
SAFETY PHARMACOLOGY – 
RISK ASSESSMENT QT INTERVAL  
PROLONGATION AND BEYOND

EDITED BY :  Eleonora Grandi, Stefano Morotti, Esther Pueyo and Blanca Rodriguez

PUBLISHED IN : Frontiers in Physiology and Frontiers in Pharmacology

https://www.frontiersin.org/research-topics/5662/safety-pharmacology---risk-assessment-qt-interval-prolongation-and-beyond
https://www.frontiersin.org/research-topics/5662/safety-pharmacology---risk-assessment-qt-interval-prolongation-and-beyond
https://www.frontiersin.org/research-topics/5662/safety-pharmacology---risk-assessment-qt-interval-prolongation-and-beyond
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/research-topics/5662/safety-pharmacology---risk-assessment-qt-interval-prolongation-and-beyond


1 July 2018 | Getting to the Heart of Safety PharmacologyFrontiers in Physiology

Frontiers Copyright Statement

© Copyright 2007-2018 Frontiers 

Media SA. All rights reserved.

All content included on this site,  

such as text, graphics, logos, button 

icons, images, video/audio clips, 

downloads, data compilations and 

software, is the property of or is 

licensed to Frontiers Media SA 

(“Frontiers”) or its licensees and/or 

subcontractors. The copyright in the 

text of individual articles is the property 

of their respective authors, subject to a 

license granted to Frontiers.

The compilation of articles constituting 

this e-book, wherever published,  

as well as the compilation of all other 

content on this site, is the exclusive 

property of Frontiers. For the 

conditions for downloading and 

copying of e-books from Frontiers’ 

website, please see the Terms for 

Website Use. If purchasing Frontiers 

e-books from other websites  

or sources, the conditions of the 

website concerned apply.

Images and graphics not forming part 

of user-contributed materials may  

not be downloaded or copied  

without permission.

Individual articles may be downloaded 

and reproduced in accordance  

with the principles of the CC-BY 

licence subject to any copyright or 

other notices. They may not be re-sold 

as an e-book.

As author or other contributor you 

grant a CC-BY licence to others to 

reproduce your articles, including any 

graphics and third-party materials 

supplied by you, in accordance with 

the Conditions for Website Use and 

subject to any copyright notices which 

you include in connection with your 

articles and materials.

All copyright, and all rights therein,  

are protected by national and 

international copyright laws.

The above represents a summary only. 

For the full conditions see the 

Conditions for Authors and the 

Conditions for Website Use.

ISSN 1664-8714 

ISBN 978-2-88945-539-3 

DOI 10.3389/978-2-88945-539-3

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/research-topics/5662/safety-pharmacology---risk-assessment-qt-interval-prolongation-and-beyond


2 July 2018 | Getting to the Heart of Safety PharmacologyFrontiers in Physiology

SAFETY PHARMACOLOGY – RISK ASSESSMENT 
QT INTERVAL PROLONGATION AND BEYOND

Getting to the heart of Safety Pharmacology. Image: Stefano Morotti.

Topic Editors: 
Eleonora Grandi, University of California Davis, United States
Stefano Morotti, University of California Davis, United States
Esther Pueyo, University of Zaragoza, Spain
Blanca Rodriguez, University of Oxford, United Kingdom

Current regulatory guidelines for cardiac safety utilize hERG block and QT interval 
prolongation as risk markers. This strategy has been successful at preventing harmful 
drugs from being marketed, but criticized for leading to early withdrawal of potentially 
safe drugs. Here we collected a series of articles presenting new technological and 
conceptual advances, including refinement of ex vivo and in vitro assays, screens 
and models, and in silico approaches reflecting the increasing effort that has been 
put forward by regulatory agencies, industry, and academia to try and address the 
need of a more accurate, mechanistically-based paradigm of proarrhythmic potential 
of drugs. 

This Research Topic is dedicated to the memory of Dr. J. Jeremy Rice, our wonderful 
friend and colleague.
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Editorial on the Research Topic

Safety Pharmacology – Risk Assessment QT Interval Prolongation and Beyond

THE NEED OF NEW PARADIGMS FOR CARDIAC SAFETY

The scope of safety pharmacology is to predict whether a drug is likely to cause potentially
lethal adverse effects if administered to humans. While safety pharmacology has broadened its
interests in recent years to the whole cardiovascular, respiratory, and central nervous systems
(and is now extending to other body functions), a major focus since its inception has been
assessing drug-induced prolongation in the QT interval—a surrogate biomarker for torsades
de pointes (TdP) liability. Because the vast majority of drugs that can cause QT prolongation
inhibit hERG channels, current regulatory guidelines concerning cardiac safety recommend
that all compounds are evaluated in vitro for their hERG inhibitory potency (Redfern et al.,
2003) and in vivo for their ability to cause QT/QTc interval prolongation (Food and Drug
Administration, 2005) in an appropriate animal model and in humans. However, it has now
become apparent that QT/QTc prolongation and hERG block are an insufficient proxy for
TdP risk. While the current approach based on these markers has been successful in terms
of preventing TdP risk, this regulatory paradigm might lead to withdrawal from the drug
development pipeline and clinical use of potentially safe drugs. There is therefore a crucial need
to develop a more accurate assessment of proarrhythmic potential of drugs. Notably, in 2014 the
Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative was proposed as a new strategy
by expert working groups sponsored by the US Food and Drug Administration (FDA), the
Cardiac Safety Research Consortium (CSRC), and the Health and Environmental Science Institute
(HESI), and has quickly become a global effort, also involving many industry and academia
partners (Sager et al., 2014). CiPA aims at developing and validating a new paradigm for cardiac
safety evaluation of new drugs that provides a more accurate and comprehensive mechanistic-
based assessment of proarrhythmic (rather than QT prolonging) potential of drugs (Gintant
et al., 2016). This involves assessment of (i) high-throughput in vitro screening of drug effects

6
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on multiple human ion channels, (ii) coupled with in silico
modeling of human cardiac myocytes to assess integrated
electrophysiological responses, and (iii) verification of predicted
responses in human induced pluripotent stem cell derived
cardiomyocytes (hiPSC-CMs). Safety pharmacology has evolved
in recent years to identify and incorporate new technologies for
clinical and non-clinical applications, including refinement of
ex vivo and in vitro assays and screens, in vivo models, non-
invasive clinical modalities, and in silico approaches. Here we
collected a series of review, perspective, and original research
articles that summarize the state of our knowledge and the latest
advances in these technologies, and how these might contribute
to shaping new and improved cardiac safety guidelines.

MULTISCALE MODELING FOR SAFETY
PHARMACOLOGY

There is a wide range of length and time scales covered in this
Research Topic, from the atom and ns to the whole organism
and month/year (Figure 1 top left to bottom right), all of
which are relevant to safety pharmacology. Structural studies,
including modeling of ion channel gating (Perissinotti et al.) and
interactions with drugs, and drug partitioning, are critical for
drug discovery efforts, and perhaps also a necessary approach
for safety considerations. For example, the study by DeMarco
et al. utilized all-atom molecular dynamics simulations to show
that ionization of drug molecules (specifically Sotalol) can
significantly affect their membrane permeability and partitioning
kinetics, and should therefore be a consideration in ongoing in
silico safety pharmacology efforts. Given the complexity of the
interaction between drugs and ion channels, the drug binding
kinetics, state dependent binding, and temperature dependence
could significantly alter drugs’ impact on the action potential
(AP), even when drugs display similar steady-state block. Lee
et al. highlighted some of the challenges involved in modeling
of the hERG channel and also discussed limitations and need for
improved voltage-clamp protocols to characterize drug-channel
interaction in in vitro experiments. Ellinwood et al. looked at the
consequences of drug binding kinetics and state dependence of
KV1.5 targeting drugs on atrial electrophysiology, and revealed
that ionic remodeling also affects the degree of efficacy and safety
of state-specific IKur inhibitors, by modifying the AP trajectory.
These studies highlight the potential need for extraordinary detail
in the in vitro characterization for accurate in silico prediction
of (cardiac-region specific, Morotti et al., 2016; Ellinwood et al.,
2017; Ellinwood et al.) drug effects on channels and cardiac
electrophysiology.

While the ion channel gating and drug-interaction models
might require further refinement and increased complexity,
significant efforts have been put forward to improve existing
cardiomyocyte models and to take advantage of the existence
(and convergence) of competing mathematical models to narrow
hypotheses or explore alternative hypotheses (Sarkar and Sobie,
2011; Sánchez et al., 2012; Gemmell et al., 2014; Mann et al.,
2016; Pueyo et al., 2016a,b; Gong et al., 2017; Muszkiewicz et al.,
2017). For example, recent work has shown that, when forced

to reproduce the same data, three competing models of human
ventricular myocytes (Ten Tusscher and Panfilov, 2006; Grandi
et al., 2010; O’Hara et al., 2011) became substantially more
similar than they were originally (Mann et al., 2016). Notably,
the work by Krogh-Madsen et al. used clinical congenital LQT
data (as done by Mann et al., 2016) and physiological constraints
on intracellular ionic concentrations to optimize parameters in
the O’Hara-Rudy (ORd) human model (O’Hara et al., 2011).
This in turn improved the accuracy and robustness of TdP
risk prediction (Lancaster and Sobie, 2016), which the authors
attributed to the importance of Ca2+ dynamics in repolarization
and to an improved balance of IKs vs. IKr in the new model.
A different parameterization of the ORd model by Dutta et al.
and Dutta et al. also yielded a better correspondence with
drug response data and improved the identification of pro-
arrhythmic drugs. The authors developed a new metric qNet,
which quantifies the net electronic charge carried by major
inward and outward ionic currents during the steady state AP,
to separate low-, intermediate-, and high-risk hERG blockers.
A follow up study appraised the robustness of qNet as a
biomarker for TdP by considering how uncertainty in the model
parameters propagates to the phenotype level (Chang et al.).
The authors were thus able to identify the conditions under
which decisions on risk can be made reliably and objectively.
Yet, questions remain regarding the physiological meaning of
this new metric, and whether multiple metrics should be utilized
that account for a broader range of behaviors and mechanisms.
Tixier et al. used an in silico model of multi-electrode array
electrophysiology and machine learning to identify predictive
biomarkers that should be measured to improve classifications
of drugs. These investigations add to several previous efforts
to build computational frameworks for assessment of TdP risk
(Mirams et al., 2011; Kramer et al., 2013; Lancaster and Sobie,
2016). On the other hand, Parikh et al. showed that a simpler
classification method based on direct features (ion channel block
information) performed with comparable or higher accuracy
than existing methods based on simulated metrics. One potential
limitation of this approach is that direct feature classifiers might
fail identifying the proarrhythmic risk of drugs affecting channels
that are not included in the training set, whereas predictive
modeling is more likely to yield an accurate classification.

Biophysical modeling can not only provide means for
drug classification, but also understanding of the mechanistic
underpinning of drug responses, as in the multiscale simulations
by Ni et al. and Colman et al. These studies are important
reminders that AP duration changes are rarely homogenous
(e.g., there exist gradients—transmurally, or from base to apex)
and can increase the tissue-level substrates for arrhythmias
(Antzelevitch, 2005; Glukhov et al., 2010). Indeed, multiscale
in silico models can be very powerful tools to investigate the
response of candidate antiarrhythmic compounds at the level of
the electrocardiogram (ECG). The simulated data may also serve
to identify novel ECG-derived biomarkers detecting block of
inward and/or outward currents based on ECG features (Vicente
et al., 2016). Using Langendorff perfused ex vivo rabbit hearts
the Fenton group measured and analyzed the complex dynamics
of spatially discordant alternans, which provide the substrate
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FIGURE 1 | Approaches to predicting drug cardiotoxicity. The Research Topic includes: (1) studies of ion channel structure and function and drug interaction, ranging

from atomistic models to kinetic models of whole-cell ion currents (Top); (2) mechanistic models of single cardiac myocyte electrophysiology, development of metrics

for quantification of torsadogenic risk, and population-based approaches accounting for cell-to-cell variability (Middle); and (3) tissue/organ/organism level studies

spanning tissue-level to whole heart and torso simulations, ex vivo recordings in animal preparations, and human clinical trials (Bottom).

for reentrant arrhythmia (Uzelac et al.) The authors noted that
current AP models fail to reproduce some key dynamics such
as voltage amplitude alternans, smooth development of Ca2+

alternans in time, and conduction. Experimental characterization
of these dynamics can inform refining of existing models to
analyze mechanisms.

ACCOUNTING FOR PATIENTS’ CONDITION
AND INTER-SUBJECT VARIABILITY

Clinical risk assessment and trial suggest that patient conditions,
i.e., sex (Yang et al., 2017; Vorobyov and Clancy, 2018), age,

disease, electrolyte imbalance (Lazzerini et al.), interaction with
other drugs (Lv et al.) should all be taken into account in risk
assessment (Lane and Tinker)—which is not yet addressed by
CiPA efforts. Along the same lines, Wisniowska et al. reviewed
the different sources of variability (both intrinsic and extrinsic)
that exist in the human population in response to drug action,
and emphasized the need of accounting for these aspects in
modeling approaches for safety pharmacology. Two studies
by the Rodriguez group establish the potential of population-
based approaches as very powerful in silico tools for safety
pharmacology investigations. Passini et al. showed that human in
silico drug trials using repolarization abnormality quantification
as the main metric do better than animal models in detecting
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drugs with TdP risk. They also show agreement of in silico
predictions and two established experimental models (rabbit
wedge ECGs and hiPSC-CMs). Other statistical methods, e.g.,
logistic regression, have been previously employed to assess the
proarrhythmic risk in a population of computational model
variants (Lee et al., 2013; Morotti and Grandi, 2017). Calibrated
populations of models of heart cells could generally reproduce
experimental drug effects on human tissue for dofetilide, whereas
lack of agreement between experiments and simulations for
quinidine and verapamil suggest further work is needed to
understand the more complex electrophysiological effects of
these multichannel blocking drugs (Britton et al.).

USE OF IPSC-CMS FOR SAFETY
PHARMACOLOGY

Because iPSC-CMs are a readily-obtainable and renewable source
of human cardiac myocytes, they are gaining popularity as a
platform to screen drugs for toxicity testing. However, given the
iPSC immature phenotype, and phenotypic differences across
iPSC-CM cell lines (Lei et al.), it remains unclear how well
drug tests performed in iPSC-CMs will recapitulate the effects
observed in adult human cardiomyocytes and hearts. Koivumaki
et al. developed a computational model of the iPSC-CMs
that recapitulates the cells’ immature phenotype, and explore
differences in ionic behavior underlying the AP in paced vs.
spontaneous modes, phenotypic variability in iPSC-CMs, and
iPSC-CM model’s ability to recapitulate physiological properties
of adult cells. Recently, statistical methods have also been
established to provide accurate predictions of adult myocyte drug
responses from iPSC-CM simulations (Gong and Sobie, 2018).
iPSC-CM utilization in drug discovery and safety investigations
is reviewed by Ortega et al. An important advancement in
the technological approach of improving the utility of iPSC-
CMs for safety pharmacology is the augmentation of IK1 using
dynamic clamp. Plagued by low-throughput, Goversen et al. have
moved toward demonstrating that such dynamic clamp can be
performed in a high throughput manner. Bjork et al. reported
that the expression of optogenetic tools in iPSC-CMs did not
significantly affect the baseline electrophysiological properties
of these cells, thus allowing electrophysiological assessments
comparable to conventional patch clamp studies. Nevertheless,
adult human ventricular cardiomyocytes (Nguyen et al.) and
trabeculae (Qu et al.) might still be a more reliable model to
test the cardiotoxic risk associated with novel drugs, with some
advantages over animal and iPSC models.

CONCLUSIONS AND FUTURE
DIRECTIONS

There is a growing body of work supporting the integration
of new and established computational and experimental
approaches to understanding and predicting the risk of
TdP. While mechanistic systems modeling is mature in
the cardiac arrhythmia field, use of similar approaches can
improve understanding and prediction of cardiotoxicity caused
by other drugs, e.g., cancer therapeutics (Shim et al.).
Given the focus on TdP and QT interval, however, the
deleterious effects of drugs on cardiac function are evaluated
only in terms of changes in electrophysiological properties.
Future work should therefore extend the current paradigm to
include other major cellular functions (such as contraction,
energetics, and cell death, i.e., via apoptosis), which dysregulation
can severely impact cardiac performance. In addition to
cardiotoxicity, safety pharmacology aims to determine the
potential undesirable pharmacodynamic effects of a drug on
the central nervous, vascular and respiratory systems (Pugsley
et al., 2008). Thus, extension of the described approaches
to these systems seems desirable, and might contribute
to further advancement of these key areas of biomedical
research.
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IKr is the rapidly activating component of the delayed rectifier potassium current, the

ion current largely responsible for the repolarization of the cardiac action potential.

Inherited forms of long QT syndrome (LQTS) (Lees-Miller et al., 1997) in humans are

linked to functional modifications in the Kv11.1 (hERG) ion channel and potentially

life threatening arrhythmias. There is little doubt now that hERG-related component

of IKr in the heart depends on the tetrameric (homo- or hetero-) channels formed

by two alternatively processed isoforms of hERG, termed hERG1a and hERG1b.

Isoform composition (hERG1a- vs. the b-isoform) has recently been reported to alter

pharmacologic responses to some hERG blockers and was proposed to be an essential

factor pre-disposing patients for drug-induced QT prolongation. Very little is known

about the gating and pharmacological properties of two isoforms in heart membranes.

For example, how gating mechanisms of the hERG1a channels differ from that of

hERG1b is still unknown. The mechanisms by which hERG 1a/1b hetero-tetramers

contribute to function in the heart, or what role hERG1b might play in disease are all

questions to be answered. Structurally, the two isoforms differ only in the N-terminal

region located in the cytoplasm: hERG1b is 340 residues shorter than hERG1a and the

initial 36 residues of hERG1b are unique to this isoform. In this study, we combined

electrophysiological measurements for HEK cells, kinetics and structural modeling to

tease out the individual contributions of each isoform to Action Potential formation

and then make predictions about the effects of having various mixture ratios of

the two isoforms. By coupling electrophysiological data with computational kinetic

modeling, two proposed mechanisms of hERG gating in two homo-tetramers were

examined. Sets of data from various experimental stimulation protocols (HEK cells)

were analyzed simultaneously and fitted to Markov-chain models (M-models). The

minimization procedure presented here, allowed assessment of suitability of different

Markov model topologies and the corresponding parameters that describe the channel

kinetics. The kinetics modeling pointed to key differences in the gating kinetics that

were linked to the full channel structure. Interactions between soluble domains and the

transmembrane part of the channel appeared to be critical determinants of the gating

11
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kinetics. The structures of the full channel in the open and closed states were compared

for the first time using the recent Cryo-EM resolved structure for full open hERG channel

and an homologymodel for the closed state, based on the highly homolog EAG1 channel.

Key potential interactions which emphasize the importance of electrostatic interactions

between N-PAS cap, S4-S5, and C-linker are suggested based on the structural analysis.

The derived kinetic parameters were later used in higher order models of cells and tissue

to track down the effect of varying the ratios of hERG1a and hERG1b on cardiac action

potentials and computed electrocardiograms. Simulations suggest that the recovery

from inactivation of hERG1b may contribute to its physiologic role of this isoform in the

action potential. Finally, the results presented here contribute to the growing body of

evidence that hERG1b significantly affects the generation of the cardiac Ikr and plays

an important role in cardiac electrophysiology. We highlight the importance of carefully

revisiting the Markov models previously proposed in order to properly account for the

relative abundance of the hERG1 a- and b- isoforms.

Keywords: long-QT, hERG Isoforms, gating kinetics, arrhythmias, computational models, Markov process

INTRODUCTION

The IKr current is a primary contributor to the repolarization of
the human cardiac muscle, a delayed rectifier potassium current
conducted by the Kv11.1 ion channel (more commonly referred
to as human ether-a-go-go-related gene, or hERG1) (Sanguinetti
et al., 1995; Li et al., 1996). The Kv11.1 channel is homologous in
structure to other voltage-gated potassium channels (Figure 1)
and is assembled as a tetramer to become a fully functioning
ion channel, but has very different kinetics compared to other
potassium channels. Inactivation is much faster than activation,
and consequently, current is suppressed at positive potentials
but rebounds on repolarization as channels quickly recover
from inactivation and slowly close. During an action potential,
this gating behavior produces a resurgent current that peaks
during the repolarization phase. Mutations, channels block by
drugs and/or impaired trafficking of Kv11.1 channels to the
cell membrane lead to prolongation of the QT interval on the
surface electrocardiogram (LQTS), leading to a potentially life
threatening ventricular arrhythmia (Behere et al., 2014). Since the
physiological role of IKr is to repolarize the late phase of cardiac
action potentials, hERG1 has a clear link to these arrhythmias
(Robertson et al., 2008; Gustina and Trudeau, 2009; Robertson,
2012; Vandenberg et al., 2012). That is, if IKr is reduced, due to
loss-of-function mutations or action of small molecules (drugs),
patients are more likely to develop severe arrhythmias initiated
by premature beats.

Up to date, our understanding of how IKr contributes to
the ventricular repolarization is based primarily on studies
utilizing heterologous expression of the originally identified
hERG1 a-isoform (Sanguinetti et al., 1995; Trudeau et al., 1995;
Smith et al., 1996; Wang et al., 1997). More recent studies
showed that native IKr result from hetero-tetramers formed
by the co-assembly of two hERG isoforms termed hERG1a
and hERG1b. Two splice variants—hERG1a and hERG1b are
co-expressed not only in cardiac tissue, but also in neurons

and smooth muscles (Chiesa et al., 1997; Ohya et al., 2002).
Importantly, isoforms display very different gating kinetics (Lees-
Miller et al., 2003). The hERG gating is modulated by the
cytoplasmic domains (N-terminal or PAS domain, CNBD and
C-linker) in a way that still remains largely unknown but
of a critical importance for unraveling structural mechanisms
responsible for QT prolongation. In particular, a mutation in the
N-terminal of hERG1b was discovered in a patient with long QT
Syndrome (LQTS), highlighting the importance of this isoform
in cardiac repolarization (Robertson et al., 2008; Robertson,
2012).

Many drugs are known to block ion current across Kv11.1
channels, resulting in an acquired form of LQTS (Larsen et al.,
2010). Many blockers exhibit state-dependent activity and hence
their propensity to later hERG currents is related to the channel’s
gating kinetics. It has recently been shown that EA4031, a
selective blocker of hERG1 currents, differs in effectiveness
on homo-tetrameric vs. hetero-tetrameric channels formed of
different isoforms (Sale et al., 2008). Similar findings were also
reported for hERG1 activators. Larsen et al. (2010) showed
that activators such as NS1643 display differential effects on
the homo-tetrameric channels formed by two hERG1 isoforms
(Holzem et al., 2016). Due to the therapeutic risks hidden in
hERG1 blockers and potential of hERG1 activators, establishing
differences in gating mechanisms of two isoforms is critically
important. Structurally, the two isoforms differ only in the N-
terminal region located in the cytoplasm: hERG1b is 340 residues
shorter than hERG1a and the initial 36 residues of hERG1b are
unique to this isoform (Lees-Miller et al., 1997; Splawski et al.,
1998) (Figure 1). As mentioned above, the channel gating is
modulated by the cytoplasmic domains (PAS, CNBD, and C-
linker) in a way that still remains unknown (Trudeau et al., 2011;
Ng et al., 2014; Morais-Cabral and Robertson, 2015; Perry et al.,
2015). Consequently, as hERG1b is lacking the entire PAS/Pas-
cap domains, it has a different gating behavior compared to
hERG1a.

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 20712

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Perissinotti et al. hERG Isoforms and QT Duration

FIGURE 1 | (A) Topology of Kv11.1 or hERG channel. (B) Comparison of a-isoform and b-isoform. Exons of each of the two splice variants, with a-isoform on the top

and b-isoform on the bottom.

The isoform originally discovered was hERG1a which is
considered the full length transcript of the associated gene, and
is often referred to simply as hERG1 when not being compared
to other isoforms. Additionally, these isoforms are present in
relatively fixed ratios, which depend on the cellular environment
(Larsen et al., 2007, 2008). Deviations from these ratios, leading to
abnormal abundance of a particular Kv11.1 isoform,may result in
heart beat anomalies (Larsen et al., 2008; Kannankeril et al., 2010;
Robertson, 2012).

Recently, hERG1b was found to be critical for human
cardiac repolarization and a 1b-specific mutation associated with
intrauterine fetal death was discovered (Jones et al., 2014, 2015,
2016). Additionally, the relative levels of expression appear to be
greater in the young compared with the adult heart (Wang et al.,
2008; Crotti et al., 2013). Evidence supports that when hERG1a
and hERG1b are present in heterologous expression systems, they
co-assemble to form hetero-tetrameric channels, although it is
unknown if there is a preferred stoichiometry of these channels
(London et al., 1997).

As previously mentioned, the two isoforms gating properties
differ substantially. The hERG1 b- isoform is characterized by
faster kinetics of activation, recovery from inactivation, and

most prominently, deactivation (Larsen et al., 2008, 2010). These
differences in gating kinetics are due mainly to the differences
in the N-terminal regions of the two isoforms. More specifically,
steady state activation is affected by the absence of the proximal
N-terminal region in hERG1b, and the activation rate is suggested
to be dependent on a short sequence of residues in the proximal
portion of the hERG1a N-terminus (Saenen et al., 2006; Trudeau
et al., 2011). Consequently, activation rates are much faster in
hERG1b channels where these residues are missing (Larsen et al.,
2008). Regarding deactivation, it has been suggested that the slow
deactivation of hERG1a channels might be facilitated by the first
16 residues of the N-terminus, among other factors (Wang et al.,
2008). According to that, faster deactivation rates in hERG1b
can be explained by the presence of a unique N-terminal. The
inactivation rate was shown to be similar between the two
isoforms (Larsen et al., 2008). This finding is expected, as the
mechanism by which fast inactivation occurs has been proposed
to rely mainly on voltage induced changes in the structure of
the outer mouth of the pore (Schönherr and Heinemann, 1996;
Perry et al., 2013a,b; Thomson et al., 2014) and the sequence
spanning this region is identical in both isoforms. Lastly, recovery
from inactivation is significantly faster in hERG1b compared
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FIGURE 2 | Proposed kinetic mechanisms using Markov models (M-models) for WT hERG (Perissinotti et al., 2015; Romero et al., 2015) showing the transition rates

with the corresponding labels.

to hERG1a, potentially implying that by some means, the N-
terminus contributes to this process with already proposed
stabilizing interactions (Saenen et al., 2006; Gustina and Trudeau,
2011).

Despite the evidence that heterometric hERG 1a/1b channels
underlie cardiac Ikr, little is known about the gating and
pharmacological properties of these channels, how hERG1a
channels differ from hERG1b homomers, 1a/1b heteromers,
or which role hERG1b might play in disease. Two broadly
accepted gating mechanisms were established on the basis
of kinetic modeling driven by the experimental data from
electrophysiology studies of Kv11.1a channel. The first gating
mechanism that successfully describes gating kinetics was
proposed by Rasmusson, and later refined by Fink et al. and
Romero et al. (termed M-model 1, Figure 2) (Wang et al., 1997;
Fink et al., 2008; Romero et al., 2015). The modified M-model 1
(Fink et al., 2008) for hERG1 channel has been combined with
the cardiac cell model (Ten-Tusscher Model; Ten Tusscher and
Panfilov, 2006) in order to reproduce, and explain in terms of
kinetics, measurements in oocytes, and HEK cells and showed
overall good performance. The second hERG1 current scheme
with different connectivity between gating states was developed
by both Clancy et al. (Clancy and Rudy, 2001; Clancy et al.,
2007) and Mazhari et al. (2001) (termed M-model2, Figure 2)
on the basis of M-model originally proposed by Kiehn et al.
(1999).

There are only a limited number of studies that employ
kinetic modeling to understanding of gating kinetics in hERG1
isoforms. Sale et al. (2008) previously attempted to study the
hetero channels formed by hERG1a/1b in HEK cells in presence
and absence of E-4031 blocker. The M-model 2 was used to
describe gating process in a-isoform and a-,b- heteromer. To
explain apparent challenges in fitting experimental currents, Sale
et al. proposed that the presence of the extended N termini in
all 4 subunits in hERG 1a may alter gating process; hence an
alternative gating mode (“N-mode”) was considered. Another
previous work modified the M-model 1 parameters proposed by
Fink et al. (2008) and implemented them in the cardiac cell model
(Ten Tusscher and Panfilov, 2006) in order to reproduce, and
explain measurements in oocytes and HEK cells. However, none
of the previous works (Robertson et al., 2008; Sale et al., 2008;
Larsen et al., 2010; Holzem et al., 2016) tested the quality of the
proposed kinetic models in fitting the hERG1b homo-tetramer
experimental data, nor attempted to derive the set of model
parameters for this isoform or suggest structural mechanisms
explaining differences in isoform gating kinetics (Wacker et al.,
2017).

The rapid progress in the structural biology finally resulted
in the Cryo-EM high-resolution structure of hERG1 channel.
The structure of the full hERG1 channel in its open state
together with other highly homologous channels EAG1 and
other closely-related channels from CNG and HCN families were
published in 2016-2017 (Whicher andMackinnon, 2016; Lee and
Mackinnon, 2017; Li et al., 2017; Wang and Mackinnon, 2017).
The availability of this new structural data provides a unique
opportunity to connect well-established kinetic models of hERG1
channel to its structural determinant.

This work is striving to achieve several goals. First goal is
the methodological one, where we developed and compared
optimal gating schemes for hERG a- and b- isoforms. The second
goal is to provide a perspective view on the potential structural
mechanisms responsible for apparent kinetic differences between
two isoforms and then to explore and discuss its implications
at the tissue level. To achieve our methodological goal we
systematically compared two gating schemes using available
and novel electrophysiological recordings performed in HEK
cell lines. The kinetic schemes illuminated profound differences
in deactivation kinetics between two isoforms. To understand
underlying reasons for different deactivation process, we
employed structural modeling of hERG1 channel in open and
closed-states using recently published structures of EAG1 and
hERG1 channels fromCryo-EM (Whicher andMackinnon, 2016;
Wang and Mackinnon, 2017). We found that the available
structures allowed identification of potential mutants with altered
kinetics in good agreement with developed kinetic models.
Finally, to provide a perspective on the potential role of isoforms
in cellular dynamics, we undertook the cardiac cell simulations
to reveal the conditions (i.e., isoform composition of hERG
channels) leading to QT alterations. To provide initial glimpses
into cellular roles of different isoform expression, a selected
kinetic model, together with the optimized parameters, was
incorporated into a higher dimensional model of the cardiac cell
(O’hara et al., 2011) to simulate cellular and tissue dynamics
effects as function of hERG isoform ratio.

MATERIALS AND METHODS

Expression of hERG1a and hERG1b in HEK
Cells
Lees-Miller et al. first reported the electrophysiology of the
hERG1 b-isoform (Lees-Miller et al., 1997). The hERG1
b-isoform was cloned from human atrium. hERG1 isoforms
were cloned into the pIRES-hr green fluorescent protein-1a
vector (Agilent Technologies, Santa Clara, CA) for co-expression
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FIGURE 3 | Representative current traces of hERG1a and hERG1b channels and their current-voltage relationship at room temperature. (A) Selected current traces

recorded from HEK cells and elicited by the voltage protocol shown in the top. (B) Normalized tail currents against voltage. The solid lines correspond to the fitted

Boltzmann functions and symbols correspond to data. All data are listed as mean ± SEM. hERG1a (n = 10), hERG1b (n = 10). (C) Currents measured at the end of

each step were used to construct the current-voltage (I-V) relationship. All data are shown as mean ± SEM. hERG1a (n = 10), hERG1b (n = 10).

with humanized Renilla reniformis GPF. Human embryonic
kidney (HEK) 293 cells were transfected by using calcium
phosphate and cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% horse serum (Invitrogen, Carlsbad,
CA). Transfection was monitored by green fluorescence. HEK
cells were chosen because their background potassium currents
are small. More importantly, no dofetilide-sensitive tail current
has been observed by using the voltage-clamp protocol in un-
transfected HEK cells.

General Setup for Electrophysiological Recordings
Transfected HEK cells on glass coverslips were placed in a
chambermounted on amodified stage of an invertedmicroscope.
The chamber was superfused at a rate of 2 ml/min with
a normal external solution. Micropipettes were pulled from
borosilicate glass capillary tubes on a programmable horizontal
puller (Sutter Instrument Company, Novato, CA). Standard

patch-clamp methods were used to measure the whole-cell
currents of hERG1 mutants expressed in HEK 293 cells by using
the Axopatch 200B amplifier (Molecular Devices, Sunnyvale,
CA) (Lees-Miller et al., 2009). The pipette solution contained
the following: 10mM KCl, 110mM K-aspartate, 5mM MgCl2,
5mM Na2ATP, 10mM ethylene glycol-bis(β-aminoethyl ether)-

N,N,N
′

,N
′

tetraacetic acid, 5mM HEPES, and 1mM CaCl2.
The solution was adjusted to pH 7.2 with KOH. The EC
solution contained the following: 140mM NaCl, 5.4mM KCl,
1mM CaCl2, 1mM MgCl2, 5mM HEPES, and 5.5mM glucose.
The solution was adjusted to pH 7.4 with NaOH. In patch
clamp experiments, serious resistance and capacitance during
the whole cell patch clamp recording were compensated to
90% through Axopatch 200B patch clamp amplifier. Whole cell
patch clamp experiments were performed when access resistance
was <10 MOme. No leak subtraction was performed. The
junction potential of −10mV was adjusted on all the membrane
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potentials recorded. All experiments were conducted at room
temperature.

Voltage Protocols

Voltage-dependence of activation
From a holding potential of −80mV cells were depolarized for
1 s to a range of voltages from −100 to +40mV followed by
a step to −100mV (1 s) to record the tail currents (Figure 3).
The isochronal tail current-voltage plots were fit to a single
Boltzmann function (1):

I

Imax
=

1

(1+ exp[
(V 1

2
−Vm)

k
])

(1)

Where I / Imax is the normalized current, V1/2 is voltage of
the half-maximal activation, k is the slope factor and Vm is the
membrane potential.

Envelope of tails
The activation of hERG1a and hERG1b channels was examined
at +40mV in HEK cells. The protocol is shown in Figure 4.
The measurements were carried out by activating the channels
at +40mV for various durations of time (from 5 to 500ms)
and then measuring the tail current at −100mV (3 s). The peak
amplitude of the tail current was used as a measure of the relative
amount of activated channels at a given time point. The peak
amplitudes were normalized to the maximum amplitude and
plotted as a function of the duration of the activating step.

Deactivation
Deactivation of hERG1a/1b tail current was measured by
activating channels al +40, followed with a short (5ms)
repolarization step to −120mV and deactivating step at −120,
−100, −60, −40mV. Currents at different voltages were
normalized and averaged (n = 10) time course data was plotted
for each isoform at the different voltages (Figure 5).

Statistical analysis
Statsview (Abacus Concepts, Berkeley, CA) or QTIplot (Vasilef,
2013), Grace (http://plasma-gate.weizmann.ac.il/Grace/) were
used to analyze the data. Data are presented as mean± SEM.

Computational Methods
Kinetic Modeling: Vgckimo Program Package1

The dominant paradigm for ion transport over the past 60
years has been based on the seminal experiments of Hodgkin
and Huxley (Hodgkin and Huxley, 1952; Hodgkin et al., 1952).
However, a much more detailed picture of the mechanisms
underlying membrane excitation can be described in terms of
Markov models (M-models) (Rudy and Silva, 2006; Moreno
et al., 2011), where the conducting and non-conducting states are

1Voltage-Gated Ion Channels Kinetic Modeling from whole-cell voltage-clamp

data (VGC-KiMo) is a standalone tool written in C++ language, working on

Linux machines and parallelized with OpenMP (see the Supporting Material

for the scalability benchmarks). VGC-KiMo code is distributed under GNU

General Public License thus freely available for download from https://github.com/

vgckimo/vgckimo, together with documentation and tutorial files. See Supporting

Material for a complete description of the code.

FIGURE 4 | Activation kinetics of hERG1a and hERG1b channels expressed in

HEK cells. An envelope of tails protocol was used to measure the activation

properties at +40mV. (A) Representative current traces elicited by the

protocol shown at the top corresponding to 5–500ms of activation are shown.

(B)The data were normalized to the maximum amplitude of the tail current and

plotted against time. hERG1a (n = 10); hERG1b (n = 10). All data are shown

as mean ± SEM.

interconnected by rate constants dependent on the membrane
potential. The essence of M-models is that, for any single step
in the gating mechanism, the transition probability (i.e., the
microscopic equivalent of the rate constant) is time independent.
In an M-model of ion channels, transition rates define the
interstate dynamics. These rates may depend on environmental
variables such us membrane potential or ligand concentration.

The state probabilities in the model are calculated by solving
the following differential equation (Equation. 2):

d
−→
p

dt
= Q

−→
p (2)

where
−→
p is the vector of state probabilities and Q is the system

matrix of the transition rate constants. Each transition rate
constant is assumed to have the following expression:

ki = αie
βiV (3)

where αi =
kBT
h

• e
1Si
R −

1Hi
RT (ms−1), βi =

ziF
RT (mV−1); V is

the external electric potential in mV ; zi is the effective valence
of moving charges; T(K) is the temperature; 1Hi (J/M) the
change in enthalpy; 1Si(J/M/K) the change in entropy. kB =
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FIGURE 5 | Deactivation Kinetics of hERG1a and hERG1b channels measured in HEK cells. (A) Representative current traces elicited by the voltage protocol shown

in the top for both isoforms. (B) Superimposed raw deactivation time courses for voltages −40, −60, −100, and −120mV for hERG1a (n = 10) and hERG1b

(n = 10). Average time course is shown with a solid white line.

1.381 10−23 J K−1 (Boltzmann constant); h = 6.626 10−34 J s−1

(Planck constant); R = 8.315 Jmol−1 K−1 (ideal gas constant); F
= 96785C M−1 (Faraday constant).

Once Equation (2) is solved, the probability of being in the
open state (pO: conducting state) is found and the current is
calculated using the following equations:

IKr = gKrpO (V − Ek) (4)

gKr = g0Kr
(

aT + b
)

(

[K+]O

5.4mM

)

1
2 (5)

Where g0Kr =0.024 pA/pF/mV, a= 1/35, and b=−55/7, O is the
open probability (see SM and (Fink et al., 2008) for more details).

Through the Global-Fitting procedure described in Balser
et al. (1990) and implemented in VGC-KiMo1, the rate constants
of a given M-model can be estimated from macroscopic
ion channel currents in voltage-clamped membranes. The use
of comprehensive and extensive data sets of experimental
information from a broad range of ion current responses
to multiple voltage stimulations conditions (voltage protocols,
membrane potentials, temperature, etc.), shrinks the universe
of possible solutions to the model system mechanism ensuring
the robustness of the parameter set. Although several methods
exist for analyzing voltage dependent currents (Wang et al., 1997;
Mazhari et al., 2001; Fink et al., 2008; Bett et al., 2011; Moreno
et al., 2011; Ben-Shalom et al., 2012) most of them are published
only as a set of equations without the simulation tools. Others,
from the neurophysiology field, are designed to use the full
current traces, data that are neither commonly available nor easy
to extract from published literature (Gurkiewicz and Korngreen,
2007; Ben-Shalom et al., 2012).

In the current form, VGC-KiMo1 source code includes
two Markov formulations for the Kv11.1, best known as the
hERG K+ channel. Any other channel can be added to the
source code in addition to the current one, as well as different
Markov models and other voltage protocols. The experimental
data chosen for the model validation was not used for the
development of the model’s parameters and belongs to a different
cell line than the one used to originally derive the parameters
for the M-model (HEK cells), see SM (Section 2: Validation).
The performance of the original parameters is fairly good but
corrections were needed to reproduce the data from CHO cell
line, suggesting that the published set of parameters is robust and
reliable. A preliminary version of VGC-KiMo has also been used
recently to simulate WT hERG and a variant using experimental
data from HEK cell line (Guo et al., 2015; Perissinotti et al.,
2015).

Cell Simulations
An IKr Markov model (Romero et al., 2015) was incorporated
into the O’Hara-Rudy human ventricular action potential
model(O’hara et al., 2011) and its maximum conductance (gKr
= 0.0422) was scaled to elicit a close value of the peak Ikr
as the original O’Hara model at 1Hz. Physiological action
potential simulations were subsequently performed at 37◦C.
b-Isoform and a-Isoform transition rate constants together with
the corresponding temperature correction are shown in Table
S12.

Simulated action potentials (APs) were recorded in
endocardial cells at the 1000th paced beat (BCL = 1000ms). The
numerical method used for updating the voltage was forward
Euler. All the Simulations were encoded in C/C++ and run
on Mac Pro 3.06 GHz 12-Core computers. The time step was
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set to 0.00005ms during AP upstroke, otherwise the time step
was 0.005ms. Numerical results were visualized using MATLAB
R2014a by The Math Works, Inc.

Transmural fiber simulations
We simulated a transmural fiber composed of 165 ventricular
cells (1x = 1y = 100µm) connected by resistances to simulate
gap junctions (Faber and Rudy, 2000). The fiber contains an
endocardial (cells 1 to 60), M-cell (cells 61 to 105), and epicardial
(cells 106 to 165) regions, as described by O’Hara et al. The fiber
was paced at BCL = 1,000ms for 2,000 beats. The stimulus was
applied to the first cell. Current flow is described by the following
equation:

∂V(x, t)

∂t
= D

∂2V(x, t)

∂x2
−

Iion_Istim

Cm
(6)

Where V is the membrane potential, t is time, D is the tissue
diffusion coefficient [0.00092 cm2/ms, calculated from Shaw and
Rudy (Shaw and Rudy, 1997)], Iion is the sum of transmembrane
ionic currents, Istim is the stimulus current (300 µA/cm2 for
0.5ms), and Cm is the membrane capacitance (1 µF/cm2).

ECG computation
Extracellular unipolar potentials (8e) generated by the fiber in an
extensive medium of conductivity σe, were computed from the
transmembrane potential Vm using the integral expression as in
Gima and Rudy (Gima and Rudy, 2002):

8e(x
′, y′, z′) =

a2σi

4σe

∫

(−∇Vm) •

[

∇
1

r

]

dx (7)

r = [(x− x′)
2
+ (y− y′)

2
+ (z − z′)

2
]
1/2

(8)

where ∇V is the spatial gradient of Vm, a is the radius of the
fiber, σi is the intracellular conductivity, σe is the extracellular
conductivity, and r is the distance from a source point (x, y, z)
to a field point (x’, y’, z’). Φe was computed at an “electrode” site
2.0 cm away from the distal end along the fiber axis.

Structural Modeling
Recently published full hERG (hERGT) open channel solved by
Cryo-EM at 3.8 angstrom resolution (PDB ID 5VA2) was used
for the structural analysis. The construct used for structural
studies has functional properties very similar to WT but is
lacking residues between 141 and 350, that correspond to the
structure between PAS and S1; and 871-1005 (C-terminal). The
structure was cut right after CNBD ends and missing residues at
the outer pore mouth were added and modeled as extracellular
loops that were minimized using NAMD2.10 (Phillips et al.,
2005). The 3D structure of the closed-state hERG channel used
in this study is based on the homology modeling to EAG1
Cryo-EM structure (PDB ID 5K7L) determined at 3.78 angstrom
resolution (Yang et al., 2017). This structure represents the closed
pore while the voltage sensing domain (VSD) displays an open
conformation (Whicher and Mackinnon, 2016). The SWISS-
MODEL homology modeling program (Arnold et al., 2006)
was used for the development of the hERG closed model from

TABLE 1 | Experimental data for HEK cells at room temperature.

hERG1a hERG1b

ACTIVATION PARAMETERS

V1/2 (mV); −10.7 ± 1.5 (n = 10) −20.9 ± 2.4 (n = 10)

slope (mV) 8.1 ± 0.3 8.8 ± 0.8

RECOVERY FROM INACTIVATION, τ (ms)

−100mV 3.6 ± 0.2 (n = 7) 1.1 ± 0.1 (n = 6)

−50mV 11.0 ± 0.8 (n = 4) 2.1 ± 0.5 (n = 3)

Each value is an average of n experiments. Equation (1) was used to obtain V1/2 and k,

data are presented as mean ± SEM.

the available EAG1 channel structure as described previously
(Yang et al., 2017). Sequence alignment was performed using
the CLUSTALW algorithm (Larkin et al., 2007; Goujon et al.,
2010). Protein models were generated from the alignment in
a stepwise manner. The generated model was later minimized
using NAMD2.10 (Phillips et al., 2005).

RESULTS AND DISCUSSIONS

Experimental Measurements
The whole-cell patch clamp configuration at room temperature
was used to study the voltage-dependent activation by applying
a standard step protocol described in the methodology. The
normalized tail currents measured at −100mV were plotted
against the membrane potential of the previous step and fitted
to a Boltzmann function. The V1/2 of activation is shifted
around 10mV in the negative direction for hERG1b compared to
hERG1a (Figure 3, Table 1). The mean current levels measured
at the end of the 1-s depolarizing pulse to +40mV were used
to construct the current-voltage (I-V) relationship (Figure 3C).
Similar to what is observed for hERG1a, the b-isoform shows a
strong inward rectification, resulting in the characteristic bell-
shaped curve. Kinetics of activation was studied by applying
an envelope of tails protocol, as described in the methodology
section. The b-isoform shows a similar sigmoid shape of
activation, but a much faster rate compared to the a-isoform
(Figure 4).

Deactivation kinetics was characterized by recording tail
currents at potentials ranging from −40 to −120mV after
an activating step to +40mV (see methods). Current traces
for selected voltages are shown in Figure 5. The deactivating
currents were best fitted to a double exponential function and
time constants corresponding to the fast and slow deactivation
processes are shown in Table S13. Both deactivating components
are significantly reduced for hERG1b. The observed reduction
depends on the voltage, at−60mV, the slow and fast components
are around 10 to 14 times faster for hERG1b while the difference
is around 4 to 7 times for −40 and −100mV, respectively.
As it was found before for CHO cells by Larsen et al. (2008),
the relative contribution of the fast component of deactivation
depends on the voltage and is much more pronounced for
hERG1b compared to hERG1a, in fact at −120mV there is no
slow component according to the experimental fit. Regarding
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TABLE 2 | M-model 1 rate constants for transitions within hERG gating for

a-isoform and b-isoform.

Transition Parameter

name

Rates ratio b/a

b-Isoform a-Isoform

C3→ C2 ae α 4.71 E-2 3.39 E-2 1.39

β 9.36 E-3 1.04 E-2 0.90

C2→ C3 be α 7.43 E-2 4.82 E-2 1.54

β −5.05 E-2 −6.91 E-2 0.73

C2→ C1 ain α 5.01 E-2 2.20 E-2 2.28

C1→ C2 bin α 2.95 E-2 1.36 E-2 2.17

I→ O ai α 2.80 E-2 6.63 E-3 4.23

β −3.06 E-2 −3.89 E-2 0.79

O→ I bi α 7.41 E-2 7.41 E-2 1.00

β 1.88 E-2 2.80 E-2 0.67

C1→ O aa α 1.71 E-2 4.94 E-3 3.46

β 3.05 E-2 4.31 E-2 0.71

O→ C1 bb α 1.61 E-3 2.06 E-4 7.83

β −3.44 E-2 −3.76 E-2 0.91

α (1/ms) indicates voltage independent rate, and β (1/mV) indicates voltage dependent

rate as follows: k = α*exp(β*V) The transitions between O and I states are also

dependent on extracellular potassium concentration [K+ ]0. That dependence is accounted

for in the model by modifying the transition rate for inactivation (O → I, bi)

as: kbi ([K
+ ]0 )=k’bi (5.4mM/[K

+ ]0 )0.4. Bold values indicate moderate change of the

corresponding transitions calculated as a ratio. Transitions that are strongly affected are

shown in bold red. Transitions that are affected the most are shown as underlined red

bold values. For details of the optimizations, original model parameters and optimization

from CHO data see Tables S1–S4.

the inactivation process, there was not significant difference and
was not further investigated here (Larsen et al., 2008) (data
not shown). Time constants for recovery from inactivation for
a-isoform and b-isoform display a significant difference and are
collected in Table 1.

Markov Kinetic Models to Describe hERG
a- and b-Isoforms
The most pronounced difference evident from the experimental
raw current traces is the markedly faster deactivation rate and
the faster activation rate of hERG1b compared to hERG1a. This
is in agreement to what was also found for CHO cells (Larsen
et al., 2008). The experimental measurements in the HEK cell
line focus in these events and the M-models were fitted to the
data presented in the above section. All transition rates were
defined using Equation (3). The previously derived values for αi
and βi were used for initial guess (see Table S1 in Supplemental
Materials). For M-model 1, the initial guess values were derived
using the comprehensive experimental data-set from Berecki
et al. at room temperature and 37◦C respectively (Berecki et al.,
2005). Two correction terms, a and b were introduced to α and
β parameters for quality monitoring during optimization routine

TABLE 3 | M-model 2 rate constants for transitions within hERG gating for

a-isoform and b-isoform.

Transition Parameter

name

Rates ratio b/a

b-Isoform a-Isoform

C3→ C2 ae α 1.19 E-2 3.77 E-3 3.17

β 2.17 E-2 3.29 E-2 0.66

C2→ C3 be α 1.82 E-2 2.44 E-2 0.74

β −3.79 E-2 −6.77 E-2 0.56

C2→ C1 ain α 9.29 E-2 3.59 E-2 2.59

C1→ C2 bin α 1.09 E-1 1.65 E-2 6.62

I→ O ai α 5.11 E-2 1.74 E-2 2.93

β 2.09 E-2 2.87 E-2 0.73

O→ I bi α 1.79 E-2 9.26469 E-3 1.94

β −2.15 E-2 −2.347 E-2 0.92

C1→ O aa α 1.55 E-1 8.80 E-2 1.76

β 9.60 E-3 1.02 E-2 0.94

O→ C1 bb α 7.82 E-2 5.11 E-3 15.28

β −3.54 E-2 −4.44 E-2 0.80

C1→ I bi* α 9.32E-07 1.02E-09 910.41

β 1.621E-05 7.99E-06 2.03

α (1/ms) indicates voltage independent rate, and β (1/mV) indicates voltage dependent

rate as follows: k= α*exp(β*V). *Constraint by microscopic reversibility. Bold values

indicate moderate change of the corresponding transitions calculated as a ratio.

Transitions that are strongly affected are shown in bold red. Transitions that are affected

the most are shown as underlined red bold values. For additional details on the

optimizations and original model parameters see Tables S1–S4.

(Equation 9). α and β were set to the constant values, while a and
b parameters were introduced as free variables for optimization
routine.

ki = aiαie
biβiV (9)

Correction to individual parameters (ai, bi: Equation 5) from
Fink et al. andMazhari et al. has been done to reproduce available
data from HEK-cell measurements at room temperature (23).
All fitted parameters for the kinetic mechanism considered, can
be found in Tables 2, 3 and Tables S4, S5. Note that β was set
to zero for transitions ain and bin (Figure 2) and thus, these
transitions are modeled as voltage independent. Maximum single
channel conductance was assumed to be the same for hERG1a
and hERG1b, so all differences are attributed to channel kinetics.

Three and/or four different voltage protocols were included
simultaneously in the optimization protocol (see Supplementary
Materials for a complete description of the voltage protocols).
Different optimization routines were performed and the
correction factors were defined for each of the parameters.
All parameters required corrections to the initial guesses. The
best fits are shown in Tables 2, 3 for two isoforms and each
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model, respectively. Further improvement of the optimizations
was achieved by using the random initial guess generator around
the already fitted values and assigning different weight to the
partial cost function. In all the cases, the stability analysis showed
that all values were well-converged. The simulated voltage
protocols and computed currents are in reasonable agreement
with the measured ones, meaning that voltage dependence and
curve shapes are qualitatively well-reproduced. Overall, both
gating mechanisms from the literature were able to reproduce
the gating kinetics for both isoforms. However, the optimized
parameters showed some interesting differences and limitations
in quantitatively reproducing the time course of the deactivation
kinetics at different voltages.

Performance of M-Model 1
The M-model 1 implies linear connectivity between different
gating states. The channel has to go through the open state
to fully inactivate. The experimental basis for this scheme
was extensively discussed in the literature (Bett et al., 2011).
Assuming that both isoforms follow same kinetic scheme (Sale
et al., 2008), the key differences between the a-isoform and b-
isoform kinetics lie essentially in the highlighted steps shown in
Table 2. According to the results collected in Table 2, the best
fit within M-model 1 indicates that the main difference between
two hERG isoforms is in the late deactivation step. The late
deactivation is about eight times faster for the b-isoform. These
parameters also show an increase in the activation rate steps,
together with an increase in the recovery from inactivation rate
in agreement with the experimental data (Table 1). Simulated
data from CHO cell line (SM) also display a good agreement
with the optimal fit (Tables S3, S4, S9). Figure 6 shows the
simulated data together with the experiments. An excellent
agreement is obtained for the activation and Steady State
Activation curves for both isoforms (Figure 9). However, the
main challenges are in the modeling of the deactivation kinetics
for different voltage protocols (−40, −60, −100, −120mV). For
b-isoform in particular, the quality of the optimization is limited,
although it qualitatively reproduces the behavior at the different
voltages.

Performance of M-Model 2
This model, in contrast to the M-model 1, is not linear, but
instead, includes a direct transition to the inactivated state from
the closed state immediately preceding the open state. In one of
the previous formulations (Mazhari et al., 2001), this transition
is negligible compared to the transition to the open state and
so, numerically, this model is almost linear. In our work, M-
model 2 was tested assuming a range of different values for this
transition and in all the cases a very small rate was obtained
for both isoforms. Although the obtained value was small and
almost negligible, it is almost 1000 times faster for the b-isoform.
The M-model 2 shows a similar performance compared to the
M-model 1 although the fit quality is consistently lower than
that of M-model 1. The differences between a-isoform and b-
isoform are distributed over the activation steps but mainly in
the late deactivation and the new extra step considered in this
scheme (Table 3). Simulated current traces elicited by the voltage

protocols and the activation curves are well-reproduced by this
model (Figure 7). Similar to what was observed for M-model 1,
the quality of the optimization is poor, although it qualitatively
reproduces the behavior at the different voltages.

Taking together the results from M-model 1 and 2, we
conclude that both models capture the main kinetic difference
between the isoforms. The pivotal feature of isoform kinetics is a
considerable increase in the late deactivation step. Both models
point to a moderate increase in the activation and recovery
from inactivation steps, the changes and their magnitudes
depend on the model. The current traces simulated by each
model and elicited by the SSA voltage protocol are shown in
Figure 8. It can be seen that they qualitatively reproduce the
experimental behavior shown in Figure 3. The b-isoform displays
larger currents, an increased activation rate, faster recovery from
inactivation and clearly shows a much faster deactivation rate
under the repolarizing pulse. The simulated I-V relationships
show the typical curve shape and qualitatively reproduce the
experimental differences characteristic of each isoform, although
they show significant deviations for voltages above 10mV. At
these voltages background currents are relatively high, while
hERG current is relatively small. The combination of these two
factors presents a natural challenge and led to the discussed
discrepancy between simulated and experimental data.

The best optimization for M-model 1 which also shows fair
agreement with the fit to CHO data (Table S9), suggests that
although themain difference is in the late deactivation step, being
eight times faster for the b-isoform when compared to a-isoform,
early and late activation are also increased by a factor of∼2 and 4,
respectively. According to this fit, the voltage independent rates
are increased in forward and backward directions by a factor
of 2 and the recovery from inactivation rate by a factor of 4.
M-model 2 suggests similar changes and fair agreement with
CHO data (Table S10); late deactivation is 15 times faster for the
b- compared to the a-isoform, but also early and late activation,
being 3 and 2 times faster respectively. It also shows a three-
fold increase for the recovery from inactivation and an increase
for both voltage insensitive rates, being 2.5 times faster in the
deactivating direction.

Limitations of the Kinetic Modeling
It is important to mention that the time course of deactivation
was not well-fitted by the M-models used in this work for
both HEK and CHO cell lines. We observed that the quality of
the fit is different for different voltages. To improve modeling
of the deactivation kinetics, a number of different conditions
were tested for both models, i.e., randomization of initial values,
constraints, boundaries, etc., but no further improvement was
achieved. The reason could be related to the amount of data
used in the fitting procedure, experimental limitations in the
data acquisition (temperature, cell-line variability, resolution
of electrophysiological recordings), or indicate that the M-
models should be revisited. It is important to mention that
some inconsistencies between the deactivation experimental
data and these models were previously discussed by other
authors (Fink et al., 2008). Another example can be found in a
recently developed Markov model that reproduces biophysical
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FIGURE 6 | M-model 1 optimization to experimental data. (A) Activation curve of a-isoform and b-isoform. (B) Steady State Activation curve for both isoforms.

(C) Simulated deactivation curves at −120, −100, −60, and −40mV. Simulated data is shown as solid lines and symbols are used for experimental time course data

(average, n = 10). Superimposed raw time course data (n = 10) is shown in the background for deactivation at each voltage.

experimental data at room temperature with CHO cell line
includes two closed (C1, C2), one open (O) and corresponding
inactivated states (IC1, IC2, IO) (Di Veroli et al., 2013). This
model also faces difficulties in fitting deactivation at different
voltages. Interestingly, the 6-states model with closed loops
can be reduced to a 4-states cyclic model (C1, O, IC, IO) at
37◦C, as different closed states could not be resolved. However,
unless explicitly introducing temperature-dependent parameters,
all of the available models cannot account for temperature-
dependent hERG channel activity changes. A modification of
the Di Veroli model was done recently by Li et al. (Li et al.,
2016), and can recapitulate macroscopic hERG channel gating
behavior for a temperature range from 20 to 37◦C. Providing the
better performance for the temperature range, different states and
connectivity, it would be interesting to test the performance of
this new model in reproducing the experimental data for both
isoforms. It is important to emphasize that having a complete
and more reliable M-model is of key importance for modeling
and predicting differential and temperature dependent effects of
drugs on the delayed rectifier potassium “Ikr” current.

Structural Underpinnings of Isoform
Function
The kinetic modeling discussed above isolates principal
differences in gating kinetics of hERG a- and hERG b-isoforms.
The recent Cryo-EM structures allowed the structural modeling

for open- and closed states of hERG1 channel enabling
molecular-level description of the determinants of this apparent
isoform-specific differences. Homology models (Wacker et al.,
2017) and chimera constructs were very useful in the past
(Dhillon et al., 2014) for understanding structure-function
relationships in K+ channels. However, most of the models were
focusing on the trans-membrane section of hERG1 channel only
(Wacker et al., 2017). The recently-solved hERG structure shows
an open pore, while the EAG1 channel solved by Cryo-EM is
captured with the pore closed due to the presence of Ca2+
and calmodulin, which lock the pore closed while the VSD is
supposed to be in its depolarized state (Wang and Mackinnon,
2017). The hERG closed model presented here was built using
EAG1 structure as a representative template for hERG‘s closed
pore. Given the fact that conformational differences between
these two states of VSD are relatively small compared to
structures and models of open- and closed states found in K+

channels from Shaker family (Li et al., 2014); then the question
is, if this is a good representation of hERG closed state, what
kind of VSDmovement could result in that same conformational
change in the pore?. As Wang et al. (Wang and Mackinnon,
2017) pointed out, there are key structural differences in the
arrangement of the VSD (non-domain swapped) in hERG
and EAG1. It seems that an S4 inward movement toward the
cytoplasm and centric displacement toward the pore axis driven
by the membrane electric field could produce a similar pore
closure. In that scenario, there is almost not translation of S4
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FIGURE 7 | M-model 2 fit to experimental data. (A) Activation curve of a-isoform and b-isoform. (B) Steady State Activation curve for both isoforms. (C) Simulated

deactivation curves at −120, −100, −60, and −40mV. Simulated data is shown as solid lines and symbols are used for experimental time course data (average, n

= 10). Superimposed raw time course data (n = 10) is shown in the background for deactivation at each voltage.

across the membrane, S5 maintains an extensive antiparallel
contact with S6 and the VSD would transmit force through
the S5-S6 interface as the movement of S4 would compress the
S5 helices and close the S6 gate. This proposed mechanism is
different than the lever mechanism proposed for Shaker-like Kv
channels and the cytoplasmic domains may play a crucial role in
it. It is important to mention that functional measurements also
point to substantial differences in the total gating charge, being
much less for hERG, which implies that the VSD conformational
changes are smaller in hERG channel (Zhang et al., 2004; Li et al.,
2014). These rapid developments in hERG structural biology
emphasized important roles of PAS and CNBD domains in gating
kinetics. As it was shown previously for Kv1.2-Kv2.1 (Morais-
Cabral and Robertson, 2015), PAS-CNBD complex published for
mEAG1 (Haitin et al., 2013), and all the recent structures; the
PAS (Figure 9, in orange) domain is far away from the VSD. In
stark contrast, hERG structures show (Whicher and Mackinnon,
2016; Wang and Mackinnon, 2017), that the N-terminus of the
PAS domain (absent in b-isoform) is directed toward the VSD
and S4-S5 linker (Figure 9B) and most likely interacts with the
gating machinery. NMR studies previously suggested that the
N-terminal cap shows a high degree of structural variability and
is long enough to reach the voltage sensor, the S4-S5 linker or the
C-linker (Muskett et al., 2011; Ng et al., 2011, 2014) (Figure 9B).
As it was mentioned before, the new structures present new
topology of VSD-pore domain packing, which is different
from the domain-swapped architecture and might suggest a

new paradigm for voltage dependent gating. It was recently
proposed for EAG1, a mechanism in which the VSD interacts
with the cytoplasmic domains to gate the channel. Combined
with the data from isoform kinetic modeling described above,
models of hERG in open and closed state may provide better
understanding of stabilizing interactions present or missing in a
particular isoform.

The arrangement of cytoplasmic domains in the open state
and closed state models are shown in Figure 9. The PAS domain
is interacting with CNBD in a similar way it was found previously
for homologous channels (Lee and Mackinnon, 2017; Li et al.,
2017; Wang and Mackinnon, 2017). Similar to the previously
solved structures for CNBD domains (Ng et al., 2011; Adaixo
et al., 2013; Brelidze et al., 2013; Haitin et al., 2013), a portion
of the hERG sequence occupies the cyclic nucleotide binding
site, which prevents the cyclic nucleotide binding. In addition to
that, the N-terminus of PAS Domain (N-cap), which influences
the rate of voltage dependent channel opening and closing,
is directed toward the VSD (Wang and Mackinnon, 2017)
(Figures 9B, 10B). When the channel is in its open state, the
C-linker region is packed against the transmembrane domain
(Figure 10A) interacting with the S4-S5 linker and VSD. A novel
interaction pinpointed by the structural analysis is the salt-bridge
formed between Glu544 and Arg681 (Figures 10C,D). This salt-
bridge is missing in the closed state model of the channel as
the C-linker is slightly rotated with respect to the S4-S5 linker.
Hence, we hypothesize that it might be one of the open-state
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FIGURE 8 | Simulated currents M-model 1 and M-model 2. (A) Simulated currents elicited by the SSA voltage protocol (Figure 3) for both M-models and Isoforms.

(B) Simulated I-V steady state current (x104 pA) relationship for M-model 1 and 2. a-Isoform is shown as black dashed line and b-isoform as red dashed line.

Experimental data is shown in the background as symbols with the corresponding error bar (Figure 3).

stabilizing interactions that it is affected in the absence or the PAS
domain (b-isoform), note that N-cap (Val 3) is close to E544 and
might indirectly affect the E544-R681 interaction. Unfortunately,
solved structures are missing significant part of the PAS domain
sequence and further refinement of hERG1 PAS domain is
essential future goal for structural modeling. Nevertheless, the
previously studied E544L mutant (Durdagi et al., 2012) shows an
increase in the deactivation rate. Even though is not as much as
for the b-isoform (Figure 10E), it highlights a potential key role
of this residue. When transitioning from closed to open state,
the transmembrane and cytoplasmic domains slightly rotate with

respect to each other (Figures 9, 10B), we suggest that the
interplay between PAS, VSD: S4-S5, and C-linker during such
rotation might be of key importance in modulation the gating.

While more work is still required to decipher gating kinetics
of hERG1, the structural models already show enhanced
interactions between the cytoplasmic and the transmembrane
(TM) domain for the open state of the channel. Analysis of
structural differences between open and closed states suggests
that a slight rotational movement changing packing of the
cytoplasmic domains against the TM part of the channel is
required as part of activation/deactivation process. This is in
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FIGURE 9 | Models of the quaternary structure of homomeric hERG tetramers. Side view (A) of closed state model in the left panel and open state hERG Cryo-EM

structure, right panel. In both structures N-cap PAS can be seen interacting with VSD (black arrow). When the TM domain is aligned, cytoplasmic domains are slightly

rotated respects each other. Orange arrow show the rotation direction when transitioning from closed to open states. (B) N-cap PAS interaction with VS (S1 &

potentially S4-S5), CNBD, and C-linker for closed in the left panel and open states, right panel.

line with the finding that the conformational change that VSD
is undergoing during gating cycle might be small compared to
other potassium channels. This would allow the CNBD to close
the channel independent of the VSD conformation (as it was
observed for EAG1) and provide an added level of regulation
through the interaction of intracellular domains with the voltage
dependent gating machinery (Whicher and Mackinnon, 2016).
These structural insights, although preliminary, lead us to the
hypothetic gating mechanism summarized in Figure 11. The
similar mechanism of gating modulated by soluble domains
has been proposed for MolK1, a prokaryotic potassium
channel lacking the C-linker and PAS domain (Kowal et al.,
2014).

These structural models also raise another point. In other
channels, PAS and CNBD domains serve a regulatory function
in which the binding of small molecules or signaling proteins is

transduced into conformational changes. It is not knownwhether
or not this could be happening for hERG. These newmodels align
to what was suggested previously (Morais-Cabral and Robertson,
2015), and that points to the possibility that the C-linker-
CNBD-PAS serves as an anchor to correctly position the N-pas
terminal cap during the gating process. Can we explain observed
differences in the deactivation kinetics between hERG a- and b-
isoforms observed with kinetic modeling? Any of the functional
alterations due to mutations or truncations in the N-terminal
cap or the entire PAS Domain (b-isoform) would ultimately lead
to a loss of N-terminal cap position and severely-altered gating
kinetics. The lack of stabilizing interactions between soluble and
trans-membrane domains is expected to impact the opening
probability and stability of the open state. It may explain observed
rapid transitions between open and closed states present in the
b-isoform.

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 20724

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Perissinotti et al. hERG Isoforms and QT Duration

FIGURE 10 | Structural alignment of closed (light colors) and open (dark colors) models of hERG. TM and C-linker side view shows that the C-linker/TM are closer to

each other in the open state compared to the closed (A). Distances between residues Gly669 show that a closer C-linker is a consequence of a more open pore in

the open state (B). Key salt bridge interactions between Glu544 and Arg681 can only be found in the open state (C) but not in the closed state (D). (E) Current traces

from experiments previously published by Durdagi et al. for hERG1a, hERG1b, and hERG1a-E544L elicited by the voltage protocol at the top. E544L mutant displays

a faster deactivation rates than WT but not as much as hERG1b.

Cardiac Cell Models: Functional
Implications of Different Isoform Ratios in
the Heart

The improved kinetic models allowed us to directly address
physiological questions like whether or not hERG isoform
composition in ventricular myocytes has a potential to alter
QT duration and, hence, to pre-dispose a patient for drug-
induced QT prolongation. To specifically address the functional
implication of having homomeric hERG1a or hERG1b in the
heart we conducted simulations including our M-model 1
parameters in the cardiac cell (O’Hara-Rudy human cardiac
ventricular myocyte Model) (O’hara et al., 2011; Romero et al.,
2015). The final parameters from the fittings were then used as
input values in the cardiac cell and tissue model (O’hara et al.,
2011) in order to simulate the shape of the action potential
and ECG signal for both isoforms (Figure 12). The M-model

1 and its parameters from the optimization were introduced
in the cardiac cell model in order to test the way in which
they affect the shape and duration of action potential. As it
was found previously (Larsen and Olesen, 2010), the results of
the ventricular cardiomyocyte simulations showed that kinetic
changes in Ikr corresponding to homomeric hERG1b resulted
in much shorter action potential duration (APD). Figure 12B
shows the action potential (Dhillon et al.) shape and duration
considering the extreme situation of Ikr corresponding only to
hERG1 a- or b- isoforms. Intermediate cases, where weighed
contributions from both isoforms were considered, are shown in
Figure 12A. Ikr currents are also shown in Figure 12A and, as it
can be seen, the currents became larger and peak earlier when
transitioning from pure a- to b- isoforms.

Mechanistic inspection of the changes in the channel
state occupancy revealed several differences. Figures S9, S11
show the proportion of channels in the different states. The
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FIGURE 11 | Proposed mechanism based on the structures modeled. When the channel opens the cytoplasmic domains rotate toward the membrane as the S6 end

twists in the same direction.

FIGURE 12 | Simulated action potential duration (APD) in cells and virtual pseudo-ECGs in a transmural 1-D tissue model. (A) Single cells simulations show

concentration response for different ratios of a- and b-isoforms. (B) APD for the 1,000th paced beat at 1Hz in single endocardial cells. hERG 1a shows a longer APD

compared to hERG 1b. (C) The Pseudo ECGs of hERG 1b (red) indicates shorter QT intervals than hERG 1a.

most prominent difference lies in the occupancy of open and
inactivated states when comparing a-isoform to b-isoform.
The AP shortening is mainly due to an increase in the open
state occupancy and a reduction in the inactivated states
occupancy for hERG1b compared to hERG1a. Finally, the

M-model 1 was also introduced in the tissue model (cable)
and the ECG signal was simulated for both homomers
(Figure 12C). As expected, virtual hERG1b expression
resulted in a reduction in the QT interval on the computed
pseudo-ECG.
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Experimental investigations have revealed many sources of
heterogeneity and associated regulation in the heart. Distinct
regions with associated cell types that are distinguishable
by morphology and action potential duration have been
documented. The different cell types have been shown to arise
from heterogeneities in ion channel expression, which have been
modeled and used in cell-type specific predictive simulations
(Viswanathan et al., 1999) (Shimizu and Antzelevitch, 1999). In
the left ventricle of the heart, cellular heterogeneity from the
endocardium to mid-myocardium to endocardium exists and
arises from heterogeneity in potassium currents (Shimizu and
Antzelevitch, 1999) (Liu and Antzelevitch, 1995). The differences
in stoichiometry between hERG1a and hERG1b likely constitute
a novel source of cardiac heterogeneity that may vary in terms
of distribution and be subject to regulation by as yet unknown
mechanisms.

The kinetic modeling in section Markov Kinetic Models to
Describe hERG a- and b-Isoforms shows a profound difference in
hERG1a and hERG1b deactivation rates, where the quantitatively
fitted parameters to the data suggested that the hERG1b late
deactivation rate is between 8 and 15 times faster than hERG1a.
One of the most interesting and counterintuitive findings in the
results shown above is that this difference did not result in effects
on the action potential duration that would expected from the
observed changes alone. The dominant presence of the hERG1 b-
isoform results in faster deactivation, which by itself would result
in fewer channels in the open state as the channels close more
quickly. The anticipated effect on the action potential duration
would be less repolarizing current and consequently, shorter
APD. In fact, the opposite was observed both in our modeling
predictions withM-model 1 and in a previous experimental study
(Larsen and Olesen, 2010). The reason is that the hERG1 b-
isoform has both faster activation kinetic and faster recovery
from inactivation kinetics that results in a net increase current
compared to the hERG1 a-isoform.

CONCLUSIONS

We investigated structural and biophysical properties of hERG1a
and 1b homo-tetramers in the context of previously proposed
Markovmodels and new data measured in the HEK cell line. Two
M-models were tested and fitted to the experimental data. For the
first time a set of parameters were provided for both isoforms.
The models’ parameters were then used to investigate effects of
various homo-tetramers ratios formed by two isoforms in cardiac
cells and tissue to track isoform-specific effects on emergent
behaviors that occur in higher dimensions. The minimization
procedure presented here, allowed assessment of suitability
of different Markov model topologies and the corresponding
parameters that describe the channel kinetics. In terms of the
gating kinetics, we found that both M-models were able to
qualitatively capture the kinetics of two isoforms. The kinetic
modeling showed a profound difference in hERG1a and hERG1b
deactivation rates, where the quantitatively fitted parameters to
the data suggested that the hERG1b late deactivation rate is
between 8 and 15 times faster than hERG1a.

In order to gain insight and link the observed isoforms’
differences to the structure, full channel structural models were
developed and analyzed for open and closed states. From the
structural point of view, open and closed structural models for
the full channel were for the first time compared providing
hypothetical structural mechanism for transitions between closed
to open states of hERG channel. In line with the kinetic modeling,
interactions between soluble domains and the TM part of the
channel appeared to be critical determinants of the gating
kinetics allowing explanation of apparent differences in the
deactivation rates between two isoforms. The model emphasized
importance of the electrostatic interactions between N-cap of
PAS domain and TM domain. To test the proposed role of
stabilizing interactions between N-cap of PAS domain and the
gating machinery in TM, we examined gating kinetics of E544L.
Introduction of charge neutralizing resulted in significantly
enhanced deactivation rates, reminiscent of isoform-specific
differences. We attribute it to interactions between E544 and
R681 missing in E544L mutant. Importantly, this interaction
is present in both hERG1 a-isoform and hERG1 b-isoform,
however b-isoform is missing the of PAS domain who might
contribute to stabilize that interaction.While this work was under
review, another publication by de la Peña et al. (2018) showed
that hERG gating profiles can be reconsiled from non-covalently
linked VSD and Pore Domain. Their findings, in line to what
is presented in this work, challenge the classical view of the
S4–S5 linker acting as lever to open the gate, supporting the
hypothesis that the S4–S5 linker might integrate signals coming
from the cytoplasmic domains (c-linker/PAS). Importantly,
those split-channels disconnected at the S4–S5 linker show a
destabilization of the closed state, in particular one of the split
shown to be near E544 position discussed in our submission.
Our structural modeling is providing a first structural glimpse
of the structural underpinnings of the peculiar isoforms’ gating
and suggesting potential key interactions between S4–S5 linker,
C-linker and PAS. Equally important question discussed in
our study is the potential impact on the Action Potential
from different ratios of isoform expression in the myocytes.
The AP simulations performed in our study suggest that
recovery from inactivation of hERG1 B may contribute to its
physiologic role of b-isoform in the action potentials. Both
structural and functional models were exploratory in nature
aiming to provide a perspective for future multi-scale modeling
studies.

In conclusion, the results and in-depth review of modeling,
structural and functional data presented here contribute to the
growing body of evidence that hERG1b significantly affects the
generation of the cardiac Ikr and plays an important role in
cardiac electrophysiology.
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Interactions of drug molecules with lipid membranes play crucial role in their accessibility

of cellular targets and can be an important predictor of their therapeutic and safety

profiles. Very little is known about spatial localization of various drugs in the lipid bilayers,

their active form (ionization state) or translocation rates and therefore potency to bind

to different sites in membrane proteins. All-atom molecular simulations may help to

map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment

of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane

partitioning of d-sotalol, well-known blocker of a cardiac potassium channel Kv11.1

encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis.

We developed the positively charged (cationic) and neutral d-sotalol models, compatible

with the biomolecular CHARMM force field, and subjected them to all-atom molecular

dynamics (MD) simulations of drug partitioning through hydrated lipid membranes,

aiming to elucidate thermodynamics and kinetics of their translocation and thus putative

propensities for hydrophobic and aqueous hERG access. We found that only a neutral

form of d-sotalol accumulates in the membrane interior and can move across the bilayer

within millisecond time scale, and can be relevant to a lipophilic channel access. The

computed water-membrane partitioning coefficient for this form is in good agreement

with experiment. There is a large energetic barrier for a cationic form of the drug,

dominant in water, to cross the membrane, resulting in slow membrane translocation

kinetics. However, this form of the drug can be important for an aqueous access pathway

through the intracellular gate of hERG. This route will likely occur after a neutral form

of a drug crosses the membrane and subsequently re-protonates. Our study serves to

demonstrate a first step toward a framework for multi-scale in silico safety pharmacology,

and identifies some of the challenges that lie therein.

Keywords: hERG, longQT syndrome, cardiotoxicity, CHARMM force field, molecular dynamics, umbrella sampling,

lipophilicity, water-membrane partitioning
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INTRODUCTION

The continuing failure to accurately predict the risk of drug
toxicity is the primary reason for drug candidates being
abandoned or approved drugs being removed from the market
(Chi, 2013), illustrating the critical need for a more rational
approach to drug development. One example of such a need
is the longstanding failure of drug-based treatment of cardiac
arrhythmias. The SWORD clinical trial (Waldo et al., 1996)
famously showed that the antiarrhythmic drug d-sotalol, which
we focus on in this work, actually increased mortality and risk
of sudden cardiac death in patients, leading to its removal from
the marketplace. Similarly, the gastrokinetic agent cisapride has
been removed from the market in many countries due to its
arrhythmogenic potential (Quigley, 2011), and a number of such
cases for drugs and drug candidates with diverse pharmacological
action has been growing over the years. Each year, over 360,000
people die in the US die from cardiac arrhythmias that are
often drug-induced, demonstrating that the pharmacological
assessment of cardiotoxicity still remains significantly hindered
(Benjamin et al., 2017). The proposed Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative is intended to address
this shortcoming by improving predictions of pro-arrhythmic
drug proclivities through the combination of in vitro assays
on several cardiac ion channels and multi-scale modeling and
simulation (Colatsky et al., 2016; Fermini et al., 2016). Atomistic
MD simulations have the potential to serve as part of such in silico
screen (Clancy et al., 2016) for the development of cardiac-safe
medicines, and can be used to identify molecular determinants of
acquired arrhythmogenesis.

On the molecular level, drug-induced arrhythmogenesis is
typically associated with the binding of drugs to cardiac ion
channels, membrane proteins responsible for the propagation
of electrical signal in cardiomyocytes. It is known that multiple
environmental factors, including drug blockade, can modulate
the gating and permeation of many ion channels. More
specifically, experimental studies aimed at understanding ion
channel blockade by drugs often focus on mapping binding
sites at or around the intra-cellular cavity of the ion channel.
This assumes, either explicitly or implicitly, that a drug (often
weakly cationic) is able to diffuse from the intra-cellular space
and physically occlude ion permeation. Such a mechanism is
supported, for example, by the role of two intra-cavity residues
(F656 and Y652) in the drug-induced current block of the voltage
gated potassium channel KV11.1 (also known as hERG), which

Abbreviations: aLQTS, acquired Long QT syndrome; CGENFF, CHARMM

generalized force field; CHARMM, Chemistry at Harvard Molecular

Mechanics; CiPA, comprehensive in vitro pro-arrhythmic assay; CisC, cationic

cisapride; COM, center of mass; Cryo-EM, cryo-electron microscopy; DMPC,

dimyristoylphosphatidylcholine; ECG, electro-cardiogram; GPU, Graphics

Processing Unit; hERG, human Ether-à-go-go-Related Gene; Kv, voltage gated

potassium channel; LQTS, Long QT syndrome; MD, molecular dynamics;

MM, molecular mechanics; MoxZ, zwitterionic moxifloxacin; PBC, periodic

boundary conditions; PMF, potential of mean force; POPC, 1-palmitoyl-2-

oleoyl-phosphatidylcholine; POPS, 1-palmitoyl-2-oleoyl-phosphatidylserine; QM,

quantum mechanics; SotA, anionic d-sotalol; SotC, cationic d-sotalol; SotN,

neutral d-sotalol; SotZ, zwitterionic d-sotalol; US, umbrella sampling; VSD,

voltage sensing domain; WHAM, weighted histogram analysis method.

is considered a major drug anti-target due to its promiscuous
binding of many drug-like molecules (Vandenberg et al., 2012).

Many of the common ion channel blockers are weak bases
with a pKa of ∼7.8–8.5. Thus, at a physiological pH of 7.4, up
to ∼7–28% of drug molecules remain uncharged, and therefore
potentially capable of interacting with the channel by traversing
a lipophilic pathway in the plasma membrane toward a binding
site, either on the lipid-facing exterior of the channel or within
the channel pore via passage through lipid-facing fenestrations.
A possible lipophilic access route has been established for
ivabradine blockade of hERG in a recent study that implicated
a lipid-facing residue (M651) as critical for drug-induced
blockade (Lees-Miller et al., 2015). This finding was further
substantiated by the recent publication of Cryo-EM structures
of hERG (putatively open), and related EAG (putatively closed)
channels, suggesting that F656 and M651 can be exposed to
lipids in either channel state (Whicher and MacKinnon, 2016;
Wang and MacKinnon, 2017). Furthermore, hERG block by the
endogenous components of cardiac membranes has also been
well-established, with various lipophilic molecules including
hormones (Yang et al., 2017), ceramides (Ganapathi et al.,
2010; Sordillo et al., 2015), sphingosine-1-phosphate (Sordillo
et al., 2015), and polyunsaturated fatty acids (Guizy et al.,
2005; Moreno et al., 2012) blocking hERG but without obvious
intra-cellular access to the intra-cavity site. Therefore, mapping
the lipophilic pathways for common ion channel blockers and
understanding the chemistry of drug-lipid interactions remains
an unmet pharmacological challenge.

