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Editorial on the Research Topic

Trends in neuroimmunology: cross-talk between brain-resident and
peripheral immune cells in both health and disease
The functional anatomy of organisms is maintained by the coordination of different

systems, which often rely on interactions between specialized cells and between

macromolecules. The immune system works with the circulatory and lymphatic systems

to protect most of the organs. However, some organs are considered immune privileged due

to the presence of highly selective and regulated barriers, such as the blood-brain barrier

(BBB) within the brain (1). The BBB controls periphery-brain molecule exchange and

prevents immune effector cells from entering the homeostatic brain. BBB-associated

elements, such as endothelial cells, pericytes, astrocytes, and microglia, potentially can

function as antigen-presenting cells (APC). Pathological scenarios that induce dysfunction

of the BBB and its associated cells may lead to the infiltration of lymphocytes, crossing over

from the blood to the brain. Similarly, traumas can also enable B and T lymphocytes to pass

bidirectionally between the central nervous system (CNS) and the periphery, via the

meningeal lymphatic vessels, which drain into the cervical lymph nodes. Research in

animals and humans has revealed that B and T cells are involved in the progression of

neurological diseases (NDs). It has been shown that under certain conditions, T cells

establish themselves and become resident in the brain, from where they can exert either

beneficial or detrimental effects on brain function. Amazing efforts have been made to

further comprehend interactions between brain-specific cells and peripheral immune cells,
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especially their roles and impact on the onset, progression, and

eventual resolution of diverse brain pathologies (2–4). The Research

Topic discussed herein represents an effort of Frontiers Media S.A.

and the authors of this Editorial to develop another special volume

related to the healthy and diseased brain (5–8). This Research

Topic, which is available for the scientific community and the

public, focuses on understanding the complexity of central immune

cells and peripheral immune cells, and their cross-talk mechanisms

in diverse CNS pathologies. Eleven peer-reviewed manuscripts

including four original articles, six reviews, and one systematic

review, encompass this special volume. Seventy-five authors from

research laboratories located in six countries: Australia, China,

Germany, Japan, United Kingdom, and United States took part in

this initiative.

Among the interesting contributions, an in vitro study on

primary murine glia by Li et al. showed differential substrate-

dependent and time-dependent phagocytic behavior and

phenotypic plasticity among M0-like (unstimulated), M1-like

(pro-inflammatory) and M2-like (anti-inflammatory) microglia

subtypes. Although the application of M1/M2 terminology in the

microglia field has been dismissed, the coexistence of pro-

inflammatory and anti-inflammatory microglial states has been

documented, including in circumventricular organs (9–12). Li

et al. differentiated cultured glial cells into M1-like and M2-like

microglia subtypes by treating them either with granulocyte colony

stimulating factor and interferon-gamma (GM-CSF/IFNg), or with
macrophage colony-stimulating factor and interleukin-4 (M-CSF/

IL-4), respectively. No supplements were added to obtain M0-like

microglia. Phagocytosis assays using E. coli-rhodamine particles or

IgG-FITC beads revealed different preferences and dynamics for the

substrates among the microglia subtypes. M1-like microglial cells

engulfed more bacteria particles than beads after 3 hours. The

opposite behavior was observed with the anti-inflammatory

subtype, where M0-like microglia internalized both substrates

equally. The authors reported further differences among the three

differentiated microglial phenotypes during incubation with both

substrates for 16 hours. M2-like microglia showed discontinuous

phagocytosis after 8 hours, while M0-like and M1-like microglial

cells continuously internalized substrates with different profiles.

One interesting observation after a prolonged exposure for 5 days to

either E. coli particles or IgG-opsonized beads, was that M1-like

states and M0/2-M1 transitions were both enhanced, indicating

phenotypic plasticity like it occurs in neurodegenerative conditions

(13, 14). The study by Li et al. complements the existing knowledge

about microglia diversity and plasticity (15, 16), and it opens

therapeutic avenues to intervene in microglia-mediated

inflammation and neurodegeneration.

Neumaier et al. reviewed current knowledge and therapeutic

potential of midkine (MDK), which is a neurotrophic growth factor

with dual functions in the healthy and diseased CNS and periphery

(17, 18). Due to its multi-functionality, MDK has been involved in

the progression or suppression of numerous CNS-related

pathologies including autoimmune disorders, such as multiple

sclerosis (MS), brain tumors, acute injuries, and other conditions

that imply neuroinflammation and neurodegeneration. In the CNS,

MDK is spatio-temporally expressed by oligodendrocytes,
Frontiers in Immunology 026
astrocytes, and neuronal lineages, and maybe also by microglia in

response to inflammatory stimuli. In the periphery, hematopoietic

and non-hematopoietic cells can produce MDK. This regulator acts

through multimolecular receptor complexes, with protein tyrosine

phosphatase z (PTPz) as one of the most established components.

In addition, multiple signaling pathways are involved depending on

the cellular context, thereby facilitating MDK’s multifaceted

functions. Interestingly, the authors discussed the role of MDK as

a mediator of the neuro-immune cell-to-cell cross-talk in CNS

inflammatory scenarios that involve a dysfunctional or leaky BBB.

These conditions facilitate the infiltration of MDK-expressing

immune cells from the periphery. The recruitment of peripheral

immune actors such as macrophages and T cells, and the impact of

MDK-signaling events on CNS-resident cells are also addressed

within the context of neoplastic diseases (19). The findings included

in this review support the importance of MDK as a mediator of

tumorigenesis and inflammatory disorders, irrespective of the tissue

and cell type, and they emphasize the need for further research to

better understand its mechanisms and biomarker potential in

neurodegenerative diseases, such as Parkinson’s and Alzheimer’s

diseases (PD and AD, respectively).

Neuroinflammation and neurodegeneration are associated with

traumatic spinal cord injuries (SCI), which are highly debilitating

pathologies. SCI progresses through various phases: acute (up to 3

days post-injury; dpi), subacute (3–14 dpi), and chronic (more than

14 dpi) stages. Yao et al. investigated differential gene expression

profiles and pathways in macrophages and microglia across these SCI

phases to pinpoint potential therapeutic targets for SCI. The authors

applied bioinformatic analysis to the existing scRNA-seq dataset

GSE159638 (total 30,958 cells; https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE159638), which was generated in a mouse

model of thoracic contusion SCI (20). Then, they validated the

results in a mouse model of cervical SC hemi-contusion injury

[wild type and APOE-/- mice; (21)]. They identified apolipoprotein

E (APOE) as a central gene of interest in both macrophages and

microglia during the subacute and chronic phases of SCI. These cells

exhibited high activity, suggesting a crucial role in regulating SCI-

associated inflammation. On the other hand, APOE has been linked

to pathways related to debris and dead cell clearance (phagocytosis),

lipid metabolism, and lysosomal function (22–24). Subsequent

experiments demonstrated that APOE knockout (KO) in mice

exacerbated neurological deficits, increased neuroinflammation, and

worsened white matter loss after SCI at the cervical level. Following

SCI, ultrastructural analysis of the KO mice revealed myelin uptake

and accumulation of lipid droplets, lysosomes, and needle-like

cholesterol crystals in macrophages and microglia. APOE is vital

for cholesterol homeostasis within the CNS (25). Together, these

results make APOE and its associates promising therapeutic targets

for reducing neuroinflammation and for enhancing recovery

after SCI.

Zhang et al. contributed to this Research Topic with a

comprehensive review of the impact of inflammation and the

involvement of infiltrated regulatory T cells (Treg cells) on

neuropathic pain (NP) following spinal cord injury (SCI), as well

as the potential of cellular therapeutic interventions in SCI-related

conditions. The authors discussed the mechanisms behind
frontiersin.org
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inflammation and NP after SCI, which include a plethora of cells

and mediators. Glial cells, including astrocytes and microglia, and

infiltrated immune cells, such as monocytes, macrophages, B cells,

and T cells, are involved in these scenarios. These cells, when

activated, release inflammatory mediators including chemokines

(e.g., CXCL1 and CXCL2) and cytokines (e.g., TNF-a, IL-1b, and
IL-6) (26). These molecules affect neurons through multiple

signaling pathways, leading to neurotransmitter and ion channel

imbalance, increased neuronal excitability, decreased neuronal

inhibition, and boosted pain transmission (27). In particular, the

authors reviewed the mechanisms by which astrocytes, microglia,

and immunosuppressive Treg cells intervene in the pathogenesis of

SCI and the subsequent NP. In fact, the inflammatory response

following SCI has been tightly linked to a reduction in the number

of Treg cells (28). Finally, this review provides a framework for

thinking about strategies and challenges (i.e., cell purity, stability,

and functionality) in the application of Treg cell therapy in SCI

patients who suffer from neuropathic pain.

Chronic inflammation has been associated with different

neurological disorders (NDs). Cumulative evidence showed that

the recruitment of peripheral immune cells into the CNS is a

common characteristic in various NDs (29–32). Among these

neuroinflammatory cells, T helper (Th) 17 lymphocytes play an

active role in the pathogenesis of CNS-related diseases. The biology

of this CD4+ Th cell subtype in NDs is addressed in this volume by

Shi et al. Th17 cells and their cytokines (e.g., IL-17A, IL-23, IL-21,

IL-6, and IFN-g) contribute to the disruption of the BBB, promote

the infiltration of other immune cells into the CNS, excessively

activate microglia, and can cause direct cytotoxic damage to

neurons (33). The authors described Th17 lymphocytes, including

the signaling pathways that induce their differentiation. They also

introduced ND-linked environmental factors that may induce the

pathogenic potential of Th17 cells, such as peripheral inflammation,

enhanced oxidative stress, and changes in the microbiota or diet

that affect the gut-brain axis. Shi et al. further discussed the possible

immunopathological mechanisms of Th17 cells in AD, PD, MS,

amyotrophic lateral sclerosis (ALS), and major depressive disorder

(MDD). Finally, therapeutic strategies targeting Th17 lymphocytes,

their associated cytokines, and Th17-related molecular mechanisms

to treat neurodegenerative diseases, are also addressed.

Grotemeyer et al. elaborated a detailed summary of the

interconnected innate and adaptive immune responses in the

context of Parkinson’s disease (PD), which is a ND characterized

by neuroinflammation and dopaminergic neurodegeneration (34,

35). Interestingly, they propose a mechanism for how

neuroinflammation is triggered in PD. They hypothesized that

pathological forms of alpha-synuclein (paSYN), the key protein

in PD, might act as a damage-associated molecular pattern (DAMP)

to induce and maintain a pro-inflammatory shift of the immune

system, via pattern recognition receptor (PRR)-mediated processes

(36). Central (e.g., microglia) and peripheral (e.g., T and B cells)

immune cells and their mechanisms in the pathophysiology of PD

in humans and animal models (e.g., MPTP, 6-OHDA, viral vector,

and preformed fibrils), are discussed. Circulating and infiltrated

CD4+ and CD8+ T cells are among the immune effector cells in PD,
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and their roles are both beneficial and detrimental. The authors also

summarized current clinical trials on anti-inflammatory therapy in

PD, focusing on the regulation of glucose metabolism, intestinal

microbiota, and oxidative stress. Then, they discussed different

signaling pathways associated with inflammation and

neurodegeneration, such as the pentose phosphate pathway (PPP)

(30) and the renin-angiotensin [-aldosterone] system (RA[A]S)

(37), to use them as potential therapeutic targets. Finally, the

authors suggested that dopaminergic neurodegeneration could be

halted by administrating neuroprotective/anti-inflammatory agents

early in the course of PD, before severe symptoms have developed.

The involvement of innate and adaptative immune cells in the

pathophysiology of multiple sclerosis (MS), and their regulation by

physical exercise, are addressed in this Research Topic by Zong et al.

The pathogenesis of this neuroinflammatory and autoimmune

disease is driven by the dysfunctional activity of immune cells,

including those recruited from the periphery into the CNS (38).

Aberrant immune responses damage oligodendrocytes and thus,

cause severe demyelination, impaired remyelination, axonal

degeneration, and altered neurotransmission (39, 40). This results

in a spectrum of motor and non-motor symptoms. The disease has

no cure and pharmacotherapy is considered the primary treatment.

However, drugs have low efficacy, several side effects, and high

costs. Alternative MS-modifying interventions, such as physical

exercise, have gained attention as a new therapy to alleviate

patients’ symptoms (41, 42). In summary, the authors present

morphological, cellular, and molecular evidence from animal

models (e.g., EAE and toxin and/or virus-induced demyelination

models) and human studies of how this type of adjunctive

intervention regulates innate and adaptive immune cells, reducing

peripheral immune cell infiltration, and eventually leading to a

reduction of the autoimmune responses and their concomitant

negative effects in the CNS. The authors focused this review

specifically on T cells (e.g., CD8+ and CD4+ cells, including Th17

and Treg cells), B cells, dendritic cells, neutrophils, microglia/

macrophages, and astrocytes. Zong et al. also raised a critical view

towards the need to conduct more studies in humans, stratifying

patients by gender, disease stage, and type, duration, intensity, and

cycle of exercise, to better understand the potential of the physical

therapy in treating MS.

Beyond the immunological roles, immune cells can participate

in other physiological responses that are essential to maintain the

homeostasis of the organisms (43, 44). One instance of this is the

interplay between enteric C1q-producing macrophages and the

enteric nervous system to regulate neuronal and smooth muscle

cell functions and thus, gastrointestinal motility and homeostasis

(45). It was previously reported that bidirectional signaling between

muscularis macrophages and enteric neurons is necessary to ensure

gut peristalsis in healthy mice (46). Macrophage-derived bone

morphogenetic protein 2 (BMP2) and neuronal colony

stimulatory factor 1 (CSF1) are involved in this cross-talk

mechanism. In this context, Yip et al. contributed to this

Research Topic with an original article in which they studied the

participation of CD163 intestinal macrophages and inhibitory

interneurons of the myenteric plexus in the regulation of colonic
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motility. They used a conditional KO Cx3cr1 (chemokine receptor)-

Dtr (diphtheria toxin receptor) rat model to transiently deplete

resident macrophages in combination with the nitric oxide synthase

(NOS) inhibitor NOLA (Nw-nitro-L-arginine), and ex vivo video

imaging (47, 48). The authors showed that the resident intestinal

macrophages are crucial in regulating colonic motility in the

absence of the inhibitory neuronal input driven by NO. Whereas,

under control conditions, these macrophages might not be relevant.

They also showed that these immune cells are important in

maintaining healthy intestinal structure. The authors highlighted

CD163-positive intestinal macrophages as a potential therapeutic

target for gastrointestinal disorders in which inhibitory neuronal

input is impaired, such as gastroparesis and achalasia (49, 50).

However, Yip et al. pointed out the need for further research to

dissect the cell subtypes and to investigate the mechanisms of

these functions.

Viengkhou and Hofer reviewed the dual pivotal roles of type I

interferons (IFN-Is) in regulating cellular and molecular

homeostasis within the CNS, as well as inflammation and

immunity associated with diverse NDs, from chronic infections

and auto immune condi t ions to t rauma , ag ing , and

neurodegeneration. Some of these conditions are known as

interferonopathies. The authors initially discussed mechanisms by

which levels of IFN-Is are altered, especially those mediated by

innate immune sensors (e.g., cyclic GMP-AMP synthase/STING

signaling pathway), by genetic alterations (e.g., trisomy 21 and

mutations in USP18 or ISG15), and by therapeutic interventions for

diseases like chronic viral infections, MS, and certain cancers (51,

52). They further presented the canonical and non-canonical IFN-I

signaling pathways that imply binding to cell surface receptors and

activation of distinct response phases, including an early

widespread protein phosphorylation stage and changes in the

expression of several IFN-regulated genes (IRGs) (53). The classic

path involves the interferon-stimulated gene factor 3 (ISGF3)

complex (54), which consists of the transcription factors STAT1

(signal transducer and activator of transcription 1), STAT2, and

interferon regulatory factor 9 (IRF9). Then, Viengkhou and Hofer

focused the review on the specific responses to IFN-Is mounted by

each cell type in the CNS, especially those mediated by neurons,

glial cells, and BBB-associated cells. Understanding the diversity in

cell responses has been facilitated by single-cell technologies.

Moreover, it has been accepted that a diverse spectrum of cellular

response states coexists within the diseased CNS, instead of a single

prevalent response. Neurons respond to limit the impact of viral

infections, but they can suffer neurotoxic effects from increased

IFN-I signaling, including fewer dendrites, impaired neurogenesis,

and altered neurotransmission (55). Although basal IFN-I signaling

in astrocytes is crucial for brain health (56), its contribution to IFN-

I neurotoxicity seems yet unclear. A small IFN-I-hyperresponsive

microglia subset was identified by single-cell sequencing, which has

been associated with age-dependent cognitive decline and synaptic

stripping (57, 58). Due to that chronic inflammation has been

related to NDs and that IFN-I therapy has been shown to have

adverse effects, the authors finished their review discussing the
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impl icat ions and mechanisms of IFN-Is in cerebra l

interferonopathies, such as Aicardi-Goutières Syndrome (AGS)

and chronic viral encephalopathies, as well as in aging, and in

diseases with abnormal protein aggregation, including AD and PD

(59–61). The authors pointed out that understanding the

complexity of IFN-I responses in the CNS is critical for

developing targeted therapies for neurological disorders that

occur with IFN-I dysregulation. These therapies should consider

factors such as cell type, signaling duration, and disease context.

Sun et al. conducted a Mendelian randomization (MR) study to

explore the causal relationship between immune cell surface

antigens and post-stroke functional outcomes, and to identify

novel biomarkers and therapeutic targets for ischemic stroke. The

authors employed Genome-Wide Association Studies (GWAS)

summary statistics for a two-sample MR analysis, followed by

several alternative methods and sensitive approaches. They

sourced genetic variants linked to immune cell surface antigens

(measured by median fluorescence intensities, MFIs) from the

publicly available GWAS catalog (62); outcome data from the

Genetics of Ischemic Stroke Functional Outcome (GISCOME)

network (63, 64), and statistics about the risk of ischemic stroke

from the MEGASTROKE consortium (65). The cohorts were

primarily of European ancestry, aged 18 and above. A total of 389

MFIs with surface antigens were included in seven panels

(maturation stages of T cell, Treg cell, TBNK, DC, B cell,

monocyte, and myeloid cell, respectively). The authors identified

genetic variants including single nucleotide polymorphisms (SNPs)

associated with MFIs of immune cell surface markers, as measured

from samples of peripheral blood. They meticulously selected SNPs

that were strongly linked to markers and less likely influenced by

non-genetic factors like lifestyle, and they treated them as

instrumental variables (IVs) for the MR analysis (66, 67). After a

comprehensive analysis, Sun et al. identified 13 suggestive immune

cell surface antigens that appear to be associated with post-stroke

outcomes. Notably, elevated levels of CD20 on switched memory B

cells and of PDL-1 on monocytes appeared to be linked to worse

stroke outcomes and severity. In contrast, surface antigen CD25 on

CD39+ resting Treg cells was found to be associated with favorable

post-stroke functional outcomes, possibly due to enhanced Treg cell

survival supported by IL2 affinity (68). CD39 was highlighted for its

immunosuppressive role, which may be crucial for long-term

immune balance after stroke (69). The authors discussed

limitations of their analysis including those related to the nature

of the sourced data. Overall, this study uncovers potential novel

biomarkers and therapeutic strategies targeting immune cell surface

antigens to enhance post-stroke recovery, and it warrants further

exploration and validation across diverse populations and

stroke subtypes.

Considering that research in Treg cells in NDs continues to be a

topic of interest (70, 71), Gao et al. contributed to this Research

Topic with a bibliometric analysis of the field, spanning from 1991

to 2023, and including 2,739 documents between articles and review

articles from the Web of Science Core Collection. The authors used

Tableau Public, VOSviewer, and CiteSpace software to perform the
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study. The research course was categorized into three phases: 1991–

2003 (early stage), 2004–2019 (rapid expansion period), and 2020–

2023 (fluctuating yet productive phase). A total of 85 countries/

regions investigating Treg cells in NDs were identified with the

United States, China, and Germany leading in document output.

Collaboration among countries/regions was widespread, again with

the United States cooperating most (with 57 countries/regions).

Notably, Harvard Medical School showed exceptional productivity,

citations, link strength, and centrality, reflecting its prolific research

and collaborations. Studies examining Treg cells in NDs were

published in 859 journals. Among them, the top 11 journals

contributed 618 documents, with Frontiers in Immunology,

Journal of Immunology, and Journal of Neuroinflammation as

the most prominent publishers. The associations of high-

frequency keywords, such as “multiple sclerosis”, “inflammation”,

and “regulatory T cells”, were found to change throughout the

research evolution. Initially, they appeared linked with

neuroprotection, neuroimmunology, and immunoregulation

(2014), and currently, they shifted towards ischemic stroke, gut

microbiota, and the gut-brain axis. Gao et al. identified the top 10

most-cited documents, with three emphasizing the roles of

cytokines in autoimmune neurological diseases (72–74), and

others examining gut microbiota impact on immune responses

and the influence of tumor microenvironment in tumorigenesis

(75). Although the United States has led in document output and

citations, China emerged as a significant contributor, rising to the

forefront in 2022. The study conducted by Gao et al. acknowledges

limitations such as language barriers and publication bias, but it

emphasizes the need for continual updates to reflect ongoing

scientific avenues. This review provides valuable insights for

shaping future research directions and therapeutic strategies in

this dynamic field.

Overall, the original research and review articles on this

Research Topic illustrate the complexity behind the participation

of immune cells in the healthy and diseased central nervous system.

We expect this Research Topic will encourage researchers to

continue their efforts to further investigate immunity and the

brain, with the ultimate hope of finding not only new knowledge

but also potential clinical interventions to prevent or ameliorate the

devastating consequences of neurological diseases.
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16. Ibañez Rodriguez MP, Galiana MD, Rásmussen JA, Freites CL, Noctor S, Muñoz
EM. Differential response of pineal microglia to surgical versus pharmacological
stimuli. J Comp Neurol. (2018) 526:2462–81. doi: 10.1002/cne.24505
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Parkinson’s disease (PD) is a progressive and debilitating chronic disease that affects
more than six million people worldwide, with rising prevalence. The hallmarks of PD are
motor deficits, the spreading of pathological a-synuclein clusters in the central nervous
system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-
acting drug or procedure has been successfully established for clinical use. Various
pathways contributing to dopaminergic neuron loss in PD have been investigated and
described to interact with the innate and adaptive immune system. We discuss the
possible contribution of interconnected pathways related to the immune response,
focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide
an overview of clinical trials targeting neuroinflammation in PD.

Keywords: Parkinson’s disease, neuroinflammation, T cells, microglia, neurodegeneration, animal models,
inflammatory cascades
1 INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease (AD) (1–4). Motor symptoms such as bradykinesia, rigidity, resting tremor, and postural
instability (5, 6) are hallmarks of PD and essential for staging. PD patients also exhibit a wide variety
of non-motor symptoms, ranging from anosmia, rapid eye movement (REM) sleep disorders, and
constipation to severe psychiatric symptoms such as dementia (6). Some of these non-motor
symptoms are observed long before motor counterparts occur and are therefore essential to early PD
diagnosis (7). From the defined histological description, a staging model arose in which progression
of PD symptoms can be matched with intracellular deposits of pathological a-synuclein aggregates
(paSYN) or Lewy pathology (LP) of the corresponding brain areas (8–11). However, LP is also
observed in the brains of older patients with no PD symptoms during their lifetime, indicating that
LP is not specific as a standalone for PD diagnosis (10, 12). Moreover, it remains unclear why
paSYN occurs, why paSYN spreads from cell to cell (10, 13–16), and how cell death is mediated by
paSYN (17). Since a-synuclein (aSYN) has been described as a critical mediator of inflammation
and immune responses, and is released from inflamed neurons, aSYN may trigger a self-amplifying
proinflammatory response (18). Intriguingly, neuroinflammation has emerged as a key aspect in PD
(19–22) – but the extent to which neuroinflammation contributes to the development and
maintenance of PD is controversial. Hence, knowledge transfer from neuroinflammatory
org May 2022 | Volume 13 | Article 878771112
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diseases, where the concept of immune system-induced neuronal
cell damage is established, could help to elucidate the still-
obscure role of the immune system in PD.

Immunomodulatory therapies are established as effective
treatments in ‘classical’ inflammatory neurological diseases, such as
multiple sclerosis (MS), neuromyelitis optica spectrum disorders
(NMOSD), or myasthenia gravis (MG) (23–27). Although the
pathophysiology differs regarding the antigen in NMOSD and MG,
common therapeutic strategies are implemented (28). In both entities,
antibodies are pathophysiologically relevant and inhibition of the
complement system has proven beneficial (29, 30). This supports the
idea that similar inflammatory processes can be addressed across
different neuroinflammatory diseases.

Various concepts have been tested as a causal treatment for PD,
including vaccination against aSYN (31, 32). However, none have
yet proven successful and traditional treatment of PD is still
symptomatic and largely based on dopaminergic medication
(33–35). To determine the relevance of neuroinflammation in
PD pathogenesis, large-scale clinical observational studies are
essential to generate appropriate hypotheses, which can be
subsequently tested in animal models. In our review, we discuss
the evidence for neuroinflammation in PD and potential future
targets. We further illustrate immunological pathways linked to
neuroinflammation and dopaminergic neurodegeneration.
2 PATHOMECHANISMS OF
NEUROINFLAMMATION IN PD PATIENTS

The pathophysiologic role of the immune system in PD is still
enigmatic. Neuroinflammation was proposed by James
Parkinson himself in the initial description of PD (1). There is
also early literature discussing PD as an ‘autoimmune disease’
(36). Yet interest in the topic was only rekindled in 1988, when
microglia activation was described in brain autopsies of PD and
AD patients (21). Since then, evidence has accumulated that
neuroinflammation is likely to play a critical role in PD (36–38).
Significant elevation of inflammatory cytokines in the blood and
cerebrospinal fluid (CSF) of PD patients has now been confirmed
in a meta-analysis over 25 clinical studies (39). Increased
expression of NLRP3 and caspase-1 genes in peripheral blood
mononuclear cells (PBMC) and elevated protein levels of
NLRP3, caspase-1, and IL-1B in the blood plasma were found
to correlate with PD severity (40), further supporting the
perception of PD as a chronic systemic inflammatory disease.
Evidence suggests that both innate and adaptive immune
responses are involved in PD progression (41–44).

2.1 Innate Immune Response
Microglia are permanently in contact with astrocytes, neurons,
and endothelial cells, constantly monitoring surrounding tissue
for an ongoing infection or trauma via thin processes (45). In
response to injury or infection, resting microglia undergo
morphological alterations, change their transcriptional activity,
and present antigens via the major histocompatibility complexes
(MHC)-I and -II (46–48). Unlike MHC-I, which is constitutively
Frontiers in Immunology | www.frontiersin.org 213
expressed on all nucleated cells and platelets (49–52), MHC-II is
specifically expressed on antigen-presenting cells such as
microglia, astrocytes, monocytes, macrophages, dendritic cells,
and granulocytes, and can be induced upon activation.

As brain-resident innate immune cells, microglia are typically
the first responders to altered homeostasis within the CNS.
Microglia activation increases the amount of nuclear factor
‘kappa-light-chain-enhancer’ of activated B-cells (NFKB) and
NLR family pyrin domain-containing 3 (NLRP3), with
subsequent upregulation of nicotinamide adenine dinucleotide
phosphate (NADPH)-oxidase and cytokines such as interleukin-1
beta (IL-1B) and tumor necrosis factor alpha (TNF) (53, 54).
Phagocytic activity and MHC-II expression are also enhanced
(55, 56). An increase in activated microglia has been observed in
both PD patients and healthy older people, indicating that various
triggers might induce a proinflammatory shift with age (21, 57).
Compared to age-matched controls, PD patients exhibited
significantly elevated levels of proinflammatory cytokines such as
IL-1B, IL-6, and TNF in CSF and blood (39, 58). Furthermore,
([11C](R)-PK11195)-based positron emission tomography (PET)
has revealed a higher density of activated microglia in the
midbrain and putamen of early PD patients (59, 60), which
correlated with decreased activity of dopamine transporter ligands
([11C] CFT). Similar results were described in patients suffering
from a REM sleep behavior disorder (60, 61). While the presence of
chronic inflammatory processes in PD is now widely accepted, the
underlying reason for neuroinflammation is still unclear. Due to its
function as a damage-associated molecular pattern (DAMP) (53,
62, 63), paSYNmight trigger and maintain a proinflammatory shift
of the immune system. In addition, DAMPs may be released from
dying or damaged cells. Well-known DAMPs triggering an innate
immune response upon interaction with pattern recognition
receptors (PRRs) are IL-1a or mitochondrial reactive oxygen
species (mROS), which activate NLRP3. Consecutive NLRP3
activation leads to increased IL-1B synthesis as a trigger for
further innate immune responses (64). Initial microglia activation
in PD (21, 65) may therefore result from PRR-mediated responses
to DAMPs.

In addition to DAMPs, pathogen-associated molecular patterns
such as viral RNA or the bacterial cell wall component
lipopolysaccharide (LPS) may also maintain neuroinflammation.
While a correlation between viral infection and PD has not strictly
been established, preceding infections might still modulate the risk
for developing PD (66). For example, there is evidence for toxin-
related PD, which implies that toxins released by infectious agents
might also be responsible for some cases of ‘sporadic’ PD. Other
toxins such as the pesticide rotenone have neurotoxic and
neuroinflammatory effects that may kill dopaminergic cells and
thereby cause PD in people exposed to higher concentrations (67).

Possible links between PD and infection have become even
more topical with the still-ongoing worldwide COVID-19
pandemic. While there is very little consolidated knowledge
regarding possible interactions between the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and PD,
there are some interesting observations on pathogenic
coronaviruses and neuroinflammation or, more specifically,
May 2022 | Volume 13 | Article 878771
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PD. Antibodies against coronavirus antigens have been found in
the CSF of PD patients (68). In addition, intranasal infection of
hACE2 transgenic mice with SARS-CoV-1 caused severe CNS
infections that spread from the olfactory bulb to the basal ganglia
and midbrain within approximately four days (69). Considering
that COVID-19 patients often experience anosmia, SARS-CoV-2
is also likely to reach the CNS via the olfactory bulb.
Disconcertingly, in vitro assays have shown that the
nucleocapsid(N)-protein of SARS-CoV-2 accelerates paSyn-
aggregation by a factor of 10 (70). Thus, it is concerning that
COVID-19-related inflammation may trigger or accelerate PD in
patients at risk. Yet to date, there are only a few case studies
describing the development of PD after SARS-CoV-2 infection
(71, 72). Whether infection with SARS-CoV-2 impacts the
development of PD remains to be explored.

2.2 Adaptive Immune Response in PD:
T Cells Friends and Foes
Neuroinflammation in PD is not confined to the innate immune
system; it also involves adaptive immune responses. Several
findings indicate that various T cell subpopulations may
contribute to PD pathophysiology (73).

Neuroinflammation within the substantia nigra (SN) is well-
described in PD. Significant infiltration of both CD4+ and CD8+

T cells into the SN of PD patients has been described (42),
particularly elevated levels of CD8+ T cells (74, 75). It is possible
that CD8+ T cells have an important role in early PD, even before
paSYN can be detected in the SN, as relevant infiltration into the
SN has been observed in very early PD that subsides with disease
progression (74). Altered counts of CD4+ T cell populations in
the blood of PD patients have also been reported, but remain
controversial. Many studies describe a decrease in the overall
CD4+ T cell population in PD patients (44, 76–78). However,
both elevated (76) and reduced Treg cell counts (79) were found
in the blood of PD patients, although the studies used a relatively
non-specific marker (CD4+CD25+) to identify Treg cells.
Increased numbers of CD4+FoxP3+ Treg have been observed in
the blood of PD (aged 46-80 years) and AD (62-82 years)
Frontiers in Immunology | www.frontiersin.org 314
patients and healthy older people (51-87 years) compared to
healthy young controls (23-40 years) (80). An increase in Treg cell
activity with age was also seen, which was significantly more
pronounced in PD and AD patients compared to young controls
(80). In contrast, decreased levels of CD4+CD25highCD127low

Treg cells (44, 81) and reduced suppressive activity of Treg cells
has also been found in PD patients (77). Furthermore,
peripherally-reduced Treg cells and increased Th1 cell counts
were found to correlate with the severity of motor dysfunction
(assessed by Unified Parkinson’s Disease Rating Scale III
[UPDRS III]) (44, 81). In addition, decreased Th2 cell
numbers and a relative increase in Th1 cells were seen in PD
patients (44). Despite these discrepancies, most studies highlight
an increased peripheral immune response in PD, with a reduced
amoun t o f T r e g c e l l s (CD4+CD25 h i g hCD127 l o w )
(44, 81) (Table 1).

These population and activity shifts of T cells, along with an
increase in HLA-DR positive antigen-presenting microglia in PD
patients (82), support the idea that CD4+ T cells might contribute to
neurodegeneration in PD. Studies on the role of Th17 cells in PD
have generally confirmed this concept. Addition of IL-17 to
autologous cocultures between T cells and pluripotent stem cells
(iPSC)-derived mid brain neurons (MBN) from PD patients also
induced NFKB-dependent cell death. iPSC-derived MBN from PD
patients further showed higher expression of IL-17 receptors,
together with enhanced susceptibility towards death induction by
recombinant IL-17 or autologous Th17 cells (73). Interestingly,
Th17 cells are increased in PD patients, which is consistent with the
results of previous studies (81, 83, 84). However, one study in PD
patients reported a decrease in the Th17 cell count, along with
unchanged levels of IL-17 (44). Based on these studies, Th17 cells
and IL-17 are likely to favor the progression of PD, but their distinct
role remains unresolved (85, 86). Consequently, a comparison of
different analytical approaches might be needed to rule out possible
methodological issues.

In addition to flow cytometric analyses, gene expression
analyses and genome-wide association studies that investigate
alterations in immune response pathways are playing an
TABLE 1 | Overview of human and animal studies on T cells with special regard to Treg cells.

Publication derived from origin Major finding (referring to PD) Treg identification
(total amount)

(42), 2009 brain tissue human, mouse sign. infiltration of CD4+ and CD8+ T cells in the SN -
(74), 2020 brain tissue human sign. infiltration of CD8+ T cells in early stages of PD -
(75), 2022 brain tissue,

spleen
human (brain), mouse (brain,
spleen, lymph nodes)

sign. infiltration of CD8+ T cells in the SN of humans and of CD4+ and CD8+

T cells in the SN of AAV1/2-A53T-aSyn mice
-

(76), 2001 mesenteric
lymph nodes

rat no changes (6-OHDA); increase of CD4+CD25+ T cells (MPTP) CD4+CD25+

(44), 2018 blood human decrease of CD4+ T cells, Decrease of Th2, Th17 and Treg cells CD4+CD25highCD127low

(76), 2001 blood human total CD4+ T cells decreased, CD4+CD25+ T cells increased CD4+CD25+

(77), 2012 blood human total CD4+ T cells decreased. CD4+CD25highCD127low

suppressive activity of Treg impaired
(79), 2005 blood human decrease of Treg CD4+CD25+

(80), 2007 blood human no change of CD4+CD25+ T cells but increase in CD4+FoxP3+ T cells CD4+CD25high

CD4+FoxP3+

(81), 2015 blood human decrease of CD4+, Treg T cells CD4+CD25highCD127low

Increase of Th1, Th2, Th17 T cells
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increasing role in PD research. Expression quantitative trait loci
(eQTLs) are obtained by analyzing the genome and
transcriptome of patients with correlating alleles and the
expression level of transcripts. Based on CD4+ T cells and
monocytes from a multi-ethnic cohort of 461 healthy
individuals, susceptibility alleles for MS, rheumatoid arthritis,
type 1 diabetes, and PD were found to be overrepresented in
CD4+ T cells, while disease- and trait-associated cis-eQTLs
associated with AD and PD were primarily overrepresented
in monocytes (87). Further evidence for the relevance of the
immune system in PD pathogenesis comes from the association
of PD with an immune haplotype, including the DRB5*01
and DRB1*15:01 alleles, and from a non-coding polymorphism
in the region that might increase MHC-II expression (88).
Finally, a very recent study stratified PD patients by their T
cell responsiveness to a-SYN as a proxy for an ongoing
inflammatory autoimmune response (89). Gene expression
analysis in peripheral memory T cells then revealed a clear
PD-specific gene signature with transcriptomic markers for
inflammation, oxidative stress, phosphorylation, autophagy of
mitochondria, cholesterol metabolism, and chemokine signaling
via CX3CR1, CCR5, and CCR1.
2.3 Adaptive Immune Response in PD:
B Cells and Humoral Immunity
While T cells are the more prevalent adaptive immune cells in
CSF (90), B and T cell immunity are closely intertwined (91).
Although immunohistochemical analyses have found B cell-rich
tertiary lymphoid structures in most brains from patients with
MS, but not in the two PD patients investigated (92), there is
ample evidence for the involvement of B cells, antibodies, and
humoral immune effector mechanisms in PD (93–95). In a
postmortem study of 13 patients with idiopathic PD and three
with genetic PD (compared with 12 controls), all PD patients
showed IgG (mostly IgG1) but no IgM binding to dopaminergic
neurons, while Lewy bodies were strongly immunolabelled with
IgG (94). Nearby activated microglia expressed the high-affinity
activating IgG receptor FcgRI, which implies a significant role for
antibody-dependent cell-mediated cytotoxicity. The inhibitory
IgG receptor FcgRII was absent in all cases. Subsequent studies on
B cell-related adaptive immune responses in PD support the
involvement of B cells and humoral immune effector
mechanisms (96–98). Remarkably, some patient sera also
contained antibodies capable of neutralizing paSYN ‘seeding’
(forming of aSYN aggregates) in vitro (99). Elevated levels of
serum antibodies against aSYN have also been reported in a
comparison of sera from PD patients with AD patients and
controls (100). Of note, B cell numbers were found to be reduced
in PD patients (96, 101), along with an increase in IgA levels (102)
that correlated with non-motor symptoms (96). Moreover,
cytokine expression of B cells was altered in PD (96). Cytokine-
dependent interactions between B cells and Th1 and Th17 cells
(103) imply that B cells may also modulate proinflammatory Th17
cells in PD patients (73). In addition, there are relevant interactions
between the humoral immune response and the complement
system, as described in a comprehensive review (104).
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Given the paucity of studies focusing on the distinct function
of B cells in PD or other neurodegenerative diseases (103, 105), a
more profound understanding of B cell function might reveal
new opportunities for disease modification. Again, the targeted
transfer of knowledge from ‘classical’ neuroinflammatory disease
would be useful (103).

2.4 Anti-Inflammatory Disease Modification
Since proinflammatory changes have been consistently observed in
PD, several studies analyzed whether suppressing inflammation
might modify the disease course of PD. A population-based, case–
control study found that patients receiving immunosuppressive
therapy had a decreased risk of developing PD (106).
Interestingly, the greatest risk reduction was conveyed by drugs
affecting T cells such as the inosine monophosphate dehydrogenase
inhibitors, azathioprine and mycophenolat mofetil (106), while a
protective effect was revealed for corticosteroids. However, this
finding might be biased by smoking behavior. Smoking is
described as a possible protective factor for PD, and smokers
frequently need corticosteroids due to pulmonary maladies
(106, 107). Moreover, cigarette smoke induces chronic
inflammation, which results in immune cell exhaustion and
generally attenuates the function of many immune responses
(108). Therefore, smoking can be considered an immune-
inhibitory activity (109, 110). The potential effectiveness of anti-
inflammatory treatment is further exemplified by a lowered risk for
developing PD in patients receiving immunosuppressive
therapy (111).

Accordingly, patients with inflammatory bowel disease (IBD)
receiving an anti-TNF treatment had a 78% reduction in the
incidence of PD compared to IBD patients who did not receive
this therapy (112). However, the lack of direct comparison
between the incidence of PD in treated IBD patients compared
with non-IBD patients (112) means that the ability of anti-TNF
treatment to reduce PD incidence in non-IBD patients remains
unanswered. Other research has indicated that severity of IBD is
inversely associated with the risk of developing PD (-15%) (113).
However, although patients suffering from severe IBD are more
likely to receive anti-inflammatory drugs, immune-modulatory
treatment was not directly assessed. Accordingly, further studies
are necessary to verify a positive or negative correlation between
PD and anti-inflammatory treatment, both for IBD and for non-
IBD patients.

One of the most frequently used anti-inflammatory drugs is
ibuprofen, a reversible cyclooxygenase-2 (COX-2) inhibitor and
non-steroidal anti-inflammatory drug (NSAID) (114).
Intriguingly, ibuprofen users showed a lower risk for PD,
whereas no protective effect could be demonstrated for
acetylsalicylic acid (ASA) (114). In a prospective study of
subjects without PD who were assessed at baseline for NSAID
intake, 0.2% developed PD during a 6-year follow-up (115). A
significant dose-response relationship between ibuprofen intake
(tablets/week) and reduced PD risk was found. Again, this effect
was not observed for ASA, other NSAIDs (e.g., indomethacin),
or acetaminophen. Although all NSAIDs and ASA are known to
inhibit COX-2, only ibuprofen was shown to have some impact
on PD prevention. Pre-clinical findings from in vitro models
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indicate that ibuprofen prevents oxidative damage induced by LPS
injection and better protects dopaminergic neurons against
glutamate neurotoxicity than ASA (116, 117). The
neuroprotective effects of ibuprofen have been confirmed in
studies that considered confounder variables of PD, such as age,
smoking, and caffeine intake (115, 118). However, the putative
neuroprotective effect of ibuprofen in PD remains controversial;
other research focusing on all NSAIDs rather than on ibuprofen
alone found that NSAIDs had no neuroprotective effects (107). In
this context, it is noteworthy that ibuprofen is known to reduce
inflammation via inhibition of COX-2, but also via modulation of
the angiotensin pathway by shifting the ACE/ACE-2 (angiotensin
converting enzyme) receptor ratio towards ACE-2 (119, 120)
(discussed in detail in Section 4.2).

Drugs such as b-agonists and b-antagonists have been shown to
affect the incidence of PD in opposing directions, with b-agonists
seeming to be somewhat protective (121, 122). However, further
evidence is needed to confirm whether b-agonists might act directly
on immune cells and are thus capable of modulating PD-related
inflammation (122). It should be noted that b-agonists are often
used in patients suffering from chronic obstructive pulmonary
disease, a common consequence of frequent smoking. The fact
that smoking was reported to lower the incidence of PD in one
study represents an epidemiological bias (121).

Given that observational studies have yielded controversial
data regarding the neuroprotective effects of different drugs and
immunomodulators (123–128), randomized, controlled trials are
needed to better decipher which drugs have distinct
neuroprotective effects in PD.
2.5 Current Clinical Trials for Anti-
Inflammatory Disease Modification in PD
Current clinical trials on anti-inflammatory therapy in PD focus
on the treatment of glucose metabolism, improvement of
oxidative stress, and regulation of gut microbiota.

2.5.1 Regulation of Glucose Metabolism
Impaired insulin signaling resulting in altered energy balance and
impaired cell repair mechanisms has been observed in PD patients
(129–131). Glucagon-like peptide-1 (GLP-1) is a growth factor and
insulin-stimulating hormone that can activate the same effector
molecules as insulin, and its receptor (GLP1R) is expressed in
neurons. In addition to the known effects of GLP1R on blood sugar
regulation and stimulation of the hypothalamus to regulate appetite,
studies have shown that GLP1R agonists have neuroprotective
effects in different animal models of PD. One agonist, exendin-4,
can enhance cognitive function (132) and attenuate
neurodegeneration in 6-hydroxydopamin (6-OHDA) rats (133).
In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated
mice, the newer GLP-1 mimetics liraglutide and lixisenatide can
improve motor impairment and reduce dopaminergic cell loss in
the SN (134, 135). In a human A53T aSYN (hA53T-aSYN)
transgenic mouse model, a long-acting GLP1R agonist reduced
behavioral deficits and neurodegeneration (136). It is noteworthy
that activation of GLP1R can inhibit the production of
proinflammatory cytokines in microglia, such as TNF and IL-1B
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(137, 138). The neuroprotective effect of semaglutide treatment is
currently under investigation (139).

2.5.2 Regulation of Gut Microbiota
The gastrointestinal (GI) tract and CNS have complex mutual
interactions (140) that are affected by the intestinal flora
(141–143). Therefore, a healthy and stable intestinal flora is
important for immunity, homeostatic balance of barrier
integrity, and metabolism (144). Interestingly, changes in the
intestinal flora may alter nerve development and even cause
neurodegenerative disorders (145). Conversely, traumatic brain
injury may lead to impaired intestinal barrier function (146,
147). GI dysfunction in PD patients, particularly obstipation, is
commonly known to be one of the initial symptoms that
precedes motor impairment (148). Changes in intestinal
microbial flora can alter the barrier function and permeability
of the gut and subsequently influence the immune system (140,
149), and have been linked to PD (149). It is noteworthy that
paSYN can be found in the enteric nervous system (150).

A speculative hypothesis is that the methylation status of the
SNCA gene might be influenced by the gut microbiome. It is
accepted that duplications and triplications of the SNCA gene
confer a higher risk of developing PD (151, 152). Decreased
methylation of the SNCA gene, which would lead to increased
transcription, could likewise affect aSYN expression and
influence the risk of PD (153). Postulating a potential role of
the gut microbiota as an epigenetic factor for DNA methylation,
an ongoing clinical study is investigating the composition of the
GI bacteria in the stool of PD patients and healthy controls by
extracting total bacterial DNA from the samples (154).

2.5.3 Regulation of Oxidative Stress
Oxidative stress in the brain plays a key role in the development
of PD (155, 156), and results from an imbalance between reactive
oxygen species (ROS) and the ability to scavenge reactive
intermediates (157). ROS, which include superoxide, nitric
oxide, hydroxyl radical, hydrogen peroxide, and peroxynitrite,
can be generated from various sources including the electron
transport chain or activated immune cells. Interestingly,
increased oxidative stress seems to be target-specific and, in
the case of PD, related to LP and the paSYN contained in Lewy
bodies, where paSYN nitration (an oxidation marker) was found
to be elevated (158–160). Furthermore, the SN of early PD
patients has been found to contain reduced amounts of the
antioxidant glutathione (GSH), which correlated with PD
severity (159).

Increasing the availability of reduced GSH N-acetylcysteine
(NAC) can potentially reduce the damage to neurons caused by
oxidative stress. Inacurrent clinical trial,NACisbeingused toprotect
PD patients from oxidative damage (161). Aside from NAC, other
supplementswith antioxidative properties are under investigation. In
theCNS, vitaminB3 (niacin) is consideredakeymediatorofneuronal
development and survival (162). Niacin is a cofactor of nicotinamide
adenine dinucleotide and NADPH, which are necessary for the
scavenging of oxidants and needed for GSH regeneration (157).
Niacin can improve the integrity of mitochondria and hence the
energy supply of neurons. By enhancing antioxidant defense
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mechanisms, niacin can protect the normal structure and function of
neurons exposed to oxidative stress, thereby delaying the progression
of PD (163). Furthermore, niacin binds to the G-protein-coupled
hydroxycarboxylic acid receptor 2, which is upregulated in a
proinflammatory environment and which may downregulate
inflammation (164–166). Since PD patients are known to have low
levels of niacin due to mitochondrial malfunctioning,
supplementation of niacin could be beneficial (166). A clinical trial
is evaluating the effectiveness of niacin or niacinamide
supplementation on inflammation and severity of PD
symptoms (167).
3 ANIMAL MODELS AND THEIR
CONTRIBUTION TOWARDS
UNDERSTANDING PD
PATHOMECHANISMS

Animal models play an important role in understanding PD
pathophysiology, including neuroinflammatory processes. Next
to the 6-OHDA model (168), one of the most often used PD
models is induced by MPTP delivery (169), which persists
extensively in the SN and results in PD symptoms with
inhalation and cutaneous contact (169). Immune responses in
the various MPTP models used are, however, quite different.

3.1 Innate Immune Responses in Animal
Models for PD
Toxins such as MPTP, rotenone, and 6-OHDA act as DAMPs and
initiate a strong innate immune response with microglia activation
and subsequent neurodegeneration in the SN (170–172). This
immune response resembles the microglia activation found in
human brain autopsies (21, 173). In the 6-OHDA model,
neurodegeneration is accompanied by a gradual repolarization of
microglia from an anti-inflammatory M2 to a pro-inflammatory
M1 phenotype (174). Cytokine production by M1 cells is
intracellularly initiated by NFKB (53, 175, 176), which in turn
induces interleukin and procaspase-1 transcription. Together with
the inflammasome NLRP3, caspase-1 activates IL-1B. Moreover,
other proinflammatory proteins such as iNOS and TNF are also
released from M1 cells (53, 175, 176) and contribute to
neurodegeneration in PD (177). Consequently, inhibition of
NFKB protects MPTP mice from neurodegeneration (178). M2
macrophages, in contrast, contribute to neuroprotection and release
neurotrophic factors (176) (Figure 1). Since TLR-4 knock-out
reduced the number of MHC-II+ microglial cells and partially
protected MPTP-treated mice from dopaminergic degeneration in
the SN, MPTP triggers also neuroinflammation via TLR-4 (179).
However, the canonical ligand for TLR-4 is LPS, which is
commonly found on cell walls of gram-negative bacteria (180) In
LPS-driven models, LPS is either systemically administered or
focally injected into the SN (181). Since microglia activation after
delivery of LPS or another of the aforementioned toxins results in
the same downward cascades, all of these models lend themselves to
studying innate immune responses (181–183). However, in mice
lacking the mitophagy inducers PINK and Parkin, LPS triggers the
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release of mitochondria-derived vesicles (184, 185). This can prime
CD8+ T cell responses against mitochondrial antigens (184, 185).
External stressors such as LPS can thus also induce adaptive
immune responses, in particular in transgenic models with
impaired mitochondrial functions.

For MPTP, but not 6-OHDA, a Lewy body-like pathology has
been found in non-human primates (186). An even more
prominent Lewy body-like histopathology was observed in viral
vector-based models overexpressing human mutations of aSYN
(e.g., A53T) (187). Furthermore, viral vector-based models
demonstrate a similar innate immune response, as seen in toxin-
based models. paSYN, which is believed to enter the cell via TLR-2
to unleash its toxic potential (53, 188, 189), thus apparently acts like
a DAMP (190). Interestingly, orthotopic injection of an aSYN-
encoding AAV into the SN only induced neurodegeneration in the
presence of Fc gamma receptors (191), which implies an antibody-
dependent activation of the complement cascade and/or antibody-
dependent cellular cytotoxicity that may be mediated by microglia,
for example (192). However, unlike astrocytes, microglia do not
directly contribute to a proinflammatory environment after
exposure to paSYN (193). Nevertheless, progressive
neurodegeneration can be induced by microglia-specific
overexpression of paSYN in the absence of paSYN in
dopaminergic cells (194). The critical role of CD4+ T cells was
confirmed by showing that virus-based aSYN-overexpression can
only induce microglia activation and neurodegeneration when
MHC-II is present (195). Therefore, viral vector-based models
require a complex interplay between different types of immune
cells, which may also best reflect observations made in human PD.

Since animal research in PD has focused mostly on alterations
within the CNS, our understanding of peripheral innate and
adaptive immune processes in PD pathology is still limited.
Recent studies have provided evidence that increased gut
permeability and gut microbiota are likely to contribute to PD
development (149, 196). This has resulted in PD becoming more
and more accepted as a systemic disease (197). For instance,
overexpression of human TNF (hTNF) in a mouse model leads
to microglia activation in various regions of the brain (198, 199),
while immunomodulation with infliximab could attenuate
microglia activation (199). Since infliximab cannot penetrate
the blood-brain barrier, this finding indicates that effective
treatment of neuroinflammation could be achieved by
modulating peripheral immune mechanisms.

3.2 Adaptive Immune System in Animal
Models for PD
Several animal models support the hypothesis that the adaptive
immune response in PD is mainly T cell driven, whereas the role
of B cells remains enigmatic (41, 42, 73, 75, 88, 200).
Nevertheless, the mechanisms of T cells vary across different
animal models (42, 201).

3.2.1 MPTP Model
Variations in frequency and dosage of MPTP injections in mice
result in different PD models with diverse disease kinetics. The
subacute MPTP model is generated by administering MPTP
once daily over five consecutive days, whereas an acute model is
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induced by delivering MPTP every two hours for four times in
only one day (202). For the acute model, it is important to note
that in contrast to humans, the initial immune response
decreases significantly within 30 days, and MPTP-injected
mice may recover over time (203). Moreover, paSYN is not
found in this model per se. However, if the adaptive immune
response in the acute model is maintained by peripherally
administering cytokines such as RANTES (Regulated on
Activation, Normal T cell Expressed and Secreted) and eotaxin
twice a week, the inflammation is sustained and paSYN
accumulates in the SN of the rodents (203). In this model, paSYN
formation is linked to a sustained proinflammatory environment.

CD4+ and CD8+ T cell infiltration in the SN of acuteMPTPmice
supports the idea that T cells contribute to neurodegeneration in this
PD model (42). CD4+ or recombinant activating gene 1 (RAG1)-
deficient mice, which lack mature lymphocytes, show attenuated
neurodegeneration upon treatment with MPTP. In contrast,
neurodegeneration is unrestrained in CD8+ T cell-deficient mice
(42).BlockadeofRANTESandeotaxin in theMPTPmouseandnon-
humanprimatemodel reducesmicroglia activation,CD4+ andCD8+

T cell infiltration, and neurodegeneration (204, 205). Continuous T
cell trafficking and induction of paSYN in the SN of MPTP mice is
also driven by supplementation of RANTES and/or eotaxin, but not
by TNF and IL-1B (203). Furthermore, MPTP-treated mice show
altered and dysfunctional CD4+CD25+ Treg cells. Administration of
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natural Treg cells leads to attenuation of SN degeneration (206). As
Th17 cells appear to contribute to nigrostriatal degeneration (206,
207), the beneficial effect of Treg may be due to their ability to inhibit
TH17 cells. However, while mechanistic insights from the
aforementioned studies are based on the acute MPTP model, CD4+

Tcell infiltrationoccurs earlier in the subacutemodel (208).Given the
differences between the models, the choice of the most appropriate
model may determine the outcome (209).

3.2.2 6-OHDA Model
This model is generated by injecting 6-OHDA either directly into
the SN, the medial forebrain bundle, or the striatum (168, 210, 211).
The initial cytotoxic effect of 6-OHDA is known to be mediated via
oxidative stress (212) and impaired mitochondrial function (213).
Data on the role of the adaptive immune response in the 6-OHDA
model are still scarce. But it is known that 6-OHDA administration
leads to infiltration of CD4+ and Treg cells in the CNS (76, 174). In
contrast to MPTP, 6-OHDA must only be administered once to
induce continuous neuroinflammation and neurodegeneration
(174, 201). Apart from neuroinflammation, 6-OHDA-treated rats
also show decreased circulating Treg cells, indicating that this model
can reflect aspects of human PD (174). However, while CD4-/- or
Rag1-/- knock-out mice injected with MPTP were partly protected
from severe neurodegeneration (42), 6-OHDA-treated Rag1-/- mice
showed even more pronounced neurodegeneration in the SN than
FIGURE 1 | Illustration of proinflammatory cascade and main cytokines contributing to cell death in Parkinson’s disease - Created with BioRender.com.
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immune-competent mice (201) or rats (214). Accordingly, the
adaptive immune system is mostly neuroprotective in the 6-
OHDA rodent model. Thus, toxin-based models provide
contradictory data on the role of the adaptive immune system.
Based on the epidemiological data linking PD and adaptive immune
responses in humans, these models do not seem to adequately
recapitulate the pathomechanisms underlying the human disease.

3.2.3 Viral Vector and Preformed Fibrils Models
Creating a model that shows a large overlap with the human
phenotype and pathophysiology is the main objective when
generating new animal models. Regarding chronic disease
progression, mild-to-moderate nigrostriatal degeneration,
Lewy-like pathology, and neuroinflammation, the AAV1/2-
A53T-aSYN model resembles human PD much more closely
than conventional toxin-induced models (75, 187, 215).
Recently, CD4+ and CD8+ cells infiltrating the SN were found
in the AAV1/2-A53T-aSYN model (75). Ten weeks after AAV1/
2-A53T-aSYN injection, CD4+ and CD8+ cells in the spleen were
also activated. Moreover, RAG deficiency protected dopaminergic
SN neurons, indicating that CD4+ and CD8+ crucially contribute
to neurodegeneration in this model (75). This reflects findings
made in PD patients, thereby demonstrating a higher immune-
related face validity of the AAV1/2-A53T-aSYN mouse model
compared to the toxin-induced MPTP and 6-OHDA models.
Comparable results, including gradual dopaminergic cell loss
and CD3+ infiltration in the SN, were also achieved by viral
vector-based application of human aSYN in the SN of mice (216,
217) or by directly injecting preformed aSYN fibrils (aSYN-PFF)
into the striatum of mice (62). The immune response triggered by
the presence of paSYN is thus conserved and comparable between
different models. This is in line with the recently revealed role of
aSYN as a critical mediator of inflammatory and immune
responses (18).

Aside fromPDmodelswith direct injectionofpaSYNoraSYN-
PFF into the brain, there are also models based on peripheral
injection of aSYN-PFF. Intriguingly, spread of paSYN from the
periphery to the brain is observed, accompanied by motor deficits
(218, 219). However, in a more recent study where strong
involvement of the adaptive immune response in the brain was
confirmed, further inflammatory stress by LPS was required to
achieve spreading of paSYN into the brain (220). Accordingly,
ongoing neuroinflammation contributes to the progression and
maintenance of PD (197, 221–225).

3.2.4 Conclusion for the Role of the Immune System
in PD Animal Models
These animal models provide substantial support for the
hypothesis that the immune system participates in the
neurodegeneration observed in PD. However, for investigating
adaptive immunity, choosing the right animal model is key.
Central and peripheral immune responses must both be
considered. Finally, since the overall role of the immune
response in PD animal models is still understudied, interactions
between paSYN, microglia, astrocytes, the adaptive immune
system, and peripheral inflammation need to be explored.
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4 SIGNALING CASCADES RELATED TO
PD AND NEUROINFLAMMATION AS
POSSIBLE THERAPEUTIC TARGETS

Pathophysiology of PD is manifold and includes several well-
investigated pathways, while others may still be unknown.
There are several important signaling pathways related to
inflammation and neurodegeneration.

4.1 COX-2 and Disease Modification
With NSAIDs
ASAis a standarddrug for secondaryprophylaxisof ischemic stroke
and a potent non-competitive inhibitor of COX-2. Since COX-2 is
expressed in many cell types, including platelets and microglia, it is
involved in many physiological processes. Intriguingly, the
protective role of COX-2 inhibitors on neuroprotection remains
controversial. An early administration of high ASA doses showed a
neuroprotective effect inMPTPmice,while otherCOX-2 inhibitors
including ibuprofen did not (226). In contrast, the protective effect
of ASA in PD patients is comparatively low, while ibuprofen is
associated with decreased disease risk compared to other NSAIDs
(114, 115). Furthermore, some studies have shown that NSAID
intake has no effect on PD development, but instead correlates with
an increased risk for PD (107, 227). It is important to note that none
of these studies compared equivalent dosages. In MPTP mice,
however, COX-2 is upregulated and known to be involved in the
oxidation of dopamine, forming dopamine quinone (DAQ) (202).
Interestingly,COX-2-deficientmice are protectedagainst induction
of PD, which was not explained by reduced inflammation but by
prevention of DAQ formation (202, 228, 229). DAQ conjugates
with GSH to form GSHDAQ. After conversion to 5cysDAQ,
GSHDAQ inhibits mitochondrial complex I. In turn, this leads to
decreased degradation of ROS and increased DAQ levels.
Subsequently, this vicious circle results in microglia and astrocyte
activation and a shift towards a proinflammatory state (175),
accompanied by exhaustion of the pentose-phosphate pathway
(PPP). However, there are multiple pathways that result in
upregulation of COX-2 in brain neurons, including increased N-
methyl-D-Aspartate (NMDA) receptor-dependent activity (230),
cerebral ischemia, seizures, and diseases such as AD or PD (231).
Another important function of COX-1 and COX-2 is the further
processing of arachidonic acid. COX-1 induction leads to a
substantial increase in thromboxane A2 (TXA2) in human
endothelial cells, while induction of COX-2 by IL-1B leads to a
minor increase in TXA2 but a substantial induction of the
proinflammatory proteins prostacyclin (PGI2) and prostaglandin
E2 (PGE2) (232).

PGI2 and PGE2 are physiologically involved in body
temperature regulation. PGI2 and TXA2 have important roles
in the maintenance of vascular homeostasis and can mainly be
described as agonist and antagonist (233). Among the different
PGE2 receptors (EP1-4), EP2 contributes to neurodegeneration
in the presence of paSYN in PD (234). EP2-deficient microglia
from mice showed increased clearance of paSYN on brain slices
from Lewy-body patients. Furthermore, EP2-/- MPTP mice were
spared from neurodegeneration in the SN (234). However, this
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mechanism only seems to apply for neurotoxicity associated with
chronic inflammatory processes. In acute pathological processes
such as brain ischemia or NMDA-induced toxicity, EP2
activation exerts protein kinase A-dependent protective effects
(231). Interestingly, EP2 is also neuroprotective in the 6-OHDA
primary cell culture (235). The cause of this dichotomous action
of EP2 is not yet understood (231).

