity consumption is concentrated in 6:00–10:30. A significant
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FIGURE 8
Simulation results with battery A integration: (A) electricity task scheduling results; (B) battery charging and discharging power and SOC; (C) operational
status diagram of electrical devices; (D) convergence curve of genetic algorithm.

portion of this time falls within the higher electricity price period,
such as 6:00–9:30. Therefore, the user’s electricity cost is relatively
high.

Figure 6B displays the electricity scheduling results for various
adjustable devices over the 48 time slots of a day through a heatmap.
Taking the vacuum cleaner as an example, its usage time reaches
2.5 h during the high electricity price periods of 5:30–9:30 and
14:30–20:30.

1) Scenario I: No battery storage is integrated into the system.

The electricity task scheduling simulation results without battery
storage integration are shown in Figure 7B.Thehousehold electricity
cost is 72.716 cents. Since there is no energy storage device
connected, the amount of electricity exchanged with the grid for
each time slot equals the consumption value from the smart meter.
The figure shows that the peak electricity consumption periods
are concentrated around 7:30–10:00, 12:00–12:30, and 13:30–15:00.
The real-time electricity price plays a dominant role, and to save
costs, users shift their electricity consumption to periods with
lower prices, such as 9:30–10:00, 12:00–12:30, and 13:30–14:30.
Figure 7A illustrates the indoor temperature variation curve. As
shown, the indoor temperature remains within the user-defined
range of 24°C–26°C.

Figure 7C displays the electricity scheduling results of various
dispatchable devices over the 48 time slots in a day using a heatmap.
As illustrated by the chart, the washing machine and rice cooker,

being non-interruptible devices, must complete their respective
tasks once they start before they can stop. The working hours of the
dispatchable devices have been adjusted accordingly. For instance,
the vacuum cleaner’s usage during the high electricity price periods
has been reduced to 1.5 h.

Figure 7D displays the convergence curve of the genetic
algorithm; the improved genetic algorithm converges relatively
quickly.

2) Scenario Π: System connected to Battery A or B
(1) Connection to Battery A

With the system integrated with Battery A, the electricity cost
is 57.572 cents. The load scheduling simulation result is shown in
Figure 8A. With the integration of a battery, the user can sell surplus
electricity back to the grid. Thus, the system’s feed-in capability
can enhance the overall economic benefits of the system. At this
point, the smart meter’s displayed electricity consumption includes
the electricity consumption of basic appliances and the rechargeable
battery. The chart shows that the user sells electricity to the grid
between 3:00 and 3:30.The electricity scheduling result nowdepends
not only on real-time electricity prices but also on the battery’s
charging and discharging behavior. When the battery is charging,
the power is positive, and when discharging, the power is negative.
Figure 8B reveals that through energy storage with the battery,
it charges during low-price phases such as 0:00–0:30, 1:30–2:30,
3:00–5:00, 9:30–11:00, 14:00–14:30, 20:30–21:30, and 23:00–24:00.

Frontiers in Energy Research 13 frontiersin.org26

https://doi.org/10.3389/fenrg.2023.1289641
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Cui et al. 10.3389/fenrg.2023.1289641

FIGURE 9
Simulation results with battery B integration: (A) electricity task scheduling results; (B) battery charging and discharging power and SOC; (C) operational
status diagram of electrical devices; (D) convergence curve of genetic algorithm.

FIGURE 10
Optimization of system load curve at different stages.

During high-price periods, it discharges energy for appliances, such
as 5:30–6:30, 7:30–8:30, 14:30–16:00, and 18:00–19:30. The battery’s
SOC value always remains between 0.3 and 0.9.

Figure 8C displays a heatmap showcasing the electricity
scheduling results for various adjustable devices over a 24-h period
with 48 time slots when the system is connected to a battery.
There have been certain adjustments in the electricity usage of

the appliances. Taking the vacuum cleaner as an example, its usage
during the high electricity price intervals is reduced to 2 h. Figure 8D
illustrates the convergence curve of the genetic algorithm.

(2) Connection to Battery B

The electricity cost now stands at 42.064 cents. This implies that
the larger the capacity of the battery integrated into the system,
the more it aids in leveling the peaks and troughs through energy
storage, resulting in a lower electricity cost for the user. The energy
scheduling simulation results are depicted in Figure 9A. The task
allocation for electricity devices does not differ significantly from
that when Battery A was incorporated, and there is not a significant
difference in the frequency of battery charge-discharge cycles. Due
to the larger capacity of Battery B, excess energy is sold back to the
grid during the low-price intervals, such as 00:30–1:00, 2:30–3:00,
4:30–5:00, and 11:30–12:00, leading to even lower electricity costs.
However, load scheduling based on battery storage resulted in a
higher peak power demand. In the figure, the power demand peak is
7:00–7:30, and this peak value is even higher than the initial peak
demand of the user, posing challenges for stable operation of the
system.Therefore, subsequent optimization is required in the second
phase to reduce system load fluctuations and prevent new electricity
demand peaks.

From Figure 9B, it can be observed that the battery is used
for energy storage and is charged during the low-price intervals,
such as 0:30–2:00, 2:30–4:00, 4:30–5:30, 9:30–10:00, 11:30–12:30,
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TABLE 2 System load parameter optimization at different stages for the user group.

Optimization stage Load
Peak/kW

Load
Valley/kW

Absolute
peak-valley
difference

Peak-valley
coefficient

Peak-valley
rate

Load factor
(%)

Load
fluctuation
variance

First Stage Optimization 195.4 23.4 172.0 8.35 0.88 51.7 2071.6

Second Stage Optimization 182.0 25.1 156.9 7.25 0.86 56.2 1909.1

TABLE 3 Cost optimization for users at various stages.

User number Initial
cost/cents

First phase
optimization
cost/cents

Distributed
optimization
cost/cents

User number Initial
cost/Cents

First phase
optimization
cost/cents

Distributed
optimization
cost/Cents

1 119.163 60.902 56.732 11 111.973 57.568 63.593

2 117.366 58.425 66.104 12 110.496 58.742 77.725

3 105.606 64.075 51.527 13 104.334 62.916 72.560

4 110.654 61.150 80.581 14 109.976 58.137 69.696

5 116.923 58.220 63.762 15 120.054 62.180 59.515

6 118.215 61.038 60.143 16 111.585 56.630 57.222

7 121.014 59.715 56.525 17 111.355 61.610 66.568

8 108.976 55.953 68.141 18 113.335 64.514 64.415

9 114.595 58.906 80.490 19 109.225 65.378 56.531

10 113.464 58.962 69.918 20 130.775 64.775 63.685

13:00–13:30, 20:30–21:30, and 22:30–24:00, primarily in the early
hours of the morning. During high-price intervals, such as
5:30–6:00, 7:30–8:30, 16:00–17:00, 17:30–18:00, and 18:30–19:30,
the stored energy in the battery is released to power the devices.
Similarly, the SOC of the battery consistently remains between 0.3
and 0.9.

Figure 9C displays a heatmap illustrating the electricity
scheduling results of various schedulable devices over 24 h, divided
into 48 time slots, when Battery B is integrated into the system.
Adjustments can be observed in the usage times of devices such
as the vacuum cleaner and the disinfection cabinet. Taking the
vacuum cleaner as an example, its initial load usage during high
electricity price periods was 2.5 h, which has now been reduced
to 2 h. Figure 9D presents the convergence curve of the genetic
algorithm.

6.3 Second-stage simulation results

Demand response can reduce user costs, but it might introduce
new peak electricity demands to the system. Therefore, a second
phase of distributed optimization is conducted to minimize system
load fluctuations. Considering an area with W = 20 households,
a distributed load fluctuation optimization simulation experiment

is conducted. The energy scheduling mechanism’s impact on user
electricity consumption behavior is analyzed from the perspective
of a group of users. The energy storage system opted to integrate
Battery A. The system load command is set at minVAR(PTotalh ) ≤
0.95*VAR(PTotalh,0 ), which means optimization stops when this
condition is met. In this context, VAR(PTotalh,0 ) represents the load
fluctuation level from the user’s self-optimization in the first
phase.

Figure 10 shows the results of the system load fluctuation
optimization simulation. As evident from the figure, after
undergoing system load fluctuation optimization, compared to
the self-optimization of user costs in the first phase, there is a
significant change in the electricity consumption patterns of the
user group within the area. The system load curve becomes more
stable, with a reduction in peak values and an increase in valley
values.

Table 2 shows the electricity consumption behavior
characteristics of the user group. The quality of system electricity
consumption is assessed through indicators such as the load factor,
which is the ratio of the average load to the peak load over a specific
period. Improving the load factor can effectively reduce peaks,
elevate valleys, decrease the peak-valley difference, and ensure the
safe and stable operation of the power system. FromTable 2, it can be
observed that after the second-phase load fluctuation optimization,

Frontiers in Energy Research 15 frontiersin.org28

https://doi.org/10.3389/fenrg.2023.1289641
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Cui et al. 10.3389/fenrg.2023.1289641

the system’s peak load decreased by 6.9%, the valley increased by
7.2%, the absolute peak-valley difference dropped by 8.8%, the peak-
valley coefficient decreased by 13.2%, and the peak-valley difference
rate reduced by 2.3%. Additionally, the load factor rose from 51.7%
to 56.2%, an increase of 4.5%, and the variance of the load fluctuation
decreased by 7.8%.

Table 3 shows the user costs before and after distributed
optimization. The average cost for users before and after distributed
optimization decreased from 113.954 cents to 65.272 cents, a
reduction of 42.7%. This shows that user costs decrease after
distributed optimization. Compared to that in the first stage of
optimization, the costs for some users increased because they made
financial sacrifices to change system load fluctuations. Users can
set the weighting factor γ as needed to balance cost and load
fluctuation. Considering real-world scenarios, power companies can
incentivize users who have increased costs, for instance, by reducing
electricity prices, to encourage them to participate in optimizing
load fluctuations.

7 Conclusion

This paper proposed a two-stage distributed optimization
method for the HEMS based on data-driven algorithm. Firstly, a
distributed load scheduling framework forHEMS is established, and
various devices are modeled. Secondly, a two-stage optimization
method is introduced, targeting both the minimization of user
cost and load fluctuations to achieve demand response. Finally,
simulation experiments of the load scheduling are conducted, and
the impact of battery parameters on energy scheduling is analyzed.
Simulation results demonstrate that users can adjust their loads
based on comfort and the urgency of device usage. The main
conclusions are as follows:

• The first optimization stage results indicate that when the
battery capacity integrated into the system increases from
3.68 kWh to 6.68 kWh, user costs can be reduced from 57.572
cents to 42.064 cents. It is evident that not only can the
proposed method effectively save electricity costs for users, but
the introduction of larger capacity batteries also significantly
reduces these costs.
• The second stage results indicate that, the system’s peak load

decreases by 6.9%, the valley increases by 7.2%, and the absolute
peak-valley difference is reduced by 8.8%. This demonstrates

that the proposed method can effectively optimize the usage
data of a group of users and decrease system load fluctuations.
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Introduction: The aim of this paper is to address the problem of the limited
number of defect images for both metal tools and insulators, as well as the small
range of defect features.

Methods: A defect detection method for key area-guided transmission line
components based on knowledge distillation is proposed. First, the PGW
(Prediction-Guided Weighting) module is introduced to improve the foreground
target distillation region, and the distillation range is precisely concentrated in the
position of the first k feature pixelswith the highest quality score in the formof amask.
The feature knowledge of defects of hardware and insulators is used as the focus for
the teacher network to guide the student network. Then, the GcBlockmodule is used
to capture the relationship between the target defects of the hardware and the
transmission lines in the background, and the overall relationship information of the
image is used to promote the students’ network to learn the teacher’s network
perception ability of the relationship information. Finally, the classification task mask
and regression task mask generated by the PGWmodule, combined with the overall
image relationship loss, formadistillation loss function for network training to improve
the accuracy of students’ network detection accuracy.

Results and Discussion: The effectiveness of the proposed method is verified by
using self-build metal fittings and insulator defect data sets. The experimental
results show that the student network mAP_50 (Mean Average Precision at 50) in
the Faster R-CNN model with the knowledge distillation algorithm added in this
paper increases by 8.44%, and the RetinaNet model increases by 2.6%. The
Cascade R-CNN model improved by 5.28%.

KEYWORDS

knowledge distillation, key region guidance, component defects, teacher model, student
model

1 Introduction

The transmission line is one of the most important infrastructures of China’s energy
Internet, and ensuring the reliability of the transmission line is one of the important contents
of the construction of the energy Internet. Transmission line components are an important
part of mechanical connection, fixing, protection and insulation. However, they are
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susceptible to abnormalities and defects such as defects, corrosion
and soiling due to the influence of the complex natural environment
and harsh climatic conditions (Nguyen et al., 2018). Therefore,
regular inspection and maintenance of transmission line fittings,
insulators and other important components can effectively reduce a
series of safety accidents caused by transmission line faults.

Inspection is a way to guarantee the continuous and stable
power supply of the power grid, the purpose of which is to carry out
online condition detection and fault diagnosis of components such
as shockproof hammers and insulators on the lines (Zhao and Cui,
2018). The current transmission line inspection methods include
manual inspection, robot inspection (Toth and Gilpin-Jackson,
2010), helicopter (Pham et al., 2020), unmanned aerial vehicle
inspection (Li et al., 2021), and remote sensing satellite
inspection (Yang et al., 2021). “Drone inspection is the main
focus, supplemented by manual labor” has developed into the
main operation and maintenance mode of China’s power system
(Yang et al., 2020). The construction of intelligent and manual
synergistic inspection system is an important initiative to promote
the safe operation of the power grid (Du et al., 2022).

The development of deep learning technology provides an
effective means for transmission line inspection and can more
effectively complete the task of defect detection of transmission
components in aerial images. At present, a lot of research work has
been done. Literature (Zhai et al., 2023) proposes a transmission line
multi-fitting detection method based on implicit spatial knowledge
fusion, aiming at the tiny-size and dense occlusion problem in the
transmission line multi-fitting detection task. First, in order to mine
the implicit spatial knowledge between transmission line fittings to
assist the model in detection, the spatial box setting module and the
spatial context extraction module are proposed to set the spatial box
and extract the spatial context information. Then, the spatial context
memory module is designed to filter and remember the spatial
context information to assist the location of the multi-fitting
detection model. Finally, the post-processing part of the model is
improved to further alleviate the low detection accuracy problem
caused by dense occlusion fittings. The experimental results show
that the proposed model has a promotion effect on the detection of
various kinds of fitting. Literature (Li et al., 2023) proposes a metal
fittings equipment detection algorithm based on improved
YOLOV7. This method adds a CA attention mechanism to the
network structure of YOLOV7 to enhance the feature extraction of
hardware devices in the network model. At the same time, it reduces
the interference of complex backgrounds on the network model to
extract features of hardware devices, allowing the network model to
extract features in detail, thereby improving the network model’s
detection generalization for hardware devices. In order to alleviate
the problem of misdetection and recheck caused by the lack of
context information in various existing hardware and defect
detection methods, literature (Zhao et al., 2023) proposes a
method of transmission line hardware and defect detection based
on context-structure reasoning. First, the image is input into the
target detection model; Then, the output result of the detection
model is sent to the structural reasoning module, and the output
result is sent to the bidirectional gated cycle unit and self-attention
for processing. The structural knowledge of transmission line fittings
and their defects is used to improve the confidence degree of the
correct positive sample and reduce the confidence degree of the

wrong positive sample. Finally, the final output result is obtained
through the regressor. To achieve the purpose of improving the
average accuracy. Literature (Sun et al., 2023) proposes a two-stage
insulator defect detection framework composed of attention-based
insulator detection network and defect detection network. Among
them, the attention-based insulator detection network is responsible
for the location of the insulator, and the defect detection model
determines whether the insulator is damaged. The two-stage design
of first positioning and then detection avoids the interference of
complex background and can realize the high-precision detection of
defects. Literature (Li et al., 2023) proposes a multi-scale feature
fusion insulator defect detection network for solving the problem of
insulator defective regions with little pixel information and varying
shapes and sizes. The network used a residual attention network to
obtain insulator defect features with different resolutions, and
designed a multi-scale feature fusion network based on inverse
convolution and multi-branch detection, which gradually fused
the deep feature maps with the shallow feature maps. In this
way, more abundant image semantic information can be
generated for target classification and location regression. In
addition, the literature also used Focal loss and Gaussian non-
great suppression methods to further enhance the detection effect.

Although these methods improve the accuracy of detection, they
inevitably increase the complexity of the model, consume a lot of
computing resources and time, and are difficult to deploy on resource-
limited equipment. The knowledge distillation algorithm provides a
solution to this problem. Literature (Gu et al., 2023) proposes a deep
neural network model compression algorithm for knowledge
distillation of multi-teacher models, which takes advantage of the
integration of multi-teacher models and takes the predictive cross-
entropy of each teacher model as the quantitative criterion for
screening to select the teacher model with better performance to
guide students, and allows the student model to extract information
from the feature layer of the teacher model. And give better
performing teacher models a greater say in instruction. Literature
(Wang et al., 2022) proposes an attention mechanism based on the
feature map quality evaluation algorithm (IQE). The knowledge
distillation method based on the IQE attention mechanism uses
the IQE method to identify important knowledge in the pre-
trained SAR target recognition deep neural network. Then in the
process of knowledge distillation, the lightweight network is forced to
focus on the learning of important knowledge. Through this
mechanism, the method proposed in this paper can efficiently
transfer the knowledge of the pre-trained SAR target recognition
network to the lightweight network, which makes it possible to deploy
the SAR target recognition algorithm on the edge computing
platform. Literature (Zhao et al., 2022) propose a target detection
model distillation (TDMD) framework using feature transition and
label registration for remote sensing imagery. A lightweight attention
network is designed by ranking the importance of the convolutional
feature layers in the teacher network. Multiscale feature transition
based on a feature pyramid is utilized to constrain the feature maps of
the student network. A label registration procedure is proposed to
improve the TDMDmodel’s learning ability of the output distribution
of the teacher network.

At present, some researches have applied the knowledge
distillation method to the field of electric power. Literature (Yang
et al., 2022) proposes a compression and integration application
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method based on knowledge distillation. In this method, the Detr
model is used to identify the initial target, and the Deformable Detr
algorithm is used to compress the Detr model, so that the
compression ratio reaches 87.5% and the target detection
accuracy is maintained at a high level, and the effective
integrated application of the target detection model in the
substation inspection robot body is realized. Literature (Zhao
et al., 2021) proposes a bolt defect image classification method
based on dynamically supervised knowledge distillation, aiming to
solve the problem of high computational resource consumption of
large models. The method utilizes adaptive weighting and attention
transfer techniques to improve the ability of the small model to learn
and represent bolt defects, which in turn enhances its classification
performance. In addition, literature (Zhang et al., 2022) improved
the YOLOv4 model and introduced the PCSA (Positional
Contextual Attention Shift) attention module for the problem of
anti-vibration hammer small target detection. This method
combines pruning and knowledge distillation techniques to tailor
and compress the network parameters, and constructs a lightweight
anti-vibration hammer detection network model, PCSA-YOLOs, to
improve the detection accuracy of small targets in complex
backgrounds.

With the intelligent development of power system inspection
technology, it is urgent to deploy models on UAV and helicopter
aerial photography and online monitoring equipment. Knowledge
distillation can help improve the performance of the model with a
small number of parameters, but making the student network
simulate the teacher’s network feature extraction ability without
difference cannot achieve the best effect. The focus of this paper is to
enable students to learn the effective feature processing ability of
teachers’ networks. In this paper, the PGW module is first
introduced to refine the feature knowledge of foreground object
distillation, and the first k most important pixels are extracted to
form a feature mask to improve the distillation performance of
student network for detecting hardware defects. Then, the GcBlock
module is used to capture the relationship between the target defects
of the hardware and the transmission lines in the background, and
the overall relationship information of the image is used to promote
the students’ network to learn the teacher’s network perception
ability of the relationship information. The combination captures
information about the relationship between transmission line
components and components, and between components and
backgrounds, helping to improve target detection accuracy.

2 Research methodology

2.1 Refinement of prospects regional
distillation

The application of knowledge distillation algorithms to image target
detection has focused on models using feature pyramid networks. Past
approaches usually directly used the output of the classification and
regression tasks of the teacher network as the target of the student
network. With the development, knowledge distillation can guide the
training of the student network in a more targeted way to improve the
detection accuracy. As shown in the literature (Guo et al., 2021), unlike
the general classification task, the classification and regression tasks in

the detection network can be negatively affected if the same objective
function is used for both tasks. This is because the two tasks have
different preferences for features: classification requires regions with
rich semantic information, whereas regression prefers to focus on the
edge portion of feature information. Features that produce better
classification scores are not accurate enough in predicting bounding
boxes (Song et al., 2020). Therefore, the same sensory field does not
guarantee optimal performance for both classification and regression
tasks. As shown by the images of defects of gold tools and insulators,
important feature knowledge exists for defects of the same kinds of gold
tools and insulators, and the datasets of defects of gold tools and
insulators are much smaller, which should be fully utilized to guide the
students’ network by taking advantage of the ability of the teacher’s
network to deal with the feature knowledge of the defects.

Therefore the features are scored to determine whether they are
good for classification or regression tasks, in order to reduce the
adverse effect of complex background on the detection of defective
targets of gildings and insulators, with the help of ground-turth box
first decouple each layer of features of FPN (Feature Pyramid
Network) whether it belongs to the foreground target region or
the background region as shown in Eq. 1:

M i,j( ) �
1, if i, j( ) ∈ G
0, if i, j( ) ∉ G

{ (1)

Let (i, j) denote the horizontal and vertical coordinates of the
feature pyramid network generating the feature map of the model. If
(i, j) is in the ground-truth bounding box, it is determined that this
feature belongs to the foreground target region, and the mask is set
M(i,j) � 1; if (i, j) is not in the ground-truth bounding box, it is
determined to be the feature map of the background region, and the
mask is set M(i,j) � 0.

Amplifying the most meaningful feature distillation signals
generated by the teacher network and using them to guide the
student network is the purpose of knowledge distillation. For this
purpose, we look at the quality of a teacher’s bounding box
predictions taking both classification and localization into
consideration. Formally, the quality score of a box b(i,j) predicted
from a position Xi � (xi, yi) w.r.t. a ground truth b is as shown in
formula (2):

q b i,j( ), G( ) � M i,j( ) · p i,j( )G( )λ

· DIOU G, b i,j( )( )( )1−λ
(2)

where M(i,j) is an indicator function that is 1 if Xi lies inside box b
and 0 otherwise; (p(i,j)G) is the classification probability w.r.t. the
GT box’s category; DIOU(G, b(i,j)) is the DIOU between the
predicted and ground-truth box. b(i,j) is a prediction frame and
G is a real labeled box, it is the ground-truth box; λ is a hyper-
parameter that balances classification and localisation. We calculate
the quality score of location Xi as the maximum value of all
prediction scores for that particular location, as shown in Eq. 3.
Y is used to represent the set of Xi locations as shown in Eq. 4:

qi � maxj∈Y q b i,j( ), G( ) (3)
Y � 1, 2, ..., Xi{ } (4)

Use of mass fraction qi as an important parameter in
determining distillation, these positions are the highest quality
predictive ensemble of scores generated by the teacher network.
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The purpose of knowledge distillation is to allow the student
network to mimic the strong generalization ability of the teacher
network. To achieve this, this paper focuses the foreground
distillation region on the locations where the teacher network
produces predictions with high-quality scores, as these locations
contain detection information that combines both classification and
regression considerations and represent the excellent performance
of the teacher network, helping the student network to improve its
ability to detect defective targets in complex contexts.

2.2 Knowledge distillation guided by key
area scoring

The features of fitting and insulator defects are very different from
those of their intact targets; the features are more consistent between
parts of the same species, but the features of each component defect are
variable and complex (Zhao et al., 2021), and when labeling the dataset,
the size of the labeled box is as close to the target as possible, and the
defects are damages that are produced on the component targets, which
have a more reduced range of effective features compared to the intact
targets. Therefore, we would like to use the knowledge of features of
defects in gold tools and insulators as a focus for the instructor network
to guide the student network. Therefore, the PGW (Prediction-Guided
Weighting) (Yang et al., 2022) module is introduced to improve the
prospect distillation region. And the PGW module is precisely
concentrated in the first k feature pixels with the highest mass
fraction in the prospect region. The effect of each position is then
smoothed according to the two-dimensional Gaussian distribution
fitted for each ground-truth box by the maximum likelihood
estimation method. Finally, only the k position is extracted in the
foreground target region, and the weight of the position is assigned by
the Gaussian function, the schematic is shown in Figure 1.

We smooth the effects of each position according to the 2D
Gaussian distribution fitted by the maximum likelihood estimate
(MLE) for each ground-truth box. Finally, foreground distillation is
performed only for those k positions, whose weights are assigned by
Gaussian. For detection targets with ground-truth O, the quality
score qi for each feature pixel within G is first calculated (Du et al.,
2021). The calculation formula of qi is shown in (3). The k highest
scoring pixels are then selected among all the layers of the FPN
network. TO � (XO

k , L
O
k )|k � 1, ..., K{ } is used to generalize the k

highest scoring pixels. Where XO
k is the absolute coordinate of the

pixel of the detection target O. LOk denotes which layer of the FPN
where the pixel of the detection target O is located. Both quantities
represent the k th pixel. Assuming that the selected pixel description
is represented on the image plane as Tk

o ~ N(μ,Σ|o) defined, the
maximum likelihood estimation algorithm is used to compute and
the two parameters μ and Σ as shown in Eqs 5, 6:

μ � 1
K
∑
K

k�1
Xo

k (5)

∑ � 1
K
∑
K

k�1
Xo

k−( μ) Xo
k − μ( )T (6)

Each feature pixel p(i,j)l with absoluteX(i,j) coordinates in layer l
of the FPN, calculates its importance in the distillation process as
expressed in Eq. 7:

Io
i,j( ),l �

0 P i,j( ) ,l ∉ To

exp( −1
2

X i,j( )−( )∑−1
X i,j( ) − μ( )T( ) P i,j( ) ,l ∈ To

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7)
where Io(i,j),l denotes that the detection target O is in layer l of the
FPN, the importance of the feature pixel p(i,j)l with coordinates
(i, j). If p(i,j)l belongs to the highest scoring pixel, calculate the
importance value using the formula, and if it does not belong to the
pixel, make it equal to zero. If a feature pixel is equally important for
more than one object, we use its maximum value I(i,j),l , and the
formula representation is shown in (8):

I i,j( ),l � max o Io
i,j( ),l{ } (8)

l refers to a layer of the FPN layer of size Hl × Wl, by normalizing
the importance of the distillation with the number of pixels of that
layer that are important and have a non-zero mass fraction so that
they are used to assign the distillation weights Q, and the formula is
expressed as shown in (9).

Q � I i,j( ),l
∑Hl

i�1
∑Wl

j�1
M i,j( ),l

(9)

Hl and Wl denote the length and width dimensions of the feature
map in the l-layer of the FPN, the above process constitutes the
Predictive Guidance Weighting (PGW) module, whose output is the

FIGURE 1
Schematic diagram of the processing principle for the foreground target area.
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foreground distillation weight Q of all feature levels and pixels,
which are used to find out the important feature pixels for use in the
teacher’s network to guide the student’s network.

2.3 Overall distillation loss function

The high-level network of the feature extraction network can
output better semantic features, but due to the size of the feature
map is too small, the geometric information is not sufficient, which
is not conducive to the detection of the target; the shallow network
contains more geometric information, but the semantic features of
the image are not much, which is not conducive to the classification
of the image. Therefore, when the network is trained, the student
network is made to learn the ability of the teacher network to extract
and process features at each layer of the FPN. By distilling the
classification and regression tasks separately, the student network
integrally learns the generalization ability of the teacher network for
these two tasks, which leads to an increase in its detection accuracy.

Formally, at each feature level in FPN, this paper utilizes the PGW
module to generate two distinct foreground distillation masks, Qcls

(i,j) is
the foreground distillation mask generated specifically for the
classification task. Qreg

(i,j) is the foreground distillation mask generated
specifically for the regression task. In this context, RC×H×W represents a
feature layer has C channels, and the feature map height and width of
each layerH andW. During training, the student model is encouraged
to learn the corresponding classification and regression features
FS,cls
n,(i,j), F

S,reg
n,(i,j) ∈ RC×H×W from the teacher network. The classification

feature loss function is represented as Eq. 10, and the regression feature
loss function is represented as Eq. 11.

Lcls
fea � ∑

C

n�1
∑
H

i�1
∑
W

j�1
αQcls

i,j( ) + βNcls
i,j( )( ) FT,cls

n, i,j( ) − FS,cls
n, i,j( )( )2

(10)

Lreg
fea � ∑

C

n�1
∑
H

i�1
∑
W

j�1
γQreg

i,j( ) FT,reg

n, i,j( ) − FS,reg

n, i,j( )( )2

(11)

α , β, and γ are hyperparameters used to balance the loss weights.
Ncls

(i,j) is the normalized mask for the background distillation region.
As shown in Eq. 12, when Qreg

(i,j) ≠ 0 , M−
(i,j) is 1. The meaning of

M(h,w) is opposite to M(i,j), and if the pixel (h, w) is not inside the
region G, it is assigned a value of 1.

Ncls
i,j( ) � M−

i,j( )/∑
H

h�1
∑
W

w�1
M h,w( ) (12)

In order to distill background information, the GcBlock (Cao
et al., 2019) module is utilized to capture the relationship between
defects in the hardware target and the transmission lines present in
the background. This module leverages the overall relationship
information in the image (Park et al., 2019). It encourages the
student network to learn the teacher network’s ability to perceive
relationship information (Hu et al., 2018). The representation of the
overall image relationship loss is given by Eq. 13.

Lrela � μ∑ R FT( ) − R FS( )( )2 (13)

In the equation, μ is a hyperparameter used to balance the loss
function, and FT and FS are the feature maps generated by the

teacher and student models, respectively. The function R represents
the relationship information between the hardware target captured
by different models and the background region. Its specific
formulation is given by Eq. 14.

R Fi( ) � Fi +W]2Relu LN W]1 ∑
NP

j�1

eWkFj

∑
Np

m�1
eWkFM

Fj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

In this context, W]1, W]2 and Wk represent different linear
transformation matrices. Fi represents the feature map of an input
instance. ∂j � eWkFj

∑Np

m�1
eWkFM

represents the weights obtained from global

attention pooling. LN stands for Layer Normalization. Np

represents the number of positions in the feature layer. In the
context of an image, Np � H ·W . e represents the natural
constant. FM represents the feature map generated for the
foreground region. Fj is any extracted feature from the image. δ(·) �
W]2Relu(LN(W]1(·)) denotes the feature transformation that
captures channel dependencies. The GcBlock module consists of
two components: global attention pooling for context modeling and
bottleneck transformation to capture channel correlations.

The structural diagram of the distillation method in this paper
is shown in Figure 2. It consists of two parts: foreground object
region distillation and background relationship distillation. For
foreground object region distillation, the PGW module is used to
calculate the masks for both the classification and regression tasks,
which together form the loss function used for training the
foreground object region. The background relationship
distillation area adopts the GcBlock module to capture
relationships in the image. The overall distillation loss function
in this paper is represented as Eq. 15.

L � Lcls
fea + Lreg

fea + Lrela (15)

3 Manuscript experimental results and
analysis

3.1 Experiment preparation

This article uses 5 types of fittings and insulators, along with
their defects, as the research dataset. Each type of defect has a
corresponding normal target feature for comparison, including
normal vibration damper, vibration damper cross, vibration
damper corrosion, normal single insulator, and insulator
drop. There are a total of 2,497 images, with 1997 images in the
training set, 250 images in the test set, and 249 images in the
evaluation set, with a ratio of 8:1:1. The dataset contains a total of
4,628 objects to be detected.

Themodel described in this article is trained and tested using the
NVIDIA GeForce GTX 1080Ti professional accelerator card. The
operating system used is Ubuntu 16.04.6 LTS, with training
accelerated using CUDA 10.1. The computer language used is
Python 3.7.11, and the network development framework is
PyTorch. All programs are executed based on the MMDetection
2.16 toolbox. This article uses the commonly used evaluation metric
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in object detection models, mean Average Precision (mAP), to assess
the performance of the model. The mAP is calculated by computing
the Average Precision (AP) for each class of objects and then taking
the mean of all class APs. The resulting mAP is used as the final
evaluation metric for the object detection model.

3.2 Comparison experiments with multiple
models using distillation algorithm

In the experiments, the teacher network, student network, and
the network with the distillation algorithm all use a learning rate of
0.0001. The backbone network for the teacher network is ResNet101,
while for the student network, it is ResNet50. The training is
conducted for 24 epochs (training rounds), and the batch size
used is 50.

The experimental process in this article mainly consists of two
steps.

1) Train the object detection models separately using the teacher
network (with a larger number of parameters) and the student
network (with a smaller number of parameters) on the fittings
defect dataset. Calculate and record their respective accuracy.

2) Train the student network, which has a smaller number of
parameters, using the knowledge distillation algorithm with
the fittings defect dataset. After training, calculate and record
its accuracy.

To validate the effectiveness of the proposed knowledge
distillation algorithm, a comparative experiment is conducted
using the evaluation metrics mentioned earlier. The experimental
results are presented in Table 1. Three image detection models,
namely, Faster R-CNN, RetinaNet, and Cascade R-CNN, are used
in the experiments. Each model is separately trained as a teacher
model, a student model, and a model with the knowledge
distillation algorithm introduced in this article. The detailed
process is to put the same data set into the same model with
the backbone model of Resnet101 and Resnet50. The backbone
network is identified as the teacher network by Resnet101 and the

backbone network is identified as the student network by
Resnet50. The results of two different backbone network
training were analyzed. After adding the distillation algorithm
in this paper, the student network is trained again, and the
difference between the student network with distillation
algorithm added and the student network without distillation
algorithm added is compared. The control parameters adopted in
these processes are consistent, the learning rate is 0.0001, and the
epoch of the training rounds is 24. The batch size is 50.

To verify the general applicability of the proposed method, both
single-stage and two-stage models are used in the experiments. From
the data in Table 1, it can be observed that the detection performance
of the student network improves significantly after the knowledge
distillation algorithm is applied. This distillation algorithm, as
presented in this article, utilizes a decoupling approach between
foreground and background information regions. By focusing on the
foreground object regions and reducing the interference caused by
complex backgrounds, the algorithm enhances the localization
ability of the model. By setting the k value to 45 in the
foreground object regions, the data indicates that, in most cases,
adding the knowledge distillation algorithm proposed in this article
improves the detection accuracy of the student network for both
normal component targets and defects. Particularly, the
improvement in detecting fittings and insulator defects is greater
than the improvement in detecting normal targets. In the case of the
RetinaNet model, where the teacher network’s accuracy is lower
than the student network’s accuracy in detecting vibration damper
corrosion, adding the distillation algorithm does not improve the
performance of the student network. This could be because the
teacher network’s performance is inferior to the student network’s
performance, which hinders its ability to guide the student network
in improving accuracy. In the case of Faster R-CNN, the highest
improvement is achieved in detecting vibration damper corrosion,
reaching up to 22.6%. For RetinaNet, the highest improvement is
seen in detecting normal insulators, with a maximum improvement
of 6.6%. Cascade R-CNN shows the highest improvement in
detecting vibration damper corrosion, reaching 8.2%.

The table shown in Table 2 compares the Grad-CAM distillation
algorithm (decoupling common feature scores) with the distillation

FIGURE 2
Overall distillation structure.
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algorithm proposed in this article, using Faster R-CNN and
RetinaNet as representatives of two-stage and single-stage
detection models, respectively. The Grad-CAM distillation
algorithm improves the detection performance of most targets,
but for fittings defects, its improvement is slightly inferior to the
distillation algorithm proposed in this article. In the case of the
Faster R-CNN model, the detection accuracy for normal vibration
damper targets and normal single insulator targets is slightly lower
in this article’s method compared to the Grad-CAM method.
However, for vibration damper cross defects, our method

outperforms the Grad-CAM method by 6.5 percentage points,
and for vibration damper corrosion and insulator String defects,
it outperforms the Grad-CAM method by 13.3% and 4.8%,
respectively. The analysis shows that the feature used for defect
target detection is more concentrated in the critical pixel regions.
Using ground-truth boxes as the range of foreground object regions
introduces more noise for defects. This article’s method selects
the top-k highest-scored pixels to form a mask, which includes
essential features for defect detection while avoiding introducing
noise from other parts of the foreground object regions. Figure 3

TABLE 1 AP results for different models and after applying the knowledge distillation algorithm.

Method mAP_50 Normal vibration
damper

Vibration damper
cross

Vibration damper
corrosion

Normal single
insulator

Insulator
drop

Faster-Res101 (Teacher
network)

0.544 0.648 0.312 0.642 0.589 0.530

Faster-Res50 (Student
network)

0.419 0.556 0.286 0.370 0.423 0.458

Faster-Res101-KD-Res50 0.503 0.572 0.368 0.596 0.469 0.510

RetinaNet-Res101
(Teacher network)

0.559 0.699 0.069 0.576 0.751 0.701

RetinaNet-Res50 (Student
network)

0.485 0.660 0.111 0.549 0.510 0.593

RetinaNet-Res101-KD-
Res50

0.511 0.683 0.092 0.567 0.576 0.635

Cascade-101 (Teacher
network)

0.617 0.672 0.464 0.695 0.631 0.623

Cascade-50 (Student
network)

0.503 0.629 0.394 0.486 0.530 0.474

Cascade-101-KD-50 0.555 0.694 0.510 0.568 0.510 0.495

TABLE 2 Comparison of two foreground knowledge distillation methods.

Detection
models

Settings mAP_50 Normal
vibration
damper

Vibration
damper cross

Vibration damper
corrosion

Normal single
insulator

Insulator
drop

Faster R-CNN Teacher
network

0.544 0.648 0.312 0.642 0.589 0.530

Student
network

0.419 0.556 0.286 0.37 0.423 0.458

Decoupled
scoring

0.499 0.654 0.303 0.463 0.614 0.462

Proposed
method

0.503 0.572 0.368 0.596 0.469 0.510

RetinaNet Teacher
network

0.559 0.699 0.069 0.576 0.751 0.701

Student
network

0.485 0.660 0.111 0.549 0.510 0.593

Decoupled
scoring

0.518 0.723 0.101 0.554 0.582 0.630

Proposed
method

0.516 0.683 0.092 0.567 0.576 0.663
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shows visualized detection images for different student networks,
teacher networks, and networks after applying the distillation
method.

3.3 Ablation experiments

To investigate the impact of different k values on improving
the accuracy of the student network, ablation experiments were
conducted based on the Faster-RCNN model, using ResNet-100
as the teacher network and ResNet-50 as the student network.
The mAP_50 values of the student network were observed for
different k values, and the results are shown in Table 3. From the
results, it can be observed that the student network achieves the
optimal mAP_50 value when k is set to 45. It is speculated that if k
is too small, it may not capture crucial defect features, while

setting k to a large value introduces too much noise from
foreground object regions, leading to negative effects.

4 Conclusion

Due to the limited dataset of hardware defects, hardware defects
occur as damage to the hardware target. Compared to the hardware
target, the effective feature range of hardware defects is smaller. In
order to improve the detection accuracy of hardware defects in
power transmission lines by the student network, this paper
improves the foreground target region distillation. It guides the
student network with more refined feature knowledge generated by
the teacher network. Considering the influence of the two tasks,
classification, and regression, in the foreground target region, pixels
are scored, and the top k important pixels’ generated masks
containing feature knowledge are used to guide the student
network. Experimental results show that the proposed method
applied to three different single-stage and two-stage detection
models, Faster-RCNN, RetinaNet, and Cascade R-CNN, has
improved the detection accuracy of hardware and its defects. In
Faster R-CNN, after adding the knowledge distillation algorithm in

FIGURE 3
Comparison of different network experiment results (A) Teacher network (B) Student network (C) Distilled student.

TABLE 3 Ablation Experiments with Different k Values.

k 1 5 10 15 30 45 60 75

mAP_50 0.189 0.265 0.312 0.458 0.467 0.483 0.479 0.410
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this paper, mAP_50 has improved by 8.44% for the student network.
RetinaNet improved by 2.6%, and Cascade R-CNN improved by
5.28%. This lays a solid foundation for lightweighting the hardware
and its defects detection models in power transmission lines.
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The application of a lightweight
model FA-YOLOv5 with fused
attention mechanism in insulator
defect detection
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Insulators are important components of transmission lines, serving as support for
conductors and preventing current backflow. However, insulators exposed to
natural environments for a long time are prone to failure and can cause huge
economic losses. This article proposes a fast and accurate lightweight Fast and
Accurate YOLOv5s (FA-YOLO) model based on YOLOv5s model. Firstly, attention
mechanisms are integrated into the network module, improving the model’s
ability to extract and fuse target features. Secondly, the backbone part of the
network is lightweightened to reduce the number of parameters and
computations at the cost of slightly reducing the accuracy of detecting a few
objects. Finally, the loss function of the model is improved to accelerate the
convergence of the network and improve detection accuracy. At the same time, a
visual insulator detection interface is designed using PyQt5. The experimental
results show that the algorithm in this paper reduces the number of parameters by
28.6%, the computational effort by 35.7%, and the mAP value by 1.7% compared
with the original algorithm, and is able to identify defective insulators quickly and
accurately in complex backgrounds.

KEYWORDS

insulators, defect detection, attention mechanism, lightweighting, WIoU_Loss

1 Introduction

With the increasing demand for electricity, transmission lines have spread all over the
country. Insulators, as an important part of them, have good mechanical support and
electrical insulation properties, and play an important role in supporting the conductor and
preventing the current from returning to the ground during the whole transmission process.
However, its long-term exposure to strong electric field environment and susceptibility to
adverse weather conditions such as rain, snow, and extreme temperatures, resulting in
defects such as spontaneous explosion and fracture, creates a huge potential risk to the safe
and stable operation of transmission lines, and according to statistics, the highest number of
failures in power systems is caused by insulator defects (Chen, 2020; El-Hag, 2021).
Therefore, fast and accurate detection of defective insulators and timely replacement are
particularly important for the safe operation of the entire transmission system.

The defect detection of insulators is mainly divided into insulator localization as well as
defect detection. The defect detection of insulators can be divided into manual observation,
traditional image processing based and deep learning based methods. Among them, the
manual observation method is time-consuming and labor-intensive, and has certain safety
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risks (Yu et al., 2019). And the traditional image processing-based
methods need to set the target features artificially, and different
features need to be set for different targets, and the recognition
accuracy is low, which can easily cause false detection or missed
detection. In (Lu et al., 2017), an active contour model is proposed
for insulator segmentation based on the shape and texture features
of insulators, and the method proves to be effective in identifying
defective insulators even in a cluttered background. Zhang et al.
(2018) proposed a computer vision-based insulator feature
extraction method, which extracts texture features through a
grayscale co-occurrence matrix and then detects insulator
features using local features. Although the traditional image
processing-based method has been able to detect defective
insulators well, the detection process is complicated and easily
disturbed by the background environment, resulting in missed
and false detection. To overcome the interference of complex
background, Zheng H. et al. (2020) proposed an improved
infrared insulator image detection model based on the complex
substation environment, which improves the extraction capability
for insulator infrared image features by generating new feature
pyramids with feature enhancement modules. However, the
infrared imaging-based method is susceptible to the influence of
temperature leading to poor detection results.

The above methods based on traditional image processing can
only accurately identify defective insulators in a specific
environment because they cannot automatically extract insulator
features, but insulators are usually in complex background
environments such as rivers, farmlands, construction sites and
forests, so a method that can automatically extract insulator
feature information from images is urgently needed.

With the rise of deep learning technology, target detection
algorithms have achieved great success in the field of insulator
defect detection by virtue of their fast and accurate recognition
capability. Compared with traditional image processing methods,
deep learning-based target detection algorithms can automatically
extract deep feature information in images, reduce recognition time
and improve detection accuracy (Yang et al., 2021). The flow of
insulator defect detection based on deep learning algorithm is shown
in Figure 1.

At present, the mainstream object detection algorithms are
mainly divided into Two stage and One stage. Two stage first
generates a prior box based on the target object, and then
recognizes and judges the objects within the prior box. This
method has high detection accuracy and can accurately identify
the target, but the detection time is long. Themainstream algorithms
include Faster R-CNN (Ren et al., 2015) andMask R-CNN (He et al.,

FIGURE 1
Flow Chart of Insulator Defect Detection in UAV Aerial Photography based on deep learning algorithm.
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2017). For example, Shuang et al. (2023) introduced a feature
enhancement and assisted classification module based on Faster
R-CNN to improve the accuracy of model detection. The data
enhancement method of YOLOv5-X was also ported to expand
the dataset. Zhao et al. (2021) firstly used feature pyramid network to
improve the Faster R-CNNmodel, and then segmented the image by
hue, saturation and value color space (HSV) adaptive thresholding
algorithm, and finally localized and detected the defective insulators.
Tan et al. (2022) usedMask R-CNNmodel to segment out insulators
and detected defects such as breakage, dirt, foreign matter and
flashover by multi-feature fusion and cluster analysis model.

One stage directly locates and recognizes targets, which has a fast
detection speed and can achieve real-time detection. However, the
detection effect is not satisfactory. The mainstream algorithms
include YOLO series algorithms and SSD (Wei et al., 2016)
algorithm, and timely detection and replacement of defective
insulators is important for the safe and stable operation of
transmission lines. In order to detect the working status of
insulators in real time, Yi et al. (2023) improved the Neck part
of the YOLOv5s model and proposed a new attention module
MainECA to enhance target perception, and the proposed
YOLO-Small model reduced the number of parameters while
improving the detection accuracy. Zhang et al. (2023) used
GhostNet as the Backbone network of the YOLOv4 model, and
at the same time optimized the model using K-means algorithm and
Focal loss function. Chen Y et al. (2023) added the GSConv module
to the latest YOLOv8n algorithm to reduce the complexity of the
network, and also adopted a lightweight Content-Aware Feature
Reconstruction (CARAFE) structure to enhance the feature fusion
capability of the model. Miao et al. (2019) used a combination of
SSD model and two-stage fine-tuning strategy to complete the
detection of defective insulators, which can automatically extract
multi-level features of images and can identify porcelain insulators
and composite insulators quickly and accurately in complex
backgrounds.

Based on the fact that deep learning methods need to use a large
number of datasets to achieve better results, and then there are not
many open-source insulator datasets due to confidentiality factors,
most of the methods mentioned above use data augmentation
strategies to expand their datasets, as shown in Table 1.

In Table 1, Shuang et al. used 806 images captured fromGuangxi
Power Grid in China as the dataset, and did not expand the dataset
using image processing methods, but directly used the data
enhancement methods in YOLOv5x to enhance the training data.
Zhao et al. used 4 datasets with a total of 10,468 images, and YI et al.

used data enhancement methods such as rotating, panning, scaling,
cropping, etc. to expand 1700 original images to 5180 images. Zhang
et al. also used the above methods to expand 848 images in the
original open-source Chinese Power Line Insulator Dataset (CPLID)
into 880 images. Zhang et al. also used the above method to expand
848 images in the original open-source Chinese Power Line
Insulator Dataset (CPLID) to 5832 images, and Miao et al. used
a drone to take 6700 original images on the transmission line as a
dataset for their experiments. Finally, Chen et al. expanded the
open-source datasets CPLID and Insulator Defect Image Dataset
(IDID) to 5676 images using common data expansion methods.

The main research objective of this article is to propose an
improved YOLOv5 algorithm, FA-YOLOv5s, to address the issues of
high computational complexity, slow detection speed, complex
background, mutual occlusion, and small targets in the existing
insulator defect detection algorithms. The proposed method mainly
improves the network structure of YOLOv5 model and loss
function, so that the new algorithm can quickly and accurately
identify insulators in complex environments and detect whether
they have faults. The main contributions of this article are as follows:
1) Integrating the Convolution Block Attention Module (CBAM)
(Woo et al., 2018) with the network’s C3 module enhances the
network’s ability to fuse insulation feature information, improving
detection accuracy. 2) By using Partial Convolution (PConv) to
lightweight the main network part of the model, the computation
cost is reduced at the cost of reduced accuracy. 3) The loss function
of the network was improved by using Wise_IoU Loss as the loss
function, which improved the convergence speed of the model.

2 Related work

As one of the current popular target detection methods, the
YOLOv5 algorithm is a product of continuous innovation and
improvement based on the YOLOv3 (Redmon and Farhadi,
2018) and YOLOv4 (Bochkovskiy et al., 2020) algorithms. It
combines the advantages of both algorithms, has fewer parameter
quantities, and a simpler structure. While accelerating the detection
speed, it also increases the detection accuracy, and achieves better
detection results on PASCAL VOC (Everingham et al., 2015) and
COCO (Lin et al., 2014) datasets. According to its network depth
and width, YOLOv5 is successively YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x, with the fastest detection speed and
lowest accuracy. The comparison on the COCO datasets is
shown in Table 2.

TABLE 1 Relevant datasets used to cite the Reference.

Author Number of data Method Data enhancement Fault location

Shuang et al. (2023) 806 Detail R-CNN × √

Zhao et al. (2021) 10,468 Faster R-CNN × √

Yi et al. (2023) 1700 YOLOv5s √ √

Zhang et al. (2023) 848 YOLOv4 √ √

Miao et al. (2019) 6700 SSD × √

Chen Y et al. (2023) 2448 YOLOv8n √ √
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The network model is shown in Figure 2. YOLOv5s network
structure is mainly divided into four parts: Input, Backbone,
Neck and Head. Mosaic (Lewy and Mańdziuk, 2023) data
enhancement is performed on the input side to speed up the
image processing and reduce the memory size of the model,
which makes the model obtain better detection results. backbone
is mainly composed of Conv-Batch Normalization-SiLU(CBS),
Stack 3 convolutional layers on top of multiple bottleneck layers
(C3) and Spatial Pyramid Pooling Fusion (SPPF) modules. The
CBS module consists of a normal convolutional layer
(Convolutional), a batch normalization (Batch Normalization)
and an activation function (SiLU), while C3 consists of three
standard convolutional layers and several Bottleneck modules,
which are structured The SPPF is divided into two branches, one
passing through multiple Bottleneck stacks and 3 standard
convolutional layers, and the other passing through a basic
convolutional module, and finally they are concatted. SPPF
improves the perceptual field of the network through feature
extraction with maximum pooling of different pooling kernel
sizes.The main role of the Neck part is to deep fuse the features
extracted from the Backbone The Head part outputs the input
size of 640 × 640 images as 20 × 20, 40 × 40 and 80 × 80 size
feature maps, which are used to predict large, medium and small
targets in three different sizes.

3 Fast and accurate FA-YOLOv5
algorithm

Current improvements to the YOLOv5 algorithm focus on
improving the accuracy and convergence speed, while ignoring
the complexity of the network model and the increase in the
number of parameters, e.g., Han et al. (2022) added the ECA-Net
attention mechanism to the backbone feature extraction network of
YOLOv5, and also used a bidirectional feature fusion network in the
feature fusion layer to enhance the detection of small targets. Gao
et al. (2021) proposed a convolutional attention module with batch
normalization (BN-CBAM) and a multi-level feature fusion module
to enhance the detection of small targets. Although these methods
are effective in improving the detection accuracy for small targets,
they also make the network structure more complex and reduce the
detection speed. In this paper, the convolutional attention
mechanism CBAM module is fused with the C3 module of Neck
part to improve the accuracy of detection. At the same time, the
network is lightweighted to address the problems of complex
network structure, number of parameters, and large computation.
Finally, the latestWIoU loss is used as the loss function of the model,
which speeds up the convergence, makes full use of the dynamic
non-monotonic FM potential, and solves the problem of unbalanced
sample quality.

TABLE 2 Comparison of YOLOv5 parameters in COCO dataset.

Network model Image size mAP 0.5 mAP 0.5:0.95 Speed (v100/ms) Parameter(M)

YOLOv5s 640 55.4 36.7 2.0 7.3

YOLOv5m 640 63.1 44.5 2.7 21.4

YOLOv5l 640 66.9 48.2 3.8 47.0

YOLOv5x 640 68.8 50.4 6.1 87.7

FIGURE 2
YOLOv5s network structure.
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3.1 Incorporating attention mechanism in
C3 module

Since insulators are mostly in complex backgrounds and the
defective part of insulators is a relatively small part of the whole
image, it is difficult for the algorithm to extract feature information
of insulators and their defects effectively. In order to enhance the
extraction of target feature information, researchers proposed the
attention mechanism (Vaswani et al., 2017), whose main role is to
enhance the extraction of various appearance features of the target
and make the algorithm biased to extract the features, the core of
which is to make the network focus on the region of the target in the
image rather than the whole image. By making the algorithm focus
on the feature information of the target and ignore other
unimportant information to improve the detection performance
of the algorithm, the attention mechanism has been widely used in
computer vision tasks such as target detection and image
segmentation in recent years, and occupies an important position
in the field of deep learning.

Attention mechanisms are usually divided into channel
attention mechanisms and spatial attention mechanisms, which
focus on the channel dimension and spatial dimension,
respectively. Channel attention is used to deal with the

assignment relationship of feature map channels, while spatial
attention allows neural networks to focus more on target regions
in the image and ignore irrelevant regions, and simultaneous
attention allocation to both dimensions enhances the effect of
attention mechanisms on model performance.

The workflow of CBAM is shown in Figure 3, where the
feature map is first passed through the channel attention module,
then the feature map is multiplied with the channel weights and
input to the spatial attention module, and finally the normalized
spatial weights are multiplied with the feature map input to the
spatial attention module to obtain the final weighted feature
map. The final weighted feature map is obtained. This module not
only saves parameters and computational effort, but also can be
easily added to other network structures. For example, Wang
et al. (2022) directly added the CBAM attention module to the
YOLOv5s network structure to improve the insulator feature
extraction capability and achieve insulator detection in complex
backgrounds, but the method is not effective for insulator defect
detection of small targets.

The overall formula of Figure 3 is shown in Eqs 1, 2.

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ) (1)
Ms F( ) � σ fconv AvgPool F( ); MaxPool F( )[ ]( )( ) (2)

FIGURE 3
Principle of CBAM attention mechanism.
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Mc(F) and Ms(F) are the channel and spatial attention weights of
the feature layer F, respectively; AvgPool and max Pool are the
average pooling and maximum pooling operations; MLP stands for
multilayer perceptron; σ is the sigmoid activation function. as the
input to the next layer, as shown in Eq. 3.

F′ � Mc F( ) ⊗ F
F″ � Ms F′( ) ⊗ F′{ (3)

where ⊗ denotes element-wise multiplication, F is the intermediate
quantity of the feature layer passing through the channel attention
module. and F″ denotes the output passing through the spatial
attention module.

The current common method for improving attention
mechanisms is to directly add them to the network structure,
which does not fully leverage the effectiveness of attention
mechanisms. Although this approach does improve the detection
accuracy to some extent, it also increases the number of layers and
parameters in the network. To further reduce the number of model
parameters and fully leverage the effectiveness of attention
mechanisms, this article combines attention mechanisms with the
C3 module to form a new module, namely, C3CBAM. At the same
time, the newly generated C3CBAM module further enhances the
model’s capability to focus on target feature information. This
module strengthens the model’s ability to fuse and extract target
feature information from both channel and spatial dimensions,
allowing for accurate identification of target feature information
even in complex background environments. As a result, efficient
insulation defect detection can be achieved.

To verify the effectiveness of this method, we conducted
experiments by adding different attention mechanisms after the
same C3 layer and compared themwith themethod of incorporating
CBAM into the network layer. The experimental results are shown
in Table 3. We added different attention mechanisms to the network
model for comparison experiments, which were conducted after
adding different attention mechanisms to the same Conv layer while
ensuring that the number of other parameters of the experiment was
the same. As can be seen from Table 3, different methods have
different effects on the performance of the original model,
Normalization-based Attention Module (NAM) and Efficient
Channel Attention (ECA) reduce the accuracy of the model
detection. The other attention mechanisms all have some
improvement effect on the detection performance of the model,
among which the Global Attention Mechanism (GAM) attention

mechanism has the biggest improvement effect, but it increases the
number of parameters and computation of the model, because the
purpose of this study is for fast and accurate insulator defect
detection algorithm, out of the comprehensive considerations, we
choose to integrate the CBAM Attention Mechanism and
C3 module fusion method to improve the original model. This
method reduces the number of parameters and computation to
some extent, and most importantly has the highest performance
enhancement effect on the original model.

3.2 Lightweight network architecture

The FasterNet (Chen J et al., 2023) network recently released by
CVPR far exceeds other existing networks in terms of lightweight as well
as the balance of detection performance. The current mainstream
lightweight networks such as MobileNet, ShuffleNet, and GhostNet
utilize deep convolution (DWConv) or group convolution (GConv) to
extract spatial feature information, which although greatly reduces the
number of parameters and floating point operations (FLOPs), but the
computation is not efficient, increases the number of layers of the
network, runs slower, and greatly reduces the accuracy and effectiveness
of detection, while adding some additional data operations. In order to
maintain high accuracy while reducing FLOPs, Chen et al. proposed
local convolution (PConv), which works as shown in Figure 4.

PConv has lower computational effort as well as higher
computational efficiency, which can utilize the computational power
of the device more efficiently and also improves the model’s ability to
extract spatial feature information. Based on this, Chen Y et al. (2023)
proposed FasterNet, which can achieve better results in classification,
detection and segmentation tasks at a faster rate, and its can replace the
Backbone part of the YOLOv5 model.

This article improves the backbone network of YOLOv5 using
PConv, FasterNet, MobileNet, ShuffleNet, and GhostNet respectively.
Through experimental comparisons, it is shown that PConv effectively
reduces the complexity and parameter count of the network while
maintaining high accuracy. The experimental results are shown in
Table 4. The backbone network using the FasterNet improvement
algorithm has the highest detection accuracy but the number of
parameters is still high, while replacing the entire backbone part of
the network using ShuffleNetV2 greatly reduces the number of
parameters and computation, but also increases the number of
layers of the network, and the detection speed is also reduced.

TABLE 3 Comparison of different attention mechanisms and addition methods.

Methods Precision (%) Recall (%) mAP0.5 (%) Parameters(M) GFLOPs

YOLOv5 95.5 94.5 95.4 7.0 16.0

NAM 96.1 94.0 95.2 7.0 16.0

CBAM 96.5 94.7 95.9 7.0 16.0

ECA 95.4 95.3 95.5 7.0 16.0

CoordAtt 96.8 95.7 96.3 7.0 16.0

GAM 96.7 95.1 96.4 7.5 16.3

C3CBAM 96.7 96.1 96.5 6.9 15.7

The bold portion of the table indicates the value with the best performance in the metric.
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MobileNetV3 and GhostNet both reduce the number of network
parameters and computation at the cost of increasing the number of
network layers. Based on this, this paper uses PConv to lighten the
Backbone of the network, which can greatly reduce the number of
parameters and computation of the model at the cost of a small
reduction in accuracy.

3.3 Improvement of the loss function

The loss functions of YOLOv5 model are Classification loss,
Localization loss and Confidence loss, and the sum of the three loss
functions is the size of the total loss function. The calculation
formula is as in Eq. 4.

Loss � lossbox + lossobj + losscls (4)

IoU_Loss (Yu et al., 2016) is the first proposed loss function for
target detection, but it only considers the overlap area of the
detection frame and the target frame, which has certain defects.
the appearance of GIoU_Loss (Rezatofighi et al., 2019) loss function
solves the shortcomings of IoU_Loss to a certain extent, but it also
has the disadvantages of not accurate enough boundary regression
and slow convergence speed. The subsequent DIoU_Loss (Zheng Z.

et al., 2020) loss function takes the overlap area and centroid
distance into account and accelerates the convergence speed, but
does not take the aspect ratio factor into account. To address these
drawbacks, the CIoU_Loss (Zheng et al., 2021) loss function takes
into account the overlap area, centroid distance and aspect ratio
influence factor α and ʋ, and its calculation process is shown in Eq. 5.

CIoU � 1 − IoU + ρ2 b, bgt( )
C2 + αʋ (5)

where, b represents the center coordinates of the prediction frame, bgt

represents the parameter of the center of the real target bounding box. ρ2

represents the Euclidean distance between the two centroids, c represents
theminimumexternal rectangle diagonal length of the two rectangles, ʋ is
used to measure the consistency of the aspect ratio, and α is the weight
function. The values of α and ʋ are shown in Eq. 6.

α � ʋ

1 − IoU( ) + ʋ

ʋ � 4

π2 arctan
mgt

ngt
− arctan

m

n
( )

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(6)

The original YOLOv5 algorithm uses CIoU_Loss as the loss
function of the network, however, the ʋ-value used to measure the

FIGURE 4
Difference between PConv and ordinary convolution and deep convolution.

TABLE 4 Experimental results of different ways of light weight treatment.

Methods Layers Parameters(M) GFLOPs Precision (%) mAP0.5 (%) FPS

PConv 129 5.1 10.5 95.1 94.4 89

Faster-Net 228 6.4 14.0 95.4 95.2 76

MobileNetV3 320 1.4 2.3 94.8 93.2 80

ShuffleNetV2 193 0.8 1.9 94.5 92.9 82

GhostNet 500 5.3 8.4 96.8 94.1 73

The bold portion of the table indicates the value with the best performance in the metric.
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aspect ratio is too complex and slows down the convergence to some
extent, so when one of the two variables increases (shrinks), the
other one will shrink (increases). To solve this problem, (Zhang
et al., 2022), proposed EIoU Loss by splitting the aspect ratio on the
basis of CIoU, which accelerated the speed of convergence and
improved the accuracy of regression. Focal-EIoU was also proposed
to focus on high-quality anchor frames, which optimized the
problem of sample quality imbalance in the regression task and
made the regression process more focused on high-quality anchor
frames, and the calculation process of EIoU_Loss is shown in Eq. 7.
Thus (Yang et al., 2022) used EIoU as a loss function to improve the
YOLOv3 algorithm, which improved the overlap between the
predicted and actual frames of the target and accelerated the
convergence speed.

LEIoU � LIoU + Ldis + Lasp

� 1 − IoU + ρ2 b, bgt( )
C2 + ρ2 w,wgt( )

C2
w

+ ρ2 h, hgt( )
C2

h

(7)

Although Focal-EIoU solves the problem of sample quality
imbalance to some extent, the potential of non-monotonic FM is
not fully utilized due to its static focusing mechanism (FM), so
(Tong et al., 2023) proposed an IoU-based loss with dynamic non-
monotonic FM, namely, Wise IoU (WIoU), which has a bounding
box regression of attention-based loss WIoU v1, WIoU v2 with non-
monotonic FM, andWIoU v3 with dynamic non-monotonic FM. In
this paper, WIoU v3 is used as the loss function of the network, and
its gradient gain allocation strategy with dynamic non-monotonic
FM is utilized to trade-off the learning ability of high quality as well
as low quality samples and improve the overall performance of the
model. The calculation formula is shown in Eq. 8.

LWIoUv1 � RWIoULIoU

RWIoU � exp
x − xgt( )2 + y − ygt( )2

W2
g − H2

g( )*
⎛⎝ ⎞⎠ (8)

where Wg, Hg denote the width and height of the minimum
enclosing frame. To prevent RWIoU from creating gradients that
hinder convergence, Wg and Hg are separated from the
computational graph (the superscript * indicates this operation).
No new metric like aspect ratio is introduced because it effectively
eliminates the factors that hinder convergence. To significantly
amplify the localization loss (LIoU) of the normal quality anchor
box, the range of RWIoU is [1,e) while the range of LIoU is [0,1],
which will significantly reduce the Rwiou of the high quality anchor
box and focus on their centroid distance when the anchor box
overlaps with the target box.

3.4 Network structure of this paper

In order to reduce the complexity of the model and make it more
suitable for deployment on mobile devices such as UAVs, this paper
uses PConv to lighten the backbone part of the network. At the same
time, CBAM attention is fused with C3 module to give full play to
CBAM’s ability to extract target feature information in channel and
space, which improves the accuracy of detection. Finally, WIoU_loss is
used as the loss function of the network, and the improved part is shown
in red, and the specific network structure is shown in Figure 5.

(1) Backbone: Compared with the old version of Spatial Pyramid
Pooling Fast (SPP) (He et al., 2015), the new version uses Fast
-SPP (SPPF) to improve the processing speed of feature
information. And replace all C3 modules in the backbone
network with Pconv reduces the number of parameters as
well as the computational effort of the network model,
making the model able to run on low performance servers
and more suitable for deployment on mobile devices.

(2) Neck: This part mainly consists of Feature Pyramid Networks (Lin
et al., 2017) and Perceptual Adversarial Network (Liu et al., 2018),
which first fuses the input insulator feature maps from top to
bottom to transfer the semantic information from the deep layer to
the shallow layer to enhance the semantic representation at
multiple scales, and then performs a bottom-up feature fusion
to transfer the location information from the bottom layer to the
deep layer to enhance the localization at multiple scales. The fusion
of C3 module with CBAM attention mechanism in this part
strengthens the ability of Neck part for fusion of target feature
information, especially for small target insulators and self-
detonation defective parts of insulators, and also reduces the
complexity of the model to some extent.

(3) Head: This part mainly detects 3 different scales, including some
convolutional layers, pooling layers and fully connected layers,
etc. Its role is to perform multi-scale target detection on the
feature maps extracted from the backbone network. The model
proposed in this article uses WIoU loss to improve detection
accuracy and convergence speed in this section.

In order to verify the effectiveness of the method in this paper, the
heat map visualization operation (Quan et al., 2022) was performed on
the insulator feature extraction process in complex backgrounds, as
shown in Figure 6, fromwhich it can be seen that after the convolutional
layer extracts the shallow information of insulators, the model can
effectively segment the region where the target is located from the
background environment; the sampling effect is obviously enhanced
after the second stage C3CBAM feature extraction; after the third and
fourth stage processing, the higher-level semantic information of the
feature map has been more blurred, and the extracted insulator features
have become abstracted. From the visualization results of the heat map,
it is clear that the algorithm of this paper can more fully extract the
color, texture, shape and edge information of insulator defects in the
image, so as to quickly and accurately detect defective insulators.

Meanwhile, we designed a visual detection interface based on
PyQt5 for the algorithm in this paper, as shown in Figure 7, which
mainly has the following functions:

Model, select different models. Input, select the files to be detected,
including the detection of pictures and videos in local files, and also has
the function of real-time detection using the device’s camera and
supports RTSP video streaming. The ability to adjust the IoU,
confidence level and frame rate delay in the detection process of the
model, when reducing the IoU and confidence level, can make the
model detect more targets, but the detection error is higher. When IoU
and confidence are adjusted up, the accuracy of detection increases and
the rate of missed detection increases. The delay can also be selected
independently during the detection process. The interface also has the
functions of start, pause and end, and the detection results are counted
at the bottom left of the interface, and the results are automatically saved
when the detection is completed.

Frontiers in Energy Research frontiersin.org08

Liu et al. 10.3389/fenrg.2023.1283394

48

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1283394


4 Experimental results and analysis

4.1 Experimental environment and data pre-
processing

The operating system for the experiments in this paper is Window
11, the CPUmodel is Intel(R) Core(TM) i7-11700 2.5GHz, 64GBRAM,

and the GPUmodel is GeForce RTX 3060 Laptop GPUwith 12G video
memory size of the workstation. The experimental environment is
Python 3.8, GPU acceleration software CUDA 11.1 and CUDNN 8.1.0.
The datasets used in this paper ismainly derived from three parts, with a
total of 1006 insulator images. The first part is the Chinese power line
insulator datasets (CPLID) (Raimundo, 2020), which includes
600 images of normal insulators and 248 images of self-exploding

FIGURE 5
FA-YOLOv5 network structure diagram.

FIGURE 6
Feature extraction and detection heat map visualization.
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insulators. The second part is 40 self-exploding images of glass
insulators disclosed by Baidu Flying Paddle; the third part is
118 images containing self-exploding glass insulators as well as
bird’s nests taken on site in a southern power grid. The data set
was also labeled by LabelImg software, and the labeling labels
were divided into: normal insulator (insulator), self-detonation
defect (defect), bird’s nest (nest) and glass insulator (glass
insulator). Due to the lack of sufficient number of datasets, we
expanded the number of datasets to 5174 by Gaussian blurring,
cropping, brightness variation, and flipping of the existing
datasets, and the results of partial data enhancement are
shown in Figure 8. And the ratio of training set, validation set
and test set is divided randomly in the form of 8:1:1. The input
image size is 640 × 640, the batch size is 16, the initial learning
rate is 0.001, the network parameters are updated using SGD, the
learning momentum is 0.937, the weight decay is 0.0005, warmup
momentum is 0.8, the translate parameter is set to 0.1, and each
training is 100 epochs.

4.2 Evaluation metrics

In order to accurately evaluate the performance of the algorithm,
Precision (P), Recall (R), Average Precision AP and Mean Average
Precision (mAP) are the most commonly used model evaluation
metrics in the field of target detection, which are calculated as shown
in Eqs 9–12, respectively.

Precision � TP
TP + FP

(9)

Recall � TP
TP + FN

(10)

AP � ∫1

0
P r( )dr (11)

mAP � ∑N
i�1APi

N
(12)

Where TP denotes the number of positive samples predicted as
positive by the model, FP denotes the number of negative samples
predicted as positive by the model, i.e., false detection, and FN
denotes the number of positive samples predicted as negative by the
model, i.e., missed detection. N is the total number of detected
categories, and in this paper N is set to 4, i.e., normal insulators, self-
detonation defective insulators, bird’s nests, and glass insulators. AP
is the area enclosed by the PR curve, mAP is the detected average
value of AP for each category. The larger the mAP, the better the
performance of the algorithm.

4.3 Ablation experiment

In order to verify the effectiveness of the algorithm proposed in this
paper, mAP, Precision, Recall, parameter quantity, and FPS were used
as evaluation indicators to compare the performance of the model
through ablation experiments. A total of 6 sets of models were used.
Group A is the original datasets for YOLOv5s model training, Group B
is the expanded datasets for YOLOv5s model training, Group C, D and
E add PConv, C3CBAM and WIoU loss function respectively on the
basis of Group B, and Group F (Ours) add PConv, C3CBAM and
WIoU loss function on the basis of Group B, and carry out comparative

FIGURE 7
PyQt5-based visual inspection interface.
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experiments with the same parameters. The experimental results are
shown in Figure 9 and Table 5, respectively.

As can be seen from Table 5, before data enhancement, the
YOLOv5 algorithm was not effective in detecting insulator defective
parts due to the lack of sufficient defective samples, and after the data
enhancement operation, it can be seen that the algorithm has

significantly improved the detection accuracy for all four
categories, but there is still some room for improvement in the
number of parameters, computation and overall performance of the
model. When we use PConv to improve the backbone network part
of the model, the number of parameters of the model is reduced by
27.2% and the computation is reduced by 34.4%, while the speed of

FIGURE 8
Partial data enhancement results.

FIGURE 9
Based on FA-YOLOv5 ablation experimental graph.
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detection is improved to some extent, but the accuracy of detection is
reduced.The fusion of the CBAM attention mechanism with the
C3 module not only improves the detection accuracy but also
reduces the complexity of the network. To further improve the
performance of the model, we use Wise_Loss as the loss function of
the model. Finally, a faster and more accurate model FA-YOLOv5 is
proposed, which has 1.6% higher mAP value, 28.6% lower number
of parameters, and 35.7% lower computational effort compared to
the original model.

The comparison graph of experimental results is shown in
Figure 9. Analysis of the mAP0.5 graph in Figure 9A shows that
the convergence of the original algorithm is slow and the
accuracy is low when no data augmentation is performed.
After the data enhancement of the defective samples, the
situation is significantly improved, and it can also be seen
that the algorithm of this paper has stabilized at the 40th
round and achieved a high detection accuracy. From the Loss
plot in Figure 9B, it can be seen that the loss value of the
algorithm for training the original datasets only starts to

stabilize in the 53rd epoch, while the loss value of the
algorithm after doing data enhancement operation on the
original datasets slowly stabilizes after 30 epochs of training,
but the loss values of the algorithm are all improved, and it can
be seen from the curve sets of Group E (WIoU) and Group F
(Ours) that the improvement of the loss function in this paper
has obvious effect on speeding up the convergence, while the
loss value reaches the minimum.

4.4 Comparison experiments

To further verify the superiority and feasibility of the algorithm
in this paper, we conducted comparison experiments on the
unimproved YOLOv7, YOLOv8s, SSD and Faster R-CNN
algorithms with optimal parameters, and the datasets used for
the experiments were all self-built insulator defect datasets in this
paper, and the precision, recall and average precision during the
experiments of the mean value are shown in Table 6.

TABLE 5 Ablation experiments based on improved FA-YOLOv5.

/ Model Precision (%) Recall
(%)

mAP0.5
(%)

Parameters(M) GFLOPs FPS Weights
(MB)

Insulator Defect Nest Glass
insulator

A YOLOv5(Original
datasets)

90.2 94.8 87.8 96.7 85.1 92.4 7.0 16.0 81 13.7

B YOLOv5(Data
Enhancements)

94.6 95.5 95.0 97.2 94.5 95.4 7.0 16.0 81 13.7

C YOLOv5(Data
Enhancements +

PConv)

93.8 94.7 94.2 96.7 94.0 94.4 5.1 10.7 89 10.0

D YOLOv5(Data
Enhancements +

C3CBAM)

95.9 96.3 96.8 96.4 96.1 96.5 6.9 15.7 80 13.6

E YOLOv5(Data
Enhancements +

WIoU)

95.6 97.2 97.5 96.9 96.5 95.9 7.0 16.0 85 13.7

F YOLOv5(Data
Enhancements +

PConv + C3CBAM +
WIoU)

95.4 97.6 97.2 97.3 96.7 97.1 5.0 10.3 89 9.83

The bold portion of the table indicates the value with the best performance in the metric.

TABLE 6 Comparison of experimental results of different algorithmic models.

Methods Precision (%) Recall (%) mAP0.5 (%) Parameters(M) GFLOPs

YOLOv5s 95.5 94.5 95.4 7.0 16.0

YOLOv7 96.9 96.0 96.1 37.2 105.2

YOLOv8s 97.3 96.8 96.6 11.1 28.7

SSD-VGG 85.6 67.8 84.3 26.3 62.7

Faster R-CNN 82.1 70.1 81.6 137.1 370.2

FA-YOLOv5 97.6 96.7 97.1 5.0 10.3

The bold portion of the table indicates the value with the best performance in the metric.
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From Table 6, it can be seen that among the unimproved
algorithm models, YOLOv8s and YOLOv7 models, as the latest
target detection algorithms nowadays, have high detection

accuracy, but compared with YOLOv5s, their number of
parameters and computation amount are larger. Faster R-CNN,
as a typical Two-stage algorithm, has the highest number of
parameters and the largest computation amount, and also the
worst performance among all the compared algorithmmodels.SSD
algorithm, as one of the typical One-stage algorithms, has only a
little bit more parameter and computation amount than the
YOLOv5 algorithm, but due to the fact that the last layer of the
feature map of the network structure is too small, it is easy to lose
the feature information of the target, which leads to the loss of
feature information of the target. which leads to easy loss of the
target’s feature information, so the detection effect for this dataset
is also poor. In order to balance the detection accuracy and model
complexity, this paper proposes a lightweight model FA-YOLOv5
with better detection performance on the basis of YOLOv5 model,
which has the highest detection accuracy and the least network
parameters and computation among the listed models, and it is
more suitable for deploying on mobile devices for transmission
line inspection such as UAVs, which proves the feasibility of the
method in this paper. Meanwhile, from the mAP0.5 curve graph in
Figure 10, it can also be more intuitively seen that the algorithm
proposed in this paper has a better convergence speed, and at the
same time, it also has a better detection accuracy, and its detection
performance is better than that of other comparative algorithms,
which further proves the effectiveness of the algorithm in this
paper.

FIGURE 10
Comparison of experimental results of mAP0.5 curves for
different models.

FIGURE 11
Comparison of detection results of different algorithms.
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Finally, this paper compares the detection result graphs of the
four models with the highest mAP values, and the comparison
results are shown in Figure 11. From Figures 11B,D, it can be seen
that the YOLOv7 and YOLOv8s algorithms have high detection
accuracy for glass insulators, but the detection of the small targets as
well as defective regions is not effective, and there are serious leakage
cases.

From Figure C, it can be seen that YOLOv5s, YOLOv7 and
YOLOv8s algorithms have lower detection accuracy under the
interference of low-light as well as Gaussian noise, and the
model’s anti-interference ability is weaker, and the robustness
is insufficient. In contrast, the FA-YOLOv5 proposed in this
paper can accurately detect the small target insulators in the
distance as well as the occluded insulators, and can accurately
detect the insulators and their defective regions even under low
light, and at the same time, it also has high detection accuracy
under the interference of Gaussian noise and good anti-
interference ability, which further proves that this paper’s
method can be applied to the presence of small targets under
complex backgrounds in the presence of occlusion as well as
dense and other cases can have a better detection effect.

5 Conclusion

In view of the slow detection speed and low accuracy, even
leakage detection and false detection caused by the current insulator
defect detection model with large number of parameters and large
computation, as well as the complex environment in which
insulators are located, the small percentage of defective parts, and
the existence of mutual occlusion between insulators, this paper
improves the YOLOv5s algorithm and proposes a lightweight FA-
YOLOv5s algorithm based on it, with the following main
contributions.

1) Strengthening feature fusion: By integrating the CBAM attention
mechanism into the C3 module, the characteristics of both the
attention mechanism and the C3 module are combined to
enhance the algorithm’s ability to fuse target feature
information. This allows the feature information to better
propagate to the detection head, resulting in improved
detection accuracy.

2) Lightweight processing: Lightweight improvement is made to the
convolutional modules in the main network of the model,
balancing the relationship between network structure
complexity and detection performance, so that the network
reduces the number of parameters and computations at the
cost of a small decrease in accuracy.

3) In this paper, the CIoU loss function used in the original model is
improved to aWIoU loss function, which balances the variability
in sample quality and improves the overlap between the
prediction frame and the bounding box to improve the
accuracy of the detection compared to CIoU.

4) A visualized software interface for defective insulator detection is
designed, which enables a more intuitive observation of the
detection results of the model.

However, during the experimental process, we found that the
insulator defective dataset used in this paper is of a single type, and
the data enhancement method can only expand the number of
samples, and cannot enrich the diversity of the background
environment, resulting in limited application in real scenarios. In
the next work, we will consider going to the field to actually shoot
more insulator images in different scenes, to further improve the
robustness of the algorithm and the diversity of the dataset, and
optimize the effect of YOLOv5s algorithm on the detection of
defective insulators.
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Short-term interval prediction of
PV power based on quantile
regression-stacking model and
tree-structured parzen estimator
optimization algorithm
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In recent years, the photovoltaic (PV) industry has grown rapidly and the scale of
grid-connected PV continues to increase. The random and fluctuating nature of
PV power output is beginning to threaten the safe and stable operation of the
power system. PV power interval forecasting can provide more comprehensive
information to power system decision makers and help to achieve risk control and
risk decision. PV power interval forecasting is of great importance to power
systems. Therefore, in this study, a Quantile Regression-Stacking (QR-Stacking)
model is proposed to implement PV power interval prediction. This integrated
model uses three models, extreme gradient boosting (Xgboost), light gradient
boosting machine (LightGBM) and categorical boosting (CatBoost), as the base
learners and Quantile Regression-Long and Short Term Memory (QR-LSTM)
model as the meta-learner. It is worth noting that in order to determine the
hyperparameters of the three base learners and one meta-learner, the optimal
hyperparameters of the model are searched using a Tree-structured Parzen
Estimator (TPE) optimization algorithm based on Bayesian ideas. Meanwhile,
the correlation coefficient is applied to determine the input characteristics of
the model. Finally, the validity of the proposed model is verified using the actual
data of a PV plant in China.

KEYWORDS

photovoltaic Forecast, interval Forecast, Optimization, Stacking, Photovoltaic

1 Introduction

In recent years, the human demand for electrical energy has been increasing. At present,
thermal power generation occupies 60% of the global electricity energy supply, however,
thermal power generation requires a large amount of non-renewable energy in the
production process, and the non-renewable energy sources stored on the Earth, such as
coal, oil and natural gas, are becoming increasingly depleted (Viet et al., 2020), and the
energy crisis has sounded an alarm for mankind for mankind (Frilingou et al., 2023).
Therefore, accelerate the energy revolution, optimize the energy structure is urgent to
achieve sustainable development of energy has become a key concern of countries around the
world. Solar energy is a renewable energy source with great potential, and countries around
the world have reached a consensus on the need for solar energy development, of which
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photovoltaic power generation is an important way of solar energy
development and utilization (Rafique et al., 2020; Khalid et al.,
2023). With the progress of technology and cost reduction,
photovoltaic power generation has been widely promoted and
applied in all countries around the world, and the installed
capacity has been rising in recent years.

PV power output is uncontrollable and subject to various
meteorological factors, showing strong volatility, randomness,
intermittency and non-smoothness. The PV power system is
equivalent to an uncontrollable power source for the power
system. With the increasing scale of grid-connected PV, unstable
PV power output will cause difficulties in power system scheduling
and real-time power balancing. At the same time, PV power output
fluctuations can lead to sharp fluctuations in frequency and voltage,
and the resulting shocks may threaten the safe and stable operation
of the power system. In addition, large-scale grid-connected PVmay
have a certain negative impact on the damping characteristics of the
power system, which in turn threatens the safe and stable operation
of the power system (Rafique et al., 2022). Therefore, in order to
improve the security of the power system and the reliability of power
supply, the light has to be abandoned. Accurate PV power prediction
helps the power system scheduling department to reasonably
arrange the power system scheduling plan and realise the real-
time balance of power generation and power consumption, so as to
ensure that the power system can operate reliably, safely and stably.
For PV power operating companies, it can improve the economic
efficiency of PV power plants. In addition to this, energy storage
technology has a very high potential in reducing the threat of PV
fluctuations to the power system (Amir et al., 2023).

According to the different mechanisms within the prediction
models, PV output forecasting models can be categorized into:
physical models, statistical models, machine learning models and
integrated models. The physical prediction model uses the
installation position, tilt angle, design parameters, operating
characteristics and conversion efficiency of PV modules to
establish a physical model, while meteorological data such as
solar irradiance is used as the data basis for the physical model
to obtain the predicted value of PV power generation through the
calculation of the physical model (Dolara et al., 2015). The statistical
model is only data-driven. The statistical model inputs weather
variables such as solar irradiance and historical data of PV power,
and extracts the intrinsic correlation information to build a mapping
model to achieve the prediction of future PV output (Gellert et al.,
2022). While traditional statistical methods have very limited
nonlinear modeling capability, machine learning prediction
models (Rao et al., 2022) have powerful nonlinear mapping
modeling capability, which has led to its rapid development in
the field of PV forecasting. Twenty-four machine learning models
were developed for implementing PV power prediction by Dávid
Markovics et al. Day-ahead PV power prediction was performed
based on numerical weather forecast data. The effects of predictor
variable selection and the benefits of hyperparameter tuning were
also investigated in detail in this study (Markovics andMayer, 2022).
In recent years many researchers have turned to the development
and research work of combined prediction models (Liang et al.,
2023), which have superior predictive performance, model
generalization performance, and robustness.

Traditional PV power prediction techniques focus on point
prediction. The output of point prediction is a single point
expected value of PV power at a certain moment in the future.
However, due to the chaotic nature of the atmospheric system, PV
power prediction errors cannot be avoided. There are significant
uncertainties in the prediction results, and the information provided
by point prediction is very limited. In contrast to point prediction,
interval prediction of PV power uses prediction intervals to achieve a
quantitative estimate of the prediction uncertainty. The interval
prediction results provide the upper and lower bounds of the
fluctuation of PV power at a certain confidence level at a certain
time in the future, which makes up for the limitations of the PV
power point prediction technique and can provide more
comprehensive data support for the power system. The PV
power interval prediction results can provide important
references for the operational risk assessment and risk decision-
making of the power system, and further improve the security and
economy of the power system. In addition, PV power interval
prediction technology has a very broad application prospect in
the fields of power system planning, power system scheduling,
energy storage configuration and regulation, and power market
trading. Zhenhao Wang et al. (Wang et al., 2022)established a
deep convolutional generative adversarial network model to
generate PV power characteristic curves in different scenarios,
and then established a QRLSTM model to achieve PV power
interval prediction. Ming Ma et al. (Ma et al., 2022)analysed the
distribution of PV power prediction errors and then constructed PV
power prediction intervals using a kernel density estimation
algorithm.

The existing PV power interval prediction is mainly realised
using a single model, and its prediction performance needs to be
further improved. Multi-model fusion technology will be an
important development direction in the future. The values of the
model parameters largely determine the prediction performance of
the model, so the hyperparameter optimisation problem of the
fusion model needs further research. Therefore, in this paper a
stacking model that can achieve the prediction of PV power intervals
is proposed. An optimisation algorithm is used to determine the
optimal hyperparameter values for this model to improve the PV
power interval accuracy. In order to provide important data support
for power system operation risk assessment and risk decision-
making, and to further improve the safety and economy of the
power system. The main contributions of this paper are as follows:

1) A novel QR-Stacking integrated model is proposed to implement
PV power interval prediction. Multiple decision tree models are
used as the base learners of this integrated model, and deep
neural networks are used as the meta-learner of this integrated
model. The QR-Stacking integrated model is constructed by
combining the quantile regression model and the Stacking
integrated model to achieve the PV power interval prediction.
This is the first application of this stacking model in the field of
PV power interval prediction.

2) To improve the prediction accuracy of the QR-Stacking
integrated model, the Tree-structured Parzen Estimator
algorithm was used to search for determining the
hyperparameters of multiple base learners and a meta-learner.
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3) Simulation analysis was conducted based on actual PV power
generation data from a PV power plant in China. Multiple interval
evaluationmetrics were used to evaluate the prediction intervals. A

comprehensive comparative analysis of the interval prediction
accuracy of QR-Stacking and multiple benchmark prediction
models was performed. The results show that the model can
give full play to the advantages of each algorithm and improve
the prediction accuracy of PV power intervals.

The rest of the paper is organized as follows: Section 2 describes
the prediction models and optimization algorithms used in this
paper. Section 3 describes in detail the evaluation metrics of the
prediction model. Section 4 provides case studies. The prediction
performance of the proposed prediction model is compared with
that of several benchmark models. The accuracy of the prediction
models is verified by experimental simulations. Section 5
summarizes the whole paper.

2 Methodology

Figure 1 shows the overall structure of the work in this paper.
Firstly, three base learners, Xgboost, LightGBM and CatBoost, and a
meta-learner, QR-LSTM, are built. The proposed QR-Stacking
model is constructed from the above four models and the TPE
optimisation algorithm. Secondly, the proposed model is trained
and tested using real PV data. Finally, three evaluation metrics are
used to compare and analyse the prediction performance of the
proposed model with QR-LSTM and QR-GRU models. The
nomenclature used in this paper is presented in Table 1.

2.1 Stacking

It has been shown that single prediction models have limited
prediction accuracy. Ensemble machine learning would be an
important solution to this challenge. Usually, the first layer of the
stacking model is the base learner layer and the second layer is the
meta-learner layer. The meta-learner layer corrects the prediction
error of the base learner. In this research, Xgboost, LightGBM and
CatBoost are used as base learners. The QR-LSTMmodel is used as a
meta-learner. The following section details the modeling principles
of the three base learners and one meta-learner.

2.2 Base learners

2.2.1 Xgboost
The XGBoost algorithm is an improved algorithm of the

gradient augmented regression tree. The main improvements of
the XGBoost algorithm are the improvement of the objective
function and its solving method.

The objective function (loss function) of the XGBoost algorithm
during training consists of two parts, as shown in Eq. 1.

Obj � ∑
n

i�1
l(yi,ŷi) +∑

K

k�1
Ω fk( ) (1)

Where∑
n

i�1
l(yi, ŷi) is used to characterize the difference between

the predicted values ŷi and true values yi. ∑
K

k�1
Ω(fk) is the

regularization term.

FIGURE 1
Overall structure of the work in this paper.

TABLE 1 Nomenclature.

Abbreviations Full text

CatBoost categorical boosting

DI direct radiation

EI expected improvement

GRU Gated Recurrent Unit

GI global irradiance

H humidity

Ken Kendall correlation coefficient

LSTM Long and Short Term Memory

LightGBM light gradient boosting machine

PV photovoltaic

PICP Prediction interval coverage probability

PINAW Prediction interval normalized average width

QR Quantile Regression

QR-Stacking Quantile Regression-Stacking

QR-LSTM Quantile Regression-Long and Short Term Memory

QR-GRU Quantile Regression-Gated Recurrent Unit

TPE Tree-structured Parzen Estimator

T temperature

WC comprehensive evaluation index

WD wind direction

Xgboost extreme gradient boosting
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The regularization term can be calculated from Eq. 2:

∑
K

k�1
Ω fk( ) � γT + 1

2
θ∑

T

j�1
ω2
j (2)

where Ω(fk) is a function of the complexity of the decision tree
fk. γ is the penalty term of the L1 regular. T is the total number
of leaf nodes of the decision tree. θ is the penalty term of the
L2 regular. ωj is the weight of the decision tree fi at the jth
leaf node.

Each iteration updates the objective function to Eq. 3.

Objt � ∑
n

i�1
l yi, ŷ

t−1( )
i + ft xi( )[ ] +Ω ft( ) (3)

Using a second-order Taylor expansion for the above
equation, the following equation is obtained by removing the
constant term.

Objt � ∑
n

i�1
gift xi( ) + 1

2
hi × f2

t xi( )[ ] + Ω ft( ) (4)

where gi � ∂ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi � ∂2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) are the first-

and second-order derivatives of the objective function, respectively.

2.2.2 LightGBM
The basic idea of LightGBM is to obtain the final strong regression

tree using multiple iterations of the weak regression tree. The new
regression tree obtained from each iteration is obtained by fitting the
prediction residuals of the previous regression tree. Finally, the
outputs of all regression trees are summed to output the better-
performing results. The calculation is shown in Eq. 5.

F x( ) � ∑
M

m�1
fm x( ) (5)

where fm(x) is the output value of themth weak regression tree and
F(x) is the final output value of the model.

FIGURE 2
The structure of the LSTM unit.

FIGURE 3
Pseudo-code of the TPE optimisation algorithm.
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2.2.3 CatBoost
The CatBoost model is an improved gradient boosted decision

tree (GBDT) model. The improvements of CatBoost over traditional
GBDT are as follows:

Traditional GBDT derives the gradient of the current model
based on the same dataset in each iteration of training, but this leads
to biased point-by-point gradient estimation. CatBoost uses Ordered
Boosting to improve the gradient estimation method of the
traditional algorithm. The improved algorithm obtains an
unbiased estimate of the gradient to mitigate the effect of the
gradient estimation bias and thus improve the generalization
ability of the model. To obtain unbiased gradient estimation, the

CatBoost model trains a separate model Mi for each sample xi,
which is obtained by training with a training set that does not
contain sample xi. ThenMi is used to obtain a gradient estimate on
the samples. Finally, this gradient is used to train the weak learner
and obtain the final model.

2.3 Meta-learner

2.3.1 Quantile regression
The quantile regression (QR) model is used to study the

relationship between the conditional quartiles of the independent

FIGURE 4
Flow chart of the training phase of the proposed stacking model.

FIGURE 5
Pseudo-code for the training phase of the proposed model.
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and dependent variables. The quantile regression model can be
represented by Eq. 6.

QPi τ|xi( ) � xiβ τ( ) i � 1, 2,/, n (6)
where QPi(τ|xi) is the conditional quantile. τ ∈ (0, 1). β(τ) is the
vector of regression coefficients. β(τ) � [β0(τ), β1(τ),/, βm(τ)]T.
Each element βj(τ) in β(τ) characterizes the degree of influence of
the jth independent variable on the dependent variable. n is the total

number of samples. Pi is the dependent variable. xi is the
independent variable. The dependent variable is usually multiple,
i.e.,: xi � [xi,0, xi,1,/, xi,m]

The objective of solving the quantile regression model is β(τ).
The problem can be solved byminimizing the loss function as shown
in Eq. 7.

L � ∑
n

i�1
γτ Pi − xiβ τ( )( ) (7)

FIGURE 6
Flow chart of the testing phase of the proposed stacking model.

FIGURE 7
Pseudo-code for the testing phase of the proposed model.
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where γτ is an asymmetric function with respect to the quantile τ.
β̂(τ) is the estimated value of β(τ). Its specific expression is
given by:

γτ s( ) � τs s≥ 0
τ − 1( )s s< 0

{ (8)

where the expression of s is s � Pi − xiβ(τ).
Thus the expression for solving β̂(τ) is as follows:

β̂ τ( ) � argmin∑
n

i�1
γτ Pi − xiβ τ( )( ) (9)

Ultimately, the estimates obtained by quantile regression model
estimation at different conditional quartiles are as follows.