The complexity in understanding the lipophilic access
pathways of many blockers arises from their chemical structure.
Most drug molecules can coexist in multiple ionization states
with different membrane permeabilities or localization on the
bilayer surface and consequent access to binding sites in hERG.
Hence, significant challenges exist in developing a framework
for atomic-scale in silico screening and predictive pharmacology.
One example is the lack of robust topologies and parameters
defined for most drugs in popular MD force fields, necessitating
their de novo development. This task requires computationally
expensive calculations of quantum mechanical (QM) optimized
molecular geometries and atomic charge distributions, and
the time-consuming process of fitting molecular mechanical
(MM) parameters to the optimal computed QM data. Here we
have developed CHARMM generalized force field (CGENFF)
(Vanommeslaeghe et al., 2010) parameters for the hERG blocker
d-sotalol, which has high cardiotoxic risk (Colatsky et al.,
2016) for the ventricular tachycardia characterized by Torsades
de Pointes (TdP) arrhythmias (Waldo et al., 1996; Yap and
Camm, 2003). Preliminary parameters for the intermediate-
TdP risk compound cisapride (Colatsky et al., 2016), and
low-risk compound moxifloxacin (Haverkamp et al., 2012)
were developed for the purpose of comparing their membrane
affinities, and will be briefly discussed as well.

Computing the free energy cost required for drugs to partition
from bulk solution across the cell membrane represents a critical
test for drug model viability used in MD simulations. This
is because the membrane permeability of a drug not only
determines its bioavailability, but is also linked to its medically
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relevant concentration, and pathway to its target. Many drugs
are delivered to their targets via a lipophilic pathway, and
drug permeation across lipid membranes is crucial for their
absorption by tissue, metabolism, extraction from the body,
and toxicity (ADME-Tox) (Yu and Adedoyin, 2003). This is
especially relevant for predicting propensity for off-target effects
of a drug, which is necessarily linked to its tissue permeability.
Empirically derived ADME-Tox drug profiles, however, are
inherently limited, lacking transferability to different drug
classes, and providing no information regarding the structural
determinants of membrane-drug distribution or kinetics (Swift
and Amaro, 2013). Obtaining these measurements through MD
simulation represents a final major challenge: namely, obtaining
sufficient sampling of the configurational space in a modeled
system to calculate accurate thermodynamic quantities of interest.
Ideally, unbiased all-atom MD simulations of drug permeation
across large, explicit lipid membranes would provide the most
accurate kinetic and thermodynamic profiles for membrane-
drug interactions (Swift and Amaro, 2013), however the
sampling (or simulation time) mandated by such an exhaustive
approach makes it computationally prohibitive. Fortunately,
more computationally tractable techniques for enhanced
sampling exist that allow for the robust calculation of membrane
distribution coefficients and permeability measurements of an
isolated drug across a small membrane patch. We have employed
one such technique, umbrella sampling (US) (Torrie and Valleau,
1977), in this report in order to compute the free energies and
diffusion coefficients required for drugs to pass through the cell
membrane. Similar approaches have been used for various drug
molecules in a number of other studies (Carpenter et al., 2014;
Di Meo et al., 2016; Bennion et al., 2017), including previous
works by our groups (Boiteux et al., 2014; Yang et al., 2016). The
approaches and data presented here serve as preliminary steps in
overcoming the many challenges that arise in the messy task of
atomistic in silico predictive cardiovascular pharmacology.

MATERIALS AND METHODS

Drug Force Field Parameterization
We obtained starting molecular structures from either PubChem
(Kim et al., 2016) (CID 5253 for d-sotalol) or the ZINC
(Irwin and Shoichet, 2005) (3775140 for cisapride, 3826253
for moxifloxacin) databases, and used them to generate initial
guesses for partial atomic charges and other force field
parameters (i.e., bond lengths, bond angles, dihedral angles)
using CGENFF program, version 1.0 (Vanommeslaeghe and
MacKerell, 2012; Vanommeslaeghe et al., 2012).

Initial topology and parameters for SotC and SotN, were
subsequently validated and optimized using QM target data
following the suggested CGENFF force field methodology
(Vanommeslaeghe et al., 2010). High-quality parameters not
already present in CGENFF are assigned from existing
parameters based on chemical analogy, with poor chemical
analogy corresponding to a high penalty score for use in MD
simulation (Vanommeslaeghe et al., 2012). Our optimizations
focused on such high-penalty, poorly analogous parameters
generated by the CGENFF program. Quantum mechanical

(QM) target data for parameter optimization were obtained
utilizing Møller–Plesset (MP2) and Hartree-Fock (HF) electronic
structure methods and the 6–31(d) basis set using the Gaussian
09 program (Frisch et al., 2009).

MP2/6-31G(d) molecular dipole magnitude and orientation
as well as scaled HF/6-31G(d) interaction energies with
water were used for partial atomic charge optimization
for compatibility with the CHARMM atomistic biomolecular
force fields (MacKerell, 2004). The gas-phase MP2/6-31G(d)
dipole, along with HF/6-31G(d) interaction energies, should
be overestimated by CHARMM (by ∼16% for the latter) in
order to account for polarization in aqueous media (MacKerell,
2004; Vanommeslaeghe et al., 2010). Internal bond and angle
parameters were validated or modified based on comparison of
MP2/6-31G(d) and CHARMM optimized geometries and scaled
vibrational frequencies. For bond lengths and angles, respective
differences within 0.01 Å and 1◦ between QM and CHARMM
values were sought. Dihedral angle parameters were optimized
to reproduce MP2/6-31G(d) potential energy scans for rotation
around a particular bond.We used the Force Field Toolkit plugin
(fftk) (Mayne et al., 2013) for the Visual Molecular Dynamics
program (VMD) (Humphrey et al., 1996) in order to generate
files for QM reference calculations and to perform parameter
optimizations. We were able to achieve substantial improvement
over the initial CGENFF generated parameters (highlighted
in Figure 3C for a selected dihedral angle energy profile),
with markedly better agreement between CHARMM and QM
geometries, vibrational frequencies, and interactions with water.
Final topology and parameters for SotC and SotN are provided
in the Supplementary Information. Optimized parameters for
charged cisapride and zwitterionic moxifloxacin, obtained using
the same methodology, will be subsequently published after
additional validation and any necessary improvement.

Drug Membrane Partitioning: Molecular
Systems
Partitioning of charged (SotC) and neutral d-sotalol (SotN),
charged cisapride (CisC), and a zwitterionic form ofmoxifloxacin
(MoxZ) were assessed using CHARMM (Brooks et al., 1983,
2009) and NAMD (Phillips et al., 2005) programs. CHARMM-
GUI tool (Jo et al., 2008) was used in order to build the
simulation systems, which consisted of 128 1-palmitoyl-
2-oleoylphosphatidylcholine (POPC) lipids, ∼7,000 water
molecules, 21 or 22 K+ and 22 Cl− ions to ensure 0.15M
electrolyte concentration and overall electrical neutrality, and
one drug molecule, totaling∼38,250 atoms.

A separate set of simulations that investigated membrane
composition was equilibrated with NAMD and run on Anton
2 supercomputer (Shaw et al., 2014). In these simulations lipid
membranes were composed of either pure POPC or a mixture of
85% POPC and 15% of 1-palmitoyl-2-oleoylphosphatidylserine
(POPS) lipids. These systems were larger and contained
∼103,000 atoms with 256 lipids, 15 SotC or 16 SotN molecules,
∼22,800 water molecules, 50–88 K+ and 50–65 Cl− ions.

CHARMMbiomolecular, and compatible CGENFF forcefields
were used throughout all simulations. In particular, C36 lipid
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(Klauda et al., 2010) and standard CHARMM ion parameters
(Beglov and Roux, 1994), newly developed CGENFF drug
parameters (see above) along with the TIP3P water model
(Jorgensen et al., 1983) were utilized.

Drug Membrane Partitioning: Molecular
Dynamics Simulations
CHARMM simulations of SotC, SotN, CisC, and MoxZ, and
NAMD simulations of SotC and SotN in a hydrated 128 lipid
POPC membrane were carried out in NPT ensemble with
1 atm of pressure maintained by Langevin piston barostat
(Feller et al., 1995) and 310K temperature controlled by Nosé-
Hoover thermostat (Nosé, 1984; Hoover, 1985). Tetragonal cells
with periodic boundary conditions (PBC) were used in all the
simulations, with P21 space group (Dolan et al., 2002) utilized
in CHARMM runs. SHAKE algorithm (Ryckaert et al., 1977) was
employed to fix the bonds to all hydrogen atoms, allowing a time
step of 2 fs for all our simulations. Electrostatic interactions were
computed via Particle Mesh Ewald (Darden et al., 1993), with a
mesh grid of 1 Å.

For partitioning calculations of each drug we used the
US method (Torrie and Valleau, 1977) with 81 independent
simulation windows, placing the center of mass (COM) of the
drug in 1 Å intervals from −40 Å to 40 Å with respect to COM
of the membrane. The COM of the drug was restrained along
the z axis with a force constant of 2.5 kcal/mol/Å2 to provide
sufficient sampling with an additional 5 kcal/mol/Å2 cylindrical
constraint applied to prevent the drift of the molecule in the xy
plane (Li et al., 2008). Free energy or potential of mean force
(PMF) profiles was computed using weighted histogram analysis
method (WHAM) (Kumar et al., 1992).

SotC and SotN simulations ran for 15 ns with NAMD and
10 ns with CHARMM per window. To improve sampling, for
NAMD runs we used additional US windows from −20 Å to 20
Å, whereas 7 central windows (i.e., for |z| ≤ 3 Å) were used for
CHARMMSotC simulations, all running for the same simulation
time as the original runs (see Supplementary text). Based on
solvation analysis of SotC and SotN (Figure S5), we discarded
the first 4 ns to account for equilibration. For consistency, similar
procedure was followed for CHARMM simulations of CisC and
MoxZ, both of which ran 10 ns/window plus additional 10 ns for
the 5 central windows (|z|≤2 Å) of CisC.

Unbiased MD simulations were run for larger membrane
systems with several SotC or SotN molecules. First, systems
were equilibrated for 50 ns using NAMD and the simulation
parametersmentioned above. Then, production simulations were
run for 500 or 1000 ns (for SotN system with POPC/POPS mixed
membrane) using Anton 2 software (Shaw et al., 2014) version
1.31.0. These simulations were carried out using tetragonal PBC
in the NPT ensemble at 310K, a 2 fs time step with non-bonded
long range interactions computed every 6 fs using the RESPA
multiple time step algorithm (Tuckerman et al., 1992). The
multi-integrator (multigrator) algorithm (Lippert et al., 2013)
was used for temperature and semi-isotropic pressure coupling,
whereas a novel u-series method (Shaw et al., 2014) was used for
handling long-range electrostatic interactions. An electric field

in the z direction was applied, gradually increasing from 0 to
160mV during the first 100 ns of the simulation. A long-range
Lennard-Jones (LJ) correction (beyond cutoff) was not used as
was suggested for C36 lipid force field (Klauda et al., 2010).

Drug Membrane Partitioning: Simulation
Analyses
Solvation numbers were computed as number of oxygen atoms
of water, lipid phosphate or ester functional groups within 4.25 Å
of drug non-hydrogen atoms, with this distance cutoff obtained
from an analysis of corresponding radial distribution functions
(see Figure S6). Drug orientation was computed based on a polar
angle θ between z axis corresponding to a bilayer normal and
drug N1...S vector, which is almost anti-parallel to its dipole
orientation (see Figure 3). Average angles were computed as:

< θN1...S >= atan2(< sinθ >,< cosθ >) (1)

whereas corresponding order parameters were computed as
(Vorobyov et al., 2012)

SN1...S = ½(3 < cos2θ > −1) (2)

Drug water-membrane partition coefficients were calculated as
(Vorobyov et al., 2012):

K(wat → mem) =
1

z2 − z1

z2
∫

z1

e
−

{W(z)−W(z1)}
kBT dz (3)

whereW(z) is the PMF, z1 and z2 are points in aqueous solution
on opposite sides of the membrane, kB is Boltzmann constant,
and T is the absolute temperature. Partitioning free energies were
calculated as

1G(wat → mem) = –kBT ln K(wat → mem) (4)

Error bars were estimated from PMFs by propagation of
uncertainties.

To estimate the 1D diffusion constant in the z direction,D(zi),
we analyzed the corresponding US windows with Hummer’s
method (Hummer, 2005):

D(zi) =

〈

δz2
〉

i

τi
(5)

where
〈

δz2
〉

i
and τi are the mean square deviation from the

average position and the position correlation time for US
window i.

τi = lim
s→0

τi(s) = lim
s→0

Ĉz(s; zi)
〈

δz2
〉

i

= lim
s→0

∫

∞

0 e−st
〈

δz(t)δz(0)
〉

i
dt

〈

δz2
〉

i

(6)

Ĉz(s; zi) is the Laplace transform of the position autocorrelation
function Cz(t; zi):

Ĉ z(s; zi) =

∫

∞

0
e−stCz(t; zi) dt (7)
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where Cz(t; zi) =
〈

δz(t)δz(0)
〉

i
, s is the inverse time and δz =

z − 〈z〉i is the drug COM position displacement.
Values of τi(s) were calculated at s-values 0.01, 0.02, . . . , 0.1,

0.2, . . . , 1.0, 2.0, . . . , 10.0 ps−1. τi(s) were extrapolated to s= 0 by
fitting the function a/(s+b), where a and b are parameters, in the
s range from 0.02 to 1.00 ps−1. See our previous study (Vorobyov
et al., 2014) for more details.

Based on PMF and diffusion coefficient profiles we computed
water-membrane drug permeability rate as,

P =

(∫ L/2

−L/2

exp(Wz/kBT)

D(z)
d z

)−1

(8)

an integral over the local bilayer resistance (Marrink and
Berendsen, 1994), spanning−14≤ z ≤14 Å for SotN and−20≤ z
≤20 Å for SotC (with PMF-values adjusted to be 0 at the borders),
where the drug is expected to cross a central barrier; essential
for modeling permeation via a single molecule PMF (Roux and
Karplus, 1991). This description assumes we are in the diffusion
limit, where the mean velocity is proportional to the mean force,
which is valid if the drug displacement correlation length is short
compared to the spatial variations in the force (Marrink and
Berendsen, 1994).

RESULTS

Comparative Ionized Drug Membrane
Partitioning
First, we studied membrane partitioning of SotC and compared
it to the partitioning of CisC and MoxZ, each drug form
representing the dominant protonation state in aqueous solution
at the physiological pH. We studied their translocation across
POPC membranes using US MD simulations, which allow
for more efficient sampling of energetically unfavorable drug
distributions across a lipid membrane compared to conventional
unbiased MD simulations. US works by restraining drug
positions at different values of z across the membrane using a
harmonic potential. Thus, we can compute free energy for drug
positions along the bilayer normal, with z = 0 corresponding to
membrane center.

When all 3 drugs are located near z = 0 (see Figure 1A),
we observed substantial membrane deformations, where they are
coordinated by water molecules and lipid headgroups from one
(for CisC) or both (for SotC and especially for MoxZ) membrane
interfaces. Not surprisingly, such membrane deformations lead
to substantial energetic penalties for ionized drugs tomove across
the membrane with the peak values at z = 0: around 18 kcal/mol
for MoxZ, 10 kcal/mol for SotC and just 5 kcal/mol for CisC.
Interestingly, such differences in peak free energy values correlate
with computed MM drug dipole moments, which are 41.3 Debye
for MoxZ, 15.5 Debye for SotC and 6.8 Debye for CisC for the
same drug molecule “standard” positions and orientation (as
defined by Gaussian software). For MoxZ, extensive membrane
deformation exhibited by both leaflets are due to the positively
charged ammonium and negatively charged carboxylate moieties
at opposite ends of the molecule (Figure 1C). For SotC, a cationic
secondary ammonium and polar sulfonamide groups can also

attract watermolecules or lipid headgroups. Both SotC andMoxZ
can stretch along the membrane normal to interact with both
bilayer interfaces. However, the situation is different for CisC,
which also has several polar functional groups and a positively
charged tertiary ammonium functionality at the center of the
molecule, but it is floppier than those drugs and seems to be
attracted to one membrane interface (see Figure 1). Also, CisC
has a pronounced binding trough of around −3 kcal/mol at
14 ≤ |z| ≤ 17 Å. This suggests, that unlike SotC and MoxZ it
will accumulate at water—membrane interface. The presence of
the binding trough will also inadvertently increase a barrier a
drug will need to overcome to cross a membrane from ∼5 to 8
kcal/mol (see Figure 1B). These calculations suggest fairly high
but surprisingly different energetic costs to cross the membrane
for this collection of ionized molecules.

Models of d-Sotalol
We performed a more detailed analysis of different protonation
states of d-sotalol, focusing on the energetics of its membrane
crossing. Like many other drugs in aqueous solution, d-sotalol
can exist in several protonation states depending on solution pH
and other factors, such as proximity to specific protein residues.
Data from the literature indicate that aqueous pKa-values for d-
sotalol are 8.3 and 9.8 attributed to deprotonation of sulfonamide
and secondary ammonium functionalities, respectively (Foster
and Carr, 1992; Hancu et al., 2014). This indicates that at
physiological pH 7.4, SotC is the predominant form (around
89%), while deprotonation of the sulfonamide functionality leads
to a second dominant SotZ form (around 11%). At more basic
pH, the secondary ammonium functionality will deprotonate
as well, leading to a negatively charged, anionic form SotA
(Figure 2).

However, there is yet another possibility, in which
deprotonation of secondary ammonium group occurs first,
leading to a neutral d-sotalol form (SotN). In fact, there is
likely an equilibrium, and possibly interconversion, between
SotN and SotZ forms, in which either one is favored depending
on the polarity of the surrounding medium. We expect that
a substantially less polar SotN form would be favored in the
hydrophobic environment of the lipid membrane interior based
on our MoxZ simulations discussed above, whereas a more
polar SotZ might be favored in aqueous solution. Unfortunately,
there are no experimental data to address this issue for d-sotalol.
We performed a series of implicit solvent QM calculations,
which seem to indicate slight preference for SotN even in bulk
water (see Supplementary text for more information), but their
accuracy is very uncertain. However, a recent experimental
study using a combination of potentiometric titration and
spectrophotometry measurements has suggested around 90%
of zwitterionic and 10% of neutral form of moxifloxacin is
present at physiological pH range, and that only a neutral form
contributes to drug partitioning into a non-polar environment
of lipid membranes or 1-octanol often used as a membrane
mimetic (Langlois et al., 2005). This suggests that a neutral form
of a drug is likely the one to undergo an unassisted membrane
translocation.
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FIGURE 1 | Ionized drug translocation across a POPC membrane. (A) Representative snapshots from a central (z = 0) umbrella sampling windows for cationic

d-sotalol (SotC), cationic cisapride (CisC), and zwitterionic moxifloxacin (MoxZ). Drug molecules along with lipid P atoms (orange), K+ (purple) and Cl− (cyan) ions are

shown in a space-filling representation. Other elements are colored as follows: C—gray, H—white, O—red, N—blue, S—yellow. Water molecules are shown as tubes

and lipid tails as wireframes. (B) PMF profiles for POPC membrane crossing for 3 drugs shown in (A). Error bars represent measures of asymmetry. (C) Chemical

structures of those drugs drawn using MarvinSketch program.

Since we are particularly interested in lipophilic access of
cardiotoxic drugs known to block hERG, we have developed
standard CHARMM (Klauda et al., 2010) compatible models of
d-sotalol in charged (SotC) and neutral (SotN) forms. The QM
and MM dipole moments for those d-sotalol forms and drug—
water interactions probed for the model optimizations are shown
in Figures 3A,B for SotN and SotC, respectively. Optimized
CHARMM charges (Table S3) provide good agreement with
QM target dipole values. The optimized MM dipole moments
point in same direction (<1◦ difference in angle between QM
and MM for both SotC and SotN) and are each within 20%
difference in magnitude (SotN 6%, and SotC 14%). The water
interaction distances were all within 0.4 Å of QM target values
(see Tables S4, S5). The dipole moment is significantly higher
for SotC (17.64 Debye), than for SotN (5.98 Debye), as is to
be expected for charged vs. neutral species and in agreement
with QM-values. Interaction energies with water were also in
good agreement with QM-values with root mean square (RMS)
and maximum errors of 0.8 and 1.5 kcal/mol for SotN (Table
S5) as well as 1.6 and 3.0 kcal/mol (see Table S4) for SotC,
respectively. No internal (bond, angle, dihedral angle) parameters

needed to be optimized for SotC, whereas for SotN there was
a high penalty score for the C2-N1-C3 bond angle (shown by
blue arrow in Figure 3C), and optimization yielded a difference
of 0.86◦ (i.e., <1◦ as required) between MM and QM values.
Also for SotN, 7 dihedral angle parameter optimizations yielded
marked improvement over CGENFF initial guesses (illustrated in
Figure 3C for SotN C8-C3-N1-C2 dihedral angle highlighted in
pink, with all the dihedral scan profiles shown in Figure S2), with
optimized torsional energy minima within ∼0.5 kcal/mol of QM
values. For comparison, raw CGENFF dihedral parameters with
high penalties yielded QM energy minima differences sometimes
as high ∼2 kcal/mol. These optimized parameters represent a
significant improvement over initial guesses and should yield
more accurate computed energetics from MD simulations.

At this time, we were not able to develop empirical models of
the SotZ and SotA forms of the drug (Figure 2), since a negatively
charged sulfonamide nitrogen atom type does not exist in either
CHARMM biomolecular, or generalized (CGENFF) force fields.
The fraction of these forms in aqueous solution or other media
is uncertain, but based on a very high free energy barrier for
zwitterionic moxifloxacin translocation (Figure 1 and discussion
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FIGURE 2 | Protonation states of d-sotalol. Chemical structures were drawn using ChemDraw program. Asterisk (*) indicates chiral C atom.

above) as well as the very large dipole moments for SotZ and SotA
(see Table S1 and Supplementary text), we do not expect them
to contribute substantially to the passive diffusion of d-sotalol
across a lipid membrane, or the lipophilic access of this drug to
hERG or other protein targets.

We should also mention that sotalol has a chiral center at
C1 atom (shown by an asterisk in Figures 2, 3C), and in this
study we only focused on S-enantiomer, d-sotalol. However,
the developed force field parameters can be also used for R-
enantiomer, l-sotalol, which will be also considered in our
subsequent studies.

d-Sotalol Solvation and Orientation across
the Membrane
We used our SotC and SotN models to investigate their
interactions with a lipid membrane as they move across
using US MD simulations. For those simulations we applied
extensive sampling, especially important for hindered drug
reorientation in the membrane interior (see Supplementary text
for more information). We also performed those simulations
with two popular biomolecular modeling packages, NAMD and
CHARMM,with the former beingmore computationally efficient
on our GPU (Graphics Processing Unit) cluster. However,
CHARMM allows using P21 symmetry to take into account likely
changes in the areas of top and bottom bilayer leaflets as a
drug moves through the membrane by shuffling lipid molecules
between them as it happens. We established that the lipid
membrane properties of our simulated systems are in agreement
with experimental data in this case (See Supplemental text).

We then started to investigate membrane—drug interactions,
first, by looking at equilibrated system snapshots at the
membrane center (z = 0 Å) and water/membrane interfacial
region |z| = 14 Å, corresponding to free energy minimum for
SotN (see Figure 4). It can clearly be seen that both charged
and neutral drug molecules can adapt different orientations
with respect to the membrane normal and can be solvated by
both water molecules and lipid head groups even deep in the
membrane interior for SotC in agreement with our CHARMM
multiple-drug simulations shown in Figure 1 and discussed
above. Interestingly, that in NAMD simulation snapshots shown
in Figure 4, we observed that SotC while held around membrane
center (z = 0) can adopt different long-lasting (see below)
orientations “grabbing” water molecules and lipid head groups
from either top or bottom membrane interface, but did not
observe them making interfacial connections to both leaflets, as
was observed in our CHARMM simulations (Figure 1).

Next, we performed a quantitative analysis of drug solvation

shown in Figure 5.While SotC and SotN are found in bulk water
regions, for |z|> 25 Å (∼5 Å beyond phosphate groups), they are
solvated by∼5.5 and 5 water molecules, respectively. We defined
the interfacial region as 15 < |z| < 25 Å, where 15 Å boundary
was established based on an experimentally determined POPC
hydrophobic thickness of 28.8 ± 0.6 Å (Kucerka et al., 2011).
The water coordination remains the same as in bulk, until
the drug reaches inside the core of the membrane, where we
observe a bigger drop in the number of water molecules solvating
SotN. In the center of the bilayer, at z = 0 Å, almost no water
molecules are found coordinating the neutral drug, while at
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FIGURE 3 | CHARMM force field parameter optimization of d-sotalol. The QM (blue arrow) and MM (red arrow) dipole moments for neutral, SotN (A), and charged,

SotC (B), forms of d-sotalol are compared, and their QM optimized water interactions are shown by dashed blue lines. A sample dihedral angle C8-C3-N1-C2

optimization (bonds are highlighted in purple on SotN molecule) is shown in (C), with reference QM computed energy scan in blue, non-optimized CGENFF energy

scan in green, and optimized MM energy scan in red, demonstrating marked improvement. Asterisk (*) indicates chiral C atom (C1).

least 1.2 water molecules continue to coordinate the charged
species. Additionally, when SotC is found at the interface or the
hydrophobic core of the membrane, it is coordinated by lipid
phosphate and carbonyl groups, while SotN remains virtually
uncoordinated by these functional groups in the membrane core
and has a similar coordination by carbonyl O and smaller by
phosphate O atoms in the interfacial region (Figure 5).

Such solvation results in the preferential orientation of both
SotC and SotN with respect to bilayer normal (coinciding with
the z axis) as shown in Figure 6. There is no preferred orientation
of both drugs in bulk water as expected, which is exemplified
by average θ being around 90◦ and order parameter being 0
(see Figure 6 and top right panels in Figures S7, S8 for time
series). There is a strong preference for N1...S vector of both
drugs to be aligned with the z axis in the outer interfacial region
i.e., at 20 < |z| <25 Å, whereas there is some tendency for
drugs to lie perpendicular to the membrane normal i.e., in the
membrane plane (with order parameter S < 0) in the inner
interfacial and outer core regions at 10 < |z| < 20 Å (see
Figures S7, S8 for time series). In the inner core region (|z| <

10 Å) the drugs again become aligned or anti-aligned with the
z-axis. Interestingly, the orientation of SotN and SotC in the
inner interfacial and core regions seem to be opposite—with

SotC favoring parallel orientation and SotN—antiparallel with
the membrane normal for the drug positions with the negative z-
values (Figure 6). This results from different relative affinities of
SotC and SotN functional groups: the cationic ammonium group
in SotC strongly attracts water molecules and lipid head groups,
whereas its deprotonation makes its sulfonamide functionality a
better attractor leading to this functional group re-orientation
to be closer to the membrane interface. These interactions lead
to hindered rotation (see Figures S7, S8) on the time scale of
MD simulations we performed here (10–15 ns for each drug
z) leading to difficulties sampling thermodynamics of drug—
membrane interactions discussed below (see Supplemental text
for more details).

d-Sotalol Energetics and Protonation
across the Membrane
We computed free energy profiles for SotC and SotN moving
across a POPC membranes based on analysis of drug position
fluctuations around restrained z positions in US MD simulations
as described above. Those profiles are shown in Figure 7A for
both NAMD and CHARMM simulations. For SotN, differences
between NAMD and CHARMM free energies are within
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FIGURE 4 | Representative snapshots of charged (SotC) and neutral (SotN) d-sotalol moving across a POPC membrane from umbrella sampling MD simulations.

Reference d-sotalol center of mass (COM) z positions with respect to membrane COM are shown on the top. See Figure 1 caption for molecular representation and

coloring information. Two structures for z = 0 for each drug represent final system snapshots from two independent simulations with a different initial drug orientation

(see Supplementary text for more information).

uncertainties (shown as error bars in Figure 7A), obtained as
measures of profile asymmetries (see Figure S9 and Supplemental
text). However, for SotC the free energy barrier is ∼3 kcal/mol
smaller for CHARMM (11.2± 1.1 kcal/mol) compared to NAMD
(14.4± 0.1 kcal/mol). Such free energy decrease along with a flat
free energy profile for |z| < 3 Å can be due to P21 point group
transformations used in CHARMM simulations. This is also in
line with interfacial connections to both bilayer interfaces seen in
these simulations (see Figure 1 and discussion above). However,
relatively large asymmetries of up to ∼2 kcal/mol (Figure S9)
preclude us from an unambiguous assignment of this difference.

If we compare SotC and SotN free energy profiles shown in
Figure 7A, we will see differences such as substantially higher
central peak for SotC, e.g., 14.4 vs. 5.4 kcal/mol for SotN from
NAMD simulations, as well as presence of a deep interfacial
minimum of−2.8 kcal/mol for SotN at |z|= 14 Å, similar to one
seen for cationic cisapride (Figure 1 and discussion above). Such
minimum indicates a substantial neutral drug accumulation at
the water-membrane interface. Interestingly, there is practically
no such minimum for SotC, although, a shallow ∼-1 kcal/mol
trough can be seen on a not-symmetrized PMF profile in Figure
S9. The substantial difference in peak heights for SotC and SotN is

not unexpected, however, and was also observed for basic amino
acid side chains in our previous simulations (Li et al., 2008, 2013).
It can be explained by different molecular mechanisms governing
SotC and SotN permeation: substantial membrane deformations
for the former and nearly complete drug dehydration for the
latter (Vorobyov et al., 2010, 2014; Li et al., 2012, 2013). Based
on free energy difference between charged and neutral drug
forms we can also approximate pKa shift and thus preferred
protonation form of a drug across the membrane:

1pKa = 1/(2.303kBT) {1WSotN(z)− 1WSotC(z)} (9)

where kB is Boltzmann constant, T—absolute temperature and
1W (z) are position-specific free energies for charged and neutral
d-sotalol. Corresponding 1pKa profiles are shown in Figure 7B

and indicate rapid downward 1pKa shifts soon after the drug
gets into contact with membrane. Near the membrane center
1pKa reaches about −6.5 for NAMD and −4.5 for CHARMM
based calculations, with the latter estimate being smaller due
to a ∼3 kcal/mol smaller SotC free energy barrier discussed
above. Qualitatively, both results are similar and indicate rapid
drug deprotonation soon after a drug starts moving across a
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FIGURE 5 | Analysis of d-sotalol solvation from umbrella sampling MD

simulations. Solvation numbers of water or lipid oxygen atoms within 4.25 Å

cutoff distance from non-hydrogen atoms of SotC or SotN were computed

based on integrated radial distribution function (RDF) profiles. See Figure S6

for a few representative RDF profiles. Error bars shown in all the graphs are

computed from profile asymmetries.

membrane. In fact, considering its first aqueous pKa of 8.3, even
getting as close as 20 Å to the membrane center will already lead
to drug deprotonation. However, it should be noted that we have
not considered a possible role of a zwitterionic d-sotalol form,
SotZ, in this equilibrium.

d-Sotalol Water-Membrane Partitioning
and Permeations: Connection to
Experiments
Next, we need to attempt connecting our findings to
experimental observables such as water—membrane partitioning
coefficient K and permeability rate P. All the relevant data are
summarized in Table 1. There is an experimental estimate for
water—dimyristoylphosphatidylcholine (DMPC) membrane
K′(wat→mem) of 2.50 obtained at 303K (Redman-Furey and
Antinore, 1991). This is an apparent value, which takes into
account a pH-dependent fraction of membrane-active drug
species at those conditions. However, since we know that
only SotN is expected to accumulate in the membrane we can
compute an intrinsic K-value at experimental pH = 7.2 using
drug aqueous pKa = 8.37 and Henderson-Hasselbach equation
to obtain K(wat→mem) = 2.50 ∗ 10(8.37−7.20) = 37.0. And
corresponding partitioning free energy is 1G(wat→mem) =

−RT ln K(wat→mem) = −2.17 kcal/mol. These estimates,
again, do not take into account a presence of SotZ form in the
drug protonation equilibrium, which will likely further increase
K-value and decrease corresponding 1G. Nevertheless, we
can compare experimental estimates with values we computed
from NAMD US free energy profiles using Equations (3) and
(4). Estimated K(wat→mem) and 1G(wat→mem) values for
SotN of 13.4 ± 8.6 and −1.6 ± 0.4 kcal/mol (see also Table 1),
respectively, are in good agreement with experiment also
considering a different lipid (POPC vs. DMPC) and temperature

FIGURE 6 | Analysis of d-sotalol tumbling during umbrella sampling MD

simulations. (A) Average polar angle θ distribution for N1...S d-sotalol vector

with respect to the z axis for charged (SotC, blue) and neutral (SotN, red) drug

moving across POPC membrane. (B) Corresponding order parameter profiles

for this vector with respect to the z axis. Error bars shown in all the graphs are

computed from profile asymmetries. See Figures S7, S8 for a few

representative θ(N1...S) time series.

(310 vs. 303K) used in simulations and experiment. Estimates
from CHARMM simulations (Table S6) are similar, within an
error of NAMD values. As expected, SotC does not accumulate
in the membrane, with K(wat→mem) and 1G(wat→mem) of
0.69± 0.36 and 0.23± 0.0.28 kcal/mol, respectively (Table 1).

MD simulations of water-membrane partitioning are a good
test of the drug model accuracy, and can predict how much
drug accumulates in the membrane compared to bulk water.
However, it does not consider the kinetics of drug movement
across a membrane, which is also essential for predicting its
pharmacology and toxicology. Permeability rates, P, provide
corresponding estimates and are measured experimentally using
different cell lines such as caco-2 or artificial membrane systems
such as PAMPA (Parallel Artificial Membrane Permeability
Assay) (Bermejo et al., 2004). Experimental estimates for d-
sotalol P are available from a recent study (Liu et al., 2012)
with a PAMPA P-value of 3.2 × 10−7 cm/s. A direct comparison
between experimental and computed P values is known to be
challenging, with many complicating factors precluding direct
quantitative assessment of absolute values (Carpenter et al., 2014;
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FIGURE 7 | Analysis of d-sotalol thermodynamics from umbrella sampling MD

simulations. (A) Free energy or potential of mean force (PMF) profiles for

charged (SotC, blue and cyan) and neutral (SotN, red and orange) d-sotalol

moving across a POPC membrane. In CHARMM simulations (cyan for SotC

and orange for SotN) P21 symmetry was used. See text for more details. (B)

d-sotalol pKa shifts computed from PMFs in (A).

Di Meo et al., 2016; Bennion et al., 2017). Nevertheless, we
computed P estimates for both SotC and SotN using Equation
(8) as was done in our previous study (Vorobyov et al., 2014)
based on free energy and diffusion coefficient profiles. The
latter, shown in Figure 8, were obtained based on correlation
times and mean fluctuations of drug COM in z direction using
Equation (5) as was also done previously (Vorobyov et al.,
2014). The computed diffusion coefficient profiles indicate a
rapid 10-fold drop of diffusion coefficients for both SotC and
SotN as drug molecules start interacting with lipid membranes,
similar to many previous observations (Carpenter et al., 2014;
Vorobyov et al., 2014). Interestingly, diffusion coefficients for
SotC and SotN are similar, both in water and in the membrane
interior (Figure 8 and Table 1), despite difference in net charge
and very different drug—membrane interactions. Computed P-
values, presented in Table 1 as log P of −8.57 for SotC, and
−4.43 for SotN encompass an experimental estimate of −6.50.
Based on those values alone, we cannot comment on accuracy
of our prediction, and comparison with values for other drug
molecules (desirably, with similar functionalities) as was done in
a recent study (Bennion et al., 2017) would be the best. What our
computed values indicate though, that a neutral drug is about

FIGURE 8 | Analysis of d-sotalol diffusion from umbrella sampling MD

simulations. Diffusion coefficient profiles are computed as described in the

text. Error bars shown are computed from profile asymmetries.

TABLE 1 | Water-membrane partitioning and permeability data from umbrella

sampling MD simulations for charged (SotC) and neutral (SotN) d-sotalol

translocation across a POPC membrane using NAMD.

Experiment Umbrella sampling MD simulations

SotC SotN

W(peak), kcal/mol 14.38 ± 0.14 5.43 ± 0.53

|z(peak)|, Å 0.0 0.0

W(well), kcal/mol −0.16 ± 0.10 −2.79 ± 0.47

|z(well)|, Å 32.5 14.0

W(barrier), kcal/mol 14.54 ± 0.17 8.22 ± 0.71

1G(wat->mem),

kcal/mol

−2.17a 0.23 ± 0.28 −1.60 ± 0.37

K(wat->mem) 37a 0.69 ± 0.36 13.41 ± 8.58

D(wat), 10−5 cm2/s 0.99 ± 0.14 0.98 ± 0.06

D(mem), 10−5 cm2/s 0.061 ± 0.039 0.087 ± 0.020

log P(wat->mem),

[log cm/s]

−6.50b −8.57 −4.43

aRedman-Furey and Antinore (1991) using pKa = 8.3 to compute intrinsic values based

on observed apparent K′(wat→mem) of 2.50.
bLiu et al. (2012) using measured PAMPA permeability rate.

4-orders of magnitude more permeable compared to a cationic
one, and that both values are within few orders of magnitude of
an experimentally observed permeability.

d-Sotalol—Membrane Interactions: Effect
of Anionic Lipids
Thus far, we only considered d-sotalol partitioning across a
POPC membrane using US MD simulations for a single drug
molecule. However, we also tested if lipidmembrane composition
affects drug—lipid interactions. In fact, cardiomyocyte
lipid membrane is known to host multiple lipid types: in
addition to dominant zwitterionic phosphatidylcholine and
phosphatidylethanolamine, it also has a substantial fraction of
anionic lipids—phosphatidylserine, phosphatidylinositol and
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phosphatidic acid [6–13% in human (Post et al., 1995) or 17–18%
in feline cardiac cells (Leskova and Kryzhanovsky, 2011) based
on total phospholipid content]. Anionic lipids are expected to
increase membrane binding affinity for cationic drug forms and
other cations, as was evidenced by our previous study where we
saw increase in the interfacial binding for a positively charged
arginine side chain analog, methyl guanidinium, in the presence
of an anionic lipid phosphatidylglycerol (Vorobyov and Allen,
2011). The possible effect of anionic lipids on neutral drug
binding is less clear and is worth testing as well. Therefore,
we performed simulations of both SotC and SotN in lipid
membranes containing 15% POPS and 85% POPC, respectively,
and compared the results to corresponding drug simulations
with pure POPC membranes.

We used 500 or 1000 ns long unbiased MD simulations
with multiple (15–16) drug molecules initially placed in bulk
aqueous solution, corresponding to∼40mMdrug concentration.
Most SotN molecules become bound to the lipid membrane
within 200 ns for the simulation with pure POPC and around
400 ns with a POPC/POPS mixture (see Figure S11). The
equilibrium aqueous concentration of SotN drops to ∼8mM
for POPC/POPS and ∼5mM for a POPC only system. For
systems containing SotC,most drugmolecules remain in aqueous
solution throughout the simulations with only ∼4 (out of 15)
interacting with membrane regardless of the lipid composition
(Figure S11). Equilibrated systems are shown in Figure 9C

demonstrating substantial membrane binding of SotN but not
of SotC. Drug probability distributions from those simulations,
computed based on simulation data after equilibration (which
was achieved in 200 or 400 ns), are shown in Figure 9A. These
data confirm the picture demonstrating substantial interfacial
binding for SotN with well-defined probability maxima around
|z| = 15 Å for both POPC and POPC/POPS systems. No
interfacial binding was detected for systems containing SotC
(Figure 9A). In the cationic sotalol system with POPS present,
there is a slightly increased accumulation of the drug density in |z|
range of 15–30 Å compared to a systemwith POPC only. This can
be due to expected attraction between anionic lipid head groups
of POPS and positively charged SotC moieties. However, the
effect is small and is thus unlikely to be physiologically significant
in this case.

The probability distributions shown in Figure 9A can be
converted to free energy profiles as 1G(z) = –kBT ln ρ(z),
where ρ is probability density, kB is Boltzmann constant, and
T is the absolute temperature (see also analogous Equation
4 above). Those profiles are shown in Figure 9B and are in
general agreement with those from US MD simulations shown
in Figure 7A previously. As expected, we did not observe SotC
located near the membrane center during 500 ns of unbiased
MD simulations, and therefore free energy profiles are not
defined in this region. However, we observe that the slope
of the profile is steeper in the presence of POPS, suggesting
a higher translocation barrier and hence slower translocation
in this case. SotN molecules were distributed throughout the
membrane, and thus we could compute complete free energy
profiles including central peaks. Interestingly, there are shallower
interfacial binding troughs (by 0.5–0.6 kcal/mol at |z| =

14–15 Å), higher central peak (by ∼1.1 kcal/mol) and thus
larger translocation barriers in the presence of POPS, indicating
less favorable membrane binding and slower translocation rates
for SotN. Upon comparison of SotN free energy profiles from
US and unbiased MD simulations, shown in Figure 7A, 9B,
respectively, we observed a substantially smaller central free
energy peak (by 3.7 kcal/mol) and shallower interfacial binding
(by 0.6 kcal/mol) in unbiased simulations. There are several
factors which can contribute to such differences, including
multiple drug molecules, larger membrane patch, and presence
of applied electric field in unbiased MD simulations, all of which
can possibly lead to smaller permeation barriers. A detailed
elucidation of these and other factors is beyond the scope of this
study and will be investigated in our subsequent works.

DISCUSSION

Exploring Ionized Drug Membrane
Partitioning
At physiological pH many cardiac channel blockers exist
in aqueous solution mostly in their cationic form for d-
sotalol and cisapride, and zwitterionic form for moxifloxacin
(ionized, but with net zero charge). Our MD simulations have
demonstrated that all of them cause substantial membrane
deformations, with lipid head groups and water molecules
coordinating them deep into the hydrophobic membrane
core. Large free energy barriers occur at the center of the
membrane as a result of the deformations, making such mode
of drug translocation unlikely. Moreover, ionized d-sotalol and
moxifloxacin do not demonstrate any interfacial membrane
binding, indicating that they will not be accumulating there,
and thus limiting their protein target accessibility through
this route. Interfacial membrane binding is, however, possible
for cationic cisapride, and its accumulation there could play
a role in its pharmacological profile. However, to provide a
more complete picture for drug membrane translocation and
membrane-mediated protein target affinity, additional less-polar
drug protonation states should be considered. This is what we
did for d-sotalol; a prominent example of high-arrhythmia risk
hERG blocker. At a physiological pH of 7.4, 89% of this drug
exists in a cationic form, indicating a ∼1.3 kcal/mol energetic
penalty for its deprotonation, which can be easily overcome by
the hydrophobic environment of lipid membranes that provide a
barrier for charged and polar species (Gennis, 1989).

Computing Charged and Neutral d-Sotalol
Membrane Partitioning
In addition to a cationic d-sotalol force field model, we
developed parameters for one of the neutral forms of d-
sotalol. SotN is substantially more lipophilic, as expected,
with a free energy penalty near the membrane center of
∼5 kcal/mol, compared to ∼15 kcal/mol barrier for the
cationic species, which, interestingly, correlates with the
ratio of their dipole moments. Moreover, unlike SotC, SotN
accumulates at the water-membrane interface, making it
accessible for binding to protein targets through the lipophilic
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FIGURE 9 | Analysis of d-sotalol partitioning in the presence of anionic lipids from unbiased MD simulations. (A) Probability density and (B) free energy or potential of

mean force (PMF) profiles for charged (SotC) and neutral (SotN) d-sotalol moving across a 100% POPC lipid bilayer (cyan and yellow for SotC and SotN, respectively)

or a bilayer composed of an 85% POPC and 15% POPS lipid mixture (green and magenta for SotC and SotN, respectively). (C) Molecular snapshots of equilibrated

SotN+POPC, SotC+POPC, SotC+POPC/POPS systems after 500 ns, and SotN+POPC/POPS system after 1000 ns of unbiased MD simulations on the Anton 2

supercomputer. P atoms of POPC and POPS lipids are shown as orange and green balls, respectively. See Figure 1 caption for other molecular representation and

coloring information.

pathway. Such accumulation, which can be quantified by
water-membrane partitioning coefficient, K(wat→mem), is
in agreement with experiment (within an uncertainty, see
Table 1), suggesting a good quality of the developed empirical
model.

Also, SotN does not lead to substantial membrane
perturbations; it transiently coordinates with only a few
water molecules as it moves across a hydrophobic core
of a membrane, unlike SotC. This entails different molecular
mechanisms of membrane translocation: a traditional “solubility-
diffusion” for SotN governed by drug dehydration, and so called
“ion induced defect” for a cationic form, where a cost of
membrane deformation plays a major role as was suggested
in our previous studies on charged amino acid side chain
and small hydrophilic ion translocation (Li et al., 2012;
Vorobyov et al., 2014). Thus, we can expect very different
dependence of their membrane translocation energetics on
lipid membrane composition, such as a strong decrease with
a corresponding reduction in membrane thickness for SotC,
but not for SotN. This is why we expect good agreement with
experiment for SotN water-membrane partitioning despite

using a different lipid bilayer (POPC vs. DMPC). Translocation
of SotC, however, is expected to be very sensitive to the
mechanical properties of membrane such as thickness, as
well as the presence of cholesterol, or polyunsaturated fatty
acid tails, which can increase or reduce membrane rigidity,
respectively (Feller et al., 2002; Pitman et al., 2004). Our
computed membrane translocation energetics for charged
cisapride and neutral d-sotalol across POPC membrane are
very similar, but we expect a larger barrier for cisapride in
thicker and/or cholesterol-containing membranes. This will lead
to different modulation of drug accessibility for intracellular
and membrane-located protein targets. As a first step toward
the investigation of lipid composition dependence, we briefly
examined the role of anionic lipids in water-membrane d-sotalol
partitioning energetics. Despite expected more favorable drug
membrane binding in the presence of POPS, we observed an
opposite trend with shallower interfacial troughs for SotN
and larger translocation barriers for both SotN and SotC.
This indicates that such modulation can be due to specific
drug—membrane interactions rather than a general electrostatic
attraction.
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Estimating d-Sotalol Membrane
Permeation Kinetics
For SotC and SotN, we also provide estimates of membrane
translocation kinetics, expressed as permeability rates (P). SotN
has a translocation rate that is four orders of magnitude faster
than SotC (see Table 1), which is as expected from the difference
in their membrane translocation energetics, and similarly
reduced diffusion coefficients in the membrane interior. This is
in agreement with our previous estimations for ions (Vorobyov
et al., 2014) and other drugs (Boiteux et al., 2014). Based on the
computed P-values and the membrane thickness considered in
those calculations, we estimate that a single SotN molecule can
translocate between interfacial binding sites on opposite sides of
the membranes in about 7.5 × 10−3 s (millisecond time range),
whereas for SotC crossing membrane will take around 150 s.
SotN is expected to be accumulated in the membrane over 10-
fold compared to its equilibrium concentration in bulk aqueous
solution, which is why we are considering its permeation, even
though it is a minor component in the bulk aqueous solution
at the physiological pH, regardless of its unknown ratio to a
membrane-impermeable zwitterionic form. An experimental P
estimate for d-sotalol based on measurements using PAMPA
is in between our computed values for SotC and SotN (see
Table 1 and Liu et al., 2012). Yet, a direct numerical comparison
of our computed and experimental P estimates is extremely
challenging, as has been indicated in many previous studies (Orsi
et al., 2009; Carpenter et al., 2014; Di Meo et al., 2016; Bennion
et al., 2017). This is largely because experimentally measured
quantities mostly represent so-called apparent values, which
typically include contributions from different drug protonation
forms at experimental pH, depend on water layer thickness and
condition, and may encompass different drug permeation routes
(Bermejo et al., 2004; Avdeef et al., 2005; Ottaviani et al., 2006;
Orsi et al., 2009).More standardized intrinsic P-values for neutral
drug forms are typically harder to get (Bermejo et al., 2004;
Orsi et al., 2009), and even then, quantitative agreement with
MD computed values remains challenging due to substantial
differences between an experimental macroscopic system, and a
microscopic molecular model. Therefore, an agreement between
relative P-values for different drugs is typically sought (Orsi et al.,
2009; Carpenter et al., 2014; Bennion et al., 2017), which will be
explored in our future studies.

Predicting Possible Membrane-Mediated
Ion Channel Accessibility Pathways
One mode of ion channel block by drugs is through an
intracellular aqueous pathway, where a drug in the cytosol passes
through a channel lower gate, when it is open, and occludes a
channel pore (Hille, 2001). Another possible mechanism for ion
channel block is through a lipophilic route, which was observed
in a recent MD study for a local anesthetic, benzocaine, entering
a central pore of sodium voltage-gated channel NavAb via lipid-
facing channel openings (fenestrations) (Boiteux et al., 2014). In
the case of the hERG blocker d-sotalol studied here, SotN would
likely to be a dominant drug form binding to the channel via this
route, but it could become protonated again once it is in the pore.

Our recent combined experimental/computational studies of
pH- and state-dependent hERG block by another high-risk pro-
arrhythmic drug dofetilide (sharing the same functional groups
as d-sotalol, but more potent) suggested that drug protonation
equilibrium plays a crucial role in its channel binding affinity
(Wang et al., 2016). To the best of our knowledge, no such
studies have been done for d-sotalol yet. The experimentally
measured on-rate of d-sotalol binding to hERG is quite slow,
in the range of several minutes (Numaguchi et al., 2000). This
is consistent with our computed membrane permeation rate
for cationic d-sotalol form. Recent experimental studies using
cells pre-equilibrated with sotalol, i.e., after the drug crossing
cell membranes, demonstrate faster than 200ms hERG block
(Li et al., 2017; Windley et al., 2017), indicating that drug
membrane permeation could be a rate-limiting step considering
preferential drug channel access via the intracellular aqueous
pore. However, other reasons for such outcome, such as a
preponderance of a lipophilic channel access pathway from of
a local membrane bound pool of the drug, suggested by our
neutral d-sotalol simulations, are possible and can be tested by
additional experiments as well as comprehensive drug—channel
MD simulations. This along with pH-dependent measurements
can help elucidating roles of different drug protonation states and
their contribution to channel block.

Moreover, experimental drug—channel on-rates, which are
crucial components of functional scale kinetic models used for
in silico evaluation of pro-arrhythmia proclivities (as in the CiPA
initiative), can be corroborated using atomistic MD simulations,
such as those presented in this study. Moreover, atomistic MD
simulations can be used to identify different drug—channel
interaction pathways not easily discernable via experiment alone.
For instance, through comparison of computed rates for drug
membrane translocation and binding to the channel via aqueous
and lipophilic pathways, we can predict likely rate limiting step,
and relative contributions of all those processes to experimentally
measured rates, thus informing kinetic models and likely
improving their accuracy and predictive power. The spatially
resolved ionization-state-specific drug localization profiles and
water—membrane permeation rates computed here represent the
first crucial step toward this goal.

Further insight into structural determinants of drug-induced
channel blockade, including possible drug access pathways, can
be provided by comprehensive mutagenesis studies, similar to
one done recently for a large set of congenital long QT syndrome
2 associated hERGmutations (Anderson et al., 2014). Though not
directly related to drug-induced hERG block, several mutations
that were implicated in directly affecting channel gating or
permeation were for hERG residues facing the water-membrane
interface (Lees-Miller et al., 2015; Saxena et al., 2016), and
therefore would be easily accessible by drugs like neutral d-
sotalol, and cationic cisapride, that we explored in this study.

Even more importantly, similar computational approaches
can be used as one of the steps to design drugs, which have similar
membrane binding affinities and bind around mutated protein
residues that result in altered channel function. Such an approach
focusing on a desired drug lipophilicity and spatial arrangement
of crucial functional groups was used, for instance, to design
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selective sodium channel blockers (Muraglia et al., 2007; De Luca
et al., 2012; De Bellis et al., 2017). Such a structure-function based
approach was shown to improve drug safety profile through
mitigation of off-target effects, including hERG block (De Bellis
et al., 2017).

Limitations and Future Directions
Our study represents just a first step in atomistic-level elucidation
of thermodynamics and kinetics of cardiac channel blocking
drug translocation across a lipid membrane. We obtained
reasonable free energy profiles and water-membrane partitioning
coefficients with a moderate amount of sampling (10–15 ns per
umbrella sampling window or 0.8–1.2 µs for entire simulations).
In some cases, we had to run additional simulations with
alternative initial drug orientations to compensate for their
slow reorientation in the membrane interior observed in our
study. More extensive simulations for other drug membrane
partitioning using a different empirical force field and molecular
modeling software were reported recently (Bennion et al., 2017).
They can potentially provide improved accuracy provided a
high quality of an underlying empirical model and sufficient
sampling of drug tumbling, and thus can be considered as a viable
alternative of our approach. In our future studies we will also
test several alternative options for enhanced sampling (Bernardi
et al., 2015) such as metadynamics (Barducci et al., 2011), which
has been recently used in membrane partitioning simulations to
properly sample degrees of freedom orthogonal to the reaction
coordinate and thus provide a more accurate energetics (Jambeck
and Lyubartsev, 2013).

Alternatively, replica exchange simulations can be employed,
which can be especially useful for modeling mixed membrane
systems (Huang and Garcia, 2014). In our study, we mostly used
a one component lipid membrane containing POPC, whereas
lipid composition of cellular membranes is much more complex.
For instance, plasma membranes of cardiomyocytes (where
hERG channels are mostly located) has substantial fractions
of zwitterionic posphatidylcholine, phosphatidyethanolamine,
and sphingomyelin, negatively charged phosphatidylserine and
non-polar cholesterol with substantial differences in their
distribution between inner and outer leaflets (Post et al.,
1995). This is without taking into account lateral membrane
heterogeneity and existence of functional microdomains such
as lipid rafts and caveolae, suggested to influence cardiac
ion channel function (Maguy et al., 2006). At this time,
however, we are not yet in position to study such complex
heterogeneous systems via atomistic simulations, but coarse-
grained models, such as a popular MARTINI force field
(Marrink and Tieleman, 2013), are well-suited for such
investigations and can be potentially used for studying cardiac
drug interactions with realistic lipid membranes. In terms of
atomistic simulations, we are planning to extend our studies to
simulate drug partitioning to binary mixtures of phospholipids
and cholesterol, which is expected to substantially influence
ionizable drug partitioning and permeation, as discussed above.
Another direction, which we already started exploring here,
are binary mixtures of two phospholipids with different
head groups, possibly influencing drug permeation kinetics

and thermodynamics via specific interactions and/or altering
membrane physical-chemical properties.

Estimated drug permeation rates and their relation to
experimentally measured quantities remain uncertain as was
mentioned above. In this study we could only compare relative
values for cationic and neutral d-sotalol, which encompass
an experimental estimate. However, it is not clear if we can
simply relate those values to a measured apparent permeability
via computing effective resistances to permeation as was done
in a recent study (Carpenter et al., 2014). Another pertinent
issue is computing permeability rates for drug molecules with
pronounced interfacial binding (such as neutral d-sotalol in this
study), which will clearly increase a barrier height a drug will
need to hop over to permeate as was noted previously (Orsi et al.,
2009). Therefore, an expression for permeability rates (Marrink
and Berendsen, 1994) traditionally used for their calculations for
polar and ionic species, where free energies are referenced to bulk
aqueous solution, might not work anymore. In this study for
SotN we used a variant of this expression with free energy set to
0 at the interfacial binding site and computing permeability just
across a central barrier. A validity of such approximation remains
to be seen in more thorough investigations, e.g., by comparing
results with drug translocation rates computed from long
unbiasedMD simulations. Moreover, this approach does not take
into account drug translocation between the interfacial binding
site and bulk water. This contribution becomes dominant for
hydrophobic drugs such as general anesthetics (Vorobyov et al.,
2012), not considered in this study.

For d-sotalol and other hERG blockers with sulfonamide
functional group (e.g., dofetilide, ibutilide, E4031), an unresolved
issue is its anionic, deprotonated drug fraction, such as one
in the zwitterionic d-sotalol (SotZ). A neutral sulfonamide
group has been thoroughly parameterized recently and is
included in the generalized CHARMM force field (Yu et al.,
2012), whereas no atom type for anionic N or any associated
parameters are available to the best of our knowledge. For
d-sotalol in water at the physiological pH, a cationic form
with a neutral sulfonamide group is a dominant form, with
SotZ and/or SotN having a ∼11% contribution. Based on
our prediction, only SotN can move across a membrane, but
we need to know SotZ and SotN ratios in order to relate
computed membrane partitioning energetics to experimental
observables. Moreover, SotZ can be potentially an important
contributor to hERG binding through the interactions of
its negatively charged sulfonamide functionality with basic
residues in the voltage-sensing domain (VSD) of a channel,
for example. Such interactions were revealed in a recent
crystallographic/electrophysiological study in a VSD of a
voltage gated Nav1.7/NavAb chimera channel, where an anionic
sulfonamide “warhead” directly and selectively interacts with a
gating charge carrying arginine residue, immobilizing a voltage
sensor in its activated state (Ahuja et al., 2015). Whether a similar
binding motif is possible for hERG remains to be seen, but
it should not be discounted, and thus accurate empirical force
field for an anionic sulfonamide functionality will need to be
developed and can be validated on predicting an aforementioned
drug—channel interaction.
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Sotalol is a chiral molecule, and in this work we only studied
one enantiomer: d-sotalol, which was used in an infamous
SWORD clinical study (Waldo et al., 1996) mentioned above.
Sotalol enantiomers can be synthesized and separated (Carr et al.,
1991; Foster and Carr, 1992; Brodfuehrer et al., 1997), however,
a racemic mixture of d- and l-isomers has been used in many
biophysical, physiological and pharmacological experimental
studies up to date. l-sotalol is known to have some beta-blocking
activities, whereas d-sotalol seems to be inert (Gomoll and
Bartek, 1986) (a reason why it was used for SWORD study), but
they share very similar electrophysiological properties, including
QT prolongation (Touboul, 1993; Manoach and Tribulova,
2001). Even though interaction between two chiral molecules,
e.g., sotalol and lipid, can be different for stereoisomers (and used
for their separation), we do not expect substantial changes for
l-sotalol—membrane interactions as they are mostly governed
by dehydration for a neutral drug or membrane deformation
by a charged drug electric field. Therefore, simulations with d-
sotalol should be sufficient, however, a more complex situation
will arise for drug—channel interaction simulations, where both
stereoisomers might need to be tested.

Nevertheless, despite the limitations of this study, related
to tested drug and membrane models, our work demonstrated
good agreement between computed and experimental data, and
can definitely be used to predict the molecular mechanisms,
energetics and kinetics of drug-membrane interactions, and
potentially ion channel binding pathways. Moreover, the
presented study can be used, for instance, for informing multi-
scale kinetic models of cardiovascular (and other) drug effects
on cellular, tissue and organ levels (Clancy et al., 2016), as
was done in our recent study, where we modeled charged and
neutral flecainide (cardiac sodium channel blocker with some
pro-arrhythmic proclivity) effects (Yang et al., 2016). We are
planning a similar extension of the current study along with
atomistic structure based investigations of sotalol interactions
with hERG using a combination of molecular docking and all-
atom molecular dynamics simulations. Several other drugs with

different hERG affinities and pro-arrhythmia proclivities will be
investigated as well for both lipid membrane and hERG binding
assays.
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Acquired long QT syndrome, mostly as a result of drug block of the Kv11. 1 potassium

channel in the heart, is characterized by delayed cardiac myocyte repolarization,

prolongation of the T interval on the ECG, syncope and sudden cardiac death due to

the polymorphic ventricular arrhythmia Torsade de Pointes (TdP). In recent years, efforts

are underway through the Comprehensive in vitro proarrhythmic assay (CiPA) initiative, to

develop better tests for this drug induced arrhythmia based in part on in silico simulations

of pharmacological disruption of repolarization. However, drug binding to Kv11.1 is more

complex than a simple binary molecular reaction, meaning simple steady state measures

of potency are poor surrogates for risk. As a result, there is a plethora of mechanistic detail

describing the drug/Kv11.1 interaction—such as drug binding kinetics, state preference,

temperature dependence and trapping—that needs to be considered when developing

in silico models for risk prediction. In addition to this, other factors, such as multichannel

pharmacological profile and the nature of the ventricular cell models used in simulations

also need to be considered in the search for the optimum in silico approach. Here we

consider how much of mechanistic detail needs to be included for in silico models to

accurately predict risk and further, howmuch of this detail can be retrieved from protocols

that are practical to implement in high throughout screens as part of next generation of

preclinical in silico drug screening approaches?

Keywords: kv11.1, herg, acquired long QT syndrome, arrhythmia, pharmacology, CiPA, modeling

INTRODUCTION

In the past 20 years, a range of structurally unrelated drugs, including antihistamines, antibiotics
and antipsychotics, have been withdrawn from the market due to adverse effects on cardiac
repolarization - so called acquired long QT syndrome (aLQTS). aLQTS is characterized by
prolongation and sometimes morphological deformation of QT segments on the 12-lead
electrocardiogram (ECG), syncope and sudden cardiac death due to the polymorphic ventricular
arrhythmia Torsade de Pointes (TdP). Theoretically, aLQTS can occur due to unwanted drug
induced modulation of any of the ionic channels that contribute to cardiac repolarization either
through direct modulation of channel conductance (Cavero et al., 2000; Perrin et al., 2008a) or
up/down regulation of channel trafficking and expression on the cell membrane (Dennis et al.,
2007; Ballou et al., 2015). In practice however, the overwhelming majority of these drugs cause
aLQTS through blockade of the Kv11.1 potassium channel that carries the rapid component of the
delayed rectifier current in the heart (IKr) (Perrin et al., 2008b).
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As a result of the prevalence of these proarrhythmic side
effects, regulatory guidelines have been put in place as part
of preclinical drug development to ensure such dangerous
compounds do not get to market. In their current form, these
guidelines use simple steady-state measures of Kv11.1 inhibitory
concentration and action potential prolongation to estimate
arrhythmic risk (E14, 2005; S7B, 2005). However, while these
steady-state measures of Kv11.1 block are very sensitive (no
new proarrhythmic drugs have knowingly come to market since
the inception of these guidelines), they are not specific. The
link between Kv11.1 block, repolarization delay, and TdP is
poorly understood meaning these measures are poor surrogates
for actual risk of TdP. Given that not all drugs that block
Kv11.1 are going to be proarrhythmic, this has likely resulted
in an unnecessarily high attrition rate of drugs in development
(Redfern et al., 2003; Sager et al., 2014).

To address this issue, the Comprehensive in vitro
Proarrhythmia assay (CiPA) has been proposed as a new safety
paradigm in understanding TdP and assessing proarrhythmia
risk (Sager et al., 2014). CiPA has two primary objectives:
(1) Detailed in vitro electrophysiological characterization of
drug interaction with Kv11.1 (and other cardiac ion channels)
and integration of this data into in silico models to predict
proarrhythmia in simulations of the cardiac action potential
and (2) Validation of in silico models using human induced
pluripotent stem cell derived cardiac cardiomyocytes (Fermini
et al., 2016). Central to the first of these objectives is our
understanding of the mechanistic subtleties of how drugs
interact with Kv11.1. There are several key factors that contribute
to a drug’s pharmacological profile and hence contribute to
proarrhythmic risk, including the kinetics of drug binding and
unbinding, gating-state preference and temperature dependence.
These factors are not easily quantified by simple steady-state
measures, yet can have significant effects on the measured
potency of a drug as well as profound impact on the degree
of repolarization delay and the emergence of proarrhythmic
markers seen in in silico simulations. For example, Figure 1
demonstrates an in silico simulation of 6,561 theoretical
drugs that block Kv11.1 all at calculated IC50 doses and yet
the simulated action potential prolongation is significantly
varied. Furthermore, whilst Kv11.1 is the major repolarizing
current in the cardiac action potential, there are multiple other
currents that contribute to repolarization, a concept known
as repolarization reserve (Roden, 1998). In this context, the
evolution of drug induced TdP may involve block of multiple
ion channel currents and a drug’s affinity for a variety of targets
may modify the proarrhythmic risk associated with its block
of Kv11.1. Determination of the proarrhythmic risk profile of
Kv11.1 blocking drugs is therefore a multifaceted problem that
goes beyond simple measures of potency. As a result, using in
silico means to predict the risk associated with individual drugs
is a complex process for which the optimal implementation
remains to be decided upon. In this article we will consider what
level of mechanistic detail describing the interaction between
drug and ion channel target needs to be included for in silico
models to accurately predict risk and further, how much of
this detail can be retrieved from protocols that are practical to

FIGURE 1 | (A) In silico analysis of APD90 with respect to the ratio of affinity

for the open vs inactivated state, Ko /K i. A family of theoretical drugs was

constructed using permutations of the forward and reverse rates for binding to

the open state of the channel (kf,open and kb,open respectively) and the

inactivated state of the channel (kf,inact and kb,inact respectively) in the range

(Continued)

Frontiers in Physiology | www.frontiersin.org November 2017 | Volume 8 | Article 93451

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lee et al. Assessing Drugs That Cause aLQTS

FIGURE 1 | Continued

0.01–100 s-1 using half-logarithmic increments. An IC50 dose of each drug,

calculated in silico using a simulated direct drug application of the drug at a

holding potential of 0mV, was applied to the O’Hara Rudy action potential at

1000ms pacing cycle length. Drugs with higher affinity for the open state are

shown on the right (Ko / K i > 1) and drugs with higher affinity for the

inactivated state are shown to the left (Ko / K i < 1). The green line shows the

APD90 for IKr50 (a 50 % conductance block of Ikr) of 428ms. Adapted from

Lee et al. (2016). (B–E) Drug binding kinetics contribute to reverse rate

dependence. (B) Action potentials simulated at 500ms pacing interval in

response to an IC50 dose of the drugs selected in (A). Black line represents a

control action potential with no drug applied. (C) Action potentials at 1,000ms

pacing interval. (D) Action potentials at 2,000ms pacing interval. (E) Pacing

cycle dependence of 1APD90.

implement in high throughout screens as part of preclinical
development?

COMPLEXITY OF THE KV11.1/DRUG
INTERACTION

In many cases, a drug’s interactions with its ion channel
pharmacological target can be described as a simple bimolecular
reaction according to the equation:

(1)

Where O represents the open ion channel, D is drug, and kf and
kb are the rates of association and dissociation respectively. A
dissociation constant (KD), describing the affinity of binding can
then be defined as the quotient of kb from kf :

KD =
kb

kf
(2)

In the scenario where this binding results in block of the ion
channel current, the IC50, the drug concentration at which 50%
of channels are blocked, approximates the KD. Whilst Kv11.1
interaction with drugs does not follow this simple rule (Windley
et al., 2016), it nevertheless provides a useful framework for
discussion of drug binding to Kv11.1. A detailed consideration
of the factors that contribute to the complexity of block of these
channels is presented in the following sections.

Drug Binding Kinetics
The inclusion of drug binding kinetics in in silico simulations
has been demonstrated to significantly alter predictions of
cardiac action potential prolongation (Di Veroli et al., 2014; Lee
et al., 2016). Specifically, drugs of equivalent affinity for Kv11.1
demonstrate varying degrees of action potential prolongation
(Figures 1B–D). In some experiments, up to 4-fold increased
difference in prolongation can be observed when comparing
equipotent drugs with fast kinetics (τon = 0.1 s) to those with
slow kinetics (τon = 100 s) (Di Veroli et al., 2014), which is
within the range of time constants for drug binding observed for

known drugs (Windley et al., 2017). Moreover, this differential
prolongation is accentuated at different pacing frequencies; fast
drugs cause greater prolongation at lower pacing frequencies
while the opposite is true for slow drugs. At a pacing cycle length
of 1,000ms this leads to a difference in prolongation of APD90

of 52ms when these parameters are incorporated into in silico
simulations (Figure 1C; Lee et al., 2016).

These rate dependent effects therefore contribute to one
of the most commonly measured indicators of proarrhythmic
propensity—reverse rate dependence (RRD)—where an inverse
relationship exists between action potential prolongation and
depolarization frequency (Hondeghem et al., 2001a,b). The
implied mechanism of this is that drugs with different kinetics of
binding reach different levels of steady state block as a function
of the relative rates of drug binding, unbinding and cycle length.
Specifically, for the drugs shown in Figures 1B–D, this manifests
as a maximal 30% block of Kv11.1 achieved with application of
slow drugs at an IC50 dose during 1Hz pacing, compared to
50% block for fast drugs under the same conditions (Lee et al.,
2016). While it is known that other factors including genetic
background and environmental factors including adrenergic
upregulation of IKs (Sanguinetti et al., 1991; Bosch et al., 2002;
Bányász et al., 2009) contribute to RRD, it is clear that the kinetics
of the drug/channel interaction are also central to this established
measure of proarrhythmia.

Another characteristic of drug interaction with Kv11.1 that
is at least partially underpinned by the kinetics of binding and
unbinding is that of “trapping” (Carmeliet, 1992; Yang et al.,
1995; Mitcheson et al., 2000b; Perry et al., 2004; Stork et al.,
2007). For some drugs, this phenomenon is due to true drug
trapping. In these cases the drug molecule remains within the
channel pore, sterically prevented from diffusing out as a result
of closing of the cytoplasmic gate when the channel deactivates
(Mitcheson et al., 2000b; Stork et al., 2007). Other compounds
however, are more likely to display “virtual trapping,” where
drug unbinding is significantly slower than the rate of channel
deactivation (Perry et al., 2004). In these cases, depending on
the voltage protocol used, the drug will appear to be “virtually
trapped” if the interpulse time is insufficient for complete drug
dissociation. (Lee et al., 2016; Windley et al., 2017). However,
the extent to which the degree and type of trapping can be
measured in vitro using simple voltage protocols is limited. For
example, in the step depolarization protocol used by Windley
et al. (2017) and Li et al. (2017), the degree of trapping is
estimated with a fixed 15 s interpulse interval. The limitations of
this approach are twofold. First, it is not possible to distinguish
between true trapping and virtually trapped drugs. In practical
terms, in silico simulation has demonstrated that true trapping
results in significantly greater APD90 prolongation and greater
pro-arrhythmic risk, Di Veroli et al. (2014) and therefore it is
important to distinguish between the two. Second, any virtually
trapped drug that dissociates quicker than 15 s will be described
as non-trapped. Even if there was significant residual block
evident at 5 or 10 s, the protocol cannot test this. In the context
of cardiac cycle, where a typical diastolic interval might be on the
order of 600ms, this might be a significant shortcoming. Even so,
Li et al. have shown that including an approximation of trapping
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and kinetics based on this protocol in their in silico models
is useful in improving proarrhythmic prediction. For example,
discrimination between drugs with low, medium and high risk
of proarrhythmia using the metric ability of the “cqInward”
(which represents the net inward current during the cardiac

action potential) is incrementally improved when descriptions of
trapping and kinetics are included in simulation as compared to
simple IC50 measures of drug potency (Li et al., 2017; Figure 2).
This is therefore clearly an important factor to consider, even if it
is described with some degree of simplicity.

FIGURE 2 | Drug binding kinetics improves risk prediction. (A,B) Concentration-dependent cqInward for all CiPA (Comprehensive in vitro Proarrhythmia Assay)

training compounds. (High risk drugs are labeled in red, intermediate risk in blue and low risk in green) x-axis is the ratio between the simulated concentration and free

Cmax; y-axis is the cqInward metric. Stars indicate the threshold dose, which is the highest dose that did not elicit an early afterdepolarization (EAD). The metric

cqInward is the net inward current for each drug and is calculated as (INaL_AUC_drug/INaL_AUC_control+ICaL_AUC_drug/ICaL_AUC_control)/2, where AUC is the

integrated area under the curve of the late sodium (INaL) and L-type calcium (ICaL) current traces during steady-state action potential simulation with (_drug) or

without (_control) drugs. (A) Simulations are performed using instantaneous block of Kv11.1 base on dose response curves. (B) Simulations are performed using a

dynamic model of Kv11.1-drug binding with incremental improvement in arrhythmia risk stratification. Reproduced from Li et al. (2017).
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In summary, the kinetics of binding and unbinding of drugs
to Kv11.1 play an important role in accurate prediction of
prolongation of repolarization and proarrhythmic propensity.
The addition of greater complexity, such as variability in
ionic channel densities/function seen in different layers of the
ventricular myocardium (Saiz et al., 2011) or congenital LQTS
mutants (Romero et al., 2014), will further compound these
effects. Consequently, in pursuit of a robust and comprehensive
risk prediction assay, detailed understanding of these baseline
measures of drug binding kinetics are likely an important
component for in silico risk prediction and inaccurate estimation
will likely lead to compounding errors as we continue to build
and refine prediction models.

State Dependent Binding
The vast majority of drugs which target Kv11.1 require channel
opening in order to gain access to the receptor site within the
inner cavity of the channel pore (Kiehn et al., 1996; Walker et al.,
1999; Vandenberg et al., 2012). However, a drug’s affinity can
be relatively greater for either the open state (Ko) or inactivated
state (Ki) resulting in a state preference in drug binding. To date,
there are no studies that have been able to demonstrate drug
binding in the closed state. Several studies have demonstrated
that some, but not all, drugs with high affinity binding to Kv11.1
show preferential binding to the inactivated state (Suessbrich
et al., 1997; Ficker et al., 1998; Numaguchi et al., 2000; Perrin
et al., 2008a; Du et al., 2014). These studies show that Kv11.1
binding potency in certain high affinity drugs is reduced by using
inactivation attenuatedmutants, such as N588K or S631A (Perrin
et al., 2008a; Du et al., 2014), or the inactivation deficient mutant
S620T (Suessbrich et al., 1997; Ficker et al., 1998; Perrin et al.,
2008a;Wu et al., 2015). The inference being that these drugs favor
binding to the inactivated state, hence channel mutants which
reduced inactivation are less likely to bind the drug in question.

However, it is important to note that it is not always the case
that there is a direct correlation between the extent of inactivation
and the affinity of drug binding, even for state-dependent
blockers. Electrophysiological studies using concatenated Kv11.1
tetramers containing variable number of inactivation deficient
subunits have demonstrated changes in drug binding affinity that
occur independent of inactivation (Chen et al., 2002; Wu et al.,
2015). The major molecular determinants for drug binding to
Kv11.1 are two aromatic residues Y652 and F56 in the S6 helix
(Mitcheson et al., 2000a; Chen et al., 2002; Wu et al., 2015). In
addition to these two S6 aromatics, Thr623, Ser624, and Val625
at the base of the selectivity filter, and Phe557 on the S5 helix also
contribute to drug binding at least for some drugs (Mitcheson
et al., 2000a,b; Saxena et al., 2016). It is likely that conformational
changes that accompany inactivation, but that are not strictly
necessary for the open to inactivated state transition, alter the
arrangement of these residues within the pore cavity to allow for
additional close molecular interactions that result in preferential
binding to the inactivated state (Durdagi et al., 2012). This is
supported by evidence from molecular dynamics simulations,
albeit those limited to using homology models of Kv11.1, which
demonstrate these conformational changes (Durdagi et al., 2012).

Of course, there are also non-state dependent drugs whose
potencies are not affected by inactivation deficient mutants.
These drugs include: quinidine, erythromycin, perhexiline
(Perrin et al., 2008a), and clozapine (Hill et al., 2014). Moreover,
studies have suggested that some compounds may also have an
open state preference with minimal binding to the inactivated
state (Kamiya et al., 2001; Park et al., 2002; Su et al., 2004).
However, the contention with these studies is that rather than
using mutagenesis to manipulate state occupancy, they utilize
complex non-standardized voltage protocols to demonstrate
state preference since an open deficient Kv11.1 mutant is not
useful due to an absence of current. It is likely that the recent
advent of high resolution structures of Kv11.1 (Wang and
MacKinnon, 2017) and the potential this presents to generate
more structures of drugs interacting with inactivation deficient
Kv11.1 channels, will allow more accurate molecular dynamic
simulations to probe these questions around state-dependent
drug binding in more detail.

How important then is the consideration of state dependent
binding for in silico prediction of arrhythmic risk? The data
in Figures 3A,B shows that an IC50 dose of two drugs with
opposite state preferences differ in the degree of observed
APD prolongation by 56 ms—clearly a significant amount
in predicting their proarrhythmic potential. However, this
relationship also needs to be considered through the prism of the
limitation that the measured IC50 is itself influenced by the state
preference and how this manifests as a function of the voltage
protocol used to measure the potency. Current safety guidelines
mandate equilibrium testing of drugs to estimate potency to
estimate arrhythmic risk (S7B, 2005). However, measures of drug
potency vary between voltage protocols for some drugs but not
for others (Kirsch et al., 2004; Yao et al., 2005; Milnes et al.,
2010). These differences, which can be an order of magnitude in
disparity, are in part due to using voltage protocols which favor
occupancy of either the open or inactivated state, so favoring
drug binding to that state (Milnes et al., 2010). Therefore, how
can one measure state preference for incorporation into in silico
simulations? The processes of channel opening and inactivation
occur over overlapping voltage ranges, so it is almost impossible
to tease out the relative affinities for the two states from a single,
relatively simple voltage protocol. One potential approach to this
might be to examine multiple protocols, that each sample the
state occupancy of open vs. inactive differently, and attempt to
infer information about state preference from the differences in
IC50s measured using each. However, this is a relatively complex
task that may not be amenable to high throughput screens.

Temperature Dependence
The temperature dependence of potency of Kv11.1 block is a
phenomenon that has been described in the literature for many
drugs (Guo et al., 2005; Yao et al., 2005; Alexandrou et al.,
2006; Hill et al., 2007). For instance, Guo et al. (2005) and
Alexandrou et al. (2006) demonstrate an increase in potency
with respect to increasing temperature from 22 to 37◦C for
fluoroquinolone antibiotics (erythromycin and moxifloxacin
respectively), although not to the same magnitude. In contrast,
other drugs, including loratadine and bepridil, exhibit reduced
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FIGURE 3 | Effect of state preference on cardiac action potential prolongation. (A) 2 drugs with equal but opposite ratio of affinity for the open vs. inactivated state

were selected from the dataset in (A). The inactivated state preference drug (Ko /K i =10−4) is shown in blue-dash. The open state preference drug (Ko /K i =104) is

shown in red-dash. (B) Ventricular action potentials corresponding to the two drugs in (A) in comparison to IKr50. (C–F) Effect of pacing cycle length on cardiac

action potential prolongation. 2 drugs with equal and opposite ratio of affinity for the open vs inactivated state and equal APD90 at a pacing cycle length of 1,000ms

were selected from (A). The inactivated state preference drug (Ko /K i =10−4) is shown in blue-solid. The open state preference drug (Ko / K i =104) is shown in

red-solid. (C) Action potentials at 500ms pacing interval. (D) Action potentials at 1,000ms pacing interval. (E) Action potentials at 2,000ms pacing interval. (F) Pacing

cycle dependence of 1APD90

potency at physiological temperatures (Kirsch et al., 2004). Larger
scale studies have also established that a range of different drugs
have a variable degree of Kv11.1 blockade when examined at
ambient temperature compared to physiological temperatures
(Kirsch et al., 2004; Yao et al., 2005). Moreover, differences in
temperature sensitivity can be accentuated by different voltage
protocols (Kirsch et al., 2004).

In relation to gathering data to constrain in silico models,
this problem is further complicated by recent studies by Windley
et al. (Windley et al., 2016), that revealed some mechanistic
insights into the temperature dependence of drug binding to

Kv11.1. Using a direct measurement of kinetics at 0mV rather
than a pulsed voltage protocol, Windley et al. demonstrated that
for cisapride, increasing temperature from 22 to 37◦C did not
affect affinity of binding, but significantly altered kinetics. In silico
the temperature dependence of binding and unbinding kinetics
could not be described by a simple bi-molecular interaction,
but required inclusion of an “encounter-complex”; a conducting
intermediary state between unblocked and blocked channels
states. This change in kinetics could also be used to potentially
explain apparent differences in drug potency when using varying
pulsed voltage protocols as discussed in the following section
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For example: at 20 nM comparing 22–37◦C, Windley et al.
observed a 5.5-fold increase in cisapride binding rates to Kv11.1.
Based on the analysis in Lee et al. (2016), this could account
for a ∼20ms increase in drug-induced APD90 prolongation,
despite no change in affinity. In addition to these effects of
temperature on drug binding, the gating of the Kv11.1 channel
itself is sensitive to temperature. Specifically, at 37◦C there are
increases in channel conductance, a hyperpolarizing shift in
activation and a depolarizing shift in inactivation (Vandenberg
et al., 2006), resulting in an overall increase in in open state that
will also influence the measured potency of drugs that display
state dependent binding (see Section State Dependent Binding).