Beside possible neuroprotective effects, COX-2 inhibitors
increase intestinal permeability that correlates with their
potency to inhibit COX-2, thus ultimately leading to local
inflammatory side effects (236, 237). Furthermore, since
increased intestinal permeability is discussed as an important
pathological axis of PD development, prolonged treatment of PD
with potent NSAIDs is not advisable, which could explain the
controversial results (149, 196).
4.2 Oxidative Stress, PPP, and
Renin-Angiotensin System
4.2.1 Oxidative Stress and PPP
Under steady-state conditions, ROS are maintained in a stable
range and participate in the regulation of cell growth,
differentiation, apoptosis signals, and enzyme activity by
modulating the production of ceramide, kinase regulatory
proteins, and activation of transcription factor NFKB (238, 239).
Oxidative stress is a potent and highly conserved defense
mechanism against intruders such as bacteria or fungi (240). By
stimulating the production of inflammatory factors, ROS play an
essential role in pathogen clearance (238). Free radical scavengers
such as GSH act as a counterpart to ROS and protect cells from
excessive oxidative stress. Maintaining the reduced state of GSH by
oxidation of NADPH is therefore important for tissue homeostasis.
Under pathological conditions, such as in PD, the level of ROS
outpaces the compensatory mechanisms. ROS are located
upstream of many inflammatory signaling pathways, upregulate
the expression of other inflammatory factors, interfere with
signaling pathways that regulate growth factors, and often alter
signal transduction. High levels of ROS can be generated (241–244)
by M1 microglia, but also the renin-angiotensin system (RAS) or
NADPH-oxidase and its homologues, the so-called NOX enzymes
(240). High ROS concentrations may cause apoptosis, structural
damage, and cell death (159). ROS can therefore directly exert
neurotoxicity and amplify neurotoxic inflammatory responses
(157, 159). Understanding the role of pathways such as the PPP,
which expurgate excessive amounts of ROS, might be crucial for
finding an effective treatment against PD. The PPP connects
glucose metabolism with NADPH production and nucleotide
precursor synthesis. In this pathway, glucose-6-phosphate (G6P)
is metabolized to produce NADPH and ribose-5-phosphate. In
nearly all cells, the main task of PPP is to provide ribose-5-
phosphate. In neurons, however, its main task is to provide
NADPH to eliminate ROS (245). The definite role of PPP in PD
remains still uncertain (245), even though there is increasing
evidence that PD is associated with disorders of glucose
metabolism (246–248).

The rate-limiting enzyme of the oxidative part of the PPP is
G6P dehydrogenase (G6PD), which catalyzes the reaction
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between G6P and NADP+. Through consumption of NADPH,
oxidative stress leads to the accumulation of large amounts of
NADP+ and subsequently to the activation of G6DP due to the
increased concentration of oxidants (249). In MPTP mice,
neurodegeneration was shown to correlate with NADPH
oxidase upregulation (242). Moreover, G6PD expression was
positively associated with microglial activation and
dopaminergic neurodegeneration (245), indicating that
oxidative stress is closely linked to neurodegeneration.

Another important protein related to oxidative stress is GSH,
an important antioxidant in brain neurons. The level of GSH in
cultured cells is directly related to the production of NADPH by
PPP (250). Increased ROS and decreased GSH levels have been
described in many PD models and patients (155, 251–254).

Maintaining or adding NADPH in therapeutic dosages might
help to overcome high levels of ROS, keep a stable level of GSH in
the brain, and finally result in neuroprotection.

4.2.2 Renin-Angiotensin(-Aldosterone) System
The renin-angiotensin[-aldosterone] system (RA[A]S) is well-
known in the context of blood pressure regulation (255). Stimuli
such as increased activity of kidney baroreceptors, low plasma
sodium levels, and activation of b1-receptors result in release of
renin from the kidney into the blood circulation. Renin then
cleaves liver-synthesized angiotensinogen into angiotensin I
(AngI). Subsequently, AngI is cleaved via ACE to angiotensin
II (AngII). Binding of AngII to the G-protein-coupled AngII
receptor type 1 (AT1R) is essential for blood circulation. AT1Rs
are commonly expressed in the vascular system, the heart, and
the brain. Aside from binding to AT1R, AngII also induces
release of aldosterone from the adrenal cortex (256). Drugs for
the treatment of arterial hypertension therefore interfere with the
RA[A]S by inhibiting renin, ACE, AT1R, or the aldosterone
receptor (257). Investigations into the role of the RA[A]S in the
brain, and more specifically in dopaminergic neurons, have
deepened our understanding of neurodegeneration in PD.
Different groups have demonstrated in both 6-OHDA and
MPTP mice that neurodegeneration can be accelerated or
decelerated through AT1R activation or blockade, respectively
(243, 255, 258, 259). However, the RAS includes many complex
crosslinks with pro- and anti-inflammatory endpoints
(Figure 2). The main axis consists of core substrates including
angiotensinogen, AngI/II, and renin. AngII mainly binds AT1R, but
also the AngII receptor (AT2R), which initiates anti-inflammatory
and anti-oxidative cascades (123, 260). This contrasts with
AT1R, which initiates and maintains neuroinflammation
and oxidative stress (260–262). AngII can be cleaved to AngIII
by aminopeptidase-A, and further to AngIV and Ang3-7
by aminopeptidase N or carboxypeptidase P and prolyl-
oligopeptidase, respectively. AngIII binds to AT1R and AT2R,
whereas AngIV has a low affinity to AT1R and AT2R but a high
affinity to the AngIV receptor (Figure 2). AngIV and analogues
were shown to have a positive effect on synaptogenesis and
improved clinical outcomes after stroke and subarachnoid
hemorrhage by increasing cerebral blood flow (263–266).

The neurodegenerative effect mediated by AngII and the AngII-
AT1R complex are mediated by an increased release of ROS via the
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NADPH-oxidase complex in microglia and dopaminergic neurons,
resulting in a vicious proinflammatory circle (123). The increased
release of ROS is mediated by increased nuclear expression of AT1R
and NOX in dopaminergic neurons of PD patients, resulting in
oxidative DNA damage and cell loss (267). In contrast, the
cytoplasmic and membrane expression of AT1R is reduced (267).
Under normal conditions, the AT1R-NOX interaction maintains
cell homeostasis and physiological levels of dopamine. The
pathological shift of AT1R expression from the membrane/
cytoplasm to the nucleus reflects the disease process and
contributes to secondary neurodegeneration due to increased
oxidative stress. Interestingly, this shift can be observed
relatively early. An altered ratio of membrane/cytoplasm to
nuclear AT1R expression has already been observed in patients
with a neuropathological diagnosis of PD who had not yet
developed clinical manifestations or significant dopaminergic
neurodegeneration (267). Yet to date, a potential re-distribution
of other AT receptors in the brain of human PD patients has rarely
been explored. However, ACE2 cleaves AngII and AngI to Ang1-9
and Ang1-7, respectively, and thereby shifts the RAS away from the
proinflammatory main axis to the more anti-inflammatory side
axis. Altogether, the RAS is a complex system that may be
Frontiers in Immunology | www.frontiersin.org 1021
amenable to therapeutic modulation. The potential of targeting
the RAS in PD and AD has therefore been discussed in
considerable detail in dedicated review articles (123, 261).

Of note, unwanted alterations in the subtle balance between
the pro- and the anti-inflammatory axis of the RAS occur during
COVID-19 infections, where ACE2 is the main entry receptor for
the pathogenic SARS-CoV-2 virus (268). Neurological
consequences of the strong inflammation observed in severe
COVID-19 remain to be studied.
5 CONCLUSIONS/OUTLOOK

Even 200 years after the first description of PD, its
pathophysiology is still far from being fully understood.
Fortunately, research towards a causal treatment of PD has
made substantial progress in the last 15 years. Realizing that
(systemic) inflammation plays an essential role of PD, at least in
its maintenance, might pave the way for new therapeutic
pathways. Knowledge transfer from classical inflammatory
diseases or diseases that lead to inflammatory processes will
likely have a major impact on the therapy of PD, and allow new
FIGURE 2 | Illustration of the renin-angiotensin system (RAS) and the different interactions of the renin-angiotensin-[aldosterone] system RAAS substrates on
receptors. - Created with BioRender.com.
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development and/or a repurposing of drugs that are already
available. In addition, research in early diagnostics for PD is
important. Ideally, neurodegeneration can be halted by
initiating treatment before severe symptoms have developed.
Skin biopsy or sleep analysis, along with new serum/liquor
parameters, might lead to a sensitive and specific early diagnosis
of PD. In turn, this should open up an earlier treatment window
for future PD patients. Treating early with well-tolerated
neuroprotective/anti-inflammatory agents certainly holds great
promise for this devastating disease.
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Neurological disorders (NDs) are one of the leading causes of global death. A

sustained neuroinflammatory response has been reported to be associated

with the pathogenesis of multiple NDs, including Parkinson’s disease (PD),

multiple sclerosis (MS), Alzheimer’s disease (AD), amyotrophic lateral sclerosis

(ALS), andmajor depressive disorder (MDD). Accumulating evidence shows that

the recruitment of abundant lymphocytes in the central nervous system may

contribute to promoting the development and progress of inflammation in

neurological disorders. As one subset of T lymphocytes, CD4+ T cells have a

critical impact on the inflammation of neurological disorders. T helper (Th) 17 is

one of the most studied CD4+ Th subpopulations that produces cytokines (e.g.,

IL-17A, IL-23, IL-21, IL-6, and IFN-g ) , leading to the abnormal

neuroinflammatory response including the excessive activation of microglia

and the recruitment of other immune cell types. All these factors are involved in

several neurological disorders. However, the possible mechanisms of Th17

cells and their associated cytokines in the immunopathology of the

abovementioned neurological disorders have not been clarified completely.

This review will summarize the mechanisms by which encephalitogenic

inflammatory Th17 cells and their related cytokines strongly contribute to

chronic neuroinflammation, thus perpetuating neurodegenerative processes

in NDs. Finally, the potential therapeutic prospects of Th17 cells and their

cytokines in NDs will also be discussed.

KEYWORDS

Th17 cells, neurological disorders, IL-17A, neuroinflammation, immune system, microglia
1 Introduction

Neurological disorders (NDs) are highly prevalent and have become the second most

frequent cause of mortality, with approximately 276 million cases worldwide to date (1).

With the global population aging, NDs are recognized as a significant public health

challenge today (1, 2). At the same time, the causes and mechanisms behind most NDs

are still vague. Though both genetic and environmental factors had been suggested in the
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etiology of NDs (3, 4), increasing evidence indicates that

neuroinflammation is one of the defining characteristics of NDs.

As a pivotal part of the central nervous system (CNS) innate

immunity, neuroinflammation initially restrains infection and

eliminates pathogens, cell debris, and aggregated or misfolded

proteins in a generic manner. While in chronic NDs,

neuroinflammation becomes continuous and is harmful to

neuronal cells. Increasing evidence has suggested that

neuroinflammation contributes to various NDs, including

Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),

multiple sclerosis (MS), Alzheimer’s disease (AD), and major

depressive disorder (MDD) (5–7). One of the common traits of

these NDs is their neuropathological interactions with the

microglia (the resident macrophages in the brain) and

astroglia, which trigger an innate immunological response,

contributing to the disease’s severity and course (8). The

pathogenesis of these diseases was not only restricted to the

immunological mechanisms in the brain but also had a strong

interaction with the systemic immune system.

Additionally, various pieces of evidence demonstrate that the

communication between the CNS and systemic immune systems

is possible through immune cells and cytokines breaking the

integrity of the blood–brain barrier (BBB) (9, 10). It has been

demonstrated that blood-borne immune cells (e.g., CD4+ T cells,

Th cells) are highly neurotoxic and represent an additional crucial

mediator of neuroinflammation. Systemic inflammation, induced

by oxidative stress damage, environmental stressors, gut

microbiota imbalance, etc., may trigger microglial activation and

ultimately contribute to the development of neurological disease

processes, according to abundant evidence (8, 11, 12).

Among the critical neuroinflammatory cells in NDs, Th

cells, especially Th17 cells, have already been known

to be involved. At the same time, various sources of evidence

have indicated that Th17 cell levels in both serum, cerebrospinal

fluid (CSF), and brain were elevated in the laboratory model

animals of NDs (13–15). However, the accurate role of

neuroinflammation mediated by Th17 cell and their cytokines

in the etiology of the abovementioned NDs is still unclear. With

a focus on the roles of Th17 cells and their cytokines in NDs,

we have attempted to unravel the precise mechanism of

neuroinflammatory disorder in this study. In addition, we

provide an overview of the most recent developments in

targeting Th17 cells and their cytokines, as well as their

prospective clinical applications.
2 Th17 cells

2.1 Definition and differentiation of
Th 17 cells

After encountering specific pathogens, the innate immune

system will promote the development of naive CD4+ T cells into
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effector Th cells, which are fundamental regulators of adaptive

immunity. Different subtypes of CD4+ Th cells are distinguished

according to cytokines, transcription factors, and effector

immune regulatory functions. Initially, activated CD4+ Th cells

were frequently differentiated into one of two fates: Th1 or Th2

cells. Th1 cells, generating interleukin (IL)-2, interferon-gamma

(IFN-g), and tumor necrosis factor-alpha (TNF-a), mainly take

part in delayed-type hypersensitivity reactions and cell-mediated

immune responses, such as autoimmune disorders. Th2 cells,

renowned for their generation of the cytokine IL-4, mediate host

defense against helminths and link with the pathogenesis of

allergic diseases. In 2005, a newly identified subtype of CD4+ Th

cells, so-called Th17 cells, was discovered that represent a diverse

population, which underwent differentiation in the presence of

transforming growth factor-beta (TGF-b) and IL-6 (16, 17).

Now, it was recognized that Th17 cells might be more significant

than Th1 cells in the development of some models of

autoimmune illness, including PD, AD, MS, ALS, and MDD

(5–7).

Th17 cells perform crucial roles in pro-inflammatory

properties, inflammation, and essential tasks to defend the

host against extracellular bacterial and fungal infections. Th17

cells are defined as CD4+ Th lymphocytes that secrete large

amounts of IL-17A and express the transcription factor retinoic

acid-related orphan receptor gamma-T (RORgt), which possibly

acts as a molecular determinant for their polarization (18, 19).

Th17 cells have two most distinct characteristics: strong

plasticity and prominent capability to boost other immune

cells (e.g., Th1 cells, neutrophils, and immunosuppressive head

box P3 Treg cells).

Initially, the differentiation of Th17 cells was shown to be

induced by the combination of IL-6 and TGF-b (20).

Subsequently, Korn and colleagues found that IL-21, which

was induced by signal transducer and activator of

transcription 3 (STAT3)/IL-6 signaling, could affect Th17 cell

development and response amplification (21). IL-21 acts in a

loop of autocrine amplification to culminate in the

differentiation and proliferation of Th17 cells and the

production of the IL-23 receptor (IL-23R). IL-23 plays a key

role in the late growth and maturation of Th17 cells by activating

its receptor IL-23R via IL-6 and/or IL-21 (Figure 1) (22).

Additionally, Th17 cells differentiated in the IL-1+/IL-23+/

TGF-b− environment show greater encephalitogenic activity

after adoptive transfer, which highlights the importance of IL-

23 and IL-1 in the differentiation and pathogenicity of Th17 cells

(23). Nonetheless, IFN-g (Th1 cytokine) and IL-4 (Th2 cytokine)
can inhibit the differentiation of Th17 cells from naive CD4+ Th

cells as long as the Th17 cells have not been fully developed

(24, 25).

RORgt, which was encoded by the RORC gene and generally

expressed in Th17 cells, is the major regulator of the Th17 cell

differentiation. Rorc knockout mice cannot produce Th17 cells

(26). Meanwhile, overexpression of RORgt, triggered by the
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activity of IL-6 and TGF-b, can lead to Th1- and Th2-

independent differentiation of naive CD4+ Th cell progenitors

into the Th17 subtype (27, 28). Moreover, RORgt may cooperate

with other transcription factors during the differentiation of

Th17 cells (29). When activated by IL-6, IL-21, or IL-23, STAT3

is the upregulator of RORgt in response to TGF-b and IL-6.

STAT3 can bind to plenty of Th17-related loci and is essential

for the induction of the Th17 transcriptional program (30). In

the absence of STAT3, overexpression of RORgt cannot restore
Th17 cell development (31). Numerous essential transcription

factors, such as STAT5, granulocyte monocyte-colony

stimulating factor (GM-CSF), aryl hydrocarbon receptor

(Ahr), activating transcription factor-like runt-related

transcription factor-1 (RUNX1), transcriptional coactivator

with postsynaptic density 65-discs large-zonal occluder 1-

binding motif (TAZ), and interferon regulatory factor 4

(IRF4), regulate Th17 cell differentiation (29, 32, 33). Th17

cells are regarded as strongly pathogenic because they drive

autoinflammation by producing a unique set of cytokines (e.g.,

IL-17A, IL-21, IL-23, IL-6, IFN-g, and GM-CSF) (Figure 1).

It has been shown that IL-17A, mainly produced by Th17

cells, can induce cytokine secretion and has functions in immune

inflammation (34). Numerous studies signify that IL-17A,

stimulating glial cells and enhancing neuroinflammatory
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responses, performs a pathogenic role in the CNS (35, 36). IL-

17 signaling also induces the activation of NF-kB cascade response

to control the corresponding physiological function (37).
2.2 Environmental factors that affect the
pathogenic potential of Th17 cells

Increasing evidence indicates that multiple environmental

factors will contribute to the development of NDs. It is not

difficult to think that different host environmental factors may

also accelerate the pathogenic potential of Th17 cells and that

immune responses may promote autoimmunity, therefore

causing NDs.

2.2.1 Peripheral inflammation
Numerous studies indicated that Th17 cells and their

cytokines would compromise the integrity of the BBB. Thus,

the migration of immune cells from the periphery into the

central nervous system has become one of the major

contributors to numerous NDs (38, 39). For instance,

Porphyromonas gingivalis stimulates the production of Th17-

supportive cytokines (IL-1, IL-6, and IL-23), which may

permeate the BBB to endotoxin and expose the brain cells to
FIGURE 1

Differentiation of Th17 cells and its secretion of inflammatory cytokines. Under the microenvironment of pro-inflammatory cytokines (IL-6, IL-
21, and/or TGF-b), naive CD4+ T precursors can be induced to differentiate into Th17 cells, which have crucial roles in the immunopathogenesis
of neurological disorders. Nonetheless, IFN-g (a Th1 cell-related cytokine) and IL-4 (a Th2 cell-related cytokine) can inhibit the differentiation
of Th17 cells from naive CD4+ T cells as long as Th17 cells have not been fully developed. These primary differentiated Th17 cells will express
specific transcription factors, such as RORgt and STAT3. IL-21 is produced by Th17 cells in an autocrine manner and other cells then promote
Th17 cell proliferation and differentiation (expansion stage). IL-23 promotes the terminal differentiation, development, and survival of expanded
Th17 cells in their final stable state. IL, interleukin; TGF-b, transforming growth factor-b; IFN-g, interferon-g; STAT, signal transducer and
activator of transcription.
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endogenous and exogenous inflammatory mediators (40). Th17

cells and their related cytokines are also associated with

abnormally aggregated plaques of the protein amyloid-beta

(Ab) in neurons (41). In a mouse model of PD, Vitola and

colleagues demonstrated for the first time that peripheral

injection of lipopolysaccharide could trigger a long-lasting

increase in the pro-inflammatory cytokine TNF-a, induce

neuroinflammation, influence the action of a-synuclein (aSyn)
oligomers, and potentiate the detrimental effects (42). Moreover,

Th17 cells, immune cells, and macrophages are abundant in the

peripheral blood of MS patients, which would infiltrate the CNS

and collaborate to cause tissue damage (43). The entry of

peripheral immune cells from the periphery into the CNS can

also be viewed as a precursor to the breakdown of the BBB,

thereby heightening brain inflammatory responses (44). Rodent

models suggested that vagal stimulation can increase the levels of

brain cytokines in response to prolonged peripheral

inflammation (45). Interestingly, the response to acute

peripheral inflammation of the microglia is not associated with

long-term neuronal damage. Only in chronic and slowly

progressive diseases (such as AD, MDD, and PD) are the

microglia activated by peripheral (cytokines) and/or brain [Ab,
oxidative stress (OxS), etc.] pro-inflammatory stimulus to prime

for further neurotoxicity (8). As evidence, ND patients and animal

models with persistent inflammatory neurodegeneration

exhibited an acceleration of the neurodegeneration process in

response to peripheral inflammatory stimulus (46, 47).
2.2.2 Enhanced oxidative stress
Indeed, one of the mechanisms underlying the pathogenesis

of NDs is the vicious cycle between OxS and neuroinflammation,

which is reflected in the brain and peripheral immune system

(8). As elegantly discussed by Cobley and colleagues, the brain is

highly sensitive to oxidative damage for a variety of reasons,

including hypoxia/ischemia, glutamate, mitochondrial

dysfunction, endogenous neurotransmitter metabolism (e.g.,

dopamine), and abnormal activation of microglia (48). Under

the condition of chronic oxidative stress, mitochondrial

hyperpolarization, nitric oxide production, and Ca2+ influx

were enhanced, and the overexpression of the mechanistic

target of rapamycin complex 1 (mTORC1) was facilitated (49).

Furthermore, the activity of mTORC1 promotes the expansion

of Th17 pro-inflammatory lymphocytes from CD4+ T cells,

which constitute a critical CNS mechanism of immune

regulation. After activation, CD4+ T cells can easily cross the

BBB. As a result of the presence of IL-23, CD4+ T cells

differentiate into Th17 cells when they reach the damaged site.

In intestinal immunity, Th17 cells can contribute to

neuroinflammation and neurodegeneration by activating the

apoptotic Fas/FasL pathway (50). OxS has been ascribed as a

major contributor to the pathogenesis and clinical progression of

NDs (11, 50).
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2.2.3 The gut–brain axis
Considerable evidence suggests that the gut microbiota is

essential for normal host metabolism and physiological function,

influencing not only the immune system but also the nervous

system (51, 52). The gut microbiota is also related to brain

development and cognitive function. The gut microbiota affects

the gut–brain axis via direct and indirect (via systemic

circulation) pathways, including immune (cytokines),

endocrine (cortisol), and neural (enteric nervous system)

pathways (53). Diet-induced alterations to the gut microbiome

can result in a compromised lamina propria, where Th17 cells

are the predominant Th cells (26). Recently, Th17 cells, inducing

the production of IL-17A and IL-22, have been shown to play

distinct roles during fungal infection and colonization (54, 55).

The importance of gut microbiota, particularly segmented

filamentous bacteria (SFB), in the generation of mucosal Th17

cells was first demonstrated by Littman and colleagues (56).

Surprisingly, colonization of the gut with SFB alone can induce

the differentiation of Th17 cells in the gut and CNS, thereby

accelerating the progression of NDs (57). Chen et al. have

proven that the major metabolite of clostridia species, short-

chain fatty acid butyrate, is sufficient to restore BBB dysfunction

in patients with AD (58). The disruption of the gut microbiota

stimulates the activation of astrocytes and microglia, which in

turn influence a variety of neuropsychological processes (e.g.,

neuronal development, BBB integrity, CNS immune system

activation) (59). Various environmental factors modulate the

immune system’s response, strongly accelerating the pathogenic

potential of Th17 cells. Indeed, alterations of Th17 cells in the

gut microbiota have been documented in several diseases such as

AD (60), PD (61), and MS (62). Under high-salt conditions, a

highly pathogenic Th17 cell population activated by the p38/

MAPK pathway has been observed (63). Furthermore, the mice

on a high-salt diet developed cognitive impairment due to

cerebral endothelial dysfunction (64), which was associated

with an increase in Th17 polarization and IL-17A plasma level

in the small intestine. Moreover, hypoxia promoted Th17

differentiation by activating the hypoxia-inducible factor 1

(HIF-1), a critical metabolic sensor that directly regulates the

expression of RORgt and IL-17A at the transcriptional level (65).

The gut–brain axis appears to be a potent druggable target for

the immunotherapy of IL-17A in NDs.
3 Th17 cells and its cytokines in
neurological disorders: Possible
mechanisms of action

3.1 Th17 cells in Parkinson’s disease

PD, the second most prevalent form of neurodegenerative

disease, is characterized by motor symptoms, such as tremors,
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rigidity, and bradykinesia (66). In PD, there is a progressive

degeneration of neurons in various regions of the brain,

including dopaminergic neurons in the substantia nigra pars

compacta (67). A critical pathological hallmark of PD is the

accumulation of aSyn (so-called Lewy bodies). In addition to

protein aggregation, inflammatory responses play a crucial role

in the etiology and pathogenesis of PD, as evidenced by the

elevated expression of IFN-g, IL-17A, and IL-6 in the brain (68).

PD patients also have a disruption of BBB, which allows

peripheral immune cells to infiltrate into the brain and

potentially influences other mechanistic pathways associated

with neurodegeneration, such as oxidative stress and

mitochondrial dysfunction potentially (68). Therefore, the

enhanced peripheral inflammation may initiate or exacerbate

PD pathology. Recently, Sommer et al. provided direct evidence

that the neurotoxic effect of Th17 cells, expanded in an autocrine

loop, was increased in PD patients (69). This model also revealed

a direct contact between Th17 cells and neurons leading to
Frontiers in Immunology 05
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dopaminergic neuronal apoptosis. In a mouse model with a

deficiency of IL-17A, motor impairment, dopaminergic

neurodegeneration, and BBB disruption were alleviated (70).

Furthermore, Gate and colleagues provided the exact

mechanism for Th17 cell-mediated dopaminergic neuron

death via secretion of IL-17A in PD (71). Th17 cells secrete

pro-inflammatory cytokines that were associated with the

activation of other detrimental inflammatory factors (like

TNF-a, IL-1b, and IL-6), which were released from brain

microglial cells (the most numerous types of brain cell).

Ultimately, Th17 cells and inflammatory factors promote

inflammatory reactions and neuronal apoptosis (Figure 2). On

the other hand, abnormally accumulated aSyn becomes an

autoimmune antigen that activates microglia into the

microglia type 1 subtype, which promotes the differentiation

of Th17 subtypes and activates intracellular inflammatory

pathways (72). Although the direct effects of Th17 cells on

neurons have been described in these studies, additional work
FIGURE 2

Th17 cells and their cytokines in neurological disorders: possible mechanisms of action. Multiple environmental factors (peripheral inflammation,
enhanced oxidative stress, gut–brain axis) induce a pro-inflammatory microenvironment that modifies the CD4+ T-cell phenotype and then
differentiates into encephalitogenic Th17 cells, producing inflammatory cytokines (IL-17A, IL-6, IL-21, IFN-g, GM-CSF, and IL-23). These Th17
cells are capable of entering the CNS. They proliferate and produce cytokines that are conducive to BBB disruption and recruitment of other
immune cells (lymphocytes, macrophages, and neutrophil cells) into the CNS, ultimately leading to myelin damage (multiple sclerosis). Th17
cells and their cytokines can cause neuronal damage through direct cytotoxic effects or through recruitment of immune cells and induction of
neuroinflammation, resulting in deposition of Ab fibrils or the aggregation of aSyn (Alzheimer’s disease/Parkinson’s disease). Additionally, Th17
cells can activate the microglia and phagocytose amyloid fibrils, but neuroinflammation will induce microglia damage, thereby exacerbating
amyloid b deposition or aSyn aggregation (Alzheimer’s disease/Parkinson’s disease). GM-CSF, granulocyte monocyte-colony stimulating factor;
Ab, amyloid b.
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is still needed to comprehend the activity of PD-related Th17

neurotoxicity in a more complex intracellular environment to

open up novel therapeutic development avenues.
3.2 Th17 cells in Alzheimer’s disease

AD is the most frequent form of late-onset dementia and has

progressive and irreversible pathogenesis with a complex

molecular disease etiology, which affects over 40 million people

worldwide (73). AD is a multifactorial neurological disorder, in

which the extracellular deposits of amyloid b (Ab) peptides and
fibrillary tangles of intraneuronal hyperphosphorylated tau

protein are the major histopathological hallmarks. Ab is

obtained by the frequent and serial activation of the g-secretase
enzymes and b-secretase 1 (BACE1) on a larger precursor protein

(APP) (74). Highly insoluble Ab peptides are considered an

important factor in AD pathogenesis. They motivate the

microglia to secrete pro-inflammatory cytokines and

chemokines to activate the complement pathway (75), thus

inducing the cumulation of inflammatory cells into the CNS

that leads to neurodegeneration (76). Indeed, Ab peptides have

been shown to enhance the manufacture of reactive oxygen

species (ROS) and nitric oxide (NO) by microglia, leading to

OxS development and stimulating the inflammation of the Th17/

IL-17A axis, and then impair microglia-mediated Ab phagocytosis
and contribute to Ab accumulation and neuronal damage.

Additionally, the primary roles of IL-17A in the pathogenesis of

AD are to attract neutrophils and then stimulate their function.

Zenaro et al. showed that Ab aggregates could mediate the

recruitment and chemotaxis of neutrophils to produce IL-17A,

which is directly toxic to neurons and the BBB and may amplify

neutrophils in the CNS, thus contributing to a vicious circle that

leads to exacerbating pathology (77). Since neutrophils are the

primary targets and crucial sources of IL-17A in the CNS, they

may play a significant role in the development of AD pathology by

promoting inflammation and neuron autophagy. The presence of

extremely high levels of IL-17A, TNF-a, IL-2, and GM-CSF in the

brain of a triple transgenic mouse model of AD indicates

that neurodegeneration in these mice is related to Th17

polarization. Another study found a notable increase of IL-17A,

RORgt, and IL-22 in the serum, hippocampus, and CSF of Ab-42
peptide-injected rats (78). In addition, Tian et al. indicated a

correlation between postoperative cognitive impairment and

elevated levels of IL-17A in the hippocampus (79). Recently, a

study has reported that the administration of blocking anti-IL-

17A antibodies could rescue Ab-induced cognitive impairment

and neuroinflammation (80). These findings provide evidence for

the synergistic roles of Th17 cells and their associated cytokines in

promoting neuroinflammation and degeneration in AD.

The number of CD4+ and CD8+ T cells in AD patients’ brain

parenchyma and vascular endothelium is significantly higher than
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normal (81). The activated Th17 cells and their inflammatory

cytokines (e.g., IL-17A, IL-21, and IL-23) in the brain may jointly

promote AD neuropathology (82). Furthermore, a number of

studies found that AD patients had elevated levels of the Th17

transcription factor RORgt in their lymphocytes (83, 84). Recently,

other studies have demonstrated the relationship between Th17

cells and early AD (85). Therefore, some scholars proposed

that the optimal AD vaccine should inhibit Th17 immune

responses to Ab to prevent neuroinflammation and subsequent

neurodegeneration (86).
3.3 Th17 cells in multiple sclerosis

MS is a widespread demyelinating disease of the CNS

resulting in substantial neurological disability, in which immune

cells and related cytokines are involved in the degradation of

myelin sheaths (87). Inflammatory processes in these foci led to

myelin damage and oligodendrocyte rupture, followed by axonal

loss and transient or permanent loss of neurologic functions,

resulting in varying degrees of disability (88). Until now, the

pathophysiology of MS has not been elucidated clearly. Still, the

prevailing view of MS pathogenesis is the breach of

immunological tolerance and the active infiltration of myelin

antigen-sensitive immune cells into brain tissue through the

BBB. Emerging data from clinical and animal studies have

revealed that myelin-specific immune cells (such as B cells, Th1

cells, and Th17 cells) are activated in lymph organs of the

periphery. These myelin-specific immune cells develop

encephalitogenic potential and infiltrate the CNS, where they

are reactivated and expanded by the IL-23 and IL-1b (produced

by resident microglia and infiltrating inflammatory monocytes)

(62, 89). Furthermore, multiple studies have indicated that Th1

and Th17 cells are enhanced in the brain parenchyma in the acute

phase of MS patients (90, 91). Th17 cells mainly cause brain

damage, but Th1 cells induce spinal cord inflammation. In the

attempt to clarify the role of Th1 and Th17 cells in

the pathogenesis of MS, Langrish et al. showed that Th17

cells induce more severe experimental autoimmune

encephalomyelitis (EAE) than Th1 cells (92). Th17 cells,

especially Th1-like Th17 cells, may participate in EAE pathology

by producing IFN-g and IL-17A. Th17 cells result in

oligodendrocyte death, axonal degeneration, and neuronal

dysfunction (91, 93). Multiple studies in various EAEs, animal

models of MS, have demonstrated that Th1-like Th17

cells can across the BBB by stimulating the IL-17A and C-C

chemokine receptor 6 (CCK6) and enhance neuroinflammation

(87, 94, 95). In the CSF and peripheral blood of patients with MS

relapse, Durelli and colleagues detected that a higher IL-17A

expression was positively associated with disease activity (96).

Mice that lack Th17 and its characteristic cytokines, including IL-

23, IL-21, and IL-22, are also at risk of developing EAE (97, 98).
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Furthermore, Hartlehnert and colleagues identified the induction

of the B-cell-supporting meningeal microenvironment by Bcl6 in

Th17 cells as a mechanism controlling neuroinflammation (99).

Therefore, IL-17A and B cells have a considerable but non-

essential function in EAE. Additionally, mice lacking RORgt, a
crucial transcription factor for Th17 differentiation, exhibit a

delayed onset or mild progression of EAE (100). Unlike other

Th17 cytokines, GM-CSF, regulated by IL-23, RORgt, and IL-1b,
has an encephalitogenic profile and a non-redundant role in active

myeloid cell infiltration leading to sustained neuroinflammation

in MS (101). Although the absence of GM-CSF had no effect on

Th cells infiltrating into the CNS, it severely inhibited the

accumulation of tissue-invading phagocytes, which are the

primary drivers of immunopathology and are capable of

initiating tissue damage (101). Consequently, Th17 cells and

their related factors have a significant role in the pathogenesis

of MS.
3.4 Th17 cells in ALS

ALS is a progressive neurodegenerative disease, which is

characterized by the clustering and accumulation of

ubiquitylated, proteinaceous inclusions in the upper and lower

motoneurons (MN), resulting in dramatic muscle paralysis,

extramotor abnormalities, or death (102). Although the

pathophysiological mechanisms of ALS are still unresolved,

multiple studies corroborated that the pathological processes

of ALS are involved in neuroinflammation, mainly attributed to

the activation of CNS innate immune cells, and may precede MN

cell death (35, 103). Neuroinflammation in ALS is characterized

by the accumulation of massive astrocytes and activated

microglia, which increases the production of potentially

cytotoxic molecules (such as ROS, inflammatory mediators,

and pro-inflammatory cytokines) (104). Interestingly, recent

studies provide evidence that Th17 cells and their associated

cytokines (e.g., IL-17A, TNF-a, IFN-g) are enhanced in the CSF,

peripheral blood, and serum of ALS patients (35, 104). In clinical

studies with ALS, Meng et al. showed that peripheral pro-

inflammatory Th17 cell shift was linked to disease severity

(13). These findings proved that therapeutic interventions on

Th17 cells and/or their cytokines may be a promising treatment

strategy in ALS patients.
3.5 Th17 cells in MDD

MDD is one of the most commonly recognized mental

disorders globally. The number of patients receiving

antidepressant treatment is increasing yearly, which is a severe
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medical, social, and economic problem. According to the

Composite International Diagnostic Interview version of the

World Mental Health Survey, MDD is a chronic psychiatric

disorder with long-term depressive symptoms (e.g., anxiety, loss

of pleasure, and low sense of self-worth). With the steadily rising

number of young patients with MDD over the past decade, there

is an urgent need for more effective therapeutic strategies and the

identification of the molecular mechanisms underlying chronic

MDD. Although the etiology of MDD has yet to be determined,

mounting evidence supports a link between depression and

elevated levels of IL-17A, suggesting that inflammation

exacerbates depressive symptoms. Indeed, numerous pro-

inflammatory cytokines (e.g., IL-1b, IL-23, IFN-g, and TNF-a)
and Th17 cells are elevated in the peripheral blood of depressed

patients (105, 106). Alvarez-Mon et al. clearly showed an

increased propensity for Th17 differentiation in the circulating

population of CD4+ T lymphocytes in adult patients with MDD

(105). In addition, several studies have also demonstrated that

Th17 cells were increased in the brains of the rodent models of

MDD (107). Interestingly, studies showed that administration of

Th17 cells would result in increased sensitivity to depression in

two different mouse models, giving a direct correlation between

Th17 cells and depression sensitivity (108, 109). The absence of

RORgt and the neutralization of IL-17A both conferred

resistance to the induction of learned helplessness in mice

(108). Nevertheless, the levels of IL-17A are not always

correlated with depression, and there is no evidence indicating

that Th17 cells cause neuron damage in MDD. Similar to

psoriasis and MS surveys, patients with rheumatoid arthritis

who have elevated levels of IL-17A also have an increased risk of

depression and anxiety disorders (110, 111). These findings

suggest that Th17 cells may not be sufficient to cause

depression on their own, but they have additional roles to

promote depression. To clarify whether IL-17A is directly

involved in neuroimmune interactions, further research

is required.
4 Prospective and effective
therapeutic strategies targeting
Th17 cells and their cytokines in
neurological disorders

As demonstrated previously, Th17 cells and their cytokines

play crucial roles in the pathogenicity of the immune system

in neurological diseases. Consequently, they may be

prospective therapeutic targets for NDs due to their

pathogenic functions. At present, numerous methods target

Th17 cells and their cytokines, including anti-GM-CSF

antibodies, anti-IL-17A monoclonal antibodies, and RORgt
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inhibitors (Table 1). Although the efficacy of these techniques

in the treatment of NDs involving pathogenic Th17 cells has

not yet been demonstrated and is still in the developmental

stages, strategies that target Th17 and their cytokines

remain promising.
4.1 Targeting the IL-17A/IL-17AR axis

IL-17A is the critical effector cytokine secreted by Th17 cells.

Only three monoclonal antibodies of IL-17A and IL-17AR were

approved, namely, secukinumab, ixekizumab, and brodalumab.

Secukinumab is a fully human monoclonal antibody, which was

labeled as first-line therapy for moderate to severe cases of active

or stable psoriasis (122). Macaluso and colleagues first

demonstrated secukinumab’s clinical efficacy on neurological

manifestations in patients with concomitant ankylosing

spondylitis (AS) and MS, supporting the fact that IL-17A

blockade may become a potential therapeutic target in MS

(112). Cortese et al. also suggested that secukinumab was

efficacious for treating CNS demyelination in AS patients, but

this topic still needs further studies (123). Moreover, the

restoration of neuronal cell death produced by Th17 cells by

secukinumab in PD patient-generated pluripotent stem cell-

derived neurons motivated us to look for additional possible

immunotherapies for PD (69). Ixekizumab, another human

monoclonal antibody, inhibits the inflammatory response

mediated by IL-17A binding to the IL-17A receptor (IL-

17AR), whereas brodalumab can specifically block the IL-17

receptor. Extensive clinical studies have shown that ixekizumab

and brodalumab are beneficial and used by the FDA in adults

with moderate to severe plaque psoriasis (114, 124). Emerging

evidence hints that the therapeutic interventions on IL-17A may

be a promising treatment strategy in ND patients. To confirm

the efficacy of anti-IL-17A/IL-17AR antibodies in the treatment

of NDs, additional research is required.
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4.2 Targeting other Th17 cytokines and
Th17 cell development

In addition to IL-17A, Th17 cells release numerous

additional cytokines, including GM-CSF, IL-23, and RORgt.
GM-CSF was reported to play a pathogenic role in NDs, such

as AD, PD, MS, and MDD. Several studies in AD and PD animal

models have demonstrated that anti-GM-CSF antibodies would

inhibit the activation of the microglia and astrocytes in the CNS,

suggesting that it may be a potential therapeutic target (113,

115). In support of this finding, Manczak and colleagues

observed that animals injected with anti-GM-CSF antibodies

had decreased Ab deposition and microglia expression (116).

Since IL-23 and RORgt are involved in the differentiation and

activation of Th17 cells, targeting the IL-23 or RORgt in the

treatment of NDs is exciting and an effective approach (117).

Currently, several RORgt inverse agonists, including oleanonic

acid, ursolic acid, and TAK-828F, have been identified (118–

120). For instance, SR1001 could alleviate the severity and delay

the onset of EAE in distinct mechanisms, including limiting

Th17 cell differentiation and reducing the expression of Th17

cytokines (117).
5 Conclusions and future directions

Since the discovery of the link between Th17 cells and the

development of neurological disorders, the world of Th17 cells

and their cytokines in NDs has experienced a boom of research

and discoveries. Th17 cells have been described to play crucial

roles in NDs, but more work is needed to clarify the exact

mechanisms of their function in the future. This knowledge is

essential for determining the importance of Th17 cells and finding

prospective therapies for patients with neurological disorders.

Existing data and future directions suggest that Th17 cells and

their cytokines and Th17-related signaling pathways will be
TABLE 1 Drugs targeting Th17 cells and their cytokines.

Drug name Target
cytokine

Mechanism of action Clinical
development

Mouse
model

References

Secukinumab IL-17A Full human monoclonal antibody targeting IL-17A Rheumatoid arthritis,
spondylarthrosis, psoriasis, MS

NA (112)

Ixekizumab IL-17A Humanized anti-IL-17A monoclonal antibody Psoriasis, rheumatoid arthritis NA (113)

Brodalumab IL-17R Full human monoclonal antibody targeting the IL-17 receptor Psoriasis NA (114)

Anti-GM-CSF antibody GM-CSF Suppresses microglia activation in the brains of C57/BL6 mice NA AD, MS (115–117)

TAK-828F
SR1001

RORgt RORgt inverse agonists MS NA (118, 119)

Ursolic acid, oleanonic acid RORgt RORgt inverse agonists NA MS (120, 121)
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potentially effective therapeutic neuroprotective targets in the

treatment of NDs (121).
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Bioinformatics analysis
identified apolipoprotein E as a
hub gene regulating
neuroinflammation in
macrophages and microglia
following spinal cord injury

Xin-Qiang Yao1†, Jia-Ying Chen2†, Zi-Han Yu1,
Zu-Cheng Huang1, Regan Hamel3, Yong-Qiang Zeng1,
Zhi-Ping Huang1, Ke-Wu Tu1, Jun-Hao Liu4, Yan-Meng Lu5,
Zhi-Tao Zhou5, Stefano Pluchino3, Qing-An Zhu1

and Jian-Ting Chen1*

1Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical
University, Guangzhou, China, 2Department of Comprehensive Medical Treatment Ward, Nanfang
Hospital, Southern Medical University, Guangzhou, China, 3Department of Clinical Neurosciences,
University of Cambridge, Cambridge, United Kingdom, 4Division of Spine Surgery, Department of
Orthopaedics, Guangzhou First People’s Hospital, School of Medicine, South China University of
Technology, Guangzhou, China, 5Center of Electron Microscopy, Central Laboratory, Southern
Medical University, Guangzhou, China
Macrophages and microglia play important roles in chronic neuroinflammation

following spinal cord injury (SCI). Although macrophages and microglia have

similar functions, their phagocytic and homeostatic abilities differ. It is difficult

to distinguish between these two populations in vivo, but single-cell analysis

can improve our understanding of their identity and heterogeneity. We

conducted bioinformatics analysis of the single-cell RNA sequencing dataset

GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both

macrophages and microglia in the subacute and chronic phases of SCI. We

then validated these transcriptomic changes in a mouse model of cervical

spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and

lysosome accumulation in macrophages and microglia following SCI. Finally,

we observed that knocking out APOE aggravated neurological dysfunction,

increased neuroinflammation, and exacerbated the loss of white matter.

Targeting APOE and the related cholesterol efflux represents a promising

strategy for reducing neuroinflammation and promoting recovery

following SCI.

KEYWORDS

apolipoprotein E, neuroinflammation, macrophages, microglia, spinal cord injury,
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Introduction

Traumatic spinal cord injury (SCI) can lead to permanent

neurological disorders (1). The dynamic SCI environment has

three phases: the acute phase, occurring up to three days post

injury (dpi), is characterized by hemorrhage, cell death, and

cytokine release; the subacute phase, occurring 3-14 dpi, is

characterized by angiogenesis, immune cell infiltration, and

phagocytosis of myelin debris; and the chronic phase,

occurring more than 14 dpi, is characterized by glial scar

formation, remyelination, and neural remodeling (2). Persistent

inflammatory processes and neuronal damage are associated with

failed functional recovery. Macrophages are mainly immersed in

the injury core and are associated with both pro- and anti-

inflammatory effects, whereas microglia are mainly located in the

injury rim and are associated with a pro-inflammatory role (3).

Macrophages and microglia act as ‘‘professional phagocytes’’

following SCI (4). Although macrophages have stronger

phagocytic activity, they are less efficient at processing

phagocytosed material (5). Therefore, a better understanding of

the mechanisms underlying processes such as microglial uptake

and digestion is essential. Unfortunately, distinguishing

macrophages from microglia is difficult (5).

Single-cell RNA sequencing (scRNA-seq) has facilitated the

study of macrophage and microglial complexity following SCI

(6). scRNA-seq analysis has been conducted for almost all cell

types involved in angiogenesis, gliosis, and fibrosis in a mouse

model of SCI (7). Macrophages and microglia are divided into

different transcriptional profiles and subpopulations, depending

on their functions and tasks (8). A disease-associated microglial

subtype was potentially protective against wound healing

following SCI (9). FABP5+ macrophages and microglia are

regarded as proinflammatory myeloid cells with neurotoxic

effects (10). A previous proteomic analysis of a rat SCI model

showed that the protein cluster continuously upregulated in the

acute and subacute phases was enriched in markers of myeloid

cells, lipid regulation pathways, and lysosomes (11). Lipid droplet

formation occurs in macrophages and requires lysosomal

degradation following SCI (5, 12). Excessive lipid levels lead to

the formation of foam cells, which have pro-inflammatory effects

(13, 14). Macrophages are more prone to cell death than

microglia during the phagocytic response that occurs following

SCI (15). The phagocytic mechanism in macrophages and
Abbreviations: SCI, spinal cord injury; APOE, apolipoprotein E; DPI, days

post injury; WPI, weeks post injury; WT, wild-type; scRNA, single-cell RNA;

DEGs, differentially expressed genes; GEO, gene expression omnibus; UMAP,

uniform manifold approximation and projection; AUC, under the curve; GO,

gene ontology; GSVA, gene set variation analysis; KEGG, Kyoto Encyclopedia

of Genes and Genomes; PPI, protein-protein interaction; PBS, phosphate-

buffered saline; TEM, transmission electron microscopy; PPAR, peroxisome

proliferator-activated receptor; MBP, myelin basic protein.
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microglia is still not fully understood, and single-cell analysis

may help us differentiate these cells (16).

In this study, we analyzed the scRNA-seq dataset GSE159638

to explore differentially expressed genes (DEGs) and pathways

that are activated in macrophages and microglia during the

subacute and chronic phases of SCI. We then employed

histological analysis of a mouse model of cervical spinal cord

hemi-contusion to experimentally validate the results of the

bioinformatics analysis. Finally, we analyzed the effect of

apolipoprotein E (APOE) knocked out on neurological function.
Materials and methods

Data acquisition

The GSE159638 count matrices were downloaded from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/geo/). The dataset contains 25 spinal cord samples;

five in the one dpi group, four in the two dpi group, seven in the

three dpi group, five in the 10 dpi group, two in the 21 dpi group,

and two in the sham group. The dataset contains a total of 30,958

cells. The 10X Genomics Chromium™ 3’ single cell solution was

used as the single-cell capture platform while GPL24247

(Illumina NovaSeq 6000, Mus musculus) was used as the

sequencing platform. Each sample contained either resident

microglia or infiltrating myeloid cells, including infiltrating

macrophages. These populations were isolated via FACS, based

on fate mapping labels described in the original article (10).
Data processing

Downstream data analysis was performed using the “Seurat”

package, version 4.10, in R version 4.1.2 (17). Cells containing

more than 15% mitochondrial genes were filtered out and the

remaining data was normalized using the “LogNormalize”

function. Dimensionality reduction was conducted using

“FindVariableFeatures” and “RunPCA,” functions and visualized

using uniform manifold approximation and projection (UMAP)

analysis. Clusters were identified using the following settings:

FindNeighbors (dims=1:13), FindClusters (resolution=0.5), and

RunUMAP (reduction = “pca,” dims = 1:13). Clusters with fewer

and dispersed cells were excluded from further analyses. Cell

marker genes and four myeloid cell subtypes were identified using

“FindAllMarkers (min. pct = 0.25, logfc.threshold= 0.25)”.
Group-specific macrophage and
microglia markers

A standard area under the curve (AUC) classifier was used to

identify macrophage and microglia gene markers expressed at
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different time points using “FindAllMarkers (min.pct = 0.1,

logfc.threshold = 0.25)”. Gene Ontology (GO) analysis of

marker genes was performed using the “clusterProfiler”

package, version 4.2.2 (18), and three GO terms representing

the main functions at each time point were selected from the top

30 terms.
Differential gene expression analysis

Since macrophages were not detected in the sham group, we

used the mean value of macrophage gene expression for the first

three days to represent the transcriptional profile of the acute

phase. Genes expressed by macrophages 10 and 21 dpi were

compared with those expressed over the first three days using the

“FindAllMarkers (logfc.threshold=0.5, p_val_adj=0.05)”

function. DEGs in microglia were identified by comparing

each experimental group with the sham group. GO analysis of

overlapping genes expressed 10 and 21 dpi was performed in

macrophages and microglia.
Identification of time-dependent gene
expression modules

Macrophage and microglia modules with consistent

expression patterns at different time points were categorized

using fuzzy c-mean clustering implemented in the “Mfuzz”

package, version 2.54.0 (19). First, the average expression of

each gene at each time point was calculated for macrophages

and microglia. An analysis workflow based on “filter.std

(min.std = 0)”, “standardise ()”, and “mestimate ()” functions

was then used. Third, clusters containing upregulated genes at 10

and 21 dpi were analyzed against c2 Kyoto Encyclopedia of

Genes and Genomes (KEGG) gene sets using gene set variation

analysis (GSVA) implemented using the “GSVA” package

(version 1.42.0) and “Msigdbr” package (version 7.4.1). Finally,

the gene clusters were compared with the DEGs, and genes

overlapping the two datasets were subjected to protein-protein

interaction (PPI) network analysis using STRING software (20).
Animal experiments

The animal experiments were approved by the Laboratory

Animal Care and Use Committee of Nanfang Hospital, Southern

Medical University, and performed according to the National

Guidelines for the Care and Use of Animals. Eight-week-old

wild-type and APOE-/- male mice were obtained from the

Laboratory Animal Center of Southern Medical University and

housed at the Laboratory Animal Center of Nanfang Hospital

with ad libitum access to food and water.
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Cervical spinal cord hemi-contusion
injury

The mice were anesthetized using isoflurane (3% for

induction and 1.5%–2% for maintenance) and C5 hemi-

contusion injuries were induced as previously described (21).

Briefly, the C5 lamina was exposed and removed. A contusion

SCI was induced at C5 using an impactor tip (diameter=1.0 mm)

with a preset displacement of 1.2 mm at 300 mm/s, controlled by

an electromagnetic servo material testing machine (Instron

E1000, Instron, United States). Only C5 laminectomy was

performed as part of the sham surgery.
Behavioral assessment

Behavioral assessments were performed as previously described

(22). Behavioral assessment was conducted by two independent

researchers at different time points before and after surgery.

Cylinder rearing test was used to evaluate the use of forelimbs

(23). Mouse activity in a 20 cm-diameter transparent cylinder was

recorded for 15 min and the first 20 climbing movements (left

forelimb touch, right forelimb touch, and both forelimbs touch) or

all climbing movements within 15 min were recorded. The

grooming test is mainly used to evaluate the motion of the

shoulder and elbow joints, with scores ranging from 1 to 5 based

on the position of the foreclaws contacting the head and face (24).
Immunofluorescence staining

Animals were anesthetized with sodium pentobarbital and

perfused transcardially with phosphate-buffered saline (PBS),

followed by 4% paraformaldehyde. Spinal cords (5 mm rostral to

5 mm caudal to the epicenter) were dissected, postfixed

overnight with paraformaldehyde, and dehydrated in 12%,

18%, and 24% sucrose solutions at 4°C. The samples were

embedded in optimal cutting temperature compound (Tissue-

Tek, 4583, Sakura), and sliced transversely into 20 µm sections

using a Leica CM1950 cryostat. For myelin basic protein (MBP)

staining, slices were washed once with PBS and then

permeabilized in a graded series of ethanol solutions (50%,

70%, 90%, 95%, 100%, 100%, 95%, 90%, 70%, and 50%). The

slices were blocked with 0.01 M PBS containing 0.1% Triton X-

100 and 10% normal donkey serum for 30 min. The slices were

then incubated overnight at room temperature with the

following primary antibodies: anti-F4/80 (1:200, Cell Signaling

Technology 71299S), anti-APOE (1:400, Abcam ab183597),

anti-CD68 (1:400, Abcam ab125212), anti-GFAP (1:800, Cell

Signaling Technology 3670S), anti-MBP (1:400, Abcam,

ab4039), anti-SMI312 (1:800, Covance, SMI-312R-100), and

anti-LAMP2 (1:200, Abcam, ab13524). The following day, the
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slices were washed three times in PBS and incubated at room

temperature for two hours with the following secondary antibodies:

donkey anti-mouse Alexa Fluor 488 (1:200, Abcam ab150105),

donkey anti-rabbit Alexa Fluor 555 (1:200, Abcam ab150062),

and donkey anti-rat Alexa Fluor 647 (1:200, Abcam ab150155). To

stain lipid droplets, the slices were incubated with BODIPY (1:400,

Invitrogen D3922) for 20 min following their incubation with

primary antibodies. They were then washed thrice in PBS and

mounted with Fluoromount-G (0100-20, Southern Biotech).

Images were captured and analyzed using a Zeiss confocal

microscope (LSM980, Zeiss, Germany) and ZEISS ZEN

3.3 software.
Transmission electron microscopy (TEM)

The mice were transcardially perfused with PBS and 4%

paraformaldehyde, and the injury epicenters harvested, postfixed

in 2% glutaraldehyde, and incubated overnight at 4°C. The samples

were then rinsed in PBS, incubated with osmium tetroxide for 1 h,

rinsed in PBS, dehydrated in 30%, 50%, 70%, 90%, and 100%

ethanol solutions, and permeabilized in a graded series of acetone-

Epon mixtures (1:1 for 1 h, 1:2 for 2 h, 1:2 for 3 h, and pure Epon

overnight). Spinal cords were embedded in Epon, sliced into 0.8 µm

semi-thin and 60–90 nm ultrathin sections using ultramicrotome

Leica UC7. The sections were subsequently stained with uranyl

acetate and lead citrate and analyzed under a transmission electron

microscope (HITACHI H-7500, Japan).
Statistical analyses

Statistical analyses were performed using GraphPad Prism

(version 8.2.1). Unpaired t-test was used to analyze injury-related

biomechanical parameters of wild-type and APOE-/- mice.

Behavioral assessments and weight changes were investigated

using two-way ANOVA with repeated measurement, followed

by Bonferroni multiple comparison test between groups at each

time point. Kruskal-Wallis test followed by Dunn’s test post hoc

was used to analyze the immunofluorescence results of F4/80,

APOE and BODIPY at different time point. Mann-Whitney test

was used to analyze the immunofluorescence results of GFAP,

CD68, F4/80, MBP and SMI312 between wild-type and APOE-/-

mice. Statistical significance was set at p< 0.05.
Results

Identification of macrophage and
microglia clusters

The GSE159638 dataset introduced a mouse spinal

contusion model using an impactor tip (1.3 mm) and an
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impact of 70 kilodyne force. Transcriptional profiles of 30,768

cells and 15,731 genes were obtained after quality control. The

UMAP algorithm was used to convert the multidimensional data

into a two-dimensional plot (Figure 1B). Four myeloid cell

subtypes were identified in each population using multiple

marker genes (Figures 1A, C). The distribution and proportion

of myeloid cell subtypes at different time points are shown in

Figure 1D and Figure 1E. Macrophages increased rapidly in the

first three days but decreased in the subacute and chronic phases.

Microglia were the only myeloid cells in the sham group and

were the major cell type in the subacute and chronic phases,

consistent with previous studies (25).
Unique marker genes and signatures of
macrophages and microglia at different
time points

To investigate the biological functions of macrophages and

microglia at different time points, differential analysis was

conducted based on the AUC classifier and GO analysis.

Macrophages and microglia had different DEGs and pathways

10 and 21 dpi compared with the first three days post injury but

were indistinguishable between 10 dpi and 21 dpi. For example,

GO terms specific to macrophages included cytoplasmic

translation pathway, regulation of cellular amide metabolic

processes, and antigen processing and presentation at 10 dpi,

and lymphocyte-mediated immunity pathway, positive

regulation of endocytosis, and neuroinflammatory response at

21 dpi (Figure 2A). GO terms specific to microglia included

lysosome organization, lipid transport, and autophagy pathways

at 10 dpi, and response to lipoprotein particles, myelination, and

lipid storage pathways at 21 dpi (Figure 2B). Interestingly, the

biological function of microglia indicates that microglia may

produce lipid droplets and degrade them through autophagy to

maintain lipid metabolism balance.
APOE is the top upregulated gene in
macrophages and microglia in the
subacute and chronic phases

We identified genes that were differentially expressed in

macrophages during the subacute and chronic phases

(Figure 3A). Compared to the acute phase, a total of 642 genes

were differentially expressed in macrophages at 10 and 21 dpi

(Figure 3D). The top 10 upregulated and downregulated DEGs

are shown in the bar graphs in Figure 3B and Figure 3C,

respectively. GO analysis showed that co-expressed genes,

including APOE, TREM2, CST3, and AIF1 were enriched for

phagocytosis, ERK1 and ERK2 cascades, oxidative stress

response, lysosomes, and positive regulation of lipid

localization (Figure 3E). Notably, the TREM2-APOE pathway
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has been identified as a major regulator of dysfunctional

microglia and as a therapeutic target for neurodegenerative

diseases (26).

A total of 1059 genes were differentially expressed at 10 and

21 dpi in microglia compared to the acute phase (Figures 4A, D).

Of the top 10 upregulated genes (Figure 4B), the FABP5 is

thought to be neurotoxic as it promotes immune cell infiltration

and the release of inflammatory factors (10). Additionally,

LGALS3/Galectin-3 was recently identified as a critical factor

in microglia-mediated neuroinflammation (27). Most of the top

10 downregulated genes were homeostatic microglial genes,

including JUN, P2RY12, SIGLECH, TMEM119, and TGFBR1

(Figure 4C). GO analysis showed that overlapping genes such as

APOE, APOC1, CCL3, LPL, IGF1, MIF, and FABP3 were
Frontiers in Immunology 05
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involved in the regulation of phagocytosis, positive regulation

of lipid localization, response to oxidative stress, production of

tumor necrosis factor, regulation of inflammatory response, and

metabolism of glycerolipids (Figure 4E).
Temporal clustering analysis

This study focused on the analysis of gene expression in

macrophages and microglia during the subacute and chronic

phases of SCI. Of the nine time-dependent expression patterns

observed in macrophages, cluster five contained 1493 genes with

upregulated expression at 10 dpi and 21 dpi (Figure 5A). GSVA

showed that the enrichment scores of lipid metabolism-related
A

B

D E

C

FIGURE 1

Distribution and proportion of myeloid cell subtypes following spinal cord injury (SCI). (A) Dot plot of marker genes in each population. (B–D)
Uniform manifold approximation and projection (UMAP) plot of each population, four myeloid cell subtypes, and cells from different time points.
(E) Bar graph showing the proportion of myeloid cell subtypes from different time points. DC, dendritic cells; MC, macrophages; MG, microglia;
NP, neutrophils.
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pathways were higher at 10 dpi and 21 dpi, including

arachidonic acid, ether lipid, and glycerophospholipid

metabolism (Figure 5B). A total of 146 genes in cluster five

overlapped with 642 genes that were differentially expressed

between 10 dpi and 21 dpi (Figure 5C). PPI network analysis in

macrophages identified APOE as a hub gene intersecting with
Frontiers in Immunology 06
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DEGs such as C1QA, AIF1, TREM2, and TMEM119 (Figure 5E).