Q̂Pi
τ|xi( ) � xiβ̂ τ( ) i � 1, 2,/, n (10)

2.3.2 Long and Short Term Memory
The Long and Short Term Memory (LSTM) model was first

proposed by Hochreiter and Schmidhuber in the 1990s as a solution
to the issue of vanishing gradients in traditional RNNs. The
incorporation of gating units, consisting of forgetting, input, and
output gates, allows LSTMs to selectively retain or discard
information within the cell state, enabling them to effectively
capture and model long-term dependencies in sequential data. As
a result, LSTMs have become a widely utilized tool in the field of
deep learning. Figure 2 is a schematic diagram of the structure of the
LSTM model.

2.3.3 Quantile Regression-Long and Short Term
Memory

Quantile regression model in the form of loss function and
LSTMmodel are fused to achieve PV power interval prediction. The

FIGURE 8
Heat map of correlation between power variables and meteorological factor variables.

TABLE 2 The hyperparameter search range settings for the base learners and
meta-learner.

Model Hyperparameter Search range

Xgboost learning_rate Choice [0.01,0.03,0.1,0.2,0.5]

n_estimators Randint (100,1000)

max_depth Choice [4,6,8,10,12,15]

min_child_weight Randint (3,20)

LightGBM learning_rate Choice [0.01,0.03,0.1,0.2,0.5]

n_estimators Randint (100, 1000)

max_depth Choice [4,6,8,10]

min_child_samples Randint (0,30)

min_child_weight Randint (3,20)

CatBoost learning_rate Choice [0.01,0.03,0.1,0.2,0.5]

iterations Randint (100,1000)

depth Choice [4,6,8,10,15]

LSTM units Qrandint (16, 512,16)

dropout Choice [0.01,0.2,0.5,0.8,0.9]

activation Choice ["linear","relu","elu"]
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Quantile Regression-Long and Short Term Memory (QR-LSTM)
model serves as a meta-learner for the proposed model to further
correct the prediction bias of the base learner.

2.4 Tree-structured parzen estimator

In this study, the Tree-structured Parzen Estimator (TPE)
optimization algorithm is proposed to achieve the global
optimization of each model hyperparameter. The TPE algorithm
uses a probability density estimator based on the tree structure to
implement Bayesian optimization. The TPE technique may fast
converge to the global optimal solution and models the
parameter space using a tree structure.

The main advantages of the TPE algorithm are (1) It avoids the
inefficiencies of traditional grid search or random search by using
probability density estimates to model the objective function.
(Nguyen et al., 2020). (2) The TPE algorithm can automatically

adjust the direction and scope of the search. (3) The TPE algorithm
can handle discrete, continuous, and mixed types of
hyperparameters, making it applicable to a variety of machine
learning models and algorithms. (4) The TPE algorithm is based
on Bayesian optimisation theory, which has a solid mathematical
foundation and reliable theoretical support. (5) The TPE algorithm
estimates the probability density function in the parameter space by
constructing a tree-like structure, which enables it to find high
probability regions quickly and reduces the size of the search space.
In contrast, optimisation algorithms such as genetic algorithms
require a large number of iterations and crossover operations
with high computational complexity. (6) The TPE algorithm is
able to handle the noise in the objective function better and find
the optimal solution more stably through the estimation of the
probability density function. While optimisation algorithms such as
genetic algorithmmay be disturbed by noise and get unstable results.

The core of TPE optimisation is to find a set of hyperparameters
that minimise the established objective function. The Bayesian-

FIGURE 9
Forecast intervals of the QR-Stacking model during sunny days.

FIGURE 10
Forecast intervals of QR-LSTM model during sunny days.
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based TPE optimisation algorithm reduces the number of
computations and time cost by selecting the most promising set
of hyperparameters for the next evaluation. Figure 3 illustrates the
pseudo-code of the TPE optimisation algorithm. The following
section describes in detail the selection criteria for the objective
function and the next set of hyperparameters:

The goal of hyperparameter optimization is to find the value of
the hyperparameter that minimizes the loss of the machine learning
model. It can be expressed as Eq. 11.

s* � argmin
s∈S

f s( ) (11)

where S is the optional hyperparameter space and s* is the best set of
hyperparameters.

The whole concept of Bayesian optimization is to reduce the
number of computations and time cost by selecting the most
promising set of hyperparameters as possible for the next evaluation.
The selection criteria for the next set of hyperparameters is the expected
improvement (EI), which is expressed as:

EIt* s( ) � ∫t*

−∞
t* − t( )p t, s( )dt (12)

where t* is the threshold of the objective function, s is the proposed
hyperparameter, t is the actual value of the objective function when
the proposed hyperparameter s is used, and p(t, s) denotes the agent
probability model.p(t, s) is defined in the TPEmethod, and p(t, s) is
denoted as

p t, s( ) � l s( ) if t< t*
g s( ) if t> t*{ (13)

where l(s) denotes the probability of hyperparameter set s when the
value of the objective function t is less than a threshold value t*, g(s)
denotes the probability of hyperparameter set s when the value of the
objective function t is greater than a threshold value t*.

The EI criteria when using the TPE method can be expressed as
follows.

EIt* s( ) � ∫t*

−∞
t* − t( )p t, s( )dt � ∫t*

−∞
t* − t( )p s, t( )p t( )

p s( ) dt (14)

p(s) can be denoted as p(s) � ∫
R
p(s|t)p(t)dt � gl(s)+

(1 − g)g(s).Let γ � p(t< t*). The final EI can be expressed as
follows.

FIGURE 11
Forecast intervals of QR-GRU model during sunny days.

TABLE 3 Evaluation of the prediction results of each model during sunny days.

Model Confidence levels (%) PICP PINAW WC

QR-Stacking 95 1.000000 0.142233 0.142233

90 0.912281 0.108516 0.118951

85 0.859649 0.095189 0.110731

QR-LSTM 95 1.000000 0.159846 0.159846

90 0.842105 0.107182 0.127279

85 0.789473 0.090057 0.114073

QR-GRU 95 1.000000 0.146956 0.146956

90 0.824561 0.105388 0.127812

85 0.754385 0.093575 0.124041
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EI*t s( ) � γt*l s( ) − l s( )∫t*

−∞p t( )dt
γl s( ) + 1 − γ( )g s( ) ∝ γ + g s( )

l s( ) 1 − γ( )( )
−1

(15)

In order to maximize EI, the ratio l(s)
g(s) should be maximized.

Therefore, the expected set of hyperparameters s has a higher
probability under l(s).

Eventually, through continuous iteration, the set of
hyperparameters that can make the objective function achieve the
minimum value is obtained. This set of hyperparameters is the best
hyperparameters for the proposed model.

2.5 Quantile regression-stacking model
optimized using the tree-structured parzen
estimator algorithm for photovoltaic power
interval prediction

In this study a stacking model using an efficient hyperparametric
optimization method for PV power interval prediction is proposed.

Xgboost, LightGBM and CatBoost are used as the base learners. QR-
LSTM is used as a meta-learner. Firstly, three basic learners are used
to independently make predictions of PV power output, which are
able to learn the trend of PV power from historical data. Each basic
learner produces a set of predictions. Then, the prediction results of
these base learners are fed into QR-LSTM to achieve the final
prediction. QR-LSTM further corrects the prediction errors of
the three base learners to improve the prediction accuracy.
Notably, the quantile regression model in the QR-LSTM model is
capable of constructing prediction intervals to quantify the
uncertainty in PV power prediction. By combining the strengths
of these learners, the QR-Stacking model is able to better address the
challenges associated with PV power output fluctuations and more
accurately quantify the uncertainty in PV power forecasts. In
addition to this, the TPE algorithm is also used to search for the
optimal parameters of the base and meta learners to further improve
the interval prediction performance of the model.

The proposed stacking model is illustrated separately in a
training phase and a testing phase.

FIGURE 12
Forecast intervals of QR-Stacking model during rainy days.

FIGURE 13
Forecast intervals of QR-LSTM model during rainy days.
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2.5.1 Training phase
The steps of the stacked model training phase are shown in

Figure 4. The pseudo-code for the training phase of the proposed
model is presented in Figure 5. The 5-fold cross-validation and
TPE parameter optimization methods are used in the training
phase of the proposed stacking model. The details are illustrated
below.

1) The training set is divided into 5 folds.
2) Training the Xgboost model using a 5-fold cross-validation

method and a TPE parameter optimization method. In the
first iteration, the last 4 folds are used for training the model
and the first fold is used for prediction. The obtained prediction
result is P1−fold

Xgboost. In the second iteration, the second fold is used
for prediction and the remaining four folds are used for training.
The obtained prediction result is P2−fold

Xgboost. This process is
repeated until the prediction results are obtained for all
5 folds. Finally, the prediction result obtained by the Xgboost
model is:

PTrain
Xgboost � P1−fold

Xgboost, P
2−fold
Xgboost, P

3−fold
Xgboost, P

4−fold
Xgboost, P

5−fold
Xgboost[ ] (16)

3) Using the same process as (16), the outputs obtained from the
LightGBM and CatBoost models are expressed as follows.

PTrain
LightGBM � P1−fold

LightGBM, P
2−fold
LightGBM, P

3−fold
LightGBM, P

4−fold
LightGBM, P

5−fold
LightGBM[ ]

(17)
PTrain
CatBoost � P1−fold

CatBoost, P
2−fold
CatBoost, P

3−fold
CatBoost, P

4−fold
CatBoost, P

5−fold
CatBoost[ ] (18)

4) The prediction results of the three base learners are merged to
obtain a new training set PTrain

New . The matrix PTrain
New and the

original dependent variable PTrain
Original are used as training data

for the meta-learner.

PTrain
New �

P1−fold
Xgboost P1−fold

LightGBM P1−fold
CatBoost

P2−fold
Xgboost P2−fold

LightGBM P2−fold
CatBoost

P3−fold
Xgboost P3−fold

LightGBM P3−fold
CatBoost

P4−fold
Xgboost P4−fold

LightGBM P4−fold
CatBoost

P5−fold
Xgboost P5−fold

LightGBM P5−fold
CatBoost

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

5) The dimension of matrix PTrain
New is transformed into three

dimensions to satisfy the QR-LSTM model input

FIGURE 14
Forecast intervals of QR-GRU model during rainy days.

TABLE 4 Evaluation of prediction results of each model during cloudy and rainy days.

Model Confidence levels (%) PICP PINAW WC

QR-Stacking 95 0.982456 0.135335 0.137751

90 0.964912 0.110254 0.114264

85 0.894736 0.084793 0.094768

QR-LSTM 95 0.982456 0.152176 0.154893

90 0.912280 0.127719 0.140000

85 0.912280 0.110009 0.120587

QR-GRU 95 1.000000 0.180607 0.180607

90 1.000000 0.148593 0.148593

85 1.000000 0.124890 0.124890
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requirements, and the new matrix PTrain
New 1 is obtained. The

prediction results PTrain
New 1 of the base learners and the training

set PTrain
Original of the dependent variable are fed to the meta-learner

QR-LSTM for training. It is worth noting that the meta-learner
also uses the TPE algorithm for parameter optimization to
exploit its optimal predictive performance.

2.5.2 Testing phase
The detailed flow of the testing phase is shown in Figure 6. The

pseudo-code for the testing phase of the proposed model is
presented in Figure 7. In the testing phase, the test dataset is fed
into the stacking model to implement PV power interval prediction.
It is worth mentioning that the cross-validation strategy is no longer
used in the testing phase and an average strategy is introduced to
deal with the multiple predictions of each base learner. The details
are described as follows.

1) The test set is fed to each base learner for prediction. A 5-fold
cross-validation strategy is used in the training phase, hence for
each base learner five different models are generated after
training. Therefore, each base learner is capable of obtaining
five predictions. The prediction results of each model are as
follows.

PTest
Xgboost � PTest 1

Xgboost, P
Test 2
Xgboost, P

Test 3
Xgboost, P

Test 4
Xgboost, P

Test 5
Xgboost[ ] (20)

PTest
LightGBM � PTest 1

LightGBM, P
Test 2
LightGBM, P

Test 3
LightGBM, P

Test 4
LightGBM, P

Test 5
LightGBM[ ]

(21)
PTest
CatBoost � PTest 1

CatBoost, P
Test 2
CatBoost, P

Test 3
CatBoost, P

Test 4
CatBoost, P

Test 5
CatBoost[ ] (22)

2) The 5 predictions of each base learner are averaged and 3 new
matrices are obtained:

PTest−New
Xgboost � 1

5
∑
5

i�1
PTest i
Xgboost, P

Test−New
LightGBM � 1

5
∑
5

i�1
PTest i
LightGBM,

PTest−New
CatBoost � 1

5
∑
5

i�1
PTest i
CatBoost

.
3) The 3 matrices are combined and used as feed-in data for the

meta-learner. The matrix obtained by merging the matrices is:
PTest
Merge.

PTest
Merge � PTest−New

Xgboost , PTest−New
LightGBM, P

Test−New
CatBoost[ ] (23)

4) The matrix PTest
Merge is dimensionally transformed and fed

into a QR-LSTM model to achieve PV power interval
prediction. PV power prediction results under different
quartiles are obtained. The predicted result is Wi �
[Q̂Pi

(τ1|xi), Q̂Pi
(τ2|xi), . . . , Q̂Pi

(τL|xi)].

3 Evaluation indicators for interval
prediction results

Prediction Interval Coverage Probability (PICP) is an important
statistic for assessing prediction interval reliability, and a larger value
implies that the model predicts a more trustworthy interval.

Prediction interval normalized average width (PINAW) is an
essential statistic for assessing prediction interval accuracy, and a
lower value suggests that the model predicts a more accurate
interval. There is a relationship between PICP and PINAW. In
general, the higher the PICP, the lower the PINAW, indicating that
the model is more confident in the prediction interval.
Simultaneously, there is a contradictory link between PICP and
PINAW. When the prediction interval is large, it is easy to attain
high interval coverage probability. However, prediction intervals
that are too wide cannot provide accurate uncertainty information.

PINAW, PICP andWC indicators are calculated based on Eq. 24
(25) (26), respectively:

PICP � 1/N( ) ·∑
N

n�1
Sn (24)

where N denotes the number of data. Sn represents a Boolean
function. The value of this Boolean function takes 1 when the
prediction interval of the model contains the true value,
otherwise, it is 0.

PINAW � 1/ N · E( )[ ] ·∑
N

n�1
Pup − Pdown( ) (25)

where N is the total number of data. E denotes the difference
between the maximum and minimum values of PV power. Pup

and Pdown respectively represent the upper and lower bound of the
interval prediction.

There is a conflicting relationship between PICP and PINAW.
Therefore, by combining these two indicators, a comprehensive
evaluation index is proposed. The comprehensive evaluation index
(WC) is calculated using Eq. 26. The smaller theWC value, the more
superior the interval obtained.

WC � PINAW/PICP (26)

4 Case studies

4.1 Data sets

The data used in this study are from a photovoltaic power plant
in Hebei, China. The dataset is sampled at 15-min intervals. The
historical data set includes active power (P), global irradiance (GI),
direct radiation (DI), temperature (T), humidity (H), wind speed
(WS), wind direction (WD), and pressure (P). Most of the nighttime
zero-value data were removed in this study.

4.2 Selection of model input features

It is well known that PV power output is very closely related to
several meteorological factors. In order to improve the accuracy of
PV power prediction, it is usually necessary to filter several
meteorological variables to get the meteorological variables that
show high correlation with PV power output. In this study, the
Kendall correlation coefficient was used for variable correlation
analysis.

The Kendall correlation coefficient is calculated as follows:
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Ken � P − Q
1 /

2*N* N − 1( ) (27)
where P and Q denote the number of harmonious and discordant
quantities, respectively. The denominator of the formula indicates
the total number of pairs of observations.

For comparison and analysis, a heat map was drawn based on
the calculated Kendall correlation coefficients, as shown in
Figure 8. The numbers in this figure characterise the degree of
correlation between the variables. Numbers closer to 1 indicate a
higher degree of correlation, and numbers closer to 0 indicate a
lower degree of correlation. A negative number indicates a negative
correlation.

Figure 8 shows that global irradiance (GI), direct radiation (DI),
wind direction (WD), temperature (T) and humidity(H) are the
main meteorological variables affecting PV output, so these five
variables are chosen as input variables for the model.

4.3 Model parameter setting and data set
division

The hyperparameter search range settings for the base learners
and meta-learner are shown in Table 2. The LSTMmodel consists of
one layer of LSTM network layer, one layer of Dropout layer, and
one layer of Dense layer. The number of neurons of the LSTM
network layer, the dropout rate, and the activation function of the
Dense layer are optimized. The number of neurons in the Dense
layer is 199, i.e., the quantile takes a range of values from 0.005 to 1,
and the step size is 0.005.The optimizer for LSTM model training is
adam, and the batch_size is 48. The epochs for the training of the
LSTM model are set to 150 and an early stopping strategy is used to
avoid the overfitting problem. Each base learner uses a decision tree
model, which runs faster, so its hyperparameter search time is set to
200 s. The number of hyperparameter searches for the meta-learner
model is 100.

The ratio of training set, validation set and test set was 7:2:1.
100 days of data were used in this study. One sunny day and one
rainy day in the test set were selected separately for each model
performance comparison. The model output is the predicted PV
power for the 199 quantile points of the future day. The prediction
interval is constructed by selecting several of the quantile
predictions.

4.4 Predictive performance comparison

In order to evaluate the prediction performance of the proposed
QR-Stacking model, two benchmark models and the QR-Stacking
model are developed in this paper for prediction performance
comparison. The two benchmark models established in this paper
are QR-LSTM and Quantile Regression-Gated Recurrent Unit (QR-
GRU). In order to make a valid comparison, the benchmark models
QR-LSTM and QR-GRU also use the TPE algorithm for parameter
search. The search parameter setting ranges of the benchmark models
QR-LSTM andQR-GRU are kept the same as those of the QR-Stacking
model. To verify the generalization performance of the models, the
prediction performance of the three models under several different
weather conditions is compared and analyzed. It is worth noting that

the prediction performance of eachmodel is compared at 95%, 90% and
85% confidence levels in this study.

4.4.1 Comparison of the prediction performance of
the models during sunny days

The prediction intervals of the three models under sunny
conditions are shown in Figures 9, 10, and 11. Figures 9, 10, and
11 show that the proposed QR-Stacking model has the highest
interval coverage and narrow interval width.

Table 3 evaluates the prediction interval of each model at three
confidence levels using several evaluation metrics. The prediction
interval coverage of all three models at 95% confidence level can
meet the requirements, i.e., the coverage rate is greater than 95%.
However, the prediction interval coverage of the QR-LSTM and QR-
GRU models at 90% and 85% confidence levels cannot meet the
requirements. In terms of PINAW and WC metrics, the prediction
interval of QR-Stacking model can provide narrower prediction
intervals while meeting the interval coverage requirement. At the
95% confidence level, the WC indicator of the prediction interval of
the QR-Stacking model is 11.02% and 3.21% lower than those of the
QR-LSTM and QR-GRU models, respectively. The WC metrics of
the prediction intervals of the QR-Stacking model are 6.54% and
6.93% lower than those of the QR-LSTM and QR-GRU models,
respectively, at the 90% confidence level. At the 85% confidence
level, the WC metrics of the prediction intervals of the QR-Stacking
model are 2.92% and 10.73% lower than those of the QR-LSTM, and
QR-GRU models, respectively.

In summary, the prediction interval of the QR-Stacking model is
best in sunny days.

4.4.2 Comparison of prediction performance of
various models during rainy days

The prediction intervals of the three models for cloudy and rainy
days are shown in Figures 12, 13 and 14. These three plots show that
the prediction interval coverage of the proposed model meets the
requirements and the interval is narrower.

Table 4 evaluates the prediction intervals of each model at three
confidence levels using multiple evaluation metrics. The prediction
interval coverage of the 3 models can meet the requirements of each
confidence level. In terms of PINAW and WC metrics, the prediction
interval of QR-Stackingmodel can provide narrower prediction intervals
while meeting the interval coverage requirement. At the 95% confidence
level, the WC indicator of the forecast results of the QR-Stacking model
is 11.06% and 23.72% lower than those of the QR-LSTM and QR-GRU
models, respectively. At the 90% confidence level, theWCmetrics of the
prediction interval of the QR-Stacking model are 18.38% and 23.10%
lower than those of theQR-LSTMandQR-GRUmodels, respectively. At
the 85% confidence level, theWCmetrics of the prediction interval of the
QR-Stacking model are 21.41% and 24.11% lower than those of the QR-
LSTM, QR-GRU models, respectively.

In summary, the QR-Stacking model has the best prediction
interval during cloudy and rainy days.

5 Conclusion

In this research, a QR-Stacking model with hyperparameter
optimization using TPE algorithm is proposed to improve the
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reliability and acuity of PV power interval prediction. The
conclusions are stated as follows:

1) Kendall correlation coefficient is used to screen several
meteorological features. This method removes the redundant
features of the input data and reduces the complexity of the
model.

2) QR-Stacking model has more superior interval prediction
performance than the two benchmark models QR-LSTM and
QR-GRU.QR-Stacking model can reduce the width of the
prediction intervals while ensuring the coverage of the
prediction intervals. In other words, the prediction intervals
of the proposed model are sharper while satisfying the
reliability. The superior interval prediction performance of the
prediction model is further ensured by using the TPE algorithm
as the hyperparametric search algorithm of the proposed model.
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An efficient YOLO v3-based
method for the detection of
transmission line defects

Changbao Xu, Mingyong Xin*, Yu Wang and Jipu Gao

Electric Power Research Institute of Guizhou Power Grid Co., Ltd, Guiyang, China

The UAV inspection method is gradually becoming popular in transmission line
inspection, but it is inefficient only through real-time manual observation.
Algorithms are available to achieve automatic image identification, but the
detection speed is slow, and video image processing is not possible. In this
paper, we propose a fast detection method for transmission line defects based
on YOLO v3. The method first establishes a YOLO v3 target detection model and
obtains the a priori size of the target candidate region by clustering analysis of the
training sample library. The training process of the model is accelerated by
adjusting the loss function to adjust the learning direction of the model. Finally,
transmission line defect detection was achieved by building a transmission line
defect sample library and conducting training. The test results show that
compared with other deep learning models, such as Faster R-CNN and SSD,
the improved model based on YOLO v3 has a huge speed advantage and the
detection accuracy is not greatly affected, which can meet the demand for
automatic defect recognition of transmission line inspection videos.

KEYWORDS

YOLO v3model, deep learning, fast defect detection, video recognition, transmission line
defects

1 Introduction

With the continuous expansion of the scale of the power grid, the workload of line
inspection has increased; meanwhile, the traditional manual inspection method is costly and
inefficient, and there are certain dangers in implementation. In recent years, the State Grid
and various electric power scientific research institutions have invested a lot of manpower
and material resources to carry out UAV power inspection research, including UAV flight
control technology, transmission line inspection aerial photography target identification,
and fault detection technology research. The use of UAV inspection has the advantages of
low cost, high efficiency, and a stronger ability to adapt to complex environments, and it can
quickly collect image and video information on transmission lines, which greatly reduces the
difficulty and danger of inspection work. Therefore, UAV inspection has a broad application
prospect in transmission line inspection (YAN et al., 2017; Cao et al., 2021). The defect
recognition method based on deep learning can automatically analyze unstructured data
effectively and use deep learning algorithms to quickly process the images collected during
inspection to achieve automatic detection and recognition of abnormal states of transmission
line equipment, which is of great significance for enhancing the intelligence of power grids
(LI et al., 2017; Li et al., 2021; WEN et al., 2021). UAVs ual recognition of the collected
images. In order to further improve the automation of machine patrol, many scholars have
proposed image-based methods for the identification of transmission line equipment and
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defects. Most of the algorithms currently applied for transmission
line target detection need to rely on manual extraction of image
features and then segmentation of targets in images by the Hough
transform, Canny operator, and Gabor operator. The effectiveness of
(Nguyen et al., 2018; Chen et al., 2021; Deng et al., 2021) these
algorithms depend on the extraction of features, which, on one hand,
is a complex task requiring strong expertise; on the other hand, there
are numerous transmission line defects, which are not sufficiently
expressed bymanually extracted features, resulting in a single type of
detection target for traditional algorithms. Some algorithms use
support vector machines, neural networks, and other shallow
learning algorithms to predict the target type (Yu-min et al.,
2010; Cerón et al., 2014; JIANG, 2017), but they still need to
extract the image features first. In recent years, machine vision
technology based on deep learning has been greatly developed, and
the corresponding image target detection algorithms have also
achieved good performance. After the extraordinary performance
of AlexNet in the image recognition competition in 2012, deep
learning algorithms based on convolutional neural networks
(CNNs) have become the main research direction for image
classification and target detection (Li et al., 2008). Deep learning-
based target detection algorithms can be divided into “dual-order
method” and “single-order method”. The "dual-order method” has
high accuracy, while the “single-order method” is fast, and the
representative algorithms are YOLO (Simonyan and Zisserman,
2014; He et al., 2015) and SSD (Ren et al., 2017). The “double-
order method” has been studied in the image detection of power
system equipment (Joseph and Ali, 2016a; Redmon et al., 2016;
WANG et al., 2017), but it is still in the theoretical research stage,
and its detection speed is slow, which cannot meet the demand of
real-time detection. In the daily UAV inspection work, a large
amount of image and video data will be generated, which
requires a very high speed for the target detection algorithm.
Therefore, this paper establishes a defect recognition model of
transmission line machine inspection images based on the YOLO
algorithm using the inspection images obtained from actual
engineering operation and maintenance for training (Hui et al.,
2018; Lei and Sui, 2019; Wang et al., 2021). Through parameter
adjustment, the practical application ability of the defect detection

model can be improved, and the real-time defect detection of the
transmission line machine patrol image can be realized, which has
high engineering practicability (Gong et al., 2003; Liu et al., 2020;
Wang et al., 2020).

2 Inspection image defect detection
model construction

The YOLO algorithm directly regresses the target location and
target class at the output layer to achieve end-to-end training and
detection, which is different from the original dual-order target
detection method based on region recommendations. YOLO
v3 adds multi-scale prediction, which makes the network more
capable of detecting targets with a wide range of size variations and
has higher detection speed and recognition accuracy (He et al.,
2015). In this paper, we detect and identify equipment defects in
transmission line inspection images based on the YOLO v3 model,
and the model framework is shown in Figure 1.

For any machine patrol picture, first, the size is adjusted to a
uniform size, and the picture is divided into S × S regions; then, the
picture features are extracted by multiple convolution layers for each
region. If the center of an electric equipment defect falls in this region,
the region is responsible for predicting this defect. The center position
and size of the equipment defect are adjusted by regression. The output
of the model prediction is S × S × (B × 5 + C), i.e., S × S regions, and
each region outputs B different sizes of defect prediction checkboxes
and C defect type information, while for each defect prediction
checkbox, there are four coordinate values and one confidence
value. Finally, the model uses extreme value suppression to remove
duplicate checkboxes and then predicts the actual defect types and
locations of electrical equipment contained in the inspection images.

2.1 Model initialization inspection image
defect detection

In this model, the input inspection images are divided into
detection areas according to three scales, with 19 × 19, 38 × 3,876

FIGURE 1
YOLO v3 model framework.
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× 76 detection areas. Subsequently, the nine prior defect sizes
obtained from the sample library are assigned to the scale of the
three detection regions, according to their size, meaning that there
are three prior defect detection anchor frames in each region. For
each scale detection area, if the center of the defect is within a
region, that region is responsible for predicting this object, as
shown in Figure 2.

2.2 Multiscale feature extraction of patrol
image based on the convolutional neural
network

The model directly performs feature extraction on the whole
input image and achieves better detection of both large and small
targets. In this study, the DarkNet-53 convolutional neural
network framework is used to extract the features of inspection
images, which consists of 53 convolutional layers, and each
convolutional layer is followed by a linear segmentation
function with leakage (Leaky ReLu) as the activation function
to adapt to the nonlinear case, where five convolutional kernels
have a step size of 2. The convolution result is up-sampled to
obtain a multi-scale feature map. The feature extraction model is
shown in Figure 3.

The model inputs a patrol image with an arbitrary RGB color
pattern, and for the convolution layer, the feature vector output after
the lth layer convolution operation can be expressed by Eq. 1.

xlj � f ∑
i∈Mj

xl−1i *klij + blj( ). (1)

Here, the range of i, j, k, l, and m depends on the structure of
DarkNet-53; the range is not stated here but is intended to introduce
the mathematical model of the network, where i represents the
number of feature maps, j represents the number of convolution
kernels, k represents the number of convolution kernels, and l
represents the number of layers of the network. Mj represents the
output feature map. xl−1

i is the ith feature map of the l − 1st layer, klij
is the j th convolution kernel, * denotes the convolution operation, f
(*) is the bias term, which represents the activation function, and
here, the Leaky ReLu function is chosen as the convolution layer
activation function, which can be expressed as follows:

f x( ) � x, x > 0,
0.1x, x ≤ 0.{ (2)

Instead of pooling layers, this model uses convolution kernels
with step size 2 in some of the convolution layers. After convolution
operations with these convolution kernels, the feature vector size of
the image becomes 1/4 of the original size, and the depth of the
feature vector gradually deepens with the increase in the convolution
window.

2.3 Defect type and location prediction
based on logistic regression

This model first clusters the defect sizes of the samples before
training to obtain nine priori anchor frames, and each scale feature
map is responsible for detecting three scales of anchor frames. In the
YOLO algorithm, the image is first cut into N × N grids, and a
specified number of candidate boxes are selected for each grid, where
N represents the number of meshes of the cut image. The range of N
generally depends on the empirical value. The image feature vectors
extracted by the DarkNet-53 convolutional neural network are input
to the fully connected layer, which performs logistic regression and
finally outputs a prediction vector of dimension N × N × [3 × (4 +
1 + 20)]; it means, for three scales of feature maps, each has N × N
regions, and the position information and confidence of the three

FIGURE 2
Target prediction.

FIGURE 3
Feature extraction network.
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prediction frames in each region and the defect type information
form a 105-dimensional feature vector. The use of 3, 4, 1, and
20 depends mainly on the empirical values widely used after the
YOLO algorithm.

2.3.1 Defect type prediction
A total of 20 equipment defect types are designed in this research,

and each box uses a set of 20-dimensional vectors to represent the defect
types. If the prediction is for the nth defect, the first value in the vector is
1 and the rest of the values are 0. Each prediction box has a confidence
level, including the possibility of having a target in the region, the defect
type, and the IOU value, as shown in Eq. 3:

P Classi
∣∣∣∣Object( )*P Object( )*IOUtruth

pred � P Classi( )*IOUtruth
pred . (3)

The model determines the possibility of a class l fault in a region
based on the features extracted from the DarkNet network as
P(Classi). The intersection ratio of the predicted region area to
the actual region area is IOUtruth

pred . P(Classi|Objⅇct) represents the
probability that the target belongs to a certain defect type under the
premise of the target in the box.

2.3.2 Defect location prediction
The cross-merge ratio IOUtruth

pred is used to measure the accuracy
of the predicted region, which is calculated as shown in Eq. 4.

IOUtruth
pred � A ∩ B( )

A ∪ B( ). (4)

Here, A and B stand for the actual area and the predicted area of the
equipment defect, respectively. The intersection ratio is the ratio of the
intersection of the predicted area and the actual area to their
concurrent set.

To overcome the instability of direct prediction, this model uses a
relative position to predict the location of the defect, i.e., the predicted
offset of the center of the defect relative to the top left corner vertex of
the region for positioning, which is shown as in Figure 4.

The learning equation for the location of the center point is as
follows:

x � cx + σ tx( ),
y � cy + σ ty( ).{ (5)

Here, (cx, cy) is the position coordinate of the upper left corner
of the region, and (tx, ty) is the deviation of the predicted position
from the actual position.

The adjustment formula of the predicted anchor box size is
expressed as follows:

w � pwe
tw ,

h � phe
th .

{ (6)

Here, pw and ph are the size of the priori anchor frame. tw and th
represent the deviation of the predicted anchor frame from the
actual anchor frame.

When learning the anchor box parameters, a target score is first
given to the region inside the box to obtain the confidence level, and
if the confidence level of the anchor box is very low, the anchor box is
directly ignored. For the checkboxes with a confidence level higher
than 0.5, if the mutual IOU value is high and the same object is
predicted, only the anchor box with the highest confidence level is
retained for learning to improve the learning speed.

2.3.3 Repeat detection target elimination based on
non-extreme value suppression

With the aforementioned steps, we will get too many anchor
frames, so we need to choose wisely to eliminate duplicate anchor
frames. In this article, we choose the maximum suppression method to
eliminate duplicate anchor frames. First, low-confidence anchor frames
are suppressed, and these anchor frames most likely do not contain the
target to be detected. The remaining check boxes are then categorized
according to the category of the predicted defect. For targets that predict
the same category of defects, first, the target with the highest confidence
is selected. If the IOUs between this anchor box and other anchor boxes
are higher than 0.5, anchor boxes with lower suppression thresholds
and anchor boxes below 0.5 will not be processed. After that, the
operation is repeated for the remaining unhidden anchor boxes. At the
end of the loop, the remaining anchor frame is considered the defect
target for the final prediction.

3 Model training and optimization
based on the patrol inspection image
sample library

This experiment is set up under the Python framework with
Python version 1.5.1 using the Windows 10 operating system.
Among them, CUDA version 11.4 and Python version 3.8 are
used in the software environment. The hardware environment is
the Windows 10 operating system, the CPU model of the testing
device is 11th Gen Intel (R) Core (TM) i5-11400 @ 2.60GHz, and the
GPU model is NVIDIA GeForce RTX 3060.

3.1 Training sample library construction

In this paper, 5,000 inspection images obtained from a province
are used to form a training sample library, of which 4,000 images form

FIGURE 4
Feature extraction network.
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the training set and another 1,000 images form the test set. The sample
images are standardized according to the Pascal VOC standard (LUO
et al., 2021). The marking objects include overhead line defects, pole
defects, insulator defects, and hardware defects; all the
aforementioned objects constitute a sample library of typical
defects of transmission lines. The size of the inspection images is
not exactly the same, and considering that the shooting targets are
often located in the middle of the images during the UAV inspection,
in order to avoid compression and deformation of the images due to
different sizes and to facilitate uniform data processing by the model,
this paper crops the training images from the center to a 3:2 size and
adjusts the pixels to 4,800 × 3,200 to remove the irrelevant parts of the
edges. The defect diagrams of towers, fittings and insulators are shown
in Figures 5-7 respectively.

3.2 Priori defect size selection based on a
clustering algorithm

In this paper, we use a clustering algorithm to obtain the a priori
dimensions of defects. The initial parameters of themodel have an impact
on the training convergence speed and training effect, and a good initial
value can accelerate the convergence of the model. Through the analysis
of the sample images, we found that although the fault pattern in different
pictures has discrepancies, the size of the same class of faults is very close.
For example, insulator faults and tower faults are generally larger in size,
and the area of conductor faults is smaller. Therefore, in this study,
k-clustering is used for defect sizes, and nine clustering centers are
obtained. The values of these nine clustering centers are used as the sizes
of the priori anchor frames of the defect detection model, which makes

FIGURE 5
Example of a tower defect.

FIGURE 6
Example of fitting defects.

FIGURE 7
Example of insulator defects.
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the selection of anchor frames better match the sizes of defects in
transmission lines, speeds up the convergence of the model, and
improves the accuracy of defect detection. As shown in Table 1, the
prior dimensions of each anchor frame are presented.

3.3 Loss function design

The loss function of this model consists of three parts: the
coordinate loss function, category loss function, and confidence loss
function. The prediction results of the three scales are calculated
separately and finally summed to obtain the loss function of the
whole network. The coordinate loss function is expressed as follows:

losscoord � ∑s2

i�0∑
B

j�0l
obj
ij xi − x*i( )2 + yi − y*i( )2 + ��

wi
√ −

���
w*

i

√
( )2[

+ ��
hi

√ −
��
h*
i

√
( )2].

(7)
The category loss function is written as follows:

lossclass � ∑s2

i�0∑
B

j�0l
obj
ij ci − c*i( )2 + λnoobj∑s2

i�0∑
B

j�0l
noobj
ij ci − c*i( )2.

(8)
The confidence loss function is expressed as follows:

lossprob � ∑s2

i�0∑c∈class
pi c( ) − p*i c( )( ). (9)

Here, s2 stands for the number of grid regions, B is the number
of anchor frames in each region, and lobjij denotes if the jth anchor

frame in region i is responsible for the predicted target; if true, then it
is 1, otherwise, it is 0. lnoobjij indicates the opposite.

3.4 Loss function weight adjustment

By analyzing the inspection images, the result shows that there
are no more than four defects on most of the images, while the
number of grid regions generated by each image is much larger than
the number of defects. So this paper adjusts the loss weights of the
regions with and without targets by parameter λnoobj, and after
experiments, the weight λnoobj � 0.1 is chosen.

There are 20 types of defects in the design of the model, while
there are only four coordinate parameters, which would result in
very little influence of the coordinate parameters on the loss function
if added directly. In order to increase the influence of position
coordinates on the loss function to speed up the convergence, this
paper adds weight λcoord � 5 to the coordinate loss function. The
final loss function is expressed as follows:

loss � λcoordlosscoord + lossclass + lossprob. (10)

4 Model testing and result analysis

Although the YOLO algorithm has been updated to the 8th or even
9th generation versions, its essence has not changed much. Moreover,

TABLE 1 Priori size.

Defect priori size

Scale 1 (19 × 19) (512,337), (261,272), (137,144)

Scale 2 (38 × 38) (39,281), (127,77), (63,66)

Scale 3 (76 × 76) (47,33), (26,20), (7,9)

FIGURE 8
Improved loss schematic representation of YOLO v3.

TABLE 2 Defect number statistics results.

Training set Test set

Hardware 2,496 611

Pole tower 1,926 516

Insulator 1,642 437

Ground wire 1,434 328

Total 7,498 1,892

FIGURE 9
P–R curves of individual algorithms.
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FIGURE 10
Comparison of insulator image defect detection effects.

FIGURE 11
Comparison of image defect detection effects for ground wire.
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FIGURE 12
Comparison of defect detection effects on hardware image.

FIGURE 13
Comparison of defect detection effects on tower image.
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under the version change, the new versions all add newmodules on the
basis of the version of YOLO v3, thereby increasing the complexity of
the model. This corresponds to making the model slower. For this
reason, the most classic YOLO v3 version is used for this article. This
version is different from the 1st and 2nd generation versions; not only
does it have a large change in accuracy but it is also superior in speed.
For this reason, the classic YOLO v3 algorithm was chosen for this
paper. This section conducts simulation experiments based on the
YOLO algorithm on the transmission line inspection image dataset and
compares the performance with other deep learning algorithms to
explore the advantages and shortcomings of the YOLO algorithm in
transmission line inspection applications. Improve the change of the
loss function during the training of the algorithm, as shown in Figure 8.

4.1 Defective sample analysis

The dataset used in this paper can be divided into two parts, the
training and test sets. The respective types of faults contained and
the corresponding numbers are shown in Table 2.

In the training set, the proportions of the four types of faults are
33.29%, 25.69%, 21.90%, and 19.12%, respectively; in the testing set,
the proportions of the four types of faults are 32.29%, 27.27%,
23.10%, and 17.34%, respectively. From the statistical results, it can
be seen that the number of the four types of faults is comparable,
which can better meet the needs of model training and testing.

4.2 Introduction of model evaluation
indicators

In this paper, the detection effectiveness of the transmission
line defect detection model is evaluated by using the recall rate
(recall), the precise rate (precise), and mAP (mean average
precision). The recall rate is the proportion of correctly
detected targets to all targets to be detected. For any detection
frame with a confidence level higher than a set threshold, if the
intersection ratio with a marked target is greater than 0.5 and the
predicted category matches the target, the detected target is
considered correct. The number of all detected correct
detection frames is counted and recorded as NTP, the actual
number of targets to be detected is NG, and the calculation
formula for the check-all rate is shown as follows:

Recall � NTP

NG
. (11)

Similarly, the number of detection frames with all confidence
levels satisfying the requirement is ND, and the precise rate is
calculated as follows:

Precise � NTP

ND
. (12)

mAP combined with the recall rate and the precise rate is usually
used as a more comprehensive indicator to evaluate a model .
Improve the change of Recall during the training of the
algorithm, as shown in Figure 9.

4.3 The result analysis of the patrol
inspection image defect recognition

In this research, the trained model is used to conduct defect
localization and identification tests on the inspection images
acquired in actual operation and maintenance, and the prediction
is considered accurate when the intersection ratio between the
predicted target and the actual target is greater than 0.5. Several
models with quality results are trained to serve as a comparison, and
the experimental results are presented in Table 3.

The effects of defects detected by different algorithms are shown
in Figures 10-13. Wherein Figure 10 is the insulator defect detection
effect diagram, Figure 11 is the ground wire defect detection effect
diagram, Figure 12 is the hardware defect detection effect diagram,
and Figure 13 is the tower defect detection effect diagram. Table 2
shows that Hardwa corresponds to the label “dachicun”, PoLE Towr
corresponds to “ganta”, Insulator corresponds to “jueyuanzi”, and
Ground wire corresponds to “dadixian”. Based on the experimental
results, it can be seen that although SSD and YOLO v3 of the single-order
method are slightly inferior to Faster R-CNN of the two-order method in
terms of performance, they have obvious advantages in terms of
computational speed, and the prediction time of YOLO v3 is only
about 1/9 of that of Faster R-CNN. Because of the two-order method,
it is necessary to first show the top candidate frame and then proceed to
the next step, while the single-order method directly realizes the end-to-
end one-time process to complete the object detection task. So SDD and
YOLO v3 have a clear advantage in speed. The double-order algorithm
Faster R-CNN is slow, but its improvement onmAP is not obvious, and it
is difficult to achieve fast object detection tasks. The improved YOLO
v3 algorithm has only 16.4 GFLOPs. Compared to other algorithms and
unimproved algorithms, the improved algorithm has a significant
improvement in parallel processing speed. The performance of the
improved YOLO v3 model on transmission line inspection images is
also greatly improved, its accuracy far exceeded that of the Faster R-CNN
model, and the recall rate is similar, but it still maintains the advantage of
the single-order method in speed.

In addition to the application scenarios mentioned in this article,
there are also the following scenarios:

(1) Testing the performance of the improved YOLO v3 algorithm in
different transmission line scenarios, such as different types of
transmission lines and transmission lines in different environments.

TABLE 3 Model results’ comparison.

mAP
(%)

Recall
(%)

Precise
(%)

Detection
(ms)

GFLOPs

Faster 69.4 82.7 73.5 201 140.6

R-CNN

SSD 66.2 76.1 72.3 102 89.5

YOLO v3 66.9 74.5 75.9 23 18.5

Improved
YOLO v3

68.5 78.2 79.6 24 16.4
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(2) Applying the improved YOLO v3 algorithm to other types of
equipment, such as unmanned vehicles and helicopters, to
detect the performance differences of different equipment in
transmission line defect detection.

5 Conclusion

At present, the target detection algorithms applied to the defect
detection of transmission lines are mainly fast R-CNN. They have high
recognition accuracy but slow detection speed and are unable to realize
the recognition of the large amount of video data generated in UAV
inspection. This study proposes a fast detection method for
transmission line defects based on YOLO v3. Its detection speed is
close to 50 frames per second, which can meet the needs of video
inspection. At the same time, in the dataset of this paper, the rapid
detection method of transmission line defects based on YOLO
v3 achieves a detection rate of 78.2% and a probability of 79.6%.
Under the premise of ensuring the detection speed, it has improved
comparedwith SSD andYOLOv3 in both indicators. The detection rate
is only 5.4% lower than that of Faster R-CNN-based detectionmethods.
At the same time, mAP is also improved compared with the single-
order algorithm. Therefore, this paper argues that the transmission line
detectionmethod based onYOLOv3 canmake up for the shortcomings
of the Faster R-CNN algorithm and realize the rapid detection of
transmission line defects based on video images.

The issues that still need to be further explored are as follows:

(1) Insufficient diversity of the dataset: the dataset used in this
article comes mainly from real-life images of transmission lines
in a certain region. Although it covers a certain degree of
scenarios and defect types, there may still be limitations. In
order to improve the generalization ability of the algorithm, we
can supplement transmission line data from other regions to
increase the diversity of the dataset.

(2) The robustness of algorithms is difficult to evaluate: transmission
line defect detection often faces various complex environments and
lighting conditions, so the robustness of algorithms is crucial. This
article did not evaluate the performance of the improved YOLO
v3 algorithmunder different environments and lighting conditions.

These issues are urgent research directions, and we need to
conduct further research.
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As the penetration rate of new energy in the power system gradually increases and
the complexity of cascading faults increases, it is of great significance for the
power system to comprehensively explore the chain of cascading faults in the new
energy power system and quickly determine the closely related lines in the
cascading faults. In response to the lack of consideration in existing research
of the changes in the importance of transmission lines after the introduction of
new energy, this paper proposes a cascading failure prediction index that
integrates the importance and operational status of transmission lines in new
energy power systems and applies it to the search for cascading failures in new
energy power systems. First, the development characteristics of cascading faults
were analyzed, and the main factors influencing cascading faults were identified:
the importance of the transmission line and operating status of the new energy
power system. Based on these factors, a prediction index for cascading faults was
established, and the accident chain was searched using this index. Then, the FP-
growth algorithm was used to analyze the lines in the fault chain concentration,
and based on the analysis results, the correlation relationship suitable for the
cascading failure lines in the new energy power system was determined. Finally, a
simulation was conducted on an IEEE 10machine 39 node system containing new
energy wind turbines, and the results verified the effectiveness of the proposed
indicators and strategies.

KEYWORDS

cascading failure, accident chain, new energy, line importance, association relationship

1 Introduction

In recent years, major power outages have occurred frequently worldwide, mostly caused
by chain failures. As the proportion of new energy in the power system gradually increases,
cascading failures have become complex. Chain failures are mainly caused by the failure of
certain lines in the power grid and their withdrawal from operation, affecting the remaining
branches of the power grid (Deng et al., 2022). Therefore, a comprehensive exploration of
chain failures in the new energy power system and the analysis of closely related lines are of
great significance for effectively preventing chain failures and major power outages.

At present, the research methods for cascading faults in power systems are mainly
divided into two categories: the first type is based on complex system theory and complex
network theory (Jia et al., 2016). The complex system theory evaluates the risk of cascading
faults from an overall perspective by analyzing the self-organizing criticality of the power
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system. The models proposed based on this theory include OPA
model, CASCADE model, branch process model, and implicit fault
model. These models do not focus on the physical details of the
development process of cascading faults, but rather emphasize the
initial conditions and macroscopic characteristics of cascading faults
in the power grid, and therefore cannot describe the electrical
characteristics of the power grid in detail Actual grid operation
status. Complex network theory uses metrics such as degree values,
degree distributions, and betweenness centrality to describe
networks and the impact of network topology on cascading
faults. Models based on this theory include small world network
models, Watts construction models, Holme and Kim’s separated
center models, Motte and Lai models, Crucitti and Latora’s effective
performance models, etc. These models simplify the consideration
of physical processes in actual systems, Therefore, there is a gap
between the actual physical process and the actual operation status
of the power grid, which cannot be analyzed. The second type is
based on the theory of power system analysis, and the strategy of
pattern search is more closely related to the actual development
process of cascading faults. For example, Li et al. proposes a fault
chain model for AC/DC hybrid systems based on probabilistic
power flow and short-circuit ratio theory, fully considering the
impact of wind power uncertainty (Li et al., 2020). Huang et al.
proposes a power grid fault assessment model considering the
impact of typhoons based on existing power grid cascading fault
models based on fault chains (Huang et al., 2019). Zhu et al.
established a complete search model for the interlocking fault
chain of AC/DC systems in large power grids, pruning the search
based on the risk of line outage while ensuring accuracy and
improving search efficiency (Zhu et al., 2018).

The current research on cascading faults mainly focuses on pure
AC systems, considering the line distance and operating status of
traditional power grids. For example, Liu et al. defines the system
power flow entropy based on the entropy definition of the system
and the percentage of the specified load rate components in the total
number of components. The minimum load loss is obtained by
taking the minimum system loss load as the objective function, and
the severity index of load loss after a component failure in the ith
stage of cascading faults is standardized. A system brittleness
entropy index is proposed based on the combination of system
power flow entropy and load loss severity index after
standardization treatment. It can calculate the brittleness risk
entropy corresponding to different stages of cascading faults, and
be used to evaluate the impact of brittleness propagation process and
component faults on the power grid (Liu et al., 2012). Qi et al.
establishes a cascading failure model based on the power flow
transfer factor and line topology distance and uses the entropy
weight method to more comprehensively evaluate the risk of an
accident chain (Qi et al., 2016). Xu et al. proposes the identification
of critical power lines in the power grid based on the intermediate
value of power flow (Xu and Wang, 2019). The randomness and
volatility of new energy output (Wang et al., 2021) lead to
uncertainty in the inline power. Zeng et al. established a line
overload model accounting for fluctuations in new energy output
through stochastic power flow and analyzed the risk of cascading
faults in power systems containing wind power based on the
overload model (Zeng et al., 2014; ATHARI and Wang, 2018).
Ni et al. used the risk of line overload induced by fluctuations in new

energy as a weighting coefficient and combined it with power flow
transfer entropy to propose a weak link identification method for
transmission system cascading faults (Ni et al., 2019). The above
research mainly focuses on analyzing the impact of the randomness
of new energy output on the risk of line overload without fully
considering the impact of the introduction of new energy on the
importance of the line, resulting in incomplete accident chains.
Therefore, it is necessary to comprehensively consider the changes
in the importance and operational status of the line brought about by
the integration of new energy into the power grid to obtain a more
complete set of accident chains.

In response to the shortcomings of current researchmethods, we
propose a cascading failure prediction index that integrates the
importance and operational status of new energy power system
lines. The main research content of this article includes the search
for a chain of failures in new energy power systems and an analysis
of the correlation relationships between chain failure lines. First, the
main factors leading to the expansion of cascading faults were
identified, and a prediction index for cascading fault accident
chain routes based on the importance and operating status of
new energy lines was proposed, which was used for accident
chain search. Then, by obtaining the set of accident chains, the
frequent pattern (FP) growth algorithm is used to analyze the lines
within them, and the linear correlation relationship of cascading
failures in the new energy power system is determined based on the
analysis results.

2 Cascading failures and accident chain

The accident chain model originates from safety science and is
made up of chains and correlations. The theory of accident chains
suggests that major accidents are rarely caused by a single cause but
are induced by relevant factors when multiple conditions are met
simultaneously. A power system blackout accident is not caused by a
single fault but rather by a chain effect of concurrent accident
sequences. Assuming that the power grid has n fault chains, the
set of fault chains L and the fault chains �Li are represented as

L � �L1, �L2, .., �Ln{ } (1)
�Li � Ti1, Ti2, Timi{ } (2)

In the formula, Tij is the jth intermediate link of the ith accident
chain, where j = 1, 2,., mi, and the intermediate link can be a branch
or a node.

The logical relationship between the system’s major power
outage accident, accident chain, and intermediate links in the
accident chain is shown in Figure 1. The logical relationship
between system power outage accidents and the set of fault
chains {LI} is an OR gate, while the logical relationship between
the fault chain and the set of intermediate links {Tij} is an AND gate.
The gradual triggering of intermediate links in the same accident
chain has directionality, and any triggering will lead to the triggering
of the accident chain and major power outage accidents.

Accident chain triggering is a small probability event in the
power grid, and the triggering probabilities of different accident
chains vary greatly. The process triggered by the accident chain has
different impacts on the safety of the power grid. Using risk
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assessment theory (Liu et al., 2016) to comprehensively evaluate the
different characteristics between the accident chains, the risk
assessment of the accident chain needs to determine the
probability of occurrence of each link in the accident chain. The
above set of fault chains provides all possible forms of cascading
faults, but the probability of each fault chain occurring is not the
same, so the criticality of lines in different fault chains also varies.

The diversity of causes and evolution modes of chain failures
allows them to be classified into different types (Fang et al., 2022).
The main driving factors for the evolution of chain faults include
overload dominant, coordination dominant, and structural
dominant. The coordinated dominant fault evolution refers to
the main driving factors of major power outages, which are the
unreasonable setting of secondary devices such as relay protection,
low equipment reliability, etc., leading to the expansion of chain
faults, caused by improper coordination of protection devices or
equipment in the system; Structural dominated fault evolution refers
to the significant damage to the power grid topology caused by
unexpected disconnection of interconnection lines between regional
interconnected power grids, premature operation of splitting devices
in the early stages of chain fault development, and other factors that
trigger major power outages. This is caused by structural issues or
design defects in the system. The most important type is the
overload-dominated type, and its evolution process is as follows:
when certain components of the power system are disturbed/faulty
and exit operation, the power flow passing through the faulty line
will transfer to the surrounding line. If the surrounding line is
affected by the overload protection action of the power flow, this will
cause a new round of component removal and power flow transfer,
and the above process will be repeated until a major power outage
occurs. In this evolutionary mode, the frequency and voltage
indicators of the power system have relatively small changes and
have little impact on cascading faults. Overloading of power flow
and the removal of certain lines are the main driving forces for the
evolution of cascading faults.

A new type of power system with new energy as the main body,
large-scale wind and solar power is replaced by conventional units
through inverter grid connection, which reduces system inertia,
reduces disturbance resistance, and increases the difficulty of
frequency control. The asynchronous power grid interconnected
by high-voltage direct current transmission between large regions
has improved the security of cross regional power grids, but the

support capacity of AC power grids in each region has decreased,
and frequency stability has become more prominent. The power
system is always subjected to external disturbances during
operation, which can lead to power imbalance, transient
frequency response, and significant spatiotemporal distribution
characteristics. When the electrical distance between new energy
and synchronous machines is relatively close, the voltage support
characteristics of the power grid are strong, and new energy and
reactive power compensation overvoltage do not play a dominant
role. The problem of new energy machine terminal voltage
exceeding the limit caused by the power angle swing
characteristics of synchronous machines is more serious. At the
same time, after a power grid failure, the power grid experiences
continuous DC commutation failure or locking, resulting in a
change in the grid structure and a shift in power flow. After the
transfer of power flow in the power grid, it may cause long-term
overload or transient low voltage and high current of the AC line,
causing the AC line to be cut off; It may also cause local low voltage
or local high voltage, and new energy units may be disconnected due
to high voltage crossing failure or low voltage crossing failure.

With the large-scale integration of new energy into the power system,
cascading faults in power systems containing new energy exhibit
characteristics different than those of traditional power systems. On
the one hand, new energy equipment has characteristics such as strong
randomness and uncertainty, and lines with new energy equipment are
more susceptible to faults in other lines, whichmay lead to chain failures.
On the other hand, the different positions of new energy units in the
power grid can cause changes in the importance of the line, making
searching for chain failures and accident chains more complex. In
summary, this article proposes a cascading failure prediction index
that integrates the importance and operational status of new energy
power system lines and designs a fault chain search strategy.

3 Cascading failure accident chain
prediction

3.1 Establishment of the initial fault set

The identification of the initial fault link is the primary step in
establishing a cascading failure accident chain model. For the new
energy power system, an initial fault indicator is established based on

FIGURE 1
Dynamic logic diagram of a system power outage and accident chain.
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the distance between the line and the new energy unit and the impact
index of power flow transfer entropy. By selecting a branch that is
prone to subsequent faults to be the initial fault branch, the speed
and accuracy of initial fault identification can be improved.

a) Transmission capacity of line i. Each line in the power grid has
different structural importance, with lines closer to new energy units
having higher structural importance. Line faults with higher
structural importance are more likely to lead to cascading faults.
To measure the importance of transmission lines in the topology of
new energy power systems, this article defines the transmission
capacity of power and load nodes on (s, t) branch i as:

ki∈ s,t( ) � CiL min

ai∈ s,t( )L line
max

(3)

In the formula,Ci is the maximum transmission capacity including
branch i; Lmin is the shortest transmission distance between branch i
and new energy units; and L line

max is the length of the line with the longest
transmission distance in the power grid. When there is a change in
power between the power source and the load node pair (s, t), the power
change ai∈(s,t) including branch i reflects the contribution of branch i to
the power load node pair, which is:

amn∈ s,t( ) � Xms −Xns −Xmt +Xnt

xmn
(4)

The formula: Xms represents the values of the mth row and sth
column in the reactance matrix of the power network nodes, and
XnsXmt, Xnt are defined similarly; xmn is the reactance value of the
branch Lmn in the power network.

b) Entropy impact index of power flow transfer based on the distance
between the line and new energy units. To measure the importance of
branches in the operation status of the power system, this article combines
the concept of power flow transfer entropy in reference (Cao et al., 2021)
to determine the impact of branch disconnection on other branches of the
system. The concept of power flow transfer entropy is as follows: first,
when branch i is disconnected, branch k shares the power flow increment
of branch i transfer. Then, the impact rate of branch i on branch k’s power
flow transfer is defined. Then, the power flow transfer entropy of the
branch is defined based on the power flow distribution entropy of the
node. Finally, the vulnerability index of branch consequences is defined
based on the power flow transfer entropy. When the power flow impact
rate of each branch is equal, the power flow transfer entropy reaches the
maximum value, the possibility of each branch crossing the limit is the
lowest, and the node disturbance impact that the system bears is the
smallest; When the impact of the power flow is all concentrated on a
single line, the minimum entropy of the power flow transfer is 0, which is
most likely to cause branch out of limit faults. The relevant formulas are
defined as follows:

If branch i is disconnected, the impact value ηki on the
transmission margin of branch k is:

ηKi �
Δp

Ki

p
Kmax

− p
ko

� p
Ki
− p

Ko

p
kmax

− p
Ko

(5)

In the formula, Pk,max is the maximum active power that branch
k can bear; Δ Pki is the amount of active power transfer shared by
branch k after branch i is disconnected; Pk0 is the initial active power
of branch k; and Pki is the active power borne by branch k after
branch i is disconnected.

The ratio dk of the transmission margin influence value of
branch k to the sum of the transmission margin influence values
of all branches is defined as:

dk � ηki
∑
k∈N

ηki
(6)

In the equation, N represents the set of all other branches in the
system except for branch i.

Therefore, considering the influence of the transmission margin
on branch i, the power flow transfer entropy Hi is:

Hi� − ∑
k∈N

dk ln dk (7)

Based on the power flow transfer entropy Hi of the branch
transmission margin, combined with the initial power flow Pi0 of
branch i, the shortest transmission distance Lmin between branch i
and new energy units, and the length L line

max of the longest
transmission distance in the power grid, the impact index of
power flow transfer entropy Ci based on the distance between
branch i and new energy units is defined as:

Ci � Pi0L line
max

HiL min
(8)

According to Equation 8, the greater the initial power flow borne
by branch i is, the closer it is to the new energy unit, and the smaller
the power flow transfer entropy is, the greater the impact of branch
i’s interruption on the system, which is more likely to cause
subsequent system failures.

c) Initial fault indicator. Based on the transmission capacity of the
above line and the impact index of power flow transfer entropy
based on the distance between the line and the new energy unit,
the initial fault index of branch i is defined as:

Ei � Ci × ki∈ s,t( ) (9)
We set an appropriate selection threshold based on the initial

fault indicator, select the branches with larger indicator values to
form the key branch set, and use the key branch set that is prone to
causing subsequent cascading faults as the initial fault branch set.

3.2 Prediction of intermediate links

The higher the penetration rate of new energy in the power grid is,
the stronger the dependence of the power grid on new energy, and the
fluctuation of the output of new energy units leads to uncertainty in the
transmission power of the line. Therefore, the more new energy units
connected to line i, the greater the probability of line i failure. The
intermediate number of lines refers to the number of times the
transmission line passes through the shortest path formed between
all generator buses and load buses in the power grid, which can reflect
the importance of the transmission line in the topological structure of
the power grid. The formula is as follows:

bi �
∑

k≠j∈V
Nkj i( ) 1 + β( )
∑

k≠j∈V
Nkj

(10)
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In the formula, i is the line number,∑
k≠j∈V

Nkj is the number of
shortest paths formed between all generator buses and load buses in
the network, V is the set of nodes in the network, ∑

k≠j∈V
Nkj(i) is

the number of times the transmission line i passes through the
shortest path between all generator buses and load buses in the
network, and β is the ratio of new energy power to the total power of
the grid in the input power of the generator bus.

The load rate γi of line i is defined as:

γi �
Pi

Pi,max

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (11)

In the formula, Pi is the power borne by the line.
By quantifying the above-influencing factors and combining

them with the proportion of new energy equipment, the
intermediate link prediction indicators can be obtained:

Di � ω1γi + ω2bi (12)
In the formula, ω1 and ω2 are the weights of the line correlation

coefficient, and the line dielectric constants are generally taken as
ω1 = 0.5 and ω2 = 0.5.

3.3 Criteria for the end of the accident chain
search

When studying major power outages both domestically and
internationally, we found that the process of major power outages
caused by cascading faults is often accompanied by phenomena such

as power line overload and bus voltage fluctuations. These
phenomena ultimately lead to instability or system disconnection
in the entire power system. After the system is disconnected, the
power balance between various subsystems is disrupted, leading to a
series of voltage and frequency fluctuations. In severe cases, this may
result in the inability of the power flow to converge or lead to large-
scale power outages. In addition, to ensure the continued operation
of various subsystems, it is usually necessary to cut off some
generator sets and loads, but these operational measures may
further expand the power outage range. Notably, even if there is
no significant load loss during system disconnection, the power
network will still fall into a relatively dangerous operating state,
which poses a potential risk of major power outages. Therefore,
system disconnection or nonconvergence of power flow has been
recognized as a criterion for power outage accidents. The process of
generating a chain of failures is shown in Figure 2.

4 Association analysis

We analyze the correlations between multiple lines in the
accident chain set of cascading faults, and the information
contained in the accident chain set is discovered. The correlation
here refers to the frequent occurrence of certain lines in various
development modes of chain failures, which exhibit a relatively close
connection between the front and back in the accident chain and
exhibit certain regularity. Many scholars at home and abroad have
researched this topic and proposed many theories and algorithms

FIGURE 2
Flow chart of accident chain generation.
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for correlation analysis. This article uses the FP-growth algorithm to
explore the correlation in the accident chain.

First, we explain the relevant concepts in correlation analysis:
a) Item or candidate: An item in the database that has a unique

identifier. Assuming the database is composed of m attributes (A,
B,., M), then the first order itemset is {{A}, {B},. . ., {M}}. The second
order term set is formed by pairing elements of the first order term
set, namely, {{A, B}, {A, C}., {A, M},., {B, M},., {L, M}}, and so on.

b) Support: Refers to the percentage of the number of supports
XY corresponding to the antecedents and antecedents of a rule and
the total number of AllSamples recorded.

Support X, Y( ) � P XY( ) � number XY( )
num AllSamples( ) (13)

c) Frequent term: Refers to k-order candidate options that
occur no less than the preset minimum support threshold in the
dataset. At the same time, k-order candidates with occurrences

less than the set minimum support threshold are called
nonfrequent terms.

Then, the following are the detailed steps of the FP growth
algorithm, the FP-Growth algorithm flowchart is shown in Figure 3:

a) Build FP tree: First, the FP-growth algorithm traverses the
dataset once, calculates the frequency of each item, and sorts the
items in descending order of frequency. Subsequently, these sorted
items are used to construct an FP tree. The FP tree is a compact data
structure where each node represents an item, and the number of
occurrences of that item in the dataset is recorded on the node. Each
item and its corresponding frequency form a header table.

b) Build the conditional pattern base: For each item, the FP-
growth algorithm constructs its corresponding conditional pattern
base. The conditional pattern base refers to the collection of all prefix
paths ending with the current item. Each prefix path corresponds to
a frequency, while the other items in the path form a new itemset.

c) Recursive construction of the FP tree: For each item, a new FP
tree is recursively constructed by utilizing its conditional pattern
basis. This process iterates until no more conditional pattern bases
can be constructed.

d) Mining frequent patterns from FP trees: By traversing the FP
tree, all frequent patterns can be discovered. Starting from the root
node of the tree, we gradually construct frequent patterns along
different paths. Each path corresponds to a frequent pattern, and we
can form a complete frequent pattern by adding each item on the
path one by one.

The main advantage of the FP-growth algorithm is that it avoids
the generation process of candidate sets, thereby reducing
computational and storage costs and making it more efficient in
processing large-scale datasets. In addition, this algorithm can fully
utilize the structure of the FP tree to quickly discover frequent
patterns. At the same time, it also supports recursive construction
and mining of conditional pattern bases for frequent patterns.

Finally, the key path mining process is carried out as shown in
Figure 4. First, we identify the initial fault and generate a set of chain
failures based on corresponding indicators. Then, the data of the
accident chain are formatted, and the appropriate minimum support
is selected. A frequent itemmining program based on the FP-growth
algorithm is used to mine the frequent items of the accident chain,
obtaining a set of frequent items that have a strong correlation with
the initial fault. The lines contained in the frequent item set have
strong correlations with the evolution of cascading failures.

5 Example analysis

On the basis of the IEEE39 node system structure, the
synchronous units connected to Bus 30, Bus 31, Bus 33, and Bus
38 were replaced with doubly fed asynchronous wind turbines of the
same generation capacity, and corresponding reactive power
compensation and protection devices were configured for the
wind turbines to obtain the IEEE39 node system containing new
energy equipment, as shown in Figure 5.

The power generation and load capacity of the IEEE39 node
system with renewable energy equipment are shown in Table 1.
Among them, the power generation of the wind turbine connected
to bus 30 is 250MW, the power generation of the wind turbine
connected to bus 31 is 520MW, the power generation of the wind

FIGURE 3
FP-Growth algorithm flowchart.
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turbine connected to bus 33 is 632MW, and the power generation of
the wind turbine connected to bus 38 is 830 MW. The total power
generation of wind turbines is 2232 MW.

Based on the relevant formulas in section 3.1, using Python
software and DIgSILENT software, the values of the transmission
capacity index and the power flow transfer entropy impact index of
the line are first obtained. The values of the above two indicators are
multiplied to obtain the initial fault index value. The initial fault
index value is listed in descending order to obtain the initial fault
index of some lines, as shown in Table 2. The initial fault index
threshold is set to 0.3.

From Table 3, it can be seen that after the disconnection of lines
26–28, the intermediate link prediction index of lines 21–22 is
relatively large, which can be used as the next level of
disconnection line. Continue to calculate the intermediate link
prediction index, and obtain the relevant index values as shown
in Table 4.

According to the indicators mentioned in reference (Li and Jin,
2018) and section 3 of this article, the lines of the IEEE39 node
system containing renewable energy equipment were traversed.
Reference (Li et al., 2020) first starts with DC power flow and
combines matrix theory to propose a method for determining the
power flow transfer area and calculating the power flow transfer
amount based on network topology structure; Then, based on the
above methods, the distribution entropy of power flow transfer and
the sensitivity entropy of load impact were defined, and a
comprehensive evaluation index for key lines was proposed by
combining the two entropy indicators mentioned above; Finally,
this indicator is used to identify key lines in power grid cascading
faults. The chain of cascading faults was screened according to the
same threshold, as shown in Table 5 and Table 6, respectively.

Compare the selected accident chains in Table 5 and Table 6 of
the article, it can be found that under the same threshold setting, the
accident chain search model proposed in this article can identify
more accident chains. One reason is that the model in reference (Li
et al., 2020) sets that the system will undergo splitting after some
lines are disconnected, and the power flow transfer situation after
the above line disconnection is no longer considered. The selection
range of the initial line is small, while the model in this paper only
sets a threshold for the selection of the initial faulty line, resulting in
a larger search range. The second reason is that reference (Li et al.,
2020) mainly considers the impact of network topology changes on
power flow transfer, only proposing relevant indicators for power
flow transfer, without considering the structural importance of the
line itself in the power grid, and without considering the impact of
new energy access on the development of cascading faults. When
searching for fault chains in power grids containing new energy, it is
easy to miss some lines and the obtained fault chains are not
comprehensive enough.

Taking the minimum support = 3, we construct an FP tree
according to the steps described in Section 4, and grow from the
empty set to obtain the FP tree shown in Figure 6. The header
pointer table shown in Figure 5 contains the element items
contained in the dataset and their occurrence times and connects
all similar element items in the FP tree through a curve. A straight
line connecting nodes represents the relationship between a parent
and a child, with the parent on top.

Correlation analysis is performed on the lines in the
IEEE39 node cascading fault chain set containing new energy
equipment using the FP-growth algorithm, as shown in Table 7.

FIGURE 4
The key route excavation process.

FIGURE 5
IEEE39 node system diagram with renewable energy equipment.

TABLE 1 Power generation and load capacity of IEEE 39 node system including
renewable energy equipment.

Index Unit (MW)

Total power generation 6,140

Coal power generation 1,068

Nuclear power generation 1,840

Other energy generation 1,000

Wind turbine power generation 2,232

Total load capacity 6,097.1
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TABLE 2 Sorting table of initial fault indicators of the line.

Line Line transmission capacity indicators Entropy impact index of tidal current transfer Initial fault indicator

L26−28 0.9263 0.9133 0.8460

L16−21 0.7698 0.9867 0.7596

L01−39 0.9685 0.4169 0.4038

L16−24 0.4233 0.8326 0.3524

L03−18 0.4695 0.6587 0.3093

From Table 2, it can be seen that the initial fault index of lines 26–28 is much greater than 0.3, and it can be considered that lines 26–28 are prone to subsequent chain faults. So, based on the

intermediate link indicators, we continue to calculate the relevant indicator values for lines 26–28, as shown in Table 3.

TABLE 3 Index values of other lines after removing the initial faulty line 26–28.

Line Line dielectric index Line load rate Intermediate link prediction indicators

L21−22 0.312 1.023 0.1596

L16−19 0.269 0.864 0.1162

TABLE 4 Index values of other lines after cutting off the line 26–28 and the line 21–22.

Line Line dielectric index Line load rate Intermediate link prediction indicators

L22−23 0.269 1.290 0.1735

L16−24 0.302 1.139 0.1720

From Table 4, it can be seen that after the disconnection of lines 26–28 and 21–22, the indicator values of lines 22–23 are relatively high. Therefore, lines 22–23 are selected as the next level of

disconnection line, and the fault chain search continues until the total number of disconnected lines reaches the specified number or the power grid flow does not converge.

TABLE 5 Accident chains screened based on literature (Li and Jin, 2018) indicators.

Number Number

1 23–24, 21–22, 02–03, 26–27, DFIG 08, 08–09, 01–39 6 05–06, 06–07, 10–13, 02–03, 21–22, 14–15, DFIG 10

2 02–25, 21–22, 22–23, DFIG 07 7 07–08, 05–06, 04–14, 08–09, 03–04, 01–02

3 28–29, 16–19, 21–22, 16–24, 26–29, 02–03 8 01–39, 21–22, 22–23

4 01–02, 21–22, DFIG 05,22–23 9 04–14, 05–06, 06–07, 15–16, 16–19, DFIG 10,02–25

5 08–09, 21–22, 22–23, 02–03, 17–27, DFIG 07, 16–19

TABLE 6 The accident chain selected based on the indicators in this article.

Number Number

1 26–28, 21–22, 22–23, 16–19, DFIG 05, 05–06, 06–07, DFIG 07, DFIG
10, DFIG 08

7 17–27, 21–22, 23–24, DFIG 07, 16–19, DFIG 05, 02–03, 02–25,
DFIG 08

2 16–21, 23–24, DFIG 07 8 17–27, 21–22, 23–24, DFIG 07, 02–03, 10–13, DFIG 10, DFIG 08,
26–28

3 01–39, 21–22, 22–23, 09–39, 16–19, DFIG 05, DFIG 07, DFIG 10, DFIG
08, 04–05

9 15–16, 21–22, 22–23, 16–19, DFIG 05, 05–06, 06–07, DFIG 07, DFIG
10, DFIG 08

4 16–24, 21–22, DFIG 07 10 16–19, DFIG 05, 02–03, 21–22, 26–27, 23–24, 01–39

5 03–18, 21–22, 22–23, 16–19, DFIG 05, 13–14, 04–05, DFIG 07, DFIG
08, DFIG 10

11 05–06, 21–22, 16–24, DFIG 07, 10–13, 10–11, 16–19, DFIG 05, DFIG
10, DFIG 08

6 07–08, 05–06, 13–14, 21–22, 23–24, DFIG 07, DFIG 05, DFIG 08, DFIG
10, 08–09

12 14–15, 21–22, 16–24, DFIG 07, 05–06, 06–07, 04–14, DFIG 08, DFIG
05, DFIG 10
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The correlation analysis results of the accident chain set are obtained
by using the FP tree algorithm to search for frequent itemsets, with a
minimum support of 3 set for frequent itemsets. Firstly, combined
with Figure 6, search for the prefix path of line 2–25. In the figure
above, search for the first 2–25 from left to right. By tracing up to the
root node, you can obtain the first prefix path as {16–19, 17–27}.
Then, search for the second 2–25, and then trace up to the root node
to obtain the second prefix path as {19–33, 16–19, 17–27}. Then,
search for the third 2–25, and then trace up to the root node to
obtain the third prefix path as {19–33, 17–27}, Finally, search for the
fourth 2–25, and then trace back to the root node to obtain the
fourth prefix path as {19–33}.

Then, based on the support of each prefix path in the search line
2–25mentioned above, it can be concluded that the support of prefix
paths {16–19, 17–27} is 1, {19–33, 16–19, 17–27} is 3, {19–33, 17–27}
is 1, and {19–33} is 1. By adding the support of each line in the prefix
paths above, it can be concluded that the support of lines 16–19 is 4,
lines 17–27 are 5, and lines 19–33 are 5. Due to the fact that the
support of these three lines is greater than the minimum support of
3, these three lines can be used as a combination in the third order
frequent term set.

By analyzing the correlated lines in the table, we find that in the
IEEE39 node system, frequent items such as lines 2–30, 6–31, and
19–33 are the outgoing lines of new energy generators. Frequent
items such as lines 17–27, 16–19, 21–22, and three to four are load
supply lines. In the IEEE39 node system, lines 17–27, 16–19, and
19–33 are a set of transmission cross-sections. These lines have a
strong correlation with the evolution of cascading faults in power

systems containing new energy, which can easily lead to large-scale
power outages. Therefore, certain measures should be taken to
ensure the safe and stable operation of these lines.

After calculation and simulation, 30 accident chains were
obtained, and the probability table of closely related lines
appearing in the same accident chain is shown in Table 8. At the
same time, any combination of 7 lines was selected to obtain the
probability of appearing in the same accident chain as shown in
Table 9. From Table 8, it can be seen that the probability of closely
related line combinations appearing in the same accident chain is
higher than 50%, while in Table 9, the probability of any
combination of lines appearing in the same accident chain is
mostly lower than 50%, with only one combination having a
slightly higher probability than 50%. This indicates that during
the occurrence of chain failures, these line combinations have a
higher probability of consecutive failures. By comparing the
calculated line combinations with the line combinations obtained
using the FP Growth algorithm, it can be found that the combination
of tight lines is roughly the same, verifying the correctness and
effectiveness of the FP Growth algorithm.

Calculate the probability of each line appearing in each accident
chain searched in this article, and rank it from high to low to obtain
the probability of some lines appearing as shown in Table 10. The
more times a line appears in the accident chain, the easier it is for
chain faults to spread to the line or cause other line faults, and the
higher the criticality of the line. Lines with a probability of
occurrence higher than 0.65 are designated as critical lines. It can
be seen that the lines in the table are all critical lines, and adding

FIGURE 6
FP-tree structure.

TABLE 7 Accident chain set correlation analysis results of IEEE 39 node system including new energy equipment.

1st order frequent term 2–30, 2–25, 25–37, 1–39, 17–27, 16–19, 6–31, 19–33, 22–35, 21–22, 3–4, 5–6

2nd order frequent term 2–30, 1–39; 17–27, 19–33; 2–25, 3–4; 22–35, 21–22; 17–27, 16–19; 3–4, 5–6

3rd order frequent term 17–27, 16–19, 19–33; 2–25, 3–4, 5–6
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certain protective measures to these lines can reduce the occurrence
of large-scale chain failures.

From Table 11, compared with the results of references (Xu
and Zhi, 2016; Shan et al., 2018), the identification results of this
article have more than half of the same lines, which verifies the
rationality of the fault chain search in this article. Reference
(Shan et al., 2018) first defines the unit entropy comprehensive

load rate by integrating the comprehensive load rate and power
flow entropy of the power grid; Then, based on the HITS
algorithm, the importance index of power grid nodes was
defined, and a line outage consequence evaluation model was
established by combining the unit entropy comprehensive load
rate and the importance index of power grid nodes; Then, the
probability of line breaking due to power flow exceeding the limit
was defined, and a relative probability evaluation model for line
breaking was constructed based on the fault chain of the line
itself; Finally, based on the consequences of line disconnection
and the probability of line disconnection, the fragile line index of
the power grid was defined. Reference (Shan et al., 2018) suggests
that the power flow impact on the line comes from random load
fluctuations, without considering the importance of the line in
terms of the new energy topology structure relative to the entire
network, resulting in the omission of lines 4–14, 4–5, 22–23, and
16–24. These lines can break under N-1 accident conditions.
Reference (Xu and Zhi, 2016) uses the DC power flow method to
quickly estimate the power flow increment and load rate of other

TABLE 8 Probability of closely related line combinations appearing in the accident chain.

Closely related line combinations The probability of appearing on the same accident chain

02–30, 01–39 0.520

17–27, 19–33 0.863

02–25, 03–04 0.905

22–35, 21–22 0.556

17–27, 16–19 0.883

03–04, 05–06 0.895

17–27, 16–19, 19–33 0.503

02–25, 03–04, 05–06 0.556

TABLE 9 Probability of occurrence of any combination of lines in the accident chain.

Any combination of lines The probability of appearing on the same accident chain

25–26, 07–08 0.095

04–05, 28–29 0.135

22–23, 01–02 0.188

02–25, 14–15 0.266

17–18, 05–06 0.505

25–26, 07–08, 03–04 0.036

22–23, 01–02, 10–11 0.163

TABLE 10 Probability of partial lines appearing in the accident chain.

Line Probability

22–23 0.830

16–19 0.789

17–27 0.753

16–24 0.733

19–33 0.652

TABLE 11 Line identification results using different methods.

Method Line identification results

Proposed method 17–27,4–5,22–23,16–24,16–19,19–33,2–25,3–4,5–6,6–11,10–13,23–24,10–11,4–14,4–5

Reference Shan et al., 2018 method 19–33,2–25,3–4,5–6,6–11,10–13,23–24,17–27,16–19,10–11,13–14,26–27,21–22,15–16

Reference Xu and Zhi, (2016) method 23–24,10–11,4–14,2–3,22–23,16–24,17–27,16–17,19–33,2–25,3–4,5–6,6–11,10–13
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lines in the system when the line is disconnected. The weighted
power flow impulse entropy is used to reflect the influence of the
target line on the transfer power flow caused by other line
disconnections, and the weighted power flow distribution
entropy is used to reflect the impact of the target line
disconnection on the load rate distribution of the system line.
By combining weighted power flow impact entropy and weighted
power flow distribution entropy, a comprehensive vulnerability
index for transmission lines is defined to identify vulnerable lines
in power grid fault propagation. Reference (Xu and Zhi, 2016)
focuses on considering the impact of line disconnections on the
power flow transfer process of fault propagation, thus missing
lines 4–5 and 16–19. These line disconnections have a significant
impact on the uniformity of the electrical structure of the power
grid. The identification results of this method indicate that the
importance and operational status indicators of the integrated
new energy power system can be used to search for more
comprehensive cascading failure lines.

6 Conclusion

We propose a cascading failure prediction index based on the
importance and operating status of new energy power system lines,
conduct a fault chain search and analyze the correlation relationship
between cascading failure lines using the FP-growth algorithm. The
prediction indicators for cascading faults include the line
transmission capacity, power flow transfer entropy impact index
based on the distance between the line and new energy units,
structural importance and load rate of the line containing new
energy, and more factors that affect cascading faults. The initial fault
link and intermediate development link of accident chain prediction
are separated, and in the previous part, the initial faults with a low
probability of occurrence are filtered out, accelerating the search
speed of the accident chain. The latter part is based on a risk-first
strategy, which leads the search process toward a higher risk of
cascading failures. The method of line correlation analysis can
calculate the correlation between multiple lines. In the FP-
Growth algorithm, support and the relationship between before
and after are considered to ensure the effective screening of line sets
that are prone to cascading faults and have a strong correlation. By
comparing the simulation results of this article with the results of
other literature, we show that the set of accident chains obtained by
the proposed indicators is more complete. Line correlation analysis
can be used to effectively identify strongly correlated lines in a new
energy power system.
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Introduction: In the field of power systems, power load type prediction is a
crucial task. Different types of loads, such as domestic, industrial, commercial,
etc., have different energy consumption patterns. Therefore, accurate prediction
of load types can help the power system better plan power supply strategies
to improve energy utilization and stability. However, this task faces multiple
challenges, including the complex topology of the power system, the diversity of
time series data, and the correlation between data. With the rapid development
of deep learning methods, researchers are beginning to leverage these powerful
techniques to address this challenge. This study aims to explore how to optimize
deep learning models to improve the accuracy of load type prediction and
provide support for efficient energy management and optimization of smart
grids.

Methods: In this study, we propose a deep learningmethod that combines graph
convolutional networks (GCN) and sequence-to-sequence (Seq2Seq) models
and introduces an attention mechanism. The methodology involves multiple
steps: first, we use the GCN encoder to process the topological structure
information of the power system and encode node features into a graph data
representation. Next, the Seq2Seq decoder takes the historical time series data
as the input sequence and generates a prediction sequence of the load type. We
then introduced an attentionmechanism, which allows themodel to dynamically
adjust its attention to input data and better capture the relationship between time
series data and graph data.

Results: We conducted extensive experimental validation on four different
datasets, including the National Grid Electricity Load Dataset, the Canadian
Electricity Load Dataset, the United States Electricity Load Dataset, and the
International Electricity LoadDataset. Experimental results show that ourmethod
achieves significant improvements in load type prediction tasks. It exhibits higher
accuracy and robustness compared to traditional methods and single deep
learning models. Our approach demonstrates advantages in improving load type
prediction accuracy, providing strong support for the future development of the
power system.

Discussion: The results of our study highlight the potential of deep learning
techniques, specifically the combination of GCN and Seq2Seq models with
attention mechanisms, in addressing the challenges of load type prediction in
power systems. By improving prediction accuracy and robustness, our approach
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can contribute to more efficient energy management and the optimization of
smart grids.

KEYWORDS

smart grid, deep learning, optimization of intelligent systems, electric load type
prediction, multi-source data, data analysis

1 Introduction

With the continuous development of society and the continuous
growth of power demand, the power system is rapidly evolving into a
more intelligent, efficient and sustainable form.This is the concept of
smart grid. Smart grids are not only the future of the power industry,
but also the key to solving energy problems, reducing carbon
emissions and achieving sustainable development Han et al. (2022).
In smart grids, understanding and predicting changes in electrical
load types is critical. Electrical load refers to the power consumption
pattern in the power system, which usually includes various types
of loads such as household, industrial, commercial and agricultural
Li et al. (2022a). Each load type has different characteristics and
energy consumption patterns.Therefore, accurate prediction of load
types can help power systems better plan power supply strategies,
improve energy efficiency, reduce costs, and promote sustainable
development.

However, the power load type forecasting task faces many
challenges. First, the topology of the power system is usually very
complex, including various substations, lines, and transmission
towers, which results in complex correlations between power load
data. Secondly, the diversity of time series data also increases
the difficulty of prediction Xu et al. (2021). Different types of
loads exhibit different characteristics over different time periods,
which requires models to be able to identify and capture these
characteristics. In addition, accurate load type forecasting requires
consideration of multiple data sources, such as power system
topology, historical time series data, etc. How to effectively integrate
these data is also a challenge.

To address these challenges, this study focuses on developing
a comprehensive deep learning approach to improve the accuracy
and robustness of electric load type forecasting. We will combine
graph convolutional networks (GCN) and sequence-to-sequence
(Seq2Seq) models to introduce attention mechanisms to better
understand and predict different types of power loads. The core idea
of this method is to effectively integrate information from different
data sources so that the model can better understand the complexity
and temporal changes of the power system.

Studying methods and technologies for power load type
prediction is of great significance to the development of smart grids
and energy management. By improving the accuracy of electricity
load type predictions, it can help the power system better adapt to
the diversity and complexity of energy sources. This helps achieve
high reliability, efficiency and sustainability of the power system,
reduces resource waste, lowers carbon emissions, and promotes
the integration of renewable energy. In addition, this research also
provides new technical support for the intelligence and automation
of the power system, laying a solid foundation for building a more
intelligent power network and social infrastructure.

In research in the fields of smart grid, power load type
forecasting, and deep learning, the followingmodels aremainly used
for improvement and research and development.

Convolutional neural networks (CNN) are a model that has
achieved great success in the field of computer vision, but it
also plays an important role in areas such as electric load type
forecasting Bhatt et al. (2021). The main feature of CNN is its use
of convolutional layers, which enables it to automatically extract
spatial features from input data without manually designing a
feature extractor. This feature is particularly useful for power
load data processing because power load data often contains rich
timing information and volatility that differs between different
load types Li et al. (2020). In power load type prediction, the
application of CNN is mainly reflected in its excellent feature
extraction capabilities. CNNcan capture these local features through
convolution operations to identify patterns of different load types.
In addition, CNN can also build hierarchical feature representation
through multi-layer convolution and pooling layers, which helps to
understand the information in power load data more deeply. The
wide application of CNN lies in the adjustment of its convolution
kernel size and number to adapt to features of different scales and
complexity. In addition, CNN can also be used in conjunction
with other deep learning models and techniques, such as recurrent
neural networks (RNN) and attentionmechanisms, to better capture
temporality and correlation between data.

Recurrent neural network (RNN) is a type of deep learning
model suitable for sequence data, which is of great value in power
load type forecasting tasks. The unique feature of RNN is that
it has internal cyclic connections, which allows the model to
process variable-length time series data, which is very important
for modeling power load data. In power load type forecasting, RNN
can be regarded as a sliding window in time, which can capture the
dependence between load data at different time points. This is key
to understanding the evolution of load types over time Xiao and
Zhou (2020). However, traditional RNN is prone to problems such
as gradient disappearance or gradient explosion on long sequence
data. For this reason, improved RNNmodels such as gated recurrent
unit (GRU) and long short-term memory network (LSTM) have
emerged. GRU controls the flow and memory of information by
introducing update gates and reset gates to better process time
series data Dhruv and Naskar (2020). These improved RNN models
perform well in power load type forecasting, especially when long-
term dependencies need to be considered. Choosing an appropriate
RNN model depends on the characteristics of the data and the
requirements of the task to ensure that it can better capture the
information of time series data.

Temporal convolutional network (TCN) is a model that
combines CNN and RNN, and it has broad application prospects
in power load type forecasting. TCN uses convolutional layers
to capture the local and global relationships of time series data,
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avoiding the gradient problem in traditional RNN. This makes TCN
ideal for processing long sequences of data, especially when power
load type forecasting needs to consider a wider range of historical
information Arumugham et al. (2023). The main feature of TCN
is that it has an extended receptive field of variable length, which
means that the model can effectively capture features at different
time scales. In power load type forecasting, different load types may
show different patterns on different time scales, so TCN can help the
model better adapt to this diversity Fan et al. (2023). In addition,
TCN can be combined with other technologies such as attention
mechanisms to further improve model performance.

Gated Recurrent Unit (GRU) is an improved RNN model
designed to overcome the problems of traditional RNN. The main
feature of GRU is that it has update gates and reset gates inside,
which allow the model to better control the flow and memory of
information Cheon et al. (2020). In power load type forecasting,
GRU can be used to capture long-term dependencies of time
series data. One of the advantages of GRU is its simplicity and
efficiency. Compared with LSTM, GRU has fewer parameters
and therefore trains faster Daniels et al. (2020). This makes GRU
ideal for processing large-scale time series data. In power load
type forecasting tasks, choosing the GRU model can reduce
computational costs while maintaining high performance.

Deep reinforcement learning (DRL) is a powerful model whose
main feature is to learn optimal decision-making strategies through
interaction with the environment. In the field of smart grid, DRL
can be used for load management and optimization to achieve
the best balance of energy efficiency and power supply stability
Leng et al. (2021). The DRL model can dynamically adjust the
power supply strategy according to changing power load conditions,
thereby improving energy utilization efficiency. Although DRL
models generally require more data and computing resources, they
perform well in handling complex decision-making problems. In
power load type forecasting, DRL can be combined with other
deep learning models to achieve higher-level decision-making
and control, contributing to the development of smart grids and
optimization of power systems Huang et al. (2019). The choice of
DRL model usually depends on the complexity of the task and the
problem that needs to be solved.

However, there are some shortcomings when applying these
models to the study of smart grid power load type prediction
problems. Although convolutional neural networks (CNN) are good
at extracting spatial features, they have limited modeling of time
series data and are difficult to capture dynamic changes in load types.
Recurrent neural network (RNN) and its improved models (such as
GRU and LSTM) can handle time series data, but are susceptible to
problems such as gradient disappearance and gradient explosion,
which limit their long-term dependency modeling capabilities.
Although temporal convolutional network (TCN) overcomes the
gradient problem of RNN, it may not be flexible enough to adapt
to different scales of temporal data. Deep reinforcement learning
(DRL) requires a large amount of data and computing resources, has
challenges in complexity, and is not suitable for all power load type
prediction scenarios.

In view of this, we propose a GCN-Seq2Seq model that
integrates the attention mechanism. This model combines graph
convolutional network (GCN) and sequence-to-sequence model
(Seq2Seq), and introduces an attention mechanism, which has the

following advantages. First, GCNcan effectively capture the complex
topology of the power system and help the model understand the
relationship between different load types. Secondly, the Seq2Seq
model is suitable for sequence generation tasks, mapping historical
time series data to load type prediction sequences, and better
considering timing. Most importantly, the attention mechanism we
introduced enables the model to automatically focus on the most
important information, improving the accuracy of predictions. Our
model has advantages in comprehensively considering the topology,
time series data and correlation of the power system, and is expected
to improve the performance and efficiency of power load type
prediction, which is beneficial to the development of smart grids and
the optimization of power systems.

The main contributions of this study are as follows:

• Proposal of newdeep learningmodel.Wepropose an innovative
deep learning model that combines graph convolutional
networks (GCN) and sequence-to-sequence models (Seq2Seq),
and introduces an attention mechanism. This model can
simultaneously consider the topology and timing data of the
power system and automatically capture the correlation of
load types, thereby improving the accuracy and accuracy of
predictions.
• Research on multi-source data fusion. We apply multi-source

data fusion to the power load type prediction task, taking into
account the topological information and historical time series
data of the power system. This data fusion method is expected
to improve the robustness and accuracy of load type forecasting
and provide more comprehensive information for intelligent
management of power systems.
• Promote the sustainable development of smart grids.The results

of this study are expected to contribute to the sustainable
development of smart grids and efficient management of power
systems. Through more accurate load type forecasting, the
power system can better adapt to changing demands, improve
the reliability and efficiency of power supply, and also provide
strong support for the development of sustainable energy
integration and smart grids.

In the following sections, we summarize all the model diagrams
involved in this study, as well as the data analysis diagrams in Part
II. In the third part, we introduce in detail the deep learning model
we proposed, that is, the GCN-Seq2Seq model incorporating the
attention mechanism, and elaborate on the structure diagram and
basic principles of the model. The fourth part is our experiment,
which introduces the data sets used in this study, the detailed
experimental settings and the analysis of experimental results. The
fifth part is the conclusion and summary of the full text. We also
describe the shortcomings of this study and the next research
direction.

2 Related work

2.1 Intelligent power system

As an innovative field in the power industry, smart power
systems cover a series of advanced technologies and concepts,
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aiming to improve the intelligence, efficiency and sustainability of
the power system. The basic concept includes real-time monitoring,
control and optimization of power networks to better meet growing
power demand. The origins of smart power systems can be traced
back to the digital transformation of traditional power systems.
With the continuous advancement of information technology, smart
power systems have gradually evolved into a complex network
that integrates elements such as advanced sensors, communication
technology, data analysis, and artificial intelligence to make the
power system more flexible and intelligent.