The implications of these studies are that for some drugs,
measures of potency and kinetics made at ambient temperatures
may not be useful in constraining in silico models used to
predict proarrhythmia at physiological temperatures (Windley
et al., 2016). This is potentially a concern for large scale, high-
throughput drug screening as many of the current generations
of automated patch clamp platforms are limited to recording
at ambient temperature (Fermini et al., 2016). However, efforts
are currently underway, through the CiPA in silico Working
Group and High Throughout stream to establish the practical
importance and consequences of this issue.

MEASURING AND MODELING DRUG
BINDING TO KV11.1

The complexity of Kv11.1-drug interactions therefore has clear
implications for how the field should approach both measuring
of these phenomena in vitro, as well as how we describe them
using in silicomodels that can be used for risk prediction. Current
guidelines stipulate the IKr current should be assayed but do
not specify voltage protocols, or details, such as temperature
or cellular expression systems. As a result there is a lack of
standardization in how block of IKr current is measured (Fermini
et al., 2016). Redfern et al. (2003) proposed a 30-fold safety
margin between the measured IC50 of a drug and its maximum
unbound plasma concentration (Cmax) to distinguish between
safe and unsafe drugs. However, many studies have shown
variance in drug potency dependent as a function of temperature
and voltage protocol (Kirsch et al., 2004; Yao et al., 2005; Milnes
et al., 2010) and this safety margin becomes unreliable if a true
IC50 value cannot be agreed upon. For example, the reported
IC50 values for cisapride, span a 60-fold range (Potet et al.,
2001; Rezazadeh et al., 2004). One approach therefore is to use
in silico modeling to “fine-tune” in vitro experimental protocols
to more closely mimic in vivo conditions (Ellinwood et al.,
2017). However, even if a standardized protocol could be agreed
upon, such as using a physiological cardiac action potential to
reproduce the state transitions of Kv11.1 that are seen during
the cardiac cycle, this would not take into account the impact of
variations in heart rate or action potential prolongation which
are paramount to the highly dynamic binding kinetics of the
drug/Kv11.1 interaction. For example the data in Figures 3C–F

shows two drugs with equal and opposite gating state preference.
At 1,000ms pacing cycle length the APD90 differs by 1ms.

However, at 500ms pacing cycle length the open state preference
drug prolongs the APD90 by 35ms more than the inactivated
state preference drug; while at 2,000ms pacing cycle length the
open state preference drug prolongs the APD90 by 53ms less than
the inactivated state preference drug. (Figures 3C–F) Moreover,
these standardized conditions also lack the ability to predict
variations in physiological conditions, such as hyper/hypo-
kalaemia (Wang et al., 1997) or low pH (and the consequent
changes in protonation of drug compounds) (Moreno et al., 2011;
Wang et al., 2016), all of which are known to affect the state-
dependence of drug binding. An alternative therefore, is to use
non-physiological voltage protocols to accurately constrain in
silicomodels of drug binding (Hill et al., 2014; Beattie et al., 2017)
that can then be used in silico to evaluate a limitless range of
physiological conditions.

This approach however brings with it a new set of challenges.
There exists a wide variety of models of Kv11.1/drug interaction
in the literature, each with different structures and each
constrained by different in vitro datasets. Furthermore, they
differ substantially in their ability to describe the key features of
Kv11.1/drug binding dynamics discussed above, such as kinetics
and state dependence (Figures 4A,B; Di Veroli et al., 2013;
Hill et al., 2014), drug trapping (Figure 4C; Li et al., 2017)
and temperature dependence (Figure 4D; Windley et al., 2016).
While each of these models represents a good description of
drug binding under certain conditions, they differ significantly
in their predicted state occupancies over any given voltage
protocol (Figures 4Aii,Cii), so will result in a difference in state-
dependent drug binding. As yet, no Markov model provides
a universal solution that we can be sure would be useful for
prediction of proarrhythmic risk. As a result, further complexity
may need to be added, or the existing models constrained with
new in vitro data, to improve the model’s predictive accuracy
(Fermini et al., 2016). The issue of what is the optimum approach
to measuring and modeling drug binding to Kv11.1 is therefore
an open question and the optimum balance between how much
and what type of data is required to constrain in silico models
and what is practical to do in the context of high throughput data
acquisition is yet to be determined.

MULTICHANNEL PHARMACOLOGY

The final piece of the puzzle that needs to be considered
in developing ventricular cell simulations for in silico risk
prediction is the role of multichannel pharmacology, and how
this contributes to characteristics of the cellular action potential.
Whilst Kv11.1 blockade is certainly critical to understanding
aLQTS and drug induced TdP, it is not the sole determinant of
arrhythmogenesis since drugs that block Kv11.1 can often also
block other cardiac ion channels (Bril et al., 1996; Aiba et al.,
2005; Wu et al., 2008; Vicente et al., 2015) to suppress or promote
arrhythmogenesis (Fermini et al., 2016). An evaluation of the
potency of a panel of 30 drugs against the seven major currents
that contribute to repolarization demonstrated that the primary
pharmacological targets that determine proarrhythmia were IKr
(Kv11.1), ICaL (Cav 1.2), and INaL (Nav1.5-late). Furthermore,
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FIGURE 4 | Example Markov models of drug binding to Kv11.1. (Ai) Kinetic

and gating-state dependent model adapted from Lee et al. (2016). (Aii) State

occupancies of the combined closed (C-black), open (O-red) and inactivated

(I-blue) states using the Markov model in (Ai), simulated in an O’Hara Rudy

action potential at 1Hz. (B) Kinetic and gating-state dependent model

adapted from Di Veroli et al. (2013). (Ci) Drug trapping model adapted from Li

et al. (2017). (Cii) State occupancies of the combined closed (C-black), open

(O-red) and inactivated (I-blue) states using the Markov model in (Ci),

simulated in an O’Hara Rudy action potential at 1Hz. (D) Temperature

dependent model adapted from Windley et al. (2016). C0, C1, C2, Closed

states; IC1, IC2, Inactivated-closed states; I, IO, Inactivated states; O, Open

state; ID, IOD, Drug bound-inactivated states; OD, Drug bound-open state;

CD, Drug trapped state.

drugs with high TdP risk tended toward unopposed Kv11.1 block,
while drugs with low TdP risk had similar or higher potency for
the inward currents (ICaL and INaL) in conjunction with Kv11.1
block (Crumb et al., 2016). These multichannel pharmacological
profiles are reflected in the morphology of the AP waveform (and
hence the surface ECG). The AP waveform is formed through
summed contribution of all the individual ionic currents in the
cardiac myocytes. As a result, varied drug block of different
ionic currents will result in a spectrum of AP morphologies
and durations, which is idiosyncratic to individual drugs that
manifests in vivo as differences in QT duration as well as T wave
morphology (Figures 5Ci–Cii; Vicente et al., 2015). Critically for
in silico risk prediction, this “APmorphology signature” is in turn
linked to the drug’s pro-arrhythmic potential and potentially can
be used to predict TdP.

In this regard, drug induced morphological changes in the
cardiac AP have been shown to correlate with risk of TdP
(Hondeghem et al., 2001a). Specifically, this study suggested the
presence of AP “triangulation” (slow repolarization, without a
distinct plateau or rapid repolarization phase) was a marker of
risk of drug induced TdP. Several single drug studies exemplify
this point and support the link with multichannel pharmacology.
Drugs that block Kv11.1 without significant inward current
block, such as Sotalol (Milberg et al., 2004) and dofetilide
(Osadchii, 2012; Figure 5Aii), produce AP triangulation in
addition to prolongation, (Figure 5Bii) and are considered high
TdP risk drugs. Conversely, Verapamil, a potent blocker of
Cav1.2 as well as Kv11.1 (Figure 5Ai), does not manifest in
triangulation or prolongation of the AP (Figure 5Bi) and is
considered a low TdP-risk drug (Aiba et al., 2005). Similarly,
other drugs with multichannel pharmacological profiles, such
as ranolazine (Jia et al., 2011) and tolterodine (Martin et al.,
2006) demonstrate dose dependent AP prolongation without
AP triangulation and are also considered low risk. It is clear
therefore, that multichannel pharmacology, and its manifestation
in morphology of the AP, is an important detail that must be
considered for risk prediction.

In silico modeling again provides an ideal solution to

integrating pharmacological data from multiple cardiac ion
channels. Indeed, recent studies by Li et al. (2017) and Dutta et al.
(2017) have shown the value of this approach and demonstrated

that incorporating Cav1.2 and Nav1.5-late block into action
potential simulations improves arrhythmia risk prediction (Yang
et al., 2016; Li et al., 2017). However, in a similar vein to that
discussed above for models of the Kv11.1/drug interaction, there

are several models of the ventricular cardiac action potential
that have been proposed in the literature including the ten
Tusscher 2006 (TT06) (Ten Tusscher and Panfilov, 2006),
Grandi-Bers 2010 (GB10) (Grandi et al., 2010), and O’hara

Rudy 2011 (ORD11) models (O’Hara et al., 2011). Population
based studies using these cell models have allowed interrogation
of how the variation in repolarization reserve that occurs as
a result of differential expression of ion channels between
individuals can influence predicted drug effects as well as develop
our understanding of multichannel pharmacology (Sobie, 2009;
Lancaster and Sobie, 2016). However, each of the models is
considerably different in relation to the conductance levels of
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FIGURE 5 | In vitro, in silico and in vivo comparison of multi-channel pharmacology. (A) In vitro drug block of Kv11.1 (IKr-red), Cav1.2 (ICaL-green) and Nav1.5-Late

(INaL-blue) for (i) verapamil and (ii) dofetilide. Adapted from Vicente et al. (2015). (B) In silico cardiac action potential prolongation and morphology based on in vitro

data from Vicente et al. (2015), simulated using the O’Hara Rudy ventricular action potential. Control is shown in green, Cmax dose in yellow and super-Cmax dose in

red. Verapamil demonstrates less action potential prolongation and triangulation compared to Dofetilide. (C) In vivo ECG data demonstrating lead V2 in a patient at 0.5

and 2.5 h post injection of 120mg verapamil or 500 ug dofetilide. Verapamil demonstrates no change in prolongation or T-wave morphology while Dofetilide shows

marked changes in prolongation and T-wave notching between the 2 time points. Reproduced from Vicente et al. (2015).

individual cardiac ion channels. As a result, predictions around
APD prolongation and emergence of proarrhythmic markers
that each of the models make in response to drug block are
significantly different (Mirams et al., 2014) and do not reproduce
in vivo data (Britton et al., 2017). For example, Mann et al
showed that 50% inhibition of Kv11.1 caused 113, 22, and 34ms
prolongation of APD90 for ORD11, TT06 and GB10 respectively
(Mann et al., 2016). This issue is being considered by the field and
recent efforts have focused on refining cell models by rescaling
their ionic conductances using either patient data from subjects
with various subtypes of the long QT syndrome (Mann et al.,
2016) or published drug data (Britton et al., 2013; Dutta et al.,
2016). Even so, significant disparity still exists between the
“optimized” versions of the cell models, meaning the differences
in predicted risk that result from using different models are likely
to outweigh, or at least match, the differences associated with
descriptions of the drug/channel interaction. It may also prove
to be true that similar mechanistic descriptors that are becoming
routine for drug binding to Kv11.1, such as kinetics and state
dependence, also need to be incorporated for other cardiac ion
channels for optimum risk prediction. However, the benefit of
this relative to the cost of acquiring the datamay preclude such an
approach. What is clear, is that each of these facets of in silico risk

prediction—theMarkov descriptions of drug/channel interaction
as well as the model of the ventricular cell in which they are
incorporated, should each be considered as a priority for the field.

CONCLUSION

Understanding the intricacies of the Kv11.1/drug interaction
and optimizing our approaches to measuring and modeling
these characteristics is critical to developing better preclinical in
silico risk prediction. In doing this it is important to remember
that all models are simplifications. Therefore, the challenge is
to determine how much information needs to be included to
make them useful rather than how much information is needed
to make them accurate for every drug scenario, which would
potentially necessitate the collection of very large amounts of
data that may be redundant for many drugs. Given the potential
significance of factors, such as drug binding kinetics, temperature
dependence, state dependence and multichannel pharmacology
discussed above, it seems clear that these factors need to be
included at some level in models of drug binding. The major
challenge faced by the field in the short term is determining
what level of detail is necessary, and balancing this against the
practicalities of data acquisition in high throughout screens.
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Current pharmacological therapy against atrial fibrillation (AF), the most common cardiac

arrhythmia, is limited by moderate efficacy and adverse side effects including ventricular

proarrhythmia and organ toxicity. One way to circumvent the former is to target ion

channels that are predominantly expressed in atria vs. ventricles, such as KV1.5,

carrying the ultra-rapid delayed-rectifier K+ current (IKur). Recently, we used an in silico

strategy to define optimal KV1.5-targeting drug characteristics, including kinetics and

state-dependent binding, that maximize AF-selectivity in human atrial cardiomyocytes

in normal sinus rhythm (nSR). However, because of evidence for IKur being strongly

diminished in long-standing persistent (chronic) AF (cAF), the therapeutic potential of

drugs targeting IKur may be limited in cAF patients. Here, we sought to simulate the

efficacy (and safety) of IKur inhibitors in cAF conditions. To this end, we utilized sensitivity

analysis of our human atrial cardiomyocyte model to assess the importance of IKur for

atrial cardiomyocyte electrophysiological properties, simulated hundreds of theoretical

drugs to reveal those exhibiting anti-AF selectivity, and compared the results obtained

in cAF with those in nSR. We found that despite being downregulated, IKur contributes

more prominently to action potential (AP) and effective refractory period (ERP) duration in

cAF vs. nSR, with ideal drugs improving atrial electrophysiology (e.g., ERP prolongation)

more in cAF than in nSR. Notably, the trajectory of the AP during cAF is such that more

IKur is available during the more depolarized plateau potential. Furthermore, IKur block

in cAF has less cardiotoxic effects (e.g., AP duration not exceeding nSR values) and

can increase Ca2+ transient amplitude thereby enhancing atrial contractility. We propose

that in silico strategies such as that presented here should be combined with in vitro and

in vivo assays to validate model predictions and facilitate the ongoing search for novel

agents against AF.

Keywords: ultra-rapid delayed-rectifier K+ current, atrial fibrillation, mathematical modeling, ion channel blockers

Abbreviations: AP, action potential; APD, AP duration; APD40, APD to 40% repolarization; APD90, APD to 90%

repolarization; AF, atrial fibrillation; C, closed state; cAF, chronic AF; CaT, Ca2+ transient; CaTamp, CaT amplitude; CL, cycle

length; EAD, early afterdepolarization; Em, membrane potential; ERP, effective refractory period; GKur, maximal conductance

of the ultra-rapid delayed-rectifier K+ current; I, inactivated state; IKur, ultra-rapid delayed-rectifier K
+ current; nSR, normal

sinus rhythm; O, open state.
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INTRODUCTION

Atrial fibrillation (AF) is characterized by rapid, irregular heart
contractions following fast, disorganized electrical signals in the
atria. AF is the most common cardiac arrhythmia, occurring
in 1–2% of the general population and projected to increase
dramatically in the coming decades (to 4% by 2050) with an
aging westernized population (Andrade et al., 2014). The most
effective current treatment for preventing recurrence of AF in
the clinic is radiofrequency ablation. Pharmacological therapy
against AF is limited by low efficacy and substantial adverse
side effects including an increased risk of lethal ventricular
tachyarrhythmias.

To maximize efficacy and minimize proarrhythmic risk, an
AF-selective drug should exert potent effects on fibrillating atria
without significantly impacting ventricular tissue function during
normal sinus rhythm (nSR) (Ehrlich et al., 2008; Van Wagoner
et al., 2015). A potential strategy to achieve this goal is to
target ion channels that are predominantly expressed in atria
vs. ventricles, such as KV1.5, carrying the ultra-rapid delayed-
rectifier K+ current (IKur). Genetic mutations causing both loss-
and gain-of-function of IKur have been associated with atrial
arrhythmias in human (Olson et al., 2006; Christophersen et al.,
2013; Colman et al., 2017). In a previous investigation, we
used an in silico strategy to define optimal KV1.5-targeting drug
characteristics, including kinetics and state-dependent binding,
that maximize AF-selectivity (i.e., fast pacing-rate selectivity) in
human atrial cardiomyocytes (Ellinwood et al., 2017). Because
this work was conducted in atrial cardiomyocytes under nSR
conditions, the best-performing drug properties identified would
have relevance for patients with paroxysmal AF that have not
undergone extensive AF-related electrical remodeling (Grandi
et al., 2012; Nattel and Dobrev, 2016).

Building on our previously established simulation framework,
the major goal of this investigation was to determine the optimal
drug characteristics of IKur inhibitors in long-standing persistent
(chronic) AF (cAF) conditions. Although not a universal finding
(Yue et al., 1997; Bosch et al., 1999; Grammer et al., 2000;
Workman et al., 2001), previous reports showed that IKur is
strongly diminished in cAF patients (Van Wagoner et al., 1997;
Brandt et al., 2000; Van Wagoner and Nerbonne, 2000; Dobrev
and Ravens, 2003; Christ et al., 2008; Caballero et al., 2010),
making the therapeutic potential of inhibitors targeting this
current uncertain (Ravens et al., 2013; Grandi and Maleckar,
2016). Indeed, evidence of anti-arrhythmic efficacy of KV1.5
inhibitors in clinical trials is lacking (Ravens et al., 2013).
However, recent studies have suggested an anti-arrhythmic
potential of IKur-targeting drugs in cAF (Christ et al., 2008;
Ford et al., 2013, 2016; Loose et al., 2014), as they can prolong
action potential (AP) and effective refractory period (ERP) in
atrial cardiomyocytes of cAF patients. Moreover, experimental
evidence suggests that block of IKur enhances force of contraction
of isolated human atrial trabeculae in cAF (Wettwer et al.,
2004; Schotten et al., 2007). Our human atrial cardiomyocyte
model confirmed that block of IKur results in prolongation and
elevation of the AP plateau, which augments the Ca2+ transient
(CaT) amplitude (CaTamp), thereby eliciting a positive inotropic

effect (Grandi et al., 2011). Thus, IKur might be a useful atrial-
selective target to potentially prevent reentry and related atrial
hypocontractility in cAF. We propose that our computational
approach, combined with in vivo and in vitro validation, might
be useful to facilitate the identification of atrial-selective anti-
arrhythmic drugs against AF (Bers and Grandi, 2011; Grandi and
Maleckar, 2016).

METHODS

Atrial AP Model and Simulations
APs and CaTs were simulated with the Grandi et al. model of
the human atrial cardiomyocyte in nSR and cAF (Grandi et al.,
2011; Morotti et al., 2016b). IKur gating was described by a 6-state
Markov type model (Figure 1A) as in Ellinwood et al. (2017), and
IKur maximal conductance (GKur) in cAF was reduced by 50%
compared to nSR (Grandi et al., 2011).

Simulations were equilibrated for 300 beats at 1-Hz pacing
or 900 beats at 3-Hz pacing. After the 300th or 900th beat,
the time to 40 and 90% repolarization of the AP (APD40

and APD90) were calculated, along with diastolic intracellular
Ca2+ concentration ([Ca2+]i), CaTamp and time to 50% CaT
decay. The atrial ERP was determined using a standard S1-S2
premature stimulation protocol (Wang et al., 1996; Shinagawa
et al., 2000; Christ et al., 2008; Zhao et al., 2009), where the
S1 basal stimulus (5ms in duration) was applied to a steady-
state human atrial cardiomyocyte model. As previously described
(Ellinwood et al., 2017), ERP was determined by applying the
premature S2 stimulus (5ms in duration, 2-fold the diastolic
threshold of excitation) at progressively smaller S1-S2 intervals
from 700ms to refractoriness by decrements of 2ms. The longest
S1-S2 interval that failed to elicit an AP was taken as the local
ERP (i.e., maximum upstroke velocity ≥5 V/s and AP with an
amplitude ≥50% of the amplitude of the preceding AP elicited
by S1).

An irregular pacing protocol was run for 20 s, starting from
steady-state conditions at the fixed 3-Hz pacing. The cycle
length (CL) was allowed to vary randomly following a uniform
distribution between 285.7 and 400ms, corresponding to a
minimum pacing frequency of 2.5Hz and a maximum pacing
frequency of 3.5Hz, with amean of 333.3ms (corresponding to 3-
Hz pacing). The time course ofmembrane potential (Em), APD90,
and CL was tracked over the course of the simulation.

All simulations and analysis were performed in MATLAB
(The MathWorks, Natick, MA, USA) using the stiff ordinary
differential equation solver ode15s. The model code is available
for download at the following webpages: https://somapp.ucdmc.
ucdavis.edu/Pharmacology/bers/ and http://elegrandi.wixsite.
com/grandilab/downloads.

Parameter Sensitivity Analysis
Parameter sensitivity analysis was performed with the
population-based approach described in Sobie (2009), Morotti
et al. (2017), and Morotti and Grandi (2017) to investigate the
role of various currents and transporters in the regulation of AP
duration (APD), ERP, and CaT characteristics. Two populations
of 900 atrial cardiomyocyte models were generated by randomly
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FIGURE 1 | Sensitivity of nSR and cAF cardiomyocyte electrophysiology to

IKur changes. (A) Drug-free Markov model of IKur derived from Zhou et al.

(2012). The model has 4 closed states (C1, C2, C3, C4), a conducting open

state (O), and an inactivated state (I). Transition rates equations and

parameters are those in Ellinwood et al. (2017). (B) AP, CaT, and IKur in a

subset of 300 cAF cardiomyocyte model variants at 1-Hz and 3-Hz pacing

rates. (C) Bar graphs show the average regression coefficients indicating how

perturbations in GKur affect APD40, APD90, and ERP in nSR and cAF at 1-Hz

and 3-Hz pacing rates. Error bars represent one standard deviation.

varying the values of 18 parameters (see list in the Supplementary
Materials) in the baseline nSR and cAF models. Specifically, the
default value of each conductance or maximal transport rate
was independently varied with a log-normal distribution (with
standard deviation of 0.1). Multivariable regression (non-linear
iterative partial least squares method) on log-transformed values
was performed for 30 random subsets of 300 model variants
from the 900-variant population to correlate the variation in
each parameter to the consequent effect on each output. In
Figure 1C and Figures S1–S6 bars represent the mean regression
coefficients and error bars represent one standard deviation.

KV1.5 Drug-Binding Model
We utilized our recent IKur Markov formulation and approach
to describe various drug-KV1.5 channel binding schemes
(Figures 2A,F; Ellinwood et al., 2017), as done by Lee et al.

(2016). We previously showed that open state (O) blockers and
open and inactivated state (O & I) blockers that target KV1.5
display fast pacing-rate selectivity (Ellinwood et al., 2017). Thus,
we focused on these two types of inhibitors when examining the
relationship between electrophysiological parameters and drug-
binding kinetics in cAF. We considered different theoretical
drugs with variable forward (kon) and reverse (koff) drug-
binding rates to the open and inactivated states of the KV1.5
channel in the predicted physiological range of 0.01–100 s−1

(Lagrutta et al., 2006) using half-logarithmic increments resulting
in nine transition rates for each drug state transition (0.01, 0.03,
0.1, 0.3, 1, 3, 10, 30, 100 s−1). For a particular state of the
channel, dissociation constants (Kd) for our drug scenarios were
calculated as koff/kon, and affinity constants were calculated as
kon/koff. To investigate the effects of these drug characteristics, for
a given state-dependent binding inhibitor, we varied kon and koff
together (kon = koff) or considered all permutations of the nine
different rates of drug binding (producing a total of 81 different
drug scenarios). For drugs that could bind to multiple states of
the KV1.5 channel, we also varied the relative affinity to open
(KO) vs. inactivated state (KI). For O & I blockers, we included
transitions between drug-bound states (orange transitions in
Figure 2F) when specified. All drugs were simulated at the
concentration causing a 50% reduction in peak IKur (i.e., IC50).
IC50 values were computed as described previously (Ellinwood
et al., 2017), using a 200-ms down-ramp voltage-clamp protocol
from +30 to −60mV. After the application of a given [drug]
(range: 1 nM−1M), we allowed sufficient time for the degree
of block to reach equilibrium. IC50 values were calculated at 1-
and 3-Hz pacing rates as the [drug] causing a 50% reduction
in peak IKur compared to drug-free conditions. We chose the
down-ramp, as compared to a typical square pulse, because it
more closely resembles the relative state occupancies of the closed
states, open state, and inactivated state of the KV1.5 channel
during a physiological atrial AP, as we have shown in (Ellinwood
et al., 2017).

RESULTS

Role of IKur in nSR and cAF Atrial
Electrophysiology
We built 900 variations of our nSR and cAF human atrial
cardiomyocyte models (Grandi et al., 2011) at 1- and 3-
Hz pacing, and performed parameter sensitivity analysis on
30 random subsets of 300 model variants to determine how
alterations in each maximum ionic conductance/transport
rate differentially (in cAF vs. nSR) affect electrophysiological
properties including APD40, APD90, ERP, CaTamp, diastolic
[Ca2+]i, and time to 50% CaT decay (Figures S1–S6).
Simulated APs and CaTs in a representative group of 300 cAF
cardiomyocyte model variants are shown in Figure 1B, and
the average regression coefficients for GKur in nSR and cAF
conditions at 1- and 3-Hz pacing are in Figure 1C. The values
are negative because an increase in IKur shortens APD40, APD90,
and ERP on average according to the regression algorithm. The
analysis revealed that, while at a slow pacing rate APD90 and ERP
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FIGURE 2 | Effect of state-dependence and kinetics of drug binding on APD90. APD90 was determined for open (schematic in A, B, 1-Hz and D, 3-Hz pacing rate)

and open and inactivated (schematic in F, G 1-Hz and I, 3-Hz pacing rate) state blockers given nine different rates of binding kinetics between 0.01 and 100 s−1

using half-logarithmic increments, whereby koff = kon, Kd = 1µM. For O & I blockers, we either allowed or prevented transitions between drug-bound states (orange

vs. black traces in G,I). Simulations were also run in nSR and cAF drug-free conditions, and in cAF given a 50 and 100% reduction in GKur (dotted and dashed lines in

B,D,G,I). Simulations were equilibrated for 300 beats at 1-Hz pacing or 900 beats at 3-Hz pacing using a [drug] equal to the IC50 value. (C,E,H,J) show the closed,

open, inactivated and drug-bound (dB, i.e., Od or Od+Id) state occupancies during an AP for three different drug-binding kinetics (koff = kon = 0.01, 3, and 100 s−1).
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aremore sensitive to changes in GKur, APD40 is similarly sensitive
in nSR and cAF (Figure 1C). At 3-Hz pacing, GKur impacts AP
and ERP prolongation more in cAF vs. nSR despite the fact that
GKur is smaller in cAF conditions. This points to IKur inhibition
as a promising approach to counteract the abbreviated APD and
ERP in cAF, while having a more moderate effect at physiological
pacing rates. Therefore, we next ran simulations to reveal IKur-
targeting drug properties that exhibit anti-AF selectivity and
efficacy along with minimized proarrhythmic risk in cAF.

Effect of Conformational State Specificity
and Binding/Unbinding Kinetics on Human
Atrial Cardiomyocyte APD at Normal and
Fast Pacing Rates in cAF Conditions
Figure 2 shows changes in APD caused by O and O& I inhibitors
at varying drug-binding kinetics, whereby kon is set equal to koff
(i.e., Kd = 1µM). These are compared to no block, 50, and
100% reduction in GKur in cAF conditions, as well as no block in
nSR conditions. Similar to our findings in nSR (Ellinwood et al.,
2017), both types of inhibitors display a biphasic relationship
between APD and drug-binding kinetics at 1- and 3-Hz pacing.
At 1-Hz pacing, APD in the presence of drug is comparable to
a 50% reduction in GKur at slow and fast drug-binding kinetics
(Figures 2B,G). Significant APD prolongation is only seen for
intermediate drug-binding kinetics (0.3–30 s−1 for the open state
blocker and 1–30 s−1 for the open and inactivated state blocker),
and goes well beyond the little APD prolongation resulting from
a constant 50% reduction in GKur. However, even the maximal
APD prolongation produced by an O or O & I inhibitor in cAF
is still ∼50ms less than the APD in nSR in drug-free conditions,
which we interpret to suggest that such drugs would have limited
toxicity at 1-Hz pacing rate.

At 3-Hz pacing, the two types of inhibitors cause stronger
relative prolongation as compared to 1-Hz pacing across the
same range of drug-binding kinetics (Figures 2D,I). Notably,
all simulated drugs caused APD prolongation at 3-Hz pacing,
but the maximal prolongation produced by these theoretical
inhibitors did not match the APD prolongation caused by a
100% reduction in GKur. However, drugs with intermediate drug-
binding kinetics (3–30 s−1 for the O blocker and 10–30 s−1 for
the O & I blocker) did extend the APD at 3-Hz pacing above
the APD in nSR conditions given no block of IKur. Thus, even
though GKur is reduced by 50% in cAF as compared to nSR,
Figure 2 illustrates that IKur inhibitors can still prolong APD in
cAF, particularly at 3-Hz pacing.

Figures 2C,H,E,J display the closed (red), open (blue),
inactivated (green), and drug-bound (gray) state occupancies
during the steady-state AP for the slowest (0.01 s−1),
intermediate (3 s−1), and fastest (100 s−1) drug-binding
rates. In general, for the slowest drug-binding kinetics, the
inhibitors do not bind readily during the AP, and the drug-bound
state stays level below 0.4. At intermediate drug-binding kinetics,
the inhibitors bind readily during the AP, thus significantly
shrinking the open state occupancy. In addition, the off-rate
of drug binding is slow enough to achieve maintenance in the
drug-bound state during the AP. This allows for considerable

AP prolongation, almost mimicking complete block of IKur.
Finally, for the fastest drug-binding kinetics, the drugs again
bind readily during the AP, but the off-rate of drug binding is
so fast as to cause cycling between the drug-free open state and
the drug-bound open state during a single AP. This results in
prolongation of the drug-free open state occupancy later in the
AP that limits AP prolongation. These results are consistent
with our previous simulations in nSR. However, given the more
positive plateau in the cAF cardiomyocyte AP, KV1.5 channels
stay open longer, and inactivate more markedly (especially at
3-Hz pacing) as compared to nSR (Figure S7).

Given not only the rapid, but irregular electrical activity seen
with AF, we sought to determine how the kinetics of drug binding
of IKur inhibitors affected the time course of Em (Figure 3B)
and APD90 (Figure 3C) in cAF cardiomyocytes with a randomly
variable CL (Figure 3A). Results in drug-free conditions and for
an O & I blocker (modeled as in Figure 2F, black) with kon
= koff (Kd = 1µM) in Figure 3 again demonstrate a biphasic
relationship between drug-binding kinetics and average APD90

(Figure 3D), as seen with constant pacing (Figure 2I). Thus, for
all future simulations, we used a constant pacing interval that can
more easily be standardized in a high-throughput drug-screening
process.

Effect of Conformational State Specificity
and Binding/Unbinding Kinetics on Human
Atrial Cardiomyocyte ERP at Normal and
Fast Pacing Rates in cAF Conditions
The desired effect of IKur inhibitors is prolongation of atrial
ERP (Amos et al., 1996; Christ et al., 2008; Sanchez et al.,
2012; Loose et al., 2014; Ford et al., 2016), particularly during
fast pacing rates typifying AF. Thus, we assessed the effects of
binding/unbinding kinetics on the ERP for O (Figures 4A,B)
and O & I (Figures 4C,D) blockers. Simulations reveal a similar
biphasic relationship between ERP and drug-binding kinetics at
1- and 3-Hz pacing for both types of inhibitors, which mirror the
drugs’ effects on APD (Figure 2).

At 1-Hz pacing, IKur inhibitors cause minimal ERP
prolongation at slow drug-binding rates (≤0.3 s−1 for O
blockers and ≤1 s−1 for O & I blockers) and fast drug-binding
rates (100 s−1). Although substantial ERP changes are predicted
at intermediate drug-binding rates (1–30 s−1 for O blockers
and 3–30 s−1 for O & I blockers), ERP prolongation remains
∼62ms lower than the ERP in nSR given no block of IKur for
both inhibitors.

At 3-Hz pacing, however, IKur inhibitors appear to be
more effective at extending ERP than APD, which is a
favorable drug property as previously demonstrated for Class
I antiarrhythmic drugs which cause clinically relevant post-
repolarization refractoriness. For all drug-binding kinetics, ERP
prolongation is at least equivalent to that caused by a constant
50% reduction in GKur (Figures 4B,D). Notably, for intermediate
drug-binding kinetics (3–30 s−1 for O inhibitors and 10–30 s−1

for O & I inhibitors), drug-induced ERP prolongation extends
above the ERP in nSR in drug-free conditions, and the fastest
drug-binding kinetics prolong the ERP to a point that closely
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FIGURE 3 | Effect of drug-binding kinetics on APD during irregular pacing. (A) Beat-to-beat changes in CL during a 20-s irregular pacing protocol and the resultant

time-course of (B) Em, and (C) APD90 are shown in cAF cardiomyocytes in drug-free conditions (black), and for O & I blockers with slow (0.01 s−1, blue), intermediate

(10 s−1, red), and fast (100 s−1, green) drug-binding kinetics, given kon = koff. (D) summarizes the percent prolongation (mean APD90 after application of drug divided

by mean APD90 in drug-free conditions during the simulation) for nine different rates of binding kinetics between 0.01 and 100 s−1 using half-logarithmic increments,

whereby kon = koff, Kd = 1µM. These results are compared to 50, and 100% reduction in GKur (dotted lines) given the same irregular pacing protocol in (A).

resembles that in nSR in drug-free conditions. These drugs
showing substantial ERP prolongation at 3-Hz pacing in cAF
(with APD at slow pacing rates being well below that in nSR, see
Figure 2) might represent suitable compounds for AF-selective
therapy.

Effects of Drug Binding/Unbinding Kinetics
with Variable Kd on APD, ERP, and Ca2+

Handling
Figures 2, 3, 4 show the results from drug scenarios where the
on- and off-rate of drug binding are equal to one another (kon =
koff, Kd = 1µM), but even closely related IKur inhibitors can have
dissimilar Kd values (Lagrutta et al., 2006). Thus, we simulated
all permutations of the nine different rates of drug binding (0.01
to 100 s−1), yielding 81 different combinations of kon and koff
for the O & I state inhibitors (assuming equal affinities for open
and inactivated states) at 1- and 3-Hz pacing. We assessed the
effects of these drugs (at their IC50 concentration) on APD, ERP,
CaTamp, and diastolic [Ca2+]i. Figure 5 shows the output of the
simulations for an O & I inhibitor (modeled as in Figure 2F,
black) in the form of a heatmap, where the diagonals of the
squares from the bottom left to the top right corner correspond
to drug scenarios where kon = koff (Kd = 1µM). Except for the

drugs with the largest Kd values (koff >> kon), when kon is held
constant, APD, ERP, and Ca2+ handling are not very sensitive
to changes in koff. Thus, the effects of IKur inhibitors on atrial
electrophysiology and Ca2+ handling are largely driven by kon
rates as compared to koff rates.

In cAF conditions, ideal IKur inhibitors exhibiting AF-
selectivity will prolong atrial refractoriness (ERP prolongation
at 3-Hz pacing), have limited toxicity (minimal to no APD
prolongation at 1-Hz pacing), and have a positive inotropic
effect (an increase in CaTamp at 1-Hz pacing). O & I inhibitors
with a large Kd do not display any of the desired favorable
drug properties including prolongation of ERP at 3-Hz pacing
(Figure 5B) or increase in CaTamp (Figures 5C,D), as their effects
on APD, ERP, and Ca2+ handling are minimal, resembling
drug-free conditions. Intermediate kon rates (3–30 s−1 for 1-
Hz pacing and 10–30 s−1 for 3-Hz pacing) cause the most
significant increase in all the outputs displayed in Figure 5. For
example, drugs with a kon rate equal to 10 s−1 cause the greatest
ERP prolongation at 3-Hz pacing (Figure 5B) and increase in
CaTamp and diastolic [Ca2+]i (Figures 5C,E). Note, there is also
significant APD prolongation at 1-Hz pacing when kon is in
the intermediate drug-binding range (Figure 5A), but none of
the 81 permutations of the simulated open and inactivated state
inhibitor cause the APD to get close to the APD in nSR at 1-Hz
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FIGURE 4 | Effect of state-dependence and kinetics of drug binding on ERP. ERP was determined for open (A, 1-Hz and B, 3-Hz pacing rate) and open and

inactivated (C, 1-Hz and D, 3-Hz pacing rate) state blockers given nine different rates of binding kinetics between 0.01 and 100 s−1 using half-logarithmic increments,

whereby koff = kon, Kd = 1µM. For O & I blockers, we either allowed or prevented transitions between drug-bound states (orange vs. black traces in C,D).

Simulations were also run in nSR and cAF drug-free conditions, and in cAF given a 50 and 100% reduction in GKur.

pacing (320ms). Thus, the APD prolongation seen in Figure 5A

does not necessarily disqualify any of these theoretical drug
candidates for AF therapy. Likewise, at 3-Hz pacing, the increase
in CaTamp and diastolic [Ca2+]i mirrors the prolongation in
APD and ERP at 3-Hz pacing (Figures 5D,F). While an excessive
increase in diastolic [Ca2+]i might be deleterious, we find it to
remain well below the predicted value in the nSR human atrial
cardiomyocyte model (∼360 nM).

In our previous study in nSR (Ellinwood et al., 2017), we
found that O & I inhibitors with the fastest drug-binding kinetics
(30–100 s−1) cause ERP prolongation at 3-Hz pacing and no
APD prolongation at 1-Hz pacing. These same inhibitors display
favorable fast pacing-rate selectivity in atrial cardiomyocytes
from cAF according to our simulations shown in Figures 5A,B.
However, if we are not as concerned with APD prolongation
in cAF conditions at 1-Hz pacing, then drugs with a kon rate
in the intermediate drug-binding range (3–30 s−1) would also
be efficacious and perhaps more efficacious since they cause a
positive inotropic effect at 1-Hz pacing (Figures 5C,E).

Effect of Relative State-Specific Drug
Binding
Because many IKur inhibitors bind to multiple states of KV1.5
with variable affinity (Bouchard and Fedida, 1995; Lagrutta et al.,
2006; Ford et al., 2016), we allowed kon for the open state
(kon,O), koff for the open state (koff,O), kon for the inactivated
state (kon,I), and koff for the inactivated state (koff,I) to have any
of the three binding rates (0.01, 3, and 100 s−1), and varied
them independently to yield 81 different drug combinations. We
studied the effects of these IKur blockers in cAF conditions using a
[drug] equal to their IC50 value at 1-Hz pacing for APD and 3-Hz

pacing for ERP. Then, we compared the outputs of APD and ERP
to no block, 50, and 100% reduction in GKur in cAF conditions
(Figure 6, dotted lines), along with no block in nSR conditions
(Figure 6, dashed lines).

Figures 6A,B display the relationship between APD (at 1-Hz
pacing) and KO/KI. Data points in Figure 6A are separated by
IC50 cutoffs of 0.1µM, 10µM, and 1mM, and show that when
KO/KI < 1, we almost always obtain maximal AP prolongation
(this also corresponds to larger IC50 values). In Figure 6B, we
separated the points according to the drug’s koff,O rate (0.01, 3, or
100 s−1), which revealed that when KO/KI > 1, we only obtain
significant AP prolongation when koff,O is equal to 3 s−1 (i.e.,
the intermediate drug-binding rate). These results in the cAF-
remodeled atrial cardiomyocyte correspond well with the results
from our previous study of IKur inhibitors in nSR (Ellinwood
et al., 2017). Nevertheless, none of the 81 simulated O & I
inhibitors in Figure 6 prolong the AP beyond the APD found in
nSR at 1-Hz pacing.

Figures 6C,D present the relationship between APD at 1-
Hz pacing and ERP at 3-Hz pacing for the O & I inhibitors
with a variable KO/KI ratio. In Figure 6C, light gray symbols
correspond to KO/KI ≤ 1, and dark symbols correspond to
KO/KI > 1). The O & I blockers displaying favorable pacing-rate
selectivity, i.e., producing ERP prolongation at 3-Hz pacing while
having moderate effect on APD (and ERP) at 1-Hz pacing, are
the ones with KO/KI > 1, except if koff,O equals 3 s−1. However,
as none of the 81 simulated O & I inhibitors in Figure 6 prolong
the APD beyond that found in nSR at 1-Hz pacing, one could
argue that none of the drugs is expected to cause harmful AP
prolongation when AF is terminated. To try and enrich our
metric, in Figure 6D we also categorize the drugs according to
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FIGURE 5 | Effect of drug-binding kinetics on APD90, ERP, CaTamp, and diastolic [Ca2+]i for an open and inactivated state blocker. (A) APD90 (at 1Hz), (B) ERP (at

3Hz), (C,D) CaTamp (at 1 and 3Hz), and (E,F) diastolic [Ca2+]i (at 1 and 3Hz) are plotted for open and inactivated state blockers with varying binding kinetics, which

were simulated via permutations of nine different drug-binding rates of (from 0.01 to 100 s−1) while keeping kon,O = kon,I and koff,O = koff,I. CaTamp is 103.6, 109.4,

and 120.4 nM at 1Hz, and 103.4, 120.4, and 135.9 nM at 3Hz for drug-free, 50 and 100% IKur block, respectively. Diastolic [Ca2+]i is 157.6, 160.0, and 165.2 nM at

1Hz, and 253.3, 266.9, and 286.9 nM at 3Hz for drug-free, 50 and 100% IKur block, respectively.

percent increase in CaTamp. The best-performing drugs will cause
ERP prolongation at 3-Hz pacing in cAF (above nSR), and have
a positive inotropic effect (Figure 6D, black). Corresponding

with the results showcased in Figure 5, drugs with intermediate
binding rates (e.g., koff,O = 3 s−1) may thus be favorable given
their stronger inotropic effect.
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FIGURE 6 | Effect of conformational state affinity and drug-binding kinetics of an open and inactivated state blocker on APD90, ERP, and Ca2+ handling. Open and

inactivated state IKur blockers with varying affinities to the open and inactivated states were simulated via permutations of three different rates of binding kinetics (0.01,

3, and 100 s−1). Simulations were equilibrated for 300 beats at 1-Hz pacing or 900 beats at 3-Hz pacing using a [drug] equal to the IC50 value. (A,B) report APD90

values (at 1Hz) plotted as a function of the ratio of the open to the inactivated state affinity (KO/KI) used in each simulation. (C,D) report APD90 (at 1Hz) and ERP

values (at 3Hz). Color code in (A) is for IC50 levels. Symbols in (B,C,D) indicate various koff,O. Shades in (C) reflect either higher affinity to the open or the inactivated

state. Color code in (D) corresponds to the variable degree of CaTamp increase (at 1Hz) induced by IKur block. Horizontal and vertical lines represent APD90 and ERP

values obtained in cAF in drug-free conditions, and 50 and 100% reduction in GKur (dotted lines), and in nSR in drug-free conditions (dashed lines).

DISCUSSION

In this study, we sought to determine if IKur is a suitable anti-
AF target despite it being downregulated in cAF patients, and, if
so, what are the kinetic and state-dependent binding properties
that maximize anti-AF efficacy and limit potential cardiotoxicity.
Building off our previous study in nSR conditions (Ellinwood
et al., 2017), we implemented an in silico assessment of IKur
inhibitors in cAF atrial cardiomyocyte models, and identified
metrics for delineating ideal KV1.5 blockers against AF. Our
results point to IKur inhibition as a valid strategy to prolong atrial
refractoriness also generating a positive inotropic effect in cAF
conditions. Although increasing force generation may not be a
useful therapeutic goal at the high atrial rates seen during AF,
it can be important to counteract atrial hypocontractility after
cardioversion of AF to nSR. Interestingly, our simulations suggest

that electrophysiological properties in cAF cardiomyocytes, such
as shorter AP andmore depolarized plateau potential, bothmight
act to increase efficacy and dampen cardiotoxicity of potential
KV1.5-targeting drugs as compared to nSR (Ellinwood et al.,
2017; Figure 7).

IKur Role in APD and ERP Regulation Is
Preserved Despite Its Downregulation in
cAF
Figure S7 shows the differences in the time courses of Em, IKur,
and closed, open, and inactivated state occupancies of KV1.5
in cAF and nSR during the AP. Despite the reduced peak
current, the channel stays open later in cAF (at both 1- and 3-
Hz pacing) because of the more depolarized AP plateau. Thus,
the consequences of IKur inhibition, including the extent of AP
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FIGURE 7 | Summary of main findings. Atrial cardiomyocytes in cAF (solid lines) vs. nSR (dotted lines) have different AP trajectories, including a shorter APD and more

depolarized plateau (top left). The latter causes longer open state occupancy (right, blue solid vs. dashed lines) and stronger inactivation of the channel in cAF

conditions (especially at fast pacing rates, right, green solid vs. dashed lines). IKur inhibitors appear also more potent in cAF vs. nSR (bottom left). These factors render

APD and ERP more sensitive to inhibition by O and O & I inhibitors of KV1.5, thus increasing efficacy of these drugs in cAF vs. nSR. Because basal APD is shorter in

cAF, there are potentially less safety concerns due to drug-induced AP prolongation and subsequent afterdepolarization-driven proarrhythmia.

and ERP prolongation, depend not only on IKur magnitude (i.e.,
maximal conductance), but also on other fluxes affected by AF-
induced remodeling, which affect Em and thus Em-dependent
properties of IKur (Figure 7). For example, our group and others
have hypothesized that the extent of AP and ERP prolongation
due to IKur blockade depends on the AF-induced remodeling of
other K+ currents (Lagrutta et al., 2006; Morotti et al., 2016a;
Aguilar et al., 2017; Colman et al., 2017), and relative strengths of
ICaL and IKur (Wettwer et al., 2004; Grandi and Maleckar, 2016).
Our sensitivity analysis (Figure 1C and Figures S1–S6) revealed
that APD90 and ERP are more sensitive to changes in GKur at
fast vs. slow pacing rates. Aguilar et al. recently determined that
the relative contribution of IKur to AP repolarization increases
at higher frequencies because of reduced activation of the rapid
delayed-rectifier current IKr (Aguilar et al., 2017). Our results
concur with these findings, as our sensitivity analysis shows that
APD90 and ERP are less sensitive to changes in GKr at 3-Hz
pacing as compared to 1-Hz pacing in nSR conditions (Figures
S2, S3). Most importantly, we also found that GKur impacted
the duration of AP repolarization and refractoriness more in
cAF vs. nSR (even though this parameter was halved in the cAF
model) at 3-Hz, but not at 1-Hz pacing (i.e., fast pacing-rate
selectivity). This is a favorable drug property to avoid harmful AP
prolongation (which is also limited by the reduced basal APD)
if AF is terminated. Similar to Aguilar et al. (2017), our results

suggest that the APD- (and ERP)-prolonging effect of IKur block
is not affected by IKur downregulation.

Enhanced Efficacy and Safety of IKur
Inhibitors in cAF vs. nSR
We focused here on O and O & I blockers because we have
previously shown that these inhibitors display fast pacing-rate
selectivity in nSR (Ellinwood et al., 2017). This choice was also
supported by the increased occupancy of open and inactivated
states in cAF conditions (Figure 7). In our previous report in nSR
(Ellinwood et al., 2017), we found that when kon = koff (i) slow
drug-binding kinetics caused minimal APD changes and modest
ERP prolongation; (ii) intermediate drug-binding kinetics led to
substantial AP and ERP prolongation; and (iii) fast drug-binding
kinetics failed to produce substantial AP or ERP prolongation
at normal pacing rate, but increased the ERP at 3-Hz pacing.
While in cAF the overall biphasic relationship between APD/ERP
and drug-binding kinetics was maintained (see Figures 2–4),
notably, at 1-Hz pacing rate, even the maximal AP prolongation
induced by IKur inhibition in cAF is not sufficient to reach
the APD observed in nSR in drug-free conditions. This might
indicate that there are less safety concerns for KV1.5 block
in cAF patients. At 3-Hz pacing, ERP prolongation is at least
equivalent to that caused by a constant 50% reduction in GKur,
and, for intermediate and fast drug-binding kinetics, the ERP
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is equal to or greater than the one obtained in nSR in drug-
free conditions. These observations suggest that O and O & I
inhibitors have a broader range of efficacy in cAF vs. nSR. We
assessed whether closed state inhibitors, which displayed reverse-
rate dependence in terms of potency (Ellinwood et al., 2017), may
also be effective and safe anti-AF agents in cAF conditions (Figure
S8). We found that these blockers prolong ERP at 3-Hz pacing
(Figure S8G) while minimally prolonging the cAF AP at 1-Hz
pacing at the fastest drug-binding kinetics (≥30 s−1, Figure S8B).
However, they had a smaller maximal effect and kinetic range
for prolonging the ERP at 3-Hz pacing beyond nSR conditions
as compared to O and O & I blockers.

We enriched our metric for quantifying anti-AF efficacy
and safety of IKur inhibitors by also accounting for changes in
Ca2+-handling parameters, namely CaTamp and diastolic [Ca

2+]i
(Tsujimae et al., 2008; Cavero and Holzgrefe, 2014; Lancaster and
Sobie, 2016; Li et al., 2017), which provided additional detail to
refine the search for best-performing drugs. In identifying the
ideal drug characteristics, we looked for inhibitors that prolong
ERP (especially at fast pacing rates), limit APD prolongation
at slow pacing-rates, and improve atrial inotropy, i.e., increase
CaTamp. Increasing force generation might be a useful outcome
after cardioversion to nSR.

When KO = KI, the best-performing O & I inhibitors were
those with intermediate kon rates (3–30 s−1), because they
prolonged ERP at 3-Hz pacing and increased CaTamp and
diastolic [Ca2+]i at 1-Hz pacing (Figure 5). These inhibitors also
prolonged the AP at 1-Hz pacing and increased CaTamp and
diastolic [Ca2+]i at 3-Hz pacing—thus potentially predisposing
to harmful AP prolongation and Ca2+ overload. However, we
note that such cardiotoxicity is unlikely considering the fact that
the maximum increases of APD and CaTamp still remain far
below the corresponding values obtained in nSR in drug-free
conditions. In our previous study, we highlighted that the best-
performing drugs in nSRwere theO& I inhibitors with the fastest
drug-binding kinetics (Ellinwood et al., 2017). While these drugs
are still efficacious at prolonging ERP at 3-Hz pacing in cAF, they
have limited effect on Ca2+ handling.

When KI and KO were varied, the relationships between APD
at 1-Hz pacing and affinity ratio (KO/KI) are similar to those in
nSR (Figures 6A,B; Ellinwood et al., 2017), except none of the 81
simulated O& I inhibitors prolonged the AP beyond the duration
found in nSR in drug-free condition. Likewise, the relationship
between APD at 1-Hz pacing and ERP at 3-Hz pacing is similar to
nSR (Figures 6C,D; Ellinwood et al., 2017), but none of the drugs
exhibit obvious toxicity. The same O & I inhibitors simulated in
cAF conditions were more effective at prolonging ERP at 3-Hz
pacing rates as compared to nSR conditions. Thus, on average,
the same inhibitors in Figure 6 exhibit less toxicity and greater
efficacy in cAF vs. nSR.

In their simulation study, Aguilar et al. concluded that the
ability of (simple pore) IKur block to terminate simulated AF was
greatly attenuated by remodeling, because the block-induced AP
prolongation was insufficient to counteract the strong effects of
cAF-induced remodeling (Aguilar et al., 2017). Notably, here we
show that depending on the drug-binding kinetics, certain IKur
inhibitors can markedly counteract the effect of cAF-associated

remodeling, and bring AP and ERP parameters close to nSR
values, i.e., have a greater effect than simple pore blockers.

Limitations and Future Directions
We presented a theoretical study of the effects of IKur inhibitors
in cAF, and compared our results to our previous study in
nSR atrial cardiomyocytes. We acknowledge several limitations
to the described approach, which provide opportunities for
further extensions. First, we only considered direct drug effects
on KV1.5, and future analysis should consider multi-channel
effects of IKur inhibitors (Ford and Milnes, 2008; Li et al.,
2017), as this realistically occurs in vivo in the clinical setting.
We only considered cardiotoxicity at the atrial level, assuming
that the absence of IKur in ventricles prevents ventricular
proarrhythmia. However, this might not be true for real IKur
blockers with off-target effects. Here, we simulated IKur block
at the cellular level with no contribution of structural tissue
remodeling and defined IKur inhibitors’ efficacy and toxicity by
tracking only electrophysiological properties such as APD, ERP,
CaTamp, and diastolic [Ca2+]i. While this is an important first
step in defining metrics for AF-selectivity, other arrhythmia
indices and integration of such simulations into tissue and
organ level models would improve our ability to discern best-
performing drug characteristics of IKur inhibitors against AF.
Since many antiarrhythmic drugs lose anti-AF efficacy with
the progression of the arrhythmia, particularly in patients
with atrial cardiomyopathy and comorbidities (Goette et al.,
2016), IKur block might be less efficient against AF in the
structurally remodeled atrium. Further studies including 2- and
3-dimensional tissue simulations are needed to address this
clinically relevant issue. In addition, machine-learning methods
have begun to be implemented to analyze AP metrics after the
application of a drug and classify the risk (e.g., torsadogenic
risk) of the candidate drug (Lancaster and Sobie, 2016). Such
methods can also highlight which ion channels contribute most
to such risk. Furthermore, this study revealed that the efficacy
and toxicity of IKur inhibitors is modulated by the extent of
atrial ionic remodeling, and likely by the relative expressions
of many ion channels and transporters (Figures S1–S6). Thus,
given the differences in AP properties and ion channel expression
in patients with AF (Heijman et al., 2014), and differences
in IKur remodeling in the right vs. the left atria (Dobrev and
Ravens, 2003; Caballero et al., 2010), we hypothesize that certain
subpopulations of nSR and cAF patients may be more responsive
to therapy with IKur inhibitors, i.e., degree and heterogeneity of
IKur remodeling in atrial tissue might impact safety and anti-
AF efficacy of drugs. Future studies could identify which cell
characteristics lead to more favorable responses to anti-IKur
therapy utilizing sensitivity analysis and variations of nSR and
cAF models similar to the methods discussed in Figure 1 and
in (Sobie, 2009; Lee et al., 2013; Cummins et al., 2014; Devenyi
and Sobie, 2015; Morotti and Grandi, 2017). This information
could be useful for a personalized (precision) medicine approach
to AF treatment or helpful in suggesting potential combination
therapies with IKur inhibitors.

Finally, advancements in high-throughput screening methods
(Obergrussberger et al., 2016; Picones et al., 2016; Molokanova
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et al., 2017) provide functional drug screening capabilities that
can be coupled with in silico investigations such as the one
described here to help identify actual candidate compounds for
in vivo testing. Such technologies can potentially be implemented
to simultaneously screen many KV1.5-selective compounds for
the desired kinetics, state-dependence, and rate-dependence
of IKur block. In addition, multi-parallel recordings from
atrial-like cardiomyocytes from induced human pluripotent
stem cells is also emerging as a preclinical model for evaluating
drugs targeting atrial-specific ion channels, such as KV1.5
(Devalla et al., 2015), particularly in combination with AP-
clamp experiments. These could be coupled with in silico
studies such as this one for delineating the ideal properties
of AF-selective drugs and gaining a more comprehensive
understanding of the arrhythmic risk of candidate
compounds.

CONCLUSIONS

In this study, efficacy and cardiotoxicity on cAF atrial
cardiomyocytes of theoretical IKur inhibitors were assessed in
silico. We concluded that IKur is a promising anti-AF target,
even if strongly downregulated in cAF condition. We confirmed
that steady-state IC50 values are insufficient to predict how
candidate compounds will interact with a dynamically changing
electrophysiological substrate, thus emphasizing the importance
of accounting for kinetic and state-dependent drug-binding
properties. This approach could aid experimental and screening

efforts to identify the complex net impact of IKur inhibition in
different AF-remodeling conditions during the pre-clinical drug
development process.
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In silico cardiac myocyte models present powerful tools for drug safety testing and

for predicting phenotypical consequences of ion channel mutations, but their accuracy

is sometimes limited. For example, several models describing human ventricular

electrophysiology perform poorly when simulating effects of long QT mutations.

Model optimization represents one way of obtaining models with stronger predictive

power. Using a recent human ventricular myocyte model, we demonstrate that model

optimization to clinical long QT data, in conjunction with physiologically-based bounds

on intracellular calcium and sodium concentrations, better constrains model parameters.

To determine if the model optimized to congenital long QT data better predicts risk

of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk,

we tested the optimized model against a database of known arrhythmogenic and

non-arrhythmogenic ion channel blockers. When doing so, the optimizedmodel provided

an improved risk assessment. In particular, we demonstrate an elimination of false-

positive outcomes generated by the baseline model, in which simulations of non-

torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our

results underscore the importance of currents beyond those directly impacted by a drug

block in determining torsadogenic risk. Our study also highlights the need for rich data

in cardiac myocyte model optimization and substantiates such optimization as a method

to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

Keywords: cardiac modeling, model optimization, safety pharmacology, long QT, in silico drug trial, cardiotoxicity

1. INTRODUCTION

Mathematical models of cardiac electrophysiology are at the cusp of usage in a variety of clinical
and pre-clinical applications, including safety pharmacology (Mirams et al., 2012; Zhang et al.,
2016). In particular, mathematical modeling forms a central component in the Comprehensive in
Vitro Proarrhythmia Assay (CiPA) initiative, a proposed strategy for progressing drug safety testing
(Sager et al., 2014; Colatsky et al., 2016; Fermini et al., 2016; Gintant et al., 2016).

In terms of cardiotoxicity, drug safety testing aims to avoid Torsades de Pointes (TdP), a
life-threatening ventricular tachycardia. Indeed, occurrences of drug-induced TdP in patients have
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lead to regulatory bans and market withdrawals of several drugs
(Mirams et al., 2011). TdP risk is associated with prolongation
of the QT interval on the electrocardiogram, in particular due
to block of the hERG channel, which carries the rapid delayed
rectifier current (IKr; Sanguinetti et al., 1995; Straus et al., 2005;
Hoffmann and Warner, 2006). However, multiple other currents
and dynamics are of importance to torsadogenesis, and including
measured effects of drugs on multiple channels, rather than
just hERG, into TdP risk stratification improves risk prediction
(Kramer et al., 2013; Mistry et al., 2015). Mechanistically, TdP
initiation is linked to early afterdepolarizations (EADs) at the
cellular level. Triggering of these EADs may depend directly on
multiple different ionic currents, including the L-type calcium
current (ICaL) and the late sodium current (INaL) (Lankipalli et al.,
2005; Hale et al., 2008), and may also depend on intracellular
calcium and sodium dynamics (Terentyev et al., 2014; Kim
et al., 2015; Xie et al., 2015; Krogh-Madsen and Christini, 2017),
implying that the levels of the ionic transporters that control
these concentrations (e.g., the sodium-calcium exchanger and
the sodium-potassium pump) are important for torsadogenesis.
Indeed, recent in silico work have pointed to the magnitudes
of these two transporters as having large impact on TdP risk
(Lancaster and Sobie, 2016).

Despite the proposed usage of mathematical models in
safety pharmacology, even recent and sophisticated models of
human ventricular myocyte electrophysiology perform poorly
when simulating each of the most typical congenital long
QT (LQT) syndromes (Mann et al., 2016). This naturally
raises concerns about the ability of these in silico models
to predict drug-induced LQT and TdP. However, using a
global optimization strategy, in silico models can optimized
to reproduce repolarization delays consistent with those seen
clinically in the congenital LQT patient datasets, providing
optimism for clinically-related model usage (Mann et al., 2016).
A concern remains, however, as to whether these in silicomodels,
optimized in terms of action potential properties, replicate
dynamics of intracellular ionic concentrations well enough
to reliably predict TdP risk. For example, when optimizing
a model in terms of its electrical activity only, it can be
difficult to correctly identify parameters that mainly control
ionic concentrations (Groenendaal et al., 2015). Indeed, previous
modeling studies have shown how identical-looking action
potentials, modeled using different combinations of model
parameters, can have differing calcium transients (Sarkar and
Sobie, 2010).

To investigate this possible limitation, we therefore carried
out a multi-variable optimization, using both clinical congenital
LQT data and constraints on the concentrations on intracellular
Ca2+ and intracellular Na+ ([Ca2+]i and [Na+]i). We then
asked whether optimized models that better represent the
congenital LQT syndromes might allow for more accurate
and more reliable modeling of acquired LQT and TdP risk.
To this end, we simulated 86 cases of multi-channel drug
block with known TdP risk level (Lancaster and Sobie, 2016)
and found that the model optimized in terms of both action
potential and [Ca2+]i, and [Na+]i data, better predicts TdP
risk.

2. METHODS

2.1. Cell Model and Drug Simulations
Simulations were performed using the O’Hara-Rudy (ORd;
O’Hara et al., 2011) human ventricular ionic model as the
baseline model, as this is the model proposed to be used in
the CiPA initiative (Colatsky et al., 2016; Fermini et al., 2016).
We used endocardial myocyte parameter settings except where
otherwise noted (Figure 4A). We used a 1 Hz pacing rate
and corresponding steady-state initial conditions (O’Hara et al.,
2011). For each perturbation to the model (simulating drug
block or LQT syndromes and parameter changes during the
optimization; detailed below), the model was simulated for 500
beats prior to collecting data. We quantified action potential
duration to 90% (APD90) or 50% (APD50) repolarization, as
indicated. Calcium transients were characterized by diastolic
level (the minimum [Ca2+]i attained within an action potential
cycle cycle) and systolic concentration (the peak [Ca2+]i reached
during an action potential). The [Na+]i varies little within a single
action potential and was measured as the maximum value.

For our drug simulations, we used the datasets of Kramer
et al. (2013) and Mirams et al. (2011) as curated by Lancaster and
Sobie (2016) with an associated yes/no risk of torsadogenesis. For
each drug, the dataset gives its estimated effective free therapeutic
plasma concentration (EFTPC), along with IC50 values for block
of the channels generating IKr, ICaL, and the fast sodium current
(INa). Drug effect on each channel type was modeled as a
conductance block based on aHill equationwith a coefficient of 1:

Gx,drug = Gx

(

1+
EFTPC

IC50,x

)−1

, (1)

where Gx,drug is the maximal conductance of channel x in the
presence of the drug. The dataset contains 86 entries, with some
duplicate drugs modeled differently by the two original sources.
There are therefore 68 different compounds in the set, covering
a variety of intended clinical use, including anti-arrhythmics,
anti-histamines, antipsychotics, hypertension/angina drugs, and
others.

2.2. Drug Classification
To classify model output generated by these drug simulations we
used a Support Vector Machine (SVM; Ben-Hur et al., 2008).
We used linear decision boundaries separating two categories
of data: TdP risk and no TdP risk. These decision boundaries
were computed as the solution to a minimization of an error
(E) calculated as the sum of squared distances between the
location of miscategorized points and the boundary. Because
the two variables used in the classification (APD50 and diastolic
[Ca2+]i) have very different absolute values, we normalized them
to baseline (i.e., no drug) values.

In general, the minimum value of E will take on different
values when using different cell models to simulate drug effects,
indicating that the separation of data points by category is better
for some models than others. Therefore, to compare goodness
of the classification between models and also to determine
sensitivity of the decision boundaries, we calculate regions for
which E remains below a threshold value (E∗), which we set to
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twice the value of the lowest value of E found among the four
tested models.

2.3. Model Optimization
We optimized the baseline ORd model based on clinical data
from LQT patients, following a similar strategy as Mann et al.
(2016) and using their QT interval data for control patients
and patients with one of the three most prevalent congenital
LQT syndromes: LQT1, LQT2, or LQT3. The QT interval data
from LQT1 and LQT2 patients came from a patient cohort
with heterozygote nonsense mutations only, as that can be
mimicked in the model by decreasing the conductances of IKs
and IKr by 50%, respectively. The LQT3 cohort data is more
heterogenous and the subtype was simulated by increasing the
conductance of INaL by a factor that was allowed to vary as
part of the optimization process. The amount of QT interval
prolongation in these patient groups was 12.2% for LQT1,
16.6% for LQT2, and 16.2% for LQT3. Mapping the delayed
repolarization measured clinically as QT interval prolongation
directly to APD90 prolongation in the cell model, the objective
data set was 267.97 ms (control), 301.14 ms (LQT1), 312.20 ms
(LQT2), and 311.55 (LQT3).

In its simplest setup, the optimization was designed to
minimize a sum-of-squares error from the APD90 objective
when subjecting the model to control conditions and each
of the LQT subtypes 1, 2, and 3. We refer to this as the
“APDLQT" optimization. In other optimizations, we included
[Ca2+]i and [Na+]i information in the objective to improve the
optimization outcome. This “multi-variable” optimization was
done by adding a hefty error (200 ms squared) if [Ca2+]i and
[Na+]i fell outside a certain range during the control condition.
We used a range of 0.05–0.15µM for diastolic [Ca2+]i, 0.3–
0.7 µM for systolic [Ca2+]i, and 7–10 mM for [Na+]i based
on measurements in human ventricular myocytes and recent
modeling work (Beuckelmann et al., 1992; Piacentino et al., 2003;
Grandi et al., 2010).

For the optimization method, we used a genetic algorithm
(GA), which is a global optimization method that has been
successful in optimizing cardiac ionic models to experimental
and simulated data (Syed et al., 2005; Bot et al., 2012; Kaur
et al., 2014; Groenendaal et al., 2015). We used a population
size of 200 individual model instantiations and ran each GA for
50 generations. All other settings specific to the GA (detailing
selection, crossover, mutation, and elitism) were defined as
detailed previously (Bot et al., 2012). Because of the stochasticity
inherent to the GA, each optimizationwas run ten times.We used
the run resulting in the lowest error as the optimized model.

The parameters to be determined in the optimization process
are scaling factors for the currents IKr, ICaL, INaL, the slow
delayed rectifier current (IKs), the sodium-calcium exchange
current (INCX), the sodium-potassium pump current (INaK), and
the extent of INaL increase with simulated LQT3. All scaling
parameters were allowed to vary from 0.1% to 10-fold their values
in the baseline model.

Note that for ease and consistency we will refer to current
scaling factors as scaling of maximal conductances (and use
GKr, GCaL, GNaL, GKs, GNCX, and GNaK for the currents defined

above), although some currents are technically scaled by a
permeability or a maximal charge carried.

3. RESULTS

3.1. Sensitivity of APD, [Ca2+]i, and [Na+]i
in Baseline Model
To help guide our optimization procedure, we first did a
sensitivity analysis to the major conductances as parameters with
low sensitivity are problematic to determine in an optimization.

In the baseline ORd model, the action potential duration of
the ORd model is highly sensitive to changes in IKr (Figure 1A).
For example, when decreasing GKr by 50% to simulate LQT2,
the response is a prolongation of APD90 by 117 ms (44%),
substantially larger than the QT interval prolongation of 68
ms (16.6%) seen in LQT2 patients with heterozygote nonsense
mutations (Mann et al., 2016). The APD has an intermediate
sensitivity on GCaL, but shows little sensitivity to variations in
GKs and GNaL, the currents associated with LQT1 and LQT3,
respectively. For example, reducing GKs by 50% to mimic LQT1,
gives a modest 8-ms (3%) APD90 prolongation, much shorter
than the 51 ms (12%) QT interval prolongation seen clinically
(Mann et al., 2016).

As expected, the calcium transient has a very different
parameter sensitivity dependence. It depends strongly on the
conductances of ICaL and INCX, with a 50% increase in GCaL

or a 50% reduction of GNCX increasing systolic [Ca2+]i by
almost 0.2 µM (Figure 1B). The calcium dynamics also has a
significant dependence on GNaK, which only controls [Ca2+]i
indirectly via [Na+]i changes that regulate INCX. Indeed, [Na

+]i
depends sensitively on GNaK, with a 50% reduction in GNaK

resulting in a 1.7 mM increase in [Na+]i (Figure 1C). Variations
in the remaining key conductances have little influence on [Na+]i
levels.

These results are consistent with those presented previously
for ±10 and ±20% parameter variations in the ORd model
(O’Hara et al., 2011).

3.2. Model Optimization
As it is difficult to estimate parameters to which an output is
not sensitive, the above analysis suggests that if optimizing the
baseline ORd model to APD data only, it will be problematic
to estimate many of the conductance parameters. Including
repolarization delay data from LQT types 1, 2, and 3 as
additional information to the objective may help determine
the scaling of GKs, GKr, and GNaL. Further, pinpointing these
parameters may narrow down other conductances that correlate
with these more directly determined parameters (Groenendaal
et al., 2015). The sensitivity analysis also indicates that inclusion
of calcium transient data to the optimization objective should
help determine GNCX and GNaK scaling, and that incorporation
of [Na+]i may further help determination of GNaK scaling.

We therefore optimized the baseline ORd model to both
clinical QT interval data from LQT patients and [Ca2+]i and
[Na+]i as detailed in section 2.3. The model optimized to this
multi-variable objective produces APD90 values that are within
3% of their target values (Figure 2). The optimized parameter
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FIGURE 1 | Sensitivity of baseline ORd model to select conductances. (A) The APD of the baseline model has a strong sensitivity to the conductance of IKr. (B) The

calcium transient (quantified here as systolic [Ca2+]i ) depends sensitively on GCaL, GNCX, and GNaK. (C) The level of [Na+]i depends mainly on GNaK. Conductances

were varied by ±20% (light blue/red) and ±50% (dark blue/red) of baseline values.

FIGURE 2 | APD values of optimized models. Horizontal lines give control

APD90 (black) as well as APD90 surrogates for QT interval prolongation in LQT

patients (colored). These APD values form the optimization objective in the

simplest case (“APDLQT”). For the multi-variable optimization (“multi-var”), the

objective also include constraints on [Ca2+]i and [Na+]i . Dots give APD90

values under control simulations (black) and during LQT simulations (LQT1,

red; LQT2, blue; LQT3, green). The overestimation of the LQT2 response and

the underestimation of the LQT1 response in the baseline ORd model are

eliminated in the optimized models. Relative APD90 prolongation in the

baseline model is 3.0, 43.8, and 15.8%, for LQT1, LQT2, and LQT3,

respectively. For the multi-variable optimized model, relative APD90

prolongation is 14.9, 22.9, and 18.6% for LQT1-3, while for the

APDLQT-optimized model the corresponding values are 14.5, 19.4, and

17.0%. The target QT interval values are 12.2, 16.6, and 16.2%.

scaling factors are given in Table 1. The optimized model has
a much increased GKs, resulting in a larger response to the
simulated LQT1 condition, matching the target data (Figure 2).

Optimizing the baseline model to APD values only (i.e.,
omitting the [Ca2+]i and [Na+]i constraints) results in slightly
better matching of the objective (Figure 2; errors with 2%).
Optimized parameter values are very different, with large
increases in scaling of GCaL and GNaK in addition to the enhanced
GKs scaling (Table 1).

TABLE 1 | Scaling factors for optimized models.

Objective Ks Kr CaL NCX NaK NaL NaLLQT3

Multi-variable 8.09 1.17 3.57 3.05 1.91 1.70 4.17

APDLQT 9.71 1.42 9.59 1.75 7.40 4.86 2.28

The optimization gave estimated parameters for scaling of the currents IKs, IKr , ICaL, INCX ,

INaK , and INaL, and for the increase of INaL during simulated LQT3. Optimizing to APD

values only (APDLQT ) resulted in a very different parameter set compared to the multi-

variable optimization that include of [Ca2+ ]i and [Na
+ ]i constraints. In particular, it resulted

in much increased scalings for ICaL and INaK .

Despite the diversity in parameter scalings among the baseline
and the optimized models, the action potential morphology
is quite similar across these differently parameterized models
(Figure 3A). We also include for comparison the action
potential generated by Mann et al. in an optimization to
clinical LQT data under both baseline and β-adrenergic
conditions (“APDLQT±βAdr” optimization, Mann et al., 2016).
The main difference among the action potential waveforms is a
depolarization of phase 2 of the action potential, the amount of
which correlates with the upscaling of GCaL from the baseline
model (about 2–4 in themultivariable and APDLQT±βAdr models,
and almost 10 in the APDLQT model).

However, calcium transients and [Na+]i levels are vastly
different across models (Figures 3B,C). When including [Ca2+]i
and [Na+]i constraints in the optimization, the optimized
calcium transient and [Na+]i level are very close to those of
the baseline model, despite the allowed ranges being relatively
large (0.05–0.15µM for diastolic [Ca2+]i, 0.3–0.7µM for systolic
[Ca2+]i, and 7–10 mM for [Na+]i). In our optimizations, when
optimizing to APD only, the calcium transient is significantly
enhanced. This is consistent with the much boosted GCaL

and the decreased GNCX scaling (relative to the multi-variable
optimization) both of which favor a larger calcium transient. In
addition, the GNaK scaling is much increased when optimizing
to APD only, consistent with the lower [Na+]i. For the
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FIGURE 3 | Action potentials, calcium transients, and [Na+]i in optimized models. (A) Optimized models have similar action potentials under control conditions, but

the different parameter sets underlying the different solutions give rise to some waveform variation. (B) Despite having comparable action potentials, models optimized

without constraints on [Ca2+]i and [Na+]i can have widely different calcium transients. Shaded areas give constraints on minimum and maximum [Ca2+]i (0.05–0.15

and 0.3–0.7µM, respectively). (C) Without constraints on [Ca2+]i and [Na+]i , optimization can result in models with very low [Na+]i levels. Shaded area indicate

constraint on [Na+]i (7–10mM). “APDLQT±βAdr” designates the original optimization to clinical LQT data under normal and β-adrenergic stimulation conditions by

Mann et al. (2016).

APDLQT±βAdr optimized model (Mann et al., 2016), both GNCX

and GNaK were much increased relative to baseline (scaling
of 2.95 and 9.12, respectively), resulting in a small-amplitude
calcium transient and a low [Na+]i.

3.3. TdP Prediction
To test how well the optimized models predict TdP risk, we
used a dataset consisting of drugs blocking IKr, ICaL, and INa
to varying degrees, and their associated risk of torsadogenesis
(TdP positive or TdP negative; Lancaster and Sobie, 2016). As
demonstrated previously, while many of the drugs in this dataset
that carry a TdP risk do prolong APD, some drug simulations
predict an increased APD for TdP negative drugs (Figure 4A,
Lancaster and Sobie, 2016). In particular, in the baseline model,
simulations of three non-torsadogenic drugs results in action
potential prolongation of 15–25 ms (one of these is noted by
a black dot in Figure 4A). As demonstrated by Lancaster and
Sobie, simulations of those three drugs also led to a decreased
diastolic [Ca2+]i, which was not seen in the TdP positive drugs.
Therefore, including diastolic [Ca2+]i as a second metric (APD50

being the first) by which to classify the drugs, allows for a correct
TdP risk categorization of these three otherwise false positives
(Figure 4A, Lancaster and Sobie, 2016). Indeed, using APD50 and
diastolic [Ca2+]i in combination correctly classifies drugs in the
dataset with high specificity and sensitivity (Figure 4A, Lancaster
and Sobie, 2016).

For the APDLQT±βAdr optimized model (Mann et al., 2016),
qualitatively similar results are observed (Figure 4B). The
particular values of diastolic [Ca2+]i over which TdP positive
drugs are separated from TdP negative drugs are shifted,
reflecting baseline differences. The same three TdP negative
compounds that resulted in APD prolongation in the baseline
model, give increased APD50 in this optimized model as well.

When simulating drug application in the multi-variable
optimized model, predictions are improved (Figure 4C). In

particular, none of the TdP negative drugs result in APD50

prolongation beyond 5 ms, implying that APD50 prolongation
in itself is a strong predictor of torsadogenic risk in this model.
In addition, many of the TdP negative compounds result in
more substantial reductions in APD50 and/or diastolic [Ca2+]i
compared to the baseline and the APDLQT±βAdr optimized
models. There is therefore an increased flexibility to the
positioning of the decision boundary separating the TdP positive
from the TdP negative drugs (dashed lines in Figure 4Cmark off
area within which the categorization error remains less than the
threshold value, E∗).

For the APDLQT optimized model, the classification is less
successful (Figure 4D). The same three TdP negative drugs that
resulted in false positive APD prolongation in the baseline and
in the APDLQT±βAdr optimized model do so here. Further,
simulation of several TdP positive drugs result in decreased
diastolic [Ca2+]i without much change in APD and therefore
form false negatives in this categorization. The presence of
these false positives and negatives pose a challenge to the
classification and prevents the categorization error from getting
below the threshold value regardless of the location of the
decision boundary.

What are the ionic mechanisms underlying the improvement
in predictive ability by the multi-var model? The simulated drugs
that give the false positive APDprolongations for the baseline and
APD-optimized models are piperacillin and verapamil (note that
two independent measurements for verapamil are included in the
dataset). These drugs block both ICaL and IKr. We investigated
the ionics of verapamil (black dots in Figure 4) in more detail,
as verapamil is a well-known example of an IKr-blocking agent
that does not prolong the QT-interval and is not torsadogenic
(Redfern et al., 2003).

A simulation of verapamil application in the baseline model
is shown in Figure 5A. Drug-induced reductions in outward
IKr and inward ICaL are seen to be of similar amplitude and
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FIGURE 4 | Prediction of TdP risk from model simulations. (A) Baseline ORd model with epicardial myocyte parameter settings (the epicardial configuration is shown

here as it was determined to give the best classification in Lancaster and Sobie, 2016. Using the endocardial baseline model yields very similar results).

(B) APDLQT±βAdr optimized model. (C) Multi-variable optimized model. (D) APDLQT optimized model. Dotted lines indicate no-drug control values of APD50 and

diastolic [Ca2+]i . Colors for the different models correspond to the color scheme in Figure 3. Solid lines give decision boundaries between torsadogenic (open circles)

and non-torsadogenic drugs (filled circles). Dashed lines demarcate regions within which the categorization error remains below a threshold value (E*). Using the

multi-variable optimized model, all drugs that prolong APD50 by more than 5 ms are known TdP risk drugs. Verapamil (marked by black dot) is an example of a TdP

negative drug that significantly prolongs the AP in the baseline and APD-optimized models but not in the multi-variable optimized model.

balance each other during the first 200 ms of the action
potential. When ICaL inactivates at this time, the loss of
outward IKr is largely unopposed, leading to a decreased rate
of repolarization and APD prolongation. In the multi-variable
optimized model, the non-drug action potential is generated
through a near-balance between a much increased ICaL and
a larger INCX providing inward current against the outward
currents IKr and IKs, with IKs now being of similar size as
IKr (Figure 5B). When simulating verapamil application in
the multi-var optimized model, there is a loss of inward
current by the direct effect of ICaL conductance block and
because of a reduction of INCX due to the decreased calcium
transient. As both ICaL and INCX are increased in the multi-
variable optimized model relative to the baseline model, the
loss of inward current with verapamil application is amplified,
preventing repolarization delays. Further, the increased IKs in the
multi-var model helps maintain repolarization under verapamil
application. Thus, factors beyond the scaling of the directly
blocked currents IKr and ICaL contribute to the drug-induced
response.

4. DISCUSSION

We investigated optimization of conductance parameters in
a human ventricular myocyte model to match clinical data
from LQT patients using constraints on the concentrations of
intracellular calcium and sodium ions.Without these constraints,
parameter optimization can lead to models with unphysiological
calcium transient and [Na+]i. To test the hypothesis that
the optimization would allow the model to make improved
predictions of drug-induced arrhythmogenesis, we investigated
the ability of the model to determine TdP risk in a large set
of known drugs. We found that using the optimized model
improves TdP prediction in two complementary manners. First,
simulations of three TdP negative drugs that result in APD
prolongation using the baseline model result in no or minimal
APD prolongation when using the optimized model. Second,
when using both diastolic [Ca2+]i and APD50 for the model-
based drug classification, the optimized model gives an improved
separation between the TdP positive and negative drugs,
measured as an increased flexibility in the positioning of the
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FIGURE 5 | Ionic mechanisms of repolarization dynamics during verapamil application. (A) Baseline model. (B)Multi-variable optimized model. Verapamil (simulated as

a scaling of GCaL by 0.64, a scaling of GKr by 0.55, and a scaling of GNa by 0.998) decrease IKr by similar amounts in the baseline and in the multi-variable optimized

models. However, due to the up-regulated ICaL and INCX in the optimized model, it sustains a larger loss of inward current than the baseline model. Further, the

increased IKs in this model provides a repolarization reserve. Together, these effects lead to a maintained APD50 value and an only slightly increased value of APD90.

decision boundary. Based on these findings, our main conclusion
is that intracellular ionic concentrations are important for safety
pharmacology modeling.