Six time-dependent expression patterns were identified in

microglia (Figure 5G). Cluster three contained 1552 genes

whose expression was upregulated at 10 and 21 dpi. GSVA

showed that the pathways associated with neurodegenerative

diseases, lysosomes, peroxisome proliferator-activated receptor
A

B

FIGURE 2

Unique marker genes and related gene ontology (GO) of biological processes in macrophages (A) and microglia (B) collected at different time
points.
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(PPAR) signaling pathway, and autophagy had the highest

scores at 21 dpi (Figure 5H). A total of 123 genes in cluster

three overlapped with the 1059 genes that were differentially

expressed at 10 dpi and 21 dpi in microglia (Figure 5D). PPI

network analysis in microglia also identified APOE as a hub gene

intersecting with DEGs such as ABCA1, ABCG1, APOC1, CD68,

and CTSB (Figure 5F). These results demonstrate the essential

role of APOE in macrophages and microglia during the subacute

and chronic phases following SCI.
Frontiers in Immunology 07
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Accumulation of lipid droplets
in macrophages and microglia
following SCI

To explore the reason for the transcriptional changes in

macrophages and microglia after SCI, we analyzed the changes

in the ultrastructure of a mouse model of spinal cord contusion

injury using TEM. Healthy microglia had a small body, thin

cytoplasm, and bean-shaped nuclei containing heterochromatin
A

B

D

E

C

FIGURE 3

Analysis of differential gene expression in macrophages following spinal cord injury (SCI). (A) Heatmap showing differentially expressed genes
(DEGs) between macrophages sampled 10 days post injury (dpi) and 21 dpi compared with macrophages sampled in the first three days.
(B, C) Bar graph showing the top 10 upregulated and downregulated genes in macrophages sampled 10 dpi and 21 dpi. (D) Venn diagram
showing an overlap between genes that were differentially expressed between macrophages sampled 10 dpi and those sampled 21 dpi.
(E) Chord plot showing the gene ontology (GO) of biological processes associated with overlapping DEGs in macrophages sampled 10 dpi
and 21 dpi.
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(Figure 6E) (28). Seven days after SCI, both macrophages and

microglia contained myelin debris, had increased levels of lipid

droplets and lysosomes, and the “wrapping lysosomes” engulfing

the lipid droplets were similar to macrophage foam cells

(Figures 6A–C) (29). Demyelination is a pathological hallmark of

preclinical models of SCI (2). Six weeks after SCI, prominent

Wallerian degeneration and chronic demyelination were observed
Frontiers in Immunology 08
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in the lesions (Figure 6D). Similar to the lipid droplet-accumulating

microglia in the aging brain (30), the microglia contained lipofuscin

granules and lipid droplets (Figures 6F, G). It is difficult to

distinguish macrophages from microglia, since they share several

markers, such as F4/80 and iba-1. Immunofluorescence staining

showed upregulated APOE expression with abundant lipid droplets

in F4/80+ microglia/macrophages (Figures 6H–N).
A

B

D E

C

FIGURE 4

Analysis of differential gene expression in microglia following spinal cord injury (SCI). (A) Heatmap showing differentially expressed genes (DEGs)
in microglia sampled 10- and 21-days post injury (dpi) compared with those sampled from the sham group. (B, C) Bar graph showing the top 10
upregulated and downregulated genes in microglia sampled 10 dpi and 21 dpi. (D) Venn diagram showing overlap between DEGs in microglia
sampled 10 dpi and 21 dpi. (E) Chord plot showing the gene ontology (GO) of biological processes associated with overlapping DEGs in
microglia sampled 10 dpi and 21 dpi.
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Deletion of APOE aggravates
neuroinflammation and reduces recovery

To investigate the function of APOE, we performed spinal

cord contusion injury in APOE-/- mice. Typical changes in the

biomechanical parameters are shown in Figure 7A. There were

no significant between-group differences in contusion

displacement, speed, or peak force (Figures 7B–D). The

cylinder rearing test on the ipsilateral forelimb revealed worse

motor functional recovery in APOE-/- mice, four and six weeks

post-SCI (Figure 7E). Both groups showed similar ipsilateral

grooming scores and changes in body weight post-SCI

(Figures 7F, G). The reduction in the rate of utilization of the

ipsilateral forelimb in APOE-/- mice indicated the benefits of

APOE in fostering recovery following SCI. Neuroinfiammation
Frontiers in Immunology 09
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is a hallmark of SCI (31). Six weeks after SCI, however, APOE-/-

mice displayed aggravated neuroinflammation in the lesion rim

(Figures 7H–K). Furthermore, APOE-/- mice showed increased

F4/80+ microglia/macrophage infiltration and white matter loss

(Figures 7L–O). Although non-significant, these results were

worthy of further investigation in subsequent studies.
Myelin uptake in astrocytes and
lysosome accumulation in macrophages
and microglia in APOE-/- mice

Astrocytes phagocytose myelin debris and recruit immune

cells during acute demyelination of brain tissue (32). We

observed MBP in GFAP-positive cells in lesion rims of
A B

D

E F

G H

C

FIGURE 5

Temporal clustering analysis of macrophages and microglia following spinal cord injury (SCI). (A) Temporal clustering analysis of macrophages
following SCI. (B) Heatmap showing gene set variation analysis (GSVA) of genes in cluster five and c2 KEGG gene sets. (C) Venn diagram
showing an overlap between genes in cluster five and genes that were differentially expressed between macrophages sampled 10 days post
injury (dpi) and those sampled 21 dpi. (D) Venn diagram showing an overlap between genes in cluster three and genes that were differentially
expressed between microglia sampled 10 dpi and those sampled 21 dpi. (E) Protein-protein interaction (PPI) network showing an overlap of
genes in cluster five and genes that were differentially expressed in macrophages sampled 10 dpi and those sampled 21 dpi. (F) PPI network
showing the overlap between genes in cluster three and genes that were differentially expressed between microglia sampled 10 dpi and those
sampled 21 dpi. (G) Temporal clustering analysis of microglia following SCI. (H) Heatmap showing GSVA of genes in cluster three and the c2
KEGG gene sets.
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APOE-/- mice (Figures 8A, B). TEM confirmed that the

hypertrophic astrocytes contained degraded myelin debris

(Figures 8C, D) and lysosomes accumulated in astrocytes

(Figure 8E). Furthermore, APOE-/- mice had increased

numbers of lipid droplets and dense lysosomal material in
Frontiers in Immunology 10
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macrophages and microglia (Figures 8F, G), suggesting that

more lysosomes are activated in APOE-/- mice following SCI.

Interestingly, the TEM images of lesions sampled 16 weeks post

injury showed the formation of needle-like cholesterol crystals

(Figures 8H, I), which was similarly observed in the aged central
FIGURE 6

Transmission electron microscopy (TEM) analysis and immunofluorescence staining of a mouse model of cervical spinal cord hemi-contusion.
(A) TEM image of macrophages sampled seven days post injury (dpi) showing myelin uptake, lipid droplet accumulation, and “wrapping
lysosomes”. (B, C) Representative images of microglia sampled seven dpi showing myelin uptake, lipid droplet accumulation, and “wrapping
lysosomes”. (D) TEM image of lesions sampled six weeks post injury (wpi) showing Wallerian degeneration and demyelination. (E) Representative
image of healthy microglia in the sham group. (F, G) TEM images of microglia sampled six wpi showing lipofuscin granules and lipid droplets.
The boxed area is shown in (G) at higher magnification. (H–J) Immunofluorescence staining of spinal cord samples showing F4/80+ microglia/
macrophages (white), APOE (red), BODIPY (green) and DAPI (blue). Box is the approximate area where (K) was imaged. (K) High-magnification
representative images of the APOE+ macrophages/microglia containing BODIPY+ lipid droplets. (L) Quantitation of F4/80+ densities showed
that F4/80+ densities were significantly increased at 7dpi. (M) Quantitation of APOE+ densities showed that APOE+ densities were significantly
increased at 6 wpi. (N) Quantitation of lipid droplets showed that the number of lipid droplets were significantly increased at 7dpi. LD, lipid
droplets. nsP > 0.05, **P < 0.05. Scale bar (A–G) = 1 µm. Scale bar (H–J) = 10 µm. Scale bar (K) = 5 µm.
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FIGURE 7

Apolipoprotein E (APOE) knockout aggravated dysfunction, increased neuroinflammation, and exacerbated white matter loss following spinal cord injury
(SCI). (A) Typical changes in biomechanical parameters during contusion. Orange, contusion force; magenta, contusion displacement; blue, contusion
speed. (B–D) There were no significant between-group differences in contusion displacement, speed or peak force. (E) Cylinder rearing test showed
worse motor functional recovery in APOE-/- mice following SCI. (F, G) There were no significant differences in grooming scores and body weight
between the two injured groups. (H–K) APOE-/- mice displayed aggravated neuroinflammation in the lesion rim. Green, GFAP+ astrocytes; purple,
CD68+ macrophages/microglia; blue, DAPI+ cell nuclei. (L-O) APOE-/- mice showed increased white matter loss and microglia/macrophage infiltration
following SCI. The myelin debris was engulfed by microglia/macrophages (yellow arrows). White, F4/80; purple, myelin basic protein (MBP); green,
SMI312+ axons; blue, DAPI. nsP > 0.05, *P < 0.05 between the APOE-SCI and wild-type (WT)-SCI groups; †P < 0.05 between the APOE-SCI and APOE-
Sham groups; ‡P < 0.05 between the WT-SCI and WT-Sham groups. Scale bar (H, I, L, M) = 10 µm..
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nervous system (33). This confirmed chronic accumulation of

cholesterol in microglia in APOE-/- mice following SCI.
Discussion

We identified APOE as a hub gene in both macrophages and

microglia during the subacute and chronic phases of SCI.

Histopathological analysis revealed the accumulation of lipid

droplets and lysosomes in both macrophages and microglia.

Furthermore, APOE-/- mice showed worse functional recovery

associated with increased neuroinflammation and white matter

loss. APOE is the major cholesterol carrier involved in cellular

lipid efflux in the central nervous system (33). Our study indicates

that APOE and the associated cholesterol efflux might be

therapeutically targeted to promote recovery following SCI.

Myelin and cellular debris are mainly cleared by monocyte

−derived macrophages and resident microglia, creating a pro-

regenerative environment (5). Macrophages are attracted to the

injury site at around 3 days after SCI and reach a peak at 7 days

after SCI (16). Macrophages play an important role in debris

clearance, but excessive myelin debris uptake leads to the

formation of “foamy macrophages” and subsequent death (6,

15). The primary injury causes glial necrosis within the lesion

epicenter. Microglia are rapidly activated and proliferate after

SCI (34). The efficiency of myelin phagocytosis and proliferation

rate of microglia is much higher than those of macrophages (5).

Therefore, microglia were the major myeloid cell type in the

subacute and chronic phases of SCI. We found that microglial

marker genes expressed 10 and 21 dpi were associated with lipid

transport, autophagy, and lipid storage. Furthermore, autophagy

regulation and the PPAR signaling pathway had high

enrichment scores in microglia sampled at 21 dpi. Lipid

droplets are organelles that store lipids and play a central role

in cellular metabolism and lipid homeostasis (35). Lipid droplets

have variable protein and lipid composition and their size, and

the number of lipid droplets, are regulated via autophagy (36).

PPAR-g can upregulate the expression of ABCA1 and ABCG1 to

boost lipid efflux (5). Stimulating the autophagy of lipid droplets

and promoting lipid efflux in macrophage foam cells is an

attractive therapeutic strategy for atherosclerosis (29). Thus,

promoting macrophage autophagy and lipid efflux may reduce

secondary damage in SCI.

Upregulated APOE expression in microglia is common during

development, damage, and disease (37). In this study, we found that

APOE is involved in multiple pathways and interacts with multiple

genes in macrophages and microglia. The different effects of APOE

depend on its cellular origin, binding lipid molecules, and

microenvironment (38). APOE-/- mice showed impaired

remyelination and increased phagocyte infiltration in a

demyelination model (33). We found that APOE-/- mice showed

worse functional recovery following SCI, consistent with previous
Frontiers in Immunology 12
53
reports (39, 40). The uptake of myelin debris by macrophages and

microglia was confirmed using TEM. Myelin has a high lipid

composition, particularly cholesterol (41). Our results suggest that

cholesterol overload in macrophages and microglia may induce a

maladaptive immune response that aggravates secondary damage.

Further studies are required to explore the stimulation of reverse

cholesterol transport.

Traumatic SCI leads to progressive cord atrophy and

neurodegeneration (42). We observed clear demyelination and

Wallerian degeneration on the ipsilateral side of the injury

epicenter six weeks post injury (wpi) using TEM. Furthermore,

we identified lipofuscin granules and lipid droplets in the

microglia 6 wpi. Lipid droplet-rich microglia have recently

been implicated in the release of large quantities of reactive

oxygen species and proinflammatory cytokines in the aging

brain, and nearly half of the constituents of lipid droplets are

glycerolipids, in line with the transcriptomics data (10), although

few of these are cholesteryl esters (30). Likewise, lipid droplets

accumulate in microglia in patients with Alzheimer’s and

Parkinson’s diseases (43, 44). Interestingly, the number and

morphology of lipid droplets differed in microglia sampled

seven dpi and six wpi. The effects of lipid droplets on

microglia may depend on their composition, which is affect by

different environmental conditions (30). It will be worth

analyzing the content of lipid droplets in macrophages and

microglia collected at different time points following SCI.

This study has several limitations. First, the numbers of samples

and cells collected 21 dpi were small and no macrophages were

present in samples used in the sham operation as expected,

potentially introducing bias. Second, the cause of transcriptional

changes and the effects of APOE were validated and explored using

wild-type and APOE-/- spinal cord contusion injury mouse models.

Although we did not use exogenous APOE treatment or other

methods to increase cholesterol efflux in the present study, previous

in vivo study using COG112, an APOE mimetic peptide combined

a protein transduction domain antennapedia to improve blood-

brain barrier and cell membrane penetration, suggest

neuroprotective roles of endogenous APOE in reducing

neuroinflammation and white matter loss after SCI (40). Third,

the APOE-/- knockout is not myeloid-specific, and the molecular

mechanisms underlying the phenotypes of APOE-/- mice have not

been fully elucidated. Since APOE has multiple functions in

different environmental conditions (38), high-throughput assays

can be used to elucidate differences in molecular mechanisms

between wild-type and APOE-/- mice following SCI.

Taken together, our study demonstrated that APOE is a hub

gene in both macrophages and microglia in subacute and

chronic phases of SCI. APOE knockout aggravates

neurological dysfunction, increases neuroinflammation, and

exacerbates white matter loss. Targeting APOE and related

cholesterol efflux may be a promising strategy for reducing

neuroinflammation and promoting recovery following SCI.
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FIGURE 8

Myelin uptake in astrocytes and lipid droplets and lysosome accumulation in macrophages and microglia in APOE-/- mice following spinal cord
injury (SCI). (A, B) Myelin debris was engulfed by astrocytes in the lesion rim of APOE-/- mice six weeks post injury (wpi) (yellow arrows). Green,
GFAP; purple, MBP; white, LAMP2; blue, DAPI. (C, D) Transmission electron microscopy (TEM) images of astrocytes in APOE-/- mice six wpi
confirmed that the hypertrophic astrocytes contained degraded myelin debris. The boxed area is shown in (D) at higher magnification. (E) TEM
image of astrocytes in APOE-/- mice six wpi shows markedly elevated lysosomes. (F, G) TEM image of macrophages and microglia in APOE-/-

mice taken seven days post injury (dpi) shows increased number of lipid droplets and dense lysosome material. (H) Representative image of
microglia in wild-type (WT) mice 16 wpi. (I) TEM image of microglia in APOE -/- mice 16 wpi shows markedly elevated lipid droplets and the
formation of needle-like cholesterol crystals (black arrows). LD, lipid droplets. Scale bar (A, B) = 10 µm. Scale bar (C–I) = 1 µm.
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28. Savage JC, Picard K, González-Ibáñez F, Tremblay M. A brief history of
microglial ultrastructure: Distinctive features, phenotypes, and functions
discovered over the past 60 Years by electron microscopy. Front Immunol (2018)
9:803. doi: 10.3389/fimmu.2018.00803

29. Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR,
et al. Identification of novel lipid droplet factors that regulate lipophagy and
56
cholesterol efflux in macrophage foam cells. Autophagy (2021) 17(11):3671–89.
doi: 10.1080/15548627.2021.1886839

30. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al.
Lipid-Droplet-Accumulating microglia represent a dysfunctional and proinflammatory
state in the aging brain. Nat Neurosci (2020) 23(2):194–208. doi: 10.1038/s41593-019-
0566-1

31. Yong H, Rawji KS, Ghorbani S, Xue M, Yong VW. The benefits of
neuroinflammation for the repair of the injured central nervous system. Cell Mol
Immunol (2019) 16(6):540–6. doi: 10.1038/s41423-019-0223-3

32. Ponath G, Ramanan S, Mubarak M, Housley W, Lee S, Sahinkaya FR, et al.
Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology.
Brain (2017) 140(2):399–413. doi: 10.1093/brain/aww298

33. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su MH, Sen P,
et al. Defective cholesterol clearance limits remyelination in the aged central
nervous system. Science (2018) 359(6376):684–8. doi: 10.1126/science.aan4183

34. Tran AP, Warren PM, Silver J. The biology of regeneration failure and
success after spinal cord injury. Physiol Rev (2018) 98(2):881–917. doi: 10.1152/
physrev.00017.2017

35. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev
Mol Cell Biol (2019) 20(3):137–55. doi: 10.1038/s41580-018-0085-z

36. den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid
droplets as immune modulators in myeloid cells. Trends Immunol (2018) 39
(5):380–92. doi: 10.1016/j.it.2018.01.012

37. Loving BA, Bruce KD. Lipid and lipoprotein metabolism in microglia. Front
Physiol (2020) 11:393. doi: 10.3389/fphys.2020.00393

38. Yin C, Ackermann S, Ma Z, Mohanta SK, Zhang C, Li Y, et al. Apoe
attenuates unresolvable inflammation by complex formation with activated C1q.
Nat Med (2019) 25(3):496–506. doi: 10.1038/s41591-018-0336-8

39. Yang X, Chen S, Shao Z, Li Y, Wu H, Li X, et al. Apolipoprotein e deficiency
exacerbates spinal cord injury in mice: Inflammatory response and oxidative stress
mediated by nf-kb signaling pathway. Front Cell Neurosci (2018) 12:142.
doi: 10.3389/fncel.2018.00142

40. Cheng X, Zheng Y, Bu P, Qi X, Fan C, Li F, et al. Apolipoprotein e as a novel
therapeutic neuroprotection target after traumatic spinal cord injury. Exp Neurol
(2018) 299(Pt A):97–108. doi: 10.1016/j.expneurol.2017.10.014

41. Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, Wehr MC, et al.
High cholesterol level is essential for myelin membrane growth. Nat Neurosci
(2005) 8(4):468–75. doi: 10.1038/nn1426

42. Ziegler G, Grabher P, Thompson A, Altmann D, Hupp M, Ashburner J, et al.
Progressive neurodegeneration following spinal cord injury: Implications for clinical
trials. Neurology (2018) 90(14):e1257–e66. doi: 10.1212/wnl.0000000000005258

43. Claes C, Danhash EP, Hasselmann J, Chadarevian JP, Shabestari SK,
England WE, et al. Plaque-associated human microglia accumulate lipid droplets
in a chimeric model of alzheimer’s disease. Mol Neurodegener (2021) 16(1):50.
doi: 10.1186/s13024-021-00473-0

44. Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O. Cell type-specific lipid
storage changes in parkinson’s disease patient brains are recapitulated by
experimental glycolipid disturbance. Proc Natl Acad Sci USA (2020) 117
(44):27646–54. doi: 10.1073/pnas.2003021117

https://doi.org/10.1523/jneurosci.4912-13.2014
https://doi.org/10.1523/jneurosci.4912-13.2014
https://doi.org/10.1007/s00401-019-01992-3
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.6026/97320630002005
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1016/j.bbr.2021.113698
https://doi.org/10.1016/j.bbr.2021.113698
https://doi.org/10.3389/fnmol.2020.574041
https://doi.org/10.3389/fnmol.2020.574041
https://doi.org/10.1089/neu.2012.2405
https://doi.org/10.1089/neu.2012.2405
https://doi.org/10.1016/0165-0270(93)90068-3
https://doi.org/10.1093/brain/awp322
https://doi.org/10.1016/j.immuni.2017.08.008
https://doi.org/10.1186/s13578-021-00592-7
https://doi.org/10.3389/fimmu.2018.00803
https://doi.org/10.1080/15548627.2021.1886839
https://doi.org/10.1038/s41593-019-0566-1
https://doi.org/10.1038/s41593-019-0566-1
https://doi.org/10.1038/s41423-019-0223-3
https://doi.org/10.1093/brain/aww298
https://doi.org/10.1126/science.aan4183
https://doi.org/10.1152/physrev.00017.2017
https://doi.org/10.1152/physrev.00017.2017
https://doi.org/10.1038/s41580-018-0085-z
https://doi.org/10.1016/j.it.2018.01.012
https://doi.org/10.3389/fphys.2020.00393
https://doi.org/10.1038/s41591-018-0336-8
https://doi.org/10.3389/fncel.2018.00142
https://doi.org/10.1016/j.expneurol.2017.10.014
https://doi.org/10.1038/nn1426
https://doi.org/10.1212/wnl.0000000000005258
https://doi.org/10.1186/s13024-021-00473-0
https://doi.org/10.1073/pnas.2003021117


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Pedro A. Reche,
Complutense University of
Madrid, Spain

REVIEWED BY

Youhei Egami,
Kagawa University, Japan
Roland Nau,
University Medical Center Göttingen,
Germany
Akira Monji,
Saga University, Japan

*CORRESPONDENCE

Michael K. E. Schäfer
michael.schaefer@unimedizin-mainz.de

SPECIALTY SECTION

This article was submitted
to Inflammation,
a section of the journal
Frontiers in Immunology

RECEIVED 16 May 2022
ACCEPTED 04 August 2022

PUBLISHED 29 August 2022

CITATION

Li S, Wernersbach I, Harms GS and
Schäfer MKE (2022) Microglia subtypes
show substrate- and time-dependent
phagocytosis preferences and
phenotype plasticity.
Front. Immunol. 13:945485.
doi: 10.3389/fimmu.2022.945485

COPYRIGHT

© 2022 Li, Wernersbach, Harms and
Schäfer. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which
does not comply with these terms.

TYPE Original Research
PUBLISHED 29 August 2022

DOI 10.3389/fimmu.2022.945485
Microglia subtypes show
substrate- and time-dependent
phagocytosis preferences and
phenotype plasticity

Shuailong Li1, Isa Wernersbach1, Gregory S. Harms2,3

and Michael K. E. Schäfer1,4,5*

1Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz,
Mainz, Germany, 2Cell Biology Unit, University Medical Center, Johannes Gutenberg-University
Mainz, Mainz, Germany, 3Departments of Biology and Physics, Wilkes University, Wilkes Barre,
PA, United States, 4Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-
University Mainz, Mainz, Germany, 5Research Center for Immunotherapy (FZI), University Medical
Center, Johannes Gutenberg-University Mainz, Mainz, Germany
Microglia are phagocytosis-competent CNS cells comprising a spectrum of

subtypes with beneficial and/or detrimental functions in acute and chronic

neurodegenerative disorders. The heterogeneity of microglia suggests

differences in phagocytic activity and phenotype plasticity between microglia

subtypes. To study these issues, primary murine glial cultures were cultivated in

the presence of serum, different growth factors and cytokines to obtain M0-

like, M1-like, and M2-like microglia as confirmed by morphology, M1/M2 gene

marker expression, and nitric oxide assay. Single-cell analysis after 3 hours of

phagocytosis of E.coli particles or IgG-opsonized beads showed equal

internalization by M0-like microglia, whereas M1-like microglia preferably

internalized E.coli particles and M2-like microglia preferably internalized IgG

beads, suggesting subtype-specific preferences for different phagocytosis

substrates. Time-lapse live-cells imaging over 16 hours revealed further

differences between microglia subtypes in phagocytosis preference and

internalization dynamics. M0- and, more efficiently, M1-like microglia

continuously internalized E.coli particles for 16 hours, whereas M2-like

microglia discontinued internalization after approximately 8 hours. IgG beads

were continuously internalized by M0- and M1-like microglia but strikingly less

by M2-like microglia. M2-like microglia initially showed continuous

internalization similar to M0-like microglia but again discontinuation of

internalization after 8 hours suggesting that the time of substrate exposure

differently affect microglia subtypes. After prolonged exposure to E.coli

particles or IgG beads for 5 days all microglia subtypes showed increased

internalization of E.coli particles compared to IgG beads, increased nitric oxide

release and up-regulation of M1 gene markers, irrespectively of the

phagocytosis substrate, suggesting phenotype plasticity. In summary,
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microglia subtypes show substrate- and time-dependent phagocytosis

preferences and phenotype plasticity. The results suggest that prolonged

phagocytosis substrate exposure enhances M1-like profiles and M2-M1

repolarization of microglia. Similar processes may also take place in

conditions of acute and chronic brain insults when microglia encounter

different types of phagocytic substrates.
KEYWORDS

brain, inflammation, immune response, microglia, phagocytosis, polarization,
plasticity, live imaging
Introduction

Microglia are central nervous system (CNS) resident cells

that originate from fetal macrophages and play an essential role

in innate immune responses and CNS homeostasis, both in the

healthy and diseased brain (1, 2). Furthermore, it has become

clear that microglia can be efficiently targeted by genetic and

pharmacological tools (3). As a result, they are considered

suitable targets for modulating CNS diseases (4).

Traditionally, two opposing phenotypes of activated

microglia, M1-and M2-like, have been described as pro-and

anti-inflammatory subtypes analogously to macrophages (5).

However, pathological conditions induce different phenotypes

of microglia that are unique and distinct from other macrophage

cell types, more diverse than an M1/M2 classification, and more

heterogeneous than previously anticipated (2, 6–9). This is

reflected by the various roles of microglia in CNS homeostasis,

comprising beneficial and detrimental actions in CNS diseases

after a bacterial infection or acute injuries such as traumatic

brain injury and stroke (5, 10–12).

In vitro stimulation of microglia with individual growth

factors and cytokines can induce M1-like and M2-like

microglia with distinct phenotypes and functional properties

(8). This also applies to phagocytosis, the main established

functional feature of microglia in development, homeostasis,

and pathology (13). For example, M2-like microglia induced by

anti-inflammatory cytokines IL-4 and IL-10 show overall higher

activity in phagocytosis of microbeads than M1-like microglia

generated by the pro-inflammatory cytokine IFN-g (14).

Phagocytosis of zymosan, a yeast cell wall component, is

increased in IL-4-induced M2-like microglia compared to

bacterial endotoxin lipopolysaccharide LPS-induced M1-like

microglia (15). M2-like microglia induced by IL-4, IL-13, and

IL-10 were also more efficient than LPS/IFN-g-induced M1-like

microglia in the phagocytosis of myelin (16). Likewise, M2-like

microglia induced by stem cell factor (SCF) show increased

phagocytosis of FITC-IgG opsonized beads compared to GM-

CSF-induced M1-like microglia (17). However, other studies
02
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reported that GM-CSF-induced M1-like microglia had

significantly higher phagocytic activities for FITC-IgG beads

than IL-4-induced M2-like microglia (8). Controversial results

were also obtained for the phagocytosis of amyloid-b (Ab).
While microglia pretreated with the M1-like-inducing bacterial

endotoxin lipopolysaccharide (LPS) display enhanced

phagocytosis (18), pro-inflammatory cytokines known to

promote an M1-like phenotype inhibited Ab phagocytosis

(19). More recently, treatment of primary mouse microglia

either with LPS or synthetic double-stranded RNA poly(I: C)

was shown to differently affect phagocytosis of synaptosomes,

E.coli particles, or IgG beads (20). Microglia also phagocytose

stressed or apoptotic neurons which contributes to brain

pathology after ischemic injury (21).The receptor tyrosine

kinases Axl and Mertk control the phagocytic specialization of

microglia, for example for apoptotic cells generated during

neurogenesis (22). Comparative studies on phagocytosis of

neurons by different microglia subtypes are scarce. It was

shown that LPS- or Ab-mediated pro-inflammatory

stimulation of BV2 microglia induced neuronal loss and death

by phagocytosis of neurons (23), while fractalkine (CX3CL1),

which promotes M2 polarization (24), increased the

phagocytosis of apoptotic neuron-like SY5Y cells via Milk Fat

Globule Factor-E8 MFG-E8 (25). Overall, these and other

studies using distinct microglia subtypes show differences in

phagocytic activity in vitro but few studies directly compared

different microglia subtypes.

In addition, only a few studies have also shown that

phagocytosis of specific substrates is associated with changes

in microglia phenotypes. For instance, pathogenic oligomeric Ab
shows a more potent induction of M1-like microglia than the

fibrillar form (26). Somewhat controversial data were provided

for microglia phenotype plasticity after myelin phagocytosis.

Myelin enhanced the M1-like profile and dampened the M2-like

profile of primary rat microglia (27) but also induced a switch of

M1-like microglia to an M2-like state (28). The latter finding

may relate to the up-regulation of the scavenger receptor CD36

in macrophages/microglia after myelin phagocytosis (29).
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Another study using E.coli particles, cell debris or Ab as

phagocytosis substrates showed that E.coli particles but not the

other substrates encountered by microglia triggered secretion of

the pathophysiologically relevant matrix metalloproteinase

MMP-9 (1). Furthermore, interaction with apoptotic neurons

shifts microglia toward distinct remodeling states (30), which

share features with disease-associated microglia (31). Finally,

phagocytosis of astrocyte- or neuron-derived exosomes may

influence microglia polarization due to the transcellular

transfer of miRNAs (32, 33)

Taken together, microglia play various roles in innate

immune responses, CNS homeostasis and disease, which likely

reflect both their heterogeneity and plasticity. However, while

their function extends well beyond removing pathogens, dead

cells and cell debris, there is still little knowledge about the

relationships between microglia subtypes, different types of

phagocytic substrates and phenotype plasticity. To address

this, we performed in vitro experiments with distinct microglia

subtypes subjected to phagocytosis assays for different

time periods using two types of phagocytic substrates,

E.coli particles and IgG-opsonized beads, followed by

immunocytochemistry, gene expression analyses, nitric oxide

assays, and time-lapse live-cell imaging.
Methods and materials

Approval of animal experiments

Newborn mice to obtain primary glia were handled in

accordance with the institutional guidelines of the Johannes

Gutenberg University Mainz, and Rhineland-Palatine, Germany.
Primary mixed glial culture and
differentiation of microglia subtypes

Mixed glial cultures were prepared from cerebral cortices of

1-5 days-old C57BL/6 mice sacrificed by decapitation. Brains

were extracted, the meninges were carefully removed, and the

cerebral cortex was dissected under a stereomicroscope. Cells

were dissociated using the Neural Tissue Dissociation Kit-P

according to the manufacturer`s protocol (#130-092-628;

Miltenyi Biotec). 3x105 cells/ml were seeded into T25 cell

culture flasks in Dulbecco’s modified Eagle medium (DMEM;

Life Technologies, Carlsbad) containing 10% fetal calf serum

(FCS, Life Technologies, Carlsbad), 1% penicillin/streptomycin

(P/S, 100 U/ml, Life Technologies, USA) and cultured at 37°C in

a humidified atmosphere of 5% CO2 and 95% air (Heraeus®

HERAcell® CO2 Incubators, Thermo Fisher Scientific, DE). The

cultures were maintained for 14 days in vitro (div) and the

medium was changed every 3 days. Next, cells were detached

using Trypsin/EDTA solution (Sigma, Steinheim) and
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dissociated in medium (DMEM/10% FCS/1% P/S) and 6-

7x104 cells per well were seeded in 24-well plates onto Poly-D-

Lysine-coated (0.1% PDL Sigma, Steinheim) glass coverslips

(13 mm, SCHOTT, Mainz). For the differentiation of

microglia subtypes, cells were incubated in medium (DMEM/

10% FCS/1% P/S) supplemented with granulocyte colony-

stimulating factor and interferon-gamma (GM-CSF: 20 ng/ml;

IFNy: 40 ng/ml, PeproTech GmbH, Hamburg), or macrophage

colony-stimulating factor and interleukin-4 (M-CSF, IL-4; 20

ng/ml each, PeproTech GmbH, Hamburg) for 7 div to obtain

M1-, or M2-like microglia, respectively. Non-supplemented

medium was used to obtain M0-like microglia. Medium was

replaced by fresh (non-) supplemented medium at 3 div and 7

div. Different treatment conditions of each experiment were run

in parallel on the same 24-well plates.
Immunocytochemistry and
morphological assessment

For immunocytochemistry and morphological assessment of

microg l i a sub types , cu l ture s were fixed wi th 4%

paraformaldehyde (PFA) for 10 min, blocked (5% normal goat

serum, 0.5% BSA, 0.1% Triton X-100 in PBS) for 1 h at room

temperature (RT), and incubated with primary antibodies

specific to Iba1, MHC-II, and MRC1 (Supplementary Table 1)

overnight at 4°C. The next day, cells were washed with PBS,

incubated with fluorophore-conjugated secondary antibodies

(Supplementary Table 1) for 1 h at RT, washed, and mounted.

Images were taken using a confocal laser scanning microscope

(LSM5 Exciter; Carl Zeiss DE) with equal acquisition parameters

for different microglia subtypes from five independent cell

culture preparations (n=5, biological replicates) and five

regions of interest (ROIs, n=5) from each coverslip.

Morphological parameters (cell size and circularity) of single

cells (20-30 cells per ROI) were analyzed using ImageJ (NIH

Image, RRID: SCR_003070) with appropriate threshold settings

based on anti-Iba1 immunostaining in a blinded and unbiased

fashion and data were expressed as mean values from biological

replicates (n=5).
Nitric oxide assay

The Griess assay was used for colorimetric detection of

NO2
− anions which is proportional to nitric oxide (NO)

production (34). 200 mL of cell culture supernatants were

mixed with 50 ml of 1% sulfanilic acid (Sigma Cat#S9251).

Then, 50 ml of 0.1% N-(1-naphthyl) ethylenediamine

dihydrochloride (Sigma-Aldrich; Cat#222488) was added,

and the absorbance at 540 nm was detected after 10 min

using a microplate reader (Sunrise™, Tecan, Switzerland).

The nitrite concentration in each sample was interpolated
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from a standard curve generated from a series of NaNO2

samples (Sigma, Cat#237213) of known concentration.
Quantitative PCR

The cell culture medium was removed, the cells were rinsed

once with PBS, and the RNeasy and QuantiScript Reverse

Transcription Kits (Qiagen) were used to extract RNA and

transcribe mRNA into cDNA according to the manufacturer’s

instructions. The cDNA was amplified and quantified by real-

time detection of SYBR Green (Thermo Scientific) with

oligonucleotide primers (Supplementary Table 2) purchased

from Eurofins using the Light Cycler 480 (Roche). For

absolute quantification, a target-specific standard curve was

generated and the copy numbers of target genes were

normalized to the copy numbers of the reference gene Ppia

(Cyclophilin A) essentially as described (35, 36).
Phagocytosis assays

Phagocytosis assays were performed using the Red E.coli

Phagocytosis Assay Kit (PromoKine, Cat#PK-CA577-K964) or

the Phagocytosis Assay Kit (IgG FITC complex, Cayman

Chemicals, Cat#500290). Phagocytosis substrates were added

at dilutions of 1:50 for Red E.coli or 1:100 IgG-FITC

beads for 3 h or 5 days, respectively, and processed for

immunocytochemistry using anti-Iba1or qPCR as described

above. To determine the number of microglia with

phagocytosis activity, ImageJ was used to outline Iba1-

immunolabelled cells followed by counting the number of cells

containing Red E.coli particles or IgG-FITC beads above a

constant threshold level and the percentage of microglia

subtypes containing Red E.coli or IgG-FITC beads was

calculated. To determine microglia phagocytosis capacity in

single cells (25 cells per condition), the relative occupancy of

Iba1 immunostaining by the fluorescent phagocytosis substrates

was calculated. Images were taken in a blinded and unbiased

fashion and data were expressed as mean values ± SEM from

independent experiments (biological replicates, n=5).

For time-lapse live imaging of microglial cells, primary

mixed glial cultures were detached with Trypsin/EDTA

solution and 3x105 cells per well were seeded onto 8-well

slides (m-slide, Ibidi GmbH, Germany). Cells were treated with

growth factors and cytokines for 7 div as described above to

obtain M0-, M1- and M2-like microglia subtypes. A Leica TSP8

confocal laser scanning microscope (Leica Microsystems,

Mannheim, Germany) equipped with an incubator module

(20% O2, 5% CO2, and 75% N2, at 37°C) (Oko Labs, Italy)

and a motorized position stage were used for time-lapse live

imaging experiments. Since CD68 is not involved in binding

bacterial/viral pathogens, innate, inflammatory or humoral
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immune responses (37), we performed live immunolabelling of

microglia with rat anti-mouse CD68-BV421 (dilution: 1:125,

clone FA-11, BD biosciences, RRID: AB_2744447). The

antibody was applied 30 minutes before the random selection

of 5 regions of interest (ROI) per condition, followed by the

separate addition of the phagocytosis substrates (Rhodamine-

E.coli: 1:50. IgG-FITC beads: 1:100). The multi-position confocal

images were acquired at an interval of 12 mins over 16 hours

using a 20x (0.75 NA) planapochromat objective with

differential interference contrast imaging. The automated

quantification was based on fluorescent particle tracking of the

E. coli-rhodamine or IgG-FITC substrates in single cells labelled

with BV421-anti-CD68 using Imaris software (version 9.3.1,

BitPlane, Zurich, Switzerland). A total of 1-3 x 103 cells were

acquired from 5 ROIs of each condition over the 16-hours live

imaging period in each of two independent experiments.
Statistical analysis

Data analyses were performed with GraphPad Prism®

(RRID: SCR_002798). Data outliers were identified and

removed using ROUT’s test followed by the Shapiro-Wilk test

to determine data distribution as specified in the figure legends.

Comparisons between two groups were performed dependent

on data distribution by Student’s t-test or Mann-Whitney-U test.

Multiple comparisons were performed dependent on data

distribution by one-way ANOVA (post-hoc correction Holm-

Š ı́ dák) or Kruskal-Wallis test (post-hoc correction Dunnett), if F

achieved the necessary level of statistical significance p<0.05.

Data are expressed as mean ± SEM. Individual data points

represent biological replicates or means from biological

replicates as specified in figure legends, p*<0.05, p**<0.01,

p***<0.001, p****<0.0001.
Results

Microglia subtypes differ in morphology,
expression of M1/M2 markers
and metabolism

Neural cells were isolated from the cerebral cortex of 3-5

days-old newborn mice, cultivated for 14 days, dissociated and

further cultivated in 24 well plates for 7 days in medium

(DMEM/10% FCS/1% P/S) containing GM-CSF/IFNy or M-

CSF/IL-4 to stimulate proliferation and polarization of microglia

into M1-like or M2-like phenotypes, respectively. Heat-

inactivated serum was present in all conditions to mimic

pathophysiological conditions of BBB breakdown (38, 39) but

to prevent complement-enhanced phagocytosis (40). Cultures

without the addition of growth factors and cytokines yielded

M0-like microglia. First, anti-Iba1 immunostaining to compare
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microglia morphology between microglia revealed a smaller cell

size of M1- than M2-like microglia and a higher circularity of

M1-like microglia compared to M0- and M2-like microglia

(Figures 1A–C). We next assessed the extent of differentiation

towards the M1- or M2-like microglia subtype using triple-

immunostainings with antibodies specific to the pan-microglia

marker Iba1, the M1 marker MHC2, and the M2 marker MRC1

(Figure 1D). We found that Iba1+/MHC2+ cells showed the

highest abundance in M1-like microglia (Figure 1E, 66.00% ±

3.797%, SEM), an intermediate abundance in M0-like microglia

(Figure 1E, 34.12% ± 3.797%, SEM), and the lowest abundance

in M2-like microglia (Figure 1E, 17.65% ± 3.797%, ± SEM).

Conversely, the abundance of Iba1+/MRC1+ cells was highest in

M2-like microglia (Figure 1F, 78% ± 2.195%, SEM), intermediate

in M0-like microglia (Figure 1F, 27.52% ± 2.195%, SEM), and

almost absent in M1-like microglia (Fig, 1F, 1.651% ±

2.195%, SEM).

To examine whether microglia subtypes showed

corresponding gene expression levels, we performed qPCR

using primers specific for the established microglia markers

Aif1 (encoding for Iba1), Mhc2 and Nos2 (M1 marker) as well

as Arg1 and Mrc1 (M2 marker). In agreement with previous

studies using purified microglia (41, 42), Nos2 and Mhc2 were

highly expressed in cultures containing M1-like microglia,

whereas Arg1 and Mrc1 were highly expressed in cultures

containing M2-like microglia (Figures 2A–E).

To verify that our differentiation protocol induced subtype-

specific alterations in cell metabolism, i.e., arginine metabolism,

we determined nitrite levels in cell culture supernatants as a

measure for the release NO. Cultures containing M1-like

microglia released significantly more NO than those

containing M0- or M2-like microglia (Figure 2F), and the NO

release was correlated with the Nos2 expression (Figure 2G).

Taken together, these results confirmed the differentiation of

M0-, M1-, and M2-like microglia in our primary mixed

glia model.
M1- and M2-like microglia show
substrate-specific phagocytosis
preference and capacities

We next examined phagocytosis activity and capacity of

M0-, M1-, and M2-like microglia in mixed glial cultures. Cells

were incubated for 3 h in the presence of two phagocytic

substrates, rhodamine-E. coli particles or IgG-FITC beads, and

then processed for anti-Iba1 immunocytochemistry and

confocal microscopy (Figures 3A–C).

Determining the percentage of Iba1+ M0-like microglia

containing E. coli particles or IgG-beads revealed that

approximately 75% of M0-like microglia showed phagocytic

activity, regardless of substrate identity (Figure 3A E.coli:

74.32% ± 2.85%; IgG: 73.86% ± 2.85%, SEM). In contrast, the
Frontiers in Immunology 05
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percentage of M1-like microglia containing E.coli particles was

higher than the percentage of M1-like microglia containing IgG-

beads (Figure 3B, E.coli: 73.06% ± 2.84%; IgG: 27.37% ± 2.84%,

SEM). However, we observed opposing internalization ratios for

M2-like microglia. The percentage of M2-like microglia

containing IgG-beads was increased compared to the

percentage of M2-like microglia containing E.coli particles

(Figure 3C, E.coli: 81.49% ± 4.92%; IgG: 51.74% ± 4.96%, SEM).

To assess the phagocytic capacity of the microglia subtypes,

we determined the relative occupancy of the Iba1-

immunostained cell area by either E.coli-rhodamine or IgG-

FITC beads in individual microglia. In M0-like microglia, no

differences were observed in the cell area occupancy between

E.coli-rhodamine and IgG-FITC beads, both of which show a cell

area occupancy of less than 20% (Figure 3D, E.coli: 17.68% ±

3.15%; IgG: 19.37% ± 2.97, SEM). In M1-like microglia, the cell

area occupancy by E.coli-rhodamine was about 35% of the cell

area, and the occupancy by IgG-FITC was less than 10%

(Figure 3D, E.coli: 37.12% ± 2.31%; IgG: 6.57% ± 2.07%,

SEM). In contrast, M2-like microglia displayed a cell area

occupancy by E.coli-rhodamine of about 20%, whereas the

occupancy by IgG-FITC was more than 40% (Figure 3D,

E.coli: 22.16% ± 0.95%; IgG: 42.53% ± 2.18%, SEM). Together,

these results indicated that M1- and M2-like microglia subtypes

show substrate-specific phagocytosis activities.
Microglia subtypes show substrate-
specific phagocytosis capacities and
dynamics over 16 hours

Our experiments to study differences in phagocytosis by

mic rog l i a sub t ype s a f t e r fixa t i v e t r e a tmen t and

immunocytochemistry at a predetermined time point did not

allow examination of microglial phagocytosis continuously over

time. Therefore, we performed multicolour time-lapse live

imaging for 16 hours. To identify microglia, we added BV421-

fluorophore-conjugated anti-CD68 to the cultures 30 min before

the imaging experiments started with the addition of E.coli-

rhodamine particles or IgG-FITC beads. The subsequent

analysis was based on fluorescent particle tracking of the

E.coli-rhodamine or IgG-FITC substrates in single cells

labelled with BV421-anti-CD68 and expressed as the mean

number of particles per ROI using Imaris software (see

methods for details).

Images taken shortly after the addition of E.coli-rhodamine

particles at 0 h and 16 h after their addition indicated high

phagocytosis rates of this substrate by M0- and M1-like

microglia over time (Figure 4A. Higher magnifications

demonstrated the internalization of E.coli particles into vesicle-

like structures and substantial intracellular accumulation of the

particles at 16 h (Figure 4B). However, M2-like microglia

showed less internalized E.coli particles than M0- or M1-like
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FIGURE 1

Microglia subtypes differ in morphology and expression of M1/M2 protein markers. (A) Confocal images showing anti-Iba1 immunostaining of
M0-, M1-, and M2-like microglia subtypes in primary glia cultures at 7 div, cultivated the presence of serum and/or growth factors and cytokines
(GM-CSF/IFNg for M1-like or M-CSF/IL-4 for M2-like) (B) Histograms showing differences in mean cell size and (C) circularity of microglia
subtypes. (D) Confocal images showing triple-immunostaining using antibodies specific to the pan-marker Iba1, the M1-marker MHC2, or the
M2-marker MRC1. M1- or M2-like microglia show increased expression of MHC2 or MRC1, respectively. (E, F) Histograms showing the
percentage of Iba1+ microglia expressing MHC2 or MRC1 as determined by cell counts after triple immunostaining using antibodies specific to
Iba1, MHC2, or MRC1. Data are expressed as mean ± SEM (n = 5, independent biological replicates are shown) and were tested for significant
differences by one-way ANOVA (post-hoc correction Holm-Šı́ dák) or Kruskal-Wallis test (post-hoc correction Dunnett), *p < 0.05, **p < 0.01,
****p < 0.0001 ns, not significant.
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microglia (Figures 4A, B), suggesting reduced phagocytosis rates

over the 16 hours period

E.coli particle tracking in CD68+ microglia revealed that M0-

and M1-like microglia continuously internalized E.coli particles
Frontiers in Immunology 07
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over 16 h. However, internalization by M1-like microglia

occurred more steadily (Figure 4C). M2-like microglia showed

internalization rates similar to M0- and M1-like subtypes until

approximately 8 h after adding E.coli particles, but then
B C

D E

F G

A

FIGURE 2

Microglia subtypes differ in M1/M2 gene marker expression and metabolism. (A–E) Gene expression analyses of the pan-marker Aif1, M1-
markers Mhc2, Nos2 and M2 markers Arg1, and Mrc1 demonstrating differential expression by microglia subtypes. Ppia was used as a reference
gene. (F) Alterations in cellular arginine metabolism were detected by colorimetric Griess assay, with M1-like microglia releasing significantly
more NO than M0- or M2-like microglia. (G) Scatter plot showing positive correlation between NO and Nos2 expression (non-parametric
Spearman correlation, r = 0.8842, p < 0.0001). Values are expressed are mean ± SEM from 5 individual experiments (biological replicates), one-
way ANOVA (post-hoc correction Holm-Šı́ dák), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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FIGURE 3

M1- and M2-like microglia show substrate-specific phagocytosis preference and capacities. (A–C) Confocal images showing anti-Iba1
immunostaining of M0-, M1- or M2-like microglia subtypes along with rhodamine-E.coli particles (red, E.coli) or IgG-FITC beads (green, IgG)
after 3 hours of phagocytosis substrate exposure. Histograms showing percentage of microglia with internalized E.coli particles or IgG beads.
M0-like microglia showed no phagocytosis preference, whereas M1- and M2-like microglia showed opposing phagocytosis preferences for
E.coli particles or IgG beads, respectively. (D) Co-localization analyses showing the relative occupancy of Iba1 immunostained cell areas by
E.coli particles or IgG beads. M1- and M2-like microglia displayed opposing phagocytosis capacities for E.coli particles or IgG beads,
respectively. Data are expressed as mean ± SEM from 5 independent biological replicates (A–C) or 5 cells from each of 5 independent
biological replicate (D). Data are means ± SEM. ****p < 0.0001, ns, not significant, Student’s t-test.
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FIGURE 4

Microglia subtypes show substrate-specific phagocytosis capacities and dynamics for E.coli particles over 16 hours (A) Single frame images and
(B) image enlargements from live imaging movies of anti-CD68 live-immunolabelled microglia (blue) after addition of E.coli-rhodamine particles
(red) at time-points 0h and 16h, scale bar, 100µm. Note pronounced E.coli particle accumulation in M0- and M1- but not in M2-like microglia at
16h after addition of E.coli particles. (C) Time-series plot showing the mean number of E. coli-rhodamine particles internalized (averaged from
8-10 ROIs for each time interval) by microglia subtypes over 16 hours. Simple linear regression calculation indicate different slopes of
phagocytic capacities of M0- (black) (r2: 0,6902, p < 0,0001), M1- (pink) (r2: 0,5364, p < 0,0001), and M2-like (cyan) (r2: 0,3691, p < 0,0001),
respectively. Note that M2-like microglia discontinued internalization at about 9 hours after addition of E.coli particles. (D) Mean number of
internalized particles over 16 hours (averaged from 8-10 ROIs for each time interval). (E) Number of imaged anti-CD68 immunolabelled
microglia encountering E.coli particles over 16 hours. Data are expressed as means ± SEM, one-way ANOVA (post-hoc correction Holm-Šı́ dák
test, *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant.
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discontinued internalization (Figure 4C). These differences were

also evident when comparing the mean number of internalized

E.coli particles (averaged from 3-5 ROIs for each time interval) over

16 h (Figure 4D, M0: 445.3 ± 25.80, SEM; M1: 531.9 ± 31.49, SEM;

M2: 400.8 ± 18.05, SEM). The mean particle number was

significantly higher in M1-like microglia than in M0-like or M2-

like microglia, and M0-like microglia showed overall higher

internalization than M2-like microglia (Figure 4D). These

differences were independent of the number of imaged CD68+

cells encountering E.coli particles over the 16 h imaging period

(Figure 4E, M0: 2126 ± 191.7, SEM, M1: 2250 ± 148.9, SEM, M2:

2052 ± 127.8, SEM), which further confirms that the differences

between the mean particle numbers per ROI reflect differences at

the single cell level.

Images were taken shortly and 16 h after the addition of IgG-

FITC beads to microglia subtypes, suggesting that the

phagocytosis of IgG-FITC beads by M0- and M2-like

microglia was more efficient than by M1-like microglia

(Figure 5A).Furthermore, higher magnifications demonstrated

the vesicle-like appearance of IgG beads and pronounced

accumulation in M0- and M2-like microglia and relatively low

accumulation in M1-like microglia (Figure 5B).

IgG bead tracking in CD68+ microglia over 16 hours

revealed different internalization rates and dynamics by

microglia subtypes. M1-like microglia showed continuous

internalization but internalized overall, clearly fewer IgG beads

than M0- or M2-like microglia (Figure 5C). M0-like microglia

showed an almost steady increase of IgG bead internalization

over 16 h. M2-like microglia initially showed continuous

internalization, but discontinuation of internalization occurred

approximately 8 hours after adding the phagocytosis substrate

(Figure 5C). The low phagocytosis activity of M1-like microglia

was also reflected by a significantly reduced mean number of

internalized beads (averaged from 4-5 ROIs for each 12 min

interval) over 16 h, whereas no significant differences were

observed between M0-like and M1-like microglia (Figure 5D,

M0: 443.2 ± 24.81, SEM; M1: 87.27 ± 5.238, SEM, M2: 364.2 ±

17.27, SEM). The number of microglia subtype cells

encountering the substrate was statistically not different, albeit

the mean number of M1-like cells was lower than in the other

conditions (Figure 5E, M0: 2273 ± 132.8, SEM, M1: 1532 ±

282.0, SEM, M2: 2231 ± 217.3, SEM).

Altogether, the results indicate that microglia subtypes

display substrate-specific phagocytosis over time.
Microglia subtypes show M1-like
features after prolonged phagocytosis
substrate exposure

The phagocytic activity of microglia in neurological

conditions may exceed well beyond the time-course examined

in our live imaging experiments. To mimic this situation, we
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subjected microglia to prolonged exposure to phagocytosis

substrate for 5 days. Determining the percentage of Iba1+

microglia containing E.coli particles after 5 days revealed that

approximately 75% of all microglia subtypes showed

phagocytosis activity (Figures 6A–C, M0: 74.28% ± 4.39%,

SEM, M1: 80.6% ± 3.76%, SEM, M2: 72.81% ± 5.4%, SEM).

However, the percentage of Iba1+ cells containing IgG beads was

significantly lower (Figures 6A–C, M0: 27.58% ± 4.16%, SEM,

M1: 27.56% ± 6.13%, SEM, M2: 27.55% ± 4.01%, SEM). Analysis

of colorimetric NO assays and qPCR results showed that NO

release and Nos2 mRNA expression correlated for all microglia

subtypes and that both increased relative to the control microglia

subtypes not exposed to phagocytosis substrates (Figure 6D).

Next, the relative occupancy of the Iba1-immunostained cell

area by either E.coli-rhodamine or IgG-FITC beads was

determined. We found that al l microglia subtypes

encountering the phagocytosis substrates showed a higher

phagocytosis capacity for E.coli than for IgG beads

(Figures 6E–G, E.coli: M0: 32.02% ± 4.2%, SEM, M1: 39.22% ±

3.19%, SEM, M2: 37.63% ± 4.06%, SEM; IgG: M0: 6.903% ±

1.9%, SEM, M1: 20.04% ± 2.04%, SEM, M2: 9.307% ±

2.32%, SEM).

Since this result was in stark contrast to the substrate

preferences of microglia subtypes observed in our experiments

after 3 h of substrate exposure, we tested whether changes in

microglial subtype identity might have contributed to this result.

We determined gene expression levels of microglia subtype

markers by qPCR using primers specific for Aif (Iba1), Mhc2,

Nos2, Arg1 and Mrc1 (Figure 7). In M0-like microglia cultures,

the M1-like markers Mhc2 and Nos2 were both strongly up-

regulated after 5 days of exposure both to E.coli particles or IgG

beads as compared to M0-like cells cultured without phagocytic

substrate (Figures 7B, C), while the pan-microglia marker Aif1

was not significantly different between the three conditions

(Figure 7A). Determination of M2-like marker expression

revealed up-regulation of Mrc1 after IgG bead exposure and

Arg1 expression did not alter in response to substrate exposure

(Figures 7D, E). In M1-like microglia, we found decreased Aif1

expression but increased expression of M1-like markers Mhc2

and Nos2 after E.coli particle exposure as well as increased Nos2

expression after IgG bead exposure (Figures 7F–H). No

significant differences were found for Arg1 or Mrc1 expression

(Figures 7I, J). In M2-like microglia, both E.coli particles and IgG

beads caused up-regulation of M1-like markers Mhc2 and Nos2

(Figures 7L, M). M2-marker Arg1 was down-regulated after

E.coli exposure and Mrc1 was downregulated both after E.coli

particle and IgG bead exposure as compared to M2-like cells

cultured without phagocytosis substrates (Figures 7N, O).

Thus, microglia subtypes subjected to prolonged exposure to

phagocytosis substrate for 5 days displayed changes in M1/M2

marker gene expression indicating a shift towards M1-like

phenotypes. Recently, it was shown that phagocytosis of E.coli

particles by M0-like microglia leads to delayed release of the
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FIGURE 5

Microglia subtypes show different phagocytosis capacities and dynamics for IgG-FITC beads over 16 hours. (A) Single frame images and (B)
image enlargements from live imaging movies of anti-CD68 live-immunolabelled microglia (blue) after addition of IgG-FITC beads (green) at
time-points 0h and 16 h, scale bar, 100µm. Note pronounced IgG bead accumulation in M0- and M2- but not in M1-like microglia at 16h after
addition of E.coli particles. (C) Time-series plot showing the mean number of IgG beads internalized (averaged from 8-10 ROIs for each time
interval) by microglia subtypes over 16 hours. Simple linear regression calculation indicate different slopes of phagocytic capacities of M0-
(black) (r2: 0,1637, p < 0,0001), M1- (pink) (r2: 0,2733, p < 0,0001), and M2-like (cyan) (r2: 0,07045, p < 0,0001), respectively. Note that M2-like
microglia discontinued internalization at about 9 hours after addition of IgG-FITC beads. (D) Mean number of internalized particles over 16
hours (averaged from 8-10 ROIs for each time interval). (E) Number of imaged anti-CD68 immunolabelled microglia encountering IgG-FITC
beads over 16 hours. Data are expressed as means ± SEM, one-way ANOVA (post-hoc correction Holm-Šı́ dák test, ****p < 0.0001. ns, not
significant.
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FIGURE 6

Microglia subtypes show M1-like features after prolonged phagocytosis substrate exposure (A–C) Confocal images showing anti-Iba1
immunostaining of M0-, M1- or M2-like microglia subtypes along with rhodamine-E.coli particles (red, E.coli) or IgG-FITC beads (green, IgG)
after 5 days of phagocytosis substrate exposure. Histograms showing percentage of microglia with internalized E.coli particles or IgG beads.
Microglia subtypes showed phagocytosis preference for E.coli particles rather than IgG beads. (D) Scatter plots showing similar correlation (non-
parametric Spearman correlation) between NO levels and Nos2 gene expression for M0- (r = 0.6536, p=0.0099), M1- (r = 0.8214, p = 0.0003),
and M2-like (r = 0.8857, p < 0.0001) microglia. Ppia was used as a reference gene. (E–G) Co-localization analyses showing the relative
occupancy of Iba1 immunostained cell areas by E.coli particles or IgG beads. Microglia subtypes showed phagocytosis preference for E.coli
particles rather than IgG beads. Data are expressed as mean ± SEM from 5 independent biological replicates (A–C) or 4-6 cells from each of 5
independent biological replicate (D). Data are means ± SEM. ****p < 0.0001, ns, not significant, Student’s t-test.
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FIGURE 7

Microglia subtypes show M1-like gene expression after prolonged phagocytosis substrate exposure (A–R) Gene expression analyses of microglia
subtypes after prolonged phagocytosis substrate exposure (E.coli-rhodamine particles, IgG-FITC beads) for the pan-marker Aif1, M1-markers
Mhc2, Nos2 and M2 markers Arg1, Mrc1 as well as the glia activation marker Mmp9. Ppia was used as a reference gene. (A–E) In M0-like
microglia, conditions with E.coli particles or IgG beads show up-regulation of M1 markers Mhc2 and Nos2 as well as up-regulation of M2
marker Mrc1 as compared to M0-like microglia not exposed to phagocytosis substrate (control). (F–J) In M1-like microglia, conditions with
E.coli particles show downregulation of microglia pan-marker Aif1 and up-regulation of M1 markers Mhc2 and Nos2 but down-regulation of M2
markers Arg1 and Mrc1 and conditions with IgG show up-regulation of Nos2 as compared to M1-like microglia not exposed to phagocytosis
substrate (control). (K–O) In M2-like microglia, conditions with E.coli particles or IgG beads show up-regulation of M1 markers Mhc2 and Nos2
as compared to M2-like microglia not exposed to phagocytosis substrate (control). Down-regulation of M2 marker Arg1 was observed in
conditions with E.coli particles as well as down-regulation of Mrc1 in conditions with E.coli particles or IgG beads as compared to M2-like
microglia not exposed to phagocytosis substrate (control). (P–R) The glia activation marker Mmp9 was up-regulated in M0- and M2-like
microglia both in conditions with E.coli particles of IgG beads as compared to microglia subtypes not exposed to phagocytosis substrate
(control). Multiple comparisons were performed dependent on data distribution by one-way Anova (post-hoc correction Holm-Šı́ dák) or
Kruskal-Wallis test (post-hoc correction Dunnett), if F achieved the necessary level of statistical significance p < 0.05. Data points are shown for
biological replicates and expressed as mean ± SEM, p* ≤ 0.05, p** ≤ 0.01, p*** ≤ 0.001.
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matrix metalloproteinase MMP-9 (43) suggesting that Mmp9

gene expression may serve as a marker for microglia plasticity in

response to phagocytosis substrate exposure. Indeed, Mmp9

expression was up-regulated in M0- and M2-like microglia

after 5 days exposure to E.coli particles or IgG beads as

compared to control cultures without phagocytosis substrate.

However, Mmp9 expression did not increased significantly in

M1-like microglia (Figures 7P–R) suggesting that Mmp9 gene

expression was stronger induced in microglia undergoing shifts

towards a M1-like phenotype.
Discussion

This study examined phagocytosis efficiencies of M0-, M1-,

and M2-like microglia for E.coli particles and IgG-opsonized

beads over different time periods in vitro. These substrates were

chosen due to their pathological relevance, their common use in

phagocytosis research and better detection and quantification

properties compared to soluble fluorophore-conjugated

molecules. Cell cultivation and phagocytosis assays were carried

out in the presence of serum to mimic pathophysiological

conditions of BBB breakdown such as meningitis, trauma or

stroke (38, 39). We found that microglia subtypes differ in

phagocytosis efficiencies for the two types of substrates in a

time-dependent manner and long-term substrate exposure

enhanced or induced M1-like profiles of M0-, M1-, and M2-like

microglia, respectively. Our results suggest that phagocytosis

substrates can trigger phenotype plasticity of microglia including

M2 to M1 repolarization which may also take place in

neurological conditions when microglia encounter different

types of phagocytic substrates.

In general, our results showing substrate-specific

phagocytosis efficiencies of distinct microglia subtypes are

consistent with previous in vitro studies examining

phagocytosis of diverse substrates such as zymosan, IgG-

opsonized beads or Ab by M1- and M2-like microglia (44–48).

The prevailing view is that M2-like microglia show higher

phagocytic activity than M1-like microglia. However, there are

also conflicting observations on the phagocytic preference and

efficiency of different microglia subtypes suggesting a context

dependency (8, 14, 19, 20, 49, 50).

In the present study, when microglia were exposed to E.coli

particles or IgG beads for 3 hours, we found that a higher

proportion of M1-like than M2-like microglia phagocytose E.coli

particles. This result is in agreement with findings that M1-like

microglia, showing augmented release of NO and expression of

pro-inflammatory cytokines, more efficiently phagocytose

pathogenic bacteria than unstimulated microglia, but M2-like

microglia were not examined (51, 52). Studies comparing in vitro

phagocytosis dynamics between different microglia subtypes

over time are scarce (53). Therefore, we conducted live

imaging experiments over 16 hours in anticipation of gaining
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new insights. Similar to the 3 h exposure time, M1-like microglia

internalized more E.coli particles over 16 h than M2-like

microglia, and vice versa, M2-like microglia internalized more

IgG beads than M1-like microglia. The strongest differences in

substrate preference were found for M1-like microglia, which

clearly preferred E.coli particles over IgG beads. This result

supports and extends the aforementioned findings that M1-

like microglia show high efficiency in the phagocytosis of

pathogenic bacteria, which holds potential for novel

therapeutic approaches e.g. in bacterial meningoencephalitis

and sepsis (51, 52, 54, 55). In this context, factors have been

identified, i.e. palmitoylethanolamide and activin A, to enhance

phagocytosis of E.coli by M1-like microglia while preventing

excessive and potentially harmful release of NO and pro-

inflammatory cytokines (56–58). Interestingly, similar

mechanisms may underlie therapeutic benefit after treatment

of Alzheimer`s Disease model mice with the non-pyrogenic LPS-

derivative monophosphoryl lipid A (59), which promotes

phagocytosis of Ab after 3 h of substrate exposure by

pretreated microglia in vitro (18). To expand existing research,

live cell imaging of microglia over a longer observation time

might be useful to characterize this and other phagocytosis-

enhancing drugs in terms of optimal stimulation protocols to

achieve sufficient phagocytosis activity.