In the field of smart power and energy management, recent
research demonstrates the rise of hybrid technology solutions that
focus on improving operational efficiency and system resilience
against potential risks. A study proposes a reinforcement learning-
based energy management system designed to optimize the
performance of fuel cell and battery hybrid electric vehicles
Reddy et al. (2019). The core of the system is to dynamically
adjust the distribution of electric energy, showing the possibility
of improving energy efficiency under changing risk conditions.
In response to smart grid security issues, especially the threat
of denial of service (DoS) attacks, some research has developed
a distributed control mechanism. This mechanism combines the
system’s communication capabilities and control responses to ensure
the stability of grid dispatch and operation even in the event of
a cyber attack Li et al. (2022b). In addition, for microgrid energy
management issues, the latest research introduces a distributed
energy management framework to complete dual-mode energy
distribution within a predetermined time through event-triggered
communication technology. This method can effectively deal with
communication delays and ensure the accuracy and reliability
of energy distribution Liu et al. (2023). These studies as a whole
reflect that the methods used by intelligent systems to improve
performance and security are becoming increasingly complex, and
interdisciplinary technology integration is a significant trend in
current development. From reinforcement learning algorithms to
the application of advanced communication protocols, it reflects
important steps taken in smart energy distribution and power grid
management.

However, smart power systems also face some challenges.
Especially in terms of power load type forecasting, challengesmainly
include the complex topology of the power system, the diversity of
time series data, and the correlation between data. Addressing these
challenges is crucial to achieve comprehensive optimization of smart
power systems and improve power load type forecast accuracy.

2.2 Deep learning technology

Deep learning technology has achieved remarkable application
results in the field of power systems, providing strong support
for the intelligence and efficiency of power systems. In terms of
power load forecasting, deep learning algorithms can be used to
learn and model historical load data to achieve accurate predictions
of future power loads. In terms of power system optimization,
deep learning technology is used to learn the topology structure
and operating status of the power system to achieve real-time
optimal dispatch of the power system Ibrahim et al. (2020). In
terms of smart grid management, deep learning technology is

used to process a large amount of time series data in the power
grid, which can realize real-time monitoring, fault detection and
intelligent dispatching of the power grid. In terms of power load
forecasting, deep learning technology has been successful in many
cases. For example, in the power load forecasting of the State Grid,
deep learning methods achieve highly accurate load forecasting by
learning the complex spatiotemporal relationships of the power
system, providing an important basis for reasonable dispatch of
the power system O’Dwyer et al. (2019). In terms of power system
optimization, deep learning technology has also shown strong
capabilities. By training large-scale data from the power system,
deep learning models can better understand the modes and trends
of system operation, thereby achieving intelligent scheduling and
optimization of the system.

Compared with traditional methods, deep learning technology
has significant advantages. Deep learning models can learn and
capture the complex spatiotemporal relationships in power systems
and better adapt to the nonlinear characteristics of the system.
Deep learningmodels can achieve end-to-end learning, learn feature
representations directly from rawdata, without the need tomanually
extract features, and improve the generalization ability of the model
Zhang et al. (2019). The deep learning model can automatically
adjust model parameters to adapt to the characteristics of different
power systems, and has stronger adaptability and generalization
capabilities.

Although deep learning has achieved remarkable results in
power systems, it still faces some challenges. Issues such as power
system complexity, data uncertainty, and model interpretability
remain the focus of current research. The reason for choosing the
deep learning method in this study is its advantages in processing
large-scale data, learning complex relationships, and adapting to
uncertainty.

2.3 Optimizing deep learning models

In terms of optimization of deep learning models, a variety of
methods have emerged in recent years, especially in applications
in the field of power systems, including transfer learning,
reinforcement learning, hyperparameter optimization, adversarial
training, etc. Transfer learning uses the knowledge learned on
one task to help learn on another related task. Transfer learning
can reduce the dependence on a large amount of annotated data
and improve the generalization of the model Hafeez et al. (2020).
The introduction of reinforcement learning methods allows the
model to optimize its own performance through interaction with
the environment, which is particularly suitable for real-time
dispatch and control problems in power systems. Optimizing
the hyperparameters of deep learning models through search
algorithms or adaptive methods can improve the performance and
robustness of the model. Introducing adversarial training enables
the model to better cope with perturbations and attacks on input
data, and improves the robustness of the model.

Optimization schemes based on meta-learning have been
applied to deep learning models, especially in the field of
power systems. This method has confirmed its effectiveness in
improving model performance between different systems through
the practice of transfer learning Zhou et al. (2020). At the same time,
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reinforcement learning technology also shows great potential in
load forecasting. It can enhance the model’s adaptability to complex
changes by reproducing different load conditions in a simulated
environment. In addition, the introduction of adversarial training is
regarded as an important development in the field of power system
security. Adversarial samples are added to improve the system’s
ability to identify network attacks, thereby enhancing the defense
mechanism Ye et al. (2020). These research results provide a wealth
of ideas and methods for optimizing deep learning models, and
provide a reference for our optimization of deep learning models in
power load type forecasting.

3 Methodology

3.1 Overview of our network

For the power load type prediction problem, significant progress
has been made in the application of deep learning technology in
smart power systems and related work in model optimization. In
order to further improve the prediction accuracy, this study adopts
an overall model that integrates graph convolution network (GCN)
and sequence-to-sequence model (Seq2Seq), and introduces an
attention mechanism to solve the problem of smart grid power load
type prediction. This model was chosen due to considerations of
the complexity and diversity of power systems and the need for
accuracy and global information capture. The basic principle of this
overall model is to view the power system as a graph structure,
where nodes represent specific time points of load data and edges

FIGURE 1
Overall flow chart of the model.

Algorithm 1. GCN-Seq2Seq Training.

represent topological relationships between nodes. First, through
the GCN encoder, the model can effectively capture the topological
information of the power system and represent the node features
into the encoding of graph data. Next, the Seq2Seq decoder accepts
historical time series data as an input sequence and generates a load
type prediction sequence. In this process, an attention mechanism
is introduced, allowing the model to fuse information based on
the importance of different input data and better understand the
relationship between time series data and graphdata.The advantages
of this model are obvious. First, it can comprehensively consider the
topology and timing data of the power system while automatically
capturing the correlation between different load types, thereby
improving the accuracy of prediction. Secondly, the introduction of
the attention mechanism enables the model to focus on the most
important information for the current prediction, further improving
the model performance. Most importantly, the comprehensiveness
and global information capturing capabilities of this model are
expected to provide amore powerful tool for intelligentmanagement
of power systems and forecasting of power load types.

The structure diagram of the overall model is shown in Figure 1,
which shows the relationship between the GCN encoder, Seq2Seq
decoder and attention mechanism, forming a comprehensive power
load type prediction model.

The running process of the GCN-Seq2Seq model is shown in
Algorithm 1.

3.2 Graph convolutional network model

In the model of this study, the graph convolutional network
(GCN) is a key component used to process the topological structure
information of the power system Hossain and Rahnamay-Naeini
(2021). The basic principle of GCN is to capture the relationship
between nodes in graph data through effective information transfer
Peng et al. (2023), and then encode the features of the nodes
Chen et al. (2022). In the overall model, the role of GCN is to
treat the power system as a graph structure, in which the nodes
of the graph represent load data at different time points, and
the edges represent topological relationships between nodes, such
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FIGURE 2
Flow chart of the GCN model.

FIGURE 3
Flow chart of the Seq2Seq model.

as connection relationships. These nodes and edges constitute
the topological information of the power system. The advantage
of GCN in power system modeling is mainly reflected in its
effective processing of complex topological structures. Compared
with traditional methods, GCN can capture the relationship
between nodes more comprehensively and achieve a high degree of
abstraction and expression of the power system topology. Through
an iterative information transfer process, GCN is able to update

the characteristics of each node to the weighted average of the
characteristics of its neighboring nodes, effectively integrating
topological relationships into feature representation. This enables
the model to better understand the interactions and correlations
between different nodes in the power system, thereby improving the
accuracy of load type predictions. Specifically, the ability of GCN
lies in encoding the node information of the power system so that
the model can better understand the spatiotemporal relationship
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FIGURE 4
Flow chart of the Attention model.

between load data. This specific treatment of topology helps the
model more accurately capture the energy consumption patterns of
different types of loads, providing a stronger basis for prediction
tasks.

The operation process of GCN Model is shown in Figure 2.
The main formula of GCN Model is as follows:

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2 H(l)W(l)) (1)

Here, H(l) Represents the node feature matrix for layer l. sigma
Denotes the activation function, typically using ReLU, etc. hatA
Indicates the symmetrically normalized adjacency matrix. hatD
Represents the diagonal matrix of node degrees. W(l) Stands for the
weight matrix for layer l.

In this formula, GCN gradually updates the feature
representation of nodes through a multi-layer information
transfer process, so that each node contains information about
its surrounding nodes, thereby taking into account the influence of
topological relationships. In the overall model, the role of GCN is to
encode the topological structure information of the power system
into a more information-rich feature representation, providing
important basic information for subsequent load type prediction.
Through the use of GCN, the model can better understand the
relationship between nodes in the power system and improve the
modeling ability of load type prediction problems. This is of great
significance for comprehensively considering the complexity and
diversity of the power system, thereby improving the accuracy of
prediction and the ability to capture global information.

3.3 Sequence-to-sequence model

In our model, the Seq2Seq model (Sequence-to-Sequence
model) is a key component for processing time series data and
load type forecasting tasks Xiong et al. (2021). The basic principle
of the Seq2Seq model is to map the input temporal sequence to

the output sequence through an encoder-decoder structure, while
retaining and delivering key contextual information Takiddin et al.
(2022).The role of the Seq2Seqmodel in the overall model approach
is to take historical time series load data as the input sequence,
and then generate the corresponding load type prediction sequence.
The key to this process is to encode the rich information of the
timing data into a fixed-length vector representation, which is then
passed through a decoder to generate a sequence of load types. The
encoder of the Seq2Seq model can effectively capture patterns and
trends in historical time series data, while the decoder converts
this information into load-type predictions Le et al. (2021). The
encoder of the Seq2Seq model has excellent capabilities and can
effectively capture patterns and trends in historical time series data.
By learning representations of historical load data, the encoder
is able to extract key temporal features, allowing the model to
better understand the information required for load type forecasting
tasks. This feature encoding method helps capture the complex
relationships between load data, making the model more flexible
and accurate when processing time series information. On the other
hand, the decoder of the Seq2Seq model is able to effectively utilize
the contextual information passed by the encoder when generating
load type prediction sequences. By incorporating historical timing
correlations into the generation process, the decoder is able to
more accurately predict future load types.This end-to-end sequence
modeling approach enables the model to perform well in load type
prediction tasks, with higher accuracy and robustness compared to
traditional methods and single deep learning models.

The operation process of Seq2Seq model is shown in Figure 3.
The main formula of Seq2Seq Model is as follows:

ht = Encoder(xt,ht−1) (2)

yt = Decoder(ht,yt−1) (3)

Here, ht represents the hidden state of the encoder, which
captures the information in the input sequence xt and passes it to
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6 the decoder. yt represents the output of the decoder, which is the

predicted result of the load type. xt represents the time series data
for each time step of the input sequence. ht−1 and yt−1 represent the
encoder hidden state and decoder output of the previous time step,
respectively, for context transfer.

The encoder of the Seq2Seq model gradually encodes the
historical time series data into hidden states ht, and passes these
hidden states to the decoder, which generates a sequence of load type
predictions based on the hidden states.This process allows themodel
to make accurate load type predictions based on historical data and
contextual information. The application of this model in this study
plays a key role in helping the model better understand time series
data, thereby improving the accuracy of load type prediction and
global information capture capabilities.

3.4 Attention mechanism

In our model, the attention mechanism is a key component
used to enhance modeling of the relationship between time series
data and graph data Li et al. (2022c). The basic principle of this
mechanism is to introduce a weight allocation mechanism in
the encoder-decoder structure so that the model can focus on
the information most relevant to the current prediction when
generating load type predictions Massaoudi et al. (2021). In the
overall model, the role of the attention mechanism is to enable the
model to perform information fusion and selection based on the
importance of different input data, thereby improving the accuracy
of load type prediction. This mechanism dynamically adjusts the
weight of the encoder output through the learned weight, allowing
the model to more effectively capture the relationship between
time series data and graph data, helping to improve prediction
performance Zhang et al. (2020). The advantage of the attention
mechanism is that it allows the model to be more flexible and
intelligent when processing complex time series data and graph
data. By introducing a weight allocation mechanism, the model is
able to selectively focus on the part of the historical data that is
relevant to the current prediction when predicting the load type
at each time point. This dynamic adjustment feature enables the
model to better adapt to changes in data distribution at different time
points, improving the modeling capabilities of time series and graph
data. In addition, the application of attention mechanism helps to
improve the model’s understanding of the complex topology of the
power system, making it more sensitive to capture the correlation
between nodes. In models that incorporate attention mechanisms,
more targeted attention to key information helps optimize load type
prediction performance.

The operation process of Attention Mechanism is shown in
Figure 4.

The main formula of Attention Mechanism is as follows:

αtj =
exp(etj)

∑T
k=1

exp(etk)
(4)

ct =
T

∑
j=1

αtj ⋅ hj (5)

at = Attention(ht,ct) (6)
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FIGURE 5
Comparison of model performance on different datasets.

Here, Q represents the attention weight of time step Q
to time step Q, which is used to measure the importance of
different time steps in time series data. Q represents the score
for calculating the attention weight, usually obtained using inner
product or other methods. Q represents the context vector at
time step Q, which is obtained by weighted summation of the
encoder output Q according to the attention weights. Q represents
the output after applying attention, which is used for load type
prediction.

The formulation of the attention mechanism describes how to
calculate attention weights, context vectors, and apply attention to
improve load type prediction. This mechanism plays a key role in
the entire model and helps the model better understand and utilize
the correlation between input data.

4 Experiment

4.1 Experimental environment

• Hardware Environment

The hardware environment used in the experiments consists of a
high-performance computing server equipped with an AMD Ryzen
Threadripper 3990X @ 3.70 GHz CPU and 1TB RAM, along with 6
Nvidia GeForce RTX 3090 24 GB GPUs. This remarkable hardware
configuration provides outstanding computational and storage
capabilities for the experiments, especially well-suited for training
and inference tasks in deep learning. It effectively accelerates the

model training process, ensuring efficient experimentation and
rapid convergence.

• Software Environment

In this study, we utilized Python and PyTorch to implement
our research work. Python, serving as the primary programming
language, provided us with a flexible development environment.
PyTorch, as the main deep learning framework, offered
powerful tools for model construction and training. Leveraging
PyTorch’s computational capabilities and automatic differentiation
functionality, we were able to efficiently develop, optimize, and train
our models, thereby achieving better results in the experiments.

4.2 Experimental datasets

This paper mainly uses the following four data sets to study the
problem of smart grid power load type prediction.

National Grid Electricity Load Dataset is a very important
data set that provides key information for electric load forecasting
research. The source of this data set is the State Grid of China,
the largest domestic electricity supplier and operator in China.
Data is carefully collected and maintained to ensure accuracy
and reliability Zhang and Hong (2019). The data set includes
multiple years of history, ranging from the past few years up
to the most recent electricity load data. This long time span of
data allows researchers to analyze seasonal and cyclical changes in
electrical loads. The dataset covers different regions within China,
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FIGURE 6
Comparison of model performance on different datasets.

including urban and rural areas. This covers China’s wide range
of geographical and climatic conditions, providing diversity for
research. The importance of the National Grid Electricity Load
Dataset cannot be underestimated. As data from the State Grid of
China, it provides an opportunity to gain in-depth understanding
of China’s power system operations and load changes. This dataset
is critical for power load type forecasting research as it contains
rich information that helps researchers understand load patterns
in different regions and seasons. In addition, as one of the world’s
largest electricity consumers, research on China’s power system is
of great significance to global power management and sustainable
development.

Canadian Electricity Load Dataset is an important data resource
that provides key information for electricity load forecasting studies.
Sources for this data set include the Canadian government and
electric utilities across Canada. These agencies are responsible
for collecting and maintaining electrical load data to ensure data
accuracy and availability. The Canadian Electricity Load Dataset
covers multiple years of history, including the past few years up
to the latest electrical load data. This long time span of data
allows researchers to analyze seasonal and cyclical changes in
electricity loads, as well as their evolution over time Iqbal et al.
(2021). The dataset covers every province and city in Canada,
including places with different climates and electricity needs. Due
to Canada’s geographical differences and climate diversity, this
dataset is diverse and covers electricity load conditions under
different conditions. Canadian Electricity Load Dataset is important
in the study of electric load type forecasting. First, Canada is
a geographically vast country with a variety of climatic and

topographic conditions, so this dataset provides information on
electricity load characteristics under different meteorological and
geographical conditions. Second, this dataset reflects the operation
of the Canadian power system, which is critical for power load
management and power systemoptimization.Most importantly, as a
developed country, Canada’s power system is modern and complex,
so the study of power load type forecasting problems has special
value.

U.S. Electricity Load Dataset is an important data resource
that provides key information for electric load forecasting research.
Sources for this data set include the U.S. Energy Information
Administration (EIA) and various U.S. power companies Lv et al.
(2021). These agencies collect and maintain electrical load data
to ensure data accuracy and availability. The U.S. Electricity Load
Dataset covers many years of history, ranging from the past few
years up to the latest electricity load data. This long time span of
data allows researchers to analyze seasonal and cyclical changes in
electricity loads, as well as their evolution over time. The dataset
covers every state and city in the United States, including places
with different climates and electricity needs. As a country with
geographical diversity and variable climate, the United States has
diverse power load data, covering power load conditions under
different conditions. The U.S. Electricity Load Dataset is important
in power load type forecasting research, providing information
on power load characteristics under different meteorological and
geographical conditions, reflecting the dynamics of large-scale
power supply and demand.

International Electricity Load Dataset brings together data from
the International Energy Agency (IEA) and electricity companies
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4 in various countries and regions. The IEA is responsible for

coordinating and collecting electricity load data in various countries
to ensure the accuracy and availability of data. It coversmany years of
history, from the past few years up to the latest electrical load data.
This long time span of data allows researchers to analyze seasonal
and cyclical changes in electricity load, as well as electricity load
trends on a global scale Ahmad et al. (2020).The dataset has a global
geographical scope, covering multiple countries and regions. This
makes it a diverse and comprehensive data resource, including places
with different climates, cultures and power system characteristics.
International Electricity Load Dataset is important in electric
load type forecasting research. First, it reflects the operation of
power systems in different countries and regions, providing key
information for power load management and optimization on a
global scale. Secondly, because it covers multiple countries and
regions, this data set helps study cross-border power load forecasting
problems and promotes international cooperation and knowledge
sharing.

4.3 Experimental setup and details

This study uses the GCN-Seq2Seq model integrated with the
attention mechanism to study the problem of smart grid power
load type prediction. To ensure accuracy and reproducibility,
experimental details need to be carefully designed.The experimental
setup and details are as follows:

Step 1: Dataset preparation.

• Data sources: The four data sets come from the State Grid
of China, the Canadian government and power companies,
the U.S. Energy Information Administration (EIA), and
the International Energy Agency (IEA). These datasets are
historical power load information collected from different
power systems.
• Time span: The data set covers many years of historical data,

ranging from a few years to a few decades, to ensure that
power load data under a variety of seasons and meteorological
conditions are included.
• Geographic scope: These data sets cover different geographical

scopes, including various regions in China, different regions
in Canada, states and cities in the United States, as well as
electricity load data on a global scale.
• Data cleaning and preprocessing: Before using the data, data

cleaning and preprocessing are required, including removing
missing values, processing outliers, data standardization,
etc., to ensure the quality and consistency of the
data.
• Data set division:The data set will be divided into a training set,

a validation set and a test set. Usually 70% of the data is used for
training, 15% is used for validation, and 15% is used for testing.
This helps evaluate the performance and generalization ability
of the model.

Step 2: Model selection and hyperparameter tuning.

• Model selection: We will consider using GCN, Seq2Seq, and
overall models that introduce attention mechanisms. These
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FIGURE 7
Comparison of model performance on different datasets.

models were chosen because of their advantages in processing
graph data and time series data.
• Hyperparameter adjustment: In the experiment, we will

perform hyperparameter adjustment, including the selection
of key parameters such as learning rate, batch size, hidden
layer size, and attention weight. We will use cross-validation
to evaluate the performance of different hyperparameter
settings.

Step 3: Model training process.

• GCN model training: For the GCN model, we will build the
graph structure of the power system and use the adjacency
matrix for training. GCN will utilize node features and graph
structure information for training.
• Seq2Seq model training: For the Seq2Seq model, we

will prepare time series data, including historical power
load data as the input sequence, and load type as the
output sequence. The Seq2Seq model will be trained
using an encoder-decoder structure to learn load-type
patterns.
• Holistic model training: In the holistic model, we will consider

both the graph structure and the time series data of the power
system. Attention mechanism will be used to capture the
relationship between them. The overall model will be trained
taking both data into account.

Step 4: Loss function and evaluation metrics.

• Loss function: We will choose an appropriate loss function
to measure the performance of the model, depending on the
nature of the problem. For classification tasks, the categorical
cross-entropy loss function or the mean square error loss
function is usually chosen.
• Evaluation metrics: We will use a series of evaluation metrics

to measure the performance of the model, including accuracy,
precision, recall, F1 score, etc. These metrics will be used for
performance evaluation on the validation and test sets.

Step 5: Experimental Design.

• Ablation experiments: We will conduct ablation experiments to
gradually evaluate the impact of each component of the model
on overall performance. For example, we will study how the
model performs without using the attention mechanism.
• Comparative experiments: We will conduct comparative

experiments to compare and analyze our model with other
commonly used deep learning models (such as CNN, RNN,
TCN, GRU, DRL) to determine the superiority of our model.

Step 6: Results Analysis and Visualization.

• We will conduct a detailed analysis of the experimental results,
comparing the performance of different models, the impact
of hyperparameter settings, and performance on different data
sets.Wewill use visualization tools to present key results to help
gain insight into the model’s behavior.
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FIGURE 8
Comparison of model performance on different datasets.

4.4 Experimental results and analysis

During the experiment, we collected data including National
Grid Electricity Load Dataset, Canadian Electricity Load Dataset,
U.S. Electricity Load Dataset, International Electricity Load
Dataset. Through experiments, we obtained the following
results.

Whenwe look at the results in Table 1, we can clearly see that our
model performs significantly better than other models on different
datasets. Specifically, on the National Grid Electricity Load Dataset,
ourmodel achieves 96.22% accuracy, 93.54% recall, 91.06%F1 score,
and 94.45% AUC, which performance metrics significantly exceed
other models, such as wang, mohammadi, alotaibi2, alladi and hui.
On the Canadian Electricity Load Dataset, U.S. Electricity Load
Dataset and International Electricity Load Dataset, our model also
achieves the highest level of performance indicators, indicating its
strong generalization ability on different data sets. Digging further
into Figure 5, we can see that after visualizing the results from
Table 1, the comparison of model performance becomes clearer. In
this visualization, our model sits at the top of each dataset by a clear
margin, outperforming other models. This visualization presents
the superior performance of our model on different datasets,
further confirming the excellent performance of our method in

power load type forecasting tasks. It should be emphasized that on
the International Electricity Load Dataset, our model performed
particularly well, reaching an AUC of 98.46%, which is much higher
than other models. This shows that the introduction of the attention
mechanism has important advantages for processing international-
scale power load data and can more accurately capture the complex
patterns of load types.

By analyzing the data in Table 2, we can clearly see the
performance of our model on different data sets. First, we note that
our model has a much lower number of model parameters than
other models on each dataset. For example, on the National Grid
Electricity Load Dataset, our model parameters are only 155.22M,
while the number of parameters of other models exceeds 230M,
which indicates that our model has a more lightweight design.
Furthermore, our model has the lowest Flops and inference time
on all datasets, further demonstrating its efficiency. This is critical
due to resource constraints and response time requirements in real-
world applications. After visualizing these performance indicators,
as shown in Figure 6, we can see that our model achieves the best
performance on each data set, which further confirms its superior
effect in power load type forecasting tasks. It is worth noting
that despite having fewer model parameters, our model performs
particularly well on the International Electricity Load Dataset,
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further verifying its generalization ability on different data sets. This
shows that our model not only performs well in performance but
also has a lightweight design that is applicable to various power load
data sets.

By analyzing the data in Table 3, we can gain an in-depth
understanding of the performance of the GCN-Seq2Seq module
on different data sets and its impact on the overall performance
of the model. First, we focus on the key performance indicators
of the model on four different data sets, including accuracy
(Accuracy), recall rate (Recall), F1 score (F1 Score) and AUC value
(Area Under the Curve). On the National Grid Electricity Load
Dataset, the GCN-Seq2Seqmodule achieved excellent performance,
with an accuracy of 97.48%, a recall of 93.62%, an F1 score of
93.82%, and an AUC value of 93.61, significantly better than
other models (RNN, Resnet50 and Resnet18). This shows that
the GCN-Seq2Seq module has excellent classification performance
in the power load type prediction task. On other data sets, the
GCN-Seq2Seq module also performed well and maintained a high
level of performance. Especially on the Canadian Electricity Load
Dataset and International Electricity Load Dataset, the model’s
accuracy exceeded 97.9%, the recall rate exceeded 94.75%, the F1
score exceeded 94.5%, and the AUC values exceeded 95.59% and
96.24%. This further verifies the generalization ability and stability
of the GCN-Seq2Seq module. After visualizing these performance
indicators, as shown in Figure 7, we can clearly observe the excellent
performance of the GCN-Seq2Seq module on different data sets,
as well as its advantages over other models. The introduction
of this surface attention mechanism module significantly
improves the model’s performance in power load type prediction
tasks.

By analyzing the data in Table 4, we can gain an in-depth
understanding of the performance of the Cross Transformer
module on different data sets and its impact on the overall
performance of the model. This table provides key performance
indicators on four different data sets, including model parameters
(Parameters), number of floating point operations (Flops), inference
time (Inference Time) and training time (Training Time). First,
let’s focus on the performance of the Cross Transformer module
on the National Grid Electricity Load Dataset. This module has
a parameter volume of 214.96M, a floating point operation count
of 166.91G, an inference time of 202.23 ms, and a training time
of 236.12s. These metrics show the module’s performance level
when processing this data set. Then, we observe the performance
of the Cross Transformer module on the other three datasets.
On the Canadian Electricity Load Dataset, U.S. Electricity Load
Dataset and International Electricity Load Dataset, the module
has performance indicators of 156.41M, 178.81G, 189.85 ms
and 108.81s respectively, and corresponding results of 118.44M,
116.06G, 224.99 ms and 187.49s numerical value. These data show
the performance changes of the Cross Transformer module on
different data sets. By visualizing these performance metrics, we
can more clearly observe the performance of the Cross Transformer
module on different data sets. As shown in Figure 8, the module
performs poorly on the National Grid Electricity Load Dataset but
has better performance on the other three datasets. This shows
that the Cross Transformer module has certain flexibility and
adaptability when dealing with different data distributions and
tasks.
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5 Conclusion and discussion

In this study, we focus on solving the problem of power load
type prediction in smart grids to help the power system better
understand and manage load changes. We propose an innovative
deep learning model that combines graph convolutional network
(GCN), sequence-to-sequence (Seq2Seq) model and attention
mechanism to comprehensively consider the complex topology
and time series data of the power system to achieve more accurate
Load type forecasting. Specifically, we first use the GCN encoder
to process the topological structure information of the power
system and represent the node features into encoding of graph
data. Next, the Seq2Seq decoder takes the historical time series
data as the input sequence and generates a prediction sequence
of the load type. In this process, an attention mechanism is
introduced, allowing the model to fuse information based on
the importance of different input data. Finally, the outputs of the
GCN encoder and Seq2Seq decoder are integrated to achieve more
accurate load type prediction. Through extensive experimental
verification, we demonstrate the excellent performance of
this model in load type forecasting tasks, significantly
improving the accuracy of load type prediction in power
systems.

Despite its remarkable results, this study suffers from two
major flaws. First, the performance of our model in handling
extreme situations needs to be further improved, such as sudden
power load fluctuations, which require more robust processing
capabilities. Secondly, our study still needs to be verified in
more actual power systems to further confirm its generalization
ability and robustness. Future research directions will consider
improving the robustness of the model and extending the
scope of experimental validation to more comprehensively
evaluate its performance. It is also expected to explore more
smart grid application areas, such as automated operation and
maintenance of power systems and smart energy interaction,
to further promote the development and application of smart
grids.

This research provides an innovative method to solve the
problem of power load type prediction and has important
practical significance. By combining graph neural networks,
sequence generation models, and attention mechanisms, we
achieve more accurate predictions of power system load
types, helping smart grids achieve more efficient energy
management and optimization. This is of great significance
to the high reliability, efficiency and sustainability of the
power system, and also makes a positive contribution to
the development of smart grids and sustainable energy
integration.
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Optimal scheduling of microgrids
considering real power losses of
grid-connected
microgrid systems
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Energy conservation, emission reduction and vigorous development of new
energy are inevitable trends in the development of the power industry, but
factors such as energy storage loss, solar energy loss and line loss in real
power situations have led the problem to a complex direction. To address
these intricacies, we use a more precise modeling approach of power loss and
propose a collaborative optimization method integrating the Deep-Q-Network
(DQN) algorithm with the multi-head attention mechanism. This algorithm
calculates weighted features of the system’s states to compute the Q-values
and priorities for determining the next operational directives of the energy system.
Through extensive simulations that replicate real world microgrid (MG) scenarios,
our investigation substantiates that the optimization methodology presented here
effectively governs the distribution of energy resources. It accomplishes this while
accommodating uncertainty-induced losses, ultimately achieving the economic
optimization of MG. This research provides a new approach to deal with problems
such as energy loss, which is expected to improve economic efficiency and
sustainability in areas such as microgrids.

KEYWORDS

microgrid, energy management, deep reinforcement learning (deep RL), real power loss,
attention mechanism (AM)

1 Introduction

1.1 Background and related works

With the exacerbating energy crisis and environmental pollution, solar and wind energy
have played an increasingly vital role as distributed energy resources due to their abundant
and pollution-free nature. However, solar and wind energy are random and intermittent,
posing difficulties for grid integration and dispatch. Microgrids have emerged as an effective
solution to facilitate the comprehensive utilization of renewable energy (Zhang and Kang,
2022). Microgrids show enormous potential in resolving renewable energy integration
thanks to their flexible operation and ease of control. Their efficient and cost-effective
operation is a prerequisite for sustainable development. Nevertheless, the multi-source
characteristic of renewable energy sources introduces complexity to the control problem in
microgrid systems. Based on recent surveys, it has been observed that as much as 13% of the
total generated power is dissipated as losses at the distribution level (Wu et al., 2010; Patel
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and Patel, 2016) applied ant colony optimization (ACO) to the
reconfiguration of microgrids with distributed generation (DG) in
order to minimize power losses (Kumari et al., 2017). introduced a
particle swarm optimization (PSO) approach aimed at reducing DG
costs and enhancing the voltage profile while addressing power loss
concerns. Both of the aforementionedmethods ascertain the optimal
placement of DG using optimization algorithms. However, they do
not account for the distinction between linear and nonlinear loads in
their calculations. On the basis of this problem, this paper proposes a
more accurate model of the actual line loss.

Energy system scheduling for microgrids has been
investigated in a number of previous studies. Numerous
studies utilize model-based control paradigms, including
model predictive control (MPC) (Gan et al., 2020), mixed-
integer linear programming (MILP) (Paterakis et al., 2015),
dynamic and stochastic programming (Farzaneh et al., 2019),
and alternating direction method of multiplier (ADMM) (Ma
et al., 2018). However, once a large number of DERs connected to
the MG in a disorderly way, the operation of the power grid will
be largely influenced by its randomness and uncertainty. This
makes it difficult to obtain the accurate system model. To solve
these challenges, a model-free technique using reinforcement
learning (RL) has been proven beneficial for energy system
scheduling since the model of the environment is not
necessary in this method. It is now emerging as the pre-
eminent tool for unknown environmental decision-making
issues. The authors of (Kim et al., 2016) present an RL
algorithm that enables service providers and customers to
acquire pricing and energy consumption strategies without
any prior knowledge, thus reducing system costs (Fang et al.,
2020). explored a dynamic RL-based pricing scheme to attain
optimal prices when dealing with fast-charging electric vehicles
connected to the grid. To reduce the electricity bills of residential
consumers, a model for load scheduling using RL was developed in
the literature (Lee and Choi, 2022), where the residential load

includes dispatches-available load, non-dispatches-available load,
and local PV generation. In recent research findings, to address the
dynamically changing operational conditions of appliances, a
federated DQN approach has been proposed for managing
energy in multiple homes (Remani et al., 2019). This research
showcased exceptional performance of the DQN method in ad-
dressing continuous state space energy management challenges.
Nevertheless, inMG scenarios, the performance of the DQNmodel
in energy scheduling is significantly compromised by the inherent
uncertainty of renewable energy sources. Furthermore, there is
currently no well-defined strategy in place to address the complex
issue of multivariate losses.

1.2 Contributions

To overcome the aforementioned challenges, this paper
proposes an optimization method for grid-connected MG
energy storage scheduling based on the DQN cooperative
algorithm, aiming at minimizing the cost of electricity
expenses, which is named AP DQN. Specifically, the proposed
algorithm combines the multi-headed attention mechanism with
the PER mechanism in DQN to improve its performance. In this
configuration, the DQN interacts with the environment to obtain
Q values and form rewards, and uses prioritized experience
replay to stabilize learning. In addition, the algorithm
computes the weighted features of the state using the multi-
headed attention mechanism, and uses the weighted features to
compute the Q-value and priority, which can make the state-
action pair information of the terminal closer to the merit-
seeking target, thus improving the overall convergence speed
of the DQN. The case study verifies the effectiveness of the
proposed algorithm for grid-connected MG energy storage
scheduling with real-world data. The MPCLP algorithm is
subsequently benchmarked against the optimal global solution.

FIGURE 1
MG system structure diagram.
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The primary contributions of this paper can be summarized
as follows:

1. A precise mathematical model encompassing both linear and
nonlinear power losses is developed to address the issue of
multivariate loss factors in MGs.

2. A game combination optimization scheme based on deep
reinforcement learning algorithm DQN is constructed based
on the problem of difficult to handle multivariate
uncertainties in MGs.

3. The AP DQN algorithm incorporating the multi-head attention
mechanism is proposed for the problem of lossy features.
Experimental results show that the method greatly improves
the exploration efficiency. From the perspective of cost objective,
our model outperforms the standard DQN by 33.5% and
outperforms the MPCLP-based mechanism by up to 17.74%.

2 Microgrid’s DRL model

2.1 Environment model

The environment model serves as the MG system environment
that interacts with the agent. In this project, we considered a MG

with internal user loads, a photovoltaic field and an energy storage
system (ESS), which is connected to the main grid through only one
distribution line. Figure 1 illustrates the conceptual MG model that
is envisioned in this study. The MG is managed by an energy
management system (EMS), which fully controls all operations of
the MG, including the processes of charging and discharging the
ESS, as well as the power trading activities between the MG and the
main grid. To enhance the stability and ensure the uninterrupted
operation of mission-critical activities, it is necessary to monitor the
state of the microgrid’s emergency load reserve during main grid
outages, called the state of charge (SOC) in the following article. We
divide theMG system into 24 time slots and each time slot is denoted
as t. To enable analytical calculations, the microgrid’s power is
assumed to be balanced, and a quasistatic time-varying energy
model is employed.

Reinforcement learning can be characterized as a Markov
Decision Process (MDP) comprising a state space S, an action
space A, a utility or payoff function r (utility and payoff
functions are used in the report), a state transfer probability
matrix P and a discount factor γ (Moradi et al., 2018). The
learning process is the process of making action decisions after
obtaining the next state and reward return through the interaction
between the agent and the environment, and then continuously
optimizing. The discount factor γ modulates the agent’s
consideration of the long-term consequences of their decisions
on future states: (1) small values of γ force agents to focus more
on the immediate payoffs of the next few steps and significantly
reduce the payoffs of future steps; (2) large values of γ force actors to
think more strongly about future payoffs and thus become more
farsighted.

FIGURE 2
Algorithm operation process diagram.

TABLE 1 Hyper-parameters.

εstr εstp d err α β

1.1 0.01 0.0001 0.01 0.8 0.6
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2.1.1 ESS model
In this system, ESS mainly performs charging and discharging

operations with an action space range of −1 to 1. A positive value
represents charging, while a negative value indicates discharging.
We define At ∈ −1,−0.8, ..., 0.8, 1{ } as the discrete action set. In each
time slot t, the ESS is limited to performing either a charging action
or a discharging action, but not both simultaneously. The state of the
SOC is updated as follows (Chen and Su, 2018):

SOCt+1 �
SOCt + At × Pr × ηc ×Δt

Er × ηd
,At ≥ 0

SOCt + At × Pr ×Δt
Er × ηd

, else

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where parameters ηc , ηd ,Pr , Er represent the charging efficiency of
the ESS, discharging efficiency of the ESS, rated power of the ESS,
and energy storage capacity of the ESS, respectively. The energy
trading mechanism incorporates the consideration of wear and tear
costs. The ESS wear cost coefficient, denoted as k, is defined
as follows:

k � Ci

ηd × Er × δ × Nc

where parameters Ci, δ,Nc represent the initial investment cost of
the ESS, the depth-of-discharge and the number of life cycles at a
rated of the depth-of-discharge, respectively.

FIGURE 3
Mean episode reward with AP DQN (smoothing 0.8).

FIGURE 4
24-h average MG scheduling partial result with AP DQN.
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2.1.2 PV model
The DC power generated by the PVmodule undergoes filtering

in the DC circuit to eliminate current fluctuations and
electromagnetic interference. It is then converted into AC
power in the inverter circuit. The resulting AC power is
rectified to obtain sinusoidal AC power. Subsequently, the
output-side filter circuit is employed to mitigate high-frequency
interference signals generated during the inverting process. This
enables integration into the grid or direct supply to the load. The
losses incurred during these transformations can be
mathematically expressed as follows:

Ppv
loss � PDC

loss + PAC
loss( )/PC

where parameters Ppv
loss,P

DC
loss,P

AC
loss,PC represent the photovoltaic

inverter losses, the DC/AC loss and the installed capacity,
respectively.

2.2 Real power loss of loads

Given the diverse characteristics of loads and their varying
operational conditions, we adopt distinct methods for evaluating
power losses. In the case of linear loads, we calculate losses by
subtracting the output power from the input power to achieve
greater accuracy. For nonlinear loads, we consider power factor
adjustments to account for the influence of factors such as
harmonics and phase differences. The expression for real power
loss in the load is as follows:

PL � ∑
N

i�1
Plin
i − Plout

i( ) + δp �Pnin
i − �Pnout

i )]([

where parameters PL,Plin
i ,Plout

i represent the real power loss of
loads, the linear loads power input, the linear loads power output.
The parameters δp, �P

nin
i , �Pnout

i represent the power factor, the
average nonlinear loads power input, the average nonlinear
loads power output (Sima et al., 2023). The N act as the
number of loads.

2.3 Objective function and
constrains designs

To keep the energy trading decisions of the MG within a
reasonable range, we specify that the ESS must reserve enough
energy for the critical tasks, named the target SOC, to minimize the
MG operation cost under this constraint. The constraint functions
are as follows:

At ×
Pr

Er
≤ 1 − SOCt ,At ∈ (0, 1]

At × −Pr

Er
( )≤ SOCt − SOCtarget ,At ∈ −1, 0[ ]

With such a constraint, the system is able to reserve enough
emergency power for the MG in the case of an accident scenario. In
addition, the objective function of the optimization is described as follows:

FIGURE 5
Results of ablation experiments.

FIGURE 6
Results of comparison experiments.
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Objt � min∑
24

t�1
Prt + k( ) × At × Pr ×

Lt

Lt − PL + PV ′
t

[ ]
in whichPVt ′ � PVt − Ppv

loss

where Prt denotes the electric price at time t, Lt denotes the
consumer load power at time t, and PVt ′ represents the actual
PV power in the MG.

3 Materials and methods

First, this paper designs a more accurate mathematical model of
multivariate loss factors for microgrids with respect to loss
uncertainty as well as ambiguity. Then, based on the problem of
loss feature diversity, an optimization scheme of deep reinforcement
learning algorithm DQN combined with multi-attention
mechanism is proposed, which utilizes the principle of attention
to process loss data of different sizes more efficiently, and ultimately
derives the optimal scheduling actions of the energy management
system for microgrids according to the objective of economic
optimization.

3.1 Heading baseline-DQN

The issue examined in this paper pertains to a high-
dimensional uncertainty problem that is not amenable to
traditional algorithmic solutions. Reinforcement learning is a
frontier area of machine learning and is a hot topic in the field of
intelligent systems research. Reinforcement learning
distinguishes itself from supervised learning in terms of the
availability of training labels or targets. In supervised learning,
the correct labels are provided to train the model. In contrast,
reinforcement learning operates without explicit targets and
adopts a trial-and-error approach. The model learns from its
past mistakes to iteratively enhance its decision-making abilities
for future actions (Mnih et al., 2013).

In the traditional approach to solving the reinforcement
learning problem, a Q-table is constructed to store the
Q-values, which represent the expected rewards of taking
specific actions in particular states. The Q-table is updated
utilizing an iterative updating rule that takes into account the
recursive relationship between the Q-values. Nevertheless, when
a continuous state space is encountered, it becomes impractical to
create a state-action table to record every possible combination of

states and actions. To overcome the limitation, a neural network
known as the DQN is employed. The DQN takes the states as
inputs and generates the Q-values for each possible action as
outputs, which is trained through the trial-and-error process
(Mnih et al., 2013). The Q-values are subsequently updated using
the Bellman equation as follows:

Q St ,At( ) � rt + γ ×maxAt+1 Q St+1,At+1( )( )
where Q(St ,At) is the Q-value at time t, and maxAt+1(Q(St+1,At+1))
denotes the maximum Q-value taking optimal action at the
subsequent step. Under the policy, the value of taking action At

at St must equivalent to the expected reward of transitioning to the
next state St+1 plus the discounted expected Q-value of taking the
best decision At+1 at St+1 (Mnih et al., 2013). The interdependence
among the Q-values at consecutive steps ensures that the iterative
update rule enables the discovery of an optimal policy, leading to the
convergence of Q-values towards their optimal values. This
recursive relationship facilitates the convergence of the Q-value
iteration process, allowing for the determination of an
optimal policy.

3.2 AP DQN method

In this section, we design the AP DQNmethod. There are two
main modules in this algorithm, one of them is a learning
network model based on PER DQN, and the other is a
relational network model that includes the multi-head
attention mechanism. The multi-head attention mechanism in
our work is applied to focus on relevant samples in the experience
replay process as well as the Q-value handling process. The
innovations of this algorithm are mainly represented in the
following: the multi-head attention mechanism is adopted to
enable the network to process the input sequences in parallel, and
the model is able to realize the information fusion and sharing so
as to enhance the learning ability; the network structure is
improved comprehensively, and the addition of the relational
model layer to weight the Q-value provides stronger adaptive
learning flexibility for the network weights. The algorithm
operation process diagram is shown in Figure 2. In this
certain case, we put the mathematical models of ESS and PV
and constraints of devices in the environment module.

WhereQ indicatesQ(St ,At), Q1 indicatesmaxAt+1(Q(St+1,At+1)),
and Q2 indicates argmaxAt+1(Q(St+1,At+1)). p indicates the stored
experience tuple (s, a, r, s′).

TABLE 2 Comparison and ablation results of different model.

Technique p (%) Avg revenue ($) Avg convergence episodes

MPCLP + LSTM 0.00 64.84 —

MPCLP + Seq2Seq 0.00 69.52 —

DQN 2.18 57.18 9000

DQN + PER 24.54 79.28 12000

DQN + MHA 0.34 71.58 4000

Our Model 0.16 76.34 2000

The bold values represents the method we proposed.
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We use a multi-headed attention mechanism in experience replay
memories. This allows for the selection of experience replay samples by
using the multi-headed attention mechanism to focus on all past
samples in the memory pool and select those that are most
important and relevant for the current learning. At the same time,
the multi-headed attention mechanism is used in the calculation of Q
values. When calculatingQ(St ,At) values for each action At under the
state St , the different features of s can be weighted using multi-headed
attention, so that the Q value calculation focuses more on those state
features that aremost important at themoment. This can producemore
accurate Q-value estimates.

3.2.1 Algorithmic framework
In this section we design the algorithm framework, the operation

process is as follows:

1. First, we initialize the playback memory unit, the priority weights
array P, and the Q network and target network parameters.

2. We capture the experience tuple (s, a, r, s′) in the environment
and store it in the memory unit.

3. For each experience tuple (s, a, r, s′) stored, the attention-
weighted feature x′ of s is computed using the multi-headed
attention mechanism:

(a). Calculate attention headers with number of K:

attn headk � Sof tmax WkXs + bk( ), k � 1, 2, ...,K

whereWk indicates the attention parameter matrix, Xs is the matrix
corresponding to the state, and bk is decided by the attention value.

(b). Fuse the attention header to obtain the final attention
value attn.
(c). Calculate the weighted characteristics:

x′ � ∑
N

i�1
attn i[ ]*Xs i[ ]

4. Calculate the priority p of each tuple, Qtarget is calculated using
the target network parameters, and θtarget is the target
network parameter:

p � r| | + γ*maxa′ Qtarget x′, a′; θtarget( )( )( )α

5. Select the experience tuple with the number of batch size for
learning by priority.

(a). Calculate the Q value for each experience using the Q
network and the weighted state x′.
(b). Calculate the loss of each experience using the Q target:

L � Qtarget − Q x′, a′; θ( )( )2

(c). Gradient descent updates the Q-network parameters θ.
6. Update the priority arrayP and the target network parameter θtarget
7. Repeat steps 2-6 for training.

3.2.2 Reward function design
A segmented reward function is designed to guide the trading

strategy provided that all conditions are satisfied, where the reward
value depends on:

1. The state difference from the target SOC.
2. The final cost obtained from the MG operation.

Below the target SOC, it is imperative to prioritize charging the
ESS promptly, irrespective of the price. Similarly, the price must be
high enough to discharge the ESS below the target SOC. Therefore,
the charging and discharging criteria for the ESS differ depending on
whether the SOC is below or above the target level. To optimize the
utilization of the remaining storage capacity, the charging price for
the ESS should decrease as the state of charge (SOC) approaches full
SOC. This incentivizes efficient charging when there is ample
capacity available. Conversely, the price for discharging the ESS
should be higher when the SOC is closer to the target SOC. This
approach encourages the effective utilization of the remaining
available energy and ensures that the SOC is maintained at the
desired level. In addition to this setting, two penalty factors are
introduced to have further control of the ESS operational behavior.
The first penalty term PntESSt is applied when the action chosen by
the agent violates a constraint within the system. The second penalty
term PntPVt is assigned when the ESS with available energy capacity
fails to store excess solar energy. The first penalty term is introduced
to account for the constraint of the ESS, aiming to extend the
operational lifetime of the unit, while the second penalty term
serves the purpose of maximizing the storage of solar
energy within capacity limit of the ESS. The reward function R is
as follows:

R Prt ,Pr
avg
t , SOCt

∣∣∣∣At( ) � Pravgt − Pr + k( )( ) × SOCt+1 − SOCt( ) × Er

− PntESSt − PntPVt

Pravgt � ∑24
t�0Prt
24

PntESSt � 0, else
10, if SOCt + At > 1 or SOCt − At < − 1

{

PntPVt � 0, if PVt ≤ Lt + At × Pr( )
exp 2.5 × 1 − SOCt+1( ))1−SOCt+1( ))2.5 × −1, if PVt > Lt + At × Pr( ){

where Pravgt represents the average price observed throughout the
24 time slots preceding time t.

3.2.3 Relational model
The main idea of the relational model is the weighted encoding

of states using a multi-headed attention mechanism. The attention
mechanism can be understood as a process of addressing
information, where the attention value is computed by
calculating the attention distribution based on the key and
associating it with the value. This computation is performed with
respect to a task-specific query vector Q, allowing the attention
mechanism to focus on relevant information and selectively
combine it with the query. By dividing each query, key, and
value into multiple branches, multiple different attention
calculations are performed on Q, K, and V to obtain multiple
different outputs, and then these different outputs are stitched
together to obtain the final output. Indeed, this process
represents the essence of attention, which helps mitigate the
complexity of neural networks. Instead of feeding all N inputs
into the network for computation, attention selectively chooses
task-relevant information to be inputted. This approach is similar
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to the concept of gating mechanisms in Recurrent Neural Networks
(RNNs), where the network learns to focus on relevant information
and effectively allocate computational resources (Azam and
Younis, 2021).

Due to the priority sampling strategy, PER introduces a bias
towards selecting higher priority samples during training (Schaul
et al., 2015). This bias has the potential to lead to overfitting of the
results obtained by the DQN algorithm. Therefore, to correct for
bias, we introduce the relational model to adjust the sampling
weights. The built-in attention mechanism allows direct
monitoring of the training process by highlighting the areas that
agents focus on whenmaking decisions. It naturally incorporates the
policy gradient algorithm in reinforcement learning, where each
time-step attention mechanism samples from L � m*m to a position
requiring attention based on a random attention policy πg . This
policy is represented using a neural network whose output is
composed of the probabilities of location selection. Among them,
the formula for calculating and updating the policy gradient
algorithm is as follows:

∇J θ( ) � ∑
s

μπ s( )∑
a

qπ s, a( )∇θπ a|s, θ( )

� Eπ γt ∑
a

qπ St , a( )∇θπ a|St , θ( )⎡⎣ ⎤⎦

� Eπ γt ∑
a

qπ St , a( )π a|St , θ( )∇θπ a|Sθ , θ( )
π a|Sθ, θ( )⎡⎣ ⎤⎦

� Eπ γtqπ St ,At( )∇θπ At |St , θ( )
π At |St , θ( )[ ]

� Eπ γtGt
∇θπ At |St , θ( )
π At |St , θ( )[ ]

θt+1 � θt + αγtGt
∇θπ At |St , θ( )
π At |St , θ( )

where ∇J(θ) indicates the strategy gradient and Gt indicates the
cumulative rewards. α indicates the step length and γ indicates the
discount factor.

4 Experiments and results

In this section, we present simulation results to demonstrate the
effectiveness of the proposed algorithm. These results serve as
empirical evidence supporting the performance and efficacy of
the algorithm. Specifically, the DQN architecture employed in
this study consists of one input layer with four neurons, three
fully connected hidden layers with 40 and 80 neurons, and one
output layer with 14 neurons. This configuration allows for effective
learning and decision-making within the energy management
algorithm. ε greedy strategy and hyperparameters of PER are
listed in Table 1. The mean episode reward with AP DQN is
shown in Figure 3. The customer load, solar power and dynamic
tariff are obtained from the self-built datasets. The Pr and Er of the
lithium-ion battery ESS used in the experiment are 1,000 kW and
5,000 kWh respectively.

Due to the large range of resultant data, we chose the average
MG scheduling results over a time horizon of 24 h as a
demonstration of the scheduling strategy, and the result with AP

DQN is shown in Figure 4. Due to the large time horizon involved in
the dataset, the obtained ESS scheduling strategy is measured in
terms of the final economic cost and the percentage of the system
working within the constraints. We used a model predictive control
linear programming (MPCLP) based algorithm (Matute et al., 2018)
for comparison and performed ablation experiments. MPCLP is a
linear programming optimization method, which commonly
employs an optimization software to work out the problem. It
provides good optimization accuracy while satisfying the
assumptions of a linear dynamic system. Among them, MPCLP
uses two prediction models, LSTM and Seq2Seq, respectively. The
results of the ablation experiments are shown in Figure 5. The results
of the comparison experiments are shown in Figure 6.

As seen in Figure 4, Positive values of action in the figure
indicate charging, negative values indicate discharging, and SOC
ranges from 0 to 1. It can be concluded that the EMS will combine
the state of the SOC at the moment with the floating tariff to give the
best possible action within the constrains.

As seen in Figure 5, the base DQN has poor performance in the
ablation experiment, but the average gain rises significantly with the
addition of PER, however, this is a result of large-scale constraint
violations. With the addition of the multi-head attention
mechanism, the algorithm is able to obtain an average return
close to the PER DQN while maintaining a certain range of
constraints. After adding the multi-headed attention mechanism
to DNQ together with PER, the result of maximizing the average
gain and minimizing the probability of constraint violation can
be obtained.

As seen in Figure 6, AP DQN has the highest average profit in
the comparison experiment, but there is a default rate of 0.16%,
although this is an acceptable range. The reason for this is that the
traditional linear programming approach has a strict adherence to
the constraints and therefore a p-value of 0. In contrast, the
proposed AP DQN algorithm can violate the constraints driven
by the reward values to a minor degree, thus achieving the goal of
maximizing the average profit.

The results obtained from the comparative experiments and
ablation studies using different models are summarized in Table 2.
Comparison and Ablation Results of Different Model. As can be
seen from the table that our model outperforms the standard DQN
by 33.5%, the MPCLP based mechanism by 17.74% at most.
Compared with PER DQN, our model is a better choice in terms
of algorithmic efficiency and conditional constraints.

5 Conclusion

In this paper, we propose an AP DQN algorithm. The algorithm
not only maximizes monetary benefits but also maintains the reliability
of the MG at the same time, being able to maintain sufficient energy
reserves for critical operations. The algorithm presented uses a multi-
headed attention mechanism as well as a prioritized experience replay
mechanism to use current information for optimizing energy trading
decisions. The algorithm we propose is a model-free reinforcement
learning method, which usually has strong generalization ability. This
method learns a wide range of strategies from a large amount of
empirical data so that it can make reasonable decisions in uncovered
states and can adapt better to various situations and conditions. In
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comparison with the MPCLP approach, it can be concluded that the
reinforcement learning based approach has a higher average monetary
benefit in the presence of higher system reliability. It is worth noting
that the reward function in RL can be further adjusted and optimized to
improve the overall results. Fine-tuning the reward function has a
significant impact on the performance of the RL algorithm.
Additionally, it is important to consider that value-based RL
methods generate discrete trading decisions, whereas MPCLP
decisions are continuous in nature. This distinction can affect the
comparison of results obtained from the two approaches. In future
work, policy-based reinforcement learning is an appropriate direction to
be investigated to obtain continuous decisions.
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With the large-scale growth and grid connection of intermittent renewable energy
such as wind and solar, the problem of increasing renewable energy curtailment
rate and system backup flexibility has become increasingly prominent. In order to
solve the problem of high proportion of renewable energy scientific consumption
and flexible and stable operation of energy system. We propose a flexible and
economical dispatch method based on data-driven multi-regional power system.
For the problem of economic dispatch of multi-area power system, a
mathematical calculation model is established to satisfy the constraints of unit
output, system power balance, unit ramp rate, and valve point effect, and to
consider the requirement of minimizing the cost of multi-area power load
comprehensively. Based on data-driven, this paper adopts an improved fruit fly
optimization algorithm to quickly find the global optimal solution. The calculations
are performed by IEEE6 simulation test system, and the results verify the feasibility
of the proposed algorithm. The improved fruit fly optimization algorithm is
compared and analyzed with other algorithms considering the quality of the
obtained solutions. The results show the effectiveness and superiority of the
proposed algorithm in solving multi-area economic dispatching problems in real
power systems.

KEYWORDS

multi-area economic dispatching, multi-source data-driven, clean energy systems, new
power system, constraint planning

1 Introduction

In response to global climate change, the structural characteristics of the energy system
are gradual shift to efficiency, cleanliness and sustainability (Li et al., 2021).A high
proportion of wind and solar energy promote the low-carbon development of multi-
energy system economy. But there are many problems. On the one hand, it is
transmitted by the original system factors such as force limitation, electric energy
storage characteristics, and low effectiveness of demand-side response interactive
management have highlighted the problem of increasing the curtailment rate of
renewable energy in the system. On the other hand, renewable energy sources such as
wind and solar contribute to themselves. There is extreme volatility and intermittency that
cannot be achieved smoothly and stably Large-scale grid integration. The force is increasing,
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the regulation capacity is insufficient, and the renewable energy is
further affected consumption has an impact. Therefore, how to
coordinate the scale development of renewable energy. The issue of
flexible scheduling of multi-energy systems is crucial (Wang et al.,
2021; Zongxiang et al., 2022).

In power system operation, economic dispatch is an important
optimization problem. The goal of power systems economic dispatch is
tominimize the total cost of generation while meeting the constraints of
a single region. In contrast, the economic dispatch of a multi-regional
power system typically involves dividing the generator set into several
interconnected generating zones. The dispatch model calculates the
system’s power generation capacity and the amount of electricity
exchanged between regions, while meeting constraints such as power
demand and motor characteristics, thereby minimizing the overall
power generation capacity cost. The economic dispatch of the power
system is an important link affecting the economic operation of the
power system. This solution model reduces the power generation and
operating costs of the system by rationalizing the output of each unit in
the power system and optimizing the system operation and disassembly
schedule (Ma et al., 2018; Ma et al., 2019; Zhang et al., 2022).

Currently, there aremore algorithms on economic dispatch of power
systems. Wang et al. (2022) proposed an improved state transition
algorithm (MTSTA) based on mirror transformation and dynamic
axesion transformation, and a new repair method of constraint
handling combined with penalty function was used to deal with
constraint conditions. Barukčić et al. (2022) adopted NSGA-II
algorithm and considered the wind power fluctuations on the
dynamic economic dispatch of spinning reserve constraints. As a
commonly used optimization algorithm for solving complex
problems, the swarm intelligence algorithm has greater advantages in
the optimization of economic dispatch of power systems. The swarm
intelligence algorithm solves the optimal solution for the economic
dispatch of the power system by simulating individual generating
units as bionic individuals and combining the power consumption
path and demand. Xiao-hong and He (2017) proposed gravitational
search-particle swarm optimization algorithm, and the individual with
the largest particle fitness was obtained. According to the optimal
individual position (Chen et al., 2022), the optimal economic
dispatching scheme of power systems was obtained. Aiming at the
problems of premature convergence in the traditional particle swarm
optimization algorithm, a multi-agent particle swarm optimization
algorithm based on chaos is used to solve it. Thus, the paper
established a dynamic optimization dispatching model for power
system with system frequency regulation constraints (Zhang and Ma,
2023). Author J. Yang, J. Liu, Y. Xiang, S. Zhang and J. Liu proposes a
real-time dynamic scheduling strategy considering economic operation
and complementary regulatory capabilities. They considered the
uncertainty of photovoltaic and load demand, and studied the
integrated power system of zero-carbon hydropower station (PV)
pumped storage (PHS). The power fluctuation of the upper grid co-
coupling point (PCC) after PHS participation is alleviated (Yang et al.,
2023). In Literature (PradeepKumar and Pillai, 2020), V. PradeepKumar
and A. S. Pillai use dynamic schedulers to compare static scheduling.
Discover that dynamic scheduling adds flexibility and time-constrained
guarantees. The author’s study provides a comparison of the performance
of fixed-priority and dynamic priority scheduling algorithms for
automotive subsystems.

The economic dispatch problem is characterized by high-
dimensional, non-convex, discrete, multi-constrained, and
numerous local minima, which leads to a great difficulty in
finding the optimal solution. The traditional bionic swarm
intelligence algorithm is not prominent enough in local and
global search capability, and the optimal extreme value solution
is not accurate enough. In this paper, three test systems with
different characteristics, IEEE6, IEEE40, and IEEE10, are selected
and optimally scheduled using an improved fruit fly optimization
algorithm. Among them, the IEEE6 machine test system and the
IEEE40 machine test system are static scheduling models, and the
IEEE10 machine test system is a dynamic scheduling model.
Different test systems have different objective functions and
constraints, and the treatment of the con-straints in the specific
optimization process will also be different.

2 Introduction to traditional economic
scheduling

2.1 Objective function

The model has the optimization objective of minimizing the
operating cost of the system, and its functional expression is Chen
et al. (2022)

minFcost � ∑
T

t�1
∑
M

i�1
Fi Pti( ) (1)

Where, Fcost is the total system generation cost; T is the total number
of dispatch periods. In dealing with static optimization problems,
taking T to 1 is sufficient. M is the number of units in the system; Pti

is the active output value of unit i in period j; Fi(Pti) denotes the
generation cost of unit i in time j.

In general, the generation cost of a thermal power unit can be
expressed by its consumption characteristic function with the
mathematical expression

Fi Pti( ) � aiP
2
ti + biPti + ci (2)

In this equation, ai, bi, ci is the consumption characteristic
coefficient of unit i.

When optimizing the two test systems, IEEE10 and IEEE40,
threshold effects need to be considered. The valve point effect refers
to the wire drawing effect that occurs when the turbine of a thermal
power unit is suddenly opened by the intake valve (Xiao-hong and
He, 2017). When considering the valve point effect, the traditional
consumption characteristic function cannot accurately represent the
input-output relationship of the unit. The solution is to superimpose
a sinusoidal function on top of the traditional consumption
characteristic function to correctly represent the power
generation cost of thermal power units. If the valve point effect is
taken into account, the objective function can be expressed as

minFcost � ∑
T

t�1
∑
M

i�1
Fi Pti( ) + ei sin fi Pimin − Pi( )[ ]∣∣∣∣ ∣∣∣∣{ } (3)

Where, ei, fi is the valve point effect factor of unit i; Pimin is the
lower limit of active output of unit i.
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The total operating cost curve of thermal power units
considering the valve point effect is shown in Figure 1. It can be
seen from the figure that due to the valve point effect, the originally
smooth curve is non-convex. This leads to many local minima in the
process of optimizing this test system, which increases the difficulty
of optimization and puts high demands on the performance of the
optimization algorithm.

2.2 Mathematical model of the traditional
economic dispatching problem

2.2.1 System power balance constraint
The system power balance constraint is composed of the active

output of the unit, the system network power loss and the total
system load.

∑
M

i

Pti − Ptloss − Ptload � 0 (4)

Where Ptloss is the system network power loss at time t and Ptload is
the total system load at time t. The system network power loss is
obtained by the B-factor method as shown below.

Ptloss � ∑
M

t�1
∑
M

j�1
PtiBijPtj +∑

M

i�1
BoiPti + Boo (5)

The system network power loss is Bij, Boi, Boo.
In practical simulations, since a strict system power balance

is difficult to achieve, the general treatment is to set a very small
value (Chen et al., 2022) ε(0≤ ε). The power balance constraint
is considered to be satisfied when the absolute value of the
difference between the total output of the unit minus the
network power loss and the load is less than ε. Meanwhile,
the smaller the value of ε, the more difficult it is to satisfy the
power balance constraint, and the more difficult it is to
optimize.

2.2.2 Unit output constraint

Pimin ≤Pi ≤Pimax (6)
Pimin, Pimax are the lower limit of active output and the upper limit
of active output of unit i, respectively.

2.2.3 Unit ramp rate constraints
Unit ramp rate constraints is an important constraint to be

considered in dynamic dispatching. In dynamic dispatch, it is
necessary to consider the upper and lower limits of unit output
as well as the unit ramp rate constraints. The unit ramp rate
constraints can be represented as (Zhang and Ma, 2023).

−DRi ≤Pti − P t−1( )i ≤URi (7)
Where: DRi, URi are the power output growth rate extreme and
power output decease rate extreme of unit i respectively; P(t−1)i is the
active output of unit i at time t-1.

2.2.4 Unit prohibited operating zones constraints
When a thermal power unit is in operation, there will be some

subintervals within its operation interval. When thermal power
units are operated within these subintervals, it will lead to
excessive amplitude of unit bearing vibration. Therefore, it is
necessary to set up prohibited operating zones within the
operation interval to avoid these subintervals during the
operation of the unit to prevent excessive vibration of the unit
bearings. The operation interval with the prohibited operating zones
set can be expressed as (Yang et al., 2023)

Pimin ≤Pi ≤Pd1
Si

P
h j−1( )
Si ≤Pi ≤Pdj

Si

P
hNg

Si ≤Pi ≤Pimax

⎧⎪⎪⎨
⎪⎪⎩ (8)

Where, Phj
Si is the lower limit of the jth prohibited operating zones

of unit i; Pdj
Si is the upper limit of the jth prohibited operating zones of

unit i; Ng is the total number of prohibited operating zones of unit i.
Due to the high parameter dimension and complex model state,

this paper relies on experience to select parameters.

3 Constraint heuristic processing
strategy

Most of the swarm intelligence optimization algorithms use the
penalty function method when dealing with the constraints in
constrained optimization problems (Hosseinnezhad et al., 2014; Huo
et al., 2015). The penalty function method requires an appropriate
penalty factor to ensure the accuracy of the optimization and the
efficiency of the whole optimization process when dealing with
constraints. If the penalty factor is not set properly, it is very likely
to make the optimization result less than expected and make the
algorithm fall into local optimum in the process of finding the best.
Therefore, this paper deals with the constraints through a heuristic
processing strategy, thus avoiding unsatisfactory optimization results
due to improper selection of penalty factors (Roy et al., 2014; Mishra et
al., 2022). At the same time, different test systems consider different
constraints and adjust the heuristic processing strategy as follows.

FIGURE 1
The total cost function of thermal power units taking into
account the valve point effect.
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3.1 Strategies for handling static dispatching
constraints

In this paper, we consider the system power balance constraint,
unit output constraint, unit prohibited operating zones constraints
and network power loss in optimizing the IEEE6 test system. In the
optimization of the IEEE40 machine test system, the power balance
constraint and the upper and lower limits of unit output are
considered, and the network power loss and the operating
exclusion zone constraint are ignored. The heuristic processing
flow for the constraints of the two test systems is shown in Figure
2. The specific steps are as follows (Sa-Ngiamvibool et al., 2011):

• Step 1: Determine whether any unit i satisfies the upper and
lower limits of unit output and the prohibited operating zones
constraints (When dealing with the constraints of the
IEEE40 test system, only whether the upper and lower

output constraints are met is considered, and no prohibited
operating zones constraints are considered.). The set of all
prohibited operating zones of unit i is denoted by Pprohibit

i . If
unit i cannot satisfy both the upper and lower unit output
constraints and the prohibited operating zones constraints, the
output value of unit i needs to be reset until both sets of
constraints are satisfied.

• Step 2: Determine whether the system satisfies the power
balance constraint. The inequality between unit output and
network power loss and load of the test system is denoted by
ΔPG ( In dealing with the power balance constraint of the
IEEE40 test system, let Ploss � 0). To determine the degree of
imbalance a minimal value ε(0≤ ε) needs to be set. When the
absolute value of the imbalance is not greater than ε, the test
system is considered to satisfy the power balance constraint. If
the test system satisfies the power balance constraint, the
algorithm outputs the calculated results. If the test system

FIGURE 2
Heuristic processing flow chart for static dispatch constraints.
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does not meet the power balance constraint, the imbalance is
distributed equally to each unit to adjust the unit output and
network power loss, and then returns to Step 1.

3.2 Strategies for handling dynamic
dispatching constraints

The system power balance constraint, unit output constraint,
and unit climbing constraint are considered in optimizing the
IEEE10 machine test system, and the network power loss is
ignored. The heuristic processing flow of the constraints is shown
in Figure 3. The specific steps are as follows:

• Step 1: Determine whether any unit meets the upper and lower
capacity constraints at the first dispatch. If the constraint is not
satisfied, the output value of the unit needs to be readjusted to
meet the upper and lower limits of the unit output.

• Step 2: Determine whether the test system satisfies the power
balance constraint at the first dispatch (set Ploss � 0) (Pradeep
Kumar and Pillai, 2020). The algorithm uses PtG to denote the
system power imbalance at moment t. When the absolute
value of the imbalance is not greater than ε, the test system is
considered to satisfy the power balance constraint. If the test
system does not satisfy the power balance constraint at the
dispatching moment t, the imbalance is distributed equally to
each unit to adjust the unit output and subsequently returns to

FIGURE 3
Heuristic processing flow chart for dynamic dispatch constraints.
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Step 1. If the test system satisfies the power balance constraint
at the scheduling moment t, it goes to the next dispatching
period.

• Step 3: Integrate the ramp rate constraints and the upper and
lower unit output constraints into a set of constraints. The
algorithm uses PtiMIN to denote the lower limit of unit output
of unit i at dispatch time t and uses PtiMAX to denote the
maximum unit output of unit i at dispatch time t after
integration. Then go to the next step

• Step 4: Determine whether it is possible for unit i to satisfy the
power balance constraint between PtiMIN and PtiMAX at the
dispatch moment t. If this is not possible, the unit output values
for the previous time period need to be adjusted to changePtiMIN

and PtiMAX until it is possible for the test system to satisfy the
power balance constraint for this time period within the
constraints of PtiMIN and PtiMAX. If satisfied, go to the next step.

• Step 5: Determine whether any unit i satisfies the constraints
in the range PtiMIN and PtiMAX at the dispatching time t. If the

constraint is not satisfied, the unit i needs to be readjusted
output value at the dispatching moment t to satisfy the
constraints in the range PtiMIN and PtiMAX. If the
constraints are met, go to the next step.

• Step 6: Determine whether the test system satisfies the power
balance constraint at the dispatching moment t. If the test
system does not satisfy the power balance constraint at
dispatch moment t, the imbalance is distributed equally to
each unit to adjust the unit output, and then returns to Step 5.
If the test system satisfies the power balance constraint at
dispatch moment t, it proceeds to the next step.

• Step 7: Determine if the last dispatching moment has been
reached. The algorithm uses T to represent the total number of
scheduling periods for the test system. If the last dispatching
moment has not been reached, return to Step 3 for the
heuristic processing process of the constraints for the next
dispatching moment. If the last dispatching moment has been
reached, the unit output values for all dispatching moments
are output.

4 Economic dispatch of power system
based on improved fruit fly
optimization algorithm

The algorithm flow is shown in Figure 4. The specific steps are
shown in Figure 4.

• Step 1: Initialize the relevant parameters: set the total cost of
system power generation Fcost as the fitness function. All units
in the test system (the number of units is n) constitute one
individual fruit fly, i.e., Xi � Pi, . . . , Pn{ }. The algorithm sets
the minimum search radius Rmin to 1 and the maximum
search radius Rmax to the difference between the upper and
lower limits of the output of the corresponding unit. The
population size “Sizepop” is 50, and the maximum number of
iterations “Maxgen” is set to 100 when optimizing the
IEEE6 test system. When optimizing the IEEE40 test
system, “Maxgen” is set to 300. When optimizing the
IEEE10 test system, the total number of scheduling periods
T is set to 24 and “Maxgen” is set to 300.

• Step 2: The individual fruit fly is given a search radius R as well
as a random direction and distance to search using olfaction.

• Step 3: Execute a heuristic constraint processing strategy for
each individual fruit fly so that each individual fruit fly satisfies
the constraint.

• Step 4: Use the location Xi � Pi, . . . , Pn{ } of the individual
fruit fly as the taste concentration determination value Si. The
algorithm brings the taste concentration determination value
into the fitness function to find the taste concentration Smelli
of individual fruit flies, which is the total system power
generation cost.

• Step 5: Find the individual fruit fly with the best flavor
concentration in the fruit fly population.

• Step 6: The taste concentration and location information of
the optimal fruit fly individual are recorded and retained, and
all fruit flies in the population use vision to fly to the location
of the optimal fruit fly individual.

FIGURE 4
Flow chart of economic dispatch based on improved fruit fly
optimization algorithm.
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• Step 7: determines whether this iteration is the first one. If not,
determine whether the best flavor concentration produced by
this iteration is less than the best flavor concentration
produced by the previous iteration (i.e., better economy). If
the best flavor concentration produced by this iteration is
greater than the best flavor concentration produced by the
previous iteration, Step 2 is executed.

• Step 8: Iterate to find the best. If the current number of
iterations is less than the maximum number of iterations
“Maxgen”, Step 2 will be executed, if the current number of
iterations is equal to the maximum number of iterations, the
result will be output and the optimization process will be
finished.

5 Example analysis

The example is based on the IEEE6 test system, and the
system data are shown in Table 1. The total load of the system is
1260 MW, and each unit contains upper and lower output limits
as well as two sets of prohibited operating zones constraints,
taking into account the network power losses. The algorithm
mentioned in this article does not guarantee convergence at any
parameter setting. In this paper, the algorithm is executed in

strict accordance with the scheduling optimization process, and
the setting of each parameter is considered in detail to ensure that
the model converges within a reasonable range to ensure that
other performance of the model is not affected.

The unit contains upper and lower output limits and
prohibited operating zones constraints, resulting in a
discontinuous and non-convex solution space for this test
system. ε(0≤ ε) reflects the required accuracy of the
optimization result, the closer ε is to zero, the higher the
accuracy of the optimization result. Table 2 shows the
comparison of the optimal solutions of different algorithms.
Equation 8 shows the output values of each unit after FOA
(Fruit Fly Optimization Algorithm) optimization for different
accuracy requirements (i.e., different values of A) in Table 3.
Figure 5 shows the convergence characteristics of the
improved FOA.

From Table 2, it can be observed that the optimal solutions of
MIQCQP, CSA, λ-Consensus, BBO, and HCRO-DE are
15443.07USD, 15443.08USD, 15452.09USD, 15443.0963USD, and
15443.0750USD, respectively, with the same accuracy requirements,
which are greater than the improved FOA’s optimal solution of
15442.661USD. These algorithms, MABC, DE, KHA-IV, GAAPI,
SA-PSO, do not require as much accuracy as the improved FOA
algorithm in the optimization process, but the optimal solution

TABLE 1 Parameters related to the algorithm test system.

Unit number Minimum power output/MW Maximum power output/MW a b c Prohibited operating zones/MW

1 100 500 0.0070 7.0 240 [210 240], [350 380]

2 50 200 0.0095 10.0 200 [90 110], [140 160]

3 80 300 0.0090 8.5 220 [150 170], [210 240]

4 50 150 0.0090 11.0 200 [80 90], [110 120]

5 50 200 0.0080 10.5 220 [90 110], [140 150]

6 50 120 0.0075 12.0 190 [75 85], [100 105]

TABLE 2 Comparison of the optimal solutions of different algorithms.

Algorithms Optimal solution/USD Total output/MW Network power loss/MW ε/MW

Improved FOA 15442.661 1275.415 12.4149 0.0000

MABC Yu et al. (2022) 15449.8995 1275.958 12.9582 −0.0002

DE Lu et al. (2022) 15449.5826 1275.93 12.95 −0.02

KHA-IV Secui, (2015) 15443.0752 1275.445 12.4449 0.0001

GAAPI Elsayed and El-Saadany. (2015) 15449.7 1275.97 12.98 −0.01

MIQCQP Mandal et al. (2014) 15443.07 1275.44 12.44 0.00

CSA Ciornei and Kyriakides. (2013) 15443.08 1275.447 12.447 0.000

λ-Consensus Mandal et al. (2014) 15452.09 1276.27 13.27 0.00

BBO Basu and Chowdhury. (2013) 15443.0963 1275.446 12.446 0.000

SA-PSO Basu and Chowdhury. (2013) 15447 1275.7 12.733 −0.033

HCRO-DE Binetti et al. (2014) 15443.0750 1275.4449 12.4449 0.0000
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obtained with the improved FOA is still the smallest. Also, as can be
seen from Tables 3, 4, if the requirement for solution accuracy is not
high when scheduling the optimization with the improved FOA, the
resulting optimization results will be smaller. This shows that the
improved FOA outperforms the other algorithms in terms of the
solution quality of the optimal solution and the demanding degree of
accuracy required.

As can be seen from Figure 5, the improved FOA shows good
convergence in the search for the best FOA. In terms of optimization
time, while optimizing the IEEE6 test system, the time required to
improve FOA is 2.21 s, while the time required for SA-PSO and
HCRO-DE is 7.58 s and 4.17 s, respectively. In terms of the number
of iterations, the improved FOA only needs 73 iterations to reach the
optimal value, while the CSA requires more than 100 iterations to
reach the optimal value.

Taking into account the quality of the resulting solution, the
improved fruit fly optimization algorithm is compared and analyzed
with other algorithms. The results show that the algorithm has good
effectiveness and superiority in solving the problem of multi-regional
economic dispatch of actual power system.rior in solving the multi-
regional economic dispatching problem of the actual power system.
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TABLE 3 Optimization results with different solving accuracy.

ε Total Output/MW Network power loss/MW Optimal solution/USD

0.0000 1275.415 12.4149 15442.661

0.01 1275.397 12.4065 15442.533

0.05 1275.352 12.4011 15442.021

FIGURE 5
Convergence characteristic diagram of improved FOA.

TABLE 4 P1-P6 Optimization results with different solving accuracy.

ε P1 P2 P3 P4 P5 P6

0.0000 447.1360 173.2631 263.9407 139.0616 165.4598 86.5537

0.01 447.2036 173.2650 264.2865 139.3577 164.9979 86.2859

0.05 446.0368 174.4044 263.4320 139.3787 165.1412 86.9587
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Decentralized asynchronous
adaptive federated learning
algorithm for securely prediction
of distributed power data
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Introduction: Improving the precision and real-time speed of electricity data
prediction while safeguarding data privacy and security holds immense
significance for all power system participants’ decision-making. To surmount the
issues of exorbitant computational expenses and privacy breaches of traditional
centralized prediction methods, this paper proposes a decentralized asynchronous
adaptive federated learning algorithm for securely prediction of distributed power
data, which makes predictions from distributed data more flexible and secure.

Methods: First, each regional node trains its own deep neural network model
locally. After that, the node model parameters are uploaded to the decentralized
federated learning chain for ensuring local data protection. Asynchronous
aggregated update of the global prediction model is then achieved via block
mining and shared maintenance. The algorithm has been enhanced based on the
traditional federated learning algorithm, which introduces an asynchronous
mechanism while adaptively adjusting the regional node model weights and
local update step size to overcomes the inefficiency of traditional methods.

Results and Discussion: The experimental analysis of actual electricity price data
is conducted to compare and analyze with the centralized prediction model,
study the impact of model adoption and parameter settings on the results, and
comparewith the prediction performance of other federated learning algorithms.
The experimental results show that the method proposed in this paper is highly
accurate, efficient, and safe.

KEYWORDS

time-series data prediction, distributed learning, federated learning, decentralization,
privacy preservation

1 Introduction

Power time-series data has a significant impact on power system operation, planning
and decision making. It can support decision making and optimization in load forecasting
and dispatching, fault detection and handling, energy planning and market trading.
However, with the development of distributed energy resources, the rise of microgrids
and the Energy Internet, and the application of intelligent and digital technologies, several
factors have contributed to making power systems become distributed (Liu et al., 2021).
Meanwhile, power industries, which are a vital part of national energy security, have data on
energy supply and demand, grid stability, etc. Therefore, it is necessary to develop an
efficient method applicable to the analysis and prediction of distributed power data, which
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can reduce the cost of data transmission and processing, and also
ensure the security of private data in the power industry (Ali
et al., 2023).

Currently, researchers have conducted relevant studies on the
analysis and prediction of time series data in distributed power
systems. The primary methods employed encompass traditional
time series analysis and intelligent data mining techniques. In the
time series approach, statistical analysis is conducted on power time
series data to identify its characteristics, patterns, and trends, which
are then utilized to derive predictive values (Badhiye et al., 2022;
Frizzo et al., 2023). Some of the more classical time series models
include Autoregressive (AR), Moving Average (MA), and
Autoregressive Moving Average (ARMA). Furthermore, data
mining methods are employed to capture potential non-linear
relationships in the formation process of power time series data,
thus enhancing prediction accuracy (Wang et al., 2023; Zhang et al.,
2023). Commonly utilized intelligentmethods include RandomForest
(RF), Support Vector Machine (SVM), Deep Neural Network (DNN),
Recurrent Neural Network (RNN), Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU), among others.

The above methods for predicting electricity time series data
usually adopt a centralized computing model, collecting all the data
and concentrating them in a central node for model training and
prediction analysis. During the training of the centralized predictive
model, all data is transmitted and stored on the central server, the
model is trained on the central server, and the update of the model is
applied directly on the central server (Ahmed et al., 2022). However,
the transmission of large amounts of data during centralised
learning poses a risk to user privacy (Mcmahan et al., 2017).
Meanwhile, the centralized mode has some problems, such as
high data acquisition cost, low real-time performance, large
resource consumption, and insufficient adaptability to the rapid
change of the distributed power system (Li et al., 2020a).

To overcome the shortcomings of centralized tariff prediction
models, some studies have applied techniques such as distributed
computing and federated learning to power systems, which delegate
data processing and analysis tasks to multiple edge nodes to improve
efficiency, real-time performance and security. Federated learning
methods can perform model training and parameter updating
without exposing data and achieve better privacy results. For
example, in FedAvg (Mcmahan et al., 2017), participating nodes
perform local training and upload model parameters to the server,
which performs parameter aggregation and model updating and
distributes the global model to nodes, iteratively performing the
above steps until convergence.

However, traditional federated learningmethods do not perform
well in the presence of heterogeneity in the system (Li et al., 2020b).
In a fluctuating and undulating distributed power system, the
conditions in each region are heterogeneous, and there may be
problems such as inconsistent data distribution in each region,
different data volumes, different data transmission efficiencies,
and different computing power (Yu et al., 2019; Zeng et al.,
2023). If an inappropriate data analysis and prediction method is
used, the results obtained will have a negative impact on strategy
analysis and decision making.

To address the limitations of the above methods, this paper
proposes a decentralized asynchronous adaptive federated learning

algorithm (DAAFed) for securely prediction of distributed power
data. The main contributions of this study are summarized
as follows.

1) A decentralized distributed framework has been developed for
predicting regional time series data. Each regional node trains
its own local data prediction model using its unique data. Next,
the parameters of the deep network model are uploaded. With
the use of blockchain technology, the aggregation update of the
global prediction model is realized through the generation of
blocks and the common maintenance of block sets.

2) The conventional federated learning algorithm is improved by
the integration of a time-synchronous mechanism, which
adopts the adaptive adjustment of the regional node model
weight and the local update step size, thereby improving the
accuracy and efficiency of distributed data prediction.

3) The proposed method will be validated using measured data
from different regions in Spain. By comparing and analyzing
the results with a centralized prediction model, investigating
the impact of model adoption and parameter settings on the
results, and comparing the prediction performance with other
federated learning algorithms, the experimental results
validate that the proposed method is able to balance safety,
accuracy and efficiency.

The rest of this article is organized as follows. Sections 2, 3
present a review of related work and the basic model for power time
series data prediction, respectively. The decentralized asynchronous
adaptive federated learning method proposed in this article is
explained in Section 4. Then, in Section 5, we perform
simulation experiments to verify the effectiveness of the method
proposed in this paper. Finally, Section 6 concludes this article.

2 Related work

In distributed machine learning, federated learning, as an
emerging artificial intelligence technology, can ensure data
privacy while performing efficient machine learning, providing a
new way to solve the “data silo” problem. Federated learning
algorithms have been gradually applied to various problems, such
as healthcare (Chen et al., 2023), communication (Qu et al., 2023),
language modelling (Wu et al., 2020), transportation (Qi et al.,
2023), etc. Federated learning was proposed by Google in 2017,
where global models are trained through the cooperation of edge
devices without sharing training data. In this approach, training is
performed by edge devices, and the weights of the training results are
shared with a central server to perform weight updates. And the
updated weights are then sent back to the edge devices for a new
round of training.

The basic federated learning methods are only suitable for
certain environments, so there are also some improved federated
learning methods that can be useful in different environments. A
federated learning approach in conjunction with deep autoencoder
networks based on representation learning was proposed by Husnoo
et al. (2023) to enable monitoring and data collection subsystems in
distributed grid regions to collaboratively train attack detection
models for accurate detection of power system and network
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security anomalies without sharing sensitive power-related data. The
K-means was used to cluster power data locally at the utility,
followed by federated learning to build accurate power prediction
models for each class of power data in conjunction with other local
clients (He and Zhao, 2022). A combined federated learning and
deep reinforcement learning scheme for ultra-short term wind
power prediction has been proposed by Li et al. (2023a), which
uses a deep deterministic policy gradient algorithm as the basic
prediction model to improve prediction accuracy, and then
integrates the prediction model into the federated
learning framework.

Recently, blockchain-based federated learning approaches have
become increasingly popular. Blockchain provides tamper-proof
and non-repudiation guarantees for the data stored in its ledger.
Therefore, storing local and global models in the blockchain helps to
improve the overall integrity of the system. Blockchain nodes can
also collaborate to maintain the stored data and detect any malicious
intentions of the participants. In addition, the execution of smart
contracts is deterministic, which allows the federated learning
process to be executed correctly and fairly. Intelligent encryption
was redesigned to take advantage of the decentralized nature of
blockchain technology to design collaborative intelligent federated
learning frameworks for automated diagnosis without violating the
trustworthiness metrics of privacy, security and data sharing
encountered in smart city healthcare systems (Mohamed et al.,
2023). Privacy-sensitive energy data can be stored locally at edge
producer-consumer nodes without disclosure to third parties, and
only the learned local model weights are shared using a blockchain
network. Smart contracts are also used to handle the integration of
local machine learning predictive models with the blockchain,
enabling model parameter scaling and reducing blockchain
overhead (Antal et al., 2022). A blockchain federated learning
based object detection scheme was proposed by Li et al. (2023b),
which eliminates central authority by using a distributed
InterPlanetary File System (IPFS). The global model is
periodically aggregated when multiple local model parameters are
uploaded to the IPFS. Nodes can retrieve the global model from the
IPFS. This method has been used in face detection, animal detection,
unsafe content detection, vehicle detection, etc.

3 Preliminary

The characteristics and patterns of electricity time series data are
intricately linked to the geographical location and regional environment
of each distributed area. Factors such as electricity demand, load peaks
and troughs, weather conditions, power generation structure, and
network configuration in different regions all contribute to the
distinct characteristics of electricity data. To address the challenge of
predicting electricity time series data in diverse regions and to more
effectively capture the non-linear relationships and data features of
electricity prices, this study adopts a deep neural network model for
accurate predictions at the edge nodes. Specifically, we focus on
investigating and analyzing the commonly used CNN and LSTM, as
well as their combination, to achieve accurate forecasting.

Let Ωk represent the model of the kth node, and the sample data
used for training the prediction includes various feature data such as
load information Lk, generation information Gk, weather information

Wk, date informationDk, along with the corresponding labeled data for
prediction target Pk. The representation can be expressed as Eqs 1, 2:

xk � Lk,Gk,Wk,Dk[ ] (1)
yk � Pk[ ] (2)

Training of each node is based on both the model as well as the
sample data. The prediction accuracy is higher when the value of the
loss function is small. The commonly used loss function, Root Mean
Square Error (RMSE), can be expressed as in Eq. 3:

l Ω xk( ), yk( ) �
����������������
1
n
∑n

i�1 Ω xi( ) − yi( )2
√

(3)

where n is the total number of samples at the kth node, xi ∈ xk,
yi ∈ yk, and Ω(xi) is the prediction output of the model.

Considering the efficient utilization of computing resources in
each region and the paramount importance of data security, this
study adopts the federated learning framework for model training
and parameter updating in the region-specific prediction. Each edge
node possesses data transmission and computation capabilities,
making it advantageous to delegate computation tasks to the
edge nodes, thereby ensuring accurate and efficient time series
data prediction in a trustworthy environment.

In contrast to the traditional centralized learning model that
uploads raw data to a central server for model training, the federated
learning framework assigns the model training task to distributed
local devices. Subsequently, the global model is updated on the
server side by exchanging certain parameters. The process of
prediction for each region using the federated learning
framework comprises the following steps:

1) The server defines the general task of prediction, including the
determination of global variables such as the choice of
prediction model, training rounds, and aggregation rounds.

2) As in Eq. 4, each node determines the initial local model based
on the global modelω. The node then trains the local modelΩk

using local data, encompassing generation, load, climate, and
date information. The node then uploads the parameters vk,
such as local model weights, to the server.

vk ← LocalUpdate ω, xk, yk( ), k � 1, 2, . . . ,K (4)

3) As in Eq. 5, the server globally aggregates the model
parameters from each node according to the specified
mechanism to construct a new global model ω.

ω ← GlobalUpdate v1, v2, . . . , vK( ) (5)

4) Each node receives the latest global model as the initial model
for the next round of training and iteratively performs steps
2) and 3) until the model prediction reaches the
desired accuracy.

4 Methodology

In this section, a decentralized asynchronous adaptive federated
learning algorithm is proposed, which is oriented towards the secure
prediction of distributed power data. As shown in Figure 1, the
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distributed regional time-series data prediction framework designed in
this paper has a two-layer structure. The edge layer consists of each
actual compute node, including the local power network and real-time
data. The communication layer is the communication link between
nodes, which is used to aggregate and update the model under the
cooperation. First, each regional node locally trains its own deep
network model Ωk and uploads the node prediction model
parameters vk to the federated learning chain to realize local data
protection. Then, the global model ω is updated asynchronously based
on the distributed ledger mechanism in blockchain technology, and the
aggregation of global models is realized by block mining, and each
regional node obtains the latest global model ω through the shared
immutable blockchain for subsequent prediction tasks.

4.1 Traditional federated learning algorithm

Within the federated learning framework, each participating node
conducts local training and uploadsmodel parameters to the server. The

FIGURE 1
Distributed regional electricity price forecasting framework.

FIGURE 2
Weight adaptive adjustment function.
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server aggregates parameters and updates the model, distributing the
global model to each node. These procedures are iterative and continue
until convergence is achieved. The most commonly used model
aggregation algorithm for federated learning is FedAvg. The total
number of nodes is K, the kth node contributes data samples as Sk,
then the number of samples of this node is |Sk|, and the total number of
data samples is S � ∑K

k�1|Sk|.
As in Eq. 6, the global objective function that requires

optimization is minF(ω), where ω ∈ Rd:

F ω( ) � 1
S
∑S

i�1f i ω( ) (6)

where fi(ω) � l(xi, yi;ω) represents the prediction loss for the
sample (xi, yi) under the model parameter ω, then Eq. 6 can be
rewritten as Eqs 7, 8:

Fk vk( ) � 1
Sk| |∑ xi ,yi( )∈Skf i vk( ) (7)

F ω( ) � ∑K

k�1
Sk| |
S

Fk vk( ) (8)

where Fk(vk) is the loss function of the kth node, while F(ω) is the
overall federated loss function.

Each iteration process of FedAvg comprises a local update and a
global update. During every iteration, the following process is undertaken:

Initially, the latest global model from the server is received as the
local model for the current round during the local update of each
node. Then, e iterations of the local model are carried out, updating
the model parameter ωk for the kth node in each iteration as in Eq. 9:

vtk � vtk − η∇Fk vtk( ) (9)
where, η is the learning rate of the local update at each node.

Secondly, once the local update is executed, the model
parameters are uploaded to the server. Subsequently, a server-
side global aggregation update is implemented using the
following aggregation formula as in Eq. 10:

ωt+1 � ∑K

k�1
Sk| |
S

vtk (10)

4.2 Asynchronous adaptive mechanism

The asynchronous adaptive federated learning algorithm proposed
in this paper makes improvements based on the FedAvg algorithm. In
the process of global model aggregation, an asynchronous mechanism
and adaptive adjustment of node model weights based on the
determination of time obsolescence are introduced. In the process
of updating local node models, personalized learning and adaptive step
length adjustment are introduced to ensure asynchronous real-time
and regional personalization, and to improve the prediction accuracy
while enhancing the generalization ability of the global model. The
specific implementation process of the asynchronous adaptive federal
learning algorithm is shown as follow.

First, the overall objective function is determined based on Eq.
10. In the asynchronous adaptive federal learning algorithm, the
overall objective function is Eq. 11:

min∑K

k�1
Sk| |
S

Fk vk( ) (11)

Let λk � |Sk|
S denote the weight of each node. Then add model

personalization constraints as in Eq. 12:

s.t. vk − ω‖ ‖2 ≤Tk (12)
where Tk, k � 1, 2, . . . , K{ } is the model personalization tolerance
threshold, which is used to reflect the difference between the
global model and the local model to achieve the personalized
learning of the node’s local model. The above optimization
objective function with constraints can be rewritten by using
the Lagrange equation as in Eq. 13:

TABLE 1 Pseudocode of DAAFed.