4.1. In Silico TdP Prediction
Other studies have investigated ionic-model-based TdP
prediction using different approaches. It is clear from these
studies that a range of strategies can be applied to improve TdP
prediction. First, there is improvement to the baseline model,
which in itself can involve a number of approaches. One is to
optimize a model to clinical LQT data, as done here or previously
(Mann et al., 2016). Conceptually, fitting a cellular model to

clinical ECG data rather than to experimental cellular-level data
may appear counter-intuitive, but it makes sense given that the
model is used to predict an organ-level, rather than a cellular-
level, arrhythmia risk. Another model optimization approach is
to tune themodel to experimental data obtained with ion channel
blockers. Such data can be additional to the data used originally
to build the baseline model, as in the example of a canine
model that upon optimization delivered improved prediction
of test drug data (Davies et al., 2012). In another article in this
Research Topic, Dutta et al. (2017) used drug data presented
in the original ORd model paper to reparameterize the ORd
model. This optimization was done in conjunction with another
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model improvement strategy: re-casting the IKr description as
a Markov model with state- and voltage-dependent drug block
(Li et al., 2017). An alternative strategy to optimizing a model is
to generate a population of models to represent inter-individual
and/or inter-cell variability, potentially recapitulating variability
in drug response across a heterogeneous population (Lancaster
and Sobie, 2016; Britton et al., 2017). Another contribution to
this Research Topic demonstrates that such population models
predict TdP risk better than using a single baseline model
(Passini et al., 2017). Population models may also be used to
gain mechanistic insights into arrhythmogenesis. For example,
Passini et al. determined that different sub-populations of models
had different propensities to repolarization abnormalities, with
low conductances for the outward currents IKr and INaK and
increased levels of ICaL and INCX making models more prone to
repolarization abnormalities, emphasizing that currents other
than IKr are important in this aspect.

Second, TdP prediction may be improved by selection of
better risk measures. While repolarization delay (APD or QT
interval prolongation) has high sensitivity to TdP positive drugs,
its specificity is more limited, with some drugs prolonging
QT interval, yet carrying only low TdP risk (e.g., amiodarone;
Sager et al., 2014). Measures that may be useful in risk
stratification include diastolic [Ca2+]i (Lancaster and Sobie,
2016) as employed here. While this measure was selected, in
combination with APD50, from a range of action potential
and calcium transient biomarkers through a machine learning
process, there is a mechanistic basis as to why [Ca2+]i levels may
be associated with TdP risk, as abnormal intracellular calcium
dynamics and spontaneous calcium release is associated with
EAD formation, a cellular-level trigger of TdP (Lancaster and
Sobie, 2016; Němec et al., 2016). Another risk measure proposed
from in silico work is the net charge carried during the action
potential by six major ionic currents (Dutta et al., 2017; Li
et al., 2017). This measure may also be mechanistically linked to
TdP arrhythmogenesis, as it is indicative of robustness against
EAD generation under a GKr-reduction challenge (Dutta et al.,
2017). Use of repolarization abnormality occurrence (i.e., EADs
or incomplete repolarization) in simulations as a metric for TdP
risk may also present a viable stratification pathway (Passini et al.,
2017). Given the direct link to arrhythmogenesis, this seems like
a promising risk marker, but a possible limitation lies in its use of
highly elevated drug concentrations to trigger the repolarization
abnormalities, which may lead to an overestimation of the
number of false negatives. Use of this metric rather than APD
prolongation improves TdP prediction in a population ofmodels,
but not in the baseline ORd model (Passini et al., 2017).

In summary, it is clear that in silico cell models can be
improved to better predict TdP risk and that measures beyond
APD prolongation are helpful to this end, but it also apparent
that significant uncertainties remain as to how to best carry out
the modeling and the arrhythmia risk prediction.

4.2. Kr/Ks Balance
Our optimization resulted in significant rescaling of
many parameters, in particular GKs, which was increased
approximately eight-fold. This is comparable to the scaling

of 5.75 found in Mann et al. (2016). In the baseline ORd
model, IKs is relatively small under control conditions, its
peak value during an action potential being roughly 10
times smaller than peak IKr. Significant upscaling of this
current is therefore necessary to recapitulate the clinical LQT1
phenotype showing substantial QT interval prolongation with
loss of IKs. Likewise, the Grandi-Bers model, another recent
human ventricular myocyte model (Grandi et al., 2010) that
has little reliance on IKs under control conditions, requires
sizeable upscaling of GKs (about 25-fold) to reproduce the
LQT1 clinical data (Mann et al., 2016). In contrast, the ten
Tusscher-Panfilov human ventricular myocyte model (ten
Tusscher and Panfilov, 2006) which has similarly sized IKs
and IKr, requires increased GKr (2.65-fold) and decreased GKs

(0.41-fold) to reproduce the clinical LQT dataset (Mann et al.,
2016).

These substantial increases in GKs required for the ORd
and the Grandi-Bers models to reproduce the clinical LQT
data are at odds with the IKs ranges recorded experimentally.
Factors that may contribute to this disagreement include: (1)
Differences between levels of β-adrenergic-dependent kinases
and phosphorylation which regulate IKs and exacerbate LQT1
(Wu et al., 2016); (2) Transmural or other intra-heart
heterogeneity with some regions having especially delayed
repolarization; (3) Methodological experimental limitations with
IKs rundown and/or damage of the IKs channel due to enzymatic
digestion—however, the recordings that formed the basis of
GKs in the ORd model were done in small tissue preparations
using microelectrodes for the express purpose of mitigating these
complications (O’Hara et al., 2011).

The IKs conductance was also increased (by 87%) in the recent
optimization of the ORd model with the Markov IKr formulation
to the original O’Hara et al. data (Dutta et al., 2017). While
this approximately doubled IKs at baseline, IKs remained much
smaller than IKr (by about five-fold) and would not be expected to
be able to reproduce the LQT1 phenotype. Because the particular
balance between IKr and IKs can be important for action potential
stability and EAD generation (Devenyi et al., 2017), one may
expect a model with large GKs to behave differently from a model
with smaller GKs model in terms of arrhythmogenesis. Because
the reasons for the discrepancy between the experimental and the
clinical IKs data are not known, it will likely be useful to the field
to have both a model with large GKs, replicating the clinical LQT
data, and a model with smaller GKs, replicating the experimental
data.

The mismatch between the experimental and the clinically-
based estimations of GKs also raises broader questions regarding
how to best handle inconsistent data in model development. Our
approach here has been to use data of perceived highest relevance
to the particular type of predictions made, i.e., to use clinically-
based parameter estimations to predict clinical arrhythmia risk.
This approach is in line with the general strategy of using
data specific to a particular system (e.g., a cell or a patient)
to generate a model specific to that system. However, the best
way forward may be to couple rigorously uncertainty in model
parameters to uncertainty inmodel predictions using uncertainty
quantification tools (Johnstone et al., 2016).
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4.3. Effect of Verapamil on Action Potential
Duration
The balance between different currents is also important for
determining a model’s response to simulated drug block. The
anti-hypertension and anti-angina drug verapamil blocks ICaL
and IKr, does not prolong the QT interval, and does not prolong
APD in recordings from human trabeculae (Redfern et al., 2003;
Britton et al., 2017). However, different human in silico models
give different responses to simulated verapamil application. The
Grandi-Bers and the ten Tusscher-Panfilov models predict action
potential shortening in response to verapamil (Mirams et al.,
2011, 2012). In variations of the ORd model, verapamil almost
always prolongs the APD, but the response varies depending on
drug concentration, on how block is modeled, and on whether a
Markov model is used for IKr (Britton et al., 2017; Dutta et al.,
2017; Passini et al., 2017).

One hypothesis as to why verapamil does not prolong APD
is that its block of IKr is compensated for by block of ICaL.
Using our multi-var optimized model, we show here that in
addition to the block of ICaL, a secondary reduction in INCX
(due to the decreased calcium transient) is important in off-
setting the IKr block by verapamil. The size of the IKs current is
also important in determining APD under IKr block conditions
as IKs provides a repolarization reserve. However, IKs level
in itself is not predictive of APD shortening with verapamil
since in the APDLQT optimized model, which has a much
increased repolarization reserve in IKs, verapamil leads to APD
prolongation.

4.4. Limitations
There are several limitations to our modeling and optimization
approach. We allowed large ranges of the scaling (0.1%
to 10-fold) of the parameters to be estimated in the
optimization. Consequentially, the conductance scalings
may be unphysiologically large, with, e.g., GKs becoming larger
than estimated experimentally. However, we are explicitly
not attempting to make the best model of a single cell or
small tissue, but, rather, a model capable of making clinically
relevant predictions. We did not include the clinical data from
control and LQT types 1, 2, and 3 patients during β-adrenergic
stimulation (Mann et al., 2016) in the optimization objective

as preliminary optimizations with this addition resulted in
adrenergically stimulated action potentials having unsmooth
repolarization profiles, characterized by slow late repolarization.
Due to experimental difficulties in determining absolute values of
[Ca2+]i and [Na+]i, we based the allowed ranges of these mainly
on modeling work, particularly the ORd and the Grandi-Bers
models. While experimental measurements of [Ca2+]i in human
ventricular myocytes are consistent with the simulated values
(Beuckelmann et al., 1992; Piacentino et al., 2003), reported
measurements of [Na+]i are much higher (∼20 mM), but may be
overestimated (Pieske et al., 2002; Grandi et al., 2010). While the
inclusion of bounds on [Ca2+]i and [Na+]i provided additional
information to constrain conductance parameters, it is likely that
inclusion of more data into the objective would help constrain

parameters further. Such data could include more repolarization
markers, further calcium transient features, and drug block data.

We modeled the drug application using a simple conductance
block, although some drugs are known to block in a state-
dependent manner (Mirams et al., 2011; Di Veroli et al.,
2014; Britton et al., 2017; Dutta et al., 2017). However,
use of this simpler approach allowed us to simulate a
larger drug data set. We used a single model for the drug
simulations. It might be valuable in future work to generate
a population of models around the optimized model to
potentially improve predictions and to give insights into
ionic mechanisms underlying population heterogeneity in drug
responses.
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Min Wu, David G. Strauss, Thomas Colatsky † and Zhihua Li *
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Drug-induced Torsade-de-Pointes (TdP) has been responsible for the withdrawal of

many drugs from the market and is therefore of major concern to global regulatory

agencies and the pharmaceutical industry. The Comprehensive in vitro Proarrhythmia

Assay (CiPA) was proposed to improve prediction of TdP risk, using in silico models and

in vitro multi-channel pharmacology data as integral parts of this initiative. Previously,

we reported that combining dynamic interactions between drugs and the rapid delayed

rectifier potassium current (IKr) with multi-channel pharmacology is important for TdP risk

classification, and we modified the original O’Hara Rudy ventricular cell mathematical

model to include a Markov model of IKr to represent dynamic drug-IKr interactions

(IKr-dynamic ORd model). We also developed a novel metric that could separate drugs

with different TdP liabilities at high concentrations based on total electronic charge carried

by the major inward ionic currents during the action potential. In this study, we further

optimized the IKr-dynamic ORd model by refining model parameters using published

human cardiomyocyte experimental data under control and drug block conditions. Using

this optimized model and manual patch clamp data, we developed an updated version

of the metric that quantifies the net electronic charge carried by major inward and

outward ionic currents during the steady state action potential, which could classify

the level of drug-induced TdP risk across a wide range of concentrations and pacing

rates. We also established a framework to quantitatively evaluate a system’s robustness

against the induction of early afterdepolarizations (EADs), and demonstrated that the

new metric is correlated with the cell’s robustness to the pro-EAD perturbation of IKr

conductance reduction. In summary, in this work we present an optimized model that

is more consistent with experimental data, an improved metric that can classify drugs

at concentrations both near and higher than clinical exposure, and a physiological

framework to check the relationship between a metric and EAD. These findings provide

a solid foundation for using in silico models for the regulatory assessment of TdP risk

under the CiPA paradigm.

Keywords: Torsade-de-Pointes (TdP), Comprehensive in vitro Proarrhythmia Assay (CiPA), rapid delayed rectifier

potassium current (IKr), in silico cardiac cell model, drug block, proarrythmia risk, model optimization
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INTRODUCTION

Drug-induced Torsade-de-Pointes (TdP) is a lethal arrhythmia
that has caused removal of several drugs from the market
(Gintant, 2008). The current cardiac safety paradigm (described
by the ICH E14 and S7B guidelines) focuses on two markers
to assess TdP risk: in vitro block of the hERG (human
Ether-à-go-go-Related Gene) channel (representing the rapidly
activating delayed rectifier potassium current, or IKr), and
prolongation of the QTc interval in clinical studies (Sager et al.,
2014). However, while eliminating the incidence of TdP in
marketed drugs, this testing regime primarily aims at detecting
delayed ventricular repolarization rather than the clinical end
point TdP, and may be assigning proarrhythmia liability to
drugs that could in fact be safe (Sager et al., 2014). Therefore,
the Comprehensive in vitro Proarrhythmia Assay (CiPA) was
proposed as a new regulatory paradigm that assesses drug TdP
risk by combining measurements of drug effects on multiple
cardiac ionic currents in vitro with in silico modeling of drug
effects on the ventricular myocyte (Sager et al., 2014). The O’Hara
Rudy cardiac cell model (ORd) (O’Hara et al., 2011) was chosen
as the consensus base in silico model and a set of 28 drugs with
known levels of clinical TdP risk (high, intermediate, low/none)
were identified for the development and evaluation of the CiPA
paradigm (Colatsky et al., 2016; Fermini et al., 2016). The three
TdP risk categories were assigned by a Clinical Translation
Working Group comprised of clinical cardiologists, safety
pharmacologists, and clinical electrophysiologists according to
published and publically available data and expert opinion. The
28 CiPA drugs were separated into a training set of 12 compounds
to be used for calibration of the in silicomodel and the remaining
16 compounds are to be used later for validating the model. Both
the training and validation compound sets comprise drugs that
cover the full range of TdP risk categories and demonstrate varied
electrophysiological profiles.

Previous studies have presented computational frameworks
to assess TdP risk (Mirams et al., 2011; Kramer et al., 2013;
Lancaster and Sobie, 2016), but their use within the CiPA
framework is limited due to their differing TdP risk categories
from those defined in CiPA. In addition, prior studies simulated
drug effects using the half-maximal blocking concentration
(IC50) for different drugs, which assumes simple pore block
of the ion channels and neglects any intricacies of drug-
ion channel interactions that may be important factors in
predicting relative TdP risk. The importance of incorporating
a kinetic representation of drug-ion channel interactions has
been demonstrated in previous publications (Di Veroli et al.,
2013, 2014; Li et al., 2017). In the Li et al. (2017) study we
recently reported the development of a novel IKr dynamic
model that can capture drug-channel dynamic interactions, and
the integration of this IKr model into the ORd cardiac model

Abbreviations:CiPA, Comprehensive in vitro proarrhythmia assay; TdP, Torsade-

de-Pointes; ORd, O’Hara Rudy dynamic cell model (O’Hara et al., 2011); IKr-dyn

ORd, ORdmodel with dynamic IKr; Inet, net current (sum of currents ICaL, INaL,

IKr, IKs, IK1, Ito); qNet, charge passed by Inet from the beginning to the end of the

AP beat (same for qCaL and ICaL, qNaL and INaL...); cqInward, change in charge

passed by ICaL and INaL; Cmax, free maximum plasma clinical drug exposures.

with multi-channel pharmacology data. This IKr-dynamic ORd
model (hereinafter referred to as the original IKr-dyn ORd
model) was calibrated based on the original ORd model so
that it can reproduce experimentally recorded adult human left
ventricular cardiomyocyte action potential (AP)morphology and
rate dependency under control (drug-free) conditions. However,
this model calibration process in our previous work did not
include experimental AP changes under the influence of different
channel blocking drugs. This may negatively affect the model’s
predictive power as this model is intended for simulating drug
effects under channel blocking conditions.

In this study we further optimized the original IKr-dyn
ORd model by adjusting channel conductance values of major
ionic currents according to human ventricular cardiomyocyte
experimental data in the presence and absence of various drugs
with different channel blocking activities. We show that this
optimization procedure allowed the model (hereinafter referred
to as optimized IKr-dyn ORdmodel) to quantify more accurately
the impact of each individual current on the AP. We then
screened a series of published and novel metrics computed by
this model based on their capability of stratifying CiPA training
compounds into their corresponding TdP risk categories using
drug-IKr binding kinetics and multi-channel pharmacology data
collected earlier through manual patch clamp systems (Li et al.,
2017). The best metric identified to date is based on drug-induced
changes to the net charge carried by ionic currents (qNet) during
the AP, which can stratify the 12 CiPA training drugs into three
TdP risk levels across various conditions. We also show that
the increased predictive power of this metric is mechanistically
linked to the incorporation of IKr-drug binding dynamics and
the improved representation of the block effects of individual
currents, two important features of the optimized IKr-dyn ORd
model. Finally, we developed a framework to evaluate a cell’s
robustness against EAD generation, and demonstrated that the
new qNet metric is correlated with the system’s repolarization
robustness to external pro-EAD perturbations that could reduce
the membrane density of the hERG channel (IKr conductance).

METHODS

Optimization of the IKr-Dynamic ORd
Model
The original IKr-dyn ORd model (described in Li et al., 2017
and Expanded Methods in the Supplemental Material) was
further modified (optimized IKr-dyn ORd) by scaling five ionic
current conductances [IKr, the slow rectifier potassium current
(IKs), inwardly rectifying potassium current (IK1), the L-type
calcium current (ICaL) and the late sodium current (INaL)]
so that the model provides a good fit to published APD rate
dependence experimental data for control and five channel
blockers (O’Hara et al., 2011). The optimization was performed
using the model parameterization algorithm described in Li et al.
(2014). Briefly, an initial set of scaling factors was defined within
a certain range (between 0.001 and 9) and their goodness of
fit was assessed using an objective cost function defined as the
weighted sum of the squared errors between model simulations

Frontiers in Physiology | www.frontiersin.org August 2017 | Volume 8 | Article 61687

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Dutta et al. In silico Proarrhythmia Risk Assessment

and experimental measurements. The set of scaling factors then
underwent iterative changes (i.e., mutation and recombination)
to create new generations of parameters and this process was
continued until the convergence criterion was met (when the
change in the minimum error of the new parameters is less than
5% over the last 30 generations). The experimental data used for
fitting were taken from Figure 8 of the ORdmodel paper (O’Hara
et al., 2011) and comprise APD rate dependence data for control
and 5 drug blocking conditions: 1 µM E-4031 (70% IKr block),
1 µM HMR-1556 (90% IKs block), 1 µM nisoldipine (90% ICaL
block), 100 µM BaCl2 (90% IK1 block), 10 µM mexiletine (54%
INaL, 9% IKr, and 20% ICaL block). The simulated percentage
of block for all drugs was kept the same as in the ORd model
paper (O’Hara et al., 2011), apart from mexiletine, which used
new pharmacology data from manual patch clamp systems at
physiological temperatures (Crumb et al., 2016). The algorithm
was run using in-house developed R scripts (R Core Team, 2014)
and C programs using the Snow, Rmpi and deSolve packages
(lsoda solver with a 10−6 relative and absolute tolerance) (Yu,
2002; Soetaert et al., 2010; Tierney et al., 2015) on the FDA High
Performance Computer (HPC) with 160 cores.

Simulation Protocol for Metric Evaluation
All simulations were run from control steady state conditions
(after 1,000 beats) at varying cycle lengths (CLs) 1,000, 2,000,
and 4,000 ms and stimulus of −80 µA/µF for 0.5 ms (as in the
original model). Block of ion channels at various concentrations
were simulated and run for another 1,000 beats to reach a
new steady state with drug. The last two beats were analyzed
to check for alternans, which was observed in the presence of
early afterdepolarizations (EADs), defined as having a positive
derivative during the repolarization phase of the AP. The
pharmacology data for the 12 CiPA training compounds (the
full list and their corresponding risk categories can be found in
Supplemental Table 1) were the same as in our previous report
(Li et al., 2017), where drug-IKr binding kinetic parameters were
estimated using an in vitro IKr dynamic protocol and IC50/Hill
coefficients based on Crumb et al. (2016) were used for the
remaining channels [the peak sodium current (INa), INaL, ICaL,
IK1, IKs and transient outward potassium current (Ito); all the
parameters can be found in the Supplemental Tables 2 and 3].
Simulations were run for a range of drug concentrations: from
0.5x up to 25x free maximum plasma clinical drug exposures
(Cmax). Simulations were run in R and C using the deSolve
package (Soetaert et al., 2010).

We assessed a range of standard metrics as also considered
in Mirams et al. (2011), Lancaster and Sobie (2016): resting
membrane potential (resting Vm), maximum upstroke velocity
(dV/dtmax), peak membrane potential (peak Vm), APD at
50% of the amplitude (APD50), APD at 90% of the amplitude
(APD90), APD triangulation (APDtri) defined as APD90-
APD50, diastolic intracellular calcium concentration ([Ca2+]i)
(diastolic Ca), peak [Ca2+]i (peak Ca), calcium transient duration
at 50% (CaD50) and 90% (CaD90) of the amplitude, calcium
transient triangulation (Catri) defined as CaD90-CaD50, as well
as the cqInward metric that quantifies the change in the amount
of charge carried by INaL and ICaL, which demonstrated good

separation between risk categories in our previous report (Li
et al., 2017). In addition, we considered a new metric (qNet)
calculated as the net charge constituting (the integral or area
under the curve of) the net current (Inet) from the beginning to
the end of the simulated beat (defined as Inet = ICaL + INaL +

IKr+ IKs+ IK1+ Ito). The currents making up Inet within our
study play an important role in modulating arrhythmic risk and
have been chosen based on input from pharmaceutical company
scientists and safety pharmacology experts as the main currents
of interest within the CiPA paradigm, as outlined in Fermini et al.
(2016).

To assess the robustness of a cell against EAD generation,
we simulated an added perturbation by reducing the maximum
conductance of IKr and reporting the minimum IKr reduction
needed to trigger an EAD. Simulations were run for varying
degrees of IKr conductance reduction (using a binary search
algorithm) at a CL of 2,000 ms with a precision of 0.01%.
For each IKr reduction tested, EADs were defined as having a
positive differential (dV/dt) during the plateau phase of the AP
(between APD30 and APD90) after 100 beats. The cell model
was pulsed for a 100 beats before checking for EADs to allow the
system to reach quasi-steady state, as in Kurata et al. (2017). The
minimum IKr conductance reduction needed to trigger an EAD
was named IKr reduction threshold, which reflects the system’s
repolarization robustness against, or distance from, EADs. To
assess the relationship between the metric and the repolarization
robustness, we calculated the correlation coefficients (using the
pearson method) between the metric at steady state after 1,000
beats (without added IKr reduction) and the IKr reduction
threshold for each drug across a series of concentrations (0.5x–
25x Cmax). Situations where no IKr reduction threshold could
be calculated (no EADs could be induced for the highest IKr
reduction tested) or IKr reduction threshold is 0 (an EAD
occurred without any added perturbation) were excluded from
the correlation calculation.

Classification Methods
To assess the ability of the metrics to identify each drug’s
TdP risk level, we performed a proportional odds logistic
regression classification and a leave-one-out validation, as in
Mirams et al. (2011). If EADs were observed, the metric value
at the concentration prior to EAD generation was used for the
classification. We used the R lrm function from the rms package
(https://CRAN.R-project.org/package=rms) and calculated the
classification training error for each metric as follows: the mean
(across 12 drugs) of the absolute error (difference between
predicted and known risk categories), with the risk categories
defined as 1 = low risk, 2 = intermediate risk and 3 = high risk.
The proportional odds logistic regression model is a regression
model for ordinal dependent variables, and accounts for the
ordering by using cumulative probabilities defined as the odds
of (Y ≤ i) = P(Y ≤ i)/(1 − P(Y ≤ i)) for each risk category
i, where Y is the variable that represents a drug’s risk category
and P(X) is the probability of X. The function uses maximum
likelihood estimates to calculate the probability of each drug
being a member of each risk category, and the drug is assigned
to the risk category corresponding to its highest probability. We
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then performed a leave-one-out validation by removing one drug
from the data set and then predicting its risk category based on
the classification of the remaining drugs. This was performed
in turn for each drug within the data set and its leave-one-out
prediction error was calculated the same way as the training
error.

RESULTS

Optimized IKr-dyn ORd Model
The optimized IKr-dyn ORd model was built by scaling the
conductance of the main ion currents (IKr, IK1, IKs, INaL, ICaL)
of the original IKr-dyn ORd model (presented in Li et al., 2017)
to fit the APD rate dependence experimental data in control
and drug block conditions from O’Hara et al. (2011). The set
of scaling factors that gives the best fit for the optimized model
is as follows: scaling IKr by 1.013, IKs by 1.870, IK1 by 1.698,
ICaL by 1.007, and INaL by 2.661, as summarized in Table 1.
A comparison of the simulation results from both the original
and optimized models to the experimental data is shown in
Figure 1 and the corresponding sum of squares errors (between
simulation and experimental data) are shown in Table 2. Sum
of squares error for the original ORd model as presented in
their paper (O’Hara et al., 2011) are also shown in Table 2 for
comparison purposes. We see that although for control and some
current blocking conditions the original IKr-dyn ORd model has
errors similar to the original ORd model, for other conditions
the errors were worsened (IK1 and ICaL blocking experiments),
resulting in an average error bigger than the original ORd model
(72.33 vs. 57.77). However, the discrepancy between simulations
and experiments was significantly reduced in the new optimized
IKr-dyn ORd model.

As can be seen in Figure 1A, under control conditions both
the original IKr-dyn ORd and optimized IKr-dyn ORd models
display similar behavior. Although for control data points, the
optimized IKr-dyn ORd model fitting is slightly worse than
the original IKr-dyn ORd model (fitting error 22.63 vs. 18.82
in Table 2), the average fit across both control and all drug
block conditions is much better for the optimized IKr-dyn ORd

TABLE 1 | Conductance scaling factors for the original and optimized IKr-dynamic

O’Hara-Rudy models (original and optimized IKr-dyn ORd): current conductances

of the rapid (IKr) and slow (IKs) rectifier potassium current, inwardly rectifying

potassium current (IK1), L-type calcium current (ICaL) and late sodium current

(INaL) in the model are multiplied by the corresponding scaling factor.

Scaled currents Original IKr-dyn

ORd model

Optimized IKr-dyn

ORd model

IKr 0.9 1.013

IKs 1.0 1.870

IK1 1.0 1.698

ICaL 1.0 1.007

INaL 1.0 2.661

Note that the IKr conductance in the original IKr-dyn ORd model was scaled as described

in Li et al. (2017).

model compared to the original IKr-dyn ORd model (fitting
error 30.81 vs. 72.33). The main improvements in the quality
of fit to the experimental data are observed for drug blocking
conditions, especially with mexiletine (INaL blocker) and E-
4031 (IKr blocker) (Figures 1B,E respectively). In the case of
mexiletine, a reduction in the fitting error from 91.09 (original
IKr-dyn ORd model) to 18.36 (optimized IKr-dyn ORd model)
was achieved (Table 2). Figure 1B shows that, with the original
IKr-dyn ORd model, the simulated APD prolongation with
mexiletine is significantly longer than experimental data. A
similar pattern can be seen for the IKr blocker E-4031 (Table 2
and Figure 1E). Due to the opposite roles of INaL and IKr in
prolonging AP (Johannesen et al., 2016), this suggests that block
of INaL is underestimated and that of IKr is overestimated in
the original IKr-dyn ORdmodel. The optimized model corrected
these inaccuracies with better fitting to the experimental data,
which is important for TdP risk assessment as it is known
that INaL block plays an important role in counteracting pro-
arrhythmic APD prolongation of IKr block (Orth et al., 2006;
Johannesen et al., 2016).

To further understand the contribution of various ionic
currents to AP profile after the optimization process, we
compared the simulated AP traces and the ionic currents
over the time course of the steady state AP between the
original and our optimized IKr-dyn ORd model at different
cycle lengths. As described earlier in this section all of the
current conductances are increased in the optimized IKr-dyn
ORd model (Table 1). However, the AP shapes from both
models under control conditions are very similar, as shown in
Figure 2A. This is consistent with the fact that both models fit
the control AP morphology parameters (Figure 1A) reasonably
well. On the other hand, while only a small change in current
amplitude is observed for ICaL (Figure 2C), which only has
a 0.7% change in conductance (Table 1), clear differences are
observed for all other currents (IKr, INaL, IKs and IK1) with
the biggest changes occurring for INaL (conductance is increased
by 166.1% between the optimized and original models as shown
in Table 1). This further demonstrates that INaL plays a bigger
role in the optimized model than the original IKr-dyn ORd
model.

Candidate Metrics
We then investigated whether the optimized IKr-dyn ORdmodel
could be used to stratify proarrhythmia risk levels. As a first
step we explored the changes in AP and individual currents
induced by three representative drugs (one taken from each
one of the CiPA TdP risk categories), using pharmacology data
as used in Li et al. (2017). Since it is known that the subtle
balance between inward (such as INaL and ICaL) and outward
(such as IKr, IKs, IK1, and Ito) currents underlies the generation
of EADs, a mechanistic precursor to TdP (Vos et al., 1995;
Volders et al., 2000; Wu et al., 2002; Weiss et al., 2010), we
also examined the net current between inward and outward
currents (Inet) in addition to individual currents. Figure 3 shows
simulations of AP, Inet, ICaL, INaL, IKr, IKs, IK1, and Ito for
ranolazine (low risk), cisapride (intermediate risk) and dofetilide
(high risk), for a CL of 2,000 ms and a dose of 25x Cmax
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FIGURE 1 | Steady state action potential duration (APD) rate dependency under the conditions of control (A), 10 µM mexiletine [late sodium current INaL block (B)],

1 µM nisoldipine [L-type calcium current ICaL block (C)], 1 µM HMR-1556 [slow rectifier potassium current IKs block (D)], 1 µM E-4031 [rapid rectifier potassium

current IKr block (E)] and 100 µM BACl2 [inwardly rectifying potassium current IK1 block (F)] at varying cycle lengths (CLs) for the original dynamic IKr O’Hara Rudy

model (original IKr-dyn ORd; dashed lines) and the optimized dynamic IKr O’Hara Rudy model (optimized IKr-dyn ORd model; solid line). Experimental data mean

(symbol) and standard deviation (error bars) are from O’Hara et al. (2011). Control (A) shows APD at 90% (APD90; filled circles), 70% (APD70; filled triangles), 50%

(APD50; filled squares) and 30% (APD30; plus sign) repolarization. All other panels show APD90.

TABLE 2 | Sum of squares error (divided by 100) between experimental action

potential duration (APD) rate dependence mean data (from Figure 8 in O’Hara

et al., 2011) and the original O’Hara Rudy model (original ORd) (O’Hara et al.,

2011), the original IKr-dyn ORd (Li et al., 2017) as well as the optimized IKr-dyn

ORd under different conditions: control, mexiletine (blocks mainly INaL), HMR

1556 (blocks IKs), E-4031 (blocks IKr), BaCl2 (blocks IK1) and nisoldipine (blocks

ICaL).

Experiment Sum of squares error

Original ORd Original IKr-dyn

ORd

Optimized IKr-dyn

ORd

Control 17.20 18.82 22.63

Mexiletine (INaL) 92.92* 91.09 18.36

HMR 1556 (IKs) 56.35 57.08 55.34

E4031 (IKr) 145.03 144.87 72.33

Bacl2 (IK1) 29.83 67.47 11.41

Nisoldipine (ICaL) 5.29 54.62 4.76

Average 57.77 72.33 30.81

*Error was calculated using the updated mexiletine IC50 data (Crumb et al., 2016); using

the block suggested in the ORd paper of 90% INaL block (O’Hara et al., 2011), the sum

of squares error is of 38.48, changing the average error to 48.70.

using our optimized model. A slow pacing rate (CL 2,000 ms)
is used here because bradycardia is a known risk factor for
TdP (Kurita et al., 1992; Kallergis et al., 2012), and a high

concentration (25x Cmax) is used to highlight the potential
differences between various risk levels. The amount of electronic
charge carried by each current is calculated as the area under the
curve (AUC) of the individual current trace and is plotted for Inet
in Figure 3C.

We see in Figure 3A that all three drugs cause prolongation
of APD and the low risk drug, ranolazine, shows a greater
prolongation of APD compared to the intermediate risk drug,
cisapride (266.78 vs. 176 ms). The performance of APD90 as
a metric for all the drugs from 0.5 to 25x Cmax, can be seen
in Supplemental Figure 1. In fact, verapamil and ranolazine
(both low risk) display APDs greater than most intermediate
risk drugs over a wide range of doses. Therefore, the amount
of APD prolongation is not a good indicator of the TdP risk
of a drug, demonstrating the unsuitability of APD alone as a
marker for TdP risk. However, we notice that Inet (Figure 3B),
calculated as the sum of the five main currents that modulate
the plateau phase of the action potential (ICaL, INaL, IK1, IKr,
IKs, and Ito, shown in Figures 3D–I), does correlate with the
TdP risk category. As shown in Figure 3C, the order of qNet
(charge carried by Inet integrated from the beginning to the end
of the AP beat) is consistent with the rank order of TdP risk
levels for the three drugs. At the end of the CL, ranolazine has
a qNet of 0.061 µC/µF while cisapride and dofetilide have a
qNet of 0.037 µC/µF and 0.013 µC/µF, respectively. A detailed
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FIGURE 2 | Action potential (AP) (A), INaL (B), ICaL (C), IKr (D), IKs (E), IK1 (F) traces under control conditions for the original IKr-dyn ORd (dashed line) and the

optimized IKr-dyn ORd (solid line) for CLs of 500 (red), 1,000 (green) and 2,000 (blue) ms.

examination of the individual current profiles reveals why
ranolazine caused the least amount of qNet decrease. As shown in
Figures 3D, G, ranolazine (green lines) caused amarked decrease
of the absolute amount of charge carried by IKr (qKr decrease of
0.119 µC/µF) and INaL (qNaL decrease of 0.07 µC/µF) at the
end of the AP beat compared to control (black lines). Because
the outward current IKr and inward current INaL have opposite
directions, ranolazine-induced reduction (in absolute values) of
the two currents balanced each other and resulted in only a
small change of the net charge at the end of the AP (qNet,
Figure 3C). In contrast, dofetilide (Figure 3D, red lines) and
cisapride (Figure 3D, blue lines) caused a significant reduction of
qKr (0.135 and 0.063µC/µF respectively) through direct channel
blocking, and a slight increase of qNaL through prolonged APD.
These two effects changed Inet in the same direction and worked
together to decrease qNet significantly, with dofetilide causing
the biggest decrease due to more significant blocking of IKr. Note
that these drugs have some effects on other currents (Ito, IKs, and
IK1) as well, but those changes are relatively small and will not
change the rank order of qNet values significantly for the three
drugs tested here. However, these other currents may become
important for drugs that directly block them. For example, the
effects on ICaL may be critical in determining the qNet change
and risk level for a calcium blocker.

These initial promising results prompted us to calculate this
new Inet-based metric, qNet, for all 12 CiPA training compounds
and systematically compare its capability of separating the three
TdP risk levels to a range of commonly tested metrics (described
in the Methods section). The risk categories, IC50 and IKr
dynamic parameters for each drug are listed in Supplemental
Tables 1–3. Included in the comparison is also the cqInward
metric, described in our previous study and defined as the
normalized drug-induced change of the charge carried by the
inward currents INaL and ICaL (Li et al., 2017). As shown in
Figure 4, we calculated the classification training error for each

metric over a range of doses (0.5–25x Cmax) and a range of CLs
(1,000, 2,000, and 4,000ms) for the 12 CiPA training compounds.
This error quantifies the mean (across the 12 CiPA drugs)
difference between known and predicted risk levels for each
metric. We can see that across the full range of concentrations
and all CLs the qNet metric shows the smallest classification
training error. Notably, the qNet metric shows a classification
training error of 0 for concentrations greater than or equal to
1x Cmax, meaning it consistently classifies each of the 12 CiPA
training compounds into the correct TdP risk category. The
cqInward metric performance is comparable to that of qNet at
low pacing rates (4,000 ms) and high drug concentrations. All of
the other standard metrics we considered show training errors
that never come down to 0, which fluctuate across the range of
doses.

The results presented in Figure 4 are consistent with the leave-
one-out validation described in Table 3 performed on a subset
of the doses tested (1, 10, and 20x Cmax) for a CL of 2,000
ms; the cqInward and qNet show the smallest prediction errors
with values of 0.33 and 0.08 respectively at 20x Cmax. The other
next best performing metrics are peak Vm with an error of
0.42 and APD50, APD90 with errors of 0.5 at Cmax 20x. Of
note, at 1x Cmax, qNet and APD90 all have the same prediction
error of 0.17. This is because at lower concentrations (1x Cmax)
the effects of each drug are harder to differentiate due to there
often being only subtle effects on the AP morphology. However,
the CiPA paradigm assumes that the assessment of TdP risk
may occur at any time during drug discovery and development,
even prior to the time the clinical effective drug concentrations
are known with any certainty. In addition, the incidence of
clinical TdP is limited and not necessarily related strictly to
normal (1x) clinical exposure (i.e., concomitant factors may play
a role in expressing clinical TdP events). Therefore, we propose
that a metric should be evaluated under multiple physiological
and pharmacological conditions. The overall evidence suggest
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FIGURE 3 | Transmembrane voltage [Trans. voltage (A)], net current [Inet (B)], charge carried by Inet (C), INaL (D), Ito (E), ICaL (F), IKr (G), IKs (H), IK1 (I) traces for

control (black solid line), ranolazine, a low TdP risk drug (green dashed line narrow spacing), cisapride, an intermediate TdP risk drug (blue dashed line normal

spacing), and dofetilide, a high TdP risk drug (red dashed line wide spacing), at 25x Cmax for 2,000 ms CL using the optimized IKr-dyn ORd. Charge carried by Inet,

INaL and IKr integrated from the beginning to the end of the AP beat (qX) are displayed on the graph.

that qNet is the best among all the metrics tested, because it
has a training error of 0 across a wide range concentrations
(1–25x Cmax) at various pacing frequencies (2,000 and 4,000
ms), and the lowest leave-one-out error at all concentrations
tested.

The Impact of IKr-Drug Binding Kinetics
and Channel Conductance Optimization on
Risk Level Stratification
Compared to the original ORd (i.e., the consensus base model
for CiPA), the optimized IKr-dyn ORd model presented in this
work has two important changes: the incorporation of a dynamic
IKr model to capture drug binding kinetics (Li et al., 2017), and
an improved set of channel conductances to better represent the
contribution of individual currents to AP (Figures 1, 2). In order

to shed light on possible mechanistic differences among the drugs
tested, we used the best candidate metric qNet as a benchmark,
and compared the performance of the optimized IKr-dyn ORd
model with model variations where each of the changes was
removed in turn. Figure 5 shows computed qNet values for the
12 CiPA training drugs calculated over a range of drug doses
from 0.5x to 25x Cmax when using the optimized IKr-dyn ORd
model (Figure 5A), a model variation without incorporating
the IKr dynamic model (Figure 5B) and a model variation
incorporating the IKr dynamic model but without optimizing
channel conductances (Figure 5C). In line with results from
Figure 4 and Table 3, the metric qNet shows clear separation
between the 3 TdP risk categories across the range of doses
tested with the optimized IKr-dyn ORd model (Figure 5A);
however, this is not the case for the other two model variations
(Figures 5B,C).
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FIGURE 4 | Classification training error for a range of metrics [resting membrane potential (resting Vm), maximum upstroke velocity (dV/dtmax), peak membrane

potential (peak Vm), APD50, APD90, action potential (AP) triangulation (APDtri), diastolic intracellular calcium concentration ([Ca2+]i) (diastolic Ca), peak [Ca2+]i (peak

Ca), calcium transient duration at 50 and 90% of the amplitude (CaD50 and CaD90), calcium transient triangulation (Catri), change in amount of charge carried by

INaL and ICaL (cqInward) and the charge carried by Inet at the end of the AP beat normalized to control (qNet)] for varying drug doses (0.5–25x Cmax) and varying

CLs (1,000, 2,000, and 4,000 ms). Each box represents the mean (across 12 drugs) error (between predicted and known risk levels) for each metric at each

concentration (0.5–25X Cmax). A training error of 0 represents perfect separation between the risk categories.

The first model variation we tested does not have the IKr
dynamic model incorporated but instead uses simple IC50s to
represent channel block (Figure 5B). Note that thismodel variant
has gone through a channel conductance optimization process
similar to that presented in this article, as described in Dutta
et al. (2016), so the difference observed between this model
variant (Figure 5B) and the full optimized IKr-dyn ORd model
(Figure 5A) is mainly due to the different representation of IKr
block (dynamic vs. IC50s). From Figure 5B we can see that
there are two intermediate risk drugs that are not correctly
categorized: cisapride that is mixed with the high risk drugs, and
chlorpromazine that is mixed with the low risk drugs. Cisapride
is a potent and selective IKr blocker (IC50 10.1 nM and Cmax

2.6 nM see Supplementary Material), with a safety margin (IKr
IC50/Cmax) of 3.8 (Redfern et al., 2003), which is close to that
of the high risk drug dofetilide (IC50 4.87 nM and Cmax 2
nM, safety margin 2.4) for example. So if IC50 data are used
with an assumption of simple pore drug block, cisapride is
grouped with the high risk drugs. However, when we consider
the IKr-drug binding dynamic data (Li et al., 2017), cisapride,
but not high risk drugs like dofetilide, can rapidly dissociate from
the hERG channel during diastolic intervals because it is not
trapped in the closed channel. Consequently, cisapride has an
actual block potency lower than high risk drugs despite similar
IKr IC50/Cmax ratio, which may explain why it belongs to the
intermediate rather than high risk level. On the other hand,
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chlorpromazine is not a potent IKr blocker (safety margin 24.4,
similar to other low risk drugs) so when we look at IC50 only it
is classified closer to the low risk drugs. But when IKr dynamic
data are considered, chlorpromazine is highly trapped in the
closed hERG channel and very slow in unbinding during diastolic
intervals (Li et al., 2017). This makes it more dangerous than its
IKr IC50 suggests and thus classified as an intermediate rather

TABLE 3 | Leave-one-out prediction error for a range of metrics at a CL of 2,000

ms and 3 doses (1, 10, and 20x Cmax): resting membrane potential (resting Vm),

maximum upstroke velocity (dV/dtmax), peak membrane potential (peak Vm),

APD at 50 and 90% of the amplitude (APD50 and APD90), action potential (AP)

triangulation (APDtri), diastolic intracellular calcium concentration ([Ca2+]i)

(diastolic Ca), peak [Ca2+]i (peak Ca), calcium transient duration at 50 and 90% of

the amplitude (CaD50 and CaD90), calcium transient triangulation (Catri), change

in amount of charge carried by INaL and ICaL (cqInward) (Li et al., 2017) and

charge carried by the net current (qNet).

Metric Leave-one out prediction error

1x Cmax 10x Cmax 20x Cmax

qNet 0.17 0.08 0.08

cqInward 0.25 0.33 0.33

Catri 1.25 1.08 1.08

CaD90 1.42 1.42 0.83

CaD50 1.42 1.0 0.83

peak Ca 0.92 0.75 0.83

diastolic Ca 0.92 0.83 0.83

APDtri 0.5 0.67 0.58

APD90 0.17 0.5 0.5

APD50 0.33 0.33 0.5

peak Vm 0.42 0.42 0.42

dV/dtmax 0.42 0.83 1.17

resting Vm 1.00 0.75 0.75

than low risk drug. This demonstrates that including a dynamic
representation of IKr-ion channel interactions is important for
categorizing TdP risk of drugs and IC50 data alone are not
sufficient.

The second model variation we tested has the IKr dynamic
model included, but without optimized channel conductances
to reproduce AP changes under channel blocking conditions
(Figure 5C). Note that this model variant is the same as
the original IKr-dyn ORd model (Li et al., 2017) and, as
demonstrated in Figure 1, has an inaccurate quantification of the
block effects of individual currents compared to experimental
data. In this scenario the low risk drug ranolazine is misclassified
as a high risk compound (Figure 5C). Ranolazine is a potent IKr
and INaL current blocker and these two effects can balance each
other to reduce ranolazine’s TdP risk (Antzelevitch et al., 2004;
Johannesen et al., 2016; Saad et al., 2016). Because the INaL effect
is underestimated and the IKr effect is overestimated without
channel conductance optimization (Figure 1), ranolazine has
a dominant IKr block effects when simulated by this model
variant and thus will be mistakenly put in the high risk category
(Figure 5C). Taken together, this suggests that the two added
features are both important for TdP risk stratification and may
mechanistically explain why a certain drug belongs to a specific
TdP risk level.

Physiological Significance of qNet
In order to assess the physiological significance of the metric,
we borrowed some concepts from non-linear dynamic theory,
where EADs appear as membrane voltage oscillations when
the equilibrium state at the plateau phase (membrane voltage
between 0 and −40 mV) changes its stability via bifurcation (Qu
et al., 2013; Kurata et al., 2017). The robustness of the system
could be evaluated by applying a specific perturbation with a
series of strengths and measuring the range of the perturbation

FIGURE 5 | qNet for the 12 CiPA training compounds for a range of doses (0.5–25x Cmax) at a pacing rate of 2,000 ms. (A) Optimized IKr-dyn ORd; (B) A model

variation without the incorporation of the IKr dynamic model (note this is the same model as in Dutta et al., 2016) and; (C) A model variation without the optimized

channel conductances to accurately quantify block effects of individual currents (note this is the same model as in Li et al., 2017). Different TdP risk levels are color

coded (high risk in red, intermediate risk in blue and low/no risk in green). Results are not shown once drug concentrations are high enough to induce early after

depolarizations (EADs) (i.e., quinidine).
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the system can tolerate without changing stability (i.e., emergence
or annihilation of oscillations) (Kurata et al., 2008). We applied
this concept to our model using IKr maximum conductance
reduction as a perturbation. In this case the minimum IKr
reduction required to induce an EAD (IKr reduction threshold)
reflects the system’s robustness against, or distance from, EADs.

Therefore, for each drug over a range of concentrations from
0.5 to 25x Cmax we calculated the IKr reduction thresholds, and
checked their correlation with the metrics qNet, APD90, and
cqInward respectively. Detailed correlation plots for each metric
can be found in the Supplemental Figures 2–4. Table 4 shows the
correlation coefficients for each drug across all concentrations
for IKr reduction threshold vs. qNet, APD90 and cqInward
respectively. We see that qNet shows a strong correlation across
all drugs (close to 1). As qNet increases the IKr reduction
threshold (and the system’s robustness against EAD) increases
and vice versa as qNet decreases. The bigger the qNet value the
safer the system is and the harder it is to induce EAD.

For APD90, inmost cases there is a strong negative correlation
with IKr reduction threshold (close to−1) as expected, indicating
the longer the APD the lower the repolarization robustness
(i.e., the closer to EAD) and vice versa (Table 4). However, this
trend reverses completely for some drugs like verapamil and
mexiletine, where the correlation is positive (Table 4), suggesting
the longer the APD90 the higher the repolarization robustness
(the further away from EAD). This is contradictory to the
general perception that longer APD90 (and QTc) signals a higher
EAD/TdP liability. These unexpected relationships between APD
and EAD can be seen more clearly in Figure 6, where the AP
traces before and after the perturbation are shown. As can be
seen from Figure 6A (left panel), using APD90 as a metric a cell
under mexiletine at 1x Cmax seems safer (APD less prolonged)
than at 10x Cmax, while qNet suggests otherwise (1x Cmax
is more dangerous due to a smaller qNet value). When the
same perturbation was applied (95% IKr reduction), the cell
with 1x Cmax of mexiletine but not 10x, generated an EAD
(Figure 6A right panel), indicating the cell with lower mexiletine
concentration is actually closer to EAD generation, consistent
with the prediction of qNet but not APD90. The same pattern
can be seen in Figure 6B, where verapamil at 1x Cmax is shown
to be closer to EAD than at 3x Cmax through perturbation assays
(right panel), contradictory to the prediction using APD90 but
not qNet (left panel). This pattern holds true when comparing
ranolazine and cisapride as compared in Figure 3. As described
earlier, a cell under ranolazine has a longer APD90 (indicating
higher risk) and also a higher qNet value (indicating lower risk)
than cisapride at 25x Cmax (Figure 6C left panel). An added
perturbation of 75% IKr reduction will trigger an EAD with
cisapride but not ranolazine (Figure 6C right panel), supporting
the prediction of qNet but not APD90. Note that here we used
25x Cmax tomatch the concentrations used in Figure 3.When 1x
Cmax was used, the same pattern was seen for the two drugs (see
Supplemental Figure 5). This suggests under most circumstances
qNet is a better metric than APD90 in marking the repolarization
robustness to added perturbation of IKr reduction.

Finally, cqInward does not correlate well with robustness
against EAD generation, measured as IKr reduction threshold

TABLE 4 | Correlation (using pearson method) between qNet, APD90 and

cqInward and IKr reduction threshold for the 11 drugs (diltiazem is not included

because EADs could not be induced for the highest IKr reduction tested 99.99%)

for a CL of 2,000 ms across all doses from 0.5 to 25x Cmax. Simulations where

the IKr reduction threshold is 0 (EADs occur without added IKr reduction, as for

quinidine ≥ 2.3x Cmax) and results where the IKr reduction threshold could not be

calculated (the maximum IKr reduction tested, 99.99%, did not trigger an EAD, as

for diltiazem at all Cmax, verapamil ≥ 1.7x Cmax, and mexiletine ≥ 3.8x Cmax)

were excluded.

Drug Correlation with IKr reduction threshold

qNet APD90 cqInward

Quinidine 0.996 −0.994 −0.197

Bepridil 0.948 −0.992 0.432

Sotalol 0.979 −0.992 −0.971

Dofetilide 0.96 −0.993 −1

Cisapride 0.988 −0.996 −0.994

Ondansetron 0.997 −0.999 −0.595

Terfenadine 0.968 −0.944 0.804

Chlorpromazine 0.995 −1 0.895

Ranolazine 0.87 −0.992 0.961

Verapamil 0.977 0.998 −0.991

Mexiletine 0.974 0.989 −0.983

(Table 4), despite a good performance (next to only qNet)
on separating the risk categories for the training compounds
(Figure 4). This suggests cqInward does not indicate the
repolarization robustness to a perturbation of hERG channel
density decrease. Whether cqInward is correlated with the
robustness to another perturbation, or its separating power on
the 12 training drugs is a non-physiological artifact, remains to be
investigated. If the latter this highlights the importance to assess
a metric in not only a pre-defined drug classification system,
but also a physiological framework to quantitatively evaluate the
correlation between the metric and EAD.

DISCUSSION

In this study we present an optimized version of the ORd
model (O’Hara et al., 2011), which incorporates a dynamic
representation of IKr to allow modeling of drug-IKr channel
interactions (Li et al., 2017) as well as providing a better fit to
experimental data in both control and drug blocking conditions
by rescaling ionic current conductances. Most notably, INaL
current is increased compared to the original model. We also
demonstrate that our optimizedmodel, used in combination with
a mechanistic net charge metric (qNet), enables good separation
of 12 CiPA training compounds into their respective risk
categories over a range of drug concentrations and pacing rates.
Furthermore, we show that this is because qNet is correlated with
a system’s repolarization robustness to external perturbation of
hERG channel density decrease, or IKr maximum conductance
reduction.

Optimization of the O’Hara Rudy Model
To optimize the model we rescaled ionic current conductances
in the model presented by Li et al. (2017). We demonstrate in
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Figure 2 that recalibration of the model conductances leads to
very little changes in the AP in control conditions across a range
of pacing frequencies. It did however shift the effect of some
of the different currents in the cardiac cell model, most notably
increasing the role of INaL in contributing to AP. A recent study
also optimized the ORdmodel to fit various LQTS profiles (Mann
et al., 2016). Mann et al. present an optimized version of the
ORd model by scaling the conductances of IKs (by 5.75), IKr (by
1.00), ICaL (by 2.01), INaL (by 1.00), INaCa (by 2.95), and INaK
(by 9.12). The scaling factors are different to the ones observed
in our model: IKs is increased in both models although ours
is increased by a smaller amount 1.87, in their model IKr is
unchanged while it is slightly increased in our model, ICaL is
increased significantly in their model but only very slightly in
ours and INaL is unchanged in their model while it is scaled by
2.661 in our model. The differences in INaL can be explained
by the differences in context of use of the model: Mann et al.
investigate the effects of increased INaL (LQTS3) as opposed to
drug block of INaL, as in this study. Furthermore, a key difference
between our model optimization process and Mann et al. is that
we used human cardiomyocyte experimental data with various
channel blockers, while they used clinical LQTS data. However,
one of their findings was that the ORd model over predicts the
effect of IKr block (50% IKr block produced a 42% increase in
APD90 as opposed to the 16.5% observed clinically), which is
concurrent with our findings. An awareness of this property of
the ORd model is important as the model is often considered
a consensus gold standard model for simulating drug effects
on cardiac cells, and properties such as the over prediction of
block of IKr may lead to inaccurate predictions of drug effects
on cardiac electrophysiology. Our manuscript further highlights
this point and provides an alternative model with improved
balance of the effect of the different ionic currents in drug block
conditions.

Performance of the qNet Metric Using the
Optimized Model
Using pharmacology data for the 12 CiPA training compounds
(Li et al., 2017), we assessed the suitability of a range of standard
metrics based on AP morphology properties, as well as the
recently published cqInward metric (Li et al., 2017) and our
new qNet metric. We demonstrated that the commonly used
AP-based metrics are poor indicators of TdP risk and found
that our qNet metric allowed best separation of the CiPA
training compounds into their risk categories. Our new metric
outperformed the cqInward metric presented in Li et al. which
may be a consequence of optimized channel conductances to
better quantify the block effects of individual currents.

Our optimized IKr-dyn ORd model has two important
features compared to the original ORd model: incorporation
of modeling drug-IKr interaction kinetics based on dynamic
hERG binding data (Li et al., 2017) and better characterization
of individual currents’ role in AP based on channel blocking
data. We demonstrate the importance of simulating drug-IKr
dynamics and accurate drug block conditions by providing
rationale for misclassification of compounds when either one
of the features were removed during TdP risk classification

(Figure 5). This highlights the need for more precise model
representation to simulate drug effects and stratify TdP risk
levels. Additional human cardiomyocyte data may help to further
refine this model.

qNet Correlates with the System’s
Robustness against EADS
Based on ideas from non-linear dynamic theory and studies
demonstrating mechanisms of EAD generation (Guo et al., 2007;
Weiss et al., 2010; Xie et al., 2010; Chang et al., 2013; Kurata et al.,
2017), we established a theoretical framework to quantitatively
evaluate the physiological consequences of the change of the
qNet (and in principle any) metric. A key concept here is the
system robustness (Kurata et al., 2008), which is defined as the
level of a specific perturbation the system can tolerate without a
qualitative change of stability (e.g., emergence or annihilation of
oscillations). We applied that concept here using IKr maximum
conductance reduction as a perturbation. Note that in our
model all drugs’ hERG/IKr block is modeled as binding to
different channel states without changing the IKr conductance.
Thus the IKr conductance decrease applied here reflects extra
pro-EAD perturbations independent of each drug’s direct ion
channel block activities, for example inter-subject variability
(hERG channel density variation due to genetic background),
intra-subject variability (regional difference in hERG channel
density), chronic drug effects (to block hERG maturation), or
drug-drug interaction. We found that qNet is correlated with
the cell’s repolarizing robustness to the perturbation of IKr
conductance reduction. When qNet increases, the cell’s IKr
reduction threshold also increases, meaning the cell is moving
away from EAD and needs a more severe perturbation of IKr
conductance reduction to trigger an EAD. The opposite happens
when qNet decreases. This positive correlation is consistent
across all the compounds tested in this study. In contrast, APD90
does not show a consistent correlation with the repolarization
robustness across all the drugs, suggesting for some drugs
(mainly compounds with balanced inward and outward current
blocking activities) APD90 may not be a good indicator of
distance from EAD.

The concept of robustness to pro-EAD perturbations is highly
related to that of repolarization reserve, developed by Roden
(1998) to describe the redundant cellular mechanisms to effect
orderly and rapid repolarization, which can be disrupted by an
added stressor (perturbation), resulting in APD prolongation
and/or EAD. We chose to use the term robustness instead
of repolarization reserve because the latter has been widely
used to describe a cell’s repolarization mechanism against
both delayed repolarization (APD prolongation) and voltage
oscillation (EAD), which we show in Figure 6 are not necessarily
correlated with each other. In contrast, robustness of a system,
a concept borrowed from non-linear dynamic theory (Kurata
et al., 2008), is directly related to emergence or annihilation
of oscillations (EADs) in the presence of perturbations. There
are different types of perturbations that could be used to test
a system’s robustness, for instance an applied bias current
(Gray and Huelsing, 2008; Kurata et al., 2008), or an increased
conductance for ICaL and/or INaL. We chose IKr conductance
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FIGURE 6 | AP traces for mexiletine (A) at 1x Cmax (black solid line) and 10x Cmax (gray dashed line) without (left panel) and with 95% IKr reduction (right panel);

verapamil (B) at 1x Cmax (black solid line) and 3x Cmax (gray dashed line) without (left panel) and with 98% IKr reduction (right panel); and ranolazine (black solid line)

and cisapride (dashed gray line) (C) at 25x Cmax without (left panel) and with 75% IKr reduction (right panel) for a CL of 2,000 ms. Corresponding APD90 (ms) and

qNet (µC/µF) values are reported in black for mexiletine 1x Cmax, verapamil 1x Cmax and ranolazine 25x Cmax and in gray for mexiletine 10x Cmax, verapamil 3x

Cmax and cisapride 25x Cmax. Note the IKr reduction (simulated by scaling the IKr maximum conductance) is applied in addition to the drug block effect and is used

to assess the system’s robustness against EADs (see Results section).

reduction as a perturbation because it is independent of the
direct drug effects (the dynamic IKr model allows us to model
IKr blockers without changing IKr conductance), and also it
naturally reflectsmany physiological and pharmacological factors
(hERG channel density variability, hERG channel trafficking
block, etc.). It is possible that using different perturbations the
same system can show different robustness against EADs. For
example, the second best metric cqInward in terms of risk

category separation does not correlate with the robustness to IKr
conductance reduction, but could potentially correlate with the
robustness to other perturbations. We also note that even qNet
is not perfectly correlated with the robustness to IKr reduction.
The correlation between qNet and IKr reduction threshold was
checked only for 12 drugs at selected concentrations (0.5–25x
Cmax), and it is not known if the strong correlation holds true
beyond the drugs and concentrations tested. Even within the
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concentrations tested, some drugs (for instance ranolazine) do
not have a consistent correlation across all the concentrations
(Supplemental Figure 2). This suggests it may be beneficial to
use the repolarization robustness (for instance IKr reduction
threshold) directly as a metric so that it has clear and direct
physiological meaning. However, this method is much more
computationally intensive: for each drug at each concentration,
the computing time for the IKr reduction threshold is more than
10 times that for qNet, as multiple levels of perturbations are
needed to find the threshold. In addition, it is hard to define
the metric if different perturbations to the same system lead to
different thresholds (robustness). Thus, using a highly correlated
surrogate metric qNet is a practical choice currently.

Limitations and Ongoing Work
While the model and metric combination presented here have
been able to separate all the CiPA training compounds into their
respective TdP risk categories, we have yet to test this approach
on the CiPA validation compounds or any compounds that were
not used in the training of the model, which would provide an
independent validation of this framework. A key limitation of this
approach that prevents an independent validation study is that
we have not provided thresholds for the qNet metric, which could
be used to place an unknown compound within a specific TdP
risk category. Instead we would only be able to group together
compounds which would be expected to pose similar TdP risk.

As suggested in previous studies the sodium potassium pump
(Lancaster and Sobie, 2016; Britton et al., 2017) and the sodium
calcium exchanger (Armoundas et al., 2003; Nagy et al., 2004)
play an important role in EAD generation. Simulations of
hypothetical drugs by Lancaster and Sobie (2016) show that both
the sodium potassium pump and sodium calcium exchanger
were ranked as having the greatest influence on TdP risk, above
IKs, IK1, and Ito (but excluding IKr, ICaL, and INa). Further
experiments and simulations are needed to assess how CiPA
drugs affect these currents and whether they should be directly
taken into account in our net current calculation to improve TdP
risk prediction.

Another key factor to consider is that while we have
demonstrated the success of our approach using gold standard
manual patch clamp data. At least in a pre-regulatory setting, the
CiPA framework will likely rely on the use of high-throughput
ion channel screening data acquired from different platforms
routinely used within the pharmaceutical industry. We would
therefore need to further refine this model to fit to high-
throughput system generated data and demonstrate that the
model and metric combination identified perform equally well
in this case. Furthermore, dynamic modeling of other channels
(such as ICaL) may be needed as the project moves forward;
however, at this stage detailed kinetic drug block data for
other channels is not available, nor are the protocols to extract
the necessary parameters. A priority of CiPA is to keep the
framework simple and constrain the cost of data generation;
therefore, we use only IC50 data for other channels as, based

on our current knowledge, they provide enough information
to correctly separate drugs into their TdP risk categories.
Additionally, calcium transient properties in the ORd model
differ from other models, such as the Grandi et al. model
(Grandi et al., 2010); therefore, changes to the calcium transient
could improve prediction of TdP risk. In fact, Cummins et al.
incorporated the Grandi et al. model [along with the ORd and
the ten Tusscher et al. model (ten Tusscher and Panfilov, 2006)]
in their TdP risk classification and found diastolic intracellular
calcium and APD to be good markers of TdP risk (Cummins
et al., 2014). However, as mentioned earlier in this study
Cummins et al. define a binary TdP risk stratification that does
not follow the same categorization as defined by CiPA.

A number of different avenues for further improvement
of the model and TdP risk prediction approach presented
here are currently being explored. We are examining the
use of thresholds for TdP risk level classification, as well as
incorporating both variability and uncertainty within the model
predictions. In conclusion, in this manuscript we present an
optimized version of the IKr-dyn ORd model presented in
Li et al. (2017) that is able to accurately separate the CiPA
training compounds into their respective risk categories and
correlates well with the system’s robustness against EADs. An
independent validation of this approach is limited, but more
ongoing work will see further refinement of this model and
increasing its suitability to be used routinely within the CiPA
paradigm.
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FIGURE 6 | AP traces for mexiletine (A) at 1x Cmax (black solid line) and 10x Cmax (gray dashed line) without (left panel) and with 95% IKr reduction (right panel);

verapamil (B) at 1x Cmax (black solid line) and 3x Cmax (gray dashed line) without (left panel) and with 98% IKr reduction (right panel); and ranolazine (black solid line)

and cisapride (dashed gray line) (C) at 25x Cmax without (left panel) and with 75% IKr reduction (right panel) for a CL of 2,000ms. Corresponding APD90 (ms) and

qNet (µC/µF) values are reported in black for mexiletine 1x Cmax, verapamil 1x Cmax and ranolazine 25x Cmax and in gray for mexiletine 10x Cmax, verapamil 3x

Cmax and cisapride 25x Cmax. Note the IKr reduction (simulated by scaling the IKr maximum conductance) is applied in addition to the drug block effect and is used

to assess the system’s robustness against EADs (see Results section).
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The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a global initiative intended

to improve drug proarrhythmia risk assessment using a new paradigm of mechanistic

assays. Under the CiPA paradigm, the relative risk of drug-induced Torsade de Pointes

(TdP) is assessed using an in silico model of the human ventricular action potential (AP)

that integrates in vitro pharmacology data from multiple ion channels. Thus, modeling

predictions of cardiac risk liability will depend critically on the variability in pharmacology

data, and uncertainty quantification (UQ) must comprise an essential component of the

in silico assay. This study explores UQ methods that may be incorporated into the

CiPA framework. Recently, we proposed a promising in silico TdP risk metric (qNet),

which is derived from AP simulations and allows separation of a set of CiPA training

compounds into Low, Intermediate, and High TdP risk categories. The purpose of

this study was to use UQ to evaluate the robustness of TdP risk separation by qNet.

Uncertainty in the model parameters used to describe drug binding and ionic current

block was estimated using the non-parametric bootstrap method and a Bayesian

inference approach. Uncertainty was then propagated through AP simulations to quantify

uncertainty in qNet for each drug. UQ revealed lower uncertainty and more accurate TdP

risk stratification by qNet when simulations were run at concentrations below 5× the

maximum therapeutic exposure (Cmax). However, when drug effects were extrapolated

above 10× Cmax, UQ showed that qNet could no longer clearly separate drugs by

TdP risk. This was because for most of the pharmacology data, the amount of current

block measured was <60%, preventing reliable estimation of IC50-values. The results of

this study demonstrate that the accuracy of TdP risk prediction depends both on the

intrinsic variability in ion channel pharmacology data as well as on experimental design
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considerations that preclude an accurate determination of drug IC50-values in vitro.

Thus, we demonstrate that UQ provides valuable information about in silico modeling

predictions that can inform future proarrhythmic risk evaluation of drugs under the CiPA

paradigm.

Keywords: uncertainty quantification, experimental variability, cardiac electrophysiology, action potential, Torsade

de Pointes, ion channel, pharmacology, computational modeling

INTRODUCTION

Drugs that block cardiac ion channels encoded by the human-
ether-à-go-go Related Gene (hERG) and consequently prolong
the QT interval are associated with increased risk of Torsade
de Pointes (TdP), a potentially lethal arrhythmia that caused
several drugs to be withdrawn frommarket (Gintant et al., 2016).
In 2005, the International Council on Harmonisation (ICH)
S7B and E14 guidelines were established to address the issue
of TdP liability for new drugs. As stated in these guidelines,
their intent was to be used as a screening method to identify
drugs that would require more intensive electrocardiographic
monitoring of patients in late phase (e.g., phase 3) clinical trials.
However, hERG block or QT prolongation does not necessarily
correlate with TdP risk, and as a result of these guidelines,
many novel compounds are screened out of development
because of detected hERG block or QT prolongation without
further evaluation of actual TdP risk. Additional insight into
TdP risk for hERG-blocking and QT-prolonging drugs can
be determined by also assessing whether drugs block inward
currents such as, L-type calcium or late sodium (Duff et al.,
1987; January and Riddle, 1989; Chézalviel-Guilbert et al., 1995;
Guo et al., 2007). The Comprehensive in vitro Proarrhythmia
Assay (CiPA) is a global initiative to revise the current
guidelines with a new set of mechanistic assays that improve the
specificity of the proarrhythmia screening process (Fermini et al.,
2016).

The CiPA in silico assay will test new compounds for the
potential to cause TdP by incorporating in vitro pharmacology
data on multiple ion channels into a mathematical model of the
cardiac action potential (AP). The AP model will be used to
predict drug effects related to early afterdepolarizations (EADs),
which are a known cellular trigger of TdP (Yan et al., 2001).
Numerous studies have shown that when outward repolarizing
currents such as, IKr (the current carried by hERG-encoded
channels) are blocked in cardiac cells, the resulting imbalance
of inward and outward currents prolongs the AP and can, at
extreme levels, lead to inward current reactivation and EADs
(January and Moscucci, 1992). However, EADs may not occur
if a drug also significantly blocks inward currents, leading
to a balanced block scenario where the AP is prolonged but
inward currents cannot reactivate (Antzelevitch et al., 2004).
Because it is difficult to know how much inward vs. outward
current block is safe, or how dynamic effects might impact
EAD propensity, the purpose of the CiPA in silico model will
be to assess the integrated effects of multiple ion channel block
on TdP risk. As with any model built on inherently variable
experimental data, however, confidence in model predictions

will depend on the level of uncertainty in model inputs (here,
the drug-specific parameters) and the corresponding uncertainty
in model outputs (Pathmanathan et al., 2015; Johnstone et al.,
2016b). In order for CiPA to provide useful guidance to the
drug development and regulatory process, it will be necessary
to incorporate uncertainty quantification (UQ) into modeling
predictions (Pathmanathan and Gray, 2013; Mirams et al.,
2016).

The CiPA in silico ventricular AP model and a mechanism-
based metric for TdP risk stratification have been trained on
a designated set of 12 CiPA compounds with known TdP
risk levels (High, Intermediate, or Low, see Table 1). These
compounds were selected and categorized by a team of expert
clinicians, safety pharmacologists, and electrophysiologists based
on adverse event data and published reports (Colatsky et al.,
2016). The current CiPA AP model was developed through
a series of modifications to the O’Hara-Rudy (ORd) human
ventricular AP model (O’Hara et al., 2011). Li et al. (2016) first
developed a Markov model of the hERG channel that included
temperature-sensitive gating, which was subsequently modified
to recapitulate IKr from the original ORd model, with an added
pharamacological component (Li et al., 2017). The hERG/IKr
model was then incorporated into the ORd AP model to produce
the IKr-dynamic ORd model. In the CiPAORdv1.0 model, we
further optimized the IKr-dynamic ORd model by scaling ionic
current conductances to better reflect changes in AP duration
observed in human ventricular myocytes when ionic currents
were blocked (referred to as the optimized IKr-dynamic ORd
model in Dutta et al., 2017). With this model, we derived a
new in silico biomarker for TdP risk, the qNet metric, which
correlated well with in silico cell “distance” to EADs and thus
provided a continuous marker for EAD susceptibility. Although
we showed that the qNet metric could correctly stratify the 12
CiPA training drugs by known TdP risk, uncertainty in these
modeling predictions was not evaluated.

In this study, methods for applying UQ to the CiPA in silico
assay are presented. For the 12 CiPA training compounds, we
examine the uncertainty in drug-specific kinetics parameters
for drug binding and trapping in the IKr-dynamic model. In
addition, we examine uncertainty in dose-response curve IC50

and Hill coefficients for the remaining six CiPA-selected ionic
currents, as this can also be considerable (Elkins et al., 2013).
We thereby characterize uncertainty in drug effects on ion
channels due to variation in experiments, whatever the cause of
this variation may be. We then sample from these probability
distributions for the drug effects and run forward simulations
to examine the subsequent uncertainty in qNet and TdP risk
stratification.
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TABLE 1 | TdP risk levels for the 12 CiPA training compounds.

Drug CiPA TdP Risk

Dofetilide High

Bepridil High

Sotalol High

Quinidine High

Cisapride Intermediate

Terfenadine Intermediate

Ondansetron Intermediate

Chlorpromazine Intermediate

Verapamil Low

Ranolazine Low

Mexiletine Low

Diltiazem Low

MATERIALS AND METHODS

Human Ventricular Action Potential Model
The CiPAORdv1.0 model (the optimized model fromDutta et al.,
2017) was used for all simulations in this study, in order to
evaluate TdP risk for the set of 12 CiPA training compounds
listed in Table 1. Parameter values for the model are listed in
Tables S1, S2.

Multiple Ion Channel Pharmacology
Pharmacological effects of the 12 CiPA training compounds on
ionic currents were modeled as in Li et al. (2017) and Dutta et al.
(2017). The kinetics of hERG block were modeled with the IKr
Markov model from Li et al. (2017), which was fit to voltage
clamp data obtained at the U.S. Food and Drug Administration
(FDA; parameters listed in Table 2). For six other ionic currents
(L-type calcium, ICaL; late sodium, INaL; fast sodium, INa;
transient outward, Ito; slowly activating delayed rectifier, IKs; and
inward rectifier, IK1), drug effects were represented by a simple
pore blocking model in which maximal current conductances
were reduced according to the Hill equation. Hill equation
parameters (Table 3) were fit to data from Crumb et al. (2016).
Some of the data have been updated since publication and are
available online (see section Software and Data).

Numerical Methods and Data Analysis
Model equations were written in C and compiled for use with
version 3.3 of the R programming language (R Core Team, 2016)
and version 1.14 of the deSolve package (Soetaert et al., 2010).
Equations were integrated using the lsoda solver with relative
and absolute error tolerances of 10−6 and other solver settings
as default. For computationally intensive bootstrap simulations
(see section Drug-hERG Binding Kinetics), a relative tolerance
of 10−3 was used. Data analysis was performed in R, and
figures were produced with version 2.2.0 of the ggplot2 package
(Wickham, 2009).

Simulation Protocol for TdP Risk
Evaluation
The CiPAORdv1.0 model was used to simulate APs at a cycle
length (CL) of 2 s (stimulus amplitude = −80 µA/µF, duration

= 0.5ms). The model was initialized from control (no drug)
steady-state values (Table S3) and paced for 1,000 beats. Drugs
were simulated at multiples of their maximum therapeutic
concentrations (Cmax, Table S4), ranging from 1 to 10× Cmax

(1× increments) and from 15 to 25× Cmax (5× increments).
At each concentration, TdP risk was evaluated using the metric
qNet, defined as the net charge carried by six major currents (IKr,
ICaL, INaL, Ito, IKs, and IK1) over an entire beat (Dutta et al., 2017).
The qNet metric was computed by integrating the sum of the six
currents from the start of the stimulus (t = 0 s) until the end of
the beat (t = 2 s) using lsoda (see sectionNumerical Methods and
Data Analysis).

Analysis was performed only on the last 250 beats of the
pacing protocol to allow drug effects to reach quasi-steady state
for simulations with beat-to-beat instability. Beats in which
transmembrane potential (Vm) failed to depolarize above 0mV
were excluded from analysis, and simulations in which every beat
failed to depolarize were excluded from TdP risk evaluation. The
maximum slope during repolarization (dV/dtrepol) was defined
as the maximum change in Vm (dV/dt) between 30 and 90%
repolarization for beats that fully repolarized; as the maximum
dV/dt between 30% repolarization and the end of the beat (t
= 2 s) when Vm repolarized by 30% but not 90%; or as the
maximum dV/dt between the AP peak and the end of the beat
when Vm failed to repolarize by 30%. An EAD was defined
to have occurred on any beat in which dV/dtrepol was greater
than zero. Out of the last 250 beats, the beat with the steepest
reactivation of the membrane potential (maximum dV/dtrepol)
was used to calculate qNet, whether or not an EAD had occurred.

Uncertainty Characterization
Drug-hERG Binding Kinetics
In Li et al. (2017), time series measurements of the fractional
hERG current in the presence of drug were obtained using a
modified Milnes voltage clamp protocol (Milnes et al., 2010; Li
et al., 2017). Because of the long duration of the protocol, each
cell could only be tested at a single drug concentration, and the
drug-hERG binding and trapping parameters (see Table 2) were
fit to the fractional current traces measured during a voltage
step to 0mV, averaged across cells by concentration. Specifically,
each dataset y consisted of a set of fractional current time series
observations xc,i(t) (c = 1, 2, . . . ,m, where m is number of the
concentrations tested; i = 1, 2, . . . , nc, where nc is the number of
cells tested at the cth concentration; and xc,i(tj) were independent
between concentrations). The mean drug response at the cth
concentration was x̄c (t) =

1
nc

∑nc
i=1 xc,i (t) (i.e., the average

of fractional current traces across cells), and the overall mean

response ȳ =

(

x̄1 (t) , x̄2 (t) , . . . , x̄m (t)
)

(i.e., the set of average

fractional current traces at each concentration) was used to fit

the optimal drug-hERG kinetics parameters (θ̂(ȳ)). Parameters
were fitted using the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) (Hansen, 2006), with version 1.0-11 of the
cmaes package (Trautmann et al., 2011). Details on the CMA-
ES implementation can be found in the Supplemental Methods.
Bounds for the dynamic drug-hERG binding parameters used to
fit bootstrap samples can be found in Table S5.
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TABLE 2 | Drug-hERG binding parameters for the 12 CiPA training compounds.

log10(Kmax) log10(EC50
n) log10(Kmax/EC50

n)

Dofetilide 1.5453 [0.9209, 6.8153] 2.3357 [1.7982, 7.5726] −0.7905 [−1.0125, −0.6304]

Bepridil 6.7477 [5.4278, 7.1407] 8.1679 [6.803, 8.5243] −1.4202 [−1.7124, −1.1736]

Sotalol 4.9831 [0.8193, 5.4306] 8.5861 [4.965, 8.9975] −3.6029 [−4.5017, −3.1522]

Quinidine 2.4404 [1.1871, 6.4189] 4.731 [3.6678, 8.7601] −2.2906 [−2.7484, −2.0986]

Cisapride 1.0095 [0.839, 1.6553] 1.6265 [1.4211, 2.2125] −0.6171 [−0.9699, −0.4154]

Terfenadine 5.0095 [1.2953, 6.2265] 5.6123 [1.8881, 6.8917] −0.6028 [−0.7791, −0.4311]

Ondansetron 5.2355 [1.5791, 6.3269] 7.718 [4.341, 8.7997] −2.4825 [−2.7992, −2.2702]

Chlorpromazine 5.1984 [4.696, 6.5012] 7.6386 [7.0863, 8.9725] −2.4402 [−2.7268, −2.2162]

Verapamil 6.2289 [1.5379, 6.803] 8.5258 [4.1385, 8.9922] −2.2969 [−2.9551, −1.7767]

Ranolazine 1.723 [1.3627, 5.6536] 5.1553 [4.8122, 8.7298] −3.4324 [−4.0139, −2.9363]

Mexiletine 1.1761 [1.0208, 1.497] 5.8591 [5.3159, 6.5914] −4.683 [−5.5154, −3.9582]

Diltiazem 5.2613 [1.6549, 5.6663] 8.8246 [5.7087, 8.9997] −3.5634 [−4.1562, −3.223]

n log10(Ku) Vhalftrap

Dofetilide 1.08 [0.9527, 1.467] −4.7409 [−4.9767, −4.6633] −1 [−26.01, −1]

Bepridil 0.9374 [0.8227, 1.074] −3.7647 [−3.8713, −3.671] −61.34 [−72.94, −18.36]

Sotalol 0.7513 [0.6594, 0.955] −1.6527 [−2.0183, −0.4512] −51.5 [−74.62, −7.756]

Quinidine 0.8488 [0.7775, 1.028] −2.3869 [−2.3649, −1.7435] −61.35 [−72.31, −5.445]

Cisapride 0.9615 [0.5928, 1.372] −3.3808 [−3.4836, −3.2553] −167.4 [−190.3, −156.5]

Terfenadine 0.6502 [0.5033, 0.7918] −4.1086 [−4.2938, −4.0023] −81.63 [−155, −73.87]

Ondansetron 0.891 [0.83, 1.002] −1.6338 [−1.7335, −1.3971] −82.2 [−88.69, −77.64]

Chlorpromazine 0.8871 [0.8006, 0.9916] −1.3306 [−1.7312, −0.7396] −14.45 [−66.29, −2.865]

Verapamil 1.043 [0.832, 1.317] −3.088 [−3.1708, −2.6366] −97.08 [−192, −85.3]

Ranolazine 0.9532 [0.8248, 1.106] −1.6914 [−1.914, −0.0004] −94.99 [−176.4, −81.16]

Mexiletine 1.139 [0.956, 1.34] −1.1479 [−1.4011, −0.016] −87.51 [−164.8, −77.68]

Diltiazem 0.9382 [0.8612, 1.086] −0.5498 [−1.0751, 0] −90.65 [−180.3, −81.18]

The optimal values are shown with 95% CIs obtained with bootstrapping. Units are as follows: Kmax (unitless), Ku (ms
−1 ), EC50 (nM), n (unitless), and Vhalftrap (mV).

The non-parametric bootstrap method was used to
characterize uncertainty in the fitted parameters (Efron and
Tibshirani, 1986). Observations x∗c,i(t) were randomly drawn
with replacement from xc,i(t) to obtain a bootstrap sample y∗

b
of

the same size as the original dataset, with an identical number
of observations per concentration. A total of 2,000 bootstrap
samples (b = 1, 2, . . . , 2000) were generated using version 1.3-18
of the boot package (Davison and Hinkley, 1997; Canty and

Ripley, 2016). The mean response ȳ
∗

b for each bootstrap sample

was then computed in the same manner as ȳ and used to refit

the drug-hERG kinetics parameters (θ̂(ȳ
∗

b)), yielding a joint
sampling distribution of drug-hERG parameters.

Dose-Response Curves
For other ionic currents, uncertainty in dose-response curves was
characterized using a Bayesian inference approach. Version 1.3.5
of the FME package was used to fit Hill equation parameters
and to characterize uncertainty, using Markov-chain Monte
Carlo (MCMC) simulation with the delayed rejection and
adaptive Metropolis algorithm (Soetaert and Petzoldt, 2010).
The percentage of ionic current block was assumed to be a
normal random variable located at the Hill equation response
curve with unknown variance σ 2. Log-transformed IC50-values

[pIC50 =−log10(IC50/c0), where c0 = 109 nM] were bounded to
the range [−1, 19] for fitting and MCMC simulation (bounding
IC50-values between 10−10 and 1010 nM). Hill coefficients (h)
were bounded to the range [0, 10]. Optimal IC50 and Hill
coefficient (h)-values were fit using non-linear least squares (see
Table 3). The joint probability distribution of IC50 and h was
estimated usingMCMC simulation. A uniform prior distribution
was used for pIC50 and h. The error variance σ 2 was considered
a nuisance parameter and was sampled as conjugate priors
from an inverse gamma distribution during MCMC simulation.
The proposal distribution was multivariate normal. A total of
2,000 MCMC samples (pIC50, h) were saved for each drug-
current combination to form a joint sampling distribution
of Hill equation parameters (see Supplemental Methods for
implementation details).