We further found that M2-like microglia internalized IgG

beads more efficiently than M1-like microglia. These results are

in line with previous studies showing efficient phagocytosis of

substrates from other sources than E.coli by M2-like microglia

(14–16). Likewise, M2-like microglia induced by SCF show

increased phagocytosis of FITC-IgG opsonized beads as

compared to GM-CSF-induced M1-like microglia (17, 48).

However, we found time-dependent changes in substrate

internalization of M2-like microglia, almost discontinuing

both E.coli particle and IgG bead phagocytosis approximately

8 h after addition of the phagocytosis substrates. We have not

addressed the question of whether stalled phagocytosis activity

by M2-like microglia is a transient or permanent effect beyond

the 16 h live imaging period. Interestingly, biphasic phagocytosis

activities have been reported for bone marrow-derived

macrophages with peaks at 4 h and 24 h and an intervening

period of no internalization (60), but the underlying

mechanisms are elusive. Rate-limiting factors reported for

phagocytosis comprise scavenger receptors, Fcg and/or

complement receptors, the myosin/actin network, second

messengers such as phosphoinoside, but also physical and

metabolic constraints might play a role (61–64). Further

studies using genetic, pharmacological and single-cell

transcriptomics approaches are required to modulate key

factors of phagocytosis and elucidate the molecular

mechanisms underlying this and other observations of

our study.

We found that after prolonged substrate exposure for 5 days

all microglia subtypes showed a higher preference for E.coli
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particles than IgG beads. Notably, prolonged exposure resulted

in increased expression of the M1 markers Mhc2 and Nos2

irrespectively of the substrate. Gene expression changes after

prolonged IgG bead exposure were similar to those after

prolonged E.coli particle exposure and in support of a shift

towards M1-like phenotypes. These results suggest that

phagocytosis associated with the cellular environment can be

considered a key factor in the phenotype transformation of

microglia. Indeed, it has become clear that phagocytosis is not

an isolated cellular response and may represent a source of

cellular heterogeneity and plasticity in different tissues (65).

Compelling evidence was provided that this is also true for

microglia in the CNS. Regional changes in epigenetic regulation

of microglia transcriptomes have been connected to the basal

phagocytic activity of microglia (66) and phagocytosis-induced

transcriptional changes were demonstrated to support the long-

term maintenance of hippocampal neurogenesis in mice (67).

Howeve r , in mouse mode l s o f acu te or chron i c

neurodegeneration, phagocytosis of apoptotic cells caused a

microglia phenotype shift from a homeostatic to a

neurodegenerative phenotype (68). Our results suggest that

shifts towards pro-inflammatory M1-like phenotypes occur

irrespectively of the pre-established microglia subtype thereby

providing another piece of evidence for high microglia plasticity

in response to environmental factors. We did not explore

whether the presence or phagocytosis of E.coli particles or IgG

beads were decisive for this phenotype shift but we favor the

possibility that both phagocytosis, the environmental presence

of substrate as well as the duration of substrate exposure is

critical. Indeed, experimental evidence from macrophages shows

time-dependent phenotypic switches in response to LPS (69).

Dynamic changes in pro-inflammatory cytokine gene expression

were also observed in M1-like microglia after myelin

phagocytosis (70) and chronic myelin phagocytosis induces a

disease-associated transcriptional state in microglia (71).

Another non-mutually exclusive possibility is that increased

pro-inflammatory cytokine expression mediates feedback loops

that enhance or drive a phenotype shift towards M1-like profiles

(72–75).

The same could apply to the metalloproteinase MMP-9,

which is expressed by LPS-activated microglia in primary

neuron-glia cultures (76) and secreted in a delayed manner by

primary microglia in response to phagocytosis of E.coli particles

(43). In support of a role of MMP-9 in microglia responses after

phagocytosis, we found robust up-regulation of Mmp9

expression after long-term substrate exposure for 5 div.

Interestingly, Mmp9 up-regulation was found in cultures

showing shifts towards the M1-like phenotype whereas no up-

regulation was observed in cultures of pre-differentiated M1-like

cells. This finding suggests that MMP-9 may serve as a marker

for microglia plasticity including M2 to M1 repolarization,

consistent with observations on the positive regulation of

MMP-9 expression by M1-like phenotype inducers IL-1,
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TNFa, and LPS and negative regulation by the M2-like

phenotype inducers IL-4 and IL-10 (77). In addition,

paracrine/autocrine loops involving MMP-9 have been

suggested to amplify microglia activation, whereas deletion of

MMP-9 maintained microglia in a resting phenotype in an

animal model of spinal cord injury (78). These findings

suggest a broader functional spectrum of MMP-9 and other

matrix metalloproteinases (MMPs) released by microglia

beyond established physiological roles in synaptic plasticity

and extracellular matrix modeling (79) or pathological roles in

neuroinflammation or gliomas, for example (77, 80, 81).

Our results further support the hypothesis that M1/M2

microglia can shift between functional phenotypes depending

upon environmental signals, here E.coli particles or IgG beads.

Similar processes may also take place in conditions of acute and

chronic brain insults when microglia encounter different types of

phagocytic substrates. Indeed, M2-like to M1-like shifts in

microglia populations were also observed in models of

ischemic stroke (82, 83), spinal cord injury (28), and traumatic

brain injury (84, 85). Furthermore, phagocytosis by microglia

can play an important role in chronic neurodegeneration as well

as neurodevelopmental and neuropsychiatric disorders (86–88).

Reprogramming patient-derived cells to microglia-like cells and

testing for their phenotype plasticity and phagocytosis function

may help to gain insights into pathological mechanisms. For

example, schizophrenia patient-derived microglia-like cells show

higher rates of synaptic phagocytosis and elimination and

targeting microglia by the immunomodulatory drug

minocycline reduced abnormal synapse elimination by

phagocytosis (89). Interestingly, minocycline was proposed to

act via inhibition of MMPs in the autism spectrum disorder

fragile X syndrome (90) suggesting that better understanding the

role of MMPs for microglia activation, phenotype plasticity, and

phagocytic function may provide novel immunomodulatory

treatment options.

Some limitations of this study should be considered. Our in

vitro approach does not reproduce the brain environment, and

many factors influencing microglial morphology, polarization

and function are absent. To partially compensate for these

limitations, we used primary glia cultures containing a

substantial number of astrocytes in combination with

microglia-specific immunolabelling as well as microglia-

specific qPCR assays. The presence of astrocytes under the

different experimental conditions likely influenced microglia

responses as compared to pure microglia cultures since

astrocytes modulate microglia polarization, activation and

function. Conversely, activated microglia can trigger changes

in the inflammatory profile of astrocytes both in vitro and in vivo

(91, 92). As LPS-activated microglia can induce a neurotoxic A1

astrocyte phenotype (92), prolonged exposure of the primary

glial cultures to E.coli particles affects microglia but also

astrocytes. Therefore, further studies are required to examine

possible alterations in astrocytes and their influence on microglia
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under the experimental conditions of our study. Another

limitation in this study is the use of two different phagocytic

substrates and fluorophore conjugates, which likely undergo

different lysosomal processing and fluorescent decay after

phagosomal acidification. This may particularly play a role for

the long-term experiments and the results of the phagocytic

uptake should be interpreted with caution. Importantly,

regardless of this limitation, data on gene expression and nitric

oxide levels demonstrate microglia plasticity and phenotype

shifts after long-term substrate exposure. Finally, non-defined

serum proteins in the, however heat-inactivated, culture media

can trigger microglia activation as well as phagocytosis by

microglia (38, 39, 93, 94). As indicated by previous findings,

serum-derived IgG likely influenced phagocytosis by microglia

in the present studies. It has been also shown that the

opsonization of E.coli with human serum or murine IgG

increases the phagocytic ability of macrophages to clear E.coli

(60). However, given that the presence of serum mimics

neuropathological conditions involving BBB damage in our in

vitromodel, the findings of this study may more closely resemble

pathological in vivo conditions.
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Breaking down the cellular
responses to type I interferon
neurotoxicity in the brain

Barney Viengkhou and Markus J. Hofer*

School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney,
Sydney, NSW, Australia
Since their original discovery, type I interferons (IFN-Is) have been closely

associated with antiviral immune responses. However, their biological functions

go far beyond this role, with balanced IFN-I activity being critical to maintain

cellular and tissue homeostasis. Recent findings have uncovered a darker side of

IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory

and neurodegenerative pathologies. The underlying causes of these

‘interferonopathies ’ are diverse and include monogenetic syndromes,

autoimmune disorders, as well as chronic infections. The prominent involvement

of the CNS in these disorders indicates a particular susceptibility of brain cells to

IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate

neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in

the CNS, and secondly, by exploring the spectrum of neurological disorders arising

from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial

and fundamental step towards development of new therapeutic strategies

for interferonopathies.

KEYWORDS

type I interferons, cerebral interferonopathies, neurotoxin, neurodegenerative diseases,
aging, multiple sclerosis, Aicardi-Goutières syndrome, traumatic brain injury
Introduction

Central nervous system (CNS) inflammation is involved in a wide range of neurological

disorders and diseases, from pathogen-driven encephalitis and autoimmune disorders to

trauma, aging, and neurodegeneration (1–4). The complex nature of inflammation is

typically portrayed as either beneficial, such as pathogen elimination, or detrimental, like

induction of cell death. Yet in many cases, these processes occur simultaneously and are

driven by multiple mediators. The type I interferons (IFN-Is) are master regulators of

inflammation. They include the IFN-a subtypes and IFN-b and were originally identified due

to their ability to interfere with viral replication (5). However, a vast amount of research over

the past 60 years has revealed that IFN-Is have a wide range of roles in addition to regulating

inflammation and immunity.

There are three main mechanisms by which IFN-I production and signaling can be

increased. Firstly, activation of innate immune sensors by pathogens or cellular danger signals
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triggers increased expression of IFN-I genes. For example, cytosolic

dsDNA from viruses, damagedmitochondria, or improperly processed

self-nucleic acids are recognized by cyclic GMP–AMP synthase

(cGAS), which in turn activates the stimulator of interferon genes

(STING) (6). Activated STING then triggers a signaling cascade

resulting in the upregulation of IFN-I expression (6). In addition to

STING, there aremultiple other immune sensors that upregulate IFN-I

expression in similar ways (7, 8). Secondly, genetic changes can result

in increased IFN-I signaling such as in trisomy 21 due to an extra copy

of IFN-I receptor 1 (IFNAR1) (9), or reduced negative regulation of the

IFN-I pathway such as in patients with mutations in USP18 or ISG15

(10, 11). Thirdly, IFN-Is are used as treatment for a range of diseases

including chronic viral infections (12), multiple sclerosis (MS), and

several cancers and tumors (13–16).

All IFN-Is mediate their cellular effects through binding to a

single heterodimeric cell surface receptor consisting of the IFNAR1

and IFNAR2 chains. Activation of the receptor complex triggers two

distinct signaling phases (Figure 1). The first phase induces rapid and

widespread changes to protein phosphorylation and affects multiple

signaling pathways including mitogen-activated protein kinase,

cyclin-dependent kinase, and AKT (17). While still not fully

understood, it appears that this widespread change in protein
Frontiers in Immunology 0277
phosphorylation prepares the cell for the second phase, which

modulates the expression of several hundreds of IFN-regulated

genes (IRGs). To make matters more complex, this transcriptional

phase mediates its effects through several signaling pathways. Of

these, the best understood is the activation of the interferon-

stimulated gene factor 3 (ISGF3) complex, which consists of the

transcription factors signal transducer and activator of transcription

(STAT1) 1, STAT2, and interferon regulatory factor 9 (IRF9). The

ISGF3 pathway is often also called the canonical IFN-I signaling

pathway and is critical to activate the antiviral response. By contrast,

all other pathways are termed ‘non-canonical’ and are thought to

modulate the antiviral response in a cell- and stimulus-dependent

context (18–22). Moreover, the signaling components in the IFN-I

pathway and can be activated by other cytokines, which complicates

defining the precise contribution of IFN-Is in inflammation and

immunity in vivo. In particular, while IFN-IIIs bind to their unique

cell surface receptor, they also mediate their effects through the ISGF3

complex. Recent findings suggest that IFN-IIIs, which consist of the

IFN-ls, contribute to neuroinflammation, however, many aspects

remain unclear. It appears that IFN-Is are more potent than IFN-IIIs

(23, 24) and that the expression of the IFN-III receptor is restricted

(25) with very low transcript levels in the brain (23, 24). Thus, while
FIGURE 1

IFN-I signaling pathway and strategies of inhibition. After ligation of IFN-Is with its cognate receptor chains, IFNAR1 and IFNAR2, JAK1 and TYK2
transphosphorylate each other before phosphorylating the receptors. In the canonical pathway, STAT1 and STAT2 dock at the receptor to become
phosphorylated by the JAKs. Phosphorylated STAT1 and STAT2 then form a trimolecular complex (ISGF3) with IRF9 and translocate into the nucleus to
bind ISREs to regulate the expression of hundreds of interferon-regulated genes (IRGs). Non-canonical signaling involves homodimers or heterodimers
of STATs, STAT5 binding to CrkL, or recruitment of transcriptional coactivators to regulate ISRE or GAS elements. Additional kinases are activated (PI3K,
NF-kB and MAPK pathways) which modulate the cellular response to IFN-Is that includes translation of a subset of genes, regulation of transcription or a
range of cellular functions. Multiple strategies have been employed to target IFN-I signaling including inhibition or elimination of proteins in the pathway
or its overall effects with immunosuppressants and anti-inflammatories that act on the cell or affect the expression of genes associated with
inflammation. Red circles indicate phosphorylation of a protein. IFN-I, type I interferon; IFNAR, IFN-a/b receptor; JAK1, Janus kinase 1; TYK, tyrosine
kinase 2; STAT, signal transducer and activator of transcription; IRF9, interferon regulatory factor 9; ISFG3, interferon-stimulated gene factor; ISRE,
interferon-stimulated response-elements; GAS, g-activated sequence; CrkL, Crk like proto-oncogene, adaptor protein; IRS, insulin receptor substrate;
PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor-kB; MAPK, mitogen-activated protein kinase.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1110593
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Viengkhou and Hofer 10.3389/fimmu.2023.1110593
we will not discuss the role of IFN-IIIs in detail, it is important to keep

in mind that synergism and antagonism of signaling pathways

between IFN-Is and other cytokines influences the outcomes of

IFN-I-induced cellular and tissue responses.

Although IFN-Is are critical for the physiological regulation of

inflammation, they are associated with a range of adverse effects.

These adverse effects manifest often as neurological deficits and are

commonly observed when IFN-Is are used as a drug or in patients with

chronically elevated IFN-I production in the brain (26). Importantly, the

cellular and molecular basis for this IFN-I neurotoxicity remains unclear

and its study is complicated by the presence of multiple cell types in the

CNS (e.g., neurons, glia, and vascular cells), each of which shows unique

cell type-specific responses (17, 27–30). Accordingly, in this review, we

dissect the complexity of IFN-I neurotoxicity at two levels: firstly, by

analyzing the cell-type specific responses to IFN-I in the CNS, and

secondly, exploring the spectrum of diseases and symptoms of

neurological disorders with increased IFN-Is.
Cellular responses to IFN-Is in the brain

The existence of a homeostatic level of IFN-I signaling in the

brain is demonstrated by the presence of IRG products in the healthy

brain (31, 32) and reduced expression of IRGs in unstimulated

IFNAR1-deficient mice (18) and cells lacking IFN-I signaling

proteins (33). The role of homeostatic IFN-I signaling in the brain

is diverse and ranges from priming cells for detection and response to

pathogens to roles in learning and memory. For example, several

studies have shown that neutralization of IFNAR1 results in synapse

reduction and impaired synaptic plasticity (34) and ablation of IFN-b
leads to defective neuronal autophagy (35). In addition to

homeostatic production, IFN-I expression can be markedly

increased in most if not all brain-resident cells in response to a

range of stimuli. Recent progress in omic analyzes, particularly at the

single-cell level, has demonstrated that within the diseased brain, a

spectrum of cellular response states occurs simultaneously rather than

a uniform response (36–42). Moreover, while all cell types in the CNS

can respond to IFN-Is, each cell type mounts its specific response to

IFN-Is. Consequently, the sum of the individual responses determines

the local tissue response. In the following sections, we will summarize

these cell-type specific responses.
Neurons

Neurons require IFN-I signaling for normal development.

Homeostatic IFN-b signaling in neurons is involved in the formation

of dendritic spines, neurite branching, and neuronal autophagy, while

loss of IFNAR1 signaling in neurons leads to formation of protein

aggregates or Lewy bodies (35). However, IFN-b injected into the brain
also causes a reduction of synapses (43), demonstrating the importance

of balanced IFN-I signaling for neuronal function. In response to viral

infections, neurons show limited production of IFN-Is (44, 45).

Importantly, while they mount a robust response to IFN-Is,

neurons only regulate the expression of a limited set of IRGs (46,

47). This comparatively (to other CNS cell types - see below) narrow

response provides antiviral protection andmay serve to limit adverse or
Frontiers in Immunology 0378
detrimental effects of IFN-I signaling in these delicate cells. The need to

protect neurons from damage is also supported by the elevated basal

expression of some IRGs like ISG15 in neurons compared with other

cells contributing to an intrinsic antiviral resistance (48). IFN-I

mediated neurotoxicity manifests in neurons after IFN-a treatment

with fewer dendrites (49, 50), decreased neuronal neurogenesis (51),

reduced neurotrophic signaling (52), and increased apoptosis of

precursor cells (53). In addition, IFN-a alters glutamate-induced

excitatory potentials in hippocampal neurons and inhibitory post

synaptic potentials in pyramidal neurons (47, 54–56). This in turn

may increase epileptiform discharges associated with seizures and

inhibit long term potentiation, a process important in memory

formation (47, 54–56). Moreover, antagonizing the glutamate

receptor, N-methyl D-aspartate receptor (NMDAR), reduces the

neurotoxicity of IFN-a, indicating a toxic role of IFNAR and

NMDAR coactivation (50). IFN-b also modulates ion channels to

increase the number of action potentials elicited after activation of

protein kinase C (56) and is in line with IFN-b altering glutamatergic

neurotransmission (57). In addition, increased cerebral IFN-a levels in

transgenic mice with CNS-targeted overproduction of IFN-a (termed

GFAP-IFNmice) results in a progressive loss of neurons (58), impaired

learning (59), and changes in phosphoproteins that are associated with

various neuronal functions (17). Thus, increased IFN-I signaling has

detrimental effects on neuronal health and survival.
Astrocytes

Astrocytes are the most abundant glia cell and tile the CNS.

Similar to neurons, basal IFN-I signaling in astrocytes is required for a

healthy brain. Astrocyte-specific deletion of IFNAR1 results in

impaired learning, reduced synapse plasticity, and fewer synapses

(34). Following infection with neurotropic viruses, astrocytes are the

main producers of IFN-b in mice (44, 60). Their response to IFN-Is is

required to limit pathogen replication (61) and to promote blood–

brain barrier (BBB) integrity following virus infection (23). Astrocytes

alter morphology in response to IFN-Is as observed in brains of

patients with increased cerebral IFN-I production (62–64) and

GFAP-IFN mice (17, 59). Treatment of astrocytes with IFN-a or

IFN-b reduces astrocytic process complexity and domain range and

also upregulates genes involved in antiviral responses, metabolism,

apoptosis, and major histocompatibility complex (MHC) (17, 27, 39,

59, 62–64). Of note, increased levels of MHC on astrocytes negatively

impact neuronal function, activate microglia, and are correlated with

social and cognitive deficits in mice (65). Astrocytes can facilitate

leukocyte infiltration by increasing chemokine expression after IFN-a
treatment (66). In line with this, a subset of astrocytes located around

outer cortical blood vessels, and thought to regulate leukocyte access,

has been identified as being highly responsive to IFN-Is (39). This

highly IFN-I-responsive subset has also been identified in mouse

models of Alzheimer’s disease (AD), MS, and acute cortical trauma

(39). Hypertrophic astrocytes and increased parenchymal leukocytes

are also observed in brains of GFAP-IFN mice, supporting a role for

astrocytes in mediating leukocyte infiltration (58, 59). While these

findings suggest an inflammation-promoting role of IFN-Is on

astrocytes, IFN-I signaling in astrocytes can also limit

neuroinflammation through the production of the aryl hydrocarbon
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receptor and suppressor of cytokine signaling 2, dampening

activation of proinflammatory signaling pathways (67). Specifically,

mice with astrocyte-restricted Ifnar1-knockdown show exaggerated

neuroinflammation in experimental autoimmune encephalomyelitis

(EAE), a mouse model of MS (67). In addition, IFN-a but not IFN-b
treatment of human astrocytes reduces proliferation and glucose

uptake (68) which impacts the metabolic heath of the CNS. Thus,

while the contribution of astrocytes to IFN-I neurotoxicity is not

clear, these findings suggest a complex role for astrocytes in

modulating IFN-I responses, one that is of increasing interest.
Microglia

Unlike neurons or astrocytes, microglia do not originate from the

neuroectoderm. They are derived from the yolk sac and colonize the

brain early during embryonic development (69). Microglia are highly

plastic and sensitive to the local environment and are considered the

key immunoresponsive cell type in the CNS. Microglia produce IFN-

a and IFN-b in a wide range of neurological diseases ranging from

viral infection to autoimmune disorders (44, 70, 71). Microglia show a

more rapid and diverse response to IFN-a compared with astrocytes

and neurons (17, 27, 46). Similar to astrocytes, microglia morphology

has been used as an indicator of their functional state (72). However,

rather than changing into an amoeboid morphology, which is

typically observed of microglia in inflammatory situations, in

response to IFN-Is, microglia become hyper-ramified with

increased process complexity (73). This is also observed in AD and

aging (74), indicating microglia are responding to IFN-Is in these

conditions. In response to IFN-a, microglia upregulate expression of

IRGs, cytokines and chemokines and increase antigen presentation

(27), enabling them to act as antigen-presenting cells, propagate

inflammation, and promote leukocyte infi l tration. This

transcriptomic response has been similarly identified in microglia in

the aged brain, AD or demyelination in humans or mouse models (38,

40–42). Although most microglia upregulate IRGs, there is a small

subset of microglia that are IFN-I-hyperresponsive as identified by

single-cell sequencing of a large number of microglia (36, 38, 40, 41).

It has been suggested that this hyperresponsive subset contributes to

age-dependent cognitive decline and increased synaptic stripping

(75–77). In support, minocycline inhibition of microglia activation

reduced features of depression and impaired learning of fear

extinction in mice injected with IFN-a (78) and use of anti-

IFNAR1 treatment in a mouse model of AD demonstrated that

IFN-Is promote microglial engulfment of synapses (79).

Add i t iona l l y , minocyc l ine ha s been used in var ious

neurodegenerative diseases with varied outcomes in animal and

human studies (80). However, a recent study using GFAP-IFN mice

has demonstrated that depletion of microglia exaggerated disease

(81), suggesting that the role of these cells in IFN-I-driven disease

may be both beneficial and detrimental.
Oligodendrocytes

Oligodendrocytes have limited responses to IFN-a and IFN-b. In
viral infections, oligodendrocytes have low production of IFN-Is and
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show less expression of IRGs, compared with microglia (82).

Additionally, IFN-a or IFN-b have no effect on oligodendrocyte

proliferation or survival (31, 51, 83). This suggests on the one hand a

partial refractory state of oligodendrocytes to IFN-Is, and on the other

hand, that the loss of myelin in neurodegenerative diseases may be an

indirect response due to actions from surrounding cells or other

mediators rather directly through IFN-I signaling. In support of this, a

study using single-cell transcriptomics in a mouse model for MS

identified a subset of oligodendrocytes that actively recruit T cells,

driving the loss of myelin (37). However, data on oligodendrocyte

responses to IFN-Is remains limited and further studies are needed to

provide a deeper understanding how IFN-Is affect these cells.
Blood–brain barrier and endothelial cells

The BBB is critical for maintaining CNS homeostasis and brain

function (84) and plays crucial roles in neuroinflammation by regulating

the migration of leukocytes and diffusion of plasma proteins into the

brain parenchyma (85). This separation between blood and brain tissue

differs frommost other vascular barriers, resulting in vascular cells of the

BBB adopting a comparatively distinct phenotype (86). The vascular cells

forming the BBB include endothelial cells, pericytes, and mural cells. In

particular, cerebral endothelial cells may contribute more to IFN-I

signaling in the murine CNS than other cell types as single-cell

transcriptomics indicate expression of Ifnar1 and Ifnar2 is higher in

these cells than in microglia, astrocytes, and neurons (87, 88). Similarly,

in humans, IFNAR2 expression is higher in endothelial cells than glia and

neurons (89). This responsiveness of the vasculature is also evident from

reports of systemic vasculitis and loss of BBB integrity in patients

receiving IFN-Is (55, 90, 91). This vasculopathy is amplified in patients

with cerebral interferonopathies and in GFAP-IFN mice, where

aneurysms and perivascular calcification are hallmarks of the disease

(58, 62, 63, 91). However, the mechanisms leading to these pathologies

are unclear, and studies suggest opposing actions of IFN-Is. IFN-a blocks

angiogenesis and is toxic to endothelial progenitor cells, contributing to

irregular vasculogenesis, abnormal repair and increased atherosclerosis

(92). IFN-I therapy can also cause thrombotic microangiopathy and

aneurysms (91). The response of endothelial cells in the BBB to IFN-b
leads to the secretion of C-X-C motif chemokine 10 resulting in

compromised neuronal function and sickness behavior (30). In vitro

studies support the BBB-damaging effects of IFN-Is, showing that IFN-a
and IFN-b enhance endothelial apoptosis and reduce angiogenesis (93–

96). Yet, other studies found that IFN-a induces endothelial proliferation

(97, 98) and that IFN-b signaling in endothelial cells has anti-

inflammatory roles by inhibiting intracellular signaling of

proinflammatory pathways and promoting BBB integrity in the host

response to viruses and in MS (23, 99, 100). While the basis for these

reported differences in endothelial responses to IFN-Is remains unclear,

it points to the importance of the subtype of IFN-Is involved and also the

context in which IFN-I signaling occurred. Nevertheless, the impact of

IFN-Is on the cerebral vasculature has an active role in disease

progression of patients with cerebral interferonopathies and in other

neurodegenerative diseases. Accordingly, should further studies

demonstrate a direct pathogenic role for the brain’s vasculature, this

would open new therapeutic avenues as in contrast to the brain’s

parenchyma, the vessels are easily targeted by peripheral drugs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1110593
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Viengkhou and Hofer 10.3389/fimmu.2023.1110593
Neurological disorders with
increased IFN-I

There is growing evidence that inflammatory processes and, in

particular, IFN-Is, are involved in a wide range of neurological

diseases (Table 1) (1–3). The symptomatic overlap between these

diseases, as well as the reported adverse effects of IFN-I therapy,

suggests a causal contribution of increased IFN-I signaling to their

pathogenesis (Figure 2). However, the specific contribution of IFN-Is

to the pathogenesis of these diseases is often not well understood.
Type I interferons directly
induce neurotoxicity

The direct neurotoxic effects of IFN-Is are well documented due

to their clinical use (53, 138–143). Common (>20%) adverse

neurological reactions in patients include flu-like symptoms,

fatigue, and depression. Less commonly (<5%) observed adverse

events include personality changes, cognitive dysfunction, memory

loss, mood disorders, psychomotor slowing, and rare (<1%) but

severe reactions including psychosis, mania, and seizures. Nature

and severity of adverse reactions is dose dependent and generally

worsens over time. Fortunately, cessation of treatment leads to an

eventual recovery in most cases (140), indicating that these reactions

are mediated by IFN-Is rather than the underlying condition for

which IFN-Is have been used as treatment. Importantly, the

requirement of basal IFN-I signaling for normal brain development

suggests a threshold above which IFN-Is become neurotoxic. This is

further supported by findings in glioblastomas. In a subset of

glioblastoma, stem cells that display elevated cell-intrinsic IFN-I

signaling, which contributes to tumor growth, IFN-b treatment can

induce cell death, but not in tumor stem cells that have lower cell-

intrinsic IFN-I signaling (144, 145). Several mechanisms by which

IFN-Is mediate neurotoxicity have been proposed. For example, IFN-

a-induced neuropsychiatric symptoms have been associated with

changes in glucose metabolism and neuronal circuitry activity in

the basal ganglia and prefrontal cortex (146–148), decreased

tryptophan availability with altered serotonergic signaling (149–

152) and increased presence of proinflammatory cytokines (141,

149, 152–154). IFN-a treatment can also cause retinopathy (30–

86% occurrence) (90, 155) and focal BBB leakage which potentially

induces seizures in patients (55). Although rare, IFN-a and IFN-b can
prompt extensive vascular changes including thrombotic

microangiopathy which encompasses endothelial dysfunction,

microvascular ischemia, and microangiopathic hemolytic anemia

with vascular microaneurysms and stenoses (91).
Effects of chronically elevated type I
interferon signaling in the CNS

Diseases associated with chronically elevated levels of IFN-I in the

CNS are collectively termed ‘cerebral interferonopathies’. This diverse

group of diseases may be genetic/hereditary (e.g., Aicardi-Goutières

Syndrome (AGS), ISG15 deficiency, and USP18 deficiency),

autoinflammatory [e.g., systemic lupus erythematosus (SLE) with
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neurological manifestation], caused by congenital and chronic viral

infections (e.g., infections with Toxoplasma gondii, rubella virus,

cytomegalovirus, herpes simplex virus, hepatitis B and C virus, and

human immunodeficiency virus), or without known etiologies such as

Degos disease (156–158). Given their many shared symptoms and

pathological features, cerebral interferonopathies provide valuable

insights into the long-term biological effects of increased IFN-I

signaling in the CNS.

AGS is the commonly exemplified cerebral interferonopathy

whereby mutations in genes involved in nucleic acid detection and

metabolism lead to increased intrathecal IFN-a production (159, 160).

So far, mutations in nine genes have been identified to cause AGS:

TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1,

IFIH1, LSM11, and RNU7-1 (26, 161). It is proposed that loss-of-

function mutations in TREX1, RNASEH2, and SAMHD1 lead to the

accumulation of immunostimulatory nucleic acid species derived from

endogenous retroviral element expression which activate sensors that

induces the expression of IFN-Is (162). Similarly, loss of function in

ADAR1 results in lack of posttranscriptional modification of

endogenous retroviral element transcripts, resulting activation of

MDA5, PKR, and ZBP1, which induces IFN-Is and cell death (163–

165). Gain-of-function mutations in IFIH1 cause an overactive gene

product, MDA5, and consequently abnormal induction of IFN-Is

(166). In contrast to aberrant IFN-I induction through sensing or

regulating endogenous retroviral elements, mutations in LSM11 and

RNU7-1 result in disrupted histone packing of DNA leading to the

activation of cGAS/STING to induce IFN-Is (161).

Clinically, AGS has an early onset that mimics transplacental-

acquired infections and includes increased mortality before adulthood,

irritability, slowed cognitive growth, abnormal movements that develop

into ataxia, and epileptic seizures (26, 156, 162, 167, 168). Neuroimaging

reveals features including microcephaly, white matter disease,

intracranial calcification, necrosis, and vasculopathy with stenosis,

moyamoya (small and inadequate vessels formed due to the narrowed

cerebral artery), aneurysms, infarcts, and hemorrhage (26, 162, 167, 168).

Neuropathological brain examinations showdemyelination, perivascular

calcification, T-cell infiltration, and apoptotic cells (62–64, 169, 170).

Consequently, the clinical and neuropathological observations have led

to the proposal of AGS being either a leukodystrophy (171, 172) or a

microangiopathy (63, 173). Notably, while vessel disease is a common

feature in brains from patients with AGS, whether it mediates pathology

or is a consequence of disease has not been clarified. Further,

immunohistochemistry has revealed that astrocytes are the main

source of IFN-a in the CNS in patients with AGS (62–64) and AGS

has thus also been classified as an astrocytopathy by some authors (174).

Similar to IFN-I therapy, elevated IFN-a plasma and CSF levels correlate

with clinical severity in patients with AGS (160). However, there is a lack

of knowledge regarding which cell types and molecular mechanisms

mediate disease pathology in AGS, a deficit that also extends to other

cerebral interferonopathies. This lack of knowledge stems in large parts

from the fact that mouse or zebrafish models that mimic the genetic

mutations of patients with AGS, do not recapitulate the human disease

(175). By contrast, transgenic mice with increased cerebral IFN-I

production (GFAP-IFN mice) – recapitulating the one feature

common to of all cerebral interferonopathies – develop closely

overlapping clinical and pathological changes also present in patients

(Figure 3) (58, 59).
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TABLE 1 IFN-I signaling and its inhibition in neurological disorders.

Disorder Cause of increased
IFN-I signaling

Blocked IFN-I induction
or signaling

Consequence

Aicardi-Goutières
syndrome (AGS)

Genetic mutation in genes associated
with nucleic acid regulation

JAK inhibitor (H) Improvement of symptoms including some neurologic features
(101–107)

USP18 deficiency Mutation in USP18 that reduces
negative regulation of IFN-I signaling

JAK inhibitor (H) Remission of symptoms (10)

USP18-/- x IFNAR1-/- mice (M) Normal phenotype (31)

Systemic lupus
erythematosus
(SLE)

Unknown Anti-IFNAR1 (H) Improvements of some symptoms (108, 109)
(M) No change phenotypic change (110)
(M) Rescue of some autoimmunity features, no change, or worsen
survival dependent on model (111)

Anti-IFN-a (H) Improvements of symptoms (112)

JAK inhibitor (H) Improvements of some symptoms (113)

x IFNAR-/- mice (M) Attenuated disease phenotype (114–117)

Chronic viral
encephalopathy

Chronic response to viruses IFNAR1 deficiency (H) Lethal infection (118)

Aging Unknown Anti-IFNAR1 (M) Improved cognitive function, reduced gliosis, and reduced age-
related neuroinflammation (119)

JAK inhibitor (M) Improved physical functions and coordination (120)

Trisomy 21 Increased expression of IFNAR JAK inhibitor (H) Improvement in peripheral symptoms, central symptoms not
reported (121–123)
(M) Improved survival and reduced loss of weight when
immunologically challenged (124)

Alzheimer’s disease
(AD)

Microglia response to nucleic acid
containing plaques (43)

Anti-IFNAR (M) Restored microglia activity (43)
(M) Rescued cognitive function (79)

APPSWE/PS1DE9 x IFNAR1-/- (M) Reduced cognitive decline and anti-inflammatory glia response
(125)

Parkinson’s disease
(PD)

a-synuclein aids in neuron-specific
IFN-I responses (126)

MPTP-treated IFNAR1-/- mice
MPTP-treatment and anti-IFNAR1

(M) Reduced neuroinflammation and reduced loss of dopaminergic
neurons (127)

Huntington’s
disease (HD)

Activation of cGAS/STING which
indues IFN-Is (128)
Mutant huntingtin leads to
mitochondrial dysfunction which
induces IFN-Is (129)

cGAS deletion (M) Reduced expression of proinflammatory genes and reduced
autophagy (128)

Amyotrophic lateral
sclerosis (ALS)

Accumulated TDP-43 activates cGAS/
STING to induce IFN-Is (130)

SOD1 x IFNAR1-/- (M) Prolonged survival (131)

x STING-/- mice
STING inhibitor

(M) Reduced IFN-I gene expression, prevented loss of neurons, and
improved motor function (130)

Prion STING mediated IFN-I induction
(132)

IFNAR1-/- mice (M) Reduced neuroinflammation and prolonged survival from
slowed disease progression (132)

Traumatic brain
injury (TBI)

STING-mediated IFN-I induction (4) STING-/- mice (M) Reduced neuroinflammation, reduced lesion size, and
completion of autophagy process (4)

IFN-b-/- mice (M) Reduced proinflammatory response, improved motor and
cognitive functions, and reduced neurodegeneration (133)

Anti-IFNAR1 (M) Improved motor and cognitive functions and no change in
lesion volume (133)
(M) Reduced infarct volume, reduced inflammatory response, and
improved behavioral outcomes (134)

IFNAR1-/- mice (M) Reduced infarct volume and reduced inflammatory response
(134)

Multiple sclerosis
(MS)

Increased around lesions EAE in IFNAR1-/- (M) More severe disease, increased neuroinflammation, and
increased demyelination (28)

EAE in IFNAR1-/-

EAE in IFN-b-/-
(M) Increased myelin debris accumulation (71)

(Continued)
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Chronic infectious encephalopathy

A key feature of the host immune response to pathogens is the

rapid production of IFN-Is that activate and regulate both the innate

and adaptive immune response (176). The ultimate aim of this

immune response is to limit damage to the host, eliminate the

pathogen, and re-establish organismal homeostasis. However, in

situations where pathogen elimination is not achieved, chronic

production of IFN-Is occurs. This is evident in a range of

congenital and chronic infections of the CNS including

toxoplasmosis, syphilis, rubella, cytomegalovirus, Zika virus, herpes

simplex virus and human immunodeficiency virus (177). Many of the

clinical and neuropathological findings mirror those observed in

patients with AGS (157) including cognitive and motor

dysfunction, microcephaly, leukodystrophy, cerebral calcification,

loss of neurons, and gliosis (178, 179) (Figure 2). Importantly, these

changes are paralleled by elevated cerebral IFN-a levels (180).

Further, increased IFN-a levels detected in patients with human

immunodeficiency virus are linked to developing neurocognitive
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disorders (50, 181). Together, these findings indicate a direct

association between increased chronic cerebral IFN-I and disease.
Aging

Aging of the brain concurrently occurs with cognitive decline,

reduced neurogenesis, cerebral atrophy, waning of cerebral vascular

function, and increased neuroinflammation (182, 183), symptoms

which are also seen in patients with cerebral interferonopathies

(Figure 2). The mechanisms of aging are not well understood and

are made more complex by the presence of comorbidities like BBB

breakdown (184, 185), dementia, cerebral small vessel disease and

neurodegenerative disorders (182, 186). Notably, IFN-b protein and

IFN-I signaling are increased in the choroid plexus in the aged CNS of

humans and mice (75, 119). Antibody-mediated neutralization of

IFNAR1 in mice reversed the aged transcriptomic phenotype while

increased IFN-b expression in the choroid plexus of young mice

resulted in a transcriptome that reflected that of aged mice (75, 119).
TABLE 1 Continued

Disorder Cause of increased
IFN-I signaling

Blocked IFN-I induction
or signaling

Consequence

GFAP-IFN mice Transgenic overproduction of IFN-a
in the brain

x IFNAR1-/- mice (M) WT-like phenotype (91)

x STAT1-/- mice (M) Exacerbated disease (91, 135)

x STAT2-/- mice (M) Different disease pathology (135, 136)

x IRF9-/- mice (M) Exacerbated disease (136, 137)
cGAS, cyclic GMP-AMP synthase; EAE, experimental autoimmune encephalomyelitis, a model for MS; IFN-I, type I interferon; IFNAR, type I interferon receptor; IRF, interferon regulatory factor;
JAK, Janus kinase; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, used to model PD; STAT, Signal transducer and activator of transcription; STING, Stimulator of interferon genes; USP18,
Ubiquitin specific peptidase 18; WT, wild-type; (H) indicates findings in humans and (M) indicates findings in mice.
A B

FIGURE 2

Symptomatic links between IFN-I-driven diseases and CNS afflictions. (A) Symptoms that arise in diseases driven by IFN-Is overlap with symptoms that
occur in aging, trisomy 21 and several neurodegenerative diseases, trauma, autoimmune diseases and chronic viral infections, CNS afflictions found to
have increased IFN-I signaling. (B) Further breakdown of symptoms linked to each of the CNS afflictions. Note, protein aggregates can lead to increased
IFN-Is and expression of IRGs. CNS-centric symptoms were compared and linked if there was prevalence in several human cases. Size of nodes and links
are arbitrary. T21, Trisomy 21; AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis; TBI,
traumatic brain injury; MS, multiple sclerosis; CVE, chronic viral encephalopathy; TMA, thrombotic microangiopathy; SOD, superoxide dismutase; TPD-
43, transactive response DNA binding protein 43 kDa.
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Additionally, JAK inhibition reduced cellular senescence and

improved physical functions in aged mice (120). Thus, aging and

increased IFN-I signaling in the CNS appear to be interlinked, with

implications for the further study of age-related cognitive decline.
Diseases with abnormal protein aggregation

One important and so far, understudied aspect of neurodegenerative

diseases is the co-occurrence of inflammation and increased IFN-I

signaling. To date, this has probably been best studied in AD. In brain

tissue from patients with AD, expression of IFN-Is and IRGs is increased

(32, 187, 188), which is supported by similar findings inmousemodels of

AD (43, 79, 188). A recent study demonstrated that the induction of IFN-

I is due to nucleic acid contained in amyloid-beta plaques that stimulates

IFN-b production and IFN-I signaling in microglia (43). A role for

increased IFN-Is in AD pathogenesis (rather than just being a bystander

effect) has been demonstrated in mouse models, where IFNAR1 deletion

or neutralization resulted in downregulated expression of

proinflammatory cytokines, attenuated microgliosis, increased

complement-mediated synapse engulfment, enhanced astrogliosis, and

partial improvement in learning (43, 79, 125). Likewise, patients with

mild cognitive impairment had increased blood IFN-I signaling

compared with healthy controls, which was further increased in those

withAD (189). Of note, in a ratmodel of AD, IFN-b treatment improved

memory and reduced inflammatory markers (190), and in humans with

subtle cognitive decline, a preclinical feature of AD, reduced blood IFN-I

signaling levels is linked to an increased risk of progression to mild

cognitive impairment (189). Thus, IFN-Is display protective and

damaging properties in AD.

In Parkinson’s disease (PD), increased IFN-Is and IRG products

surround Lewy bodies (32, 127, 187), the disease-defining

pathological hallmark of PD. Additionally, the protein a-synuclein,
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that form into Lewy bodies, enhances the signaling of IFN-Is in

neurons (126). Ablation of IFNAR1 in a mouse model of PD reduced

neuroinflammation and decreased dopaminergic neuronal death

(127). The increased IFN-I signaling in the vicinity of protein

aggregation, pathological hallmarks of AD and PD, indicates that

protein aggregation facilitates localized IFN-I production in

surrounding cells. This is supported by studies in mouse models on

prion disease, which also involves abnormal protein aggregation.

Here, robust IFN-I signaling is seen in microglia (132), and in mice

lacking IFNAR1 or STING, disease pathology was delayed (132).

Furthermore, increased IFN-I signaling is also observed in the CNS of

mouse models of Huntington’s disease (HD) (128, 129, 191) and

amyotrophic lateral sclerosis (ALS) (130, 131), other disorders with

prominent protein aggregates. Together, these findings suggest that

protein aggregates are strong inducers of IFN-I signaling and may

contribute to disease progression (Table 1).
Traumatic brain injury

Unlike the previous CNS conditions, traumatic brain injury (TBI)

involves external physical disruption to the CNS. Symptoms reflect

both trauma severity and impact location and may include

depression, memory problems, anxiety, agitation, and motor

coordination problems (192, 193). The pathological features around

the CNS injury site include necrosis, glial cell activation, BBB leakage,

neuron degeneration, neuroinflammation, and leukocyte infiltrates

(194), features that also occur in cerebral interferonopathies

(Figure 2). In response to TBI, chronic local upregulation of IRGs

occurs at the injury site, persisting for several months post-injury in

both humans and mice (4, 133, 195, 196). Additional increase in IFN-

b or IFN-I signaling, for example, in the case of traumatic infection or

an aged brain, exacerbates disease outcomes in patients and mice,
FIGURE 3

GFAP-IFN mice recapitulate clinical and pathological features of patients with AGS. Venn diagram showing overlap between clinical CNS symptoms and
neuropathology observed in the GFAP-IFN mice and patients with AGS. Features that do not overlap and/or have yet to been shown in mice or in
patients are also indicated.
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whilst loss of Ifnb and anti-IFNAR1 treatment in mice attenuates the

damage from TBI (133, 134, 196–198), further demonstrating the

neurotoxic capacity of IFN-Is.
Trisomy 21

An extra copy of chromosome 21 in humans (trisomy 21) results in

diverse symptoms affecting many organs including the CNS. Although

symptoms may not all manifest together (9), they include cognitive

dysfunction, moyamoya, craniofacial abnormalities, autoimmunity,

hematological disorders, intracranial calcification, and early-onset AD

(9, 199–203). Some degree of resistance to the development of solid

tumors has been observed (9, 199). IFNAR1 and IFNAR2 are located on

chromosome 21 and their levels are elevated in trisomy 21 (9, 204–206),

possibly rendering cells hyperresponsive to IFN-Is. In support, both

transcriptomic and proteomic studies of various cell types from trisomy

21 patients show elevated IFN-I signaling and IRG products (9, 204).

Notably, many CNS-associated symptoms mirror those observed in

cerebral interferonopathies (Figure 2) indicating that increased cerebral

IFN-Is may contribute to disability in these patients, and trisomy 21 has

been suggested to be an interferonopathy by some authors (9, 204). This

in turn opens new therapeutic options for patients with trisomy 21 and

accordingly, JAK inhibitors, which block formation of the ISGF3

signaling complex, have been used with some success in case studies

andmousemodels showing improvements in disease (121–124) and is in

a clinical trial (ClinicalTrials.gov Identifier: NCT04246372).
Multiple sclerosis

MS is a demyelinating disease with unclear etiology (207).

Patients exhibit a diverse range of symptoms which are largely

associated with the location of lesions that occur in the CNS (207).

These lesions contain inflammatory leukocytes that presumably

mediate oligodendrocyte damage, loss of myelin (208), and local

disruption of the BBB (209). IFN-I serum and CSF levels in MS

patients do not differ from healthy controls (210). However, there is a

focal increase of IFN-I production and IRGs in brain lesions of MS

patients and mouse models of MS (71, 211). This mirrors the increase

in IFN-I around abnormal protein aggregates and TBI lesions

described above, indicating that local production of IFN-I to

cellular damage is a common response in the brain. Further,

pathological overlaps with AGS/leukodystrophies (212) and MS

(Figure 2) such as cerebral small vascular disease exist (213).

Although IFN-Is are produced locally in MS and some mouse

models, overall, IFN-I signaling appears to be protective. Genetic

ablation of IFNAR1 or IFN-b in mice, results in more severe EAE

(28). IFN-b is highly effective for the treatment of MS (IFN-a, although
effective, is less well tolerated due to adverse effects including increased

occurrence of depression) (16, 214, 215). However, the mechanisms by

which IFN-Is are beneficial in MS remain unclear and there is variability

in the responses to IFN-b, with someMSpatients showing improvement,

while others having no change or worsening of disease (216, 217). It has

been suggested that someMS patients with IFN-I-induced worsening of

disease may have been misdiagnosed; MS and neuromyelitis optica
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spectrum disorder (NMOSD) can cause very similar symptoms, but in

contrast to most MS patients, IFN-Is exacerbate disease in NMOSD

(218). In addition, variations in responses to IFN-Is could be due to

subnormal serum responses to IFN-Is (219, 220). Thus, it is possible that

IFN-b treatment rebalances host IFN-I signaling activity in these

patients, rather than being excessive or detrimental.
Therapeutic potential of blocking
IFN-I signaling

Currently, there is no cure for cerebral interferonopathies, such as

AGS and SLE, and available treatments are primarily aimed at managing

symptoms. Treatment is complicated by differences in etiologies, disease

progression, severity, and symptoms and importantly by a lack of

knowledge regarding the vulnerable and disease-mediating cell types

(162). Anti-inflammatory and immunosuppressant drugs (Figure 1)

such as corticosteroids or methotrexate are often given to dampen

inflammation and reduce infiltrating immune cells, while antiepileptics

are used to manage seizures (101, 158, 162, 221–223). Careful

consideration is required when devising therapeutic strategies as

inactivating canonical signaling factors STAT1, STAT2, or IFR9 in

GFAP-IFN mice results in exacerbated disease (135–137),

demonstrating that maintaining balanced IFN-I signaling is critical.

Recently, targeting the IFN-I signaling pathway has shown some

promise. Treatments with anti-interferon, anti-IFNAR, or JAK

inhibitors (Figure 1, Table 1) results in dramatic improvements in

some patients with AGS, SLE, and even recovery of patients with

peripheral interferonopathies (10, 101–106, 108–112, 221, 224–226).

However, these treatments lack support from larger clinical trials,

especially in regards to changes in neurological symptoms (162).

Importantly, the ability of these treatments to bypass the BBB and

improve CNS pathology is yet to be confirmed. Furthermore, the safety

profiles of the therapies are noted to include an increased risk of

opportunistic infections due to the generalized immunosuppression, as

well as an increased risk of major adverse cardiovascular events (227–

230). Currently, several clinical trials are underway for patients with

AGS (ClinicalTrials.gov Identifier: NCT03921554, NCT04517253, and

NCT01724580) and their outcomes will hopefully provide the

necessary rationale for the wider use of these treatments. The

therapeutic potential of IFN-I signaling inhibition is less clear in the

other discussed neurological disorders, with evidence suggesting it may

be beneficial in some cases and detrimental in others (Table 1).
Discussion

IFN-Is are a double-edged sword in the CNS. While they are critical

for normal brain function and antimicrobial immunity, chronically

elevated levels of IFN-Is can be highly neurotoxic. In addition to both

the level and signaling duration of IFN-Is, these opposing effects of IFN-Is

are in part due to cell-type specific responses, disease-specific contexts,

and biological differences between IFN-I subtypes. These parameters

modulate the overall tissue response to IFN-Is in the brain. The

detrimental effects of IFN-Is are most evident in cerebral

interferonopathies which can serve as a paradigm of IFN-I
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neurotoxicity, providing valuable insight into a broad spectrum of

neurological diseases. Recent advancements with single-cell

technologies have provided us with a glimpse of the diversity of the

IFN-I responses in the CNS. These studies have provided novel insights

into the cell-type specificity of the responses to IFN-Is and demonstrated

their variability within a single-cell type. Together, this evidence points to

a complex coordination to IFN-Is resulting in a highly stimulus- and

time-specific response of CNS-resident cells.
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Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to

neurological disability in young adults. Although the etiology of MS is

heterogeneous, it is well established that aberrant activity of adaptive and

innate immune cells plays a crucial role in its pathogenesis. Several immune

cell abnormalities have been described in MS and its animal models, including T

lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/

macrophages, and astrocytes, among others. Physical exercise offers a

valuable alternative or adjunctive disease-modifying therapy for MS. A growing

body of evidence indicates that exercise may reduce the autoimmune responses

triggered by immune cells in MS. This is partially accomplished by restricting the

infiltration of peripheral immune cells into the central nervous system (CNS)

parenchyma, curbing hyperactivation of immune cells, and facilitating a

transition in the balance of immune cells from a pro-inflammatory to an anti-

inflammatory state. This review provides a succinct overview of the correlation

between physical exercise, immune cells, and MS pathology, and highlights the

potential benefits of exercise as a strategy for the prevention and treatment

of MS.

KEYWORDS

multiple sclerosis, exercise, immune cell, adaptive immunity, innate immunity
1 Introduction

Multiple sclerosis (MS) is a disease characterized by neuroinflammation,

demyelination, and axonal damage, with lesions that involve both the brain and spinal

cord. It is estimated that MS affects approximately 2.8 million individuals worldwide, with a

higher prevalence in women (1). Symptoms of MS, such as vision loss, numbness, tingling,
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motor paralysis, cognitive impairment, and bladder dysfunction,

significantly diminish the quality of life for patients (2, 3). In

general, the course of MS disease manifests in three main forms:

primary progressive MS (PPMS), secondary progressive MS

(SPMS), and relapsing-remitting MS (RRMS) (4). Initially, most

patients with MS (PwMS) experience the neurological symptoms of

RRMS. Within a decade of disease onset, approximately 30-40% of

PwMS transition into SPMS, which is characterized by an

irreversible and progressive accumulation of neurological

disability (3). The disability status of PwMS can be assessed on a

scale of zero to ten using the Expanded Disability Status Scale

(EDSS), with zero representing a normal neurological examination,

and ten representing MS-caused death (5). There is evidence that

the disease is associated with genetic, lifestyle and environmental

risk factors (6, 7), but the exact cause of MS remains unclear.

The myelin sheath is a protective lipoprotein coating that

surrounds axons and is composed mainly of oligodendroglial cell

membranes, which help to protect nerves and ensure the normal

conduction of nerve impulses. The normal formation of myelin

depends on the process of myelination (8). Oligodendrocytes (OLs)

are glial cells responsible for myelination, and these cells

differentiate from oligodendrocyte progenitor cells (OPCs) (9).

However, in MS, dysfunction of OLs and pathology of myelin

lead to severe demyelination, impaired remyelination, and axonal

degeneration (10). Over the years, the interactions between the

immune cell, glial cell, and neuronal cell in the pathology of MS

have been extensively studied. In the early stages, pathogenesis is

primarily driven by peripheral immune cell responses targeting the

CNS (11–13). The peripheral immune cells, such as T cells, B cells,

and myeloid cells, infiltrate the CNS and interact with microglia and

astrocytes, causing damage to OLs and inhibiting myelin formation

(14–19). In the progressive stages, immune responses mediated by

CNS-resident microglia and astrocytes predominate (20). In the

inflammatory state, microglia generate pro-inflammatory cytokines

and chemokines, and increase the expression of costimulatory

molecules that facilitate the recruitment and activation of

peripheral leukocytes (21, 22). Furthermore, microglia stimulate

pro-inflammatory and neurotoxic responses in astrocytes that

exacerbate demyelination, neurodegeneration, and atrophy of

both grey and white matter (23, 24) (Figure 1). The autoimmune

response directed against neuronal axons or synapses interferes

with proper neurotransmission, resulting in a variety of motor and

non-motor symptoms (25, 26).

Nowadays, pharmacotherapy is considered the primary

treatment for MS; however, its efficacy falls short for a significant

number of patients. Furthermore, the side effects and exorbitant

costs linked with pharmacotherapy may result in reduced patient

compliance (27). Non-pharmacological treatments, such as physical

exercise, have gained attention as potential disease-modifying

therapies for PwMS (28, 29). Physical exercise has been shown to

be effective in rehabilitating PwMS, effectively alleviating

symptoms, enhancing functionality, improving quality of life, and

increasing engagement in daily activities (30–32). Mechanistically,

physical exercise provides some protection to the CNS from

disease-related atrophy and dysfunction. Structurally, objective

research has demonstrated that several months of exercise in
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PwMS can preserve cortical thickness (33), pallidum (34) and

hippocampal volume (35), as well as the microstructural integrity

of the insula (36) and motor-related tracts and nuclei (37).

Functionally, research has found that exercise can improve

functional connectivity between the caudate and the left inferior

parietal, bilateral frontal, and right insula regions (38). In addition,

exercise can also increase functional connectivity within the

hippocampus and the default-mode network (39). Notably, the

utilization of animal models is of great value in investigating cellular

and molecular mechanisms. Commonly used models include

myelin ol igodendrocyte glycoprote in (MOG)-induced

experimental autoimmune encephalomyelitis (EAE) and toxin

and/or virus-induced demyelination models, such as cuprizone

(CPZ) and lysophospholipid, among others (40). In animal

studies, there is evidence that regular exercise training can

effectively promote the process of remyelination, alleviate

demyelination, and enhance neuroplasticity by modulating the

activity and function of OLs and neurons (41–45), and exert

neuroprotective effects by reducing oxidative stress (46–49),

maintaining the integrity and permeability of the blood-brain

barrier (BBB) (48, 50), and adjusting the physiological levels of

various exercise metabolites (51, 52). Moreover, it is imperative to

recognize the anti-inflammatory benefits of physical exercise, as it

not only regulates OLs and neurons, but also influences numerous

immune cell types. This review will focus on the effect of physical

exercise on neuroimmune regulation in MS, specifically regarding T

cells, B cells, dendritic cells, neutrophils, macrophages, microglia,

and astrocytes.
2 Effect of physical exercise on
immune cells in multiple sclerosis

2.1 Adaptive immune cells

2.1.1 T cells and B cells
Lymphocytes, particularly T cells and B cells, are integral

components of the adaptive immune system and are required for

immune surveillance of the CNS. They can induce significant

immunopathological responses in the presence of viral infections

and autoimmune disorders (53, 54). T cells are mainly classified

into CD4+ T cells and CD8+ T cells based on distinct cell surface

differentiation antigens (55). Aberrant activation of autoreactive

CD4+ T cells is considered a primary factor in the development of

MS (56, 57). Upon activation, naive CD4+ T cells differentiate into

different T helper (Th) cell subsets, including Th1, Th2, Th17, and T

regulatory (Treg) cells. These subsets have distinct cytokine profiles

and effector functions (58). Th17 cells can release several pro-

inflammatory cytokines, such as interleukin 17A (IL-17A),

interferon g (IFN-g), and IL-22 (57). In EAE, the number of

peripheral Th1/Th17 cells increases significantly, as do the levels

of IFN-g and IL-17. These immune cells and their associated

cytokines, infiltrate the CNS to exacerbate autoimmune

neuroinflammation (59). In addition to neuroinflammation,

excessive inflammatory cytokines (such as members of the IL-17

family) can initiate other malignant events. Within the CNS of the
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EAE model, IL-17 is involved in pain modulation as an upstream

regulator of Ca2+/calmodulin-dependent protein kinase IIa
(CaMKIIa) (60). During EAE, overexpression of IL-17A results

in impaired long-term potentiation (LTP) and synaptic plasticity in

the hippocampus. This leads to cognitive decline through activation

of the IL-17A receptor and the p38 mitogen-activated protein

kinase (MAPK) signaling pathway, as reported by Di Filippo et al.

(26). In contrast, Treg cells possess the ability to release anti-

inflammatory cytokines such as IL-10, transforming growth factor

b (TGF-b), and IL-35 (61). The beneficial effects of natural Treg

cells, which express CD4+ forkhead box protein 3 (FoxP3), and T

regulatory type 1 (Tr1) cells, which produce IL-10, on autoimmune

neuroinflammation have been demonstrated in both MS patients

(62, 63) and experimental animal models (64, 65). A crucial aspect

contributing to tissue inflammation in CNS autoimmunity is the

impaired functionality of Th17 and Treg cells. It is noteworthy that
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modulation of the Th17/Treg balance, as well as the functional state

of the intrasubsets, can attenuate CNS autoimmunity (66, 67).

Different substances, compound 21 (68) and ACDT (69), have

demonstrated inhibition of the infiltration of pathogenic Th1/Th17

cells into the CNS in the EAE model. Furthermore, the

administration of propionic acid to PwMS resulted in a

significant and sustained increase in functional Treg and a

significant decrease in Th1/Th17 cells (70). Ultimately, the disease

severity of EAE is minimized, or the clinical symptoms of PwMS

are reduced.

Alongside CD4+ T cells, some of the cytotoxic CD8+ T cells,

such as IL-17-producing CD8+ T (Tc17) cells, have been identified

as possible drivers of localized autoimmune damage to the CNS in

the EAE model (71). Intriguingly, while in most animal models this

is not the case, studies examining human patients have revealed that

CD8+ T cells are the main type of T cells present in the CNS of these
FIGURE 1

Schematic diagram of immune cells-driven multiple sclerosis pathology. In multiple sclerosis, peripheral immune cells, including lymphocytes and
monocytes, infiltrate into the central nervous system and secrete pro-inflammatory and neurotoxic substances. These cells, particularly T
lymphocytes, possess the ability to interact with CNS-resident microglia and astrocytes, leading to microglial and astrocyte activation and the
subsequent release of pro-inflammatory and neurotoxic substances. These substances contribute to the demyelination and neuronal damage, and
erode oligodendrocytes, preventing them from forming myelin. Meanwhile, some of the pro-inflammatory substances released by microglia and
astrocytes promote the recruitment, infiltration and activation of peripheral immune cells, further enhancing the autoimmune response in the CNS.
The figure was created using BioRender. BBB, blood-brain barrier; CCL, chemokine (C-C motif) ligand; CNS, central nervous system; CXCL,
chemokine (C-X-C motif) ligand; GM-CSF, granulocyte-macrophage colony stimulating factor; IFN-g, interferon-g; IL, interleukin; MMP, matrix
metallopeptidase; NO, nitric oxide; OPC, oligodendrocyte progenitor cell; RNS, reactive nitrogen species; ROS, reactive oxygen species; Th, T helper
cells; TNF-a, tumor necrosis factor-a.
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individuals (72–74). Inflammatory active lesions in MS are

populated by CD8+ tissue-resident memory T cells, exhibiting

indications of reactivation and infiltration into the brain

parenchyma (73). The CD8+ T cells could serve various functions,

as they have been assigned both pathogenic and regulatory roles. On

one hand, CD8+ T cells could act as pathogenic effectors that lead to

the breakdown of the BBB (75) and promote pathogenic CD4+ T

cell activity (71), damage OLs (76) and OPCs (77), and/or direct

damage axons (78). On the other hand, CD8+ T cells may regulate

pathogenic CD4+ T cells by directly modulating antigen-presenting

cells and/or through releasing immunoregulatory cytokines such as

IL-10, IFN-g, and TGF-b (79, 80). Moreover, the efficacy of several

therapeutic interventions that selectively deplete B cells (rituximab,

ocrelizumab and ofatumumab) highlights the importance of B cells

in the pathogenesis of the disease (81). B cells contribute to the

pathology of MS through multiple mechanisms. They present

antigens to T cells, driving the auto-proliferation of brain-homing

T cells (82). Additionally, B cells secrete pro-inflammatory

cytokines, such as TNF-a, IL-6, IL-15, and granulocyte-

macrophage colony stimulating factor (GM-CSF) (83), and

produce extracellular vesicles and antibodies (84). It should be

noted that there are distinct functional differences within

subpopulations of CD8+ T cells and B cells, emphasising the need

for the development and implementation of therapies that target

specific pathogenic cell subsets.