Algorithm DAAFed

Input: K (number of the involved edge nodes) e (max number of
iterations of the local model)

E (max number of aggregations of the global model)

Sk (data samples of each node)

Output: vk (local model parameter of each node)

ω (global model parameter)

1 set global model parameters ω to initial values, set vk � ω

2 for t � 0: (E − 1) do

3 # Parallel iterative phase at the edge nodes

4 parfor k � 1: K do

5 node#k updates the step-size η as in Eq. 28

6 node#k updates vk(t1) and μk(t1) as in Eqs 26, 27

7 node#k packages and broadcasts TX0 as in Eq. 40

8 if the latest TX0 is collected then

9 determine the corresponding βk as in Eq. 20

10 perform global model aggregation ω(t1) as in Eq. 19

11 package the global aggregation packet TX1 as in Eq. 41

12 generate BlockN and broadcast as in Eqs 42–46

13 end if

14 if a new block is received and verified then

15 add the block to the global model block set

16 update locally stored global model ω

17 update local task start moment tk

18 go to step#5

19 end if

20 if no information feedback is collected then

21 go to step#5

22 end if

23 end parfor

24 end for
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L vk,ω, μk( ) � ∑K

k�1λkFk vk( ) + uk

2
vk − ω‖ ‖2 − Tk( ) (13)

The partial derivative of this objective function can be obtained:

∇vkL � λk∇Fk vk( ) + uk vk − ω( ) (14)
∇ωL � ∑K

k�1uk vk − ω( ) (15)

∇ukL � 1
2

vk − ω‖ ‖2 − Tk( ) (16)

where k � 1, 2, . . . , K.
Secondly, in the aggregation of global models, the asynchronous

characteristics of multi-node collaboration should be considered.
Asynchronous training allows each node to update model
parameters independently with the server without worrying about
the calculation pace of other nodes. In the case of asynchronous
training, the model parameter update on the server side is carried
out asynchronously, that is, there is no need to wait for the progress of
other nodes that are being calculated. Considering the different time
required for each node to complete the local task, this paper assumes
that global aggregation begins whenever a single edge node completes
uploading model parameters. Therefore, the variable φk(t) ∈ 0, 1{ } is
introduced to indicate the completion of node updates as in Eq. 17:

φk t( ) � 1, kth node completes update at t
0, others

{ (17)

The above variables satisfy the constraints as in Eq. 18:

∑K

k�1φk t( ) � 1 (18)

According to Eq. 15, the global model aggregation is given by:

ω t1( ) � ω t0( ) +∑K

k�1φk t1( )βk tk, t1( ) vk t1( ) − ω t0( )( ) (19)

where t1 is the generation moment of the global model of the current
generation, which is also the moment when the local model of the kth
node completes this update, t0 is the generation moment of the global
model of the previous generation, tk is the generation moment of the
global model adopted by the local model of the kth node when it
performs the current update, βk is the weight adaptive adjustment
function based on the determination of the temporal staleness, which is
determined according to the before and after of the local update of the
kth node. If this model is outdated, the current node model is given a
smaller weight, the specific form can be defined as:

βk tk, t1( ) � βm cos
π t1 − tk( )
2 t1 + ε( )( ) (20)

where βm is the maximum learning weight, ε is a constant value close
to zero. And when tk is similar to t1, βk takes a value close to βm.

∂βk

∂tk
� βm sin

π t1 − tk( )
2 t1 + ε( )( ) π

2 t1 + ε( )( )> 0 (21)

∂βk

∂t1
� −βm sin

π t1 − tk( )
2 t1 + ε( )( ) π tk + ε( )

2 t1 + ε( )2( )< 0 (22)

∂2βk
∂tk2

� −βm cos
π t1 − tk( )
2 t1 + ε( )( ) π

2 t1 + ε( )( )
2

< 0 (23)

∂2βk
∂t12

� −βm cos
π t1 − tk( )
2 t1 + ε( )( ) π tk + ε( )

2 t1 + ε( )2( )
2

+ 2βm sin
π t1 − tk( )
2 t1 + ε( )( )

× π tk + ε( )
2 t1 + ε( )3( )

(24)

FIGURE 3
Overall predicted results and performance. (A) Predicted results
of node 1. (B) Iteration curve of node 1. (C) Predicted results of node 2.
(D) Iteration curve of node 2. (E) Predicted results of node 3. (F)
Iteration curve of node 3. (G) Predicted results of node 4. (H)
Iteration curve of node 4. (I) Predicted results of node 5. (J) Iteration
curve of node 5.

Frontiers in Energy Research frontiersin.org06

Li et al. 10.3389/fenrg.2023.1340639

133

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1340639


FIGURE 4
Comparison of centralized and distributed prediction.

TABLE 2 Comparison of centralized and distributed prediction.

Mode Running time of each node (S) RMSE Data transmitted in a single transmission

Centralized 961.62 2.3 5 × 35,064 × 33

Distributed 817.79 2.313 53,601

FIGURE 5
Comparison of prediction results under different models.
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The values of βk vary with tk and t1 as shown in Figure 2.
According to Eqs 21–24, βk increases with the increase of tk, and
the magnitude of the increase decreases gradually, indicating that when
the local model is updated with the newer global model, the weight of
the updated node model should be increased accordingly. Also βk
decreases with the increase of t1. When tk is smaller, ∂

2βk
∂t12

> 0, which
means βk is convex. When tk is larger, ∂2βk

∂t12 < 0, which means βk is
concave. It indicates that the global model parameters obtained at the
early stage of prediction have large weights only at the early stage, and
their weights decrease rapidly in the later stage of prediction.

Convergence analysis is carried out on the aggregation of the
global model. When T → ∞, the algorithm is considered
convergent if the statistic R(T) � ∑T

t�1[F(ω(t)) − F(ω*)] meets
the predetermined convergence criteria that R(T)/T → 0, which
means ω → argmin∑T

t�1F(ω(t)) ≜ ω*, ω converges to ω* to
minimize the objective function.

The convergence analysis is shown as in Eq. 25.

R T( ) � ∑T

t�1 F ω t( )( ) − F ω*( )[ ]≤∑T

t�1 <ω t( ) − v,ω t( ) − ω*>

≤∑T

t�1
1
2βt

ω t( ) − ω*‖ ‖2 − ω t′( ) − ω*
���� ����2[ ] + βt

2
ω t( ) − v‖ ‖2

(25a)
According to (22), it can be inferred that βt decreases

monotonically. Using the assumption that ‖ω(t) − ω*‖2 ≤D2 and
local node personalization constraints ‖ω(t) − v‖2 ≤G2, the above
equation can be simplified and transformed as follows:

R T( )≤ 1
2β1

D2 + D2∑T

t�2
1
2βt

− 1
2βt−1

( ) + G2

2
βT

� D2

2βT
+ G2

2
βT ≤

D2

2βmin

+ G2βmax

2
(25b)

Consequently, R(T) has an upper bound and mean value of the
statistic R(T)/T → 0 when T → ∞, ensuring the convergence of the
global model aggregation.

Furthermore, for the update process of the edge model,
according to Eqs 14, 16, the update process can be expressed
as follow:

vk t1( ) � vk tk( )
− η1 ∇Fk vk tk( )( )( ) × λk∇Fk vk tk( )( ) + uk vk tk( ) − ω tk( )( )[ ]

(26)
uk t1( ) � uk tk( ) − η2 vk tk( ) − ω tk( )‖ ‖2( ) × vk tk( ) − ω tk( )‖ ‖2 − Tk( )

(27)
where η1 and η2 are the adaptive adjustment function of the step
size, which can be expressed as

η z( ) � max ηmin, min ηmax , p
q*z{ }{ } (28)

where ηmin is the minimum value of the step, ηmax is the maximum
value of the step, p> 1 and q> 0, z is the independent variable of
the adaptive function, and η(z) is a non-decreasing function
taking values in the interval [ηmin, ηmax]. As in Eq. 28, it is
indicated that when the gradient of the loss function is small
and the local model is close to the global model, the step size is
adaptively reduced to prevent non-convergence in the learning of
the local model. Compared with the fixed step size, the adaptive
step size can adjust the amplitude of the parameter changing
direction along the gradient according to the training stage, and
improve the convergence rate while ensuring the
convergence accuracy.

Convergence analysis of the update process of the edge model is
performed. Since the parameters of the above process are solved
according to a variant of gradient descent, a proof is required:

E vk t1( ) − ω*‖ ‖2 ≤ l vk tk( ) − ω*( ) (29)

As in Eq. 29, the distance between the parameters of the current
iteration and the optimal parameters ω* is less than the distance
between the parameters of the previous iteration and the optimal
parameters ω*, which means that the upper bound of the distance
between the parameters of the current iteration and the optimal
parameters is decreasing.

There are some assumptions on the functions F1, . . . , FK for the
algorithm as the premise of convergence analysis:

1) As in Eq. 30, F1, . . . , FK are all L-smooth: for all v and ω,

Fk v( )≤ Fk ω( ) + v − ω( )T∇Fk ω( ) + L
2
v − ω‖ ‖2 (30)

2) As in Eq. 31, F1, . . . , FK are all μ-convex: for all v and ω,

Fk v( )≥ Fk ω( ) + v − ω( )T∇Fk ω( ) + μ

2
v − ω‖ ‖2 (31)

3) The variance of the stochastic gradient is bounded as in Eq. 32:

E ∇Fk v( ) − ∇Fk ω( )‖ ‖≤ σ2k (32)

4) The expectation of the 2-Norm of the stochastic gradient is
consistently bounded as in Eq. 33:

TABLE 3 Comparison of RMSE under different models.

Evaluation indicators LSTM CNN CNN-LSTM

RMSE 2.377 2.353 2.313

FIGURE 6
Comparison of iteration curves under different models.
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E ∇Fk v( )‖ ‖22 ≤G2 (33)

Meanwhile, we measure the system heterogeneity by Γ as in Eq. 34,
which denotes the difference between the optimal value of the global
objective function and the weighted local objective function. Γ converges
to 0 when the data are distributed iid independently and identically.

Γ � F* −∑
k
λkF

*
k (34)

Let v′� vk(t1) and v� vk(tk), then

E v′ − ω*
���� ����2

� E v − ω* − η1∇Fk v( ) × λk∇Fk v( ) + uk v − ω( )[ ]∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2
� E( v − ω*‖ ‖2 + η1

2 λk∇Fk v( ) + uk v − ω( )[ ]2 − 2η1 ×

< v − ω*, λk∇Fk v( ) + uk v − ω( )[ ]∇Fk v( )> ) (35)
in which

−2η1 < v − ω*, λk∇Fk v( ) + uk v − ω( )[ ]∇Fk v( )>
� −2η1 < v − ω + ω − ω*, λk∇Fk v( ) + uk v − ω( )[ ]∇Fk v( )>

≤ − 2η1 ukTk + μ

2
v − ω*‖ ‖2[ ] + 6ΓLη12 − λkTk (36)

λk∇Fk v( ) + uk v − ω( )[ ]2
� λk

2∇Fk v( )2 + uk
2 v − ω‖ ‖2 + 2λkμk∇Fk v( ) v − ω( )

≤ λk2G2 + uk
2Tk + 2λkuk

μ

2
Tk (37)

In summary, the original equation can be converted as follow:

E v′ − ω*
���� ����2 ≤ 1 − η1μ( )E v − ω*‖ ‖2+η12B − (λk + 2η1uk)Tk (38)

B � 6ΓL + λk
2G2 + uk

2Tk + λkukμTk (39)

As in Eqs 35–39, this convergence analysis is formally similar to
that of FedAvg. However the equation in this paper subtracts one
more positive term, which show that the iterative process is
convergent.

4.3 Decentralization mechanism

Considering the demand for distributed power time-series data
prediction and the disadvantages of centralized processing, the
approach of applying blockchain technology in this case is
proposed in this paper in order to decentralize prediction,

TABLE 4 Comparison of RMSE under different federated learning algorithms.

Federated learning algorithms epochs = 5 epochs = 10 epochs = 20

rounds = 20 rounds = 10 rounds = 5

RMSE Average RMSE RMSE Average RMSE RMSE Average RMSE

FedAvg 2.685 2.547 2.377 2.362 2.419 2.368

2.405 2.495 2.228

2.479 2.484 2.288

2.506 2.269 2.259

2.660 2.185 2.646

FedProx 2.550 2.543 2.267 2.358 2.218 2.365

2.516 2.336 2.323

2.489 2.447 2.388

2.505 2.284 2.391

2.655 2.456 2.505

FedPer 2.690 2.546 2.302 2.357 2.227 2.372

2.495 2.406 2.203

2.411 2.333 2.237

2.553 2.309 2.399

2.581 2.435 2.794

DAAFed 2.447 2.460 2.282 2.313 2.398 2.334

2.317 2.294 2.255

2.386 2.316 2.429

2.414 2.308 2.267

2.736 2.365 2.321
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leveraging its global data ledger sharing and non-tamperability,
which can further ensure the trust, security, transparency and
traceability of data in the power industry.

In this paper, the federated learning global model parameter
updating process described in the previous subsection is
implemented by placing it on a blockchain. The blockchain
guarantees the operation of a shared and trusted distributed
ledger on a peer-to-peer network, which in the prediction
scenario of this paper is the shared set of global model
parameters blocks. The global model used for prediction is
placed on the blockchain for updating so that it is not under the
control of any single node, but each regional node has equal rights to

validate and access the global model in the blockchain in such a way
that it not only avoids a single point of failure, but also protects
against data attacks in terms of security.

The workflow of the communication layer of the decentralized
federated learning framework used in this paper broadly includes
the processes of block generation, consensus verification and global
maintenance. The decentralized implementation of the prediction
framework includes the following:

1) Setting permissions for each regional participant, only
participants with permissions for electricity data
prediction can jointly train the federation model, and

FIGURE 7
Comparison of iteration curves under different iteration parameter settings.

FIGURE 8
Predicted results of FedAvg.

FIGURE 9
Predicted results of FedProx.
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new nodes can join and receive the current federation model
only if they meet the permission conditions when accessing.

2) After each edge node completes a round of local training, it
packages and broadcasts the privacy protected local model
parameters and other data to the network, which includes the
local task start time tk, the local task completion time t1, the
local model parameters vk(t1), and the task completion
situation φk(t1) and other data to be recorded.

The local update is completed to form a data packet:

TX0 � tk, t1, vk t1( ), . . .{ } (40)

3) Each edge node collects the latest packet TX0 broadcast in the
network, completes the update of the global model by block
mining, calculates the global model aggregation ω(t1), and
packages the data before and after the aggregation.

The global aggregation is completed to form a data packet:

TX1 � φk t1( ),ω t1( ), . . .{ } (41)

4) The node that completes block mining packages the above
packets to form a block, and broadcasts it to the network
of nodes waiting for verification. The block consists of a
block body and a block header, where the block body
contains the data before and after aggregation, and the
block header contains the predecessor hash and the
root hash, and the specific process of block
generation includes:

Local updating and global aggregation of data packets together
form the block body:

BodyN � TX{ } � TX0,TX1, . . .{ } (42)

Hash algorithm achieves the irreversible mapping from
plaintext to ciphertext, this paper uses SHA256 to calculate the
hash value. The successor hash is the hash value of the previous
block and the root hash is generated based on the hash value of the
packet TX{ }:

PrevHash � Hash HeaderN−1( ) (43)
RootHash � MerkleTree TX{ }( ) (44)

The successor hash and the root hash together form the block
header of the block:

HeaderN � PrevHash,RootHash{ } (45)
The block header and the block body together form the block:

BlockN � HeaderN ,BodyN{ } (46)

5) After receiving blocks, all nodes in the network collaboratively
verify updates to the global model. The fastest node to
complete verification within each region sends its signature
to the other nodes for verification. Once all nodes have reached
a consensus, the block is added to the global model block set.
The most recent global model, along with signatures and
timestamps, form new blocks and attach to the blockchain.
Finally, each node receives a copy of the most recent global
model block to synchronise the model. Additionally, all nodes
collectively store and maintain the block set of the
global model.

At the same time, as shown in Eqs 47, 48, the node that
successfully mines a new block can obtain the block reward
BlockReward(k), which in turn encourages the nodes to jointly
maintain the update of the global model. Meanwhile, the node under
the proof-of-work mechanism can obtain the reward f(Sk)
proportional to the size of the sample data, which in turn
encourages the participants to contribute the data and the model.
After joining the prediction federation, participants can obtain
additional financial benefits by earning rewards while obtaining
accurate prediction models.

Reward k( ) � BlockReward k( ) + f Sk( ) (47)

BlockReward k( ) � BaseReward, successfulmining
0, others

{ (48)

FIGURE 10
Predicted results of FedPer.

FIGURE 11
Predicted results of DAAFed.
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4.4 The overall process

In summary, the pseudo-code of the decentralized asynchronous
adaptive federated learning algorithmic process is shown in Table 1.
Combining the advantages of federated learning and blockchain, the
framework achieves privacy protection for local multi-source data
while removing the dependence on a centralized central server. The
approach improves training reliability and reduces communication
costs, while ensuring the scalability of the edge node network and
reducing the risk of single point of failure.

5 Experiments and results

5.1 Data and setup

The proposed method is implemented on a high performance
server equipped with Intel Xeon Gold 6136 and NVIDIA TITAN
XP. The Python libraries, including TensorFlow and Keras are used
to build our model. The experimental data was selected as a dataset
of historical data from 1st January 2015 to 31st December 2018 for
five regions of the Spanish electricity market, which consists of time-
series data on electricity price, generation, load, weather, and date
information, sampled every 1 h, where the price of electricity is used
as a label for the prediction. Missing values and outliers in the series
are filled and replaced using linear interpolation, normalization is
used before prediction training to prevent the effect of different
magnitudes, and inverse normalization is used for prediction output
to restore the relevance of the output data.

5.2 Analysis of the overall
implementation effect

First of all, to show the overall implementation effect of the
proposed framework in this paper, the data set is divided into
training set, validation set and test set for prediction training, the
RMSE of the training set and validation set in the iterative process is
recorded, and finally the prediction of the test set is performed and
the result is compared with the real value, and the partial tariff
prediction results and RMSE iteration curves of the nodes are shown
in Figure 3.

To verify the improvement of the prediction performance of the
proposed framework in this paper, the distributed regional tariff
prediction model and the centralized tariff prediction model are
compared and analyzed, and the prediction results of the two are
shown in Figure 4.

As shown in Figure 4, the predicted and actual values of the two
prediction models are relatively close to each other, and the
predicted value of the distributed model is slightly different from
the actual value, because the samples used for training in the
centralized model are the data of all nodes, while the samples
used for training in each node in the distributed model are only
the local data, but the distributed model strengthens the correlation
between nodes by protecting the transmission of the model
parameters and overcomes the phenomenon of data islanding.

The prediction performances of the distributed and centralized
modes are shown in Table 2, except for the prediction accuracy, the

distributed mode mostly outperforms the centralized mode. In
terms of running time, since the computational tasks are
assigned to each edge node in the distributed mode, and only
local data is used for single-point training, the computational
volume of a single computational unit is greatly reduced, and the
single-point training time in the distributed mode is less than that in
the centralized mode. In terms of data transmission, only the model
parameters are transmitted in the distributed mode, which protects
the data of each node and does not reveal the private data such as
power generation information and user habits, and “53601”
represents the sum of the elements of the weight matrix and bias
vector of the prediction model. The centralized mode requires the
transmission of all sample data, which has the risk of data leakage,
where “5 × 35064 × 33” means that there are 35,064 sample data in
each of the five nodes, and each sample contains 33 dimensions of
data. Therefore, the distributed model can effectively reduce the
amount of data transmitted in a single transmission and provide a
certain level of security to protect the privacy of electricity.

5.3 Comparative analysis of edge node
prediction models

Choosing a more appropriate model for distributed
prediction at the edge nodes can effectively improve the
overall prediction accuracy. To improve the implementation
effect of the method proposed in this paper, LSTM model,
CNN model and CNN-LSTM model are used at the edge
nodes to predict the electricity price for the same data set. The
model parameters are adjusted based on the method proposed in
the related literature, and the prediction performance under the
three models is compared and analyzed, as shown in Figure 5. The
RMSE is calculated again after converting the model output into
real size, and the results of the RMSE of each model evaluation
index are shown in Table 3.

From Figures 5, 6 and Table 3, it can be seen that the overall
prediction value of CNN-LSTM is closest to the real value, and the
efficiency of the training iteration is also higher. The main reason is
that CNN-LSTM combines the advantages of CNN and LSTM,
capturing both local and global temporal features at different time
scales through sliding window and loop structure, while the feature
of parameter sharing of convolutional layer reduces the number of
parameters of LSTM network and improves the computational
efficiency. Therefore, choosing CNN-LSTM model for prediction
at edge nodes can have good accuracy and efficiency.

5.4 Comparative analysis of federated
learning algorithms

To verify that the DAAFed algorithm proposed in this paper has
better prediction performance, FedAvg, FedProx (Li et al., 2020b),
FedPer (Arivazhagan et al., 2019) and DAAFed are used to predict
the electricity price on the same dataset, and the prediction
performance of the above algorithms are compared and analysed.
FedProx adds regularization terms to constrain the similarity
between the global model and the local model to prevent
overfitting (Li et al., 2020a). Each node model in FedPer has its
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own personalization layer that preserves the characteristics of the
node data (Arivazhagan et al., 2019).

The RMSE and average RMSE for each node using the above
federated learning algorithms with different iteration settings are
shown in Table 4. FedProx adds a regularization term to limit the
similarity between the global model and the local model and prevent
overfitting; and each node has its own personalization layer in each
node’s model in FedPer, which is used to preserve the node data’s
own characteristics. Table 4 shows that the prediction performance
of these two improved algorithms is similar to that of FedAvg. The
DAAFed algorithm used in this paper has a smaller error compared
to the other three algorithms, because the asynchronous mechanism
used in the aggregation of the global model allows the nodes to
update the model based on the latest global model, and at the same
time, the step size is adaptively adjusted in the updating of the node’s
local model, so the model learns to the better parameter faster, and
thus the overall performance is better. Therefore, the overall
performance is better.

From Table 4, it can be seen that setting different local iteration
epochs and global aggregation rounds has different prediction
effects, and choosing the appropriate settings can fully exploit the
advantages of the federated learning framework.

Figure 7 shows the iteration curves under different settings. It
shows that when epochs = 10 and rounds = 10 there is better
iteration efficiency than the other two settings. When epochs =
5 there is a slower decrease in the iteration curve because when the
number of local iterations is small, the local model of each node does
not have enough performance and cannot make full use of the local
data. When epochs = 20 there is a slow decrease in the iteration
curve before global aggregation, which means that a higher number
of local iterations leads to a slower decrease of the iteration curve
before global aggregation. This means that if the number of local
iterations is high, it can lead to overfitting, which affects the ability of
global model generalization, so the setting of epochs = 10 and
rounds = 10 can give better federated learning results.

Based on this setting, the prediction results of a node under each
of the above algorithms are shown in Figures 8–11, from which it
can be seen that the predicted value of DAAFed is closer to the real
value compared to several other federated learning algorithms.

6 Conclusion

In order to solve the problems of high computational cost and
low data security under the traditional centralized electricity data
forecasting method, this paper proposes a distributed regional
electricity market electricity price forecasting method based on
decentralized adaptive federated learning. The following
conclusions are drawn from the analysis of the arithmetic
example of the Spanish electricity market.

Compared to the conventional centralized prediction method,
the distributed data prediction method reduces the amount of
prediction calculation and data transmission, and approaches the
centralized prediction accuracy in the implementation process,
while protecting the local data in each region. Precise selection of
prediction models on each node and appropriate configuration of
the number of local iterations and global update rounds can be
highly effective in enhancing the accuracy and efficiency of

prediction. Compared to the Federated Learning algorithm,
DAAFed enhances prediction accuracy by introducing an
asynchronous adaptive mechanism. The validity of this proposed
method is verified.

At present, privacy protection is becoming increasingly
important in the power industry, which brings new challenges to
distributed electricity price prediction. Therefore, how to further
consider the protection effect of privacy protection mechanism and
communication efficiency optimization will be the focus of the next
research work.
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method for moisture and aging
state of oil-immersed paper
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The insulation performance of oil-immersed paper bushings is prone to
deteriorate, primarily due to moisture intrusion and thermal aging. The
frequency domain spectroscopy (FDS) method is commonly employed to
assess the insulation condition of the bushing. However, identifying and
extracting relaxation polarization information from the low-frequency region
of the FDS curve can be challenging, and there is little research about the
condition evaluation under the combined effects of aging states and moisture
content. To address this issue, this article uses the Taylor formula mathematical
model to extract characteristic parameters from the dielectric modulus curve of
OIP bushings and uses the KNN algorithm to achieve the evaluation of aging and
moisture status. Then, the effectiveness and accuracy of the proposed method
are validated on three field OIP bushings. The results demonstrate that the
evaluation accuracy of the proposed method exceeds 83%, which has
significant advantages compared to other classification algorithms. The
innovation of this article lies in extracting new feature parameters and
combining them with intelligent classification algorithms to evaluate the
moisture and aging state of the bushing.

KEYWORDS

aging state, dielectric modulus, frequency domain spectroscopy (FDS), K-nearest
neighbor algorithm, moisture content

1 Introduction

Oil-impregnated paper (OIP) bushings are extensively employed in power systems and
hold the dominant market share, encompassing approximately 80% of the global bushing
market (Bouaicha et al., 2009; Jyothi and Ramu, 2012). Once the bushing failure occurs, it
may directly or indirectly cause huge economic losses and affect the stable operation of the
power system (Wang et al., 2019; Liao et al., 2021). Statistics indicate that bushing faults
account for a significant portion, ranging from 30% to 45%, of various power accidents
(Yang et al., 2019; Liu et al., 2020a). Additionally, more than 37% of transformer explosions
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and fire incidents can be attributed to bushing faults, with a rising
trend (Teng et al., 2022; Su et al., 2023). Among numerous factors
influencing bushing performance, aging and moisture have the most
substantial impact on the insulation (Teng et al., 2022). Therefore,
deterioration in this context typically refers to the effects of aging
and moisture intrusion on the oil-paper insulation of OIP bushings
(Li et al., 2021; Zhou et al., 2021; Akbari et al., 2023). The degree of
polymerization (DP) is usually considered the most important
indicator for evaluating the aging degree of insulation papers (Li
et al., 2020). Consequently, conducting a comprehensive evaluation
of the bushing’s moisture condition and dielectric polarization (DP)
holds immense significance.

In recent years, frequency domain spectroscopy (FDS)
technology has been widely applied in the assessment of bushing
conditions (Saha and Purkait, 2004; Fofana and Hadjadj, 2016;
Zhang et al., 2019a; Xie et al., 2019). Compared with other
dielectric response methods, it has advantages such as
practicality, non-destructive, and rich insulation information
(Buchacz et al., 2017; Netaworldjournal, 2018).

For the status evaluation of oil-paper insulation (Linhjell et al.,
2007) pointed out that an increase in the moisture content of the
insulating pressboard can cause the complex relative dielectric
constant curve to shift towards the coordinate axis at high
frequencies (Jadav et al., 2014) pointed out that the complex
relative permittivity curves are more sensitive to the moisture
content of the pressboard, while the sensitivity of the curves to
aging is relatively small (Zaengl, 2003). Establish a quantitative
relationship between the moisture content of insulation paper and
the tan δ curve (Liu et al., 2021) extracted FDS test feature values
from insulating paper with different levels of moisture content, and
applied the GA-SVM (Support Vector Machine Based on Genetic
Algorithm Optimization) algorithm to diagnose moisture content
under laboratory and on-site conditions (Poovamma et al., 2008).
found that the dielectric loss and the imaginary part of the complex
relative permittivity of the insulating paperboard increases with the
increase of aging degree, and the peak of the tanδ curve appears in
the low-frequency region (Zhang et al., 2019b) obtained a new
characteristic quantity based on the Davidson Cole model and the
complex relative permittivity curve, and proposed a new
quantitative evaluation method for the aging state of oil-paper
insulation (Ren et al., 2019) reported a quantitative evaluation
method for the insulation aging status of transformers based on
frequency domain dielectric response test results by taking into
account the Arrhenius equation and Ekendam equation.

However, the FDS parameters adopted in the above method is
not applicable to the study of the relaxation process of the oil-paper
insulation of the transformer bushings in the low-frequency region,
which in turn makes the information on the insulation state carried
by it ambiguous and leads to errors in the results. In addition, the
state assessment of oil-paper insulation by the above methods often
only considers the influence of a single factor, in fact, the moisture
and aging process is always accompanied in the bushing at the same
time, so the assessment of a single state of the bushing may lead to
unsatisfactory assessment results.

Compared with the traditional FDS curves, the dielectric
modulus has an outstanding advantage in characterizing the
dielectric properties of insulating materials, as it carries more
comprehensive information about the relaxation of insulating

materials and reduces the influence of electrode polarization and
conductivity behavior on the measurement results. In addition, the
K-Nearest Neighbor (K-NN) classification algorithm has the
advantages of high accuracy, insensitivity to anomalies, and
conceptual clarity, and has been widely used in text and image
recognition in recent years (Zhang et al., 2017; Islam et al., 2018; Liao
et al., 2020). Besides, the K-NN classification algorithm has high
flexibility, universality and evaluation ability for the comprehensive
evaluation of two dimensions of moisture and aging state of oil-
paper insulation (Choi et al., 2009; Rouhafzay and Cretu, 2020).

Therefore, this paper establishes a mathematical model of
dielectric modulus and analyzes the influence of aging and
moisture on the dielectric modulus curve, and proposes a
Taylor’s formula mathematical model on the basis of the
obtained dielectric modulus curve, which extracts the
characteristic parameters of the dielectric modulus curves of
different moisture and aging states. Then, combined with the
K-NN classification algorithm model, three field bushings with
unknown insulation states are evaluated for moisture and aging
states (Liu et al., 2020b; Fan et al., 2021). Subsequently, an analysis
and comparison with other classification algorithms (Support
Vector Machine, Naive Bayes, and Decision Tree) is carried out
to analyze the evaluation results and errors of several algorithms in
detail, and then to prove the effectiveness and accuracy of the
proposed evaluation method.

2 Methodology

2.1 Mathematical model of
dielectric modulus

According to (Li et al., 2020), the reciprocal of the complex
dielectric constant defines the complex dielectric modulus M*(ω).
This relationship is expressed in Eqs 1, 2.

M* ω( ) � 1
ε*
, (1)

ε* ω( ) � ε′ − iε″. (2)
Equation 3 depicts the formulations for the real and imaginary

parts of the dielectric modulus.

M′ ω( ) � ε′
ε′2 + ε″2

,

M″ ω( ) � ε″
ε′2 + ε″2

.

(3)

If the Debye relaxation model is introduced, the complex
permittivity ε*(ω) can then be expressed in Eqs 4, 5 as

ε* ω( ) � ε∞ + εs + ε∞
1 + ωτ( )2, (4)

ε′ ω( ) � ε∞ + εs − ε∞
1 + ωτ( )2,

ε″ ω( ) � εs − ε∞( ) · ωτ
1 + ωτ( )2 ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(5)

where εs is the static dielectric constant, ε∞ is the dielectric constant
as the angular velocity approaches infinity, τ is the relaxation time
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constant, and the distribution factor β (0<β < 1) is related to the
shape of the FDS curve plotted in the complex plane (Li et al., 2020).

The detailed relationship between dielectric modulus and
complex dielectric constant is as Eq. 6

1
ε* ω( ) �

1
ε∞ + εs+ε∞

1+ iωτ( )β
� 1
ε∞

− 1

1 + 1+ εs
ε∞

1+ iωτ( )β
� 1
ε∞

−
1
ε∞ − 1

εs

1 + iωτ( )β · ε∞εs
� 1
M∞

− M∞ −Ms

1 + iωτM( )β � M* ω( ), (6)

where M∞ = 1/ε∞, Ms = 1/εs and τM = τ(ε∞/εs)
1/β. Furthermore,

since ε∞ is always less than εs, it is easy to deduce that τM is always
less than τ. The above relations indicate that the frequency interval
characterizing the relaxation polarization in the complex dielectric
modulus profile will move to a higher frequency interval than the
dielectric constant. IfM∞,Ms, and τM are substituted into Eq. 5, the
expressions for the real and imaginary parts ofM*(ω) are obtained as
shown in Eq. 7.

M′ ω( ) � M∞ + Ms −M∞
1 + ωτM( )2,

M″ ω( ) � Ms −M∞( ) · ωτM
1 + ωτM( )2 ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(7)

When the effect of conductivity is neglected, in mathematical
form the complex dielectric modulus M*(ω) can be regarded as the
reciprocal of the complex relative permittivity ε*(ω), with the
frequency f in the denominator position. The dielectric modulus
M*(ω) serves as a valuable tool for assessing the insulation condition
of transformer or bushing oil-paper structures under alternating
electric fields. It overcomes the limitation of complex relative
dielectric constant ε*(ω) by avoiding the masking of relaxation
polarization information in the low-frequency range. Thus, the
dielectric modulus M*(ω) effectively captures and characterizes
the relaxation polarization properties of the oil-paper insulation,
contributing to the evaluation of the insulation status of the bushing.

2.2 Taylor formula mathematical model

Taylor’s formula is one of the approximation methods often
used in order to study the properties of complex functions, and its
core idea is to approximate a complex function by replacing it with a
polynomial function, within the function’s domain of definition.
The process of establishing the mathematical model of Taylor’s
formula is as follows.

If there exists a function f(x), and when f(x) is derivable at x0,
then f(x) is constant in the neighborhood of x0, as presented in Eq. 8:

f x( ) � f x0( ) + f′ x0( ) x − x0( ) + o x − x0( ), (8)
where o(x-x0) represents an infinitesimal quantity, in order to make
the approximate substitution more precise, Taylor’s formula of
order n (n ≥ 2) is generally used in analytical studies, as shown
in Eq. 9, and n is referred to as the order of Taylor’s formula.

f x( ) � f x0( )
0!

+ f′ x0( )
1!

x − x0( ) + f″ x0( )
2!

x − x0( )2 +/

+ f n( ) x0( )
n!

x − x0( )n + Rn x( ), (9)

where x0 is the point with (n+1) order derivative contained in the
interval (a, b) of the f(x).

The mathematical modeling process of Taylor’s formula based
on theM’’(ω) curve is as follows: letG(f) be the functional expression
of the dielectric modulus curveM’’(ω), and G(f) is continuous in the
frequency domain (2 × 10−4 Hz to 5 × 103 Hz) and conductible,
satisfying the nth-order Taylor’s formula as follows.

G f( ) � G f0( )
0!

+ G′ f0( )
1!

f − f0( ) + G″ f0( )
2!

f − f0( )2 +/

+ G n( ) f0( )
n!

f − f0( )n + Rn f( ), (10)

where f0 lies in the frequency domain (2 × 10−4 Hz to 5 × 103 Hz) and f0
can be any value in its interval. G(n)(f0) denotes the nth-order derivative
of the function G(f) at f0 and G(n)(f0) is a constant. In order to facilitate
the representation of Eq. 10, the constant symbol Λ(n) is introduced as
shown in Eq. 11, and furthermore, since the value of the residual term
Rn(f) is close to 0, Eq. 10 can then be simplified to Eq. 12.

Λ0 � G f0( )
0!

,Λ1 � G′ f0( )
1!

,Λ2 � G″ f0( )
2!

,Λ3 � G‴ f0( )
3!

,

/,Λn � G n( ) f0( )
n!

, (11)
G f( ) � Λ0 + Λ1 f − f0( ) + Λ2 f − f0( )2 + Λ3 f − f0( )3 +/

+ Λn f − f0( )n. (12)

In order to make the equation more concise and clearer, the
constant Ωn is additionally introduced to denote Λ(n) and f0. Thus,
the function G(f) can be written as Eq. 13 (Li et al., 2020).

G f( ) � Ω0 +Ω1f + Ω2f
2 + Ω3f

3 +/ + Ωnf
n

� ∑
n

i�0
Ωi · fi i � 1, 2, 3, . . . , n( ). (13)

The shape of the dielectric modulus curve M’’(ω) varies under
different moisture and aging states. As a result, the correlation
coefficient Ωn obtained by Taylor’s formula changes with the values
of moisture content mc% and degree of polymerization (DP). In
order to clearly represent the imaginary part of the dielectric
modulus curve, Eq. 13 can be written as Eq. 14:

M″ f( ) � ∑
n

i�0
Ωi mc%,DP( ) · fi i � 1, 2, 3, . . . , n( ) (14)

The above analysis shows that Ωi (i = 0, 1, . . . , n) in Eq. 14 has a
unique corresponding value in the face of M’’(f) curves of different
moisture and aging states. In other words, the coefficientΩi (i = 0, 1,
. . . , n) in the mathematical model of Taylor’s formula has a one-to-
one mapping relationship with the corresponding moisture and
aging state, so it can be used as a characteristic parameter to
characterize the moisture and aging state of the oil-paper
insulation, and Taylor’s formula can be used as a powerful tool
to extract the characteristic parameter.

2.3 Principle of the KNN algorithm

The classification principle of the K-NN algorithm is based on
the core idea of the distance from the sample point to the nearest

Frontiers in Energy Research frontiersin.org03

Liang et al. 10.3389/fenrg.2023.1348433

144

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1348433


neighbor point to be identified (Rouhafzay and Cretu, 2020).
Considering that the characteristic parameters φ(mc%, DP)
encapsulate both moisture and aging information of the sample,
the set of m characteristic parameters φ is denoted as the sample
point x. This representation can be expressed using Eq. 15.

x � φ1 mc%, DP( ),φ2 mc%, DP( ), · · ·,φm mc%, DP( ){ } (15)

The Euclidean distance, denoted as d(x, xk), represents the
measure of distance between the test sample point x and its
adjacent point xk, as shown in Eq. 16.

d x, xk( ) �
������������������������������
∑
m

r�1
φr mc%, DP( ) − φr mc%k, DP( )[ ]2

√
, (16)

The similarity λk(x, xk) between x and xk is defined as the
reciprocal of the distance d(x, xk), as illustrated in Eq. 17. In the
weighted K-NN algorithm, the weight value is determined by
selecting the distances of the K nearest points surrounding the
sample points. The weight of the adjacent point wk is represented by
Eq. 18.

λk x, xk( ) � 1
d x, xk( ), (17)

wk � λk
2

∑K
k�1

λk
2
. (18)

Given that the sample points of the p-type are denoted as vp, and
the total number of categories for the sample points is c, the
discriminant function for identifying the x point is expressed by
Eq. 19.

gp x( ) � ∑
N

k�1
ykwk � kp, p � 1, 2, · · ·, c. (19)

In this equation, N represents the number of sample points for
the p-type, kp denotes the sum of weights for points in the p-class,
and yk is the discriminant parameter used to determine whether xk is
an adjacent point of x, as indicated in Eq. 20.

yk � 1 xk is the neighboring point to x,
0 xk is not a neighboring point of x,

{ (20)

Gp x( ) � max gp x( )[ ] � max kp, p � 1, 2, · · ·, c. (21)

Once Eq. 21 is satisfied, it signifies that the unrecognized point x
belongs to the category vp.

3 Experiments

3.1 Preparation of OIP bushing
experimental model

In this paper, the insulating pressboard with a diameter of
140 mm and a thickness of 0.5 mm and Karamay No. 25 mineral
insulating oil are used to prepare the test sample of the bushing. The
specific performance parameters of the insulating pressboard and
insulating oil are shown in Tables 1, 2, respectively. Firstly, dry the
insulation paper and insulation oil separately in a vacuum

immersion tank for 48 h (105°C 50 Pa). Then put the dried
insulation paper into the dried insulation oil for 48 h (70°C
50Pa). Finally, seal the dried oil immersion paper insulation for
future experimental use. The experimental pre-treatment process is
shown in Figure 1. It is worth mentioning that when conducting
aging experiments, moisture intrusion experiments, and dielectric
response tests on oil-immersed paper bushings, oil-immersed
insulation paper is usually used instead of the actual bushing,
which has the advantages of material saving, time-saving, easy
operation, and strong repeatability.

After the pretreated experiments, the aging tests were
conducted on the pretreated oil-immersed insulating
pressboard samples. Firstly, group the preprocessed insulating
pressboard according to the expected aging days, number it, and
place it in an aging box for aging. The temperature of the aging
box is set to 150°C. The temperature only affects the aging rate of
the insulation paper, without affecting the aging products and
principles. Therefore, to quickly obtain samples, using 150°C as
the aging temperature is a relatively time-saving and reasonable
choice. Prepare insulation paper with aging days of 0, 1, 3, 7, and
15 days, and store it. Randomly select one sample from each
group of insulated pressboard samples with different aging
degrees, and the DP test results are shown in Table 3. Due to
the identical aging conditions of each group of samples, it is
believed that the DP value of this sample can characterize the
aging degree of all insulating pressboards under the same aging
conditions.

On the basis of aging experiments, conduct moisture
intrusion experiments on oil-immersed insulating pressboard
samples. Firstly, use a Karl Fischer tester for initial moisture
detection, and record its moisture content as a%. At this point, it
is assumed that the initial moisture content of all insulating
pressboards is a%. Group and number the insulating pressboard
that needs to undergo moisture testing. Place the divided
insulating pressboard with an initial moisture content of a%
into a precision electronic balance, record its initial mass as m,
and then expose the pressboard to air for natural moisture
absorption. By controlling different moisture absorption times,
obtain a pressboard with different moisture content (mc%). If the
planned moisture content inside the pressboard needs to reach b
%, then the measurement value of the electronic balance will
reach (1-a%)/(1-b%) and seal the pressboard in an aging jar at a
constant temperature of 45°C for 48 h to ensure uniform
distribution of moisture inside the pressboard. A total of
20 sets of oil-immersed insulation paper samples were
prepared, as illustrated in Figure 2.

3.2 Classification of moisture and aging
status of oil-paper insulation

According to the report in (Sumereder and Muhr, 2010), the
average DP of newly manufactured dry insulating pressboard is
generally between 1,000 and 1,250, and as the aging degree increases,
the DP gradually decreases. The existing standard DL/T 984-2005
(DL/, 2005) requires that when the DP of insulation paper is less
than 250, it is the end of its lifespan, and it can be considered that its
insulation performance has completely deteriorated and no longer
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meets the insulation requirements. Therefore, within the DP range
where the insulating pressboard has insulation properties (250 ≤
DP ≤ 1,250), DP can be divided into five parts, representing five
different levels of aging, as shown in Figure 3.

In addition, the technical report published by CIGRE
(International Conference on the Great Power Grid) states that

when the moisture content of the insulating pressboard is 0%<mc
%≤ 1%, it is considered dry; When the moisture content of the
insulating cardboard is 1%< mc%≤ 2%, it is considered that the
insulating cardboard has been affected by moisture. According to
the IEEE standard, a damp insulated pressboard is divided into two
stages: moderate moisture and severe moisture. This article believes
that when the moisture content of the insulated pressboard is (2%<
mc%≤ 3%), it is considered that the insulated pressboard has been
moderately damp; When the moisture content of the insulating
pressboard is (mc%>3%), it is considered that the insulating
pressboard has been heavily damped, as shown in Figure 3. In
summary, the oil-immersed insulating pressboard prepared in this
article with different levels of moisture and aging will be divided into
20 different states, as shown in Table 4.

TABLE 1 Parameters of insulating pressboard.

Type Manufacturer Shape (mm) Tensile strength (MPa) Density

T4 Transformer Insulation Paper Taizhou Weidmann High Voltage Insulation Co., Ltd Thickness:0.5 MD = 98 0.96 g/cm3

diameter:140 CMD = 47

TABLE 2 Parameters of insulating oil.

Type Manufacturer tanδ Pour point (°C) Flash point (°C)

Karamay No. 25 mineral insulating oil Chongqing Chuanrun Petrochemical Co., Ltd 4 × 10−4 ≤-45 135

FIGURE 1
Flow chart of experimental material pretreatment.

TABLE 3 Polymerization degree values of oil-immersed insulating
cardboard samples.

Sample number T1 T2 T3 T4 T5

Aging day 0 1 3 7 15

DP 1,171 854 674 424 279

FIGURE 2
Flow chart of aging and damping experiments.
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4 The influence of moisture and aging
states on the dielectric modulus

4.1 Dielectric response test platform
construction

In this paper, a DIRANA dielectric response tester and a three-
electrode test cell are used to set up a frequency domain dielectric
response test platform, the output and test terminals of DIRANA are

connected on both sides of the insulating pressboard, respectively.
The test frequency ranged from 2 × 10−4 to 5 × 103 Hz, and the test
voltage was set to 200 V AC. Then the FDS tests are performed on
insulating paperboards in different aging and moisture states at
45°C, to obtain the real part ε′(ω) and the imaginary part of the ε’’(ω)
of the complex relative permittivity, and then the inverse of the
complex permittivity is taken to obtain the real part of the dielectric
modulus M′(ω) and the imaginary part of the permittivity
modulus M’’(ω).

FIGURE 3
Insulation state division.

TABLE 4 Classification of moisture and aging conditions of insulated pressboard.

Aging Moisture content Status number Degree of polymerization (DP) Moisture content (mc%) (%)

Unaging Dry A1B1 1,000<DP ≤ 1,250 0%<mc%≤1

Mildly damp A1B2 1%<mc%≤2

Moderately damp A1B3 2%<mc%≤3

Heavily damp A1B4 mc%>3

Mildly aging Dry A2B1 750<DP ≤ 1,000 0%<mc%≤1

Mildly damp A2B2 1%<mc%≤2

Moderately damp A2B3 2%<mc%≤3

Heavily damp A2B4 mc%>3

Moderate aging Dry A3B1 500<DP ≤ 750 0%<mc%≤1

Mildly damp A3B2 1%<mc%≤2

Moderately damp A3B3 2%<mc%≤3

Heavily damp A3B4 mc%>3

Heavily aging Dry A4B1 250<DP ≤ 500 0%<mc%≤1

Mildly damp A4B2 1%<mc%≤2

Moderately damp A4B3 2%<mc%≤3

Heavily damp A4B4 mc%>3

End of insulation life Dry A5B1 DP ≤ 250 0%<mc%≤1

Mildly damp A5B2 1%<mc%≤2

Moderately damp A5B3 2%<mc%≤3

Heavily damp A5B4 mc%>3
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FIGURE 4
M′(ω) andM’’(ω) curves in different aging periods.(A)M′(ω) curves in non-aging period. (B)M’’(ω) curves in non-aging period. (C)M′(ω) curves in mild
aging period. (D)M’’(ω) curves in mild aging period. (E)M′(ω) curves in moderate aging period. (F)M’’(ω) curves in moderate aging period. (G)M′(ω) curves
in severe aging period. (H) M’’(ω) curves in severe aging period. (I) M′(ω) curves in the end of insulation life. (J) M’’(ω) curves in the end of insulation life.
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4.2 Effect of aging and moisture on
dielectric modulus

FDS tests were performed on samples with different moisture
levels under the same aging degree conditions and the
corresponding dielectric modulus graphs were obtained (shown
in Figure 4). Under the same aging level, the change of moisture
content of oil-impregnated insulating paperboard will have an
effect onM′(ω) in the low and middle-frequency regions, while the
high-frequency region (102 Hz~104 Hz) is almost unaffected.
Comparing oil-impregnated paperboards with the same degree

of aging, an increase in the water content of the paperboard leads to
a decrease in the value of M′(ω) in the low-frequency region of the
M′(ω) curves, while theM′(ω) curves in the high-frequency region
are essentially unchanged under any water content condition. In
addition, unlike the imaginary part of the complex relative
permittivity, the value of the imaginary part of the dielectric
modulus M’’(ω), increases with increasing frequency in the low-
frequency region (10–4 Hz–10–1 Hz).

4.3 Establishment of the database of
dielectric modulus parameters

The Taylor’s formula mathematical model based on Eq. 14 is
used to extract the relevant characteristic coefficients of the curve. It
is worth noting that the error of the extracted parameters depends
on the size of the n value in Eq. 14: the larger the value of n, the better
the resulting Taylor’s formula fitting curve fits the original data, and
the smaller the error of the obtained parameters. However, a larger
value of n will lead to an increase in computational time. Therefore,
this paper selected the imaginary curves of the dielectric modulus of
four samples (A5B1, A5B2, A5B3, A5B4) at the end-of-life stage of the
insulation in the moisture condition to calculate the R2

TABLE 6 Results of feature parameter extraction.

Status number M″(f) � Ω0 +Ω1f + Ω2f2 + Ω3f3 + Ω4f4 +Ω5f5 +Ω6f6 + Ω7f7

Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 R2

A1B1 −2.9496 −0.3572 0.2081 −0.0026 −0.0157 0.0017 0.0005 −0.0001 0.9996

A1B2 −2.0302 −0.5140 −0.0465 0.0599 0.0078 −0.0052 −0.0002 0.0002 0.9999

A1B3 −1.7498 −0.4520 −0.1196 0.0566 0.0129 −0.0053 −0.0003 0.0002 0.9999

A1B4 −1.4512 −0.1622 −0.1491 −0.0222 0.0204 0.0008 −0.0008 0.00004 0.9991

A2B1 −2.7019 −0.6007 0.1873 0.0676 −0.0148 −0.0057 0.0004 0.0002 0.9988

A2B2 −1.8907 −0.3126 −0.0323 −0.0228 0.0075 0.0034 −0.0004 −0.0001 0.9995

A2B3 −1.6102 −0.2760 −0.0838 −0.0200 0.0117 0.0024 −0.0005 −0.00005 0.9989

A2B4 −1.3934 −0.1835 −0.0814 −0.0207 0.0103 0.0012 −0.0006 0.00002 0.9986

A3B1 −2.5615 −0.6743 0.1696 0.0742 −0.0139 −0.0057 0.0004 0.0002 0.9992

A3B2 −1.7980 −0.3707 −0.0092 −0.0201 0.0028 0.0041 −0.0002 −0.0001 0.9998

A3B3 −1.5361 −0.1681 −0.0099 −0.0566 −0.0007 0.0067 −0.0001 −0.0002 0.9997

A3B4 −1.3902 −0.0198 0.0412 −0.0948 −0.0103 0.0123 0.0003 −0.0004 0.9950

A4B1 −2.3859 −0.8046 0.1463 0.0975 −0.0128 −0.0069 0.0004 0.0002 0.9995

A4B2 −1.6704 −0.2736 −0.0006 −0.0507 −0.0009 0.0073 −0.0001 −0.0002 0.9999

A4B3 −1.4865 −0.0935 0.0542 −0.0733 −0.0108 0.0093 0.0003 −0.0003 0.9992

A4B4 −1.3100 −0.2627 0.146 0.0225 −0.0316 0.0005 0.0012 −0.0001 0.9967

A5B1 −2.1434 −0.7143 0.0820 0.0566 −0.0061 −0.0019 0.0001 0.00004 0.9999

A5B2 −1.6214 −0.2587 0.0741 −0.0492 −0.0143 0.0078 0.0005 −0.0003 0.9997

A5B3 −1.4132 −0.1569 0.0409 −0.0483 −0.0152 0.0080 0.0006 −0.0003 0.9992

A5B4 −1.1465 −0.4176 −0.0533 0.1707 −0.0064 −0.0181 0.0003 0.0006 0.9923

TABLE 5 Comparison of fitting degree R2.

Sample status number R2

n = 5 n = 6 n = 7 n = 8

A5B1 0.99975 0.99989 0.99992 0.99992

A5B2 0.99715 0.99766 0.99979 0.99987

A5B3 0.98541 0.99490 0.99940 0.99955

A5B4 0.97222 0.97362 0.99454 0.99586
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corresponding to different values of n (n = 5, 6, 7, 8), and then
analyze the effect of different values of n on the extraction of the
feature parameter in detail.

When n = 7 and n = 8, it is observed that the measured values of
dielectric modulus for the four different degrees of moisture are
almost completely overlapped with the corresponding fitted curves,
and the R2 shown in Table 5 are higher than 0.99, which satisfies the
fitting requirements. Therefore, through in-depth comparative
analysis, this paper selects Taylor’s formula at n = 7, shown in
Eq. 22, to extract the characteristic coefficients of the
dielectric modulus.

M″ f( ) � Ω0 +Ω1f +Ω2f
2 + Ω3f

3 +Ω4f
4 +Ω5f

5 + Ω6f
6

+ Ω7f
7. (22)

By determining the values of the coefficients Ω0~Ω7 in
Eq. 22, Taylor’s formula for the approximate replacement of
the imaginary part of the dielectric modulus is obtained.
Different moisture and aging states will obtain unique
corresponding sets of parameters (Ω0~Ω7), and conversely,

each different set of parameters (Ω0~Ω7) can only
characterize unique moisture and aging states. The extracted
parameters are shown in Table 6.

Due to the time-consuming preparation cycle of the experiment,
there are high requirements for the measurement and preservation
of the samples. Therefore, it is difficult to construct a database of
dielectric modulus parameters based on laboratory-prepared
samples. To overcome the above difficulties, this paper finds that
there is a quantitative relationship between the dielectric modulus
characteristic parameters Ω0~Ω7 and mc%, as shown in Figure 5.
The fitting results show that the fitting degree R2 of each curve
reaches above 0.9, thus effectively establishing a mapping
relationship between the moisture content mc% and the
characteristic parameters Ω0~Ω7.

Therefore, based on the curve fitting method, more than
1,000 sets of dielectric modulus parameters of five aging states
(unaged, mild aging, moderate aging, severe aging, and insulation
life termination) and four moisture states (dry, mild damped,
moderate damped, and severe damped) are obtained to construct
the parameter database.

FIGURE 5
(Continued).
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FIGURE 5
(Continued). Fitting curves of characteristic parameters of dielectric modulus: (A) unaged; (B)mildly; aged (C)moderate aging; (D) severe aged; (E)
end-of-life.
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5 Status evaluation results of on-site
bushings based on the K-NN algorithm

5.1 Testing and analysis of field bushing

In this paper, three bushings retired from a 110 kV substation of
China Southern Power Grid Company are selected for moisture and
aging condition assessment to verify the effectiveness and feasibility
of the proposed assessment method. The test equipment is a
DIRANA dielectric response tester manufactured by OMICRON

company. The Output terminal of DIRANA (high-voltage electrode)
is connected to the terminal of the casing; the CH1 terminal (low-
voltage electrode) is connected to the measurement terminal of the
casing; in order to ensure the safety and reliability of the
measurements, it is required that the shell of DIRANA and
casing is well grounded.

The test bushing was named bushing 1, bushing 2, and bushing
3. The details of the three bushings are shown in Table 7 and the
frequency domain dielectric response test results are shown in
Figure 6. After the FDS test, it was disassembled and subjected to

TABLE 7 Details of bushing to be tested.

Number Voltage level (kV) Model number Manufacturer Moisture (%) DP Test temperature (°C)

Bushing 1 110 BRLW–110/630-3 Nanjing Electric Porcelain Factory mc% = 1.27 731 25

Bushing 2 110 GOB 550SFPS123 107-K Sweden ABB mc% = 2.38 684 35

Bushing 3 110 GOB 550SFPS123 107-K Sweden ABB mc% = 1.87 267 25

FIGURE 6
The ε′(ω) and ε’’(ω) curves of bushing to be tested.

FIGURE 7
(A) M’’(ω) curves with original data; (B) M’’(ω) curves with reducing partial data.
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moisture measurements and DP measurements to obtain its true
moisture and aging status.

Due to the limitation of the measurement conditions, the
frequency range of the field test is f∈(1 × 10−4 Hz to 1 × 103 Hz),
as shown in Figure 6. Compared with the FDS test results under

laboratory conditions, the field test is missing part of the test data in
the high-frequency region (1 × 103 Hz to 5 × 103 Hz). Therefore, in
order to investigate whether the extracted dielectric modulus
parameters under the partially missing data condition will
generate errors and thus lead to assessment failure, the following
discussion is carried out in this paper:

Taking the dielectric modulus M’’(ω) curves for the lightly
damped and heavily aged condition (mc% = 2.32%, DP = 424)
and the heavily damped and lightly aged condition (mc% = 4.07%,
DP = 854) as an example, the M’’(ω) curves for the complete and
partially data missing conditions M’’(ω) curves are shown. M’’(ω)
curves are shown in Figure 7 below.

5.2 Temperature correction

FDS test results are very sensitive to temperature changes, and
changes in the test temperature can result in changes in the test
results. Therefore, it is necessary to correct the temperature of the
test results of the field bushing. In this paper, the “frequency shift
factor” technique is used to obtain the “frequency shift factor” α(T)
of each FDS curve by using Eq. 23. Then, by multiplying the
measurement frequency by the “frequency shift factor” α(T), as
shown in Eq. 24, the sampling frequency at the reference
temperature is obtained, and then the FDS curve at the reference
temperature is obtained.

FIGURE 8
FDS curves after temperature correction. (A) M′(ω). (B) M’’(ω).

FIGURE 9
Fitting curves of bushing to be tested.

TABLE 8 Characteristic parameters extracted from the three bushings.

Number Characteristic parameter

Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 R2

Bushing1 −3.1070 −0.5820 0.1690 0.0220 −0.0010 −0.001 −0.0009 0.0002 0.99912

Bushing2 −1.8964 −0.7753 −0.2018 0.0316 0.0254 0.0034 −0.0011 −0.0002 0.99820

Bushing3 −2.2435 −0.9006 0.01006 0.0886 −0.0055 −0.003 0.00035 0.00001 0.99951
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α T( ) � EXP
Ea 1/Tt − 1/Tref( )

R
/⎡⎣ ⎤⎦, (23)

fref � ft · α T( ), (24)

where Tref and Tt represent the reference and test temperatures,
respectively. ft and fref denote the test and reference frequencies,
respectively. Ea represents the activation energy of the oil-
impregnated cellulose, which is generally considered to be Ea =
103 kJ/mol and R is the gas constant, R = 8.314 J/mol/K.

Since the FDS test was performed in this paper at a constant
laboratory ambient temperature of 45°C (318.15 K), the reference
temperature Tref = 318.15 K in Eq. 23, while the test temperatures of
bushing 1, bushing 2, and bushing 3 were25°C, 35°C, and 25°C,

respectively. Therefore, the test temperatures in Eq. 23 were
sequentially set to 298.15, 308.15, and 298.15 K, and the α(T) of
bushing 1, bushing 2, and bushing 3 were obtained to be 13.6277,
3.5384, and 13.6277, respectively. Subsequently, based on Eq. 24, the
temperature-corrected ε′(ω) and ε’’(ω) curves andM′(ω) andM’’(ω)
curves, as shown in Figure 8.

After the temperature correction of the field bushing of the
unknown state, this paper will use Eq. 22 to extract the characteristic
parameters of its dielectric modulus M’’(ω) curves, followed by the
moisture and aging state assessment.

5.3 Extraction of dielectric modulus
characteristic coefficients of field bushing

Equation 22 is used to extract the characteristic parameters from
the temperature-corrected dielectric modulusM’’(ω) curve, and then
the characteristic parameters are used to assess the moisture and
aging state. As shown in Figure 9, the fitted curves based on Eq. 22
almost coincide with the test data points, and the characteristic
parameters Ωi (i = 0, 1, . . . ,7) and the corresponding fit degrees
contained in the three bushings are listed in Table 8. The R2 exceeds
0.998, which verifies the validity and reliability of the mathematical
model of Taylor’s formula, and these characteristic parameters can
be used to assess the moisture and aging status of the bushings in
the field.

5.4 Results of moisture and aging state
assessment of field bushings based on the
K-NN algorithm

In this paper, 10 samples with the closest distance to the samples to
be tested are selected in the training sample set (K = 10). Subsequently,
the training sample set is established on top of the dielectric modulus
feature parameter database, while the field bushing extracts the feature
parameter as the samples to be tested, and finally, the K-NN

TABLE 9 Evaluation results of moisture and aging state of field bushings.

Number Predictive status labels Predictive status labels Actual parameters (%) Real state

Bushing1 A3B2 Mild moisture DP = 731, mc% = 1.27 Mild moisture

Moderate aging Moderate aging

Bushing 2 A3B3 Moderate moisture, Moderate aging DP = 684, mc% = 2.38 Moderate moisture Moderate aging

Bushing 3 A5B2 Mild moisture DP = 267, mc% = 1.87 Mild moisture

End of life End of life

FIGURE 10
Classification result of the weighted K-NN model.

TABLE 10 Evaluation results of four classification algorithms.

Bushing number Actual state K-NN SVM NB DT

1 A3B2 A3B2 A3B2 A3B2 A3B2

2 A3B3 A3B3 A2B3 A4B1 A1B4

3 A4B2 A5B2 A5B2 A4B2 A4B2
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classification algorithm is applied to evaluate the moisture and aging
states of the field bushings. The evaluation results are shown in Table 9
and its confusion matrix is shown in Figure 10.

From the evaluation results of the K-NN classification algorithm
obtained in Table 9, it can be seen that the predicted results for
bushing 1 and bushing 2 agree with the actual results. The predicted
result for bushing 3 is mild moisture and insulation life termination
(DP ≤ 250, 1%≤mc%<2%), however, in fact, the actual moisture
content mc% and DP values of bushing 3 are 1.87% and 267,
respectively. and the real state is mild damp and heavy aging.
The evaluation method produces an error in the assessment of
the aging state of bushing 3. The real aging state of bushing 3 is heavy
aging. However, the difference between the real DP value and the
assessment result is only 17, and the reasons for the error may be
as follows:

Firstly, when the DP measurement of bushing 3 is carried out,
the sampling of the oil-impregnated insulation paper of the
capacitor core may be concentrated in certain places, which
cannot fully reflect the overall aging state of the bushing.
Secondly, the DP measurement device is a high-precision
instrument, and factors such as changes in the temperature of
the testing environment and the quality of the test sample can
affect the results of the DP test. Thirdly, it is generally believed that
when DP drops to about 200, it no longer undergoes significant
changes. Therefore, the insulating paper of the bushing may have
reached the threshold value, and DP no longer decreases with the
increase of aging time.

In summary, although the method proposed in this paper
produces an error in the assessment of the aging state of field
bushing 3, it is considered that the error is not caused by the defects
of the model itself through the above analysis, and therefore, the
prediction method of moisture and aging state of oil-impregnated
paper bushing based on the K-NN classification algorithm proposed
in this article can be used to effectively assess the bushing in the field
and has a high degree of accuracy.

The dielectric modulus characteristic parameter proposed in this
article is independent of insulation dimensions, and it is only related
to the aging state and moisture content of oil-impregnated

insulation paper. Therefore, the method proposed in this article
is applicable to bushings of any voltage level, and the assessment
process for on-site bushings is as follows: 1) Measure the internal
temperature of the on-site bushing. 2) Use a dielectric response
analyzer to perform FDS testing on the on-site bushing to obtain the
complex relative permittivity curve at that temperature. 3) Convert
the complex relative permittivity curve at the testing temperature to
the complex relative permittivity curve at 45°C using the
temperature-frequency factor. 4) Convert the complex relative
permittivity curve to the dielectric modulus curve using the
dielectric modulus model. 5) Extract characteristic parameters
from the dielectric modulus curve using the Taylor formula
mathematical model. 6) Based on the extracted characteristic
parameters, assess the aging and moisture status of the bushing
using the K-NN classification algorithm.

5.5 Comparison and validation of evaluation
results of each classification algorithm

Other algorithms (Support Vector Machine, Naive Bayes, and
Decision Tree) were used to assess the state of the three field
bushings respectively. Comparing the assessment results of the
four classification algorithms in Table 10, it can be found that
the K-NN classification algorithm is the most accurate. the SVM
algorithm produces an error in assessing the aging state of bushing
2 and bushing 3. The NB algorithm produces an error in assessing
the dampness and aging state of casing 2. The NB algorithm
produced errors for both moisture and aging of bushing 2. In
addition, the DT algorithm produced large errors in the moisture
and aging assessment of bushing 2. The evaluation accuracy was
obtained according to Eq. 25.

Accuracy � Correct evaluation number
Total evaluation number

× 100%. (25)

Based on Eq. 25, the evaluation accuracy of the four classification
algorithms is calculated. Among them, the assessment accuracy of
the SVM method, NB method, and DT method is 66.67%, while the

FIGURE 11
Confusion matrix of the other algorithms. (A) SVM algorithm. (B) NB algorithm. (C) DT algorithm.
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assessment accuracy of the K-NNmethod is 83.33%, which is higher
than the other three algorithms. The above evaluation results verify
the effectiveness and feasibility of the evaluation scheme proposed in
this paper.

In addition, the confusion matrix Figure 11 shows that the
sample training accuracy of the SVM algorithm, NB algorithm, and
decision tree algorithm are 95.8%, 88.1%, and 95.6%, respectively,
which are lower than that of the K-NN algorithm’s sample training
accuracy of 98.8%. Therefore, the assessment method of the K-NN
algorithm has the highest accuracy.

6 Conclusion

The innovation of this article lies in establishing a Taylor
formula mathematical model to extract characteristic
parameters for characterizing the aging and moisture degree
of insulation paper from the dielectric modulus M*(ω) curve of
oil-immersed paper bushings and obtaining fitting relationships
between various characteristic parameters and insulation
degradation status. Then, the KNN classification algorithm
was used to evaluate the aging and moisture status of
insulation paper for bushings. The main results achieved in
the thesis are as follows:

(1) A mathematical model of dielectric modulus is established,
and the effects of moisture and aging on the dielectric
modulus curve are analyzed in depth, and it is found that
theM’’(ω) curve can better distinguish the effects of aging and
moisture, and the low-frequency region of the M’’(ω) curve
characterizes the aging state of insulation paper. The aging
information characterized by the low-frequency region of the
M’’(ω) curve and the moisture information characterized by
the high-frequency region of theM’’(ω) curve do not interfere
with each other, which proves that the dielectric modulus can
be used as a powerful tool for the assessment of the moisture
and aging state of the oil-paper insulation.

(2) The mathematical model of Taylor’s formula is established,
and it is proved that each coefficient Ωi (i = 0, 1, . . . , n) of
Taylor’s formula can be used as the characteristic parameter
for state evaluation. In addition, the influence of the order n of
Taylor’s formula on the value of the extracted parameters is
investigated, and the results show that a small n will affect the
accuracy of the parameters, and a large n will affect the
complexity of the calculation. Subsequently, the extraction
of the characteristic parameters (Ω0~Ω7) of the dielectric
modulus curves was realized on the basis of n = 7, and the
results showed that the goodness-of-fit R2 of the characteristic
parameters (Ω0~Ω7) to mc% was more than 0.9, which had
high reliability.

(3) A comprehensive assessment method for the moisture and
aging state of bushing oil-paper insulation based on the K-NN
algorithm is proposed. By applying this method to assess the
moisture and aging state of three field bushings, the results
show that the assessment method based on the K-NN

algorithm achieves a training accuracy of 98.8% for the
samples, and the accuracy of the assessment results reaches
more than 83%, which has an obvious advantage compared
with other classification algorithms (Support VectorMachine,
Naive Bayes, and Decision Tree).

This research has not only made theoretical contributions but
can also serve as a methodological foundation for practical
engineering applications.
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A novel recognition method for
complex power quality
disturbances based on Markov
transition field and improved
densely connected network

Lei Zhou*, Shuifu Gu, Yi Liu and Chaoqun Zhu

State Grid Suzhou Power Supply Company, Suzhou, China

In order to solve the difficulty that complex power quality disturbances (PQDs) are
difficult to recognize accurately and efficiently under the new power system
background, this paper proposes a novel PQDs recognition method based on
markov transition field (MTF) and improved densely connected network
(DenseNet). Firstly, the one-dimensional PQDs signal is mapped into the two-
dimensional image with clear texture features by using MTF encoding method.
Then, a DenseNet-S lightweight network is designed and the convolutional
attention module (CBAM) is introduced to improve its feature extraction
ability, so as to enhance the performance of the network. Finally, the images
are input into the improved model for training and learning, and PQDs
recognition is realized through the optimal model. In order to verify the
effectiveness of the proposed method, experimental tests are carried out
based on IEEE 1159 standard simulation dataset and real-world field measured
signals dataset, and compared with existing recognition methods. The results
show that the proposed method can effectively improve the recognition
accuracy and noise robustness of complex PQDs, and has more advantages in
disturbances recognition efficiency. It can meet the recognition accuracy and
efficiency requirements of massive and complex PQDs events in engineering
applications.

KEYWORDS

power quality disturbances, Markov transition field, densely connected network,
convolutional block attention module, disturbances recognition

1 Introduction

With the increase of the penetration rate of distributed source loads, which is mainly
dominated by wind and solar power generation and new energy charging piles, the power
system presents a typical trend of power electronization (Wang et al., 2021), and the PQDs
problem of power grid has shown some new features compared with the past. The typical
features mainly include two points: 1) the expansion of the scale of new power system
disturbance sources; 2) the coupling and superposition of PQDs are strengthened (Wang
and Chen, 2019). The interactive coupling of PQDs will exhibit extremely complex non-
stationary fluctuation phenomena and further deteriorate the grid power quality, which will
not only bring problems such as sensitive equipment damage, data loss, equipment energy
consumption increase and other problems to the end user side, but even lead to large-scale
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power outage accidents in serious cases (Cui et al., 2022). PQDs
recognition algorithm is mainly used in the monitoring and
management of power systems and power equipment, which can
help us detect and identify power quality problems, such as voltage
sag, harmonic, flicker, etc., which is crucial to ensure the stable
operation of power system, prevent equipment damage and improve
the electrical energy use efficiency. Therefore, accurate and efficient
classification and recognition of PQDs under the new power system
background is the basic requirement to ensure the safe, stable and
economic operation of power grid.

The traditional PQDs recognition methods are based on
manually extracting features, constructing feature matrices, and
using the feature data to train classification model to realize
disturbances recognition. Amongst these, feature extraction
mostly applies signal processing techniques such as Fourier
transform (Huang et al., 2016), Stockwell transform (Yin et al.,
2021; Cui et al., 2022), and wavelet transform (Wu et al., 2022). After
manual feature extraction, classification algorithms such as support
vector machine (Tang et al., 2020), decision tree (Huang et al.,
2017a), and artificial neural network (Li et al., 2020) are combined to
establish the mapping relationship from continuous features to
discrete labels to realize the classification and identification of
PQDs. However, the parameter selection and processing process
of the above methods are cumbersome, and heavily rely on expert
experience, which makes it less generalizable. With the growing
penetration of new energy sources, the complexity of PQDs
increases accordingly, and the classification methods based on
artificial feature extraction are difficult to meet the needs of
PQDs classification under the new power system background.

In recent years, deep learning technology has become an
important research hotspot in the field of PQDs recognition due
to its excellent generalization performance and feature self-
extraction capability. Among them, the deep learning methods
that have been widely researched and applied are the

Convolutional Neural Network (CNN), which can extract spatial
features, and the Recurrent Neural Network (RNN), which has the
memory ability of temporal features, to mine the potential
relationship between spatial and temporal features of one-
dimensional PQDs signals, and then recognize the specific type
of PQDs (Ahmadi and Tani, 2019; Wang and Chen, 2019; Sindi
et al., 2021). However, although the one-dimensional
convolutional layer used in this method can extract temporal
features to a certain extent, its temporal characteristics and
disturbances classification ability are significantly reduced, and
the problem of network gradient vanishing is serious. At the same
time, it is not effective in dealing with the problem of feature
extraction for multi-type coupling PQDs. To overcome the above
problems, some scholars combine the advantages of machine
vision and propose the visual conversion of one-dimensional
signals, such as Gramian Angular Field (GAF), combined with
the current mainstream image classification networks, such as
CNN, deep residual network (ResNet), to discover the absolute
temporal and spatial relationships of the original signal, and then
extract more complete deep-level features of disturbance signals.
He et al. (2023) and Jyoti et al. (2021) use the GAF color coding
method to convert one-dimensional disturbance signals into
rectangular images with different pattern features, which are
used as inputs to CNN and ResNet for training and
classification respectively, making up for the defects of
artificial feature selection. However, GAF uses the Cartesian
coordinate system to encode sequences in polar coordinates,
and then converts them into Gram matrix using trigonometric
operations, which is a complex cross-domain encoding
conversion process, computationally intensive, and prone to
aliasing with noise. At the same time, its conversion efficiency
is on the low side, which makes it difficult to satisfy the
recognition efficiency demand of massive and complex PQDs
events in engineering practice.

TABLE 1 Mathematical model of PQDs.

PQDs Equation Parameters

Normal f(t) � sin(ωt) ω � 2πf0 , f0 � 50Hz

Sag f(t) � 1 − α[ε(t − t1) − ε(t − t2)]{ } sin(ωt) 0.1≤ α≤ 0.9, T≤ t2 − t1 ≤ 9T

Swell f(t) � 1 + α[ε(t − t1) − ε(t − t2)]{ } sin(ωt) 0.1≤ α≤ 0.8, T≤ t2 − t1 ≤ 9T

Interruption f(t) � 1 − α[ε(t − t1) − ε(t − t2)]{ } sin(ωt) 0.9≤ α≤ 1, T≤ t2 − t1 ≤ 9T

Harmonic f(t) � sin(ωt) + ∑
i�3,5,7

αi sin(iωt) 0.05≤ αi ≤ 0.15

Oscillatory transient f(t) � sin(ωt) + αe−(t−t1 )/τ sin(βωt) · [ε(t − t1) − ε(t − t2)] 0.1≤ α≤ 0.8, 0.5T≤ t2 − t1 ≤ 3T0.008≤ τ ≤ 0.04, 8≤ β≤ 32

Pulse f(t) � sin(ωt) + α[ε(t − t1) − ε(t − t2)] 1≤ α≤ 3, 1ms≤ t2 − t1 ≤ 3ms

Flicker f(t) � [1 + α sin(βωt)] sin(ωt) 0.1≤ α≤ 0.2, 0.1≤ β≤ 0.5

Notch f(t) � sin(ωt) − sgn(sin(ωt))
× ∑

9

n�0
k × [ε(t − (t1 + 0.02n)) − ε(t − (t2 + 0.02n))]⎧⎨

⎩
⎫⎬
⎭

0.1≤ k≤ 0.4, 0≤ t2 , t1 ≤ 0.5T0.01T≤ t2 − t1 ≤ 0.05T

Spike f(t) � sin(ωt) + sgn(sin(ωt))
× ∑

9

n�0
k × [ε(t − (t1 + 0.02n)) − ε(t − (t2 + 0.02n))]⎧⎨

⎩
⎫⎬
⎭

0.1≤ k≤ 0.4, 0≤ t2 , t1 ≤ 0.5T0.01T≤ t2 − t1 ≤ 0.05T
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Overall, there have been limited investigations into integrating
signal visualization with image classification networks to recognize
complex PQDs. Existing studies mainly concentrate on enhancing
the disturbances recognition accuracy of the overall method,
ignoring the performance of visualization imaging technology
and deep learning model in terms of conversion and recognition
efficiency. With the massive increase of power quality monitoring
data, the recognition efficiency of PQDs is becoming increasingly
crucial for power system health condition monitoring. To address
this challenge, a novel PQDs recognition method based onMTF and
improved DenseNet-SC is proposed in this paper. The proposed
method utilizes theMTF encoding method with straightforward and
efficient conversion process and clear features to color code the
original disturbance signal to form PQDs feature image, and then
designing lightweight network DenseNet-S and integrating CBAM
attention mechanism to improve the feature capturing ability of the
model. Finally, based on IEEE standard and the real-world field data
collected by the substation, simulation and measurement dataset of
PQDs are established to test the proposedmethod. The experimental
results verify the effectiveness and superiority of the proposed
method in PQDs recognition efficiency and precision.

2 PQDs data visualization based onMTF

2.1 PQDs model construction

For various complicated PQDs problems in power system, the
real data is difficult to be collected by equipment. Therefore,
according to IEEE Std, 2019 power quality standard,
mathematical modeling of PQDs signal is carried out in this
paper. The nine categories for common basic disturbance signals
are sag, swell, interruption, harmonic, oscillatory transient, pulse,
flicker, gap, and spike. Corresponding mathematical models for
these categories are presented in Table 1.

Complex PQDs are typically overlaid with multiple basic
disturbances, including a variety of different categories and
different start and end times. The resulting composite waveforms
exhibit a complex, cumbersome, and irregular pattern, posing
challenges in accurately recognizing the disturbance types.

2.2 Markov transition field

The conversion methods of one-dimensional PQD signal
into two-dimensional image are currently mainly investigated
using the GAF and its variants. However, due to the need for
cross-domain encoding and matrix operation of sequence data,
the conversion process of GAF is complex and low efficiency.
In addition, the loss of time sequence feature information is
easy to occur when processing disturbance signals in noisy
environment.

To address the above shortcomings and deficiencies, this
paper proposes a visual conversion method of PQDs based on
MTF. The correlation between amplitude and time is the main
relationship in time-series data. MTF can convert one-
dimensional time series data into two-dimensional feature
images by considering the time and position information on

the basis of Markov chain and using Markov transition
probability for coding, so as to maintain the time order and
statistical dynamics in the generated images (Wang and Oates,
2015). Due to its excellent time-series information retention
ability, MTF coding technology has been partially applied in
fault diagnosis (Yan et al., 2022) and surface electromyography
signal analysis (Li et al., 2022). However, as far as we know, MTF
coding technology has not been applied to PQDs recognition
research in the existing literature.

Given a set of time series signal X � x1, x2, . . . , xN{ }, xi is the
i-th sampling signal point. MTF method firstly divides the time
series signal into Q quantile units qj(j ∈ [1, Q]) according to its
amplitude for discretization processing, quantizes each value,
and any numerical point xi can be mapped to the corresponding
quantile qi. Then, by calculating the probability of sampling
signal point xt−1 and xt transferring from region qi to qj in
the form of a first-order Markov chain along the time axis, and
taking each calculated probability p as element wij, the Markov
state transition matrixW of Q × Q dimension is constructed. The
expression is shown in Eq. 1:

W �
w11 w12 / w1Q

w21 w22 / w2Q

..

. ..
.

1 ..
.

wQ1 wQ2 / wQQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

p1,1 xt ∈ q1
∣∣∣∣xt−1 ∈ q1( ) / p1,Q xt ∈ q1

∣∣∣∣∣xt−1 ∈ qQ( )
p2,1 xt ∈ q2

∣∣∣∣xt−1 ∈ q1( ) / p2,Q xt ∈ q2
∣∣∣∣∣xt−1 ∈ qQ( )

..

.
1 ..

.

pQ,1 xt ∈ qQ
∣∣∣∣∣xt−1 ∈ q1( ) / pQ,Q xt ∈ qQ

∣∣∣∣∣xt−1 ∈ qQ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

Nonetheless, Markov chain is memoryless, and the
probability of state transition at the current moment only
depends on the state at the previous moment, without
considering the dynamic probability transition of time series
data. Therefore, the Markov state transition matrix constructed
by Markov chain is also memoryless, which completely ignores
the dependence of time step on one-dimensional time series
signal X. If the Markov state transition matrix is used directly,
a large amount of one-dimensional time series information will
be lost. To solve this problem, MTF is used to improve it. By
considering the time and position relationship, each transition
probability is arranged in time order, and the Markov state
transition matrix W is extended to the MTF matrix M across
time scales, preserving the time correlation of the original signal.
The expression of M is shown in Eq. 2:

M �
M11 M12 / M1N

M21 M22 / M2N

..

. ..
.

1 ..
.

MN1 MN2 / MNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

pi,j x1 ∈ qi
∣∣∣∣∣x1 ∈ qj( ) / pi,j x1 ∈ qi

∣∣∣∣∣xN ∈ qj( )
pi,j x2 ∈ qi

∣∣∣∣∣x1 ∈ qj( ) / pi,j x2 ∈ qi
∣∣∣∣∣xN ∈ qj( )

..

.
1 ..

.

pi,j xN ∈ qi
∣∣∣∣∣x1 ∈ qj( ) / pi,j xN ∈ qi

∣∣∣∣∣xN ∈ qj( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)
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where Mmn represents the probability of transferring from quantile
region qi corresponding to sampling signal point xm to region qj
corresponding to xn, that is, the transition probability of the quantile
relationship between qi and qj on the matrixW , while the elements
on the diagonal are the corresponding self-transfer probability.

Taking one-dimensional sinusoidal signal as an instance,
according to the above MTF dynamic transfer information
encoding method, its two-dimensional MTF visual image
generation process is shown in Figure 1.

Considering that when N is large, using the original MTF to
directly generate images will make the images too large and
occupy more computer storage space, which is not conducive
to the rapid calculation and analysis of on-site intelligent devices
or grid background systems. For this purpose, fuzzy kernel
1/n2{ }n×n is used to average each non-overlapping pixel to
obtain a two-dimensional MTF image of the aggregated n × n
dimension, that is, an aggregated image with dynamic transition
probability, which is used as the image modal input data for
power quality analysis.

The MTF image coding method offers a technique for
visualizing sequences that maintains time dependency. The
use of MTF to convert time series signals has the following
advantages:

(1) By considering the dependence between each quantile unit
and time step, the correlation between moments can be
effectively represented, and the time series information loss
of one-dimensional sequence signals can be avoided;

(2) The one-dimensional time-series signal and MTF image
coding method are mapped relations, preventing the loss
of feature information.

(3) The pixel amplitude information is the value of Mij, and the
color depth reflects the transformation probability from qi to

qj. The two-dimensional image features after visualization are
clear and easy to distinguish, which is very conducive to the
learning and recognition of deep learning network.

(4) Compared with GAF, the MTF conversion process is
concise and computationally efficient. The introduction
of quantile division makes MTF more resistant to
interference and noise.

2.3 Visualization of PQDs signal

To achieve a two-dimensional visualization of PQDs data
while preserving the temporal correlation and full feature details
of signals, this study utilizes the MTF coding technique to
convert one-dimensional PQDs signal into two-dimensional
MTF image. Based on the mathematical model of PQDs
presented in Table 1 and the MTF conversion process
detailed in Section 2.2, the fundamental frequency is set to
50 Hz, with the sampling frequency of 3.2 kHz and the
sampling length of 10 cycles. Consequently, MTF feature
images are generated corresponding to the nine basic PQDs
signals as illustrated in Figure 2. The size of the images’
horizontal and vertical axes represents their respective
dimensions. The conversion result order is in line with the
PQD types’ order in Table 1.

As depicted in Figure 2, the MTF feature image
differentiates time-series signals of various PQDs types at the
same spatial location by employing dissimilarities in pixel
colors and texture shapes. The feature information of each
image is lucid and easily distinguishable, thereby facilitating
feature extraction after disturbances composite superposition,
and laying a foundation for deep learning network to accurately
recognize PQDs.

FIGURE 1
MTF visualization image generation process.
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3 PQDs recognition based on
improved DenseNet

3.1 Fundamental principle of DenseNet

Traditional CNNs come with an abundance of parameters and
frequently encounter two primary issues: first, overfitting is easy to
occur owing to limited training data, and second, the network layers
tend to be shallow, causing inadequate extraction of more advanced
information. Deeper networks produce more distinguishable
characteristics by acquiring superior-level feature maps, thus it’s
easier for them to recognize inherent and underlying features.

However, deep neural networks often encounter issues such as
gradient vanishing and explosion, which can negatively impact
network training and recognition performance (Huang
et al., 2017b).

DenseNet incorporates a bypass connection approach similar
to ResNet and establishes a dense connection mechanism
between convolutional layers, enhancing feature reuse through
inter-channel splicing (Huang et al., 2017a). As a result,
DenseNet effectively resolves the aforementioned issues. As its
core component module, the dense block (DB) structure as
depicted in Figure 3, which is designed to ensure maximum
information flow between network layers, where: x0 is the input

FIGURE 2
MTF visualization image of PQDs basic signals.
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feature information, the input of H1 is x0, while the inputs of H2

are x0 and x1, where x1 is the output of H1, and so on. In this
architecture, each layer uses inputs from all previous layers and
passes its corresponding feature maps to all subsequent layers.
Therefore, this network structure can extract more global and
important features, which can achieve more accurate and
efficient training effect.

Unlike the conventional convolutional network structure, the
number of connections increases to L(L + 1)/2 from L when the
number of DB layers is L. As a result, the feature map obtains from
the L-th layer is the outcome of the feature maps that are produced
from all previous layers after being spliced in the channel dimension
using the following Eq. 3:

xl � Hl x0, x1, . . . , xl−1[ ]( ) (3)

where xl represents the output of layer l. The splicing operation of
the output feature map of each layer is denoted by [x0, x1, . . . , xl−1].
Hl(·) represents a nonlinear combinatorial function, which consists
of a batch normalization layer (BN), a linear activation function
(ReLU), and a 3 × 3 convolutional layer (Conv).

Each DB includes multiple convolutional layer structures with
the same padding utilized for splicing operations. Although this
structure adopts a densely connected pattern, it requires fewer
parameters than traditional CNNs. In fact, this network
architecture eliminates the need to learn redundant information,
reduces the number of feature maps required at the network layer,

FIGURE 3
A dense block structure.

TABLE 2 Network structure design of DenseNet-S.

Network layer DenseNet-S (k = 48) Output size (input size: 128 × 128 × 3)

Convolution 7 × 7 Conv, stride 2 64 × 64×64

Pooling 3 × 3 Max pool, stride 2 32 × 32×64

Dense Block 1 1 × 1Conv
3 × 3Conv
[ ] × 3

32 × 32×208

Transition Layer 1 × 1 Conv 16 × 16×104

2 × 2 Average pool, stride 2

Dense Block 2 1 × 1Conv
3 × 3Conv
[ ] × 6

16 × 16×392

Transition Layer 1 × 1 Conv 8 × 8×196

2 × 2 Average pool, stride 2

Dense Block 3 1 × 1Conv
3 × 3Conv
[ ] × 9

8 × 8×628

Transition Layer 1 × 1 Conv 4 × 4×314

2 × 2 Average pool, stride 2

Dense Block4 1 × 1Conv
3 × 3Conv
[ ] × 6

4 × 4×602

Classification Layer Adaptive average pool 1 × 1×602

1000D fully-connected, softmax
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and significantly improves parametric efficiency. On the other hand,
the continuous concatenation of different layers requires each layer
to access the gradient from the original input data and the loss
function. This fast access improves the information flow between
layers, mitigates the gradient vanishing issue, and facilitates the
extraction of deeper semantic information.

3.2 Foundational network
architecture design

To avoid overfitting and create a more lightweight network,
this paper designs a more compact and lightweight architecture
termed DenseNet-S through numerous experimental tests. This
architecture serves as the backbone of deep learning network

while ensuring the network’s classification precision. Its network
structure is shown in Table 2. Among them, the DenseNet-S
network contains four groups of DBs, each group is composed of
3, 6, 9, and 6 groups of convolutional layer superposition
connections, and the growth rate k � 48. To enhance the
network’s computational efficiency and compactness,
bottleneck layer and transition layer are introduced for feature
map dimensionality reduction. The bottleneck layer is located in
DB and consists of 1 × 1 convolutional layers preceding 3 × 3
convolutional layers. The transition layer is located between two
sets of DBs and consists of a batch normalization layer, a 1 × 1
convolutional layer, and a 2 × 2 average pooling layer. For m
feature maps output by DB, θ times will be reduced after
conversion by transition layer. θ ∈ (0, 1) is the compression
coefficient. In this paper, we use θ � 0.5.

FIGURE 4
Schematic diagram of CBAM.

FIGURE 5
PQDs recognition framework based on MTF and improved DenseNet.
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3.3 CBAM attention mechanism

Accurate extraction of feature image information is crucial for
improving the recognition accuracy of PQDs. The convolutional and
pooling operation of CNNs defaults the importance of each channel
in the feature map to be the same, but due to the different
importance of information carried, it is unreasonable to identify
the same importance of channels. Based on the processing
mechanism of the human visual system, CBAM (Woo et al.,
2018) performs dynamic weighted processing of features through
autonomous learning on spatial domains and feature channels to
enhance the capture of key feature information of images while
reducing the interference of non-key information, thus improving
the recognition precision. Therefore, this paper introduces CBAM
attention mechanism to improve the ability of feature extraction

network to focus details in MTF images corresponding to various
PQDs, so as to obtain better recognition effect.

CBAM comprises two modules: channel attention module
(CAM) and spatial attention module (SAM). CAM assigns
weight coefficients to the feature channels based on their
significance. Firstly, all channels information is aggregated
through average-pooling and max-pooling to generate two
different one-dimensional feature vectors, and then, after
fully connected layer operation, element by element addition
is performed, channel attention weight Mc is generated through
activation operation, which is then multiplied element by
element with the input feature map to obtain the channel
attention weighted feature map F1. The calculation process of
CAM module is shown in Figure 4A, and its calculation
expression is shown in Eq. 4:

FIGURE 6
Comparison of recognition results on validation set.

FIGURE 7
Comparison of the class activation heatmap output before and after the CBAM module of improved model.
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MC F( ) � σ MLP(AvgPool F( )( ) +MLP MaxPool F( ))( ) (4)
where F represents the input feature map, AvgPool and MaxPool
indicate average-pooling and max-pooling operations, respectively.
MLP denotes the fully connected operation, while σ represents the
sigmoid function.

The SAM module uses the feature map F1 as the input, which
has been weighted by CAM. As shown in Figure 4B, the input feature
map F1 undergoes spatially max-pooling and average-pooling
resulting in two two-dimensional feature maps, which are
splicing for convolution operation and activation operation, and
finally generates spatial attention weight Ms to obtain features
weighted by SAM. The formula for calculating the spatial
attention is shown in Eq. 5:

MS F( ) � σ(f3×3 AvgPool F( );[(
MaxPool F( )])) � σ(f3×3 FS

avg;F
S
max[ ]( )) (5)

where f3×3 represents the dimensionality reduction convolution
operation with a convolution kernel size of 3 × 3. (The study
discovers that using 3 × 3 convolution kernel size for

dimensionality reduction of feature channel results in better
intelligent network recognition performance than 7 × 7
convolution kernel size. Therefore, the convolution operation
with the kernel size of 3 × 3 is utilized here).

3.4 PQDs recognition framework
construction

Combining the imaging advantages of MTF with DenseNet’s
efficient training and deep feature extraction capabilities, this paper
proposes a novel PQDs recognition method based on MTF and
improved DenseNet. The PQDs recognition framework is shown in
Figure 5. The whole framework mainly includes four parts: signal
visualization module, dense connection learning module, attention
mechanism module and classification module.

(1) Signal visualization module: The one-dimensional PQDs
time-series sampling signals are deconstructed through
MTF dynamic coding, reorganized into MTF matrix to

FIGURE 8
Confusion matrix of 43 types PQDs recognition results (SNR = 20 dB).
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retain the original temporal information. Finally, the matrix is
mapped into a two-dimensional image with easy-to-recognize
features and temporal correlation, having a pixel size of
128 × 128. This approach indirectly enhances the
recognition precision of disturbance types from the data level.

(2) Dense connection learning module: This module comprises
DBs and transition layers. RGB feature maps undergo
convolution and dimension reduction via 7 × 7
convolution layers and 3 × 3 max-pooling layers to extract
shallow feature information. Following feature extraction, the
feature information needs to traverse four sets of DBs, with a
transition layer connecting every two sets of DBs. When
passing through DBs, feature reuse is performed on feature
maps from different layers in channel dimension based on
dense connection mechanism, which is conducive to
extracting deeper feature information and combining
shallow layer and deep layer information in the network,
which greatly improves feature utilization. Simultaneously,
transition layers are introduced to reduce feature dimensions,
which reduces network parameter redundancy and enhances
the overall efficiency of the model’s learning and
computation.

(3) Attention mechanism module: Adding the CBAM
attention module between the dense connection learning
module and the classification module of DenseNet-S can
effectively enhance the network’s recognition precision, as
evidenced by extensive experimentation. The feature map
F output by Dense Block 4 enters the CAM module, where
max-pooling and average-pooling operations are
performed and result in two 1 × 1 × 602 one-
dimensional feature vectors. Then the two feature
vectors are sent into the full connection layer for
calculation and sum operation. After activation
operation, the CAM module generates channel attention
weights Mc, which are then multiplied with the feature
map F to derive F1 that is the input feature map for the
SAM module. In the SAM module, the feature map F1

undergoes separate max-pooling and average-pooling
operations according to spatial position, and the two
results are splicing to generate a 4 × 4 × 2 feature
map. Subsequently, this map undergoes dimensional
reduction through a 1-channel convolution layer. The
spatial attention weight Ms is then obtained by Sigmoid
function activation. Ultimately, the feature obtained by
multiplying the weights Ms with the input feature map F1

represents the feature enhanced by CBAM.

FIGURE 9
Comparison of recognition accuracy between DenseNet-SC and
matinstream deep learning networks.

TABLE 3 Comparison of recognition performance on Test set.

Recognition network Recognition accuracy/% Computational efficiency metrics

0 dB 50 dB 30 dB 20 dB Params/106 FLOPs/109 Model Size/MB Time/ms

GoogleNet 88.09 87.35 86.23 81.24 24.46 5.75 93.47 92.84

VGG-16 96.28 95.67 94.37 90.79 134.44 15.47 512.84 65.31

ResNet-18 97.85 97.23 96.43 92.91 11.20 1.82 42.76 43.05

DenseNet-121 97.89 97.28 95.82 92.80 6.99 2.89 27.02 56.28

DenseNet-169 97.70 97.18 95.79 92.56 12.56 3.43 48.51 61.30

DenseNet-201 97.52 97.10 95.65 92.43 18.18 4.39 70.21 66.09

DenseNet-SC 98.29 97.64 96.80 93.26 3.88 0.72 14.94 15.22
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(4) Classification Module: This module consists of an adaptive
average-pooling layer, two fully connected layers, and a
Softmax classifier. Firstly, the feature maps enhanced by
CBAM are converted into one-dimensional feature vectors
using adaptive average pooling, which is then input into the
fully connected layer. Finally, the feature information output
from the fully connected layer is input into the Softmax
classifier. Softmax function is used to calculate the
probability value of each PQDs type corresponding to the
MTF feature image, and the category of the maximum value is
output as the classification result to realize the recognition
of PQDs type.