Credible Intervals
Variability of model inputs (parameters) or outputs (predicted
responses) was summarized with 95% credible intervals (95%
CIs, the 2.5–97.5% quantiles of the marginal distributions).

Uncertainty Propagation
Samples from the joint distribution of drug-hERG parameters
and the joint distributions of Hill equation parameters for a
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TABLE 3 | Hill equation parameters for the 12 CiPA training compounds.

ICaL IK1 IKs

Dofetilide pIC50 6.5845 [−0.7468, 7.9108] 6.4041 [−0.7384, 7.8736] N/A

h 1.163 [0.32, 9.622] 0.765 [0.2685, 9.658] N/A

Cisapride pIC50 2.0331 [−0.8172, 6.4905] 4.5305 [−0.7411, 6.7042] 1.0906 [−0.767, 6.528]

h 0.4261 [0.4063, 9.736] 0.5133 [0.2572, 9.63] 0.2921 [0.2409, 9.67]

Bepridil pIC50 5.5516 [5.2752, 5.71] N/A 4.5432 [3.4422, 4.9682]

h 0.6486 [0.4351, 0.9191] N/A 0.7061 [0.3907, 1.142]

Verapamil pIC50 6.6951 [6.6029, 6.7891] 0.4574 [−0.8155, 5.7514] N/A

h 1.097 [0.861, 1.43] 0.2728 [0.2526, 9.655] N/A

Terfenadine pIC50 6.1547 [6.0876, 6.2131] N/A 3.3982 [0.0077, 5.9477]

h 0.6601 [0.595, 0.7367] N/A 0.543 [0.2777, 9.728]

Ranolazine pIC50 N/A N/A 1.4418 [−0.624, 4.3335]

h N/A N/A 0.5191 [0.3292, 8.066]

Sotalol pIC50 2.1511 [1.7907, 2.3628] 2.5157 [2.385, 2.5955] 2.3745 [2.0951, 2.507]

h 0.8651 [0.5902, 1.259] 1.204 [0.9066, 1.611] 1.167 [0.7741, 1.698]

Mexiletine pIC50 4.4175 [3.9423, 4.6525] N/A N/A

h 1.031 [0.6484, 1.576] N/A N/A

Quinidine pIC50 4.2874 [3.8501, 4.5293] 1.4024 [−0.7594, 5.0793] 5.3099 [5.2008, 5.3813]

h 0.5892 [0.4384, 0.7362] 0.3468 [0.2715, 9.492] 1.363 [0.9565, 2.122]

Ondansetron pIC50 4.6469 [4.4138, 4.7937] N/A 3.2443 [2.138, 3.9253]

h 0.7526 [0.5478, 1.024] N/A 0.6535 [0.3954, 1.238]

Diltiazem pIC50 6.9504 [6.7786, 7.1267] N/A N/A

h 0.7142 [0.5344, 1.008] N/A N/A

Chlorpromazine pIC50 5.0866 [4.9108, 5.2128] 5.0329 [4.8446, 5.1718] N/A

h 0.8441 [0.6105, 1.189] 0.6878 [0.5226, 0.8822] N/A

Ito INaL INa

Dofetilide pIC50 7.7254 [6.8317, 7.9571] 3.1231 [−0.754, 7.8227] 6.4196 [−0.6142, 8.0307]

h 0.7712 [0.3735, 1.147] 0.2597 [0.1543, 9.49] 0.892 [0.2235, 9.497]

Cisapride pIC50 3.6594 [−0.6456, 5.6778] N/A N/A

h 0.243 [0.1166, 0.5656] N/A N/A

Bepridil pIC50 5.0658 [−0.5052, 5.3383] 5.7414 [5.6743, 5.8074] 5.5333 [5.3948, 5.6158]

h 3.541 [0.4166, 9.499] 1.416 [1.133, 1.789] 1.164 [0.8083, 1.71]

Verapamil pIC50 4.8719 [1.1464, 5.5056] 5.1532 [−0.6313, 5.8804] N/A

h 0.8222 [0.2414, 1.793] 1.031 [0.222, 9.41] N/A

Terfenadine pIC50 3.6198 [−0.0501, 5.1184] 4.6977 [2.6363, 5.8293] 5.3185 [4.8576, 6.0114]

h 0.2559 [0.1246, 0.5777] 0.6011 [0.269, 3.232] 1.015 [0.6554, 9.176]

Ranolazine pIC50 N/A 5.1033 [4.9859, 5.2079] 4.1626 [3.2696, 4.5616]

h N/A 0.945 [0.7247, 1.256] 1.425 [0.6228, 9.116]

Sotalol pIC50 1.3651 [−0.3529, 2.1817] N/A −0.0584 [−0.8951, 2.4926]

h 0.6632 [0.3213, 1.704] N/A 0.5089 [0.3913, 8.449]

Mexiletine pIC50 N/A 5.0478 [4.9484, 5.1128] N/A

h N/A 1.409 [1.041, 1.846] N/A

Quinidine pIC50 5.4575 [5.3999, 5.511] 5.0261 [4.9062, 5.1077] 4.909 [4.6683, 5.0426]

h 1.282 [1.049, 1.585] 1.337 [1.034, 1.7] 1.494 [1.004, 2.236]

Ondansetron pIC50 2.9901 [−0.8308, 4.4636] 4.7172 [4.6073, 4.8] 4.2391 [3.5217, 4.6469]

h 0.9891 [0.4407, 9.691] 1.035 [0.8001, 1.399] 1.02 [0.5024, 8.671]

Diltiazem pIC50 −0.4506 [−0.922, 2.6212] 4.6602 [4.5116, 4.7776] 3.9551 [3.2876, 4.8315]

h 0.1696 [0.1551, 0.364] 0.6779 [0.5485, 0.9082] 0.7022 [0.4484, 9.337]

Chlorpromazine pIC50 1.754 [−0.6914, 4.776] 5.341 [5.2543, 5.4232] 5.3433 [5.221, 5.4298]

h 0.3654 [0.2318, 8.56] 0.9379 [0.7797, 1.148] 1.995 [1.628, 3.064]

The optimal fitted values are shown with 95% CIs obtained using Markov-chain Monte Carlo simulation. IC50-values are log-transformed as pIC50 = −log10 (IC50/c0), where c0 = 109

nM. Not applicable (N/A) indicates that IC50-values were not defined in Li et al. (2017), so the amount of block was assumed to always be 0%.
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particular drug were assumed to be independent and were
combined in AP simulations to assess the uncertainty in qNet
(see section Simulation Protocol for TdP Risk Evaluation). One
sample from each distribution was selected in sequential order
(e.g., the first sample from each distribution) to form a set of
parameters that defined a single sample from the drug-effect
probability distribution. This was repeated until all parameter
samples were exhausted, generating a sampling distribution of
2,000 drug-effect samples per drug (referred to as uncertainty
inputs), which. Each input was simulated with the CiPAORdv1.0
model to assess variability in APmodel outputs (qNet, see section
Simulation Protocol for TdP Risk Evaluation). Variability in qNet
was quantified with 95%CIs. Sampling distributions of qNet were
visualized with violin plots.

Cross Validation
Leave-one-out cross validation (LOOCV) (Hastie et al., 2009)
was used to assess the accuracy of TdP risk stratification at
each simulated concentration relative to Cmax. The CiPA Low,
Intermediate, and High TdP risk levels (Table 1) were given
numerical category values of 0, 1, and 2, respectively. At each
concentration (1−25× Cmax), a classifier was trained on all
samples from the qNet distributions of all but one of the training
drugs. The classifier was based on proportional odds logistic
regression using the lrm function from version 4.5-0 of the rms
package (Harrell, 2016). The numerical tolerance was set to 10−10

and the maximum number of iterations was set to 106 for fitting.
Each sample of the remaining, “left out” drug was then assigned
to the category with the highest probability based on logistic
regression results. The predicted probability of each category
[P(x), where x is 0, 1, or 2] for the “left out” drug was computed
as the fraction of samples assigned to that category, and the
prediction error for that drug was computed as themean absolute
difference between the assigned and actual TdP category over all
samples. This procedure was repeated for all 12 training drugs,
and the mean and standard deviation of prediction errors at
each concentration were computed to evaluate overall TdP risk
stratification performance.

Software and Data
The software and data used in this study are available at https://
github.com/FDA/CiPA.

RESULTS

Uncertainty in Drug-hERG Binding Kinetics
Bootstrapping was performed with voltage clamp data from
Li et al. (2017) in order to estimate the joint probability
distribution of fitted drug-hERG dynamic binding parameters.
The 95% CIs of hERG binding parameters for the 12 CiPA
training drugs (Table 1) are listed in Table 2. Parameter fitting
results for bepridil are illustrated in Figure 1A. The rate
of bepridil unbinding (Ku) had a relatively narrow 95% CI
[10−3.8713, 10−3.671 ms−1], indicating that this parameter was
well-constrained by the experimental data and uncertainty in its
value was low. In contrast, the pairwise scatter plot of log10(Kmax)
and log10(EC50

n) revealed a strong correlation between the

two parameters, and their fitted ranges spanned several orders
of magnitude. The pairwise scatter plots for other training
drugs displayed similar correlations between log10(Kmax) and
log10(EC50

n) (panel A in Figures S1–S11).
The large uncertainty in Kmax and EC50

n did not produce
a similar degree of variability in the kinetics of hERG block,
however. In Figure 1B and panel B of Figures S1–S11, shaded
areas indicate the 95% CI of the block predicted by parameters
in Figure 1A and panel A of Figures S1–S11. The variability
in hERG block was much more limited than the variability in
Kmax or EC50

n, which was not surprising because Li et al. (2017)
showed that for most of the 12 training drugs, there was a
near-linear relationship between drug concentration and binding
rate, occurring when the fitted EC50-value was much greater
than the maximum drug concentration tested. For example, the
optimal EC50-value of bepridil was 10

8.7 nM, and the bootstrap-
estimated 95% CI was [107.0, 109.7], but the maximum bepridil
concentration tested was 300 nM, or roughly 102.5 nM. In such
cases, the Emax equation defining the sigmoidal dose-response
relationship of drug binding [Emax = Kmax

∗(Dn/(Dn+EC50
n))]

was linearly approximated by Emax≈(Kmax/EC50
n)∗Dn, and

the ratio Kmax/EC50
n effectively becomes a single identifiable

parameter. Thus, the 95% CIs for log10(Kmax/EC50
n) were much

narrower than the 95% CIs for log10(Kmax) and log10(EC50
n)

(Table 2). The Emax equation was chosen to model drug binding
because of its flexibility in accommodating both linear and
sigmoidal dose-response relationships. As a result, for those
compounds whose drug binding mode is actually linear, the ratio
but not the individual values of the two correlated parameters
were identifiable (Li et al., 2017).

In addition, multimodality (the presence of multiple peaks
in the sampling distribution) was frequently observed in other
hERG kinetics parameters (Figures S1–S11), in particular with
Vhalftrap. In the hERG binding model, Vhalftrap is a drug trapping
parameter that determines the steady-state fraction of open-
bound (untrapped) to close-bound (trapped) channels. Li et al.
(2017) demonstrated that the High- and Low-risk CiPA training
drugs could be separated by this single parameter (Vhalftrap >

−65mV for High-risk drugs, while Vhalftrap < −85mV for Low-
risk drugs). The multimodality identified in Vhalftrap sampling
distributions raised the question of whether this trend still holds
under uncertainty analysis. As shown in Figure 2, the 95% CIs
of Vhalftrap were quite wide for most drugs, but much of this
variability covered ranges where the ratio of open- to close-bound
channels (Obound/Cbound) at −80mV was relatively flat, near 1
for Low-risk drugs (green bars) or near 0 for High-risk drugs
(red bars). In the steepest region of the Obound/Cbound curve,
Vhalftrap distributions of High- vs. Low-risk drugs were well-
separated (upper credible bounds < −77mV for Low-risk drugs,
lower credible bounds>−75mV forHigh-risk drugs). Thus, UQ
identified consistently low or high levels of trapping for Low- vs.
High-risk drugs, respectively, providing increased confidence in
the Vhalftrap trend identified by Li et al. (2017). Note that with
or without UQ, the Vhalftrap-values of Intermediate-risk drugs
(blue bars and points) other than chlorpromazine were generally
indistinguishable from Low-risk drugs, and chlorpromazine
was indistinguishable from High-risk drugs, indicating that the
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FIGURE 1 | Uncertainty in bepridil-hERG binding kinetics. (A) The joint probability distribution of Kmax (maximum drug effect at saturating concentrations), Ku (rate of

drug unbinding), n (Hill coefficient of drug binding), EC50
n (nth power of the half-maximal drug concentration), and Vhalftrap (drug trapping potential) was estimated by

bootstrapping. Plots on the diagonal show the marginal histograms of each parameter (log-transformed in some cases). Plots below the diagonal show pairwise

scatter plots of the fitted parameters for 2,000 bootstrap samples. (B) Kinetics of hERG block during 10 sweeps of a modified Milnes voltage-clamp protocol (Milnes

et al., 2010; Li et al., 2017). Shaded areas show the range of block produced by the parameters from (A). Lines show the experimental results used to fit the data

(down-sampled 5× for clarity).
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FIGURE 2 | Uncertainty in drug trapping for the 12 CiPA training drugs. Fitted

Vhalftrap-values (points) are plotted along the curve defining the resulting

steady-state fraction of open-bound to close-bound channels

(Obound/Cbound) at Vm = −80mV. The 95% CIs (horizontal error bars) were

estimated with bootstrapping. High TdP-risk drugs are in red, Intermediate-risk

drugs are in blue, and Low-risk drugs are in green. Intermediate-risk drugs

were indistinguishable from Low- and High-risk drugs.

degree of drug trapping is not sufficient to stratify compounds
into the three CiPA risk levels.

Uncertainty in Dose-Response Curves
Bayesian inference was used to estimate the joint probability
distribution of Hill equation parameters characterizing steady-
state INa, ICaL, INaL, Ito, IKs, and IK1 block by each of the 12
CiPA training drugs. MCMC simulation was not performed
for drug-current combinations that did not have defined IC50-
values in Li et al. (2017), which were assumed to have 0%
block. Parameter fitting results are summarized in Table 3. Some
MCMC simulations produced joint sampling distributions with
a single well-defined peak, such as, that of ranolazine-INaL
(Figure 3A). The mean parameter values of this distribution
(pIC50 = 5.0958, h = 0.9594) were close to the optimal
fitted values (pIC50 = 5.1033, h = 0.945), and the 95%
CIs [pIC50 (4.9859, 5.2079), h (0.7247, 1.256)] were relatively
narrow, indicating that uncertainty in these parameters was low.
Consequently, the variability in dose-response curves defined
by these parameters was also low. At any given concentration,
uncertainty in ranolazine-INaL block (i.e., the width of its 95%
CI) was <16% (Figure 3B, shaded area), reflecting the variability
observed in experiments (circles). Note that uncertainty in
ranolazine- INaL block did not increase at concentrations beyond
the highest tested (23µM) because the well-constrained dose-
response curve allowed for extrapolation beyond experimentally
tested concentrations.

For other MCMC simulations such as, dofetilide-INaL, an
inverse relationship of possible IC50- and h-values was observed,
without a defined peak (Figure 3C). Furthermore, many MCMC
samples reached near the bounds imposed on IC50 and h during

fitting [95% CIs for pIC50 (−0.754, 7.8227] and h [0.1543,
9.49)]. This was symptomatic of having insufficient experimental
data to constrain IC50-values, as the maximum measured INaL
block was 12.1% at 3× Cmax, the highest concentration tested
(Figure 3D, circles). Although an optimal fit could be defined
using least squares (solid line), confidence in the fitted parameters
was low, and uncertainty in predicted block increased abruptly
above 3× Cmax. At 10× and 25× Cmax, the 95% CIs of
predicted block were [0, 82.8%] and [0, 99.8%], respectively,
reaching close to the maximum possible range (shaded area).
Thus, under circumstances where insufficient current block
was achieved in experiments, uncertainty in the dose-response
relationship became very high when extrapolating beyond the
tested concentrations. Similar findings were obtained with other
drug-current combinations (Table 3 and Figures S12–S62).

The amount of uncertainty in predicted block (measured
as the width of the 95% CI) was examined as a function of
the mean block achieved at the highest tested concentration
(Chigh). Table 4 lists the mean block measured in experiments
at 1× Chigh for the 12 CiPA training drugs (some drugs had a
different Chigh for different channels). The resulting uncertainty
in the amount of drug block at concentrations above Chigh

is depicted in Figure 4. At 1× Chigh, uncertainty was <25%
for all drug-current combinations, indicating that variability in
the experimental observations was low. When uncertainty was
quantified at extrapolated concentrations (2×, 3×, and 10×
Chigh), differences were observed between experiments with
low and high amounts of block at 1× Chigh. When <30%
mean block was measured at 1× Chigh, uncertainty was >25%
for most dose-response curves and reached close to 100% in
several cases. But when >60% mean block was measured at
1× Chigh, uncertainty at the extrapolated concentrations was
<16%. Thus, UQ results for this dataset suggest that >60% block
should be achieved experimentally if dose-response curves are to
predict drug effects beyond the tested concentrations. Although
>60% block was achieved in hERG experiments with the 12
CiPA training drugs, none of the training drugs were tested
at concentrations producing >60% block for all six non-hERG
ionic currents (which would be unlikely other than for quinidine,
given the selectivity of these compounds). This analysis therefore
suggested that drug effects could only be reliably predicted at the
highest experimentally tested concentration for which data on all
six non-hERG ionic currents were available (Table 4).

Propagation of Uncertainty to AP
Simulations
Uncertainty in drug-hERG kinetics and dose-response curves
was propagated to AP simulations to explore its impact on
TdP risk stratification for the 12 CiPA training drugs. For each
drug, the optimal drug-hERG parameters and Hill equation
parameters (referred to as fixed inputs) were used to simulate
APs, as in previous studies (Dutta et al., 2017; Li et al., 2017).
In addition, a total of 2,000 drug-effect uncertainty samples
per drug (referred to as uncertainty inputs) were simulated
in order to estimate the distribution of drug effects derived
from uncertainty characterization (see section Uncertainty in
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FIGURE 3 | Uncertainty in the dose-response relationship of late sodium current (INaL ) block by ranolazine (A,B) and dofetilide (C,D). (A,C) show the joint distribution

of pIC50 and Hill coefficient (h)-values, estimated with a Bayesian inference approach. Marginal histograms are displayed on the diagonal plots, and pairwise scatter

plots are below the diagonal (2,000 samples per drug). IC50-values are in nM. (B,D) show the dose-response relationships for the two drugs. Solid lines show the Hill

equation defined by IC50- and h-values from Li et al. (2017). Shaded areas denote the 95% CI of the percentage block at each concentration, as determined by the

parameters in (A,C). Circles are the experimental values used to fit the dose-response curves. Vertical dotted lines indicate the limits of the concentration range used

in AP simulations (1−25× Cmax).

Drug-hERG Binding Kinetics–Uncertainty in Dose-Response
Curves). Individual beats were classified as having normal APs,
EADs, or depolarization failure (Figure 5A), and each simulation
was classified as having EADs, complete depolarization failure,
or normal otherwise (see section Simulation Protocol for TdP
Risk Evaluation). As drug concentration increased from 1 to
25× Cmax in uncertainty-input simulations, repolarization and
depolarization abnormalities became more frequent for some
training drugs. EADs occurred in quinidine, dofetilide, and
ranolazine simulations (Figure 5B), and depolarization failure
occurred in quinidine, dofetilide, ranolazine, and verapamil
simulations (Figure 5C). However, the frequency of these events
was generally low except in quinidine simulations, which had
EADs in >90% of simulations at 3–10× Cmax and depolarization
failure in >50% of simulations at ≥20× Cmax. While EADs are

mechanistically linked to TdP, depolarization failure constitutes a
different type of rhythm disturbance; therefore, simulations with
depolarization failure were removed from further analysis. The
remaining simulations represented the conditional distribution
of drug effects, given that depolarization failure did not occur at
a particular concentration.

Impact of Uncertainty on TdP Risk
Stratification
Although EADs are a mechanistic marker for TdP risk,
stratification based on EADs was not possible because they
occurred very rarely in simulations, and not at all for many
High Risk compounds at free Cmax. Instead, Dutta et al. (2017)
proposed to use the in silico metric qNet (the net charge carried
by major AP currents during one paced beat at steady state) as
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TABLE 4 | Mean current block at the highest drug concentrations tested in experiments (Chigh).

Drug Chigh × Cmax ICaL (%) IK1 (%) IKs (%) INa (%) INaL (%) Ito (%)

Dofetilide 6 nM 3 1.2 3.4 0.2 2.5 4.6 27.0

Bepridil 3 uM 90.9 50.7 0.5 16.2 51.7 67.0 2.4

Sotalol 2100 uM 143.0 26.0 38.6 30.6 3.9 11.0 11.4

Quinidine 5.4 uM 1.7 20.2 5.6 55.5 22.3 31.8 64.2

Cisapride 125 nM 48.1 0.7 5.3 1.8 2.4 0.0 13.2

Terfenadine 800 nM 200 52.0 0.0 3.3 14.0 12.7 20.6

Ondansetron 20 uM 143.9 47.4 3.0 9.9 25.5 51.6 2.0

Chlorpromazine 10.5 uM 276.3 55.4 51.1 5.2 84.2 69.2 6.0

Verapamil 1 uM 12.3 85.7 3.9 – 0.5 12.0 9.9

500 nM 6.2 – – 2.4 – – –

Ranolazine 23 uM 11.8 2.5 0.3 2.1 17.4 72.3 –

69 uM 35.4 – – – – – 26.5

Mexiletine 10 uM 2.4 19.5 0.6 0.0 6.1 51.9 1.0

Diltiazem 12.5 uM 102.5 97.0 4.6 0.0 17.7 40.6 11.0

Concentrations are also expressed as multiples of the maximum therapeutic concentration (× Cmax ). Because some ionic current experiments used different test concentrations,

verapamil and ranolazine both have two entries in the table.

FIGURE 4 | Uncertainty in dose-response curves at extrapolated drug concentrations. Current block experiments were performed for six ionic currents (see legend)

with the 12 CiPA training drugs (72 drug-current combinations total with 19 excluded, see Table 3). Dose-response curves were fitted for each experiment and

extrapolated above the highest experimentally tested drug concentration (Chigh). Uncertainty in dose-response curves was quantified at 1×, 2×, 3×, and 10× Chigh

as the width of the 95% CI for the predicted percentage block, plotted as a function of the mean experimentally observed block at 1× Chigh. Vertical dotted line is

drawn at 60% observed mean block, denoting an approximate lower limit on the mean block that was observed at 1× Chigh in experiments for which uncertainty

remained low (<16%) at higher concentrations.

an indicator of how far a cell is at a particular drug concentration
from producing an EAD. The qNetmetric was used in the present
study as a marker of TdP risk because it successfully stratified
the 12 CiPA training drugs at a range of concentrations in the
previous study by Dutta et al. (2017). The calculation of qNet

was updated to include simulations in which EADs occurred (see
section Simulation Protocol for TdP Risk Evaluation) so that
the sampling distributions of qNet would accurately reflect the
uncertainty in drug parameters (excluding those that produced
depolarization failure). As expected, the values of qNet obtained
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FIGURE 5 | Repolarization and depolarization abnormalities in AP simulations. (A) Traces showing representative examples of beats with normal APs (solid), EADs

(dashed), or depolarization failure (dotted). (B,C) The percentage of uncertainty-input simulations (2,000 total) in which EADs occurred (B) or which had complete

depolarization failure (C) is shown as a function of drug concentration in (B,C), respectively. Only results for drugs that had these events at the simulated

concentrations (1−25× Cmax) are plotted. (Note that ranolazine had 19 simulations with EADs at 25× Cmax; verapamil only had one instance of depolarization failure

occurring at 25× Cmax.) Markers indicate whether simulations with fixed inputs produced normal Aps (circles), EADs (triangles), or depolarization failure (squares).

with uncertainty-input simulations trended according to TdP
risk (Figures 6A,B). At a given concentration, median qNet-
values decreased between the Low, Intermediate, and High TdP-
risk drugs, indicating that outward currents were diminished and
inward currents became increasingly dominant at higher risk
levels. Note also that extreme negative values of qNet occurred
when EADs were present (Figure 6B), reflecting the higher TdP
risk evident in these simulations.

Variability in qNet increased as uncertainty in drug effects
increased. At 1× Cmax, the distribution of qNet-values for
each drug was relatively narrow, and as a result, only a small
amount of overlap was observed between adjacent TdP risk

levels (Figure 6A). At 10× Cmax, however, the distribution of
qNet-values for dofetilide (a High-risk drug) contained several
outliers, which encompassed the values for all other drugs except
the most negative quinidine values (Figure 6B). These outliers
resulted from the high degree of uncertainty in dose-response
curves for dofetilide above the highest concentration tested (3×
Cmax), particularly with inward currents. As discussed in section
Uncertainty in Dose-Response Curves, uncertainty in INaL block
by dofetilide increased dramatically above 3× Cmax (Figure 3D,
shaded area). A similar pattern occurred for ICaL block by
dofetilide (Figure S12), with high uncertainty in predicted block
at 10× Cmax [95% CI (0%, 97.6%)]. Because qNet reflects the
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FIGURE 6 | Uncertainty in qNet for the 12 CiPA training drugs. Violin plots are shown for qNet distributions at 1× (A) and 10× (B) Cmax, based on uncertainty-input

simulations. Dotted line indicates the control (no drug) value of qNet. (C) qNet at 1−10× Cmax (1× increments) and 15−25× Cmax (5× increments). Shaded areas

indicate the 95% CIs of qNet obtained from uncertainty-input simulations. Points indicate the highest simulated concentration for which complete experimental data

on six non-hERG currents were available. Fixed-input results are shown below (solid lines) or above (dotted lines) this concentration. Likewise, uncertainty-input results

are indicated below (dark shaded areas) or above (light shaded areas) this concentration. Simulations with depolarization failure (Figure 5B) were excluded from the

results. For all panels, High TdP-risk drugs are in red, Intermediate-risk drugs are in blue, and Low-risk drugs are in green.

balance of inward currents (INaL and ICaL) and outward currents
(mainly IKr), the effects of IKr block by dofetilide were offset in
simulations with significant block of INaL or ICaL, resulting in the
“safe” outliers for dofetilide at 10× Cmax with very high qNet-
values. On the other hand, simulations with very little INaL or
ICaL block led to “dangerous” outliers with very low or negative
qNet-values.

Poor separation of qNet between TdP risk levels was apparent
at higher drug concentrations, due primarily to the increased
uncertainty in drug effects. Dutta et al. (2017) showed that with
fixed model simulations, perfect separation in qNet occurred for
the 12 CiPA training drugs at 1–25× Cmax. However, our analysis
of dose-response uncertainty in section Uncertainty in Dose-
Response Curves suggests that qNet may be highly variable above
experimentally tested concentrations. In Figure 6C, fixed-input
simulation results are shown for concentrations up to (solid lines)
and including (point) the maximum simulated concentrations

for which complete drug block data on all six non-hERG ionic
currents was available; above these concentrations, fixed-input
results are plotted as dotted lines. At 1×Cmax, data were available
for all 12 CiPA training drugs. Above 1× Cmax, however, some
data were unavailable for quinidine (>1.7× Cmax), mexiletine
(>2.4× Cmax), dofetilide (>3× Cmax), verapamil (>6.2× Cmax),
and ranolazine (>11.8× Cmax; see Table 4). Nevertheless, near
1× Cmax, the 95% CIs of qNet remained largely separated
between TdP risk levels, indicating that uncertainty at these
concentrations was low enough to stratify the training drugs
(shaded areas). At>4×Cmax, however, overlap between different
risk levels increased due to the higher variability in qNet
sampling distributions, particularly for verapamil and dofetilide.
However, increased uncertainty in qNet was not the sole factor
affecting TdP risk separation. The qNet-values for verapamil
and ranolazine (Low-risk drugs) also drifted closer to those
of chlorpromazine (Intermediate-risk) at >4× Cmax, further
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increasing the overlap between these risk levels, though qNet-
values for fixed-input results remained separate.

The accuracy of TdP risk stratification as a function of
concentration was assessed using LOOCV. At each concentration
relative to Cmax, a classifier was trained on qNet uncertainty
samples for 11 of the 12 training drugs and then used to
predict the probabilities of each TdP risk level for the remaining
drug (see section Cross Validation). At 1× Cmax, the maximum
probability always occurred at the correct TdP risk level, but
several drugs had non-zero probabilities for the incorrect TdP
risk level (Table 5). In contrast, when LOOCV was performed
at 1× Cmax in Dutta et al. (2017), two drugs (terfenadine
and chlorpromazine) were misclassified on the basis of fixed-
input results (equivalent to a predicted 100% probability of
the drug being in the wrong category). As a result, although
LOOCV prediction errors were non-zero for more drugs when
uncertainty was considered, the overall mean prediction error
was lower as compared to fixed-input results (0.09 vs. 0.17). At
10× Cmax, however, mean prediction error was higher when
the classifier was trained on uncertainty-input results rather
than fixed-input results (0.23 vs. 0.08) because of increased
prediction errors for dofetilide, sotalol, cisapride, and verapamil.
This was due to the low level of block achieved experimentally

for many non-hERG currents, which led to high uncertainty
in qNet when drug effects were extrapolated above the tested
concentrations. Thus, uncertainty analysis producedmore robust
TdP risk predictions near concentrations with experimental data
for all currents but less robust predictions at concentrations
for which extrapolation of drug effects was unreliable due to
insufficient levels of block (<60%) measured experimentally.

LOOCV results for the 12 training drugs at 1–25× Cmax

are summarized in Figure 7A. As concentration increased,
prediction errors improved for some drugs and worsened for
others. Terfenadine’s prediction error was the highest of all
drugs at 1× Cmax (0.4545) but decreased to <0.01 at 4× Cmax

(blue diamonds). On the other hand, prediction errors for
chlorpromazine (blue circles), sotalol (red triangles), verapamil
(green triangles), cisapride (blue× s), and dofetilide (red squares)
all generally increased from 1 to 10× Cmax. Above 10× Cmax,
prediction errors for dofetilide and ranolazine (green crosses)
increased, while prediction errors for sotalol decreased. As a
result of these trends, both the mean and the standard deviation
of prediction errors were lowest at 1–4× Cmax (Figure 7A,
black points and error bars), near the concentrations for which
experimental data on all currents were available for the 12
training drugs.

TABLE 5 | Leave-one-out cross validation for TdP risk prediction at 1× Cmax.

Left-out drug Category P(0) P(1) P(2) Prediction error

1× Cmax Dofetilide 2 0 0.033 (0) 0.967 (1) 0.033 (0)

Bepridil 2 0 0 1 0

Sotalol 2 0 0.3475 (0) 0.6525 (1) 0.3475 (0)

Quinidine 2 0 0 1 0

Cisapride 1 0 1 0 0

Terfenadine 1 0 0.5455 (0) 0.4545 (1) 0.4545 (1)

Ondansetron 1 0 1 0 0

Chlorpromazine 1 0.1575 (1) 0.8425 (0) 0 0.1575 (1)

Verapamil 0 0.9995 (1) 0.0005 (0) 0 0.0005 (0)

Ranolazine 0 0.9215 (1) 0.0785 (0) 0 0.0785 (0)

Mexiletine 0 1 0 0 0

Diltiazem 0 1 0 0 0

10× Cmax Dofetilide 2 0.0373 (0) 0.0580 (0) 0.9047 (1) 0.1326 (0)

Bepridil 2 0 0 1 0

Sotalol 2 0 0.712 (0) 0.288 (1) 0.712 (0)

Quinidine 2 0 0 1 0

Cisapride 1 0 0.728 (1) 0.272 (0) 0.272 (0)

Terfenadine 1 0 1 0 0

Ondansetron 1 0 1 0 0

Chlorpromazine 1 0.9945 (1) 0.0055 (0) 0 0.9945 (1)

Verapamil 0 0.3075 (1) 0.6925 (0) 0 0.6925 (0)

Ranolazine 0 1 0 0 0

Mexiletine 0 1 0 0 0

Diltiazem 0 1 0 0 0

The TdP risk levels were assigned category values of 2 (High), 1 (Intermediate), and 0 (Low). A classifier was trained on 11 of 12 drugs and then used to predict the category probabilities

[P(x), where x is the category value] and to obtain an overall prediction error for the remaining drug (see section Cross Validation). Uncertainty model simulations were used for training

and prediction. For comparison, probabilities, and prediction errors from Dutta et al. (2017) are shown in parentheses when they differed from uncertainty results.
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FIGURE 7 | Cross validation of TdP risk stratification with uncertainty quantification. LOOCV was performed at each concentration to assess TdP risk stratification

performance. Prediction error for each drug was obtained by training on qNet distribution samples from all other drugs and calculating the mean classification error of

the test drug’s samples. (A) LOOCV at 1−25× Cmax. Markers show the prediction errors for each drug when it was “left out,” as indicated in the legend. Black points

and error bars are the mean + standard deviation (SD) of prediction errors at each concentration. High TdP-risk drugs are in red, Intermediate-risk drugs are in blue,

and Low-risk drugs are in green. (B) LOOCV at 1−4× Cmax was repeated with the drug effects for a particular ionic current removed. Black points are the mean

prediction errors from (A). Markers show the mean prediction errors that resulted when drug effects on the ionic current indicated in the legend were omitted from

simulations.

To explore the impact of different ionic currents on TdP risk
stratification, LOOCV was repeated for a set of simulations in
which drug effects on a particular ion channel were removed.
This analysis was limited to 1–4× Cmax in order to avoid
concentrations at which uncertainty was due primarily to the
lack of experimental data. When drug effects on INa, Ito, IKs, or
IK1 were removed, prediction errors were virtually unchanged
(Figure 7B). However, when drug effects on ICaL, INaL, or
IKr were removed, prediction errors increased dramatically,
indicating that TdP risk stratification of the 12 CiPA training
compounds depended primarily on the drug effects for these
three currents. Because most of the training compounds (other
than quinidine) did not block INa, Ito, IKs, or IK1 substantially at
1−4× Cmax, their resulting impact on TdP risk stratification was
expected to be minimal.

DISCUSSION

Although many potential sources of uncertainty exist within
the CiPA paradigm, the primary concern for the in silico
component is uncertainty related to in vitro measurements of
pharmacological effects on ionic currents. This study presents
methods for conducting UQ within the framework of the
CiPA in silico assay. Previously, Dutta et al. (2017) showed
that the metric qNet, derived from fixed-input AP simulations
incorporating multiple ion channel pharmacology, could be used
to stratify the CiPA training set of 12 compounds by relative
TdP risk. This study examined the impact of uncertainty in drug

effects on simulation predictions. Bootstrapping and Bayesian
inference were used to estimate the joint probability distributions
of drug parameters in order to quantify the variability in mean
drug effects. This variability was then propagated to a set
of uncertainty-input AP simulations to assess the robustness
of risk stratification with qNet. UQ revealed that some drug
effects were insufficiently constrained at higher concentrations
to be able to stratify TdP risk with high confidence. Near
therapeutic concentrations, however, TdP risk stratification was
robust to the uncertainty in drug effects. This study illustrates the
benefits of applying UQ under the CiPA paradigm, both during
model validation and when model-based predictions are used in
regulatory decision making.

UQ helped to identify challenges concerning model
calibration and parameter identification that will inform future
model development. Such issues are frequently encountered in
models of cardiac electrophysiology but are not often addressed
during model development (Fink and Noble, 2009; Shotwell and
Gray, 2016). In the Li et al. (2017) IKr Markov model, drug-hERG
binding kinetics was characterized by six parameters, but one
parameter (drug trapping rate, Kt) was fixed at a value of
3.5× 10−5 ms−1. UQ revealed that three of the remaining five
parameters (Kmax, EC50

n, and Vhalftrap) could not be precisely
estimated based on the available data. Although the current
model structure was designed to allow for both linear and
sigmoidal drug binding as well as drug trapping, this flexibility
comes at the expense of parameter identifiability and presents
difficulties for UQ. To address these issues, model recalibration
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and/or simplification may be warranted, as was done for a model
of INa inactivation in Pathmanathan et al. (2015).

On the other hand, for some drugs, the observed hERG block
kinetics could not be accurately captured by the IKr Markov
model. For instance, at 10 nM cisapride, hERG block developed
more slowly in the experimental traces than in fitted model, even
when uncertainty was considered (Figure S4B). This suggests that
alternative (and possibly more complex) model structures might
be needed to characterize certain drugs. Thus, the challenge for
CiPA is to define a one-size-fits-all model that is simple enough
to be estimable but still accurate enough to predict TdP risk.
The current approach attempts to strike an appropriate balance
between the two concerns, combining the flexible dynamic
representation of IKr block with a simplified pore-block approach
for other currents. The final assessment of the model will depend
on its validation with an additional 16 compounds, which will
determine its suitability for CiPA (Colatsky et al., 2016).

Many IC50-values could not be reliably estimated from
the current data, an issue raised previously by Johnstone
et al. (2016a). This occurred when fitted IC50-values were
well above the tested concentrations, resulting in high levels
of uncertainty in the upper concentration ranges simulated
by Li et al. (2017) and Dutta et al. (2017). The impact of
this uncertainty is illustrated in results for the High-risk drug
dofetilide, which is known to be a selective hERG blocker.
Because its hERG selectivity could not be confirmed above 3×
Cmax with the current dataset (see Figure 3D and Figures S12–
S15), uncertainty-input simulations of dofetilide above 10×Cmax

resulted in highly variable qNet-values, including very “safe”
values similar to Low-risk drugs (Figure 6B). Although the
impact of dofetilide on non-hERG currents is likely small, such
assumptions cannot be made for new compounds, particularly
if such currents and higher concentration ranges are deemed
relevant for TdP risk prediction. To avoid these assumptions,
in silico model predictions should be limited to concentrations
less than or equal to the highest tested experimentally, unless
the amount of drug block can be reliably extrapolated from
data at lower concentrations (generally, if >60% block is
achieved experimentally, see Figure 4). Thus, UQ highlights the
importance of obtaining the appropriate data for generating
reliable model predictions within the CiPA paradigm. For the
current training set, TdP risk prediction appeared to depend
solely on ICaL, INaL, and IKr data (Figure 7B), so this “60%
rule” may potentially only need apply to these three currents.
However, the importance of INa, Ito, IKs, and IK1 cannot be
discounted entirely because most of the training compounds
did not substantially affect these currents. Further sensitivity
analysis of qNet and testing with additional compounds may
provide insight into the importance of these currents for TdP risk
prediction.

Hierarchical UQ approaches may account for some of the
discrepancies between observed experimental variability and the
estimated variability of model outputs in the present study. For
example, at the highest bepridil concentration (300 nM), the
kinetics of IKr block in a few cells was noticeably faster than
that of other cells and the fitted bootstrap traces. Although it
is unlikely that any single method could capture all observed

variability, hierarchical approaches to quantify inter-individual
variabilitymay provide amore accurate representation of the true
physiological variability than do population-averaged approaches
(Pathmanathan et al., 2015). Recently, Johnstone et al. (2016a)
used a hierarchical statistical model to assess the inter-experiment
variability of drug block data from Crumb et al. (2016). Such
an approach could be explored in the future if complete dose-
response data for all ionic currents become available. In the
present study, however, the IC50 of most currents could not
be reliably estimated, so a further hierarchical analysis was not
warranted. For the Li et al. (2017) IKr Markov model, hierarchical
methods would be more experimentally and computationally
challenging. Experimentally, this would require obtaining hERG
block data for each cell at multiple concentrations in order
to estimate individual dose-dependent kinetics. However, due
to stability and time limitations associated with the current
experimental protocol, cells were only recorded at a single
concentration. The computational demands of estimating
hierarchical model parameters for dynamic models would also
be very high because of the need to integrate differential
equations. Addressing these difficulties may be unnecessary for
CiPA, however, if a population-averaged approach to UQ is
shown to provide sufficient information for robust TdP risk
prediction.

The UQ results presented in this study illustrate the need
to evaluate model predictions in the context of uncertainty.
Previously, Dutta et al. (2017) demonstrated that qNet could
separate the CiPA training drugs by TdP risk better than
metrics based on AP or Ca2+ transient morphology. In addition,
the mean LOOCV prediction error of qNet was lower when
drugs were simulated at 10× and 20× Cmax than at 1× Cmax,
suggesting that higher concentrations could provide better risk
separation. However, this assessment was based only on fixed-
input simulations. When uncertainty inputs were used to classify
drugs, mean LOOCV prediction error was lowest at 1–4×
Cmax and worsened as concentration increased above 4× Cmax

(Figure 7A). In part, the differences in LOOCV results for
fixed vs. uncertainty inputs were due to the high uncertainty
in qNet for drugs such as, dofetilide and verapamil above 4×
Cmax (Figure 6C). However, these differences also arose because
when uncertainty was low, classification with qNet probability
distributions was more robust than with fixed qNet-values,
which improved the mean LOOCV prediction error at 1× Cmax

(Table 5). UQ also provided an indication of the degree to which
drugs could be separated, so LOOCV was more sensitive to
subtle changes in qNet. Risk stratification of the training drugs
at >4× Cmax may be improved if additional in vitro data are
obtained at higher concentrations and incorporated into the
model. However, it is important to keep in mind that the CiPA-
assigned TdP risk levels for the 12 training and 16 validation
compounds are not absolute; these relative risks are mainly based
on years of clinical evidence and expert opinion rather than a
quantitative measure of real-world data. Effort is ongoing within
the CiPA framework to develop more objective and quantitative
TdP risk categorization systems based on postmarket data, which
will help to refine the model and metric for more accurate TdP
risk assessment.
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This study did not address the issue of model uncertainty
related to physiological variability because the focus of CiPA is on
drug screening and obtaining an estimate of proarrhythmic risk
that can be used to assess overall drug safety, not on predicting
risk in specific individuals or subpopulations. However, this is
an important topic for many safety pharmacology applications
involving mathematical modeling. In pharmacokinetics, non-
linear mixed effects (NLME) models have routinely been applied
to quantify intersubject variability (Fitzmaurice et al., 2008).
However, methods for quantifying physiological variability in
more complex cardiac electrophysiology models are not well-
established. One approach has been to use a “population”
of in silico cardiac cell models, generated by randomly
varying model parameters, to explore mechanisms underlying
physiological variability and to predict the resulting variability in
drug responses, such as, hERG block-induced changes in APD
(Sarkar and Sobie, 2011; Britton et al., 2013). The aim of UQ
is to estimate model parameters within a statistical framework
and then to give probabilistic predictions. Pathmanathan et al.
(2015) used data from 10 to 16 cells and NLME modeling to
perform a thorough UQ analysis of a single model parameter,
steady-state INa inactivation. But applying similar approaches to
whole cell models, which typically have dozens of parameters,
would require large amounts of data and, most likely, simpler
models, as discussed by Pathmanathan et al. (2015). Nevertheless,
such studies on physiological variability can be considered in
complement with the results in this study concerning UQ of
drug effects, providing insight into how multiple sources of
uncertainty may impact variability in drug responses.

One additional issue that was not explored in this study was
the effect of the number of experimental repeats on parameter
uncertainty. For the manual patch clamp data used in this
study, 4–10 repeats were obtained per drug concentration for
the hERG experiments, and 3–4 repeats were obtained for non-
hERG experiments. Thus, based on the current dataset, 3–4
experimental repeats appeared sufficient to constrain the model
parameters for TdP risk prediction. However, data obtained from
multiple labs or using automated, high-throughput systems can
be much more variable, and more experimental repeats may be
needed to accurately estimate the mean drug effect with these
types of data (Elkins et al., 2013). These issues may be addressed
in the future CiPA in silico validation phase.

In summary, risk stratification of the CiPA training drugs
with the currently available data was most reliable near the
maximum clinical concentration. This was because most of the

in vitro experiments were designed around known therapeutic
concentrations that often did not block the major ionic currents,
and measurements at significantly higher concentrations were
not consistently obtained for all drugs. The lack of experimental
data produced a large degree of uncertainty in drug effects,
which negatively impacted the ability to distinguish between
drugs of different TdP risk at higher concentrations. Hence, our
findings suggest that for new compounds, the CiPA in silico
assay will require in vitro measurements at much higher drug
concentrations that can achieve significant ionic current block
if the model is expected to provide TdP risk predictions with
high confidence. Whether this will be necessary for all seven
ion channels that have been suggested as part of CiPA, however,
remains to be determined.
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The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology

measurements that are less labor-intensive than patch-clamp based techniques.

Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it

represents a new and promising paradigm for automated and accurate in vitro drug

safety evaluation. In this article, the following question is addressed: which features

of the MEA signals should be measured to better classify the effects of drugs? A

framework for the classification of drugs using MEA measurements is proposed. The

classification is based on the ion channels blockades induced by the drugs. It relies

on an in silico electrophysiology model of the MEA, a feature selection algorithm and

automatic classification tools. An in silico model of the MEA is developed and is used

to generate synthetic measurements. An algorithm that extracts MEA measurements

features designed to perform well in a classification context is described. These features

are called composite biomarkers. A state-of-the-art machine learning program is used

to carry out the classification of drugs using experimental MEA measurements. The

experiments are carried out using five different drugs: mexiletine, flecainide, diltiazem,

moxifloxacin, and dofetilide. We show that the composite biomarkers outperform the

classical ones in different classification scenarios. We show that using both synthetic and

experimental MEA measurements improves the robustness of the composite biomarkers

and that the classification scores are increased.

Keywords: cardiac electrophysiology, numerical simulations, bidomain model, micro-electrode array,

classification, drug safety evaluation

INTRODUCTION

One of the main goals of safety pharmacology studies is to anticipate how drugs affect
cardiomyocytes. Among other adverse effects, it focuses on predicting arrhythmic behaviors which
may lead to torsades de pointes (TdP). The most common risk factors under consideration are
QT prolongation and hERG block. However these risk factors are now considered insufficient
and the guidelines need to be improved (Fermini et al., 2016). For instance, an observed QT
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prolongation is not necessarily associated with TdP
risk (Antzelevitch et al., 2004). Several advances in technology
and computational modeling may favor the emergence of
new methods for more efficient drug safety evaluation.
On the hardware side, the Micro-Electrode Array (MEA)
technology1 (Meyer et al., 2004) enables high-throughput
electrophysiology measurements that are less labor-intensive
than patch-clamp based techniques. This device has been
successfully used in large drug studies (Blinova et al., 2016).
On the biological side, the use of human-induced pluripotent
stem cells (hiPSC) has developed (Scott et al., 2013) and their
recent large-scale production makes it a viable human model
replacement. The combined use of the MEA technology and
hiPSC cardiomyocytes (hiPSC-CM) represents a new and
promising paradigm for automated and accurate in vitro drug
safety evaluation (Clements and Thomas, 2014; Cavero et al.,
2016). The CIPA initiative (Cavero et al., 2016; Fermini et al.,
2016) promotes disruptive drug safety guidelines, in particular
the use of hiPSC-CM and in silico modeling. In parallel of these
technological breakthroughs, several efforts have been recently
made toward promoting the use of computational tools in drug
safety evaluation (Davies et al., 2016; Lancaster and Sobie, 2016).
In this context, a framework for drug safety evaluation using
in silico models and experimental measurements using a MEA
device is hereby presented. The device considered in the present
work is a six-well nine-electrode MEA but, as shown in Raphel
et al. (2017), the approach is general enough to be extended to
other types of MEA.

The framework aims at predicting the effect of a drug onto
the cardiomyocytes ion channels activities from the knowledge
of MEA experimental recordings. More precisely, the goal
is to determine which ion channels are affected by a given
drug. Note that the aim of the present study is not to
predict the drugs propensities to induce cardiac arrhythmias
but rather to identify which ion channel is primarily blocked.
This represents a first step toward the use of the MEA-
hiPSC-CM platform in arrhythmogenicity studies. Even though
patch-clamp experiments are the gold standard to assess drug-
induced channel block, it was shown in a recent study (Raphel
et al., 2017) that it is possible to do so also using MEA field
potential measurements. The approach is based on an in
silico model of the MEA and the hiPSC-CM tissue, a feature
selection algorithm and a classification model. The in silico
model is based on a simple ionic model (Bueno-Orovio et al.,
2008) for the cardiomyocytes electrical activity and on the
bidomain equations (Tung, 1978) for the spatial propagation
of the electrical potentials. The ionic model counts three
different currents (fast inward, slow inward, slow outward),
each being associated with an ionic species (respectively sodium,
calcium, potassium). The activity of each current is controlled
by a scaling parameter that is referred to as conductance
in the following. In the present work, the drugs considered
are assumed to affect one of those three currents. Thus, the

1Systems, M. Microelectrode array (mea) manual. http://www.

multichannelsystems.com/sites/multichannelsystems.com/files/documents/

manuals/MEA_Manual.pdf.

inactivation of a current caused by a drug is modeled by a
diminution of the corresponding conductance in the ionicmodel.
The conductances and some other parameters of the model
can be varied in order to replicate the variability observed
in the experimental measurements. The in silico model is
used to generate what is later referred to as synthetic MEA
measurements. The experimental data set itself consists of MEA
electrode recordings which come in the form of time series.
Each recording is done in control conditions (no drug) and with
different drug concentration levels. The experimental data is also
labeled, meaning the affected ionic channels are known for each
drug.

As explained above, the MEA measurements, whether
synthetic or experimental, come in the form of time series. For
classification purposes, it is more efficient to extract features
from these time series. Some features, also called biomarkers,
are already widely used in the community such as the field
potential duration (Clements and Thomas, 2014) which may
be associated with the QT segment in ECGs. These common
features are referred to as classical biomarkers. We propose a way
to automatically extract features from the MEA measurements
that are designed to perform well in a classification context.
First a set of biomarkers is built. The set is referred to as
dictionary and each biomarker is referred to as an entry in
the following. Then we define new features, referred to as
composite biomarkers, as linear combinations of the dictionary
entries. The weights of these linear combinations are found
by solving a sparse optimization problem. The optimization
procedure uses a data set which consists of experimental
MEA measurements, simulated ones or a combination of
both.

To predict the effects of drugs onto channel block, we propose
to adopt a Machine Learning approach. Machine Learning is a
family of statistical methods whose aim is to build predictive
models given a (ideally large) data set. There exists a wide
variety of such methods: neural networks (Kiranyaz et al.,
2016), Support Vector Machine (Hua and Sun, 2001), decision
trees (Arikawa et al., 1993), etc. All these methods have proved
their performances in many different scenarios of regression and
classification, in particular when applied to biological data. In the
present work, we propose to use Support Vector Classification
(SVC) (Boser et al., 1992) which derives from Support Vector
Machine. This method seeks a hyperplane that separates the data
samples with a maximummargin. The samples are then classified
according to their position with respect to the separating
hyperplane.

The paper is organized as follows. First, the methods are
described. The in silico model is presented and the generation
of synthetic data is explained. The algorithm that computes the
composite biomarkers is described and the classification tools are
presented. Second, the performance of the composite biomarkers
and of the classification tools are studied in different drug
classification scenarios. The composite biomarkers are compared
to the classical ones using two different classification strategies.
Finally, composite biomarkers computed with experimental data
only and with a mixed set of experimental and synthetic data are
compared.
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METHODS

Equations
Bidomain Equations and Ionic Model
Let � be the domain representing a MEA’s well. The thickness
of the layer of cells being small compared to the size of the well,
the problem is assumed to be two-dimensional. We denote by
Am, Cm the surface area of membrane per unit volume of tissue,
the membrane capacitance, and the thickness of the cell layer,
respectively. The intra and extra-cellular conductivity tensors σi
and σe are assumed to be scalar. The parameters values are
reported in Table 1. The propagation of the transmembrane
potential Vm and the extracellular potential φe are modeled in
� with the bidomain model (Tung, 1978):



















AmCm
∂Vm

∂t
+AmIion(Vm,w)−∇ · (σi∇Vm)−∇ · (σi∇φe)=AmIapp,

−∇ · ((σi + σe)∇φe)−∇ · (σi∇Vm) =
1

zthick

∑

ek

Ik
el

|ek|
χek .

(1)
In the second equation, Ik

el
is the electric current which goes

through the electrode located at ek, |ek| is the electrode surface
and χek is the characteristic function of ek (which takes the
value 1 on the electrode and 0 elsewhere). An imperfect model
for the electrode is used to compute Ik

el
and described in

the Supplementary Material. The activation is assumed to be
triggered by a current Iapp that is applied in an arbitrary region
of the well with a cycle length of 1,200 ms. The locations of the
stimulations are randomized to model the uncertainties of the
spontaneous stimulus locations in in vitro measurements. This
is further explained in the Heterogeneity modeling subsection.
The computational domain � corresponds to one well of the
MEA device as shown in Figure 1. Let n be the outward normal
to the boundary of the domain �. Equations (1) are completed
with the following boundary conditions: σi∇φi · n = 0 (where
φi = Vm + φe), and either φe = 0 on the region connected to
the ground or σe∇φe · n = 0 elsewhere. The ground location is
indicated in Figure 1.

The transmembrane ionic current Iion is described with the
Minimal Ventricular (MV) model (Bueno-Orovio et al., 2008)
which includes three currents: fast inward (fi), slow inward (si)
and outward (so) currents. The reader is referred to the original
publication for more details. Schematically, Iion depends on Vm

and on gating variables w = (wj)1≤j≤3, solution of a system of
three non-linear ordinary differential equations. A conductance
coefficient gs, with s = fi, si or so, controls the activity of the
idealized channels associated with each of three currents of the
model.

The partial differential equations are discretized in space by
means of P1 finite elements, and in time by using backward
differentiation formula (BDF) schemes with adaptive time steps

TABLE 1 | Bidomain model parameters.

Am Cm σi σe zthick

200 cm−1 1 µF.cm−2 5 mS.cm−1 5 mS.cm−1 10 µm

and order provided by Sundials’ CVODE library (Hindmarsh
et al., 2005). The quantity of interest is the extra-cellular potential,
also referred to as field potential (FP). It is a function of time and
recorded at the electrodes locations.

Synthetic measurements
In the present work, the computational model is used to generate
synthetic MEA measurements. The main idea is to enrich the
experimental data set with in silico measurements to make the
classification more robust, in particular by exploring regions of
the parametric space that are not covered by the experience.
For a given set of conductances, the model is evaluated and
the electrodes FPs are recorded. The conductances are chosen
as to represent meaningful scenarios, as explained later in
the Results section. To mimic experimental measurements,
a zero-mean Gaussian noise of standard deviation 10 µV
is added to the FPs (see Figure 2). A heterogeneity model
of some ionic parameters is also considered to replicate the
variability exhibited by the experimental measurements. This
model is described later in this section. The stimulation location
is also varied to model the uncertainty of the spontaneous
stimulus location in the experiments. Figure 3 shows examples
of synthetic recordings generated using the aforementioned
in silico model. The FPs are simulated for three different
scenarios. The scenarios consist in simulating the effects of
sodium, calcium and potassium antagonist drugs, in each
case with five different concentrations. In Supplementary
Figure 1 a simulated FP recorded on an electrode is shown
with the simulated action potential recorded on the same
electrode.

Steady-state regime
Because the initial conditions of the ionic model do not
correspond to those of a steady-state regime, several beats may
need to be simulated before reaching a regime where there
is negligible beat-to-beat variations. A numerical experiment
was carried out to determine when this regime is reached.
Figure 4 shows superimposed consecutive simulated FPs and the
normalized beat-to-beat variations in the FP. When considering
noisy synthetic measurements as described above, the steady-
state is assumed to be reached when the beat-to-beat variations
are comparable to variations induced by noise only. The beat-
to-beat variability observed after this beat may be imputed
to the coarseness of the mesh, the time discretization errors
and the fluctuations of the ionic model itself. In the present
work, the steady-state is assumed to be reached at the second
beat. Therefore, the simulations are run for two cardiac cycles
and the second beat is recorded to be used as a synthetic
measurement.

Drug Modeling
We chose to model the action of drugs on the ion channels by the
conductance-block formulation of the pore block model (Bottino
et al., 2006;Mirams et al., 2011; Zemzemi et al., 2013). This simple
approach, which relies on a small number of parameters, was
shown in Abbate et al. (2017) to be able to reproduce the expected
effects of several drugs on MEA signals. The conductance of a
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FIGURE 1 | (A) Schematic of one well of the nine-electrode MEA device. The bidomain equations are solved in the domain � with homogeneous Neumann boundary

conditions on ŴN: ∇φe · En = 0 and homogeneous Dirichlet boundary conditions on ŴD: φe = 0 where the ground is located. (B) Corresponding finite element mesh.

FIGURE 2 | Experimental recording of MEA field potential. Eight biomarkers are extracted from the time series: DA, depolarization amplitude; DW, depolarization

width; RA, repolarization amplitude; FPD, field potential duration; AUCr, area under repolarization curve; RC, repolarizarion center; RW, repolarization width; FPN, field

potential notch.

given channel s is given by:

gs = gcontrol,s

[

1+

(

[D]

IC50

)n ]−1

, (2)

where gcontrol,s is the drug-free maximal conductance, [D] is the
drug concentration, IC50 is the value of the drug concentration at
which the peak current is reduced of 50%, n is the Hill coefficient.
In this work, n will be assumed to be equal to 1.

Heterogeneity Modeling
A typical experimental MEA FP measurement exhibits
both a depolarization spike and a repolarization wave (see
Figure 2). Using the computational model described above,
the repolarization wave is usually too small compared to what
is observed in experiments. As noted in Abbate et al. (2017),
the repolarization wave provided by this model is larger when
the domain includes cells with different APDs. In Abbate et al.
(2017), the cell heterogeneity was defined on a checkerboard
arbitrarily chosen in the MEA’s well. We propose here a
different approach, based on a probabilistic description of the
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FIGURE 3 | Comparison between in vitro and in silico MEA FP recordings. In each case, the FPs are recorded in control conditions and for five different drug

concentrations. For the in silico measurements, the drugs effects are modeled using Equation (2), which amounts to reducing gfi , gsi or gso depending on the ion

channel affected by the drug. (A) Effect of flecainide (sodium antagonist drug) on experimental recordings (left) and effect of a virtual sodium antagonist drug on

simulated MEA FPs (right). (B) Effect of diltiazem (assumed to be mainly calcium antagonist in this study) on experimental recordings (left) and effect of a virtual

calcium antagonist drug on simulated MEA FPs (right). (C) Effect of moxifloxacin (potassium antagonist drug) on experimental recordings (left) and effect of a virtual

potassium antagonist drug on simulated MEA FPs (right).

heterogeneity. The tissue is supposed to be a continuous mixture
of two cell types: A and B. We make the assumption that the
transition between these two types can be described by a single
space dependent parameter c(x, y) as follows:

p(x, y) = (1− c(x, y))p(A) + c(x, y)p(B), (3)

where c is a random process with values in [0, 1] and p(A) (resp.
p(B)) the set of 19 parameters of the MV model corresponding
to cell type A (resp. B). The values of p(A) and p(B) are given
in Supplementary Table 1. The APs corresponding to different
realizations of c are shown in Figure 5. We make the hypothesis

that the spatial variations of c are structured by a normal
correlation function fc:

fc

[(

x
y

)

,

(

x′

y′

)]

= exp

[

−
(x− x′)2 + (y− y′)2

2l2c

]

, (4)

where lc is the correlation length, set to lc = 0.25 mm in the
present work. To discretize the random process c, we compute
the correlation matrix on the finite element mesh used for the
discretization of the bidomain equations. The correlation matrix
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FIGURE 4 | Steady-state analysis: the Bidomain equations are solved for 100 consecutive beats. Qualitatively, a satisfactory steady state is reached at the second

beat (left). The beat-to-beat relative difference of the FP is monitored (right) and is to be compared to the relative difference between two identical solutions, each

polluted by an independent noise (right).

FIGURE 5 | Heterogeneity modeling: different APs obtained by simulating the MV model with different values of the heterogeneity parameter c. The heterogeneity

parameter is a function of space and its pattern differs from one well to another (see Figure 6).

C = [Ci,j] ∈ R
Nmesh×Nmesh reads:

Ci,j = fc

[(

x̂i
ŷi

)

,

(

x̂j
ŷj

)]

, (5)

where Nmesh is the total number of mesh nodes and (x̂i, ŷi) are

the coordinates of the ith node. The eigenpairs of C are denoted

by (λi,8i), and ordered by decreasing order of the eigenvalues
λi. By a convenient abuse of notation, we denote by (x̂, ŷ) →

8i(x̂, ŷ) the function of the finite element space associated with
the eigenmode 8i. Finally, the discretized heterogeneity field is

approximated by the following truncated expansion:

c(x̂, ŷ, ξ ) =

nc
∑

i=1

ξi8i(x̂, ŷ) (6)

where ξ = (ξi)i=1...nc is a random vector and nc a truncation
index chosen so that the truncation explains at least 99% of the
variance. In other words, nc is the smallest index n such that the
following criterion is verified:

∑n
i=1 λi

∑Nmesh
i=1 λi

> 0.99 . (7)
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FIGURE 6 | One sample of cell heterogeneity field c(x, y) generated using the correlation matrix method. As c ranges from 0 to 1, the cell action potential varies from

that of cell type “A” to cell type “B” (see Figure 5).

In our case, the choice of lc and the domain geometry yields
nc = 14. Heterogeneity fields can now be generated simply by
sampling the random variable ξ . In the present work, Nh =

128 heterogeneity fields were generated by sampling ξ from
an uncorrelated uniform distribution over [−1, 1]nc , and each
sample is rescaled to range between 0 and 1. An example of
heterogeneity field is presented in Figure 6.

The observed variations in the experimental MEA FP
recordings are also attributable to fluctuations in the stimulation
location. In practice, the hiPSC-CM are not electrically
stimulated: a stimulus arises spontaneously in the medium,
probably due to the presence of pacemaker cells. The location of
the spontaneous stimulation is not known to the experimentalist.
We make the assumption that the location is random and
therefore model it with a random uniform law over the
square [0.15, 0.85]2 where � = [0, 1]2 is the complete
domain.

To conclude, in a given experimental setting, we know neither
the stimulation position nor the cell distribution inside the well
and we would like the classification method to be robust with
respect to all these unknown, random elements. This is why,
when generating synthetic MEA FPs using our in silico model,
we introduce two sources of uncertainty: the heterogeneous CM
field and the stimulation location.

Biomarkers
Biomarkers may be defined as quantities extracted from a signal
that convey information about hidden quantities of interest. In
our case, the biomarkers are features extracted from the MEA FP
which would ideally provide information about the conductances

of interest: gfi, gso, gsi. In this section, we present different choices
of biomarkers to be used in a classification context.

“Classical” Biomarkers
The MEA FP can be split into two regions of interest:
the depolarization and the repolarization. The depolarization
observed at one electrode corresponds to the local depolarization
of the cardiomyocytes. The depolarization amplitude (DA,
referred to as spike amplitude in Clements and Thomas, 2014)
may be qualitatively linked to the AP upstroke velocity. This
biomarker is commonly associated with the activity of the fast
sodium channel (gfi for the MV model). The repolarization
amplitude (RA) may be qualitatively linked to some extent to
the AP repolarization slope and to a bigger extent to spatial
heterogeneities in AP durations. Once the depolarization and
repolarization have been detected, it is possible to measure
the FP duration (FPD), simply as the difference between the
repolarization and depolarization times. The FPD is a commonly
used biomarker (Navarrete et al., 2013; Clements and Thomas,
2014) which may be seen as a surrogate for APD in patch
clamp experiments and QT interval in electrocardiograms. Both
biomarkers RA and FPD are associated with the activity of
the potassium and calcium currents (gso and gsi in the MV
model). As explained above, each (real or numerical) experiment
is performed both in drug-block conditions and in control
condition. Because of the significant variability of measurements
in MEA, it is important to consider the variations observed in
the FP in drug block conditions with respect to the control
conditions to isolate the effect of the drug from other sources of
variability: tissue variability, stimulation protocol, etc. Therefore,
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as proposed in Raphel et al. (2017), the features of interest are the
biomarkers in drug block condition divided by the biomarkers in
control conditions. For instance, the depolarization amplitude is
actually the following ratio:

DAratio =
DAdrug

DAcontrol
(8)

For the sake of clarity in the notation, the subscript “ratio” is
omitted in the following and any biomarker actually refers to
a ratio with the control value. For each MEA measurement,
the FP is recorded at each of the nine electrodes. Again, the
important variability in the measurements motivates the use of
robust features. Since the behavior of the FP may greatly vary
from one electrode to another, the median of the biomarkers
over all electrodes is in practice a good choice of features. In the
following, the set of biomarkers {D̃A, R̃A, ˜FPD} is referred to as
the classical biomarkers, where the ˜ operator denotes themedian
over all nine electrodes.

Composite Biomarkers
The rationale behind the choice of biomarkers described above
is only qualitative and oftentimes does not represent the best
set of features in a classification context. Here, we adopt a more
automatic strategy to select the best set of biomarkers for a given
experimental scenario. First, the set of features to be extracted
from a given FP is enriched with other features.

It is indeed possible to extract additional quantities from
the FP other than DA, RA, and FPD. We propose to compute
also, for each electrode of the MEA, the following features:
the area under curve of the repolarization wave (AUCr), the
repolarization center (RC), the repolarization width (RW), the
FP notch (FPN), and the depolarization width (DW). The details
on how to compute these additional biomarkers are described
in Appendix A (Supplementary Material) and illustrated in
Figure 2. Ratios of these quantities are also added to the
dictionary of features: RA/DA, DA/RA, RA/FPD, FPD/RA,
DA/FPD, FPD/DA, RA/RW, RW/RA. Each feature is actually a
ratio with its control counterpart as described in Equation (8).
To include the information of all nine electrodes, the median
(denoted by the˜operator), mean (denoted by the <> operator)
and maximum values (denoted by a max subscript) over the
electrodes are retained in the dictionary. We finally add the
conduction velocity (CV) which is not an electrode-wise quantity
but defined using all nine electrodes signals as explained in
Appendix A (Supplementary Material). This amounts to a total
of Nb = 41 features reported in Table 2. The extended set
of features is referred to as the dictionary or the biomarkers
dictionary. Each biomarker is referred to as an entry, denoted by
bj, 1 ≤ j ≤ Nb, in the following.

Before going into further details about the numerical methods,
let us now explain the purpose of the composite biomarkers.
The purpose of the method is to associate each conductance gfi,
gsi, gso with a composite biomarker that is maximally correlated
with it and minimally correlated with the others. For instance,
the composite biomarker, denoted by y1, associated with gfi is
maximally correlated with gfi while being minimally correlated

TABLE 2 | Indices of the biomarkers dictionary entries.

Index (median) Index (mean) Index (max) Entry

0 8 DA

1 9 RA

2 10 FPD

3 11 AUCr

4 12 RC

5 13 RW

6 14 FPN

7 15 DW

16 24 32 RA/DA

17 25 33 DA/RA

18 26 34 RA/FPD

19 27 35 FPD/RA

20 28 36 DA/FPD

21 29 37 FPD/DA

22 30 38 RA/RW

23 31 39 RW/RA

40 CV

with gsi and gso. The main idea is that by observing y1 we have
good information about the hidden variations of gfi which is not
tampered by simultaneous variations of gsi or gso. The composite
biomarkers are defined as weighted linear combinations of the
dictionary entries. We also require that the weights are sparse,
meaning there are a lot of zero weights. This makes the composite
biomarkers more easily interpretable. Indeed, they can be seen as
a combination of only a small subset of the dictionary entries,
ideally including the classical biomarkers as seen in Figure 7.

The weights of such a combination are solution of an
optimization problem. First, let us introduce some notation.
We denote by y1 (resp. y2, y3) the composite biomarker (to be
determined) associated with gfi (resp. gsi, gso). From now on, the
conductances (gfi, gsi, gso) are denoted by θ = (θ1, θ2, θ3). Each
dictionary entry is considered as a function of θ . The composite
biomarkers are sought as a linear combination of the dictionary
entries:

yh(θ) =

Nb
∑

j=1

w
(h)
j bj(θ), 1 ≤ h ≤ 3, (9)

where the weights w(h) = (w
(h)
j ) ∈ R

Nb are the unknowns of

the problem. These weights are sought so that yh(θ) is maximally
correlated with θh andminimally correlated with θk, ∀k 6= h. This
may be stated as follows:

∀h ∈ {1, . . . , 3} ,























max
yh

cov
(

yh(θ), θh
)

min
yh

∣

∣cov
(

yh(θ), θk
)∣

∣ , ∀k 6= h

s.t. var
(

yh(θ)
)

= 1

(10a)

(10b)

(10c)

where cov(·, ·) and var(·) are respectively the covariance and
variance operators. In the following, we assume that each
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FIGURE 7 | Example of composite biomarkers weights. The three highest weights (in absolute value) are highlighted by a red dot for each composite biomarker. Note

that some classical biomarkers are selected by the method: D̃A for gfi , R̃C (closely related to the FPD) for gsi and RA in the ratio (DA/RA) for gso.

FIGURE 8 | Correlation matrix of the conductances of interest with the “classical” biomarkers (Left) and with the composite biomarkers (Right).

component of θ is a zero-mean unit-variance random variable.
This is achieved in practice by a simple rescaling of the
conductances samples. We also adopt the following notation:

b̃j(θ) = bj(θ)− E
[

bj(θ)
]

, (11)

where E [·] is the expectation operator. The problemmay now be
recast into an optimization problem where the cost function to
be minimized reads:

J (w(h)) = JC(w
(h))+ JN(w

(h))+ JP(w
(h)), (12)

where

JC(w
(h)) =

1

2
‖Cw(h)

− e(h)‖2 where Ckj := E(θkb̃j), e
(h)
k

:= δkh,

(13a)

JN(w
(h)) =

ξ

2

(

w
(h)TGw(h)

− 1
)2

where Gij := E(b̃ib̃j),

(13b)

JP(w
(h)) =

λh

Nb
‖w

(h)
‖1. (13c)

Let us now explain each term of Equation (13). JC(w
(h))

corresponds to Equations (10a,b). It measures the discrepancy
to the ideal situation where cov

(

yh(θ), θh
)

= 1 and
cov

(

yh(θ), θk
)

= 0, ∀k 6= h.

JN(w
(h)) is a relaxation of the constraint in Equation (10c). ξ

is a regularization parameter that is set to 1 in practice.

JP(w
(h)) is a regularization term by penalization of the 1–

norm of w
(h), where λh, 1 ≤ h ≤ 3, are regularization

parameters. ℓ1 penalized cost functions tend to promote sparse
solutions (Tibshirani, 1996). Sparse solutions for w

(h) are
interesting in that they offer a more interpretable decomposition
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onto the dictionary entries (since most weights are zero) than
what an ℓ2 penalization would yield.

We now discretize the problem by considering N samples
of the parameters θ drawn over a parameter space 2 ⊂ R

3.
The expectation operator is approximated using a quasi-
Monte-Carlo quadrature rule and the cost function in Equation
(12) is minimized using a Nesterov accelerated gradient
descent (O’Donoghue and Candes, 2015). The Monte-
Carlo samples may come from synthetic or experimental
measurements. For synthetic measurements, the conductances
are known, but this is not the case for experimental
measurements. In that case, an approximation of these
conductances is computed using Equation (2). Note that the
solution weights depend strongly on the choice of samples used
for the Monte-Carlo approximations.

An example of the obtained weights is shown in Figure 7.
Interestingly, the classical biomarkers are still among the most
weighted features. The correlation between the conductances
of interest and the composite biomarkers is compared to
the correlation with the classical biomarkers in Figure 8. The
correlation between two quantities u and v is defined as follows:

cor(u, v) =
cov(u, v)

√
var(u)var(v)

. (14)

As expected, each composite biomarker is well correlated with
its associated conductance whereas uncorrelated with the others.
This is not the case for the classical biomarkers. The results in
the next section show that such a choice of features improves the
classification performance.

Experimental Data Set
The MEA considered in the present work is a 6-well MEA
with nine electrodes per well. Its geometry as well as the
corresponding finite element mesh is shown in Figure 1. The
MEA measurements come in the form of FP recordings
corresponding to the different electrodes of the different wells
of the MEA. These recordings come in the form of time series
where several cardiac cycles, or beats, are recorded. The time
resolution of the MEA recordings is 10 kHz.We extracted several
beats on each electrode from each well of the MEA. Data were
provided by Janssen Pharmaceutica NV using MC_Rack (Multi
Channel Systems GmbH) and post-processed by NOTOCORD
Systems (NOTOCORD-FPS 3.0 software). The hiPSC-CM used
in this study are a commercially available line of cells (iCell
Cardiomyocytes) and were provided by the CDI (Cellular
Dynamics International) company.

After thawing, the hiPSC-CM were precultivated for 7 days
before being plated on the MEA. Then the cells were cultivated
again from 6 to 7 days. Prior to the experiments, the cells rested
for 15 min inside the MEA. The recordings come in series of 2
min each and a wash-in period of 5 min was allocated before
changing compound concentrations. Up to two different hiPSC-
CM cultures were used and each experiment was repeated from 5
to 12 times.

As explained earlier the recordings were made in control
conditions (no drug) and with different drugs at different

concentrations levels. Figure 3 shows examples of experimental
recordings in control conditions and with five different
concentrations of flecainide, diltiazem and moxifloxacin. The
drugs used for the present study are summarized in Table 3.
The corresponding concentrations are presented in Table 4. The
IC50 values that were used in the study are also reported and
are in the range of those reported in Crumb et al. (2016).
Note that the diltiazem was recorded in two different wells (A
and B) since it was the only calcium-antagonist drug in the
experimental data that were made available to the authors. The
experimental process consists in adding five times a compound
at increasing concentrations in a given well. Thus, including the
control condition record, we finally obtain field potentials for
six contexts in each well. Equation (2) was used to obtain an
approximation of the conductances values associated with the
experimental measurements which are needed for the composite
biomarkers calculations. The Hill coefficients and IC50 values
are given in the Supplementary Material of Kramer et al. (2013)
and Mirams et al. (2011). Concerning the dictionary of features,
a few adjustments need to be made in some cases. Indeed, it
appears that at some high concentration levels of mexiletine,
there is simply no action potential (because the sodium channels
are too blocked) and therefore the field potential is a flat
line. To take this into account, the values of dictionary entries
are set to the ones at the last concentration where an action
potential was observed. In addition, all features where DA is
in the numerator position in a ratio are set to zero for this
concentration.

Classification
Support Vector Classification
Support vector classification (Boser et al., 1992) (SVC) is
an adaptation of the support vector machine (SVM) method
in a classification setting. Classification generally consists in
attributing labels to inputs. The available data set, comprising
both inputs and labels, is generally split into a training set
used to build the classifier and a validation set to test the
classifier. The inputs are often multidimensional and in our case

TABLE 3 | Repartition of the available (experimental and synthetic) data set.

Drug name Blocked

ionic

channel

Associated

conductance

ID SVC

class

label

# Experiments

Mexiletine Sodium gfi 0 0 160

Flecainide Sodium gfi 1 0 120

Diltiazem A Calcium gsi 2 1 160

Diltiazem B Calcium gsi 3 1 160

Moxifloxacin Potassium gso 4 2 120

Dofetilide Potassium gso 5 2 160

Synth. A Sodium gfi 6 0 155

Synth. B Calcium gsi 7 1 155

Synth. C Potassium gso 8 2 155

The ID is used in the data set splitting (see Table 5). The SVC class label corresponds to

the associated blocked channel conductance.
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TABLE 4 | Summary of the drugs information constituting the experimental measurement set.

Concentration index Mexiletine Flecainide Diltiazem Moxifloxacin Dofetilide

1 0.01 µM 0.1 µM 0.01 µM 10.0 µM 0.1 nM

2 0.1 µM 1.0 µM 0.1 µM 30.0 µM 1.0 nM

3 1.0 µM 10.0 µM 1.0 µM 100.0 µM 10.0 nM

4 10.0 µM 50.0 µM 5.0 µM 200.0 µM 50.0 nM

5 50.0 µM 100.0 µM 10.0 µM 300.0 µM 100.0 nM

Main channel blocked Sodium Sodium Calcium Potassium Potassium

IC50 43.0 µM 6.2 µM 0.75( or 0.45) µM 86.2 µM 30.0( or 5.0) nM

Five concentrations were studied for each drug. The IC50 values are reported as well as the main channel blocked by each drug (in the scope of the single channel block assumption).

correspond to the biomarkers, whether classical or composite.
The labels are integers that represent the classes to which
the inputs are assigned. These classes are mutually exclusive,
meaning one sample can only belong to a single class. SVC
belongs to the so-called supervised methods since the labels
are known, at least for the training set. The main idea behind
SVC is to maximize the margin between the inputs and the
decision boundary (Boser et al., 1992). In the linear case,
the decision boundary is a hyperplane of the input space. In
general, however, this is not sufficient to properly separate
the samples according to their classes. A common way to
obtain more complex boundary decisions is to use a so-called
“kernel trick” (Schölkopf and Smola, 2002) which is based
on a mapping from the input space to a higher-dimensional
space where the existence of a separating hyperplane is more
likely. In the present case, the labels are “sodium antagonist,”
“calcium antagonist,” and “potassium antagonist,” respectively
associated with labels 0, 1, and 2. Among various possible
choices of kernels, a Gaussian kernel is employed in this
work.

We used a Python implementation of SVC through the Scikit-
learn (Pedregosa et al., 2011) machine learning library which
itself uses the LIBSVM library (Chang and Lin, 2011). For a
given training set, a so-called classifier is built. The classifier is
then called to predict the labels of the validation set samples.
The predictions are finally compared to the true labels. There
exist several metrics to quantify the prediction quality. Two
different metrics are considered here: the Cohen’s kappa and
the receiver operating characteristic area under curve (AUC).
The Cohen’s kappa is a single scalar designed to measure the
performance of multi-class classifiers. Its value ranges from −1
(worst possible classifier) to 1 (perfect classifier), 0 corresponding
to a coin-flip classifier. The AUC is defined for each class and
measures how a classifier performs with respect to a given
class. Its value ranges from 0 (worst) to 1 (best), 0.5 being
a coin-flip. Because the classification is repeated several times
with different data set splittings, the classification metrics are
summarized using their means and standard deviations. The
“averaged AUC” corresponds to the average of all AUCs (one
AUC per class).

Both metrics are described in detail in the Supplementary
Material. We now present two different strategies to employ SVC
in the context of drug classification.

3-vs.-3 classification
Since there are three distinct classes in the experimental set, those
three classes need to be included in the training set, preferably
in equal proportions. The strategy of 3-vs.-3 (3v3) classification
consists in dividing the experimental set into a training set and
validation set that both include samples from the three classes.
Each class is divided into two sub-classes. This is naturally done
for the sodium and potassium antagonist classes since they are
each comprised of data from two different drugs. For the calcium
antagonist class, the diltiazem data is artificially split into two
drugs “diltiazemA” and “diltiazem B” (seeTable 3). Each subclass
is associated with an identification number (ID) from 0 to 5.
Therefore, there are 8 possible choices for the training and
validation set combinations as summarized in Table 5.

One-vs.-all classification
The One-vs.-All (OvA) classification strategy consists in training
one classifier for each class. For each class j, the training set labels
are modified to take the value 1 for samples in class j and 0
otherwise and a classifier is trained on this relabeled training set.
In other words, the classifier for class j is only trained to recognize
whether or not a sample belongs to class j. For the validation step,
the classifiers do not predict a class label but a probability for a
given sample to be in their respective class. Each sample of the
validation step goes through each of the three classifiers and the
predicted class corresponds to the classifier returning the highest
probability. The splitting between training and validation sets is
done in the same way as in the 3-vs.-3 classification strategy.

RESULTS

Comparison between Classical and
Composite Biomarkers
Here the performance of the composite biomarkers in a
classification context is compared to that of the classical
biomarkers for two different classification strategies. The data
set is composed of 880 experiments, each counting one
control measurement and 5 measurements at different drug
concentration levels. For each experiment, the conductances
values and FP features are computed as explained in the Methods
section and the labels are defined according to Table 3. The
classification results are summarized in the following and more
detailed results may be found in Supplementary Tables 3, 4.
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TABLE 5 | Different possible splittings of the experimental data set.

Splitting index 0 1 2 3 4 5 6 7

Training set IDs {0, 2, 4} {0, 2, 5} {0, 3, 4} {0, 3, 5} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}

Validation set IDs {1, 3, 5} {1, 3, 4} {1, 2, 5} {1, 2, 4} {0, 3, 5} {0, 3, 4} {0, 2, 5} {0, 2, 4}

The statistical significance of the potential improvements in
the classification scores attributable to the use of composite
biomarkers is studied using an analysis of variance (ANOVA)
with a significance level of 0.05.