Physical exercise has been proven to improve systemic

autoimmune inflammation mediated by lymphocytes, in addition

to pharmacological treatment, and is generally secure for

individuals with autoimmune disorders like systemic lupus

erythematosus, rheumatoid arthritis, inflammatory bowel diseases

and MS, among others (85). Since 2018, numerous studies

conducted by Einsteina et al. have investigated the effect of

different exercise programs on T cell-mediated autoimmunity

from the proteolipid protein (PLP)-induced transfer EAE model

in animals. By transferring T cells from lymph nodes (LN-T cells)

obtained from mice that underwent six weeks of treadmill running,

or from sedentary donor mice, to naive recipients and recipient

mice that were either trained prior to EAE induction or sedentary,

researchers confirmed that physical exercise limits immune

responses to an auto-antigen to weaken EAE, instead of

suppressing the immune system in general (86). Further studies

have confirmed the superior effect of high-intensity continuous

training (HICT) in preventing T cell-induced autoimmunity in EAE

through treadmill running, compared to moderate-intensity

continuous training (MICT) (87). Remarkly, variations were

found in the mechanisms by which continuous and intermittent

exercise, performed at the same high intensity, alleviated systemic

autoimmunity and T cell encephalitogenicity. Specifically, HICT

impeded PLP-induced T cell proliferation without affecting T cell

differentiation, while high-intensity intermittent exercise (HIIT)

had no noticeable impact on T cell proliferation but hindered T

cell polarization into Th1 and Th17 pro-inflammatory phenotypes

(88). Taken together, because of the significant variation observed

across different disease trajectories, it is essential to implement

effective intervention programs that are customized to suit the

specific characteristics of each phase of the disease.
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In other previous animal studies, mice that underwent regular

swimming exercise before EAE induction showed suppressed

infiltration of CD4+ T cells, CD8+ T cells, and B cells into the

spinal cord. Meanwhile, the proliferation of antigen-specific T cells

was halted and the proliferation of Treg cells was promoted, while

restricting the secretion of IFN-g and IL-17 and enhancing the

secretion of IL-10 and TGF-b. Furthermore, regular swimming

exercise also alleviated damage to myelin and axons and reduced

clinical scores (89, 90). Notably, research suggests that high-

intensity swimming (4% body weight) may prove more effective

than moderate-intensity swimming (0% body weight) (90). It seems

that swimming exercise represents a noteworthy non-

pharmacologica l intervention for improving chronic

inflammation or autoimmunity; however, the success of this

intervention could be modified by the intensity of the exercise. In

addition, it is probable that the efficacy of exercise interventions is

also reliant on the type of exercise employed. Over a four-week

period, it was observed that both strength and endurance training

programs impeded the development and progression of disease,

improved genomic antioxidant defense-nuclear factor erythroid 2-

related factor (Nrf2)/antioxidant response elements (ARE)

pathway, lowered the production of IFN-g, IL-17, and IL-1b,
reduced the expression of adhesion molecules, such as platelet

and endothelial cell adhesion molecule 1 (PECAM-1), and

reinstated the expression of tight junction proteins such as

occludin and claudin-4 in the spinal cord after EAE induction.

However, only strength training significantly increased the

expression of Treg cell markers, specifically CD25 and IL-10,

obtained from spleen cells, and inhibited the production of IL-6,

monocyte chemotactic protein 1 (MCP-1), and TNF-a (48).

Further analyses revealed that while endurance exercise was

superior in delaying disease progression and lowering clinical

scores as well as antioxidants, strength training was more effective

in improving immune system function. Voluntary wheel running,

as a rehabilitation approach, has been demonstrated as an effective

intervention for promoting motor recovery. Regular voluntary

wheel running had a significant positive effect on demyelination

and axonal damage in EAE mice, in comparison to their sedentary

counterparts. However, the impact of lymphocyte infiltration was

insignificant (47, 91). Additionally, gender of the subjects must be

taken into consideration as it may have an influence on the exercise

intervention’s efficacy (47, 92). Further, a study has investigated the

potential of combined interventions and has discovered a

substantial positive interaction between exercise and galantamine

medication. The outcome of this interaction led to a notable rise in

the quantity of Foxp3+ T cells in the brainstem of rats affected by

EAE (93). The animal studies’ collective findings suggest that

physical exercise could potentially suppress lymphocyte

infiltration, including CD4+ T cells, CD8+ T cells, and B cells.

Additionally, it could modulate the Th cell phenotype and regulate

related cytokine levels, eventually leading to a reduction in

autoimmune responses in the CNS, an improvement in MS

pathology, and a decrease in disease severity (Table 1).

Nonetheless, the effects of exercise may be impacted by different

aspects of the exercise intervention, such as the type and intensity of

the exercise, as well as the heterogeneity of the subjects.
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TABLE 1 Effect of exercise on adaptive immune cells in animal models and human patients of MS.

Subjects Exercise intervention program Region Mode of action References

Model Characteristics Type Intensity Duration

MOG35-

55

-induced
EAE
model

C57BL/6 mice;
female;
8 weeks old

Voluntary wheel
running

ND 60 min/
session for
40
consecutive
days

Brain and
spinal cord

CD4+ T cells, and CD8+ T cells infiltration
→; Synaptic plasticity ↑; Clinical scores ↓

(91)

C57BL/6 mice;
female;
7 weeks old

Prior swimming 7% BW 30 min/
session,
5 sessions/
week for 6
weeks

Spinal cord B cells, CD4+ T cells, and CD8+ T cells
infiltration ↓; Myelin and axonal damage ↓

(89)

C57BL/6 mice;
female;
6~12 weeks old

Strength training (ST):
Climbing the ladder
Endurance training
(ET): Treadmill running

(i) ST:
25%, 50%,
and 75%
BW
(ii) ET:
13~17 m/
min

30 min/
session,
5 sessions/
week for 4
weeks

Spinal cord (i) ST: Treg cell markers: CD25 and IL-10
↑; IFN-g, IL-17, and IL-1b ↓; Clinical
scores ↓; Protein oxidation and NO levels
↓; GPx activity ↑; TJPs ↑; CAMs ↓
(ii) ET: IFN-g, IL-17, and IL-1b ↓; Clinical
scores and weight loss ↓; Lipid
peroxidation, protein oxidation and NO
levels ↓; GPx activity, GSH content and
Nrf-2 expression ↑; TJPs ↑; CAMs ↓

(48)

C57BL/6 mice;
male and
female; 6~8
weeks old

Voluntary wheel
running

ND 60 min/
session for
30
consecutive
days

Spinal cord (i) Male: CD4+ T cells infiltration →;
Demyelination and axonal loss ↓;
Oxidative stress ↓; Clinical scores →
(ii) Female: No effect

(47)

C57BL/6 mice;
female;
6~8 weeks old

Prior swimming (i) HE: 4%
BW
(ii) ME:
0% BW

50 min/
session,
5 sessions/
week for 6
weeks

Spinal cord (i) HE: Treg proliferation ↑; Antigen-
specific T cell proliferation ↓; Th1 and
Th17 populations ↓; IFN-g and IL-17 ↓;
IL-10 and TGF-b ↑; BDNF ↑;
Demyelination ↓; Clinical scores ↓
(ii) ME: No effect

(90)

C57BL/6 mice;
male and
female; 6~8
weeks old

Voluntary wheel
running

ND 60 min/
session,
6 sessions/
week for 1
week

Spleen (i) Male: T cell proliferation ↑; IFN-g,
TNF-a, IL-17A ↑; Dorsal root ganglia
excitability and calcium responses →;
Nociceptive behaviour →;
(ii) Female: T cell proliferation ↑; IFN-g,
TNF-a, IL-17A ↓; Dorsal root ganglia
excitability and calcium responses ↓;
Nociceptive behaviour ↓

(92)

C57BL/6 mice;
female; 3~4
weeks old

Stair climbing ND 20, 40, and
60 min/
session, 6
sessions/
week for 4
weeks

Intestine
lymphoid
tissues and
spinal cord

Th17 responses ↓; Treg responses ↑; IL-
17A and IFN-g ↓; Firmicutes/Bacteroidetes
ratio and intestinal mucosal permeability
↓; Microbial abundance and diversity ↑;
Demyelination and axonal damage ↓

(94)

SD rats; male;
2~3 months old

Walking on a rotating
metallic rod with
galantamine

ND 30 min/
session for
30
consecutive
days

Brain stem
and
cerebrospinal
fluid

Foxp3+ T cells ↑; TNF-a and IL-6 ↓;
Demyelination ↓; BDNF and Bcl-2/Bax
ratios ↑; Motor performance ↑

(93)

CPMS
and
RRMS
patients

12 female/10
male; (46.0 ±
2.0) years old;
EDSS score < 6

Endurance training
(walking and bicycling)
combined with strength
training (resistance
exercise)

(i) ET:
65% HRR
(ii) ST:
70% 1RM

A single
bout

Blood (i) Immediate post-exercise: Lymphocytes
number ↑; CD25hiFoxp3+ Treg and
antigen-induced IL-10-producing Tr1
number ↑; Th3 cells number →
(ii) 2 hours post-exercise: Lymphocytes
number ↑; CD25hiFoxP3+ Treg and
antigen-induced IL-10-producing Tr1
number ↑; Th3 cells number →

(95)

16 female/13
male; (46.0 ±
2.0) years old;
EDSS score (3 ±
0.2)

Endurance training
(cycling and treadmill
walking or running)
combined with strength

ND 5 sessions/2
weeks for
12 weeks

Blood Treg cells number and proportion →;
CD25hiFoxp3+, Tr1, and Th3 cells →

(96)

(Continued)
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In human studies, lymphocyte proliferation has been observed

to be suppressed after acute exercise in healthy individuals. This

effect is more pronounced during exercise sessions exceeding an

hour in duration, regardless of exercise intensity (100). However,

some studies have reported inconsistent findings. For example,

individuals who are healthy controls and those with PwMS

receiving alemtuzumab, fingolimod, or natalizumab displayed an

increase in the absolute number of lymphocytes and specific subsets

following exercise. The degree of response was impacted by the

intensity of the exercise program (99). In Deckx’s study, naturally

occurring CD25hiFoxp3+ Treg cells and antigen-induced IL-10-

producing Tr1 cells increased in the peripheral blood of patients

with chronically progressive MS and RRMS following a single

session of moderate-to-high-intensity endurance with resistance

exercise. The number of Tr1 cells remained elevated for up to two

hours after exercise (95). This increase in Treg cells may serve as a

negative feedback mechanism to the immune system’s capacity to

elicit tissue damage and inflammation when responding to exercise.

Moreover, the findings of regular exercise intervention studies

require careful observation. A four-week experiment of treadmill

running in normoxic conditions (rather than hypoxic conditions)

caused modifications in circulating Treg subpopulations among

patients with RRMS. These alterations comprised of an increase in

CD39+ Treg cells and a decrease in CD31+ Treg cells, as well as a

reduction in IL-17A-producing CD4+ T cells. These results imply

that treadmill running has a vital function in adjusting the adaptive

immune response in MS through impacting distinct T cell subsets

(98). Remarkably, conflicting results have also emerged. As early as

2012, a cross-sectional study revealed that there were no discernible
Frontiers in Immunology 0695
differences in the proportions of circulating CD4+ T cells (including

Foxp3+ Treg cells), CD8+ T cells, and B cells in the peripheral blood

between physically active and inactive PwMS, and no correlation

with physical performance parameters (101). These findings suggest

that prolonged physical activity may not have a significant impact

on the adaptive immune cells in PwMS. In accordance with this,

Deckx et al. (96) discovered that 12 weeks of endurance and

strength training had no effect on the circulating Treg subsets,

including CD25hiFoxp3+, Tr1, and Th3 cells in PwMS. These

inconsistent findings in human patients have significant

implications for experimental and clinical research, particularly

regarding the development of interventions to address

autoimmune factors in MS.

The BBB is a dynamic interface linking the blood with the brain

parenchyma. It comprises capillary endothelial cells (ECs) from the

brain and spinal cord, and perivascular cells including smooth

muscle cells, microglia, pericytes, and astrocytes. Of note, the ECs

have adherens junctions and tight junctions between cells and lack

fenestration (102). It has been suggested that the destruction of BBB

integrity and permeability may be the initial pathological features of

MS. This results in the infiltration of immune cells from the

periphery into the brain parenchyma (103). This is indicated by

changes in biomarker levels, such as enzymes gelatinase A/MMP-2

(104), gelatinase B/MMP-9 (105), S100 calcium-binding protein B

(S100B) and neuron-specific enolase (NSE) (106), among others.

Although it is unclear whether the destruction of the BBB is the

cause or the result of MS, several studies have confirmed that MS-

related neuroinflammation has an impact on the structure and

function of the BBB (107). Physical exercise has been shown to
TABLE 1 Continued

Subjects Exercise intervention program Region Mode of action References

Model Characteristics Type Intensity Duration

training (resistance
exercise)

RRMS
patients

7 female/1 male;
(41.1 ± 12.9)
years old; EDSS
score < 2

Strength training
combined with bicycling

ST: <35%,
35%~65%,
>65%
1RM; AT:
60%
ACmax

60 min/
session,
12 weeks

Blood TNF-a and IL-6 ↓; IL-22 ↓; IFN-g and IL-
17 →; IL-10 ↑; Fatigue ↓

(97)

7 female/12
male; 20~60
years old; EDSS
score < 4.5

Normoxic (N) or
hypoxic (H) treadmill
training

65%
HRmax

60 min/
session,
3 sessions/
week for 4
weeks

Blood (i) N: CD39+ Treg cells ↑; CD31+ Treg
cells ↓; IL-17A-producing CD4+ T cells ↓;
Fitness and mood ↑
(ii) H: CD39+ Treg cells, CD31+ Treg cells,
and IL-17A-producing CD4+ T cells →;
Fitness and mood ↑

(98)

PwMS
treated
with
either
ATZ,
FTY, or
NAT

17 female/13
male

Climbing stairs at
normal speed (CN) or
fast (CF) or cycling (C)

C: 1, 2
Watt per
kilogram
BW

CN: ND
CF: ND
C: 20 min

Blood (i) CN: Absolute lymphocyte number ↑
(ii) CF: Absolute lymphocyte number ↑;
CD19+ B cell, and CD3+ T cell number ↑
(iii) C: Absolute lymphocyte number ↑

(99)
f

1RM, repetition maximum; ACmax, maximal aerobic capacity; ATZ, alemtuzumab; Bax, BCL2-associated X; Bcl2, B-cell lymphoma-2; BDNF, brain-derived neurotrophic factor; BW, body
weight; CAMs, cell adhesion moleculars; CPMS, chronically progressive MS; EAE, experimental autoimmune encephalomyelitis; EDSS, Expanded Disability Status Scale; Foxp3, forkhead box
protein 3; FTY, Fingolimod; GPx, glutathione peroxidase; GSH, glutathione; HE, high-intensity exercise; HRmax: maximal heart rate; HRR, heart rate reserve; IFN-g, interferon-g; IL-10,
interleukin-10; ME, moderate-intensity exercise; MOG, myelin oligodendrocyte glycoprotein; NAT, natalizumab; ND, not determined; NO, nitric oxide; Nrf2, nuclear factor (erythroid-derived
2)-like 2; PwMS, patients with MS; TGF-b, transforming growth factor-b; Th, T helper cells; TJPs, tight junction proteins; TNF-a, tumor necrosis factor-a; RRMS, relapsing-remitting MS.
↑, significantly increased or improved; ↓, significantly decreased or reduced; →, no significant change.
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regulate BBB permeability through various pathways, including

systemic inflammation, the brain renin-angiotensin and

noradrenergic systems, central autonomic function, and the

kynurenine pathway (108). In human studies, Mokhtarzade et al.

(106) found that acute cycling causes a significant increase in

circulating S100B, but has no effect on NSE in RRMS patients.

Proschinger et al. (109) showed that a 12-month combination of

functional resistance and endurance training programs reduce

serum MMP-2 concentration in RRMS patients. Furthermore,

Zimmer et al. (104) discovered that patients with RRMS or SPMS

who participated in HIIT or MICT programs for three weeks

reported a significant decrease in serum MMP-2 levels, while the

level of MMP-9 remained stable. Therefore, exercise can partially

ameliorate the disruption of the BBB in PwMS, as evidenced by

circulating biomarkers. Tight junction proteins, consisting mainly

of transmembrane and cytoplasmic proteins, are essential

components of the BBB. The transmembrane structure of tight

junctions is comprised primarily of three classical proteins:

claudins, occludins, and junction adherence molecules.

Furthermore, the support structure of tight junctions is

established by cytoplasmic attachment proteins such as zonula

occludens (ZO) and cingulin, among others (110). During the

development of neuroinflammation, certain chemokines and

cytokines may induce the expression of EC adhesion molecules,

specifically intercellular cell adhesion molecule 1 (ICAM-1),

vascular cell adhesion molecule 1 (VCAM-1), E-selectin, and

PECAM-1, among others. As a result, peripheral immune cells

could cross the BBB (111). Abnormal expression of tight junction

proteins has been observed in animal models of MS and in human

studies. For instance, the permeability of the BBB to Evans blue in

the brain homogenate of mice with EAE significantly increased,

accompanied by a reduction in claudin-5, occludin and ZO-1, while

ICAM-1 and VCAM-1 expression increased (112). Similar findings

were attained by other researchers in their evaluation of the degree

of loss or redistribution of tight junction proteins, and the

expression of ICAM-1 and VCAM-1 in the brains of EAE models

(113). Another animal research demonstrated that after four weeks

of strength or endurance training programs, the expression levels of

tight junction proteins, including occludin and claudin-4, were

restored in the CNS, and the expression of PECAM-1 was

significantly suppressed, thus preserving the BBB from injury in

EAE (48). A recent study conducted by Hamdi et al. (114) has

implemented a PLP-induced transfer EAE model. The results show

that HICT has an impact on T cell migration and invasion and is

linked to a decrease in interactions between very late antigen 4

(VLA-4)/VCAM-1 and lymphocyte function antigen 1 (LFA-1)/

ICAM-1. Thus, physical exercise could indirectly regulate

lymphocyte infi l t ra t ion by modi fy ing BBB integr i ty

and permeability.

In light of emerging evidence on the disruption of gut microbiota

in PwMS, the mechanism by which gut microbiota disorder

exacerbates the condition is progressively becoming more apparent

(115–118). Studies have shown that the intestinal microbiome can

promote the development of CNS-reactive pathogenic T cells in both
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EAE (119, 120) and MS (121). Aberrant alterations in colony patterns

were noted in PwMS. These changes were accompanied by an increase

in Desulfovibrionaceae, Akkermansia muciniphila, and Acinetobacter

calcoacetius levels, among others, as well as a decrease in

Faecalibacterium prausnitzii, Parabacteroides, Prevotella, and

Bacteroides fragilis (122). There is an increasing body of evidence

that suggests physical exercise could positively influence the

composition and function of the gut microbiota (123–125). The

implementation of a four-week strength training program, performed

six times per week, led to significant outcomes in EAE. Specifically, this

intervention resulted in increased abundance and diversity of gut

microbiota, a decrease in the Firmicutes to Bacteroidetes ratio, and

improvement in intestinal mucosal permeability. Various bacteria

including Akkermansia, Clostridium, Parabacteroides, Christensenella,

Dorea, Roseburia, and Paraprevotella can produce short-chain fatty

acids (SCFAs). The training program efficiently decreased Th17

responses and increased Treg responses in lymphoid tissues of the

small intestine. It is noteworthy that after completing four weeks of

strength training, with each session lasting up to 60 minutes, there was

a significant improvement in disease severity and neuropathology in

EAE. Moreover, the microbiome fecal transplantation of trained mice

into microbiota-depleted mice alleviated disease severity and

neuropathology scores in microbiota-depleted mice relative to

controls. However, shorter training durations, either 20 or 40

minutes per session, do not appear to affect T cell-mediated

autoimmunity in EAE (94). These observational data indicate that

the modulation of gut microbiota through exercise represents a

mechanism that can improve T cell-mediated autoimmunity in MS.

The beneficial effects of exercise on the pathology of EAE mice may be

affected by the duration of training sessions, except for exercise type

and intensity. For human patients, a brief high-impact

multidimensional rehabilitation program that incorporates physical

activity in a leisurely setting has demonstrated a decrease in

proportions of pathobionts, such as Collinsella and Ruminococcus,

while increasing amounts of SCFA producers, such as Coprococcus,

Bacteroides, and Oscillospira. The alterations in the colony were

associated with a reduction in the quantity of pro-inflammatory T

lymphocyte subpopulations, especially CD4+/IFN-g+ Th1 cells and

CD4+/ROR-g+ and CD4+/IL-17+ Th17 cells, as well as a decrease in

circulating lipopolysaccharide (LPS). Simultaneously, the rehabilitation

program also improved physical performance and relieved fatigue

(126). In a separate study, a six-month home-based exercise training

program held with a frequency of five sessions per week exhibited a

significant increase in Prevotella populations and a reduction in

Akkermansia muciniphila populations among PwMS. Furthermore,

this intervention had a positive effect on adverse psychological states

such as anxiety and depression. However, no substantial influence was

observed on fatigue, Faecalibacterium prausnitzii and Bacteroides

counts, or the presence of anti-inflammatory cytokines in the serum.

Nonetheless, changes in Akkermansia muciniphila, Prevotella, and

Bacteroides counts in response to the intervention were correlated

with changes in IL-10 (127). The above results strongly indicate that

exercise can elicit neuroimmunomodulatory effects by regulating the

gut microbiome.
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2.2 Innate immune cells

2.2.1 Dendritic cells
Dendritic cells (DCs) are specialized antigen-presenting cells

and are vital regulators of innate and adaptive immune responses

(128). They have the ability to express many molecules associated

with antigen presentation that interact with T cells, including major

histocompatibility complex-I (MHC-I), MHC-II, and CD1, as well

as co-stimulatory molecules, including CD80, CD86, and CD40

(129). Moreover, upon activation, DCs also produce multiple

cytokines, such as GM-CSF, IL-23 (130, 131), and IL-27 (132),

which direct the differentiation of naive T cells. A human study

compared the phenotypes and cytokine secretion of DCs among

PwMS, individuals with other neurological disorders, and healthy

controls. The research discovered that the number, morphology,

and phenotype of DCs were comparable in PwMS and healthy

controls. The phenotypic features included immature myeloid

lineages such as CD1a+ and CD11c+. However, PwMS showed a

higher proportion of CD1a+ DCs and a lower proportion of CD86+

DCs compared to controls (133). It is evident that alterations in the

surface molecules of DCs, which have functional significance, are

related to MS. In the EAE model, dysfunctional or deficient DC

genes result in abnormal responses from effector T cells. For

instance, researchers have identified that mammalian sterile 20-

like kinase 1 (MST1) to be an essential regulator of EAE, promoting

Th17 differentiation depending on DCs. The absence of MST1 in

DCs causes CD4+ T cells to produce higher quantities of IL-17,

whereas the amplification of MST1 in DCs restrains IL-17

production. Mechanically, activation of p38 MAPK signaling

occurs in DCs lacking MST1, resulting in increased IL-6 secretion

in Th17 differentiation induction and the activation of IL-6 receptor

a/b and signal transducer and activator of transcription 3 (STAT3)

in CD4+ T cells (134). Additional in vivo research with rodents

revealed worsened autoimmune neuroinflammation with increased

Th17 cell polarization during EAE induction in REGg-deficient
mice. Moreover, ex vivo experiments have confirmed that a REGg
deficit enhances integrin avb8 expression in DCs, which stimulates

TGF-b1 maturation and promotes Th17 cell development. The

process is supported by REGg proteasome-dependent degradation

of IRF8 (135). DCs play an important role in immune regulation

initiation and maintenance of inflammatory events. It is essential to

conduct further research on DC genes that affect T cell-mediated

pathology in MS. This will improve our basic understanding of MS

pathogenesis and support the creation of more effective treatments

for this disease. Bilirubin nanomedicine (136), urolithin A (137),

and optineurin (138) have already been demonstrated to be effective

in impacting disease progression by regulating the activity and

function of DCs.

Furthermore, it should be noted that DCs may also exhibit

heterogeneity in the pathogenesis of MS. DCs are generally

classified into two main subsets, referred to as myeloid/

conventional DCs (cDCs) and plasmacytoid DCs (pDCs).

Interestingly, cDCs and pDCs obtained from PwMS manifested

significant tolerogenic (139) or regulatory effects (140) in

comparison with control groups. The cDCs are further

categorized into cDC1 and cDC2 cells, which exhibit distinct
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ontogenies, surface markers, localizations, and immunological

functions (141). In a stable condition, the cDCs commonly reside

in the meninges, brain, and spinal cord of the CNS. They are

capable of stimulating the activation and secretion of pro-

inflammatory cytokines directly ex vivo from naive, effector,

myelin-specific T cells. The population of cDCs increases in the

meninges and CNS parenchyma during the development of EAE.

Upon selective depletion of cDCs, the quantity of myelin-primed

donor T cells in the CNS decreased, resulting in a 50% reduction in

the incidence of clinical presentation (142). The pDCs can be

subdivided into pDC1 and pDC2. The former displays increased

levels of CD123 expression, while demonstrating decreased

expression of CD86 and Toll-like receptor 2 (TLR2). It also

facilitates the secretion of IFN-a and IL-10. Conversely, the latter

subtype, pDC2, exhibits reduced expression of CD123 but higher

expression of CD86 and TLR2. It promotes the secretion of TNF-a
and IL-6 (143). Thewissen et al. (144) reported that circulating DCs

in PwMS demonstrate a pro-inflammatory state and possess a

migratory phenotype. DCs derived from MS patients exhibited

increased production of IL-12p70 following TLR ligation.

Additionally, these DCs had heightened expression levels of the

migratory molecules C-C chemokine receptor 5 (CCR5) and CCR7,

as well as improved in vitro chemotaxis when compared to healthy

controls. Another study showed a significant alteration in the

pDC1/pDC2 ratio, with a ratio of approximately 4.4:1 observed in

healthy controls and 0.69:1 observed in PwMS. This shift towards

pDC2 may contribute to the preferential activation of IL-17-

secreting cells in MS, over IL-10-secreting CD4+ T cells (145).

The concurrent occurrence of various DC subpopulations suggests

their dual function in MS pathology.

In 2007, research conducted on DCs in Sprague-Dawley rats

showed that progressive endurance exercise for five weeks modified

the development of DCs and directed them towards a more mature

state (146). However, in studies of animal disease models,

Mackenzie et al. (147) found that four weeks of treadmill running

led to a reduction in DC activation. This was shown by a decrease in

production of the inflammatory markers IL-6, chemokine (C-X-C

motif) ligand 1 (CXCL1)/KC, IL-12p70, and TNF-a, as well as a
decrease in MHC-II expression, indicating a decrease in DC

maturation (147). It also appears that the effects of exercise on

different DC subtypes may vary considerably. In a study of an

asthma model, a four-week treadmill exercise program led to a

reduction of co-stimulatory molecules, CD80, CD86, and inducible

T-cell costimulator ligand (ICOSL), in cDCs located in the lymph

nodes that drained from the affected areas, and an increase in

ICOSL expression in pDCs (148). Human studies have

demonstrated that acute exercise causes a transient increase in

DCs in the blood and a greater mobilization of pDCs than cDCs

(149). In patients suffering from chronically progressive MS or

RRMS, an increase in the numbers of cDC and pDC, along with the

expression of the cell adhesion molecule CD62 ligand (CD62L) and

CCR5, were noticed after a session of endurance and resistance

training, and most of the markers did not return to their resting

state within two hours of exercising. This increase may be mediated

by FMS-like tyrosine kinase 3 ligand (FLT3L)- and MMP-9-

dependent DCs mobilization. Acute exercise can potentially
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reduce the responsiveness of circulating DCs to TLR, thus

establishing a negative feedback regulatory mechanism to

counteract the heightened inflammatory state resulting from

acute exercise (95). In the chronic exercise intervention program,

a 12-week training program that combining endurance with

resistance exercise significantly increased the absolute number of

pDCs in patients with chronically progressive or RRMS. This

increase was observed specifically in those pDCs expressing CD80

and CD62L, whereas there were no significant changes in cDCs.

Further analysis demonstrated a positive correlation between the

quantity of CD80+ pDCs and IL-10-producing Tr1 cells. These

findings suggest that regular exercise may enhance the

immunomodulatory function of circulating pDCs. Moreover, the

exercise program suppressed the production of TNF-a and MMP-9

by DCs in response to TLR activation, indicating that the program

could reduce inflammation in individuals (96). Although acute

exercise resulted in an elevation of cDCs and pDCs, that is not

indicative of an exercise-induced response of DCs contributing to

the advancement of an inflammatory state. Additionally, a regular

exercise program in PwMS can result in an increase in activated

pDCs, and is associated with the occurrence of Tr1 cells. However,

only two human investigations have studied the influence of

exercise on DCs in MS; further research is necessary on this issue.

2.2.2 Neutrophils

Neutrophils, which originate from the bone marrow, are the

most prevalent leukocyte in peripheral blood and are crucial for

non-specific host defense. They are responsible for phagocytosis of

microbial, bacterial, and viral pathogens, while also producing and

releasing cytokines that regulate T cell and B cell activities (150).

Several studies have shown that neutrophils in PwMS exhibit a

higher quantity and activated phenotype compared to healthy

controls. This phenotype is distinguished by an elevated surface

expression of TLR-2, N-Formyl-methionyl-leucyl-phenylalanine

(fMLP) receptor, IL-8 receptor, and CD43, an increased granule

release and oxidative burst, and also higher serum levels of

neutrophil extracellular traps (NETs) (151–153). Multiple

mechanisms exist through which neutrophils promote MS,

including the secretion of inflammatory mediators and enzymes

such as IL-1b (154, 155), myeloperoxidase (156), and various

proteinases (157, 158), the production of reactive oxygen species

(ROS) (159, 160), and antigen presentation to T cells (161). In EAE,

a lineage tracing study has demonstrated a significant increase in

myelopoiesis in the bone marrow resulting in the enhanced

production and subsequent invasion of neutrophils in the CNS

(162). The regulation of neutrophil-associated factors, specifically

granulocyte colony-stimulating factor (G-CSF) and CXCL1, plays a

crucial role in this process (163). Deficiency of the G-CSF receptor

and obstruction of CXCL1 lessened myeloid cell accumulation in

the bloodstream and ameliorated the clinical outcomes of mice that

received injections of myelin-reactive Th17 cells (163).

Additionally, the presence of CXCL1, CXCL2, and CXCL6 was

essential for the recruitment of neutrophils in the CNS. These

chemokines exert their effects via activation of the G protein-

coupled receptor CXCR2, which is predominantly expressed on
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mature neutrophils (164). The existence of neutrophils positive for

CXCR2 has been shown to contribute to the process of

inflammatory demyelination in demyelination models, such as

EAE and CPZ intoxication. In contrast, CXCR2-deficient mice

exhibit greater resistance to CPZ-induced demyelination (165). It

can be inferred that CXCR2 may be a pivotal molecular target for

MS therapy. Additionally, the neutrophil-to-lymphocyte ratio

(NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-

inflammation index (SII) are frequently observed in clinical practice

as dependable indicators of inflammation related to various

pathologies (166, 167). In PwMS, the NLR has been proposed as

a marker of disease activity, with elevated levels displaying a positive

association with the severity of MS symptoms (168, 169). Therefore,

it may be crucial to monitor neutrophil activity and function to gain

understanding of the progression of MS.

The evidence clearly shows that acute exercise affects neutrophil

response. At the gene expression level, a study discovered that a

brief bout of intense exercise modifies neutrophil gene expression,

including the janus kinase (Jak)/STAT pathway involved in

apoptosis, and genes linked to inflammation, such as IL-32, TNF

receptor superfamily member 8 (TNFSF8), CCR5 and Annexin A1

(ANXA1), in addition to genes related to growth and repair, such as

Amphiregulin (AREG) and fibroblast growth factor receptor 2

(FGFR2) genes (170, 171). In terms of activity and function,

physical exercise typically induces an initial activation of

neutrophils. This is demonstrated through the release of enzymes

(172, 173) and subsequent changes in crucial effector functions,

including phagocytosis and respiratory burst activity (174, 175).

Acute exercise has been shown to attenuate neutrophil apoptosis,

possibly by its action on the inducible nitric oxide synthase (iNOS)-

nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-

myeloid cell leukemia 1 (Mcl-1) pathway (176), as well as calcium

and redox signaling (177). Furthermore, although acute aerobic

exercise was able to increase the number of total circulating

neutrophils, the number of neutrophils expressing CXCR2

decreased during the recovery period (178). Previous research

indicates that regular, chronic exercise can have a positive impact

on neutrophil-mediated immune function in both physiological and

pathological conditions. A cross-sectional study involving older

adults found that increasing habitual physical activity can

potentially enhance neutrophil-mediated immunity (179).

Moreover, several months of exercise training not only reduce

individual neutrophil chemotaxis and lower IL-8 and

noradrenaline concentrations (180), but also enhance

deoxyribonuclease (DNase) activity, increasing the ability to

degrade NETs (181). In the case of EAE and MS, one study

conducted with animals suggested that EAE mice that underwent

six weeks of voluntary wheel running prior to the disease had a

lower rate of neutrophil infiltration in the spinal cord and lesser

severity of EAE in the chronic period (49). Furthermore, three

weeks of HIIT programs during inpatient rehabilitation of patients

with RRMS or SPMS resulted in a greater decrease of NLR

compared to MICT. This could be attributed to the repetitive

inflammatory status and compensatory anti-inflammatory balance

after each high-intensity exercise, as suggested by Joisten et al.

(182). The research shows that regular exercise has the potential to
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ameliorate the clinical symptoms of MS by modulating the activity

of neutrophils.

2.2.3 Microglia/macrophages

Microglia and macrophages are integral components of the

mononuclear phagocytic system. They accumulate at the sites of

active demyelination and neurodegeneration in the CNS of MS and

are believed to be central to the disease process. Evidence suggests

an increase in macrophage infiltration into the CNS and

exaggerated activation of resident microglia and pathological

microgliosis (183, 184). Microglia and macrophages can be

classified into two subtypes: the classically activated M1

phenotype, which is associated with inflammatory and

degenerative processes, and the alternatively activated M2

phenotype, which has protective properties. In addition to these

two subtypes, there may exist intermediate polarization phenotypes

(185). Classical activation can be induced by various stimuli such as

IFN-g and LPS. This activation results in the increased expression of

antigen presentation related molecules, specifically CD80, CD86,

and CD40, which demonstrate a significant ability to present

antigens. Furthermore, M1 microglia/macrophages can produce

pro-inflammatory cytokines like TNF-a and IL-6, and

chemokines such as CCL2 and CCL3, as well as neurotoxic NO.

In contrast, M2 microglia/macrophages lack cytotoxicity and can be

stimulated by IL-4 and IL-13. They could exhibit raised levels of

CD14 and CD163, among other markers, and release anti-

inflammatory cytokines such as IL-10 and TGF-b (21, 186). It

should be noted that microglia and macrophages play a dual role in

the pathology of MS. In the early stages of demyelination and

neurodegeneration present in active lesions, microglia with a pro-

inflammatory phenotype were observed. They expressed molecules

involved in phagocytosis, oxidative injury, antigen presentation,

and T cell co-stimulation. In later stages, the microglia and

macrophages in active lesions shifted to a phenotype that was

intermediate between pro- and anti-inflammatory activation

(187). Activated microglia have the ability to directly drive

demyelination and are necessary for it (188). Conversely,

microglia and monocyte-derived macrophages play a significant

role in facilitating efficient remyelination by secreting growth

factors and eliminating inhibitory myelin debris (189). Genetic

fate mapping and multiphoton live imaging demonstrate that

administering niacin at therapeutically relevant doses to

demyelinated aged mice assists in clearing myelin debris in

lesions through the action of both peripherally-derived

macrophages and microglia (190). Moreover, M2 microglia and

macrophages were found to drive OLs differentiation during CNS

remyelination (191). Notably, the triggering receptor expressed on

myeloid cells 2 (TREM2) is believed to play a significant part in the

remyelination process. Research indicates that TREM2 is highly

expressed on myelin-laden phagocytes in active demyelinating

lesions in the CNS of PwMS. Gene expression research indicates

that macrophages in individuals with genetic deficiency in TREM2

lack phagocytic pathways (192). Additionally, when TREM2 is

deficient, the capability of microglia to phagocytose myelin debris

is significantly diminished. These microglia also display impaired
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mobility and are unable to metabolize cholesterol, leading to

deficient remyelination in TREM2-deficient mice (193). However,

TREM2 activation in microglia led to increased OPC density in

demyelinated regions, contributed to the development of mature

OL, which subsequently improved remyelination and axonal

integrity (192). Furthermore, regulation of neuroinflammation

can be attained by adjusting the dynamic alterations in two

phenotypes of microglia/macrophages. It has been recommended

that to alleviate clinical symptoms in EAE mice, M1 microglia/

macrophage polarization should be suppressed and shifted towards

the protective M2 phenotype (194–196). As a result, the regulation

of the activation and polarization of microglia/macrophages may be

an effective approach to MS pathology.

Accumulated evidence over the past decades suggests that

exercise have a considerable impact on macrophage chemotaxis,

antigen presentation, phagocytosis, inflammatory cytokine release,

antiviral capability, and antitumor activity (197–202). These effects

could be attributed to exercise’s regulation of immunometabolism

and macrophage polarization. Murugathasan et al. (203) conducted

a study which revealed bone marrow-derived macrophages

(BMDMs) obtained from mice that underwent eight weeks of

moderate-intensity treadmill running exhibited reduced LPS-

induced NF-kB activation, decreased expression of pro-

inflammatory genes (such as Il-1b and Tnfa), and increased M2-

like-associated genes (such as Arg1 and Hmox-1) in contrast to

BMDMs from sedentary mice. This was linked to improved

mitochondrial quality and higher dependence on oxidative

phosphorylation, accompanied by reduced mitochondrial ROS

production. Similarly, physical exercise has a wide range of effects

on microglia activity and function by modulating the expression of

cytokines and their receptors (204) and attenuating oxidative stress

(205). Recently, mounting evidence has confirmed the influence of

exercise on microglia in the physiology of the CNS and various

conditions, such as AD (206–208), PD (209), and cerebral ischemia

(210). In MS, the effects of physical exercise on microglia/

macrophages can be summarized in three key ways: (i) inhibiting

macrophage infiltration into the CNS, (ii) constraining atypical

microglia activation and microgliosis at lesion sites, and (iii)

inhibiting M1 polarization and promoting M2 polarization.

Specifically, the results of a pre-training program, involving either

a three-week voluntary wheel running or six-week treadmill

running, demonstrated the capacity to restrain the infiltration of

macrophages into the spinal cord, which was induced by EAE (49,

211). Regarding CNS-resident microglia, Rizzo et al. (212) showed

that engaging in voluntary wheel running for three weeks alleviated

microgliosis and reduced the expression of TNF-a and IL-1b in the

hippocampal CA1 area of EAE mice. In CPZ-induced mice, six

weeks of voluntary wheel running alleviated microgliosis in the

striatum and corpus callosum (42). Additionally, regular exercise

may lower the number of neurotoxic M1-like phenotype cells while

increasing the number of M2-like phenotype cells. Before the

induction of EAE by injecting PLP-reactive T-cells, the mice

underwent six weeks of HICT, which reduced the number of

neurotoxic microglia expressing the ionized calcium binding

adapter molecule 1 (Iba1+) and the M1-like marker inducible

nitric oxide synthase (iNOS+). The content of pro-inflammatory
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cytokines IL-6 and MCP-1 secreted by microglia in response to PLP

and LPS stimulations also decreased (213). Meanwhile, a daily one-

hour voluntary exercise on a wheel reduces the number of Iba1+

microglia/macrophages expressing iNOS in the spinal cord of EAE

mice (46). In mice with lysolecithin-induced demyelination,

voluntary wheel running for a duration of time augments the

M2-like phenotype in the myelin lesions and enhances the

phagocytic function of myelin fragments. This reduction in

inhibitory lipid debris likely facilitates the prolonged proliferation

of OPCs with exercise to produce increased numbers of OLs,

ultimately promoting the remyelination process (214). However,

other studies have reported negative and contradictory results

regarding macrophage infiltration and microgliosis (47, 51, 91)

(Table 2). Although there is no data available for humans, research

on animals confirms that exercise elicits a response in MS-afflicted

microglia/macrophages. In addition, it is noteworthy that several

studies have demonstrated the impact of exercise on microglia

activation, microglial glucose metabolism, and morphological

plasticity by modifying the TREM2 pathway (207, 218). Xu et al.

(219) propose that physical exercise can assist in the regeneration of

OLs to protect against white matter damage after a stroke. This is

primarily achieved by increasing TREM2 and microglia-generated

factors. Due to TREM2’s regulatory function in microglia, and its

impact on myelin regeneration and neuroinflammation, it is

imperative to investigate whether TREM2 can assist physical

exercise in mitigating MS pathology in an animal model of MS.

2.2.4 Astrocytes

Astrocytes represent the most prevalent type of glial cells in the

mammalian brain and perform various physiological functions,

including regulating ion homeostasis, neurotransmitter clearance,

synapse formation and removal, and neurovascular coupling,

among others (220–222). It is noteworthy that astrocyte

dysfunction can lead to the development of MS, including

neuroinflammation and demyelination. In MS/EAE, the excess

activation of astrocytes may foster innate inflammation and

neurodegeneration via the production of cytokines such as IL-6,

IL-15, and TNF-a, chemokines such as CXCL1, CXCL10, CCL2,

and CCL20, and neurotoxic metabolites such as NO (19). Despite

being neither immune progenitors nor strictly classified as innate

immune cells, astrocytes can perceive inflammatory signals and

regulate neuroinflammation. Some studies have suggested a

possible connection between abnormal gene expression in

astrocytes or metabol ic abnormal it ies and increased

neuroinflammation (223–225). Wheeler et al. (226) utilized

single-cell RNA sequencing combined with cell-specific Ribotag

RNA profiling, assay for transposase-accessible chromatin with

sequencing, chromatin immunoprecipitation with sequencing,

genome-wide analysis of DNA methylation and in vivo CRISPR-

Cas9-based genetic perturbations to examine astrocytes in MS and

EAE. The results showed that astrocytes in both EAE and MS

exhibit reduced expression of Nrf2 and an upregulation of V-maf

musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG).

MAFG collaborates with methionine adenosyltransferase II alpha
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(MAT2a) to propagate DNA methylation and impede antioxidant

and anti-inflammatory transcriptional programs. GM-CSF

signaling in astrocytes induces the expression of MAFG and

MAT2a, as well as pro-inflammatory transcriptional modules,

which potentially lead to CNS pathology in both EAE and MS. In

general, astrocytes experience persistent and extensive activation in

response to pathological stimuli, resulting in a reactive state that

encompasses two subtypes: A1, characterized by a pro-

inflammatory function, and A2, which exerts a protective effect

(227). Additionally, numerous studies have identified the beneficial

and detrimental roles performed by astrocytes in the process of

remyelination. Molina-Gonzalez et al. (228) employed unbiased

RNA sequencing, functional manipulation, and rodent models in

vivo/ex vivo/in vitro, as well as human brain lesion analyses, to

investigate the interaction between astrocytes and OLs during

remyelination. The investigation has revealed that astrocytes can

promote the survival of regenerating OLs by suppressing the Nrf2

pathway and stimulating the cholesterol biosynthesis pathway. This

finding highlights the importance of astrocyte-OL interaction in

myelin repair. In contrast, demyelinating lesions exhibit an

augmented degree of reactive astrogliosis. Such reactive astrocytes

present a hypertrophic phenotype and generate astroglial scars that

can create an inhibitory milieu, ultimately obstructing tissue repair

(229). Moreover, it has been discovered that irregular copper

transportation in astrocytes may lead to demyelination in MS

(230). The regulation of reactive astrocytes could hold significant

therapeutic potential in the context of inflammation and myelin

damage associated with MS.

Similar to microglia and OLs, the effect of physical exercise on the

activity and function of astrocytes in the CNS has been widely

researched. Appropriate exercise can alter astrocyte activation

(231), phenotype (232, 233), remodeling (234, 235), tropic factor

release (236), and energy metabolism (237), among others.

Furthermore, it can regulate astrocyte-mediated neuroinflammatory

responses (234) and intercellular interactions of astrocytes with other

cells (238). In mouse models of MS, Bernardes et al. (211) found that

a pre-exercise program involving six weeks of treadmill running

contributed to a further reduction in astrocyte responses in the dorsal

horn of the spinal cord, induced by GA drug therapy in EAE mice

after the first relapse. This reduction was demonstrated using glial

fibrillary acidic protein (GFAP) immunofluorescence. In addition,

simultaneous voluntary wheel running during CPZ-induced

demyelination alleviated astrogliosis in the striatum and corpus

callosum, while decreasing CXCL10 expression and ameliorating

axonal pathology in CPZ-treated mice (42). These findings imply

that physical exercise has the potential to mitigate the

pathophysiological features of MS through the reduction of the

astrocytic response. However, it is important to acknowledge that

the human studies have yet to provide concrete evidence for the

consistency of these findings. GFAP is released into the cerebrospinal

fluid and blood in disorders associated with astrocyte activation and

astrogliosis following inflammation and neurodegeneration and

therefore is highly expressed in MS lesions (239). In 2021, Ercan

et al. (216) conducted a study observing a decrease in serum levels of

GFAP and neurofilament light (NFL) after eight weeks of cycling in
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TABLE 2 Effect of exercise on innate immune cells in animal models and human patients of MS.

Subjects Intervention program Region Mode of action References

Model Characteristics Type Intensity Duration

MOG35-55

-induced EAE
model

C57BL/6 mice;
female;
8 weeks old

Voluntary
wheel
running

ND 60 min/
session for
40
consecutive
days

Brain and
spinal cord

Macrophages infiltration →; Synaptic
plasticity ↑; Clinical scores ↓

(91)

C57BL/6 mice; male
and female; 6~8
weeks old

Voluntary
wheel
running

ND 60 min/
session for
30
consecutive
days

Spinal cord Microgliosis → (47)

C57BL/6 mice; male
and female; 4~6
weeks old

Prior
treadmill
running

11 m/min 30 min/
session, 5
sessions/
week for 6
weeks

Spinal cord Microglial reactivity and macrophages
infiltration ↓; Astrocyte reactivity ↓;
Synaptic plasticity ↑; Demyelination ↓

(211)

C57BL/6 mice;
female;
9~10 weeks old

Prior
voluntary
wheel
running

ND 60 min/
session, 5
sessions/
week for 6
weeks

Spinal cord Neutrophils and macrophages
infiltration ↓; Nrf-2 and IL-10 ↑; IL-17
↓; Clinical scores ↓

(49)

C57BL/6 mice;
female;
9 weeks old

Voluntary
wheel
running

ND 3 weeks Hippocampus Microgliosis ↓; Microglial TNF-a ↓; IL-
1b ↓; Cognition ↑; Synaptic plasticity ↑;
Clinical scores ↓

(212)

CPZ-induced
toxic-
demyelinating
model

C57BL/6 mice; male;
4 weeks old

(i) Interval
treadmill
running
(IT)
(ii)
Continuous
treadmill
running
(CT)

(i) IT: 50%,
90% ECmax

(ii) CT: 70%
ECmax

5 sessions/
week for 4
weeks

Hippocampus (i) IT: Microglial number ↑;
Oligodendrocytes number ↑; BDNF,
GDNF, and NGF ↑
(ii) CT: Microglial number →;
Oligodendrocytes number ↑; BDNF,
GDNF, and NGF ↑

(51)

C57BL/6N mice;
female; 8 weeks old

Voluntary
wheel
running

ND 6 weeks Corpus
callosum and
striatum

Microgliosis ↓; Astrogliosis ↓; CXCL10
↓; TNF-a, IL-1b, TGF-b, and
CXCL12→; Demyelination ↓;
Remyelination ↑; Axonal damage ↓;
Weight loss ↓; Motor and
neuromuscular function ↑

(42)

Lysolecithin-
demyelinating
model

C57BL/6 mice;
female; 8~12 weeks
old

Voluntary
wheel
running

ND 14
consecutive
days

Spinal cord CD206 anti-inflammatory phenotype
macrophage and microglia ↑; CD16/32
pro-inflammatory phenotype
macrophage and microglia ↓;
Phagocytic Clearance of Lipid Debris ↑;
Remyelination ↑; Axonal degeneration
↓

(214)

RRMS
patients

10 female; (32.15 ±
7.57) years old; EDSS
score ≤ 4

Stretch
training,
aerobic
exercises,
endurance
and
resistance
training

ND 55~65 min/
session, 3
sessions/
week for 8
weeks

Blood PBMC-derived INF-g and IL-17 ↓; IL-4
→; Fitness ↑; Clinical scores ↓

(215)

31 female/7 males;
19~40 years old;
EDSS: 1~4.5

Cycing 60%~70%
VO2max

30 min/
session, 3
sessions/
week for 8
weeks

Blood GFAP and NFL ↓ (216)

(Continued)
F
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patients with RRMS. However, a subsequent investigation by

Gravesteijn et al. (217) found no statistically significant changes in

serum levels of GFAP, brain-derived neurotrophic factor (BDNF),

and NFL in PwMS following a 16-week cycling intervention. The
Frontiers in Immunology 13102
amount of relevant research available is restricted and there is a lack

of consistency in the results obtained from human trials. Additional

research is necessary to obtain a more comprehensive understanding

of this issue.
TABLE 2 Continued

Subjects Intervention program Region Mode of action References

Model Characteristics Type Intensity Duration

CPMS and
RRMS
patients

12 female/10 male;
(46.0 ± 2.0) years
old; EDSS score < 6

Endurance
training
(ET)
(walking
and cycling)
combined
with
strength
training
(ST)
(resistance
exercise)

ET: 65%
HRR; ST:
70% 1RM

A single
bout

Blood (i) Immediate post-exercise: Monocytes
and granulocyte number ↑; cDC and
pDC number ↑; CD62L+ cDC and
CD62L+ pDC number ↑; CCR5+ cDC
and CCR5+ pDC number ↑; MIP-1a
→; Flt3L ↑; MMP-9 →

(ii) 2 hours post-exercise: Monocytes
number →; Granulocyte number ↑;
cDC number →; pDC number ↑;
CD62L+ cDC ↑; CD62L+ pDC number
→; CCR5+ cDC and CCR5+ pDC
number ↑; MIP-1a →; Flt3L →; MMP-
9 ↑

(95)

16 female/13 male;
(46.0 ± 2.0) years
old; EDSS score: (3 ±
0.2)

Endurance
training
(cycling and
treadmill
walking or
running)
combined
with
strength
training
(resistance
exercise)

ND 5 sessions/2
weeks for 12
weeks

Blood pDC number and proportion ↑; cDC
number →; CD80+ pDC number and
proportion ↑; CCR7+ pDC number ↓;
CD62L+ pDC number ↑; CD62L+,
CCR5+, and CCR7+ cDC number →;
The fold change of CCR5+ cDC and
TNF-a and MMP-9 secreation upon
LPS and IFN-g stimulation ↓; The fold
change of CD86+ and HLA-DR+ cDC
and IL-1b, IL-6, IL-12p70, IFN-a, and
caspase-1 secreation upon LPS and
IFN-g stimulation ↓; The fold change of
HLA-DR+ pDC upon IQ stimulation ↑;
The fold change of CCR5+ and CD86+

pDC and IL-6, IL-12p70, TNF-a, IFN-
a, caspase-1, and MMP-9 upon IQ
stimulation →

(96)

SPMS and
RRMS
patients

42 female/26 male;
(50.3 ± 10.2) years
old;
EDSS score: 3~6

High-
intensity
interval
training
(HIIT) or
moderate
continuous
training
(MCT)

(i) HIIT:
95%~100%
HRmax

(ii) MCT:
65% HRmax

3 sessions/
week for 3
weeks

Blood (i) HIIT: NLR ↓; Systemic
immuneinflammation index ↓
(ii) MCT: NLR→; Systemic
immuneinflammation index ↑

(182)

PwMS 22 female/8 male;
43.5 ± 10.1) years
old; EDSS score: 2~3

High-
intensity
aerobic
training

40%, 60%,
and 80%
peak power

3 session/
week for 16
weeks

Blood GFAP, BDNF, and NFL → (217)

PwMS treated
with either
ATZ, FTY, or
NAT

17 female/13 male Climbing
stairs at
normal
speed (CN)
or fast (CF)
or cycling
(C)

C: 1, 2 Watt
per
kilogram
BW

CN: ND
CF: ND
C: 20 min

Blood (i) CN: Absolute NK cells number ↑
(ii) CF: Absolute NK cells number ↑
(iii) C: Absolute NKT cells and NK
cells number ↑

(99)
1RM, repetition maximum; ATZ, alemtuzumab; BDNF, brain-derived neurotrophic factor; CCR, chemokine C-C-Motif receptor; cDC, conventional dendritic cells; CPMS, chronically
progressive MS; CPZ, cuprizone; CXCL, chemokine (C-X-C motif) ligand; EAE, experimental autoimmune encephalomyelitis; ECmax: maximal exercise capacity; EDSS, Expanded Disability
Status Scale; Flt3l, FMS Like Tyrosine Kinase 3 Ligand; FTY, Fingolimod; GDNF, glial cell line-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; GPx, glutathione peroxidase;
HLA-DR, human leukocyte antigen DR; HRmax: maximal heart rate; HRR, heart rate reserve; IFN, interferon; IL-10, interleukin-10; IQ, imiquimod; LPS, lipopolysaccharide; MIP-1a:
macrophage inflammatory protein 1 a; MMP, matrix metallopeptidase; MOG, myelin oligodendrocyte glycoprotein; NAT, natalizumab; ND, not determined; NFL, neurofilament light; NGF,
nerve growth factor; NLR, neutrophil to lymphocyte ratio; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PBMC, peripheral blood mononuclear cell; pDCs: plasmacytoid DCs; PwMS, patients
with MS; TGF-b, transforming growth factor-b; Th, T helper cells; TNF-a, tumor necrosis factor-a; RRMS, relapsing-remitting MS; SPMS, secondary progressive MS.
↑, significantly increased or improved; ↓, significantly decreased or reduced; →, no significant change.
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3 Conclusions and perspectives

Both peripheral and CNS immunity are essential for

maintaining the proper CNS function. Physical exercise provides

direct neuroprotective benefits and induces immunomodulatory

effects. However, additional research is necessary to fully

understand the impact of physical exercise on autoimmune

diseases. In animal models and PwMS, the aberrant functioning

of immune cells has been identified as a significant pathological

mechanism. The implementation of a moderate exercise program

has been shown to effectively limit the infiltration of various

peripheral immune cell types, including T lymphocytes, B

lymphocytes, neutrophils, dendritic cells, and macrophages, into

the CNS. This physiological phenomenon can be attributed to the

fact that physical exercise can modify the quantity, functionality,

and migratory potential of immune cells and contribute to the

establishment of immune cell homeostasis from a pro-

inflammatory phenotype to an anti-inflammatory phenotype. For

instance, studies have indicated that exercise can promote the

differentiation of Treg cells, while inhibiting the differentiation of

Th1/Th17 cells, thereby leading to a reduction in IFN-g and IL-17

production, and an increase in IL-10 and TGF-b production.
Frontiers in Immunology 14103
Additionally, physical exercise has been observed to modulate the

structure of the BBB, consequently improving integrity and

decreasing permeability. In addition, physical exercise has an

impact on resident innate immune cells, specifically microglia and

astrocytes in the CNS. This impact mainly manifests as a reduction

in the activation of microglia and astrocytes induced by pathological

stimuli, as well as a decrease in microgliosis and astrogliosis and the

synthesis of pro-inflammatory cytokines (Figure 2). The

immunomodulatory responses elicited by exercise may constitute

a vital mechanism by which exercise ameliorates myelin and axonal

damage, alleviates disease symptoms, and abates clinical scores.

The regulation of immune cells in MS through exercise has

attracted growing attention. However, some immune cells,

including g-dT cells, MAIT cells, and natural killer cells, among

others, have not yet been investigated. Additionally, current

research has some potential limitations. Firstly, so far, most

studies have only described alterations in cellular phenotype. Few

studies have been undertaken regarding the molecular mechanisms

that underlie the effects of exercise on immune cells in MS.

Although it has been proposed that exercise could modulate

immune cell function by altering immunometabolism in MS

(240), the current evidence is insufficient. Furthermore, many
FIGURE 2

Schematic diagram of the effect of exercise on immune cells in multiple sclerosis. In human patients with MS or animal models, moderate exercise
inhibits infiltration of peripheral immune cells including lymphocytes and monocytes, increases anti-inflammatory Th cell differentiation, decreases
pro-inflammatory Th cell differentiation, promotes pDC mobilization, and induces macrophage polarization toward the M2 anti-inflammatory
phenotype. In addition, exercise also inhibits microglia and astrocyte hyperactivation in the CNS, limits microgliosis and astrogliosis, and promotes
microglia polarization toward the M2 anti-inflammatory phenotype. The figure was created using BioRender. pDC, plasmacytoid dendritic cell; Th, T
helper cells; Treg, regulatory T cells.
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transcription factors, including peroxisome proliferator-activated

receptor g (PPAR-g) (241), and regulators of signaling pathways,

such as nuclear factor kappa-B (NF-kB) (242) are involved in

regulating immune cell plasticity but have not been explored in

MS. Secondly, it is essential to give more consideration to

the interaction between the immunomodulatory mechanisms

linked to exercise improvement and other mechanisms, such as

the release of neurotrophic factors, mitochondrial dysfunction, and

oxidative stress. Thirdly, exploration of the disparities in

immunomodulatory mechanisms induced by varied experimental

protocols in animal studies, such as disease prevention via pre-

training, disease progression inhibition via concurrent training,

functional improvement through training during remission,

presents a fascinating future research topic. Additionally, the

effects of exercise alone and exercise combined with other

interventions should be actively explored. Finally, despite

extensive research and notable advancements in studying animal

models, it is important to acknowledge that these models cannot

fully replicate the entire spectrum of MS and its clinical

manifestations due to significant heterogeneity observed in

various disease courses. Therefore, further empirical studies are

imperative to validate the efficacy of exercise interventions in

ameliorating the disease across diverse types, durations,

intensities, and cycles. During the clinical translational phase, it is

crucial to provide personalized exercise programs to PwMS to

improve functional recovery.
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Macrophage regulation of the
“second brain”: CD163 intestinal
macrophages interact with
inhibitory interneurons to
regulate colonic motility -
evidence from the
Cx3cr1-Dtr rat model

Jackson L. K. Yip1, Soniya Xavier1, Gayathri K. Balasuriya1,2,
Elisa L. Hill-Yardin1† and Sarah J. Spencer1*†

1School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia,
2Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
Intestinal macrophages are well-studied for their conventional roles in the

immune response against pathogens and protecting the gut from chronic

inflammation. However, these macrophages may also have additional

functional roles in gastrointestinal motility under typical conditions. This is

likely to occur via both direct and indirect influences on gastrointestinal

motility through interaction with myenteric neurons that contribute to the gut-

brain axis, but this mechanism is yet to be properly characterised. The CX3CR1

chemokine receptor is expressed in the majority of intestinal macrophages, so

we used a conditional knockout Cx3cr1-Dtr (diphtheria toxin receptor) rat model

to transiently ablate these cells. We then utilized ex vivo video imaging to

evaluate colonic motility. Our previous studies in brain suggested that Cx3cr1-

expressing cells repopulate by 7 days after depletion in this model, so we

performed our experiments at both the 48 hr (macrophage depletion) and 7-

day (macrophage repopulation) time points. We also investigated whether

inhibitory neuronal input driven by nitric oxide from the enteric nervous

system is required for the regulation of colonic motility by intestinal

macrophages. Our results demonstrated that CD163-positive resident

intestinal macrophages are important in regulating colonic motility in the

absence of this major inhibitory neuronal input. In addition, we show that

intestinal macrophages are indispensable in maintaining a healthy intestinal

structure. Our study provides a novel understanding of the interplay between

the enteric nervous system and intestinal macrophages in colonic motility. We

highlight intestinal macrophages as a potential therapeutic target for

gastrointestinal motility disorders when inhibitory neuronal input is suppressed.
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GRAPHICAL ABSTRACT

We used a conditional knockout Cx3cr1-Dtr rat model to decipher the role of intestinal macrophages in colonic motility. Transgenic rats injected
with diphtheria toxin (DT) showed a significant reduction of ionized calcium-binding adaptor molecule 1 (Iba-1)-positive intestinal macrophages in
the myenteric plexus 48 hours post-injection. We demonstrated that in the presence of the nitric oxide synthase inhibitor, Nw-nitro-L-arginine
(NOLA), macrophage ablated rats had a greater increase in contraction frequency than controls. We then examined the macrophage population 7
days after DT injection and found that cluster of differentiation 163 (CD163) tissue resident macrophages do not repopulate whereas Iba-1 positive
macrophages do. A greater increase in contraction frequency in macrophage-ablated rats in the presence of NOLA indicates that CD163 positive
macrophages are crucial in regulating colonic motility in the absence of nitric oxide.
Highlights
Fron
• Intestinal macrophages regulate intestinal motility but the

mechanisms by which this occurs are largely unknown.

• We utilized a Cx3cr1-Dtr (diphtheria toxin receptor) rat

model to transiently deplete macrophages and thus

investigate the macrophage contribution to colonic

motility in the context of enteric nervous system

inhibitory input.

• We show that tissue-resident CD163 intestinal macrophages

regulate colonic motility, particularly in the absence of the

main inhibitory drive in the gut which occurs via nitric

oxide-dependent input.

• These findings allow us to better understand how intestinal

macrophages regulate colonic motility and provide insights

to support the development of macrophage-specific

therapeutic targets for gut motility disorders.
tiers in Immunology 02111
Introduction

As the most abundant immune cell type of the gastrointestinal

tract, intestinal macrophages play a key role in maintaining

homeostasis (1), including resistance to invasion by foreign antigens

and commensal bacteria. It is accepted that intestinal macrophages

generally maintain an anti-inflammatory (M2) profile to prevent

chronic inflammation and promote tissue repair (2, 3). They secrete

the anti-inflammatory cytokine interleukin (IL)-10, which is

constitutively expressed in the gut in the healthy individual (3).