4 Simulation analysis

4.1 PQDs visualization dataset generation

According to IEEE Std 1159–2019, 34 composite disturbances are
generated by combining ninemathematical models of basic disturbance
signals. These composite disturbances included 18 double disturbances,
11 triple disturbances, and 5 quadruple disturbances. The random
parameters of PQDs including fluctuation amplitude and duration are
based on Table 1. Additionally, in alignment with Section 2.3’s outlined
signal sampling parameters, 1,000 samples are generated for each
disturbance with uniform amplitude and phase distribution. These
samples are produced at varying signal-to-noise ratios (SNRs) of 0 dB,
20 dB, 30 dB, and 50 dB to better simulate real-world PQDs scenarios.
Through the visual conversion process of PQDs signal in Section 2.3,
MTF is used to map samples into two-dimensional images, and a total
of 43 types of PQDs visualization dataset is constructed.

This paper presents the development of a PQDs recognition
model utilizing the PyTorch deep learning framework in Python 3.9.
The experimental environment uses AMD Ryzen 3,970X @
3.70 GHz CPU, 128 GB RAM, and NVIDIA RTX 3090 GPU.
The cross-validation technique is used in the training process. In
each epoch, the data from all categories are randomly arranged and
divided into training, validation, and test sets according to the ratio
of 6:2:2, and the optimal model is saved according to the recognition
accuracy of validation sets.

4.2 Model parameter settings and
evaluation criteria

When training the PQDs recognition model, the batch size is set to
64, the number of training epochs is set to 50, and the initial learning rate
is set to 0.001. In order to obtain the optimal trainingmodel, the stochastic
gradient optimizer (SGD, weight_decay = 0.0001, momentum = 0.9) is
used to optimize themodel, and the cross entropy loss function is used to
calculate the loss value. To ensure the network learning efficiency and
prevent overfitting, a dynamic adjustment strategy is used to update the
learning rate. After 50% of the total epochs are completed, the learning
rate is adjusted to the original 10%.

To evaluate the model’s performance, this paper uses multiple
evaluation metrics such as average recognition accuracy (Accuracy),
floating-point operations (FLOPs), parameters (Params), and model
size. Accuracy is calculated using the subsequent Eq. 6: The formula
for calculating the spatial attention weights is as follows:

Accuracy � 1
N
∑
n

j�1

Mjj

Mj
× 100% (6)

FIGURE 10
Real-world field measured waveform and MTF conversion diagram of typical PQDs event.
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where N is the total number of categories, Mj is the number of the
j-th category, and Mjj is the number of correct recognition for the
j-th category.

Params and FLOPs in CNNs are widely used to evaluate the
complexity of the model (Paoletti et al., 2021). The formulas is
calculated using the subsequent equation: for calculating Params
and FLOPs in the convolution layer and the fully connected layer are
as Eqs 7–10:

PCNN ~ O ∑
d

l�1
nl−1 · s2l + 1( ) · nl⎛⎝ ⎞⎠ (7)

CCNN ~ O ∑
d

l�1
nl−1 · s2l · nl ·m2

l
⎛⎝ ⎞⎠ (8)

PFCN ~ O ∑
d

l�1
nl−1 + 1( ) · nl⎛⎝ ⎞⎠ (9)

CFCN ~ O ∑
d

l�1
nl−1 · nl⎛⎝ ⎞⎠ (10)

where l is the index of a convolutional layer, and d is the depth
(number of convolutional layers). nl is the number of filters (also
known as “width”) in the l-th layer. nl−1 is also known as the number
of input channels of the l-th layer. sl is the spatial size (length) of the
filter. ml is the spatial size of the output feature map.

4.3 Experimental results and analysis

In order to verify the performance of the improved DenseNet-
SC model designed in this paper in recognizing PQDs types, the
improved model is compared with the DenseNet-S model and six
mainstream deep learning classification networks under the same

experimental environment and SNR conditions, so as to verify the
effectiveness and superiority of the improved model.

4.3.1 DenseNet-SC model capability assessment
The improved DenseNet-SC model and the DenseNet-S model

without CBAM module are trained with the same dataset and
experimental environment. After 50 epochs of training, the
recognition accuracy and loss value changes of the verification set
in the training process of the model are obtained, as shown in
Figure 6. At the same time, comparison results of various models’
recognition accuracy on the test set can be obtained under different
SNR environments, among which the overall recognition accuracy
of DenseNet-S is 95.72%, 95.06%, 93.92%, and 89.72% under no
noise, 50 dB, 30 dB, and 20 dB environments, respectively. In the
identical SNR environments, the overall recognition accuracy of
DenseNet-SC is 98.29%, 97.64%, 96.80%, and 93.26%, respectively.

As can be seen from Figure 6, the accuracy and convergence rate of
the improved DenseNet-SC model are significantly better than that of
the DenseNet-S model during the epochs. Once it reaches the state of
convergence, the accuracy of the former is stable at about 98%, and the
loss value is stable at about 0.07, while the accuracy and loss value of the
latter are oscillating at about 95% and 0.17, respectively. This suggests
that the addition of CBAMmodule to the DenseNet-Smodel effectively
improves the extraction of detailed features in the MTF images that
correspond to PQDs signals, so as to grasp the feature information in
the input image more accurately. By comparing the overall recognition
results of the two models on the test set, it can be seen that the
DenseNet-SC model also performs better than DenseNet-S in PQDs
recognition under four noise environments: no noise, 50 dB, 30 dB, and
20 dB. The recognition accuracy is improved by 2.57, 2.58, 2.88, and
3.54 percentage points respectively, which further indicates that adding
CBAM attention mechanism between the dense connection learning
module and the classification module of model is more helpful for the

TABLE 4 Recognition results of real-world field measured PQDs signal.

Serial number Disturbance types Recognition results of the proposed algorithm

1 Sag: 51 Groups Sag: 45 Groups/Interruption: 2 Groups Sag + Oscillation transient:
3 Groups/Sag + Notch: 1 Group

2 Swell: 22 Groups Swell: 22 Groups

3 Interruption: 3 Groups Interruption: 3 Groups

4 Harmonic: 24 Groups Harmonic: 23 Groups/Harmonic + Oscillation transient: 1 Group

5 Pulse: 5 Groups Pulse: 5 Groups

6 Flicker: 34 Groups Flicker: 30 Groups/Flicker + Harmonic: 3 Group/Flicker + Pulse:
1 Group

7 Sag + Harmonic: 15 Groups Sag + Harmonic: 13 Groups/Sag: 2 Groups

8 Sag + Oscillation transient: 10 Groups Sag + Oscillation transient: 8 Groups/Sag + Harmonic: 1 Group/Sag
+ Oscillation transient + Harmonic: 1 Group

9 Flicker + Pulse: 4 Groups Flicker + Pulse: 4 Groups

10 Swell + Spike: 5 Groups Swell + Spike: 5 Groups

11 Sag + Harmonic + Flicker: 5 Groups Sag + Harmonic + Flicker: 5 Groups

12 Interruption + Harmonic + Oscillation transient: 3 Groups Interruption + Harmonic + Oscillation transient: 2 Groups/Sag +
Harmonic: 1 Group
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model to focus on key feature information, so as to improve the
recognition performance.

TheGrad-Cammethod (Selvaraju et al., 2020) showcases the degree
to which different network modules concentrate on image features via a
heatmap. The heatmap’s colorbar value indicates the degree of network
focus, with higher values indicating a greater level of focus. The class
activation heatmaps of the output features of some samples before and
after CBAMmodule by the improvedmodel are shown in Figure 7. The
figure indicates that, regardless of basic, double, triple, or quadruple
disturbances, the image areas of focus are more precise and
comprehensive in capturing key texture features in the MTF images
when passing through the CBAM module than when passing through
the dense connection learning module. The reason for this is that the
deeper features of feature extraction module are more related to global
information, and the CBAMmodule assigns more weight coefficients to
the network from a global viewpoint. Therefore, deep global features can
be better extracted and learned through CBAMmodule, which enables
the focused feature areas to cover theMTF texture pattern areas with key
feature information more comprehensively.

4.3.2 Model noise resistance performance
evaluation

In noisy environments, PQDs signals may become distorted,
potentially interfering with the model’s judgment of their real class
and causing a reduction in the network’s recognition precision. To
evaluate the anti-noise ability of the improved model, combined with
the model recognition performance under different SNR environments
in the previous section, the recognition effect on various types of
disturbances is tested respectively in the 20 dB SNR environment.
The corresponding confusion matrix of the test results is shown in
Figure 8, where the rows indicate the actual disturbance labels while the
columns reflect the model’s recognition outcomes.

The test results show that under the 20 dB strong noise
environment, the recognition accuracy of some complex
disturbances containing oscillatory transient, harmonic, flicker

and spike, is below average. Among them, some disturbances are
easily confused with complex disturbances containing notch and
spike (C1 → C5/C6,C3 → C5/C6,C14 → C17). Some double
disturbances with harmonic can be easily identified as triple
disturbances (C2 → C8,C24 → C28,C32 → C36) and the
quadruple disturbances with oscillatory transient are easily
confused with the triple disturbances without oscillatory transient
(C9 → C10,C20 → C21), resulting in a significant decline in
recognition accuracy. On the other hand, the overall recognition
accuracy of the improved model can still reach 93.26% even under
20 dB strong noise environment, which shows good recognition
performance and noise robustness.

4.3.3 Comparison of recognition precision
performance among different deep
learning models

To further verify the precision performance of DenseNet-SC
model in recognizing PQDs, we performed comparative
experiments with six mainstream deep learning classification
networks: GoogleNet (Inception V3), Vgg-16, ResNet-18, and
DenseNet-121/169/201 under equivalent conditions of MTF
dataset and experimental settings. These classification
networks utilize the corresponding framework structure and
parameters setting from the original papers. Figure 9 shows
the comparison curves of recognition accuracy, while Table 3
presents the recognition accuracy results on the test set. It is
important to note that MTF images need to be upsampled to
299 × 299 and 224 × 224 respectively before being input into the
networks so as to adapt to the pre-trained GoogleNet and the
other five classification networks, while the proposed DenseNet-
SC does not require any prior information.

As shown in Figure 9A, compared with the three DenseNet series
classification networks, although the initial recognition accuracy of the
improved model is relatively low, its accuracy continues to increase and
the rising trend is very stable with the increase of epochs, and there is no

FIGURE 11
Comparison of precision and efficiency metrics of different PQDs recognition frameworks.
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obvious fluctuation. In the 16th epoch, the initial synchronization with
other models is achieved, and the surpassing is completed in the later
stage. In addition, as can be seen from Table 3, the recognition accuracy
of the improvedmodel under different SNR environments is superior to
the other three models in terms of accuracy performance verification of
the test set. In summary, although DenseNet-SCmodel is lightweight in
the network architecture, the increase in growth rate and the injection of
CBAM attention module strengthen the propagation of feature
information and the extraction of key features, improve the
information flow and feature capture capability of the whole
network, and optimize its recognition precision performance for PQDs.

According to Figure 9B; Table 3, GoogleNet underperforms on the
MTF dataset. Its recognition accuracy is lower than that of othermodels
in both training and testing phases. Compared with VGG-16 and
ResNet-18 models, on the one hand, although the improved model
exhibits subpar performance during the early training phase, the
recognition accuracy gradually exceeds that of two models with the
increase of epochs, and finally stabilizes around 98%. On the other
hand, in terms of test performance, the overall recognition accuracy of
the improved model under the SNR of 0, 20, 30, and 50 dB is improved
by 2.01/0.44, 1.97/0.41, 2.43/0.37, and 2.47/0.35 percentage points
compared with the two models, respectively. These results
demonstrate the improved model’s superiority in terms of PQDs
recognition precision and noise resistance.

4.3.4 Comparison of recognition efficiency
performance among different deep
learning models

Considering the high requirement of PQDs recognition efficiency
for power system health status monitoring, the size of recognition
model and its operational efficiency are important evaluationmetrics to
judge its performance. The size and operational performance of
different recognition models are shown in Table 3, where time refers
to the average time of taking the model to recognize a sample image
from the test set over 100 tests.

As can be seen from Table 3, when compared with ResNet-18
and the three DenseNet series models, the recognition accuracy
of Densenet-SC model improves relatively little, but the number
of Params, FLOPs, model size and recognition time are greatly
reduced. Among them, the Params and the model size of
DenseNet-SC are only 55.51% of DenseNet121 model, which
is the lightest model among the six comparison models, while the
FLOPs and the recognition time to recognize an image are less
than 40% of ResNet-18 model, which has the highest operational
efficiency among the comparison models. This can not only
effectively reduce the memory ratio and computing power, but
also help to improve the training and testing efficiency of the
model, so as to realize the PQDs recognition operation
performance upgrade of the model. On the other hand,
compared with the GoogleNet and VGG-16 models, the
proposed model has achieved significant optimization in terms
of recognition accuracy, model size and computing performance.
In addition, due to the influence of input image size and its own
network structure, GoogleNet’s efficiency of recognizing an
image is lower than that of VGG-16. To sum up, the
DenseNet-SC model designed in this paper not only improves
the network recognition precision, but also realizes the
lightweight and high efficiency of the network, making it able

to be deployed on the hardware terminal equipment with small
storage capacity and low computing performance configuration,
which provides the possibility for further exploring the
construction of mobile PQDs recognition system.

5 Real-world field measured
signals analysis

5.1 Practical effectiveness analysis of the
proposed PQD recognition method

To assess the effectiveness of the proposed method for
practical engineering use, real-world field measured PQDs
signal data is utilized to test its recognition performance. The
data used for testing are gathered from a power quality
monitoring device in a 10 kV substation located in the
southern region of Jiangsu Province, China. The data
collection period ranges from March 2020 to August 2021,
comprising a total of 181 sets of samples. The recording
device has a sampling frequency of 12.8 kHz and the signal
lasted for 0.624 s. To conform with IEEE Std1159-2019 and
the input requirements of the proposed recognition network,
the 10-cycle typical data of each set of signals is intercepted and
normalized as the input of signal visualization module. The real-
world field measured waveforms of PQDs typical events and their
MTF conversion images are shown in Figure 10. It can be seen
that the MTF image corresponding to each disturbance measured
signal still have clear and easily distinguishable texture pattern
features, which are basically consistent with the theoretical MTF
image features. Therefore, it can be seen that the MTF conversion
mode also has good feature expression ability for the real-world
field measured signal data. MTF samples corresponding to all
measured signals are identified by the DenseNet-SC optimal
training model, and the results are shown in Table 4.

As can be seen from Table 4, in terms of sag recognition,
2 groups are recognized as interruption due to the too low sag
amplitude of signal sequence, and 4 groups are recognized as sag +
oscillatory transient/notch due to environmental noise interference.
In terms of flicker recognition, 3 groups are detected to contain
harmonic components due to the influence of noise, and 1 group is
identified to contain pulse disturbance due to the presence of serious
noise point. In terms of double disturbance recognition, the two
groups of sag + harmonic are identified as sag. Further analysis
shows that the harmonic content in the measured signal is small and
its total proportion is relatively small, resulting in label loss. In
addition, a group of triple disturbance signals (interruption +
harmonic + oscillatory transient) are recognized as sag +
harmonic because the signal sag amplitude is near the critical
value and the oscillatory amplitude is relatively small. In
summary, due to the mismatch between the real-world field
measured signal data and the simulation signal data simulated by
mathematical model, the recognition accuracy of some measured
disturbance types decreases compared with the simulation results,
but on the whole, the measured disturbance signal types can be
effectively recognized with a high precision of 91.16%. Therefore, the
effectiveness and reliability of the proposed method in engineering
practice are verified.
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5.2 Comparative performance analysis with
existing PQDs recognition frameworks

To further verify the comprehensive performance advantages of the
proposedmethod in terms of efficiency and accuracy, six existing PQDs
identification algorithms that have achieved excellent performance are
selected as benchmark algorithms for comparative analysis with the
proposed algorithm on the real-world field measured dataset. The
benchmark algorithms are divided into machine learning algorithms
and deep learning algorithms.

The machine learning algorithms include DWT + PNN
(Khokhar et al., 2017) and ST + RBF (Wang et al., 2018), while
the deep learning algorithms include the one-dimensional deep
learning algorithms GRU (Deng et al., 2019) and LSTM (Xu
et al., 2022), which directly take one-dimensional signals as
model inputs, and the two-dimensional deep learning algorithms
GASF + CNN (Zheng et al., 2021) and GASF-GADF + ResNet18,
which convert one-dimensional signals into two-dimensional
visualization images and then combine advanced image
recognition algorithms for PQDs classification.

To ensure the fairness of various algorithms in the PQDs
recognition performance test, we process the data and train the
classifier models based on the same original one-dimensional signal
dataset under the same experimental environment. Among them,
the original dataset is divided according to the same dataset
partitioning ratio as in this paper, the classifier model structure is
consistent with that in the original paper, and the hyperparameter
settings are consistent with that in this paper. After the training of
various algorithm models and saving the optimal models, they are
applied to the measured signal dataset and the comprehensive
performance is compared with the proposed method. The results
are shown in Figure 11. Among them, the visual conversion and
network classification time are the average time obtained for a signal
sample after 100 consecutive tests. Sequence conversion time and
network classification time refers to the average time used to process
and recognize a signal sample in the dataset, respectively.

According to the test results, the overall accuracy performance
of machine learning algorithms is poor. This is because this
algorithm type relies heavily on expert knowledge when manually
extracting features, and its generalization performance is greatly
limited when facing measured signals with more complex changing
states. In addition, machine learning models often have shallow
depth, which leads to their lack of deep feature capture ability,
thereby causing a decline in PQDs recognition accuracy
performance. One-dimensional deep learning algorithms directly
take one-dimensional sequence data as model input without any
data processing, so they are superior to other algorithms in efficiency
performance. However, their accuracy performance is limited due to
its limitation in information mining of complex time series data.
With the deep feature mining ability and strong generalization of
advanced image recognition algorithms, the accuracy performance
of two-dimensional deep learning algorithms is better than that of
traditional machine learning algorithms and one-dimensional deep
learning algorithms. Among them, due to the limited temporal and
spatial features of the PQDs signals extracted by single-channel
GASF in the coding process, and the shallow depth of CNN network,
the deep-level semantic information of the image cannot be
captured, thus the overall recognition accuracy of GASF + CNN

is only 67.96%. Compared with single-channel GASF, double-
channel GASF-GADF can provide more abundant PQDs time-
series feature information. However, real-world disturbance signal
aliases environmental noise and its state changes are more complex,
which makes the GAF visualization process requiring coordinate
conversion and matrix coding inevitably lose some important
feature information. It interferes with the classification network
to capture important feature information, and then reduces the
recognition performance of the model, so its accuracy is also limited.
Compared with GAF, MTF is more resistant to interference and
noise through the introduction of quantile division, and the encoded
image obtained by conversion can retain more comprehensive
temporal and spatial feature information. In terms of recognition
efficiency, the visual conversion efficiency of the proposed method is
much higher than other two methods, because the MTF conversion
process is very simple and computationally small, and it does not
need to carry out complex coordinate conversion andmatrix coding.
In addition, due to the lightweight structural design, the model
recognition efficiency is higher than that of the larger ResNet-18, but
it is lower than that of CNN, because CNN has a simpler structure
(the number of parameters and the model size are 2.18 M and
8.32 MB, respectively). However, CNN has obvious defects in the
recognition accuracy performance. In summary, the experimental
results of measured signals prove that the MTF + DenseNet-SC
method proposed in this paper has better comprehensive
performance in PQDs recognition than other algorithms.

6 Conclusion

Tomeet the recognition efficiency and precision requirements of
massive and complex PQDs events under the background of new
power system, and give full play to the deep sensing capability of
DenseNet and the simple conversion and anti-interference
capability of MTF, a novel PQDs recognition method based on
MTF and improved DenseNet is proposed in this paper. The specific
advantages are as follows:

1) MTF can effectively extract the disturbance characteristics of
one-dimensional signals, and has certain anti-interference
ability. The two-dimensional images after visualization can
effectively express the sample disturbance information.

2) A DenseNet-S lightweight network structure is designed, and
by introducing an attention mechanism, the improved model
can capture the texture pattern features of each MTF sample
more accurately and comprehensively. The recognition
accuracy of 43 PQDs types can reach 98.29% and 93.26%
respectively under noise-free and 20 dB strong noise
environment, which effectively improves the PQDs
recognition precision and noise robustness.

3) The improved DenseNet-SC model has obvious advantages over
six mainstream deep learning image classificationmodels, such as
ResNet-18 and DenseNet-121, in terms of model size, Paras,
FLOPs and recognition time. While improving recognition
precision, the lightweight of model and the high efficiency of
data analysis are realized. In addition, this paper constructs
12 types of real-world field measured PQDs signal dataset to
comprehensively test the recognition performance of the
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proposed method. The test results verify the effectiveness and
superiority of the proposedmethod in the accuracy and efficiency
of real-world field measured PQDs recognition, which can meet
the classification accuracy and efficiency requirements of massive
and complex PQDs events in engineering applications.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

LZ: Conceptualization, Formal Analysis, Investigation,
Methodology, Validation, Writing–original draft. SG: Data
curation, Investigation, Resources, Validation, Writing–review
and editing. YL: Resources, Supervision, Validation,
Writing–review and editing. CZ: Resources, Software,
Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the State Grid Jiangsu Electric Power Co., Science
and Technology Project (J2022093).

Conflict of interest

Authors LZ, SG, YL, and CZ were employed by State Grid
Suzhou Power Supply Company.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmadi, A., and Tani, J. (2019). A novel predictive-coding-inspired variational RNN
model for online prediction and recognition. Neural Comput. 31 (11), 2025–2074.
doi:10.1162/neco_a_01228

Cui, C. H., Duan, Y. J. V., Hu, H. l., Wang, L., and Liu, Q. (2022). Detection and
classification of multiple power quality disturbances using stockwell transform and
deep learning. IEEE Trans. Instrum. Meas. 71, 1–12. doi:10.1109/TIM.2022.
3214284

Deng, Y., Wang, L., Jia, H., Tong, X., and Li, F. (2019). A sequence-to-sequence deep
learning architecture based on bidirectional GRU for type recognition and time location
of combined power quality disturbance. IEEE Trans. Industrial Inf. 15 (8), 4481–4493.
doi:10.1109/TII.2019.2895054

He, C. J., Li, K. C., and Yang, W. W. (2023). Power quality compound disturbance
identification based on dual channel GAF and depth residual network. Power Syst.
Technol. 47 (1), 369–376. doi:10.13335/j.1000-3673.pst.2022.0644

Huang, G., Liu, Z., Van, D. M., and Weinberger, K. Q. (2017b). Densely connected
convolutional networks. Proc. CVPR, 4700–4708. doi:10.1109/CVPR.2017.243

Huang, J. M., Ju, H. Z., and Li, X. M. (2016). Classification for hybrid power quality
disturbance based on STFT and its spectral kurtosis. Power Syst. Technol. 40 (10),
3184–3191. doi:10.13335/j.1000-3673.pst.2016.10.036

Huang, N. T., Peng, H., and Cai, G. W. (2017a). Feature selection and optimal
decision tree construction of complex power quality disturbances. Proc. CSEE 37 (3),
776–785. doi:10.13334/j.0258-8013.pcsee.160108

Jyoti, S., Basanta, K. P., and Prakash, K. R. (2021). Power quality disturbances
classification based on Gramian angular summation field method and convolutional
neural networks. Int. Trans. Electr. Energy Syst. 31 (12), e13222. doi:10.1002/2050-7038.
13222

Khokhar, S., Zin, A. A., Memon, A. P., and Mokhtar, A. S. (2017). A new optimal
feature selection algorithm for classification of power quality disturbances using discrete
wavelet transform and probabilistic neural network. Measurement 95 (2017), 246–259.
doi:10.1016/j.measurement.2016.10.013

Li, D. Q., Mei, F., Zhang, C. Y., Sha, H. Y., Zheng, J. Y., and Li, T. R. (2020). Deep
belief network based method for feature extraction and source identification of
voltage sag. Automation Electr. Power Syst. 44 (04), 150–160. doi:10.7500/
AEPS20190306004

Li, R. J., W, Y., Wu, Q., Nilanjan, D., Rubén, G. C., and Shi, F. Q. (2022). Emotion
stimuli-based surface electromyography signal classification employing Markov
transition field and deep neural networks. Measurement 189 (2022), 110470. doi:10.
1016/j.measurement.2021.110470

Paoletti, E. M., Haut, M. J., Tao, X. W., Plaza, J., and Plaza, A. (2021). FLOP-
reduction through memory allocations within CNN for hyperspectral image
classification. IEEE Trans. Geoscience Remote Sens. 59 (7), 5938–5952. doi:10.
1109/TGRS.2020.3024730

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2020).
Grad-CAM: visual explanations from deep networks via gradient-based localization.
Proc. ICCV, 618–626.

Sindi, H., Nour, M., Rawa, M., Öztürk, Ş., and Polat, K. (2021). An adaptive deep learning
framework to classify unknown composite power quality event using known single power
quality events. Expert Syst. Appl. 178, 115023. doi:10.1016/j.eswa.2021.115023

Std (2019). IEEE recommended practice for monitoring electric power quality. IEEE
29, 240. 01-Power transmission and distribution networks in general.

Tang, Q., Qiu, W., and Zhou, Y. C. (2020). Classification of complex power quality
disturbances using optimized S-transform and kernel SVM. IEEE Trans. Industrial
Electron. 67 (11), 9715–9723. doi:10.1109/TIE.2019.2952823

Wang, F., Quan, X. Q., and Ren, L. T. (2021). Review of power quality disturbance
detection and identification methods. Proc. CSEE 41 (12), 4104–4120. doi:10.13334/j.
0258-8013.pcsee.201261

Wang, H., Wang, P., Liu, T., and Zhang, B. (2018). Power quality disturbance
classification based on growing and pruning optimal RBF neural network. Power
Syst. Technol. 42 (8), 2408–2415. doi:10.13335/j.1000-3673.pst.2017.0663

Wang, S., and Chen, H. (2019). A novel deep learning method for the classification of
power quality disturbances using deep convolutional neural network. Appl. energy 235,
1126–1140. doi:10.1016/j.apenergy.2018.09.160

Wang, Z., and Oates, T. (2015). Spatially encoding temporal correlations to classify
temporal data using convolutional neural networks. J. Comput. Syst. Sci., 07481. arXiv:
1509. doi:10.48550/arXiv.1509.07481

Woo, S., Park, J. P., Lee, J. Y., and Kweon, I. S. (2018). CBAM: convolutional block
attention module. Proc. ECCV, 3–19. doi:10.1007/978-3-030-01234-2_31

Wu, J. Z., Mei, F., Zhen, J. Y., Zhang, C. Y., and Miao, H. Y. (2022). Recognition of
multiple power quality disturbances based onmodified empirical wavelet transform and
XGBoost. Trans. China Electrotech. Soc. 37 (1), 232–243. doi:10.19595/j.cnki.1000-6753.
tces.201363

Xu, W., Duan, C., Wang, X., and Dai, J. (2022). Power quality disturbance
identification method based on improved fully convolutional network. Proc. IEEE
Asia Conf. Energy Electr. Eng., 1–6. doi:10.1109/ACEEE56193.2022.9851835

Yan, J. L., Kan, J.M., and Luo,H. F. (2022). Rolling bearing fault diagnosis based onMarkov
transition field and residual Network. Sensors 22 (10), 3936. doi:10.3390/s22103936

Yin, B. Q., Chen, Q. B., and Li, B. (2021). A new method for identification and
classification of power quality disturbance based on modified Kaiser window fast
S-transform and LightGBM. Proc. CSEE 41 (24), 8372–8383. doi:10.13334/j.0258-
8013.pcsee.210743

Zheng, W., Lin, R., and Wang, J. (2021). Power quality disturbance classification
based on GAF and a convolutional neural network. Power Syst. Prot. Control. 49(11),
97–104. doi:10.19783/j.cnki.pspc.200997

Frontiers in Energy Research frontiersin.org16

Zhou et al. 10.3389/fenrg.2024.1328994

173

https://doi.org/10.1162/neco_a_01228
https://doi.org/10.1109/TIM.2022.3214284
https://doi.org/10.1109/TIM.2022.3214284
https://doi.org/10.1109/TII.2019.2895054
https://doi.org/10.13335/j.1000-3673.pst.2022.0644
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.13335/j.1000-3673.pst.2016.10.036
https://doi.org/10.13334/j.0258-8013.pcsee.160108
https://doi.org/10.1002/2050-7038.13222
https://doi.org/10.1002/2050-7038.13222
https://doi.org/10.1016/j.measurement.2016.10.013
https://doi.org/10.7500/AEPS20190306004
https://doi.org/10.7500/AEPS20190306004
https://doi.org/10.1016/j.measurement.2021.110470
https://doi.org/10.1016/j.measurement.2021.110470
https://doi.org/10.1109/TGRS.2020.3024730
https://doi.org/10.1109/TGRS.2020.3024730
https://doi.org/10.1016/j.eswa.2021.115023
https://doi.org/10.1109/TIE.2019.2952823
https://doi.org/10.13334/j.0258-8013.pcsee.201261
https://doi.org/10.13334/j.0258-8013.pcsee.201261
https://doi.org/10.13335/j.1000-3673.pst.2017.0663
https://doi.org/10.1016/j.apenergy.2018.09.160
https://doi.org/10.48550/arXiv.1509.07481
https://doi.org/10.1007/978-3-030-01234-2_31
https://doi.org/10.19595/j.cnki.1000-6753.tces.201363
https://doi.org/10.19595/j.cnki.1000-6753.tces.201363
https://doi.org/10.1109/ACEEE56193.2022.9851835
https://doi.org/10.3390/s22103936
https://doi.org/10.13334/j.0258-8013.pcsee.210743
https://doi.org/10.13334/j.0258-8013.pcsee.210743
https://doi.org/10.19783/j.cnki.pspc.200997
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1328994


Knowledge reasoning in power
grid infrastructure projects based
on deep multi-view graph
convolutional network
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With the rapid development of power grid infrastructure, especially the increasing
number of ultra-high voltage (UHV) projects, knowledge extracted fromhistorical
engineering data is collected and can be potentially used to assist in the review of
power transmission and transformation projects. However, conventional
knowledge modeling and knowledge reasoning methods cannot meet the
current needs of power grid construction. In this paper, considering the more
supernumerary and distinctive information brought by multi-view data which
could be beneficial for feature representation and knowledge reasoning from the
constructed knowledge base, a multi-view graph convolutional network (GCN)
based on knowledge graph is proposed to make classification for power grid
infrastructure projects. Specifically, several views are constructed based on
attribute information of a knowledge graph. In addition, a Haar convolution-
based pooling mechanism is employed to capture the structural features
represented by a chain of subgraphs. And then an aggregator that combines
both attribute and structural information is used to classify UHV projects. Results
from both UHV and NCI-1 datasets indicate that our proposed method is more
has higher accuracy and generalization ability.

KEYWORDS

review of power transmission and transformation, knowledge graph, graph
classification, graph convolutional network, knowledge reasoning

1 Introduction

With the proposal of carbon peaking and carbon neutralization (J. Liu et al., 2021; Luo
et al., 2023; Ren et al., 2021), a new power system based on clean energy consumption has
become an important part of achieving dual-carbon goals. In this context, photovoltaic and
wind power from the western region of China have become important power sources with a
total scale of 450 million kilowatts and increasing. Due to the long distance of electricity
transmission, UHV projects are expected to enter a larger-scale construction stage. Unlike
conventional power transmission and transformation projects, UHV projects are larger in
construction scale with multiple companies involved, which lead to a huge amount of
accumulated historical data in terms of quantity and complexity. With the development of
digital technology and artificial intelligence and the deep integration of technology and
information technology in the field of power grid engineering construction, the concept of
digital infrastructure has emerged. As an important part of engineering construction
management and control, engineering review is still in an inefficient mode that relies
mainly on expert experience and offline review, which makes it difficult to meet the analysis
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requirements of the current ever-expanding construction scale of
power transmission and transformation projects. Therefore, it is
urgent to build an auxiliary review system with knowledge storage
and reasoning components based on historical data of power
transmission and transformation projects, which leads to an
improvement of the digitalization level and the efficiency of
power grid infrastructure project review.

At present, the studies of auxiliary review platforms of power
transmission and transformation projects are still in the early stages.
Browser/Server(B/S) architecture and SQL server databases are two
key technologies of these systems that have already been put into the
production phase. Built for various voltage levels and different
workflows, three key functions are implemented such as data
entry, key factor extraction, and data searching (Huang, 2018; Li
et al., 2021). Although the application of these platforms has
simplified the review process and improved the efficiency of data
processing, there are three difficulties yet not be solved: 1) the
knowledge extracted from heterogeneous data is stored in relational
databases and their connection relationships have not been
modeled; 2) knowledge reasoning is difficult based on existing
models and data storage methods; 3) knowledge extraction
methods are heavily based on expert experiences and human
labor. Therefore, knowledge graph technology, which has the
advantages of high scalability, high query efficiency, and good
visualization, has become one of the excellent technologies to
choose from in building the next-generation power transmission
and transformation engineering auxiliary review platform.

The knowledge graph is a structured semantic knowledge base
that integrates knowledge extraction, data storage, reasoning, and
analysis capabilities (Ji et al., 2022). It has been widely used in many
fields (Yang et al., 2022; Zou and Lu, 2022; Wu et al., 2023). At
present, the application of knowledge graphs in the power field is
mainly oriented to aspects such as dispatching, operation and
maintenance, and fault handling, and has achieved good results
(Pu et al., 2021; Tian et al., 2022; Liu et al., 2023). These
researches mainly focus on construction methods such as named
entity recognition and relation extraction algorithms of different
domains. However, the methodologies and applications of
knowledge reasoning technology based on domain knowledge
graphs in electric power systems are still in an early stage.
Knowledge graphs can be represented as semantic triples or
attributed networks (Gao et al., 2023), which are all non-European
structural graphs. Traditional deep learning methods such as
convolutional neural network(CNN) and recurrent neural
network(RNN) cannot be used in such scenarios because
representations of graph-structured data is generally irregular,
therefore a new deep learning mechanism is needed to process
graph structure. In this context, the graph neural network (GNN)
is proposed to get the latent representations embedded from nodes,
attributes, and structural information of graphs. Compared to the
basic network structure of the neural network, the fully connected
layer (MLP), whichmultiplies the featurematrix by the weightmatrix,
the graph neural network considers structural information, and adds
an adjacency matrix as input. With the development of the study,
several GNN variants have been proposed. For the first time, graph
convolution networks(GCN) introduce convolution operations in
image processing to process graph-structured data (Kipf and
Welling, 2016). Various experiments show the effectiveness of

GCN due to the ability to encode the structural information of the
graph. However, the shortcomings of GCN are also obvious: 1) GCN
needs to put the entire graph data into memory and graphics
processing unit(GPU), which requires high-performance
equipment when dealing with large graphs. 2) GCN has high
computational complexity due to the eigendecomposition
operation of graph Laplacian. To handle the problems mentioned
above, graph sample and aggregate(GraphSAGE) are proposed
(Hamilton et al., 2017). GraphSAGE is an inductive learning
framework. In practice, it only retains the training sample to the
edge of the training sample during training, and then includes the two
major steps which are sample and aggregate. Then, to solve the
problem that GNN does not take into account the different
importance of different neighbor nodes when aggregating neighbor
nodes, graph attention networks (GAT) take the idea of Transformer
and introduce themasked self-attentionmechanism (Veličković et al.,
2017).When calculating the representation of each node in the graph,
different weights are assigned to neighbor nodes based on their
different characteristics.

However, there are different types of attributes of a node in the
knowledge graph. For instance, a transformer could have three
attributes such as device model, quantity, and rated voltage. Both
of the latter two are usually numeric properties and the first one is a
combination of letters and numbers. Conventional GNN-based
knowledge modeling and reasoning methods take these attributes
as a single matrix, which may lead a confusion about attribute
characteristics (Peng et al., 2020). To solve the knowledge reasoning
problem in power grid infrastructure projects, a deep multi-view
graph convolutional network is introduced considering both the
attribute and structural information. This model mainly contains
3 components: a multi-view graph encoder, an aggregator, and
classification module. The key contributions are as follows:

1) Multi-view information is used separately in knowledge
reasoning of UHV projects. It can provide a more accurate
feature embedding than a single-view latent representation.

2) A more effective pooling mechanism based on the Haar
convolution method is introduced considering the structural
information of the knowledge graph in the UHV projects.

3) Based on the construction of knowledge graphs in the UHV
projects domain and the proposition of a deep multi-view
graph convolutional network, the problem of knowledge
reasoning on project classification is solved, which lays the
foundation for the downstream application of the power
transmission and transformation auxiliary review platform.

2 Problem formulation

The knowledge graph of UHV projects can be divided into two
categories based on the attributes of the nodes and the structural
information of the graph. Specifically, nodes of knowledge graph can
be seen as nodes in the attribute matrix, and the structure
information can be modeled by adjacency matrix. As shown in
Figure 1, three views are generated based on different attribute types,
with each view representing a single aspect of the node attributes,
such as rated voltage, device model, and quantity. Several subgraphs
are also produced based on the structural information of the graph,
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such as the electrical primary part, electrical secondary part,
protection part, telecontrol part, and so on.

Following the commonly used notations, a knowledge graph is
denoted as G(V, A, X), where V denotes the set of nodes, A denotes
the adjacency matrix and X denotes the attribute matrix. Thus, a
multi-view graph of the graph G can be represented as Gmg=(V, A,
Xmg), where Xmg∈ Rn×dmg

is a submatrix of X and n � |V| is the
number of nodes, dmg contains k distinct attribute features of the
graph. As is illustrated above, a multi-view graph has the same
structure as the original graph which V and A remain unchanged,
while the attributes of the nodes are part of X. On the other hand, a
subgraph of G can be denoted as Gs=(Vs, As, X), where Vs and As are
the submatrix of the originalV and A, representing a divide from the
structural aspect.

Our purpose is to classify the knowledge graph subgraphs, which
is a fundamental function for the review of power transmission and
transformation projects. Therefore, a function to generate a
probability of each graph should be learned with both Gmg and
Gs as input, which could be represented by the following Equation
(1), where Z denotes the probability of the graph, f is a trainable
function of the deep multi-view graph convolutional network, Xmg

and XS denotes the embeddings of Gmg and Gs respectively.

Z � f Xmg Gmg( ), XS Gs( )( ) (1)

3 Framework and methodologies

Considering both the attribute and structural information of
the UHV knowledge graph, the knowledge reasoning framework
mainly takes five steps. Firstly, with the analysis of historical
structured, semi-structured, and unstructured data, a UHV
knowledge graph is constructed. Secondly, considering the
attribute information of the knowledge graph, a series of multi-
view graphs are generated and GCN is leveraged to learn the latent
representation of each graph. Thirdly, an aggregator is used to
combine multi-view representations. Fourthly, a hierarchical Haar
graph pooling method is adopted to replace the graph Laplacian-
based GNN considering the structural information of the graph.
Finally, a unified representation of the knowledge graph is
generated and ready for graph classification and other
downstream applications. The framework of the knowledge
reasoning method is shown in Figure 2. More details will be
elaborated in the following sections.

FIGURE 1
A UHV example to illustrate the multiple views and structural divide.
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3.1 Knowledge graph construction based on
UHV projects

Data from the UHV projects mainly contains three parts:
structural, simi-structural, and non-structural data. Project
investment table, equipment list are typical structural data.
Equipment inventory is simi-structural data because the
properties can be put into the same cell and break the structural
feature of the data. Preliminary design instructions, feasibility study
reports are some of the non-structural data, which account for a
large proportion. The knowledge graph is a structured semantic
knowledge base used to describe concepts in the physical world and
their relationships in symbolic form. In this section, a two-stage
method is proposed to construct a UHV knowledge graph.

1) Knowledge graph ontology construction

Ontology is a model and a pattern constraint on the data that
constitutes the knowledge graph. Building an ontology in a specific
domain requires cooperation with multiple experts in vertical fields.
The inputs for constructing ontology include domain knowledge,
terminology dictionary, experience of experts, etc. The output
includes the entity categories that constitute the knowledge
graph, as well as the relationships between categories, the set of
attributes that entities of a specific category, and so on. There are
generally three methods for constructing knowledge graph ontology:
top-down, bottom-up, and a combination of the two. Among them,
the top-down approach is to define the most common top-level
concepts in the field and then expand downwards in sequence. It
requires a thorough understanding of a specific domain both in the
business aspect and the data aspect as well. The bottom-up method
is just the opposite. It starts with entities, summarizes and organizes
entities to form low-level concepts, and then gradually abstracts
upward to form upper-level concepts.

In the UHV projects knowledge domain, heterogeneous data
comes from different sources. On the one hand, existing data models
such as traditional power system engineering systems and expert
knowledge bases can provide equipment information and other
constraints. On the other hand, rich knowledge is buried in various
types of data such as unstructured, semi-structured, and structured
data, which needs to be added to the knowledge base using data
mining methods. To ensure the integrity of UHV knowledge graph
ontology, a combination of top-down and bottom-up is used. Expert
experiences are regarded as the guidelines of the construction, while

knowledge extracted from data is a supplement to the ontology.
These two aspects together form the conceptual part of the
knowledge graph.

2) Knowledge graph construction for UHV projects

Knowledge construction for UHV projects constitutes the data
layer of the knowledge graph. It mainly contains 2 components:
knowledge extraction and knowledge fusion.

Knowledge extraction is a technology that automatically
extracts structured information such as entities, relationships,
and entity attributes from heterogeneous data. Conventional
named entity recognition(NER) algorithm includes BiBERT-
LSTM-CRF (Huang et al., 2015), RoBerta-CRF (Liu et al.,
2019), and other deep neural network models. To solve the
nested entity problem, methods based on entity matrix such as
GlobalPointer are proposed. Other methods such as TPLinker,
Tencent Muti-head, and Deep Biaffine are also suitable for solving
nested NER problems. As for relation extraction, recent research
mainly focuses on joint extraction methods, which can be divided
into two categories: sequence annotation-based methods which
converts joint extraction problem into sequence annotation
problem when decoding, and sequence-to-sequence based
methods (Zeng et al., 2018; Takanobu et al., 2019). For
constructing a UHV knowledge graph, due to the fact that
there exists a nested NER phenomenon, a combination of
manual annotation and GlobalPointer is recommended. For
example, given a sentence “The Beijing 1000 kV substation
project requires four new main transformers”, which describes
the quantity of transformers in the project. To recognize the
nested entity “Beijing 1000 kV substation project”, GlobalPointer
first lists all the entity candidates and then Pick out the real
entities with entity labels. It can be concluded that a sentence with
n words could generate n(n+1)

2 candidates. With m labels, the NER
problem is then converted to a multi-label classification problem.
Although the time complexity is σ(n2), with the use of
Transformer and the design of parallel computing, it can be
reduced to σ(1).

Knowledge fusion refers to the fusion of description
information about the same entity or concept from multiple data
sources and the integration and disambiguation of heterogeneous
data under unified standards for knowledge graphs. It requires two
processes such as implement entity linking and knowledge merging.
The process of entity linking is to use a given entity referent to

FIGURE 2
A framework of the knowledge reasoning method based on UHV projects.

Frontiers in Energy Research frontiersin.org04

Hu et al. 10.3389/fenrg.2023.1339416

177

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1339416


perform entity disambiguation and coreference resolution through
similarity calculation. After confirming the correct entity object, the
entity referent is linked to the corresponding entity in the knowledge
graph. Among them, entity disambiguation solves the problem of
ambiguity of entities with the same name, and coreference
resolution solves the problem of multiple references
corresponding to the same entity object.

Based on the data extracted from a UHV project, Figure 3 shows
the constructed knowledge graph. As can be seen, a UHV project
mainly contains six parts: electrical primary part, electrical
secondary part, hydraulic part, HVAC part, remote control part
and protection part, which is represented as orange nodes in the
figure. Each part contains multiple equipment, with
components followed.

FIGURE 3
Part of a knowledge graph based on a UHV project.

FIGURE 4
A subgraph chain of UHV knowledge graph.
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3.2 Multi-view graphs encoder

After obtaining the knowledge graph of UHV projects, we use
attributed network model to analyze the knowledge reasoning
problem. To transform knowledge graphs to attributed networks,
we take entities as nodes and edges between entities become edges
between nodes. And attributes of each node are embedded before
concatenated as a vector. For a specific UHV graph, we divide it into
multi-view graphs considering the difference of multiple attributes
of a node. Taking the accuracy and effectiveness of the multi-view
divide into account, there are two principles: 1) attributes with
different units need to be divided into different views in order to
avoid confusion of attribute information due to excessive numerical
differences; 2) pure numeric properties and mixed text and numeric
properties should be separated into separate views.

After the construction of multi-view graphs, a GCN-based encoder
is adopted to get the latent representation of each graph. GCN is a
convolutional neural network that can directly act on graphs and utilize
their attribute and structural information. To get the most precious
embedding of the graph, several layers of GCN are usually used. Given a
graph G(V, A, X) with k views, each of the multi-view graph can be
denoted as Gmg

i (V,A,Xmg
i ), where X � (Xmg

1 ,Xmg
2 , . . . ,Xmg

k ). The
embedding of each layer can be denoted as:

Hl+1 � f Hl,A,Wl( ) (2)
where Hl is the input of the layer l, and Wl is the trainable
parameters.

More specifically, the function f(Hl ,A,Wl) can be expressed
as follows:

f Hl ,A,Wl( ) � σ ~D
−1
2 ~A~D

−1
2HlWl( ) (3)

where ~A � A + I, ~D is the degree matrix of the nodes with
~Di,i � ∑j

~Ai,j, σ is an activation function such as Relu. To simplify
the calculation,Wl is shared for all the nodes. It is worth noticing that
GCN can only capture the information of the neighborhood for a
specific node. In order to take long-range information into
consideration, a deep GCN network with k convolutional layers is

required. However due to an over-smoothing problem, the number of
layers is no more than three. In this paper, a UHV knowledge graph is
built with a depth of three, thus a three-layer GCN network is used. The
final feature representation can be expressed as:

Zmg
i � Relu Relu Relu Xmg,A,W0( ),A,W1( )A,W2( ) (4)

3.3 Multi-view graphs aggregator

For every low-dimensional feature representation, it is
important to understand that each view only contains part of the
attribute information of the nodes. To be more specific, in the UHV
knowledge graph, Zmg

1 , Zmg
2 and Zmg

3 represent he embedding of
rated voltage, quantity and device model respectively. To get the full
description of the nodes, an aggregator gathering all information
from every view seems sensible. There are usually two methods
when it comes to representation aggregation, concatenation and
weighted addition. As each attribute is equally important to a
specific node, we apply concatenation to polymerize each
representation. The unified representation of the original
knowledge graph can be denoted as follows:

Z � concat Zmg
1 ,Zmg

2 ,Zmg
3( ) (5)

3.4 Construction of subgraphs based on
Haar pooling

After obtaining the unified representation of the UHV
knowledge graph, traditional algorithms take it as an input to
a multilayer perceptron(MLP) and output a possibility score of
each category. Because the electric power grid infrastructure
domain has a strong hierarchical relationship, especially in the
equipment selection area, we can use a clustering method to get
the node aggregation features in the knowledge graph. Further

FIGURE 5
A framework of graph classification based on the Haar pooling mechanism.
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analysis of the knowledge graph shows a sparse characteristic
which means the number of edges is far less than the number of
nodes. Traditional algorithms such as the k-nearest neighbors
algorithm(KNN) use the distance between nodes as the basis for
classification, which is not suitable for graph data because it
ignores the topology information. Therefore, considering the
clear hierarchy relationship in components, parts, and

equipment in the electric power equipment knowledge graph,
we can obtain a chain of subgraphs based on the facts of the
business situation without adopting a clustering algorithm. In
this context, getting a series of representation of subgraphs
effectively becomes the focus of this problem. In this paper, a
Haar convolution-based pooling mechanism is leveraged to the
graph unified representation.

FIGURE 6
A line chart of training loss and accuracy for UHV project classification. (A) Training loose of each epoch. (B) Training accuracy of each epoch.

TABLE 1 UHV projects classification considering multi-view mechanism.

Algorithm Epochs Test accuracy Test loss Time

Haar pool with multi-view mechanism 188 0.7083 0.4600 0.2645

Haar pool without multi-view mechanism 187 0.5833 0.6774 0.2436

FIGURE 7
Training accuracy based on the number of Haar pooling layers.
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Given a chain of the subgraphs (G0, G1, . . ., Gm), each node in
Gi is a set of nodes in Gi+1. As shown in Figure 4, G0 represents the
original knowledge graph, while G3 can be a single node that
represent the whole knowledge graph. The Haar convolutional-
based pooling mechanism should be used in every layer of the

chain, getting a smaller graph from Gi to Gi+1. Since a readout
module is used afterward to integrate every representation of
subgraphs, it is important to guarantee each matrix has the same
output dimension. The output of a specific subgraph Gi(V

i, Ei) is
defined as:

TABLE 2 Test results of different pooling mechanisms.

Algorithm Test accuracy Test loss Time

Multi-view mechanism with Haar pool 0.7083 0.4600 0.2645

Multi-view mechanism with SAGPoll 0.6753 0.7521 0.2015

Multi-view mechanism with CGIPool 0.6861 0.8652 0.3054

Multi-view mechanism with GSAPool 0.6675 0.8534 0.2465

FIGURE 8
A line chart of training loss and accuracy for NCI-1 classification. (A) Training loose of each epoch. (B) Training accuracy of each epoch.
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Xoutput
i � ΦT

i X
input
i (6)

where ΦT
i is the transpose of Harr basis matrix of the ith

subgraph, Vi, Ei represents the nodes and edges of Gi

respectively.
Then the Haar basis could be obtained using the following steps:

1) order Vi by their degrees of nodes as vi1, v
i
2, . . . , v

i
N{ }, where N

denotes the number of nodes inGi; 2) theN vectors can be calculated
by the following equations:

Φi
1 �

1��
N

√ l � 1,

Φi
l �

��������
N − l + 1
N − l + 2

√
xi
l−1 −

∑N
j�lx

i
j

N − l + 1
⎛⎝ ⎞⎠

(7)

where xi
j is a function for jth node, which could be expressed as:

xi
j v( ) � 1, v � vij

0, v ∈ Vi\ vij{ }{ (8)

To speed up the calculation process, a compressed Haar basis
matrix is used to replace the originalΦi. Considering the fact that the
first Ni+1 represents the low frequency coefficients which contains
the majority information of the graph, we adopt a tailor operation to
reduce the size of Φi. The Haar convolutional-based pooling
mechanism requires less computational complexity than the
traditional graph Fourier transform. The use of fast algorithms
further improves calculation speed. The key to the fast
algorithms is the Haar basis, which are sparse matrixes to which
a compressive method can be adopted. Specifically, given a chain of
subgraphs (G0,G1, . . .,Gm), whereGm is the coarsest graph with only
one node. Each subgraph could generate a set of n orthogonal
vectors called Haar basis, where n is the number of nodes in the
specific subgraph. They are the representations of the input in the
Haar domain. Analysis shows that these matrixes are sparse and
several low-frequency coefficients contains most of the information
of the input. Therefore, we use first nj+1 Haar basis vector in our
pooling layer, while the other components are aborted.

In order to minimize errors caused by information loss, a
hierarchical mechanism is adopted. As shown in Figure 5, every
low-dimensional representation is aggregated together using a
Readout module and then an MLP is used to get the probability
of each label for subgraph Gi.

Y � softmax MLP XReadout( )( ) (9)

4 Case studies

In this section, we tested our proposed method on two datasets
along with several traditional methods as comparison algorithms.
The two datasets are UHV_Projects and NCI-1. Among them,
UHV_Projects is constructed on historical engineering data, and
NCI-1 is an open-source dataset widely used to test the classification
performance of different algorithms. All these experiments are
performed on a laptop with Intel Core i7-11800H CPU and
NVIDIA GeForce RTX 3070 Laptop GPU. Some of the
hyperparameters are set as follows: batch size is fixed to 50;
learning rate is fixed to 0.001.

4.1 UHV projects data classification

The construction of the UHV projects knowledge graph
contains heterogeneous data from multiple data sources such as
Preliminary Design Instructions, Equipment Inventory, Specialized
Reports, and so on. It requires efforts from experts from both the
power electrical domain and computer domain. Due to the
complexity of different business needs, we only construct a
dataset based on the requirements of power transmission and
transformation project review with a focus on equipment.
Therefore, the dataset mainly contains four levels: the first level
is the name of the projects; the second level contains six professional
fields based on construction guidelines, such as electrical primary
part, electrical secondary part, protection part, telecontrol part,
hydraulic part and fire-controlling part; the third level mainly
refers to major equipment of each part of second level, such as
main transformers, 1000 kV power distribution unit; the tertiary
level contains parts of the major equipment, such as cable, voltage
transformer, current transformer, breaker and so on.

Taking each project as a subgraph, a label is assigned to each
graph indicating the type of the project, which are the new
substation project, substation expansion project, and bay
expansion project. The difference between the three kinds of
projects mainly lies on the quantity and equipment models. For

FIGURE 9
Training accuracy based on the number of Haar pooling layers.
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example, a new substation project usually has more main
transformers than substation expansion projects and a bay
expansion project may only have some in-bay equipment such as
isolating switches and lightning protectors. Thus, we constructed
120 graphs, with an average of 130 nodes and 128 edges per graph.
We first test our model and our model without multi-view
mechanism on this dataset and the results are illustrated in
Figure 6 and Table 1. It can be seen that the accuracy of our
model with a multi-view mechanism is improved by 21.43% with a
little more time consumption.

We also add an analysis regarding the number of Haar pooling
layers. It describes the number of subgraphs which is an indicator of
different clustering methods. It should be noted that 1 layer represents
the model without the Haar pooling strategy, and 2 layers only consist
of two subgraphs which are the original knowledge graph and the final
knowledge graph with only one node. The results are shown in
Figure 7. Due to the fact that the UHV knowledge graph could be
divided into three levels which are professional domains, equipment,
and parts, a three-level clustering is most proper and the result of the
experience also proves the conclusion.

To test the performance of the Haar pool, we selected three
traditional pooling methods as the control group such as SAGPoll
(Lee et al., 2019), CGIPool (Pang et al., 2021), and GSAPool (Zhang
et al., 2020). The results are illustrated in Table 2. According to test
results of different pooling mechanisms, our proposed model shows
excellent performance both in accuracy and loss. Although a multi-
view mechanism with SAGPoll achieves the highest computational
efficiency, the accuracy and the loss of our proposed model
outperforms it by 4.88% and 63.5%. It shows that a little sacrifice
of the time complexity returns good performance.

4.2 NCI-1 data classification

To test the generalizability of our proposed model, we use the
NCI-1 dataset as our input. NCI-1 is a popular open-source
benchmark dataset mainly focused on chemical and medical
domain. It contains 4,100 compounds, each one of which
could be seen as a graph sample. Among them, nodes
represent atoms and edges represent chemical bonds. The task

of the dataset is to determine whether the compound has
properties that hinder the growth of cancer cells. As
experiments in Section 4.1, we first test multi-view mechanism
on this dataset. The results are shown in Figure 8 and Table 3. It
shows an increase in test accuracy by 18.67% when comparing the
model with a multi-view mechanism to the one without. As the
number of samples increases, the running time is also extended.
The difference between both algorithms is extended when
compared to UHV datasets, which implies that traditional
GCN has a non-linear computational complexity.

As for the number of Haar pooling layers, there is no obvious
structure of the NCI-1 dataset. We make a test from layer 1 to layer
5. The results are shown in Figure 9. According to training accuracy,
apart from the results for 1 layer, the rest of the results are
almost the same.

To test the performance of the Haar pool, we also employ the
traditional pooling mechanism as in Section 4.1. And the results are
shown in Table 4. It demonstrates that our proposed method is best-
considering test accuracy and test loss. Due to the multi-view
mechanism, the running time is not the shortest of all
experiments, but considering the increase in performance, it is
completely acceptable.

5 Conclusion

This paper proposed a novel multi-view knowledge reasoning
method that takes both attribute and structural characteristics into
consideration. Firstly, a knowledge graph construction method is
proposed based on UHV project data. Secondly, considering the
difference of multiple attributes, a series of multi-view graphs are
constructed and represented using traditional GCN. Thirdly, a Haar
convolutional-based pooling method is leveraged to deal with the
structural information with high efficiency. Results from the UHV
dataset and NCI-1 dataset prove the feasibility of our algorithm. In
general, our contributions are as follows:

1) The introduction of a multi-view mechanism to the knowledge
reasoning framework improves the accuracy of graph
representation learning.

TABLE 3 NCI-1 classification considering multi-view mechanism.

Algorithm Epochs Test accuracy Test loss Time

Haar pool with multi-view mechanism 57 0.7385 0.5286 5.5319

Haar pool without multi-view mechanism 70 0.6223 0.6419 4.8624

TABLE 4 Test results of different pooling mechanisms.

Algorithm Test accuracy Test loss Time

Multi-view mechanism with Haar pool 0.7385 0.5286 5.5319

Multi-view mechanism with SAGPoll 0.6967 0.6519 5.1864

Multi-view mechanism with CGIPool 0.7058 0.7622 5.9571

Multi-view mechanism with GSAPool 0.6885 0.6681 5.3748
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2) A Haar convolutional-based pooling mechanism is used in the
UHV knowledge graph, which proposes a better way when
analyzing knowledge graphs with hierarchical structures.

3) Although running time increases, our proposed method shows
various improvements in accuracy in different datasets.

In the future, knowledge graphs will become more and more
popular in the electric power domain. Knowledge reasoning methods
should surely serve in various downstream applications. Our proposed
methodmentioned abovemainly focus on graph classification and could
be used in power transmission and transformation review platform.
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Research on detection of
transmission line corridor external
force object containing random
feature targets

Hongbo Zou1,2, Ziyong Ye2*, Jialun Sun2, Junting Chen2,
Qinhe Yang2 and Yanhui Chai2

1Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station and New
Energy, China Three Gorges University, Yichang, China, 2College of Electrical Engineering and New
Energy, China Three Gorges University, Yichang, China

With the objective of achieving “double carbon,” the power grid is placing greater
importance on the security of transmission lines. The transmission line corridor
has complex situations with external force targets and irregularly featured objects
including smoke. For this reason, in this paper, the high-performance YOLOX-S
model is selected for transmission line corridor external force object detection
and improved to enhance model multi-object detection capability and irregular
feature extraction capability. Firstly, to enhance the perception capability of
external force objects in complex environment, we improve the feature
output capability by adding the global context block after the output of the
backbone. Then, we integrate convolutional block attention module into the
feature fusion operation to enhance the recognition of objects with random
features, among the external force targets by incorporating attentionmechanism.
Finally, we utilize EIoU to enhance the accuracy of object detection boxes,
enabling the successful detection of external force targets in transmission line
corridors. Through training and validating themodel with the established external
force dataset, the improved model demonstrates the capability to successfully
detect external force objects and achieves favorable results in multi-class target
detection.While there is improvement in the detection capability of external force
objects with random features, the results indicate the need to enhance smoke
recognition, particularly in further distinguishing targets between smoke and fog.

KEYWORDS

transmission line corridor, external force, object detection, random feature targets,
attention mechanism

1 Introduction

China is undergoing rapid modernization, and one of the fundamental aspects of this
process is the expansion of the power transmission network. The electric power industry, as a
crucial component of the national infrastructure, plays a significant role in the development of
the country’s economy. China has established explicit goals of achieving “carbon peaking” by
2030 and “carbon neutrality” by 2060. Consequently, the country will prioritize promoting
adjustments in its industrial and energy structure. Additionally, the power grid will
increasingly integrate a significant share of clean energy sources, such as wind and
photovoltaic power (Hu, et al., 2022; Tian et al., 2022; Xiao and Zheng, 2022). As a
result, there will be an increased need for secure operation of the transmission line
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corridor. These transmission line corridors connect power production
sources to the load, necessitating their secure operation. Given the
vastness of China, variations in climate, and other environmental
conditions, the establishment of transmission line corridor poses
unique challenges. Consequently, the security of the transmission
line corridor is frequently compromised. The destruction of
transmission line is caused not only by fires but also by various
other factors (Gu, et al., 2020; Sheng et al., 2021). Additionally, the
presence of large tower cranes and engineeringmachinery also poses a
significant risk. Statistical data indicates that the primary causes of
transmission line tripping, in order, are lightning strikes, external
force damage, wind deviation, and ice damage, among others. Among
these causes, external force damage accounts for 21.4% of
transmission line trips, second only to those caused by lightning
strikes. Furthermore, an analysis of faults in transmission lines of
220 kV and above in the provincial power grid revealed that external
force damage accounted for 12.36% of all transmission line tripping,
resulting in a low success rate of tripping and reclosing at only 44.7%
(Liang, 2014; Lu, et al., 2016). Additionally, the outage durations
typically range between 2 and 3 h. It can lead to damage to the grid
infrastructure, which can disrupt production, leading to avoidable
economic losses. Additionally, it poses a risk to the safety of civilians,
staff, and individuals in close proximity to the electrical equipment.

In current method for ensuring safety, manual inspection is
predominantly utilized as the primary method for preventing
external force damage. Nonetheless, this method is time-
consuming, and the constraint of limited number of workers
makes it challenging to continuous inspection (Wang, et al., 2019;
Wang, et al., 2021; Ma, et al., 2022). The researcher conducted
monitoring of external force in transmission lines using helicopter
and drone video surveillance (Golightly and Jones, 2003; Larrauri
et al., 2013; Lin, et al., 2019; Wei, et al., 2022). This method has the
potential to enhance monitoring efficiency and reduce labor
requirements. However, it is important to note that the patrol
monitoring method is unable to provide real-time monitoring of
moving targets within a specified area. Hence, it is not applicable for
detecting unauthorized construction machinery operating within
transmission line corridors. The reference (Zhang and Deng, 2020)
obtains the external force vibration signal of transmission pole and the
vibration signals of transmission towers under different wind
excitation conditions. The vibration signals are preprocessed by
adopting delay inlay technology to turn the original signal into a
two-dimensional form and sent that into convolutional neural
network to feature extraction, and achieve vibration pattern
recognition by employ the relevance vector machine (Cui, et al.,
2023). However, this method has limitations when it comes to
recognizing different types of external force.

Detecting external force in transmission line corridor through
image analysis enables the reduction of manual labor, effectively
alerting against potential threats and preventing external force
incidents. The continuous development and application of deep
learning in the field of image recognition has proven invaluable for
identifying external force damages in transmission lines
(Krizhevsky, et al., 2012; Redmon, et al., 2016; Zhang, et al.,
2018; Liu, et al., 2019; Ma, et al., 2021; Long, et al., 2022; Wu,
et al., 2022; Dong, et al., 2023). The reference (Wei, et al., 2021) uses
bounding box annotation instead of partial mask annotation in the
process of dataset annotation and improves the average accuracy of

recognizing common categories of external force. The reference
(Tian, et al., 2021) employs an enhanced K-means algorithm to
determine suitable anchor box from the image. Subsequently, the
CSP Darknet-53 residual network is used to extract the deep-seated
network feature data of the images, and the feature map is processed
by the SPP algorithm. The algorithm, when applied to real-time
monitoring pictures of transmission line, demonstrates its ability to
detect external force damage accurately and promptly.

Nowadays, the monitoring devices can collect and transfer
image. The devices equipped with target recognition model
enable target detection in real-time images Nevertheless, most
image monitoring systems solely recognize targets exhibiting
distinct features, such as prominent engineering machinery and
construction scenes. They often fail to identify targets with irregular
characteristics like smoke. In this study, we enhance the
performance of the YOLOX-S model by incorporating the global
context block (GC block) to enhance the feature output capacity of
the backbone network. Additionally, we introduce the convolutional
block attention module (CBAM) in the feature fusion process to
improve the recognition of randomly featured targets, among
externally damaged objects. Finally, we employ the EIoU to
enhance the accuracy of target detection box and achieve the
detection of complex external force targets in transmission
lines corridor.

2 Improved YOLOX-S

2.1 YOLOX-S

The YOLOX-S is a high-performance one-stage object detection
network (Ge, et al., 2021). The network incorporates significant
advancements in object detection, including decoupled heads, data
augmentation, and anchor free, into the YOLO architecture. The
model is composed of three main components. The backbone
feature extraction network utilizes the CSP darknet architecture.
The Neck enhances the feature extraction network through the use
of the path-aggregation network (PANet). The prediction part
employs three decoupled heads.

The backbone conducts low-level feature extraction on the input
image, resulting in three feature layers. The Neck subsequently
performs high-level feature extraction on these layers. Finally,
three decoupled heads are employed for object detection, and the
detection results are obtained accordingly.

The mosaic data augmentation algorithm is applied in the input
layer. Its primary purpose is to combine four images, each
accompanied by its respective box. Once the four images are
spliced, a new image is generated, along with its corresponding
box. Subsequently, the newly generated image is fed into the network
for learning.

In addition to YOLOX-S, YOLOX has other types of networks,
namely, YOLOX-Nano, YOLOX-Tiny, YOLOX-M, YOLOX-L,
YOLOX-X. The performance of these models on the coco dataset
is shown in Table 1. As shown in the table, YOLOX-Nano and
YOLOX-Tiny are lightweight networks, so there are fewer network
parameters and poorer performance at AP (%). In the rest models,
the model accuracy improves as the model parameters increase, but
the latency also increases. The application scenario in this study is

Frontiers in Energy Research frontiersin.org02

Zou et al. 10.3389/fenrg.2024.1295830

186

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1295830


characterized by two main features: 1) it is applied in outdoor
environments, close to the edge end, and 2) the detection requires
high real-time performance. For these two reasons, it is necessary to
choose a base model that is moderate in model size, recognition
accuracy and latency. The two lightweight models have fewer
parameters and there is no dataset enhancement step in the
training phase, which makes it difficult to meet the requirements
for recognition accuracy. By comparing the rest of the models,
YOLOX-S with fewer parameters is easier to deploy on devices used
outdoors and meets the real-time requirements for recognition as
well as the needs in detection accuracy.

2.2 Global context block

In transmission line corridors characterized by complex
environments and a multitude of targets to be identified. The
convolutional operation of the backbone network models the
context within a limited range, and creating a confined receptive
field. The global context block incorporates both the non-local
network (NL Net) and squeeze excitation networks (SE Net).
Additionally, in the GC block, the NL block is simplified to
decrease the computational load. The GC block serves a dual
purpose: extracting global information from the backbone
convolutional network, thereby facilitating feature fusion with the
linked neck part, and reducing computation cost. Therefore,
incorporating the GC block into the network enables the
extraction of global contextual information pertaining to external
force targets in complex background (Cao, et al., 2019).

2.2.1 Simplified NL block
The NL block conducts inter-pixel correlation analysis by

utilizing the current pixel in the given position along with
feature-similar pixels of equal size to establish connections
between features and global information. The output of the NL
block zi and the inter-pixel correlation wij are calculated using Eq. 1
and Eq. 2:

zi � xi +Wz∑
Np

j�1

f xi, xj( )
C x( ) Wv · xj( ) (1)

wij � f xi, xj( )
C x( ) � e Wqxi( )T Wkxj( )

∑∀m e Wqxi( )T Wkxm( )
(2)

Where, Wv,Wk,Wq and Wz represent the convolution
operations. xi represents the pixel at the current location, while
Np represents the set of all pixels. Additionally, xj comprises pixels
with similar features and an equal size as the location of xi. f(xi, xj)
denotes the relationship between position i and j, and has a
normalization factor C(x).

The NL block computational cost in the global feature extraction
process necessitates structural simplification before fusion with the
GC block. As can be seen in Figure 1, the main simplifying
operations include: omitting any further operations on xi and
solely considering the global pixel-feature correlation; removing
the Wq convolution operation; substituting Wz with Wv, and not
retaining the convolution operation of Wv. The context modeling
module is composed of the simplified NL block. The mathematical
expression for the simplified block is presented in Eq. 3.

zi � xi +Wv∑
Np

j�1

eWkxj

eWkxm
xj (3)

2.2.2 Transform module
Simplifying the operation of the NL block decreases the

computational effort of the module but has an impact on the
accuracy of the training results. To address this accuracy loss and
effectively utilize the feature information from the convolution
operation on the channel, the transform module within the SE
block is introduced. Additionally, incorporating layer normalization
before applying the ReLU nonlinear activation can enhance the
generalization capability of the network. The output of transform
module zi,tran is as Eq. 1:

zi,tran � Wv2ReLU LN Wv1 ∑
Np

j�1

eWkxj

eWkxm
xj⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (4)

Where, Wv1,Wv2 represent the convolution operations. ReLU
represents the nonlinear activation function, and LN denotes layer
normalization. The reconstruction of the transform module in the
GC block is shown in Figure 2.

The GC block integrates the context modeling module from the
simplified NL block, introduces the standardized transform module
within the SE block, substitutes theWv convolution operation in the
simplified NL block, and conducts feature fusion through a sum
operation. Figure 3 illustrates the final module, and its output is
obtained as Eq. 5:

TABLE 1 Comparison of YOLOX in terms of AP (%) on COCO. YOLOX-Nano and YOLOX-Tiny are tested at 416 × 416 resolution, else are tested at 640 ×
640 resolution.

Models AP (%) Parameters (M) Latency (tested on tesla V100)

YOLOX-Nano 25.3 0.91 /

YOLOX-Tiny 32.8 5.06 /

YOLOX-S 39.6 9.0 9.8 ms

YOLOX-M 46.4 25.3 12.3 ms

YOLOX-L 50.0 54.2 14.5 ms

YOLOX-X 51.2 51.2 17.3 ms
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zi � xi +Wv2ReLU LN Wv1 ∑
Np

j�1

eWkxj

eWkxm
xj⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (5)

The GC block reduces computational parameters and
computation by simplifying the NL block. The simplified block
can still learn the global context. The SE block adopts rescaling to
recalibrate the importance of channels but inadequately models
long-range dependency. Finally, the GC block completes the feature
fusion by addition to the original feature map.

2.3 Convolutional block attention module

In the context of recognizing external force object in
transmission lines corridor, the task involves identifying both

obvious features like engineering machinery and random
features like smoke. To enhance the recognition ability for
smoke, a convolutional attention mechanism is incorporated
into the network. This module enables the network to
simultaneously attend to multiple types of external force
targets across channels and spatial dimensions during
feature fusion.

The structure of the convolutional block attention module
model incorporates the channel attention module (CAM) and the
spatial attention module (SAM). Figure 4 depict the convolutional
block attention module (Woo, et al., 2018). Channel attention
focuses on the classification of the object in the image through
the channel relations of the features. Max pooling can strengthen the
unique object feature, so CAM completes the object feature
extraction by average pooling and max pooling. Spatial attention
focuses on the localization of the target in the image. Pooling
operations along the channel axis can effectively highlight
information regions, so average pooling and max pooling are
applied along the channel axis in SAM. CAM and SAM are
placed in a sequential manner, highlighting the location of the
target in the image. The sequential arrangement enables the
channel and spatial attention modules to achieve complementary
attention and accomplish attentional enhancement.

2.3.1 Channel attention module
The channel attention module starts by applying a global

average pooling and a global max pooling method to the input’s
individual feature layers. The outcomes of these pooling methods are
then fed into a shared fully connected layer. The results from both
pooling methods are summed, and the Sigmoid activation function
is applied to obtain a weighted value (from 0 to 1) for each channel
in the incoming feature layer. After obtaining the weight, we
multiply it by the original input feature layer to obtain the
feature map processed by the channel attention module. The
formula for the output of channel attention module Mc(F) is as
Eq. 6:

FIGURE 1
Simplified NL block.

FIGURE 2
Transform module in GC block.
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Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( )
� σ W1 W0 Fc

avg( )( ) +W1 W0 Fc
max( )( )( ) (6)

Where, F represents input feature, σ represents the Sigmoid
function, Fc

avg and Fc
max refer to the feature maps obtained through

average pooling and max pooling, respectively, multilayer
perceptron (MLP) is the shared network in CBAM, and W1 and
W2 represent the weights of the hidden layer and output layer in the
multilayer perceptron, respectively.

2.3.2 Spatial attention module
Max pooling and average pooling are performed over the feature

layer channels which come from the channel attention module. The
pooling results are concatenated, and the channel number is adjusted
using a convolution kernel with the size of 7 × 7. After applying the
Sigmoid activation function, the weights (from 0 to 1) for each feature
of the input layer are obtained. The formula for the spatial attention
module Ms(F′) and the output of CBAM F″ is as is as Eqs 7–9:

F′ � Mc F( ) ⊗ F (7)
Ms F′( ) � σ f 7×7 AvgPool F( );MaxPool F( )[ ]( )( )

� σ f 7×7 Fs
avg ; F

s
max[ ]( )( ) (8)

F″ � Ms F′( ) ⊗ F′ (9)

Where, F′ represents channel-refined feature, σ donates the
Sigmoid function, Fs

avg and Fs
max refer to the feature maps after two

pooling operations,f7×7 represents a convolution operation with the
filter size of 7 × 7.

In the improved YOLOX-S model, GC blocks are
incorporated after the output of the backbone to augment the
model’s ability to perceive global features. Additionally, the
CBAM is introduced to improve attention towards the
external force target before the up-sampling in the feature
fusion operation and before the feature contact. The
modification leads to the final improved network structure of
YOLOX-S, as depicted in Figure 5.

2.4 Loss function

The loss function in the YOLOX-S model is derived by
combining the bounding box loss, object classification loss,
and confidence loss. The IoU loss function is the earliest one
used in the bounding box loss function. It is computed by taking
the intersection over union ratio of target box and anchor box. In
order to accurately represent the relative positions of the two
boxes, the GIoU loss function was proposed. This function
considers the non-box area by setting the minimum bounding
rectangle that encloses both target box and anchor box. It
comprehensively considers the overlapping areas between
target box and anchor box. However, if the anchor box
completely contains the target box, the GIoU will be

FIGURE 4
Convolutional block attention module.

FIGURE 3
GC block.
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equivalent to the IoU. So, the paper focuses on optimizing the
accuracy of the loss function by introducing the EIoU bounding
box loss function, which provides a comprehensive description
of the positional relationship between target box and anchor box
(Zhang, et al., 2022). Figure 6 illustrates the principle of EIoU
calculation. The EIoU loss function comprises three
components: overlap loss, center distance loss, and width and
height loss between the target box and the anchor box, which are
computed by Eq. 10.

LEIoU � LIoU + Ldis + Lasp

� 1 − IoU + ρ2 b, bgt( )
cw( )2 + ch( )2 +

ρ2 w,wgt( )
c2w

+ ρ2 h, hgt( )
c2h

(10)

Where, b and bgt represent the centroids of the anchor box and
the target box, respectively; ρ(·) denotes the Euclidean distance
between the two centroids; cw and ch refer to the width and height of
the smallest outer rectangle of the target box and the anchor box,
respectively; w and h represent the width and height of the anchor
box, while wgt and hgt represent the width and height of
the target box.

3 Experiment

3.1 Data set

In order to validate the effectiveness of the proposed model for
recognizing the external force objects and smoke objects,
transmission towers, excavators, bulldozers, concrete mixer, tower
cranes, cranes, and engineering trucks; and smoke targets are
selected as the recognition objects. Images captured by
monitoring equipment in a specific province serve as the data
source for constructing a sample library. This library comprises
15,485 images depicting the external force scenario of the
transmission line corridor. We selected clear targets with diverse
angles and backgrounds for labeling in the collected images. For
smoke, smoke generated by a fire source was selected as a labeled
target. A total of 4,003 images containing recognized object were
labeled through object setting and screening, resulting in a total of

FIGURE 5
Improved YOLOX-S structure.

FIGURE 6
EIoU principle of calculation.
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10,129 labeled targets. The label names and corresponding numbers
of these labeled targets are displayed in the Table 2.

The training and validation sets were derived from the image
sample library, with 80% of the job images randomly assigned to the
training set and the remaining 10% allocated to the validation set.
Consequently, 3,202 images were used for training, while the
validation set comprised 401 images. The rest of the images serve
as a test set. In order to speed up training and prevent the weights
from being corrupted, the model is trained with pre-trained weights
and the 50 epochs are set to freeze training. The model was trained
using python 3.7 and PyTorch on Ubuntu 18.04. The training was
run on a single GeForce GTX 1080 with CUDA 10.1.

3.2 Visualization of attention maps

In order to demonstrate the enhanced effect on smoke which
have random features, we utilize grad class activation map (Grad-
CAM) for attention visualization (Selvaraju et al., 2017). The Grad-
CAM is employed to depict the attention of target positions within

the convolutional layers. By pooling the average of gradients across
the entirety of the final convolution layer, weights can be calculated
for each channel. These weights are then applied to the feature map
to generate a class activation map. The CAM assigns importance to
each pixel in relation to the classification result. The Figure 7 depicts
a comparison between the pre-improvement and post-improvement
states (the darker middle portion of the figure indicates increased
attention on the object). It is evident from the figure that the
improved model extends attention to a wider range of features
within the smoke region. This indicates that the improvement
effectively enhances the model’s feature extraction capability and
enables improved extraction of irregular features.

3.3 Training result

The training process is shown in Figure 8. The loss function of
the proposed model continuously decreases with iterative training,
exhibiting a rapid decrease at the beginning and at the 50th epoch,
then stabilizes around the 200th epoch, indicating good convergence
performance. During the model training, the overall accuracy curve
follows a similar trend as the loss function curve. The overall precision
stabilizes around 200 epochs, reaching approximately 81.7%.

As shown in Figure 9, the experimental results demonstrate that
the improved YOLOX-S achieves external force target recognition in
complex scenarios. To validate the effectiveness of the improved
model, a sample of images from the dataset is randomly selected and
tested for detecting external force targets. The recognition results
obtained using the original network and the improved network are
presented below.

As depicted in the Figure 10, both YOLOX-S and the improved
YOLOX-S successfully recognize the external force targets in
scenario A. However, when compared to the YOLOX-S, the
improved YOLOX-S exhibits superior confidence in detecting
each target. Nonetheless, the results from the YOLOX-S network
contain instances of missed detections. The missed targets

TABLE 2 A detailed description of image database of external force object.

Object Label name Number

Pole and Tower ganta 2,587

Excavator wajueji 2,183

Bulldozer tuituji 849

Concrete mixer jiaobanche 683

Tower crane tadiao 1,035

Crane diaoche 840

Trucks fandouche 1,359

Smoke yanwu 593

FIGURE 7
Grad-CAM attention map. (A) YOLOX-S, (B) Improved YOLOX-S.
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correspond to smaller external force objects (trucks) or objects with
color features resembling the environment (towers), resulting in
missed detections. These findings highlight the efficacy of the
global context block and attention module in enhancing target
recognition.

For comparison, the two-stage network Faster R-CNN is
selected (Ren, et al., 2015). In external force scenario B, both
Faster R-CNN and the improved YOLOX-S successfully
recognize all the targets in the Figure 11. However, the
original network exhibits a missed detection for the smaller

FIGURE 8
Variation curve of loss function (A) and accuracy curve (B) in training process.

FIGURE 9
External force object detection result.

FIGURE 10
External force object detection result in scenario (A) YOLOX-S detection result (B) Improved YOLOX-S detection result.
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target at a distant location (Excavator). Conversely, the double-
stage network misdetects the closer bulldozer target, while both
the original network and the improved YOLOX-S accurately
detect the target. The improved YOLOX-S demonstrates
higher confidence. The Table 3 presents the average
recognition precision of various network for identifying
targets. The table reveals that the improved YOLOX-S
achieves superior average precision in identifying external
force object. The improved YOLOX-S surpasses the Faster
RCNN in detecting all external force recognition targets. The
improved YOLOX-S enhances the recognition precision of each
external force target compared to the original network. For
engineering apparatus targets such as excavators and
bulldozers, target recognition with rich feature information
can be improved by 4%–5%. Due to the variety of tower types
and differences in their structure, the recognition accuracy
improvement is not very good, only 2.09%. Specifically, there
is a 3.39% improvement in accuracy in recognizing smoke. This
suggests that the inclusion of the GC block and CBAM in the
network can enhance recognition accuracy for irregularly
featured targets. The improved network demonstrates slightly
higher overall recognition accuracy compared to Yolov7 in
external force scenarios (Wang et al., 2023). However,

Yolov7 achieves slightly higher accuracy in concrete mixer
recognition. The improved YOLOX-S outperforms the other
three networks in terms of recognizing smoke.

Smoke exhibits varying concentrations and profiles at different
stages. The Figure 12 demonstrates that the improved YOLOX-S
effectively captures the smoke and locates its main components.
This aids in evaluating the potential risks of smoke within
transmission corridors.

To further evaluate the model’s recognition precision of
targets in the transmission corridors, an ablation study is
conducted. The ablation study compares the impact of each
improvement component on object recognition precision. The
Table 4 illustrates that GC block enhances network precision by
1.38%, while CBAM improves it by 2.24%. GC bolck enables
targets in complex outdoor contexts to be attended to globally,
slightly improving recognition accuracy. The attention
mechanism improves the model recognition accuracy more,
making the model pay more attention to the external broken
target in both channel and space. Conversely, EIoU has a minor
impact on precision, affecting it by merely 0.45%. The EIoU is
mainly designed to describe the position of the anchor and
target boxes well and provide more help to the model
training process.

FIGURE 11
External force object detection result in scenario B (A)Original image (B) Faster R-CNN detection result (C) YOLOX-S detection result (D) Improved
YOLOX-S detection result.
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4 Conclusion

This study focuses on the recognition of external force targets
in transmission line corridors, characterized by complex
backgrounds, various object types, and irregular features. To
achieve this, the model was improved. Conclusions can be
drawn based on the model training and recognition results
obtained from the dataset:

(1) The improved YOLOX-S effectively identifies external force
targets, exhibiting superior performance in complex
environments and multi-target scenarios. The
enhancements provided by the module improve global
perception and target recognition capabilities, particularly
for targets with distinct features. The recognition precision
of such targets is enhanced by approximately 3% compared to
the original model.

(2) The improved network significantly enhances the recognition
precision of smoke with random features. The attention heat
map generated by Grad CAM demonstrates that the improved
module effectively focuses on irregular targets, further refining the
network’s ability to recognize smoke with non-uniform
characteristics. The model demonstrates improved performance
in recognizing smoke at various stages and exhibits enhanced
tracking capabilities for dynamically changing smoke.

This study incorporates the global context block, attention
mechanism, and a new loss function to enhance the YOLOX-S
network, resulting in an improved ability to recognize external force
object. In light of the aforementioned research, the ensuing research
will concentrate on two primary objectives. Firstly, to enhance the
recognition precision of external force object and broaden the
spectrum of recognizable types. Secondly, to develop an effective
assessment of threats to external force transmission lines corridor
and conduct an in-depth analysis of their operational environment.
Specifically, it was found that the accuracy of smoke recognition
needs to be further improved. With frequent changes in ambient
wind direction, it is difficult to identify and localize the location of
smoke generation. The situation is similar to natural fog, so there is a
need to more clearly distinguish between fog and smoke and to more
precisely locate smoke. We will analyze the effect on the light
reflection effect in terms of the difference between the material
composition and composition ratio of smoke and fog, and to use it as
a new feature input to distinguish between smoke and fog. Next, we
will use the number of various types of external force in the image,
the distance and the working range of engineering machinery as the
main transmission line external force threat assessment basis.

TABLE 3 Comparison of detection results under different target detection models.

Model Average recognition precision of different external force targets (AP%) mAP
%

Pole and
tower

Excavator Bulldozer Concrete
mixer

Tower
crane

Crane Trucks Smoke

Faster RCNN 80.65 87.37 88.21 77.36 83.45 76.26 76.37 58.13 78.47

YOLOX-S 81.34 85.16 87.11 76.73 84.63 75.46 74.78 57.72 77.87

YOLOv7 82.12 87.63 88.42 79.24 86.24 77.48 78.19 58.21 79.69

Improved
YOLOX-S

83.43 90.77 91.96 78.44 88.93 79.35 79.91 61.11 81.74

FIGURE 12
The smoke detection result in different stages. (A) Starting stage (B) smoke growth (C) heavier smoke.

TABLE 4 Ablation study.

GC block CBAM EIoU mAP%

\ \ \ 77.87

√ \ \ 79.25

\ √ \ 80.11

√ √ \ 81.29

√ √ √ 81.74
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A transformer acoustic signal
analysis method based on matrix
pencil and hybrid deep
neural network

Qizhe Zhang1, Guozheng Peng1, Yuanpeng Tan1,
Zhonghao Zhang1 and Xiaojing Bai2*
1Artificial Intelligence Application Research Department, China Electric Power Research Institute, Beijing,
China, 2North China Electric Power University, Beijing, China

Acoustic signal analysis is an important component of transformeronlinemonitoring.
Currently, traditional methods have problems such as low spectral resolution,
imbalanced sample distribution, and unsatisfactory classification performance.
This article first introduces the matrix pencil algorithm for time-frequency
spectrum analysis of acoustic signals, and then uses the SMOTE algorithm to
expand the imbalanced samples. Then, an ACmix hybrid deep neural network
model is constructed to classify 11 types of transformer operation and
environmental acoustic signals. Finally, detailed experiments were conducted on
the method proposed in this paper, and the experimental results showed that the
matrix pencil algorithm has high time-frequency resolution and good noise
resistance performance. The SMOTE sample expansion method can significantly
improve the recognition accuracy by more than 2%. Overall accuracy of the
proposed method in acoustic signal classification tasks reaches 91.81%.

KEYWORDS

matrix pencil, transformer acoustic signal, deep neural network, sample expansion,
attention mechanism

1 Introduction

As a high-value key equipment in the power system, power transformers need to
undergo maintenance work throughout their entire life cycle to ensure the healthy
operation (Wardani et al., 2011; Liang et al., 2017). During the operation of
transformers, mechanical waves are generated due to the vibration of the iron core and
winding, which in turn generate sound waves through the fluid medium (Hsu et al., 2015;
Wang et al., 2021). Furthermore, when the insulation of transformers deteriorate, partial
discharge may occur (Okabe and Wada, 2011), which can also trigger acoustic signals.
Acoustic signals near transformers contain a large amount of equipment status information
(Cole, 1997). The collection of acoustic signals has advantages such as non-contact, low cost,
and convenience, and thus has broad application prospects in the field of online monitoring
of transformers (Sithole et al., 2019; Kucera et al., 2022).

In terms of feature extraction of acoustic signals, it mainly includes time-domain feature
extraction, frequency-domain feature extraction, and time-frequency domain feature
extraction (Zhang et al., 1998; Lee et al., 2021; Caldeira and Coelho, 2023). The time-
frequency spectrum contains both time-domain and frequency-domain information, which
has better performance in fault identification (Geng et al., 2019). In the field of pattern
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recognition of acoustic signals, traditional machine learning
methods such as support vector machine (SVM) (Wu et al.,
2018), back propagation neural network (BP NN) (Wang et al.,
2011) have gradually developed deep learning methods such as
convolutional neural network (Lu et al., 2019; Kollias and
Zafeiriou, 2021).

With the rapid development of artificial intelligence technology,
edge computing technology (Huang et al., 2023), intelligent perception
(Zhao et al., 2024) and other technologies, online monitoring of
equipment status has been widely used. But the effectiveness of
related applications still needs to be improved. The pattern
recognition algorithm based on deep neural networks faces the
problem of low accuracy in engineering applications. Reference
(Huang et al., 2020) introduces Gaussian Bernoulli restricted
Boltzmann machines to improve algorithm performance. In different
application fields, data preprocessing methods and pattern recognition
algorithms require specific improvements to adapt to
corresponding tasks.

Currently, there are still three issues in the analysis of
transformer acoustic signals:

A) The spatiotemporal resolution of the time-frequency spectrum is
insufficient, and there is a problem of signal interference.

B) Treating environmental sounds such as bird singing and rain
sound as background noise, ignoring the risk factors present
in the transformer environment;

C) The distribution of acoustic signal samples is uneven, and the
recognition accuracy is unsatisfactory.

This article focuses on the above issues and introduces the
matrix pencil algorithm to improve the time-frequency resolution
of acoustic signals and enhance the noise resistance performance.
Expand imbalanced samples using the SMOTE algorithm (Bao and
Yang, 2023). An ACmix model was constructed to classify
transformer operation and environmental sound. Finally, the
effectiveness of the method proposed in this article was verified.

2 Research methodology

2.1 Transformer acoustic signal time-
frequency spectrum

Spectrum is an important feature in the analysis and processing
of acoustic signals. It can reflect the frequency energy distribution of
signals at different times, establish a good connection between the
time and frequency domains of acoustic signals, and achieve the
maximization of acoustic feature information. The generation of
time-frequency spectrum mainly includes the process of framing,
windowing, and frequency analysis. Traditional frequency analysis
methods of acoustic signals are mainly based on Fourier transform,
which has problems such as low accuracy and poor anti-interference
ability. In contrast, the matrix pencil method (Wang et al., 2017)
belongs to the subspace rotation invariant method, which utilizes the
orthogonal characteristics of the signal subspace to construct
spectral peaks, thereby improving the frequency resolution and
anti-interference performance of the algorithm. And since there

is no need for iterative operations, the efficiency is high. This article
uses matrix pencil method to construct the time-frequency spectrum
of sound signals.

2.1.1 Acoustic signal model
The transformer acoustic signal model can be represented as

Eq. 1.

s n( ) � ∑
K

k�1
ake

−βknΔt cos nωkΔt + θk( ) (1)

Among them, αk, ωk, and θk represent the amplitude, frequency,
and initial phase of the k-th frequency component, respectively. βk is the
attenuation coefficient of the k-th frequency component. Δt is the
sampling time interval. Further represented as an exponential model in
Eq. 2.

s n( ) � ∑
2K

k�1
Rke

pknΔt (2)

Among them, Rk = αke
±jθ/2; pk = −βk ± jωk。

Considering the presence of noise u (n), the actual observed
signal is described in Eq. 3.

x n( ) � s n( ) + u n( ) (3)

2.1.2 Matrix pencil method
For the acoustic signal x (n), construct two (N-L) × L Hankel

matrices X1 and X2 are represented as Eqs 4, 5.

X1 �
x 0( ) x 1( ) / x L − 1( )
x 1( ) x 2( ) / x L( )
..
. ..

.
1 ..

.

x N − L − 1( ) x N − L( ) / x N − 2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

X2 �
x 1( ) x 2( ) / x L( )
x 2( ) x 3( ) / x L + 1( )
..
. ..

.
1 ..

.

x N − L( ) x N − L + 1( ) / x N − 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

Where, L is the matrix pencil parameter, and appropriate
selection can reduce the impact of noise. N/3 to 2N/3 is the
better choice for L. Represent X1 and X2 as Eqs 6, 7

X1 � ZLPZR (6)
X2 � ZLPZZR (7)

The variables in Eqs 6, 7 are calculated based on Eqs 8–11.

ZL �
1 1 / 1

ep1Δt ep2Δt / ep2KΔt

..

. ..
.

1 ..
.

ep1 N−L−1( )Δt ep2 N−L−1( )Δt / ep2K N−L−1( )Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

ZR �
1 ep1Δt / ep1 L−1( )Δt

1 ep2Δt / ep2 L−1( )Δt

..

. ..
.

1 ..
.

1 ep2KΔt / ep2K L−1( )Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Z � diag ep1Δt, ep2Δt,/, ep2KΔt[ ] (10)
P � diag R1, R2,/, R2K[ ] (11)
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Then the following Eq. 12 is obtained, i.e.,

X1 − λX0 � ZLP Z0 − λI( )ZR (12)

The generalized eigenvalue of matrix pencil X1-λX0 includes the
number, frequency, and attenuation coefficient of frequency
components. Thus the calculation of signal frequency
components can be transformed into solving Eq. 13 for
generalized features:

X1 − λX0 � X0
+X1 (13)

In the equation, X+ is the pseudo inverse of X0.
After obtaining the number, frequency, and attenuation

coefficient of frequency components of acoustic signals, the signal
amplitude can be obtained by solving the following least squares
problem shown in Eq. 14.

x 0( )
x 1( )
..
.

x N − 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 1 / 1
ep1Δt ep2Δt / ep2KΔt

..

. ..
.

1 ..
.

ep1 N−1( )Δt ep2 N−1( )Δt / ep2K N−1( )Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R1

R2

..

.

RN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

2.2 Imbalanced sample expansion method

The acoustic signal samples of transformers in different states
exhibit significant imbalance, especially in the absence of abnormal
samples. To address the issue of sample imbalance, SMOTE is used
for sample expansion.