3v3 Classification
The performance of the composite biomarkers compared to the
classical ones is evaluated using the 3v3 classification strategy.
The classification procedure is carried out for each different
splitting of the data set as summarized in Table 5. First, the
classification inputs are the 3 classical biomarkers for each drug
concentration level:

{

D̃Ac1, R̃Ac1, ˜FPDc1, . . . , D̃Ac5, R̃Ac5, ˜FPDc5

}

, (15)

where ck is the k-th concentration level. Then, the classification
inputs are the composite biomarkers for each concentration,
computed as explained in the Methods section using the
classification training set as samples for the Monte-Carlo
approximations. The inputs now read:

{

y1,c1, y2,c1, y3,c1 , . . . , y1,c5, y2,c5, y3,c5
}

. (16)

In both cases, the inputs are therefore of dimension 15. Note that
for each splitting of the data set, new weights for the composite
biomarkers are computed. The classification procedure is carried
out in both cases and the results are summarized in Table 6.
Regardless of the chosen classification score, the results are
significantly better using the composite biomarkers as inputs.

OvA Classification
The same procedure as in the 3v3 case is applied to the OvA
strategy. The classification procedure is carried out with both
classical and composite biomarkers as inputs and the results are
summarized in Table 7. The prediction of slow outward current
block is significantly improved using the composite biomarkers
as inputs. Furthermore, the results are overall better when using
the OvA approach rather than the 3v3 one.

In the next section, the addition of synthetic measurements
in the computation of the composite biomarkers is investigated.
To test whether potential improvements are due to the nature of
the added data and not to the increase in the size of the data
set, the classification framework was applied to a smaller data
set of 440 experiments (i.e., half of the previous data set) for
which the results are reported in Supplementary Tables 5, 6. The
conclusions of this additional study being similar, this suggests
that the classification results are weakly impacted by the size of
the data set.

TABLE 6 | Comparison between classical and composite biomarkers with the 3v3

classification strategy.

Score Classical biomarkers Composite biomarkers

Mean Std. Mean Std.

Cohen’s kappa 0.27 0.16 0.56+,* 0.25

gfi AUC 0.74 0.15 0.90+,* 0.09

gsi AUC 0.98 0.01 1.00+,* 0.00

gso AUC 0.69 0.04 0.84+,* 0.04

Averaged AUC 0.80 – 0.92 –

Variation (+ increase, −decrease) in the classification scores attributable to the composite

biomarkers. ANOVA study: *significant at the 0.05 probability level.

TABLE 7 | Comparison between classical and composite biomarkers.

Classification scores in the one-vs.-all scenario.

Score Classical biomarkers Composite biomarkers

Mean Std. Mean Std.

Cohen’s kappa 0.44 0.24 0.54+,† 0.24

gfi AUC 0.83 0.10 0.74−,† 0.24

gsi AUC 0.89 0.10 0.94+,† 0.07

gso AUC 0.77 0.13 0.92+,* 0.08

Averaged AUC 0.83 – 0.87 –

Variation (+ increase, −decrease) in the classification scores attributable to the composite

biomarkers. ANOVA study: *significant at the 0.05 probability level,
†
non-significant at the

0.05 probability level.

Using Combined Experimental and
Synthetic Measurements for the
Composite Biomarkers Computation
Having established that composite biomarkers outperform
classical ones in two different classification scenarios, we now
investigate the addition of synthetic measurements for the
computation of the composite biomarkers weights. To enrich
the set of experimental samples used to compute the composite
biomarkers, a set of synthetic measurements is built. First,
conductances samples are chosen to mimic the effect of drugs as
shown in Figure 9. Depending on the most affected conductance,
these samples are associated with a synthetic sodium (resp.
calcium and potassium) antagonist drug called “synth A” (resp.
B and C). 775 samples per drug are chosen which amounts to
155 experiments per drug. and their repartition is summarized
in Table 3. This approximately corresponds to a 50/50% split
between experimental and synthetic measurements. For each
conductance sample, the computational model described in the
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FIGURE 9 | Plot of the 2,325 in silico conductances samples. Three populations of 155 virtual drugs were generated according to their ion channel targets: sodium

antagonist drugs (red), calcium antagonist (blue) and potassium antagonist (green). For each drug, 5 different concentrations are considered which correspond to 5

different set of conductances. These conductances are then used as inputs to generate in silico MEA measurements using the bidomain equations.

Methods section is evaluated and the dictionary entries are
computed from the simulated FPs. For each experiment, the
computational model is also evaluated in control conditions,
i.e., with gfi = gsi = gso = 1 in order to compute the
ratios as defined in Equation (8). The in silico measurements
are incorporated in the experimental set to create an augmented
set. This augmented set is then used to compute the composite
biomarkers weights. The same data set splitting procedure
as described before is carried out. Note that the synthetic
measurements are only used for the composite biomarkers
computation and are included neither in the training set nor
in the validation set. Again, two classification strategies are
explored.

Classification Results
The classification is carried out using both 3v3 and OvA
approaches. The results are summarized in Tables 8, 9 and
reported in detail in Supplementary Tables 4, 7. The statistical
significance of the modifications in the classification scores
standard deviations attributable to the use of synthetic
data is assessed using the F-test with a significance level
of 0.05.

In the 3v3 case, the Cohen’s kappa standard
deviation is significantly decreased when using the
mixed set of experiments and synthetic data. In the
OvA case, the standard deviation of the gsi AUC is
significantly decreased while that of the gso AUC is
increased.

TABLE 8 | Comparison between composite biomarkers computed from

experiments only and combined experiments and synthetic measurements.

Experiments only Experiments + synthetic

Score Mean Std. Mean Std.

Cohen’s kappa 0.56 0.25 0.59 0.10−,*

gfi AUC 0.90 0.09 0.89 0.06−,†

gsi AUC 1.00 0.00 1.00 0.00=

gso AUC 0.84 0.04 0.85 0.06+,†

Averaged AUC 0.92 – 0.91 –

3v3 classification strategy.

Variation (+ increase, −decrease) in the classification scores standard deviations

attributable to the use of numerical simulations in the composite biomarkers computation.

F-test of variances: *significant at the 0.05 probability level,
†
non-significant at the 0.05

probability level, =no variation.

DISCUSSION

In this study, a framework for an automatic classification of drugs
from MEA measurements has been presented. The framework
relies on an in silicomodel of aMEA device, on a feature selection
algorithm and on state-of-the-art machine learning tools. The in
silico model is a PDE model (the bidomain equations) coupled
with an ionic model that describes the transmembrane current
of the cardiomyocytes. The ionic model is a phenomenological
model consisting of a set of coupled non-linear ODEs. The
feature selection algorithm proposes a way to compute a so-called
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TABLE 9 | Comparison between composite biomarkers computed from

experiments only and combined experiments and synthetic measurements.

Experiments only Experiments + synthetic

Score Mean Std. Mean Std.

Cohen’s kappa 0.54 0.24 0.63 0.19−,†

gfi AUC 0.74 0.24 0.81 0.14−,†

gsi AUC 0.94 0.07 0.99 0.01−,*

gso AUC 0.92 0.08 0.81 0.17+,*

averaged AUC 0.87 – 0.87 –

OvA classification strategy.

Variation (+ increase, − decrease) in the classification scores standard deviations

attributable to the use of numerical simulations in the composite biomarkers computation.

F-test of variances: * significant at the 0.05 probability level,
†
non-significant at the 0.05

probability level.

composite biomarker for each conductance of interest, designed
to perform better in a classification context than classical
biomarkers. The composite biomarkers are linear combinations
of the entries of a dictionary of features which is given. The
calculation of the weights involves Monte-Carlo approximations
which use experimental or synthetic (or both) conductances
and FP samples. It has been applied to drug classification
problems using experimental MEA recordings. The classification
was carried out using the Scikit-Learn Python library (Pedregosa
et al., 2011) which includes several classification tools. In the
present work a Support Vector Classification was used. The
data used for the classification consist in FP features extracted
from experimental measurements and their associated labels
corresponding to the type of drug that is considered.

The purpose of the present work is twofold. First, it
intends to establish that the classically used biomarkers may
be improved, at least in a classification context, by using
composite biomarkers instead. Second, it intends to show
that the classification performance may benefit from the
addition of synthetic measurements in the calculation of the
composite biomarkers. More generally, the authors intend
to show that numerical simulations are useful to cardiac
electrophysiology in general, beyond the sole scope of drug
classification.

First, a comparison between classical and composite
biomarkers was carried out. The comparison consists in
classifying drugs from experimental measurements using
two different strategies: 3v3 and OvA. For each strategy,
the classification is performed using classical or composite
biomarkers as inputs. As expected, the classification results in
both cases are improved when using the composite biomarkers.
The latter were indeed designed to be maximally correlated
to their associated conductance and minimally correlated to
the others. As a consequence, they are more revealing of the
underlying conductances than the classical biomarkers. In
the 3v3 case, all classification scores significantly increase
when using composite biomarkers instead of classical ones. In
the OvA case, the improvement is less clear, mainly because
most variations in the classification scores are not statistically
significant. Nevertheless, the improvement is significant for the

gso AUC and overall the OvA strategy yields better classification
results than the 3v3 strategy.

Second, the use of combined experimental and synthetic
measurements to compute composite biomarkers is investigated.
The composite biomarkers are computed using Monte-Carlo
approximations that require conductances and FP features
samples. In the previous case, these samples are experimental.
The idea is to improve the robustness of the composite
biomarkers by incorporating synthetic measurements which
better span the parameters (i.e., conductances) space. This
approach is meant to compensate the scarcity of experimental
data and more generally the fact that the experiments do
not cover every possible drug block scenario. The in silico
measurements allow for a more thorough exploration of the
parameter space. Conductances samples were drawn and the
computational model was evaluated to generate noisy FPs. From
these FPs, the entries of the dictionary of features were computed.
The composite biomarkers weights are then computed using
a mixed set of experimental and synthetic samples. These
composite biomarkers are compared to the ones computed
using only experimental data. The same two classification
strategies as before are used to compare both approaches. In
the 3v3 case, the standard deviation of the Cohen’s kappa is
significantly decreased, which suggests that this approach makes
the classification more robust, at least when considering this
metric. The variations of the other classification scores are not
statistically significant. In the OvA case, the Cohen’s kappa seems
to increase in average while its standard deviation decreases.
This finding must however be mitigated by the fact that it is
not statistically significant. As for the AUC scores, the same
observation can be made concerning the gfi AUC. The standard
deviation of the gsi AUC is significantly decreased but the
standard deviation of the gso AUC is increased. Overall, the use
of mixed experimental and synthetic measurements seems to
improve the classification and make it more robust even though
the statistical significance of the results is not conclusive. The
use of a larger experimental data set could help assessing the
statistical significance of the previous findings.

The use of FP features in a classification context is now
discussed. In classification problems, and in machine learning
in general, a large number of inputs tend to provoke an over-
fitting of the model. This means that the classifier tends to
have satisfactory training scores but generalizes poorly on a
validation test. This is in part solved by the regularization
used but the number of inputs still remains important. When
dealing with experimentally recorded FPs, the different signals
are often not perfectly synchronized, making timestep-wise
comparisons meaningless. Furthermore, an important variability
of the signal amplitudes is observed in practice, making
even perfectly synchronized signals difficult to compare. Using
features extracted from the FP that are do not depend on time
shifts and amplitude variations are therefore more robust in a
classification context.

Limitations
The limitations of the proposed approach are now discussed.
First we discuss the heterogeneity modeling. In the present
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work, we make the assumption that the hiPSC-CM medium is
a continuous mixture of two cell types (“A” and “B”) based on
a ventricular endocardium cell model, modified to match the
action potential duration of the experimental recordings. The
actual nature of the hiPSC-CM types is still quite unknown,
to the authors knowledge, even though some studies suggest it
is a mixture of atrial, ventricular and pacemaker cells (Matsa
et al., 2011). Even if the medium can be well characterized
in a particular setting, it varies greatly from one cell line to
another. In the present work, we propose a general method to
generate heterogeneous media and for the sake of simplicity
we restricted our study to a continuous mixture of two cell
types. The approach is easily generalizable to more realistic
heterogeneities, including for instance atrial, ventricular and
pacemaker cells. Second, the conductances values associated
with the experimental measurements are not known and are
therefore approximated using Equation (2). This approximation
is, however, subject to several sources of uncertainty such as the
IC50 whose value for a given drug may vary according to the
source considered (Mirams et al., 2011; Kramer et al., 2013).
The uncertainties also come from the Hill’s equation which is an
imperfect model. Knowing the exact values for the conductances
is, however, not critical since those values are only needed to
derive the composite biomarkers and are not directly used during
the classification procedure. Furthermore, the drugs studied in
the present work are assumed to be single channel blockers. In
reality, some drugs (e.g., diltiazem) are known to target more
than one ion channel. In fact, it can be considered that any drug
affects every ion channel with different IC50 values. In the present
work, we make the strong assumption of single channel blocking
as a first step toward a finer description of the drugs effects. This
assumption is also motivated by the simplicity of the considered
ionic model which only counts three different currents. Note also
that mexiletine primarily blocks the late sodium channel current
and not the fast one. In the MV model, there is no distinction
between these two currents.

Another limitation comes from the computational model used
in the present work. The sources of error are multiple: space
and time discretizations, conductivities errors, modeling errors,
etc. These errors are not critical either since the computational
model is only used to compute the composite biomarkers
weights. This study shows that, despite the modeling errors,
adding synthetic measurements simulated by the computational
model leads to a better and more robust classification. In the
present study, we based our in silico modeling on the MV
ionic model. It is a very simplistic model which is not able to
reproduce complex behaviors such as early after depolarizations
for instance. Furthermore, the hiPSC-CM are spontaneously
excitable cells in our case while theMVmodel is not sophisticated
enough to reproduce such a behavior. For this reason, it is
not suited to the study of drug arrhythmogenicity. However,
in the scope of the present work, we have established that
it is suited to the characterization of drug-induced channel
block, at least for a coarse description of it. Furthermore, it
was also established in Raphel et al. (2017) that it is possible
to identify which of the three main currents is affected by a
drug using the MV model. Other limitations come from the

classification strategies. Both classification strategies are non-
exhaustive in that they do not explore every possible way of
splitting the data set. Furthermore, the classification metrics
used to compare the different approaches are not flawless. In
some cases comparing AUCs for instance is not the best way to
compare classifiers (Adams andHand, 2000). Other metrics exist,
such as the mean squared error, but were not investigated in this
work. Finally, the composite biomarkers derived in the present
work are not optimal in the sense that their correlation with their
associated conductances is not equal to one, as seen in Figure 8.

The limitations of the study also arise from the MEA
measurements themselves. Variations of the repolarization
wave morphology and the depolarization amplitude from
one experiment to another constitute a technical challenge
when one tries to extract meaningful information from the
measurements. In the present study, we propose to model the
heterogeneities of the experimental settings (CM cell types and
stimulation location) to account for the observed variability in
the data. Furthermore, considering ratios of biomarkers with
their control counterparts makes the approach more robust
and less dependent on fluctuations from one experiment to
another.

Perspectives
We now discuss some perspectives that could lead to interesting
future works. Other classification methods than SVC exist, such
as neural networks or random forests for instance. It would
be interesting to assess whether the findings of this work are
still valid when considering other classification tools. It would
also be interesting to evaluate which classification tool generally
performs best in the present drug classification context. Other
perspectives concern the composite biomarkers computed using
a mixed set of synthetic and experimental measurements. In
the present work, the mixed set is roughly composed of half
synthetic and half experimental measurements. However, other
proportions could be investigated and an optimal proportion
with respect to the classification score could be found. In the
present work, only sodium, potassium and calcium antagonists
drugs are considered but other types of drugs exist. Drugs that
affect other ionic channels or even simultaneously several of
them could be investigated. In parallel, more sophisticated ionic
models including more current types would need to be used
to model these new drugs. This would, of course, come at the
expense or more computationally intensive simulations. Another
interesting perspective would be to train the classifiers with
only synthetic measurements instead of experimental ones. This
would be very useful when experimental data are insufficient
or even not available. The classifiers could also be trained with
a mixed set of synthetic and experimental data just like it is
done in this work for the computation of composite biomarkers.
Finally, as explained earlier, the point of the present work is
not the direct assessment of drugs arrhythmogeneicity but rather
the identification of the main channel block induced by the
drugs. This is, in the author’s opinions, a necessary first step
toward a better understanding of MEA measurements and in
fine its use in drug safety evaluation. Considering a larger set of
drugs and more realistic ionic models in order to perform drugs
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classification based on their arrhythmogenicity (or TdP risk) will
be the purpose of future works.
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While pre-clinical Torsades de Pointes (TdP) risk classifiers had initially been based

on drug-induced block of hERG potassium channels, it is now well established that

improved risk prediction can be achieved by considering block of non-hERG ion

channels. The current multi-channel TdP classifiers can be categorized into two classes.

First, the classifiers that take as input the values of drug-induced block of ion channels

(direct features). Second, the classifiers that are built on features extracted from output

of the drug-induced multi-channel blockage simulations in the in-silico models (derived

features). The classifiers built on derived features have thus far not consistently provided

increased prediction accuracies, and hence casts doubt on the value of such approaches

given the cost of including biophysical detail. Here, we propose a new two-step

method for TdP risk classification, referred to as Multi-Channel Blockage at Early After

Depolarization (MCB@EAD). In the first step, we classified the compound that produced

insufficient hERG block as non-torsadogenic. In the second step, the role of non-hERG

channels to modulate TdP risk are considered by constructing classifiers based on direct

or derived features at critical hERG block concentrations that generates EADs in the

computational cardiac cell models. MCB@EAD provides comparable or superior TdP risk

classification of the drugs from the direct features in tests against published methods.

TdP risk for the drugs highly correlated to the propensity to generate EADs in the model.

However, the derived features of the biophysical models did not improve the predictive

capability for TdP risk assessment.

Keywords: Torsades de Pointes, machine-learning, classification and prediction, cardiac modeling, early

afterdepolarization

1. INTRODUCTION

In-vitro examination of drug effects on multiple cardiac ion channels and in-silico reconstruction
of cardiac electrical activity from in-vitro experiments are two coupled components in the
new paradigm of TdP risk assessment (Sager et al., 2014). At the molecular/ionic level,
pharmacological TdP genesis is associated with drug-induced reduction in the net repolarizing
current (Antzelevitch, 2007), which is manifested in prolongation of the QT interval in the
body-surface ECGs. Drug-induced block of hERG (human Ether-à-go-go-Related Gene) channels,
which gate the primary repolarizing current IKr , is an acknowledgedmarker for TdP risk prediction.
However, recent studies have shown that the classification that is based on the safety margins
from the hERG channel assays has moderate concordance with QTc prolongation (Gintant, 2011)
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and TdP risk (Mirams et al., 2011; Kramer et al., 2013). Drug-
induced modulation of non-hERG channels either mitigates (i.e.,
block of L-type voltage regulated calcium channel current ICaV
and inward late sodium current INaL) or enhances (i.e., block
of slow activating potassium current IKs or increase of INaL)
the pro-arrhythmic effects of hERG channel block (Bril et al.,
1996; Antzelevitch, 2004; Lacerda et al., 2008; Towart et al., 2009;
Fermini et al., 2016). Several multi-channel TdP risk classifiers
have already been created (Mirams et al., 2011; Christophe, 2013,
2015; Kramer et al., 2013; Mistry et al., 2015; Okada et al., 2015;
Lancaster and Sobie, 2016; Abbasi et al., 2017). Table 1 lists
previously published classifiers that are based on several in-vitro
ion channel assays.

The drug-induced changes in the ionic currents result in
altering of action potential and calcium transient at the cellular
level. These modulations can further trigger events in the
cardiac cells, such as early or delayed afterdepolarizations
(EADs or DADs), and increase heterogeneity in the electrical
activity across the myocardium [i.e., increase in transmural
dispersion of repolarization (TDR)]; both effects are thought
to be the key determinants for TdP genesis (Wu et al., 2002;
Antzelevitch, 2007). In-silico reconstruction of drug-induced
responses of action potential and calcium transient at cellular or
electrical activity at tissue levels could potentially provide better
mechanistic insight. The classifiers that use the features from the
in-silico simulations (derived features) have shown the capability
to make good predictions (Table 1) of torsadogenic risk (Mirams
et al., 2011, 2014; Christophe, 2013, 2015; Okada et al., 2015;
Lancaster and Sobie, 2016; Abbasi et al., 2017; Li et al., 2017).
However, in spite of providing better biological insights for TdP
genesis, the role of computational models in improving TdP
risk prediction is controversial as machine-learning/statistical
analysis of the in-vitro ion channel measurements (direct
features) have been shown to produce equally accurate TdP risk
assessment (Kramer et al., 2013; Mistry et al., 2015).

The amount of drug-induced block of the channels
depends on the compound’s effective free therapeutic plasma
concentration (EFTPC). Unfortunately, reported EFTPC values
are highly variable (Redfern et al., 2003). The maximum
EFTPC values, which is used to determine the ion channel
block, also vary across the datasets (e.g., Moxifloxacin 3.5 µM
in Crumb et al., 2016, 10.9 µM in Kramer et al., 2013). In
addition, the actual free plasma concentrations of drugs in
subjects could also differ because of inter-individual variations,
impaired metabolism, and interactions with other drugs. In
fact, drug concentrations could potentially be much larger
than reported maximum EFTPC values. Researchers have
employed different strategies to address the uncertainty in
EFTPC. Direct and derived features have been evaluated at
the drug’s EFTPC, at supra-therapeutic drug concentrations
(which is several times above maximum EFTPC), or across
a wide range of drug concentrations (Christophe, 2013,
2015; Kramer et al., 2013; Mirams et al., 2014; Mistry
et al., 2015; Okada et al., 2015; Lancaster and Sobie, 2016;
Abbasi et al., 2017; Ando et al., 2017; Li et al., 2017). The
range is obtained by titrating up the drug concentrations
until a fixed threshold, until a predetermined increase in

action potential prolongation is reached, or until EADs are
triggered.

Here, we propose a new two-step method for TdP risk
classification, referred to as Multi-channel Blockage at Early
After Depolarization (MCB@EAD). The MCB@EAD classifier
employs as inputs direct or derived features obtained at drug
concentrations that produce critical hERG block (∼60% block
that generates pause-induced EADs in the biophysical models).
We test the proposed classifier on several previously published
datasets derived from in-vitro screening of the ion channels
and on a large composite dataset comprising of all datasets.
Finally, we examine the connection between TdP risk of the
drugs and drug propensity to induce pause-dependent EADs.
Our results show that MCB@EAD classification from the direct
features performs better or equivalently to previously suggested
methods including the classifiers built on derived features from
biophysical models. We also highlight the link between the direct
and derived feature based classifiers and demonstrate that TdP
risk for the drugs highly correlates to the likelihood to produce
EADs in the model.

2. METHODS

Table 2 provides a brief summary for each of the analyzed
datasets. More extensive descriptions of the datasets is provided
in the Supplemental Material.

2.1. Torsadogenicity Definition
The definition of drug groups according to their torsadogenic risk
is critical for the development of the TdP risk classifiers. Different
torsadogenic definitions from previous classification studies are
listed below.

Redfern et al. assigned drugs to five categories based on the
number of reports of TdP in humans, QT prolongation and TdP
associated withdrawal from themarket (Redfern et al., 2003). The
five categories are:

• R1: Class Ia and III antiarrhythmics with QT prolongation as
intended effect.

• R2: Drugs that have been withdrawn from the market due to
unacceptable risk of TdP for condition being treated.

• R3: Drugs with numerous case reports of TdP in humans.
• R4: Drugs with isolated reports of TdP in humans.
• R5: Drugs with no published reports of TdP in humans when

used alone.

Arizona Center for Education and Research on Therapeutics
(AZCERT) maintains a list of drugs associated with
QT prolongation/TdP risk (Woosley et al., 2017)
(https://crediblemeds.org/) and has categorized the drugs
into three groups:

• CM1: Drugs with known risk of TdP. These drugs prolong the
QT interval and are clearly associated with a known risk of
TdP, even when taken as recommended.

• CM2: Drugs with possible risk of TdP. These drugs can cause
QT prolongation but currently there is lack of evidence for a
risk of TdP associated with themwhen taken as recommended.
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TABLE 1 | TdP classifiers based on in-vitro ion channel assays.

Feature In-silico model Classification References NTotal NCorrect

TDP+ TDP−

IC50,hERG
EFTPC

NA Feature < 30 Feature > 30 Redfern et al., 2003 52 NA

APD90 Ventricular myocyte models

of rabbit, rat and human

LDA Mirams et al., 2011 31 30

−log(
IC50,hERG
IC50,CaV

) NA LR Kramer et al., 2013 55 50

1+a0BPCaV+a1BPNa,fast
1+a2BPhERG

NA LR Mistry et al., 2015 31 from

(Mirams et al., 2011)

55 from

(Kramer et al., 2013)

28

TDR Human ventricular

myocyte model

TDR profiles Christophe, 2015 55 from

(Kramer et al., 2013)

NA

CDrug,Arrhythmia
EFTPC

3D FEM model

of human heart

Feature < 200 Feature > 200 Okada et al., 2015 12 12

EADs Human ventricular

myocyte model

Waveform appearance Abbasi et al., 2017 12 from

(Okada et al., 2015)

11

APD50

& Diastolic Ca2+
Human ventricular

myocyte models

SVM and PCA Lancaster and Sobie, 2016 86 from

(Kramer et al., 2013) and

(Mirams et al., 2011)

75

AUCINaL,drug
AUCINaL,control

+
AUCICaV,drug
AUCICaV,control

Human ventricular

myocyte model

LDA Li et al., 2017 12 12

LDA, Linear Determinant Analysis; LR, Logistic Regression; SVM, Support Vector Machine; PCA, Principal Component Analysis; Cdrug,EAD, concentration of the drug that produces

EAD; BPx , % block of the x (x = Na, fast, CaV, hERG) ion channels; TDR, transmural dispersion of repolarization; Cdrug,Arrhythmia, concentration of the drug that produces arrhythmia in

the model; EAD, early after depolarizations; AUCIx,drug/control , area under the curve of the x (x = CaV, NaL) current transient at steady state action potential in the presence (drug) or

absence of the drug (control). Table also lists the number of compounds analyzed in the study (NTotal ) and the number of correctly classified compounds (Ncorrect ).

• CM3: Drugs with conditional risk of TdP. These drugs are
associated with TdP but only under certain conditions of their
use.

Champeroux et al. assigned drugs into three categories based
on the number of reports of TdP cases associated with the drug
(Champeroux et al., 2005):

• CH1: Drugs with numerous reports of TdP.
• CH2: Drugs causing QT prolongation and/or TdP at very low

frequency.
• CH3: Drugs without reports of TdP or QT prolongation.

Based on a general consensus, a working group formed under the
Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative
picked 28 compounds and categorized them into three groups
(Colatsky et al., 2016; Fermini et al., 2016) for testing/training of
the classifiers under the new CiPA paradigm:

• CP1: Drugs with high risk.
• CP2: Drugs with intermediate risk.
• CP3: Drugs with low risk.

To consistently compare with other methods we attempt to use

the binary TdP definitions [i.e., a drug is either torsadogenic

(TdP+) or non-torsadogenic (TdP−)] as in the original
publications (see Table 2 and the Supplemental Material for
further details regarding the exact risk definition used for the
particular datasets). For dataset 7 where tertiary definition is
reported, binary TdP definition was defined by placing CP1
and CP2 drugs into torsadogenic (TdP+) and CP3 drugs to
non-torsadogenic (TdP−) categories. In the case of the merged
dataset or the datasets that lacked binarized TdP definitions
(Crumb et al., 2016), we assigned drugs as TdP+ or TdP−
using a similar approach as in Lancaster and Sobie (2016).
The drugs which fell in the known risk category (CM1)
in the CredibleMeds database, R1, R2, and R3 category in
Redfern et al. (2003) or drugs with several reports for TdP
(CH1) (Champeroux et al., 2005) were assigned to TdP+. For
the remaining drugs we categorized the drug as TdP+ if a
warning for TdP associated with QT prolongation appeared
on its package label (http://dailymed.nlm.nih.gov/). The risk
categorization for the drugs are provided in the Supplemental
Material. Paroxetine has a warning for TdP in the label and
Imipramine was assigned to CH1 category in Champeroux
et al. (2005). These two drugs were also assigned as TdP+
in Lancaster and Sobie (2016). Here, we defined them as
TdP− as these two compounds are not directly associated
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TABLE 2 | Datasets analyzed for TdP risk. The total number of drugs in each dataset is listed in the “Number compounds” column.

Datasets Number compounds Risk categorization tested Figure/Table

Dataset 1 31 TdP+: R1, R2, R3 categories (RCOD) Figure 3, Table 4

(Mirams et al., 2011)

Dataset 2 55 TdP+: R1, R2, R3, CM1, CM2, CM3

categories

Figure 3, Table 4

(Kramer et al., 2013) or label warning (RCOD)

Dataset 3 12 TdP+: R1, R2, R3 categories (RCOD) Figure 3, Table 4

(Okada et al., 2015)

Dataset 4 86 TdP+: CM1 and CH1 categories, Figure 3, Table 4

(Lancaster and Sobie, 2016) Drugs in CM2 and CM3 if label warning

(RCOD)

Dataset 5 30 TdP+: R1, R2, R3, CH1, CM1 category Figures 2A,B, left panel, Figure 4

(Crumb et al., 2016) or label warning Tables 4, 5

TdP+: CM1 and CM2 Figures 2A,B, right panel, Figure 4, Table 5

TdP+: CM1 Table 5

TdP+: CM1 and CM3 Table 5

Dataset 6 57 TdP+: CM1 Figure 3, Table 4

(Ando et al., 2017)

Dataset 7 12 TdP+: CP1 and CP2 category Figure 3, Table 4

(Li et al., 2017) High: CP1 Intermediate: CP2 Low: CP3

(RCOD)

Figure 6

Dataset 8 197 TdP+ R1, R2, R3, CH1, CM1 category or

label warning

Figure 5

(Combined Datasets 1, 2, 3, 5, 6, and 7) TdP+: CM1 and CM2 Table 6

TdP+: CM1 Table 6

TdP+: CM1 and CM3 Table 6

Dataset 9 26 High: CP1 Intermediate: CP2 Low: CP3

(RCOD)

Figure 6

(Fermini et al., 2016)

(IC50,channel extracted from Datasets 1, 2, 3, 5, 6, and 7)

“Risk categorization tested” column refers to the TdP risk definition (see more info on definitions in the text) used to test/train the particular datasets, and the “Figure/Table” column list

the corresponding Figure and Table numbers where the results of the particular dataset and risk categorization pair are reported. The IC50 values and risk category of individual drug for

each datasets are also reported in the Supplemental Material.

with QT prolongation or TdP. These drugs inhibit CYP2D6
and increase plasma concentrations of TdP positive drugs
such as Thioridazine (http://dailymed.nlm.nih.gov/). Sometimes
alternative definitions were also considered and are explicitly
defined in the manuscript.

2.2. Drug-Induced Ion Channel Block
The in-vitro ion channel assay data is converted to drug-induced
block of ion channel (direct features) using

Blockchannel = 100× (
CDrug

h

IC50,channel
h + CDrug

h
), (1)

where IC50,channel is the drug concentrations at which the whole-
cell current through particular channels is reduced by half, CDrug

is the concentration of the drug and h is the Hill-coefficient.
The Hill coefficient values were taken as reported in the original
datasets. The IC50, Hill coefficients, and EFTPC values for each of
the datasets are given in the SupplementalMaterial. Note that Hill
coefficient values had little impact, and even fixing Hill coefficient
to 1 for all the drugs did not significantly alter the observed
classification accuracies (results not shown). The drug-induced
blocks of ion channels are used as input features for the machine-
learning based classifiers or utilized to scale the maximum
conductance (gchannel) of the particular ion channels in the
in-silico models, assuming that drug-induced effect on multiple
ion-channels are well represented by a simple conductance-block
model (Mirams et al., 2011),

gchannel,drug = (1− Blockchannel/100)× gchannel. (2)
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The effects of drug-induced modulation of multi-channel
conductance (Equation 2) on the action potentials (AP) and
calcium transients are simulated for all of the compounds using
two versions of human ventricular myocyte models (O’Hara
et al., 2011; Dutta et al., 2016). Ohara et al. model (OHR) (O’Hara
et al., 2011) was picked as it has been chosen as the consensus base
model for proarrhythmic risk assessment (Colatsky et al., 2016).
OHRmodel was also shown to have the best predictive capability
for TdP risk classification among the few tested models in
Lancaster and Sobie (2016).We also utilized the modified version
of the OHR model (OHRmv) which has been shown to better
fit APD-rate dependence experimental data under drug block
conditions, particularly improving the effect of INaL block on
action potential prolongation (Dutta et al., 2016). Several derived
features are extracted from AP and calcium transients, and TdP
risk classifiers are constructed using these derived features. The
details on the simulation protocols and the computations of the
derived features are reported in section 2.6 that describes in-silico
simulations.

2.3. Two-Step Classifier—Multi-Channel
Blockage at hERG EAD(MCB@EAD)
We propose a two-step approach for TdP risk prediction. In
the first step, we classified the drugs into non-torsadogenic
and potentially torsadogenic categories. We performed the
classification in the first step considering solely the block of
hERG channels. Using a Redfern-like criteria (Redfern et al.,
2003), we obtained the ratio between the drug concentration that
produces 60% block of the hERG channel current (IC60,hERG) and

the drug EFTPC (i.e., hERGratio =
IC60,hERG

EFTPC ). The motivation
for using IC60,hERG was that the 60% block of hERG channel
currents triggers pause-induced EAD in the mid cell type of
OHR and OHRmv models (2 Hz pacing rate) at a quiescent
interval greater than 700 ms. For example, a drug with hERG
IC60 of 500 nM and EFTPC of 1 nM would yield a threshold
of 500. Since this drug’s EFTPC would be far from the critical
hERG block concentration, we would classify this compound as
non-torsadogenic. Previous classifiers based on EAD appearance
for different datasets have shown a wide range of thresholds
(approximately 30×−200× EFTPC) for achieving best TdP risk
predictions (Christophe, 2013; Okada et al., 2015). Hence, we
tested four different thresholds for hERG ratio of 50, 100,
150, and 200 for all the datasets and chose the one that gives
the best classification accuracy. For the remaining drugs with
EFTPC above the critical hERG block concentrations (hERG
ratio less than the threshold), the role of multi-channel block was
examined in the second step using logistic regression classifiers
ignoring the EFTPC values of the drugs. The regression classifiers
employed as inputs either the Blockchannel of additional non-
hERG ion channels (direct features) or the features derived from
the simulated calcium transient and the AP in the ventricular
myocyte models, at drug concentrations equal to IC60,hERG.
Such two-step classifier partially solves the problem of EFTPC
variability, restricting EFTPC usage only to the first step to
primarily discard the drugs that produce insufficient hERG
block at extremely high concentrations by classifying them as

non-torsadogenic. Therefore, the moderate variations in EFTPC
values of the drugs would only matter for a very small population
of the drugs with hERG ratio close to the threshold in the
classification. A summary of the two-step approach is given in
Figure 1.

In order to compare the performance of the classifiers based
on the two-step approach to the performance of the classifiers
based on features obtained at actual drug EFTPC concentrations,
we also constructed TdP risk classifiers using the direct and
derived features at reported maximum EFTPC of the drugs. They
are referred in the current paper as one-step classifiers (hERG
ratio is not utilized for these classifiers).

2.4. Classifiers
We utilized statistical/machine-learning models for binary
classification of the drugs into TdP+ or TdP− categories. The
binarized torsadogenic definitions for each drug were used to
train/test the classifier models. Here, we used Logistic regression
model. SVM and neural network models were also tested
and resulted in comparable classification accuracies (results
are shown in the Supplemental Material). Python’s scikit-learn
package (Pedregosa et al., 2011) (http://scikit-learn.org/stable/)
was used to train/test different models. Here, we present results
for logistic regression models only as other methods produced
similar results. The generalized model equation is described as

logit(TdP) =
1

1+ exp−(β0+
∑n

i βiFeaturei)
, (3)

where Feature represents the input metrics to the model (either
direct feature or the derived feature), n is the number of input
features used to train/test the model, and β0 and βi (i = 1, 2, .., n)
are the parameters to be determined. The predictive power of the
model was evaluated by the leave-one-out (LOO) cross validation
technique.

2.5. Two-Dimensional TdP Risk Map
A two-dimensional TdP risk map with hERG ratio (

IC60,hERG

EFTPC ) on
the x-axis and summation of one or more features (block of ICaV
and INaL) on the y-axis were constructed for visualization of the
two-step (MCB@EAD) classifier. The hERG ratio threshold and
regression coefficients from the two-step classifier are used to
generate the two-dimensional risk maps. The hERG ratio (step
1 in the two-step classifier) that provides the best classification
in the two-step classifier is used to set the threshold along
the x-axis. Drugs that fall in the region above the hERG ratio
threshold are considered to be non-torsadogenic. For the drugs
with hERG ratio less than the threshold, the coefficients of the
logistic regression model in step 2 of the two-step classifier are
used to determine the threshold along the y-axis of the risk map.
An example of separating hyperplane that would be obtained
from the second step of the two-step classifier is given by

βICaV blockICaV + βINaLblockINaL +

n
∑

i=3

βfeature,i featurei

+ βintercept = 0 (4)
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FIGURE 1 | Schematic representation of the MCB@EAD two-step approach. In-vitro assay datasets are used to obtain the drug-induced blocks of multiple

ion-channels at drug concentrations equal to IC60,hERG. hERG ratio (
IC60,hERG
EFTPC

) is used as the classification criteria in the first step. Drugs that do not result in 60%

hERG block at concentrations well above their maximum EFTPC are classified as non-torsadogenic (TdP−). hERG ratio thresholds of 50, 100, 150, and 200 were

tested, and the one that provides the best TdP risk discrimination was chosen for the particular datasets. The remaining drugs are considered to be potentially

torsadogenic and analyzed in the second step. The drug-induced blocks of multiple ion-channels at 60% hERG block concentrations (direct features) are used as

inputs to the logistic regression model for TdP risk classification or used to simulate drug-induced changes in action potential (AP) and calcium (Ca) transients using

different protocols. The derived features are extracted from the AP and Ca transients. These derived features are then used to train the logistic-regression model for

TdP risk classification or used directly (e.g., in case of EADs) to classify drugs to TdP+ and TdP− categories.

where blockICaV and blockINaL are the blocks of ICaV and INaL,
respectively. featurei are additional input features of the model,
such as drug trapping parameters. βICaV , βINaL , and βfeature,i

represent the regression coefficients. The regression coefficients
obtained from the step 2 are normalized to the coefficient βICaV

for the ICaV block. This gives

blockICaV +
βINaL

βICaV

blockINaL +

n
∑

i=3

βfeature,ifeaturei

βICaV

= −
βintercept

βICaV

.

(5)
Thus, the left hand side of Equation (5) is plotted on the y-axis,

and the ratio
βintercept
βICaV

determines the threshold along this axis. For

example, if only block of ICaV is taken into consideration, the risk
map has the values of ICaV along the y-axis and hERG ratio along
the x-axis.

Ternary classification for Dataset 7 requires multiple
hyperplanes with different regression coefficients to separate
the high, low and intermediate risk drugs. To represent the
ternary classification in a two-dimensional risk map similar
to the binary classification, we summed the different features
(Featuresum) assuming identical weights for each of the features
(i.e., β1 = β2 = .. = βn equal to βf ) reducing the classification

model to 1

1+exp
−(β0+βf Featuresum) . For Dataset 7, assuming identical

weights for different features resulted in similar accuracy to
a multinomial logistic regression classifier while providing a
simpler visualization in one two-dimensional plot as in the
binary classification. The ratio −β0

βf
obtained after training the

model is used to set the two thresholds along the y-axis. Along
the x-axis arbitrary hERG ratio of 25, the value slightly greater
than the maximum hERG ratio observed for high risk drugs in
Li et al. (2017) and Fermini et al. (2016), was utilized to separate
low and intermediate risk drugs from the high risk drugs. The
hERG ratio of 150 obtained from the merged dataset was utilized
to separate the high and intermediate risk drugs from the low
risk drugs.

2.6. In-Silico Simulations
The alteration in the action potential and calcium transients at
the cellular level arising from drug-induced multi-channel block
were simulated for all the compounds (Dataset 8) using the OHR
model. Using a similar approach as in Lancaster and Sobie (2016),
simulations were carried out at three pacing rates (0.5, 1, and
2 Hz) for each of the endo, mid and epi cell types resulting in
9 simulations per drug, and 13 metrics were obtained from the
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AP and Ca2+ transients. Simulations were carried out for 1,000
beats to allow the models to reach the steady state. The 13 metrics
obtained from the in-silicomodels are listed below:

• Upstroke velocity
• Peak voltage
• Action potential at half maximum duration (APD50)
• Action potential duration at−60 mV (APD @−60 mV)
• Action potential duration at 90% repolarization (APD90)
• Resting voltage
• Action potential triangulation (AP triangulation), calculated as

APD90 - APD30
• Diastolic calcium level (diastolic [Ca2+]i)
• Amplitude of the calcium transient (amplitude of CaT)
• Peak value of intracellular calcium (peak [Ca2+]i)
• Calcium transient duration at half maximum duration

(CaTD50)
• Calcium transient duration at 90% repolarziation (CaTD90)
• Triangulation of the calcium transient (CaT triangulation),

calculated as CaTD90 - CaTD30 (calcium transient duration
at 30% repolarization)

We systematically construct the classifiers on each of the 13
derived features extracted from the action potentials and calcium
transients at two different drug concentrations (i.e., at CDrug =

EFTPC and CDrug = hERG IC60).
The onset of TdP is usually preceded by a sudden reduction

of the heart rate (i.e., by pauses or long cycle lengths) (Neal Kay
et al., 1983; Viskin et al., 2000). Here, we test the generation
of pause-induced EADs, that are implicated as triggers of
TdP (Viswanathan and Rudy, 1999; Liu and Laurita, 2005),
in simulations of drug-induced multi-channel blockage in the
ventricular myocytes models (O’Hara et al., 2011; Dutta et al.,
2016). The basic protocol was similar to that in Viswanathan
and Rudy (1999), where stimulation of the cell is carried out
200 times at a constant cycle length of 500 ms. After 200
stimuli, an additional stimulus was applied following a pause of
1,000 ms. Drug-induced EAD development was tested at drug
concentrations = IC60,hERG in the mid cell type. EAD analysis
was also performed at Cdrug = IC60,hERG for combinations of
ICaV , INaL, and IKs blocks ranging from 0–100% with step of
10% resulting in a set of 1,000 simulations. TdP risk prediction
was carried out using ability of drugs to induce EADs as a
classification criteria (EAD+: drugs that induce EADs at 60%
hERG block concentrations, EAD−: drugs that do not induce
EADs at 60% hERG block concentrations). Figure 1 illustrates
the classification based on the drug EAD risk. The drugs with
hERG ratio greater than the hERG ratio threshold determined
for the particular dataset (using the two-step approach on the
direct features) were considered EAD−. For the remaining drugs
the block of ion-channels was calculated at drug concentration
equal to IC60,hERG and overlaid on the parametric space obtained
from EAD analysis at varying combinations of ICaV , INaL and IKs
blocks (Figure 2A), for both the OHR and OHRmv models, to
determine whether a drug will induce EAD or not at 60% hERG
block concentrations.

The system of ordinary differential equations were solved
using the rapid integration scheme (a combination of forward

Euler, Rush-Larsen method, Rush and Larsen, 1978 and adaptive
time-step) proposed in the original model (O’Hara et al., 2011).
For the EAD simulations rapid integration scheme proposed in
O’Hara et al. (2011) yielded different results to gold standard
simulations with fixed time step of 0.001 ms. Hence, for the EAD
simulations we utilized forward Euler method with a time step of
0.001 ms. Execution scripts were written in C++.

3. RESULTS

3.1. Drugs TdP Risk Highly Correlates to
EAD Propensity
A short-long cycle length (i.e., pause) often precedes the onset
of TdP (Neal Kay et al., 1983; Viskin et al., 2000). The pause is
known to facilitate the formations of EADs (Viswanathan and
Rudy, 1999; Liu and Laurita, 2005). Here, we test the effects of
drug-induced block of different channels on triggering of pause-
induced EADs. Block of hERG channel causes prolongation of
action potential and can result in the generation of EADs. In
the OHR and the OHRmv models, the amount of hERG block
required to induce pause-induced EADs is reduced with increase
in the duration of the pause. hERG block by 57 and 55% induced
EADs in the mid-cell paced at 2 Hz (500 ms pacing cycle length)
following a 700 ms pause in the OHR and OHRmv models,
respectively. The amount of hERG block required to induce
EADs in the OHR and OHRmv model following 1,000 ms pause
is reduced to a 47 and 46% block, respectively. Under these
critical blocks of hERG channel, modifications of other channels
may promote or inhibit the EADs. First, we tested individually
the effects of block of six ion-channel currents (ICaV , INaL, IKs,
IK1, INa,fast , and Ito) in promoting or inhibiting pause-induced
EADs at fixed blocks of hERG channels that are marginally
above (60%) and below (40%) the critical value (48%) of hERG
block that is required to induced EADs in the models. At 60%
hERG block, block of ICaV (> 30% for both the OHR and
OHRmv models) and INaL (> 60% for the OHRmv model)
resulted in suppression of EADs. The remaining five channels
had no inhibitory effects. At 40% hERG block, blocks of IKs and
IK1 led to induction of EADs with lower block of IKs currents
promoting triggering of EADs compared to IK1. The block of
remaining five channels did not result in EADs at 40% hERG
block.

For visualization of combined effects of the channels on EAD
induction, we performed EAD analysis for varying combinations
of block of the three most sensitive non-hERG channels (ICaV ,
INaL, and IKs) regulating EAD generation, each ranging from
0 to 100% at Cdrug = IC60,hERG. Figure 2A represents the
EAD test for the models. The red region represents the set
of combinations of blocks for these currents that resulted in
the EADs in the OHR model (EAD+ region). The region in
green covers the parameter subspace where no EADs were
observed in the OHR model (EAD− region). Separation of the
EAD+ region and EAD− region is outlined by the blue and
yellow surfaces for the OHR and OHRmv model, respectively
(Figure 2A). Among the non-hERG channels, block of ICaV had
the highest modulatory effects on EAD generation under normal
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FIGURE 2 | Pause-induced EAD generation: combination of 0–100% ICaL, INaL, and IKs blocks tested at (A) 60% hERG block in the OHR and OHRmv (B) 30%

hERG block in the OHRmv that is modified to simulate LQT3 through increase in late sodium current conductance by 2-fold. Red regions cover the set of

combinations of the blocks of the three channels that induced EADs in the model. Green region covers the set of combinations where EADs did not appear. Blue and

yellow surfaces represent the separation between the EAD+ and EAD− region in OHR and OHRmv, respectively. The blue and yellow surfaces are plotted together in

both plots in (A) to allow for easy comparision, but note that the red and green regions corresponds to the results for the OHR model. Block of ICaL, INaL, and IKs at

drug concentrations equal to 60 and 30% hERG block are calculated from in-vitro patch-clamp data in Crumb et al. (2016) using (Equation 1) and represented as dots

in the parameter space of (A,B), respectively. The drugs with torsadogenic potential were plotted as the red dots, while drugs with no known torsadogenicity risk are

plotted as the green dots for two different TdP definitions. Definition 1 (left panels) - TdP+: Drugs in R1, R2, R3, CH1, CM1 or torsade label. Definition 2 (right panels) -

TdP+: Drugs in CM1 and CM2. The data points for the Dataset 5: 0-Amitriptyline, 1-Azithromycin, 2-Bepridil, 3-Chloroquine, 4-Chlorpromazine, 5-Cibenzoline,

6-Cisapride, 7-Diltiazem, 8-Dofetilide, 9-Flecainide, 10-Lopinavir, 11-Mexiletine, 12-Mibefradil, 13-Moxifloxacin, 14-Nilotinib, 15-Ondansetron, 16-Propafenone,

17-Quinidine, 18-Quinine, 19-Ranolazine, 20-Ritonavir, 21-Saquinavir, 22-Sertindole, 23-Sotalol, 24-Terfenadine, 25-Toremifene, 26-Verapamil. Three drugs

(Amiodarone, Lidocaine and Rufinamide) with hERG ratio greater than 200 were not included in the plot. (C) Transient AP profiles at 200th beat obtained from

simulation of six drugs in the OHR model. Red and green traces show that the drug is defined as TdP+ and TdP−, respectively.
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conditions. Under critical hERG block (60%), block of ICaV by
more than 30% resulted in suppression of the EADs in both
the OHR and OHRmv models (Figure 2A). Block of INaL in the
absence of the block of ICaV did not result in suppression of
the EADs in the OHR model. Even in the OHRmv model with
improved INaL formulation, block of more than 60% of the late
sodium current was required to suppress pause-induced EADs.
Block of IKs currents increased the amount of block of INaL and
ICaV currents required to prevent EADs. A similar parametric
space for EAD generation was also analyzed under enhanced
late sodium currents (Figure 2B), associated with LQT3. In the
OHRmv model the conductance of the late sodium current
was doubled. Block of the hERG channel by 30% was enough
to induce EADs in the OHRmv model under enhanced late
sodium currents. EAD generation was examined at this 30%
hERG block and is shown in Figure 2B. For the simulations with
enhanced late sodium currents, the difference in the effects of
INaL and ICaV was significantly reduced. At 30% hERG block
in the OHRmv model, block of greater than 20 and 30% was
required for EAD suppression by ICaV and INaL, respectively
(Figure 2B).

Table 3 lists the accuracy of TdP risk prediction using EADs
as the classification criteria. As an illustration, the data points
for the drugs in one of the datasets (Dataset 5) are overlaid on
the the parametric space in Figure 2A at hERG blocks of 60%
to visualize the agreement between drugs EAD and TdP risks.
The drugs with positive TdP risk are shown in red, while the
drugs with negative TdP risk are shown in green. Actual AP
profiles were also simulated for drugs in Datasets 5 and 7 at
60% hERG block concentrations taking into account the block
of all seven channels. Figure 2C gives representative examples
of the AP profiles for the multi-channel block of six of the
drugs from Dataset 7 simulated in the OHR model. Our results
show a good concordance between drugs torsadogenic risk and
its propensity to induce EADs (i.e., most of the torsadogenic
drugs resulted in pause-induced EADs in the models while
no EADs are observed for majority of the non-torsadogenic
drugs at 60% hERG block drug concentrations) across all the
datasets. Majority of the datasets (Datasets 1, 2, 4, 6) contains
values of blocks for two non-hERG channels (ICaV , INa,fast) of
which only ICaV had an impact on EAD occurrence in the
OHR and OHRmv models. Hence, for these datasets, OHR

TABLE 3 | Accuracy of drug classification based on EAD.

Datasets Accuracy: OHR Accuracy: Modified

OHR

Dataset 1 (Mirams et al., 2011) 97 97

Dataset 2 (Kramer et al., 2013) 87 87

Dataset 3 (Okada et al., 2015) 84 84

Dataset 4 (Lancaster and Sobie, 2016) 87 87

Dataset 5 (Crumb et al., 2016) 83 80

Dataset 6 (Ando et al., 2017) 83 83

Dataset 7 (Li et al., 2017) 92 100

Dataset 8 (Merged Dataset) 83 83

and OHRmv models give identical accuracies as the drugs with
greater than 30% ICaV block would result in EAD suppression
in both of these models. For the Datasets 3, 5, and 7, drug-
induced blocks of multiple ion channels are reported. However,
very few drugs among these datasets are located in the region
between the EAD risk decision surfaces for the OHR (blue
surface) and OHRmv (yellow surface) models (i.e., the region in
the parameter space that would result in a different prediction
between the OHR and OHRmv models, Figure 2A). Hence,
similar accuracies are observed for both of the models across
all datasets. For the Dataset 7, Ranolazine (TdP−) was the only
drug that was located on the negative side of the EAD risk
decision surface for the OHRmv and to the positive side of the
decision surface for the OHR, and hence predicted correctly by
the OHRmv model but not by the OHR model. On the contrary
for Dataset 5, Quinine (TdP+) ended up on the negative side
of the EAD risk separating surface for the OHRmv and to the
positive side of the EAD risk decision surface of the OHR model
resulting in its incorrect prediction using the OHRmv model
(Figure 2A).

3.2. Binary TdP Risk Discrimination from
Direct Features
Although the biophysical models can provide mechanistic
insights underlying TdP genesis, the benefits of using biophysical
models in terms of classification is unclear. Here, we wanted to
examine the performance of the classifiers built on direct features
using the proposed method. The predictive power of the TdP
risk classifiers built on the direct features using the proposed
method (MCB@EAD) is shown in Table 4 (two-step classifier
column). Classification scores on the direct features at EFTPC
are reported for comparison (one-step classifier column). The
predictive ability of the two-step classifier was comparable or
better than those for the classifiers built on the various features in
the original datasets and also better than those for the one-step
classifier. Most datasets comprise in-vitro assay data for drug-
induced block of IKr , INa,fast , and ICaV (Datasets 1, 2, 4, and
6). Drug-induced blocks of additional channels were reported
in three datasets (Datasets 3, 5, and 7). The classifiers built
using the block of IKr and ICaV as inputs provided high TdP
risk prediction scores (Table 4). Utilizing the block of INaL as
an additional input feature improved the prediction for the two
datasets (Dataset 3 and Dataset 7) by classifying correctly one
more drug, Ranolazine, as TdP−. On the contrary, in Dataset
5, addition of the block of INaL to the features reduced the
number of correctly classified drugs by one (classifying Ritonavir
incorrectly as TdP−). Taking into account the block of additional
ion channels (INa,fast for Datasets 1, 2, 4, 6 and INa,fast , IKs, Ito, IK1
for Datasets 3, 5 ,7) did not provide any further improvement in
the performance of the classifier for all datasets.

For visualization of our two-step approach we presented
two-dimensional risk maps. Drug-induced block of the ICaV or
the sum of ICaV and INaL blocks is plotted against the hERG

ratio (
IC60,hERG

EFPTCdrug
) for each drug in a two-dimensional risk map

(Figure 3). The values of the hERG ratio (x-axis) and the block
of ICaV (y-axis) that provide the best discrimination vary widely
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TABLE 4 | Binary TdP classifier scores of one-step and two-step classification on the direct features for the eight datasets.

Datasets One step classifier Two step classifier Channel currents

Datasets NDrugs Original model

Accuracy (Feature)

Cdrug = EFTPC Cdrug = IC60,hERG

Dataset 1

(Mirams et al., 2011)

31 97

(APD90)

90 (97) 100 (100) IKr& ICaV

Dataset 2

(Kramer et al., 2013)

55 91

(−log(
IC50,hERG
IC50,CaV

))

89 (82) 95 (95) IKr & ICaV

Dataset 3

(Okada et al., 2015)

12 100

(
CDrug,Arrhythmia

EFTPC
)

58 (66) 92 (92) IKr & ICaV

66 (66*) 100 (92*) IKr , ICaV & INaL

Dataset 4

(Lancaster and Sobie, 2016)

86 87

(APD50 & Diastolic Ca2+)

85 (85) 89 (90) IKr & ICaV

Dataset 5

(Crumb et al., 2016)

30 83 (83) 83 (83) IKr & ICaV

80 (83*) 80 (83*) IKr , ICav & INaL

Dataset 6

(Ando et al., 2017)

36 83

(APD prolongation and EAD (iPSCs))

86 (83) 86 (86) IKr & ICaV

Dataset 7

(Li et al., 2017)
12

100
(

AUCINaL,drug
AUCINaL,control

+
AUCICaV,drug
AUCICaV,control

)

92 (92) 92 (92) IKr & ICaV

100 (92*) 100 (100*) IKr , ICaV & INaL

Dataset 8 197 79 (79) 85 (86) IKr & ICaV

The total number of drugs in the particular dataset are reported in the NDrugs column. Table also lists the feature used for classification in the original methods and corresponding scores

if applicable. The last column shows a list of channel currents used to construct the classifiers. For comparision with the classification accuracy obtained with the direct features, we

reported the highest accuracy obtained for the classifiers from the 13 derived features in isolation at different pacing rate/cell type in the bracket in One step and Two step classifier

columns. *The derived features were extracted from simulations of the drug-induced block of all the reported ion channel currents in the in-vitro assay datasets.

across the datasets (Figure 3). Using the threshold of 22 and 100
for the block of ICaV and hERG ratio, respectively, resulted in the
perfect classification for Dataset 1 (Mirams et al., 2011). However,
for Dataset 2 the hERG ratio threshold of 200 and threshold for

ICaV of 57 provided the best classification. Looking at the risk

maps in Figure 3 we can see that the thresholds that provide best

classification accuracy vary across datasets resulting in variations

in the obtained high risk zones across datasets. For datasets 3,

5, 7 where we also considered block of INaL as one of the input

feature in addition to the block of ICaV the value on y-axis of the
risk map were reported using Equation (5). A two-dimensional
risk map for Dataset 5 for two alternate TdP definitions is shown
in Figure 4. On the two-dimensional risk map with only ICaV
block on the y-axis, we also highlight, using a blue rectangular
outline, the separation between the region with EAD presence
and absence observed in the in-silico simulation at varying ICaV
blocks. For example, at critical hERG block simulations in the
model at block of ICaV less than 30% would result in EADs.
Block of ICaV by more than 30% results in suppression of the
observed EADs. There is approximate correspondence between
the EAD observance region in the in-silico model and the high
torsadogenic region obtained from classifying the direct-features
using machine learning.

3.3. Derived vs. Direct Features as
Predictors for TdP Risk
We examine the performance of classifiers from various derived
features extracted from the simulated action potential and
calcium transient in predicting TdP risk. Drug-induced multi-
channel block was simulated in the OHR model for all the
compounds in the merged dataset (Dataset 8) considering the
block IKr and ICaV channels. Simulations were also carried out
taking into account drug-induced block of all the channels with
available IC50 values. Taking into account the block of additional
channels resulted in similar accuracies and are reported in
the Supplemental Material. Figure 5 shows the performance
of the logistic-regression classifier to discriminate TdP+ and
TdP− drugs (Figures 5A,B) and to predict drug-induced EADs
(Figures 5C,D). The classifiers were built on 13 features extracted
from the steady-state APs and Ca2+ transients (for 3 cell types
at 3 pacing rates). The derived features were extracted at either
EFTPC of the drugs (Figures 5A,C) or at concentrations at which
each drug would produce 60% hERG block (Cdrug = IC60,hERG)
(Figures 5B,D). Among the various derived features obtained
at Cdrugs = EFTPC, diastolic Ca2+ levels provided the best
discrimination score between the TdP+ and TdP− drugs (∼79%
accuracy at 1 Hz in epi cell type, Figure 5A) in agreement with a
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FIGURE 3 | Two-dimensional TdP risk map; blocks of channels are on y-axes and hERG ratio on x-axes for (A) Dataset 1 (Mirams et al., 2011), (B) Dataset 2 (Kramer

et al., 2013), (C) Dataset 3 (Okada et al., 2015), (D) Dataset 3 (IKr , ICaV , INaL) (Okada et al., 2015), (E) Dataset 4 (Lancaster and Sobie, 2016), (F) Dataset 6 (Ando

et al., 2017), (G) Dataset 7 (IKr , ICaV ) (Li et al., 2017), (H) Dataset 7 (IKr , ICaV , INaL) (Li et al., 2017), and (I) Dataset 8 (merged dataset). The regions in green are low

risk regions and the regions in red are high risk areas. Red dots (•) indicate TdP+ drugs and green dots (•) indicate TdP− drugs. For comparsion purposes, we

superimpose a blue rectangular outline that shows the separation between EAD+ and EAD− regions of parameter space. For binary classification the high and

intermediate risk drugs in Dataset 7 were assigned TdP+ and the low risk drugs were assigned to TdP−.

previous report (Lancaster and Sobie, 2016). Classifier was also
built using APD50 and Diastolic Ca2+ together as inputs (the
combination that provided the best prediction in Lancaster and
Sobie, 2016) but did not give an improved classification for the
merged dataset. Several derived features performed well (>90%
accuracy) for EAD risk prediction (Figure 5). However, at drug
concentrations equal to IC60,hERG (Cdrug = IC60,hERG), each of

the 13 features from the Ca2+ transient and AP provided high
classification scores (∼85% maximum) for TdP risk assessment
(Figure 5C). The highest accuracy for each of the features
was obtained at different pacing rates (0.5, 1, and 2 Hz) and
for different cell types (endo, mid and epi). The maximum
classification scores to discriminate the drugs that induced EAD
in the model from the drugs that did not induce EADs was 100%
(Figure 5D) for each of the features. Our results suggest that at
fixed hERG block concentrations where trigger events such as
EADs arise, several derived features obtained from the model

including features from the Ca2+ transient can provide good
TdP risk prediction. These derived features also highly correlate
with EADs (Figure 5). However, the derived features extracted
from simulations of the drug-induced effects in ventricular
myocyte model did not result in much improvement in TdP
risk assessment over the classifiers built on the direct-features
using the proposed method (Table 4). Moreover, combining the
direct and derived features to build the TdP risk classifiers also
did not improve the classification performance (results are not
shown).

3.4. Direct Features Perform Well to Allow
Tertiary Risk Classification
Our results show that classifiers built on the direct features serve
as excellent predictors of TdP risk of the drugs categorized into
binary risk groups. However, a working committee under the
CiPA initiative led by FDA has recently categorized 28 drugs into
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FIGURE 4 | Two-dimensional TdP risk map for Dataset 5 (Crumb et al., 2016). The region in green is a low risk region and the region in red is a high risk area. Red

dots (•) indicate TdP+ drugs and green dots (•) indicate TdP− drugs. Blue rectangle outlines the separation of EAD+ (<30% CaV block) and EAD− (> 30% CaV

block) regions. The misclassified drugs are (A) Ranolazine (CM3, CP3), Cibenzoline (R5), Mibefradil (R4), Saquinavir (CM2) and Amiodarone (CM1, R1); (B)

Cibenzoline, Ranolazine, Mibefradil, Ritonavir (CM3), Saquinavir and Amiodarone; (C) Cibenzoline, Ranolazine, Quinine (CM3), Saquinavir and Amiodarone; and (D)

Cibenzoline, Ranolazine, Chlorpromazine (CM1), Saquinavir and Amiodarone. (A,B) TdP Definition 1: TdP+: Drugs belonging to R1,CM1,CH1 category or drug label

has TdP warning. (C,D) TdP Definition 2: TdP+: Drugs belonging to CM1 or CM2 category.

tertiary risk categories (low, medium, and high risk compounds)
(Colatsky et al., 2016; Fermini et al., 2016). Hence, we test the
predictive capabilities of the classifier based on direct features
to classify the drugs categorized into tertiary risk categories.
Figures 6A,B show a two-dimensional risk map for the 12 drugs
in Li et al. (2017). These drugs have been analyzed previously
using modified OHR model that incorporate dynamic hERG
channel interactions. The 12 drugs are a subset of the 28 drugs
categorized into three risk categories (CP1, CP2, and CP3) under
the CiPA initiative. As a first step, we developed a TdP risk
map using only the block of ICaV channel. The hERG ratio
threshold of 150 and the threshold of ICaV block of 45%, the
values that provided best classification for the merged dataset,
were utilized for classifying the low high and intermediate risk
drugs from low risk drugs Figure 6A. Arbitrary value of hERG
ratio and ICaV block of 25 and 15, respectively (a value greater
than the maximum hERG ratio and maximum block of ICaV
among the high risk drugs in Datasets 7 and 9) was utilized
to separate high risk drugs from the low and intermediate risk
drugs. Three of the four drugs in low risk (CP3) category were
classified correctly. Ranolazine was the only misclassified drug.
The boundaries of red zone were defined to include all high
risk drugs and hence all the drugs from CP1 category were
correctly classified. However, several drugs in intermediate risk

were incorrectly classified. Next, we built regression classifier
using as input metric the sum of block of ICaV , INaL channels
and the degree of drug-trapping parameter which was shown
to be essential to improve risk prediction of intermediate risk
drugs in the original dataset. Figure 6B shows the risk map built
using this metric. The threshold along the y-axis was obtained
from the regression coefficients. The hERG ratio threshold of
25 and 150 were utilized as before. Including the degree of
drug trapping characterized by open-bound/closed-bound ratio
for the drugs at steady-state (Li et al., 2017) as one of the
features in addition to the blocks of CaV and NaL channels,
resulted in the perfect separation of the 12 drugs in 3 categories
(Figure 6B).

We employed the same approach to test all of the 28
drugs (Fermini et al., 2016) categorized in CP1, CP2, and CP3
categories under the CiPA initiative. In-vitro assays for 12 of
these 28 drugs were reported in Crumb et al. (2016) and analyzed
in Li et al. (2017). To augment this dataset, we extract the
IC50 values for hERG and CaV blocks from Datasets 1, 2,
3, 5, 6, 7 resulting in characterization of 26 of the 28 drugs
categorized under the CiPA initiative. Two drugs (Azimilide and
Loratidine) were absent in all of the datasets analyzed here and
hence were not taken into consideration. We used the mean
value of the block if the drug was present in more than one
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FIGURE 5 | Heat maps of leave-one-out cross validation scores for logistic regression classifiers built on 13 features extracted from the APs and Ca2+ transients in

OHR model simulations. Drug-induced multi-channel block evaluated in the mid, endo and epi cell types at 500, 1,000, and 2,000 ms pacing rates. TdP risk

classification at (A) EFTPC drug concentrations and (B) drug concentrations equal to hERG IC50. EAD induction classification at (C) EFTPC drug concentrations (D)

drug concentrations equal to hERG IC50.

dataset. The final dataset of the 26 drugs is reported in the
Supplemental Material. Figure 6C show the two-dimensional
risk maps for the 26 drugs with hERG ratio on the x-axis and
the block of CaV on the y-axis. The 45% ICaV block threshold
and hERG ratio threshold of 150 yielded almost perfect binary
classification (high and intermediate vs. low risk drugs) with
only 2 (Ranolazine and Tamoxifen) drugs of the 8 from the CP3
category and one drug (Clozapine) of the 16 drugs from CP1
and CP2 cateogry (high and intermediate risk drugs) classifying
incorrectly. However, no clear separation was observed amoung
the drugs in CP1 and CP2 categories, with several drugs from
CP2 category ending up in the high risk region. Considering
additional features such as INaL and the degree of drug trapping
(if either of the features were not available their value was set
to zero) and utilizing the threshold obtained from training the
Dataset 7 (Figure 6B) resulted in only 3 intermediate risk drugs
(Clarithromycin, Domperidone, Droperidol) and 1 low risk drug
(Tamoxifen) of the 26 drugs to be misclassified (Figure 6D).
The classifier already performs well in spite of testing data

from heterogeneous sources with some missing values. Further
refinement of the method may be possible when a dataset
is available with all 28 drugs characterized with a consistent
methodology.

3.5. Diverse Definition of Drugs
Torsadogenicity Lead to Different
Prediction Accuracies
Different binary definitions for the drug’s torsadogenic risk have
been used across the literature (Lancaster and Sobie, 2016;
Ando et al., 2017; Wiśniowska and Polak, 2017). Tables 5, 6
list the different classification accuracy scores obtained for four
different binary TdP definitions (Datasets 5 and 8, respectively).
Classifiers were constructed on the block of one or multiple-ion
channels as inputs at critical hERG block concentrations (Cdrug =

IC60,hERG). The various definitions not only resulted in variability
of classification scores (Tables 5, 6), but also changed the role
of different ion channels in accurate TdP risk classification
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FIGURE 6 | Two-dimensional TdP risk map for Dataset 7 (Li et al., 2017) (A,B), and drugs in Fermini et al. (2016) (C,D). The region in green is a low risk region. Yellow

region is an intermediate risk region, and the region in red is a high risk area. Red dots (•) indicate high risk drugs, green dots (•) indicate low risk drugs and orange

dots (•) indicate intermediate risk drugs. Metric = % block CaV + % block NaL + degree of drug trapping.

TABLE 5 | Accuracy scores of TdP classifiers on the direct features for Dataset 5

under four different TdP definitions.

Crumb et al., 2016 Target 1 Target 2 Target 3 Target 4

2-step Cdrug = IC60,hERG, direct features

Step1:IC60,hERG/EFTPC 73 60 60 60

Step1:IC60,hERG/EFTPC
83 83 70 70

Step2:% block ICaV

Step1:IC60,hERG/EFTPC
80 83 83 76

Step2:% block ICaV & INaL

Step1:IC60,hERG/EFTPC
80 83 83 76

Step2:% block ICaV , INaL & IKs

2-step Cdrug = IC60,hERG, Derived Features

Step1:IC60,hERG/EFTPC
83 83 83 76

Step2: Derived features

Target1: TdP+ = CM1, CH1, R1, R2, R3, and FDA label QT prolongation and torsade

warnings. Target 2: TdP+ = CM1 and CM2. Target 3: TdP+ = CM1. Target 4: TdP+

= CM1 and CM3. Row reporting the maximum accuracies obtained using the derived

features is reported for comparision with the direct features.

(Table 5). Using the block of ICaV currents provided the best
accuracy scores under two of the four definitions (Target 1
and Target 2) for Dataset 5. Including the effects on additional

TABLE 6 | Accuracy scores of TdP classifiers on the direct features for Dataset 8

under four different TdP definitions.

Dataset 8 Target 1 Target 2 Target 3 Target 4

2-step Cdrug = IC60,hERG, direct features

Step1:IC60,hERG/EFTPC 77 69 64 66

Step1:IC60,hERG/EFTPC
85 77 74 73

Step2:% block ICaV

Step1:IC60,hERG/EFTPC
85 76 74 72

Step2:% block ICaV & INa,fast

2-step Cdrug = IC60,hERG, derived features

Step1:IC60,hERG/EFTPC
86 76 74 73

Step2: Derived features

Target1: TdP+ = CM1, CH1, R1, R2, R3, and FDA label QT prolongation and torsade

warnings. Target 2: TdP+ = CM1 and CM2. Target 3: TdP+ = CM1. Target 4: TdP+

= CM1 and CM3. Row reporting the maximum accuracies obtained using the derived

features is reported for comparision with the direct features.

ion-channels did not improve classification scores for these two
definitions. Taking into account the block of late sodium currents
in addition to CaV channels, provided the best classification
accuracy for remaining two of the four TdP definitions (Target
3 and 4) (Table 5).
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4. DISCUSSION

Evaluation of drug-induced alterations in multiple cardiac ion-
channel currents to determine the drug’s torsadogenic potential
is currently under investigation through initiatives like CiPA
(Comprehensive In-vitro Proarrhythmia Assay) (Sager et al.,
2014; Fermini et al., 2016). We have developed a novel two-
step method (MCB@EAD) for classification of drugs according
to their torsadogenic risk. Using the proposed method, we
examined the drug effects at fixed hERG block (i.e., 60% block)
concentrations for all tested compounds. This approach allows
to isolate the effects of hERG and non-hERG channels in
the classification problem. The proximity of the drug’s EFTPC
to the concentration that results in the critical hERG block
provides one of the metrics for determining the drug’s TdP
risk. For the drugs that induce this critical hERG block at
concentrations below a set threshold, the drug-induced effects on
non-hERG channels provide an additional metric to determine
pro-arrhythmic risk independently of the drug’s EFTPC. Our
classifier shows improved or equivalent prediction to existing
methods. However, one of the advantages compared to previous
studies is that the direct and derived features based MCB@EAD
classifiers were tested on several in-vitro assay datasets reported
previously, as well as on a large composite dataset obtained by
merging the different datasets together. One of the important
findings of the study was that MCB@EAD TdP classifiers from
the direct features provides excellent TdP risk prediction and
performs identical to the TdP classifiers from the derived
features, which are extracted from complex biophysical models.
Although the derived features provided by the biophysical
models did not improve the predictive capability for TdP risk
assessment, the biophysical models helped determine the amount
of block that generates EADs (i.e., the concentration at which
the direct features are analyzed using the MCB@EAD classifier).
The proposed method not only performs comparably or better
than the previous classifiers (Table 4) across various in-vitro
assay datasets published previously, but also highlights the link
between direct and derived feature based classifiers. The results
also show strong correlation between the drugs that generate
EADs and the drugs with positive TdP risk.

4.1. Ion-Channels Critical for TdP Risk
Prediction
Although the role of multiple ion-channels have been suggested
for improved TdP risk prediction, classifiers have been primarily
built on the blocks of IKr , ICaV , and INa,peak currents (Mirams
et al., 2011; Christophe, 2013, 2015; Kramer et al., 2013; Lancaster
and Sobie, 2016). A recent assay reports the drug-induced
effects on seven ion channels (Crumb et al., 2016) providing an
opportunity to identify the ion channels that are important for
pro-arrhythmic risk assessment. The results of our parametric
simulations of EAD indicate a potential role of block of ICaV ,
INaL, and IKs currents, in addition to IKr , for determination of
torsadogenic risk of the drugs (Figure 2). It should be noted
that the EAD simulations results are highly dependent on the
ventricular myocyte model. For example, block of late sodium
current in the OHRmv plays a more prominent role in regulation

of AP sensitivity to EADs as compared to the OHR model
(Figure 2A). The IKs plays a much bigger role in Ten Tusscher
and Panfilov model (Ten Tusscher and Panfilov, 2006) than OHR
model in regulation of APD as shown in Mirams et al. (2014).
The present datasets have limited examples of block of ICaV ,
INaL, and IKs currents in the same compounds. Moreover, among
the non-hERG channels, the regulatory effect of ICaV block was
the highest with the block of ICaV by only 30% resulting in
EAD suppression at critical hERG current block (Figure 2). The
classifiers constructed on the block of IKr and ICaL provided the
best discrimination between torsadogenic and non-torsadogenic
drugs for the majority of the datasets tested here, including the
dataset where drug-induced effects on seven ion channels were
reported (Figure 2, Tables 4, 5). Our results suggest that among
different channels, examination of block of ICaV and IKr might
be the most critical for TdP risk prediction. Relative block of
ICaV and IKr (among the three currents measured in the in-vitro
assay) was shown to provide the best risk prediction, with no role
of peak/fast sodium currents in improving the classification in
Kramer et al. (2013).

Examination of late sodium block can be important for the
drugs with low to moderate ICaV block as these drugs would be
predicted TdP+ if only IKr and ICaV block are considered for risk
prediction. Moderate to high block of INaL by these drugs can
result in suppression of EADs (Figure 2) indicating lower TdP
risk. Earlier datasets did not report values for INaL block. Dataset
5 reports the value of drug-induced block of seven ion-channels,
including the block of INaL. Among the drugs with low to
moderate ICaV in Dataset 5, only three drugs [Ranolazine(CM3),
Toremifene(CM2) and Quinine(CM3)] have greater than 30%
INaL block at critical hERG block concentrations. For the limited
data with inconsistent risk categorization, taking into account the
INaL block did not improve predictive power of the classifiers
(Tables 4, 5). A small improvement in TdP prediction was
observed for Datasets 3 and 7 (Okada et al., 2015; Li et al.,
2017) when considering drug-induced block of INaL as one
of the input features by correctly classifying Ranolazine (the
only drug with high late sodium block in absence of ICaV
block) in both the datasets (Table 4 and Figure 3). The limited
data and inconclusive/minor improvement in torsadogenic risk
classification make it difficult to ascertain the role of ion channels
such as INaL and IKs in predicting TdP risk.

4.2. Predictive Power of Direct vs. Derived
Features
In-silico biophysical models can be thought of as a complex non-
linear transfer function, which translates the drug-inducedmulti-
channel block effects at channel level (input) to alterations in APs
and calcium transients at cellular/tissue levels (output). Several
in-silico electrical biophysical models of human ventricular cell
models have been published over the last decade (e.g.,Ten
Tusscher and Panfilov, 2006; Grandi et al., 2010; O’Hara et al.,
2011; Himeno et al., 2015). TdP risk classification on features
extracted from the drug-induced responses in isolated cell
(Mirams et al., 2011; Christophe, 2013, 2015; Lancaster and
Sobie, 2016), tissue (Trenor et al., 2013; Kubo et al., 2017)
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or organ level (Okada et al., 2015) computational models can
provide physiological/mechanistic insights. Moreover, in-silico
models serve as an excellent tool for evaluation of drug-safety
in diseased conditions (Trenor et al., 2013; Kubo et al., 2017).
Our simulations in the OHRmv model under pathological
conditions (enhanced late sodium currents) reveal that EAD can
appear at significantly lower drug concentrations as only 30%
hERG block was required to induce pause-induced EADs under
pathological conditions compared to 60% hERG block under
normal conditions. Moreover, the modulatory effects of non-
hERG channels on EAD induction was also significantly different
for simulations under pathological conditions (Figure 2). On the
other hand, biophysical models show considerable differences in
their formulations and can lead to different predictions based
on the chosen model. Simulations of EAD generation show
a significant difference between the surfaces separating EAD+
region from EAD− region, that are obtained from the OHR and
OHRmv models (Figure 2). Recently, several efforts have been
carried out for optimization of in-silico cardiac cell models for
pro-arrhythmia risk assessment (Dutta et al., 2016; Mann et al.,
2016; Li et al., 2017).

Statistical/machine learning classifiers that use measured in-
vitro block of multiple cardiac channels (direct features) as their
input (Kramer et al., 2013; Mistry et al., 2015) demonstrated
comparable accuracy as compared to TdP risk classifiers built on
derived features, questioning the need of additional complexity
provided by the in-silico models. On the contrary, the study
by Okada et al. suggested the need of highly detailed three-
dimensional cardiac models for pro-arrhythmic risk assessment
and showed relatively low predictive ability using the direct
features and also certain derived features from the in-silico
lumped parameter (zero-dimensional) cellular models (Okada
et al., 2015). Derived features from in-silico simulations that
incorporate dynamic drug-hERG channel interactions were
shown to improve prediction of TdP risk (Li et al., 2017). For
all the datasets tested here, including the datasets in Okada
et al. (2015) and Li et al. (2017), we showed that the classifiers
built on the direct features performed equally or better than
the previously developed classifiers on the derived features
(Table 4). Our results show that for currently available in-vitro
assay datasets simple models based on the direct features can
provide similar accuarcy to more complex models based on
derived features. It should be noted that our two-dimensional risk
classifiers on the direct features also utilized insights gained from
the computational models (the direct features are examined at
critical hERG block concentrations where EAD can arise in the
in-silico models). Our parametric simulation for EAD induction
highlights one of the possible reasons for the insignificant
improvement in predictive power of classifiers built on the
derived features from the in-silico models. Although a non-
linear surface is obtained from the in-silicomodels separating the
EAD+ and EAD− regions (Figure 2), a hyperplane

a× blockICaV + b× blockINaL + c× blockIKs + d = 0 (6)

constructed using direct features can result in nearly identical
separation, where a, b, c, and d are the parameters of the

hyperplane and blockICaV , blockINaL , and blockIKs are the values of
block of ICaV INaL, and IKs, respectively. Moreover, with most of
the datasets comprising values for block of few channels (Mirams
et al., 2011; Kramer et al., 2013) and the much higher incidence
of drug-induced block of particular ion channels (INaL, ICaV , and
IKr) even when drug-induced modulation of several channels
are examined (Crumb et al., 2016), the result is a congregation
of majority of the data in a small region of the plausible high-
dimensional risk space (e.g., see Figure 2). For example, the data
in Mirams et al. (2011) and Kramer et al. (2013) would fall on
a single edge of the 3D EAD space in Figure 2 in the absence of
values for drug-induced block on INaL and IKs in these datasets.
This allows risk classification to be performed by a hyperplane
with a single parameter, such as blockICaV . Here, we utilized an
additional metric, i.e., the hERG ratio, to further improve the
classification performance of the direct-feature based classifiers
(Figures 3, 4, 6). For the limited data currently available, risk
classification using simple statistical models built on the direct
features as the one presented here may suffice.