During inflammation, intestinal macrophages differentiate into pro-

inflammatory macrophages (M1) and secrete pro-inflammatory

cytokines, including IL-1b, IL-6, and tumour necrosis factor (TNF)-

a (1). The release of pro-inflammatory cytokines helps combat

pathogens by further recruitment of inflammatory cells or by

stimulating production of inflammatory response proteins such as

serum amyloid A and C-reactive protein (4, 5).

In addition to an immunological role, intestinal macrophages

regulate intestinal motility via interaction with the enteric nervous
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system (ENS), specifically with myenteric neurons. Muller and

others have demonstrated that colony stimulating factor 1 (CSF-

1)/bone morphogenetic protein 2 (BMP-2) bi-directional signaling

between enteric neurons and intestinal macrophages is crucial in

maintaining intestinal peristalsis in healthy mice (6). However, the

mechanisms by which this neuroimmune crosstalk affects intestinal

muscle contractions, and thereby digestion, are still poorly

understood (3). Here we hypothesized that gastrointestinal

motility would be broadly maintained in the absence of intestinal

macrophages but that motility responses to ENS input would lack

the coordinated contractile patterns seen typically in rodents,

highlighting the interplay between the gut-brain axis and its

immune component.

Different myenteric neuron populations, as identified by their

neurochemical coding, play different roles in regulating intestinal

motility (7). The major inhibitory myenteric neurons express

neuronal nitric oxide synthase (nNOS) (8). nNOS neurons

stimulate relaxation of the smooth muscle (9). A recent study has

suggested that colonic migrating motor complexes (CMMCs),

responsible for initiating colonic contractions, originate from the

blockade of the inhibitory nitrergic cyclic guanosine

monophosphate (cGMP)-dependent pathway (10). The nitrergic

pathway is therefore likely to play a principal role in regulating

colonic motility (10). As such, loss of nNOS has been implicated in

several gastrointestinal disorders, such as oesophageal achalasia,

gastroparesis and Hirschsprung’s disease (11–13). In mice,

transplanting healthy enteric neural stem cells into nNOS-

deficient mice can rescue impaired colonic motility (7).

Although colonic motility is regulated by the neurons of the

myenteric plexus, additional factors contribute to the detailed

contraction profile (14). Apart from input by myenteric neurons,

pacemaker interstitial cells of Cajal also generate myogenic

rhythmicity (14). Depending on the distance that motor

complexes travel, the resultant neurogenic and myogenic

contractions in the proximal colon can be characterized into

different patterns (15). Therefore, in this study we focused on

defining differences in contraction patterns occurring in the rat

p rox ima l t o m id co lon fo l l ow ing the ab l a t i on o f

intestinal macrophages.

One of the main identifiers of intestinal macrophages is the

CX3C chemokine receptor 1 (Cx3cr1). Cx3cr1 expression is low in

circulating monocytes but increases as monocytes differentiate into

resident intestinal macrophages (3, 16). Therefore, a transgenic

model targeting Cx3cr1-expressing cells allows us to directly

investigate the role of intestinal macrophages in the gut. In

previous work, we used a conditional diphtheria toxin receptor

(Dtr) knock-in Cx3cr1-Dtr rat model to target Cx3cr1-containing

cells and study their roles in satiety control, circadian rhythms,

neuroimmune responses and cognitive function (17–21). These

studies suggest that the effects of ablating Cx3cr1-cells (i.e.,

microglia, monocytes, macrophages) are not due to sickness,

withdrawal, anxiety, or nausea (17). Here, we utilized this

transgenic rat model to investigate the role of intestinal

macrophages in gastrointestinal motility and their interactions
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with the ENS. We measured colonic motility patterns at the mid-

point of the proximal colon, since previous studies demonstrated

that only a subset of contractions generated from the beginning of

the rat proximal colon are propagated into mid-colon and beyond

(22–25). We found that the loss of intestinal macrophages in this

model led to shortening of the small intestine and colon.

Furthermore, intestinal macrophage depletion increased motility

in the proximal colon only when nNOS was inhibited. The

difference in motility was not caused by changes in the number of

nNOS neurons in the myenteric plexus. Notably, spontaneous

repopulation of ionized calcium binding adaptor molecule 1 (Iba-

1)-positive but not cluster of differentiation 163 (CD163)-positive

intestinal macrophages ensued after 7 days, and this was sufficient

to rescue some aspects of the phenotype, including intestine length.

However, we observed increased motility upon nNOS inhibition

that persisted even after Iba-1-positive macrophages had

repopulated the tissue. Our findings indicate that CD163-positive

macrophages are crucial in regulating gut motility when the major

inhibitory neural input is blocked.
Methods

Animals

All experiments were conducted in accordance with the

Australian Code of Practice for the Care and Use of Animals for

Scientific Purposes, with approval from the RMIT University

Animal Ethics Committee (AEC #1920). The chemokine receptor

Cx3cr1 is exclusively expressed in microglia and monocytes (26). To

specifically ablate Cx3cr1-expressing cells, we generated a Cx3cr1-

Dtr knock-in rat model on a Wistar Han background using

CRISPR/Cas9 technology, as previously described (17).

In the present experiments, we used female rats aged between 13

and 17 weeks. Initial analyses suggested females perform similarly

to males in terms of microglial and weight responses to the DT (17)

and so we selected one sex only to first establish mechanistic insight

into how macrophages affect gut motility before proceeding to sex-

comparison studies. The rats were kept under standard laboratory

housing conditions, with a 12 hr light cycle (7 am to 7 pm), an

ambient temperature of 22 °C, with humidity between 40 and 60%,

and free access to water and standard rat chow except where stated.

We administered DT as two separate injections, 8 hr apart, of 25 ng/

g DT in sterile saline, subcutaneously (s.c.), according to our

previous studies (17, 27). Our previous work has shown that

depletion of microglia and monocytes is maximized at 48 hr, and

that spontaneous repopulation is in progress around 7 days after

depletion (17). Thus, basal and post-DT tissue collection was

performed 48 hr or 7 days after the first injection, after the rats

were euthanized with overdose of ketamine and xylazine, 20 mg/mL

ketamine (Cenvet Australia, Lynbrook, VIC, Australia), 5 mg/mL

xylazine (Cenvet). All experiments were completed between 9 am

and 1 pm to limit potential effects of circadian rhythms on any

parameters measured.
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Colon collection and wholemount tissue
preparation for immunofluorescence

The proximal colon (the first 3-5 cm of colon measured from

the caecum and visualized by colonic striation patterns) from each

animal was opened, stretched, pinned with the mucosa facing

upwards, and submerged in 0.1 M phosphate buffered saline

(PBS) on a Petri dish lined with Sylgard (Sylgard Silicone

Elastomer, Krayden Inc., Denver, CO, USA). To obtain a

longitudinal muscle-myenteric plexus (LMMP) preparation, the

mucosa, submucosal plexus and circular muscle were peeled away

from the remaining colonic tissue under a dissecting microscope. A

small area of tissue containing the LMMP was transferred to a Petri

dish (35 mm), submerged in 0.1 M PBS, and stored at 4°C before

assessment of neuronal populations by immunofluorescence.
Wholemount immunofluorescence for
neuronal populations and identification of
intestinal macrophages

We have previously described the myenteric plexus wholemount

immunofluore scence fo r mouse t i s sue s (28 ) . Here ,

immunofluorescence was performed on wholemount rat colonic

tissue samples to assess for potential differences in neuron numbers

and intestinal macrophage populations between saline- and DT-

treated Cx3cr1-Dtr rats. Wholemount LMMP samples were

incubated at room temperature (RT) for 30 min in 0.01% Triton X-

100 (Sigma Aldrich, St Louis, MO, USA) with 10% CAS-block™

(Invitrogen Australia, Mt Waverley, VIC, Australia) to reduce non-

specific binding of antibodies. Then, tissues were incubated with three

primary antisera for neuronal populations: human anti-Hu (1:5,000, a

pan-neuronal marker; a gift from Dr. V. Lennon, Mayo Clinic,

Rochester, MN, USA), sheep anti-nNOS (1:400; Millipore, RRID:

AB_90743) and rabbit anti-Iba-1 (1:400; Wako Chemicals USA Inc.,

Richmond, VA, USA, RRID: AB_839504) and stored at 4°C overnight

in a sealed container. For assessing macrophage populations, tissues

were incubated with two primary antisera: rabbit anti-Iba-1

(FUJIFILM Wako Shibayagi, RRID: AB_839504; 1:400) and mouse

anti-CD163 (Bio-Rad Laboratories, RRID: AB_2074558; 1:100). After

incubation, colonic tissues were washed with 0.1M PBS (three washes

of 10 min each). Secondary antisera corresponding to the host of the

primary antibody were applied to the samples and left for 2.5 hr at RT

on a shaker incubator (donkey anti-sheep Alexa 488 (Thermo Fisher

Scientific, RRID: AB_2534082); 1:400, donkey anti-human Alexa 594

(Jackson ImmunoResearch Laboratories, Inc., RRID: AB_2340572);

1:750, donkey anti-rabbit Alexa 647 (Jackson, RRID: AB_2340572);

1:400 and donkey anti-mouse Alexa 488 (Abcam, RRID:

AB_2732856)). Colonic tissues were mounted using fluorescence

mounting medium (DAKO Australia Private Ltd; Botany, NSW,

Australia). Tissue samples were imaged using a confocal

microscope (Nikon Confocal Microscope: A1; Version 4.10). A Z-

series of images of myenteric plexus sections (6.5 mm/step with total

tissue thickness approximately 60 mm) was captured for each animal

and saved in the ND2 file format.
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Analysis of nNOS neuron populations in
the myenteric plexus

Images of colonic tissue containing the myenteric plexus were

analysed using ImageJ (1.52a, NIH, Bethesda, MD, USA). Five

intact myenteric ganglia were randomly selected from each

wholemount colonic tissue sample (approximately 1 cm2) for

each animal. We then counted the number of Hu- and nNOS-

labelled cells from each ganglion. The nNOS neuronal population

was estimated as the percentage of nNOS cells in a ganglion co-

labelled with Hu.
Intestinal macrophage density
and morphology

Z-series images of wholemount tissue were analysed using the

Imaris software volume function to assess the cell density and

morphology of intestinal macrophages (Imaris 64X 9.1.0; Bitplane

AG, UK). Three proximal colon areas of 0.25 mm2 per tissue per

animal were selected as regions of interest (ROI). The presence of

macrophages in the muscle layer was established by visualising the

z-position of Iba-1-positive cells (macrophages) relative to that of

Hu-positive cells (neurons). Macrophages with a z-position outside

the location of the neurons were considered to be situated in the

muscle layer within the LMMP preparation. Sphericity and cell

density data were also recorded and analysed using GraphPad

Prism software (Boston, MA, USA; version 9.0.1).
RT-PCR

Proximal colons were snap-frozen and RNA extracted using

QIAzol reagents and RNeasy Mini Kits (Qiagen, Valencia, CA,

USA). RNA was then transcribed to cDNA using Quantitect

Reverse Transcription kits (Qiagen) and analyzed by qRT-PCR

with a QuantStudio 7 Flex instrument (Applied Biosystems,

Mulgrave, Vic, Australia) using Taqman Gene Expression Assays

(Applied Biosystems). We compared the relative quantitative

measure of Cx3cr1 expression (NCBI reference sequence:

NM_133534.1, Taqman assay ID: Rn02134446_s1) with the

housekeeping gene Gapdh (NCBI reference sequence:

NM_017008.3, Taqman assay ID: 4352338E) as an endogenous

control. We analysed mRNA expression using 2−DDC(t), where C(t)

is the threshold cycle at which fluorescence is first detected

significantly above background.
Ex vivo video imaging of colonic motility

The setup for rat colon has been described in our previous

publication (25). Briefly, the proximal to mid colon (5-7 cm

measured from the caecum end) was dissected from each animal.

Each colon preparation was placed into a beaker containing Krebs

solution (118 mM NaCl, 4.6 mM KCl, 2.5 mM CaCl2, 1.2 mM
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MgSO4, 1 mM NaH2PO4, 25 mM NaHCO3, 11 mM D-glucose in

mM; bubbled at RT with carbogen gas: 95% O2 and 5% CO2) at 4°C.

The colon preparation was then placed into an organ bath chamber,

which was connected to an in-flow reservoir containing Krebs

solution via inlet tubes and was continuously superfused with

Krebs solution bubbled with carbogen and maintained between

33-35°C. The oral end of the colon preparation was cannulated to

the inlet tube and secured using standard cotton sewing thread. The

faecal content was removed by applying gentle positive pressure

from the inflow reservoir. The anal end of colon was then

cannulated to the outlet tube. An intraluminal pressure was

created by using a rubber stopper with a glass tube (5 mm inside

diameter) inserted through its centre to seal onto the inflow

reservoir. Intraluminal pressure was calculated by measuring the

vertical distance from the tissue to the meniscus of Krebs solution

within the glass tube of inflow reservoir and maintained at constant

level throughout the experiment (i.e., the meniscus was 5.5-6.5 cm

above the height of the colon segment). Colonic motility was

recorded using a Logitech camera (QuickCam Pro 4000; I‐Tech,

Ultimo, NSW, Australia) mounted directly above the organ bath at

a standard distance of 10 cm. Each colon was given 30 min to

equilibrate before we recorded four 15 min videos of spontaneous

contractile activity under control conditions. Subsequently, 100 mM
Nw-nitro-L-arginine (NOLA) was added to the inflow reservoir, to

inhibit nitric oxide, and contractile activity was recorded for

another four x 15 min. After NOLA application, a final four x 15

min videos were recorded, considered as the washout period. These

final recordings enabled us to assess the restoration of the inhibitory

stimulus and to ensure the tissue remained viable for the duration of

the experiment.
Pair-feeding motility

Transient ablation of macrophages in the Cx3cr1-Dtr causes

anorexia-induced weight loss while the macrophages remain depleted

(17). Therefore, to verify that any changes in intestinal motility were

due to the absence of intestinal macrophages and not to any anorexia

or weight loss that accompanies it, we performed a pair-feeding

experiment (17). We fed a cohort of macrophage-intact rats the

mean voluntary consumption of the DT-treated Cx3cr1-Dtr rats to

induce a similar weight loss to that associated with the macrophage

ablation. Rats were then anaesthetized for tissue collection and

assessment of colonic motility as described above.
Statistical analysis

Statistical analyses were performed using GraphPad Prism

software (GraphPad; version 9.0.1). We assessed nNOS neuronal

populations, cell density and sphericity of intestinal macrophages,

RT-PCR, percentage changes of resting gut diameter, contraction

magnitude and contraction frequency before and after NOLA

treatment using Student’s unpaired t-tests. We assumed statistical

significance when p < 0.05. A repeated measures two-way analysis
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of variance (ANOVA) was used to compare the resting gut

diameter, contraction magnitude and contraction frequency of

macrophage-intact and Cx3cr1-Dtr rat colon under control

conditions and with NOLA treatment. Tukey post hoc tests were

used to identify where significant differences occurred in the case of

a significant interaction. Data are presented as mean with

maximum and minimum. Sample sizes are included in the

individual results sections.
Results

Macrophage ablation reduces
Iba-1-positive cell density in
the myenteric plexus

To verify that intestinal macrophages are depleted upon DT

injection in Cx3cr1-Dtr rats, we assessed numbers of Iba-1-positive

cells in the myenteric plexus. As expected, at 48 hr after DT injection

there was significant loss of intestinal macrophages in the myenteric

plexus (t(15) = 6.09, p < 0.0001, n = 7-10 animals per group; Figures 1A,

E, M). Resident intestinal macrophages are particularly important in

the bidirectional communication between the nervous and immune

systems (29, 30), so we also assessed the CD163-positive (resident)

subpopulation of macrophages. Notably, most intestinal macrophages

surrounding ganglia expressed CD163 (Figures 1C, D, blue arrows).

Similar to Iba-1-expressing cells, CD163-positive cells were ablated

upon DT injection (t(7) = 10.25, p < 0.0001, n = 4-5 animals per group;

Figures 1B, F–H, O). Iba-1-positive cells in the smooth muscle layers

were also significantly reduced after DT (t(6) = 3.85, p = 0.0085, n = 4

per group; Figure 1Q). Additionally, Cx3cr1 mRNA was drastically

reduced after DT injection to be almost undetectable (t(16) = 14.9, p <

0.0001, n = 9 per group; Figure 1R), verifying the efficacy of our model

in depleting its target cells. Colocalization analysis indicated that about

70% of Iba-1 positive macrophages in the rat colon also

expressed CD163.

As anticipated from our previous work in the brain (18), the

morphology of the macrophages remaining after depletion differed

from macrophages in intact rats, with both Iba-1-positive cells and

CD163-positive cells being significantly more spherical in the

Cx3cr1-Dtr rats than in those not given DT (Iba-1-positive cells: t

(15) = 3.60, p = 0.0026, n = 7-10 animals per group, Figures 1I, J, N;

CD163-positive cells: t(7) = 7.89, p < 0.0001, n = 7-10 animals per

group, Figures 1K, L, P).
Macrophage ablation decreases body
weight and shortens small intestine
and colon

After verifying the conditional knockout of intestinal

macrophages in Cx3cr1-Dtr rats, we investigated if the loss of

intestinal macrophages affected the overall anatomy of the

gastrointestinal tract. Consistent with previous findings from our

group (17), the body weights of Cx3cr1-Dtr rats were significantly
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reduced at 48 hr after DT injection (t(24) = 4.03, p = 0.0005, n = 11-

15 animals per group; Figure 2A). We also found that both small

intestine (t(31) = 3.32, p = 0.002, n = 13-20 animals per group;

Figure 2B) and colon length (t(44) = 3.09, p = 0.003, n = 18-28

animals per group; Figure 2C) were shortened by intestinal

macrophage ablation.
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Effects of macrophage depletion on
colonic motility

Next, we examined if the loss of intestinal macrophages in the

myenteric plexus had any impact on colonic motility.Wemeasured the

resting gut diameter, contraction magnitude and frequency of
FIGURE 1

Cx3cr1-cell ablation significantly reduced the density and increased the sphericity of Iba-1 cells and CD163 cells in the myenteric plexus of the
proximal colon. (A) Macrophage-intact proximal colon myenteric plexus ganglia immunolabelled with ionized calcium binding adaptor molecule 1
(Iba-1), (B) cluster of differentiation 163 (CD163) and (C) Hu. (D) Iba-1, CD163 and Hu merged. (E) Cx3cr1-Dtr rat proximal colon 48 hr after
diphtheria toxin (DT) immunolabelled with Iba-1, (F) CD163 and (G) Hu. (H) Iba-1, CD163 and Hu merged. (I) Imaris colour-gradient of sphericity of
Iba-1 cells in macrophage-intact proximal colon and (J) Cx3cr1-Dtr rat proximal colon. (K) Imaris colour-gradient of sphericity of CD163 cells in
macrophage-intact proximal colon and (L) Cx3cr1-Dtr rat proximal colon. (M) Numbers of Iba-1-expressing cells per 0.25 mm2. (N) Cx3cr1-cell
ablation leads to a significant increase in the sphericity of Iba-1-positive cells in the myenteric plexus of Cx3cr1-Dtr rats given DT compared to WT.
(O) Numbers of CD163-expressing cells per 0.25 mm2. (P) Cx3cr1-cell ablation leads to a significant increase in the sphericity of CD163-positive
cells in the myenteric plexus of Cx3cr1-Dtr rats given DT compared to those not given DT. (Q) Number of Iba-1-positive cells in the muscle layer per
0.25mm2. (R) Cx3cr1 gene expression in proximal colon of Cx3cr1-Dtr rats given DT compared to those not given DT. Data are mean with maximum
and minimum. ** p ≤ 0.01, **** p ≤ 0.0001, Scale bar = 100 mm for confocal images, 70 mm for Imaris colour-gradient images. Sphericity colour
gradient scale = 0.2-0.9; red indicates more spherical, blue indicates more elongated.
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contraction in the proximal colon as described previously (25). Our

results demonstrated that macrophage-ablated rats have a wider resting

colon diameter than macrophage-intact rats under control conditions

(i.e., without NOLA; main effect of genotype: F(1,15) = 7.16, p = 0.0017,

n = 8-9 animals per group, Figures 3A, B). The loss of intestinal

macrophages also led to a decrease in contraction magnitude (main

effect of genotype: F(1,15) = 45.0, p < 0.0001, n = 8-9 animals per group,

Figure 3C), suggesting the importance of intestinal macrophages in

colonic motility under control conditions. On the other hand,
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inhibiting nNOS (via NOLA treatment) stimulated smooth muscle

contraction and thus reduced resting gut diameter (main effect of

NOLA: F(1,15) = 4.85, p = 0.044, n = 8-9 animals per group, Figures 3A,

B), but caused a decrease in contraction magnitude (main effect of

NOLA: F(1,15) = 5.69, p = 0.031, n = 8-9 animals per group, Figure 3C).

As expected, inhibiting nNOS increased the frequency of contractions

in the proximal rat colon. However, we observed a significantly higher

increase in contraction frequency in macrophage-ablated rats

(interaction effect: F(1,16) = 7.84, p = 0.013, n = 8-9 animals per
B CA

FIGURE 2

Macrophage-ablated Cx3cr1-Dtr rats have reduced body weight, small intestinal and colon length. Depletion of microglia and monocytes leads to
significantly reduced (A) body weight, (B) small intestine length and (C) colon length in Cx3cr1-Dtr rats 48 hr after diphtheria toxin (DT) injection,
relative to macrophage-intact rats. Data are mean with maximum and minimum. ** p ≤ 0.01 and *** p ≤ 0.001.
B C D

A

FIGURE 3

Intestinal macrophages regulate, but are not necessary for, colonic motility. (A) Representative spatiotemporal heatmaps of macrophage-intact (WT)
and Cx3Cr1-Dtr rats under control conditions and with Nw-nitro-L-arginine (NOLA) treatment. (B) Resting gut diameter of control and macrophage-
ablated rats. (C) Contraction magnitude of control and Cx3Cr1-Dtr rats. (D) Contraction frequency per 15 min in the proximal colon of control and
macrophage-ablated rats. # two-way ANOVA with main effect of genotype, $ main effect of NOLA treatment, ** Tukey post-hoc test p < 0.01, *** p
< 0.001, **** p < 0.0001.
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group, NOLA effect on macrophage-intact rat colon: p = 0.0008,

NOLA effect on Cx3cr1-Dtr rat colon: p < 0.0001, Figure 3D). The

increase in contraction frequency upon inhibition of nNOS indicates

that intestinal macrophages can regulate colonicmotility withoutmajor

inhibitory neuronal input.
Effect of pair-feeding on colonic motility

It has been reported that acute fasting or restricted energy

intake may have a direct or indirect effect on gastrointestinal

motility through satiety hormones (31–33). In our Cx3cr1-Dtr

rats, we have consistently reported a decrease in body weight

(Figure 2A) as well as food intake (17) upon DT injection.

Therefore, we performed a pair-feeding experiment to verify if

the changes we saw in intestinal structure and colonic motility were

macrophage-related or were instead due to a decrease in food

intake. As expected, the pair-fed macrophage-intact rats had a

significant decrease in body weight when compared to controls (t

(14) = 2.90, p = 0.01, n = 8 animals per group, Figure 4A). Compared

with previous weight changes from Cx3cr1-Dtr rats 48 after DT

injection (dotted line, Figure 4A), indicating weight loss after DT

injection was largely due to reduced food intake. Interestingly, there

were no differences in the length of the small intestine or colon

between pair-fed rats and ad libitum-fed, macrophage-intact,

controls (Figures 4B, C). In terms of resting gut diameter,
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contraction magnitude and contraction frequency, we also did not

observe any significant differences between pair-fed and ad libitum-

fed, macrophage-intact, control rats (Figures 4D–F), together

indicating a macrophage-specific effect on colonic motility rather

than one related to food intake or changes in digestion.
Macrophage ablation does not affect
neuron numbers in the myenteric plexus

Neurons in the myenteric plexus are mainly responsible for

regulating colonic motility (3, 15). Based on our findings that the

loss of intestinal macrophages led to an increase in colonic motility in

the absence of the major inhibitory neuronal input (i.e. with NOLA),

we assessed whether the size or proportion of the population of

nNOS-expressing neurons in the myenteric plexus was changed in

response to the loss of macrophages. The number of myenteric

neurons per ganglion remained unchanged upon macrophage

ablation (Figures 5B, E, M), consistent with the findings from De

Schepper et al., who showed, in an embryonic macrophage-depletion

model that apoptosis of neurons caused by the loss of intestinal

macrophages does not take place in mice until day 7 (30). There was

also no significant change in the number of neurons expressing

nNOS per ganglion in the myenteric plexus (Figures 5A, C, F, N).

Proportions of acetylcholinergic (ChAT)-expressing neurons within

the myenteric plexus were also unaffected (Figures 5G–L, O).
B C

D E F

A

FIGURE 4

Food restriction does not affect colonic motility. (A) Body weight changes between ad libitum-fed rats (AL) and macrophage-intact (WT) rats pair-fed
(PF) to that consumed by the diphtheria toxin (DT)-injected Cx3cr1-Dtr rats (PF), dotted line indicated the body weight changes of Cx3cr1-Dtr rats
48 hrs after DT injection. (B) Colon length of AL and PF rats. (C) Small intestine length of AL and PF rats. (D) Resting gut diameter of AL and PF rats
under control conditions and with NOLA treatment. (E) Contraction magnitude of AL and PF rats under control conditions and with NOLA treatment.
(F) Contraction frequency in 15 min of AL and PF rats under control conditions and with NOLA treatment. $ two-way ANOVA with main effect of
NOLA treatment. * p < 0.05.
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Iba-1- but not CD163-positive
macrophages repopulate 7 days
after DT injection

We next investigated whether intestinal macrophages repopulate

after depletion, and if this could rescue some of the effects on colonic

motility. We previously reported that microglia are repopulating the

brain by 7 days after DT injection in the Cx3cr1-Dtr model (17). In
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accordance with this, we observed that Iba-1 expressing cells had

repopulated the proximal colon at this time (Figures 6A, C–E, G, H,

M). Although similar numbers of Iba-1-expressing cells were present in

the colon 7 days following DT injection, the morphology of these cells

remained more rounded in Cx3cr1-Dtr rats, similar to that of 48 hr

after ablation (t(20) = 2.35, p = 0.029, n = 11 animals per group;

Figures 6I, J, N). We also used CD163 as a marker to assess tissue-

resident macrophage repopulation. Interestingly, CD163-positive
FIGURE 5

Cx3cr1 ablation does not affect the number of neurons in the myenteric plexus of the rat proximal colon. (A–C) control proximal colon myenteric
plexus ganglia immunolabelled with (A) neuronal nitric oxide synthase (nNOS), (B) Hu and (C) nNOS and Hu merged. (D–F) Cx3cr1-Dtr rat proximal
colon myenteric plexus ganglia immunolabelled with (D) nNOS, (E) the pan-neuronal marker, Hu, (F) nNOS and Hu merged. (G–I) control proximal
colon myenteric plexus ganglia immunolabelled with (G) choline acetyltransferase (ChAT), (H) Hu and (I) ChAT and Hu merged. (J–L) Cx3cr1-Dtr rat
proximal colon myenteric plexus ganglia immunolabelled with (J) ChAT, (K) Hu, (L) ChAT and Hu merged. (M) Macrophage ablation does not affect
the number of neurons (Hu-labelled cells) per ganglion, (N) the number of nNOS or (O) ChAT neurons per ganglion. Data are displayed as mean
with maximum and minimum values. Scale bars = 100 mm.
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macrophages remained depleted at this 7-day time point (t(8) = 6.94, p

= 0.0001, n = 11 animals per group; Figures 6B–D, F–H, O) without a

change in sphericity (Figures 6K, L, P).
Macrophage repopulation recovers colon
and small intestine length

After confirming that Iba-1-positive macrophages repopulate 7

days after depletion as expected, we next investigated if the

gastrointestinal anatomical phenotypes we observed were also

reversed at this timepoint. There remained a persistent reduction

in body weight in macrophage-ablated rats (F(5,5) = 1.02, p = 0.005,

n = 9-10 animals per group; Figure 7A). However, the difference in
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colon length was no longer evident (F(5,5) = 1.04, p = 0.28, n = 6

animals per group; Figure 7C) and the small intestine length was

significantly longer in the Cx3cr1-Dtr rats 7 days after DT injection

than in controls (F(5,5) = 1.08, p = 0.027, n = 6 animals per group;

Figure 7B). Thus, the repopulation of Iba-1-positive intestinal

macrophages was sufficient to rescue the shortened small intestine

and colon associated with macrophage loss.
Macrophage repopulation effects on
colonic motility

As we observed that the shortened colon and small intestinal

phenotypes were rescued upon the repopulation of Iba-1-positive-
FIGURE 6

Iba-1- but not CD163-positive macrophages repopulate 7 days after DT injection. Proximal colon myenteric plexus was immunolabelled with (A, E)
Ionized calcium-binding adaptor molecule 1 (Iba-1), (B, F) cluster of differentiation 163 (CD163) and (C, G) Hu. (D, H) Iba-1, CD163 and Hu (merged).
(A–D) Controls. (E–H) Diphtheria toxin (DT)-injected Cx3cr1-Dtr. (I–L) Imaris colour-gradient of the sphericity of (I, J) Iba-1 and (K, L) CD163 cells in
the (I, K) control and (J, L) DT-injected Cx3cr1-Dtr rat proximal colon. (M) Macrophage ablation did not affect the number of Iba-1-positive cells per
0.25 mm2. (N) Sphericity of Iba-1 positive cells remained higher in Cx3cr1-Dtr rats than in controls 7 days after macrophage ablation. (O) CD163-
positive cell numbers remained reduced at 7 days after macrophage ablation in Cx3cr1-Dtr rats compared with controls and (P) sphericity was
unchanged. Data are mean with maximum and minimum, * p ≤ 0.05, *** p ≤ 0.001. Scale bars = 100 mm. 70 mm for Imaris colour-gradient images.
Cellular sphericity colour gradient scale = 0.2-0.9; red indicates more spherical, blue indicates a more elongated cellular morphology.
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only intestinal macrophages, we examined if the exacerbation of the

NOLA-induced changes in resting gut diameter and contraction

frequency caused by macrophage ablation were similarly restored.

There was no significant difference, however, in resting gut diameter

and contraction magnitude between the control and macrophage

repopulating colon (Figures 8A–C), as opposed to that seen in

macrophage-depleted colons. As expected, NOLA treatment led to a
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decrease in resting gut diameter (main effect of NOLA treatment: F

(1,14) = 6.49, p = 0.023, n = 8 animals per group; Figure 8B) and

colonic contraction magnitude (main effect of NOLA treatment: F

(1,14) = 68.6, p < 0.0001, n = 8 animals per group; Figure 8C).

Interestingly, the greater increase in contraction frequency upon

NOLA treatment we observed in macrophage-ablated rats at 48 hr

was also noted at 7 days, despite the repopulation of Iba-1-positive
B CA

FIGURE 7

Macrophage repopulation leads to increased small intestine length and recovered colon length at 7 days after macrophage loss. (A) DT-injected
Cx3cr1-Dtr rats maintained reduced body weight 7 days after macrophage ablation. (B) Cx3cr1-Dtr rats had significantly longer small intestines than
controls 7 days after macrophage ablation. (C) There was no significant difference in colon length between controls and Cx3cr1-Dtr rats 7 days after
macrophage ablation. Data are depicted as mean with maximum and minimum values. p ≤ 0.05. * p ≤ 0.05 and ** p ≤ 0.01.
B C D

A

FIGURE 8

Iba-1-positive macrophage repopulation does not rescue motility dysregulation in the absence of inhibitory neuronal input. (A) Representative
spatiotemporal heatmaps of control (WT) and Cx3Cr1-Dtr rats under control conditions and with Nw-nitro-L-arginine (NOLA) treatment. (B) Resting
gut diameter of control and macrophage-repopulating rats. (C) Contraction magnitude of control and Cx3Cr1-Dtr rats. (D) Contraction frequency
per 15 min in the proximal colon of control and macrophage-repopulating rats. # two-way ANOVA with main effect of genotype, $ main effect of
NOLA treatment, ** Tukey post-hoc test p < 0.01, **** p < 0.0001.
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macrophages (interaction effect: F(1,13) = 7.72, p = 0.016, n = 8

animals per group, post hoc NOLA effect on macrophage-intact rat

colon: p < 0.0001, post hocNOLA effect on Cx3cr1-Dtr rat colon: p <

0.0001, n = 8 animals per group; Figure 8D). This finding suggests

that Iba-1 positive macrophage repopulation was not sufficient to

rescue the dysregulation of motility that occurs without inhibitory

neuronal input.
Discussion

Here we show that intestinal macrophages act to restrict

intestinal motility. We also identify that this restriction of

motility occurs in close interplay with neuronal inputs to the

myenteric plexus. Thus, in the absence of intestinal macrophages,

colonic motility was normal except when the major inhibitory

neuronal input was blocked. In the absence of both this neuronal

input and macrophages, colonic contractility was significantly

greater than normal. Our findings suggest that this effect is

maintained by CD163-positive intestinal-resident macrophages,

since the restoration of the non-CD163 population failed to

restore this response.

We established here that the Cx3cr1-Dtr rat model provides

conditional ablation of intestinal macrophages upon DT injection,

as for microglia and circulating monocytes in the brain as

previously demonstrated (18). The repopulation of intestinal

macrophages occurred by 7 days post-DT injection, in line with

our previous observations for microglia in brain (18). Although we

did not assess additional cell types in this study, our previous work

in the ovary has shown that non-immune cell numbers are not

affected (34). This rat model is therefore suitable for studying the

role of intestinal macrophages in gastrointestinal function. Using

this tool, we provide novel evidence that intestinal macrophages are

essential in maintaining intestinal structure and that they can also

regulate colonic motility in conjunction with the ENS.

This rat model has previously been characterized as a

conditional microglia- and circulating monocyte- depletion model

and it is striking to observe that the duration of the depletion of

intestinal macrophages is very similar to that of microglia, as is the

repopulation time frame (17). Cx3cr1, a microglia-associated

chemokine, is highly expressed in fully differentiated and mature

macrophages in the intestine (35). Notably, most intestinal

macrophages in the colon appear to express Cx3cr1 (36). Bain

and colleagues characterized colonic cells into those with high

expression (CX3CR1high), those with intermediate expression

(CX3CR1int) and those without expression of CX3CR1 (CX3CR1-

). CX3CR1high cells uniformly express F4/80 and major

histocompatibility complex (MHC)II, as well as CD64, a marker

that distinguishes macrophages from dendritic cells. The

CX3CR1int cells represent a small population of cells that are

actively migrating from blood vessels as monocytes before

differentiating into mature macrophages. Cells lacking Cx3cr1

expression do not express the relevant macrophage markers

outlined above (36), meaning Cx3cr1 is a useful marker for

intestinal macrophages and a useful target for depleting this

population (17, 37–39). The similarity of microglia and intestinal
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macrophages extends beyond Cx3cr1 expression, as studies have

identified a set of microglia-specific genes and transcription factors

that are more highly similar to those of intestinal macrophages than

to other macrophage subsets (35, 40). Unlike intestinal

macrophages, microglia have been extensively studied for their

roles in neuroinflammation and in interactions with other

elements of the central nervous system (41). Therefore, the

similarities of these two cell types in brain and gut may give us

insights into how intestinal macrophages orchestrate

gastrointestinal functions in health and disease.

Due to the heterogeneity of immune cells such as dendritic cells,

T-cells, and macrophages in the intestine, it is challenging to

identify and study intestinal macrophages in isolation. Thus, the

ontogeny of intestinal macrophages is of great interest. There is a

consensus that intestinal macrophages are continuously replenished

by blood monocytes through a series of differentiation events (36,

42). However, recent studies have identified a subset of intestinal

macrophages that maintain their own population, named tissue-

resident macrophages (30). These self-maintaining macrophages

are critical in neuroimmune interactions as they are mainly

localised in the submucosal and myenteric plexuses in close

proximity to enteric neurons, which in turn regulate intestinal

secretion and motility (29). One of the main characteristics of

these tissue resident macrophages is the expression of CD163 (30,

43). In general, Iba-1 stains for a broad subset of intestinal

macrophages, including recently invaded blood monocytes as well

as tissue-resident macrophages (44–46). Our data from the

myenteric plexus show that most Iba-1-expressing macrophages

also express CD163. This finding aligns with previous work

showing that macrophages residing in the muscularis layer are

predominantly tissue-resident macrophages (30, 47). A striking

finding from our study was that 7 days after DT injection, most

repopulating macrophages expressed Iba-1 but not CD163. There is

controversy in the literature as to how macrophages are replenished

in different tissues in depletion models and during natural turnover.

In a lung-resident macrophage ablation Cd169-Dtr mouse model,

tissue resident macrophages did not repopulate through CCR-2-

dependent cells like monocytes, but replenish themselves locally

(48). However, in another study evaluating the origin of peritoneal

macrophages, Bain et al., proposed that homeostasis of resident

peritoneal macrophages is achieved through a combination of self-

renewal and monocyte-derived replenishment (49). In our case, we

speculate that the rate of monocyte replenishment at the muscularis

layer of the colon is faster than the self-renewal of tissue resident

macrophages. There is also the possibility that a specific subset of

tissue resident macrophages is responsible for macrophage

replenishment, as it has been reported that Tim-4+ CD4+

macrophages in the intestine are capable of self-renewing (47).

Further verification on whether this subtype also expresses CD163

would provide a better understanding of how intestinal

macrophages maintain their population. Notably, previous studies

on Kupffer cells (liver-resident macrophages) showed that once

these cells are depleted in a conditional knockout model, monocytes

quickly replenish and repopulate the liver but these repopulating

monocytes take at least 15 days to fully express the Kupffer cells

transcriptomic profile (50, 51). It is suggested that monocyte
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replenishment occurs in two phases, firstly via a quick

replenishment phase, and secondly via a slower reprogramming/

differentiation stage. We suspect similar mechanisms could also

explain our observation that we did not see CD163 macrophages

repopulate by 7 days after ablation. Thus, it would be interesting to

undertake further immune cell analysis at later timepoints following

ablation to identify if CD163-expressing macrophages repopulate

and if intestinal motility function is restored as this occurs.

Macrophage sphericity often correlates with cellular activation

state (52, 53). Previous studies have demonstrated that activated

macrophages, which exhibit an inflammatory phenotype, have

higher sphericity (52). In addition to the loss of intestinal

macrophages upon DT injection, our cell analysis showed that the

remaining macrophages in DT-injected rats had higher sphericity

than in controls. One explanation for this observation is that DT

injection predominantly ablated macrophages exhibiting lower

sphericity, leaving more rounded macrophages behind. When

macrophages are in a pro-inflammatory state, their Cx3cr1

expression decreases, meaning that there could be some pro-

inflammatory macrophages originally present in the myenteric

plexus with lower levels of Cx3cr1 (16). If this was the case, DT

may be less effective at removing these pro-inflammatory

macrophages leading to the observation of an increase in

sphericity. Our model resulted in ablation of approximately 80%

of macrophages, however, and about 40% of macrophages in the

control groups had similar sphericity to those remaining after

ablation. Therefore, a loss of Cx3cr1 expression and therefore a

retention of pro-inflammatory macrophages is unlikely to account

for the morphological cell differences we see. Another explanation

for the observed higher sphericity of remaining intestinal

macrophages could be that in response to the initial depletion of

macrophages, the remaining macrophages may become pro-

inflammatory and act to release cytokines to attract other

immune cells to restore homeostasis.

Interestingly, the ablation of intestinal macrophages led to

shortening of the small intestine and colon. Such gross

anatomical changes are hallmarks of major intestinal disturbances

such as colitis (54). However, we did not observe other features

from animal models of colitis such as rectal bleeding or an increase

in circulating pro-inflammatory cytokines (17). Originally, we

suspected that the shortened colon length was due to a reduction

in fecal pellet formation in the lumen, leaving the colons less flexible

than those with more pellets. However, we did not see any

difference in number of pellets inside the colon of rats with

ablated macrophages compared to controls (t(31) = 1.82, p

=0.0781, n = 13 for WT and 20 for HOM/DT; graph not shown),

although we did not analyze the size of the pellets, which may also

influence the flexibility of the colon. It is also worth noting that

macrophages have a protective role in preventing muscle atrophy as

well as promoting muscle recovery, suggesting an important

interaction between macrophages and skeletal muscle cells (55).

The protective role of macrophages could also explain our

observation that shortening of the small intestine and colon was

rescued upon repopulation of intestinal macrophages. Further

histological examination of structures in the gastrointestinal tract
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such as the mucus lining and muscle thickness in the absence of

intestinal macrophages will be important considerations in

the future.

Our findings reveal that intestinal macrophages are not crucial

for colonic motility under control conditions whereby contraction

frequency was not affected by the absence of these cells. While

several studies have demonstrated that intestinal macrophages

influence gastrointestinal dysmotility in disorders such as

inflammatory bowel disease and post-operative ileus (56–58), to

our knowledge only two studies have demonstrated an impact on

colonic motility under control (homeostatic) conditions (6, 30). In

the study by Muller et al., ex vivo colonic motility was measured as

contraction force generated by a 3 mm colonic ring, followed by a

stretch stimulus in adult mice (6). De Schepper et al. measured

gastrointestinal motility via ileal muscle strip contractility,

gastrointestinal transit and gastric emptying (30). In addition to

differences in mechanical measurements, these studies investigated

the effects of depleting macrophages at the embryonic phase, not

acutely in adulthood as in our work (6, 30).

Another important finding from the present study is that

intestinal macrophages are crucial in regulating colonic motility

when NOS is inhibited. Blockade of nNOS depletes the major

inhibitory signal in the ENS so that smooth muscles are excited at

a higher frequency (59). Under these circumstances, intestinal

macrophages may act to regulate and even prevent hyper-

contraction of the colon. In our study, we observed that

macrophage-ablated colons had a much higher increase in

contraction frequency upon NOLA treatment when compared to

controls. This indicates that intestinal macrophages have an

additional inhibitory role in modulating gastrointestinal

physiology and reveals their importance specifically in regulating

colonic motility. Since the CD163-positive resident intestinal

macrophages did not repopulate at the 7-day post DT injection

timepoint, we suspect that this subtype of resident intestinal

macrophage is crucial in inhibiting colonic motility in addition to

the inhibitory neuronal input from the ENS, supporting previous

reports that self-maintaining resident macrophages are essential for

gastrointestinal transit (30). Although we did not observe changes

in neuronal numbers or proportions of nNOS neurons within the

myenteric plexus, macrophage depletion could lead to apoptosis of

neurons that would not be reflected in Hu/NOS immunostaining

alone (60). Notably, our findings suggest that intestinal

macrophages can influence contraction frequency but do not

affect contraction magnitude. In general, both parameters involve

neural-muscular transmission from the myenteric plexus to smooth

muscle, under the control of interstitial cells of Cajal (61). The

contraction magnitude is chiefly the outcome of the excitation and

relaxation of longitudinal muscle and circular muscle, while

contraction frequency is mainly determined by the neural input

in response to physical tension (14). Therefore, our results imply

that intestinal macrophages can directly interact with enteric

neurons to exert an inhibitory effect on contraction frequency

even when inhibitory neural input is significantly reduced. In

terms of a mechanism for this, it has previously been reported

that intestinal macrophages can interact with smooth muscle layers
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via the transient receptor potential cation channel subfamily V

member 4 (TRPV4)- prostaglandin E2 (PGE-2) axis, the IL-17A-

iNOS axis or CSF-1/BMP-2 crosstalk with neurons (3). Purinergic

neurotransmission may also play a role in the inhibitory regulation

of gut motility (62, 63). P2X receptors are expressed in the

submucosal plexus, myenteric plexus, as well as the smooth

muscle layers (64). In particular, P2X2R receptors localized in

intermuscular neurons are involved in the regulation of smooth

muscle contraction (65). Therefore, it would be of interest to assess

how CD163-expressing macrophages regulate colonic motility

through potential downstream effects on these pathways.

In conclusion, this is the first study examining the role of

intestinal macrophages in a conditional macrophage ablation rat

model and the first such study to utilize ex vivo video imaging

techniques to assess colonic motility in these rats. Our findings

highlight the importance of intestinal macrophages in maintaining

gastrointestinal structure and illustrate that tissue resident

macrophages are likely to regulate colonic motility in the absence

of inhibitory neuronal input. Gastrointestinal disorders where

inhibitory neuronal input is suppressed, such as gastroparesis and

achalasia, are often caused by bacterial or viral infection with

involvement of macrophages (66, 67). Our evidence implicating a

role for intestinal macrophages gives insight into how

pathophysiology may manifest in these conditions. Future

directions should focus on dissecting the precise mechanism of

how intestinal macrophages regulate colonic motility and

differentiating the subtypes of intestinal macrophages involved in

supporting normal intestinal structure. A better understanding of

the role of intestinal macrophages will provide macrophage-specific

therapeutic targets for various gastrointestinal disorders.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal study was approved by RMIT University Animal

Ethics Committee (AEC #1920). The study was conducted in

accordance with the local legislation and institutional requirements.
Frontiers in Immunology 14123
Author contributions

JY: Data curation, Formal analysis, Investigation, Methodology,

Validation, Visualization, Writing - original draft. GB: Methodology,

Supervision. SX: Investigation. EH-Y: Conceptualization, Funding

acquisition, Supervision, Resources, Writing - review & editing. SS:

Conceptualization, Funding acquisition, Supervision, Resources,

Writing - review & editing.
Funding

The authors declare financial support was received for the

research, authorship, and/or publication of this article. This

project was supported by funding from a National Health and

Medical Research Council Career Development Fellowship II

(APP1128646), a European Union (EU) Joint Program on

Neurodegenerative Disease (JPND) Grant: (SOLID JPND2021-

650-233), a National Health and Medical Research Council

(NHMRC) Ideas Grant (2019196) and an Australian Research

Council Discovery Project (ARC; DP230101331) to SS; an

NHMRC Ideas Grant to EH-Y. an Australian Government

Research Training Program Scholarship to JLKY; and a Japanese

Society for Promotion of Science Fellowship to GKB.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Bain CC, Schridde A. Origin, differentiation, and function of intestinal
macrophages. Front Immunol (2018) 9(2733). doi: 10.3389/fimmu.2018.02733

2. Cipriani G, Gibbons SJ, Kashyap PC, Farrugia G. Intrinsic gastrointestinal
macrophages: their phenotype and role in gastrointestinal motility. Cell Mol
Gastroenterol Hepatol (2016) 2(2):120–30.e1. doi: 10.1016/j.jcmgh.2016.01.003

3. Yip JLK, Balasuriya GK, Spencer SJ, Hill-Yardin EL. The role of intestinal macrophages
in gastrointestinal homeostasis: heterogeneity and implications in disease. Cell Mol
Gastroenterol Hepatol (2021) 12(5):1701–18. doi: 10.1016/j.jcmgh.2021.08.021

4. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity
and infectious diseases. Front Immunol (2014) 5(491). doi: 10.3389/fimmu.2014.00491
5. Krause P, Morris V, Greenbaum JA, Park Y, Bjoerheden U, Mikulski Z, et al.
IL-10-producing intestinal macrophages prevent excessive antibacterial innate
immunity by limiting IL-23 synthesis. Nat Commun (2015) 6(1):7055. doi:
10.1038/ncomms8055
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This bibliometric study aimed to summarize and visualize the current research

status, emerging trends, and research hotspots of regulatory T (Treg) cells in

neurological diseases. Relevant documents were retrieved from the Web of

Science Core Collection. Tableau Public, VOSviewer, and CiteSpace software

were used to perform bibliometric analysis and network visualization. A total

of 2,739 documents were included, and research on Treg cells in neurological

diseases is still in a prolific period. The documents included in the research were

sourced from 85 countries/regions, with the majority of them originating from

the United States, and 2,811 organizations, with a significant proportion of them

coming fromHarvard Medical School. Howard E Gendelman was themost prolific

author in this research area. Considering the number of documents and citations,

impact factors, and JCR partitions, Frontiers in Immunology was the most

popular journal in this research area. Keywords “multiple sclerosis,” “inflammation,”

“regulatory T cells,” “neuroinflammation,” “autoimmunity,” “cytokines,” and

“immunomodulation” were identified as high-frequency keywords. Additionally,

“gut microbiota” has recently emerged as a new topic of interest. The study of Treg

cells in neurological diseases continues to be a hot topic. Immunomodulation, gut

microbiota, and cytokines represent the current research hotspots and frontiers in

this field. Treg cell-based immunomodulatory approaches have shown immense

potential in the treatment of neurological diseases. Modifying gut microbiota or

regulating cytokines to boost the numbers and functions of Treg cells represents

a promising therapeutic strategy for neurological diseases.

KEYWORDS

bibliometric analysis, regulatory T cells, neurological diseases, immunomodulation, gut

microbiota, cytokines

Introduction

The nervous system serves as the body’s command center, and interruptions or

impairments of its function can induce neurological diseases, including stroke, spinal

cord injury, traumatic brain injury, multiple sclerosis (MS), Alzheimer’s disease (AD),

and Parkinson’s disease (PD) (1). Unfortunately, neurological diseases remain highly

prevalent, with a scarcity of effective therapeutic strategies (2, 3). As a result, these disorders

pose a considerable socioeconomic burden to society, underscoring the urgent need for

continued research and development of effective therapies in the field of neurology. While

inflammation may not be the direct cause of neurological diseases, accumulating evidence

suggests its involvement in their pathogenesis once these diseases have manifested. A
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recent research study indicates that disordered innate and

adaptive immune responses play a crucial role in the pathological

processes of neurological diseases, potentially resulting in

autoimmunity, tissue and cellular damage, and subsequent

neurological degeneration (4). By addressing the underlying

pathological processes that contribute to neurological disease, it

is possible to improve the neurological symptoms of individuals

affected by these conditions. Therefore, developing effective

therapeutic strategies to manage immune-mediated inflammation

is crucial in preventing or delaying the onset and progression of

neurological diseases.

Regulatory T (Treg) cells are a minor subpopulation of CD4+

T cells defined by constitutive expression of IL-2 receptor alpha

(CD25) and forkhead box p3 (Foxp3) (5). In 1995, Sakaguchi et al.

formally identified Treg cells as a distinct subset of T cells with

the CD4+CD25+ marker (6). This landmark study elucidated the

ability of Treg cells to suppress allogeneic responses and revealed

that the depletion of Treg cells could lead to enhanced immune

responses and the spontaneous development of autoimmune

diseases. Treg cells maintain immune homeostasis by suppressing

adaptive immune responses and modulating innate immune

responses (7). In addition to promoting self-tolerance, Treg cells

also mitigate inflammatory conditions to prevent excessive damage

to individual tissues.

Early findings suggested that Treg cells could modulate

neuroinflammation and attenuate disease progression (6, 8).

However, due to the complexity of the immune system and the

heterogeneity of neurological diseases, there were discrepancies

and conflicting results among individual studies. For example, a

study reported that Treg cells, while often beneficial, could act as a

double-edged sword in central nervous system injury, attenuating

both protective and inflammatory post-injury immune responses

and thus either exacerbating or ameliorating neuronal degeneration

(9). Several studies identified that Treg cells acted as a negative

player in neurological diseases (10, 11). However, numerous

studies found that Treg cells play a beneficial role in neurological

diseases, and this viewpoint occupies an important position (12–

15). In 1996, a study first reported that the oral administration of

antigen induces oral tolerance in animal models of experimental

autoimmune disease mainly through the induction of Treg cells

that actively suppress immune responses by secreting the TGF-

β1 cytokine (8). The findings of another study on experimental

autoimmune encephalomyelitis indicated that Treg cells play a

facilitative role in the remyelination process and exert suppressive

effects on neuroinflammatory responses during the chronic stages

of MS (12). The expansion of Treg cells has been shown to

effectively suppress immune responses and mitigate dopaminergic

neurodegeneration in A53T-α-synuclein PD mice (14). Numerous

studies have indicated that Treg cells play a beneficial role

in delaying the onset and progression of neurological diseases,

while dysfunction in Treg cells may lead to the development of

autoimmune disease and the progression of neuroinflammation

(15). In short, promoting the production and activity of Treg cells

represents promising therapeutic strategies for managing immune-

mediated inflammation in neurological diseases. Therefore, it is

extremely important to understand the current research status and

development trends concerning Treg cells in neurological diseases.

Gaining such knowledge can help to further explore immunologic

mechanisms and therapeutic strategies of neurological diseases and

address relevant clinical problems.

Bibliometric analysis can analyze and visualize scientific

outputs, research hotspots, and trending topics of a certain field

in public literature databases (16). Bibliometric tools, including

VOSviewer and CiteSpace, are commonly applied to visualize

results of document analysis, which have been widely used in

medical fields (17–20). VOSviewer, a free Java-based software, can

be used to analyze a large number of document data in an easy-

to-interpret way and display it in the form of a map (17). By

using CiteSpace, a Java-based software, research results in a certain

field can be visualized to help researchers and experts understand

the knowledge domain, research frontiers, and development trends

(21). Although bibliometric studies on neurological diseases have

been conducted, there has yet to be a bibliometric analysis of

Treg cells in neurological diseases (22, 23). This study aimed to

bridge this knowledge gap by conducting a bibliometric analysis of

documents on Treg cells in neurological diseases. Specifically, this

analysis identified major contributors and current research status

and evaluated future development prospects and research trends in

this field.

Methods

Data sources and search strategy

All data were downloaded from the Web of Science Core

Collection online database, and the search strategy was as follows:

TS= (“regulatory T cell∗” OR “regulatory T-cell∗” OR “Treg∗” OR

“T-reg∗”) AND TS = (“neuro∗”) (23). Subsequently, we limited

the document types to articles and review articles, and selected

documents written in English. Finally, relevant data were exported

in a plain text file with full records and cited references.

Bibliometric analysis

We analyzed relevant data in the following aspects: the

annual number of documents, countries/regions, organizations,

authors, journals, keywords, and references. Online platform

(http://www.bioinformatics.com.cn) was used to plot the annual

document output. Software Tableau Public was applied to draw

the geographic distribution of documents. VOSviewer v.1.6.1

and CiteSpace v.6.1.R6 were applied to perform the bibliometric

analysis and network visualization, including co-authorship

analysis of countries/regions, organizations and authors, co-

occurrence analysis of keywords, citation analysis of journals and

documents, and co-citation analysis of references.

Results

The trend of document outputs

A total of 2,739 documents, including 1,737 articles and 1,002

review articles, were collected from the Web of Science Core
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FIGURE 1

Flowchart of the document-screening process and research framework.

Collection on 2 August 2023. The research selection process and

research framework are shown in Figure 1. As shown in Figure 2,

the research trend can be divided into three stages. During the first

stage, spanning from 1991 to 2003 and comprising 20 documents,

the output of published research on Treg cells in neurological

diseases gradually increased from 1 to 6. This suggests that the field

was still in a nascent period, with relatively few studies conducted

on the topic at the time. The second stage was from 2004 to

2019, during which the annual output climbed rapidly with a slight

fluctuation in 2011. Starting from 2020, the third stage has been a

volatile but prolific period in which the annual output of research

on Treg cells in neurological diseases has consistently exceeded
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FIGURE 2

Trends of annual documents related to Treg cells in neurological diseases.

210 documents despite fluctuations. Only 7 months of documents

were counted in 2023, but the overall trend in published research

was stable. It suggested that the role of Treg cells in neurological

diseases has attracted extensive attention worldwide since 2004 and

remains a continuing hotspot.

Countries/regions

A total of 85 countries/regions dabbled in the role of Treg

cells in neurological diseases (Figure 3A). The United States,

China, and Germany were the top three countries/regions with

the most documents on Treg cells in neurological diseases

(Table 1). The United States not only had the largest number

of documents and citations but also had the highest total

link strength and centrality, making it a leading contributor

to research on Treg cells in neurological diseases. The annual

output of the top 10 countries/regions is shown in Figure 3B. The

United States posted a significantly higher annual output than

any other country/region until 2021, after which the United States

decreased, while China overtook other countries/regions to

rank first. In addition, the United States was the earliest

country to focus on this research area, while China did not

begin to bloom until 2015. The United States, Germany,

France, and England had the highest centrality, indicating

that they had a strong bridge role in this field (Figure 3C).

Some of the documents were completed in cooperation with

multiple countries/regions. The United States had collaborated

with 57 countries/regions, and Germany had collaborated with

48 countries/regions.

Organizations

A total of 2,739 documents were published by 2,811 different

organizations, and 61 met the threshold (minimum number of

documents of an organization: 15). After excluding disjointed

organizations, the remaining 59 organizations were visualized

(Figure 4A). The top 10 organizations with the most documents

are listed in Table 2, and 7 of the top 10 organizations were

affiliated with the United States. Harvard Medical School ranked

first in terms of the number of documents and citations, total

link strength, and centrality, indicating that it was the most

prolific organization and had the most cooperation with other

organizations. In addition, the University of California system,

including the University of California San Francisco (UCSF)

and the University of California Los Angeles (UCLA), was

another important organization in this research area. As shown

in Figure 4B, Harvard Medical School, University of Pittsburgh,

and Fudan University (nodes with yellow color) were the most

recent organizations to publish more documents. The top three

organizations with the strongest citation bursts were Consejo

Superior de Investigaciones Cientificas (CSIC) from 2006 to 2013,

Harvard University from 2000 to 2009, and Weizmann Institute of

Science from 2001 to 2005 (Figure 4C). The citation bursts in many

organizations have continued until 2023, suggesting that Treg cells
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FIGURE 3

Co-authorship analysis of countries/regions. (A) Geographic distribution of documents. The darker the color, the more documents in this

country/region. (B) Trends of annual documents of the top 10 countries/regions. (C) Visualization map of countries/regions collaboration analysis.

Each node represents a country/region, and the node size is positively correlated with the number of documents. The connection between nodes

represents collaboration. Countries/regions with citation bursts are presented with red nodes, and nodes with purple rings have high centrality values.

TABLE 1 Top 10 countries/regions with the most documents.

Rank Country/region Documents Citations Total link strength Centrality

1 USA 1,050 63,033 554 0.38

2 China 458 12,210 186 0.07

3 Germany 328 20,735 308 0.18

4 Italy 195 10,065 145 0.04

5 England 135 7,240 178 0.1

6 Japan 111 6,519 59 0

7 Spain 108 4,743 100 0.03

8 France 106 4,287 98 0.15

9 Canada 104 6,127 120 0.06

10 Australia 101 5,131 107 0.02
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FIGURE 4

Co-authorship analysis of organizations. (A) Visualization map of organizations collaboration analysis. Each node represents an organization, and the

node size is positively correlated with the number of documents. The connection between nodes represents collaboration, and the distance and

thickness of the connection represent the relative strength of the relationship. (B) Visualization map of the top 10 organizations’ collaboration. The

color means the average published year. (C) Top 24 organizations with the strongest citation bursts. Minimum duration: 2.

TABLE 2 Top 10 organizations with the most documents.

Rank Organization Country/Region Documents Citations Total link
strength

Centrality

1 Harvard Medical School USA 64 4,019 43 0.17

2 Consejo Superior de Investigaciones Cientificas (CSIC) Spain 47 1,814 5 0.04

3 Weizmann Institute of Science Israel 45 2,586 6 0.03

4 University of California San Francisco USA 36 3,426 23 0.05

5 Fudan University China 35 1,482 16 0.04

6 University of Nebraska Medical Center USA 35 1,801 3 0.01

7 University of California Los Angeles USA 34 1,459 26 0.03

8 Harvard University USA 33 3,543 10 0.09

9 Stanford University USA 31 2,717 39 0.13

10 University of Pittsburgh USA 31 2,394 21 0.09

in neurological diseases remain the hotspot for future research by

many organizations.

Authors

A total of 13,859 authors were involved in Treg cells in

neurological diseases, and 185 met the threshold (minimum

number of documents of an author: 5). The largest set of connected

items consisted of 51 authors (Figure 5A). The top 15 core authors

in this field are listed in Table 3, of which 6 authors came from

the United States. The top 15 authors published 271 documents,

accounting for 9.89% of the total number. Howard E Gendelman

and R Lee Mosley were the top authors with the largest number of

documents and citations. Both are affiliated with the University of

Nebraska Medical Center in the United States, which ranked sixth

in terms of the number of documents about the role of Treg cells in

neurological diseases. As shown in the visualization map of authors

(Figure 5A), HeinzWiendl was the center of authors’ co-authorship
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FIGURE 5

Co-authorship analysis of authors. (A) Visualization map of authors collaboration analysis. Each node represents an author, and the node size is

positively correlated with the number of documents. The connection between nodes represents collaboration, and the distance and thickness of the

connection represent the relative strength of the relationship. The color means the average published year. (B) Cooperative network of Gendelman

HE. (C) Top 14 authors with the strongest citation bursts. Minimum duration: 2.
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TABLE 3 Top 15 authors with the most documents.