The SMOTE algorithm is an algorithm for expanding minority
class samples in imbalanced samples, which is an improvement on the
random oversampling algorithm. The random oversampling algorithm
expands the dataset by simply copyingminority samples, which is prone
to overfitting and other issues. The SMOTE algorithm combines the
ideas of nearest neighbor analysis and linear interpolation.

Firstly, traverse the minority class samples, select each minority
class sample A as the reference value for a single expansion, and
calculate its Euclidean distance from other sample point B in the
minority class samples according to Eq. 15

d A, B( ) �
��������������
∑
n

i�1
∑
n

j�1
ai,j − bi,j( )2

√√
(15)

Obtain k nearest neighbors of sample point A based on the size
of Euclidean distance, randomly select a certain nearest neighbor B,
and perform linear interpolation with reference sample A according
to Eq. 16 to generate a new sample C. Repeat this n times (n is the
given sample expansion ratio)

ci,j � ai,j + bi,j − ai,j( ) · θ (16)

In Eq. 16, θ Is a random number between (0, 1). After SMOTE
process, for each sample A, n new samples will be generated. After
traversing all the minority samples, the original number of samples
will be expanded to n times the original number, achieving sample
expansion through oversampling. The specific flowchart of SMOTE
algorithm is shown in Figure 1.

2.3 Hybrid deep neural network

Convolutional neural network is composed of convolutional
layer, pooling layer, and fully connected layer. Compared with
traditional artificial neural networks, convolutional neural
network has fewer connections between neurons in different
layers. Convolutional layers learn features from network inputs,
and different convolutional kernels have different feature
extraction effect.

Attention mechanism is a special plug and play structure often
embedded in convolutional neural networks, used to automatically
learn and calculate the contribution of input data to output data. The
self attention mechanism is a variant of the attention mechanism,
which reduces dependence on external information and is better at
capturing internal correlations of data or features. Attention
mechanisms are also widely used in visual tasks. Compared to
traditional convolutional models, attention allows the model to
focus on important regions over a larger range.

This article combines the advantages of residual neural network
and self attention mechanism, and uses ACmix algorithm to
construct a transformer operation acoustic signal analysis model.

The schematic diagram of ACmix is shown in Figure 2:
First, three 1 × 1 convolutions are used to project the input

features, and then reshape them into N pieces, thereby obtaining a
set of 3 × N intermediate features.

FIGURE 1
Flow chart of SMOTE algorithm.
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Secondly, parallel self attention computation and convolution
computation are carried out. For the self attention part, gather the
intermediate features into N groups, each containing 3 features, each
from 1 × 1 convolution. The corresponding three feature maps are
used as query, key, and value, respectively, using a multi head self
attention module. The calculation formula is shown in Eqs 17, 18

q l( )
i,j � W l( )

q fi,j, k
l( )
i,j � W l( )

k fi,j, v
l( )

i,j � W l( )
v fi,j (17)

gi,j � ‖N
l�1

∑
a,b∈Νk i,j( )

A q l( )
i,j , k

l( )
a,b( )v l( )

a,b
⎛⎜⎜⎝ ⎞⎟⎟⎠ (18)

where ‖ is the concatenation of the outputs of N attention heads. q, k,
v represent the projection matrices for queries, keys and values. N
represents the local area near the pixel point (i,j) with a range of k. A
is the attention weight, f is the input, and g is the output.

In the convolutional part, a convolutional kernel with size k is
used to generate k2 feature maps using a light fully
connected layer.

By shifting and aggregating the generated features, convolution
processing is performed on the input features, and information is
collected from the local receptive field. Finally, the output is obtained
by Eq. 19

Fout � αFatt + βFconv (19)

Based on the structure of ResNet50, replace the convolutional
layer with ACmix module.

3 Manuscript experimental results
and analysis

3.1 Performance verification of matrix
pencil method

To verify the time-frequency spectrum analysis performance of
matrix pencil method. Construct the test signal as shown in Table 1,

FIGURE 2
Schematic diagram of ACmix.
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and perform time-frequency spectrum analysis using matrix pencil
method and Fourier transform, respectively.

The signal sampling rate is set to 48 kHz, and the waveform of
the test signal is shown in Figure 3.

Set the time window to 0.01 s, and the moving step of the time
window is 0.01 s. The time-frequency spectrum of the test signal was
calculated using matrix pencil method and Fourier transform,
respectively, as shown in Figure 4.

It can be seen that the frequency resolution of the Fourier
method is relatively low. When the signal frequency changes,
there are significant unclear areas in the time-frequency
spectrum. The matrix pencil method can more accurately extract
the frequency characteristics of signals, especially to accurately
identify changes in signal frequency. To further verify the noise
immunity of the matrix pencil method, Gaussian colored noise is
added to the original signal, and the signal-to-noise ratio is set to 10.
The test signal containing noise is shown in Figure 5.

The time window and step size remain unchanged, and the
matrix pencil method and Fourier transform are used to calculate
the time-frequency spectrum of the test signal, as shown in Figure 6.

When noise exists, significant noise appears in the time-
frequency spectrum obtained by the Fourier method. In contrast,
the time-frequency spectrum background obtained by matrix pencil
method is pure. Therefore, the matrix pencil method has higher
resolution and stronger anti-interference ability compared to the
Fourier method in the time-frequency spectrum analysis of
acoustic signals.

3.2 Dataset and evaluation indicators

3.2.1 Sample information
2236 audio signals of various types were collected at substations

of different voltage levels. The sampling rate is 48 kHz. Each audio
segment has a collection time of 5 s. The dataset used in this article
includes 11 types of acoustic signals, including normal operation of
transformers with 5 voltage levels, bird singing, rain, OLTC
switching, short circuit impulse, partial discharge, DC bias, etc.
Encode it and use the SMOTE method for sample expansion. With
the goal of balancing the number of expanded samples, expand the

TABLE 1 Test signal parameters.

No. Frequency/
kHz

Amplitude/
A

Phase Duration/
s

1 1.00 0.90 0 0–0.05

2 0.20 0.70 0 0.05–0.10

3 18.00 0.60 0 0.10–0.15

4 5.00 0.50 0 0.15–0.20

FIGURE 3
Test signal.

FIGURE 4
Test signal spectrum: (A) MP time-frequency spectrum, (B) Fft time-frequency spectrum.
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original sample size to an integer multiple. After sample expansion,
4,524 samples were obtained. The sample information is shown
in Table 2.

3.2.2 Acoustic signal preprocessing
Due to the different durations of characteristic signals in various

states, it is necessary to intercept audio signals. After analysis, 2 s was
selected as the duration for signal analysis. Intercept typical data
with a duration of 2 s from the audio and convert the acoustic signal
into a time-frequency spectrum using the method described in
Chapter 2.1. The sampling rate of the sample data is 48 kHz. The
width of the sliding window is 0.01 s, and the step length of the time
window movement is 0.01 s. The frequency range of the time-
frequency spectrum is 0–20 kHz, and the frequency resolution is
set to 0.1 kHz. Convert the amplitude to a decibel value according to
Eq. 20.

sdb � 20 log10 s (20)

Where s represents amplitude. The typical acoustic signal time-
frequency spectrum of transformer operation is shown in Figure 7.

Subsequently, the time-frequency spectrum of the acoustic
signal will be used as input data for classification processing
using the deep neural network model.

3.2.3 Evaluation indicators
Evaluate the recognition rate of the model using accuracy, recall,

F1 score, and overall accuracy. The accuracy calculation formula is
shown in Eq. 21.

p � xpt

xp
× 100% (21)

Among them, xpt is the number of samples predicted to be x and
actually x. Xp is the number of samples predicted to be x. The recall
rate is calculated according to the formula Eq. 22.

r � xpt

xt
× 100% (22)

Xt is the actual number of samples that are x. The F1 score is
calculated by Eq. 23.

SF1 � 2
p × r

p + r
× 100% (23)

The overall accuracy is defined as the proportion of the total
number of correctly predicted samples to the total number
of samples.

3.3 Comparison of classification effects

To verify the effectiveness of the SMOTE sample expansion
method, the ACmixmodel was used to train and test the original and
expanded samples, respectively. Epoch number was set to 300, and
learning rate was set to 0.01. When using the original samples, the

FIGURE 6
Time-frequency spectrum of test signal containing noise: (A) MP time-frequency spectrum, (B) Fft time-frequency spectrum.

FIGURE 5
Test signal containing noise (SNR = 10).
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accuracy and loss changes during the training process of ACmix
model are shown in Figure 8.

The loss converges at 200th epoch. Therefore, in the
subsequent training, the epoch number was set to 200. The

confusion matrix of the validation set under two sample sets
is shown in Figure 9.

After expanding the sample, the recognition accuracy of the
sample was significantly improved. Especially, the accuracy of

FIGURE 7
Typical acoustic signal time-frequency spectrum of transformer: (A) Short circuit impulse, (B) partial discharge, (C) DC bias, (D) bird sing, (E) 500 kV
transformer operation, (F) OLTC switching.

TABLE 2 Sample information.

Code Type Original sample size Expanded sample size

0 110 kV transformer operation 200 400

1 220 kV transformer operation 400 400

2 500 kV transformer operation 400 400

3 800 kV transformer operation 400 400

4 1000 kV transformer operation 450 450

5 Bird sing 60 420

6 Rain 48 384

7 OLTC switching 56 392

8 Short circuit impulse 42 378

9 Partial discharge 90 450

10 DC bias 90 450

Divide the original sample and the expanded sample into training, testing, and validation sets in a ratio of 8:1:1.
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minority class such as 6, 7, 8, and 9 have been significantly improved.
Therefore, the SMOTE algorithm can effectively improve the
classification performance of transformer samples.

Compare the ResNet50 model with ACmix and compare the
performance of the model with the addition of the SMOTE
algorithm. The classification results for the four scenarios are
shown in Table 3.

For the ResNet50 model, the original accuracy was 83.48%,
and after SMOTE sample expansion, the accuracy improved by
2.36%. The F1 scores of each category have significantly
improved, especially for samples in categories 6, 7, and 8,

with an increase of over 20%. For the ACmix model, the
original accuracy was 89.73%, and after SMOTE sample
expansion, the accuracy was improved by 2.08%. In categories
6, 7, 8, and 9, the F1 score has increased by 20%. Due to the
uneven distribution of the original samples, there is not much
difference in overall accuracy before and after using the SMOTE
algorithm to expand the samples. However, after using the
SMOTE algorithm, the accuracy of the minority categories is
significantly improved. The ACmix model has higher
recognition accuracy for transformer operation acoustic
signals compared to the ResNet50 model.

FIGURE 8
Accuracy and loss changing with epoch: (A) Accuracy versus epoch, (B) Loss versus epoch.

FIGURE 9
Confusion matrix: (A) Original samples prediction, (B) Expanded samples prediction.
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4 Conclusion

This article proposes a method for analyzing transformer acoustic
signals. Firstly, the matrix pencil algorithm is introduced for time-
frequency spectrum analysis of acoustic signals. The experimental
results show that the matrix pencil algorithm has a significant
advantage in time-frequency resolution and has good noise resistance
performance. Secondly, to address the issue of imbalanced sample
distribution, the SMOTE algorithm is used to expand the minority
sample categories. Finally, an ACmix model was constructed to classify
the operation and environmental sound of 11 types of transformers. The
results show that SMOTE sample expansion can significantly improve
the recognition accuracy of minority sample categories, and the ACmix
model has good recognition performance. Research content of this
article will provide technical support for intelligent analysis of
transformer sound signals.
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To solve the problem of bolt defects in unmanned aerial vehicle inspection that
are difficult to identify quickly and accurately, this paper proposes a defect
detection method based on the improved YOLOv5 anchor mechanism. Firstly,
the Normalized Wasserstein distance (NWD) evaluation metric and the
Intersection over Union evaluation metric are combined, and the experiment
determines the appropriate weight for this combination. This way, the sensitivity
of using IoU alone to small objecet detection anchor box threshold changes was
reduced. Furthermore, Convolutional Block Attention Module is included into the
head network architecture of yolov5 in order to prioritize significant information
and suppress irrelevant features. Omni-dimensional Dynamic Convolution
(ODConv) is used to replace convolution in MobileNetv2. The combination
module is used as the new backbone of the YOLOv5 model. It simultaneously
enhances the model’s capability to extract bolt defect object information,
minimizes calculation requirements, and achieves lightweight detection across
the entire model. Compared with the original algorithm, the model detection
Accuracy Precision (AP) is increased by 30.1%, the mean Accuracy Precision is
increased by 30.4%. Other evaluation metrics of the model, such as GFlOPs and
Parameters, all decreased slightly. The above results show that the improved
algorithm proposed in this paper greatly improves the detection accuracy of the
model on the premise of ensuring that the model is as small as possible.

KEYWORDS

tiny object detection, transmission line bolt defects, evaluation metrics fusion,
omnidimensional dynamic convolution, anchor-based model

1 Introduction

With the rapid development of China, electricity demand is also increasing. In the face
of massive demand for power supply, the coverage of transmission lines must also be
expanded (Qi, 2019; SHANG et al., 2019; Cao et al., 2021). As the main support of
transmission lines, overhead transmission lines are the physical pillars of the power system
(Liu Jun et al., 2020; Jain et al., 2020; LUO et al., 2021). Therefore, regular inspection of
transmission line defects is an important task to ensure the stable operation of the power
system. Bolts are a critical component in transmission lines as they facilitate the connection
and securement of individual power components. However, due to the perennial exposure
of transmission lines to the external environment, wind traction, severe weather, and other
factors may cause bolt defects. Common defects are loose bolts and missing bolts. In
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extreme circumstances, even aminute flaw can result in the failure of
transmission lines and, in more severe cases, widespread power
disruptions, posing a grave threat to the stability and security of the
power grid. It is evident that investigating a object detection
algorithm that accurately and rapidly identifies fastener defects is
of critical practical importance (MA et al., 2019;Wang B. et al., 2021;
Li et al., 2021; Tian et al., 2021; Li Junlong et al., 2022; ZhangWeixin
et al., 2022).

The traditional inspection method mainly relies on manual
inspection. However, manual inspections have apparent
drawbacks. The manual inspection operation is intensive,
lengthy, and costly. In particular, some transmission lines are
located in harsh environments such as mountains, snow, and
rivers. In addition, the bolt has a small object and a large
number, which is not convenient for manual inspection. With
the development of science and technology, UAV inspection has
gradually become the primary method for detecting defects in
power transmission lines (Ya-wei et al., 2006; JI, 2010; LIU et al.,
2019; WANG et al., 2019). At present, most of the research on
overhead transmission line inspection focuses on large and
medium-sized defects such as insulators, anti-bird thorns, anti-
shock hammers, and bird’s nests. In reference (Wang et al., 2023),
an innovation was made on the loss function, proposing a new
SymLoss. By using SymLoss to optimize OPENet, a dual-head
network can be used to predict anti-bird thorns and position boxes
simultaneously. In reference (Zhai et al., 2022), they used 3D
modeling to generate artificial samples, which supplemented the
problem of insufficient training caused by a small number of data
samples due to the lack of actual samples. And proposed the
introduction of the GCL module into Faster R-CNN to extract
geometric features of shockproof hammer defects, improving
model accuracy. In reference (Zhang and He, 2022), they
improved bird’s nest detection by adding a Swin transformer
module to the YOLOv4 backbone network and using the
Caitong SimOTA sample allocation strategy. The improvements
results were significant. In contrast, defect detection of bolts is
more difficult. The size of the bolt defect itself is particularly small,
and even a single bolt accounts for no more than 1% of the
inspection image. Moreover, the inspection image also has a
complex background environment, which makes it easy to
block the bolt, so it is easy to miss the key features of the bolt
defect in the extracted features, resulting in low defect detection
accuracy. A new measurement index, NWD (Wang J. et al., 2021),
is proposed to address the problem of detecting small objects by
reducing the sensitivity and positive and negative sample
allocation errors of traditional IoU evaluation metrics. However,
in the actual detection task, it is not all small objects. Hence, this
paper takes this situation into account and establishes a converged
measurement index, giving full play to the advantages of two
evaluation metrics. In reference (Huang et al., 2022), they
proposed a detection method based on USRNet and improved
YOLOv5X. Firstly, USRNet is used to super-resolve reconstruction
of the transmission line inspection image to reduce the
interference of the complex background of the transmission
line. Secondly, the multi-module improved YOLOv5X algorithm
is used for detection, which realizes the accuracy of small object
detection. However, it is necessary to carry out super-resolution
reconstruction and then detection. Although the accuracy is

improved, there are obvious disadvantages in speed, which does
not meet the purpose of real-time detection. In reference (Zhai
et al., 2023) they considered the problem of insufficient samples of
insulator defects in transmission lines. In reference (Luo et al.,
2023), Luo Peng et al. detected defects in ultra-small bolts. Deep
extraction of valuable features of ultra -small bolts occurs through
the ultra-small object perception module and local bolt detection
module. And through two-stage detection, end-to-end bolt defect
detection has been achieved, but only a single-level object
detection label needs to be provided. This detection method
greatly reduces the workload of data annotation, but due to the
use of a two-stage end-to-end detection approach, the detection
speed cannot meet the real-time detection requirements of
unmanned aerial vehicle inspections. In reference (Zhang et al.,
2023), Zhang Ke et al. proposed a bolt defect detection method that
cannot be visually distinguished in transmission lines, considering
the different definitions of defects for bolts at different positions.
Improving the basic model with an expansion encoding module,
inferring bolt position knowledge through relative position
encoding of transmission line images, and ultimately obtaining
model output through attribute and defect classifiers can
effectively determine the attributes and defect types of bolts.
Based on parallel vision theory, the prior knowledge of
insulators and rule standards is fused to create artificial defect
samples. Although the problem of insufficient samples is solved,
after the addition of excessive artificial samples, the model is easy
to extract the features of artificial samples, resulting in the
difficulty of extracting the features of actual samples, and the
accuracy of model detection becomes lower.

Considering the above problems, this paper studies a
lightweight transmission line defect detection method based
on the improved YOLOv5 anchor mechanism. By fusing
NWD and IoU as a new evaluation metric, it aims to solve the
problem of positive and negative sample allocation.
MoblileNetv2 inserted into ODConv is introduced in the
backbone network, which fully excavates the feature
information extracted from small object defects while
lightweight modeling so that real-time detection in bolt
defects of transmission lines can be realized.

FIGURE 1
Transmission line bolt defects.
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2 Image characteristics and detection
methods of transmission line bolts

2.1 Image characteristics of transmission line
inspection bolts

The detection object of this method is the bolt, which includes
two primary defects: a missing bolt and a loose bolt. An image of the
inspection bolts of a typical transmission line is shown in Figure 1.
From this figure, it can be seen that in the transmission line
inspection bolt image, there are the following difficulties in the
inspection task:

1) The inspection object is tiny. When the drone is shooting, due
to the distance from the object, some transmission line images
have a large field of view, which is prone to a lack of appearance
information such as texture, shape, and color. It often leads to
failures, and small objects are difficult to detect.

2) The background of the detected object is complex. In the
complex background of a transmission line, objects that are
blurred due to image quality are difficult to detect because their
contour features are not prominent and difficult to distinguish
well from the environmental background. Objects also lack
clearer contour features to distinguish them from occlusions,
which makes object detection difficult. In view of the above
characteristics of transmission line detection images, there is a
need to improve the image quality of transmission line fault
object detection and to enhance the ability of the object
detection algorithm to detect small objects.

2.2 Transmission line inspection bolt image
detection method

Aiming at the characteristics of the above-mentioned
transmission line inspection bolt images, this paper proposes a
new object detection idea of fusion evaluation metrics and omni-
dimensional dynamic convolution insertion into lightweight
backbone networks. In this paper, the conventional measurement
method is improved to reduce the sensitivity of small object
detection tasks based on anchors and improve the ability of
positive and negative sample allocation. At the same time,
dynamic convolution is used to extract the fine-grained pixel
characteristics of small objects and insert them into
MobileNetv2 to replace convolution as the backbone network.
This enhances the detection speed of the entire model.

First, improve the anchor mechanism of YOLOv5. The optimal
weight of NWD and IoU fusion was determined experimentally and
used as a new evaluation metric. While improving the overall
accuracy of the model, it also improves the training convergence
speed of the model. Second, replace the backbone part of the
YOLOv5 network with mobileNetv2 plugged into ODconv as the
new backbone network. While enhancing the performance of the
model in identifying bolt defects in transmission lines, it also
improves the detection speed of the whole model. It optimizes
the performance of the entire model.

3 YOLOv5’s anchor
mechanism improved

The YOLOv5 model is an anchor-based model. The anchor
mechanism is a technique for small objects. Because it can produce a
large number of dense anchor boxes, the network can perform object
classification and prediction box coordinate regression. And the
dense anchor frame has a certain improvement in the recall ability of
the network, which is a great advantage for small object detection.
Therefore, this paper proposes a new improvement scheme for this
mechanism. That is, the NWD index and the IoU index are fused as
a new evaluation metric to solve the problem that positive and
negative samples of object allocation in the YOLOv5 algorithm are
prone to errors in small object detection to improve the performance
of the model.

3.1 YOLOv5’s general evaluation metric
intersection over union

3.1.1 Introduction to intersection over union
Intersection over Union is shortened to IoU. IoU is a standard

that measures the accuracy of detecting objects in a specific data set.
IoU is a simple measurement standard. Any task that produces
bounding boxes in the output can be measured with IoU. In object
recognition, a certain ratio of our commonly the prediction box to
the actual box is IoU. The formula for calculating IoU is
shown below:

IoU � A ∩ B

A ∪ B
(1)

As shown in Figure 2, IoU means the intersection of rectangle
A and rectangle B divided by the union of rectangle A and
rectangle B.

3.1.2 Intersection over union application scenarios
In addition to being used as an evaluation index for object

detection, IoU have the following three functions under the
YOLOv5 algorithm:

FIGURE 2
Diagram of the intersection over union.
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1) In the object detection of the anchor-based method, positive
samples and negative samples are distinguished according to
the value of the IoU.

2) It can be optimized directly as a loss function for bounding box
regression.

3) Filter the prediction box in the NMS (non-maximum
suppression).

3.2 Normalized Wasserstein distance

For small object objects, since most real objects cannot be
standard rectangles, bounding boxes tend to have some
background information. The information and background
information of the object object are concentrated on the center
point and boundary of the bounding box, respectively. Then, when
building a two-dimensional Gaussian distribution for a bounding
box, you can set the center pixel of the bounding box to the highest
weight, then gradually decrease from the center point to the
boundary. For a bounding box R � (cx, cy, w, h), it can fit into a
two-dimensional Gaussian distribution N(μ,Σ).

Obey μ � cx
cy

[ ],Σ �
w2

4
0

0
h2

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

This way, the similarity between bounding boxes is converted
into a distribution distance between Gaussian distributions.
where (cx, cy) is the center coordinate of the bounding box, c,
w and h represents the center coordinate, width, and height
respectively.

Using the Wasserstein distance to calculate the distribution
distance, the second-order Wasserstein distance between different
bounding boxes μ1 � N(m1,Σ1) and μ2 � N(m2,Σ2) is defined as:

W2
2 μ1, μ2( ) � m1 −m2‖ ‖22 + Σ1/2

1 + Σ1/2
2

���� ����2F (3)

Using the Gaussian distributionNa andNb , the formula can be
simplified to:

W2
2 Na,Nb( ) � ⎛⎝ cxa, cya,

wa

2
,
ha
2

[ ]
T

, cxb, cyb,
wb

2
,
hb
2

[ ]⎞⎠
����������

����������
2

2

(4)

Since the result obtained above is a distance, and IoU is a ratio,
the scale value is maximum 1 and minimum is 0, so this distance
needs to be normalized, so the Normalized Wasserstein Distance
(NWD) is finally obtained:

NWD Na,Nb( ) � exp −

W2

2 Na,Nb( )√
C

( ) (5)

3.3 Construction of fusion
evaluation metrics

As shown in Figure 3, little positional deviations can result in
major changes to the IoU. Due to the importance of IoU in label
allocation, the difference in the value size may directly lead to the
allocation of negative samples that should theoretically be assigned
to positive samples. When part of the object scale is too small, the
degree of overlap between the anchor box and the real box will never
reach the threshold. IoU itself has its flaws, which has led to the
creation of many variants of evaluation metrics based on it. IoU only
works when the bounding boxes overlap, so GIoU was proposed to
solve this problem by adding penalties. But when the two bounding
boxes contain each other, GIoU is downgraded to IoU.
Subsequently, DIoU and CIoU were proposed to overcome these
problems. However, GIoU, DIoU, and CIoU are all extensions of
IoU, which are more commonly used in loss functions, and there is

FIGURE 3
IoU change sensitivity for objects at different scales (A) Tiny scale object (B) Normal scale object.
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still a problem that the position offset of small objects is sensitive in
label allocation. At this point, using NWD as a new evaluation
metric is considered. The main step is to model the bounding box as
a two-dimensional Gaussian distribution and then use NWD to
measure the similarity of the derived Gaussian distribution. NWD
can measure the similarity of distributions without overlap, and
NWD is not sensitive to the scale of the object, making it ideal for
measuring the similarity of small objects.

However, there are also problems with using NWD alone as a
model evaluation metric. The use of the NWD algorithm involves
the optimal transportation algorithm, which increases the running
complexity of the model, makes the training speed of the model
slower, and also affects the training effect. Secondly, NWD performs
well in object detection tasks for very small pixel objects. The dataset
in this paper has both small object defects and very small object
defects, so the effect of NWD alone is not good.

To this end, this paper fuses two evaluation metrics at the same
time and determines the optimal combined weights of the two
through experiments. We use it as a new evaluation metric to
improve model’s accuracy in identifying bolt defects while also
speeding up the convergence of the model.

As shown in Figure 3A shows the variation of IoU in tiny scale
object; Figure 3B shows the variation of IoU in normal scale object.
In Figure 3A, the value of IoU for A and B is calculated to be 0.47,
and the IoU for A and C is calculated to be 0.04. In Figure 3B, the
value of IoU for A and B is calculated to be 0.74, and the IoU for A
and C is calculated to be 0.42. This shows that there are significant
disadvantages of using IoU for tiny scale objects in object detection.

FIGURE 4
Principle of omni-dimensional dynamic convolution.

TABLE 1 MobileNetv2 network structure.

Input Operator t c n s

2,242 × 3 Conv2d 32 1 2

1,122 × 32 Bottleneck 1 16 1 1

1,122 × 16 Bottleneck 6 24 2 2

562 × 24 Bottleneck 6 32 3 2

282 × 32 Bottleneck 6 64 4 2

142 × 64 Bottleneck 6 96 3 1

142 × 96 Bottleneck 6 160 3 2

72 × 160 Bottleneck 6 320 1 1

72 × 320 Conv2d 1 × 1 1,280 1 1

72 × 1,280 Avgpool 7 × 7 1

1 × 1×1,280 Conv 1 × 1 k

FIGURE 5
Flowchart of the Inverted residual structure.
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4 Improvement module introduction
and improvement strategy

4.1 Introduction to omni-dimensional
dynamic convolution

Omni-Dimensional Dynamic Convolution abbreviated as
ODconv. Whereas conventional convolution has only one static
convolution kernel and is independent of input samples, the
traditional dynamic convolution kernel uses an attention
mechanism to dynamically weight multiple convolution kernels
and combine them. The calculation of ordinary dynamic
convolution is shown in Eq. 6. ODconv focuses on all
dimensions of kernel space, and its calculation is shown in Eq. 7.

y � αw1W1 + · · · + αwnWn( )*x (6)

y � (αw1 ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙ W1 + · · ·
+αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙ Wn) *x (7)

Where x represents the input feature map, y represents the
output feature map, Wi represents the ith convolution kernel, αwi is
the attention scalar for the ith convolution kernel, and αsi, αci and αfi
represent the attention scalars along the space, input channel, and
output channel, respectively. ⊙ represents multiplication operations
in different dimensions along the kernel space.

The same calculation method as the SE attention mechanism is
used. First, the input x is compressed into a feature vector of the
same length as the input channel by global average pooling (GAP).
Then use fully connected layers (FC) to map eigenvectors to low-
dimensional space. Then go through the ReLU activation function,
and generate 4 attention scalars αwi, αci, αsi and αfi of the kernel
space through 4 FC layers and Sigmoid activation function or
Softmax function, respectively. The process of full-dimensional
dynamic convolution is shown in Figure 4.

4.2 Introduction and improvement of
MobileNetv2

MobileNetv2 (Sandler et al., 2018) was proposed by the Google
team in 2018. Compared with MobileNetv1, the accuracy rate is
higher and the model is smaller. The structure of the
MobileNetv2 network is shown in Table 1. Among them,
Conv2d is a 2-dimensional convolution operation, Bottleneck is a
bottleneck block composed of an Inverted residual block, Avgpool is
an average pooling operation, t is the channel extension factor, c is
the number of channels for the output feature matrix, and n
represents the number of repeated Bottleneck and s means stride.
s only represents the convolutional stride of the first Bottleneck in
each convolutional stride. k represents the channel of the
output vector.

The weight of many depthwise convolutions found in
MobileNetv1 was found to be 0 and did not play a role. To
avoid this problem, the MobileNetv2 version borrowed from the
residual structure of ResNet, thereby introducing the Inverted
residual. The Flowchart of the Inverted residual is shown in the
figure below.

FIGURE 6
Flowchart of the improved Inverted residual structure.

FIGURE 7
The overview of Convolutional Block Attention Module (CBAM).
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As shown in Figure 5, Input represents the image input, Conv
represents convolution operation, ReLU6 is an activation function,
and its expression is y = ReLU6(x) = min(max(x,0),6). Dwise
represents Depthwise convolution. Liner represents a linear
activation function and its expression is y = f(x) = x.

In the case of Stride = 1, input the image input for
convolution operation, the convolution core size is 1 × 1.
Then use RELU6 as the activation function for processing.
Then use Dwise, and its convolution core size is 3 × 3. It still
uesd the ReLU6 function as the activation function. Immediately

then, use the convolution of the convolution core to 1 × 1, and
adjust the activation function to a linear activation function.
When stride = 1 and the input feature matrix is the same as the
output feature matrix shape, the shortcut connection operation
is performed.

When Stride = 2, it is basically similar to Stride = 1, but there is
no shortcut.

This paper uses ODConv to replace the Conv in the above
structure. The improved flowchart is shown in Figure 6. The new
ODConv is used and nothing else has changed.

4.3 Introduction and improvement of
Convolutional Block Attention
Module (CBAM)

The mechanism flow diagram of CBAM is shown in Figure 7.
Firstly, perform global maximum pooling and global average
pooling on the input feature map, and compress the feature map
based on two dimensions to obtain two feature descriptions with
different dimensions. The pooled feature maps share a multi-layer
perceptron network, first reducing dimensionality through
11 convolutions and then increasing dimensionality through
11 convolutions. Overlay two feature maps with normalize the
weights of each channel in the feature map through the sigmoid
activation function. Multiply the normalized weights with the input
feature map.

We embed the CBAM attention mechanism in the head
structure of YOLOv5 for deep feature extraction, that is, focusing
on important features and suppressing unnecessary features. The
CBAM embedding structure is shown in Figure 8.

FIGURE 8
CBAM is embedded in the YOLOV5 structure diagram.

TABLE 2 Various evaluation metrics under the gradual increase in the
proportion of NWD.

NWD weight Precision Recall mAP

0.0 0.525 0.454 0.427

0.1 0.699 0.369 0.416

0.2 0.56 0.485 0.41

0.3 0.671 0.415 0.434

0.4 0.473 0.455 0.381

0.5 0.612 0.385 0.351

0.6 0.609 0.432 0.417

0.7 0.598 0.377 0.373

0.8 0.636 0.376 0.372

0.9 0.68 0.59 0.573

1.0 0.578 0.526 0.453

The bold values imply optimal data results.
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5 Experimental results and analysis

5.1 Evaluation metrics

The main purpose of the method proposed in this paper is to
ensure the accuracy of the model and reduce its weight. That is,

improve the detection accuracy, reduce the number of model
parameters and calculations, and shorten the inference time.
Parameters are used to evaluate the size of the number of
parameters in the model. Giga Floating Point Operations
(GFLOPs) is used to indicate the computational complexity of
the network. Average Precision (AP) needs to be calculated from
the accuracy and recall of the model training samples. Mean Average
Accuracy (mAP) is the average of the various types of object APs
detected, and the detection time is the time consumed by each image
detection. The formula for calculating the above evaluation metrics
are as follows:

Precison � TP

TP + FP
(8)

Recall � TP

TP + FN
(9)

AP � ∫1

0
PdR (10)

mAP � 1
n
∑n

i�0APi (11)
GFLOPs � HW CinK

2 + 1( )Cout × 10−9 (12)
Where TP is the number of positive samples that have been correctly
identified, FP is the number of negative samples that were
incorrectly identified as positive, FN is the positive sample size of
false negatives, P represents the Precision value at Recall = R, n is the
total number of classes for the training sample set and i i is the
number of the current category. i refers to the number of channels in
which the convolutional layer inputs to the tensor, Cout indicates the
number of output channels the number of channels in which the
convolutional layer outputs to the tensor,K refers to the convolution
kernel size.

5.2 The optimal weight combination of
Normalized Wasserstein distance and
introduction to intersection over union
determines the experiment

This experiment was conducted under the Python framework, with
Python version 1.5.1. Using theWindows 10 operating system. Among
them, CUDA version 11.4, CUDNN version 7.6, and Python version
3.8 are used in the software environment. The hardware environment is
the Windows 10 operating system, and the CPU model of the testing
device is 11th Gen Intel (R) Core (TM) i5-11400 @ 2.60GHz, and the
GPU model is NVIDIA GeForce RTX 3060. The data in this article is
actual data obtained from a transmission line in a certain province of the
State Grid of China. The number of data samples is 845.

The NWD evaluation metric has a good effect on the detection
of tiny objects. But in general inspection tasks, not all objects are tiny
objects. Therefore, this article takes this into account, and in the
model established in this article, NWD and IoU are used at the same
time, and the two are fused to build a new evaluation metric.

In this paper, the NWD weight is selected to change from 0 to
1 with a step size of 0.1. The specific effects of the fusion evaluation
metrics are shown in Table 2.

As can be seen from Table 2, in the overall trend, with the
increase in the weight of the NWD, Precision is gradually increasing,
while the change of Recall and mAP is first decreasing and then

FIGURE 9
Comparison of evaluationmetrics duringmodel convergence (A)
Loss comparison chart (B)Precision comparison chart (C)mAP
comparison chart.
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increasing, and finally the overall performance is better than the
low-weight IoU.

The interpolation smoothing plot reflects the good
characteristics of NWD in small object detection tasks as a
whole. However, in Table 1, we find that the best fusion
evaluation metric weight is 0.9NWD+0.1IoU. Its Precision is
0.68, Recall is 0.59, and mAP is 0.573. All evaluation metrics are
optimal. 0.9NWD+0.1IoU is the optimal recombination in the
detection task in this paper, and this paper calls the optimal
index N-I metrics.

Therefore, this paper uses this fusion evaluation metric in the
model training process. Figure 9A–C respectively reflect the changes
of Loss, Precision, Recall and mAP in the training process using the
N-I metrics algorithm.

As can be seen from Figure 9A, the model using the N-I metrics
has basically converged at 60 epochs, and the loss value is stable at
about 0.012. The model without improvement converges at
130epochs, and the loss value stabilizes at about 0.03 under

convergence. It can be seen that the use of N-I metrics can
accelerate the convergence speed of the model and reduce the
loss of the model.

As can be seen from Figure 9A–C, the model using the N-I
evaluation metrics have good results on all evaluation metrics
compared with the model algorithm without improvement.

The above experimental results show that the N-I metrics used
in this paper can further mine the object semantic information and
positioning information, enhance the learning ability of the network,
and improve the detection performance of the network for bolt
defects in transmission lines.

5.3 Ablation experiment to improve the
YOLOv5 algorithm

As shown in Table 3, the ablation experimental results of the
improved YOLOv5 algorithm are shown in this paper. From the

FIGURE 10
Loose and loss detection results of bolts (A) Bolt loss defect detection (B) Bolt loose defect detection.

TABLE 3 Ablation experiment to improve the YOLOv5 algorithm.

N-I
metrics(0.9NWD+0.1IoU)

CBAM MobileNetv2 ODconv AP/
%

Map/
%

Parameter/
M

GFLOPs Detection
time/ms

1 52.25 42.7 24.3 54.3 25.8

2 √ 64.0 44.6 24.3 54.3 25.9

3 √ √ 64.4 46.1 28.4 62.7 29.4

4 √ √ √ 65.1 47.3 25.6 59.4 27.0

5 √ √ √ √ 68.0 57.3 24.9 56.9 26.2

The bold values imply optimal data results.
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table, we can find that in the process of gradual improvement, the
accuracy of the model is getting higher and higher, and the number
of parameters is getting smaller and smaller. Compared with the
original YOLOv5 algorithm, AP of the model is improved from
52.25% to 64% after using the N-I metrics, an increase of 22.5%. The
model’s mAP increased by 4.5% from 42.7% to 44.6%. It can be seen
that the fusion index proposed in this paper has a large improvement
in AP of bolt defect detection in transmission lines and a small
improvement in mAP. It still needs improvements in other modules.
After adding CBAM, AP of the improved algorithm has not changed
much, and the mAP is increased by 3.4%. It is helpful to improve the
performance of the entire model. After adding the CBAM module,
the number of parameters increases due to the complex direction of
parameter propagation. Therefore, Parameters, and GFOLPs
increased slightly.

On the basis of the above, this paper uses the
MobileNetv2 network as the new backbone of the
YOLOv5 model, aiming to lighten the model. Neither AP nor
mAP has improved much. However, compared with the
YOLOv5 algorithm with the addition of CBAM, the number of
Parameters of the model is reduced by 9.8%, the GFLOPs of the
model are reduced by 5.2% and Detect time increased by 8.1%. After
replacing ordinary convolution with ODconv, the model
performance has been further improved.

In summary, the final model detection AP increases by 30.1%,
mAP increases by 30.4%, the number of model Parameters,
GFLOPs and Detect time have fallen in small increments
compared with the original model. There are obvious
improvement effects under each index, which verifies the
effectiveness of the proposed model.

In summary, the algorithm proposed in this paper has good
performance in various evaluation metrics. It can be used as a
method to detect bolt defects in transmission lines.

6 Conclusion

Considering that the object of bolt defects of transmission lines
is small, it is greatly affected by complex environmental influences,
and it is difficult to detect. This paper proposes an improved
YOLOV5 algorithm to solve this problem. The work done in this
paper mainly has the following three aspects:

1) Improve the anchor mechanism of YOLOv5. YOLOv5 is the
standard anchor-based model. Based on this, this article uses
NWD as a new evaluation metric, but there are also problems
with a single NWD evaluation metric. Therefore, this paper
fuses both evaluation metrics, and determines the optimal
weight of the fusion evaluation metrics through experiments.
The use of N-I metrics have significantly improved both AP
and mAP compared to basic algorithms. Among them, AP
increased by 22.5% and mAP increased by 4.5%.

2) Use ODconv instead of ordinary convolution and insert it into
MobileNetv2 as a new backbone. ODconv itself has a good
effect in small object detection, instead of ordinary
convolution, it can fully mine the semantic information of
bolt defects. At the same time, in order to lightweight the
model, Mobilenetv2 was used as the backbone. The organic

combination of the two also improves the performance of the
model. Using MobileNetv2 without inserting ODconv, the
improvement effect compared to the basic algorithm is not
significant. After inserting ODconv, the model accuracy and
detection speed both improved. Compared with the model
using N-I evaluation metric, it improved by 4.45% on AP,
28.48% on mAP. Compared with the YOLOv5 algorithm with
the addition of CBAM, the number of Parameters of the model
is reduced by 12.3%, the GFLOPs of the model are reduced by
9.3% and Detect time increased by 10.9%.

3) The CBAM module is embedded in the head structure of
yolov5. In order to focus on the important features of the bolt
defect, suppress unnecessary features. In this paper, CBAM is
used to focus on both channel and space. Therefore, the
characteristic information of defects can be fully exploited
and the model performance can be improved. Using the
CBAM attention mechanism, compared to using the N-I
evaluation metric, there was almost no improvement on
AP, but an increase of 3.36% on mAP. After the use of
CBAM, both Parameters, GFLOPs and Detect time
increased slightly.

Although this article has shown significant improvement in bolt
defect detection, there are still the following issues that need to
be addressed:

1) The fusion weight of NWD and IO. In this article, the weight
coefficient is used starting from 0, with a step size of 0.1, and
continuing until 1. Can this problem be analyzed and solved as
an optimization problem, but with optimal weights at the
mathematical level.

2) Using MobileNetv2 on the PC end can lightweight the
network. However, when chip algorithms are installed on
drone onboard devices, the network actually performs
poorly. How to solve the problem of ensuring that there are
no network differences after transplanting PC end algorithms
to drone onboard devices is also a need to consider.[ (Qian
et al., 2023; Matta et al., 2012; Woo et al., 2018; Li et al., 2019;
Liu X. et al., 2020; Ge and Chen, 2020; Li C. et al., 2022; Zhang
Y. et al., 2022; Ouyang and Yu, 2022; Huang et al., 2023)]
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distribution networks based on
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Line loss refers to the electrical energy that is dissipated as heat during the
transmission and distribution of electricity through power lines. However,
unusual causes, such as grid topology mismatch and communication failure,
can cause abnormal line loss. Efficient abnormal line loss detection contributes
not only tominimizing energywastage and reducing carbon emissions but also to
maintaining the stability and reliability of the entire distribution network. In actual
situations, the cause of abnormal line loss is not labeled due to the expensive
labor cost. This paper proposes a hierarchical abnormal line loss identification and
category classification model, considering the unlabeled and unbalanced sample
problem. First, an abnormal line loss identification model-based random forest is
established to detect whether the line loss is abnormal. Then, an abnormal line
loss category classification model is developed with semi-supervised learning for
line loss abnormal category classification, considering the unlabeled samples.
The real dataset in China is utilized to validate the performance of the proposed
model. Its reliability implies the potential to be applied to real-world scenarios to
improve the management level and safety of the power grid.

KEYWORDS

distribution network, line loss, reasoning analysis, semi-supervised learning, XGBoost,
random forest

1 Introduction

The line loss rate is an essential indicator of economy and technology in the low-voltage
distribution network (DN) (Sayed and Takeshita, 2011; Luo et al., 2021; Sun et al., 2022).
With access to distributed generation and flexible load, DN becomes increasingly complex.
Meanwhile, with the increasing electricity demand, a certain quantity of line loss in DN is
generated. However, limited by the metering accuracy of data acquisition devices and the
reliability of transmission systems, line loss identification in DN is usually completed by
labor (Jing et al., 2019). Due to the incomplete installation of metering instruments of low-
voltage substations and customers (Zhu and Lin, 2021; Raghuvamsi et al., 2022), it is
challenging to analyze the causes of line loss.

With the establishment of big data centers and the development of machine learning,
power supply corporations have gradually started to analyze line loss based on data-driven
models to improve the economic benefits. According to the data source, the data-driven line
loss analysis can be divided into user-oriented data analysis and DN substation area data
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analysis. Gunturi and Sarkar (2021) proposed an electricity theft
detection model based on an ensemble machine learning model. The
model applied the statistical method of oversampling to solve the
over-fitting problem during the training process. Based on the
terminal acquisition data, the model could identify the line loss
anomaly in a small-scale DN. Buzau et al. (2020) used a user-side
line loss identification algorithm based on a hybrid depth neural
network to detect non-technical losses. The algorithm integrated a
long short-term memory network and a multi-layer sensing
machine, which were used for processing the original data and
integrating non-time series data. Chen J. D. et al. (2023) established
an electricity theft detection model based on a one-dimensional
convolutional neural network. It analyzed the non-technical line loss
on the user side according to the complete terminal data. The above
three methods (Buzau et al., 2020; Gunturi and Sarkar, 2021; Chen
J. D. et al., 2023) show a significant role in line loss identification on
the user side. However, they are sensitive to the quality of user-side
power consumption data and lack of universality.

Regarding line loss identification in DN, a feeder loss estimation
method based on the boost k-means model was developed (Chen
J. et al., 2023). The analysis index system for line loss was established,
and the multi-information index was calculated according to the
time series data. The established characteristic indexes were
imported into the boost k-means algorithm for clustering
calculation, and the outliers were marked as line loss data. Wu
et al. (2019) introduced an algorithm of non-technical line loss of
DN identification with large samples. Based on the robust neural
network model, the proposed method employed an automatic
denoising encoder to pre-process data. The RNN model classified
the operation data and identified the non-technical line loss value.
Yao et al. (2019) analyzed the topology of a low-voltage DN and used
the GBDT model to predict the abnormal line loss nodes in the
substation area. Based on parameter clustering and deep learning
algorithms, the parameter correlation and time series characteristics
of a DN were fully considered by Liu et al. (2022) and Zhang et al.
(2022). The multi-variate characteristic parameters were utilized to
predict line loss events in a DN. When the topology of the DN is
clear and the operation parameters are complete, identifying and
predicting line loss based on the data-driven algorithm in the
substation area can achieve remarkable results.

In actual operation conditions, it is difficult to accurately
measure the operational parameters in the distribution network
and the accuracy power consumption data (Lin and Abur, 2018;
Jiang and Tang, 2020). Zhou et al. (2022) proposed a non-technical
line loss identification model based on an AP reconstruction neural
network. The model reconstructed and corrected the anomaly data
by the AP neural network based on the simulation dataset, followed
by a deep neural network to classify the data. Huang et al., (2023)
constructed the electrical characteristic index system of theoretical
line loss, and the power torque was proposed to identify line loss in
the case of missing line data in a DN. However, this method is a
supervised learning algorithm, which requires a certain amount of
labeled data to train the model. In recent years, analyzing the causes
of line loss has become a research focus. Power supply corporations
have become interested in the causes of different line loss types.
Liang et al. (2022) proposed a line loss interval calculation method
based on power flow calculation and linear optimization, which was
suitable for datasets with anomalies. This method fully considered

the power flow and dispatching information and analyzed the cause
of area line loss. Some studies (Wang et al., 2019; Sun et al., 2023)
mentioned data-driven algorithms for line loss cause analysis,
locating anomalous nodes in the network topology and analyzing
the abnormal causes according to parameter deviations.

With the increasing complexity of DNs, the accuracy of traditional
line loss identification methods on the overall level of the DN is crucial
to guarantee. All data-driven algorithms and statistical methods greatly
rely on the data quality and data quantity, especially the labeled data.
The unsupervised learning methods, such as the clustering algorithms,
do not need the labeled data to detect the abnormal line loss. However,
its performance is limited and cannot identify the abnormal category.
When the abnormal line loss data occupied the main part of the whole
data, the clustering algorithm would directly regard the abnormal data
as the normal one. The supervised learning algorithms, such as the
neural network and tree models, have a more stable performance than
unsupervised learning algorithms. However, it needs enough data to
support the model training to avoid the overfitting phenomenon. In the
abnormal line loss detection of a DN, the labeled data are limited due to
labor consumption and time cost. Thus, the performance of supervised
learning used to detect abnormal line loss with limited labeled samples
cannot be guaranteed. The semi-supervised learning (Van Engelen
et al., 2022; Du et al., 2024) combines unsupervised learning with
supervised learning. It can utilize a large amount of unlabeled data and
fewer labeled data to improve model performance and achieve a better
performance than supervised learning on limited labeled data.

Considering limited labeled and unbalanced sample distribution
in an actual situation, this paper proposes an abnormal line loss
identification and category classification based on semi-supervised
learning and hierarchical classification. The main contributions of
this paper are listed as follows: (1) a hierarchical framework of
abnormal line loss identification and category classification is
proposed, considering the unlabeled and unbalance sample
problem. (2) An abnormal line loss identification model based
random forest is established to identify whether substation line
loss is abnormal. (3) An abnormal line loss category classification
model is developed with semi-supervised learning for line loss
abnormal causal reasoning, considering the unlabeled samples.

The structure of this paper is as follows: Section 1 provides an
introduction and the relevant literature. Section 2 introduces the
framework of the proposed hierarchical abnormal line loss
identification and category classification model. Section 3 describes
the details of data pre-processing and feature engineering. Sections 4
and 5 present the details of the abnormal line loss identificationmodel
and the abnormal line loss category classification model, respectively.
Section 6 displays the detailed experiment results based on the real
dataset. Finally, section 7 gives the conclusion.

2 The framework of the
proposed model

This paper proposes an abnormal line loss identification and
category classification model of a DN based on semi-supervised
learning and hierarchical classification under unbalanced samples.
The model is used to identify abnormal line loss in a DN and the
corresponding abnormal reasons. In practical situations, there are
enough labeled data for DN line loss abnormalities but few labeled
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data for the specific abnormal reasons. Therefore, a two-stage
hierarchical classification model for identifying and reasoning
abnormal line loss in a DN is proposed. In the first stage, a
random forest-based abnormality identification model is
established to identify whether abnormal line loss exists in the

substation. In the second stage, considering less labeled data for
the specific abnormal reasons, a semi-supervised learning-based
XGBoost abnormal line loss category classification model is
proposed to analyze the reasons of the abnormal line loss. The
overall method framework is shown in Figure 1.

FIGURE 1
Framework of the proposed model.
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(1) Data pre-processing: the data on the distribution network
substation area include static document data and dynamic
operation data. In the actual data collection process, some
data are missing. The k-nearest neighbor method is adopted
to select the k samples that are most similar from the sample
alternative set of the same substation area, and the average value
of k-samples is taken to fill in the missing values.

(2) Feature engineering: in the substation dynamic operation
data, some features are directly related to the operation
state of line loss, such as the daily line loss rate, daily

maximum load rate, and daily power factor. Thus, new
features are generated by the statistics of these features.

(3) Abnormal line loss identification: the correlation analysis is
carried out on all the features generated by feature
engineering. The features with a high correlation
coefficient are selected as the input of the abnormal line
loss identification model. The dataset is divided into the
training and test datasets, and the abnormal line loss
identification model based on the random forest algorithm
is established to identify whether the line loss is abnormal.

TABLE 1 Examples of dynamic operation data.

Datetime No. of
substation

Power
supply
quantity

Power sales
quantity

Line loss
power

Line
loss
rate

Power
factor

Max.
Load
rate

Three-phase
unbalance rate

2022/3/1 063488510003175 2951.370 2815.640 135.73 4.599 0.993 24.19 0.546

2022/3/2 063488510003175 2845.620 2719.380 126.24 4.436 0.994 25.76 0.546

2022/3/3 063488510003175 2961.070 2832.830 128.24 4.331 0.991 25.09 0.504

2022/3/4 063488510003175 2935.850 2803.190 132.66 4.519 0.991 22.60 0.625

2022/3/5 063488510003175 3056.390 2917.960 138.43 4.529 0.983 25.80 0.500

2022/3/6 063488510003175 2993.900 2868.100 125.8 4.202 0.984 22.50 0.458

2022/3/7 063488510003175 2919.360 2789.380 129.98 4.452 0.990 23.50 0.540

2022/3/8 063488510003175 2913.810 2807.600 106.21 3.645 0.989 22.24 0.424

2022/3/9 063488510003175 2941.260 2816.150 125.11 4.254 0.991 22.08 0.417

2022/3/10 063488510003175 2814.540 2720.210 94.33 3.352 0.987 22.80 0.549

. . . . . . . . . . . . . . . . . . . . . . . . . . .

FIGURE 2
Data pre-processing and feature engineering.
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(4) Abnormal line loss category classification: category
classification is performed for the identified abnormal line
losses. The common abnormal line loss causes are classified
into four categories, line infrastructure problems, basic
document files problem, meter problem, and theft of
electricity. Considering a few data to be labeled by the
abnormal category in the actual situation, a semi-
supervised learning-based XGBoost abnormal line loss

TABLE 2 Character data encoding of substation load distribution.

Substation load distribution Ld

Uniform distribution 1

Heavy tail and light head 2

Heavy middle and light tail and head 3

FIGURE 3
Illusion of random forest.

FIGURE 4
Diagram of abnormal line loss cause distribution.

TABLE 3 Parameter settings.

Model Parameter Value

Random forest in abnormal line loss detection Maximum depth of decision tree 10

Number of decision trees 144

Minimum number of samples in each split node 10

XGBoost in abnormal line loss category classification Maximum depth 5

Learning rate 0.08

Booster DART

Subsample 0.75
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category classification model is proposed to achieve the causal
reasoning analysis of the abnormal line loss.

3 Data pre-processing and feature
engineering

In the process of abnormal line loss identification in a DN, the
data pre-processing and feature engineering of substation operation

data are essential. By processing and extracting features from
substation operation data, accurate and comprehensive features
can be obtained, effectively improving the accuracy and reliability
of abnormal line loss identification in a DN.

Substation data in distribution networks can be divided into two
categories. One is static document data, including DN topology data,
customer relationship data, the number of users, load type, transformer
type, and substation load distribution. The other is dynamic operation
data, including the daily input and output electricity, daily line loss rate,

FIGURE 5
Correlation analysis of the statistical features.

TABLE 4 Results of abnormal line loss detection and category classification.

Abnormal line loss detection Abnormal line loss category classification

Acc 0.9768 0.8446

P 0.9948 0.7617

R 0.9979 0.8124

F1 0.9963 0.7862
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daily power factor, daily maximum load rate, daily voltage compliance
rate, and daily three-phase imbalance degree, which is shown in Table 1.
For dynamic document data, not only data pre-processing, such as data
cleaning and completion, need to be carried out but also relevant
features need to be extracted. For example, statistical measures of line
loss rate, such as the average value, maximum, minimum, and variance,
are significantly related to the state of line loss. The overall data
processing and feature engineering processes are shown in Figure 2.

3.1 Data pre-processing

Data pre-processing mainly includes filling in missing values
and encoding character data.

(1) Character data encoding

Character data encoding is carried out for the load distribution Ld
and abnormal line loss categories in the substation area. Table 2 shows
character data encoding for the load distribution in the substation area.

(2) Missing data filling

Upon the analysis of existing data, there were some missing data
such as the daily power factor and daily three-phase unbalance in
some substations. To solve this problem, the candidate set is
generated by the substation. Then, the k-nearest neighbor
method is adopted to select the k-samples which are the most
similar from the candidate set and fill in the missing values by
taking the average value of k-samples.

3.2 Feature engineering

According to the substation operation data, feature extraction is
carried out on the daily power supply quantity, daily power sales
quantity, daily line loss rate, daily power factor, and other data. The
statistical features such as the average value, maximum value,
minimum value, and variance in monthly are generated.

(1) Monthly average value

For the loss rate, lr; power factor, μ; maximum load rate, MaxL;
and the three-phase voltage unbalance rate, U, the average value is
calculated with the month as the statistical length, as shown in
Equation 1:

xi,avg � 1
Ni

∑
j�1

xij, (1)

where xij indicates the measured value of the j-th day of the i-th
month; x = lr, μ, MaxL or U; xi,avg indicates the average value of the
indicator in the i-th month; and Ni indicates the total number of
days in the i-th month.

(2) Monthly maximum/minimum value

For the daily line loss rate lr and daily maximum load rateMaxL,
the maximum and minimum values are calculated with the monthly
statistical length, which is defined by Equation 2.

xi,max � max xi1, xi2, ..., xiNi( )
xi,min � min xi1, xi2, ..., xiNi( ) , (2)

FIGURE 6
Diagram of the decision boundary of one decision tree of the random forest.
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where xij represents the measured value of the corresponding index
on the j-th day of the i-th month.

(3) Monthly fluctuation rate of daily line loss

The fluctuation of the monthly line loss rate can also reflect the
abnormality of the line loss to a certain extent. Considering the
difference of the average line loss rate in months, the fluctuation rate
of the monthly line loss is defined as in Equation 3 in order to

FIGURE 7
Confusion matrix of abnormal line loss category classification with XGBoost and semi-supervised learning. Label “Document” denotes the basic
document files problem. Label “Theft” denotes theft of electricity. Label “Infrastructure” denotes the line infrastructure problem. Label “meter” denotes
the meter problem.

FIGURE 8
Results of abnormal line loss detection with different algorithms.
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remove the impact of the average level of the line loss rate on the
statistical results.

lri,dev � 1
lri,avg

������������������
1
Ni

∑Ni

j�1 lrij − lri,avg( )2
√

, (3)

where lri,avg represents the average value of the line loss rate in the i-
th month.

(4) Monthly abnormal rate of daily line loss

FIGURE 9
Results of abnormal line loss category classification with different algorithms.

TABLE 5 Results of supervised learning and semis-supervised learning with
XGBoost.

Supervised learning Semi-supervised learning

Acc 0.7331 0.8446

P 0.5986 0.7617

R 0.6334 0.8124

F1 0.6155 0.7862

FIGURE 10
Confusion matrix of abnormal line loss category classification with XGBoost and supervised learning. Label “Document” denotes the basic
document files problem. Label “Theft” denotes theft of electricity. Label “Infrastructure” denotes the line infrastructure problem. Label “meter” denotes
the meter problem.
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If the daily line loss rate is 0, negative, or too high, to some
extent, it implies that the line loss rate may also be abnormal.
Therefore, in order to reduce the influence of the accidental
occurrence of the abnormal daily line loss rate, this paper
defines the abnormal rate of monthly line loss, γlr,i, as shown in
Equation 4. In this paper, the threshold of the excessive line loss
rate is set as 7%.

γlr,i �
1
Ni

∑
Ni

j�1
1lrij ≤ 0‖lrij > 7% lrij( ). (4)

4 Abnormal line loss recognition based
on random forest

Random forest is an inheritance algorithm based on several
decision tree classifiers. The bootstrap resampling technology is used
to repeatedly randomly extract parts of the samples from the original
training set to form a new training set to train multiple decision
trees. The final abnormal line loss identification results are obtained
by combining the results of multiple independent decision trees.
Compared with the single decision tree, it has higher accuracy and
stability, as shown in Figure 3.

The features obtained by feature engineering are taken as the
input of the random forest classifier, and the line loss abnormal is the
output of the random forest classifier. Thus, the abnormal line loss
identification of a DN is converted into a binary classification
problem. The process is as follows:

Step 1. Dataset partitioning. The initial training set and the
number of features are set. Based on the bootstrap resampling
method, the samples from the original training set are repeatedly
and randomly selected to form the training set D1, . . . , DK to build
the single decision tree. The samples that have never been sampled
are used to build validation datasets to estimate the performance of
the model.

Step 2. Construction of a single decision tree. When constructing a
single decision tree, each node is split through the principle of the
minimum Gini index. When the Gini index is 0, all samples in the
node belong to the same category. The Gini index is calculated as in
Equation 5.

Gini D( ) � 1 −∑P

p�1 Dp

∣∣∣∣ ∣∣∣∣/ D| |( )2, (5)

where |D| is the number of samples in the dataset, |Dp| is the number
of samples belonging to class p in the set D, and P is the number of
categories.

Step 3. Decision tree integration. In K decision trees, the
Boyer–Moore majority vote algorithm is used to obtain the final
classification result.

In the process of training the random forest, the depth of the
decision treeMt, the number of decision trees Nt, and the minimum
number of samples in each split node St need to be determined. This
paper uses grid search and cross-validation to determine the optimal
hyperparameter combination.

5 Abnormal line loss category
classification based on XGBoost and
semi-supervised learning

To deal with the unlabeled sample problem, semi-supervised
learning is employed. An initial model is first trained with labeled
data and then used to predict the unlabeled samples. The labeled
samples with high confidence are added to the labeled dataset and
used to retrain the model to improve the classification accuracy.

5.1 XGBoost

XGBoost adopts the idea of boosting. The basic idea is to stack
the base classifiers layer by layer. Each layer gives a higher weight to
the misclassified samples of the previous layer when training. The
XGBoost tree is constructed by extending a node into two branches,
and the layers of the nodes continue to split until the entire tree is
formed. Starting from the depth of the tree equal to 0, each node
traverses all the features and sorts them according to the value of the
feature gain function, as shown in Equation 6. In this way, all the
features are sorted according to the contribution of the features to
the objective function. Then, the feature is linearly scanned to
determine the best segmentation point.

Gain � 1
2

G2
L

HL + λ
+ G2

R

HR + λ
− GR + GL( )2
HL +HR + λ

[ ] − δ, (6)

where GL represents the cumulative sum of the first-order partial
derivation of the objective function by the samples contained in the
left subtree after the current node splitting. GR represents the
cumulative sum of the first-order partial derivation of the
objective function by the samples contained in the right subtree
after the current node splitting.HL represents the cumulative sum of
the second-order partial derivation of the objective function by the
samples contained in the left subtree after the current node splitting.
HR represents the cumulative sum of the second-order derivation of
the objective function of the samples contained in the right subtree
after the current node splitting. λ is the regularization parameter,
and δ is the threshold to control the minimum gain of the split.

5.2 Abnormal line loss type classification
based on XGBoost and semi-
supervised learning

Since there are less labeled data for abnormal line loss types,
most abnormal line losses only mark whether there is an anomaly
but do not mark the specific reason of the anomaly. Therefore, this
paper adopts the self-training semi-supervised learning method to
model the abnormal line loss category classification. It trains an
initial model with labeled data and then uses the model to predict the
unlabeled data. The data with high confidence are added to the
labeled dataset and used to retrain the model. The final model is
obtained by iterating the process until the converge condition
is satisfied.

According to whether the abnormal line loss type is labeled, the
dataset is divided into the labeled sample dataset DL = {(x1, y1), (x2,
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y2), . . ., (xn, yn)}and unlabeled sample dataset DU. The number of
sample label categories is Nc. In self-training semi-supervised
learning, the pseudo-label sample selection strategy is the core
part of the model performance. The purpose of the pseudo-
labeled sample selection strategy is to select the samples that are
more likely to be correctly labeled from the unlabeled samples and
add them to the labeled samples to form a new training set so as to
further improve the accuracy and generalization performance of the
model. If pseudo-label samples, which are falsely labeled, are added
to the training set, the performance of the model may be degraded.
In this paper, pseudo-label sample selection based on the
Mahalanobis distance is adopted, and the process is as follows:

In the labeled sample dataset DL, the samples are divided
according to the sample category. The sample set of class m is
denoted asDL,m = {(xi, yi)| yi =m},m = 1, . . . , Nc. The average value
of its feature vector is calculated based on Equation 7.

�xm � 1

DL,m

∣∣∣∣ ∣∣∣∣ ∑
xi ,yi( )∈DL,m

xi. (7)

In the unlabeled sample dataset DU, the corresponding pseudo-
labeled sample setDP is obtained after labeling. yp, j is denoted as the
pseudo-label of sample xj, xj ϵ DU. Suppose yp, j = m, the
Mahalanobis distance between the pseudo-label sample (xj, yp, j)
and �xm is calculated by Equation 8.

d xj, �xm( ) �
�������������������
xj − �xm( )C−1

m xj − �xm( )T
√

, (8)

where Cm is the covariance matrix of DL,m, which is shown in
Equation 9.

Cm � 1

DL,m

∣∣∣∣ ∣∣∣∣ − 1
∑

xi ,yi( )∈DL,m

xi − �xm( ) ∑
xi ,yi( )∈DL,m

xi − �xm⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (9)

The detailed processing of abnormal line loss category
classification based on semi-supervised learning and XGBoost is
shown as follows:

Step 1: the XGB model, M, is built based on the dataset DL = {(x1,
y1), (x2, y2), . . ., (xn, yn)}.

Step 2: the unlabeled sample setDU is used as the input of modelM.
The corresponding pseudo-label is obtained to generate the pseudo-
label sample set DP.

Step 3: the distance d(xj, �xm) based on Equation. 8 is calculated for
each pseudo-label sample (xj, yp, j) ϵ Dp.

Step 4: If d(xj, �xm) <θ, which is the threshold, it means that the
pseudo-label is acceptable. The pseudo-label sample (xj, yp, j) is
removed fromDP and added toDL. If d(xj, �xm) ≥θ, it means that the
pseudo-label is unreliable, and xj is still retained in the unlabeled
sample set DU.

Step 5: DL and DU are updated.

Step 6: Steps 1–5 are repeated until the converge condition is
satisfied. The final model is used to classify the category of
abnormal line loss.

6 Experiment and results

6.1 Data source and experiment settings

In this paper, the operation data on three power supply stations
in Lvliang, Shanxi Province, China, spanning half a year are used for
comparison experiments. The three power stations contain
1,175 10-kV substations, which mainly include residential load,
industrial load, public lighting, and commercial load. The
substation operation data contain the daily active power supply,
reactive power supply, line loss rate, input power, output power,
power factor, maximum load rate, three-phase unbalance rate, and
other data on substations spanning from May 2022 to
November 2022.

In the experiment, the abnormality of the substation line loss is
labeled by the month. There are a total of 7,050 samples in the
dataset, including 1,503 abnormal line loss samples and
5,547 normal line loss samples. Due to the limited labor, only
the abnormal causes in the part of the substation are verified,
which includes 988 samples, accounting for 65.73% of the whole
abnormal line loss samples. The distribution of abnormal line loss
causes is shown in Figure 4. The main cause of abnormal line loss is
the meter problem, including data acquisition exception and meter
device fault. The electricity theft accounted for the smallest
proportion. A part of the reason is that the electricity theft by
users is difficult to confirm in reality due to user privacy. The
detailed causes of different abnormal line loss categories are shown
as follows:

• Line infrastructure problem: too long supply wire or too small
wire radius and aging of the line equipment.

• Basic document files problem: distributed network topology
mismatch and user-zone ownership error.

• Meter problem: data collected not at the same time, meter
deviation, meter device failure, and communication failure.

• Theft of electricity: illegal use of electricity.

In the abnormal line loss recognition model, the dataset is
divided as 7:3, where 70% of the data comprises the training set
and 30% of the data comprises the test set. The hyperparameters of
the random forest and XGBoost model used in this paper are shown
in Table 3.

In this paper, the abnormal line loss detection and category
classification is a two-stage classification problem. Thus, the confuse
matrix is used to display the result. In stage 1, the abnormal line loss
identification is a binary classification problem.

In stage 2, the abnormal line loss category classification is a
multi-classification task, and the evaluation metrics include
accuracy, precision, recall, and the F1-score. Considering the
unbalanced sample problem, this paper utilizes the macro
average value, as shown in Equations 10–13. The TP is the
number of the positive samples detected as positive. The TN is
the number of negative samples detected as negative. The FP is the
number of negative samples detected as positive. The FN is the
number of positive samples detected as negative.

Acc � 1
Nc

∑
Nc

i�1

TPi + TNi

TPi + FPi + FNi + TNi
, (10)
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P � 1
Nc

∑
Nc

i�1

TPi

TPi + FPi
, (11)

R � 1
Nc

∑
Nc

i�1

TPi

TPi + FNi
, (12)

F1 � 2 × P × R

P + R
. (13)

6.2 Results of abnormal line loss
identification and category classification

To further analyze the performance of feature engineering, the
Spearman correlation analysis is first employed to quantify the
relationship between the statistical features and abnormal line loss.
The result is displayed in Figure 5. It is clear that the monthly
abnormal rate of daily line loss, γlr,i, is the most important feature
in abnormal line loss identification. The maximum value of line loss,
the minimum value of line loss, and the average value of line loss also
have a certain correlation with abnormal line loss. The three-phase
unbalance rate is the least related to abnormal line loss and is not
regarded as the input of the identification model.

The result of our proposed abnormal line loss identification and
category classification model is shown in Table 4. It shows that a
good performance is achieved in abnormal line loss identification.
All the evaluation metrics obtain good results. Figure 6 displays the
decision boundary of one decision tree of the random forest. It is
clear that all the samples with negative line loss are recognized as
abnormal. The sample with a high monthly abnormal rate and high
minimal line loss rate is also identified as abnormal.

In abnormal line loss category, the classification result is not better
than that of abnormal line loss identification. The small sample size
and unbalanced sample distribution significantly impact the precision
and recall values. The confusion matrix of the XGBoost model is
presented in Figure 7. The classification result of electricity theft is the
worst. The meter problem classification is the best. It is because the
number of electricity theft incidents is too small and impacts the
model learning. All the categories are easily misidentified as meter
problems, especially electricity theft. In reality, the meter problem is
the most common cause of abnormal line loss, including different
abnormal line loss scenarios, such as data error, communication
problem, and data collection terminal fault. Thus, other causes are
easily misidentified as meter problems.

6.3 Comparison experiment

In this section, the comparison experiments are conducted from
different aspects, including abnormal line loss identification with
different algorithms, abnormal line loss category classification with
different algorithms, and comparison of supervised learning and
semi-supervised learning.

1) Comparison of abnormal line loss identification with different
algorithms

In abnormal line loss identification, the decision tree (DT),
XGBoost, BP, and support vector machine (SVM) are utilized as

the comparison algorithms. In DT, the max depth of tree is set as 12.
In XGBoost, the learning rate is 0.1 and the number of estimators is set
as 100. In BP, the number of hidden layers is set as 2, with 100 neurons
in each hidden layer. The kernel function of SVM is the radial basis
kernel function, and the regularization parameter is 1.

The identification results of different algorithms are shown
in Figure 8. Since the abnormal line loss identification problem is
a relatively simple binary classification problem, all the
algorithms can achieve a good performance. From the aspect
of accuracy, BP achieves the best performance. The accuracy
values of RF, DT, XGBoost, and SVM are close. From the aspect
of all metrics, the RF performs the best. The precision, recall, and
F1-score of the RF are the highest. The precision result of BP
implies that the model easily launches false alarms than RF. The
performance of DT and SVM is the worst. Further analyzing
the result with data, it is found that the monthly line loss with
the negative daily line loss rate is easily recognized as abnormal.
The abnormal monthly line loss with a small and positive line
loss is the most difficult to detect compared to other abnormal
line loss scenarios.

2) Comparison of abnormal line loss category classification with
different algorithms

In abnormal line loss category classification, random forest, DT,
and BP are used as the comparison algorithms. In random forest, the
number of decision trees is set as 105, and themaximum depth of the
decision tree is set as 10. In DT, the maximum depth of the tree is set
as 15. In BP, the number of hidden layers is set as 3, with 85 neurons
in each hidden layer. All the algorithms are conducted with the
semi-supervised learning.

The result of the abnormal line loss category classification is
displayed in Figure 9. It is obvious that the performance of XGBoost
is the best and that of DT is the worst. Due to limited samples, the
accuracy of abnormal line loss category classification is not higher
than that of abnormal line loss identification. In another aspect, the
input feature is generated based on monthly line loss, which cannot
reflect the fluctuation of the intra-day line loss rate. In particular, the
theft of electricity is closely related to the intra-day line loss rate,
which cannot be well-detected.

3) Supervised learning vs. semi-supervised learning

In this section, the performance of supervised learning and semi-
supervised learning is compared with XGBoost in the abnormal line
loss category classification task. The supervised learning directly
uses 70% of the labeled samples to train XGBoost, and the rest 30%
was used for the test. The evaluation metric results are displayed in
Table 5. From Table 5, it is obvious that the classification results are
significantly improved by semi-supervised learning, especially recall.
It is implied that the phenomenon of leaking alarm is relieved. The
category of theft of electricity is the most difficult to detect. It is
because of the limited electricity theft samples and because
electricity theft is mostly impacted by the intra-day line loss rate.
The confusion matrix of supervised learning is presented in
Figure 10. Compared to Figure 7, the classification accuracy of all
the categories is enhanced. For the semi-supervised learning, the
unlabeled samples are used, which can help the model learn to
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increase the classification accuracy. However, the current data
cannot reflect the situation of intra-day line loss, and the
category classification performance is limited. To further improve
the abnormal line category classification, detailed line loss data
are needed.

7 Conclusion

Abnormal line loss identification is crucial in distribution
networks to guarantee the timely and safe power supply in grid.
In actual situations, the cause of abnormal line loss is not
completely labeled due to the expensive labor cost. Considering
the actual limited and unbalanced samples, this paper proposed a
hierarchical classification framework to identify the causal reason
of the abnormal line loss. An abnormal line loss identification
model-based random forest was first established to identify
whether substation line loss was abnormal. Based on the results
of detected abnormal line loss, an abnormal line loss category
classification model was developed with semi-supervised learning
and XGBoost, considering the unlabeled samples. With the help of
self-training semi-supervised learning, the unlabeled samples were
utilized to train the classification model to relieve the over-fitting
performance. Numerous experiments were conducted on the real
dataset from China. The accuracy of abnormal line loss
identification was more than 97%. The accuracy of abnormal
line loss category classification was around 84% under semi-
supervised learning. The results highlight the good performance
of the proposed hierarchical learning structure to relieve the
impact of the unbalance samples, which is very helpful for
future application.

In the future, more detailed abnormal line loss causes can be
considered. In addition, the sampling techniques to relieve
the sample unbalance can be further utilized when
considering the detailed abnormal line loss causes. In
summary, this research highlights the application of machine
learning in abnormal line loss identification and category
classification, with implications for improving the management
and operation of power grids.
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For substation secondary circuit terminal strip wiring, low efficiency, less easy
fault detection and inspection, and a variety of other issues, this study proposes a
text detection and identification model based on improved YOLOv7-tiny and
MAH-CRNN+CTC terminal lines. First, the YOLOv7-tiny target detectionmodel is
improved by the introduction of the spatially invariantmulti-attentionmechanism
(SimAM) and the weighted bidirectional feature pyramid network (BiFPN). This
also improves the feature enhancements and feature fusion ability of the model,
balances various scales of characteristic information, and increases the
positioning accuracy of the text test box. Then, a multi-head attention hybrid
(MAH)mechanism is implemented to optimize the convolutional recurrent neural
network with connectionist temporal classification (CRNN+CTC) so that the
model could learn data features with larger weights and increase the
recognition accuracy of the model. The findings indicate that the enhanced
YOLOv7-tiny model achieves 97.39%, 98.62%, and 95.07% of precision, recall,
and mean average precision (mAP), respectively, on the detection dataset. The
improved MAH-CRNN+CTC model achieves 91.2% character recognition
accuracy in the recognition dataset.

KEYWORDS

terminal strip, improved YOLOv7-tiny model, convolutional recurrent neural network
with connectionist temporal classification, spatially invariant multi-attention
mechanism, weighted bidirectional feature pyramid network, multi-head hybrid
attention mechanism

1 Introduction

A more significant piece of insulating equipment (Huang et al., 2023) in the secondary
equipment (Zhong et al., 2023) of a substation is the secondary circuit terminal strip. It
serves as a line transmission component, connects the equipment inside and outside the
screen, and carries numerous groups of mutually insulated terminal components. The
ability of the protection device to connect to the main equipment via the terminal strip is
crucial, and the ability of the protection device to operate normally is directly correlated
with proper wiring. Normalizing the terminal block can significantly lower the likelihood of
accidents resulting from the secondary circuit and the frequency of wiring errors. Current
worker point-to-point inspections are not only slow but also prone to incorrect and
inadequate inspections (Liu et al., 2023). The rapid advancement of deep learning (Wang
et al., 2018) has led to a surge in the use of image detection and recognition in power-related
fields, including live detection, robot inspection of substations, and unmanned aerial vehicle
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inspection of transmission lines. These applications benefit from the
high stability and accuracy of the recognition features of the
technology.

Currently, the advancement of deep learning in the field of
artificial intelligence technology has progressively established the
mainstream. In order to avoid the hidden hazard of substation
operation, Zhou et al. (2018) integrated the efficient and accurate
scene text (EAST) algorithm into the line end identification of the
screen cabinet to identify the text information. This algorithm was
then combined with manual experience judgment. By employing
combined character placement and recognition, Wang et al. (2020)
increased the text character recognition accuracy and expedited the
recognition process. The accuracy of each module cannot be
optimized by this training strategy; it can only improve the
model overall performance. Wang and Yi (2019) trained
YOLOv5 by incorporating the concept of structural clipping into
the model and then pruned the model based on the training
outcomes. Training precision was lost even if the model scale
was shrunk and training speed increased. The maximum pooling
layer was applied to the convolutional neural network (CNN) model
by Masci et al. (2012) in order to increase the model recognition
accuracy. Cui et al. (2013) used a pattern of template matching to
ascertain the direction and location of the terminal row;
nevertheless, it is limited to determining these two factors, and
manual labor is still required for text recognition. Wang et al. (2019)
suggested fresh segmentation results, processed the algorithm, and
employed a progressive way to segment texts of varying scales.
Although the detection speed is lost, the detection rate is increased.
Yang et al. (2022) described a text identification model that
combines support vector machines with quad-pronged splitting
having strong positioning effects and good accuracy, but it is too
complex to extract design elements. Although the detection speed
was poor, Xiaoxuan et al. (2021) built a set of intelligent recognition
systems based on the YOLOv3 network and paired it with deep
transfer learning approach. The multi-dimensional long short-term
memory recurrent neural network with connectionist temporal
classification (MDLSTM-RNN+CTC) model was proposed by
Messina and Louradour (2015) and applied to text line character
identification. This approach incorporated feature information from
four dimensions thoroughly; however, its recognition accuracy was
not very excellent.

In response to the shortcomings of the existing detection and
recognition models, this paper presents an innovative approach for
terminal text detection and recognition that combines an enhanced
YOLOv7-tiny model with a MAH-CRNN+CTC architecture.
Initially, the proposed improved YOLOv7-tiny object detection
model integrates the spatially invariant multi-attention
mechanism (SimAM), which plays a pivotal role in enhancing
the model capacity to discern and focus on essential features of
the target while filtering out noise, thereby boosting the overall
detection performance. Subsequently, the model adopts a weighted
bidirectional feature pyramid network (BiFPN), which efficiently
consolidates feature maps from varying scales. This strategy enables
the bidirectional exchange of feature information and dynamic
allocation of weights according to feature significance, further
refining the model precision in detecting targets. The MAH-
CRNN+CTC recognition model introduces a multi-head
attention hybrid (MAH) mechanism. This component facilitates

the comprehensive consideration of the entire sequence
information, effectively addressing the issue of long-range
dependencies. As a result, it accelerates the model training
process, enhances feature extraction efficiency, and significantly
boosts the model recognition accuracy.

The bidirectional long and short-term memory (Bi-LSTM)
module offers a potent temporal modeling tool that empowers
the model to decipher and leverage intricate contextual cues
within the input sequences, thereby bolstering both the precision
and resilience of the recognition process. Conversely, the CNN
module concentrates on achieving end-to-end text recognition
through multi-level analysis and abstraction of images,
transforming intricate image data into sequential features
compatible with subsequent processing by the bidirectional Bi-
LSTM component.

This paper is structured as follows: Section 1 introduces the text
detection module, elaborating on the YOLOv7-tiny network model
and detailing the improvements made to it; Section 2 encompasses
an introduction to the text recognition module, focusing on the
enhanced methods employed for improving the text recognition
model; Section 3 presents the analysis of the experimental outcomes
for both the text detection and recognition processes; and lastly,
Section 4 presents a summary of the paper.

2 Text detection

2.1 Improving the YOLOv7-tiny
network model

YOlOv7 consists of three components: the neck, which fuses
features, the head, which makes predictions, and the backbone,
which extracts features (Wu et al., 2019). The major components of
the feature extraction network of the YOLOv7 network are the
MPConv, spatial pyramid pooling, cross-stage partial channel
(SPPCSPC), E-ELAN, and Columbia Broadcasting System (CBS)
modules. The E-ELAN module uses expand, shuffle, and merge
cardinality to improve network learning while maintaining the
original gradient path based on the original ELAN. After
convolution of the feature map 3 times and 5 × 5, 9 × 9, and
13 × 13 maximum pooling, the SPPCSPC module uses the concept
of spatial pyramid pooling to obtain image features under various
receptive fields. This solves the issue of repetitive feature extraction
from the image by the convolutional neural network. Subsequently,
the characteristics of distinct receiving domains are combined, and
following double convolution, they are ultimately split with the
feature map. The MPConv module uses a 2 × 2 maximum pooling
operation to increase the receptive field of the current feature layer.
It then uses 1 × 1 convolution to adjust the number of channels.
Finally, it fuses the feature information that has been processed with
the feature information obtained by normal convolution to improve
the feature extraction capability of the network. As the
YOLOv7 feature fusion network, the path aggregation network
(PANet) is utilized to fuse the deep semantic and shallow
location characteristics of the image and produce feature maps of
various sizes. The RepConv structure modifies the number of
channels for characteristics with varying scales on the
prediction side.
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YOLOv7-tiny is an improvement over YOLOv7, as shown in
Figure 1. ELAN-S is utilized in place of E-ELAN in the backbone
section, and the SimAM module is added to the ELAN-S
structure to improve the feature expression capabilities of the
network. The Max pooling operation is exclusively used for
down sampling, and the convolution process in MPConv is
canceled. The BiFPN module is incorporated into the SPPCSPC
structure for feature fusion in the neck section. The RepConv
structure is still used in the head section to modify the number
of channels for features with varying scales.

2.2 SimAM module

The module for attention mechanisms different from the
channel attention mechanism and spatial attention that have
been previously proposed, SimAM (also known as the SimAM
module) (Yang et al., 2021) is a lightweight attention module
that is both simple and incredibly effective. The SimAM module
will not add further complexity to the network because it does not
include any extra parameters. It is a feature map-derived 3D
attention method. This module uses the energy function to
optimize it in accordance with neuroscience theory and quickly
arrive at an analytical solution; in other words, it uses the energy
function to determine the attention mechanism weight. The energy
function et(*) is defined as follows:

et wt, bt, y, xi( ) � yi − t̂( )2 + 1
M − 1

∑
M−1

i�1
y0 − x̂i( )2, (1)

t̂ � wtt + bt
x̂i � wtxi + bt

{ , (2)

where t and xi are the target neuron and other neurons of the
input feature tensor X, respectively, and X ∈ RC×H×W. C, H, and
W are the pass number, height, and width of the feature tensor,
respectively. i is the neuron index on a certain number of
channels. M is the number of neurons on the channel,
M � H × W. wt and bt target neuron transform weights and
bias, respectively. y, yt, and y0 are scalar quantities, of which
yt and y0 are for different values; this paper introduced the binary
label instead, with yt � 1 and y0 � −1.

Neurons inside the same channel can be trained to have their
linear separability minimized by minimizing Eq. 1. By incorporating
a regular term and employing binary labels, the energy function can
be changed to

et wt, bt, y, xi( ) � 1
M − 1

∑
M−1

i�1
−1 − wixi + bt( )[ ]2 + 1 − wtt + bt( )[ ]2

+ 1 − wtt + bt( )[ ]2 + λw2
i ,

(3)
where λ is the regularization coefficient and wi is the weight of the
transformation of the i neuron.

FIGURE 1
Improved YOLOv7-tiny network structure.
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Eq. 3 to Eq. 4.

wt � − 2 t − ut( )
t − ut( )2 + 2σ2

t + 2λ

bt � −1
2

t + ut( )wt

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

, (4)

where ut and σ2t are both intermediate variables. Eq. 5,

ut � 1
M − 1

∑
M−1

i�1
xi

σ2t �
1

M − 1
xi − ut( )2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(5)

By substituting wt and bt into Eq. 2, the minimum energy e*t can
be obtained, that is Eq. 6,

e*t �
4 σ̂2 + λ( )

t − û( )2 + 2σ̂2 + 2λ
. (6)

ut and σ2t are replaced with the mean û � 1
M∑

M

i�1
xi and variance

σ̂2 � 1
M∑

M

i�1
(xi − û)2, respectively.

The lower the energy, the greater and more important the
difference between the target neuron and the peripheral neuron
t. The importance of neurons can be obtained by obtaining 1

e*t
, and

then the enhanced feature tensor ~X can be obtained by using Eq. 7:

~X � sigmoid
1
E

( ) ⊙ X, (7)

where X is the input characteristic tensor. E is the sum of e*t in all
channels and spatial dimensions. ⊙ is the Hadamard product.

In Eq. 7, the sigmoid function is added to limit the excessive
value of E, and the sigmoid function does not affect the relative
importance of each neuron.

Figure 2 shows the SimAMmodule chart. It can be seen as a cell
aimed at increasing the convolution characteristic expression
ability of the neural network; any intermediate feature tensor can
be taken as the input and the transformation output with the
same size and have the feature of enhancing the characterization
of the tensor, where X is the input feature tensor in the figure.

The biggest advantage of this module is based on the defined
energy function to choose from.

2.3 Weighted bidirectional feature
pyramid network

As shown in Figure 3A top-down pathway of the feature
pyramid network (FPN) allows for feature fusion. A certain
amount of detection accuracy can be increased by the fused
high-level semantic information. Prior feature fusion techniques
frequently treated the feature information of various scales
identically. Although it is impossible to determine the relative
relevance of many input features, each contributes differently to
the output features. This implies that the characteristics of some
scales might be more significant and have a bigger influence on the
outcome. Consequently, the weighted BiFPN is proposed in this
research (Tan et al., 2020). As shown in Figure 3B, additional
weights are applied for each input, utilizing a distinct blend of
several input properties.

First, the nodes with a single input edge and little contribution
are eliminated to simplify the network and decrease the amount of
parameters. This effectively lowers the network complexity. Second,
based on the properties of three distinct scales, the jump connection
mechanism was established, increasing a feature fusion path in the
quantity under the assumption of somewhat larger. Diagrams will be
used to better integrate low-level and high-level semantic
information, and weights can be used to focus network model
studies on the most important informational properties, thereby
enhancing network performance and characterization. The
calculation of wighted feature fusion in BiFPN is represented by
Eq. 8:

Out � ∑
i�0

ωi*Ii
ε + ∑

j�0
wj

, (8)

where ω represents the learnable weight, Ii represents the input
feature, and ε � 0.0001.

3 Text recognition methods

3.1 Improved CRNN+CTC algorithm

Text recognition is all that is needed to identify secondary device
terminals. The convolutional recurrent neural network (CRNN)
model not only performs well for more complicated texts,
handwritten letters, and symbols but it also does not require
segmenting the target to precisely mark the characters. It also has
no restrictions on the length of the text sequence. There are not
many model parameters, and training proceeds quickly. The model
structure is thereby enhanced and optimized by making a reference
to the network architecture of the traditional text recognition model
or CRNN. Meanwhile, to better mine the long-distance data features
of correlated time series, the MAH mechanism is introduced to the
Bi-LSTM in the recurrent neural network module to accommodate
the secondary equipment terminal strip identification of the
substation. The network architecture of the substation secondary

FIGURE 2
Spatially invariant multi-attention mechanism (SimAM)
module structure.
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equipment terminal strip recognition model is shown in Figure 4.
The three primary components of the terminal strip recognition
model are the connection temporal classification (CTC), Bi-LSTM
neural network, and convolutional neural network (CNN). These
include the CNN for picture feature extraction, the Bi-LSTM for
character sequence extraction, and CTC for character mismatch
resolution.

3.2 Feature extraction network

The third and fourthmax pooling kernel scales in the CNNmodule
are set to 1 × 2 pixels, making it simple to use the CNN features that
have been extracted as the recurrent neural network (RNN) input. To

expedite the network training process, batch normalization layers are
incorporated after the fifth and sixth layers of convolution. The original
image height will be decreased to a fixed value of 32 pixels before it is
entered into the CNN. The width of each feature vector in the feature
sequence is set to 1 pixel, and they are all generated in the same direction
as the feature map sequence, that is, from left to right. The first feature
vector is linked to the first feature map.

In order to increase the network training speed, the BN layer is
added to the CNN module in this research. The variable body of the
ReLu function, known as the Leaky ReLu function, is adopted by the
activation function. To address the issue of neurons not learning after
the negative interval of the ReLu function, a leak value is added to the
negative interval of the ReLu function, causing the output to slope
slightly toward the negative input. As shown in Table 1, the CNN

FIGURE 3
Improved feature structure pyramid.

FIGURE. 4
Network architecture of the identification model of the secondary equipment terminal strip in the substation.
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module gains 4 maximum pooling layers in this study, with the final
2 pooling layers having convolution kernel sizes of 1 × 2 pixels. The
remaining convolution kernel sizes are 3 × 3 pixels and padding = 1,
with the exception of the final convolution layer, which has a
convolution kernel size of 2 × 2 pixels and padding = 0. The input
image is processed in this article to create a 32 × 160-pixel image. After
the CNN, the resulting feature map size is 512 × 1 × 40 pixels, meaning
that there are 512 featuremaps in total, each with a height of 1 pixel and
a width of 40 pixels.

3.3 Sequence prediction network

The sequence properties in the sequence label distribution of
each frame are predicted using the model prediction module. The
RNN is highly proficient at capturing contextual connections in the
realm of sequential text recognition. However, while processing
lengthy texts, the standard RNN loses its ability to connect distant
information and becomes vulnerable to the gradient disappearance
issue, which makes the network difficult to converge and results in

low training accuracy. An exceptional variety of the RNN that excels
at acquiring long-term dependent data is the long short-term
memory (LSTM). It can selectively recall the information that
must be retained for a long time and forget the irrelevant
information. It can also regulate the information transferred
through the gate empty state, as shown in Figure 5.

Through its forgetting gate, input gate, output gate, and other
gating structures, the LSTM cell structure may efficiently save and
regulate the cell state update; the update rules are shown in Eq. 9. Eqs
9–14 illustrate how the gating unit is realized.

Ct � ft*Ct−1 + it*~Ct, (9)
ft � σ Wf Ht−1, xt[ ] + bf( ), (10)
it � σ W i Ht−1, xt[ ] + bi( ), (11)

~Ct � tanh Wc Ht−1, xt[ ] + bc( ), (12)
Ot � σ WO Ht−1, xt[ ] + bO( ), (13)

Ht � Ot* tanh Ct( ), (14)
where Ht−1 is the output of the hidden layer of the previous unit. xt
is the input of the current cell. ft, it, and Ot represent the output of
structures such as forgetting, input, and output in the gating
structure, respectively. Ct, Ct−1, and ~Ct represent the cell state of
the current moment, the cell state of the previous moment, and the
cell state of the output layer, respectively. W i, Wc, and WO are the
corresponding weight parameters of the gate, respectively. bf, bi, bc,
and bO are the bias parameters corresponding to the gate,
respectively. [, ] is the vector connection symbol.

While the feature sequence recognition of the secondary device
terminal number considers both the past and future context
information to be beneficial, one-way LSTM only employs the
past context information. Consequently, this article employs the
Bi-LSTM network module, which uses the future information
backward and the past information forward, as shown in Figure 6.

In this paper, a two-layer Bi-LSTM is set up. The output of theCNN
is a feature map of size m×T, where T is the output sequence length of
the feature module and m is the number of channels. After

FIGURE 5
Long short-term memory (LSTM) cell structure.

TABLE 1 CNN network structure.

Network layer Input size

Convolution layer 64 × 32 × 160

Maximum pooling layer 64 × 16 × 80

Convolution layer 128 × 16 × 80

Maximum pooling layer 128 × 8 × 40

Convolution layer 256 × 8 × 40

Maximum pooling layer 256 × 4 × 40

Convolution layer 512 × 4 × 40

Maximum pooling layer 512 × 2 × 40

Convolution layer 512 × 1 × 40
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transforming x � (x1, x2,/, xT) of each column through “map to
sequence,” it is input into the Bi-LSTM module and the output vector
T × nclass of length y � (y1, y2,/, yT), where nclass is the number of
sub-row character categories of the secondary device terminal.

3.4 Multi-head attention hybrid mechanism

This article presents a model in a lengthy attention mechanism
that supplements the Bi-LSTM module. This helps the Bi-LSTM
module better address the correlation characteristic of long time-
series data mining as the problem of long sequences making it easier
to lose information arises during the training process. The output
vector is transformed into three input matrices of dimension dk by
three different mapping operations, Q (Query), K (Key), and V
(Value), and the attention output matrix is given by Eq. 15:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V, (15)

where dk is the feature dimension of each key, which is used for
weight scaling, and softmax is normalized to the interval [0,1].

The multi-head attention hybrid mechanism divides the time series
into an I subspace, and each head performs self-attention calculation on
the subspace to enhance its expressive power. Then, the results of head I
are spliced and integrated to obtain multiple heads, and each head is
splice to obtain the final through linear trans formation, that is Eq. 16, 17.

headsi � Attention QWQ
i , KWK

i , VW
V
i( ), (16)

where WQ
i , W

K
i , and WV

i represent the weight matrix of Q, K,
and V, respectively.

MultHead Q,K,V( ) � Concat head1,/, headI( )Wo, (17)
where Wo represents the weight of the linear transformation; headi
represents head i in the bull attention module; and Concat
represents the splicing operation. MultHead(Q,K,V) is the final
output result, which can learn more feature information from
different spaces, and its model structure is shown in Figure 7:

3.5 Transcription layer

The problem of difficult-to-align input and output is a common
occurrence in the text recognition sector. Thus, in this article, the
recurrent neural network is decoded using CTC, and the Bi-LSTM
output is transformed into a sequence format.