4.3. Diversity in the Proposed Derived
Features
The classifiers built on derived features obtained from the in-
silico models are based on certain underlying physiological
phenomenon (APD, increase in calcium levels, etc.). Hence,
derived features are thought to allow better extrapolation to
examine drug targets other than those in the training set.
However, diverse derived features from the in-silico models
have been suggested as possible candidate metrics. Several
features from the biophysical models, such as APD50, APD90,
calcium level peak, and CaD90 provided the best classification
depending on the selected in-silico model (Mirams et al., 2011).
Other derived features (EADs, TDR, change in ICaV & INaL)
extracted from the AP and calcium transient (Christophe, 2013,
2015; Li et al., 2017) have also been suggested as possible
candidatemetrics for TdP risk prediction. Rather than examining
the individual features separately, a recent study performed
a comprehensive feature selection among 331 metrics and
determined that two metrics, APD50 and diastolic Ca2+ in the
OHR model at 1 Hz pacing, provided the best discrimination
between torsadogenic and non-torsadogenic drugs (Lancaster
and Sobie, 2016). The overall diversity in reported plausible
candidate metrics for TdP risk classification can be attributed
to different simulation protocols, drug concentrations and
biophysical models. We showed that several derived features
obtained from the in-silico models may track together and
provide equal predictive power for risk classification when
examined independent of drug EFTPC (Figure 5C). Equal
predictive ability of several featuresmakes it difficult to determine
the underlying causal mechanism. In addition, the identical
performance of several derived features limits the extensibility of
the classifier to untrained targets, as classification results depend
on the specific set of features chosen to perform the classification.
For example, examination of untrained ion-channel targets
using a classifier with diastolic Ca2+ level as the primary risk
discriminating feature predicts a decrease in torsadogenic risk
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for increased Na+ − Ca2+ currents (Lancaster and Sobie, 2016).
On the contrary, TdP risk prediction under Na+ − Ca2+

modulation using a classifier with APD50 or APD90 as the
primary discriminating feature would predict opposite effects,
with decreased Na+ − Ca2+ exchanger current being associated
with decreased TdP risk. Moreover, the derived features obtained
from the highly complex biophysical models did not result in
improved prediction over the classfiers built on the direct features
using the proposed method.

4.4. Limitations
One of the primary limitations is the quality of the datasets
itself. The variability in the IC50 values among the several
datasets can be one of the reasons for the observation
of different thresholds for the hERG ratio and ICaV block
that resulted in the best discrimination between TdP+ and
TdP− drugs (Figure 3). Quantification of the uncertainties
in the in-vitro channel screening data and their effects on
risk prediction are presented in Johnstone et al. (2016).
Inconsistencies in risk definition presents another important
challenge for torsadogenic risk assessment. Wiśniowska and
Polak (2017) reports a comprehensive list of compounds that
have been inconsistently defined as TdP+ or TdP− in different
studies to develop torsadogenic risk classifiers. The different
categorizations can lead to different interpretations and accuracy
scores for TdP risk determination (Table 5). Standardization
of torsadogenicity definition, which would allow comparison
of the performance of different classifiers/features, is required.
Certain steps in this direction have been started. Based on
a general consensus, a working group formed under CiPA
initiative picked 28 compounds and categorized each into
three groups (Colatsky et al., 2016; Fermini et al., 2016)

for testing/training of the classifiers. In-silico simulations of
dynamic drug-channel interactions might be essential to further
improve the TdP risk assessment (Li et al., 2017). Inclusion
of the drug-binding parameter, in addition to the amount of
block of ion-channels, resulted in 100% prediction using our
approach. Sufficient IKr block was assumed to be necessary
for TdP generation in our method. The effects of non-hERG
channels are thought to enhance or mitigate the torsadogenic
effects of IKr block. The method resulted in excellent predictive
performance across several datasets that report drug-induced
block of various ion channels only. However, drug-induced
enhancement of ion-channel currents such as INaL can result
in increased TdP risk in the absence of hERG block (Lacerda
et al., 2008; Yang et al., 2014). The method could be further
extended to examine such effects when more data are available.
The present work not only provides a new method for in-
vitro ion-channel screening based TdP risk classification but
also highlights several important issues in regards to the use
of drug-induced multi-channel blockage for torsadogenic risk
prediction.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective

and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both

atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+

current (INa) has been hypothesized to be anti-AF, without inducing significant QT

prolongation and ventricular side effects. However, the antiarrhythmic advantage of

simultaneously blocking these two channels vs. individual block in the setting of

AF-induced electrical remodeling remains to be documented. Furthermore, many IKur
blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the

atria. Whether this multi-K+-block produces greater anti-AF effects compared with

selective IKur-block has not been fully understood. The aim of this study was to

use computer models to (i) assess the impact of multi-K+-block as exhibited by

many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and

INa, either alone or in combination, on atrial and ventricular electrical excitation

and recovery in the setting of AF-induced electrical-remodeling. Contemporary

mathematical models of human atrial and ventricular cells were modified to incorporate

dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur
while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition

of INa was also incorporated into the models. These single myocyte models were

then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D)

anatomical models of the human atria. As expected, application of IKur blocker

produced pronounced action potential duration (APD) prolongation in atrial myocytes.

Furthermore, combined multiple K+-channel block that mimicked the effects of

acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following

inhibition of INa and combined IKur/K
+-channels were also observed. The attainable

maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or

multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects

of combined block of Na+- and K+-channels were also seen in 2D and 3D

simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation
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waves, exerting improved antiarrhythmic effects in the human atria as compared to a

single-channel block. However, in the human ventricular myocytes and tissue, cellular

repolarization and computed QT intervals were modestly affected in the presence of

actions of acacetin and INa blockers (either alone or in combination). In conclusion, this

study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and

INa, as well as those of INa and combined multi K+-current block of acacetin, without

significant alterations of ventricular repolarization and QT intervals. This approach may

be a valuable strategy for the treatment of AF.

Keywords: atrial-selective block, atrial fibrillation, sodium and potassium current block, multiscale simulation,

synergistic antiarrhythmic effect

INTRODUCTION

Despite recent advances in the management of Atrial fibrillation
(AF), the world’s most common cardiac arrhythmia (Dobrev
et al., 2012; Nattel and Dobrev, 2017), developing effective
and safe antiarrhythmic drugs for treatment of AF remains
challenging (Aguilar-Shardonofsky et al., 2012; Aguilar et al.,
2015). Frequently these antiarrhythmic agents promote
ventricular arrhythmias (Dobrev et al., 2012; Woods and
Olgin, 2014; Voigt and Dobrev, 2016) by prolonging cellular
action potential durations (APDs). The associated QT-interval
prolongation can lead to life-threatening consequences.
Developing atrial-selective drugs is acknowledged to be a current
strategy for the treatment of AF (Burashnikov et al., 2007).

Atrial and ventricular tissues show intrinsic regional
differences in their cellular ion channel properties, thus
suggesting a basis for developing atrial-selective drugs. For
example, the atrial and ventricular fast sodium (Na+) channel
currents (INa) exhibit different voltage-dependent inactivation
properties, opening the opportunity for atrial-selective Na+

channel blockade (Burashnikov et al., 2007; Antzelevitch and
Burashnikov, 2009; Zygmunt et al., 2011). Previous simulation
studies have demonstrated that by optimizing state-dependent
Na+-channel blocking dynamics (i.e., drug-channel interaction
parameters), atrial-selective block of INa could be achieved
and that could maximize pharmaceutical effects on the atria
while minimizing their proarrhythmic actions in the ventricles
(Aguilar-Shardonofsky et al., 2012; Aguilar et al., 2015).

Another tissue-specific difference between the atria and

ventricles is that the ultra-rapid delayed rectifier potassium

current (IKur, carried by the KV1.5 channel) contributes to

repolarization in the atria but plays little role in the ventricles

(Tamargo et al., 2009; Ravens andWettwer, 2011). Recent studies
suggest that atrial-selective blockade of IKur may be an effective
pharmacological treatment of AF (Li et al., 2008; Pavri et al.,
2012; Loose et al., 2014; Ford et al., 2016). Although the efficacy
of IKur block in the treatment of AF remains controversial
(Burashnikov and Antzelevitch, 2008), multiple IKur blockers
have been developed (Tamargo et al., 2009; Loose et al., 2014;
Wettwer and Terlau, 2014; Ford et al., 2016). Interestingly, these
IKur blockers actually target multiple channels, and are known
to inhibit other K+ currents including Ito and IK,ACh in the atria
(Burashnikov and Antzelevitch, 2008). Examples of such blockers

include AVE0118 (Gögelein et al., 2004), AVE1231 (Wirth et al.,
2007), AZD7009 (Persson et al., 2005), and acacetin (Li et al.,
2008). Among these channel blockers, acacetin, a natural flavone
initially isolated from a traditional ChinesemedicineXuelianhua,
potently blocks IKur, Ito, and IK,ACh, and has a smaller potency
in inhibiting IKr and IKs (Li et al., 2008), similar to AVE0118
(Gögelein et al., 2004; Haan et al., 2006). Acacetin is regarded
as a promising atrial-selective agent for the treatment of AF
(Li et al., 2008). However, the actions of acacetin on atrial
electrophysiology, especially its effects following AF-induced
electrical remodeling of atrial electrophysiological properties
(Dobrev et al., 2012), remain to be elucidated. Furthermore,
since most IKur blockers inhibit other K

+ channels, the question
whether the “additional” inhibitive actions produce favorable
antiarrhythmic effects has not been addressed thoroughly. A
better understanding of these effects of modulating multiple ion
channels on atrial excitation and recovery/repolarization may
provide insights into evaluating and developing antiarrhythmic
drugs.

Interestingly, simultaneous multiple-channel blocking of both
depolarization and repolarization currents is attracting more
attention since empirical observations suggest that such multi-
channel blockers generallymediatemore effective antiarrhythmic
effects (Kirchhoff et al., 2015; Reiffel et al., 2015; Hartmann
et al., 2016). A recent numerical and experimental study on the
canine heart (Aguilar et al., 2015) suggested that blocking K+

currents enhanced the anti-arrhythmic effects and AF-selectivity
of INa blockade. In their study, IKur block was modeled using a
simple pore block scheme by reducing the conductance of the
channel. As the kinetics of drug action plays an important role
in the effects of IKur blockers (Scholz et al., 2013; Ellinwood
et al., 2017), in simulating IKur block a state-dependent block
model reproducing a realistic blocker is more favorable. Once
again, the effects of combined INa and IKur block on the human
atria, especially in the setting of AF-induced electrical remodeling
which reduced IKur, remain to be elucidated. It is also unclear
how multiple-channel blockade may affect QT interval.

In the present study, it was hypothesized that combined block
of INa and K+-currents (predominantly IKur) could produce
antiarrhythmic benefits compared with the application of either
blocker alone in the setting of AF-induced electrical remodeling.
We have tested the hypothesis with the following three aims:
(i) to identify and illustrate the effects of the realistic IKur
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blocker, acacetin, on atrial electrophysiology following AF-
related remodeling; (ii) to assess whether combined INa and
IKur block produce synergistic antiarrhythmic effects; and (iii) to
investigate the action of such drug combinations on ventricular
electrophysiology.

METHODS

Modeling Electrophysiology of the Human
Heart
To simulate human atrial electrophysiology, an updated Colman
et al. model for atrial electrophysiology (Colman et al., 2013,
2017) was used. For in silico study of effects of chronic AF-
(cAF) induced electrophysiological remodeling on the atria, we
incorporated the cAF model parameters from our previous study
(Colman et al., 2013) into the updated atrial single cell model (for
details please see Online Supplement Material 1.1).

To assess the effects of the anti-AF drugs on the human
ventricles, simulations were performed to investigate the actions
of the anti-AF drugs on the ventricular AP, INa and QT intervals
in the electrograms. In these simulations, the mathematical
model developed byO’Hara et al. (2011) was used to represent the
ventricular electrophysiology. Additionally, the INa formulation
in the model was replaced by the one in the Luo–Rudy model
(Luo and Rudy, 1994), which enabled electrical excitation to
propagate in the tissue model.

More detailed descriptions of the electrophysiological models
of human atrial and ventricular cells are given in Online
Supplementary Material 1.1.

Modeling State-Dependent INa Block
As in previous studies (Aguilar-Shardonofsky et al., 2012; Aguilar
et al., 2015), INa block was simulated using a guarded receptor
model with dynamical drug-channel interactions. This approach
allows for investigations of the role of the specified parameters
for selected INa blockers, and effects of combined IKur block
on the atrial selectivity of Na+-channel block. The guarded
receptor model considers the binding and unbinding kinetics
of the drug to INa channels in a drug concentration-dependent
manner. They can be described by first-order transition equations
(Aguilar-Shardonofsky et al., 2012; Aguilar et al., 2015). It was
also assumed that the drug predominantly binds to the activated
and/or inactivated states of INa. The blockade of INa is given by
Aguilar-Shardonofsky et al. (2012) and Aguilar et al. (2015):

INa = gNa (1− BA − BI)m
3hj (Vm − ENa) (1)

dBA

dt
= KA [DNa+ ]m

3hj (1− BA − BI) − LABA (2)

dBI

dt
= KI [DNa+ ] (1− h) (1− BA − BI) − LIBI (3)

where gNa is the maximum conductance of INa; BA and BI are
the fractional blockade of activation and inactivation channels;m
is the activation gate state variable, h and j are the inactivation
gate state variables; Vm the transmembrane potential; ENa the
reversal potential of Na+; KA, KI the binding constants and LA,
LI the unbinding constants; [DNa+ ] is the concentration of a

Na+-blocker. As in previous studies (Aguilar-Shardonofsky et al.,
2012; Aguilar et al., 2015), a concentration of 60µMwas utilized
unless otherwise stated; this concentration was chosen based on
previous experimental and modeling studies (Zhu et al., 2006;
Moreno et al., 2011; Aguilar-Shardonofsky et al., 2012; Aguilar
et al., 2015); a parameter set (KA = 100 ms−1· M−1, KI = 100
ms−1· M−1, LA = 1 ms−1, LI = 0.01 ms−1) was first used to
represent the kinetics of an INa-selective blocker.

In our investigations of the AF-selectivity of INa block
following AF-remodeling, the binding and unbinding constants
of the INa blockers were varied to evaluate the dependence of INa
block on these parameters, and whether an atrial-selective anti-
AF action could be achieved in cAF-remodeled myoctes. The AF-
selectivity of Na+-channel blockade was defined as the product
of atrial-selectivity, rate-selectivity and block efficacy. With
fractional block (Bf) by Na

+-channel blockers being measured as
the relative reduction in the peak of INa, the rate-selectivity was
defined as the ratio of Bf measured in an atrial myocyte paced
at 6Hz to that paced at 1Hz (Aguilar-Shardonofsky et al., 2012;
Aguilar et al., 2015). Atrial-selectivity was used to determine the
extent of atrial-ventricular difference in response to each drug.
This was represented by the ratio of Bf observed from an atrial
myocyte to that of a ventricular cell both paced at 1Hz. In this
study, we defined block efficacy (E) as:

E =
1.0

1.0+
(

0.5
Bf,6Hz

)4
(4)

where Bf,6Hz is the fractional block of INa measured in an
atrial cell paced at 6Hz. Different from Aguilar et al. (2015),
we introduced block efficacy to constrain the measure of AF-
selectivity when the fractional block observed in a ventricular
cell paced was minimal (and could result in a great atrial-
selectivity), which otherwise could give a great value in AF-
selectivity regardless of a small Bf,6Hz.

To assess the dependence of the AF-selectivity of INa block on
the drug action kinetics, the unbinding constants LA and LI were
first varied over a parameter space from 10−5 to 100 ms−1, while
KA and KI were fixed (see Figure S6 of online Supplementary
Materials for more details). The resultant unbinding constants
were used in subsequent optimizations varying KA and KI . The
parameter space was {1, 10, 100, 500, 2,500, 10,000} for KA and
{1, 10, 100, 200, 500, 2,500} for KI . The parameter space fell
into a likely range of INa blockers as summarized in Aguilar-
Shardonofsky et al. (2012).

Modeling Effects of Acacetin on Atrial and
Ventricular Electrophysiology
Acacetin was the chosen IKur blocker in the present study. To
reveal the functional effects of (i) pure IKur block vs. (ii) the
effects of combined K+ currents block by acacetin on human
atrial electrophysiology, the actions of acacetin were modeled
by considering its effects on (a) IKur only, and (b) all the
respective K+ currents as detailed in Table 1. This approach
allows for modeling the effects of the selective IKur block as well as
uncovering the role of “additional” inhibitory effects of acacetin
on other K+ currents.

Frontiers in Physiology | www.frontiersin.org November 2017 | Volume 8 | Article 946157

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ni et al. Synergistic Antiarrhythmic Sodium and Potassium Block

TABLE 1 | Concentration-dependent block of K+-currents by acacetin (Li et al.,

2008; Wu et al., 2011).

IKur Ito IKr IKs

IC50 (µM) 3–3.2 9.3 32.4 81.4

Hill coefficient 0.8 0.9 0.9 0.8

Fractional inhibition at 3.2µM 50% 28% 11% 7%

Modeling Effect of Acacetin on IKur
Previous modeling studies have demonstrated the important role
of the kinetic properties of drug actions in IKur block (Tsujimae
et al., 2008; Almquist et al., 2010; Scholz et al., 2013). In addition,
the pharmaceutical effects of acacetin on IKur are characterized
by use- and rate-dependencies (Wu et al., 2011), which have
also been observed in other IKur blockers (Pavri et al., 2012;
Ford et al., 2016). Therefore, it was necessary to adopt a state-
dependent block model (Brennan et al., 2009) for simulating
the blockade of IKur by acacetin. Similar to our approach for
modeling INa block, the binding and unbinding kinetics of a drug
was described by a first-order transition equation, in contrast
to simulating IKur block by reducing its conductance in Aguilar
et al. (2015). Experimental studies revealed that acacetin binds
to both the open and closed gates of KV1.5 (Wu et al., 2011).
Therefore, following the guarded receptor formulas given in
Equations (1–3), the formulation of inactivation-state binding
and unbinding kinetics in INa block was modified to simulate
the closed-state block of IKur by acacetin. The guarded receptor
model of IKur block by acacetin is given by:

IKur = gKur (1− BO − BC) ai (Vm − EK) (5)

dBO

dt
= KO exp

(

ZKO
VmF

RT

)

[DK+ ] ai (1− BO − Bc)

−LO exp

(

−ZLO
VmF

RT

)

BO (6)

dBc

dt
= Kc exp

(

ZKc
VmF

RT

)

[DK+ ] (1− a) i (1− BO − Bc)

−Lc exp

(

−ZLc
VmF

RT

)

Bc (7)

where gKur is the conductance of IKur; Bo and BC are the fractional
block on open and closed state variables, respectively; a and
i are the activation and inactivation gate variables; EK is the
reversal potential of potassium; F, R, and T are the Faraday’s
constant, universal gas constant and temperature respectively.KO

and Kc are the binding constants; LO and Lc are the unbinding
constants; ZKO, ZLO,ZKc and ZLc are the drug charge parameters
for the corresponding binding or unbinding processes; [DK+ ]
is the concentration of acacetin applied. The binding and
unbinding parameters were obtained by fitting the model to the
experimental data on the rate-dependent blockade of IKur by
acacetin (Wu et al., 2011), as detailed in Online Supplementary
Material 1.1.

Figure 1 shows a simulated frequency-dependent block of
IKur by acacetin, and this is compared to the experimental

data (Figures 1A,B). As shown, repeating the voltage command
(Figure 1B, insert) at 0.5Hz resulted in an approximately 50%
blockade in this current after application of 3µM acacetin.
Increasing the voltage command rate to 4Hz significantly
increased the relative fractional block to approximately 63%
(Figure 1C).

Modeling Effect of Acacetin on Ito, IKr, and IKs
In addition to inhibiting IKur in the atria, acacetin potently
blocks both Ito and IK,ACh, and also modulates IKr and IKs,
exhibiting multiple K+-current block. The parameters of Hill
equations describing use-dependent inhibitions of these channels
by acacetin are shown in Table 1. In the simulations, the effects
of acacetin on these channels were modeled using a simple pore
block model (Yuan et al., 2015). In the present study, we did not
simulate the effects of acacetin on IK,ACh inhibitions as the role of
autonomic regulation on AF is beyond the scope of the study.

Simulations of the Effects of Acacetin on Human

Ventricle
The effects of acacetin on human ventricular APs are unknown,
although experimental data demonstrated that acacetin at 30µM
did not affect the heart rate and QT interval in isolated rabbit
hearts (Li et al., 2008). In the present study, it was assumed
that similar effects on the K+ currents (Ito, IKr, IKs) in atrial
myocytes could be extrapolated to the ventricular myocytes. We
acknowledge that IKur is negligible in ventricles (Ravens and
Wettwer, 2011), therefore in simulations of blocking IKur alone,
the ventricular electrophysiology was not affected.

Tissue Models
The effects of acacetin and INa blockers on atrial and ventricular
electrophysiology were further evaluated using tissue models.
The monodomain equation (Clayton et al., 2011) was employed
to simulate the excitation wave propagation in the myocardium.
1D models of human atrial strands were used to quantify the
effects of channel blockers on atrial conduction velocity and APD
restitution properties. Changes in ventricular depolarization and
repolarization in response to these drugs were evaluated using
a 1D model representing a transmural strand of ventricular
tissue. In order to evaluate the antiarrhythmic effects of the
channel blockers on re-entrant excitations in atria in the setting of
cAF-induced remodeling, both idealized 2Dmodels representing
an isotropic slab of atrial tissue and an anatomically accurate
3D model of the human atria (Aslanidi et al., 2011; Colman
et al., 2013, 2017; Whittaker et al., 2017) were employed to
simulate the behavior of re-entrant excitations in atrial tissue.
Pseudo-ECGs (pECGs) (Gima and Rudy, 2002; Baher et al.,
2006) were computed as a measure of the excitation rates of in-
tissue with sprial excitation waves. Detailed descriptions of these
tissue models and pECGs are given in Online Supplementary
Material 1.2, 1.3.

RESULTS

The updated Colman et al. human atrial model was first
used to simulate effects cAF-induced remodeling on the
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FIGURE 1 | Frequency-dependent inhibition of IKur by acacetin. (A) Experimental and (B) simulated traces of KV1.5 channel current elicited from the 20th voltage

step repeating at 0.5 and 4Hz in control (left) and after exposure to 3µM of acacetin (right). (C) Relative remaining IKur following application of acacetin at various

frequencies plotted against the pulse number of the voltage step. The simulated data (lines) were compared with experimental values (squares). The relative fraction

was obtained by normalizing the end-step current measured from each pulse following application of acacetin to that of control. Experimental data were digitalized

from Wu et al. (2011).

action potential (AP) and calcium transient (CaT). Details
are presented in Online Supplementary Material 2.1.
The resultant changes in APD, APD restitution and CaT
following cAF-induced remodeling as compared to those
under the normal condition showed good agreement with

previous experimental (Bosch et al., 1999; Osaka et al., 2000;
Workman et al., 2001; Dobrev and Ravens, 2003; Voigt et al.,
2012) and simulation studies (Zhang et al., 2005; Grandi
et al., 2011; Colman et al., 2013, 2017; Wilhelms et al.,
2013).

Frontiers in Physiology | www.frontiersin.org November 2017 | Volume 8 | Article 946159

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ni et al. Synergistic Antiarrhythmic Sodium and Potassium Block

Effects of Application of Acacetin on
Human Atrial Cells
To reveal the roles of inhibition of individual channels
by acacetin in modulating cellular AP by acacetin, both
the individual and combined block of Ito, IKr, IKur,
and IKs by acacetin (3.2µM) in simulated SR at cycle

length 1,000ms without (normal) or with cAF-related
electrical remodeling were simulated. Figures 2A,B

illustrates the effects of individual and combined K+-

channel block by acacetin on AP waveform. The alterations

to APD relative to the control are summarized in

Figures 2C,D.

FIGURE 2 | Effects of individual vs. combined block of K+-currents by acacetin (3.2µM) on the human atrial AP in normal and cAF-remodeled myocytes paced at

1Hz. (A,B) Effects on the atrial AP in (A) normal and (B) cAF-remodeled myocytes; a zoomed-in view for the traces of AP during phase-3 is plotted to the right.

(C,D) Alterations in the (i) APD90 and (ii) APD30 by the simulated block obtained from atrial cells in (C) normal and (D) cAF-remodeled myocytes.
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In the absence of electrical remodeling, in normal myocytes
at a cycle length of 1,000ms, simulated IKs or IKr block by
acacetin (3.2µM) presented no significant alterations to the atrial
AP: although the atrial repolarization was delayed by 1.3 and
5.9ms, respectively, the plateau phase was not affected, which
is consistent with the minimal potency of acacetin on these
channels (Table 1). Similar effects were also obtained from our
simulated IKr and IKs block by the compound in the cAF-
remodeled atrial cells.

Selective block of Ito (alone) by acacetin elevated the atrial
plateau potential in both normal and cAF-remodeled myocytes
paced at 1Hz, and this led to modest prolongations in APD30

(by 6.4 and 3.6ms for normal and AF-remodeling myocytes,
respectively). The changes in APD90 due to Ito block varied
between the two conditions: under normal conditions the atrial
APD90 was shortened by 2.4ms, whereas it was prolonged by
3.7ms following cAF-remodeling at a stimulus rate of 1Hz.

In contrast, blocking IKur alone by acacetin resulted in a
pronounced alteration to the shape and duration of the AP
in both normal and cAF-remodeled myocytes. The inhibition
in IKur significantly elevated the plateau potential of atrial
AP (by 7.1 and 5.7mV in normal and cAF-remodeled
myocytes, respectively), and this was accompanied by marked
prolongations in APD30 (by 105.9 and 23.6ms in normal
and cAF-remodeled myocytes, respectively). The prolongation
in APD90 induced by the IKur block was 9.8ms for normal
atrial cells, and was more pronounced (23.6ms) in cAF-
remodeled myocytes, despite that IKur was down-regulated by
cAF-remodeling.

We note that combined effects of acacetin (3.2µM) on
multiple K+-currents produced greater alterations to the AP than
those of any individual blocking effect. We have quantified effects
produced by the combined block and compared it with the sum
of the changes seen in each individual block. Synergistic effects
were observed in the changes in APD90, represented by a further
prolongation of 9.3 and 1.1ms in APD90 in normal and cAF-
remodeledmyocytes, respectively. Additionally, the effects of IKur
block dominated the AP-modulation by the compound, which
is consistent with the high potency of acacetin on the channel
(Table 1).

Effects of Sodium Blocker and Acacetin on
cAF-Remodeled Atrial Myocytes and
Ventricular Cells
Effects on Single Myocyte AP and INa
Individual and combined effects of Na+-block (indicated by
Bl·INa) and K+-block by acacetin (3.2µM) on human atrial
electrophysiology after cAF-remodeling were simulated to assess
any anti-AF benefits. Effects of acacetin (representing K+-block)
were simulated in different settings: (i) IKur block alone (denoted
by Bl·IKur) and (ii) combined block of all K+-currents in Table 1

(denoted by Comb·Bl·IX). In addition, the effects of Na+- and
K+- block on human ventricular myocytes were also studied to
assess the atrial-selectivity of the block. The results are shown
in Figures 3A–C and quantitative measurements are shown in
Figures 4A–C.

For atrial myocytes paced at 1Hz, Bl·IKur, and Comb·Bl·IX
prolonged atrial APD (Figure 4Ai and as presented in Effects
of Application of Acacetin on Human Atrial Cells) whilst their
effects on peak INa were minimal (reducing peak INa by less
than 0.3%). Bl·INa alone slightly reduced the peak INa by 1.63%
without affecting the APD. The fractional inhibition in INa
by INa-block was slightly increased by the addition of Bl·IKur
or Comb·Bl·IX (Figure 4Aii). In the ventricles, the simulated
application of acacetin induced a prolongation of 19.5ms in
APD90 compared with that in control (drug-free) condition
(Figures 3B, 4Ci). Bl·INa alone showed a negligible inhibitory
effect on the ventricular INa (by 0.42%), which was also not
affected by combining Bl·INa and Comb·Bl·IX (Figure 4Cii).

In atrial myocytes paced at 6Hz, AP alternans were observed
under the drug-free condition (Figure 3Ci): the APD varied
between 100.1 and 88.1ms. In the presence of AP alternans, the
changes in APD by the Na+- and K+- blockers were quantified by
comparing the corresponding big APs at baseline and after drug
actions. These values were selected based on the characteristics
of AP (APD prolongations seen in the long AP, and reduced INa
for the short AP) that may be anti-arrhythmic. The fractional
reductions in peak INa were calculated from the INa associated
with the shorter APs. The results showed that applying Bl·IKur
or Comb·Bl·IX alone both abolished the AP alternans while
prolonging the APD to 116.3 and 126.3ms and reducing the peak
INa by 5.9 and 20.1%, respectively. The application of Bl·INa alone
produced a minor APD prolongation (3.5ms) and a reduction
of 16.2% in peak INa. Combining block of INa with Bl·IKur or
Comb·Bl·IX promoted the genesis of AP alternans, resulting in
substantial prolongations in the APD of the big APs (by 35.4ms
for Bl·IKur + Bl·INa, and 55.6ms for Comb·Bl·IX + Bl·INa) and
dramatic decreases in the peak INa (by 57.5% for Bl·IKur + Bl·INa
and 88.2% for Comb·Bl·IX + Bl·INa) in the corresponding small
APs. These results suggest that the combined block of Bl·INa and
Comb·Bl·IX/Bl·IKur exhibited synergistic antiarrhythmic effects
manifested by prolongation in APD and reduction in peak
INa. However, an increased susceptibility to AP alternans was
observed at a fast pacing rate of 6Hz, which may be potentially
proarrhythmic at fast heart rates.

Effects on Steady-State Restitutions of APD and

Conduction Velocity
Steady-state APD restitutions of cAF-remodeled human atria
were simulated at both the cellular and tissue levels. In
single myocyte simulations (Figure S5 in Online Supplementary
Material 2.2), APD was prolonged over the entire range of
simulated basic cycle lengths (BCL) for Bl·IKur and Comb·Bl·IX
as compared to the control (drug-free) conditions. The reduction
in peak INa in Bl·INa was rate-dependent and significantly greater
at fast pacing rates. K+-block alone (Bl·IKur or Comb·Bl·IX)
slightly shifted the rate-dependence of peak INa to larger BCLs. In
comparison to the effects of individual current block scenarios,
synergistic reductions in peak INa were observed following
combined blocks of Bl·INa with Bl·IKur or Comb·Bl·IX over a
wide range of BCLs. As compared to the drug-free conditions,
AP alternans were observed at greater BCLs after K+-block,
and this was further increased by combined Na+- and K+-block
(Figure S5 in Online Supplementary Material 2.2).
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FIGURE 3 | Simulated AP and INa traces of cAF-remodeled atrial myocytes and ventricular cells in response to Na+- and K+- block regimens. (Ai) APs from

cAF-remodeled atrial myocytes paced at 1Hz; (Aii) Time courses of corresponding INa during the upstroke phase. (B) Simulated time courses of AP and INa of a

ventricular cell paced at 1Hz. (C) Illustration of (i) APs and (ii) the corresponding time courses of INa of a cAF-remodeled myocyte paced at 6Hz. In these simulations,

rate constants for INa blocker were: KA = 100 ms−1· M−1, KI = 100 ms−1· M−1, IA = 1 ms−1, II = 0.01 ms−1.

Using a 1D model of atrial strands, the atrial APD
and conduction velocity (CV) restitutions, as well as
the rate-adaptation of in-tissue upstroke velocity (Vmax),
were evaluated (Figure 5). The atrial activation-recovery
interval (ARI) was not affected by Bl·INa alone, whereas
it was substantially lengthened by K+-block as compared
to control (Figure 5A). Applying K+-block alone also
shifted the CV and Vmax restitution curves rightwards (i.e.,

to higher BCLs) (Figures 5B,C). These rate-adaptations
of Vmax and CV were progressively enhanced by Bl·INa
and the combined block over a wide range of BCLs.
Synergistically enhanced rate-dependent reductions in
Vmax and CV were observed in response to the combined
blocks. Furthermore, K+-block increased the critical BCLs
for conduction block as compared to the drug-free condition
(Figure 5C).
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FIGURE 4 | Simulated changes in the APD and peak INa following the applications of Na+- and K+- block in comparison to the drug-free condition in cAF-remodeled

atrial myocytes or ventricular cells. (A,B) Changes in (i) APD and (ii) peak INa measured from a cAF-remodeled atrial myocyte paced at (A) 1Hz and (B) 6Hz. In the

presence of alternans, the changes in APD were quantified by comparing the corresponding longer APs. The fractional reductions in peak INa were calculated from

the INa of the corresponding shorter APs. (C) Changes in (i) APD and (ii) peak INa measured from an in silico ventricular myocyte paced at 1Hz.

Effects of Combined Na+- and K+- Block
on the AF-Selectivity of INa block
AF-selectivity of Na+ blockers in cAF-remodeled hearts was
examined by varying the drug binding and unbinding constants
over wide parameters spaces to provide information concerning
drug-Na+-channel interactions for various drug candidates. This
was done by independently changing LA and LI for fixed {KA,KI}
(Online Supplementary Material 2.3); and then varying KA and
KI for fixed {LA, LI}. In this way we obtained the maximum
AF-selectivity over the parameter space of drug binding and
unbinding kinetics. Simulations with varied KA and KI were
repeated for Bl·INa + Bl·IKur and Bl·INa + Comb·Bl·IX.

Figures 6A–D illustrates the block efficacy (defined in
Equation 4), rate-selectivity, atrial-selectivity and the resultant
AF-selectivity for Bl·INa alone and the combined block as a
function of KA and KI . For Bl·INa alone, the block efficacy
increased with increase of KI, whereas the rate-selectivity was
reduced by increasing KA or KI . The AF-selectivity reached a
maximum value of 9 at KA = 1 and KI = 500 ms−1 · M−1.

The combined blocks achieved significantly greater AF-selectivity
than Bl·INa alone: the maximum attainable AF-selectivity was
increased by nearly 6-fold for Bl·IKur + Bl·INa and more
than 14-fold for Comb·Bl·IX + Bl·INa as compared to Bl·INa
alone (Figure 6C). These dramatic increases were attributed
to the significantly greater values in all metrics contributing
to the AF-selectivity. The maximal block efficacy achieved by
Bl·INa alone was 0.77, and was increased to 0.81 and 0.94
for Bl·IKur + Bl·INa and Comb·Bl·IX + Bl·INa, respectively. A
more appreciable increase in the maximal rate-selectivity was
observed by the combined blocks as compared to Bl·INa alone
(8-fold for Bl·IKur + Bl·INa and nearly 10-fold for Comb·Bl·IX +

Bl·INa). Additionally, the atrial-selectivity was also increased by
the combined block, although to a lesser extent. Bl·IKur + Bl·INa
exhibited a greater atrial-selectivity than that of Comb·Bl·IX
+ Bl·INa since Bl·IKur was assumed to have no effect on the
ventricles.

Furthermore, these simulations revealed that the block
efficacy, rate-selectivity and atrial-selectivity were strongly
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FIGURE 5 | Simulated activation-recovery intervals (ARI) (A), Vmax (B), and CV (conduction velocity) (C) measured in 1D cAF-remodeled atrial strand models as a

function of BCL for control (drug-free), individual and combined Na+- and (i) IKur block and (ii) action of acacetin. ARI values were measured as the interval between

the time at which the AP depolarizes to −20mV and the time it reaches a 90% repolarization.

dependent on the inactivation state binding rate KI . These
measures were also dependent on the open-state binding kinetics
KA, but to a much lesser extent. The block efficacy was mainly
determined by KI : an increase in KI led to a significant increase
in the block efficacy. In combined block, the maximal rate- and
atrial-selectivity were observed for KA = KI = 1 ms−1 ·

M−1 and increases in KI resulted in substantial reductions in
the rate- and atrial-selectivity. In Bl·INa alone, the parameter
set KA = 1 ms−1 · M−1, KI = 200 ms−1 · M−1 produced
a maximal value in atrial-selectivity. Collectively, the optimal
KI that maximized AF-selectivity was 200 ms−1 · M−1 for
Bl·INa and Bl·IKur + Bl·INa, and smaller (100 ms−1 · M−1)
for Comb·Bl·IX + Bl·INa. The optimal KA = 1 ms−1 · M−1

was seen for all conditions. Increasing KA consistently resulted
in a smaller rate- and atrial-selectivity and therefore reduced
AF-selectivity. These results suggest that the inactivation-state
binding rate might be a more favorable targeting parameter than

the open-state binding kinetics in optimizing AF-selectivity of
Na+-blockers.

Effects of INa and IKur Block on Spiral
Excitation Events in cAF-Remodeled Atria
Two-Dimensional Simulations
Using the cross-shock protocol, spiral waves were initiated in a
2D model representing a tissue slab of cAF-remodeled human
atria. For each condition, a 10-s episode of electrical activity
was simulated. Representative snapshots of the re-entrant waves
in control (drug-free) and following application of drugs are
presented in Figure 7A. The trajectories of the tips of re-entrant
rotors under these conditions were traced and are shown in
Figure 7B. The number of rotors during the time course of wave
evolution was also measured (Figure 7C). The simulated pseudo-
ECGs, membrane potential traces extracted from a representative
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FIGURE 6 | Block efficacy, and the rate-, atrial-, and AF-selectivity as a function of the open- and inactivated- state binding rates (KA,KI ) for Na
+-block or combined

Na+- and K+-block computed from cAF-remodeled atrial myocytes or ventricular myocytes. (A) Block efficacy; (B) rate-selectivity; (C) atrial-selectivity, and (D)

AF-selectivity. In each column shown are data from Bl·INa (i), combined Bl·INa and Bl·IKur (ii), and combined Bl·INa and Comb·Bl·IX (iii).

LA = 1 ms−1, LI = 0.01 ms−1. Unit of KA,KI: ms−1 ·M−1.

myocyte and the corresponding fractional block of INa and IKur
are detailed in Online Supplementary Material 2.4.

Under the control (drug-free) condition, a single rotor was
formed at approximately t = 630ms; this broke into two spiral
waves at t = 830ms. These two rotors were stably anchored
with star-shaped tip trajectories at the bottom half of the slab
and persisted throughout the rest of the simulated 10-s episode
(Figures 7Ai,Bi,C). In simulating drug actions, each drug was
applied at t = 2,500ms. For Bl·INa the dual rotors progressively
became unstable, and the tips of the spiral waves meandered

out of the tissue at approximately t = 6,000ms, leading to self-
termination of the re-entrant waves (Figures 7Aii,Bii,C). The
dual rotors persisted throughout the period of the simulation
after applying Bl·IKur alone (Figures 7Aiii,Biii,C). For Bl·INa +
Bl·IKur, the rotor at the bottom left corner of the slab became
unstable and meandered out of the tissue at approximately t
= 3,800ms, whereas the trajectory of the second rotor was
confined to a small tissue area until t = 7,000ms and then
gradually became chaotic, forming up to 3 transient rotors
that self-terminated at t = 8,334ms (Figures 7Aiv,Biv,C). A
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FIGURE 7 | Snapshots of simulated re-entrant excitation events, tip trajectories of re-entrant waves and the number of rotor in a 2D model of cAF-remodeled atrial

tissue slab in drug-free condition or after applying the drugs. (A) Snapshots of simulated re-entrant excitation events; The time sequence (ms) is indicated at the top

left corner of each screenshot. (B) Tip trajectories of re-entrant waves. (C) Temporal evolution of total number of rotors represented by the number of spiral wave tips

in tissue. In both (A,B), (i) Drug-free (CTL) condition, (ii) Bl·INa alone, (iii) Bl·IKur alone, (iv) Combined Bl·INa and Bl·IKur, (v) Applying Comb·Bl·IX alone, and (vi)

Combined Bl·INa and Comb·Bl·IX. Rate constants for INa block: KA = 1 ms−1 ·M−1,KI = 100 ms−1 ·M−1, LA = 1 ms−1, LI = 0.01 ms−1.

similar but more marked effect was seen in the simulations
that addressed the aggregate effects of acacetin: the bottom
left rotor quickly meandered out of the tissue at t = 3,510ms
whilst the tip trajectory of the other rotor became chaotic and
terminated at t = 5,439ms (Figures 7Av,Bv,C). We note that the
combined Bl·INa and Comb·Bl·IX exerted the strongest potency
in terminating re-entrant excitations in these simulations: the
two rotors transiently turned unstable and chaotic and self-
terminated at t = 3,555ms, with up to 5 rotors during the
excitation in the slab (Figures 7Avi,Bvi,C).

The anti-arrhythmic benefits of combined Na+- and K+-
block were clearly revealed by additional simulations assuming
the use of a different Na+-blocker (KA = 1 ms−1 · M−1,KI =

200 ms−1 ·M−1, LA = 1 ms−1, LI = 0.01 ms−1) and at a reduced
dose (75%) of both Na+-blocker and acacetin. The life span of re-
entrant excitations was measured and shown in Figure 8A. Also,
the pECG was computed and the segment from t = 3,000ms to

500ms before the termination of re-entries (or the end of the
simulation if the rotor sustained) was analyzed using the Fast
Fourier Transform to obtain the dominant frequency (DF) of the
re-entrant excitations, which is illustrated in Figure 8B.

At the simulated doses of acacetin, applying Bl·IKur alone did
not lead to termination of re-entrant waves within the duration
of the simulation (7,500ms after TDrug), whereas the rotors were
terminated in the simulations for Comb·Bl·IX at both doses
(Figure 8Ai–iv), thus demonstrating enhanced anti-AF benefits
of combined K+-channel block. For the simulated Bl·INa alone,
the Na+-blocker with KI = 100 ms−1 · M−1 led to termination
of AF at the control dose (lifespan of 4,102ms) but not at the
reduced dose; increasingKI of the Na

+-blocker to 200ms−1·M−1

resulted in a reduced lifespan (1,305 and 1,459ms for [DNa+ ] =
60 and 45 µM, respectively). The lifespan for the combined
Bl·INa + Comb·Bl·IX was consistently shorter than that of any
individual applications of Bl·INa or Comb·Bl·IX alone in all cases.
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A similar augmented anti-arrhythmic effect (shown as shortened
lifespan of re-entry) was also observed for the combined Bl·INa
+ Bl·IKur for [DNa+ ] = 45 µM and KI = 200 ms−1 · M−1

(Figure 8Aiv) but not for the rest of the cases.
A consistent decrease in the DF was observed in the drug-

modulated re-entrant excitations as compared to those in the

drug-free condition (Figure 8Bi–iv). In the drug-free condition,
the DF extracted from the pECG was 8.63Hz, which is within
the range of similar clinical data (Jarman et al., 2012). Applying
Na+- or K+- block individually resulted in slowing of the rate
of the rotors, and this was dependent on the concentrations
and parameters of the blockers. For Bl·IKur the DF was 8.25Hz

FIGURE 8 | Dominant frequency and lifespan of re-entrant waves in 2D simulations using the cAF-remodeled atrial tissue model in the drug-free condition or after

applying drugs. (A) Lifespan of the spiral waves. (B) DF of spiral waves. The results of K+-block alone are shown in both left and right panels for the purpose of

comparison. In the left column (i,iii) of (A,B), Bl·INa was simulated with KI = 100 ms−1 ·M−1; in the right column (ii,iv), KI = 200 ms−1 ·M−1. In the top panels (i,ii)

of (A,B), [DK+ ] = 3.2µM, [DNa+ ] = 60µM; in the bottom panels (iii,iv), [DK+ ] = 2.4µM, [DNa+ ] = 45 µM. In all panels, KA = 1 ms−1 ·M−1,

LA = 1 ms−1, LI = 0.01 ms−1.
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with the control dose and 8.30Hz for the reduced dose. In the
simulations with Comb·Bl·IX, the DF was 6.63Hz and was not
affected by the 25% reduction in the dose of the compound.
For Bl·INa alone the DF was 7.81Hz and substantially smaller
(6.24Hz) for Na+-blockers of KI = 100 ms−1 · M−1 and KI =

200 ms−1 · M−1, respectively. An enhanced deceleration of the
rotors was observed for Bl·INa + Bl·IKur in all cases. The DF for
simulations with Comb·Bl·IX + Bl·INa was not computed due to
the short lifespan in these events.

3D Simulations
The antiarrhythmic effects of acacetin and Na+-block on the re-
entrant waves in the cAF-remodeled atria were also evaluated
using our 3D anatomicalmodel of the human atria (Colman et al.,
2013, 2017). A 10-s episode of sustained re-entrant excitation
was first initiated in the cAF-remodeled atria in the drug-
free condition; this produced the initial conditions of the 3D
model for additional 10-s episode simulations. Next, the behavior
of electrical waves of another 10-s episode simulation in the
drug-free condition and after applying the selected blockers
was analyzed and compared. Figure 9A shows snapshots of
excitation wave evolution following the 10-s episode of re-entrant
excitation events. pECGs computed from the excitation waves
are shown in Figure 9Bi–iv. Figures 9C,D illustrates power
spectrum analyses of the pECGs and a comparison of the lifespan
of the electrical waves in the drug-free condition and after
applying the drugs/blockers. In the drug-free condition, stable re-
entrant waves around the pulmonary veins and left atrium were
observed; the power spectrum density (PSD) manifests a single-
focused peak around 8.16Hz. Following applying Bl·INa, the re-
entrant waves became less organized and also decelerated. This
was characterized by a smaller dominant frequency (6.58Hz) and
less focused PSD distribution; the excitation was not terminated.
Following the application of Comb·Bl·IX, the re-entrant wave
soon became unstable and eventually disappeared after t =

3,279ms. Note that the peak PSD amplitude was much smaller
and its distribution was much broader as compared to the
drug-free condition. The combined drugs further destabilized
the re-entrant waves and reduced the lifespan to approximately
1,120ms.

Simulated Effects of Acacetin and
Na+-Current Blocker on the QT Interval
Further simulations were performed using a 1D ventricular
transmural strand model to evaluate the changes in the
waveform of electrograms in consequence of applying the drugs.
A comparison of the computed electrogram waveforms are
illustrated in Figures 10A,B, and the QT intervals are quantified
in Figure 10C. Blocking small fractions of IKr, IKs and Ito in the
human ventricles by acacetin slightly increased the QT interval
by 21ms. The electrograms were not noticeably affected by
applications of the Na+-blocker with the simulated parameters.
Results from both cases did not show dramatic QT prolongation,
indicating no dramatic effects affecting ventricular repolarization
process which might promote ventricular arrhythmias.

DISCUSSION

Even decades after goal-directed work, successful development
of effective and safe antiarrhythmic drugs for treating AF has not
been accomplished and remains a major unmet clinical need. In
a recent study on the canine heart, enhanced anti-arrhythmic
effects and AF-selectivity of INa blockade by additional IKur
block was demonstrated (Aguilar et al., 2015). Whether similar
effects could be obtained in the human atria, especially following
cAF-induced electrical remodeling which reduces IKur, remained
unclear. How the combined Na+ and K+-block modulates the
QT interval also remained incompletely understood. In this
study, the effects of IKur (combined with a modest block in Ito,
IKr, and IKs as presented by acacetin, a compound shown to be
effective in anti-AF treatment) and INa block (two potentially
effective atrial-selective block on human atrial electrophysiology)
were investigated in silico using multiscale models of the human
atria and state-dependent block scheme. The simulation results
demonstrate that both Na+-block and K+-block exhibited
anti-arrhythmic effects in the atria following cAF-remodeling,
despite reduced IKur by the remodeling. The present study
highlighted that in addition to combined Na+- and K+-block,
combined multi-K+-channels also exerted beneficial synergistic
antiarrhythmic effects when compared with single channel block
whilst having modest impact on ventricular repolarization (QT
interval). This study suggests that multi-channel block (either
combined Na+-K+-block, or combined multi-K+-block) may be
a favorable strategy for the development of novel pharmaceutical
therapies for AF.

Effects of INa block
An atrial-ventricular difference in the properties of INa, especially
in the voltage dependence of steady-state inactivation, has been
reported (Li et al., 2002; Burashnikov et al., 2007; Chen et al.,
2016; Fan et al., 2016; Caves et al., 2017). In these studies,
the voltage dependent steady-state inactivation curves for INa
were found to be negatively shifted (by 5–16mV) in atrium as
compared to the ventricular parameters. This difference gave
rise to an on-going interest in developing an atrial-selective
blocker of INa as a strategy in terminating AF (Burashnikov et al.,
2007; Antzelevitch and Burashnikov, 2009; Zygmunt et al., 2011;
Morotti et al., 2016; Caves et al., 2017). As was done in previous
studies (Aguilar-Shardonofsky et al., 2012; Aguilar et al., 2015),
in this study, the kinetic parameters in drug actions of Na+-
blockers were varied over wide parameter spaces to reveal AF-
selectivity of Na+-blockers in the ventricles and fibrillating atria.
Our results demonstrated that in the presence of AF-remodeling,
an atrial-selective block of INa could produce different effects
between atrial and ventricular cells (Figures 3, 4) and that the
AF-selectivity could bemaximized by optimizing the binding and
unbinding rates of the Na+-blocker (Figure 6). Note also that,
the fractional inhibition of INa by the Na+-blocker exhibited a
substantial dependence on the rate of pacing (Figures 3, 4 and
Online Supplementary Material 2.2), which was quantified using
the rate-selectivity (Figure 6).

At the cellular level, Na+-block resulted in a significant
inhibition in INa at fast pacing rates, but minor effects within

Frontiers in Physiology | www.frontiersin.org November 2017 | Volume 8 | Article 946168

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ni et al. Synergistic Antiarrhythmic Sodium and Potassium Block

FIGURE 9 | Simulated re-entrant excitations computed using the 3D anatomical model of the cAF-remodeled human atria in response to application of channel

blockers as compared to that of the drug-free (CTL) condition. (A) Snapshots of electrical excitation waves. Drugs were applied at t = 0ms. (B) Simulated pECGs.

(C) Power spectrum density (PSD) obtained from the pECGs. PSDs were normalized to the maximum value of that in control. (D) Lifespan of re-entrant excitations in

these simulated atria for various conditions. The symbol ∞ indicates the spiral waves were sustained throughout the 10-s episode of simulation.

KA = 1 ms−1 ·M−1, KI = 100 ms−1 ·M−1, LA = 1ms−1, LI = 0.01 ms−1; [DK+ ] = 3.2µM, [DNa+ ] = 60µM.

the range of normal heart rates in the atria (Figures 5, 6). The
antiarrhythmic effects of these changes were demonstrated in
simulations of multicellular atrial tissue. In a 1D atrial strand
model, applying Na+-block progressively enhanced the rate-
adaptations of Vmax and CV over a larger range of BCLs, whereas
the atrial APD was not affected. At fast pacing rates, Vmax and
CVwere decreased significantly, suggesting reduced excitabilities
of atrial myocytes (Figure 5). These results are in concordance

with the recent study (Aguilar et al., 2015) where similar effects
of Na+-block on the canine atria were demonstrated in silico and
experimentally in coronary-perfused hearts.

In 2D tissue simulations, this Na+-block shortened the
lifespan and caused slowing in the excitation rate of the
spiral waves (Figures 7, 8). In the 3D anatomical model,
applying Na+-block alone produced antiarrhythmic effects by
slowing the re-entrant excitations (Figure 9). Furthermore,
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FIGURE 10 | Computed pECGs from a 1D strand model for human ventricular transmural strands in drug-free (CTL) condition and in response to anti-arrhythmic

drugs. In (A,B) two sets of parameters (#1 KI = 100 ms−1·M−1, #2 KI = 200 ms−1·M−1 ) for INa block were simulated. (C) QT intervals measured from the pECGs.

in our 1D model of transmural ventricular strand, the
simulations suggested that the Na+-block had minimal impact
on ventricular repolarization, as judged by modest QT interval
prolongation. These results demonstrated that Na+-block
could be beneficial in suppressing re-entrant activities in
the cAF-remodeled atria, with modest impact on ventricular
repolarization.

Effects of K+-Current Block
K+-current blockers delay the repolarization phase of the AP
and thus prolong atrial APD and refractory period. This can
cause disruptions and eventually termination of the re-entrant
circuits (Hancox et al., 2016). However, K+-channel blockers
such as dofetilide and sotalol (which potently inhibit IKr) have
a substantial risk of prolonging QT interval and promoting
Torsades de pointes arrhythmias (Hondeghem and Snyders, 1990;
Yap and Camm, 2003). In principle, blocking atrial-specific K+-
channels may exert antiarrhythmic effects in the atria while
minimizing potential risks of adverse effects in the ventricles.
IKur is believed to be such an atrial-selective substrate for drug
interventions, and effects of IKur block have been extensively
studied (Burashnikov and Antzelevitch, 2008; Li et al., 2008;
Tsujimae et al., 2008; Almquist et al., 2010; Pavri et al., 2012;
Scholz et al., 2013; Loose et al., 2014; Ford et al., 2016).
Interestingly, many existing IKur blockers potently block other
K+-channels including Ito and IK,ACh (Gögelein et al., 2004;
Wirth et al., 2007; Burashnikov and Antzelevitch, 2008; Li et al.,
2008). The additional blockades of these channels may contribute
to the antiarrhythmic effects of those drugs, which warrant
further investigations.

In this study, acacetin, a compound initially isolated from
the traditional Chinese medicine Xuelianhua, was selected as
a representative IKur blocker. The effects of acacetin on atrial
electrophysiology were evaluated in two ways: (a) the effects of
acacetin blocking IKur only; and (b) the full actions of acacetin on
the targeting channels (Ito, IKur, IKr, and IKs) (Li et al., 2008). This
approach allowed for investigations into the effects of IKur block

alone as well as the potential benefits of additional-but-modest
inhibition of other K+-currents in the human atria.

Selective IKur Block
Blocking IKur with 3.2µM acacetin exerted APD prolongation
(9.8ms) under the baseline/normal conditions (Figure 2).
Experimental data show that dependent on the baseline AP
waveform the effect of IKur block on human atrial APD70−90

under normal (SR) conditions can manifest as prolongation or
shortening in the APD, (Workman et al., 2001; Wettwer et al.,
2004; Schotten et al., 2007; Burashnikov and Antzelevitch, 2008;
Loose et al., 2014). Additionally, the prolongation in APD by IKur
block observed in the present study is similar to our previous
paper (Colman et al., 2017) concerning the effects of genetically
down-regulated IKur. Moreover, inhibiting IKur under normal
conditions elevated the AP plateau potential and prolonged
APD30 (Figure 2). Both effects matched well with experimental
studies (Workman et al., 2001; Wettwer et al., 2004; Schotten
et al., 2007; Burashnikov and Antzelevitch, 2008; Loose et al.,
2014) and our simulation study (Colman et al., 2017).

We note that in the cAF-remodeling cells, a more pronounced
prolongation in APD (by 23.6ms for 1Hz and 16.2ms at 6Hz,
Figure 4) was observed in the presence of 3.2µM acacetin,
despite that this current was down-regulated by cAF-remodeling
(Wagoner et al., 1997; Brandt et al., 2000; Christ et al., 2008).
These results are in accordance with previous experimental
results of blocking IKur with MK-0448 (Pavri et al., 2012; Loose
et al., 2014). In addition, IKur block exhibited enhanced rate-
dependent adaptations in APD both at the cellular (Online
Supplementary Material 2.2) and 1D strand models (Figure 5).
Importantly, the CV restitution curve shifted toward higher
BCLs, indicating that this tissue is less capable of conduction of
atrial excitation waves at high rate while maintaining conduction
of slow waves (Figure 5). In 2D tissue simulations, applying IKur
block alone (3.2µM acacetin) destabilized the cores of rotors
(i.e., potential organizing centers for AF), and slightly slowed
their excitation rates, but failed to terminate them (Figure 7),
suggesting a limited efficacy of terminating AF by IKur block
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alone. Similarly, a recent modeling study by Aguilar et al. (2017)
suggested that the antiarrhythmic efficacy of IKur block was
substantially decreased in the presence of AF-induced electrical
remodeling. Also, the experimental study (Burashnikov and
Antzelevitch, 2008) showed that block of IKur by 4-AP of small
doses had limited efficacy in suppressing AF in canine atria. This
may represent the fact that IKur is reduced at high frequencies
(as discussed/suggested in Feng et al., 1998a; Burashnikov and
Antzelevitch, 2008; Wu et al., 2011) and shown in Figure 1)
as well as by cAF-induced remodeling (Wagoner et al., 1997;
Brandt et al., 2000; Christ et al., 2008). In addition, IKur is
primarily active during phase 2 of AP, and hence pure IKur block
exerted a relatively greater prolongation in APD30 than APD90

(Figure 3), in contrast to other K+-block including dofetilide
which mediates anti-AF effects by prolonging the terminal phase
of the AP (Roukoz and Saliba, 2007).

In this study, IKur block was simulated using a state-dependent
block model, which successfully reproduced the use- and rate-
dependent inhibition of acacetin (Figure 1). The rate-dependent
block of IKur exerted a higher fractional inhibition in the
current at faster pacing rates, which likely produces greater
anti-AF effects in the presence of high-frequency excitations as
seen during AF. Along with the previous modeling studies on
investigating effects of IKur block (Almquist et al., 2010; Scholz
et al., 2013; Ellinwood et al., 2017), this study demonstrated
the importance of explicitly considering the kinetic properties
of the block in computational efforts of understanding the
consequences and underlying mechanisms of IKur block.

Effects of Combined K+-Current Block
The combined K+-block (as exhibited by acacetin and many
other IKur blockers) resulted in synergistic APD prolongation as
well as an increased efficacy in terminating re-entry in tissue as
compared to the pure IKur block.

Note that at the single myocyte level, the combined actions
of acacetin produced greater prolongation in atrial APD than
the sum of changes due to drug-induced block of individual
channel in normal and cAF-remodeled myocytes (Figure 2).
Additionally, the combined K+-block increased the rate-
additivity of APD as compared to the pure IKur block (Online
Supplementary Material 2.2). This was also consistently observed
in the 1D simulation (Figure 5). In the setting of pure IKur
block, the elevated and prolonged plateau phase of the AP
could promote the activation of IKr/IKs, which in return may
accelerate the repolarization of AP-phase 3 (Colman et al., 2017).
Therefore, additional inhibition in IKr by an identical fraction
is expected to result in a greater APD prolongation than a pure
IKur or IKr/IKs block.

In 2D simulations, the combined K+-block produced an
enhanced efficacy in suppressing AF compared with the pure
IKur block: promoting meandering of rotor tips (Figure 7B),
shortening the lifespan of re-entries (Figure 8A) and slowing
of spiral wave excitations (Figure 8B). Rotor meandering is one
mechanism by which spiral waves may meet non-conducting
boundaries to extinguish re-entry (Narayan et al., 2013; Pandit
and Jalife, 2013; Rappel et al., 2015).

The effects of acacetin (3.2µM) on the ventricular AP
and QT interval was assessed in a single cell model and 1D

transmural strand model by assuming similar blockade effects of
the compound on the human ventricles and atria. It was shown
that following applying acacetin, the ventricular repolarization
and QT interval was both preserved with slight prolongations
around 21ms (Figure 10). Our results are close to the previous
experimental study (Li et al., 2008) showing that QT intervals
were not prolonged by acacetin in isolated rabbit hearts and
anesthetised dogs.

The synergistic effects demonstrated by the combined K+-
blocks have implications on developing novel pharmaceutical
anti-AF therapies. Given that Ito, IKr and IKs contribute to the
repolarizations of ventricular APs, inhibitions in these channels
may promote risks of side effects in the ventricles. In this
regard, combined block of atrial-specific K+ channels may be
favorable. Recently, another two families of K+-channels that are
dominantly expressed in the atria have been acknowledged: the
small-conductance Ca2+-activated K+ (SK) channels (ISK) (Qi
et al., 2014), and the two-pore K+ (K2P3.1) channel (ITASK−1)
(Schmidt et al., 2015), further to the well-known constitutively
active acetylcholine-activated K+ current (IK,ACh). Combined
block of these atrial-specific channels may exert greater and
safer antiarrhythmic effects in the atria, warranting future
investigations.

Synergistic Effects of Combined Na+- and
K+- Block
The present study reveals novel and significant synergistic
effects of combined block of Na+- and K+-currents (INa
and pure-IKur/multi-K+-block) and demonstrates the additional
synergistic anti-arrhythmic effects derived from the multi-K+

channel block in cAF-remodeled atria.
In cAF-remodeled atria, combined Na+- and K+-block

significantly increased the fractional INa inhibition and APD
prolongation (Figures 3, 4) and promoted pronounced AP
alternans at 6Hz, with complex effects in human AF (Narayan
et al., 2011). In the simulations varying the blockade kinetics
of INa block, the combined block dramatically augmented the
attainable maximal AF-selectivity in consequence of enhanced
atrial-selectivity and rate-selectivity as compared to the pure
Na+-block (Figure 6).

In the 1D model of an atrial strand, combined Na+ and
K+-block produced synergistic reductions in Vmax and CV; the
threshold of BCL allowing a 1:1 conduction was increased as
compared to the control conditions (Figure 5). In simulated
re-entrant waves in 2D and 3D atria, the combined Bl·INa +

Comb·Bl·IX exhibited a greater efficacy in suppressing AF, with
a decreased lifespan of rotors as compared to that by either
individual block (Figures 7–9). Although the combined Bl·INa
+ Bl·IKur did not further reduce the lifespan of spiral waves
as compared to the Bl·INa alone, the combination did lead to
the extinction of one of the two rotors (Figures 7Aiv,Biv) and
deceleration of re-entrant activations (Figure 8B). Follow-up
simulations showed that consistent synergistic antiarrhythmic
effects could be obtained with reduced doses of Na+- and K+-
blockers.

The non-specific multi-channel blockade is increasingly
recognized as a strategy for pharmaceutical therapy of AF
both experimentally (Sicouri et al., 2010; Aguilar et al., 2015;
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Kirchhoff et al., 2015; Hartmann et al., 2016) and clinically
(Koskinas et al., 2014; Reiffel et al., 2015). In a previous study
(Aguilar et al., 2015), synergistic anti-arrhythmic effects were
demonstrated both in silico and experimentally in healthy canine
hearts. Additionally, the favorable synergistic antiarrhythmic
effects have also been reported in combined block of ISK and INa
in an experimental atrial-fibrillated guinea pig model (Kirchhoff
et al., 2015). Also, the recent HARMONY trial (Reiffel et al., 2015)
revealed synergistic AF-suppressing effects for combined use
of ranolazine and dronedarone. While revealing the synergistic
effects of combined Na+- and K+- block in cAF-remodeled
human atria, this study supports and adds insights into the on-
going efforts in developing multi-channel block as a strategy for
the treatment of AF.

Limitations and Future Work
In the absence of the required detailed experimental data, when
simulating effects of acacetin on Ito, IKs and IKr, the dose-
dependence block of acacetin was assumed to be identical in both
human atrial and ventricular cells. This assumption may warrant
further investigations. In addition, the parameters of atrial Ito
have been reported to be different from those of ventricular Ito
in human (Amos et al., 1996). Previous studies reported that
the IC50 of 4-AP block of atrial Ito was one-third of that of
ventricular Ito (Amos et al., 1996; Nattel et al., 2000). If a similar
atrial-vs.-ventricular difference in the IC50 of Ito and/or IKr/IKs
could exist for acacetin, the effects of acacetin on the ventricular
electrophysiology would be less significant than our simulations,
which might result in to a smaller change in ventricular INa and
APD for the combined block of Bl·INa and Comb·Bl·IX, and
thus enhance the computed atrial-selectivity and AF-selectivity
of the combined block. Given that applying acacetin in vivo
did not prolong QT intervals in isolated rabbit hearts and
anesthetised dogs (Li et al., 2008), any significant prolongation of
the ventricular APD and QT interval is unlikely (Figures 3B, 4C,
10). Therefore, our assumption of no atrial-ventricular difference
in the potency of acacetin on K+-currents may not affect our
conclusions concerning the atrial-selectivity of combined Na+-
and K+-block.

Additionally, in the absence of detailed experimental data
for state-dependent block of Ito, IKr, and IKs by acacetin, the
block of these channels was modeled using a single pore block
model. The IC50 values (Table 1) were determined by fitting the
concentration-response relation of the step current at 40mV in
previous experimental studies (Li et al., 2008; Wu et al., 2011).
A recent study suggests that the IC50 values may be dependent
on the voltage protocols applied, and this cannot be reflected by
single pore models. In future studies, the pore block model for
Ito, IKr, and IKs can be replaced by a state-dependent block model
when such experimental data become available. Also, the present
work did not attempt to model the effects of acacetin on IK,ACh,
although the study shows the current is potently blocked by the
compound. The 2D and 3D simulations of atrial tissue, while
validated, may not fully capture the complexity of fibrosis-tissue
interfaces which are seen in structurally remodeled atria and were
not simulated in these monodomain experiments.

Thirdly, our simulation results showed a moderate QT
prolongation of around 20ms following applying both INa
blocker and acacetin. While a QT prolongation of less than
5ms does not raise a regulatory concern (Committee for
Medicinal Products for Human Use, 2012), implications of
QT prolongations between 5 and 20ms remain inconclusive
(Committee forMedicinal Products for HumanUse, 2005). In the
present study, though the extent of QT prolongation of 20ms is
far less than the threshold of discontinuation criteria of 60ms as
indicated in Committee for Medicinal Products for Human Use
(2005), it would indeed raise a positive flag in thorough QT tests
and necessitate extended safety assessment and intensive patient
monitoring during late stages of trials (Committee for Medicinal
Products for HumanUse, 2012). On the other hand, the approach
we used in accounting for the effects of acacetin on ventricular
myocytes may result in upper bound of QT prolongation, since
the potency of acacetin was assumed to be identical in atria and
ventricles.

Fourthly, the threshold in BCL inducing AP alternans was
increased by K+-block (Figure 5, Figure S5). However, AP
alternans seen at slower pacing rates has been linked with
occurrence of AF (Narayan et al., 2002, 2011). Therefore, the
increased threshold in BCL developing AF by K+-block can
be potentially proarrhythmic. The safety of K+-block and its
proarrhythmic potential in the atria should be addressed in
future studies.

Fifthly, there are limitations in the approaches used in
simulating the INa blockers in single myocytes and tissue.
Similar to previous studies (Aguilar-Shardonofsky et al., 2012;
Aguilar et al., 2015), in our simulations, the drug action on INa
was modeled through a state-dependent block assuming drugs
binding to both activated and inactivated states of INa, and
the gating variables of INa were modeled using an Hodgkin-
Huxley scheme. The limitations in this approach outlined
in Aguilar-Shardonofsky et al. (2012) therefore apply in the
present study. The results of the use-dependent block may
be affected by the models used (Aguilar-Shardonofsky et al.,
2012). However, the previous study (Aguilar-Shardonofsky et al.,
2012) compared this modeling scheme with simulations using a
Markov model, showing qualitative agreement in major findings.
Therefore, the major conclusions drawn from this study may
not be affected by the selected modeling approach for INa
and drug interactions. Furthermore, in optimizing the AF-
selectivity of the INa and K

+-current blockers, the concentrations
of Na+ and K+ blockers were fixed at 60 uM. This may
potentially impose limitations in discomposing the role of the
binding parameters in the modulatory effects of the blockers
because of the very slow kinetics of the drug binding to its
targeted channel at this high concentration. It warrants further
studies by varying the concentration of blockers to simulate
the optimized effects of the AF-selectivity of INa blocker. In
tissue simulations, effects of drugs were modeled by increasing
their doses homogeneously, simultaneously and instantaneously.
The realistic actions of INa blockers in tissue, however, may
be different. Also, in tissue simulations a homogenous cell
model was used. As previous study (Feng et al., 1998b) showed
atria are electrically heterogeneous, future work is needed to
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assess how tissue heterogeneities affect the efficacy of atrial-
selective pharmaceutical interventions. Furthermore, the current
simulations did not take the cardiac autonomic regulation into
account in order to take into considerations of acacetin on IKACh.
Future studies on interactions of atrial-selective anti-arrhythmic
drug actions and autonomic systems may also render valuable
findings.

It is important to acknowledge that administration of class Ic
agents for Na+-block can cause cardiac arrhythmia and increased
mortality (Echt et al., 1991). Further investigations are therefore
warranted to assess the safety of the simulated Na+-block in the
heart, especially in the ventricles.

CONCLUSIONS

By using state-dependent drug block models and our
mathematical models of the human atria, the antiarrhythmic
effects of atrial selective Na+- and K+-blockers on the cAF-
remodeled atria were evaluated. The combined block of multiple
K+-currents as well as simultaneous block of Na+- and K+-
currents produced synergistic antiarrhythmic effects. Our results
suggest that developing multi-channel (multiple K+ currents
and/or combined Na+- and K+-current) block is a potentially
valuable strategy for the treatment of AF.
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Background: Prolongation of the QT interval of the electrocardiogram (ECG), underlain

by prolongation of the action potential duration (APD) at the cellular level, is linked

to increased vulnerability to cardiac arrhythmia. Pharmacological management of

arrhythmia associated with QT prolongation is typically achieved through attempting to

restore APD to control ranges, reversing the enhanced vulnerability to Ca2+-dependent

afterdepolarisations (arrhythmia triggers) and increased transmural dispersion of

repolarisation (arrhythmia substrate) associated with APD prolongation. However, such

pharmacological modulation has been demonstrated to have limited effectiveness.

Understanding the integrative functional impact of pharmacological modulation requires

simultaneous investigation of both the trigger and substrate.

Methods: We implemented a multi-scale (cell and tissue) in silico approach using a

model of the human ventricular action potential, integrated with a model of stochastic

3D spatiotemporal Ca2+ dynamics, and parameter modification to mimic prolonged

QT conditions. We used these models to examine the efficacy of the hERG activator

MC-II-157c in restoring APD to control ranges, examined its effects on arrhythmia triggers

and substrates, and the interaction of these arrhythmia triggers and substrates.

Results: QT prolongation conditions promoted the development of spontaneous

release events underlying afterdepolarisations during rapid pacing. MC-II-157c

applied to prolonged QT conditions shortened the APD, inhibited the development

of afterdepolarisations and reduced the probability of afterdepolarisations

manifesting as triggered activity in single cells. In tissue, QT prolongation resulted

in an increased transmural dispersion of repolarisation, which manifested as

an increased vulnerable window for uni-directional conduction block. In some

cases, MC-II-157c further increased the vulnerable window through its effects

on INa. The combination of stochastic release event modulation and transmural

dispersion of repolarisation modulation by MC-II-157c resulted in an integrative

behavior wherein the arrhythmia trigger is reduced but the arrhythmia substrate

is increased, leading to variable and non-linear overall vulnerability to arrhythmia.
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Conclusion: The relative balance of reduced trigger and increased substrate underlies

a multi-dimensional role of MC-II-157c in modulation of cardiac arrhythmia vulnerability

associated with prolonged QT interval.

Keywords: QT interval, action potential duration, arrhythmia trigger, arrhythmia substrate, hERG activators,

computational modeling

INTRODUCTION

Conditions in which the QT interval of the electrocardiogram
(ECG) is prolonged, such as heart failure (Hart, 1994) and
inherited or acquired long QT syndromes (LQTS) (Schwartz
et al., 2012), are associated with an increased risk of ventricular
arrhythmias (Tomaselli and Zipes, 2004; Moss and Kass,
2005). The prolonged QT interval reflects prolongation of the
ventricular cellular action potential duration (APD), which can
result in arrhythmias through an increase in cell-level arrhythmia
triggers and/or modification of tissue-level arrhythmia substrates
(Kalin et al., 2010; Benson et al., 2011a; Tse, 2016).

Cell-level triggers arise because delayed ventricular
repolarisation modifies membrane and subcellular Ca2+

handling (Clusin, 2003; Němec et al., 2016), leading to
either re-activation of the L-type Ca2+ current and early
afterdepolarisations (Lankipalli et al., 2005), or Ca2+ overload
of the sarcoplasmic reticulum (SR), causing spontaneous SR
Ca2+ release events and delayed-afterdepolarisations through
activation of the forward-mode Na+-Ca2+ exchange current
(INaCa), which in turn can result in triggered activity if the
delayed afterdepolarisation is of sufficient magnitude (Janse,
2004). Cardiomyocytes typically exhibit a threshold dependence
of the occurrence of spontaneous release events as a function of
SR Ca2+ load, wherein the probability of a spontaneous release
event rapidly rises from 0 to 1 within a critical region of SR
Ca2+ (Venetucci et al., 2007; Campos et al., 2015). Although
originating at the cell level, triggers need to be coordinated at
the tissue level in order to develop into arrhythmias: a critical

compact region of tissue simultaneously exhibiting triggered
behavior is required to initiate propagation of the trigger (Noble,

1972; Clayton et al., 2011; Bezekci et al., 2015; Campos et al.,
2015).

An increase in the tissue-level substrates for arrhythmias

(that is, the necessary conditions for triggered activity to
propagate and develop into arrhythmias) arise because APD
prolongation is rarely homogenous in and between the different
regions of the ventricles (e.g., transmurally, or from base
to apex) (Antzelevitch, 2005; Glukhov et al., 2010). This
heterogeneous APD prolongation increases the spatial dispersion
of repolarisation, potentially leading to regions of recovered
(i.e., excitable) tissue partially bordered by still refractory (i.e.,
unexcitable) tissue. A propagating trigger event occurring in
such a location can be partially blocked by the refractory tissue,
leading to re-entrant arrhythmias (Pandit and Jalife, 2013). The
spatiotemporal region where such partial conduction block could
occur is termed the “vulnerable window” (VW) (Starmer et al.,
1993; Shaw and Rudy, 1995; Benson et al., 2008, 2011a). It follows
that heterogeneous APD prolongation increases not only the

spatial dispersion of repolarisation, but also the VW, i.e., the
arrhythmia substrate.

The interaction of triggers and substrates determines the
initiation of arrhythmia: an arrhythmia cannot be initiated
without both a suitably-sized and -timed trigger and the
necessary substrate to allow that trigger to propagate in a re-
entrant manner (Kalin et al., 2010). Arrhythmias, therefore, are
not cellular events, but tissue-level events.

Management of arrhythmias associated with QT prolongation
can be achieved by attempting to restore the ventricular APD
to control ranges (Nachimuthu et al., 2012), thus reversing the
increases in arrhythmogenic triggers and substrates associated
with APD prolongation. One such strategy is the use of
human ether-a-go-go-related-gene channel (hERG) activators
that enhance the repolarising rapid delayed rectifier K+ current
(IKr), thus reducing the APD (Grunnet et al., 2008; Wu and
Sanguinetti, 2016). However, many anti-arrhythmic drugs have
pro-arrhythmic effects (Kumar and Zimetbaum, 2013); such
drugs can shorten the action potential and the QT interval
(reducing arrhythmias associated with a prolonged QT interval),
but they may have additional and unintended effects that
increase (rather than reduce) the propensity for arrhythmias
under certain conditions. For example, we have shown in a
previous experimental and computational study that the hERG
activator NS1643, one of the most effective and best characterized
hERG activators (Hansen et al., 2006), successfully restores APD
toward healthy durations and reduces arrhythmia triggers, but
is associated with an increase in the VW, i.e., the substrate
for arrhythmias, due to effects on the post-repolarisation
refractory period (Peitersen et al., 2008). Furthermore, while low
concentrations of NS1643 activates IKr and shortens APD, it has
been shown that higher concentrations of NS1643 blocks (rather
than activates) IKr (Bilet and Bauer, 2012).

The potentially pro-arrhythmic effects of hERG activators,
such as NS1643 has prompted the search for novel hERG
activators that do not display these effects. One recently-
identified compound is MC-II-157c, an NS1643 analog. MC-
II-157c activates IKr at low concentrations and, unlike NS1643,
it continues to activate IKr at high concentrations; it may also
block the sodium current (INa) (Guo et al., 2014). However, it
remains unknown how the IKr activation and INa block seen with
this new compound affect arrhythmia triggers and substrates,
and importantly, how these (increased or decreased) triggers and
substrates interact to induce arrhythmias (if at all).

Computational models provide powerful research tools to
understand the intricacies of arrhythmia trigger and substrate
interaction, as they allow us tomodify parameters under precisely
controlled conditions and quantify the resultant tissue-level
arrhythmic behavior, and can predict how these arrhythmias
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will manifest in a clinical setting (e.g., changes to the ECG).
We therefore used a computational approach to quantify the
interaction of pharmacologically-modified arrhythmia trigger
and substrate, using the novel hERG activator MC-II-157c as an
example.

We wanted to quantify the modified triggers and substrate
that result from MC-II-157c ion channel actions. To this end,
we use detailed single cell and tissue level models to study
the effect of QT prolongation and its modulation by MC-II-
157c on: (i) APD heterogeneity in isolated cells; (ii) SR Ca2+

loading and subsequent spontaneous SR Ca2+ release events; (iii)
the probability of spontaneous SR Ca2+ release manifesting as
triggered action potentials in single cell and ectopic activity in
tissue; and (iv) the vulnerability to the initiation of re-entrant like
conduction patterns.

METHODS

We implemented a multi-scale in silico approach to study
the interactions between arrhythmia trigger and substrate in
conditions associated with prolonged QT intervals, and their
modulation by the hERG activator MC-II-157c.

Isolated Cell Models – Intracellular Ca2+

Handling
In order to simulate triggered and ectopic activity underlain by
spontaneous Ca2+ release events, a spatial model of intracellular
Ca2+ handling which explicitly accounts for stochastic state
transitions and spatial coupling is required. We therefore
implemented an efficient, idealized reduction of a previously
developed and validated general model of spatio-temporal Ca2+

handling with realistic structure (Colman et al., 2017), using a
similar approach implemented by other groups (e.g., Restrepo
et al., 2008). Briefly, 15 × 20 × 65 spatially-discrete individual
calcium release units (CRUs) were modeled throughout the
geometry of the cell (Figure 1). Each CRU comprises of
five compartments with associated Ca2+ concentrations: the
intracellular spaces of the dyadic cleft space ([Ca2+]ds), subspace
([Ca2+]SS) and bulk-cytosolic space ([Ca2+]i), and the network
and junctional SR ([Ca2+]nSR, ([Ca

2+]jSR). The bulk cytosol,
subspace and network SR are diffusively coupled to neighboring
CRUs; the dyadic cleft space and junctional SR are not
spatially coupled to neighbors. The fundamental model equations
describing this system are:
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where vx is the volume of compartment x, βx is an instantaneous
buffering term, and ϕx is the reaction term. Stochastic dynamics
aremodeled for the RyRs and LTCCs, which are part of the dyadic
cleft space reaction term. All parameters and reaction terms are
given in the Supplementary Material.

Isolated Cell Models - Action Potential
Model
Ion currents were described by a simplified version of the
O’Hara-Rudy dynamic (ORd) human ventricular cell model
(O’Hara et al., 2011), wherein the major currents only (INa, IKr,
IKs, IK1, Ito, INaK) were included, without the further details of
phosphorylation included in the original study; Ca2+ currents
(ICaL, INaCa, ICap, ICab) are described by the Ca2+ handling
model. These simplifications were implemented to improve
computational efficiency and for integration with the general
stochastic Ca2+ handling model described above. The model
provides specific formulations to describe the heterogeneity
in ionic currents of the transmural cell types (endocardial,
midmyocardial, and epicardial) found in the left ventricular free
wall of the human heart (see O’Hara et al., 2011) for details.

This integrated stochastic framework captures spontaneous
Ca2+ release events that could lead to triggered activity (see
details in Simulating Spontaneous Release Events in Tissue
Models below). Default model action potentials and cytosolic
Ca2+ transients, for the three transmural cell types of the
simplified ORd model with stochastic Ca2+ handling, are shown
in Figure 1B. The updated cell model exhibits action potential
and Ca2+ transient properties similar to the original cell model
and within the range of experimental data presented in the
original study (O’Hara et al., 2011): APD = 272–360 ms and
intracellular Ca2+ transient magnitude of ∼0.6µM for the three
cell-types during control pacing; note that the present study does
not consider heterogeneity in the intracellular Ca2+ handling
system and thus the Ca2+ transient is more homogeneous
between the cell types than in the original study (see Limitations).
The model is therefore considered suitable for the mechanistic
study undertaken.

Prolonged QT and Pharmacological
Modulation
We were interested in general cases of QT prolongation rather
than modeling the kinetics of very specific conditions, while still
making our results broadly applicable to clinical conditions, such
as LQTS. We therefore simulated QT interval prolongation (i.e.,
prolongation of the ventricular APD) in one of three ways: (i)
downregulation of the slow delayed rectifier K+ current (IKs)
maximal conductance by 50%, similar to LQTS1, which we
term “prolonged QT variant a” (PQTa) in the remainder of the
manuscript; (ii) downregulation of IKr maximal conductance by
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FIGURE 1 | Model schematic. (A) Schematic structure of the spatio-temporal Ca2+ handling model with the compartments comprising a single CRU, and coupling

between compartments, illustrated. DS, dyadic cleft space; SS, subspace; CTYO, bulk intracellular space; JSR, junctional SR; NSR, network SR. NX, 15; NY, 20; NZ,

65. (B) Action potentials (upper) and Ca2+ transients (lower) during control pacing (BCL = 1, 000 ms) for the three cell types (ENDO, Endocardium; M,

Midmyocardium; EPI, Epicardium).

50% (PQTb), similar to LQTS2; and (iii) upregulation of ICa,L
maximal conductance by 50% (PQTc), similar to LQT8 (Bohnen
et al., 2017).