Rank Author Organization Country/
Region

Documents Citations Total link
strength

1 Gendelman HE University of Nebraska Medical Center USA 34 1,935 80

2 Mosley RL University of Nebraska Medical Center USA 27 1,655 76

3 Delgado M Consejo Superior de Investigaciones Cientificas

(CSIC)

Spain 26 859 48

4 Gonzalez-rey E Consejo Superior de Investigaciones Cientificas

(CSIC)

Spain 24 806 51

5 Bae H Kyung Hee University Korea 20 529 33

6 Wiendl, H University of Münster Germany 20 1,217 38

7 Offner H VA Portland Health Care System, Oregon Health &

Science University

USA 17 687 23

8 Schwartz M The Weizmann Institute of Science Israel 17 1,242 4

9 Olson KE University of Nebraska Medical Center USA 14 402 44

10 Appel SH Houston Methodist Research Institute USA 12 1,078 25

11 Fragoso G Univ Nacl Autonoma Mexico Mexico 12 173 40

12 Hu X University of Pittsburgh School of Medicine USA 12 749 27

13 Kipnis J The Weizmann Institute of Science Israel 12 569 2

14 Liesz A Heidelberg University Germany 12 1,251 10

15 Meuth SG Heinrich-Heine University of Düsseldorf Germany 12 606 25

relations and had the longest citation bursts. However, Howard E

Gendelman was not involved in the largest connected cooperative

network. A total of eight authors cooperated with Howard E

Gendelman, and they were all affiliated with the University of

Nebraska Medical Center (Figure 5B). Several emerging scholars

(nodes with yellow color) have also begun to dabble in this field,

suggesting that Treg cells in neurological diseases are still a hotspot

for future research. The top three authors with the strongest citation

bursts were Marina Delgado from 2006 to 2010, Michal Schwartz

from 2001 to 2005, and Howard E Gendelman from 2009 to 2011,

indicating that they were leaders in this field in a certain period

(Figure 5C).

Journals

A total of 859 journals published 2,739 documents concerning

Treg cells in neurological diseases. The top 11 journals are

listed in Table 4, they published 618 documents, accounting for

approximately 22.56% of the total. Frontiers in Immunology with

134 documents, Journal of Immunology with 90 documents, and

Journal of Neuroinflammation with 75 documents were the most

prolific journals. Impact factors of the top 11 journals ranged from

3.3 to 15.1, of which Brain Behavior and Immunity was the highest,

and Journal of Neuroimmunology was the lowest. Of the top 11

journals, 6 journals belonged to Q1, 4 journals belonged to Q2,

and the remaining 1 journal belonged to Q3. Notably, the Journal

of Experimental Medicine, with the most citations (4,352 times),

was not among the top 11 journals. The document “HIF1 alpha-

dependent glycolytic pathway orchestrates a metabolic checkpoint

for the differentiation of T(H)17 and T-reg cells” published in this

journal in July 2011 was cited 1215 times, which ranked second

in terms of the number of citations. Although the number of

documents published in the Journal of Experimental Medicine was

relatively small, the quality of documents was relatively high, which

had conspicuously pushed forward the progress in this field. In

short, both the number and the quality of documents need to

be considered in the evaluation of prolific journals. Considering

the number of documents and citations, impact factors, and JCR

partitions, Frontiers in Immunology was the most popular journal

in this research area.

Keywords

A total of 4,868 author keywords were involved in 2,558

documents, and 354 met the threshold (minimum number of

documents of a keyword: 5). The overlay visualization map

showed the co-occurrence relations of keywords (Figure 6A), in

which “multiple sclerosis,” “inflammation,” “regulatory T cells,”

“neuroinflammation,” “autoimmunity,” “microglia,” “cytokines,”

“experimental autoimmune encephalomyelitis,” “immunotherapy,”

and “immunomodulation” were identified as high-frequency

keywords. Moreover, these keywords were mostly associated

with neuroprotection, neuroimmunology, and immunoregulation

in 2014; interconnected with myasthenia gravis, MS, and

neurodegeneration in 2016; related to PD, AD, and spinal cord

injury in 2018; and currently linked to ischemic stroke, gut

microbiota, and the gut–brain axis. Recently, the role of gut
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TABLE 4 Top 11 journals with the most documents.

Rank Journal Documents Citations Total link
strength

Impact factor
(2022)

JCR partition

1 Frontiers in Immunology 134 4,351 603 7.3 Q1

2 Journal of Immunology 90 4,323 463 4.4 Q2

3 Journal of Neuroinflammation 75 3,057 405 9.3 Q1

4 Journal of Neuroimmunology 72 2,117 335 3.3 Q3

5 International Journal of Molecular Sciences 47 1,273 212 5.6 Q1

6 PLoS One 46 1,925 199 3.7 Q2

7 Brain Behavior and Immunity 38 1,440 188 15.1 Q1

8 Scientific Reports 33 955 116 4.6 Q2

9 Journal of Neuroimmune Pharmacology 29 1,144 161 6.2 Q1

10 Immunology 27 1,365 148 6.4 Q2

11 Proceedings of the National Academy of

Sciences of the United States of America

27 3,238 299 11.1 Q1

FIGURE 6

Co-occurrence analysis of keywords. (A) Visualization map of author keywords analysis. Each node represents an author keyword, and the node size

is positively correlated with the number of documents containing the author keyword. The connection between nodes represents co-occurrence.

The color means the average published year. (B) Timeline view of keywords clustering analysis. The di�erent colored horizontal lines on the right

represent the clusters formed by the keywords, nodes on the horizontal lines represent keywords, and the position of nodes on the horizontal lines

represents the year in which the document containing the keywords first appeared. (C) Top 30 keywords with the strongest citation bursts. Minimum

duration: 6.

microbiota in neurological diseases has gained significant attention,

with substantial evidence linking it to neuroinflammation.

As shown in Figure 6B, the timeline view of keywords clustering

analysis was displayed to show the basic knowledge structure and

the evolution over time of Treg cells in neurological diseases. The

modularity Q was 0.4075, indicating that the network structure

was consequential, and the mean silhouette S was 0.6183, implying

that clustering was credible. Keywords with close relationship

were automatically grouped into a cluster, which was named

by the keyword with the largest log-likelihood rate. Cluster “#0

expression,” “#2 multiple sclerosis,” and “#4 activation” appeared

the earliest, and cluster “#1 Parkinsons disease” appeared the

latest. Cluster “#0 expression,” “#1 Parkinson’s disease,” and “#6

gut microbiota” related studies were available in 2023, which
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TABLE 5 Top 10 documents with the most citations.

Rank Title References Journal Citations

1 The pro- and anti-inflammatory properties of the cytokine

interleukin-6

Scheller et al. (24) Biochimica Et Biophysica

Acta-Molecular Cell Research

2,058

2 HIF1 alpha-dependent glycolytic pathway orchestrates a

metabolic checkpoint for the differentiation of T(H)17 and T-reg

cells

Shi et al. (25) Journal of Experimental Medicine 1,215

3 Homeostatic maintenance of natural Foxp3(+) CD25(+)

CD4(+) regulatory T cells by interleukin (IL)-2 and induction of

autoimmune disease by IL-2 neutralization

Setoguchi et al. (26) Journal of Experimental Medicine 941

4 Proinflammatory T-cell responses to gut microbiota promote

experimental autoimmune encephalomyelitis

Lee et al. (27) Proceedings of the National

Academy of Sciences of the

United States of America

910

5 Role of tumor microenvironment in tumorigenesis Wang et al. (28) Journal of Cancer 798

6 Inflammatory mechanisms in ischemic stroke: therapeutic

approaches

Lakhan et al. (29) Journal of Translational Medicine 705

7 Safety and Immunologic Effects of Mesenchymal Stem Cell

Transplantation in Patients with Multiple Sclerosis and

Amyotrophic Lateral Sclerosis

Karussis et al. (30) Archives of Neurology 679

8 The Immunomodulatory and Anti-Inflammatory Role of

Polyphenols

Yahfoufi et al. (31) Nutrients 676

9 Psychoneuroimmunology Meets Neuropsychopharmacology:

translational Implications of the Impact of Inflammation on

Behavior

Haroon et al. (32) Neuropsychopharmacology 626

10 Effects of stress on immune function: the good, the bad, and the

beautiful

Dhabhar (33) Immunologic Research 597

may become frontiers of Treg cells in neurological diseases in

future, while cluster “#2 multiple sclerosis,” “#3 tryptophan,”

“#4 activation,” and “#5 gene expression” gradually decreased or

even disappeared.

The top 30 keywords with the strongest citation bursts

are shown in Figure 6C, which were considered consequential

milestones for the science mapping research. “Immune privilege”

and “anterior chamber” were important contents of the earliest

research, suggesting that the immune privilege of the anterior

chamber was an early research hotspot and had occupied

a major position in this field. Keywords “antigen” had the

longest 16 years of duration burst. In addition, “experimental

allergic encephalomyelitis” had the highest burst strength from

1998 to 2011, which implied that scholars can never ignore

its equally important existence when conducting research in

this field, followed by “myelin basic protein” and “vasoactive

intestinal peptide”.

Citations

The top 10 documents with the most citations are listed in

Table 5, and the range of citations was from 597 to 2,058. The

top three documents with the most citations were documents

written by Scheller J in 2011 (24), Shi LZ in 2011 (25), and

Setoguchi R in 2005 (26), whereby all introduced the role of

cytokines in autoimmune neurological diseases. The document

written by Lee YK in 2011 (27), pointed out that gut microbiota

impacts the balance between pro-and anti-inflammatory immune

responses during experimental autoimmune encephalomyelitis.

The document written by Wang MN in 2017 (28) focused on

the role of tumor microenvironment in tumorigenesis of glioma,

glioblastoma, and other cancers. The documents written by Lakhan

SE in 2009 (29), Karussis D in 2010 (30), and Haroon E in 2012

(32) introduced the immunologic mechanisms underlying several

therapeutic approaches for neurological diseases, such as ischemic

stroke, MS, amyotrophic lateral sclerosis, and depression.

The co-citation analysis of cited references was performed by

VOSviewer. A total of 162,113 cited references were involved in

2,739 documents, and 131 met the threshold (minimum number

of citations of a cited reference: 40). The density visualization map

of cited references based on citations is shown in Figure 7A, and

the top 10 cited references with the most citations are shown in

Table 6. The reference with the most citations was an article written

by Liesz A in 2009, which indicated that research in this article may

be a research hotspot, followed by references written by Viglietta V

in 2004 and Hori S in 2003. Among the top 10 cited references, five

references (34, 35, 39, 42, 43) focused on the neuroprotective role of

Treg cells in neurological diseases, including stroke, MS, and PD. In

total, five references (34, 36, 37, 40, 41) highlighted the important

role of cytokines, including Foxp3, IL-10, IL-2, and TGF-β , in the

generation, development, and function of Treg cells, suggesting that

cytokines have always been the research focus in this field.

Reference burst detection can help find the most influential

cited references and discover research frontiers and trends. In total,

seven references with the strongest citation bursts were obtained

(Figure 7B). The reference written by Liesz A in 2009 had the

highest burst and highest number of citations, indicating that the

research discussed in this article is authoritative and has been a

hotspot in this field. Judging from the past 6 years, a reference
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FIGURE 7

Co-citation analysis of cited references. (A) The density map of cited references based on citations. The opacity of yellow is positively related to

citations. (B) Top 7 references with the strongest citation bursts. Minimum duration: 6.

published by Liddelow SA in 2017 (44) has become the latest

research frontier so far and may continue in the next decade.

This reference titled “Neurotoxic reactive astrocytes are induced by

activated microglia,” suggested that inflammatory cells contribute

to the death of neurons in AD, PD, amyotrophic lateral sclerosis,

and MS and provided opportunities for the development of cell-

based immunotherapies for these diseases.

Discussion

General information

Annual documents on Treg cells in neurological diseases

showed an overall upward trend, suggesting that this research field

remains an active hotspot. Among 85 countries/regions publishing

documents on this topic, the United States was the largest

contributor, with double the number of documents and citations

compared to China and far ahead of other countries/regions.

Additionally, among the top 10 most productive organizations,

seven were based in the United States, and among the top 15

most prolific authors, six were also from the United States,

underscoring their substantial contributions to this research field.

However, China has emerged as a potential contributor in this

field, with its annual output overtaking other countries/regions

and ranking first in 2022. Harvard Medical School was identified

as the most important organization and a major driver of

research on the role of Treg cells in neurological diseases. Nearly

25% of relevant research results were published in the top 11

journals, demonstrating their high quality and authoritative role

as communication platforms for research related to Treg cells in

neurological diseases. Notably, Frontier in Immunology was the

most popular journal, playing an active role in promoting the

development of Treg cells in neurological diseases. Howard E

Gendelman, currently affiliated with the University of Nebraska

Medical Center, has published the most documents on Treg cells

in neurological diseases. These documents primarily focused

on neuroimmunity, neuromodulatory, immunomodulation,

and neuroprotection. Among these documents, the document

“Regulatory T cells attenuate Th17 cell-mediated nigrostriatal

dopaminergic neurodegeneration in a model of Parkinson’s

disease” has achieved the most citations. This study highlighted
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TABLE 6 Top 10 references with the most citations.

Rank Title References Journal Citations

1 Regulatory T cells are key cerebroprotective immunomodulators

in acute experimental stroke

Liesz et al. (34) Nature Medicine 250

2 Loss of functional suppression by CD4(+)CD25(+) regulatory T

cells in patients with multiple sclerosis

Viglietta et al. (35) Journal of Experimental Medicine 199

3 Control of regulatory T cell development by the transcription

factor Foxp3

Hori et al. (36) Science 174

4 Foxp3 programs the development and function of

CD4(+)CD25(+) regulatory T cells

Fontenot et al. (37) Nature Immunology 155

5 Regulatory T cells and immune tolerance Sakaguchi et al. (38) Cell 143

6 Neuroprotective activities of CD4+CD25+ regulatory T cells in

an animal model of Parkinson’s disease

Reynolds et al. (39) Journal of Leukocyte Biology 138

7 Reciprocal developmental pathways for the generation of

pathogenic effector T(H)17 and regulatory T cells

Bettelli et al. (40) Nature 125

8 Immunologic self-tolerance maintained by activated T cells

expressing IL-2 receptor alpha-chains (CD25). Breakdown of a

single mechanism of self-tolerance causes various autoimmune

diseases

Sakaguchi et al. (41) Journal of Immunology 120

9 Regulatory T Cells Attenuate Th17 Cell-Mediated Nigrostriatal

Dopaminergic Neurodegeneration in a Model of Parkinson’s

disease

Reynolds et al. (42) Journal of Immunology 111

10 The immunology of stroke: from mechanisms to translation Iadecola et al. (43) Nature Medicine 103

the potential of Treg cells in regulating neurodestructive immunity

and laid the foundation for immunization strategies for PD (42).

There has been a remarkable historical progression in the

field of Treg cells in neurological diseases. Initially, research

focused on characterizing Treg cells and their role in maintaining

immune homeostasis (6, 8). Over time, studies began to

explore their involvement in neurological diseases, such as MS,

AD, and PD (8, 12–14). Furthermore, this research area has

undergone a significant transformation, shifting from the concept

of neuroprotective autoimmunity to neuroprotection through

neuroimmune transformation. A previous research study focused

on the detrimental role of Th17/Th1 cells and the protective role of

Treg cells, leading to strategies targeting Th17/Th1 suppression and

Treg activation (45, 46). However, our deepening understanding

emphasizes the critical balance between Th17/Th1 and Treg

cells for neuroprotection. Under specific conditions, these cell

subpopulations can convert into each other, playing a pivotal role

in balancing immune effects and suppression (47, 48). Correcting

Th17/Treg cell imbalance is now a novel approach for disease

prevention and treatment (49, 50). As the field evolved, researchers

made significant contributions by refining experimental models,

developing more precise methodologies to identify and track Treg

cells in the central nervous system, and investigating their specific

mechanisms of action. However, this research area is still in the

development stage and has enormous development potential. To

gradually advance the field of Treg cells in neurological diseases and

form a consensus, independent investigators, organizations, and

countries should prioritize standardizing experimental conditions,

including cell sources, assay protocols, and animal models to

ensure the replicability and extensibility of their studies. Second,

while striving for progress, researchers should actively incorporate

diverse perspectives, such as conducting systematic reviews,

collaboratively evaluating existing literature, and using data-driven

approaches to resolve discrepancies. Importantly, researchers can

explore whether Treg cells from different sites and sources exhibit

distinct roles or whether there are different phenotypes of Treg cells

with specialized functions (51–53).

Hotspots and frontiers

Keywords are powerful tools for understanding the theme and

research focus of scientific documents, and they can help identify

hotspots and trends of Treg cells in neurological diseases. The

most cited documents often signify important research directions

and breakthroughs in the field. Co-cited references reflect the

historical development and roots of the field, while references with

citation bursts reveal the emerging hotspots within it. By combining

keyword and citation analyses, we have identified the following

aspects as current research hotspots and trends of Treg cells in

neurological diseases:

Immunomodulation based on Treg cells
Given their immunosuppressive properties, Treg cells are

considered excellent candidates for immunomodulation. Treg cell-

based therapeutic strategies have been actively developing in

transplantation and autoimmune diseases (46). The absence of

Treg cells in the lymphoid aggregates of MS patients’ brains

indicates that the reduction of Treg cells may play a role in the

progression of the disease (54). Thus, therapies based on Treg

cells have the potential to ameliorate MS. A phase I clinical trial

evaluating the adoptive transfer of Treg cells into patients with

relapsing-remitting MS found it to be safe and well-tolerated,
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without adverse events (55). Nonetheless, additional research is

necessary to assess the efficacy and safety of Treg cell-based

therapeutic strategies for patients with MS, given the limited

knowledge about how Treg cells influence immune homeostasis

and inflammation resolution. The early depletion of Treg cells

by anti-CD25 antibody hastened cognitive deficits in APP/PS1

mice and reduced microglial recruitment to amyloid deposits

(56). The adaptive transfer of ex vivo expanded human Treg

cells to immunodeficient 5xFAD-Rag2KO mice resulted in the

suppression of neuroinflammation and significant alleviation of

amyloid pathogenesis (13). In disagreement, a study suggested

that transient Treg cell depletion was followed by amyloid-β

plaque clearance, mitigation of the neuroinflammatory response,

and reversal of cognitive decline in the AD mouse model (10).

Although there are disagreements regarding the role of Treg cells

in the progression of AD, it is undeniable that Treg cell modulation

is a new treatment option. PD is a neurodegenerative disorder

characterized by neuroinflammation that may be caused by an

imbalance between Treg cells and Th17 cells. Treg cells have

been shown to attenuate Th17 cell-mediated death of nigrostriatal

dopaminergic neurons (57). An in vitro study revealed that human

adipose tissue-derived mesenchymal stem cells could inhibit the

differentiation of CD4+ T cells isolated from patients with PD

into Th17 cells. This inhibitory effect was mainly mediated by an

increase in Treg cells and secretion of IL-10, indicating that Treg

cells play an anti-inflammatory and neuroprotection role in PD

(49). Immunomodulation through Treg cell expansion was found

to be an effective treatment for PDmice in a recent study, providing

evidence that immunotherapy may offer a disease-modifying

option for patients with PD (14). While a study demonstrated

that depleting Foxp3+ Treg cells in transgenic DEREG mice

significantly reduced lesion volume and improved neurological

function during the early phase of middle cerebral artery occlusion

(11), many studies have shown that an increase in Treg cells

could potentially improve long-term stroke recovery (46, 58, 59).

Researchers found that Treg cell-derived osteopontin contributed

to a tissue-reparative microglial response. This response led to

improved oligodendrocyte regeneration and remyelination during

the chronic stages of stroke (58). The use of a CD28 superagonist

to expand and amplify Treg cells attenuated the inflammatory

response, reduced infarct volume, and improved outcomes in

experimental stroke (59).

Recently, engineered Treg cells have been used for adoptive

immunotherapy. First, human Treg cells are isolated from human

peripheral blood, umbilical cord blood, or thymus. These Treg

cells are then cultured in vitro to generate polyclonal Treg cells

or antigen-specific Treg cells. Finally, qualified Treg cells are

infused into patients to treat related diseases (60). Therefore,

immunomodulatory strategies based on Treg cells are novel

and promising therapies for neurological diseases and deserve

continued research by scholars.

Gut microbiota
Substantial evidence has indicated that the gut–brain axis

likely plays a crucial role in neurological diseases, with an

altered gut microbiota potentially having significant implications

on immune responses in both the gut and distal effector

immune sites such as the central nervous system (61). A study

involving experimental autoimmune encephalomyelitis mice found

that the gut microbiota greatly influenced the balance between

pro- and anti-inflammatory immune responses. This discovery

suggested that modulating gut microbiota could provide new

targets for treating extraintestinal inflammatory diseases such as

MS (27). Specific metabolites of gut microbiota, such as the

tryptophan metabolite FICZ [6-formylindolo (3-2b) carbazole],

are associated with the production of pro-inflammatory cytokines

and the generation of Th17 cells. Conversely, commensal bacteria

and their metabolites, including Lactobacilli and Bacillus-derived

poly-gamma-glutamic acid (gamma-PGA), can stimulate Treg

cell generation to promote immune suppression. Therefore, the

immunomodulatory effects of gut microbiota may be mediated

primarily via the Th17/Treg axis (62). Exposure to MS microbiota

or MS-associated Acinetobacter calcoaceticus extract was shown to

alter lymphocyte differentiation in healthy individuals, resulting

in an increase in Th1 cells and a decrease in CD25+Foxp3+

Treg cells, while exposure to the Parabacteroides distasonis extract

increased Treg cell differentiation (63). Patients with MS display

a reduction in commensal microbiota levels compared to healthy

individuals, and therapies targeting the microbiota have been

demonstrated to increase the microbiota and improve MS by

decreasing Th1- and Th17-cell levels and increasing Treg cell levels

(64). Myasthenia gravis is an autoantibody-mediated neurological

disease, and Th17/Treg imbalance contributes to the pathogenesis

of myasthenia gravis. Studies have reported that correcting

Th17/Treg imbalances may be a novel therapeutic approach to

myasthenia gravis by modifying the gut microbiota (50). Butyrate

promotes the expression of Foxp3 and differentiates naive T cells

into Treg cells by inhibiting histone deacetylase. Therefore, the

reduction of short-chain fatty acid-producing bacteria in patients

with PD reduces the number of Treg cells, thereby exacerbating

the neuroinflammatory response (65). Patients with neurological

diseases often exhibit gut microbial dysbiosis and altered microbial

metabolites, highlighting the potential of microbial components

or commensal bacteria as immunomodulatory agents to correct

Th17/Treg imbalances and then treat neurological diseases (50).

Therefore, developing therapeutic interventions targeting the gut

microbiome could represent a promising strategy for managing

neurological diseases.

Cytokines
Cytokines are under active investigation as immune

modulators to boost the numbers and functions of Treg cells

in neurological diseases. The development and function of

CD4+CD25+ Treg cells are regulated by Foxp3, while peripheral

CD4+CD25− T cells can acquire suppressor function through

ectopic Foxp3 expression. This discovery opens up a new way for

cell-based therapies for autoimmunity (37). IL-2 is an essential

factor for the development, survival, and function of Foxp3+

natural Treg cells, playing a critical role in maintaining Treg

cell homeostasis (26, 38). Studies have revealed that low-dose

IL-2 therapy can selectively promote the persistence and survival

of Treg cells while limiting effects on other T-cell subsets. The
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therapeutic efficacy of this approach has been demonstrated in

both animal models and clinical trials, highlighting its potential

as a promising treatment option (66, 67). The aberrant TGF-β

signaling observed in individuals with MS is strongly associated

with Treg cell dysfunction (68). Consequently, targeting and

modulating TGF-β signaling may hold promise for addressing

this defect and potentially alleviating the symptoms of MS. IL-6

plays a pivotal role in regulating the balance between Th17 and

Treg cells. Specifically, IL-6 supports the differentiation of Th17

cells from naive T cells together with TGF-β and inhibits TGF-

β-induced Treg differentiation (69). Tocilizumab, an anti-IL-6

receptor monoclonal antibody, has been approved for treating

inflammatory diseases (24). Therefore, the utilization of cytokines

as immune modulators to regulate the differentiation and function

of Treg cells represents a significant therapeutic approach in

the treatment of neurological diseases. Furthermore, relevant

immunomodulatory agents have transformed recent clinical

practice to prevent and reverse the pathology of neurological

diseases. However, a delivery system that can cross the blood–brain

barrier to carry immunomodulatory agents is still the direction of

scholars’ unremitting exploration.

Limitations

This study is the first bibliometric analysis to systematically

analyze documents related to Treg cells in neurological diseases.

Nevertheless, there are still some deficiencies here. First, only

English language articles and reviews published in the Web of

Science Core Collection were collected, which may lead to language

and publication bias. As bibliometric analysis is closely linked to

timeliness, it is essential to continuously update the results and

trends of research on Treg cells in neurological diseases to keep

pace with ongoing scientific exploration. This will enable a more

comprehensive understanding of the topic as well as provide more

precise predictions of future trends. Finally, this review discusses

from the perspective of the neuroprotective role of Treg cells,

however, varying perspectives exist in certain studies. Therefore,

before reaching a consensus, it is important to consider multiple

aspects when targeting Treg cells for the treatment of neurological

diseases and exercise caution in their use. However, given the large

enough number of documents in this analysis, we believe that this

study provides an instructive perspective for the research of Treg

cells in neurological diseases and guides future research in this field.

Conclusion

Through VOSviewer, CiteSpace, and Tableau Public software,

we have carried out a bibliometric analysis on Treg cells in

neurological diseases. The study of Treg cells in neurological

diseases continues to be a hot topic. The United States was

the largest contributor among 85 countries/regions, and China

was the most potential country. More than half of the top 10

most prolific organizations were located in the United States, and

Harvard Medical School was the most important organization in

this field. Nearly half of authors who make major contributions

belonged to the United States organizations when publishing

documents. Frontiers in Immunology was the most popular journal

in this research area. Immunomodulation, gut microbiota, and

cytokines represent the current research hotspots and frontiers

in this field. Treg cell-based immunomodulatory approaches have

shown immense potential in the treatment of neurological diseases.

Modifying gut microbiota or regulating cytokines to boost the

numbers and functions of Treg cells represents a promising

therapeutic strategy for neurological diseases. Hence, we can

conclude from these documents that future therapeutic strategies

for neurological diseases should leverage the therapeutic potential

of Treg cells, with an emphasis on modulating their activity to

promote neuroprotection.
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health and disease
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and Mathias Linnerbauer

Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-
Nürnberg, Erlangen, Germany
Midkine (MDK) is a neurotrophic growth factor highly expressed during

embryogenesis with important functions related to growth, proliferation, survival,

migration, angiogenesis, reproduction, and repair. Recent research has indicated

that MDK functions as a key player in autoimmune disorders of the central nervous

system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target

for the treatment of brain tumors, acute injuries, and other CNS disorders. This

review summarizes themodes of action and immunological functions of MDK both

in the peripheral immune compartment and in the CNS, particularly in the context

of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration.

Moreover, we discuss the role of MDK as a central mediator of neuro-immune

crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells

such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the

therapeutic potential of MDK and discuss potential therapeutic approaches for

the treatment of neurological disorders.

KEYWORDS

midkine, CNS, inflammation, malignancy, injury
Introduction

Growth factors are essential for the development and functioning of the central nervous

system (CNS). As soluble molecules, they play vital roles in cell-to-cell communication and

regulate a multitude of functions, including cell proliferation and differentiation. One of

these growth factors is the heparin-binding growth factor midkine (MDK). MDK, together

with the structurally related growth factor pleiotrophin (PTN), belongs to the family of

neurite promoting growth factors and has originally been identified in embryonal

carcinoma (EC) cells in 1988 (1).

MDK is expressed in a small number of embryonic tissues, including the CNS. The

expression pattern of MDK during mouse gestation indicates that the growth factor is

required for the generation of epithelial tissue, remodeling of the mesoderm (2), and

neurogenesis (3). Early studies by Kadomatsu et al. (2) describe an upregulation of MDK

during midgestation in mouse embryos, while its expression in adult mice has initially only

been described in the kidney. The polypeptide MDK with a molecular weight of about 13

kDa (4) consists of a N-terminal domain, held together by three disulfide bridges and a

C-terminal domain, stabilized by two disulfide bridges (5). Notably, early studies have
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suggested that the neurite outgrowth promoting functions of MDK

are highly dependent on both the C-terminally located heparin-

binding domain and the sulfide bonds (6–8).

Recent research has indicated that MDK is highly upregulated in

response to various pathological conditions, both in the CNS and the

periphery (9, 10) (Figure 1, Table 1), and can be exploited as a

biomarker and therapeutic target (35, 36), highlighting the pivotal

role of the growth factor in the context of disease. In this review, we

will summarize the involvement and function of MDK in the context

of peripheral disorders and CNS pathologies, including brain injuries,

brain tumors, as well as neuroinflammatory and neurodegenerative

diseases. Furthermore, we will review existing therapeutic strategies

targeting MDK in neoplastic diseases and discuss the therapeutic

value of MDK for the treatment of CNS disorders.
Cellular sources of MDK

In the periphery, numerous cell types have been identified to

produce MDK under basal and pathological conditions (9). In

addition to monocytes, macrophages, and monocyte-derived

dendritic cells (mDCs), also non-hematopoietic cell types such as

endothelial cells are capable of producing MDK (4).
Frontiers in Immunology 02143
Within the CNS MDK is mainly expressed during development

until midgestation, while its mRNA levels decrease in postnatal life

(4, 9). In mice MDK is mainly expressed by oligodendrocyte

precursor cells (OPCs), followed by fetal astrocytes, neurons, and

newly formed oligodendrocytes, while in humans fetal astrocytes

represent the major source of MDK in the CNS (9). Moreover, in

vitro studies show MDK expression by cultured neurons and

activated astrocytes, but not microglia (37).
Inducers of MDK expression

In monocytes, polymorphonuclear neutrophils (PMNs), and

endothelial cells, MDK expression is induced during hypoxia (38).

Binding of hypoxia-inducible factor-1a (HIF-1a) to hypoxia

response elements (HREs) in the MDK promotor activates

expression of the gene (Figure 1), while MDK in turn increases

HIF-1a expression in a positive feedback loop (39). In addition to

hypoxia, MDK expression is driven by the master regulator of pro-

inflammatory pathways, nuclear factor kappa light-chain enhancer

of activated B cells (NF-kB) (Figure 1), which can be activated by

reactive oxygen species (ROS), pro-inflammatory cytokines such as

tumor necrosis factor a (TNFa), interleukin (IL)-1b, as well as
FIGURE 1

MDK receptor candidates and signaling pathways. Midkine (MDK) is a multifunctional molecule, whose effects are probably regulated via different
receptor-ligand interactions, as well as complex formation of receptor candidates, and cross-talk between the receptors. Low density lipoprotein
receptor-related proteins (LRPs) and integrins are thought to build the core of the MDK receptor complex, while other candidates such as the
anaplastic lymphoma kinase (ALK) or the protein tyrosine phosphatase z (PTPz) might be recruited. This figure combines signaling pathways
discovered in different cell types under several pathological conditions and does not show the determined signaling of MDK in a specific cell type.
Binding of MDK to the ALK receptor induces the phosphorylation of the insulin receptor substrate-1 (IRS-1) and its interaction with the ALK receptor,
followed by the activation of several signaling pathways. Src kinase phosphorylation results in mitogen-activated protein (MAP)-kinase signaling,
which includes a phosphorylation cascade of the proteins Ras, Raf, Mek, and Erk, supporting cell proliferation. Another downstream effect of Src is
the phosphoinositide (PI)-3-kinase signaling, including Akt and mTOR activation, promoting survival and protein synthesis. MDK/ALK signaling also
induces the expression of nuclear factor kappa light-chain enhancer of activated B cells (NF-kB), a growth factor inhibited by IkB proteins until it
reaches the nucleus, where it stimulates cell survival. The core complex of LRP and integrins contributes to cellular survival and the recruitment of
neutrophils, while MDK binding to PTPz additionally promotes survival, as well as cell migration and negatively regulates Wnt signaling. Neurogenic
locus notch homolog protein 2 (Notch2) activation mediates the interaction between Hes1 and the Janus kinase 2 (Jak2)/STAT3 complex, inducing
tumorigenesis. The promotor of the MDK gene entails binding sites for NF-kB and hypoxia-inducible factor-1a (HIF-1a).
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bacterial components, such as lipopolysaccharide (LPS) (9), among

others. Together, both its regulation by hypoxia and pro-

inflammatory NF-kB signaling indicate the relevance of MDK

signaling in response to inflammatory stimuli.

While numerous studies have shed light on the role of MDK in

non-CNS diseases, the regulation of MDK in CNS pathologies is less

defined (Table 1). During development of experimental autoimmune

encephalomyelitis (EAE), a preclinical animal model of Multiple

Sclerosis (MS), T helper (TH) cells have been identified as MDK

producer cells (24). However, in glial cells it can be speculated that

similar processes drive the expression ofMDK. In these lines, hypoxic

conditions following ischemia, or the presence of pro-inflammatory

cytokines such as TNFa and IL-1b under neuroinflammatory

conditions (40, 41) may induce NF-kB-dependent upregulation of

MDK by astrocytes, microglia, or oligodendrocytes. Whether this

upregulation in fact occurs and whether it is part of a protective or

inflammatory activation state must be addressed by future studies.
MDK receptors and signaling

So far, several plasma membrane molecules have been identified

as MDK receptors, including integrins, proteoglycans, neurogenic

locus notch homolog protein 2 (Notch2) (42), ALK (43), low-

density lipoprotein receptor-related protein (LRP) (44), and protein

tyrosine phosphatase z (PTPz) (45) (Figure 1). Integrins with

MDK-binding properties include the heterodimers a6b1 and

a4b1, while the family of MDK-binding proteoglycans can be

subdivided into syndecans (46), glypican-2 (47), PG-M/versican

(48), and neuroglycan C (49).

Instead of binding to a single one of these receptors, MDK

exerts its multifaceted functions through binding to a

multimolecular receptor complex (Figure 1), with PTPz as the

most established component (4, 50). The formation of the

receptor complex, the arrangement of MDK-binding molecules,

and the crosstalk between receptor subunits coordinate the signal

transduction in response to MDK binding via several signaling

pathways, depending on the cellular context, thereby facilitating the

diverse functions of the growth factor (51) (Figure 1).
Protein tyrosine phosphatase z

The signaling cascade elicited through binding of MDK to the

receptor component PTPz has been associated to various functions

and cell types. Binding of macrophage migration inhibitory factor

(MIF) to its receptor CD74 on mature and malignant B cells leads to

an increased expression of MDK, which in turn increases B cell
TABLE 1 The major roles of MDK in pathological conditions.

Disease Effects Models References

Alzheimer’s
disease

Inhibits Ab fibril formation
and Ab-induced cytotoxicity

in vitro (11, 12)

Cardiac
ischemia-
reperfusion
injury

Prevents
myocardial apoptosis

in vivo (13)

Cerebral
infarct

Reparative neurotrophic
functions during
early phase

in vivo (14)

Gastric cancer Confers chemoresistance in vitro (15–17)

Glioblastoma Induces stem-like
properties of glioma
initiating cells; induces
cannabinoid resistance;
modulates
immunosuppressive
tumor microenvironment

in vitro
in vivo

(17–20)

Inflammatory
breast cancer

Recruits monocytes in vitro (21)

Leukemia Promotes B cell survival in vivo (22)

Melanoma Modulates tumor
microenvironment towards
tolerogenic and immune-
resistant states

in vitro
in vivo

(23)

Multiple
Sclerosis

Suppresses expansion of
Treg cells, deteriorating
disease course

in vivo (24, 25)

Neuroblastoma Promotes tumorigenesis in vitro
in vivo

(26, 27)

Neuromyelitis
optica

Correlates with IL-23 levels in vivo (28)

Pancreatic
cancer

Contributes to
chemoresistance,
proliferation and migration
of cancer cells

in vitro (15, 16, 26, 27)

Renal
ischemia-
reperfusion
injury

Promotes migration of
neutrophils
and macrophages

in vivo (29)

Rheumatoid
arthritis

Leads to activation and
migration of neutrophils
and inflammatory
leukocytes; induces release
of pro-
inflammatory cytokines

in vivo (18–20, 30, 31)

Systemic
lupus
erythematosus

Correlates with increased
IL-17 levels

in vivo (32)

Transient
forebrain
injury

Promotes tissue repair in vivo (33)

Traumatic
brain injury

Polarizes microglia towards
an anti-inflammatory state;
recruits neutrophils and
macrophages; increases

in vivo (34)

(Continued)
TABLE 1 Continued

Disease Effects Models References

apoptotic neurons around
lesions; potentiates
secondary injury
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survival by autocrine MDK-signaling through PTPz (22).

Furthermore, the receptor PTPz mediates MDK signals that

suppress osteoblast proliferation via negative regulation of Wnt

signaling (Figure 1) by dephosphorylation of b-catenin (52).

However, it is not known whether MDK itself is able to induce the

phosphatase activity of the receptor, or if further components of the

PTPz complex are needed to initiate dephosphorylation (51). Not only

in the periphery, but also within the CNS, PTPz has been shown to be

involved in several MDK-dependent signaling pathways, including the

promotion of neuronal survival (53) and the migration of neurons (45)

(Figure 1), which is especially important during neurogenesis (54, 55).
Anaplastic lymphoma kinase

The MDK/ALK signaling pathway is well established in diverse

tissues and has been elucidated in numerous studies (43, 56–59).

MDK binding to ALK results in phosphorylation of the insulin

receptor substrate-1 (IRS-1), leading to enhanced activation of Src

kinases (43), mitogen-activated protein (MAP)-kinase and

phosphoinositide (PI)-3-kinase signaling (60), as well as the

induction of the transcriptional activation of NF-kB (56)

(Figure 1). As mentioned above, NF-kB acts as central mediator

of inflammatory responses (61) and regulates fundamental cellular

processes including differentiation, proliferation, and survival (57).

In these lines, MDK/ALK signaling is especially involved in

neoplastic diseases (18, 58, 62, 63), as it initiates, for example, an

autocrine growth and survival signal via the suppression of caspases

(58), as well as the enhancement of B-cell lymphoma-2 (Bcl-2) (62),

an anti-apoptotic protein and oncogene. Both pathways counteract

anti-tumor immunity (64, 65), thereby implicating MDK signaling

in tumor resistance. In melanoma, MDK activates mTOR via a

similar signaling pathway (Figure 1), leading to an increased

expression of vascular endothelial growth factor receptor 3

(VEGFR3) and the stimulation of lymphangiogenic signals,

resulting in metastatic growth in lymph nodes and the lungs (63).

In the CNS, MDK-dependent ALK signal transmission in glioma

cells results in the activation of the Akt/mTOR1 axis (Figure 1),

preventing autophagy-mediated cell death by tetrahydrocannabinol

(THC), thereby contributing to the cannabinoid-resistance of

gliomas (18). While MDK negatively contributes to cancer

progression and metastasis formation via its anti-apoptotic and

growth-promoting effects in the peripheral compartment as well as

in the CNS, these functions may also have beneficial roles in the

context of injuries and tissue regeneration. It is conceivable that the

anti-apoptotic and proliferative effects of MDK possess the capacity

to mediate tissue-protection and ameliorate inflammatory and

demyelinating processes in the CNS (9, 66).
Low-density lipoprotein receptor-
related protein

In inflammatory diseases such as myocarditis, the interaction of

MDKwith the receptor LRP1 and members of the b2 integrin family

is critical for MDK-induced PMN recruitment (Figure 1) and
Frontiers in Immunology 04145
neutrophil extracellular trap (NET) formation (67). Here, MDK

contributes to a process called NETosis (68), which results in

inflammation and tissue injury through direct damage (67). In

squamous cell carcinoma, MDK triggers phosphorylation and

thereby activation of paxillin and signal transducer and activator

of transcription (STAT) 1a pathways in an integrin-dependent

manner, resulting in the overexpression of genes implicated in cell

migration and tissue invasion (59).

In the CNS, binding of MDK to LRP1 has been shown to induce

cell survival in embryonic neurons (44) (Figure 1), while MDK-

signaling through the integrins a4 and a6 promotes neurite

outgrowth (69). Upon binding of MDK to the receptor

component LRP, MDK is internalized and transported to the

nucleus (70). The nuclear translocation of the growth factor is

enabled by the shuttle proteins nucleolin (71) and laminin binding

protein precursor (LBP) (72), and necessary for the promotion of

cell survival via the MDK/LRP signaling pathway (70) (Figure 1).

Similar to the anti-apoptotic effects of MDK/ALK signaling in the

CNS, MDK binding to LRP1 may thereby support regeneration and

re-myelination in response to CNS insult.
Neuroglycan C

In the CNS, the receptor neuroglycan C has been identified as

important MDK signal transducer involved in process elongation of

OPCs (49). These cells are not only important during synapse

formation, but also for the re-myelination of axons in

demyelinating diseases such as MS (73). Emerging literature on

OPCs furthermore describes their potential for the establishment

and remodeling of neural circuits (74), which supports the function

of MDK in the developing brain. The receptor neuroglycan C might

function in complex with LRP1 and integrins, which strongly bind

to one another and may form the core of the MDK receptor

complex in the CNS (69) (Figure 1).

In summary, the complex interplay of MDK receptor signaling

facilitates the intricate and context-dependent functions of the

growth factor in a broad variety of cell types, which regulate

numerous inflammatory and non-inflammatory functions

(Figure 1). Both, in the periphery and the CNS, MDK elicits pro-

inflammatory and anti-apoptotic effects, driving inflammation,

tumor progression, and metastasis. Nevertheless, upon injury or

trauma, increased MDK expression has the potential to positively

influence disease outcomes by promoting differentiation, reducing

cell death, and increasing regeneration.
MDK and its roles in injury, cancer,
inflammation, and autoimmunity

Besides its important role during development and

differentiation of various cell types (2), MDK has been shown to

be upregulated in various pathological conditions in the periphery

and the CNS, reaching from neoplastic diseases to inflammatory

diseases and injuries (Figure 2, Table 1).
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MDK in the context of neoplastic diseases

In the context of neoplastic diseases, increased MDK levels have

been demonstrated more than 20 years ago by several studies

covering various types of cancer (Figure 2). In human tissue

samples of prostatic (75) and hepatocellular (76) carcinomas,

increased protein levels of MDK have been detected via

immunohistochemical staining, while mRNA levels of MDK were

increased in human gastric carcinoma specimens (77). In vitro

studies suggest that MDK promotes proliferation and migration of

pancreatic cancer cells (15) and is furthermore contributing to

chemoresistance in ductal adenocarcinomas (16). These

observations are supported by more recent studies in the context

of breast cancer and melanoma, where MDK shapes the tumor

microenvironment and promotes tumor-resistance (21, 23).

Aside from its numerous roles in tumor-formation and

-resistance in peripheral tissues, MDK has also been implicated to

play a role in the development and tumorigenicity of brain tumors

(Figure 2). Among these, neuroblastomas belong to the most

prevalent malignant pediatric solid tumors (78), while gliomas are

the most frequent primary tumors of the CNS in adults (79).

In vitro studies using primary neuroblastomas and

neuroblastoma cell lines suggest that MDK not only promotes

peripheral neoplasms but is also involved in tumor growth and

differentiation in the CNS (80). This hypothesis has been supported

by reduced tumor growth in several MDK-depleted neuroblastoma

cell lines (26). Moreover, elevated MDK blood levels can be linked

to poor prognostic factors in neuroblastoma patients (81, 82),
Frontiers in Immunology 05146
support ing the relevance of MDK in neuroblastoma

tumorigenesis. Similarly, increased MDK levels in the CNS

correlate with a poor prognosis and lower survival of

glioblastoma patients (83), indicating an involvement of the

growth factor in disease progression. A hallmark of glioblastomas

is their ability to relapse in patients within a certain cell population,

called glioma initiating cells (GICs), which exhibit stem-like

characteristics (19). Because MDK has been implicated to

promote the growth of neural stem cells and progenitor cells in

vitro (84), it is likely that MDK is also involved in glioblastoma

initiation. Studies with GIC cultures show increased MDK mRNA

and protein levels, while inhibition of MDK reduces the ability of

neurosphere generation by GICs, as well as the number of stemness

biomarkers in culture (19).

Overall, these and other observations (16, 17) underscore the

role of MDK signaling for chemoresistance and tumorigenesis in

the context of solid brain tumors. These findings not only

emphasize the relevance of MDK as a therapeutic target, but also

illustrate its potential as early diagnostic and independent

prognostic marker.

Although the functions of MDK in the context of solid tumors

inside and outside the CNS exhibit remarkable similarities, it still

remains unclear if the tumor promoting effects of MDK on

peripheral and central neoplasms underlie a common mechanism.

One conceivable common mechanism is mediated through the

proto-oncogene p53. MDK is known to harbor p53 binding sites,

where binding of the appropriate protein activates the transcription

of MDK in gliomas, while knockdown of p53 downregulates the
FIGURE 2

Involvement of MDK in various pathological conditions. The expression of Midkine (MDK) is increased in all shown conditions, while it has opposing
functions within injury, inflammation, and cancer. MDK influences the outcome by either promoting recovery or deteriorating the course of disease
and/or pathogenesis. Conditions written in red are central nervous system (CNS)-related injuries, brain tumors, or neuroinflammatory diseases.
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expression of mRNA and protein levels of MDK (20). In these lines,

it has been suggested that the p53-induced overexpression of

MDK in gliomas drives the anti-inflammatory polarization of

microglia, thereby remodeling the tumor immunosuppressive

microenvironment (20). Studies of low-grade gliomas (LGGs)

using neurofibromatosis type 1 (NF1) as a genetic model system

describe MDK as an upstream mediator regulating the activation of

T cells, the release of cytokines, and thereby tumor growth in NF1-

mutant murine and human neurons (85). Further reports describe

the tumorigenic role of MDK in the context of NF1 (86, 87),

indicating that MDK activation of T cells is a crucial mechanism

in NF1-LGG pathogenesis. Additional commonalities include the

control of MDK expression by NF-kB signaling and hypoxia.

Activation of both pathways is a defining feature of the tumor

microenvironment, irrespective of the tissue and cancer type (88). It

is therefore conceivable that MDK is part of a common response

mechanism to malignant tumors, and therefore potentially

represents a central target for therapeutic intervention.

Overall, these findings demonstrate the importance of MDK as

a central mediator of tumorigenesis, irrespective of tissue and cell

type. Uncovering the exact signals that drive MDK expression and

its transduction through its various binding partners in the tumor

microenvironment is therefore of highest interest to identify novel

therapeutic strategies that overcome tumor resistance.
MDK in the context of autoimmune and
inflammatory diseases

Besides its various functions in cancer, MDK has been described

as an important regulator of autoimmune and inflammatory diseases

(Figure 2). One of them is rheumatoid arthritis (RA), the most

common inflammatory arthritis affecting joints as well as potentially

other organs. The disease is characterized by synovial inflammation,

hyperplasia, and the production of autoantibodies followed by

cartilage and bone destruction (89). Main drivers of synovitis are

leukocyte accumulation and the production of pro-inflammatory

cytokines such as TNFa and IL-6 (89). MDK has been detected in

inflamed synovial tissue of RA patients but not in healthy controls

(90). Here, MDK leads to the activation and migration of neutrophils

into inflamed tissue by either acting as chemoattractant or by

inducing the release of pro-inflammatory cytokines including IL-8,

IL-6, and CCL2 (30). Notably, the migration of inflammatory

leukocytes into RA synovial tissue is suppressed in MDK knock-

out mice (31), where disease activity is diminished. Similar

observations have been made in the context of the autoimmune

disease systemic lupus erythematosus (SLE). Its pathogenesis is

characterized by the production of autoantibodies against nuclear

and cytoplasmic antigens affecting several organs. Patients undergo

periods of remission and relapse showing organ-specific symptoms

(91). In SLE patients, elevatedMDK plasma levels correlate with rash

and increased levels of IL-17, a pro-inflammatory cytokine produced

by TH17 cells (32). Increased levels of circulatingMDK have not only

been described in peripheral autoimmune diseases but also in other

inflammatory conditions like ulcerative colitis (UC) (92) and
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Crohn’s disease (CD) (93), two main forms of inflammatory bowel

diseases (IBDs) (Figure 2).

Additionally, MDK has been implicated in the regulation of

primary degenerative and inflammatory diseases of the CNS (28,

94) (Figure 2). Alzheimer’s disease (AD), for instance, is a complex

neurodegenerative disorder and one of the major causative factors for

cognitive impairment. Molecular hallmarks of its pathogenesis include

plaque formation by extracellular aggregates of b-amyloid (Ab)
peptides and intracellular neurofibrillary tangles made of

hyperphosphorylated tau (t) protein (95). While AD is not

considered a primary inflammatory disorder, it has become

increasingly clear that secondary inflammation is a key driver of

disease progression (96, 97). In these lines, increased MDK levels have

been found in serum and plaques of AD patients (94). These

observations match the increase in inflammatory markers in AD

patients and support the idea of a close interaction between amyloid

pathology and inflammation. In this context, MDK has been shown to

inhibit Ab fibril formation and Ab-induced cytotoxicity (11, 12),

highlighting the tissue-protective potential of the growth factor in AD.

In autoimmune CNS disorders like neuromyelitis optica

(NMO) and MS, increased levels of MDK have been associated to

a poor prognosis (28). This is in line with reports of a direct

correlation between MDK serum levels and IL-23 levels (98), a pro-

inflammatory cytokine that drives pathological functions of TH17

cells (99). Moreover, MDK mRNA expression in mice is highly

upregulated upon EAE induction and correlates with disease

progression and clinical symptoms (100). In vivo studies using

MDK-deficient mice describe an expansion of regulatory T (Treg)

cell populations upon EAE induction, which in turn reduces the

numbers of autoreactive TH1 and TH17 cells (Figure 3), resulting in

disease amelioration compared to control mice (25). Treg cell

development is regulated through the transcription factors STAT3

(24) and STAT5 (25) and based on a MDK-dependent suppression

of tolerogenic dendritic (DCreg) cells, which usually promote Treg

cell differentiation (24) (Figure 3). The functional relevance of MDK

in the context of EAE is further supported by observations of

decreased inflammatory infiltration in spinal cords of MDK-

deficient mice, concomitant with reduced disease severity

compared to controls (25). The beneficial outcomes of MDK

deficiency in EAE can be reversed by exogenous application of

recombinant MDK, which exacerbates disease severity and

indicates an overall detrimental function of the growth factor in

autoimmune neuroinflammation (25).

In conclusion, MDK plays important roles in the onset and

progression of autoimmune and inflammatory diseases in the

periphery and the CNS. MDK serum levels are elevated in

patients with inflammatory, autoimmune, and neurodegenerative

diseases, while in vivo studies reveal that MDK contributes to

inflammation via the induction of pro-inflammatory cytokines,

the recruitment and activation of inflammatory immune cells, as

well as the suppression of regulatory mechanisms (Figure 3). While

these data support the notion that MDK is an important mediator

of inflammation not only in peripheral pathologies but also

following CNS insult, future studies are needed to delineate

mechanisms and target cells in the CNS (Figure 3).
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MDK in the context of acute injury

Aside from neoplastic diseases and primary inflammatory

disorders, upregulation of MDK can also be observed in injuries

of peripheral organs such as the heart or the kidney (66, 101)

(Figure 2). Upon renal ischemia-reperfusion, a process frequently

leading to excessive tissue injury and destructive inflammatory

responses (102), MDK promotes the migration of neutrophils and

macrophages to the site of injury (29) while in cardiac ischemia-

reperfusion injury MDK prevents myocardial apoptosis (13).

Similarly, in the injured CNS, numerous functions of MDK have

been proposed. Traumatic brain injury (TBI) starts with primary

tissue damage directly caused by the insult, followed by secondary

tissue damage, which is induced by pathological processes after the

primary insult and leads to necrosis and apoptosis of cells in the CNS

(103). Major consequences of traumatic insults are blood brain

barrier (BBB) breakdown, subsequent infiltration of immune cells

into the brain (104), and neuroinflammation. In vivo studies with

wild type and MDK-deficient mice demonstrated that MDK-

deficiency does not affect astrogliosis following TBI (34),

confirming earlier results of in vitro experiments, where MDK

treatment of purified astrocyte and microglia cell cultures did

neither induce astrogliosis nor microgliosis (37). Astrogliosis is a

process in which astrocytes respond to CNS damage or disease by
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transcriptional remodeling and an altered activation state (105).

Depending on the severity and permanence of this state,

astrogliosis is associated to beneficial and necessary functions, but

can also lead to harmful effects by cellular hypertrophy, proliferation,

and the secretion of pro-inflammatory cytokines (106, 107). The

same is true for microglia, the tissue-specific macrophages of the CNS

(108). Following their activation, microglia can exert neurotrophic as

well as neurotoxic functions (108). However, while treatment of

microglia with MDK in vitro resulted in no major alterations, Takada

et al. (34) observed a shift to an anti-inflammatory microglia

polarization state during the acute phase of TBI in MDK-deficient

mice. In addition, the authors observed that MDK-deficiency leads to

a decrease in apoptotic neurons around lesions, thereby reducing

cerebral atrophy and neurological deficits after TBI (34). As the

growth factor also features chemoattractant properties, especially the

recruitment of neutrophils and macrophages (34, 109) (Figure 3), it is

conceivable that increased BBB permeability upon primary traumatic

insult allows MDK to amplify the recruitment of peripheral immune

cells and thereby potentiates secondary injury (34). Indeed, a

reduction in the transgression of immune cells into the CNS was

observed in MDK-deficient mice, supporting the notion that MDK

regulates immune cell infiltration in the context of TBI.

Aside from TBI, MDK is expressed in early stages of cerebral

infarct, a condition where the blood supply to the brain is disrupted,
FIGURE 3

Major functions of MDK in the context neuroinflammation. Within the brain, Midkine (MDK) is expressed by activated astrocytes or neurons and acts
as a chemoattractant for peripheral immune cells, such as neutrophils, macrophages, and lymphocytes. MDK promotes the expression of the
tyrosine phosphatase SHP2, which dephosphorylates signal transducer and activator of transcription (STAT) 3 and 5. STAT5 usually induces the
expression of the transcription factor forkhead-box-protein p3 (FOXP3) in an interleukin (IL)-2-dependent way, promoting the expansion of
regulatory T (Treg) cells. STAT3 is required for the IL-6-dependend inhibition of Foxp3 expression and might be involved in the induction of
tolerogenic dendritic cells (DCreg), which additionally promote a Treg cell expansion. Treg cells downregulate the interferon g (IFNg) expressing T
helper (TH) 1 and the IL-17 expressing TH17 cells. The pro-inflammatory cytokine IL-23 triggers pathological features in IL-17 producing T cells and
might be in correlation with MDK expression. All MDK-induced events lead to continuous neuroinflammation, while effects of MDK on central
nervous system (CNS) resident cells such as astrocytes, microglia, and oligodendrocytes is still unknown.
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leading to ischemia and hypoxia, and finally to necrotic tissue in the

brain. MDK has been detected at the sites of nerve damage, where it

seems to act as a reparative neurotrophic factor (14). These findings

align with the transcriptional regulation of MDK by HIF-1a
(Figure 1) and highlight the reparative potential of MDK in

hypoxia-driven disorders. In vivo studies in rat showed an

upregulation of MDK mRNA, as well as protein levels following

transient forebrain injury (33) and increased expression of MDK in

damaged areas of traumatic spinal cord injury in regards to tissue

repair (110).

These data collectively suggest that MDK is part of a central

inflammatory response mechanism that governs injury responses,

as well as numerous autoimmune-, inflammatory-, and cancer

pathologies (Figure 2, Table 1). Depending on the inflammatory

state and the microenvironment at the site of injury MDK exerts

opposing functions and either promotes the amplification or

suppression of pathological processes. Due to increased MDK

levels in several diseases, the growth factor may be of high

relevance as disease marker and target for drug development.

Especially in the CNS, where MDK may drive the infiltration of

peripheral immune cells and the pro-inflammatory activation of

glial cells during acute insult, its protective functions on microglia,

oligodendrocytes, and neurons underscore its therapeutic potential

for regenerative processes in response to acute CNS insult.

However, further studies are needed to clarify MDK signaling

pathways involved in CNS pathologies, but also cancer

progression, metastasis, inflammation, and other peripheral

pathological conditions.
MDK as a mediator of neuro-
immune crosstalk

The regulatory functions of MDK are indispensable during

development, where the growth factor mediates embryogenesis,

organogenesis, as well as neurogenesis (111). While in healthy

adults, MDK is only expressed in the kidney, several pathological

conditions are accompanied by an increase in MDK levels in the

periphery, as well as the CNS (10, 36) (Figure 2). In these lines, it is

becoming increasing clear that MDK is not only an important

mediator of disease processes within a specific compartment, but

also functions as mediator of neuro-immune cell-to-cell crosstalk.

While under homeostatic conditions, the CNS is shielded from

the periphery by the BBB, inflammation induced barrier

dysfunction may foster the MDK-dependent interaction between

CNS-resident and peripheral cell types. In these lines, the

infiltration of MDK-expressing immune cells through a leaky

BBB may stimulate context-specific MDK-signaling events in

CNS-resident cells, or vice versa (Figure 3). While the effects of

MDK on glial cells are not fully understood, MDK has been shown

to induce an anti-inflammatory polarization state in microglia in

vivo (34). Even though there are no direct effects on astrocytes

revealed so far (34), MDK-induced polarization of microglia might

regulate crosstalk between glial cells (112) and thereby indirectly

modulate the functions of astrocytes, as well as other CNS-resident
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cells, such as neurons and oligodendrocytes, which may exert the

described neuroprotective effects of MDK (84, 113). On the other

hand, MDK expressed by CNS-resident cells upon insult or

inflammation may act as a mediator of neuro-immune crosstalk

by promoting the recruitment of peripheral immune cells through a

leaky BBB into the CNS (Figure 3), thereby fueling inflammatory

processes within the CNS and ultimately leading to disease

deterioration and additional activation of glial cells. The

importance of MDK as a mediator of neuro-immune crosstalk is

furthermore exemplified by its role in the suppression of regulatory

functions within the CNS. Here, the secretion of MDK by CNS-

resident cells induces tyrosine phosphatase SHP2 expression, which

dephosphorylates and thereby inactivates STAT3 and STAT5. This

cascade results in the suppression of DCreg cells, and consequently

Treg cells, leading to increased numbers of effector T cells (Figure 3),

and the exacerbation of inflammatory processes in vivo (24, 25).

Similar mechanisms of MDK may contribute to the

development and pathogenesis of neoplastic diseases, where

neurons, microglia, macrophages, and T cells in the tumor

microenvironment control formation, growth, and progression of

malignant solid tumors (85, 114–118). Here, MDK not only recruits

peripheral immune cells, but also activates CD8+ T cells,

establishing a neuro-immune-cancer axis that promotes tumor

growth (85). The exact routes and mechanisms of crosstalk, and

how MDK derived from the periphery versus CNS-derived MDK

regulates inflammatory reactions still need to be addressed in

future studies.
MDK as putative biomarker

Due to the distinct expression of MDK in various pathological

conditions, especially malignancies and inflammatory diseases

(Figure 2, Table 1) the growth factor has been considered as a

putative biomarker (36, 119–121). While the potential of MDK as a

biomarker has been proposed for several cancer types and

inflammatory diseases, further studies are required to delineate its

specificity as a biomarker. In hepatocellular carcinoma (HCC),

MDK enables a discrete discrimination of patients with early

HCC from those with cirrhosis (122). The assessment of serum

and urinary MDK levels furthermore facilitates the early detection

of non-small cell lung cancer (NSCLC) (123) and aids clinical

decision making, as high MDK levels correlate with poor prognosis

in NSCLC patients (124). Recently, the growth factor MDK has

additionally been described as candidate biomarker in lung

adenocarcinoma, one of the most common types of lung cancer

(125). As MDK is a systemic lymphangiogenesis-inducing factor, its

detection might function as a prognostic marker for melanoma

patients (63). In brain tumors both MDK and PTN might be useful

as early diagnostic and independent prognostic markers, as MDK

overexpression correlates with the rapid progression of

astrocytomas (126) and a poor survival outcome in high-grade

gliomas (127). Studies in the context of autoinflammatory diseases

such as RA, SLE, UC, and CD have proposed MDK as a marker for

the detection of inflammatory disease activity (92, 93, 128, 129),

with a performance comparable to, and potentially superior to
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established disease activity markers like C-reactive protein (CRP)

(92, 93). Finally, a recent has described MDK levels in the

cerebrospinal fluid of Parkinson’s disease (PD) patients as a

supportive diagnostic biomarker (130), highlighting its potential

for other neurodegenerative disease such as MS or AD.
MDK as therapeutic target

Beyond its significance as a biomarker, the involvement of

MDK in numerous diseases, including injuries, malignancies, and

inflammatory disorders of the periphery and CNS (Table 1),

harbors significant potential as a therapeutic target. Depending on

the type of disease and the function of the growth factor within a

pathological condition, therapeutic approaches could consist of

MDK blockage or the exogenous supplementation of MDK.

In neoplastic diseases, MDK promotes tumor growth,

differentiation, and therapy-resistance. In these lines, MDK-

targeted strategies may have great therapeutic potential,

particularly in refractory cancer settings. Recent studies

demonstrate that blockage of MDK signaling by various

approaches rescues tumor resistance. For instance, the use of the

small molecule inhibitor iMDK (131), small interfering RNAs

(siRNAs) (132), or MDK blockage using anti-MDK monoclonal

antibodies (133) restores tumor apoptosis and inhibits tumor growth

in mice. A promising human MDK blockade system has already

been established in vitro using prostate cancer xenografts, where

synthetic siRNA in combination with the chemotherapeutic

paclitaxel (PTX) affects tumor cell proliferation, apoptosis, and

angiogenesis (132). Another way to target MDK is via an antisense

oligodeoxynucleotide molecule based on the secondary structure of

MDK mRNA, referred to as antisense oligoDNA, or morpholino

antisense oligomers. Treatment with antisense MDK suppresses

tumorigenicity in mouse rectal carcinoma cells and other xenograft

models in vitro and reduces tumor growth in nude mice in vivo

(134). A recent study precisely looked into the effects of MDKwithin

the HCC microenvironment and postulated MDK inhibition as

valuable therapeutic addition to anti-PD-1 immunotherapy in

HCC patients, as the standard treatment, sorafenib, leads to an

immunosuppressive tumor microenvironment due to increased

MDK expression (135). MDK-TRAP, a MDK-binding peptide

derived from the MDK receptor LRP1, inhibits, similar to anti-

MDK antibodies, the binding between MDK and LRP1, thereby

decreasing cell growth and colony formation in G401 cells and

CMT-93 cells (136). As MDK/LRP1 signaling contributes to

anchorage-independent tumor cell growth, its disruption might be

a promising cancer treatment approach, along withMDK-TRAP and

polyclonal antibodies. The blockage or inhibition of MDK-mediated

effects prior to or during chemotherapy might increase treatment

effectiveness and benefits patients who are not responding to

conventional treatments.