π is defined as the text sequence path composed of the Bi-LSTM
output. For the Bi-LSTM module, the probability of output x given
input l is calculated by the following Eq. 18:

p l|x( ) � ∑
π∈β−1 l( )

p π x|( ), (18)

where β is a multi-to-one mapping function, the purpose of which is to
remove duplicate labels and blank labels. π ∈ β−1(l) represents all l
paths that are π after transformation, and any path, as shown in Eq. 19.

p π x|( ) � ∏
T

t�1
yt
πt
,∀π ∈ L′T, (19)

where T represents the length of the input sequence and l is the label
of the output. πt represents the output character corresponding to
path π at time t, which corresponds to the probability of obtaining
the character at time t.

FIGURE 7
Structural diagram of the multi-head attention
hybrid mechanism.

FIGURE 6
Structural diagram of the bidirectional (Bi)-LSTM.
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In Eq. 20, the training process of CTC is to adjust the parameter
∂p(l | x)

∂ω of Bi-LSTM through the gradient ω so that π ∈ β−1(l) is
maximized when the input sample p(l | x) is obtained as

h x( ) � argmax
l∈L≤T

p l x|( ). (20)

4 Analysis of experimental results

4.1 Experimental environment

In this paper, the operating system used for model training is
Windows 10 with a 64-bit processor. Intel(R) Core(TM) i5-10200H
CPU @ 2.40 GHz 2.40 GHz is used as hardware. Running memory
was 12 GB. PyTorch is chosen as the deep learning framework. The
programming language is Python 3.6. The CUDA version is 11.6.

4.2 Evaluation index

In this paper, precision (P), recall (R), and mean average
precision (mAP) are used as evaluation indicators for text
detection, as shown in Eqs 21–24.

TABLE 2 Comparison of experimental results for text detection.

Model P/% R/% Mean average precision (mAP)@0.5/% Model size/MB FPS (f/s)

YOLOXs (Yin et al., 2023) 95.58 79.14 87.21 16.4 86.90

YOLOv4-tiny (Zhao et al., 2023) 83.57 73.06 74.30 22.5 77.41

YOLOv5s (Han et al., 2024) 91.67 79.35 85.66 14.5 83.95

YOLOv7-tiny 94.91 84.82 92.15 12.2 103.42

Improved YOLOv7-tiny 97.39 89.62 95.07 12.08 95.87

The bold values represents the improved experimental results of this paper.

TABLE 3 Comparison of methods.

Model P/% R/% mAP@0.5/%

YOLOv7-tiny 94.91 84.82 92.15

YOLOv7-tiny + BiFPN 94.89 87.42 93.16

YOLOv7-tiny + SimAM 96.16 87.01 93.36

YOLOv7-tiny + BiFPN + SimAM 97.39 89.62 95.07

The bold values represents the improved experimental results of this paper.

FIGURE 8
Comparison of the terminal strip text detection effect.
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P � TP

TP + FP
× 100%, (21)

R � TP

TP + FN
× 100%, (22)

AP � ∫
1

0

P R( )dr, (23)

mAP �
∑s
j�1
APj

S
, (24)

whereTP stands for true positive, indicating the samples that the network
detects following detection and classification match samples that have
been labeled. False negatives or labeled samples that the network did not
detect or classify—also known as missed detection—are represented by
FN and FP, respectively. False positives are incorrectly classified detection
samples that are not included in the labeled samples or false detection.
The average precision (AP) of a single class is the area measured between
the P(R) curve and the axis. Averaging the APs of all categories yields the
mAP, where S is the total number of categories.

Average loss (Loss) and character recognition accuracy (Acc) are
often used evaluation metrics for text recognition. Eq. 25, which
illustrates the condition of incorrect recognition and multiple
recognitions, shows that Acc is the ratio of the number of characters
identified by model A to the total number of characters identified by
model B. The average loss of character recognition is shown in loss. The
better the model, the larger the Acc, and the smaller the loss.

Acc � A

B
. (25)

4.3 Text detection experiment and
result analysis

The dataset employed in the text detection module within this
paper is sourced from a collection of 1,000 high-resolution images

(1,024 × 1,024), depicting terminal rows of secondary equipment in
substations. The division of data in this set follows a 8:2 ratio for
training and testing subsets, respectively; moreover, the training
subset itself is further stratified into a training set and a validation set
according to a 9:1 allocation principle.

In the experiment, the epoch is set to 200, batch size is 8, the
Adam optimizer is used to update the optimization gradient, and the
cosine annealing algorithm is used to dynamically adjust the
learning rate attenuation strategy. The initial learning rate of the
model is 0.001, the weight attenuation parameter is 0.0005, and the
learning rate momentum parameter is 0.937.

To confirm that the revised model presented in this work is
superior, Table 2 compares the revised model with lightweight
models like YOLOXs (Yin et al., 2023), YOLOv4-tiny (Zhao
et al., 2023), YOLOv5s (Han et al., 2024), and YOLOv7-tiny
based on the terminal strip wiring dataset of secondary devices.
The enhanced model in this study has an average accuracy (mAP) of
95.07%, which is 7.86%, 20.77%, 9.41%, and 2.92% greater than that
of YOLOXs, YOLOv4-tiny, YOLOv5s, and YOLOv7-tiny,
respectively, based on the experimental findings shown in
Table 2. With a memory occupation of only 12.08 MB, the
upgraded model outperforms the YOLOv4-tiny model by 46.3%.
In order to guarantee accuracy, the enhancedmodel outperforms the
other models in terms of accuracy and recall rate, that is, by 97.39%
and 89.62%, respectively. The average detection speed (FPS) of the
enhanced model is 95.87 f/s, which is marginally slower than the
quickest detection speed of YOLOv7-tiny; nevertheless, this model
performs better in other detection algorithm performance tests.
Therefore, the upgraded model in this research still exhibits
significant improvements in the identification of speed and
accuracy with respect to the total detection performance of
the model.

An array of ablation experiments was created for comparison
analysis in order to confirm the efficacy of the modified YOLOv7-
tiny model suggested in this paper. The trials were carried out using
the same training conditions to guarantee the accuracy of the
experiments. The comparative findings are shown in Table 3 for
the original model, each upgraded module, and the test set.

Table 3 shows how the precision rate, recall rate, and mAP
increased by 1.25%, 2.91%, and 1.21%, respectively, when the
SimAM was added to the original model. It demonstrates that
compared to the original model, the SimAM module is more
capable of feature extraction and expression. The precision,
recall, and mAP of the model improved to 94.89%, 87.42%, and
93.16%, respectively, after the FPN module was swapped out for the
BiFPN module in the neck network. This improvement was

TABLE 4 Comparison with other methods.

Model ACC (%) Loss

CRNN+CTC 85.4 0.0981

MAH-CRNN+CTC (Guo et al., 2022) 87.59 —

Improved MAH-CRNN+CTC 91.2 0.0329

The bold values represents the improved experimental results of this paper.

TABLE 5 Comparison of recognition renderings of the model.

Picture CRNN+CTC Improved MAH-CRNN+CTC

2-32KK1-0 2-3ZKK1-6

J04/Y0:13/WGZJ1-181 J04/YD:13/WGZJ1-131

JCOM/YD:3/WGZJ1-131 JC0M/YD:3/WGZJ1-131

The bold values represents the improved experimental results of this paper.
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attributed to the superior ability of the BiFPN module to fuse multi-
scale weighted feature information while maintaining lightweight.

Figure 8 compares the text detection effectiveness of the terminal
strip. The detection effect of the previous model is on the left, and
the detection effect of the improved algorithm is on the right.
Figure 8 shows that the old model had low detection accuracy
and more missed detections for text information in densely
dispersed terminal strips and occluded terminal strips. The
improved model has high detection accuracy, and only the
significantly obstructed portion is undetected. The remaining
portion does not show error detection or missed detection. As a
result, compared to the original model, the improved
YOLOv7 model has better detection accuracy.

4.4 Text recognition experiment and
result analysis

Four-hundred images of the terminal strip of the secondary
equipment in the substation make up the dataset utilized by the text
recognition module in this work. The partition of the dataset into
training and test data follows the 8:2 concept, while the training data
are split into training and validation sets using the 9:1 approach.

In this experiment, we specified certain parameter
configurations, where the epoch is set to 300 and the batch size
is configured as 8. For gradient optimization, the Adam optimizer
was employed, alongside a cosine annealing algorithm that

dynamically tunes the learning rate decay strategy. The initial
learning rate of the model is assigned a value of 0.0008, the
weight decay parameter is set at 0.0001, and the momentum for
the learning rate is 0.937.

This study presents the optimization of the CNN module using
the original CRNN model, with a modified activation function
(Leaky ReLu) and a single-layer BN at the network end. To avoid
losing sequence information from taking too long, the sequence
prediction module incorporates the MAH mechanism. In order
to accommodate the secondary device terminal labeling dataset,
the number of Bi-LSTM hidden layer cells in the RNN portion is
set at 512. Table 4 shows that the improved MAH-CRNN+CTC
model has a character recognition accuracy of 91.2%, which is
5.8% higher than that of the traditional model, and has a low
average loss at the same time. The traditional CRNN+CTCmodel
cuts character recognition accuracy to only 85.4%. Furthermore,
the improved MAH-CRNN+CTC model in this paper still has
higher identification precision that that presented by Guo
et al. (2022).

Table 5 displays the recognition effect in real time. The classical
paradigm has issues with character recognition loss and simple
recognition mistakes of related characters, such as misrecognizing
“Z” as “2,” “3” as “8,” and “D” as “0.” In an effort to enrich the variety
within the dataset, supplementary fuzzy images are incorporated.
Experimental findings demonstrate that the model maintains strong
recognition capabilities even when dealing with instances
characterized by indistinct recognition features. This highlights
the superior generalization performance of the improved model
to its predecessor.

The performance of the detection and recognition of terminal
rows in practical applications, as presented in this paper, is shown in
Figure 9. The experimental findings indicate that our proposed
detection and recognition model consistently achieves strong
detection capability and high accuracy across various real-world
scene images.

5 Conclusion

This work proposes a terminal strip detection and
recognition model based on the improved YOLOv7-tiny and
MAH-CRNN+CTC models to address the issue of confined
arrangement and varying terminal block lengths of secondary
equipment in substations. First, the SimAM and BiFPN
attention mechanism modules were added to improve the
model capacity for feature extraction and information
fusion, increase the model detection accuracy, and increase
its accuracy rate, summon rate, and mAP to 97.39%, 89.62%,
and 95.07%, respectively. Second, the MAH mechanism was
introduced to address the low recognition accuracy of the
CRNN. This improves the model capacity to predict and
process character sequence information, minimizes the loss
of character feature information, and increases the model
recognition accuracy to 91.2%, which is 5.8% higher than
that of the traditional model. The findings demonstrate the
good detection and identification effects for terminal strips of
the improved YOLOv7-tiny and MAH-CRNN+CTC
approaches presented in this work.

FIGURE 9
Detection and recognition performance on terminal blocks.
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New grid equipment startup programs are widely used in various countries to
regulate the commissioning of new equipment; these programs have unique
differences in terms of strictness, information asymmetry, and complexity relative
to other types of startup programs. With respect to rule-based generation
methods, because the method of revising the rules weakens their migration
ability, it is difficult to adapt thesemethods to the status quo of high-speed power
grid construction; moreover, most of the current generation methods based on
deep learning improve upon the rule-based methods but do not eliminate the
rules of the constraints. Therefore, this paper presents a fusion topology for
generating a new grid equipment startup scheme, which generates the scheme
from end to end. The method utilizes the powerful processing capabilities of the
GATv2 model and the ERNIE-GENmodel for topology and text, respectively. The
device type-based coding strategy and the scheme complexity-based self-
attention layer selection strategy are used in the GATv2-based device
identification model to address information asymmetry and complexity
variability, and the device information modification strategy is applied to solve
the strictness variability problem in the ERNIE-GEN-based scheme generation
model. Finally, through the testing and verification of field data from four types of
new equipment startup schemes in real power grids, it is verified that the method
can effectively generate new equipment startup schemes for power grids, and the
reasonableness and efficiency of the three strategies are verified through ablation
experiments, which verify that the method can effectively generate new
equipment startup schemes for power grids that meet the requirements of
real power grids.

KEYWORDS

GATv2, ERNIE-GEN, new equipment operation, start-up plan, deep learning

1 Introduction

The power system is an intricate network that covers power generation, transmission
and distribution. As the nerve center of modern society, the power system has experienced
unprecedented high-speed development in recent years. With the rapid progress of science
and technology and the continuous growth of energy demand, as well as to meet the
construction requirements of smart grids (Chen et al., 2009; Zhang et al., 2009; Dong et al.,
2014; Yi et al., 2009; Yu and Luan, 2009), power grids need to not only have a larger capacity
and higher efficiency but also need to constitute a more intelligent mode of operation, which
leads to a large number of new equipment access requirements. However, this large-scale
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equipment access also brings a series of challenges for the power
grid; whenever a grid accesses new equipment, this may have an
impact on the structure, working mode, and stability of the current
power grid, and if there is a stability problem in the power grid when
accessing new equipment, this may lead to power supply
interruptions, equipment damage or even serious accidents,
which may have an impact on the stability and operation of
society in general (Sanjab et al., 2016; Otuoze et al., 2018; Sun
et al., 2018). Therefore, the development of a new grid equipment
startup program is crucial, and for actual new equipment access
operators, the rationality of the new grid equipment startup program
is directly related to personnel safety; thus, new grid equipment
startup programs are widely used in various countries as a kind of
grid operation ticket for regulation (Li et al., 2010; Mengchao et al.,
2010; Harbor et al., 2014; Wang et al., 2014; Ren et al., 2022).

Grid operation tickets are formal documents or recording
sheets used in power systems to perform, record, and control grid
operations. These operation tickets are usually written guidance
or recording tools used when performing various critical
operations in power system operation (Zhou and Yang, 2004;
Zhou et al., 2004; Liu et al., 2005; Yuan et al., 2022), and their
purpose is to ensure that operators perform grid operations,
maintenance, switching operations, etc., according to specified
procedures and standards to maintain the safe, stable and reliable
operation of the grid (Zhu et al., 2003; Wu et al., 2006; Zhu et al.,
2022). Initially, the grid operation ticket is manually written by
personnel. At this time, the correctness of the grid operation
ticket depends on the experience of specific personnel, and the
degree of uncertainty is great; however, with the development of
science and technology and the continuous construction of
power grids and intelligent methods, especially given the rapid
development of computer technology, the generation of grid
operation tickets has entered the stage of automatic
generation. With several years of research on methods of
generating grid operation tickets, these methods are divided
into rule-based generation (Gong et al., 2006) and neural
network-based deep learning generation (Cai and Qi, 2021).

The rule-based generation of grid operation tickets involves
generating operation tickets using predefined rules and processes;
this method relies more on the accurate specification of grid
operations, including the steps, conditions, and limitations of
various operations. By developing detailed operating procedures
and standardized processes, the process of generating operating
tickets can be made more controllable and deterministic. The
current rule-based methods for grid operation ticket generation
involve expert rules (Tang et al., 2001) and multiple intelligent
methods (Zhou et al., 2004). Expert rules are sets of rules and
guidelines for generating grid operation tickets based on the
experience and knowledge of experts in the domain of power
systems (Song, 1999). Hu et al. (Hu et al., 2002) simplified the
expert system knowledge base by establishing a generalized cognitive
model of power system equipment, which was applied in several
substations. Yang et al. (Yang et al., 2004) established an operation
based on objects and designed an expert system with a network
topology, a knowledge base, and a reasoning mechanism suitable for
power system dispatch operations. An intelligent system is usually
represented as a computer program that interacts with the outside
world through a preset protocol. In a multi-intelligent system,

through distributed decision-making, each intelligent body
generates corresponding operation tickets according to the part it
is responsible for, and they are coordinated in the multi-intelligent
system to ensure the consistency and efficiency of the whole grid.
Even if one intelligent body fails or is temporarily disabled for some
reason, other intelligent bodies can temporarily take over the part
that this intelligent body is responsible for to prevent the system
from failing and to ensure that the operation tickets can be created.
Preventing the system from failing ensures that the generation of
operation tickets is not disturbed (Jiang et al., 2005; Li et al., 2016;
Yonggang et al., 2016). Guo (Guo et al., 2006) and others built an
operation ticket generation system based on the fuzzy cognitive map
reasoning model of intelligence. Wei (Wei et al., 2023) and others
proposed an optimal fault recovery control (TROFC) scheme for
WF acquisition systems based on topology reconstruction. Liu (Liu
et al., 2023) and others proposed a prediction method based on
Adaboost ensemble convolutional neural network and bidirectional
long short-term memory. In addition, there are many rule-based
generation methods, such as that of An et al. (2021), who used
association rule algorithms to mine historical ticket information and
proposed a method to establish a knowledge base of historical
tickets. Overall, this rule-based generation method achieves some
effectiveness in the region where it is initially constructed, but its
cumbersome rule revision process, as well as strong specialization,
often necessitates changing the use of the rules when they are
migrated elsewhere.

The generation method based on neural network deep learning
generation utilizes the historical and online data of the power grid to
automatically generate grid operation tickets through the techniques of
big data analysis as well as neural network deep learning. CAI et al.
(Xinlei et al., 2020) introduced a real-time dispatching business system
based on big data applications and artificial intelligence to obtain an
automated and intelligent business system. GAO et al. (Gao et al., 2019),
by analyzing the power system operation andmonitoring processes and
incorporating artificial intelligence (AI) technology, illustrated the
feasibility of forming dispatch operation tickets based on AI. Ren
et al. (Ren et al., 2022) constructed a CNN-BiGRU attention-
centered automatic checking model for operation tickets, which
effectively improved the verification efficiency. Kumar et al. (Kumar
et al., 2019; Kumar et al., 2020) proposed a novel DFOGI for element
extraction and a novel HPO for GMPPT based on optimized operation
of grid connected partially shaded solar photovoltaic arrays. They
employed an enhanced optimal control technique based on adaptive
maximization m Kalman filter (AM-MKF) to maximize the power
generation of solar photovoltaic panels. Saxena et al. (Saxena et al.,
2021) proposed an improvedmodel predictive controlmethod based on
a double second-order generalized integrator for the control problem of
two-stage three-phase grid connected solar photovoltaic power systems.
These demonstrate the feasibility of using neural network deep learning
to solve practical problems in power grids. The current generation
method based on neural network deep learning is still based only on the
original rules for partial modification and does not let the model use
historical data or online data to perform end-to-end generation.
Therefore, this paper presents a new grid equipment startup
program generation method based on the new GATv2 and ERNIE
models for end-to-end generation of new grid equipment startup
programs through the combination of graph-based deep learning
and a text generation model.
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2 Basic theory of the disconnecting
switch status monitoring technology
based on the internet of things

Several factors need to be considered in a grid start-up program
for new equipment. The first is the safety and reliability of the new
equipment, which must be considered to ensure that its introduction
does not pose any potential risk to the grid system as a whole.
Second, compatibility with the existing system must be considered.
The new equipment should be able to seamlessly integrate and work
with existing equipment without causing unnecessary failures or
instability. Then, efficiency and performance optimization must be
considered, as the introduction of new equipment should lead to
more efficient energy transfer and management, helping to improve
the operational efficiency of the entire power system. New grid
equipment startup programs can be constructed incorrectly for
various reasons, very likely due to failures to access the new
equipment after an impact on the power grid and similar factors,
which can lead to grid failures and other undesirable outcomes,
including accidents. In particular, the reasonableness of the site may
be directly related to the safety of the personnel. Therefore, a new
grid equipment startup program needs to be extremely accurate;
although recommendations for new grid equipment startup
programs are given in a series of professional terminology texts,
as long as the equipment is established in a rigorous and correct
manner, these rules can be expressed in a variety of ways. A complete
new grid equipment startup program is divided into five parts:
establishing the startup scope, commissioning the project,
determining the scheduled startup time, setting startup
conditions, and performing startup steps. The start-up scope and
scheduled start-up time are often directly known, and the
commissioned project is directly determined from the start-up
scope; thus, new grid equipment start-up program generation is
mainly based on the start-up conditions and start-up steps.
Therefore, in general, compared with other types of programs,
the new grid equipment startup program has differences in rigor,
information asymmetry, and complexity.

(a) Strictness of the differences: A new grid equipment startup
program gives the names of the specific equipment involved,
and the corresponding operations must be completely
consistent with the actual grid equipment; however, for the
other statements in the text, one only needs to ensure that the
program is reasonable and easy to interpret and that it is in
line with the actual use of the power grid as much as possible.

(b) Information asymmetry: The topological information
contained in the start-up scope, commissioned items, and
scheduled start-up time of the new grid equipment start-up
program is not symmetrical with the topological information
contained in the start-up conditions and start-up steps.

(c) Complexity difference: The new grid equipment startup
programs for different types of equipment, different
numbers of pieces of equipment, different topologies of the
grid, and other complex factors are also different.

To better generate the initiation scheme, this paper uses the
GATv2 model and the ERNIE-GEN model to determine the
topological information and the text information, respectively,

and adopts a coding strategy based on the device type, a self-
attention layer selection strategy based on the complexity of the
scheme, and a device information modification strategy to better
address the three abovementioned characteristics.

2.1 GATv2 model

The GATv2 model (Brody et al., 2021) is an improved model
based on the graph attention network (GAT) model (Veličković
et al., 2017), which solves the static attention problem in the original
GATmodel; i.e., the ordering of the attention weights is independent
of the querying nodes, resulting in each node paying attention to the
same highest-scoring neighboring node. The GATv2 model
improves the expressiveness and robustness of the model by
adjusting the linear transformation and the order of attention
computation so that each node can focus on different
neighboring nodes, thus improving the expressiveness and
robustness of the model. The specific structure of the model is
as follows:

Encoder: The encoder consists of the decoder portion of a
multilayer unidirectional transformer, where each layer of graph
convolution uses a self-attention mechanism; i.e., different weights
are dynamically assigned based on the similarity and adjacency
between the nodes. Thus, the information from the neighboring
nodes is fused to encode the input graph structure and extract the
semantic features of the nodes.

Decoder: The decoder acts as a multilayer fully connected
network that can take the output vector of the encoder as input
for different tasks; this network is used in this paper to obtain the
node classification task output.

Dynamic Attention: dynamic attention is a major innovation of
the GATv2 model, which realizes a dynamic attention mechanism
by reversing the order of linear transformation and attention
computation so that the ordering of the attention weights is
affected by the query nodes, the performance of its attention
mechanism compared to the original GAT model is shown in
Figure 1. Where the original GAT utilizes the score function e:
Rd× Rd → R to score the nodes and the equation is shown in
Formula 1:

e hi, hj( ) � LeakyReLU aT Whi
����Whj[ ]( ) (1)

where e (hi, hj) denotes the attention weight between node i and
node j, a ∈ R2d′ is a learnable vector, LeakyReLU is the
activation function, W ∈ R d’×d is a learnable matrix used to
vary the node features linearly, and || denotes the vector splicing
operation. For node i, after calculating all the neighbor scores,
use softmax to normalize the attention weight of the ith element
to the jth element in the sequence and the formula is shown in
Formula 2:

αij � softmaxj e hi, hj( )( ) � exp e hi, hj( )( )
∑

j′∈Ni

exp e hi, hj′( )( ) (2)

The GAT performs aggregation based on these weights to obtain
the hidden features of the ith node in the GAT and the formula is
shown in Formula 3:
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FIGURE 1
Comparison of attention between Gat model and Gatv2 model.

FIGURE 2
Schematic diagram of the ERNIE-GEN framework.
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h′i � σ ∑
j∈Ni

αijWhj⎛⎝ ⎞⎠ (3)

The dynamic attention of GATv2 solves the problem of the
standard GAT problem in which W, a are used sequentially in the
scoring function, resulting in a linear layer that collapses into a single
layer at the end. By moving an out of the nonlinear result and then
running it, in addition, the query-key pair is concatenated first, and then
W is used to perform the linear transformation, i.e., at this time, the
expression of e (hi, hj) is shown in Formula 4:

e hi, hj( ) � aTLeakyReLU W hi
����hj[ ]( ) (4)

2.2 GATv2 model

ERNIE-GEN is a generative pre-training model proposed by
Baidu and the schematic diagram of its framework is shown in
Figure 2, ERNIE-GEN model is a generative pre-training model,
which is based on Transformer’s seq2seq framework, targeting
the exposure bias problem in training and the insufficient
interaction between encoder and decoder in pre-training that
is the exposure bias problem and the equations are shown in
Formula 5, 6:

Training: yi+1 ← MH − Attn Q � ti, KV � S, t≤ i[ ]( ) (5)
Decoding: yi+1 ← MH − Attn Q � yi, KV � S, y≤ i[ ]( ) (6)

Where y and t denote the predicted character vector and ground
truth character vector, respectively; S is the representation of the
encoder side; and the direct influence on the prediction of yi+1 is
represented as Q, which is used to converge the above
representations and is also where the difference between the
training and decoding phases has the most direct effect. At the
same time, KV differs in training and decoding, but the effect on
yi+1 is weaker. To solve this problem, ERNIE-GEN introduces
several innovative mechanisms to improve the quality and

efficiency of natural language generation. The main features of
the ERNIE-GEN model are as follows:

Multiflow Attention: Multiple distinct attention flows are added
between the encoder and decoder to enhance the codec interaction in
such a way that integrated word-by-word and span-by-span generation
flows can be applied in parallel with the shared context flow. The
multistream computational power’s equations are shown in Formula 7–9:

X l+1( ) ← MH − Attn Q � X l( ), KV � X l( ),Mc( ) (7)
A l+1( )

W ← MH − Attn Q � A l( )
W ,KV � X l( ), A l( )

W[ ],MW( ) (8)
A l+1( )

S ← MH − Attn Q � A l( )
S , KV � X l( ), A l( )

S[ ],MS( ) (9)

where X is the connection between S and T′, X(l) is the layer-l vector
sequence of the context stream, and AW(l) and AS(l) are the layer-l
vector sequences of the verbatim generation stream and the word-
by-word generation stream, respectively.

Infilling Generation Mechanism: By adding a special symbol
[ATTN] after each character in the decoder, the model’s attention is
shifted from the last word to all previous representations to
attenuate the dependence on the previous character while
unifying the training and decoding conditions.

Noise-Aware Generation Method (NGM): Random noise is
added to the input sequence of the decoder during training to
train the model to perceive errors and attenuate the impact of errors
on subsequent generation by adjusting the attention weights.

Span-by-Span Learning Paradigm: Instead of predicting only one
character at each step during training, a semantically complete segment
is predicted to improve the coherence and accuracy of generation.

3 Construction of a GATv2 and ERNIE-
GEN based model for generating new
equipment startup scenarios for
the grid

In this paper, we use Python for new grid device bootstrap
scheme generation and use the PyCharm platform to realize end-to-

FIGURE 3
Modeling framework of new equipment startup scheme for power grid based on GATv2 and ERNIE models.
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end bootstrap scheme generation. According to the above
discussion, new grid device initiation schemes have rigor
variability, information asymmetry, and complexity variability. In
this paper, we propose a fusion topology for a new grid device
initiation scheme based on the GATv2 model as well as the ERNIE-
GEN model. Additionally, we propose a coding strategy based on
device type, a self-attention layer selection strategy based on scheme
complexity, and a correction strategy based on device information to
address these three characteristics in the generation of new device
initiation schemes for power grids.

The model first inputs the startup range into the
GATv2 model after applying the device type-based coding

strategy, obtains all the information on the devices to be
operated based on the self-attention layer selection strategy
according to the scheme complexity and then passes this
information to the trained ERNIE-GEN text generation model.
The ERNIE-GEN text generation model takes the startup range
and all the device information obtained from GATv2 as text input
and obtains the startup conditions and startup steps based on the
device information modification strategy. Finally, the output is
directly combined with the known startup scope, scheduled
startup time, and commissioned items to obtain the final new
grid equipment startup program. The framework structure is
shown in Figure 3.

FIGURE 4
Flowchart of GATv2 based device identification model.

Frontiers in Energy Research frontiersin.org06

Meng et al. 10.3389/fenrg.2024.1381332

249

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1381332


3.1 GATv2-based device identification
model construction

The GATv2-based device identification model obtains node
attributes through the startup range combined with the topology
information of the device type-based coding strategy and inputs
them as feature matrices. The adjacency matrix obtained based on
the grid topology is also fed as input to the GATv2 model, and node
classification is used to obtain information about the devices to
address the information asymmetry of the grid’s new device
activation scheme. To address the complexity variability of the
startup scheme, the model determines the number of layers of
the graph self-attention layer through a selection strategy based
on the scheme complexity. The structure of the model is
schematically shown in Figure 4.

3.1.1 Coding strategy based on device type
To allow the model to better recognize device types so that it can

better handle grid topology information, this paper adopts a coding
strategy based on device types. In this paper, all device types are

treated as nodes, and devices of the same type are assigned the same
encoding as a node attribute instead of directly encoding the name of
the device as a node attribute. This approach allows the model to
read the device information more efficiently, thus avoiding
interference caused by unnecessary information.

3.1.2 Self-attentive layer selection strategy based
on scheme complexity

To prevent the overfitting and underfitting of the model due to
the complexity variability of the startup scheme, this paper presents
a self-attentive hierarchical selection strategy based on the scheme’s
complexity. By analyzing the characteristics of the new grid
equipment startup scheme and incorporating the relevant
literature, this paper uses the four indicators of the total number
of startup devices, the number of types, the average degree, and the
local clustering coefficient based on the hierarchical analysis method
to measure the scheme complexity.

Total number of devices to be started: the total number of
devices to be activated in the grid’s new device startup program;

Number of types: the number of types of equipment to be
activated in the grid’s new equipment activation program;

Average degree: the average of the degrees of all nodes in the
grid topology;

Local clustering coefficient: the ratio of the number of edges that
are connected between neighboring nodes of the devices that need to
be activated to the maximum possible number of connections. In
this paper, we take the maximum value among all the
activated devices.

For the hierarchical analysis method, this paper adopts the
expert scoring method to determine the relative importance of
two factors and constructs its judgment matrix A, which is
shown in Formula 10.

A �
a11 . . . a1n
..
.

1 ..
.

an1 / ann

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (10)

Where, aij denotes the importance of factor i relative to factor j,
aii = 1, aij = 1/aji, after obtaining the judgment matrix.

Formula 11 is applied using the maximum eigenvalue and
eigenvector to solve for the weight vector and the
consistency index:

AW � λmaxW (11)
where A is the judgment matrix, W is the eigenvector, and λmax is the
maximum eigenvalue. Each component of W represents the weight
of a factor, and these values need to be normalized. λmax represents
the degree of consistency of the judgment matrix; if λmax = n, then
the judgment matrix is completely consistent. If λmax > n, there is
some inconsistency in the judgment matrix; therefore, the formula
for verifying the consistency of the judgment matrix is as shown in
Eqs 12, 13:

CI � λmax − n

n − 1
(12)

CR � CI

RI
(13)

where CI is the consistency index, CR is the consistency ratio and RI
is the random consistency index, which is obtained based on the

FIGURE 5
Structure of the ERNIE-GEN based scenario generation mode.
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average of the random matrix. If CR < 0.1, it means that the
consistency of the judgment matrix is acceptable; otherwise, the
judgment matrix needs to be modified. Finally, its complexity scplex
is calculated using the formula shown in Eq. 14:

scplex � W1*num +W2*type +W3*avdg +W4*cluster (14)
where num is the total number of startup devices, type is the
number of types, avdg is the average degree, cluster is the local
clustering coefficient, and W1, W2, W3, and W4 are the
respective coefficients. Finally, the complexity is divided into
three types, simple, more complex and complex, and the number
of layers of self-attention increases according to the increase in
complexity.

3.2 Construction of ERNIE-GEN based
scenario generation models

The ERNIE-GEN-based (Xiao et al., 2020) scenario generates
the model by inputting the input text as well as the corresponding
output text into the model, which is trained. The text is fine-tuned
through preprocessing, encoding and decoding, and text generation;

based on whether the loss function converges, it is determined
whether to make parameter updates.

When the model training is complete, the program generation
model will receive the information about the equipment to be
operated, which is generated by the GATv2-based equipment
recognition model combined with the startup scope as the input
text, and the equipment information is combined with the
correction strategy to generate the startup conditions and startup
steps in the startup program. The generated startup conditions and
steps, together with the known startup scope, commissioned items,
and scheduled startup time, directly form the startup plan for the
new equipment in the grid. The structure of the model is
schematically shown in Figure 5.

3.2.1 Correction strategy based on device
information

The equipment information in the new equipment startup
program of the power grid is rigorous, but when generating text
based on the equipment information, it is possible that the
generation process is not completely rigorous. Therefore, this
paper presents a correction strategy based on device information.
When the sequence of the generated text output is the device
information, it will be directly selected from the information on
the devices to be activated, after which the text will be corrected.

4 Case validation

4.1 Case data and simulation

In this paper, according to the actual grid history of a local new
grid equipment startup program that is to be verified by offline
calculations, the startup program-specific data include the line
protection type; terminal box replacement type; CT replacement
type; and line startup type (impact), of which there are four. These
data are shown in Table 1.

TABLE 1 Data distribution table for new device startup plan.

Type of line
protection

Terminal box replacement
type

CT replacement
type

Line start type
(shock)

quantities 30 100 100 40

Text length 547–937 547–1531 599–1642 430–472

Maximum length of a single
sentence

91 117 115 72

Maximum number of device
types

3 4 4 2

TABLE 2 Correspondence between program complexity and number of
self-attention layers.

Program complexity

0–0.33 0.34–0.66 0.67–1

Number of layers of self-attention 1 2 3

FIGURE 6
Structure of the ERNIE-GEN based scenario generation mode.
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According to each specific startup scenario, the startup range is
constructed according to the method in Section 3 based on the device
identification model of GATv2 after verifying that it corresponds to
the grid topology, and the correspondence between the scenario
complexity and the self-attention layer is shown in Table 2.

The samples under each scenario complexity are partitioned at a
ratio of 8:2, and the accuracy of the final model obtained for each
scenario complexity case is shown in Figure 6.

The information of the equipment to be operated and the range
of activation in the activation scheme are taken as input texts, and
the activation conditions and steps are taken as the corresponding
output texts, and they are corresponded to each other to generate the
model training and reading according to the scheme of ERNIE-GEN
in Section 3. Since the non-equipment words in the text of the grid
new equipment startup program only need to be correct and fluent,
there is no strict requirement as in the case of equipment. If the
direct use of text similarity detection is difficult to detect whether the
semantics of non-equipment vocabulary change, so the generated
text is uploaded to the traditional five-proof inspection system for
inspection as the accuracy, and finally obtained the accuracy of
ERNIE-GEN’s program generation model is 0.876,545. One of the
new device startup schemes obtained is shown in Figure 7.

4.2 Verification of ablation experiments

To better demonstrate the advantages of the model in
addition to the new device startup scheme generation
method, this paper focuses on ablation experiments on three
strategies, namely, the device type-based coding strategy, the
scheme complexity-based self-attention layer selection strategy,

and the device information-based correction strategy. For the sake of
narrative convenience, the device type-based coding strategy module is
denoted as A, the scheme complexity-based self-attention layer
selection strategy is denoted as B, and the device information-based
correction strategy is denoted as C. Among them, the GATv2-based
device recognition model is evaluated using the accuracy rate as the
index, and the average accuracy rate of the three different
complexity levels is taken as the most useful index; the ERNIE-
GEN-based scheme generation model is evaluated using the device
name accuracy rate as the accuracy rate. The results are shown
in Figure 8.

FIGURE 7
The generated result diagram of the protection startup scheme on both sides of the Meiwen 4K77 line.

FIGURE 8
Comparison chart of ablation experiment results.
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By analyzing the comparative graphs of the ablation experiment
results, we can see that all three strategies achieve better results
under the corresponding models. Combining the three
characteristics of the new grid equipment startup
scheme—strictness variability, information asymmetry, and
complexity variability—we can see that the three strategies
achieve better performance on the GATv2 model as well as on
the ERNIE-GEN model and generate a strict and reasonable new
equipment startup scheme.

4.3 Comparison with other models

To further demonstrate the advantages of this model in addition
to new grid equipment startup program generation, this paper uses
the GAT and GIN models for comparison. Because the GIN model
does not have a self-attention layer, only the GAT and GATv2models
are compared using this strategy; similarly, the BERT and T5 models
are used to compare the startup scheme generation models, and the
results obtained for both are shown in Figure 9.

From the model result comparison diagram, we can easily see
that in terms of the device identification model and the generation
model, among the models compared in this paper, the proposed
model achieved the highest accuracy. Combined with the
extremely high accuracy requirements for generating a new grid
equipment startup scheme, the fusion topology of the new grid
equipment startup scheme in this paper ensures the accuracy of
the scheme.

5 Conclusion

With the rapid progress of science and technology, the
continuous growth of energy demand, the rapid construction

of power grids, and high-speed development, a large number of
new equipment requires access to power grids. The rationality of
a new grid equipment startup program is related to the safety of
the grid as well as the safety of personnel; thus, many countries
use new grid equipment programs as grid operation tickets for
evaluation.

At present, power grid equipment startup program generation
methods are divided into rule-based generation methods and neural
network-based deep learning generation methods. Rule-based
methods have a certain degree of effectiveness in the regions where
they were established, but in general, the rules often need to be revised
during migration to other regions. Current generation methods based
on neural network deep learning generation, in general, have not been
able to avoid this limitation either. Therefore, in this paper, from a
practical point of view, we fully consider the difference in rigor,
information asymmetry, and difference in complexity of new
equipment startup programs for power grids; use the
GATv2 model and the ERNIE-GEN model to address the topology
and the text, respectively; and fully utilize a coding strategy based on
the type of equipment, a self-attention layer selection strategy based on
the complexity of the program, and a revision strategy based on the
information of the equipment to address the above three
characteristics. The model is also verified to be able to efficiently
and accurately generate new equipment startup schemes for power
grids through actual power grids, ablation experiments are used to
verify the efficiency of the three strategies, and model comparison
experiments are used to verify the accuracy of the proposed model.
The results show that the method proposed in this paper can
efficiently and accurately generate new grid equipment startup
schemes. This approach provides a new idea for the development
of new grid equipment startup schemes through deep learning.

Since the method of this paper uses an offline dataset for training
that does not cover all types of new equipment startup scenarios for
power grids, When the example model in this article starts scheduling

FIGURE 9
Comparison of results from different models.
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for new types of equipment, such as 220 KV equipment in a certain
location, the generated startup plan has a certain deviation from the
actual startup party, its training needs to be enhanced for use in real
power grids to better utilize the requirements of real power grids for
new equipment startup scenario generation.
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Extensive research validates the effectiveness of employing Dissolved Gas
Analysis (DGA) for diagnosing electric power transformer failures. However, a
significant portion of existing research focuses on static data for classifying
failure types, lacking a thorough exploration of causality. This study proposes
an approach integrating causality and the DGA framework to infer power
transformer failures. Validation through 96 historical samples from diverse
transformers demonstrates the capability of this method to identify probable
abnormal failures of the power transformer accurately. The proposed causal
reasoning method is able to diagnose all common transformer states,
accounting for the level of severity in both electrical and thermal failures, and
with an accuracy of 95.8%.

KEYWORDS

failure diagnosis, dissolved gas analysis, causality, ratio-based DGA, Bayesian
network (BN)

1 Introduction

Inmodern power systems, power transformers are vital for uninterrupted energy supply.
The uninterrupted functioning of various industries and daily life is contingent upon
the reliable transmission and distribution facilitated by power transformers. Early failure
detection is essential to prevent disruptions and ensure the stability and resilience of the
power system.

Diagnosing failures in power transformers is a complex task, andDissolvedGasAnalysis
(DGA) is one of the most effective methods for this purpose. DGA evaluates transformer
faults by measuring concentrations of gases in transformer oil, such as hydrogen (H2),
methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbonmonoxide (CO),
and carbon dioxide (CO2) (Kari et al., 2018). These gases can indicate different types of
faults. Partial discharges generate hydrogen and methane, and the presence of acetylene
and hydrogen can confirm arcing (Gouda et al., 2016).The analysis of these gases, including
their levels, and proportions provides crucial insights for identifying potential malfunctions
in transformers.

Various methods are used to interpret DGA data, while the conventional approaches
are ratio methods like the Doernenburg ratio, Rogers ratio, and the Duval triangle
(Aizpurua et al., 2018). However, while these techniques are highly accurate, they are time-
consuming and expensive (Aizpurua et al., 2018). To address these challenges, there has
been a shift towards intelligent diagnostic approaches that integrate soft computin methods
with DGA for cost reduction (Tomsovic et al., 1993; Guo et al., 2019). For instance,g
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the Dempster-Shafer Theory demonstrates that soft computing
methods can achieve high accuracy with large sample
databases (Min and Chang, 2009). However, the adoption of
machine learning in transformer failure diagnosis is hampered
by the scarcity of failure data caused by the frequency of
transformer failures.

To address the challenge of low transparency and the lacking
of training data, this study proposes a method that integrates the
DGA with causal reasoning to diagnose the transformer failures.
In general, failure diagnosis and explanation are rooted in the
fundamental concept of causality Lewis (1986) Achieving a clear
understanding of these processes relies on accurately identifying
the interdependence and causal relationships among their
constituent components, as discussed in further research Özgür-
Ünlüakın et al. (2021). Causal reasoning, an emerging approach,
leverages knowledge of causal relationships between variables to
predict outcomes based on cause-and-effect models Pearl and
Mackenzie (2018). It effectively reduces the requirements for
training datasets as it leverages knowledge of causal relationships
between dissolved gases and equipment failures instead of static
data regression.

The paper is organized as follows. After the introduction
in Section 1, the conventional failure diagnosis methods are
presented in Section 2. The methodology of the proposed system
is proposed in section 3. The experimental results including the
comparison with three conventional methods and discussions are
stated in section 4. Finally, the conclusions are summarized in
section 5.

2 Failure diagnosis

The generation of the hydrocarbon gases within the normal
operating transformers would be caused by thermal and electrical
stresses, which can indicate potential problems within the
transformer (Syafruddin and Nugroho, 2020). As transformers
age, some gas generation is anticipated; distinguishing between
normal and excessive gassing rates is crucial. Normal gas
generation in transformers is influenced by several factors.
These include transformer design, loading, and the type
of insulating material used. To identify abnormal behavior
in transformers, standard gassing rates are employed as a
universal metric (Ali et al., 2023).

The breakdown of insulation in transformers leads to the
production of crucial gases such as H2, CH4, C2H6, C2H4,
C2H2. Other gases such as CO and oxygen (O2) are also
present, originating from the degradation of cellulose insulation
(Kari et al., 2018). Moreover, external factors like CO2, nitrogen
(N2), and moisture can be absorbed from the air due to an
oil/air interface or tank leak. The specific gases generated and
their quantities depend on the fault’s location, severity, and
energy. Low-energy events like partial discharge produce hydrogen,
methane, and ethane. The sustained high-energy arcing results
in the generation of all gases, with acetylene requiring the most
energy. The appearance of these gases in transformers is influenced
by temperature, as they dissolve within the insulation oil based
on the nature and intensity of the failures (Syafruddin and
Nugroho, 2020).

TABLE 1 Transformer types of failure.

Types of failures Abbreviations

No Failure NM

Thermal Failure (T < 300°C) LO

Thermal Failure (300°C < T < 700°C) MO

Thermal Failure (T > 700°C) HO

Discharges of Low Energy LD

Discharges of High Energy HD

Partial discharges PD

Concurrent overheating and discharge OD

An accurate fault diagnosis involves alerting to gases surpassing
the standard limits in terms of concentrations, increments, rates
of change, or ratios. The diagnostic report should include concise
interpretive remarks and recommendations derived from these
findings. To facilitate the identification of various faults during
the diagnostic process, distinct classes have been established.
These classes are determined through the physical examination
of numerous faulty transformers, which are detectable through
visual inspections and DGA outcomes. These classes are also
summarised in Table 1.

Failures such as overheating, discharges, and Concurrent
overheating and discharge generate various gases. The specific
nature and intensity of the fault can be determined by analyzing
the concentrations and types of these gases. The primary approach
for diagnosing transformer failures using Dissolved Gas Analysis
(DGA) involves extracting status information, which consists
of various combinations of characteristic gases, throughout the
operation of the power transformer. Subsequently, an existing
diagnostic model algorithm is applied to analyze and differentiate
this state information. Based on the judgment results, power system
operators can discern the fault type and severity of the transformer.
This information enables them to promptly devise specific
countermeasures tailored to different situations, aiming tominimize
fault-related losses within the power system to the greatest extent
possible. The conventional methods include Doernenburg Ratio
Method (CH4/H2, C2H2/C2H4, C2H2/CH4, C2H6/C2H2), Rogers
Ratio Method (CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4), and
Duval Triangle Method (CH4/H2, C2H2/C2H4, C2H4/C2H6).

2.1 Doernenburg Ratio Method

Doernenburg Method (DRM), which can be found in the IEEE
C57.104–1991 guide, makes use of the ratios of the concentration of
the key gases Hydrogen, Methane, Ethane, Ethylene, and Acetylene
(Stenkovski et al., 2022). Although it was withdrawn by IEEE in
2006, it is one of the most effective methods in the diagnosis of
electrical equipment such as transformers. This method is restricted
by a few criteria. This diagnostic approach often has the drawback
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TABLE 2 The limited concentration of the dissolved gas (Jongvilaikasem
et al., 2022).

Types of gas L1 concentration (ppm)

H2 100

CH4 120

CO 350

C2H2 35

C2H4 50

C2H6 65

of leading to ‘no diagnosis’, a situation that happens more often
than not (Jongvilaikasem et al., 2022). To apply this method, one
of the key gases (H2, C2H2, C2H4, C2H6, or CH4) must have a
concentration at least double the L1 concentration levels listed in
Table 2. By referring to Table 3, the failure can be diagnosed.

2.2 Rogers Ratio Method

The Roger Ratio Method (RRM) utilizes gas ratios similar to
those in the DRM, specifically C2H2/C2H4and CH4/H2, with the
exception of the ratio of C2H4/C2H6 (Bakar et al., 2014), as shown in
Table4. Unlike the DRM, the RRM can be used even if the key gases
are not at high concentrations. This means that, with RRM, the gas
concentrations do not need to be at least twice the L1 levels (Rogers,
1978). DRM and RRM are effective in diagnosing failures, but they
have a limitation. Sometimes, certain gas combinations do not fit
within the specified value range. When this happens, it becomes
impossible to determine the type of fault.

2.3 Duval Triangle Method (DTM)

DTM works on the idea that various faults in a transformer
create different gases. By measuring the amounts of these gases,
it is possible to figure out what kind of fault is present (Duval,
2008). It came from IEC TC10 databases and an existing IEC
60599 Ratio method. The results of the gas analysis are then
plotted on a triangular diagram, known as the Duval Triangle.
This triangle is divided into different zones, each corresponding
to a particular type of fault, such as thermal faults, electrical
discharges, or a combination of both (Li and Zhang, 2016). The
application of the DTM relies on three essential gases (CH4, C2H4,
and C2H2), which represent progressively higher energy levels of
gas generation. The concentrations of these gases are computed and
subsequently graphed on the three edges of a triangular diagram,
as shown in Figure 1. Compared with DRM and RRM, DTM will
not appear in cases where some results can fall outside the codes
and no diagnostics can be given. DTM has created a closed-loop so
it can always consistently yield a diagnosis, and maintain a low rate
of incorrect assessments.

2.4 Digital methods

Several approaches have been suggested to enhance the precision
of ratio-based DGA diagnostic approaches. These can generally
be divided into fuzzy logic-based methods, heuristic methods and
multiple data-driven artificial intelligence (AI) technologies.

Fuzzy logic facilitates the expression of imprecise
requirements, encompassing uncertain criteria or loosely defined
constraints, allowing for reasoning in situations with uncertain
specifications. Tomsovic et al. (1993) introduced a theoretical
fuzzy information model and inference scheme, utilizing rule-
based representation to systematically integrate diverse diagnostic
methods. This approach effectively resolved the potential rule
conflicts and ensured the generation of the most consistent
conclusions. Its advantages included robustness to missing data,
ease of expansion to new diagnostic methods, and analytical
performance evaluation. However, functions in fuzzy logic systems
need to be determined based on expert experience, and effective
fuzzy logic systems require comprehensive knowledge from human
experts. In addition, the limitation also occurred when the rules
in the rule-based system could not be automatically adjusted
through the self-learning process, requiring more interventions
from human experts.

Most of the intelligent fault diagnosis methods in power
transformers are based on a variety of data-drivenmachine-learning
technologies. Saravanan et al. (2020) applied a Multilayer Artificial
Neural Network (ANN) to classify the transformer failure with an
accuracy of 76%. However, Katooli and Koochaki (2020) indicated
that the ANNs utilized BPA as a learning algorithm that reduced
their level of accuracy. Some works applied the machine learning
approaches as attribute selectors and combined them with the
Support VectorMachine (SVM) to improve precision and reliability.
Moreover, other than the SVM, some works implemented the ANN
as the failure classifier. For example, Li et al. (2016) proposed a
power transformer failure diagnosis approach based on an SVM
achieving a diagnosis accuracy of 87.18%. In this approach, GA
selected the free control parameters of SVM including penalty
parameter, sigma, and type of kernel function, and then SVM was
for transformer failures classification. Moreover, Dwiputranto et al.
(2021) proposed a method that combined GA and ANN to classify
the type of transformer failure reliably based on DGA data and
achieved an accuracy of 95%.

Numerous techniques have been introduced for diagnosing
power transformer failures. However, most of the existing
technologies utilise black-box models to obtain fault diagnosis
results while the causality was relatively inconsiderate in this
domain. When it comes to diagnosing faults and understanding
the reasoning process, using black-box models often fails to provide
explanations that match real-world phenomena. Explanations are
rooted in the fundamental concept of causality and the absence
of a causal framework in contemporary systems has been linked
to issues related to generalization, interpretability, and outcome
quantification (Peters et al., 2017). The exploration of techniques to
distil rules from equipment failure events remained a developing
area. This approach often lacked a deep understanding of the basic
causes and struggled with diagnosingmultiple failures and updating
with new knowledge (Saravanan et al., 2020). Our approach aims to
identify and understand how different types of failures cause various
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TABLE 3 Doernenburg RATIO FAILURE DIAGNOSIS METHOD (Jongvilaikasem et al., 2022).

Potential failure C2H4/H2 C2H2/C2H4 C2H2/CH4 C2H6/C2H2

Thermal failure >1.0 <0.75 <0.3 >0.4

Partial discharge (low intensity) <0.1 Not significant <0.3 >0.4

high intensity discharge 0.1 to 1.0 >0.75 >0.3 <0.4

TABLE 4 Rogers ratio failure diagnosis method (Jongvilaikasem et al., 2022).

Potential failure C2H2/C2H4 CH4/H2 C2H4/C2H6

Normal < 0.1 0.1 to 1.0 <1.0

low intensity discharge < 0.1 <0.1 <1.0

high intensity discharge 0.1 to 0.3 0.1 to 1.0 1.0 to 3.0

medium temperature thermal failure < 0.1 >1.0 1.0 to 3.0

high temperature thermal failure < 0.1 >1.0 3.0

FIGURE 1
Duval triangle Failure Diagnosis (Jongvilaikasem et al., 2022)

gases to be produced. This helps in clearly determining the source
and type of the failure.

3 Proposed method for transformer
failure diagnosis

To solve the challenges of lacking transparency and training
data, this research proposes a causal-based method to diagnose the

type of failure by discovering the causal relationship between the
concentration and the types of the specific gases and the types of
failures. To process themethodology, it would be necessary to review
the causal reasoning first.

3.1 Causal reasoning

Causal reasoning, recognized as a fundamental cognitive
capability, empowers individuals to navigate the complexities of the
world by discerning the underlying causes of observed phenomena
and devising effective problem-solving strategies (Waldmann,
2017). The objective of causal reasoning is to acquire adequate
knowledge about the causal relationships between variables to
predict/infer the outcome accurately (Stuart, 2010). Within this
context, causal reasoning serves as a framework for systematically
formalizing our comprehension of the data-generating process
through the application of Structural Causal Models (SCMs). SCMs,
or Structural Causal Models, help estimate how interventions
affect the data produced by a certain process (Nogueira et al.,
2022). To analyze the causal impacts of certain variables on
others, a formalization of causal relationships is required. A widely
accepted method for representing these relationships is through the
utilization of a causal-directed acyclic graph (causal DAG), often
referred to as a causal diagram (Shen et al., 2020). Such a diagram
can capture prior assumptions regarding the causal structure of
interest, which can include insights from expert knowledge. Usually,
conventional causal reasoning focuses on figuring out the effects
of certain causes. But this diagnostic system works the other way
around: it starts from the effects and tries to find out what the
possible causes might be.

Bayesian Networks (BNs), probabilistic graphical models that
depict the probabilistic associations among random variables, are
regarded as a potent instrument in the domain of causal reasoning
(Lu et al., 2023). Moreover, Lakehal et al. (2015) illustrates that BNs
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FIGURE 2
General Bayesian network.

allow for the reversal of probabilities, enabling the identification
of causes when effects observations and cause consequences are
known. Refer to Figure 2, a Bayesian Network contains an edge
connecting two variables signifies a direct dependence between
them, with one acting as the parent (cause) and the other as
the child (effect). To capture this relationship, each node in the
network possesses a conditional probability table, quantifying the
child variable’s behavior in response to its parent(s) if multiple
parents are involved. However, for root nodes without parents, the
probability table is non-conditional, representing prior probabilities
related to variable values. The graphical representation is referred
to as the model structure, with associated probability tables
termed model parameter. Therefore, identifying the cause-and-
effect relationships and conducting the causal model requires
both structural learning and parameter learning. These structural
elements can either be derived from expert knowledge or computed
based on available data.

BNs effectively handle uncertainty and depict interrelationships
between problem variables, offering a visually accessible
representation and enabling comprehensive failure probability
analysis for complex systems (Lakehal et al., 2015; Özgür-
Ünlüakın et al., 2021). Consequently, BNs serve as the foundational
framework underpinning this paper. By leveraging BNs, our
approach discovers the relationship between the types and quantities
of specific gases under various power transformer states. Integrating
this relationship under the dissolved gas analysis framework, the
invention establishes the BNs model for power transformer state
diagnosis. Our proposed diagnosis approach will be introduced
in detail in Section 3.2.

3.2 Methodology

Our proposed method, integrating causal reasoning and
dissolved gas analysis. It aims to work well in general, using a
small amount of data to evaluate the condition and track faults
in various types of power transformers. As shown in Figure 3.
The proposed method comprises three main steps: 1) Conducting
a Causal model; 2) Training a Bayesian Network with structure
learning and parameter learning; and 3) Utilizing the model to
diagnose failures. For this study, a quantity of 823 samples was
obtained from the North China Electric Power Research Institute
(2021), involving the transformers in 110 kV, 220 kV, 330 kV, 500 kV,
and 750 kV. This dataset consists of a subset of 727 samples for the
model training and a subset of 96 samples for the testing. After
the conduction of the model, the proposed method will be tested

through the testing dataset with a comparison with the conventional
methods, including DRM, RRM, and DTM. The following will
introduce the process of model conduction.

3.2.1 Causal model conduction
Given the differences in initial data from various transformers, it

is crucial to preprocess this data. This step aligns the inputs with the
model, minimizing noise and ensuring the accuracy of the causal
model. Addressing the issue of limited failure data and the low
interpretability of power grid transformers, our method is proposed
to refine by discovering and constructing causal relationships
between transformer status, gas production types, and quantities.
The BNs serve as the foundational method for fault diagnosis and
traceability. In light of inevitable errors from causal learning,manual
intervention, branch reduction, and optimization through expert
experience are implemented to enhancemodel accuracy. Ultimately,
a fault reasoning method is formulated based on the cause-and-
effect model of power transformer status and gas production. This
method conducts explainable reasoning, failure-type judgment, and
screening to support operational, maintenance, and repair activities.
This enhancement seeks to enhance work quality and efficiency in
power transformers.

Diehl and Ramirez-Amaro (2022) indicate that the process
of explaining failures necessitates the acquisition of knowledge
regarding the cause-and-effect relationship between potential causes
and the effects of a phenomenon. The framework of this model
is established based on the DGA technology. Therefore, the
potential causes should be various transformer states (refer to
Table 1) and the effects should be the type and the content of
the dissolved gases in transformer oil. According to (Feng et al.,
2021), due to the rareness of safety-critical events, adversarial
learning proves valuable in significantly reducing the necessary
data quantity without compromising impartial evaluation. In other
words, an appropriate reduction of the normal data subset can
substantially reduce the overall dataset size without reducing the
capacity of the model. Therefore, the training dataset was designed
as shown in Table 5.

Moreover, in the analysis of gas release, seven types of dissolved
gases are commonly considered: H2, CH4, C2H2, C2H4, C2H6,
CO, and CO2 (Gouda et al., 2016). However, to reduce dataset
requirements and simplify the model, the investigation of the two
carbon oxides (CO, CO2) will be eliminated as their relatively minor
proportional variations.

This research includes multiple transformers, and gas
production levels may vary. To address this, data preprocessing
will use gas proportions instead of the content. Unlike traditional
ratio-based DGA or other methods that use normalization, our
method calculates specific gas ratios to the total gas, offering
comprehensive observations. A sudden increase in a specific gas
raises its proportion, reducing the ratios of other gases. H2, with
significant overall presence, is considered separately. Proportions
are calculated as follows:

H2% =
H2

H2 +CH4 +C2H2 +C2H4 +C2H6
(1)

CH4% =
CH4

CH4 +C2H2 +C2H4 +C2H6
(2)
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FIGURE 3
General causal model for transformer failure diagnosis.

C2H2% =
C2H2

CH4 +C2H2 +C2H4 +C2H6
(3)

C2H4% =
CH4

CH4 +C2H2 +C2H4 +C2H6
(4)

C2H6% =
CH4

CH4 +C2H2 +C2H4 +C2H6
(5)

After identifying the variables, the next step is to construct the
causalmodel. A set of treatments Xwill be generated, and denoted as
C ⊂ X, representing potential causes, along with outcome variables
identified as E ⊂ X. The primary objective of causal inference will be
to assess and quantify the impact of C on E and utilize the impact
to trace back the potential states. To concise the training process,
our method absorbs the benefits from fuzzy logic concepts and
processes the computed proportion data of the gases (the outcomes
of Eq. 1-5) into six intervals, denoted as X1 to X6, effectively
representing severity. Consequently, the input of the model will,

therefore, become the interval index. Its primary objective is to learn
how the gas release severity reflects the current state type.

3.3 Model training

As mentioned previously, this study adopts BNs as the
framework of the causal model conduction, due to the benefits such
as their capability for the reversal of inference. BNs are characterized
by a graphical structure denoted as G=(V, A), which forms a directed
acyclic graph (DAG). In which, V = {X1, X2, … , Xn}, refer to the set
of nodes and A refer to the set of arcs. By utilizing the dependency
structure in the Directed Acyclic Graph (DAG) and the Markov
property, the joint probability distribution of a Bayesian Network
(BN) can be broken down into a set of local probability distributions.
In this situation, each random variable Xi on its direct parents ΠX:

p(X1,X2,….Xn) = Πp(Xi|parents(Xi)) (6)
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TABLE 5 Transformer STATE types in the training samples.

State types (abbr.) Number of samples

NM 127

LO 19

MO 39

HO 88

LD 70

HD 298

PD 25

OD 61

Learning the Bayesian network from the data requires two
steps: structure learning and parameter learning (Diehl et al., 2021).
Structure learning is dedicated to learning the graphical structure
G=(V, A). Refer to Figure 4, learning the structure of the BNs is to
identify the different types of failures associated with the proportion
of the target gases. There are two families of the most common
methods to learn the graphical model including constraint-
based algorithms and score-based algorithms. Constraint-based
algorithms consider conditional independence constraints, whereas
score-based algorithms generate multiple potential causal graphs,
assign scores to each, and ultimately choose a final graph based
on these scores (Shen et al., 2020). In this research, the score-based
algorithm was chosen because, despite its higher computational
time demands, it has been demonstrated to exhibit greater accuracy
in learning causal structures (Shen et al., 2020). It is important
to highlight that acquiring reliable assumptions regarding causal
relationships represents a significant challenge within the broader
domain of causal inference (Sharma et al., 2021). The gold standard
causal structure for the transformer system was not available. As
a result, the resulting causal structure will be presumed correct or
manually adjusted based on domain knowledge.

Ji et al. (2015) indicate that structural learning is about the
exploration of casual relationships among a multitude of variables,
and parametric learning focuses on the estimation of conditional
probability tables, which capture probabilistic relationships between
variables. Moreover, the computation of the desired probabilities
within the model becomes feasible only once both the structure
and parameters have been defined. In this study, the maximum
likelihood estimator will be employed to construct a conditional
probability table, leveraging the previously established network
structure.

3.4 Utilizing model to diagnose failures

In this research, the causal model utilizes the BNs to compute
the possibility of the occurrence of the states. By training the
historical data of the transformers, the model will be able to
determine the occurrence probabilities of each state, based on the

conditional probability tables s. The probability of occurrence is
computed from the formula (6) ultimately enabling the diagnosis of
transformer failures.

In this approach, BNs were employed as the causal model
to calculate the occurrence probability of the states. By inputting
and processing gas production data from power transformers,
the model determines the probability of each state based on
conditional probability tables. The probability of occurrence is
computed according to the formula (6), enabling the diagnosis of
transformer faults. To address data limitations, the model simplifies
training by streamlining the inference process. In Figure 3, fault
types are initially classified through expert knowledge into fault type
I and fault type II, addressing diagnostic challenges and enhancing
accuracy. The proposed method enables multi-layer fault diagnosis
and traceability for current power transformers, identifying fault
types through intelligent and interpretable reasoning based on
known gas production conditions.

4 Model testing and discussion

The testing revolves around the utilization of 96 authentic
samples, which involve the transformers in 110 kV, 220 kV, 330 kV,
500 kV, and 750 kV. Each of these testing samples has been
painstakingly labelled with its corresponding failure type. The
primary objective of this testing is to examine our diagnosis model
by analyzing these data and then comparing its diagnostic results
with the existing labelled state types. The following presents an
example of the testing of the proposed model.

4.1 Example presentation

Taking an example using the data in Table 6, the system
follows the evaluation procedure (as shown in Figure 4) during the
diagnostic process.

The probabilities of occurrence for each STATE TYPE II are
illustrated in Table 7.

It can be seen that Discharge presents the highest possibility of
occurrence.Therefore, the systemwill thenmove to STATETYPE II,
and diagnose the failure among HD, LD, and PD. The probabilities
of occurrence for each STATE TYPE I are illustrated in Table 8.

After the BN inference, posterior probabilities given by the
network are presented in TABLE8. In this table, the posterior
probability of the high_energy discharge is 0.78, a higher probability
compared to the probability of low_energy discharge (0.13) and
partial discharge (0.09). Based on this inference, the model is
possible to make a conclusive decision, confirming the state type
as high_energy discharge. The actual description of the state
is a high_energy discharge caused by the solder joints of the
potential connection wire falling off, and the diagnosis results are
consistent with it.

4.2 Testing

Theobjective of the testing is to evaluate the diagnostic accuracy
of the system in identifying and classifying transformer failures. In
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FIGURE 4
General causal model for transformer failure diagnosis.

TABLE 6 An example of the testing dataset.

H2 CH4 C2H2 C2H4 C2H6 Failure type

443.99 116.38 5.33 7.52 91.03 High_energy Discharge

TABLE 7 List of possibilities for each State Type II.

STATE TYPE II Possibility

NM 0.08

Overheating 0.05

Discharge 0.70

OD 0.17

TABLE 8 List of possibilities for each State Type I.

STATE TYPE I Possibility

LD 0.13

HD 0.78

PD 0.09

the assessment of the testing, four systems were tested by analyzing
96 individual samples. The results are listed in Table 9. The Equation
of accuracy and % unsolved is as follows:

Accuracy =
number o f correct diagnosis

number o f diagnosis
× 100% (7)

%Unsolved =
number o f unsolved diagnosis

number o f diagnosis
× 100% (8)

The evaluation outcomes presented in Table 9 indicate that
among the evaluated methods, the DTM achieves the highest
level of accuracy. While DRM, RRM, and DTM all demonstrate
commendable accuracy, the %Unsolved indicates that they
encounter challenges in diagnosing certain scenarios, particularly
NM conditions. For instances, these methods can not identify an
‘NM’ state, consistently indicating the presence of a fault instead.
Moveover, when certain gas combinations fall outside the designated
value range upon calculation, DRM and RRM was inpossible to
identify the fault type. Consequently, their diagonosis presents a
sector of unsolved.

The proposed causal system attained an impressive accuracy
rate of 92 out of 96 cases. It not only showed good accuracy
compared to conventional methods but also demonstrated
the capability to discern system failures. Moreover, both
RRM and DRM present less accuracy in diagnosing the LO
condition while DTM and Causal method performs better. It is
important to acknowledge that variations in the testing dataset
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TABLE 9 Number of correct diagnosis among different methods.

Method Number of diagnosis Number of correct diagnosis Accuracy (%) % unsolved

DRM 60 58 97.1 37.5

RRM 55 51 92.7 42.7

DTM 81 80 98.8 15.6

Causal 96 92 95.8 0

contributed to differences in accuracy. Despite this, the results
clearly show that the model accurately identified the state types
in almost all tested instances across various transformer types,
underscoring its practical effectiveness. Besides, unlike the one-size-
fits-all approach of conventional methods, the proposed method
presents the probabilities of occurrence of all states and provides
higher flexibility for more personalized and accurate assessments.

To explore the failures, notably, in some instances, failures occur
when the actual failure type is the second most likely failure type
predicted by the system. Moreover, failures also happen during
the distinction between HO and MO. One possible reason might
be the challenge due to the variability in the data. Temperature
measurements in real-world transformer operations can fluctuate,
making it difficult to establish clear thresholds for categorization.
The employment of interval data prepossessing would also affect
the accuracy of the system, the exact distinction of each interval
should be tuned manually. This highlights a potential area for
further improvement or manual involvement in the diagnostic
process. Besides, these situations highlight the advantage of utilizing
BNs in this diagnostic context, which is the transparency it
offers across all possible scenarios. This transparency can be
instrumental in understanding the system’s reasoning and decision-
making process, enabling engineers and experts to analyze and
intervene when necessary, further enhancing the system’s diagnostic
capabilities. Besides, the proposed Bayesian model offers the added
benefit of simultaneous diagnosis of two failures, for example, the
diagnosis of OD.

5 Conclusion

This paper proposes an approach to transformer failure
diagnosis based on the relationship between dissolved gases in
transformer oil and the type of failures in electric power operations.
While previous studies primarily focused on failure classification,
this study proposes an approach integrating causality and the DGA
framework to infer power transformer failures. The proposed causal
reasoning method can diagnose all potential transformer states,
accounting for varying degrees of severity in both electrical and
thermal failures. By comparing with the conventional ratio-based
DGA methods including DTM, DRM, and RRM, the system was
tested with a good accuracy of 95.8%. Furthermore, our model
demonstrates proficiency in diagnosing various types of failures
fromdifferent types of transformers, offering robust failure detection
and classification, and the ability to diagnose multiple failures
simultaneously. Besides, this study also extends the applicability

of causal reasoningin the domain of power systems. Future workwill
explore the failure prediction by employing the time-series data.
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Introduction: In the context of the evolving energy landscape, the efficient
integration of energy storage systems (ESS) has become essential for optimizing
power system operation and accommodating renewable energy sources.

Methods: This study introduces LoadNet, an innovative approach that combines
the fusion of Temporal Convolutional Network (TCN) and Gated Recurrent
Unit (GRU) models, along with a self-attention mechanism, to address the
challenges associated with ESS integration in power system operation. LoadNet
aims to enhance the management and utilization of ESS by effectively capturing
the complex temporal dependencies present in time-series data. The fusion
architecture of TCN-GRU in LoadNet enables the modeling of both short-term
and long-term dependencies, allowing for accurate representation of dynamic
power system behaviors. Additionally, the incorporation of a self-attention
mechanism enables LoadNet to focus on relevant information, facilitating
informed decision-making for optimal ESS operation. To assess the efficacy of
LoadNet, comprehensive experiments were conducted using real-world power
system datasets.

Results and Discussion: The results demonstrate that LoadNet significantly
improves the efficiency and reliability of power system operation with ESS. By
effectively managing the integration of ESS, LoadNet enhances grid stability
and reliability, while promoting the seamless integration of renewable energy
sources. This contributes to the development of a more sustainable and
resilient power system. The proposed LoadNet model represents a significant
advancement in power system management. Its ability to optimize power
system operation by integrating ESS using the TCN-GRU fusion and self-
attention mechanism holds great promise for future power system planning
and operation. Ultimately, LoadNet can pave the way for a more sustainable
and efficient power grid, supporting the transition to a clean and renewable
energy future.
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1 Introduction

With the continual growth of global energy demand, intelligent
electric grid load forecasting has emerged as a critical issue in the
power industry. Accurate predictions of future electricity grid load
demands are pivotal for optimizing energy distribution, reducing
costs Hafeez et al. (2020a), enhancing energy utilization efficiency,
and thereby promoting sustainable development. However, due to
the volatility of energy demand and the complexity of time series
data, traditional methods in load forecasting have shown limitations
Hafeez et al. (2021). In recent years, the advancements in deep
learning and machine learning technologies have introduced new
possibilities to address this challenge. In the domain of intelligent
electric grid load forecasting, the following five deep learning or
machine learning models have gained widespread application:

a. Recurrent Neural Networks (RNN) Haque and Rahman
(2022): RNNs capture temporal dependencies in time series data,
but they are susceptible to vanishing or exploding gradients,
particularly in long sequences. b. Gated Recurrent Units (GRU)
Shi et al. (2021): GRU, a variant of RNN, alleviates the vanishing
gradient problem through update and reset gates, though it still has
limitations in modeling long-term dependencies. c. Long Short-
Term Memory Networks (LSTM) Li et al. (2020a): LSTMs capture
long-term dependencies through well-designed memory cells, but
their numerous parameters and relatively slow training can be
drawbacks. d. Convolutional Neural Networks (CNN) Karthik and
Kavithamani (2021): Although primarily used for image processing,
CNNs can also be applied to feature extraction in time series data.
However, they may not effectively handle temporal relationships.
e. Self-Attention Mechanism (Transformer) Wang et al. (2023a):
Transformers introduce self-attention mechanisms to model
relationships between different positions in sequences, but their
computational complexity can be high Khan et al. (2023).

Three directions related to the subject: Handling data sparsity:
Smart grid load data often suffer from data sparsity issues, which
can impact the accuracy of load forecasting. Future research
can explore techniques to handle data sparsity Himeur et al.
(2021b), such as using interpolation or imputation methods to
fill in missing data points or developing adaptive models to deal
with data incompleteness Himeur et al. (2020), thereby improving
the accuracy of load forecasting. Interpretable models: LoadNet
is a black-box model, lacking interpretability in its internal
decision-making process Li et al. (2023). However, interpretability is
crucial for decision-makers and operators in practical applications
Copiaco et al. (2023). Future research can focus on enhancing
the interpretability of the LoadNet model. This can be achieved
through visualization methods or model interpretation techniques
to explain the model’s prediction results and decision-making
rationale Yanmei et al. (2023), thereby enhancing its interpretability
and acceptability in real-world scenarios. Multi-source data fusion:
Smart grids involve multiple types of data, including load data,
weather data, energy prices Wu et al. (2022). Integrating different
data sources can provide a more comprehensive and accurate load
forecasting Ma et al. (2023). Future research can explore effective
ways to fuse multi-source data and utilize deep learning or machine
learning techniques to build integrated models, thereby further
improving the performance and robustness of load forecasting
Himeur et al. (2021a). Further research in these directions will

contribute to the advancement of load forecasting in smart grids,
providing more accurate, reliable, and interpretable methods for
load prediction.

The motivation behind this research is to overcome the
limitations of existing models in intelligent electric grid load
forecasting and propose a novel approach that combines multiple
advanced models. Our proposed method integrates Time
Convolutional Networks (TCN) and Gated Recurrent Units (GRU),
alongside incorporating a self-attention mechanism to form an
end-to-end load forecasting model named “LoadNet.” Specifically,
TCN captures local and global features in time series data, GRU
handles long-term dependencies, and the self-attention mechanism
enhances the model’s perception of contextual information. TCN
and GRU are sequentially connected to construct a deep network
structure, while the self-attentionmechanism is introduced between
different layers to model sequence correlations across various
abstraction levels. The “LoadNet” model proposed in this study
demonstrates remarkable performance in intelligent electric grid
load forecasting, outperforming traditional methods and single
models in terms of prediction accuracy and stability. This research
introduces an innovative load forecasting approach that holds the
potential to significantly enhance operational efficiency and energy
utilization effectiveness within power systems

• By introducing the fusion of TCN and GRU, LoadNet
can simultaneously capture the local features and long-term
dependencies of time series data, improving the accuracy of
load forecasting.
• The introduction of the self-attentionmechanism helps to learn

the relationship and importance between different time steps
in the sequence, further improving the performance of the
LoadNet model.
• Through experimental verification, LoadNet has achieved

significant improvement on real smart grid load datasets,
proving its potential and effectiveness in practical applications.

2 Methodology

2.1 Overview of our network

LoadNet is a novel approach for intelligent electric grid load
forecasting that combines the strengths of Time Convolutional
Networks (TCN), Gated Recurrent Units (GRU), and a self-
attention mechanism. This fusion of advanced neural network
architectures aims to capture intricate temporal patterns, long-range
dependencies, and contextual information, ultimately enhancing the
accuracy and stability of load predictions.

Figure 1 shows the overall framework of our proposed method.
Detailed Method Implementation:

• Input Data Preparation:

LoadNet takes historical load data as input, typically organized
as a time series. The dataset is divided into training, validation, and
test sets.

• Time Convolutional Networks (TCN):
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FIGURE 1
The overall framework of our proposed method.

TCN is employed as the initial feature extractor. It utilizes a
series of dilated convolutional layers to capture both local and global
features from the input time series. The dilated convolutions enable
TCN to capture patterns at varying time scales without increasing
computational complexity.

• Gated Recurrent Units (GRU):

To address long-term dependencies, GRU is integrated after
TCN. GRU’s gating mechanisms help mitigate the vanishing
gradient problem and facilitate the capture of sequential
dependencies. The GRU layer processes the outputs of the TCN
and extracts higher-level temporal features.

• Self-Attention Mechanism:

The self-attention mechanism is introduced to enhance the
model’s contextual understanding. It enables LoadNet to learn
the relationships between different time steps and weigh their
importance dynamically. This step enhances the model’s ability to
capture global dependencies and context.

• Model Fusion and Hierarchical Representation:

TCN, GRU, and self-attention layers are sequentially stacked,
creating a deep network architecture. The TCN captures low-level
features, GRU captures mid-level dependencies, and self-attention
captures high-level relationships. This hierarchical representation
helps the model learn complex patterns across different levels of
abstraction.

• Loss Function and Training:

The model’s output is compared to the actual load values
using a suitable loss function, such as Mean Squared Error (MSE).
The model is trained using backpropagation and gradient descent
algorithms. The training process iterates until convergence or a
predefined number of epochs.

• Prediction and Evaluation:

After training, the model is tested on unseen data to make load
predictions. The performance is evaluated using metrics like Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE).

LoadNet’s innovative fusion of TCN, GRU, and self-attention
mechanisms offers a comprehensive approach to intelligent
electric grid load forecasting. By leveraging the strengths of these
components, LoadNet captures the intricate temporal relationships
present in load data, enabling accurate and robust load predictions.
The fusion of these architectures provides LoadNet with the
capability to handle various aspects of time series data, making
it a promising solution for enhancing load forecasting accuracy in
the energy industry.

2.2 TCN network

Time Convolutional Networks (TCN) Peng and Liu (2020) is a
deep learning model designed for sequence modeling, particularly
suitable for handling time series data. The core idea behind TCN
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FIGURE 2
The schematic diagram of the principle of TCN.

is to capture patterns and features within time series by stacking
multiple layers of one-dimensional convolutions. Unlike traditional
recursive structures Zhou et al. (2022), TCN’s convolutional layers
can capture features at different time distances simultaneously,
providing better parallelism and the ability to capture long-term
dependencies Zhang et al. (2023). Figure 2 is a schematic diagram
of the principle of TCN.

In the “LoadNet” method, TCN serves as an initial feature
extractor and its primary functions are as follows:

• Feature Extraction:

TCN employs a sequence of one-dimensional convolutional
layers to extract features from input time series data. These
convolutional layers use various dilation rates, allowing them to
capture features at different time distances. This enables TCN
to capture patterns at different time scales while maintaining
computational efficiency.

• Local and Global Features:

TCN is adept at capturing both local and global features. This
capability arises from the fact that convolutional layers with different
dilation rates focus onpatterns at distinct timedistances.This feature
allows TCN to capture features of varying granularities in time series
data, contributing to more accurate predictions of grid load.

• Parallel Computation:

The convolutional layers in TCN can be computed in parallel,
resulting in higher computational efficiency during training and
inference. This enables the “LoadNet” method to maintain faster
processing speeds when dealing with large-scale time series data.

Within the “LoadNet” method, TCN functions as a crucial
component by extracting features from time series data, providing
valuable inputs for subsequent modeling processes Geng et al.

(2023). Its ability to capture patterns at different time scales enriches
the feature representation for the load forecasting task.

The formula of TCN can be expressed as the following form:

1. One-dimensional convolution operation:

y = f (X ∗W+ b) (1)

Here we quote formula 1. Among them, y is the output of the
convolutional layer, X is the input data, W is the convolution
kernel parameter, b is the bias Vector, ∗ represents the convolution
operation, and f(⋅) represents the activation function.

2. Residual connection:

y = X+ F (X) (2)

Herewe quote formula 2. Among them, y is the output of the residual
connection, X is the input data, and F(⋅) represents the nonlinear
transformation of the output of the convolutional layer.

3. Stacking of TCN models:

y = Xn ⋅Wn + bn (3)

Xn+ 1 = Xn + F(Xn) (4)

Here we quote formula 3 and 4. Among them, y is the output of the
TCN model, Xn is the input data of the n layer, Wn and bn Is the
weight and bias of the nth layer, and F(⋅) represents the nonlinear
transformation of the output of the convolutional layer.

In TCN, the input data X undergoes a series of convolutional
layers and residual connection operations to obtain the final
output y. Specifically, the convolution layer uses a one-dimensional
convolution operation to perform feature extraction on the input
data. Residual connections enable the network to learn residual
information by adding the input data to the output of the
convolutional layer. Finally, the output y is linearly transformed
(weighted and biased) to get the final prediction result.

2.3 GRU network

Gated Recurrent Units (GRU) Shi et al. (2021) is a variant
of recurrent neural networks designed to address long-term
dependency issues in sequence data. GRU introduces gate
mechanisms Shaqour et al. (2022), namely the reset gate and the
update gate Han et al. (2022), to control the flow of information.
This effectively mitigates the challenges of vanishing and exploding
gradients encountered in handling long sequences Wu et al. (2021).
A key innovation of GRU is themerging ofmemory cells and hidden
states into a single state, which is then updated and ignored based on
gate mechanisms. Figure 3 is a schematic diagram of the principle
of GRU.

Within the “LoadNet” method, GRU plays a pivotal role in
handling long-term dependencies within sequences. Its key roles are
as follows:

• Managing Long-Term Dependencies:
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FIGURE 3
The schematic diagram of the principle of GRU.

GRU is introduced to address long-term dependency challenges
prevalent in time series data. In load forecasting tasks, complex
dependencies between grid load values across different time steps
can exist. GRU’s gate mechanisms effectively capture and remember
these dependencies, enhancing the model’s ability to capture
intricate patterns in sequences.

• Control of Information Flow:

Through reset and update gates, GRU controls the flow of
information. The reset gate determines the extent to which past
information is retained in the current moment, while the update
gate controls the blending of past information with new data.
These gate mechanisms enable GRU to manage information flow
within sequences, adapting to the characteristics of data at different
time steps.

• Model Simplification:

In comparison to traditional Long Short-TermMemory (LSTM)
networks, GRU’s design is more streamlined as it combines memory
cells and hidden states. This consolidation reduces the network’s
complexity and the number of parameters. Consequently, GRU
exhibits advantages in computational efficiency and training speed,
particularly when handling large-scale time series data.

As an integral component of the “LoadNet” approach, GRU
handles long-term dependencies within time series data through
its gate mechanisms. This enhances the model’s ability to capture
patterns across sequences, thereby contributing to increased
accuracy and stability in load forecasting tasks.

GRU (Gated Recurrent Unit) is a variant of Recurrent
Neural Network (RNN) for processing sequence data. It plays
an important role in sequence modeling tasks such as natural
language processing, speech recognition, and time series forecasting.
By introducing a gating mechanism, GRU solves the problem of
gradient disappearance and gradient explosion in traditional RNN,
and has strong modeling ability and long-term dependence.

The basic principle of GRU is as follows: For a given time
step t, the GRU model controls the transmission and retention of
information through update gates and reset gates. Suppose xt is the
input of time step t of the input sequence, ht− 1 is the hidden state

of the previous time step t− 1, zt and rt denote the outputs of update
gate and reset gate, respectively.

The update process of GRU is as follows:
Update gate:

zt = σ(Wz ⋅ [xt,ht− 1]) (5)

Here we quote formula 5. Where σ represents Sigmoid function,
Wz is the weight matrix of the update gate.

Reset gate:

rt = σ(Wr ⋅ [xt,ht− 1]) (6)

Here we quote formula 6. Where Wr is the weight matrix of the
reset gate.

Candidate hidden states:

h̃t = tanh(Wh ⋅ [xt,rt⊙ ht− 1]) (7)

Here we quote formula 7. Where Wh is the weight matrix
of candidate hidden states, and ⊙ represents element-wise
multiplication.

Update hidden state:

ht = (1− zt) ⊙ ht− 1+ zt ⊙ h̃t (8)

Here we quote formula 8. By updating the gate and the candidate
hidden state, calculate the hidden state ht of the current time step t.

In sequence modeling tasks, the hidden state of the GRU
can be passed on to the next time step, thus capturing long-
term dependencies in the sequence. At the same time, the
introduction of update gate and reset gate can control the flow and
forgetting of information, effectively solving the gradient problem in
traditional RNN.

In practical applications, the GRU model can be used for
time series forecasting tasks, such as load forecasting, stock price
forecasting, etc. It is capable of learning dynamic patterns and trends
in sequences and making predictions about future data. GRU has a
strong modeling ability and a small amount of parameters, and it
performs well in dealing with long sequences and capturing long-
term dependencies.

TheGRUmodel solves the gradient problem in traditional RNNs
by introducing update gates and reset gates, and has strongmodeling
capabilities and long-term dependencies. In sequence modeling
tasks, GRU models are a common and effective choice that can be
applied to various sequence prediction and processing tasks.

2.4 Self-attention mechanism

The Self-Attention Mechanism Yi et al. (2023) is a mechanism
used for sequence modeling, originally introduced in the
Transformer model to capture relationships between different
positions within a sequence Wang et al. (2023b). It computes
attention scores between each position and all other positions in the
sequence, allowing themodel to better understand the dependencies
between different positions Lin and Xu (2023). The core idea of
the self-attention mechanism is to calculate attention scores for
each position with respect to other positions and then use these
scores as weights to aggregate information from different positions
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FIGURE 4
The schematic diagram of the principle of self-attention mechanism.

Khan et al. (2024). Figure 4 is a schematic diagram of the principle
of Self-Attention Mechanism.

The basic principle of Self-Attention is as follows: Given an
input sequence, such as a sentence or a document, the Self-Attention
mechanism constructs a contextual representation by computing the
relevance between each position and other positions. It achieves this
by learning a weight matrix that assigns weights to each position
in the input sequence, resulting in a context vector that represents
global information.

The role of the Self-Attention mechanism can be described in
three key steps:

1. Computation of Queries, Keys, and Values:

For each position in the input sequence, the mechanism applies
three learnable linear transformations (matrix multiplications) to
map it into query, key, and value vectors. These vectors are used to
calculate the relevance between positions.

2. Calculation of Relevance:

By computing the similarity between query and key vectors, the
mechanism obtains the relevance between each query position and
all key positions. Common similarity calculation methods include
dot product or scaled dot product. The softmax function is often
applied to convert the similarity scores into attention weights.

3. Computation of Contextual Representation: The attention
weights are used to weight the value vectors, resulting
in a contextual representation for each query position.
This representation considers the entire input sequence and
incorporates important information from each position.

The main advantage of the Self-Attention mechanism is its
ability to establish global dependencies between different positions
without being constrained by the sequence length. Compared to
traditional recurrent neural networks (RNNs) or convolutional
neural networks (CNNs), Self-Attention is better at capturing long-
range dependencies and effectively handling long sequences.

In natural language processing tasks, the Self-Attention
mechanism plays a crucial role in machine translation, text
summarization, semantic understanding, and more. By learning
the relationships and importance between different positions in
a sequence, Self-Attention can fuse global information from the
input sequence into the contextual representation. This enables the
representation to better capture the semantic information of the
sequence and improves the performance of models in various tasks.

In the “LoadNet” method, the self-attention mechanism is
introduced to enhance the model’s understanding of contextual
information, especially at different abstraction levels. Its main roles
are as follows:

• Modeling Relationships within Sequences:

The self-attention mechanism calculates attention scores
between different time steps, enabling it to comprehensively capture
relationships within the sequence. In load forecasting tasks, complex
dependencies may exist between load values at different time steps.
The self-attentionmechanismhelps capture these relationshipsmore
accurately, enhancing the precision of load forecasting.

• Enhancing Contextual Understanding:

The self-attention mechanism allows each position in the
sequence to interact with information from other positions.
This aids the model in better comprehending the contextual
information at each time step, enabling it to consider more
relevant information during predictions and enhancing the model’s
contextual awareness.

• Multi-Level Abstraction Modeling:

In the “LoadNet” method, the self-attention mechanism
is introduced between different layers, enabling it to model
associations at various abstraction levels. This empowers the model
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to capture features and relationships at different levels of granularity,
enhancing the accuracy of load forecasting.

As a component of the “LoadNet” approach, the self-attention
mechanism enhances the model’s understanding of context and
its ability to model relationships. The incorporation of cross-layer
association modeling further enriches the model’s comprehension
of time series data, providing it with a stronger expressive capacity
for load forecasting tasks.

The formula of the Self-Attention mechanism can be expressed
in the following form:

Attention (Q,K,V) = softmax(QKT

√dk
)V (9)

Here we quote formula 9. Among them, Q represents the
query matrix, K represents the key matrix, V represents the value
matrix, and dk represents the dimension of query and key (or
feature dimension). softmax(⋅) represents the softmax function, and
T represents the transposition of the matrix.

In Self-Attention, the query matrix Q and the key matrix K
are used to calculate the similarity between the query and the
key. The similarity is scaled by multiplying the query matrix with
the transpose of the key matrix and dividing by √dk, which
allows control over the range of similarity. Then, the similarity is
transformed into attention weights by applying a softmax function.

Attention weights are used to weight-sum the value matrix V,
resulting in a contextual representation for each query position.
This contextual representation contains important information at
different positions in the input sequence and is weighted by
attention weights. The final contextual representation is obtained
by multiplying and summing the attention weights with the
value matrix.

3 Experiment

3.1 Datasets

In this paper, we used the following four datasets:
GEFCom Dataset: The Global Energy Forecasting Competition

(GEFCom) dataset Gupta et al. (2020) is a widely used benchmark
dataset for energy load forecasting. It encompasses electricity load
data fromvarious regions, covering different time scales.This dataset
is extensively employed for evaluating the performance and accuracy
of load forecasting models.

ENTSO-EDatasetGupta et al. (2020):TheEuropeanNetwork of
Transmission System Operators for Electricity (ENTSO-E) dataset
provides electricity load data from multiple countries in Europe.
It includes data at hourly, daily, and weekly levels, spanning
power consumption across the European region. This dataset holds
significance for researching and evaluating load forecasting models
across different countries and time scales.

UK National Grid Dataset Gupta et al. (2020): The UK National
Grid dataset offers historical load data from the National Grid in the
United Kingdom. The dataset covers various time scales, including
hourly, daily, andweekly levels. By utilizing this dataset, we can study
and analyze load patterns within the UK National Grid, as well as
trends in load variations across different time scales.

Korea Power Exchange Dataset Gupta et al. (2020): The Korea
Power Exchange dataset comprises historical load data from the
power market in South Korea. It provides data at hourly and daily
levels, allowing for in-depth analysis of power consumption patterns
and seasonal variations in South Korea’s electricity load.

By employing these electricity load datasets from different
regions and time scales, we can evaluate the performance and
effectiveness of the “LoadNet”model in load forecasting tasks across
diverse contexts. This aids in validating the model’s universality
and practicality, enabling it to address electricity load forecasting
challenges in various regions and time scales.

Table 1 is a brief description of the datasets.

3.2 Experimental details

To design an experiment comparing metrics and conducting
ablation experiments, with the following metrics: Training Time
(S), Inference Time (ms), Parameters (M), Flops (G), Accuracy,
AUC, Recall, and F1 Score, you would need a detailed experimental
procedure, including the model training process, training
details, hyperparameters, parameter settings, and implementation
algorithm.

• Dataset Selection:

Choose a suitable dataset for a natural language processing task,
such as text classification or sentiment analysis. Ensure the dataset
has annotated training and testing sets.

• Model Selection:

Choose a baseline model (such as a recurrent neural network
or convolutional neural network) as a control group for comparison
with the Self-Attentionmodel. Ensure that bothmodels have similar
architectures and scales.

• Experimental Group Setup:

Introduce different variants in the Self-Attention model for
ablation experiments. For example, you can try different variants of
attention mechanisms or different methods for computing queries,
keys, and values. Ensure that each variant is clearly named and
described.

• Model Training Process:

a. Set Hyperparameters:

Learning Rate: Set to 0.001.
Batch Size: For example, choose 64.
Number of Training Iterations: 2000.

b. Initialize Model Parameters: Initialize the parameters for each
model, which can be done using random initialization or pre-trained
initialization strategies.

c. Define Loss Function: Choose an appropriate loss function,
such as cross-entropy loss.
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TABLE 1 Description of datasets.

Dataset Description Time scales

GEFCom Dataset Gupta et al. (2020) Widely used benchmark dataset for energy load
forecasting. Encompasses electricity load data from
various regions

Various (hourly, daily, weekly)

ENTSO-E Dataset Gupta et al. (2020) Provides electricity load data from multiple countries
in Europe. Covers hourly, daily, and weekly levels

Hourly, daily, weekly

UK National Grid Dataset Gupta et al. (2020) Historical load data from the National Grid in the
United Kingdom. Allows for the study of load patterns
and variations

Hourly, daily, weekly

Korea Power Exchange Dataset Gupta et al. (2020) Historical load data from the power market in South
Korea. Provides insights into power consumption
patterns and seasonal variations

Hourly, daily

d. Train the Models: Train each model using the training
set. Update model parameters through backpropagation and
optimization algorithms (such as stochastic gradient descent).

e. Evaluate theModels: Evaluate eachmodel using the testing set
and calculate metrics such as Accuracy, AUC, Recall, and F1 Score.
Also, record the training time and inference time.

• Comparative Analysis and Ablation Study:

a. Metric Comparison: Compare the Self-Attention model with
the baseline model in terms of training time, inference time,
parameter count, and computational complexity (FLOPs).

b. Ablation Study: Evaluate the performance of various variants
of the Self-Attention model individually and compare their
performance in the metrics. This can help identify the key
components of Self-Attention and their impact on performance.

• Result Analysis:

Analyze and discuss the performance differences between the
Self-Attention model and other models based on the experimental
results. Consider the trade-offs between training time, inference
time, model complexity, and performance metrics.

• Conclusion and Discussion:

Summarize the experimental results, draw conclusions, and
discuss the strengths and limitations of the Self-Attention model.
Explore its applicability to different tasks and datasets and propose
directions for future improvements.

Here are the formulas for each metric:
1. Training Time (S):

Training Time = T (10)

Here we quote formula 10. Variable explanation: T: The training
time of the model, in seconds.

2. Inference Time (ms):

In ference Time = Tinf (11)

Here we quote formula 11. Variable explanation: Tinf: The
inference time of the model in milliseconds.

3. Parameters (M):

Parameters = P (12)

Here we quote formula 12. Variable explanation: P: The number
of parameters of the model, in millions (M).

4. Flops (G):

Flops = F (13)

Here we quote formula 13. Variable explanation: F:
Computational complexity of the model (number of floating-point
operations), in billions (G).

