The current growing interest in the circular economy (CE) offers extensive opportunities to promote the adoption of more sustainable consumption and production practices across industries, which is a top priority in achieving the United Nations’ Sustainable Development Goals. The construction sector’s shift towards circular models is key to reducing carbon emissions and resource depletion but brings along considerable complexities and challenges, given the industry`s fragmented and conservative nature. Research on CE in construction has been growing exponentially over the past few years, producing a substantial amount of new knowledge in a short time. This study conducted a systematic review to map and synthesise the reported knowledge gaps in the literature. The analysis included forty-one (41) articles published between 2017 and 2022. One hundred fifty-five (155) knowledge gaps were identified and categorised according to seven (7) CE research dimensions—economic, environmental, governmental, methodological, societal, sectoral, and technological—and twenty-six (26) thematic sub-clusters. Findings critically analyse knowledge gaps’ frequency of occurrence over time and across dimensions. A new framework for CE implementation is proposed to support critical discussion and identification of future research trajectories towards a systemic transition to a circular economy in the construction sector. The framework identifies three innovation domains: circular product, circular process, and circular platform.
Plastic pollution and climate change are serious and interconnected threats to public and planetary health, as well as major drivers of global social injustice. Prolific use of plastics in the construction industry is likely a key contributor, resulting in burgeoning efforts to promote the recycling or downcycling of used plastics. Businesses, materials scientists, institutions, and other interested stakeholders are currently exploring the incorporation of plastic waste into building materials and infrastructure at an accelerated rate. Examples include composite asphalt-plastic roads, plastic adhesives, plastic-concrete, plastic/crumb rubber turf, plastic lumber, plastic acoustic/thermal insulation, plastic-fiber rammed earth, and plastic soil reinforcement/stabilizers. While some believe this to be a reasonable end-of-life scenario for plastic waste, research shows such efforts may cause further problems. These uses of plastic waste represent an ongoing effort at “greenwashing,” which both delays and distracts from finding real solutions to the plastic pollution crisis. Hypothesized effects of incorporating plastic waste in construction materials, including economic, environmental, human health, performance, and social impacts, are evaluated in this mini review. We compare known impacts of these treatments for plastic waste and provide recommendations for future research. Evidence shows that such practices exacerbate the negative ecological, health, and social impacts of plastic waste and increase demand for continued production of new (virgin) plastics by creating new markets for plastic wastes. We urge caution—and more research—before widely adopting these practices.