Therapies with siRNA, oligoDNA, and other drugs inhibiting

MDK have not yet been tested for CNS-related neoplastic diseases

but might represent enormous therapeutic potential for the

treatment of glioblastomas. While in neuroblastomas PTN

expression is linked to good prognosis, high MDK mRNA levels
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are detected in tumors with poor prognosis (80). This is of

particular interest, as knockout of PTN and its receptor ALK

exerts antitumorigenic effects in glioblastoma animal models

(137). Monoclonal antibodies directed against MDK may allow

targeting these tumorigenic effects in the CNS, however, current

candidates still lack the necessary efficacy (138, 139). Moreover,

RNA aptamers against MDK hold great potential for therapeutic

treatment of neuroblastomas (27). Aptamers are biochemical agents

that specifically recognize a particular target, usually a protein

(140). They bind their target with high affinity and function

similarly to antibodies, which is why they have been considered

as highly effective therapeutics. In vitro and in vivo studies with

tumor xenografts depict a suppressed growth of neuroblastoma cells

upon intratumoral administration of RNA aptamers specific for

MDK (27). The clinical efficacy of anti-MDK aptamers has

additionally been shown for autoimmune disorders of the CNS,

such as MS. Anti-MDK aptamers induce Treg cell expansion in vitro,

while treatment of EAE mice with MDK-specific RNA aptamers

results in a delayed disease onset and lower clinical scores (25). This

attenuation of autoinflammatory processes has also been observed

when anti-MDK RNA aptamers were administered post EAE onset,

once the disease is established, demonstrating its therapeutic

potential in a clinically relevant setting (25).

Collectively, the blockade of MDK harbors great potential as

therapeutic strategy in neoplastic and autoimmune diseases of both

the periphery and the CNS. Nonetheless, it is important to better

understand the upstream and downstream regulators of MDK

signaling in order to develop novel therapeutic strategies.

In contrast to MDK-targeting strategies that aim to reduce

MDK levels in target tissues, several approaches have been proposed

that incorporate distinct features of the growth factor or focus on an

exogenous or endogenous increase of MDK levels. In these lines,

MDK might be a candidate for cancer vaccine development, as it

has been shown that MDK-primed cytotoxic T cells are able to lyse

tumor cells (36). Another novel therapeutic strategy for peripheral

tumors expressing MDK is the promotor-based conditionally

replicative adenovirus therapy, which has been tested in

pancreatic cancer cell lines in vitro (141). This gene therapy

involves an oncolytic virus containing part of the MDK promotor,

named Ad-MDK. The virus is capable of killing tumor cells and

even though the growth factor MDK itself is not involved in this

kind of therapy, its solely expression in cancer tissues allows a

tumor-selective replication of the virus containing the MDK

promotor and might be a promising new cancer therapy (141).

As shown for pancreatic carcinomas, Ad-MDK gene therapy

enables glioblastoma-specific expression of oncolytic viruses,

highlighting the use of MDK for the treatment of malignant

glioblastomas (142). Gene therapy might also be a useful tool in

non-neoplastic CNS-affecting diseases as MDK is thought to be

involved in neural repair upon brain injuries. Studies in mice show

that the injection MDK encoding adenovirus after ischemic injury

decreases the infarct volume and protects against ischemic damage

(143, 144). Similarly, intrathecal administration of MDK promotes

functional recovery upon spinal cord injury in rats (37), supporting

the beneficial effects of elevated MDK levels following CNS insult

(113). Altogether, the endogenous or exogenous elevation of MDK
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levels in the CNS represents a promising treatment option for

various injuries of the nervous system. So far, multiple non-invasive

approaches for drug delivery into the CNS have been tested,

including intranasal administration (145–147), focused ultrasound

(148) or nanobiotechnology-based delivery techniques (149). These

approaches may harbor great potential for the exogenous elevation

or reduction of MDK levels in the CNS. Additionally, gene and

cellular therapies may represent useful long-term strategies for

numerous CNS-affecting disorders (150).
Conclusion

The multifunctional growth factor MDK is a central factor in

numerous pathologies (Table 1, Figure 2) and harbors great

potential as biomarker and therapeutic target (121). Depending

on disease, MDK exerts diverse functions that drive or suppress

disease progression. As we have discussed in this review, MDK

exerts tumorigenic functions by promoting tumor growth,

differentiation, and chemoresistance in neoplastic diseases (16, 26,

27, 78, 82). Additionally, MDK contributes to the onset and

progression of inflammatory and autoimmune diseases through

its chemoattractant properties (29–31, 90) and the suppression of

regulatory mechanisms (24, 25). While these mechanisms

collectively contribute to disease progression, it has become clear

that MDK can also exert tissue-protective functions (11, 12) that

attenuate neurodegeneration and support repair in the periphery

(13, 29) and CNS (34).

Altogether, these diverse functions allow a wide range of MDK-

centered therapeutic strategies. Numerous studies have already

demonstrated beneficial outcomes following MDK blockade in

inflammatory disorders and malignancies (25, 131–134).

The next step is now to evaluate these strategies in combination

with established therapies in order to increase treatment efficacy

and to overcome tumor-resistance. Moreover, as central mediator

of neuro-immune crosstalk, MDK has great potential as therapeutic

target in CNS disorders. While inhibition or blockade of MDK

signaling may be a promising option for neoplastic, inflammatory,

or autoimmune diseases affecting the CNS, endogenous or

exogenous increase of MDK levels could improve the outcome in

the context of acute CNS injuries and ischemia. In these lines,

particularly recently emerging opportunities of non-invasive drug

delivery into the CNS further support the therapeutic potential of

MDK-centered therapies in the treatment of CNS disorders (145–

149). Finally, beyond its functions as therapeutic target and a critical
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modulator of disease processes, MDK offers great potential as

putative biomarker in the context of various malignancies and

disorders (92, 93, 122–124, 127–129). Future studies will be

necessary to evaluate each individual benefit of MDK as a

biomarker and compare them to well established markers. In

summary, MDK unveils new therapeutic avenues that necessitate

further validation in future studies.
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Impact of inflammation and Treg
cell regulation on neuropathic
pain in spinal cord injury:
mechanisms and
therapeutic prospects
Chunjia Zhang1,2, Yan Li3, Yan Yu3, Zehui Li1,2, Xin Xu1,2,
Zuliyaer Talifu4, Wubo Liu1,2,5, Degang Yang1,2, Feng Gao1,2,
Song Wei1,2, Liang Zhang1,2, Han Gong1,2, Run Peng1,2,
Liangjie Du1,2 and Jianjun Li1,2,3,5*

1School of Rehabilitation, Capital Medical University, Beijing, China, 2Department of Spinal and Neural
Functional Reconstruction, China Rehabilitation Research Center, Beijing, China, 3Institute of
Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China, 4School of Population
Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College,
Beijing, China, 5Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Spinal cord injury is a severe neurological trauma that can frequently lead to

neuropathic pain. During the initial stages following spinal cord injury,

inflammation plays a critical role; however, excessive inflammation can exacerbate

pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation

and alleviating neuropathic pain. Treg cells release suppressor cytokines and

modulate the function of other immune cells to suppress the inflammatory

response. Simultaneously, inflammation impedes Treg cell activity, further

intensifying neuropathic pain. Therefore, suppressing the inflammatory response

while enhancing Treg cell regulatory function may provide novel therapeutic

avenues for treating neuropathic pain resulting from spinal cord injury. This review

comprehensively describes the mechanisms underlying the inflammatory response

and Treg cell regulation subsequent to spinal cord injury, with a specific focus on

exploring the potential mechanisms through which Treg cells regulate neuropathic

pain following spinal cord injury. The insights gained from this review aim to provide

new concepts and a rationale for the therapeutic prospects and direction of cell

therapy in spinal cord injury-related conditions.
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1 Introduction

Spinal cord injury (SCI) occurs when there is injury or damage to

the spinal cord due to an external force that may result in neurological

dysfunction. This injury can affect, to varying degrees, the sensory,

motor, and autonomic functions of the body (1). Such injuries result in

severe deterioration in the quality of life of patients and increase

disability and mortality rates for spinal cord injuries (2, 3). Trauma

accounts for approximately 90% of spinal cord injuries (4). Neuropathic

pain is a complex disorder caused by neurological lesion or disease and

has become a major prognostic challenge for clinical patients due to its

difficult-to-treat and often ineffective treatment options (5). A new

definition of neuropathic pain was proposed by a panel of experts in

2008: ‘pain that occurs as a direct consequence of an injury or disease

affecting the somatosensory system’ (6), which has since been endorsed

by the International Association for the Study of Pain (IASP) (7).

Peripheral or central neurological lesions can result in loss of sensation

in the innervated areas of the damaged nerves or in areas of the body

that correspond to areas of the spinal cord or brain that have been

directly or indirectly damaged as a result of the lesion or disease.

Therefore, sensory hypersensitivity in the affected area is often

accompanied by sensory loss when most neuropathic pain occurs (8).

Pain resulting from SCI can affect the patients’ quality of life and

severely impact the prognosis, which can result in lifelong consequences.

Neuropathic pain (NP), a complex and heterogeneous disorder, affects

approximately 8% of the adult population and has significant

implications for both patients and healthcare systems (9). The

International Association for the Study of Pain (IASP) defines NP as

pain that arises directly from a lesion or disease affecting the

somatosensory system (10). The etiology of NP can be attributed to

damage to either the peripheral nerves, resulting in peripheral

neuropathic pain (PNP), or the central nerves, resulting in central

neuropathic pain (CNP). PNP is commonly associated with conditions

such as Complex Regional Pain Syndrome (CRPS) and Failed Back

Surgery Syndrome (FBSS), including cancer and diabetes. CNP typically

arises following a stroke, spinal cord injury, or multiple sclerosis (11).

Around 8% of cases of central pain syndromes manifest in post-stroke

patients (12), while spinal cord injury patients constitute approximately

30-50% of cases (13), and those suffering from multiple sclerosis

comprise around 20-25% (14). NP is characterized by spontaneous

pain (pain that occurs without provocation, such as burning sensations

and tingling), allodynia (pain resulting from non-harmful stimuli), and

hyperalgesia (an increased response to painful stimuli). Pain after SCI

canmanifest itself in a variety of ways, and as scar tissue recedes, chronic

pain emerges, limiting the prognosis of SCI and affecting neuroplasticity

(15, 16). The damage to nerve fibers and neurons following SCI can also

cause chronic symptoms of neuropathic pain, which may be closely

related to the neuroinflammatory response (17). Neuropathic pain is

pain due to nerve fiber damage or chronic compression, which can

manifest as a tingling, burning, or electric shock-like pain (8). It is an

abnormal pain response due to damage to the nervous system, which

may manifest as hypersensitivity or spreading of pain (18). Nerve fiber

degeneration or sustained compression on nerve fibers can give rise to

neuropathic pain, attributed to aberrant firing or heightened release of

neurotransmitters. The propagation of nerve impulses becomes
Frontiers in Immunology 02156
irregular, and these abnormal transmissions can lead to distortion or

amplification of pain sensations (19). Subsequent to a spinal cord injury,

certain neurons may exhibit augmented excitability, resulting in an

excessive amplification of pain signaling. This abnormal excitability

might involve neurons beyond the injury site, causing pain sensations to

radiate into unaffected areas. The heightened neuronal activity

engenders impaired nerve conduction, thereby disrupting the

transmission of pain information through the central nervous system

(20). A neuroinflammatory response occurs, characterized by tissue

swelling and increased pressure in the vicinity of the nerves.

Consequently, inflammatory mediators like tumor necrosis factor,

prostaglandins, and cytokines are released, thereby leading to aberrant

pain perception (8, 21, 22). Alterations and remodeling of neural circuits

in the central nervous system manifest following spinal cord injury.

This, in turn, can elicit a painful response to otherwise innocuous

stimuli, consequently inducing neuropathic pain characterized by

sensations of tingling, burning, and electric shock-like pain (8, 23).

Following SCI, the inflammatory response is complex and is

driven by a variety of cellular and signaling molecules, including

inflammatory factors and injury-associated molecules (e.g., high

mobility group protein (HMGB1), heat shock protein (HSP), etc.).

These inflammatory mediators subsequently recruit and activate

immune cells to further exacerbate the inflammatory response (24).

Intervention of the inflammatory response leads to inflammatory cell

infiltration, neuronal degeneration, and abnormal neurotransmitter

release, which in turn exacerbates the perception and development of

neuropathic pain (25). Microenvironmental imbalance and

parenchymal cell infiltration are key to secondary SCI (26, 27). The

immune response is involved in post-injury microenvironmental

regulation; its regulatory role is achieved through interactions with

other immune cells, which can regulate the activation state of immune

cells and control the intensity of the inflammatory and immune

response through cell contact and cytokine secretion (28, 29).

Regulatory T (Treg) cells, a specialized subpopulation of

immunosuppressive T cells, are essential for maintaining immune

homeostasis (30). There is mounting evidence indicating the

involvement of the adaptive T-cell immune response, within the

immune system, in the development of neuropathic pain. Previous

investigations have demonstrated the infiltration of T cells into the

spinal cord (31, 32), the site of injury (33), and the dorsal root

ganglion (DRG) subsequent to peripheral nerve injury (34). These

studies highlight the indispensable role of T cell regulation in

neuropathic pain. Although the precise contributions of distinct T

cell subpopulations to neuropathic pain remain unclear, it has been

observed that helper T (Th)1 cells are capable of augmenting pain

sensitivity through the production of inflammatory cytokines, namely

interferon gamma (33). Conversely, helper T (Th)2 cells have shown

the ability to diminish pain sensitivity in animal models of nerve

injury by generating anti-inflammatory cytokines, such as IL-10 (33).

Simultaneous investigations have also suggested a potential link

between microglia-mediated gender dimorphism in pain and Treg-

mediated regulation of microglia activation and attenuation of pain

hypersensitivity (35). Treg cells exert a localized immunosuppressive

effect by targeting immune cells to reduce the inflammatory response

and decrease self-attack (36). Regulation of Treg cell number and
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function is an important part of the pathogenesis of various immune

diseases. Treg cells act as key negative regulators of inflammation in

various pathological states, including autoimmunity, injury, and

neurodegeneration (37–43). Regulatory T cells (Tregs) play a

crucial role in maintaining self-tolerance and the dynamic

equilibrium of the immune microenvironment (44). Given their

involvement in immunoregulation during the inflammatory

response to neuropathic pain, it is imperative to examine the

functions of inflammation and Treg cell regulation in the context

of neuropathic pain following spinal cord injury.

This review describes the relationship between the

inflammatory response and Treg cell regulation following SCI

(Figure 1), as well as the critical role of Treg cells in the

development of neuropathic pain after SCI. The overarching

objective of this review is to gain profound insights into the

underlying mechanisms of neuropathic pain following SCI and to

provide novel avenues for cellular therapeutic interventions.
2 The inflammatory response is
associated with neuropathic pain
after SCI

2.1 Release of inflammatory mediators and
inflammation-mediated pain transmission

The release of inflammatory mediators and inflammation-

mediated pain transmission play an important role in the

progression of disease after SCI (45). During the inflammatory
Frontiers in Immunology 03157
response, immune cells and nerve cells interact to trigger the release

of inflammatory mediators, including cytokines (tumor necrosis

factor (TNF)-a, interleukin (IL)-1b) and chemokines (e.g., CXCL1,

CXCL2). These inflammatory mediators are involved in the

inflammatory response and regulate inflammation-related

signaling pathways (46, 47).

In addition, the release of inflammatory mediators participates

in the inflammation-mediated pain transduction process. Following

SCI, inflammatory mediators stimulate sensory neurons and dorsal

root ganglion cells, leading to increased neuronal excitability (48).

This abnormal state of excitability induces pain perception, which is

mediated through signaling pathways, during which inflammatory

mediators act as signaling molecules that interact with their

corresponding receptors and ion channels to regulate neuronal

excitability (49, 50). Such receptors and channels include TRPV1

channels, ATP receptors, and acid-sensing ion channels.

Inflammatory mediators alter neuronal excitatory thresholds and

enhance neuropathic pain by modifying the activity and expression

of these channels (51–54). Therefore, inflammatory mediators are

involved in pain transmission following SCI.
2.2 Effect of the infiltration and activation
of immune cells on pain after SCI

SCI elicits an immune response, resulting in the accumulation

of inflammatory and immune cells. Immune cell infiltration occurs

at the site of SCI where immune cells interact with neurons (55, 56).

These infiltrating immune cells mainly include monocytes,
FIGURE 1

Relationships between the inflammatory response, Treg cells, and other cell types following spinal cord injury.
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macrophages, T cells, and B cells (57). Different cell types release

different immune molecules at the site of injury after SCI, and the

peak period of cellular infiltration varies (Figure 2). Immune cells

are activated to release a series of cytokines and chemicals,

including TNF-a, IL-1b, and IL-6, which an act directly on

neurons to increase excitability and decrease inhibition (58). The

interaction between immune cells and nerve cells leads to increased

neuronal excitability, triggering or enhancing the nociceptive

transmission of pain through direct stimulation of neurons or via

effects on synaptic transmission (59). Related studies have shown

that inhibiting the infiltration and activation of immune cells, or

targeting and modulating cytokines and chemicals released by

immune cells, can attenuate pain sensation following SCI (60–63).

Therefore, modulation of the infiltration and activation of immune

cells may be a novel approach to treat pain after SCI.
2.3 The role of glial cells in the
inflammatory response and the
maintenance of neuropathic pain

Glial cells, including astrocytes and microglia, are involved in

the inflammatory response following SCI (64–66). These glial cells

become activated after SCI and release multiple inflammatory

mediators (67, 68) (Figure 2). Primary injury is initiated by an

initial insult to the spinal cord, leading to mechanical damage and

subsequent opening of the blood-brain barrier (BBB). This process

is characterized by oxidative damage, edema, ischemia, and
Frontiers in Immunology 04158
heightened glutamate excitability (25, 69). Within the initial few

hours, these mechanisms contribute to the onset of secondary

damage, whereby immune cells infiltrate the damaged region via

the vascular system, resulting in cell death and exacerbated injury.

Various cell types are involved in this secondary phase, exerting

distinct temporal influences on disease progression (25, 70). Spinal

cord injury induces the activation and recruitment of multiple glial

cells, leading to intricate downstream effects on neuronal function

(71). The formation of the glial scar after SCI involves the

participation of various cell types. Astrocyte activation begins on

day 1 post-injury and reaches its peak at day 14 (72–75). Schwann

cell recruitment starts 21 days after SCI (76, 77). Meningeal cells

become involved 3 days after SCI and reach their peak at day 14

(78–80). Fibroblast activation initiates 3 days after SCI and peaks at

day 7-14 (81–84). Finally, a limited degree of structural tissue

regeneration and repair takes place in the weeks to months

following spinal cord injury (25). Astrocytes, the most common

glial cell type in the spinal cord, play an important role in

maintaining normal neuronal function, regulating the blood–

brain barrier, and removing intercellular metabolites (85, 86). The

deleterious effects of astrocytes during SCI are produced through

reactive astrocytes. Two types of reactive astrocytes have been

identified: the A1 astrocyte and the A2 astrocyte (87, 88). The

former plays a destructive role and promotes the inflammatory

response, whereas the latter plays a restorative role in ischemia-

induced inflammation and inhibits the inflammatory response (89).

The imbalance between the A1 and A2 responses is an important

mechanism in the development of neuropathic pain after SCI.
FIGURE 2

Peak time of infiltration and inflammatory factors released by different cell types after spinal cord injury.
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Excessive A1 astrocyte responses and excessive release of

inflammatory mediators may lead to neuronal activation and

abnormal nociceptive transmission, resulting in the development

of neuropathic pain (90). The A2 astrocyte response is a major

contributor to the development of neuropathic pain. In addition,

deficiencies in the A2 astrocyte response may affect tissue repair and

anti-inflammatory mechanisms, perpetuating the inflammatory

response and exacerbating the degree and duration of pain (91).

Microglia are mainly found in the gray matter regions of the

central nervous system. Following SCI, microglia are also activated

and participate in the inflammatory response, promoting neuronal

excitability and inflammation-mediated nociceptive transmission

(92). Microglia act as powerful neuromodulators to regulate

salience transmission and pain transmission through multiple

inflammatory mediators (e.g., pro-inflammatory and anti-

inflammatory factors) acting on neurons and other glial cells (93)

(Figure 2). Microglia have multiple cell surface receptors that

dynamically and multifacetedly regulate the inflammatory

response after SCI by interacting with neurons, astrocytes,

immune cells, and others (94). Studies have reported that

microglia are involved in inflammatory responses, pain signaling,

and synaptic remodeling after SCI. Microglia maintain the

inflammatory response and the enhancement of pain afferent

signaling through the recruitment of immune cells after injury,

forming synaptic structures with neurons. Vesicles released through

these structures enhance neuronal excitability and strengthen pain

signaling (95–98). Furthermore, it has been reported that the

HMGB1–RAGE axis contributes to the major macrophage/

microglia-mediated pro-inflammatory response, and that

inhibition of this pathway exerts neuroprotective functions after

SCI. This cascade modulation of the immune microenvironment

has emerged as a prospective therapeutic approach for the

treatment of SCI (99). In addition to the well-studied microglia

and astrocytes, oligodendrocytes, as the main myelin-producing

glial cells, are critical in maintaining myelin for fast and efficient

conduction of electrical impulses along the axon and for

maintaining axon integrity (100). Some studies have reported that

Treg cells are involved in oligodendrocyte differentiation and

myelination, which has a positive effect on SCI recovery (101).
3 Regulatory role of Treg cells in SCI

3.1 Function and characterization of
Treg cells

Treg cells are an immunosuppressive subpopulation of CD4+ T

helper cells, which have important immunomodulatory functions

and unique characteristics that help to maintain immune

homeostasis and inhibit overactivation of the immune response

(102, 103). The functions of Treg cells are characterized by

immunosuppression, immune tolerance, and immune homeostasis.

Recent advances in Treg cell biology have identified Treg cells

residing in specific tissues for the maintenance of tissue homeostasis

and repair (104), such as in the secondary prevention of ischemic

stroke where they suppress immune responses by directly inhibiting
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the activation and function of other immune cells (105). Treg cells

play an important role in the immune system as self-tolerance

regulators, preventing damage to tissues from the immune response

and reducing the occurrence of autoimmune diseases. Furthermore,

Treg cells are involved in tumor development and progression by

suppressing tumor immunity; Treg cells can be activated by

chemokines (e.g., CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28,

and CXCR3-CCL9/10/11), are chemotactically attracted to the

tumor microenvironment, and participate in microenvironment

regulation (106–108).

The dysregulation of the Th17 and Treg cell balance in

neurological disorders can significantly impact disease progression

(39). Excessive activation of Th17 cells and insufficient regulation by

Treg cells can contribute to immune-mediated neuroinflammation

and injury, thereby promoting disease progression (109, 110).

Additionally, emerging evidence highlights the interconnectedness

of the gut, spinal cord, and immune cells in spinal cord injury

disorders, which establishes a “gut-spinal cord-immune” axis. Treg

cell regulation in the intestinal environment, along with the

promotion of IL-10 secretion, can modulate the dynamic

equilibrium between Treg and IL-17gd T cells, suppress

inflammatory responses, and enhance motor function recovery in

rats. Collectively, these studies underscore the crucial regulatory

function of Treg cells in the pathogenesis of spinal cord injury (111).

CD25 is one of the hallmark features of Treg cells. Increased

expression of CD25 by Treg cells is closely associated with

immunosuppressive functions (112). In addition, Treg cells

express the transcription factor FOXP3 in the nucleus, which is a

major marker of Treg cell identity and a key molecule in the

regulation of their function (113, 114). Transforming growth

factor b (TGF-b) and IL-10 are examples of the multiple

inflammatory suppressive cytokines produced by Treg cells; these

factors inhibit the activation and immune response of other cells,

leading to immunosuppression and immunomodulation (115, 116).

Short-chain fatty acids (SCFAs) modulate Treg cells in the gut and

affect the balance of Treg cells and IL-17+gd T cells in the spinal

cord, which has been reported to suppress inflammatory responses

and promote locomotor function in SCI rats (111). Treg cells

interact with amphiregulin (AREG) through the AREG/epidermal

growth factor receptor (EGFR) signaling pathway to participate in

immune regulation while controlling skeletal muscle function and

regeneration (117). In summary, Treg cells play an important role

in immune regulation by suppressing the activation and function of

other immune cells, maintaining immune homeostasis, and

preventing damage to host tissues from the immune response.
3.2 Treg cell regulation of the
inflammatory response after SCI

A reduction in the number of Treg cells is closely associated with

the inflammatory response following SCI. Treg cells regulate the

degree of inflammation through a variety of mechanisms; they can

inhibit the activity of other immune cells (e.g., Th1, Th2, and Th17

cells) and reduce the production and release of inflammatory

mediators (118, 119). The number of Treg cells was reported to be
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significantly reduced in the spinal cord and its surrounding tissues,

which resulted in a decrease in the immunomodulatory function of

Treg cells, allowing an over-activated inflammatory response to

develop at the site of injury (103). Treg cells reduce the extent of

the inflammatory response by inhibiting the activation of other

immune cells and the production of inflammatory factors. The

inflammatory response in SCI is directly suppressed by inhibiting

the activation signaling of other immune cells through the binding of

the surface molecules cytotoxic T lymphocyte antigen 4 (CTLA4)

and programmed cell death 1 (PD-1) to their ligands (120, 121). Treg

cells act as regulatory antigen presenters through specific ligand–

receptor interactions, inhibiting antigen activation and inflammatory

responses by immune cells (120). Treg cells also interfere with

inflammatory signaling pathways, and can reduce the production

of inflammatory factors and inflammatory responses by inhibiting

the activation of the nuclear transcription factor NF-kB (122–124).

In addition, some studies have reported that by regulating the

TUG1/miR-214/HSP27 signaling pathway, the proportion of Treg

cells can be reduced, thereby alleviating acute SCI (125). Treg cells

can also regulate neuroendocrine circuits by inhibiting cytokine

secretion and release; therefore, regulating neuronal activity Janyga

et al., 20231. Treg cells downregulate TNF-a and IL-6 expression in

microglia by inhibiting STAT3 pathway activation, which ultimately

improves the damaged spinal cord microenvironment and promotes

the recovery of neurological function after SCI (126). MBP-Th2 cell

transplantation after SCI changes the state dominated by Th1 and

M1 cells to a state dominated by Th2, Treg, and M2 cells. This

changes the local immune microenvironment by increasing the

number of Th2 cells, thus producing beneficial effects on the

spinal cord and promoting the repair of SCI.
3.3 Inhibition of neuropathic pain by
Treg cells

Neuroimmune communication has emerged as a key neuropathic

pain mechanism in previous studies, which reported that both the

innate and adaptive immune systems are associated with

neuroinflammatory changes in neuropathic pain (127). Local

infiltration of macrophages, T cells, astrocytes, and activated

microglia following SCI results in the release of multiple

inflammatory mediators (pro-inflammatory cytokines, such as TNF-

a, IL-1b, IL-17, and IFN-g) to maintain nociceptive hypersensitivity

(128–131) (Figure 2). In mice, mechanical pain after nerve injury can

be alleviated by intrathecal injection of Treg cells (132). Furthermore,

CD28 agonists can alleviate mechanical pain hypersensitivity due to

injury in rats with chronic compression injury of the sciatic nerve by

modulating the number of T cells, macrophages, and other immune

cells in the sciatic nerve and dorsal root ganglion (44, 133). The

elimination of Treg cells using a CD25 antibody leads to prolonged
1 Janyga S, Kajdaniuk D, Czuba Z, Ogrodowczyk-Bobik M, Urbanek A, Kos-

Kudła B, et al. Interleukin (IL)-23, IL-31, and IL-33 play a role in the course of

autoimmune endocrine diseases. Endocr Metab Immune Disord Drug

Targets. (Ahead of Print) (2023). doi: 10.2174/1871530323666230908143521
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mechanical abnormalities in sciatica mice (44). Depletion of FoxP31

Treg cells in transgenic DEREG mice leads to a transient increase in

mechanical pain hypersensitivity (134).

Treg treatment also modulates the amount of reactive astrocytes

of different phenotypes to reduce neurotoxicity by attenuating

astrocyte GFAP expression. Interestingly this therapeutic effect of

Treg cells manifests itself differently in female and male mice, with a

reduction in the number of neurotoxic astrocytes in peripherally

injured male mice, and conversely, in peripherally injured females,

the number of protective astrocytes was increased with peripheral

nerve injury (135). Brain Treg cells inhibit neurotoxic astrocyte

proliferation and protect neurons from damage by producing the

low-affinity EGFR ligand AREG (136). Male mouse meningeal Treg

cell administration may induce an anti-inflammatory shift in

microglia phenotype via Treg-associated effector cytokines IL-10

and TGF-b (137–139).

The inhibitory role of Treg cells in neuropathic pain has been

confirmed by a series of animal studies, as described above. The

results of clinical trials similarly suggest that the number of T helper

cells producing IL-17 is reduced, while the number of Treg cells is

increased in patients with chronic lower back pain.

Correspondingly, mRNA expression levels of FOXP3 and TGF-b
were elevated in peripheral blood mononuclear cells according to

cytokine profiling assays (140, 141). This phenomenon has been

speculated to reduce pain levels in patients through the suppression

of inflammatory responses (142). In summary, Treg cells reduce

inflammatory damage to neurons by modulating neuroimmune

interactions, and reducing neuronal hyperexcitability and abnormal

alterations in synaptic plasticity, which in turn attenuates the onset

and progression of neuropathic pain.
4 Clinical application strategies for
Treg cell enhancement and synergy

4.1 Therapeutic strategies for Treg cell
increase and functional improvement

The number of Treg cells can be increased by exogenous donor

acquisition or endogenous proliferation and expansion, for

example, with the use of growth factors, immunomodulators, or

cell therapy, among others (143–145). Targeting Treg cell ligand–

receptor interactions using specific cytokines or drugs (e.g., IL-10,

TGF-b, and IL-2, etc.) that enhance Treg cell immunosuppression,

enhancing immunomodulation, improves the function of Treg cells

(146, 147). Improving Treg cell migration and accurately localizing

damaged sites by altering chemical gradients, enhancing cytokine

adhesion, and modulating inflammatory factor expression is one of

the important therapeutic strategies (148–150).
4.2 Synergistic effects of Treg cells with
immunosuppressants and other treatments

Treg cells, as natural immunomodulatory cells, can inhibit immune

cell activity, and can function synergistically with immunosuppressive
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agents (e.g., immunosuppressant drugs or cytokine inhibitors) to

reduce inflammatory and autoimmune responses (151–153). Cell

therapy for SCI is emerging as a new research hotspot (154).

Currently common cell therapies, such as stem cell therapy or gene

therapy, can repair and regenerate tissues. Treg cell combined with

stem cell therapy is a potentially more desirable therapeutic tool, and

the synergistic combination of drugs with Treg cells enhances the

immune-suppressive effect of the drugs, reduces the side effects, and

lowers the risk of immune tolerance (155). Treg deficiency affects the

gut microbiota and bile acid metabolism, induces IL-6 expression, and

triggers a lethal inflammatory response. Antibiotics can modulate the

gut microbiota and bile acid metabolism by inhibiting IL-6 levels, thus

preventing the lethal inflammation caused by Treg deficiency (156). In

studies on immune-related diseases associated with tumors, Treg cells

are implicated in tumor development and progression by suppressing

anti-tumor immune responses. Therefore, there is a critical need in the

field of cancer immunotherapy to deplete Treg cells andmodulate their

function to enhance anti-tumor immune responses (106). Research has

demonstrated that dendrobine significantly reduces Foxp3 expression,

increases serum IL-17 levels, and enhances Th17 cell function while

suppressing Treg cell function. Additionally, in vivo, dendrobine and

cisplatin may synergistically regulate the Treg/Th17 cell balance rather

than induce apoptosis (157). All-trans retinoic acid is involved in

regulating the differentiation of helper T cells (Th) and Treg cells.

Furthermore, all-trans retinoic acid maintains the stability of thymus-

derived Treg cells under inflammatory conditions (158). Severe asthma

development is particularly associated with Th17 cell and neutrophil

activation, and studies have shown that asthma patients can effectively

suppress airway inflammation by increasing the Treg/Th17 cell ratio

using statins in combination with corticosteroids (159, 160). Tregs are

key target cells involved in asthma relief, and it has been suggested that

glucocorticoid application reduces the number and activity of Tregs in

various asthma mouse models, potentially through thymic T-cell

production inhibition (161). Immunomodulators (e.g., anti-CD3

antibody, anti-CD25 antibody, etc.) can directly influence the

number and activity of Treg cells, and targeted depletion of Treg

cells can activate tumor-specific effector T cells and enhance the

efficacy of tumor immunotherapy (162). Cancer immunotherapy

primarily focuses on immune checkpoint molecules, and blocking

CTLA-4 primarily activates T cells and suppresses Treg cells. PD-L1

plays a dominant role in Th1 and Th17 immunity, while PD-L2

primarily impacts Th2 immunity (163). The use of Treg cells as a cell-

based therapeutic approach was initially demonstrated in mouse

models; Treg cells were found to have a beneficial role in

pathogenesis (36). However, the immune rejection faced by this

therapeutic approach is considered to be one of the

important challenges.
5 Prospects and challenges in the
application of Treg cell therapy

From the current degree of clinical application, firstly, there still

exists a certain technical difficulty in large-scale preparation of high-

purity Treg cells. Second, further clinical research and validation are
Frontiers in Immunology 07161
still needed to determine the therapeutic mechanism and safety of

Treg cells. In addition, the survival time and functional stability of

Treg cells also requires further improvement. Overall, although

there are still some challenges and limitations in the clinical

application of Treg cells, they have great potential in regulating

inflammatory responses and treating immune-related diseases.

Therefore, Treg cells are expected to be a potential target for

regulating inflammatory responses and treating neuropathic pain

after SCI, which will bring better therapeutic effects and treatment

strategies for SCI patients.
6 Conclusions

Spinal cord injury (SCI) is a severe neurotraumatic condition that

frequently results in the development of neuropathic pain.

Neuropathic pain following spinal cord injury (SCI) is a complex

spectrum of disorders characterized by a multitude of

pathophysiologic mechanisms and associations with psychosocial

factors, posing significant challenges in its management (164).

While research in recent decades has shed light on the

pathophysiology of neuropathic pain after SCI, therapeutic

advancements have been limited. Given the high prevalence of

chronic neuropathic pain, future research will prioritize the

investigation of targeted therapies, identification of reliable

biomarkers, and evaluation of combination therapies targeting

multiple mechanisms to enhance treatment efficacy. Inflammation

is known to play a critical role in the early stages following SCI, but

excessive inflammation can exacerbate painful symptoms. Treg cells

have a pivotal function in regulating inflammation and reducing

neuropathic pain. Treg cells regulate inflammatory responses by

influencing cytokine expression and other immune cell functions.

However, inflammation also hinders the activity of Treg cells, thus

exacerbating neuropathic pain. Therefore, besides suppression of the

inflammatory response, enhancing the regulatory function of Treg

cells may also offer new therapeutic avenues for the treatment of

neuropathic pain caused by SCI. It is very valuable and meaningful to

study the potential regulatory function of Treg cells in neuropathic

pain after spinal cord injury or even central nervous system injury.

Future research on neuropathic pain after spinal cord injury may

focus on the development of new immunomodulatory drugs,

assessment of the number and function of patients’ Tregs cells to

form a personalized treatment plan, the development of vaccines to

regulate the immune system, and novel cell therapies based on the in

vitro expansion of Tregs technology and the transfer of Tregs cells

into the patient’s body. However, it is important to note that the

clinical application of Tregs for the treatment of neuropathic pain

requires a careful consideration of human Treg cell purity, stability,

and functional role in neuropathic pain disorders.
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Causal effects of immune cell
surface antigens and functional
outcome after ischemic stroke: a
Mendelian randomization study
Weiming Sun1,2,3*†, Jiawei Gui4†, Keqi Wan1,2†, Yize Cai5,
Xiangli Dong6, Guohua Yu1,2, Chafeng Zheng1,2, Zhen Feng1,2,3

and Lang Shuai1,2*

1Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang, China, 2The First Clinical Medical College, Jiangxi Medical College,
Nanchang University, Nanchang, China, 3Postdoctoral Innovation Practice Base, The First Affiliated
Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 4HuanKui Academy, Jiangxi
Medical College, Nanchang University, Nanchang, China, 5School of Public Policy, Nanchang
University, Nanchang, China, 6Department of Psychosomatic Medicine, The Second Affiliated
Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
Objective: While observational studies link immune cells with post-stroke

functional outcome, the underlying immune mechanisms are not well

understood. Immune cell surface antigens are actively involved in the biological

behavior of immune cells, investigating immune cell surface antigens could deepen

our comprehension of their role and biological processes in stroke recovery.

Therefore, we aimed to investigate the immunological basis of stroke outcome

by exploring the causal relationship between immune cell surface antigens and

functional outcome after ischemic stroke in a Mendelian randomization study.

Methods: Genetic variants related to immune cell surface antigens and post-

stroke functional outcome were selected for two-sample Mendelian

randomization (MR) analysis. 389 fluorescence intensities (MFIs) with surface

antigens were included. Inverse variance weighted (IVW) modeling was used as

the primary MR method to estimate the causal effect of exposure on the

outcome, followed by several alternative methods and sensitivity analyses.

Additional analysis of the association between immune cell surface antigens

and risk of ischemic stroke for assessment of collider bias.

Results: We found that suggestive associations between CD20 on switched

memory B cell (OR= 1.16, 95% CI: 1.01-1.34, p=0.036) and PDL-1 on monocyte

(OR = 1.32, 95% CI: 1.04-1.66, p = 0.022) and poor post-stroke functional

outcome, whereas CD25 on CD39+ resting Treg (OR=0.77, 95% CI: 0.62-0.96,

p = 0.017) was suggestively associated with good post-stroke functional outcome.

Conclusion: The elevated CD20 on switched memory B cell, PDL-1 on

monocyte, and CD25 on CD39+ resting Treg may be novel biomarkers and

potential causal factors influencing post-stroke functional outcome.
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immune cell, surface antigens, ischemic stroke, prognosis, Mendelian randomization
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1 Introduction

Ischemic stroke, accounting for 62.4% of stroke events in 2019,

is the predominant stroke type with significant long-term

neurological impairment and high mortality (1). The complex

and poorly understood pathogenesis of ischemic stroke leads to

uncertain treatment strategies. Despite available treatments like

thrombus removal, their limited effectiveness and narrow

therapeutic window often result in an unfavourable outcome for

many patients (2). Hence, there is an urgent need to identify novel

biomarkers and therapeutic targets for ischemic stroke treatment.

Recent studies indicate that ischemic stroke triggers

neuroinflammation, characterized by lymphopenia and

dysfunction of immune cells, highlighting the critical role of the

immune response in stroke outcome (3, 4). Understanding how

immunity influences neurological recovery is thus essential. The

characteristics of immune cells in stroke patients mirror the body’s

immune status and are strongly linked to prognosis (5, 6). For

instance, regulatory T cells (Tregs), a crucial subset of

immunosuppressive T cells, are believed to modulate immune

responses in ischemic strokes, impacting prognosis (7, 8). CD4+

Treg levels at admission predict the modified Rankin Scale (mRS)

score three months post-stroke, correlating positively with outcome

(9). Immune cell surface antigens, key in immune cell

differentiation, activation, and signaling, determine immune cell

properties, indicating changes in function and status and reflecting

their phenotype. Targeting specific surface antigens on immune

cells could improve ischemic stroke therapy outcomes (10). Yet, the

exact relationship between these antigens and the post-stroke

functional outcome remains to be elucidated with existing studies

potentially affected by reverse causation and confounding factors.

Given that specific immune cell surface antigens might impact post-

stroke functional outcome, further research is essential to deepen

our understanding.

Mendelian randomization (MR), utilizing germline genetic

variants to investigate the causal effects of exposures on outcome,

is a pivotal methodology in epidemiological etiological inference

(11–13). The general independence of genetic variations from

environmental influences and outcomes provides us with a

favorable tool to study the causality of several complex exposures

and outcomes. Therefore, we performed a two-sample MR

framework using genome-wide association studies (GWAS) data

to explore the potential causal associations between immune cell

surface antigens and post-stroke functional outcome.
2 Methods

2.1 Study design

In this study, we utilized GWAS summary statistics for a two-

sample MR analysis to determine the causal effect of immune cell

surface antigens on post-stroke functional outcome (Figure 1).

Instrumental variables (IVs) in MR must meet three core

assumptions: (1) association with the exposure; (2) independence

from confounders; (3) influence on the outcome exclusively
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through the exposure. Our analysis relied on publicly available

GWAS summary statistics from cohorts primarily of European

ancestry. We carefully reviewed the original studies, and found that

sample overlap was negligible. An overview of the GWAS summary

data sources is presented in Table 1.
2.2 Genetic instruments for immune cell
surface antigens

In this MR study, we sourced genetic variants linked to immune

cell surface antigens (measured by median fluorescence intensities,

MFIs) from the publicly available GWAS Catalog (https://

www.ebi.ac.u/gwas/home). The initial genome-wide GWAS

analysis utilized data from 3,757 individuals of European

ancestry (14).

The MFI represents the median expression level of a

fluorescent-conjugated antibody bound to a cell, directly

proportional to the median quantity of antigen expressed in that

cell. The distribution was normalized for overall and daily

fluctuations to control batch effects in MFIs. A total of 389 MFIs

with surface antigens were included in seven panels (maturation

stages of T cell, Treg, TBNK, DC, B cell, monocyte, and myeloid cell,

respectively). All immune cells used to measure MFIs were collected

from the participant’s peripheral blood. Details of the 389 MFIs are

listed in Supplementary Table S1. Genetic variants were screened

based on the following conditions: (1) Single nucleotide

polymorphisms (SNPs, refer to DNA sequence polymorphisms

caused by variation in a single nucleotide at the genomic level)

associated with MFIs of immune cell surface antigens (P< 1×10-5)

and not in linkage disequilibrium (LD) with other SNPs (r2< 0.001

within a clumping window of 10000 kb); (2) a phenotypic variance

explained (PVE, evaluated using the R2) > 0.5% and a F statistic >10;

the F statistic was calculated as follows: R2 N−K−1ð Þ
K 1−R2ð Þ (R2, phenotypic

variance explained; N, effective sample size; K, the quantity of

genetic variants); (3) a minor allele frequency (MAF) > 0.05; (4)

exclusion of SNPs associated with the outcome (P< 1×10-5). The

remaining SNPs were utilized as IVs. Subsequently, we harmonized

the alleles and effects between the exposure and outcome. When the

SNPs were not identified in the outcome data, the proxy SNPs (r2 >

0.8) from 1000 genomes European reference data were used to

replace them. The SNPs that have palindromic alleles with

intermediate allele frequencies (MAF > 0.42) were removed.

Furthermore, we applied Steiger filtering to exclude SNPs that

explained more of the variance in the outcome than the exposure.

In the reverse MR analysis, the screening criteria for IVs were the

same as above.
2.3 Outcome data sources

We derived GWAS summary statistics for post-ischemic

stroke functional outcome from the Genetics of Ischemic Stroke

Functional Outcome (GISCOME) network (15), comprising 6,021

patients across 12 studies from Europe, Australia, and the United

States (16). Participants were European ancestry and aged 18 or
frontiersin.org
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above. Post-stroke functional outcome refers to a person’s level of

physical, mental and cognitive ability after a stroke, which

includes a range of factors such as mobility, strength,

coordination, speech, language, memory (15, 17). The main

focus of research has been on unfavorable functional outcomes

for stroke patients, including cognitive impairment or dementia,

dependency, disability, motor impairment, psychological

impairment (depression or anxiety) and death (18, 19). The

mRS approximately 3 months post-stroke was selected to assess

functional outcome. mRS assesses dependency of stroke patients
Frontiers in Immunology 03168
and ranges from 0 (no symptoms) to 5 (completely dependent and

bed ridden), and death was included in scale (mRS score = 6),

which is a commonly used scale for measuring the degree of

disability of people who have suffered a stroke or other causes of

neurological disability. We classified a ‘poor’ outcome as an mRS

score > 3 (2,280 cases) and a ‘good’ outcome as a score< 2 (3,741

cases). In our analyses, the mRS was analyzed as 2 dichotomous

variables (score of 0–2 vs 3–6), and the results were adjusted for

age, sex, ancestry, and baseline stroke severity as evaluated by the

NIH Stroke Scale (NIHSS).
TABLE 1 An overview of the GWAS summary data sources in this study.

Traits Data source Sample size or
cases/controls

Number
of SNPs

Ancestry Publication
year

PMID

389 immune cell
surface antigens

GWAS Catalog 3,757 individuals ∼22 million European 2020 32929287

Ischemic stroke MEGASTROKE
consortium

34,217 cases; 406,111 controls ∼8.3 million European 2018 29531354

Functional outcome after
ischemic stroke

GISCOME network 6021 cases ∼8.5 million European 2019 30796134
fron
FIGURE 1

Design of the present Mendelian randomization study of the associations between immune cell surface antigens and post-stroke
functional outcome.
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2.4 Assessment of collider bias

To assess whether the causal association between MFIs of immune

cell surface antigens and functional outcome after ischemic stroke is

attributable to collider bias, we also performed an MR analysis between

immune cell surface antigens and the risk of ischemic stroke. The

summary statistics were obtained from theMEGASTROKE consortium,

which included 406,111 controls and 34,217 patients with ischemic

stroke (20). Participants were drawn from 17 studies and were restricted

to Europeans only. SNPs that met the MEGASTROKE criteria (n_cases

> 50% and oevar_imp > 0.5) were selected for the MR analysis.
2.5 Statistical analysis

The inverse-variance weighted (IVW) method was adopted as

the main MR analysis. To account for multiple hypothesis testing,

we applied Bonferroni correction with a significance threshold of

P< 1.285 × 10-4 (0.05/389), indicating statistical significance. We

also considered results with p-values of 1.285 × 10-4 to 0.05

nominally significant. Sensitivity analyses were performed using

the weighted median, MR-Egger regression, and MR-Pleiotropy

Residual Sum and Outlier (MR-PRESSO). The weighted median

method yields consistent estimates when over 50% of the weights

originate from valid instrumental variables (21). MR-Egger

regression, both for the intercept and slope, assessed directional

pleiotropy and provided robust estimates adjusted for its presence

(22). Specifically, MR Egger regression tests for the presence of

directional pleiotropy by examining the intercept term and provides

an approximately unbiased estimate of the causal effect of exposure

on outcome by incorporating the intercept into the regression

model (22). MR-PRESSO was utilized to detect and account for

potential horizontal pleiotropy and to identify and exclude any

outliers with such effects (23). In cases where pleiotropy and

heterogeneity were absent, a significant result (P< 0.05) obtained

via the IVW method was considered positive, provided that the

effect estimates from other methods were consistent with those of

the IVW method. Cochran’s Q statistic assessed heterogeneity

among instrumental variables. If heterogeneity was present (P<

0.05), a random-effects IVW model was applied. For comparison,

we conducted anMR analysis using GISCOMEGWAS data without

adjusting for baseline NIHSS. All statistical analyses were carried

out using the MR-PRESSO (version 1.0) (23) and TwoSampleMR

(version 0.5.7) (24) packages in the R software environment.
3 Results

3.1 Thirteen immune cell surface antigens
as potential causal mediators of functional
outcome after stroke in the main
MR analysis

The number of SNPs as IVs generated by 389 MFIs of

immune cell surface antigens for MR analysis ranged from 7 to
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30, and all IVs passed Steiger filtering. Notably, all IVs exhibited

F statistics exceeding 10, with a minimum F statistic of

19.54, indicating the significant effectiveness of these IVs

(Supplementary Table S2).

In the IVWMR analysis of the expression levels of immune cell

surface antigens and post-stroke functional outcome, 13 suggestive

MFIs of surface antigens were identified, of which 4 were in the B

cell panel, 1 in maturation stages of the T cell panel, 6 in the Treg

panel, 1 in myeloid cell panel, and 1 in the monocyte

panel (Figure 2).

The forest plot in Figure 3 presents the IVW estimates of the

associations between the levels of these immune cell surface

antigens and post-stroke functional outcome.

Genetically elevated levels of surface antigens in the DC and

TBNK panel were not strongly associated with post-stroke

functional outcome (all p > 0.05). We also conducted a reverse

MR analysis (IVW method), which did not reveal a causal effect of

post-stroke functional outcome on these immune cell surface

antigens, suggesting no reverse causal effect (Supplementary

Table S3).
3.2 Sensitivity analyses

To ensure the robustness of our findings, we conducted multiple

sensitivity analysis methods to assess the presence of potential

pleiotropy in the results obtained from the MR analysis

described above.

Our sensitivity analyses yielded consistent and reassuring

results (Table 2). Specifically, we found no evidence of

heterogeneity, as indicated by all p-values for Cochran’s Q test

exceeding 0.05. This suggests a lack of substantial variability among

the instrumental variables used in the MR analysis. Furthermore,

our assessment of directional pleiotropy using the MR-PRESSO

global test and MR-Egger intercept revealed no significant

deviations from the IVW method. All p-values exceeded 0.05,

indicating that the potential for pleiotropy did not substantially

influence our findings. Additionally, the weighted median and MR-

PRESSO methods produced effect estimates that were concordant

with those obtained from the IVW method. This consistency

reinforces the reliability of our results. However, it is worth

noting that in the MR-Egger (slope) analysis, we observed that

the effects of CD24 on switch memory B cell and CD3 on EM CD4+

maturation stages of T cell were estimated in the opposite direction

compared to the results obtained from other MR analysis methods.

This discrepancy suggests the need for a cautious interpretation of

these particular associations.

As a comparative analysis, we performed MR analysis based on

GISCOME GWAS data without adjustment for baseline NIHSS.

This analysis revealed that four immune cell surface antigens

maintained suggestive causal associations with post-stroke

functional outcome based on IVW estimates (Figure 4).

Importantly, this comparison analysis showed no significant

evidence of directional pleiotropy or global heterogeneity

(Supplementary Table S4).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1353034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1353034
FIGURE 3

The forest plot of 13 immune cell surface antigens with functional outcome after ischemic stroke adjustment for baseline stroke severity (p for
Inverse variance weighted method< 0.05).
FIGURE 2

Inverse variance weighted estimates of the causal association between 389 immune cell surface antigens and post-stroke functional outcome. The
red dashed line indicates the threshold of significance (P< 0.05). Orange bars represent deleterious mediators of post-stroke functional outcome,
whereas blue bars represent protective mediators of post-stroke functional outcome.
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3.3 Two immune cell surface antigens
were associated with the risk of stroke

To comprehensively evaluate our analyses, particularly in the

context of prognostic implications, we investigated the potential

presence of collider bias by examining the association of immune

cell surface antigen levels with ischemic stroke risk using data from

the MEGASTROKE dataset.

The MR analysis outcome revealed that CD24 on switch

memory B cell (OR = 1.03, 95% CI: 1.001-1.067, p = 0.041) and

CD4 on CD39+ CD4+ Treg (OR = 1.03, 95% CI: 1.002-1.054,
Frontiers in Immunology 06171
p = 0.031) were weakly associated with an increased risk of

ischemic stroke (Figure 5). These associations raise the

possibility that the observed relationships between these specific

immune cell surface antigens and poor post-stroke functional

outcome may, in part, be influenced by collider bias. However, it is

essential to note that our assessment of collider bias suggests that

any such bias, if present, is likely to be minimal. This indicates

that while these immune cell surface antigens may have some

impact on both ischemic stroke risk and post-stroke functional

outcome, collider bias is unlikely to be a major driver of the

observed associations.
TABLE 2 Sensitive analyses between 13 immune cell surface antigens and functional outcome after ischemic stroke (adjustment for baseline
stroke severity).

MFIs of immune cell
surface antigens

MR-Egger
(slope)

weighted
median

MR-PRESSO MR-Egger
(intercept)

MR-PRESSO
global test

Cochran’s
Q test

OR
(95%
CI)

p OR
(95%
CI)

p OR
(95%
CI)

p p p p

B cell panel

CD20 on sw mem 1.11
(0.77-1.59)

0.59 1.28
(1.04-1.56)

0.02 1.16
(1.01-1.34)

0.046 0.77 0.49 0.47

CD24 on sw mem 0.96
(0.64-1.43)

0.84 1.08
(0.86-1.35)

0.53 1.17
(1.01-1.34)

0.042 0.31 0.64 0.65

CD38 on CD3- CD19- 0.90
(0.66-1.23)

0.52 0.79
(0.65-0.98)

0.03 0.82
(0.72-0.95)

0.015 0.55 0.68 0.66

IgD on IgD+ CD38dim 0.75
(0.44-1.28)

0.31 0.89
(0.70-1.13)

0.34 0.82
(0.68-0.99)

0.061 0.72 0.30 0.25

Maturation stages of T cell panel

CD3 on EM CD4+ 1.03
(0.76-1.40)

0.87 0.93
(0.76-1.13)

0.46 0.84
(0.73-0.97)

0.030 0.17 0.46 0.62

Treg panel

CD28 on CD39+ secreting Treg 1.43
(1.05-1.96)

0.04 1.16
(0.94-1.43)

0.18 1.20
(1.06-1.37)

0.012 0.22 0.78 0.78

CD28 on CD28+
CD45RA- CD8br

0.88
(0.63-1.22)

0.44 0.81
(0.64-1.02)

0.08 0.84
(0.76-0.93)

0.004 0.80 0.99 0.99

CD28 on CD28+ DN (CD4-
CD8-)

0.82
(0.60-1.12)

0.22 0.80
(0.63-1.00)

0.05 0.84
(0.75-0.94)

0.006 0.87 0.95 0.94

CD25 on CD39+ resting Treg 0.69
(0.44-1.09)

0.14 0.67
(0.49-0.91)

0.01 0.77
(0.62-0.95)

0.037 0.61 0.49 0.45

CD4 on CD39+ CD4+ 1.26
(0.98-1.63)

0.09 1.14
(0.95-1.36)

0.15 1.15
(1.01-1.30)

0.042 0.42 0.35 0.32

CD4 on secreting Treg 0.82
(0.59-1.14)

0.25 0.89
(0.73-1.09)

0.26 0.85
(0.76-0.94)

0.009 0.84 0.92 0.91

Myeloid cell panel

HLA DR on CD33br HLA DR
+ CD14-

0.59
(0.33-1.04)

0.10 0.80
(0.64-1.01)

0.06 0.82
(0.71-0.94)

0.019 0.44 0.71 0.74

Monocyte panel

PDL-1 on monocyte 1.60
(0.94-2.72)

0.12 1.32
(0.96-1.80)

0.09 1.32
(1.04-1.66)

0.043 0.26 0.35 0.31
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4 Discussion

The clinical significance of post-stroke functional outcome lies

in its impact on the overall quality of life and long-term prognosis of

stroke survivors, which is critical in determining appropriate care

and rehabilitation efforts (17). In addition, it can help predict the

risk of future health complications such as falls, infections, and

depression (2). Actively exploring immunological factors that affect

stroke recovery and intervening can help patients maximize their

recovery and regain independence after stroke. While numerous

observational studies have provided substantial evidence of immune

cell involvement in stroke onset and outcome, they suffer from
Frontiers in Immunology 07172
inherent limitations, including uncontrollable biases and the

heterogeneity of study metrics. Immune cell surface antigens can

potentially unravel the precise roles of these immune cells following

ischemic stroke. However, previous investigations have primarily

overlooked the contribution of cell surface antigen biological

functions in the context of stroke. This study marks the inaugural

effort to explore the causal relationship between immune cell

surface antigens and post-stroke functional outcome using

MR analysis.

In the initial primary MR analysis, we identified 13 immune cell

surface antigens associated with post-stroke functional outcome.

Following rigorous sensitivity analyses and an assessment of
FIGURE 4

The forest plot of 13 immune cell surface antigens with functional outcome after ischemic stroke without adjustment for baseline stroke severity.
FIGURE 5

The forest plot of 13 immune cell surface antigens with risk of ischemic stroke.
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collider bias, we ultimately identified three robust immune cell

surface antigens with suggestive causal associations linked to post-

stroke functional outcome. Specifically, elevated levels of CD20 on

switched memory B cell and PDL-1 on monocyte were associated

with poorer post-stroke functional outcome. In contrast, increased

expression of CD25 on CD39+ resting Treg was linked to a more

favorable post-stroke functional outcome (19).

CD20, encoded by MS4A1, is a non-glycosylated protein

belonging to the membrane-spanning 4-domain family A (MS4A)

protein family (25). Beginning with late pre-B lymphocytes, most B

cells express CD20, and its expression is diminishing in terminally

differentiated plasma cells. Therefore, CD20 can be used as a marker

for developing B cells, and CD20-specific inhibitors are commonly

used to treat B cell malignancies and autoimmune diseases (26).

However, the precise biological function of CD20 and regulatory

mechanisms remain elusive. Tedder TF et al. have suggested that

CD20 might influence B cell proliferation and activation by

modulating Ca2+ transmembrane transport (27). A case report

demonstrated that CD20 deficiency reduced circulating memory B

cell counts, impaired Ig isotype switching, and diminished IgG

antibody levels (28). Upon activation, memory B cells undergo

isotypic transformation from IgD/IgM to IgG/IgA/IgE (29). Thus,

CD20 may be involved in the isotypic transformation of memory B

cells. Our findings indicate that higher CD20 expression on

switched memory B cells is associated with poor long-term

outcome in patients with ischemic stroke. This suggests that

CD20 expression levels may trigger the conversion of B cells from

a specific state to pathogenic entities following ischemic stroke.

Notably, the concept that B cells can contribute to central nervous

system (CNS) pathology independently of antibody production has

been discussed in the context of multiple sclerosis (30). B cells can

release factors that disrupt the CNS, leading to oligodendrocyte and

neuronal death. Targeting CD20 has proven effective in multiple

sclerosis treatment (31).

Similarly, the expression level of PDL-1 on monocytes exhibited

a similar effect. Accumulating evidence from animal models and

patient studies suggests that ischemic stroke prompts the

recruitment of circulating monocytes into the brain, where they

differentiate into macrophages or dendritic cells, influencing

ischemic injury progression (32, 33). Elevated monocyte counts

have been associated with worse stroke outcome and greater stroke

severity, making them potential predictive biomarkers for post-

stroke functional outcome (34, 35). Our findings suggest that PDL-1

on monocytes may play a role in mediating unfavorable post-stroke

functional outcome. PDL-1, the primary ligand for PD-1, is widely

expressed in B cells, T cells, DCs, and monocytes, regulating

immune function in these cell types (36). Bodhankar S. et al. have

shown that homozygous knock-out (PDL-1-/-) mice had reduced

monocyte infiltration, smaller infarct sizes in the ischemic

hemisphere, and reduced activation status of splenic monocytes

compared to wild-type (WT) mice, implying PDL-1’s involvement

in exacerbating experimental stroke outcome (37). Combining these

results with our analysis, it can be inferred that monocytes with high
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PDL-1 expression may be pivotal in controlling the adverse effects

of ischemia.

On the other hand, our results suggest a beneficial role for

increased CD25 expression on CD39+ resting Tregs in post-stroke

functional outcome. CD25, the alpha-chain of the heterotrimer IL-2

receptor, also known as IL2Ra, is constitutively expressed at high

levels in most Tregs. CD25 (a-chain), together with CD122 (b-
chain) and CD132 (g-chain), forms the functional IL-2 receptor (IL-

2R), and of these three receptor chains, the binding affinity of CD25

for IL-2 is the highest (38). IL-2 signalling can affect Treg peripheral

induction, lineage commitment, stability sustainability, and

homeostasis, and CD25 expression is critical for IL-2 signalling to

Treg (39, 40). Thus, the expression status of CD25 influences, to

some extent, the immunomodulatory functions of Treg involved in

re-establishing immune homeostasis and regulating inflammatory

response after ischemic stroke. High CD25 expression influences

the immunomodulatory functions of Tregs, contributing to

immune homeostasis restoration and regulation of inflammatory

reactions post-stroke. However, it is essential to note that these

effects may be specific to certain Treg subpopulations. Elevated

CD25 expression may support the survival and maintenance of

resting Tregs, while CD39 surface expression is involved in the

hydrolysis of extracellular ATP, essential for immunosuppressive

function. These mechanisms likely play a crucial role in long-term

immune homeostasis after stroke (41, 42).

Nonetheless, several limitations of this study should be

acknowledged. Firstly, measuring immune cell surface antigen

levels (MFIs) involves flow cytometry on peripheral blood

samples, which can introduce time-dependent artifacts. These

time-dependent effects were not considered in the current MR

analysis. Additionally, MR estimates might introduce bias when

comparing brain and blood, necessitating careful consideration of

the tissue specificity of ischemic stroke. Secondly, the GISCOME

database lacked outcome data for specific stroke subtypes,

preventing an assessment of immune cell surface antigen

relationships with functional outcome in different stroke subtypes.

Moreover, a lack of available data for replication analysis may have

reduced the persuasiveness of our results. Lastly, our MR analysis

was limited to subjects of European ancestry, potentially limiting

the generalizability of our findings to other populations.
5 Conclusion

This MR study offers compelling evidence that specific immune

cell surface antigen levels are associated with adverse post-stroke

functional outcome. CD20 on switched memory B cell, PDL-1 on

monocyte, and CD25 on CD39+ resting Treg emerge as potential

biomarkers and causal factors linked to post-stroke functional

outcome. However, the underlying biological mechanisms require

further exploration, and the potential of targeting these immune cell

surface antigens as a therapeutic strategy to enhance post-stroke

recovery warrants further investigation.
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