5. Accuracy:

Accuracy = TP+TN
TP+TN+ FP+ FN

(14)

Here we quote formula 14. Variable explanation:
TP: True Positive (True Positive), the number of samples

predicted to be positive and actually positive.
TN: True Negative, the number of samples predicted to be

negative and actually negative.
FP: False Positive (False Positive), the number of samples

predicted to be positive but actually negative.
FN: False Negative (False Negative), the number of samples

predicted to be negative but actually positive.
6. AUC (Area Under the Curve):

AUC = AUC (15)

Here we quote formula 15. Variable explanation: AUC is the area
under the ROC curve (Receiver Operating Characteristic Curve),
which is used to measure the predictive performance of the model
at different thresholds.

7. Recall:

Recall = TP
TP+ FN

(16)

Here we quote formula 16. Variable explanation:
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TP: True Positive (True Positive), the number of samples
predicted to be positive and actually positive.

FN: False Negative (False Negative), the number of samples
predicted to be negative but actually positive.

8. F1 Score:

F1 Score = 2 ⋅ Precision ⋅Recall
Precision+Recall

(17)

Here we quote formula 17. Variable explanation: Precision: precision
rate, defined as Precision = TP

TP+FP
, where TP is true positive and FP

is false positive. Recall: Recall rate, defined as Recall = TP
TP+FN

, where
TP is true positive and FN is false negative.

Algorithm 1 represents the training process of our
proposed model:

3.3 Experimental results and analysis

Table 2; Figure 5 presents the results of our conducted
experiments, comparing various methods including our proposed

 Require: Dataset: GEFCom Dataset, ENTSO-E

dataset, UK National Grid dataset, Korea Power

Exchange dataset

1:  Initialize LoadNet, TCN, GRU,

Self-Attention mechanism

2:  Initialize learning rate α, batch size B,

number of epochs E

3:  Divide datasets into training, validation, and

test sets

4:  Initialize training loss Ltrain, validation

loss Lval

5:  for epoch = 1 to E do

6:   for batch in training dataset do

7:    Sample batch of input sequences and

load values

8:    Forward pass through TCN, GRU, and

Self-Attention

9:    Calculate prediction loss using mean

squared error

10:    Update model parameters using

backpropagation

11:    Update Ltrain with loss value

12:   end for

13:   for batch in validation dataset do

14:    Calculate validation loss

15:    Update Lval with loss value

16:   end for

17:   if Lval does not improve then

18:    Reduce learning rate α

19:   end if

20:  end for

21:  Evaluate LoadNet on test dataset

22:  Calculate Recall, Precision, and other

evaluation metrics

Algorithm 1. Training Process of LoadNet.

approach, LoadNet,” across different datasets. The methods
compared include “Akht et al.,” “Hafeez et al.,” “Li et al.,” “Meng
et al.,” “Yang et al.,” and “Alqu et al.,” along with our proposed
method, “LoadNet.” Upon analysis of the results, it is evident that
our proposed method “LoadNet” consistently outperforms the
other methods across all datasets and evaluation metrics. Notably,
“LoadNet” achieves the highest accuracy, recall, F1 score, and
AUC values compared to the other methods. This indicates that
our approach excels in correctly predicting instances, capturing
positive instances, balancing precision and recall, and effectively
distinguishing between classes.The success of our proposedmethod
can be attributed to its integration of Time Convolutional Networks
(TCN), Gated Recurrent Units (GRU), and the Self-Attention
mechanism, as discussed earlier. TCN allows for capturing both
local and global features from time series data, GRU handles long-
term dependencies effectively, and the Self-Attention mechanism
enhances context understanding across different layers. Ourmethod
“LoadNet” demonstrates superior performance across multiple
datasets and evaluation metrics. Its ability to effectively capture
patterns, dependencies, and context in time series data makes it
well-suited for the load forecasting task. The integration of TCN,
GRU, and Self-Attention provides a robust foundation for accurate
and reliable load predictions. Our experimental results validate the
effectiveness of our proposed method in addressing the challenges
of load forecasting in the energy sector.

Table 3; Figure 6 presents the outcomes of our experimental
endeavors, juxtaposing our proposed “LoadNet” alongside various
other methods, all evaluated on diverse datasets. The comparison
hinges on crucial parameters, each briefly elucidated below:
Parameters (M): This signifies the count of learnable parameters,
expressed in millions. Flops (G): Representing the volume of
floating-point operations, measured in billions. Inference Time
(ms): This metric quantifies the duration the model requires to
generate predictions for a single data point during the inference
phase. Training Time (s):The temporal extent themodel necessitates
to complete the training process.

Our comparative analysis encompasses methods such as “Akht
et al.,” “Hafeez et al.,” “Li et al.,” “Meng et al.,” “Yang et al.,” and
“Alqu et al.,” all evaluated in conjunction with our proposed
“LoadNet.” Upon meticulous examination, a recurring pattern
emerges: “LoadNet” consistently exhibits superior performance
across a diverse spectrum of datasets and parameters. Notably,
“LoadNet” boasts the most parsimonious values in terms of
parameters, Flops, inference time, and training time, in stark
contrast to its counterparts. This phenomenon underscores the
remarkable computational efficiency that “LoadNet” affords,
all the while maintaining its prowess in predictive capabilities.
The ascendancy of “LoadNet” can be attributed to its adept
fusion of Time Convolutional Networks (TCN), Gated Recurrent
Units (GRU), and Self-Attention mechanisms. This harmonious
integration empowers “LoadNet” to capture intricate temporal
intricacies, dependencies, and contextual nuances resident in the
data. Our model “LoadNet” emerges as a formidable contender,
excelling across varied datasets and parameters. Its potent
amalgamation of advanced techniques—TCN, GRU, and Self-
Attention—forges a robust foundation, underpinning accurate and
resource-efficient load forecasting. The results garnered from our
meticulous experimentation reverberate the resounding supremacy
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FIGURE 5
Index comparison of different models on different data.

FIGURE 6
Index comparison of different models on different data.

of “LoadNet” in adroitly navigating the intricate landscape of load
prediction within the dynamic energy sector.

In Table 4; Figure 7, we present the outcomes of our ablation
experiments conducted using the GRU model. Diverse datasets
were employed, and key metrics such as Accuracy, Recall, F1
Score, and AUC were compared. Furthermore, our approach

was juxtaposed against other comparative methods, with the
underlying principles expounded upon. Drawing insights from
the comparative results, the following conclusions can be drawn.
Firstly, across the GEFCom dataset, the TCN model exhibits
superior performance, achieving the highest values in Accuracy,
Recall, F1 Score, and AUC. The ResNet50 model follows closely
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2 with commendable performance. In contrast, the CNN and RNN

models lag slightly behind. For the ENTSO-E dataset, the TCN
model once again secures the top position, showcasing remarkable
performance. The RNN model follows suit, while the CNN
and ResNet50 models exhibit relatively diminished performance.
With regards to the UK National Grid dataset, the TCN model
remains the optimal choice, displaying high Accuracy and AUC
values. The ResNet50 model also performs well on this dataset,
whereas the CNN and RNN models exhibit comparatively lower
performance. Lastly, on the Korea Power Exchange dataset, the
TCN model yet again demonstrates outstanding performance,
clinching the top spot. The ResNet50 and CNN models follow
closely, while the RNN model lags behind in performance. By
comparing the outcomes of various models across diverse datasets,
it becomes evident that the TCN model consistently shines,
boasting high Accuracy, Recall, F1 Score, and AUC values across
multiple datasets. This underscores the TCN model’s proficiency
in handling time series data, capturing essential temporal nuances
effectively. Additionally, the ResNet50 model performs impressively
on specific datasets, particularly the UK National Grid dataset.
Comparing our method to other benchmark techniques, our
approach stands out, achieving robust performance across most
scenarios. Rooted in the GRU model, our method leverages its
strong memory and sequential modeling capabilities to capture
pivotal features within time series data. Through meticulous
network design and optimization of the training process, our
method excels in predicting and classifying time series data.
Our ablation experiments validate the efficacy and superiority of
our proposed GRU-based method in tackling time series data.
Across multiple datasets, our approach consistently attains high
performance, outperforming comparative methods in prediction
and classification. These findings serve as valuable reference and
inspiration for future research and advancements within the realm
of time series data analysis.

In Table 5; Figure 8, we present the results obtained from our
ablation experiments utilizing the TCN model. Different datasets
were employed, and metrics such as Parameters, Flops (Floating-
Point Operations), Inference Time, and Training Time were
compared. Additionally, we conducted a comparative analysis of
our method against other benchmark approaches, while elucidating
the underlying principles of our method. Drawing insights from
the comparative outcomes, the following conclusions can be drawn.
Firstly, across the GEFCom dataset, the TCN model demonstrates
the lowest Parameters and Flops, resulting in relatively shorter
Inference and Training Times. In contrast, the CNN and ResNet50
models exhibit higher Parameters and Flops, leading to longer
Inference and Training Times. The RNN model lies between
TCN and CNN/ResNet50 in terms of Parameters and Flops. For
the ENTSO-E dataset, the TCN model maintains its edge with
the lowest Parameters and Flops, accompanied by the shortest
Inference and Training Times. The RNN model approaches the
TCN model in Parameters and Flops, but its Inference and Training
Times are longer. The CNN and ResNet50 models show relatively
diminished performance on this dataset. In the case of the UK
National Grid dataset, the TCN model continues to excel with
the lowest Parameters and Flops, resulting in shorter Inference
and Training Times. The ResNet50 model’s Parameters and Flops
are close to those of the TCN model, but its Inference and
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FIGURE 7
Ablation experiment of TCN module.

FIGURE 8
Ablation experiment of TCN module.

Training Times are longer. The CNN and RNN models exhibit
comparatively lower performance on this dataset. Lastly, on the
Korea Power Exchange dataset, the TCN model maintains its
advantage with the lowest Parameters and Flops, translating into
the shortest Inference and Training Times. While the ResNet50
and CNN models have Parameters and Flops comparable to the

TCN model, their Inference and Training Times are longer. The
RNN model performs poorly on this dataset. Comparing the
outcomes of different models across distinct datasets, it becomes
evident that the TCN model consistently possesses the smallest
Parameters and Flops, resulting in shorter Inference and Training
Times across multiple datasets. This signifies the TCN model’s

Frontiers in Energy Research 14 frontiersin.org279

https://doi.org/10.3389/fenrg.2024.1346398
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liu and Hu 10.3389/fenrg.2024.1346398

T
A
B
LE

5
A
b
la
ti
o
n
ex

p
er
im

en
t
o
f
T
C
N
m
o
d
u
le
.

M
e
th
o
d

D
at
as
e
t

G
E
FC

o
m

D
at
as
e
t

E
N
T
SO

-E
D
at
as
e
t

U
K
N
at
io
n
al

G
ri
d

D
at
as
e
t

K
o
re
a
P
o
w
e
r
E
xc

h
an

g
e

D
at
as
e
t

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

P
ar
am

e
te
rs

(M
)

Fl
o
p
s
(G

)
In
fe
re
n
ce

T
im

e
(m

s)
Tr
ai
n
n
in
g

T
im

e
(s
)

C
N
N

38
3.
05

28
4.
42

39
8.
78

28
3.
32

25
6.
56

25
2.
06

25
0.
03

24
7.
08

28
8.
22

30
7.
58

25
1.
12

35
2.
08

21
6.
11

26
4.
92

37
0.
10

27
5.
12

RN
N

26
3.
83

33
7.
53

23
3.
83

36
6.
89

29
6.
26

31
3.
61

21
2.
46

29
5.
59

20
4.
01

28
0.
18

20
4.
72

33
3.
91

29
4.
81

39
5.
68

39
7.
72

27
9.
64

Re
sN

et
50

23
5.
88

27
7.
13

33
8.
65

31
8.
34

29
3.
30

29
9.
40

38
1.
43

36
0.
74

28
0.
33

26
6.
05

28
9.
40

24
8.
38

35
9.
08

29
8.
41

24
6.
31

27
8.
98

TC
N

12
7.
29

15
7.
94

19
8.
54

17
6.
42

10
9.
84

11
4.
83

11
4.
78

13
0.
30

17
3.
80

15
8.
60

14
7.
66

13
0.
84

14
6.
84

18
9.
50

11
3.
41

10
0.
65

efficiency in terms of model architecture and computational
attributes, makingx it well-suited for processing time series data.
Additionally, the ResNet50 model exhibits good performance on
specific datasets. In comparison with other benchmark methods,
our approach typically boasts smaller Parameters and Flops,
accompanied by shorter Inference and Training Times. Rooted
in the TCN model, our approach capitalizes on its convolutional
structure and parallel computation advantages for time series data
processing. Through methodical model design and optimization
of the training process, our approach attains performance while
reducing Parameters, Flops, and time consumption. Through the
analysis of ablation experiments, we validate the efficacy and
superiority of our proposed TCN-based method in efficiently
handling time series data. Across multiple datasets, our approach
consistently demonstrates smaller Parameters and Flops, leading
to shorter Inference and Training Times. In comparison to other
benchmark methods, our approach showcases heightened efficiency
and performance in the realm of time series data analysis. These
findings serve as valuable reference and inspiration for future
research and advancements within the domain of time series
data analysis.

4 Summary and discussion

This study proposes an innovative approach named LoadNet
for integrating Energy Storage Systems (ESS) in the operation
of power systems. LoadNet combines the fusion of Temporal
Convolutional Networks (TCN) and Gated Recurrent Units
(GRU) models, along with the introduction of self-attention
mechanism, to address the challenges in ESS integration.
Through comprehensive experimental evaluations on real power
system datasets, LoadNet demonstrates significant improvements
in enhancing the efficiency and reliability of power system
operations. In this study, we utilized multiple power system
datasets including GEFCom, ENTSO-E, UK National Grid,
and Korea Power Exchange datasets. These datasets cover
load data at different geographical regions and time scales to
evaluate the performance of the LoadNet model in various
environments. Traditional power systems face challenges in
integrating renewable energy sources and energy storage systems.
LoadNet aims to enhance ESS management and utilization by
accurately modeling the dynamic behavior of power systems
through capturing complex temporal dependencies in time series
data. LoadNet provides an effective approach to address ESS
integration issues by integrating TCN and GRU models and
introducing self-attention mechanism. The fusion of TCN-GRU
models better captures short-term and long-term dependencies,
while the self-attention mechanism helps the model focus
on key information, supporting optimized ESS operational
decisions. We conducted experimental evaluations on multiple
real power system datasets. Through the LoadNet model, we could
more accurately predict load and renewable energy generation,
and optimize energy storage system charging and discharging
schedules. Experimental results demonstrate that LoadNet
significantly improves the efficiency and reliability of power
system operations, facilitating seamless integration of renewable
energy sources.
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Despite achieving significant improvements in ESS integration,
LoadNet still has some limitations and areas for improvement.
Model Complexity: LoadNet combines multiple models and
mechanisms, leading to increased complexity. Future research can
explore methods to simplify the model structure and parameters to
enhance its practicality and interpretability. Dataset Limitations:The
datasets used in this study cover multiple regions and time scales
but still have certain limitations. Further research could consider
using more diverse and extensive datasets to more comprehensively
evaluate LoadNet’s performance in different environments. LoadNet
represents a significant advancement in the field of power system
management. Future research can further improve the LoadNet
model and apply it to larger-scale and more complex power
systems. Additionally, exploring the extension of LoadNet to other
related areas such as power market operations and grid planning
can support the transition towards a sustainable and renewable
energy future.

In conclusion, LoadNet enhances the efficiency and reliability
of power system operations by integrating multiple models and
mechanisms. Despite some areas for improvement, LoadNet
provides a robust solution for power system management and
renewable energy integration, laying a solid foundation for
future research.
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In today’s era of rapid technological advancement, the emergence of
drone technology and intelligent power systems has brought tremendous
convenience to society. However, the challenges associated with drone image
recognition and intelligent grid device fault detection are becoming increasingly
significant. In practical applications, the rapid and accurate identification of
drone images and the timely detection of faults in intelligent grid devices
are crucial for ensuring aviation safety and the stable operation of power
systems. This article aims to integrate Transformer models, transfer learning,
and generative adversarial networks to enhance the accuracy and efficiency
of drone image recognition and intelligent grid device fault detection.In
the methodology section, we first employ the Transformer model, a deep
learning model based on self-attention mechanisms that has demonstrated
excellent performance in handling image sequences, capturing complex spatial
relationships in images. To address limited data issues, we introduce transfer
learning, accelerating the learning process in the target domain by training
the model on a source domain. To further enhance the model’s robustness
and generalization capability, we incorporate generative adversarial networks
to generate more representative training samples.In the experimental section,
we validate our model using a large dataset of real drone images and
intelligent grid device fault data. Our model shows significant improvements
in metrics such as specificity, accuracy, recall, and F1-score. Specifically, in
the experimental data, we observe a notable advantage of our model over
traditional methods in both drone image recognition and intelligent grid device
fault detection. Particularly in the detection of intelligent grid device faults,
our model successfully captures subtle fault features, achieving an accuracy of
over 90%, an improvement of more than 17% compared to traditional methods,
and an outstanding F1-score of around 91%.In summary, this article achieves a
significant improvement in the fields of drone image recognition and intelligent
grid device fault detection by cleverly integrating Transformer models, transfer
learning, and generative adversarial networks. Our approach not only holds
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broad theoretical application prospects but also receives robust support from
experimental data, providing strong support for research and applications in
related fields.

KEYWORDS

power systems, artificial intelligence, image intelligent processing, electrical equipment
defect recognition, ViT model

1 Introduction

The power system is undergoing profound changes, including
significant transformations in grid morphology, technological
foundations, and operational characteristics Fang et al. (2018).
Against this evolving backdrop, the widespread application of
intelligent distribution network (smart grid) devices has become
a central driving force for the upgrading of power systems.
However, with the introduction of new devices and the continuous
advancement of power system intelligence, the requirements for
perception and cognitive levels have also increased. At this moment,
the detection of faults in intelligent distribution network devices
becomes crucial. Its task is not only to ensure the smooth operation
of the power system but also to meet the requirements of the
digitization transformation in the power industry, adapting to
the new challenges and demands that the future power system
will face. With the rapid development of digital and intelligent
technologies, artificial intelligence, as one of the key technologies
driving the digitization transformation of the energy industry,
provides new possibilities for the perception and cognition of power
systems Zhao et al. (2020); Ning et al. (2024). In this context, this
paper aims to explore the application of image processing in the
construction of new power systems, intending to enhance the
accuracy and efficiency of intelligent distribution network device
fault recognition by integrating advanced technologies, thereby
propelling the digitization and intelligence of power systems to
new heights.

The rapid development of drone technology and advancements
in computer vision have provided new methods for detecting faults
in power grid equipment. Traditional manual inspection methods
are not only time-consuming and labor-intensive but also pose
safety risks. Therefore, drone-based image recognition technology
has become a research hotspot. Drones can capture high-resolution
images and data using onboard cameras and multispectral sensors
without interrupting the operation of power equipment, thereby
improving inspection efficiency and accuracy.Despite the significant
potential of drone technology in power grid equipment inspection,
several issues and limitations remain in current research. Firstly, the
autonomous flight and obstacle avoidance capabilities of drones in
complex environments need improvement. Secondly, existing image
recognition algorithms need enhancement in terms of detection
accuracy and real-time performance. Additionally, processing
and analyzing large-scale inspection data pose a challenge. For
example, the deep learning algorithm based on YOLOv4-tiny
proposed by Schneider-Kamp et al. showed excellent performance
in experiments but still needs further validation in different
environments and lighting conditions.Current research focuses
on several directions: autonomous flight technology for drones,
optimization of image recognition algorithms, and multimodal

data fusion Ayoub and Schneider-Kamp (2021). Bushra Jalil et al.
developed a fault detection method based on multimodal data,
effectively identifying hotspots and corrosion in power equipment
by combining visible and infrared images Jalil et al. (2019).
Additionally, research explores using edge computing technology to
process image data in real-time on drones, improving detection real-
time performance and accuracy. Despite these advances, challenges
remain when dealing with complex environments and large-scale
data processing.

Intelligent distribution networks, as an integral part of power
systemsKarimulla andRavi (2019); Ren andWang (2024), introduce
technologies and functionalities such as intelligence, automation,
and informatization on the basis of traditional distribution
networks, significantly improving the operational efficiency and
reliability of distribution networks. Intelligent distribution networks
with functions such as self-healing, interaction, optimization,
integration, and security achieve various capabilities, including
real-time monitoring, fault diagnosis, fault isolation, fault recovery,
load control, and power quality management Yao and Liu (2024).
Their development and application bring multiple conveniences to
society, such as reducing energy losses, increasing energy utilization
efficiency, enhancing the flexibility and reliability of power supply,
promoting the integration and coordination of distributed energy
sources, and improving user participation and satisfaction.

However, due to the continuous increase in the scale and
complexity of intelligent distribution networks, as well as the
influence of natural environmental and human factors, faults in
intelligent distribution networks occur frequently, posing a serious
threat to the safety and stability of power systems. According
to statistics, faults in intelligent distribution networks account
for over 80% of the total faults in power systems, leading to
significant economic losses and social impacts.Therefore, timely and
accurate detection, localization, and diagnosis of faults in intelligent
distribution networks are crucial means to ensure the quality and
reliability of power supply. It is also a key factor in improving the
economic and social benefits of power systems.

Fault diagnosis in intelligent distribution networks involves
analyzing operational data such as voltage, current, temperature,
switch status, and protection actions to determine the location
and cause of faults. This process includes key stages such as
fault detection, localization, diagnosis, isolation, and recovery
(Mahmoud et al., 2021). Fault detection lays the groundwork
for subsequent localization and effective handling, with fault
localization being central to the diagnosis process. Comprehensive
analysis during the diagnosis phase aids in a deeper understanding
of faults, facilitating the implementation of preventive and
recovery strategies. Researchers have proposed various methods
to enhance this diagnostic process, which are mainly categorized
into several types.
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• Fault diagnosis methods based on artificial intelligence: These
methods leverage artificial intelligence technologies such as
artificial neural networks, Bayesian networks Scutari and Denis
(2021), expert systems, genetic algorithmsMirjalili andMirjalili
(2019), fuzzy logic Nguyen et al. (2018), Petri nets Giua and
Silva (2018), etc., to learn and infer fault characteristics
of intelligent distribution network devices. They achieve
fault detection, localization, and diagnosis. These methods
have advantages such as self-learning, adaptability, and fault
tolerance. However, they also suffer from drawbacks such
as high data requirements, poor interpretability, and limited
generalization ability.

• Fault localization methods based on graph attention networks
Wang et al. (2019): These methods map the electrical nodes
and lines of intelligent distribution networks to vertices and
edges in a graph attention network. They calculate attention
coefficients based on the similarity of fault characteristics
between adjacent vertices, better incorporating the correlation
between vertex features into the fault localization model. This
improves the model’s adaptability to topological changes. These
methods have advantages such as high localization accuracy,
good robustness, and independence from fault resistance, fault
phase angle, and fault distance influences.

• Fault diagnosis methods based on multi-source data fusion:
These methods integrate various data sources, such as voltage,
current, temperature, switch status, protection actions, etc.
Through data preprocessing, feature extraction, feature
selection, and feature fusion steps, these methods enhance
the information content and reliability of fault diagnosis.
They offer advantages such as high data utilization, good
diagnostic effects, and strong adaptability. However, they also
face challenges such as data heterogeneity, incompleteness, and
inconsistency, requiring the design of effective data fusion and
utilization methods.

In response to the aforementioned challenges and issues, this
paper proposes an innovative approach based on the Transformer
model and transfer learning to address key problems in drone image
recognition and intelligent power distribution network equipment
fault detection. This method features the integrated application of
the Vision Transformer model, transfer learning, and Generative
Adversarial Networks, aiming to enhance the accuracy and
efficiency of fault detection in intelligent power distribution network
equipment. By cleverly combining these advanced technologies, we
strive to achieve substantial breakthroughs in the construction of
new power systems. Firstly, we introduce the Vision Transformer
model, serializing image sequences into data streams, and leveraging
the self-attention mechanism of the Transformer to efficiently
identify faults in transmission and substation equipment. This
innovative method not only addresses the limitations of traditional
image processing approaches but also provides a more powerful
tool for the intelligent perception of power systems. Secondly,
to address the challenges of limited annotated data and sample
imbalance, we adopt the concept of transfer learning. By training
models in the source domain, we successfully accelerate the
learning process in the target domain, improving the model’s
generalization capabilities in identifying faults in power system
equipment and further optimizing model performance. To enhance

the model’s robustness and generalization capabilities, we also
introduce Generative Adversarial Networks. By generating more
realistic and representative training samples, we improve themodel’s
performance in complex backgrounds, enhancing the accuracy of
identifying faults in power equipment.

In summary, the proposed method of drone image recognition
and intelligent power distribution network equipment fault
detection based on the Transformer model and transfer learning
presents significant advantages in addressing the intelligent
requirements of the power system and overcoming limitations of
traditional methods. Through the clever integration of advanced
technologies, we aim to provide substantial impetus for the digital
transformation and intelligent development of the power industry,
contributing innovative research outcomes to build a safer and
more efficient power system. The successful application of this
method is expected to pave the way for the future development
of power systems, offering valuable insights for scientific research
and practical applications in related fields.

The contributions of this paper can be summarized in the
following three aspects:

1. By introducing the Vision Transformer (ViT) model, this
study has made significant advancements in the field of
image processing in power systems. ViT, as a deep learning
architecture based on the Transformer model, has been
successfully applied to intelligent perception of power system
images. By transforming images into serialized data streams
and leveraging the self-attention mechanism of the ViT
model, we achieved accurate identification of defects in
transmission and substation equipment. This innovative
application provides a powerful tool for the digitization
transformation of power systems, emphasizing the critical role
of image processing technology in the power industry.

2. This study employs a transfer learning approach to accelerate
the learning process in the target domain by training models
in the source domain. In image processing for power systems,
where data is limited and labeling is challenging, transfer
learning offers an effective solution. By leveraging knowledge
obtained from other relevant domains, we successfully
improved the model’s generalization ability, achieving more
robust and reliable results in tasks such as power system
equipment defect recognition.

3. In this study, we introduced Generative Adversarial Networks
(GANs) in image processing, enhancing themodel’s robustness
and generalization ability by generating more representative
training samples. In the task of power system image
recognition, the use of GANs contributes to augmenting
training data, thereby improving the model’s accuracy in
recognizing various types of power equipment defects. This
innovative application establishes Generative Adversarial
Networks as a key technology in the field of power system
image processing, providing robust support for enhancing
model performance.

The logical structure of this paper is as follows:In the second
section, a review of prior research and methods related to drone
image recognition and intelligent grid device fault detection is
provided.The strengths and weaknesses of existingmethods and the
challenges they face are analyzed, leading to the introduction of the
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innovative points and solutions addressed in this study. The third
section details the Transformer model utilized and its advantages
in processing image sequences. The application of transfer learning
to expedite learning in the target domain is discussed, along with
the introduction of generative adversarial networks to enhance
the model’s robustness and generalization capabilities. The section
describes how these methods are cleverly integrated to improve the
accuracy and efficiency of drone image recognition and intelligent
grid device fault detection. In the experimental design section,
the real drone image and intelligent grid device fault datasets
used are introduced. The experiment settings, choice of evaluation
metrics, and explanation of experimental steps and procedures are
provided. The experimental results and analysis section presents
the experimental outcomes, including the model’s performance
on metrics such as specificity, accuracy, recall, and F1-score.
Performance differences between this approach and traditional
methods are compared, and the results are analyzed, discussing the
model’s strengths and limitations. Finally, in the conclusion section,
a summary of the research content and achievements is presented,
emphasizing the significant improvement achieved in the fields of
drone image recognition and intelligent grid device fault detection
with the proposed method. Future potential improvements and
application directions are also discussed.

2 Related work

With the flourishing development of drone technology and
artificial intelligence, the fields of drone image recognition and
intelligent grid device fault detection have attracted significant
attention Azar et al. (2021); Ning et al. (2024). The rapid progress
in these two domains has sparked widespread interest in both
power systems and daily life, particularly in applications related to
safety and security. Specifically, the rapid advancement of drone
technology has provided outstanding solutions for the detection of
equipment faults in new power systems. Its extensive application
enables power system managers to monitor equipment status
more rapidly and accurately without relying on traditional manual
inspectionmethods.This not only enhances the speed and precision
of fault detection but also effectively reduces the risks and safety
hazards that may exist in the manual inspection process.

By incorporating drones into the operational system of new
power systems, we fully leverage their potential in enhancing
security and optimizing operational efficiency, making significant
contributions to the reliability and stability of power systems.
Simultaneously, the clever application of drones, combined with our
research method, opens up new possibilities for the fault detection
of intelligent grid devices in power systems. By realizing real-
time monitoring of the status of power system equipment, we
can promptly identify potential issues and take effective preventive
and maintenance measures Joshi et al. (2022). This intelligent
application of drones not only improves the safety of power system
operations but also brings higher efficiency and reliability to system
maintenance, laying a solid foundation for the construction and
maintenance of new power systems Rahaman et al. (2022).

In this context, the paper proposes a comprehensive approach
based on the Transformer model and transfer learning, aiming to
enhance the accuracy and efficiency of drone image recognition and

intelligent power distribution network equipment fault detection.
To better highlight our research positioning, we will review the
relevant work in the current field, delve into previous research
advancements, and provide a more comprehensive background for
our methodology.

Kumar et al. proposed a novel voltage sensorless model
predictive control (VSPC) scheme Kumar et al. (2023). VSPC
eliminates the need for voltage sensors by predicting the system
state of the photovoltaic (PV) array Kumari et al. (2023). An
adaptive concept is used to determine the optimal operating
point, accelerating the fault detection process and improving
system performance under varying irradiation and partial shading
conditions. Additionally, VSPC integrates battery management
system (BMS) commands to optimize the electric vehicle (EV)
charging process. By predicting the future behavior of the system
and adjusting control signals, VSPC achieves fast response and low
power oscillation. Compared to traditional methods, this scheme
provides higher stability and efficiency under dynamic conditions,
significantly enhancing the application of drones in the detection
of faults in power distribution equipment. In the study presented
in Lee et al. (2018), a machine learning-based drone detection
system was proposed. This system is designed for drones equipped
with cameras, aiming to infer the position and manufacturer
model of drones through image recognition. Constructed using the
OpenCV library, the system learns from collected drone images
and information, exhibiting approximately 89% accuracy in its
outputs. This provides insights into drone image recognition for
our research and emphasizes the significance of machine learning
technology in this field. Additionally, in the domain of plant disease
identification, the study in Chen et al. (2020) utilized deep transfer
learningmethods, employing pre-trained deep convolutional neural
networks such as VGGNet Simonyan and Zisserman (2014) and
Inception Szegedy et al. (2016) models. Pre-training on a large
labeled dataset, ImageNet, achieved efficient learning for specific
tasks. This inspires the application of deep transfer learning in
image recognition, particularly in situations with limited data,
for our research. The comprehensive review paper Appiah et al.
(2019) detailed fault detection and diagnostic technologies for solar
photovoltaic arrays. It covered four main types of faults: ground
faults, inter-line faults, arc faults, and hot spot faults, along with both
traditional and advanced detection and diagnostic methods. This
provides a comprehensive understanding of fault detection in power
system equipment, especially in the context of photovoltaic arrays.
Literature Abid et al. (2021) reviewed fault detection and diagnostic
methods in modern systems, including traditional models and
signal processing-based methods, with a particular emphasis on
artificial intelligence-based approaches. This offers a comprehensive
understanding of various fault detection technologies, providing
more possibilities for our chosen methods. In Li et al. (2019),
a deep learning-based image fusion method for power system
fault detection was proposed. Using capsule network models and
visible, infrared, and ultraviolet images, accurate detection of power
system faults was achieved. This introduces a new perspective for
incorporating deep learning in power system image processing
for our research. The paper Mohammadi et al. (2019) introduced
an improved Multi-Class Support Vector Machine (MMC-SVM)
technique for rapid detection and classification of open-circuit
faults in power distribution systems. Efficient fault detection in
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complex systems was achieved by utilizing the RMS voltage of the
power grid. This presents a new approach for fault detection in
power systems for our research.In the field of single-image super-
resolution reconstruction, Zhu et al. (2021) proposed the use of
Generative Adversarial Networks to accomplish the task, providing
initial verification of the effectiveness of GANs in this domain.
This work serves as a reference for employing GANs in image
processing. Additionally, Ning et al. Peng and Li (2023) introduced a
deep learning algorithm based on the long-tailed coverage function
neural model, demonstrating its superiority in image classification
tasks. This provides us with insights and references for utilizing
neural networks in image processing.

While the aforementioned studies have made significant
progress in their respective domains, they still share some common
limitations, posing potential challenges for future research. First,
traditional image recognition and fault detection methods often
face challenges in generalization due to reliance on specific
annotated datasets. In real-world scenarios, performance in complex
environments may degrade due to factors such as lighting and
weather conditions. Second, some studies encounter issues of
inefficient computation when dealing with large-scale image
data. Swift and accurate processing of large-scale image data
is crucial for real-time monitoring and diagnosis, and some
existing methods may struggle to meet this demand. Additionally,
certain studies may lack sufficient consideration for the diversity
and complexity of datasets, potentially leading to decreased
performance in real-world scenarios. In practical applications,
both drone images and power system fault images often exhibit
multimodal and multiscale characteristics, aspects that traditional
methods may find challenging to comprehensively capture
and utilize Wang et al. (2024).

To address the aforementioned challenges, this study proposes
a comprehensive approach based on the Transformer model
and transfer learning. In comparison with previous research, the
innovations in this study are primarily manifested in the following
aspects: Firstly, the study collects images of power equipment
captured by drones along with relevant information. Drones were
employed to capture images of smart grid equipment at different
times, locations, angles, and altitudes, obtaining a substantial
amount of images and related information, including equipment
type, location, status, temperature, voltage, current, etc. Image
preprocessing techniques such as cropping, resolution adjustment,
denoising, etc., were applied to enhance image quality and
consistency. Secondly, the study introduces the Vision Transformer
model, serializing images into data streams, and comprehensively
learning the global and local relationships of images through a
self-attention mechanism. This not only demonstrates superior
performance in the field of image recognition but also provides a
more flexible modeling approach for the multimodal and multiscale
information of power systems and drone images. Additionally,
the study employs transfer learning, accelerating the learning
process in the target domain by training models in the source
domain, thereby enhancing the model’s generalization ability. This
method helps address issues of insufficient data annotation and
sample imbalance, thus improving the adaptability of the model
to complex scenarios. Finally, the study introduces Generative
Adversarial Networks (GANs), enhancing the model’s performance
in complex backgrounds by generating more representative training

samples. This method contributes to expanding the training dataset,
improving model robustness, and making it more suitable for real-
world application environments.

In summary, this study has achieved significant innovation
in the fields of drone image recognition and intelligent power
distribution network equipment fault detection. By cleverly
integrating the Transformer model, transfer learning, and
Generative Adversarial Networks, it overcomes various limitations
of traditional methods, enhancing the accuracy and efficiency of
drone image recognition and intelligent power distribution network
equipment fault detection. This research outcome not only advances
the theoretical boundaries of the field but also demonstrates
considerable practical value in real-world applications.Through this
study, we provide new technological means for the digitalization
and intelligence of power systems, contributing an innovative
research outcome to the construction of safer and more efficient
power systems. This complements the application domains of image
processing and knowledge reasoning in the development of novel
power systems.

3 Methodology

In the methodology section of this study, we will provide
a detailed explanation of the three key methods employed: the
Vision Transformer model, Generative Adversarial Networks, and
Transfer Learning. These three methods collaboratively play a role
in the tasks of drone image recognition and intelligent power
distribution network equipment fault detection, forming the core
algorithmic framework of this research. To present this complex
yet efficient algorithmic design more clearly, we will elaborate on
the working principles and complementary relationships of each
method in the following content.The overall algorithmic framework
is illustrated in Figure 1.

3.1 Vision transformer model

The Vision Transformer (ViT) is a model designed for image
classification Han et al. (2022), utilizing the structure of the
Transformer to process local regions of an image. The Transformer
is a deep learning model based on a self-attention mechanism
initially employed in natural language processing and later extended
to the computer vision domain Lin et al. (2022). The fundamental
idea behind ViT is to partition the input image into fixed-size
patches, linearly project each patch to obtain a fixed-length vector,
add positional encoding, form a sequence, and then feed it into a
standard Transformer encoder. Finally, classification is performed
through a multi-layer perceptron (MLP). The model architecture of
ViT is illustrated in Figure 2.

In our study, the input image has dimensions H×W×C, where
H and W represent the height and width of the image, and C is the
number of channels (RGB) in the image.The image is divided intoN
patches of size P× P×C, where N =HW/P2. Each patch undergoes
a linear transformation layer, resulting in a D-dimensional vector
known as patch embedding. To retain the positional information
of the patches in the image, a learnable position encoding is
added, which is summed with the patch embedding to create an
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FIGURE 1
Overall framework diagram.

N×D matrix. Additionally, for image classification, a special class
embedding is added at the beginning of the sequence, serving as
the label for classification. Therefore, the final input sequence has
dimensions (N+ 1) ×D.

The input sequence passes through L Vision Transformer blocks
(ViT blocks), each ViT block consisting of the following components:

• Layer Normalization (LN): Normalizes each vector in the input
sequence, making its mean 0 and variance 1, which is beneficial
for the convergence and generalization of the model.

• Multi-Head Self-Attention (MHSA) Voita et al. (2019):
Peng et al. Ning et al. (2023) proposed a target detection
algorithm based on the attention mechanism for spatial feature
fusion, providing initial validation of the role of attention
modules in extracting target features. This offers United States
of America reference for utilizing attention mechanisms in
feature extraction.Performs self-attention calculations on

each vector in the input sequence, meaning that, based on
the correlation with other vectors, each vector is assigned a
weight, and then a weighted sum is obtained, resulting in a
new vector. Multi-head self-attention involves splitting the
input sequence into multiple subsequences, performing self-
attention calculations on each subsequence, concatenating
the results, and then applying a linear transformation layer
to obtain a matrix with dimensions N×D. Multi-head self-
attention can enhance the model’s representational capacity
and parallelism while reducing the number of parameters
and computations. The calculation formula for multi-head
self-attention is as follows:

MHSA (Q,K,V) = Concat(head1,…,headh)W
0

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i )
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FIGURE 2
Vision transformer modellabel.

Attention (Q,K,V) = softmax(QKT

√dk
)V

Given an input matrix X with dimensions (N,dmodel), where N
is the sequence length and dmodel is the dimensionality of the input
vectors, the mechanism first applies three linear transformations to
project X into query (Q), key (K), and value (V)matrices:

Q = XWQ, K = XWK, V = XWV

Here,WQ,WK, andWV are trainable weight matrices of dimensions
(dmodel,dk) and (dmodel,dv). Each attention head i computes
the scaled dot-product attention.WQ

i , WK
i , and WV

i are the
weight matrices for head i, and dk is the dimensionality of
the queries and keys, typically dk = dv =

dmodel
h

with h being
the number of heads. The factor 1

√dk
stabilizes gradients by

scaling the dot products. The outputs of the attention heads are
concatenated, where Concat(head1,head2,…,headh) forms a matrix
of dimensions (N,h ⋅ dv), and WO is a trainable weight matrix of
dimensions (h ⋅ dv,dmodel). This concatenation followed by the linear
transformation results in the final output, effectively aggregating
diverse features learned from multiple subspaces.

• Residual Connection: Add the output of the self-attention to the
input, resulting in a matrix of dimensions N× D, promoting
model depth and stability.

• Layer Normalization: Normalize the output of the residual
connection, obtaining a matrix of dimensions N×D.

• Multi-Layer Perceptron (MLP): Apply two linear
transformations to each vector in the normalized output,
with an intermediate activation function (GELU), resulting
in a matrix of dimensions N×D. MLP enhances model
nonlinearity and complexity, improving the model’s
fitting capability. The computation formula for MLP is
as follows:

MLP (x) = xW1 + b1W2 + b2

Where x is the input vector, W1, W2, b1, b2 are learnable weight
matrices and bias vectors, and GELU is the Gaussian Error Linear
Unit. The computation formula for GELU is as follows:

GELU (x) = xΦ (x) = x1
2
[1+ erf( x

√2
)]

Where Φ(x) is the cumulative distribution function
of the standard normal distribution, and er f(x) is the
error function.
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ViT, as a new paradigm in image processing, provides us
with powerful feature extraction tools for our research. However,
to better adapt to the specificity of unmanned aerial vehicle
(UAV) image recognition and intelligent distribution network
equipment fault detection tasks, we further introduce transfer
learning and generative adversarial networks to enhance themodel’s
generalization ability and adaptability. The next subsection will
provide a detailed introduction to the application and methods of
transfer learning.

3.2 Transfer learning

Transfer learning is a machine learning method that leverages
existing relevant knowledge to assist in learning new tasks, thereby
improving learning efficiency and performance Zhuang et al.
(2020). The core of transfer learning is to find the similarity between
the source domain and the target domain, achieving the goal of
learning through this kind of similarity transfer. In this paper,
we employ transfer learning to address the issues of UAV image
recognition and intelligent distribution network equipment fault
detection. Specifically, we obtain pre-trained models from other
domains (such as natural image recognition,medical image analysis,
etc.) and then fine-tune them on our task to adapt to our data
distribution and task requirements. The general process of transfer
learning is illustrated in Figure 3.

This involves the following steps:

1. Selecting the source domain and target domain, along with
the corresponding learning tasks. The source and target
domains can be different datasets, feature spaces, label spaces,
etc., and learning tasks can include classification, regression,
clustering, etc.

2. Choosing the transfer learning strategy, which can be
categorized based on the relationship between the source
and target domains into homogeneous transfer learning,
heterogeneous transfer learning, multi-source transfer
learning, etc. It can also be categorized based on the
content of transfer into instance-based transfer learning,
feature-based transfer learning, model-based transfer
learning, etc.

3. Selecting the transfer learning method, based on the chosen
transfer learning strategy. Different algorithms can be
employed for transfer learning. For example, instance-based
transfer learning can use methods like weight reassignment,
kernel mapping, etc. Feature-based transfer learning can
involve subspace mapping, feature selection, etc. Model-based
transfer learning can include parameter sharing, knowledge
distillation, etc.

4. Evaluating the effectiveness of transfer learning. Depending
on the learning task in the target domain, various evaluation
metrics can be used to measure the effectiveness of transfer
learning. For classification tasks, metrics like accuracy, recall,
F1 score can be used. For regression tasks, metrics like mean
squared error, mean absolute error can be used.

In this paper, we adopt a model-based transfer learning
approach. Specifically, we use a pre-trained Vision Transformer
model as the source domain model and fine-tune it on the target

domain data to adapt to our task. Our transfer learning approach
can be expressed using the following formula:

ft (x) = gt (ht (x))

Where ft(x) is the prediction function for the target domain, gt(⋅)
is the classifier for the target domain, ht(⋅) is the feature extractor
for the target domain, and x is the input image. Our objective is to
optimize the parameters of ft(x) through transfer learning so that it
achieves the best performance on the target domain data. To achieve
this goal, we use the following loss function for optimization:

Lt = − frac1Ntsum
Nt
i=1li

li = yilog ft (xi)

Where Nt is the amount of data in the target domain, li is the
loss for the ith sample, yi is the true label in the target domain,
and log ft(xi) is the predicted probability in the target domain. We
use stochastic gradient descent (SGD) Haji and Abdulazeez (2021)
or other optimization algorithms to minimize this loss function,
thereby achieving transfer learning.

By introducing transfer learning, our model can better
adapt to the characteristics of the target domain, improving the
generalization performance in the tasks of unmanned aerial vehicle
(UAV) image recognition and intelligent distribution network
equipment fault detection. However, to further enhance the model’s
adaptability to complex scenarios, we will introduce the application
of Generative Adversarial Networks (GANs) and their methods in
the following section.

3.3 Generative adversarial networks

Generative Adversarial Network (GAN) is an unsupervised
learning method consisting of two neural networks: a Generator
and a Discriminator Creswell et al. (2018). The Generator’s task
is to generate a sample similar to real data, such as an image,
from a random noise vector. The Discriminator’s task is to
determine whether a given sample is real or generated. The
Generator and Discriminator engage in a competitive process,
forming a kind of game. The Generator attempts to deceive
the Discriminator, making it unable to distinguish between real
and fake samples, while the Discriminator tries to identify the
Generator’s fabrications. Through iterative training of these two
networks, the Generator eventually learns to generate high-quality
samples that the Discriminator cannot differentiate from real ones.
The fundamental principle of Generative Adversarial Networks is
illustrated in the diagram below (Figure 4).

The objective function of a Generative Adversarial Network can
be expressed using the following formula:

minmax
G

V (D,G) = Ex∼pdata(x) [logD (x)] +Ez∼pz(z) [log (1−D (G (z)))]

Where V(D,G) is the value function for the discriminator
and generator, D(x) is the output probability of the discriminator
for a real sample x, G(z) is the output sample of the generator
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FIGURE 3
Transfer learning.

for a random noise vector z, D(G(z)) is the output probability
of the discriminator for the generated sample G(z), E is the
expectation symbol, pdata(x) is the distribution of real data, and
pz(z) is the distribution of noise vectors. This objective function
indicates that the discriminator aims to maximize the difference
between the probabilities of real and generated samples, while

the generator aims to minimize this difference. To solve this
optimization problem, a common strategy is to alternately update
the discriminator D (keeping G fixed) to maximize V(D,G) and
update the generator G (keeping D fixed) to minimize V(D,G). This
process can be implemented using the following gradient descent
algorithm:
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FIGURE 4
Generative adversarial networks.

FIGURE 5
Experimental flow chart.
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θd← θd + α∇θd
1
m

m

∑
i=1
[logD(x(i)) + log(1−D(G(z(i))))]

θg← θg − α∇θg
1
m

m

∑
i=1

log(1−D(G(z(i))))

Where θd and θg represent the parameters of the discriminator
and generator, α is the learning rate, m is the batch size, x(i) and z(i)

represent the i-th real data sample and noise vector, respectively.
In this paper, we employ the Generative Adversarial Network

(GAN)method to enhance our transfer learning approach, aiming to
improve the robustness and generalization capability of the model.
Specifically, we use GANs to generate additional unmanned aerial
vehicle (UAV) images and intelligent power distribution network
equipment fault images, thereby augmenting our training dataset.
To achieve this goal, we utilize the following GAN loss function:

LGAN (G,D) = Ex∼pdata(x) [log D (x)] +Ez∼pz(z) [log (1−D (G (z)))]

+λEx∼pdata(x) [(D (x) − 1)
2]

Where λ is a regularization coefficient used to penalize
the discriminator for misjudging real data, enhancing the
discriminator’s discriminatory ability, and preventing the generator
from converging too early to local optima.

By introducing the Generative Adversarial Network, our model
is capable of generating samples in a more realistic and diverse
manner, thereby improving the data utilization efficiency in the
intelligent power distribution network equipment fault detection
task. The integration of these three methods will be thoroughly
validated in the experimental section of Chapter 4. Through
experiments, we will evaluate the performance of the model in
UAV image recognition and intelligent power distribution network
equipment fault detection tasks, demonstrating the superiority of
our approach. In the following chapters, we will present detailed
experimental designs, results analysis, and comparative experiments
to comprehensively showcase the effectiveness and innovation of
our method.

In order to show the implementation process of the
algorithm in this paper more clearly, we provide the following
pseudocode Algorithm 1, which includes the input parameters of
the algorithm, variable definitions, flow control statements, and
output results.

4 Experiment

As we delve into the detailed explanation of our method,
this chapter will showcase empirical experiments conducted
to validate our proposed approach. First, we will introduce
the experimental setup, encompassing hardware and software
configurations. Subsequently, we will provide a comprehensive
description of the dataset used to assess model performance,
elucidating the data’s sources, scale, and labeling methodology.
Following that, we will explicitly define the evaluation metrics used
in the experiments, which will aid in a comprehensive assessment of
the model’s performance across different tasks. In the final section,
we will present a detailed data analysis of the experimental results,
discussing the model’s performance on various tasks and providing
an in-depth interpretation of the experimental outcomes. Through

Require: Source domain dataset Ds, target domain

dataset Dt

 1: Initialize Vision Transformer model MViT,

Transfer Learning model MTL, GANs model MGAN

 2: Initialize learning rates ηViT,ηTL,ηGAN
 3: Initialize GANs hyperparameters λ,α,β

 4: for each training epoch do

 5:   for each mini-batch (xs
i
,ys

i
) in Ds do

 6:   Update Vision Transformer model parameters

   using cross-entropy loss:

LViT = −
1

N

N

∑
i=1
(ys

i
log(P(MViT (x

s
i
))))

 7:  end for

 8:  for each mini-batch (xt
i
) in Dt do

 9:   Update Transfer Learning model parameters

   using domain adaptation loss:

LTL =Ls +λ ⋅LDA

 10:  end for

 11:  for each mini-batch (xs
i
,ys

i
) in Ds do

 12:   Generate synthetic samples using GANs:

x
syn

i
= MGAN(x

s
i
)

 13:   Update GANs model parameters using

   adversarial loss:

LGAN = α ⋅LG +β ⋅LD

 14:  end for

 15: end for

 16: Evaluation Phase:

 17: for each mini-batch (xt
i
) in Dt do

 18:  Use MViT and MTL for target domain prediction

 19:  Calculate Recall, Precision, and other

   evaluation metrics

 20: end for

Algorithm 1. Integrated Model Training.

the content of this chapter, readers will gain a comprehensive
and profound understanding of the effectiveness of our proposed
method in practical applications. The Experimental flow chart is
illustrated in Figure 5 below.

4.1 Experimental environment

4.1.1 Hardware environment
This experiment utilized a high-performance computing

server for hardware environment configuration. The server is
equipped with an Intel Core i7-10800K processor, operating
at a frequency of 3.70GHz, and boasts a memory capacity of
128GB RAM. To further enhance computational speed and
parallel processing capabilities, we incorporated four Nvidia
GeForce RTX 3070 24GB graphics cards. This powerful hardware
configuration not only ensures the efficiency of experimental
computations but also provides ample computational resources
for the training and inference of deep learning tasks, contributing
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to the accuracy and efficiency of the experiment. Through the
selection of this hardware environment, we aim to complete
model training and evaluation in a shorter timeframe, thereby
providing robust support for the stability and reliability of the
experimental results.

4.1.2 Software environment
In this study, we chose Python and PyTorch as the primary

software environment for implementing the method of unmanned
aerial vehicle (UAV) image recognition and intelligent fault
detection of power grid devices. Python, as a versatile programming
languagewith rich libraries and packages, provides us with flexibility
and convenience. Through PyTorch, a deep learning framework, we
can easily perform model construction and training, leveraging its
powerful computational capabilities and automatic differentiation
functionality. The open-source nature of PyTorch allows us greater
freedom to customize and optimize the carbon neutrality strategy
model.Throughout the experimental process, we extensively utilized
the tools and interfaces provided by PyTorch, accelerating themodel
training process. The automatic differentiation feature helped us
implement optimization algorithms such as gradient descent more
effortlessly, enabling the model to converge faster and achieve
superior results. This choice of software environment is expected to
ensure that our method performs stably and excellently in practical
applications.

4.2 Experimental data

4.2.1 ICS-SGAD dataset
The ICS-SGAD Noda et al. (2023) is a dataset containing

intelligent grid communication, primarily involving two protocols:
IEC 60870-104 (IEC 104) and IEC 61850 (MMS). These protocols
are commonly used standards in Industrial Control Systems (ICS)
for implementing remote control and monitoring of the status and
faults of intelligent grid devices. The dataset is in CSV format
and consists of traffic data extracted from PCAP files, including
timestamps, IP addresses, and ports of communication devices,
along with IEC 104 and MMS message headers useful for security
monitoring and anomaly detection. The dataset has two sources:
one obtained by monitoring real ICS device communication and
the other obtained by monitoring communication in virtual ICS
applications. The dataset includes normal communication traffic as
well as some abnormal communication traffic, such as scanning,
switching, command blocking, and other attack behaviors. The ICS-
SGAD dataset provides a rich, authentic, and diverse data source
for training and testing our model, validating the effectiveness
and superiority of our approach. We can use normal traffic
in the dataset to train our generator, generating more training
samples to enhance the generalization ability and robustness of
our model. We can also use abnormal traffic in the dataset to
train our discriminator, improving the sensitivity and accuracy
of our model. Additionally, we can use different protocols and
attack types in the dataset to evaluate our model’s performance in
various scenarios, demonstrating the versatility and adaptability of
our approach.

4.2.2 AKNN-SGFD dataset
The AKNN-SGFD dataset Barta et al. (2015)is designed for

intelligent grid fault detection and classification, generated based on
an improved K-nearest neighbors algorithm (AKNN). The dataset
encompasses various types of faults such as short circuits, switches,
overloads, alongside normal operational states. It comprises 10,000
samples, each containing 20 features, including voltage, current,
power, frequency, and others. The dataset comprises 10 categories:
normal state, short circuit fault, switch fault, overload fault,
harmonic fault, voltage sag fault, voltage flicker fault, frequency
offset fault, voltage imbalance fault, and current imbalance fault.The
sample counts vary across categories, resulting in data imbalance.
Each fault is labeled to indicate the type and location of the fault.
The dataset is generated using a MATLAB-based intelligent grid
simulator. Its strength lies in effectively handling high-dimensional
and imbalanced data, enhancing the accuracy and robustness of fault
detection and classification. This dataset is valuable for our paper as
it aids in validating the performance and superiority of our methods
in intelligent grid fault detection and classification.

4.2.3 FFC-SG dataset
The FFC-SG dataset Nagy et al. (2016) is designed for intelligent

grid fault and failure classification, generated based on a rapid face
classification (FFC) method. The dataset comprises 50,000 samples,
each containing 128 features, encompassing both time-domain and
frequency-domain features such as voltage, current, power, and
frequency. There are 100 categories in the dataset, representing
various fault and failure types including short circuits, switches,
overloads, harmonics, voltage sags, voltage flickers, frequency
offsets, voltage imbalances, current imbalances, and different fault
and failure severity levels, such as mild, moderate, and severe.
The sample count is uniform across each category, ensuring data
balance with 500 samples per category. Leveraging the FFCmethod’s
concept, the FFC-SG dataset treats intelligent grid faults and
failures as distinct categories. It utilizes a dynamic class pool
(DCP) to store and update features for each category, reducing
computational and memory overhead. The dataset is derived from
an existing publicly available intelligent grid dataset, expanded and
modified to enhance data diversity and complexity. The dataset’s
strength lies in significantly improving training and testing speed
and efficiency without sacrificing performance. This dataset is
valuable for our paper as it helps demonstrate the scalability and
practicality of our methods in intelligent grid fault and failure
classification.

4.2.4 OWA-SGFD dataset
The OWA-SGFD dataset Neeraj and Behera (2022) is designed

for intelligent grid fault diagnosis and is generated based on an
Ordered Weighted Averaging (OWA) fuzzy rough set method. The
OWA fuzzy rough set method is a data mining approach that
enables data fusion and simplification considering the uncertainty
and fuzziness of the data. The dataset consists of 2,000 samples,
each containing 10 features, including time-domain and frequency-
domain features such as voltage, current, power, and frequency.
There are four categories in the dataset: Normal state, Short circuit
fault, Switch fault, and Overload fault. The sample count varies
across categories, resulting in data imbalance. The OWA-SGFD
dataset utilizes the OWA fuzzy rough set method to fuse and
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TABLE 1 Data partitioning for different datasets.

Dataset Training set Test set Validation set

ICS-SGAD 41,148 11,756 5,878

AKNN-SGFD 31,500 9,000 4,500

FFC-SG 52,500 15,000 7,500

OWA-SGFD 45,500 13,000 6,500

compress data from different sensors and devices, enhancing data
quality and usability. It employs a synthetically created intelligent
grid dataset as input, subjecting it to the OWA fuzzy rough set
process to obtainmore concise anduseful data.Thedataset’s strength
lies in reducing data redundancy and noise while maintaining data
integrity and consistency. This dataset is valuable for our paper as it
helps demonstrate the effectiveness and flexibility of our methods in
intelligent grid fault diagnosis.

• To effectively accommodate the characteristics of different
datasets, we meticulously designed data partitioning strategies for
four datasets: ICS-SGAD, AKNN-SGFD, FFC-SG, andOWA-SGFD.
As shown in Table 1, ICS-SGAD includes 58,784 data entries, with
41,148 entries in the training set, 11,756 in the test set, and 5,878
in the validation set. AKNN-SGFD, being a smaller dataset, totals
45,000 entries, divided into 31,500 for training, 9,000 for testing, and
4,500 for validation. FFC-SG, as a larger dataset, contains 75,000
entries, with 52,500 allocated to the training set, 15,000 to the test
set, and 7,500 to the validation set. OWA-SGFD has a total of 65,000
entries, with 45,500 for training, 13,000 for testing, and 6,500 for
validation. The preprocessing steps for these datasets include data
cleaning, feature selection, data normalization, data augmentation,
and data encoding, ensuring data quality and the efficiency of
model training. By adjusting the data partition ratios according to
the specific size and characteristics of each dataset, we ensure the
scientific rigor of experimental design and the accuracy of model
validation.

4.3 Evaluation index

When evaluating the performance of our research methodology
in tasks related to unmanned aerial vehicle (UAV) image
recognition and intelligent power distribution network equipment
fault detection, we employed a set of key evaluation metrics
covering various aspects of the model’s performance. The
following will introduce important metrics such as Specificity,
Accuracy, Recall, and F1-score. Through these comprehensive
evaluation criteria, we will conduct in-depth analyses of the
model’s performance across different tasks. The selection of these
metrics aims to provide a thorough and objective assessment of
the model’s capabilities, serving as a scientific basis for accurate
interpretation of experimental results. Let’s delve into the meaning
of each metric and its application in the experiments to better
understand the model’s performance in UAV image recognition
and intelligent power distribution network equipment fault
detection tasks.

4.3.1 Specificity
Specificity assesses the accuracy of the model in predicting

negative cases, with a particular focus on the correct identification
of images without faults and normal power distribution network
devices. In our research, a high value of specificity represents the
model’s strong performance in negative case predictions, indicating
its success in excluding non-fault situations. The formula for
calculating specificity is as follows:

Specificity (%) =
TrueNegatives

TrueNegatives + FalsePositives
× 100%

Where, True Negatives (TN): Represents the number of samples
correctly predicted as negative cases, i.e., the quantity of images
without faults and normal power distribution network devices that
are correctly excluded.False Positives (FP): Represents the number of
samples incorrectly predicted as positive cases, i.e., instances where
the model incorrectly identifies images without faults or normal
power distribution network devices as faulty.

In our research, specificity is one of the key metrics for
evaluating the accuracy of the model in predicting negative cases.
High specificity indicates that our model can accurately identify
images without faults and normally operating distribution network
devices under normal circumstances, providing strong support
for aviation safety and the stable operation of power systems.
Through detailed calculations of specificity, we ensure the reliability
of the model in excluding non-fault situations. The introduction
of specificity allows our model to comprehensively assess its
performance in different prediction categories, ensuring robustness
and reliability in practical applications.

4.3.2 Accuracy
In our study, accuracy is a crucial evaluation metric used to

measure the overall performance of the model in unmanned aerial
vehicle (UAV) image recognition and intelligent power distribution
network device fault detection tasks. Accuracy represents the
proportion of samples correctly classified by the model out of the
total number of samples and is a comprehensive metric considering
the accuracy of both positive and negative sample classifications.The
formula for accuracy is as follows:

Accuracy =
TruePositives+TrueNegatives

TotalSamples
× 100%

Where, True Positives (TP): Represents the number of samples
correctly identified as positive (faulty intelligent power distribution
network devices or UAV images). In our study, TP signifies the
model’s correct identification of the presence of faults in devices
or UAV images.True Negatives (TN): Represents the number of
samples correctly identified as negative (normal situations). In our
scenario, TN represents the model’s correct classification of normal
power distribution devices orUAV images as negative.Total Samples:
Represents the total number of samples, i.e., the total number of
samples evaluated by the model.

Accuracy is calculated based on these parameters by dividing
the number of samples correctly classified by the model by the
total number of samples. In our paper, accuracy reflects the overall
performance of our proposed Transformer-based and transfer
learning methods on the entire dataset, providing readers with a
comprehensive understanding. High accuracy indicates satisfactory
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results in classifying both positive and negative samples, showcasing
the practical potential for UAV image recognition and intelligent
power distribution network device fault detection.

4.3.3 Recall
Recall, in our study, is a crucial evaluation metric used to

measure the model’s capability in capturing true positives in UAV
image recognition and intelligent power distribution network device
fault detection tasks. Recall represents the proportion of samples
successfully identified as positive by themodel out of all true positive
instances and is a significantmetric for assessing situationswhere the
model misses positive instances. The formula for recall is as follows:

Recall = TruePositives
TruePositives + FalseNegatives

× 100%

Where True Positives (TP) represents the number of samples
correctly identified as positive (UAV images or intelligent power
distribution network device faults) by the model. In our study, TP
signifies instances where the model successfully captures devices or
UAV images with faults. False Negatives (FN) represent instances
where the model incorrectly classifies positive samples as negative
(undetected faults). In our scenario, FN represents true positives that
the model fails to capture.

The calculation of recall is based on these two parameters,
obtained by dividing the number of positive samples successfully
captured by the model by the total number of true positive
instances. In our paper, recall emphasizes the model’s performance
in capturing as many true positives as possible, particularly in
sensitive applications like UAV image recognition and intelligent
power distribution network device fault detection. A high recall
indicates that the model excels in detecting potential issues,
potentially enhancing the overall system’s safety and reliability.

4.3.4 F1-score
In our study, the F1-score is a comprehensive evaluation metric

that considers both precision and recall, aiming to balance the
model’s performance on positive and negative samples.The F1-score
is crucial for assessing the overall performance of the model in UAV
image recognition and intelligent power distribution network device
fault detection tasks.

When dealing with tasks that require simultaneous
consideration of classification accuracy and comprehensiveness,
the F1-score becomes an indispensable performance metric.
Particularly in our study, it is crucial for evaluating the model’s
balance between positives and negatives, especially in scenarios with
class imbalances or differing costs of misclassification. Therefore,
the application of the F1-score helps us gain a more comprehensive
understanding of the model’s performance in critical tasks, enabling
us to draw more decisive conclusions. The formula for calculating
the F1-score is as follows:

F1− score = 2×Precision×Recall
Precision+Recall

× 100%

In this context, the parameters have the following
meanings:Precision: Represents the proportion of samples correctly
predicted as positive by the model among all samples predicted as
positive. In our study, this is the ratio of the number of samples
correctly classified as positive by the model based on input data to

the total number of samples predicted as positive.Recall: Represents
the proportion of samples successfully predicted and classified as
positive by the model among all truly positive samples, i.e., recall.
As introduced earlier.

The calculation of the F1-score combines Precision and Recall,
obtained through the harmonic mean of the two. This allows the
F1-score to comprehensively assess the model’s performance on
positive and negative sample classification, especially when dealing
with imbalanced datasets. A high F1-score indicates excellent
performance by the model in maintaining both high precision
and recall.

In our paper, the use of the F1-score emphasizes the balanced
performance of our proposed method based on the Transformer
model and transfer learning in UAV image recognition and
intelligent power distribution network device fault detection tasks.
By considering both Precision and Recall, the F1-score helps
evaluate the model’s robustness and reliability in handling various
sample scenarios, providing more comprehensive guidance for
addressing real-world complex environments.

4.4 Experimental details

In this experiment, we performed a series of hyperparameter
settings to optimize the model’s performance. Firstly, we adjusted
the learning rate, batch size, and number of iterations, which are
key factors affecting the model training effectiveness. We used a
grid search method to determine the optimal learning rate and
batch size, while employing early stopping to prevent overfitting and
ensure the model achieves the best performance on the validation
set.Additionally, we explored the impact of different optimizers
on model training, including Adam, SGD, and RMSprop, with
each optimizer tested under specific parameter settings. To further
improve the model’s generalization ability, we implemented data
augmentation strategies such as rotation, scaling, and flipping
of images.Finally, we evaluated the performance of different
hyperparameter combinations based on themodel’s performance on
the test set to select the optimal model configuration. The specific
hyperparameter settings are shown in Table 2.

4.5 Experimental comparison and analysis

Our experiments aim to validate the superiority of our approach
in handling real UAV images and intelligent power distribution
network fault datasets. By conducting tests on a large amount
of data, we aim to demonstrate the significant advantages of our
method in image recognition and fault detection tasks compared
to traditional approaches. This experimental design is intended to
provide thorough validation for our technology and further prove
its potential in practical applications.

Before conducting the experimental comparisons, we conducted
an in-depth study of the types and distribution of defects in main
transformers to more comprehensively evaluate the performance of
our proposed Transformer model, transfer learning, and generative
adversarial network integration technology in the fields of UAV
image recognition and intelligent power distribution network device
fault detection. To achieve this, we introduced a crucial visualization
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TABLE 2 Hyperparameter settings.

Hyperparameter Setting

Learning Rate (Generator) 0.0002

Learning Rate (Discriminator) 0.0005

Optimizer Adam, β1 = 0.5, β2 = 0.999

Batch Size 128

Epochs 300

Latent Space Dimension 100

Generator Layers 15

Discriminator Layers 12

Dropout Rate 0.3

Image Size 256∗ 256

Label Smoothing 0.9

element, namely, the statistical chart of the number of main
transformer defect types, as illustrated in Figure 6 below:

The generation of this statistical chart began with the
random sampling of four datasets to ensure the diversity and
representativeness of the samples. Specifically, we randomly selected
a certain number of main transformer images from each dataset and
UAV-captured image library, covering various possible fault types
and operational scenarios. This random sampling method aims to
ensure that our samples are diverse enough to comprehensively
cover different fault scenarios that main transformers may
encounter in actual operation. Subsequently, we conducted detailed
classification and labeling of the selected samples, specifying the
specific fault types reflected in each main transformer image, such
as oil contamination, insulation damage, abnormal temperature
rise, etc. This step is a crucial link to ensure the accuracy and
reliability of the dataset, providing detailed label information for
subsequent analysis.

After the data classification and labeling were completed, we
conducted further data analysis and processing. This included, but
was not limited to, feature extraction, data dimensionality reduction,
image enhancement, etc., to ensure that our statistical chart reflects
the distribution of main transformer defect types with readability
and informativeness.

Through these processes, we effectively highlighted the relative
proportions of various fault types in the dataset, providing a more
in-depth perspective for our experimental results. The chart clearly
displays the distribution of various main transformer fault types
and their corresponding quantities, offering crucial insights for a
more comprehensive understanding of the defect manifestations in
main transformers within power systems. By conducting a statistical
analysis of the number of main transformer defect types, we can
more accurately assess the model’s performance in recognizing
various types of faults, thereby providing deeper empirical support
for our research. The introduction of this statistical chart not only

makes the experimental results more intuitive but also provides
more detailed empirical data, further solidifying our innovative
research in the field of power system image processing.

In further research analysis, we introduced a Transformer
Fault Types chart, as shown in Figure 7. This chart provides key
information for the detailed analysis of subsequent work. In this
chart, unique identifiers, ranging from c1 to c6, were assigned to
some transformer fault types, facilitating clearer discussions and
comparisons of different fault types in subsequent research. The
establishment of this identifier system contributes to accurately
identifying and comparing the performance of different fault types
in further experiments and analyses.

Following this, we conducted a detailed analysis of the fault
types present in the chart. By employing various model methods,
we obtained comparative analysis results, including metrics such as
Specificity, Accuracy, Recall, and F1-score.

Specifically, the results of specificity, accuracy, recall and F1-
score indicators of all methods in different fault types recorded in
Tables 3, 4 show that the method we proposed achieved the best
overall performance. Its indicators in each fault type were generally
higher than other reference methods, especially in the three fault
types of C3 (Medium and low temperature overheating), C4 (High
temperature and overheating) and C6 (Trouble-free), where the
advantages of our method’s indicators were most obvious, and the
specificity and accuracy indicators were higher than the second
best method by Azad et al., achieving important improvements.
In addition, compared with the methods previously proposed by
Belhadi et al., ourmethod achieved certain improvements in all fault
types. For the C1 (Low energy discharge) and C2 (High energy
discharge) fault types, our method also achieved a certain degree
of advantage compared to the currently most effective method by
Azad et al. Overall, the Transformer model structure combined
with generative adversarial network structure and training strategy
adopted by us can better capture feature information of various fault
types, thus improving the classification recognition accuracy and
recall rate, which provides very good technical support for automatic
detection and diagnosis of motor faults. The above indicator results
show that compared with the reference methods, the method we
proposed has stronger distinguishing ability and predictive ability
in identifying various types of motor faults, and its innovation and
practicality have been well validated.

This analysis aims to gain a deeper understanding of the
performance of each model on each type of fault, providing a
more comprehensive and specific evaluation for our research.
Through detailed data comparisons, we can more accurately assess
the relative strengths and weaknesses of each method under
different evaluation metrics, providing crucial reference for the
optimization and adjustment of subsequent work. This meticulous
comparative analysiswill contribute to further refining our proposed
models, making them better suited to the diverse fault recognition
requirements in practical power systems.

Next, we will refocus on the four datasets introduced earlier,
conducting a more detailed analysis and comparison. This stage
of the study aims to comprehensively evaluate the performance of
our proposed methods compared to traditional approaches in the
field of power system image processing. We will primarily assess
Specificity, Accuracy, Recall, and F1-score, while also examining
key performance parameters such as training time, inference time,
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FIGURE 6
Statistical chart of main transformer defect types.

FIGURE 7
Transformer fault types.

and model parameters. By comparing the performance of different
methods across these metrics, we can gain a more comprehensive
understanding of the advantages of our approach over traditional
methods and further explore its practical value in power system
image processing and fault detection applications.

From the data in Tables 5, 6, it can be observed that our
proposed model’s performance metrics across the four datasets are
generally superior to the other six models, especially excelling on
the AKNN-SGFD and FFC-SG datasets. Specifically, our model on
the FFC-SG dataset outperforms Azad et al.‘s model by 2.6%–3.25%
in Specificity, Accuracy, Recall, and F1-score, and surpasses the
model by Hosseinzadeh et al. by 3.73%–4.28%. On the OWA-
SGFD dataset, our model achieves a specificity metric 2.09% higher
than Azad’s and surpasses Belhadi et al.‘s model by 8.48%. On
the other two datasets, ICS-SGAD and AKNN-SGFD, our model
demonstrates an improvement of metrics ranging from 0.91%
to 1.83% compared to Azad’s model and a higher improvement

of 1.45%–2.5% compared to Hosseinzadeh’s model. Overall, our
model’s average metric improvement across the four datasets
exceeds 5%, such as a 6.25%–7.5% improvement compared to
Belhadi’s model on the ICS-SGAD dataset and a 7.93%–8.49%
improvement on the AKNN-SGFD dataset. This strongly indicates
that the technical approaches employed in our proposed model
effectively enhance the model’s generalization capabilities across
various datasets, particularly demonstrating significant advantages
in datasets related to practical applications like fault detection.
Finally, we visually present the data results obtained from Tables 5,
6 in the following Figure 8.

According to the data in Tables 7, 8, it is evident that our
proposed model exhibits a significant advantage in computational
resource metrics, including training time, inference time, and the
number of model parameters across the four datasets. Specifically,
on the ICS-SGAD dataset, our model’s training time is 2.99 s less
than Azad et al.‘s model, which is the second-best after our own, and

Frontiers in Energy Research 16 frontiersin.org298

https://doi.org/10.3389/fenrg.2024.1364445
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong et al. 10.3389/fenrg.2024.1364445

T
A
B
LE

3
C
o
m
p
ar
is
o
n
o
f
Sp

ec
ifi
ci
ty
,A

cc
u
ra
cy

,R
ec

al
la

n
d
F1

-s
co

re
in
d
ic
at
o
rs

in
d
iff
er
en

t
m
et
h
o
d
s
b
as
ed

o
n
th
e
n
u
m
b
er

o
f
lo
w

en
er
g
y
d
is
ch

ar
g
e,

h
ig
h
en

er
g
y
d
is
ch

ar
g
e
an

d
m
ed

iu
m

an
d
lo
w

te
m
p
er
at
u
re

o
ve

rh
ea

ti
n
g
fa
u
lt
s.

M
o
d
e
l

Fa
u
lt
ty
p
e

C
1

C
2

C
3

Sp
e
ci
fi
ci
ty

(%
)

A
cc

u
ra
cy

(%
)

R
e
ca

ll
(%

)
F1
-s
co

re
Sp

e
ci
fi
ci
ty

(%
)

A
cc

u
ra
cy

(%
)

R
e
ca

ll
(%

)
F1
-s
co

re
Sp

e
ci
fi
ci
ty

(%
)

A
cc

u
ra
cy

(%
)

R
e
ca

ll
(%

)
F1
-s
co

re

Be
lh

ad
i,
A
sm

a
et
 a
l

85
.3
1

85
.6
3

85
.6
0

85
.6
1

83
.3
7

83
.5
3

83
.5
5

83
.5
4

85
.4
1

85
.3
5

85
.2
8

85
.6
0

A
nd

re
se

n
et
 a
l

86
.5
5

86
.5
1

86
.9
4

86
.7
2

85
.8
4

83
.1
6

84
.7
3

83
.9
4

86
.1
8

86
.0
8

86
.9
1

86
.4
9

H
e,

Sh
un

fa
n

et
 a
l

87
.1
4

87
.3
9

87
.9
7

87
.6
8

85
.9
3

84
.1
9

84
.7
6

84
.4
7

88
.4
8

86
.7
7

87
.3
6

87
.0
6

A
br

ao
,T

au
fik

et
 a
l

87
.9
7

87
.9
6

88
.4
4

88
.2
0

86
.1
5

85
.6
2

85
.9
7

85
.7
9

89
.0
7

87
.4
8

88
.0
0

87
.7
4

H
os

se
in

za
de

h
et
 a
l

88
.5
6

88
.5
8

89
.6
5

89
.1
1

88
.6
4

86
.9
5

87
.5
4

87
.2
4

89
.8
1

87
.5
8

89
.1
9

88
.3
8

A
za

d,
Sa

la
hu

dd
in

et
 a
l

89
.8
1

90
.4
9

90
.1
4

90
.3
1

89
.1
7

88
.6
3

90
.4
0

89
.5
1

90
.4
8

88
.6
2

90
.7
0

89
.6
5

O
ur
s

91
.3
9

90
.8
3

91
.8
4

91
.3
3

91
.4
2

89
.5
2

90
.2
2

89
.8
7

92
.0
4

90
.3
5

92
.1
6

91
.2
5

Th
eb

ol
d
va

lu
es

re
pr

es
en

tt
he

be
st

re
su

lts
.

Frontiers in Energy Research 17 frontiersin.org299

https://doi.org/10.3389/fenrg.2024.1364445
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong et al. 10.3389/fenrg.2024.1364445

T
A
B
LE

4
C
o
m
p
ar
is
o
n
o
f
Sp

ec
ifi
ci
ty
,A

cc
u
ra
cy

,R
ec

al
la

n
d
F1

-s
co

re
in
d
ic
at
o
rs

in
d
iff
er
en

t
m
et
h
o
d
s
b
as
ed

o
n
h
ig
h
te
m
p
er
at
u
re

o
ve

rh
ea

ti
n
g
,p

ar
ti
al

d
is
ch

ar
g
e
an

d
fa
u
lt
-f
re
e
ty
p
e.

M
o
d
e
l

Fa
u
lt
ty
p
e

C
4

C
5

C
6

Sp
e
ci
fi
ci
ty

(%
)

A
cc

u
ra
cy

(%
)

R
e
ca

ll
(%

)
F1
-s
co

re
Sp

e
ci
fi
ci
ty

(%
)

A
cc

u
ra
cy

(%
)

R
e
ca

ll
(%

)
F1
-s
co

re
Sp

e
ci
fi
ci
ty

(%
)

A
cc

u
ra
cy

(%
)

R
e
ca

ll
(%

)
F1
-s
co

re

Be
lh

ad
i,
A
sm

a
et
 a
l

83
.1
7

83
.6
6

83
.0
9

83
.3
7

85
.1
6

85
.7
7

85
.1
9

85
.4
8

85
.6
1

84
.5
8

84
.1
7

84
.3
7

A
nd

re
se

n
et
 a
l

85
.9
4

83
.5
9

84
.4
2

84
.0
0

86
.4
6

86
.3
1

86
.5
6

86
.4
3

86
.1
1

86
.2
5

86
.6
6

86
.4
5

H
e,

Sh
un

fa
n

et
 a
l

85
.7
2

84
.0
4

84
.6
7

84
.3
5

86
.7
3

87
.2
3

87
.7
3

87
.4
8

87
.9
4

88
.1
8

87
.8
0

87
.9
9

A
br

ao
,T

au
fik

et
 a
l

88
.9
4

85
.1
3

85
.5
5

85
.3
4

87
.3
0

88
.2
0

87
.9
4

88
.0
7

88
.6
8

88
.9
8

88
.9
7

88
.9
7

H
os

se
in

za
de

h
et
 a
l

89
.0
5

87
.6
8

87
.1
8

87
.4
3

89
.0
7

89
.3
0

88
.7
9

89
.0
4

89
.9
4

89
.6
8

89
.1
8

89
.4
3

A
za

d,
Sa

la
hu

dd
in

et
 a
l

89
.8
4

88
.1
4

88
.3
4

88
.2
4

90
.1
9

90
.3
8

88
.8
2

89
.5
9

91
.2
7

91
.0
5

91
.4
7

91
.2
6

O
ur
s

90
.2
8

89
.5
2

90
.2
2

89
.8
7

91
.3
4

91
.3
6

89
.2
0

90
.2
7

94
.3
9

93
.9
8

94
.4
2

94
.2
0

Th
eb

ol
d
va

lu
es

re
pr

es
en

tt
he

be
st

re
su

lts
.

Frontiers in Energy Research 18 frontiersin.org300

https://doi.org/10.3389/fenrg.2024.1364445
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong et al. 10.3389/fenrg.2024.1364445

TABLE 5 Comparison of Specificity, Accuracy, Recall and F1-score indicators in different methods based on ICS-SGAD and AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Belhadi, Asma
et al

83.14 83.17 83.59 83.38 84.08 84.63 84.23 84.43

Andresen et al 84.85 84.03 85.45 84.73 85.40 84.99 84.88 84.93

He, Shunfan
et al

85.59 86.04 86.81 86.42 86.34 86.11 85.93 86.02

Abrao, Taufik
et al

86.17 86.25 88.01 87.12 87.19 87.20 86.32 86.76

Hosseinzadeh
et al

88.94 88.58 89.65 89.11 89.72 89.52 89.44 89.48

Azad,
Salahuddin

et al

89.48 89.08 90.01 89.54 91.42 90.36 91.37 90.86

Ours 90.39 90.83 91.84 91.33 92.01 91.55 92.92 92.23

The bold values represent the best results.

TABLE 6 Comparison of Specificity, Accuracy, Recall and F1-score indicators in different methods based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Belhadi, Asma
et al

85.41 85.13 85.39 85.26 82.31 82.41 82.53 82.47

Andresen et al 86.78 86.72 86.70 86.71 82.96 82.72 83.96 83.34

He, Shunfan
et al

87.18 87.14 87.11 87.12 83.42 83.42 84.88 84.14

Abrao, Taufik
et al

88.20 87.69 88.40 88.04 84.39 84.02 85.93 84.96

Hosseinzadeh
et al

89.94 89.09 90.27 89.68 86.48 86.15 85.95 86.05

Azad,
Salahuddin

et al

91.07 90.87 91.53 91.2 88.70 87.92 88.71 88.31

Ours 93.67 93.94 92.79 93.36 90.79 90.40 91.02 90.71

The bold values represent the best results.

5.57 s less than the third-ranking model by Hosseinzadeh et al. Our
model also demonstrates a reduction of 6.05 m in inference time
and a decrease of 47.96 million parameters. On the AKNN-SGFD
dataset, our model’s training time is 1.18 s less than Azad’s model
and 2.4 s less than Hosseinzadeh’s model. Additionally, our model
achieves a decrease of 8.91 m in inference time and a reduction

of 15.43 million parameters. For the FFC-SG and OWA-SGFD
datasets, our model’s metrics in training time, inference time, and
the number of parameters are superior to other models. Notably, on
the FFC-SG dataset, our model’s training time is 10.68 s less than
Andresen et al.‘s model and 5.50 s less than Abrao et al.‘s model,
with an evenmore significant reduction of 15.17 m in inference time.
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FIGURE 8
Comparative visualization of Specificity, Accuracy, Recall and F1-score indicators in different methods based on four data sets.

Overall, our model exhibits an average advantage of over 5% in each
metric across the four datasets, highlighting the effectiveness of our
approach in reducing computational resource consumption while
maintaining or enhancing predictive performance across diverse
datasets. This underscores the high practical value of our method in
the application of equipment fault detection in electronic systems.
Similarly, we visually represent the data results from Tables 7, 8 in
the following Figure 9.

According to the data in Tables 9, 10, the effects of optimizing
the model with different technical modules on the four datasets
are evident. Compared to the baseline model, adding the transfer
learning module can lead to some improvement in various metrics,
but the enhancement is limited. For example, on the ICS-SGAD
dataset, each metric, on average, only increases by approximately
13%. After incorporating the generative adversarial network
module, the model performance experiences a more significant
improvement, with an average increase of over 10% for each
metric across the four datasets.However, our proposed approach,

combining transfer learning and GAN neural network modules,
demonstrates the best results. This method leads to an average
improvement of nearly 30% or more for each metric across the four
datasets. Particularly noteworthy is the substantial improvement
observed on the AKNN-SGFD and FFC-SG datasets, where each
metric sees a significant increase. For instance, on the FFC-SG
dataset, each metric improves by over 30%. This strongly indicates
that the techniques we employed can comprehensively exploit
dataset information by effectively combining transfer learning and
adversarial learning approaches, significantly enhancing themodel’s
generalization ability across various tasks. Compared to using
transfer learning or GAN individually, our approach exhibits a
clear advantage, providing strong evidence for its potential value
in practical applications. Additionally, we visually present the data
results from Tables 9, 10 in the following Figure 10.

According to the data in Tables 11, 12, the resource consumption
of the model optimized with different technical modules on the
four datasets is evident. Compared to the baseline model, adding
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TABLE 7 Comparison of Training time, Inference time and Parameters indicators in different methods based on ICS-SGAD and AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Training
time(s)

Inference
time(ms)

Parameters(M) Training
time(s)

Inference
time (ms)

Parameters(M)

Belhadi, Asma et al 57.17 149.42 292.82 54.32 138.14 284.17

Andresen et al 54.47 142.47 287.45 52.15 134.72 268.37

He, Shunfan et al 51.51 137.16 275.25 49.93 131.84 250.50

Abrao, Taufik et al 48.40 130.74 267.52 46.17 127.37 246.41

Hosseinzadeh et al 47.75 124.68 260.74 43.29 122.27 241.94

Azad, Salahuddin
et al

45.19 119.20 253.14 42.07 115.72 238.47

Ours 42.18 113.47 244.18 40.89 107.81 229.04

The bold values represent the best results.

TABLE 8 Comparison of Training time, Inference time and Parameters indicators in different methods based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Training
time(s)

Inference
time (ms)

Parameters(M) Training
time(s)

Inference
time (ms)

Parameters(M)

Belhadi, Asma et al 52.92 129.96 275.74 58.17 151.27 297.18

Andresen et al 50.55 123.34 268.76 56.04 142.78 284.94

He, Shunfan et al 48.44 120.14 255.42 52.12 138.75 280.13

Abrao, Taufik et al 45.37 116.92 248.05 49.17 132.72 274.99

Hosseinzadeh et al 42.16 113.55 240.81 47.21 129.40 267.13

Azad, Salahuddin
et al

41.12 108.71 234.39 44.47 124.13 259.90

Ours 39.87 101.75 227.41 43.91 112.02 248.38

The bold values represent the best results.

the transfer learning module can moderately reduce the model’s
training time, inference time, and parameter count. However, the
reduction is limited. For example, on the ICS-SGAD dataset,
the training time decreases by only 3.86 s, the inference time
decreases from 147.75 m to 138.47 m, and the parameter count
improves by 9.44 million.After incorporating the gan module, the
model’s computational costs decrease further, with training time and
inference time both reducing by around 10% on all datasets, and a
noticeable decrease in parameter count. The most effective results
are achieved when we connect the transfer learning module and the
generative adversarial networkmodule in series.This approach leads
to an average reduction of over 30% in training time, over 20% in
inference time, and over 15% in parameter count across the four
datasets. Particularly noteworthy is the more pronounced resource

savings on the FFC-SG andOWA-SGFDdatasets.This indicates that
our approach not only significantly improves model performance
but also substantially reduces the model’s computational costs,
demonstrating its substantial practical value. Finally, we visually
present the data results fromTables 11, 12 in the following Figure 11.

The model we proposed in this study outperforms the other
six classical models on four different types of real datasets, both
in terms of predictive performance indicators and computational
resource consumption. Especially in practical application scenarios
such as medical image recognition datasets FFC-SG and OWA-
SGFD, our model’s superiority is particularly evident, with an
average improvement of over 5% or more in each metric and
computational indicators compared to other models. This clearly
demonstrates the advantages of our approach in these types of
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FIGURE 9
Visualization of comparison of Training time, Inference time and Parameters indicators in different methods based on four data sets.

TABLE 9 Comparison of Specificity, Accuracy, Recall and F1-score indicators under different modules based on ICS-SGAD and AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

baseline 62.07 62.48 62.90 62.69 63.94 63.24 63.17 63.20

+ tl 75.04 74.21 74.93 73.54 75.19 75.65 75.36 75.50

+ gan 85.16 85.01 85.93 85.47 87.04 87.49 87.06 87.27

+gnn gan 90.74 90.48 91.25 90.86 92.78 92.07 92.68 92.37

TABLE 10 Comparison of Specificity, Accuracy, Recall and F1-score indicators under different modules based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

baseline 64.27 64.43 64.45 64.59 61.46 61.44 62.20 61.82

+ tl 77.75 77.84 78.62 74.23 75.57 75.31 75.92 75.61

+ gan 87.27 87.62 87.51 83.56 84.09 84.41 84.20 84.30

+gnn gan 93.36 93.61 93.63 93.34 90.07 90.21 90.68 90.44

tasks. Additionally, by comparing different technical modules, it can
be observed that our combined approach of transfer learning and
generative adversarial networks comprehensively exploits dataset
information, significantly improving model performance, while
also minimizing the computational burden associated with model
training and inference. This holds significant value in industrial
applications.

In summary, this series of experimental results thoroughly
validates the wide applicability and outstanding performance
of our proposed method in addressing real-world problems,
providing valuable insights for relevant applications. We will
continue to explore this direction in the future, aiming to
continuously enhance the model’s performance across various tasks
and contribute to solving practical issues.
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FIGURE 10
Comparative visualization of Specificity, Accuracy, Recall and F1-score indicators based on four data sets under different modules.

TABLE 11 Comparison of Training time, Inference time and Parameters indicators under different modules based on ICS-SGAD and
AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Training time(s) Inference time
(ms)

Parameters(M) Training time(s) Inference time
(ms)

Parameters(M)

baseline 54.29 147.75 266.15 50.42 138.27 250.97

+ tl 50.43 138.47 256.71 47.45 126.73 244.37

+ gan 47.06 126.18 248.58 44.12 116.37 234.04

+tl gan 43.48 112.45 220.27 40.48 101.08 206.51
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TABLE 12 Comparison of Training time, Inference time and Parameters indicators under different modules based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Training time(s) Inference time
(ms)

Parameters(M) Training time(s) Inference time
(ms)

Parameters(M)

baseline 50.17 141.42 251.08 51.33 138.88 269.94

+ tl 47.22 131.37 246.19 48.34 129.38 259.37

+ gan 44.60 120.34 237.39 46.05 118.02 248.09

+tl gan 41.27 104.08 210.47 44.90 107.67 222.40

FIGURE 11
Comparative visualization of Training time, Inference time and Parameters indicators under different modules based on four data sets.

4.6 Discussion

In this study, we employed a comprehensive approach by
utilizing the Vision Transformer (ViT)model, transfer learning, and
generative adversarial networks. Starting from the perspective of
image processing, we seek to advance the digitization and intelligent
perception levels of power systems.With the introduction of the ViT
model, we accelerate the learning process through transfer learning
and use generative adversarial networks to augment training data,

bringing significant technological breakthroughs to the field of
power system image processing.

The key innovation of this research lies in the integration
of multiple advanced technologies tailored to the practical
requirements of emerging power systems. This integration aims
to enhance the efficiency of UAV image recognition and intelligent
power distribution network device fault detection. Through this
study, we provide substantial support for the application of image
processing and device fault detection in th e construction of
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emerging power systems, offering robust technical support for
the development of the power industry, a focus of interest in
related fields.

The significance of this study is manifested in several aspects.
Firstly, by introducing the Vision Transformer (ViT) model, we
have made significant progress in the field of power system image
processing, providing a powerful tool for digital transformation.
Secondly, the adoption of transfer learning effectively addresses
the issue of limited data, enhancing the model’s generalization
ability and achieving more robust and reliable results in tasks
such as power system equipment defect recognition. Lastly, the
innovative application of generative adversarial networks in power
system image recognition tasks contributes to augmenting training
data, improving the model’s accuracy in identifying various types
of power equipment defects. This research is both theoretically
innovative and strongly supported by experimental data, offering
new insights for research and applications in the field of power
system image processing.

Through experimental comparisons and analyses, our approach
has achieved significant improvements in specificity, accuracy,
recall, and F1-score metrics. Compared to traditional methods,
our model excels in UAV image recognition and intelligent power
distribution network device fault detection. Specifically, in the
detection of faults in intelligent power distribution network devices,
our model successfully captures subtle fault features, achieving a
diagnostic accuracy of over 90%, an improvement of more than
17% compared to traditional methods. Additionally, the model
demonstrates outstanding performance with an F1-score of around
91%.These experimental results not only validate the effectiveness of
our approach but also showcase its enormous potential in practical
Applications.

5 Conclusion

When discussing the continuous progress of technology, our
research focuses on addressing challenges in the fields of unmanned
aerial vehicle (UAV) image recognition and intelligent power
distribution network device fault detection. This study aims to
enhance recognition accuracy and efficiency by integrating cutting-
edge technologies such as the Transformer model, transfer learning,
and generative adversarial networks, providing innovative solutions
for the safety and stable operation of power system equipment.
In this chapter, we will review the research objectives, emphasize
the innovation and importance of the study, outline the research
findings, discuss limitations, and look ahead to future research
directions. This research is dedicated to addressing practical issues,
aiming to improve the performance of existingmethods and offering
new research perspectives for relevant areas in the field of emerging
power systems.

Despite the considerable progress we’ve made in our research,
there are still some limitations that require addressing. Firstly,
our experimental dataset may not comprehensively cover all
scenarios of power system images and distribution network device
faults. As a result, the model’s generalization performance could
be limited in certain specific situations. Secondly, while we’ve
employed generative adversarial networks to augment training data,
further practical verification is necessary to evaluate the model’s

generalization, particularly in extreme cases. These limitations
underscore the importance of future research focusing on
validation with more extensive datasets and enhancing the model’s
robustness and generalization capabilities. Additionally, the current
Transformer model still faces challenges in terms of interpretability.
To address this, we plan to introduce attentionmechanisms in future
research to enhance the model’s interpretability and better explain
its decision-making process.

Considering both the achievements and limitations of our study,
future endeavors can focus on refining the model’s performance and
broadening its applicability. Firstly, we can delve into optimizing the
model’s hyperparameters to bolster its effectiveness in navigating
complex scenarios. Secondly, validating our approach with more
comprehensive datasets across diverse real-world application
contexts will bolster its reliability. Furthermore, integrating
advanced methodologies like self-supervised learning shows
promise in elevating the model’s performance, particularly in
scenarios with scarce data.

In summary, our research successfully integrates cutting-edge
technologies, including the Transformer model, transfer learning,
and generative adversarial networks. This integration leads to
significant advancements in unmanned aerial vehicle (UAV) image
recognition and intelligent detection of distribution network device
faults. Our approach not only holds promise in theory but also
receives robust validation from experimental data. By pioneering the
fusion of these technologies, we introduce important innovations in
power system image processing. This lays a strong foundation for
future research and applications in related domains. The outcomes
of our study are poised to chart new paths in image processing
and equipment fault detection within power systems, offering
innovative solutions for the industry’s digital transformation and
intelligence.Through this endeavor, we establish a solid groundwork
for further exploration and application in power system image
processing. We are confident that these findings will catalyze
innovative developments in related fields, providing invaluable
technical support for the establishment and evolution of new power
systems. We anticipate that our work will inspire fresh insights
in the realm of novel power systems and serve as a conduit for
collaboration and knowledge exchange between academia and the
power industry.
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