Effects of 10µM of the hERG activator MC-II-157c on IKr
were modeled by modifying the IKr formulation according to
experimental data (Guo et al., 2014): maximal conductance
was decreased by 12%, activation was shifted by −14 mV and
inactivation by +14 mV, and deactivation kinetics were slowed
3.3-fold (note that, although the maximal conductance of IKr is
reduced by MC-II-157c, its kinetic effects enhance the activity
of the current; see The hERG Activator MC-II-157c Partially or
Fully Reverses APD Prolongation Heterogeneously). Effects of
MC-II-157c on blocking INa (which are not as well characterized
as its effects on IKr; Guo et al., 2014) were simulated by reducing
the maximal conductance of INa by 0, 40, and 80%.

Tissue Models
We used a 20mm 1D virtual tissue strand (Kléber and Rudy,
2004) for quantifying transmural propagation and vulnerability,
with equal spatial distributions of endocardial, midmyocardial
and epicardial cells. A 20 × 40mm 2D tissue sheet (Clayton
et al., 2011) was used for simulations examining propagation
of triggered activity, with equal distributions of endocardial,
midmyocardial and epicardial tissue in the x direction. For
examining intramural propagation and ectopic activity in 3D,
we used an anatomically detailed 3D ventricular wedge model,
obtained by diffusion tensor MRI, and used equal proportions
of endocardial, midmyocardial and epicardial tissue in the

transmural direction (see Benson et al., 2007, 2011b; Walton
et al., 2013 for details).

All tissues were isotropic, i.e., conduction velocity was set to be
equal in all directions: We used an electrical diffusion coefficient
of D = 0.048 mm2ms−1, to give a conduction time along the 1D
strand (i.e., a transmural activation time) of 40 ms (cf. Glukhov
et al., 2010), and a plane wave conduction velocity of 0.5m.s−1 in
all tissues. The body surface potential was computed by placing
the ventricular wedge model in a human torso mesh; the forward
problem was solved by a boundary element method, as has been
described in previous studies (Perez Alday et al., 2015, 2016,
2017). ECGs were derived from the body surface potential by
selecting elements of the torso mesh which correspond to the
ECG electrodes.

Simulating Spontaneous Release Events in
Tissue Models
Performing tissue level simulations using the fully detailed
spatial Ca2+ handling model to describe individual cells is
computationally intractable due to the large number of equations
that need to be solved in such situations. Furthermore, the
focus of this study was not to dissect the mechanisms of
spontaneous Ca2+ release in single cell, but rather to understand
the considerations determining the manifestation of sub-cellular
Ca2+ release as triggered action potentials and propagating
electrical excitation in the presence of prolonged APD and its
pharmacological modulation.
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We therefore implemented a “non-spatial” simplification of
the Ca2+ handling model (described in Isolated Cell Models–
Intracellular Ca2+ Handling, above) for use in tissue-level
simulations, to capture spontaneous Ca2+ release events at
significantly reduced computational cost and with complete
controllability. The non-spatial model consists of a single
CRU (with RyR and LTCC dynamics solved deterministically)
with additional analytical functions which describe the RyR
waveform associated with whole-cell spontaneous release
events, derived from analysis of the fully detailed spatial
cell model, similar to the approach used in Campos et al.
(2015) and Colman et al. (2015). For a simple transient-
spike morphology (Figure 2) this function has the form:

NRyR_O =
NRyR_peak

(

1+ e−(t−(ti+0.5tup))/(0.1689tup+0.00255)
) (

1+ e−
(

t−
(

ti+tup+0.5tdecay
))

/
(

0.1689tdecay+0.00255
)
)

where ti is the initiation time of the spontaneous release and
tup, tdecay and NRyR_peak describe the shape of the waveform
and are all determined from the duration (Figures 2, 3 and
described below). The function for the plateau-like waveform
(corresponding to durations longer than 250 ms) is derived from
the same parameters (note the peak time, tp, is ti+tup):

NRyR_O =
NRyR_plateau

(

1+ e−(t−(ti+17.5))/5.946
)

(

1+ e
(

t−
(

tf−17.5
))

/5.946
)

+
NRyR_peak − NRyR_plateau

(

1+ e−
(

t−
(

tp−17.5
))

/5.946
) (

1+ e
(

t−
(

tp+17.5
))

/5.946
)

Thus, the waveform is completely described by the initiation
time and the duration. The stochastic nature of spontaneous
Ca2+ release is captured by randomly selecting these parameters

from functions describing their physiological distributions.
The distributions describing initiation time of whole-cell
spontaneous release events in the spatial cell model are typically

skewed (Figure 3Aa) and well approximated by two sigmoidal

functions, split around the cumulative probability of 0.25

(corresponding to a specific initiation time, ti_sep; Figure 3Ab).

The initiation time can therefore be determined by passing
a random number into the inverse of the two sigmoidal
functions:

ti =

{

−kF1 ln
(

0.5
rand

− 1
)

+ tisep , rand < 0.25

−kF2 ln
(

1.5
rand + 0.5

− 1
)

+ tisep , rand ≥ 0.25

where the gradient parameters of the two sigmoidal functions
(kF1, kF2) and the ti at the cumulative probability of 0.25, ti_sep,
completely control the resulting distribution. The duration, D, of
the RyR waveform can be determined from distributions in an
analogous manner:

D =

{

k1_MD ln
[

1/
(

rand − 1
)]

+MD, rand < 0.5

k2_MD ln
[

1/
(

rand − 1
)]

+MD, rand ≥ 0.5

where MD refers to the median and k1_MD and k2_MD are
functions of the median (in conditions where longer waveforms
are observed, the variability in waveform duration between
simulations is larger; Figure 3Ba–c):

k1_MD = 0.1366MD− 7.98

k2_MD = 0.12MD− 3.265

FIGURE 2 | Spontaneous excitation RyR waveforms and parameters. (A) Four examples of RyR waveforms associated with whole-cell spontaneous release events in

the spatial cell model. Parameters describing the shape of the waveform are labeled. (B) Analytical waveforms approximating those in (A) using the input parameters

listed.
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FIGURE 3 | Derivation of the RyR waveform parameters. (A) Initiation time distributions: (a) is an example distribution produced by the spatial cell model; (b) is the

cumulative frequency of the distribution (purple dots) and two sigmoidal functions (red and green lines) which approximate it–the distribution itself is shown for

reference (blue shading); (c) cumulative frequencies of the three distributions used in this study (ti distribution widths of 350 ms–blue; 550 ms–red; 1,000 ms–purple),

with the histogram corresponding to the red distribution shown for reference. (B) Duration distributions: (a) scatter-plot of the durations associated with multiple

simulations under different conditions (colors), plotted against the median of each distribution, which is also shown as the red diamonds for reference; (b,c) correlation

of the gradient parameters of sigmoidal functions describing the distribution either side of the median with the median value; (d) four duration distributions used in the

present study (Median Duration = 150 ms–red; 200 ms–blue; 250 ms–purple; 300 ms–green). (C) Other parameters correlate with the duration–time to peak (tup, a)

and the waveform peak (NRyR_peak , b).

Thus, the distribution is entirely described by themedian. Finally,
tup and NRyR_peak can be determined from the given duration
(Figure 3C):

tup = 24+ rand(D− 52)

NRyR_peak =

{

MRYR− rand(159.59(D−1.327 − D−1.4)), rand < 0.5

MRYR− (1− rand)(159.59
(

(D+ 30)−1.15
+ D−1.327

)

+ 0.08), rand ≥ 0.5

WhereMRYR refers to the median and is given by:

MRYR = 159.59D−1.327
+ 0.028

And if duration > 250 ms, it is also necessary to compute
NRyR_plateau:

NRyR_plateau = 31.09(0.01D)−7.39

+(rand − 0.5)(−5× 10−4D_0.0275)+ 0.34

These formulations therefore allow complete control over
spontaneous release dynamics through just four parameters (kF1,
kF2, ti_sep, median duration). We fix ti_sep in simulations such that
only the width of the initiation time distribution (kF1, kF2) and
the median of the duration distribution are varied: ti distribution
widths of 350, 550, and 1,000 ms (Figure 3Ac) were used in tissue
simulations; duration medians of 150, 200, 250, 300, and 350
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ms (Figure 3Bd) were used in single-cell and tissue simulations.
Derivation of these equations from the fully detailed spatial cell
model ensures self-consistency and physiological validity of the
resulting waveforms.

Computational Aspects
Models were coded in C/C++ and run on a Linux desktop
machine, or using the University of Leeds ARC2 High
Performance Computing facilities. Equations for isolated cell
models were solved using a forward Euler method with a time
step of 1t = 0.05 ms; ion channel gating equations were solved
using the Rush-Larsen scheme (Rush and Larsen, 1978). For
tissue models, the monodomain equation was solved using a
Forward Time Centred Space method: Space steps of 1x =

0.2mm were used in the 1D strand, 1x = 1y = 0.2mm in
the 2D tissue, and 1x = 1y = 0.425mm and 1z = 0.5mm
in the 3D wedge model (as defined by the diffusion tensor
MRI dataset). Parallelisation was implemented with OpenMP.
Cell APD was measured from the time the membrane potential
crossed −80 mV during the upstroke of the action potential, to
when the membrane potential crossed back over−80 mV during
the repolarisation phase.

RESULTS

The hERG Activator MC-II-157c Partially or
Fully Reverses APD Prolongation
Heterogeneously
The single cell model was paced at a cycle length of 1,000
ms for 100 beats under control (WT), PQT and PQT + MC-
II-157c conditions to evaluate the efficacy of MC-II-157c on
reversing PQT induced APD prolongation (Figure 4). Figure 4A
shows effects on AP morphology of the PQTa, PQTb, and
PQTc conditions in endocardial, midmyocardial, and epicardial
cells, with WT action potentials shown as a reference. The
PQTb condition (downregulation of IKr) has the largest effect
on prolonging APD (from 360 to 649 ms in midmyocardial
cells, an increase of 80%), due to the larger IKr conductance in
human cells relative to IKs conductance, and its primary role
in AP repolarisation. All three PQT conditions increase the
transmural difference in APD (the difference between the longest
and shortest APDs in the three cell types), from 88 ms in WT to
97, 279 and 122 ms with PQTa, PQTb, and PQTc, respectively.

Figure 4B shows how the hERG activatorMC-II-157c reduces
APD back towards control levels in all cell types and with all PQT
conditions. The drug reduced APD back to control levels in PQTa
(downregulation of IKs) due to the minimal effect this condition
has on initially prolonging APD, but the largest decrease was
seen with PQTb in midmyocardial cells, where APD was reduced
from 649 to 540 ms, a reduction of 17% (Figure 4C). It should be
noted, however, thatMC-II-157c has transmurally heterogeneous
effects; that is, the degree of APD reduction seen in the three
different cell types is not identical, with the drug under PQTb
conditions (for example) giving a 5% decrease in endocardial
cells, 17% in midmyocardial cells and 4% in epicardial cells.
Consequently, the maximal transmural difference in APD in

PQTb reduces from 279 ms with the PQT condition alone to 184
ms with PQTb plus MC-II-157c, but does not reduce transmural
difference in APD back down to WT levels (184 vs. 88 ms).

ECGs were computed for the different conditions using the
3D ventricular wedge model under normal pacing (BCL = 1,000
ms). QT-prolongation was observed for all three remodeling
types (Figure 4C), with PQTb exhibiting the longest QT-interval,
congruent with single cell results (QT= 310ms inWT compared
to 326, 418, and 329 ms in PQTa-c, respectively). MC-II-157c
resulted in a delay in the QRS peak as well as earlier absolute
repolarisation time and consequent shortening of the QT interval
(QT = 309 ms, 403 and 310 ms in PQTa-c + MC-II-157c;
Figure 4C); in PQTa and PQTc, MC-II-157c fully reverses QT
prolongation.

The mechanism by which MC-II-157c shortens APD, despire
reducing the maximal conductance of IKr, is illustrated in
Figure 5: the shifts in the activation and inactivation curves and
the slowing of deactivation kinetics result in an increased current
during both voltage clamp and AP clamp experiments. These
results are generally congruent with the original study of Guo
et al. (2014), although the current traces do differ in morphology
and extent of effect of MC-II-157c (see Limitations).

MC-II-157c has PQT-Type Dependent
Effectiveness in Reversing SR Loading and
Spontaneous Release Events
The vulnerability to the emergence of whole-cell spontaneous
Ca2+ release events (such as intracellular Ca2+ waves, Figure 6A)
is primarily controlled by the dynamics of the intracellular
Ca2+ handling system and the SR Ca2+ load, wherein cells
typically exhibit an SR load threshold above which the probability
of spontaneous release events significantly increases (Wagner
et al., 2015). The focus of this study is not on the mechanisms
of spontaneous Ca2+ release, and therefore investigation of
Ca2+ handling remodeling is beyond its scope. However, APD
prolongation associated with PQT, and its subsequent reversal
by MC-II-157c, may influence SR loading and consequently the
vulnerability to the emergence of whole-cell spontaneous Ca2+

release.
An SR-loading protocol was used to analyse this behavior,

by pacing the spatial cell model at a rapid rate (cycle length
of 400 ms). The maximal flux rate of intracellular uptake was
increased, simulating the effect of sympathetic stimulation, in
order to promote SR loading. An increase by a factor of two
was chosen as this loaded the SR-Ca2+ in the WT model to just
above the spontaneous release threshold; the most suitable region
to reveal the consequence of APD modulation on spontaneous
activity.

The time series of SR-Ca2+ in WT and the PQTc condition in
isolated epicardial cells illustrates the effect on SR-Ca2+ loading
under rapid pacing and highlights that APD prolongation
associated with PQT can promote loading (Figure 6B). The
peak of the SR Ca2+ concentration during this time provides a
measure of SR Ca2+ loading; these data are shown in Figure 6C

for WT and all PQT conditions with and without MC-II-157c.
The PQTa condition (downregulation of IKs) does not promote
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FIGURE 4 | Action potential and ECG morphology and duration in PQT and MC-II-157c. (A) Action potentials for the three cell types (ENDO, left; M, middle; EPI, right)

under baseline (upper) and MC-II-157c (lower) conditions in control (WT, purple) and PQTa-c conditions (blue, green, red) in the spatial cell model. (B) Action potential

duration at −80 mV for the same conditions in (A). The colors in the key apply to both panels (A,B). (C) Computed ECGs for the three conditions (dotted red line) and

with the application of MC-II-157c (black line), relative to the WT (purple line). MC-II-157c was modeled as IKr modification + 40% INa block. Any impact of INa block

on the upstroke velocity is not clear at this scale.

SR loading compared to WT (peak SR Ca2+ load of 1.07mM
in WT and 1.06mM in PQTa), but the PQTb (downregulation
of IKr) and PQTc (upregulation of ICa,L) conditions do (peak SR
Ca2+ load of 1.106 and 1.13mM, respectively), with PQTc having
the largest effect due to the increase in the transmembrane Ca2+

current in this condition. MC-II-157c reverses SR Ca2+ loading
in PQTb, reducing peak SR Ca2+ load at periodic steady-state

to 1.05mM, which is below WT levels. However, the drug has
only a very small effect in PQTc (down to 1.108mM) due to the
minimal effect MC-II-157c has on APD in this condition, and the
subsequently small change in the time course of ICa,L.

These relatively small changes in SR-Ca2+ can manifest as
significant differences in the vulnerability to spontaneous Ca2+

release due to the non-linear threshold dependence on SR
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FIGURE 5 | Activity of IKr during voltage and AP clamp conditions under the application of MC-II-157c. IKr traces (b) elicited by a voltage step protocol (a) in

simulation (A) and experiments of Guo et al. (2014); (B) and elicited by a simulated AP clamp (C), for baseline (purple) and MC-II-157c (red) conditions. In (B), the

current traces have been normalized to the peak of the control current. Conditions in (A) were matched to those experimentally—the intracellular and extracellular

concentrations of potassium were set to 120 and 5.4mM, respectively.

Ca2+ concentration (Figures 6D,E). The probability of whole-
cell spontaneous release events and the probability distributions
describing the initiation time can be computed from a large set
of simulations (N = 1,000 per condition). Example distributions
are shown in Figure 6E for the WT and PQTc with and without
MC-II-157c, highlighting that even the small change in SR Ca2+

as a result of MC-II-157c significantly reduces the probability of
spontaneous release (∼50% in PQTc with MC-II-157c compared
to 98% in PQTc alone) as well as widening the distribution
(although not fully reversed toWT). Due to the choice of loading
parameters giving the WT close to threshold, no spontaneous
release occurs for either PQTa or PQTb under the application
of MC-II-157c as in these conditions threshold SR Ca2+ is not
reached.

MC-II-157c Is Effective in Inhibiting DADs
Turning into Triggered Activity
The effect of MC-II-157c on the probability of DADs manifesting
as full triggered action potentials was investigated using the
simplified, non-spatial model such that spontaneous release
waveforms could be directly controlled. The initiation time was
set to 1,000 ms and behavior of the cell models for WT, PQT
and PQT+MC-II-157c was compared over multiple simulations
(N = 1,000 per condition) for four different RyR waveform
duration distributions (see details in Simulating Spontaneous
Release Events in Tissue Models; the distribution determines the
values of duration which can be selected from a random number
input and thus the actual value of the duration will vary randomly
within the 1,000 simulations according to the given distribution).

Examples of 100 simulations for WT and PQTb, with and
without MC-II-157c, are shown in Figure 7A. In PQTb, more
DADs turn into triggered activity compared to in WT (top two
panels), while simulated application of MC-II-157c reduces the

occurances of triggered activity (bottom two panels). These data
are summarized for all conditions and two duration distributions
(median 300 and 350 ms, see Simulating Spontaneous Release
Events in Tissue Models) in Figure 7B, wherein the degree of
block of INa associated with MC-II-157c is varied (0, 40, and 80%
block). In all cases, the IKr modification reduces the probability of
triggered activity (defined as the number of simulations in which
triggered activity occurred as a proportion of the total), but the
role of INa is less clear; blocking INa is important, but the degree
of INa block has different effects depending on the condition.
The mechanism of the drug’s action is shown in Figure 7C:
principally, an increase in repolarising IKr acts during the DAD
to keep the cell’s membrane potential below the threshold for
triggered activity; reduced INa also pays a role (although not as
great as that of IKr) in the drug’s mechanism of action as it reduces
excitability of the cell, again reducing the ease with which the
cell’s membrane potential can reach threshold.

MC-II-157c Reduces Vulnerability to
Ectopic Activity in Tissue
The vulnerability to the development of ectopic activity (i.e.,
propagation of triggered activity in all directions through
the tissue) was assessed in a 2D homogeneous sheet to
provide a medium for the synchronization of independent
stochastic release events. Ten simulations were performed for
each condition (WT and PQT variants ± MC-II-157c for the
combinations of ti and duration median distributions; Epicardial
cell model) wherein the tissue model was paced to steady state
and then left quiescent for two simulation seconds within which
time the spontaneous release occurs.

The occurrence of ectopic activity exhibits a largely “all-
or-nothing” response, where most conditions lead to either 0
or 100% of simulations resulting in a premature excitation
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FIGURE 6 | SR Ca2+ loading and spontaneous Ca2+ release events. (A) Example of a whole-cell spontaneous Ca2+ release event (Ca2+-wave), using the spatial

model of stochastic intracellular Ca2+ handling, showing the Ca2+ transient (upper) and snapshots of Ca2+ concentration in the 3D cell volume (lower). The triangular

makers in the upper panel indicate the timings of the snapshots in the lower panel. (B) Time-series of SR-Ca2+ during the SR-loading protocol, shown for control

(WT, purple) and PQTc (red). (C) Peak SR-Ca2+ during the loading protocol for all conditions. (D) Examples of spontaneous release resulting from SR-loading for

control (WT, purple), PQTc (red) and PQTc + MC-II-157c (orange). 100 simulations of each conditions are shown to indicate variation in spontaneous release. (E)

Distributions of initiation time of spontaneous release events, corresponding to the same conditions shown in (D). The time is relative to the start of the simulation

(3 beats, initial conditions of dynamic steady state) to align with (D). MC-II-157c was modeled as IKr modification + 40% INa block.

(Table 1). Ectopic activity was promoted by narrow distributions
of initiation time (i.e., tight synchronization) and short RyR
waveforms (i.e., large spontaneous Ca2+ transients), and
conversely inhibited by wide distributions of initiation time
(i.e., lose synchronization) and long RyR waveforms (i.e., small
spontaneous Ca2+ transients). For example, no ectopic activity
was observed for any condition with ti distribution widths of
1,000 ms or duration medians of 300 ms or longer, whereas a ti
distribution width of 350 ms combined with median durations of
150 or 200 ms resulted in ectopic activity occurring in 100% of
simulations (Table 1).

PQT variants were more susceptible to the development of
ectopic activity in tissue than WT, congruent with the single-cell
results (See MC-II-157c Is Effective in Inhibiting DADs Turning
into Triggered Activity). Similarly in-line with single-cell results,

MC-II-157c can inhibit ectopic activity (Table 1): for example,
it reduces or entirely inhibits the occurrence of premature
excitation in four conditions: PQTa with ti width of 550ms
and duration median 150 ms; PQTc with ti width of 550 ms
and duration median 200 ms; PQTc with ti width of 550ms
and duration median 150 ms; and PQTc with ti width of
350ms and duration median 250 ms. The effect of INa block
is also congruent with single cell results: it contributes to the
inhibition of ectopic activity, but to a smaller extent than IKr
modification.

Figure 8A shows an example of synchronized triggered
activity initiating in a region of the 2D tissue (shown by the
clustered peaks the images), before this triggered activity spreads
throughout the tissue (shown by the yellow region) as an
ectopic propagation. When the same situation is simulated with
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FIGURE 7 | Development of triggered action potentials in single cell. (A) 100 Action Potential traces for control (WT, left) and PQTb (right) under baseline (upper) and

MC-II-157c (lower) conditions, associated with spontaneous Ca2+ release events. A proportion of the DADs manifest as triggered action potentials in all conditions.

(B) Probability of DADs triggering full action potentials for control (WT) and PQTa-c under baseline and MC-II-157c conditions. The degree of INa block associated with

MC-II-157c is varied between 0% (IKr only), 40 and 80%. The upper panel corresponds to a median RyR waveform duration of 350ms; the lower panel to 300ms. (C)

Illustration of the mechanism by which MC-II-157c inhibits triggered activity, showing that the larger IKr (lower panel and inset) acts to oppose depolarising currents

during the DAD. Yellow highlighted region clearly illustrates the differences between the conditions.

MC-II-157c (Figure 8B), triggered activity, and therefore ectopic
propagation, is inhibited.

MC-II-157c Increases the Vulnerable
Window in Tissue
An S1-S2 pacing protocol was applied to the 1D strand model
in order to compute the vulnerability window: S2 stimuli were
applied across a range of time intervals, centered on one in every
five cells of the 100 comprising the model, from the tenth to the
90th.

Examples of propagation applied during the repolarisation
phase in 1D tissue simulations are shown in Figure 9A: if the
triggered activity occurs early (at 311 ms in this example), the
resultant excitation is surrounded by refractory tissue and the
triggered activity dies out without propagating; If the triggered
activity occurs slightly later (e.g., 316 ms) then refractory tissue

is encountered at only one side of the triggered activity site
and unidirectional block (or unidirectional propagation) occurs,
in the retrograde direction (back toward the endocardium) in
this example; If triggered activity occurs later than this (321
ms in this example) then all surrounding tissue has recovered
and the triggered activity propagates in both directions along
the strand (i.e., ectopic propagation, analogous to the situation
shown in 2D tissue in Figure 8A). It is the unidirectional
block situation (i.e., when the triggered activity occurs in the
VW) that can lead to re-entrant arrhythmias if this situation
occurred in 2D or 3D tissue. The VW identifies occurrences of
trigger and substrate interaction that may lead to arrhythmias,
and so quantifying the size VW is a convenient method to
examine effects of disease conditions and drugs on trigger and
substrate interaction. The baseline VWs for WT and the PQTa
condition are mapped out in Figure 9B, as well as VWs in
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TABLE 1 | Incidence of ectopic activity in 2D tissue under WT and PQT ± MC-II-157c conditions.

ti width 1,000 550 350

Duration median 300 250 200 150 300 250 200 150 300 250 200 150

WT 0 0 0 0 0 0 0 0 0 0 10 10

PQTa 0 0 0 0 0 0 0 10 0 0 10 10

PQTa+C 0 0 0 0 0 0 0 0 0 0 10 10

PQTa+CNa 0 0 0 0 0 0 0 0 0 0 10 10

PQTb 0 0 0 0 0 0 10 10 0 10 10 10

PQTb+C 0 0 0 0 0 0 10 10 0 10 10 10

PQTb+CNa 0 0 0 0 0 0 10 10 0 10 10 10

PQTc 0 0 0 0 0 0 10 10 0 10 10 10

PQTc+C 0 0 0 0 0 0 6 5 0 9 10 10

PQTc+CNa 0 0 0 0 0 0 0 0 0 1 10 10

The number of simulations where a premature excitation was observed is shown for each condition (out of a total of 10). The compound MC-II-157c is denoted by a “C” with IKr

modification alone and “CNa” with inclusion of 40% block of INa. Highlighted with red borders are the conditions in which MC-II-157c inhibits the development of ectopic activity.

FIGURE 8 | Development of premature excitation in 2D tissue sheets. Temporal snapshots of the membrane voltage in a 2D slice of tissue during spontaneous Ca2+

release events for PQTa (A) and PQTa + MC-II-157c (IKr modification + 40% INa block, (B). The color bar has been scaled to emphasize voltage differences in the

DAD region and lighting has been added to further enhance local variation in voltage. Data corresponds to ti width of 550 ms and duration median 150 ms.

these two situations with simulated addition of MC-II-157c (IKr
modification plus 50% INa block), as well as with only the MC-
II-157c IKr modification. These VWs are quantified by length
(over which they occur in the 1D strand) and area (length ×

temporal width). In both WT and PQTa conditions, the drug
increases both the length and the area of the VW (for example,

length increases from 9 to 16mm in the PQTa condition, and
area increases from 78 to 101mm.ms). Again, the influence of
INa is different depending on the condition: including the effects
of INa (i.e., the full MC-II-157c simulations compared to the
IKr only simulations) increases the length of tissue over which
the VW occurs in all conditions (e.g., from 12 to 16mm in
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FIGURE 9 | Vulnerability windows to unidirectional conduction block. (A) Examples of propagation following applied S2 stimulus at different time intervals, illustrating

conduction block (left), unidirectional conduction (middle) and full conduction (right). (B) Vulnerability windows for control (WT, upper) and PQTa (lower) under baseline,

MC-II-157c (IKr modification + 40% INa block) and IKr modulation alone conditions. The lower line in each plot represents the refractory period (time below which no

propagation occurs); the upper line represents the earliest time of bidirectional conduction; the area between the lines (shaded yellow) is the region within which

unidirectional conduction occurs. Right panel is bar charts summarizing the length (mm) and area (mm.ms) of the vulnerability windows. Dotted lines illustrate the

regions of the different cell types (ENDO, left; EPI, right).

PQTa), but reduces the overall area of the VW (e.g., from 126
to 101mm.ms).

DISCUSSION

We used a multi-scale computational modeling approach to
examine the interactions between cardiac arrhythmia trigger
and substrate in general conditions associated with prolonged
QT intervals, and their modulation by the hERG activator and
sodium channel blocker MC-II-157c. Although we examined the
effects of pharmacological modification on trigger and substrate
interaction using a specific hERG activator, and gained novel
insights into how modification of the depolarising (INa) and
repolarising (IKr) membrane ionic currents targeted by the
drug affects arrhythmia triggers and substrates, our findings
also provide general insight into the role of ion-currents in
controlling triggers and substrate at multiple scales which, along
with insight from other in silico studies [see (Dutta et al., 2016;
Mann et al., 2016) for recent examples], may be applicable to
other pharmacological compounds that modify membrane ionic
currents as well as pro-arrhythmic electrical remodeling.

Key Findings
Our key findings are that: (i) Despite the hERG activator MC-II-
157c reducing the maximal conductance of IKr by 12% compared
toWT, the drug’s modifications to IKr activation, inactivation and
deactivation kinetics result in an overall increase in IKr during
the action potential, and a concomitantly reduced APD under
all PQT conditions in all transmural cell types; (ii) Although
MC-II-157c acts on membrane ionic currents carrying K+ and
Na+, the drug has indirect effects on intracellular Ca2+ handling,
particularly SR Ca2+ loading and related spontaneous SR Ca2+

release events and subsequent DADs, through modulation of
the AP; (iii) Increased IKr (through its repolarising effects) and
reduced INa (by decreasing cell excitability) act to reduce the
probability of a DAD reaching threshold and developing into
triggered activity at both cellular and tissue scales; and (iv)
Despite MC-II-157c reducing triggered activity at the cell level,
the drug can increase both the spatial region of tissue over which
a VW for unidirectional conduction block occurs, as well as
the temporal width of the VW at all points along the tissue,
and in doing so increases the total spatiotemporal size of the
VW. These results highlight the complex considerations which
underlie overall vulnerability to arrhythmia at multiple scales.
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Efficacy of MC-II-157c as an
Anti-Arrhythmic Drug
At the isolated cell level, MC-II-157c reduces SR Ca2+ loading,
reduces the occurrences of spontaneous SR Ca2+ release events,
reduces DAD occurrences, and reduces the probability of a DAD
developing into a triggered action potential. At the tissue level,
the combination of these factors leads to a significantly reduced
vulnerability to the development of ectopic beats; MC-II-157c
reduces the probability of an ectopic beat development at given
spontaneous release function distributions (i.e., synchronization
degree) as well as inhibiting SR Ca2+ loading and thus reducing
synchronization (which, itself, reduces the probability of ectopic
beats). In relation to the development of Ca2+ induced triggers
at single cell and tissue levels, therefore, our simulation results
suggest that the drug has efficacy as an anti-arrhythmic.

However, even though arrhythmic triggered activity is
reduced with the drug, the spatiotemporal area of the VW
increased, and so the anti-arrhythmic effects of the reduced
probability of an arrhythmia trigger occurring is opposed
by the pro-arrhythmic effects of an increased arrhythmia
substrate. This highlights the importance of examining the
effects of pharmacological compounds on both the triggers
and the substrates that underlie arrhythmia initiation: there
is a delicate balance between increased/decreased trigger
and increased/decreased substrate (i.e., trigger-substrate
interaction) that determines whether any given trigger stimulus
(e.g., a spontaneous SR Ca2+ release event) will result in
unidirectional propagation and, potentially, initiation of a re-
entrant arrhythmia. This is one potential reason that single cell
studies showing efficacious effects of putative anti-arrhythmic
drugs may not translate to the clinic.

The effects of MC-II-157c on the VW occur through two
mechanisms due to the drug’s action on both IKr and INa, both of
whichmodify transmural dispersion of repolarisation. Activation
of IKr causes heterogeneous changes to APD at the tissue level, the
same mechanism as in our previous studies examining the effects
of NS1643 (Peitersen et al., 2008). Block of INa results in slowed
transmural conduction (Kléber and Rudy, 2004) and therefore
delayed activation of epicardial (but not endocardial) tissue: this
in turn modifies transmural dispersion of repolarisation, even
though the change to APD isminimal with INa block. Block of INa
also reduces excitability of the tissue, necessitating a larger trigger
to initiate propagation, which also contributes to the change in
the VW.

Varying Effects of Sodium Current Block
The role of INa loss of function in arrhythmogenesis has been
examined in detail previously (see Clancy et al., 2015 for a
review); however, one intriguing finding from our cell and tissue
simulations was the varying effects that different magnitudes of
INa block had on trigger development and substrate size. At
the cell level, the probability of triggered activity developing
from DADs did not follow a simple monotonic change with
increasing INa block in all cases. Take, for example, the 350 ms
Ca2+ release duration distribution results shown in the top panels
of Figure 7B: In WT and the PQTb condition, INa block (in

addition to the IKr modification) reduces the probability of DADs
developing into triggered activity (relative to the IKr modification
alone), with more block reducing this probability; that is to say,
the greater the INa block, the more anti-arrhythmic (in terms of
reducing triggered activity) the effects. However, in the PQTa
condition, while 40% block of INa reduced the probability of
triggered activity occurring, increasing block of the current to
80% slightly increased the probability of triggered activity; in
this condition, a small amount of INa block has anti-arrhythmic
effects, but increasing this small level of block is pro-arrhythmic.
In the PQTc condition, INa block of any magnitude increased the
probability of triggered activity (i.e., INa block is pro-arrhythmic),
with the probability of triggered activity occurring increasing as
INa block is increased. Similarly varied results were found for
the 300 ms Ca2+ release duration distribution (lower panels in
Figure 7B), although the anti-/pro-arrhythmic effects did not
necessarily match those seen with the 350 ms distribution.

One further note of caution with regards to INa block comes
from our tissue-level VW results in Figure 9B. Quantification of
the length of tissue over which the VWoccurs shows that 50% INa
block (compare the full MC-II-157c effects to the effects with the
IKr modification alone) increases this length, potentially due to
an increase in transmural dispersion of repolarisation with INa
block; analyses of these results alone would conclude that INa
block is pro-arrhythmic. However, despite the spatial width of the
VW increasing, block of INa results in the total spatiotemporal
area of the VW decreasing (again, compare the full MC-II-157c
effects to the effects with the IKr modification alone), i.e., an
anti-arrhythmic result, likely due to the reduced excitability that
results from INa block reducing the likelihood that any triggered
activity would propagate.

Our tissue-level findings therefore indicate that INa block per
se is an effective antiarrhythmic strategy (as seen with class I
antiarrhythmic drugs; Camm, 2012), but our cell-level findings
highlight that the magnitude of INa determines cell (and by
extension, tissue) electrophysiological consequences in a manner
that is not intuitive. The mechanisms underlying these varying
effects of INa block on arrhythmogenesis, particularly on DAD
initiation and their development into triggered activity, remain
to be elucidated.

Modifying Abnormal Intracellular Calcium
Handling through Membrane Current
Modification
Although this study did not focus on the mechanisms of
arrhythmia triggers (in that we prescribed SR Ca2+ release events
under certain conditions), one interesting finding did emerge in
relation to arrhythmia triggers that can result from abnormal
intracellular Ca2+ handling: Modification of membrane ion
channels carrying ions other than Ca2+ (K+ and Na+ in this
case) can have beneficial effects in terms of restoring abnormal
intracellular Ca2+ handling, through their actions in shortening
APD. This was shown in Figure 6, where the increased SR Ca2+

loading (and resultant spontaneous SR Ca2+ release events)
seen under PQT conditions was reversed by upregulating IKr
and downregulating INa, which in turn shortened APD. This
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reduces the duration over which ICa,L is activated, reduces the
amount of Ca2+ crossing the cell membrane and entering the cell
via that current, and thus reduces SR Ca2+ load. Furthermore,
the combined action of both of these current modifications
reduced the probability of DADs manifesting as triggered action
potentials in single cell as well as triggered action potentials
manifesting as fully propagating ectopic beats at the tissue scale.
Targeting cell membrane ion channels carrying ions other than
Ca2+ in order to restore abnormal intracellular Ca2+ handling
(as seen in heart failure, for example; Lou et al., 2012) may
be beneficial in cases where up/downregulation of Ca2+-specific
drug targets (ryanodine receptors or SERCA, for example) will
alter the delicate homeostasis of an already-compromised system,
yielding negative results (Ratner, 2015).

Development of Arrhythmic Conduction
Patterns
One-dimensional models (other than 1D rings; e.g., Vinet and
Roberge, 1994) cannot simulate re-entrant activity, and so
it is necessary to use 2D and 3D models to examine how
unidirectional propagation develops into re-entry. Although the
quantitative characteristics of the VW examined in 1D tissues
may change in 2D and 3D depending on the spatial locations of
cell types (e.g., “base-apex” as well as transmural distributions),
based on our previous work we would expect the qualitative
characteristics to remain similar (Benson et al., 2007, 2008,
2011a). We show examples of 2D and 3D modeling in Figure 10:
In Figure 10A, a trigger occurring in the VW (resulting in
unidirectional conduction block) develops into re-entry in a
simple 2D model; In Figure 10B, a trigger occurring outside
the VW develops into ectopic propagation (i.e., not re-entrant)
in a detailed 3D model of a human left ventricular wall slab,
which manifests as significant differences in the body surface
potential activation maps (Figure 10C). The advantages of using
detailed 3D models (in this case, where the geometry is obtained
from diffusion tensor MRI) lie in their ability to reproduce
the orthotropic conduction velocities resulting from complicated
tissue architecture (i.e., fiber and sheet structure; Benson et al.,
2007; Smaill et al., 2013) and the boundary and curvature
effects that can modulate electrotonic coupling and propagation
(Walton et al., 2013; Campos et al., 2015): these effects are
crucial in understanding the complex and chaotic propagation
patterns underlying cardiac arrhythmias. Nevertheless, the 1D
models used in this study allow us to examine arrhythmia trigger-
substrate interaction in a simple and methodological manner.

Limitations
In this study, a general model of intracellular Ca2+ handling
was integrated with a simplified formulation of a human
ventricular AP model. Due to the general nature of the Ca2+

handling model, details of heterogeneity in Ca2+ handling
were not included in order to avoid introducing artifacts.
For this reason, and due to the multi-scale focus of the
study, detailed investigation of the mechanisms of spontaneous
release in single cell, and their regional dependencies, was
not performed, and investigation was instead limited to the
potential effect of MC-II-157c on reversing SR Ca2+ loading.

There are many possible mechanisms of spontaneous release
associated with diseases linked to prolonged QT interval (e.g.,
hyper phosphorylation of the RyRs; upregulation of SERCA;
detubulation) which were not considered in the present study.
However, the aim of this study was to investigate the multi-
scale interaction between trigger and substrate, and the use
of the simplified spontaneous release functions in single-cell
and tissue simulations allowed this to be analyzed in a general
manner and across a large range of conditions, independent of
spontaneous release mechanism. In future, combining detailed
single cell studies of the mechanisms of spontaneous release in
disease conditions with tissue simulations of the same conditions
would provide further mechanistic insight; a dynamic simplified
spontaneous release model would furthermore allow the study
of long-term interactions between trigger and substrate in tissue
e.g., during re-entry.

The factors underlying the synchronization and propagation
of ectopic activity are highly complex and it is therefore
worth making explicit that our simplified approach (which does
not consider, for example, heterogeneity in the distributions
describing Ca2+ release) is primarily suitable for interpretation
of general trends only, rather than as a quantitative analysis of
the efficacy ofMC-II-157c inmodulating Ca2+ release dependent
triggers; it is encouraging to note that our results are consistent
with those of a previous study (Campos et al., 2015), with the
emergence of premature excitation from independent stochastic
events overcoming electrotonic load, and the steep, “all-or-
nothing” relationship observed in tissue. This steep relationship
also likely accounts for the lack of effect of MC-II-157c on
PQTb (the condition exhibiting the highest vulnerability to
ectopic activity), wherein the distributions selected were not close
enough to the threshold region to reveal an effect.

The relative contribution of IKr to repolarisation is different
in different models of the human ventricular action potential
(Mirams et al., 2014): for example, IKr contributes more
repolarising current in the ORd model (O’Hara et al., 2011) than
in the ten Tusscher & Panfilov model (ten Tusscher and Panfilov,
2006), despite both models being validated against experimental
data. It is therefore possible that our results overestimate the
effects of the hERG activator MC-II-157c, although the identified
pro- and anti-arrhythmic mechanisms will still be relevant.

The limitations of using 1D and 2D simplifications of 3D
cardiac tissue have been discussed in detail previously (Clayton
et al., 2011). Here we only note that the 1D strand model of the
left ventricular wall allows us to examine mechanisms underlying
how arrhythmia triggers and substrates interact to initiate
unidirectional propagation, without the added complicating
effects that geometrical (shape) and architectural (fiber, sheet etc.)
considerations would bring. Nevertheless, it is anticipated that
these geometrical and architectural effects will play a role not only
in the transition from unidirectional propagation to re-entry, but
on the initiation of the unidirectional propagation itself through,
for example, electrotonic effects (Benson et al., 2007; Walton
et al., 2013). Similarly, our 2D and 3D tissues were isotropic,
i.e., no fiber or sheet structure, and so any conclusions drawn
from these simulations should be interpreted with this in mind.
Elucidating the roles that tissue geometry and architecture play in
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FIGURE 10 | Examples of abnormal electrical excitation. (A) Example of conduction block in a 2D sheet, analogous to that observed in the 1D strand for computation

of the vulnerability windows. Three snapshots in time are shown to illustrate the potential of unidirectional conduction block to develop into asymmetric, re-entrant-like

activity. (B) Propagation patterns in the 3D ventricular wedge, showing normal, control pacing (upper panel) and a spontaneous ectopic beat (lower panel). The

propagation of DADs, preceding the ectopic beat, is clear by the purple colored regions in the lower center panel. The voltage color bar corresponds to both panels

(A,B). (C) Body-surface potential activation maps (time at which potential > 0.1 mV) associated with normal and ectopic propagation, highlighting the significant

difference in spatial patterns between the two conditions.

arrhythmogenesis (Smaill et al., 2013) is an important next step in
fully understanding arrhythmia trigger and substrate interaction.

The spatial distributions of endocardial, midmyocardial,
and epicardial cell types across the human ventricular wall
has still not been confirmed: some studies suggest that
midmyocardial cells are found predominantly in isolated regions
of the subendocardium (Glukhov et al., 2010), while others
suggest a continuous population of midmyocardial cells in the
subepicardial region (Drouin et al., 1995); these distributionsmay
be dependent on species, location in the ventricular wall, and
disease state (Antzelevitch, 2010; Strom et al., 2010). Because of
this uncertainty, we set the spatial distribution of the three cell
types to be equal in the transmural direction, but the effects of
the electrotonic interactions of different regions of cell types are
likely to be qualitatively similar if these distributions are altered.

The simulated model of MC-II-157c reproduced qualitatively
the key features of the effect of the compound on IKr (i.e.,
an increased activity during a depolarising pulse), but it is
important to note that there were significant differences between
the simulation and experimental data (Figure 5): firstly, the
formulation of IKr implemented does not have a time-dependent
inactivation, which is observed in the experimental trace;
secondly, the simulated data exhibited a larger difference in the
magnitude of the current during the depolarisation step between
baseline and MC-II-157c than observed experimentally. A more
detailed model of IKr in both basal and MC-II-157c conditions
would be essential for future and more detailed analysis of the
compound specifically.

Furthermore, recent work, (e.g., Li et al., 2017), has
highlighted that simple modulation of Hodgkin-Huxley current
formulations, as used to simulate IKr in the ORd model, may not
sufficiently capture complex drug-channel interaction dynamics,
and that more complex Markov model formulations may be
necessary to simulate such dynamics. However, until a full

experimental characterisation of the dynamics of MC-II-157c
effects on IKr under a range of conditions is carried out, allowing
a validated Markov model of drug-channel interactions to be
developed, we make use of the available data (Guo et al.,
2014) to modify the Hodgkin-Huxley formulation used in the
ORd model. The effects of MC-II-157c on INa are not as well
characterized as its effects on IKr (Guo et al., 2014). We simulated
the drug’s action on INa by a simple reduction in the maximal
conductance of the current. It is possible, however, that MC-II-
157c alsomodifies the current’s kinetics (i.e., shifts to the current’s
activation and inactivation curves, and/or a change to the time
constants associated with these processes) in a similar manner to
the way in which the kinetics of IKr are modified. Thus, further
experimental characterisation of the drug’s effects on both IKr and
INa are required.

CONCLUSION

The relative balance of reduced trigger and increased substrate
underlies a multi-dimensional role of MC-II-157c in modulation
of arrhythmia vulnerability associated with prolonged QT
interval. Our results highlight that studies examining the efficacy
of putative anti-arrhythmic drugs need to assess the effects of
the drug on both the triggers and the substrates involved in
arrhythmogenesis, i.e., such studies should adopt a multiscale
approach to examine both cell- and tissue-level effects.
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Rationale: Discordant alternans, a phenomenon in which the action potential duration

(APDs) and/or intracellular calcium transient durations (CaDs) in different spatial regions

of cardiac tissue are out of phase, present a dynamical instability for complex spatial

dispersion that can be associated with long-QT syndrome (LQTS) and the initiation of

reentrant arrhythmias. Because the use of numerical simulations to investigate arrhythmic

effects, such as acquired LQTS by drugs is beginning to be studied by the FDA, it is

crucial to validate mathematical models that may be used during this process.

Objective: In this study, we characterized with high spatio-temporal resolution the

development of discordant alternans patterns in transmembrane voltage (Vm) and

intracellular calcium concentration ([Cai]
+2) as a function of pacing period in rabbit hearts.

Then we compared the dynamics to that of the latest state-of-the-art model for ventricular

action potentials and calcium transients to better understand the underlying mechanisms

of discordant alternans and compared the experimental data to the mathematical models

representing Vm and [Cai]
+2 dynamics.

Methods and Results: We performed simultaneous dual optical mapping imaging

of Vm and [Cai]
+2 in Langendorff-perfused rabbit hearts with higher spatial resolutions

compared with previous studies. The rabbit hearts developed discordant alternans

through decreased pacing period protocols and we quantified the presence of multiple

nodal points along the direction of wave propagation, both in APD and CaD, and

compared these findings with results from theoretical models. In experiments, the

nodal lines of CaD alternans have a steeper slope than those of APD alternans,

but not as steep as predicted by numerical simulations in rabbit models. We

further quantified several additional discrepancies between models and experiments.
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Conclusions: Alternans in CaD have nodal lines that are about an order of magnitude

steeper compared to those of APD alternans. Current action potential models lack

the necessary coupling between voltage and calcium compared to experiments and

fail to reproduce some key dynamics such as, voltage amplitude alternans, smooth

development of calcium alternans in time, conduction velocity and the steepness of the

nodal lines of APD and CaD.

Keywords: discordant alternans, calcium dynamics, voltage-calcium coupling, arrhythmia, optical mapping, long

QT syndrome, cardiac cell modeling

INTRODUCTION

Long-QT syndrome (LQTS), characterized by abnormal
prolongation of the QT interval (Schwartz et al., 1993), is a
result of delayed repolarizations in the heart and can increase
the risk of life-threatening arrhythmias, with a mortality rate of
20% within the first year after first detection and up to 50% in
the next 10 years for untreated patients (Schwartz, 1985). The
known dangers of LQTS have resulted in guidelines by the FDA
concerning the design and testing of any new drug and in the
interpretation and analysis of these drugs in clinical trials (Food
and Drug Administration, 2005). In addition, many currently
available medications can be very dangerous to some patients
with heart problems, as they are known to further prolong
QT intervals as shown in the compendium maintained by the
Sudden Arrhythmia Death Syndromes Foundation (sads.org).
LQTS is usually accompanied by T-wave alternans (Zareba et al.,
1994) where the duration of the T wave can vary from one
beat to the next (Jayakrishnan and Krishnakumar, 2006). This
long-short alternation in duration and in some cases amplitude
has been shown to arise from a period-doubling bifurcation
(Nolasco and Dahlen, 1968; Guevara et al., 1984) originating at
the cellular level (Pastore et al., 1999). In space, alternans can lead
to complex spatiotemporal patterns along the epicardium and
endocardium (Gizzi et al., 2013) and eventually to conduction
block and fibrillation (Fenton et al., 2002; Choi et al., 2007).

During fast pacing, alternate patterns of action potential
duration (APD) in space can be classified as concordant alternans
(CA), in which all the tissue responds with a long APD on
one beat and with a short APD on the following beat with the
sequence repeating, or discordant alternans (DA), in which one
section of tissue responds with a long APD and another with
a short APD on the same beat followed by the reverse on the
next beat. During DA, the regions of long and short APDs that
alternate out-of-phase are separated by nodes, which are regions
where the APDs have the same values for successive beats and
hence do not alternate (Qu et al., 2000; Watanabe et al., 2001).

To date, two main mechanisms for the development of
discordant alternans have been proposed, one driven by voltage
and another by calcium (Saitoh et al., 1988, 1989). The first
mechanism identified (Nolasco and Dahlen, 1968) was purely
voltage-driven (Guevara et al., 1984); in space it is coupled
through the dynamical interaction between the APD restitution
curve and the conduction velocity (CV) restitution curve.
When tissue is paced rapidly, diastolic intervals are shorter,

causing slower CV near the stimulating site while CV increases
downstream along wavefront propagation, causing a large spatial
dispersion in the APD that can lead to DA (Qu et al., 2000;
Watanabe et al., 2001).

The other mechanism, calcium-driven, is considered more
complex, with DA caused by instabilities in [Cai]

+2 cycling that
in turn impacts APD through [Cai]

+2–Vm coupling (Chudin
et al., 1999; Sato et al., 2006). [Cai]

+2–Vm coupling depends on a
dynamical balance between the influx through the L-type calcium
current (ICaL) and extrusion through the Na-Ca exchanger
current (INCX) (Weiss et al., 2006). If the effect of INCX dominates,
positive [Cai]

+2–Vm coupling will occur, where a large [Cai]
+2

causes prolonged APD by an enhanced calcium extrusion
through INCX. Otherwise, when a large Ca transient reduces ICaL
through increased calcium-dependent inactivation, APD will be
shortened (Edwards and Blatter, 2014). Ca instability is another
multifactorial process. The key components are the fractional Ca
release from the sarcoplasmic reticulum (SR), which refers to the
relation between the Ca released from the SR and the SR calcium
load, and the cytosolic Ca sequestration, which refers to the
efficiency of Ca removal from the cytosol through the reuptake
to the SR and the extrusion through the Na-Ca exchanger (Weiss
et al., 2011). In general, factors increasing fractional Ca release
promote Ca alternans and factors increasing Ca sequestration
reduce alternans (Edwards and Blatter, 2014). Many studies have
attributed cardiac alternans to disturbances of [Cai]

+2 signaling,
with APD alternans considered a secondary consequence (Eisner
et al., 2006; Clusin, 2008; Laurita and Rosenbaum, 2008; Myles
et al., 2008; Kanaporis and Blatter, 2015).

Alternans was observed in cardiac tissue as early as
1872 (Traube, 1872), and some of the earliest mathematical
models of cardiac action potentials were able to produce such
phenomena (Noble, 1962; Beeler and Reuter, 1977). However,
later generations of models often failed to produce alternans
(DiFrancesco and Noble, 1985; Luo and Rudy, 1991, 1994; Faber
and Rudy, 2000), with more detailed species-specific models
for rabbit (Puglisi and Bers, 2001; Shannon et al., 2004), dog
(Winslow et al., 1999) and human (Priebe and Beuckelmann,
1998; Iyer et al., 2004; ten Tusscher et al., 2004) ventricular
action potentials among them. In time, other models have been
specifically designed to account for alternans (Fox et al., 2002;
Mahajan et al., 2008; O’Hara et al., 2011; Sato et al., 2013).

Recently the FDA’s sponsored Cardiac Safety Research
Consortium (Sager et al., 2014) proposed a new initiative, the
Comprehensive in-Vitro Pro-arrhythmia Assay (CiPA), which
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specifies the use of mathematical models of cardiac action
potentials in the aid of pro-arrhythmic drug risk assessments.
Many recently developed ionic models are complex single-
cell models with a large number of variables. There exists
a large variability in dynamics between them as well as
failures to reproduce key physiological features when they are
tested in tissue (alternans, reentrant wave dynamics, dominant
frequencies, etc.). The known differences between many cell and
tissue models make it imperative to validate and verify models
with experiments.

Toward this end, in this study, we performed dual optical-
mapping recordings with high spatial and temporal resolution
for [Cai]

+2–Vm during discordant alternans in Langendorff-
perfused rabbit hearts to better quantify the alternans mechanism
as it relates to LQTS. We then used the data for validation and
verification of the Sato et al. voltage-calcium rabbit cell model
(Sato et al., 2013).

MATERIALS AND METHODS

Heart Preparation
All experiments conform to the current Guide for Care and
Use of Laboratory Animals published by the National Institutes
of Health (NIH Publication No. 85–23, revised 1996), and
approved by the Office of Research and Integrity Assurance at
Georgia Tech. New Zealand white rabbits (2–3 kg, n = 8) were
anesthetized with ketamine/xylazine/ace-promazine (17/9/0.9
mg/kg) and then injected with heparin (300 U/Kg). After 5min,
euthanasia was induced with 120 mg/kg pentobarbital. Hearts
were then quickly removed via a left thoracotomy and perfused
retrogradely via the aorta with cardioplegic solution (NaCl: 6.43
g/L, KCl: 1.19 g/L, NaHCO3: 0.84 g/L, MgCl·6H2O: 3.25 g/L,
CaCl2: 0.13 g/L), gassed with 95% O2 and 5% CO2. Then the
hearts were immersed in a chamber kept at 37.0 ± 0.3◦C and
perfused with Tyrode’s solution (NaCl: 7.24 g/L, KCl: 0.30 g/L,
NaHCO3: 2.02 g/L, NaH2PO4·H2O: 0.12 g/L, MgCl·6H2O: 0.14
g/L, dextrose: 0.99 g/L, CaCl2·2H2O: 0.29 g/L) gassed with 95%
O2 and 5% CO2 at a pressure of about 60 mmHg maintained by
a peristaltic pump. Motion was suppressed by using blebbistatin
at a concentration of 3–5mM (dissolved in DMSO at the ratio of
5 mg/mL). For imaging, the heart was stained with the voltage-
sensitive dye JPW-6003 (0.4mg dissolved in 40µL of pure
ethanol) and intracellular calcium-sensitive dye Rhod-2 (1mg
dissolved in 1mL of DMSO).

Optical Mapping
The optical system was previously described (Fenton et al.,
2009; Ji et al., 2017). Briefly, six high-power LEDs were used
for excitation (LED Engin, San Jose CA). Three LEDs were
used for Vm imaging, coupled with OD4 650/20 nm excitation
filters (Edmund Optics), and the other three were used for
[Cai]

+2 imaging, coupled with OD4 550/20 nm excitation filters.
The operations and the intensity of the LEDs were controlled
by custom-designed apparatus. Series of fluorescent images
corresponding to [Cai]

+2 and Vm dynamics were obtained using
the time-multiplexing method with a single camera (Photometric
Evolve 128 EMCCD), with which the switching of the different

excitation LEDs was synchronized. Fluorescence images from
the anterior view (partial RV and LV) were obtained at spatial
resolution of 128 × 128 pixels (full frame) at 500 fps digitized
with a 16-bit dynamic range A/D.

Stimulation Protocol
External bipolar stimuli (3–5ms, strength twice diastolic
threshold) were applied from the apex or the base using a
downsweep pacing protocol with the pacing cycle length (PCL)
starting from 400ms. For each PCL, 150–200 stimuli were
delivered to allow the system to reach steady state. The PCL
was gradually shortened with decreasing steps once alternans
started to appear until the occurrence of VF or wave block
at any point along the wavefront propagation, usually between
150 and 130ms. The programming sequence was coordinated
with the internal camera trigger clock using an Arduino (Uno
R3) so that each pacing stimulus was delivered at a known
time point when the camera started to acquire a certain frame.
This method allowed us to perform image stacking (Uzelac
and Fenton, 2015) once steady state was reached and to detect
APD and CaD variations with temporal resolution better than
the 2ms sampling rate of the camera. We found the ability to
reach faster pacing rates without inducing fibrillation was highly
correlated with uniform physiological temperature across the
entire heart and with smaller PCL steps, especially when the PCL
was less than 160ms. To achieve stable and uniform temperature,
the heart was submerged in heated Tyrode’s solution and a
thermometer calibrated to the precision of 0.01◦C (Thermo-
Fisher) was used for temperature measurement. In case of VF,
the heart was defibrillated via low-energy anti-fibrillation pacing
(Fenton et al., 2009) or with cardioplegia and was allowed to
recover for 30min before performing subsequent downsweep
pacing for comparison.

Data Analysis
As part of the experimental data processing, stacking (ensemble
averaging) was used to obtain a high S/N ratio to avoid filtering
the [Cai]

+2–Vm signals (Uzelac and Fenton, 2015), which
degraded both spatial and temporal resolutions. For each pixel,
we recorded at least 150 cycles for one pacing period, then we
stacked (summed) the signals for even and odd beats, excluding
the first 10 cycles at the start of each PCL to allow the heart to
reach the steady state.

Alternans in voltage were quantified by measuring the action
potential duration (APD) and the alternans in calcium by
measuring calcium transient duration (CaD). When calculating
the APD and CaD, the voltage and calcium signals were first
normalized between 0 and 1 for each pixel. Then the APD was
calculated using a threshold of 0.5, and the CaD was calculated
using a threshold of 0.4.

Numerical Simulations
The Sato et al. (2013) model for rabbit ventricular cells in
space was used under conditions similar to those of the rabbit
experiments. Briefly, each cardiac cell of a one-dimensional cable
of tissue is modeled by 75 sarcomeres connected through the
diffusion of cytosolic calcium (Cai) and network sarcoplasmic
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reticulum (NSR) calcium. The diffusion strengths are 8 × 10−9

cm2/ms and 4 × 10−10 cm2/ms, respectively. Voltage in the 75
sarcomeres within one cell is considered to be the same due to
the fast diffusion inside a cell. Each sarcomere consists of four
compartments: cytosol, submembrane, NSR and junctional SR
(JSR). The calcium fluctuation is model by the Langevin equation
with a noise term depending on the number of SERCA pumps.

One-dimensional tissue is modeled by the cable equation:

∂V

∂t
= −

Iion

Cm
+ DV

∂2V

∂x2
, (1)

where Cm is the membrane capacitance (1 µF/cm2), Dv is
the voltage diffusion coefficient (10−3 cm2/ms), and Iion is the
total transmembrane current, which is the sum of all the ionic
currents:

Iiion = IiNa + IiK +

∑M

j=1
(I
i,j
Ca + I

i,j
NaCa) (2)

Here Iiion is the ionic current (Sato et al., 2013). Index i is the cell
index in the 1D cable and index j is the index for the jth sarcomere
in the ith cell. M is the total number of sarcomeres in one cell (i.e.,
75 in our simulations). The cable equation is integrated using an
operator splitting approach with1x= 0.015 cm and1t= 0.1ms.
The diffusion of calcium between cells is considered negligible.

Three different pacing protocols were used for the 1D
simulations, with each using a stimulus current applied to the
first five cells for a duration of 2ms. In the first pacing protocol,
we started by pacing with PCL = 600ms until steady state was
reached, then decreased the PCL to 300ms and paced until steady
state was reached. In the second pacing protocol, we initially
assigned to the whole cable the steady state variables for the
leftmost cell for PCL = 600ms, then we gradually decreased the
PCL to 300, 295, 290, 285, 280, 270, and 260ms. For PCLs longer
than 300ms, we used the third pacing protocol, in which we
used the steady state of PCL = 300ms from the second protocol
as the initial condition. When calculating APD, −80mV (about
80% repolarization) was used as the threshold. When calculating
CaD, the threshold was set to be between 10 and 20% of the
repolarization, adjusted among different pacing cycle lengths to
make sure both even and odd beats can be captured.

RESULTS

[Ca]i Alternans Develops at Longer PCLs
than APD Alternans
The spatiotemporal dynamics of voltage and calcium in cardiac
tissue depends on the pacing period. Figure 1A shows snapshots
of voltage (upper two rows) and calcium (lower two rows) in a
rabbit ventricle for a series of PCLs from 350 to 140ms when
stimulation was applied at the base of the heart (black arrow).
Each column shows consecutive even and odd images during
steady state 120ms after stimulus application; all frame over
two successive beats at steady state are shown in Supplementary
Movie 1. Figure 1B shows the same situation but when the
stimulus is applied to the apex, and Supplementary Movie 2

shows all frames over two successive beats at steady state for this
case. In all rabbit experiments, Ca alternans clearly developed at
longer PCLs than voltage alternans. As the tissue was paced more
rapidly, inhomogeneity emerged in both voltage and calcium
patterns with calcium displaying more spatial heterogeneity
compared to voltage. Figures 2A,B shows the voltage and
calcium signals, respectively, over time for one pixel indicated
by a marker in Figure 1 for all PCLs. As the PCL decreases,
alternans was detected first in calcium amplitude (250 ± 10ms),
then in calcium duration (220 ± 15ms), and finally in APD (200
± 15ms). The shortest PCLs can barely generate an excitation in
calcium for the short beats (last two panels in Figure 2B), and
alternans is more pronounced in both duration and amplitude
for the calcium signal.

Discordant Alternans Nodes Are More
Pronounced in [Ca]i than in APD
Figure 3A shows the spatial dispersion of APD for successive
beats at steady state. Several important features are worth
noticing. At long PCLs (e.g., >250ms), there is no difference
between even and odd beats (no alternans), but there is an
intrinsic smooth spatial dispersion of APDs in the range of
15ms for each beat. As concordant alternans and then discordant
alternans develop, the gradient of APD increases to around 30ms
as the PCL decreases. The distance between the locations of the
longest and shortest APD decreases during DA, similar to what
has been observed in canine hearts (Gizzi et al., 2013). During
DA, the regions of long-short and short-long APD are separated
by a collection of nodes (nodal lines) where the APD remains
constant from beat to beat (shown as white lines in Figure 3),
with more nodes forming as the PCL decreases. Figure 3B shows
the CaD dispersion in tissue, similar to Figure 3A. However,
during DA, the nodal lines are thicker and more pronounced
compared to voltage nodal lines. Figures 3C,D shows plots
similar to Figures 3A,B for the same preparation but with the
pacing site located at the apex instead of the base. The progression
from no alternans to CA and then to DA occurs at the same PCLs,
but the spatial patterns are different. This difference of patterns
depending on pacing site was observed in all 8 rabbit experiments
as well as in previous studies using canine hearts (Gizzi et al.,
2013).

Previous numerical studies of alternans (Qu et al., 2000;
Watanabe et al., 2001; Fenton et al., 2002; Skardal et al., 2014)
have used one-dimensional cables to quantify the spatial profiles
of APDs, including the number of nodes present. In the same
way, Figure 4 displays the values of APD and CaD along a
line across the heart’s surface for two successive beats during
alternans. As in Figure 3, it can be seen that there is no alternans
for PCL >250ms, then concordant alternans in voltage and
calcium appears for PCLs between 200 and 180ms. At 170ms,
there is CA in voltage but DA for calcium, and for PCL <170ms
DA is present for both voltage and calcium. We calculated in
Table 1 the steepness (slope) of the APD and CaD nodal lines
for PCL between 160 and 146ms corresponding to Figures 4I–L

when the DA are most pronounced. Data was presented as mean
± s.d., averaged among the slopes at each node for even and odd
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FIGURE 1 | Snapshots of normalized voltage (upper two rows) and intracellular Ca (lower two rows) 120ms after stimulus application on consecutive beats for

decreasing pacing cycle lengths (PCL) from 350 to 140ms (left to right). Stimulus is applied at (A) the base and (B) the apex.

FIGURE 2 | Time traces of normalized voltage (A) and [Ca]i (B) signals from a single pixel marked in Figure 1A for the same PCLs.

beats for each pacing cycle length. It clearly shows that CaD nodal
lines are about one order of magnitude steeper than APD nodal
lines, indicating the diffusive connection among cells differs in

voltage and calcium signals (Shiferaw and Karma, 2006; Gaeta
et al., 2009), as the lack of diffusion in calcium leads to calcium
profiles that are sharper in space compared to voltage.
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FIGURE 3 | (A) Spatial distribution in APD for even (top) and odd (bottom) beats at various PCLs with stimulation applied to the base. Numbers next to the maps

indicate maximum and minimum values used in the color map in ms. Notice there is no alternans for PCL > 275ms, concordant alternans for PCL between 250 and

225ms, and discordant alternans for PCLs below 225ms. Nodal lines are shown in white. (B) [Ca]i spatial distribution for even (top) and odd (bottom) beats as in (A)

but transitions between discordant alternans phases are sharper and nodes are more pronounced. (C,D) Spatial distributions as in (A,B) but for pacing from the apex.

Experimental Alternans Features Smoother
Spatial Profiles and Slower Alternans
Amplitude Growth than Simulated
Alternans

Simulation results using the Sato et al. model confirm that
alternans appear as the PCL is decreased. However, the PCLs at

which they appear are much longer compared to experiments.
Figures 5, 6 show voltage and calcium alternans in a 1D cable
3 cm in length. Figure 5 illustrates APD as a function of length
in the left column for even and odd beats at PCLs of 400,
300, and 260ms. The right column shows the voltage signal
for the corresponding PCL for two cells, one near the left
end and one near the right end of the cable, so that if it
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FIGURE 4 | APD contour and APD and [Ca]i alternans duration in ms for even and odd beats measured along a one-dimensional line shown in black for different

PCLs as in Figure 3.

undergoes discordant alternans, the voltage signal of the two
cells should be out of phase. Figure 6 shows similar plots but
for calcium. The left column indicates CaD over the cable for
even and odd beats for the same PCLs as in Figure 5. The
right column of Figure 6 displays the calcium signal from two
sarcomeres for corresponding PCLs, with the two sarcomeres
chosen so that if there is discordant alternans in calcium, the
two sarcomeres should be out of phase. Results for other PCLs
(600, 500, 450, 350, 290, 280, and 270ms) are presented in

Supplementary Figure 1 for APD and Supplementary Figure 2
for CaD.

For large PCLs (>400ms), there is no alternans in either
voltage or calcium (Supplementary Figures 1A–C, 2A–C).
When the PCL drops to 400ms, concordant alternans appears
(Figures 5A, 6A). For PCLs 300ms or below, discordant
alternans occurs (Figures 5C,D, 6C,D and Supplementary
Figures 1E–G, 2E–G). In all these simulations, voltage and
calcium alternans are “synchronized,” such that if there is
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TABLE 1 | Steepness of APD and CaD nodal lines.

PCL = 160

ms

PCL = 150

ms

PCL = 146

ms

PCL = 140

ms

Steepness of APD

nodal lines (ms/mm)

2.20 ± 0.87 3.11 ± 1.54 2.75 ± 1.51 1.12 ± 0.38

Steepness of CaD

nodal lines (ms/mm)

12.1 ± 4.8 12.5 ± 3.7 9.94 ± 2.91 20.1 ± 5.6

no voltage alternans, there is no calcium alternans, and
if there is discordant voltage alternans, there is discordant
calcium alternans, with the exception of Figures 5B, 6B. In
Figures 5B, 6B, where we used the second pacing protocol and
the PCL is the same as Figure 5C, we obtained concordant
voltage alternans, whereas the calcium alternans is discordant
with multiple nodes. By using different initial conditions, it is
possible to obtain completely different dynamics for the same
PCL. The Sato et al. model is very sensitive to initial conditions
due to the random fluctuation term in the SERCA pump, and in
this respect, it is similar to experiments, where it has been shown
that small changes in initial conditions can result in very different
alternans patterns (Gizzi et al., 2013). In all the simulations
presented in this paper, the random noise was generated
using the same seed. We did not observe significant changes
when we repeat the simulations with different seeds (data not
shown).

One major difference between the experiments and the
simulations is how sharp the calcium transition is between
different alternans phases. In the experiments, both APD
and CaD have relatively similar smooth transitions between
the maximum and minimum values (Figures 3, 4), with
calcium showing only a slightly faster transition, whereas in
simulations, CaD has a significantly sharper transition than
APD (Figures 5, 6). In addition, in experiments, as the PCL
is decreased, CaD transitions from no alternans to concordant
alternans and then to discordant alternans with the alternans
amplitude increasing smoothly. In simulations, on the other
hand, CaD changes drastically from no alternans to concordant
alternans with an amplitude of 150ms when the PCL decreases
from 450 to 400ms.

Figure 7 shows a bifurcation diagram for APD (left) and CaD
(right) as a function of PCL calculated at one point from the
numerical simulation of the 1D cable (top) and experimental
data (bottom) where the alternans has the largest amplitude.
As the PCL is decreased from 600 to 260ms in the numerical
simulations, the bifurcation appears simultaneously for both
voltage and intracellular calcium just above a CL of 400ms
(PCLc). The bifurcation amplitude for voltage grows at a rate
of the square root away from the bifurcation point (∆APD ∼

(PCL − PCLc)
1/2) (Cherry and Fenton, 2008). The bifurcation

amplitude in calcium experiences a sharp discontinuous jump
(see Supplementary Figure 3 for the curve fitting). In contrast,
the experimental bifurcations occur at much lower PCLs close
to 250ms, and the amplitude of alternans just beyond the
bifurcation can be fit better into a linear function with a smoother
growth than in the simulations.

DISCUSSION

Patients with LQTS have a higher risk of cardiac arrhythmias
due to augmentation of the T-wave and increased spatial
dispersion. For many years now, detection of LQTS and T-
wave alternans in the ECG has been used as a quantitative
tool for predicting dangerous spatial variations in dispersion,
which are dynamically induced at the cellular level and can
induce arrhythmias. Since 2005, the FDA has required that
new drugs be tested for QT prolongation and development of
T-wave alternans and recently an FDA-sponsored consortium
proposed an initiative to use mathematical action potential
models in the aid of drug risk assessment. If models are
indeed to be used to investigate pro-arrhythmic and anti-
arrhythmic effects of drugs, they first need to be validated
against experimental data in normal conditions. The main goal
of this study is to create an in tissue experimental data set of
simultaneous voltage and calcium optical mapping recordings
from Langendorff-perfused rabbit hearts at high temporal and
spatial resolution and in particular during alternans for use in
validating the dynamics from numerical simulations from the
most recent model of rabbit ventricular action potentials (Sato
et al., 2013).

We found that alternans in voltage and calcium develops
similarly in both experiments and simulations as the pacing
cycle length is decreased; however, themodel developed alternans
much sooner at longer periods close to 420ms compared to
240 ± 10ms in experiments. Likewise, the minimum period of
stimulation before conduction block developed earlier at 260ms
in the model vs. 140 ± 5ms in the experiments. Also, it is
important to notice that in experiments, as in the models, the
magnitude in variations of the APD were much smaller than the
variations in CaD during alternans. However, the magnitudes in
alternans duration were about twice as large in themodel as in the
experiments, with maximum values of 55ms for APD and 150ms
for CaD in the model vs. 25 ± 4 and 65 ± 5ms, respectively, for
the experiments.

More crucial differences arise from the larger differences in
how alternans develops. In experiments, alternans in voltage
develops gradually, appearing to be more consistent with a
border-collision bifurcation (Cherry and Fenton, 2007, 2008;
Zhao et al., 2008), where small changes in duration grow
slowly and mostly linearly, whereas in the model alternans
grows much faster, as with a pitchfork bifurcation (Cherry
and Fenton, 2008). Furthermore, the model does not yield
action potential amplitude (APA) alternans as observed in the
experiments when the tissue is paced at very short pacing cycle
lengths (see Supplementary Figure 4 for the APA bifurcation
map from experiment), an important additional pro-arrhythmic
mechanism recently described by Myles et al. (2011); Chen
et al. (2017). On the other hand, while intracellular calcium
does display amplitude alternans in both experiments and
simulations, in experiments amplitude alternans develops slowly,
while in the model a large difference in amplitude appears
as soon as alternans develops and persists with a similar
amplitude for all periods where alternans is present, as shown in
Figure 6.

Frontiers in Physiology | www.frontiersin.org October 2017 | Volume 8 | Article 819201

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Uzelac et al. Simultaneous Quantification of Voltage and Intracellular Calcium

FIGURE 5 | Voltage alternans in a 1D cable (L = 3 cm, 200 cells) of the Sato et al. model for decreasing PCLs: (A) PCL = 400ms, (B) PCL = 300ms (concordant

alternans), (C) PCL = 300ms (discordant alternans), and (D) PCL = 260ms (discordant alternans). Left: spatial profile of APD for odd (black) and even (red) beats. The

amplitude of discordant alternans increases as PCL decreases. Right: voltage over time at two cells, one near the left end and the other near the right end of the cable.
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FIGURE 6 | Calcium alternans in a 1D cable (L = 3 cm, 200 cells, each cell consists of 75 sarcomeres). (A) PCL = 400ms, (B) PCL = 300ms, (C) PCL = 300ms,

and (D) PCL = 260ms. Left: spatial profile of Ca duration for odd (black) and even (red) beats. Right: Ca over time at two sarcomeres that are around the CaD nodal

point where they are completely out of phase when discordant alternans is present.
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FIGURE 7 | Bifurcation plots of APD (Left) and CaD (Right) as a function of PCL for simulations (top) and experiments (bottom).

In regard to spatial distributions, in our experiments, we
do not detect very sharp calcium duration transitions around
nodal lines for most pacing cycle lengths; instead, we observe
a smooth phase transition in both voltage and calcium, albeit
with calcium appearing sharper, with more defined nodal lines
than those in APD (Figure 3 and Table 1). This is contrary to
simulations where CaD alternans transition can happen within
a cell. If the coupling between voltage and calcium is strong,
calcium and voltage should have similar dynamics, i.e., the CaD
alternans nodal line should follow that of the APD and vice versa.
Therefore, we think the model, as it was published, lack necessary
coupling between voltage and calcium. The resolution of our
optical mapping is on the order of 200–250 microns; however,
due to scattering (Bishop et al., 2007), the actual area may be
smoothed to about a millimeter, which is still high enough to
identify any possible sharp differences in heterogeneities between
voltage and calcium. It is then possible that during pacing in
tissue, calcium nodal lines still follow the smoother dynamics
of voltage compared to when it is performed in single cell
experiments (Gaeta et al., 2009).

Shortcomings of the Model
While the PCL at which alternans appears is much higher in
the model than in the experiments by approximately 180ms,
this difference could be fixed with a simple re-scaling of some
of the time constants of the model. Similarly, the difference
between the minimum PCL for propagation (around 260ms
for the model compared to 140ms for experiments) could also
be fixed by modifications to the recovery and inactivation time
constants of the sodium gating variables. Previous publication
also showed that CaD alternans patterns can be smoothed by
increasing voltage instability (and/or reducing Ca instability).
However, there exist several other key physiological aspects that
would require a more in-depth analysis and validation of the
model’s equations.

I. Type of bifurcation. The calcium dynamics should represent
the fast nonlinear transition in the dynamical content of
calcium in the sarcoplasmic reticulum (Díaz et al., 2004) that
can result in a border-collision bifurcation with slow linear
growth.
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II. Development of alternans in calcium duration. In the model,
as soon as alternans develops in calcium, its amplitude
is almost at its maximum (Figure 6), whereas in the
experiments, there is a very smooth transition in Ca
alternans with decreasing cycle length (Figure 2B).

III. Development of alternans in amplitude. In the model, when
alternans in the AP duration develops, at no point does
alternans in AP amplitude appear (Figure 5). This is in
contrast to experiments, where at very short cycle lengths
alternans in amplitude is readily observed (Figure 2A).
Recent experiments and theory predict that the presence of
amplitude alternans is key in the development of reentrant
arrhythmias (Myles et al., 2011; Chen et al., 2017).

IV. CV and nodal lines. In both simulations and experiments,
concordant and discordant alternans appears in tissues
of similar size of about 3 cm. The conduction velocities
are very different between simulations having a maximum
velocity at about 47 cm/s, vs. experiments at around 100
cm/s. Numerically, this means that if the model’s diffusion
coefficient was modified to fit the experimental CV values,
it will result in tissues of more than twice the size needed
experimentally to support discordant alternans.

Limitations
The mechanical and electrical behaviors of the heart are strongly
coupled through calcium signaling. Very few mathematical
models incorporate both aspects (Ji et al., 2015) even though
there exists a strong bi-directional coupling between them. We
did not study the effect of alternans on contraction or vice versa in

either experiments or simulations and we did not study the effect
of temperature on calcium and voltage alternans. It has been
shown that mammalian hearts can largely increase themagnitude
of alternans when temperature is lowered (Pastore et al., 1999;
Fenton et al., 2013; Filippi et al., 2014).
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Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been

linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure,

and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference

with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help

to control critical processes such as survival signaling, energy homeostasis, and

excitation–contraction coupling. However, mechanistic understanding is limited at

present due to the complexities of tyrosine kinase signaling, and the wide range of targets

inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities

that have been reported, discuss potential mechanisms underlying cardiotoxicity, and

describe recent progress in achieving a more systematic understanding of cardiotoxicity

via the use of mechanistic models. In particular, we argue that future advances are likely

to be enabled by studies that combine large-scale experimental measurements with

Quantitative Systems Pharmacology (QSP) models describing biological mechanisms

and dynamics. As such approaches have proven extremely valuable for understanding

and predicting other drug toxicities, it is likely that QSP modeling can be successfully

applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy

for integrating genome-wide expression measurements with models, illustrate initial

advances in applying this approach to cardiotoxicity, and describe challenges that

must be overcome to truly develop a mechanistic and systematic understanding of

cardiotoxicity caused by TKIs.

Keywords: tyrosine kinase inhibitors, quantitative systems pharmacology, mathematical modeling, drug-induced

adverse events

INTRODUCTION

Tyrosine kinase inhibitors (TKIs) constitute a class of cancer therapeutics, many of which are
known to cause cardiotoxicity as a major adverse event. Reported cardiotoxicities include heart
failure, cardiomyopathy, conduction abnormalities, QT prolongation, and myocardial injury. The
most common toxicity is systolic dysfunction or cardiomyopathy, potentially leading to heart
failure, which is most likely mediated through direct toxicity of cardiomyocytes (Albini et al., 2010;
Eschenhagen et al., 2011; Force and Kolaja, 2011; Raschi and De Ponti, 2012; Ewer and Ewer, 2015).
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Trastuzumab, an inhibitor of the HER2 receptor tyrosine
kinase (Slamon et al., 2001; Piccart-Gebhart et al., 2005; Romond
et al., 2005; Force et al., 2007) was both the first monoclonal
antibody TKI given FDA approval (in 1998) and the first
TKI reported to cause cardiotoxicity (Wu et al., 2016). Since
the reports of trastuzumab-induced toxicity, several additional
targeted cancer therapeutics have been classified as cardiotoxic,
observations that have contributed to the emergence of a new
research field, cardio-oncology (Albini et al., 2010; Bellinger et al.,
2015).

Previous studies have shown that TKI-related cardiotoxicity,
as seen with trastuzumab, is mostly due to the targeting
of pathways that are shared between malignancies and
cardiovascular cells (De Keulenaer et al., 2010; Bellinger
et al., 2015). Investigations of these adverse events revealed that
many of the tyrosine kinases targeted by TKIs serve critical
roles in survival and maintenance of cardiomyocytes, leading
to unintended on-target toxicity. At the same time, many
TKIs inhibit multiple kinases simultaneously, which can cause
off-target toxicity (Chen et al., 2008; Force and Kerkelä, 2008;
Force and Kolaja, 2011).

Despite the risk of cardiotoxicity, TKIs are still one of the
highly effective and favored cancer therapeutics on the market
(Eschenhagen et al., 2011; Force and Kolaja, 2011). The success
of drugs such as trastuzumab and imatinib, a small molecule
inhibitor used to treat chronic myeloid leukemia (CML), has
inspired the development of additional TKIs. As of April,
2015, 25 small molecule TKIs have entered the market (Shah
and Morganroth, 2015), with many more under development
(Bellinger et al., 2015). Given the booming research in the
development of TKIs, it would be beneficial to develop a
systematic strategy to: (1) evaluate and predict how new TKIs
will affect signaling networks in cardiomyocytes; and (2) identify
interventions that can reverse and/or mitigate any associated
cardiotoxicity. These questions are well-suited to be addressed
using a quantitative systems pharmacology (QSP) approach
that combines large-scale measurements with mechanism-based
mathematical modeling. The diversity of TKI targets and the
complexity of cellular mechanisms responsible for cardiotoxicity
mean that two drugs with similar targets may operate through
different mechanisms, and the effects of two TKIs with different
targets may converge on a common pathway. Untangling this
type of complexity generally requires computational approaches
that are based on biological mechanisms. Therefore, our aims
in this Perspective are to review the progress that systems
approaches have made in predicting TKI-induced cardiotoxicity
and to offer suggestions for how mathematical modeling can be
applied to elucidate mechanisms and predict potential adverse
events caused by new drugs.

TYROSINE KINASE SIGNALING IN
CANCER AND STRATEGIES UNDERLYING
TKIs

The canonical roles of tyrosine kinases are found in mitogenesis
and related processes such as differentiation, metabolism, and

migration. Constitutive activation of tyrosine kinase (TK)
signaling, via either gain-of-function (GOF) mutations or
overexpression due to gene amplification, is found in about
70% of malignancies (Blume-Jensen and Hunter, 2001; Chen
et al., 2008). Well-understood examples include overexpression
of ERBB2 in HER2+ breast cancer (Force et al., 2007) and the
constitutively active oncogenic fusion protein BCR-ABL, which
can cause CML (Force et al., 2007; Chen et al., 2008; Force
and Kolaja, 2011). This dependency of tumor formation and
proliferation on TK signaling led to the rise of TKIs as promising
anti-cancer therapeutics.

Currently, there are two chemical classes of TKIs: (1)
humanized monoclonal antibodies (mAbs) and (2) small
molecule inhibitors (Force et al., 2007; Chen et al., 2008;
Force and Kolaja, 2011). Small molecule TKIs can be further
subcategorized based on whether they compete with ATP for
the binding pocket or interact with other regions of the protein
(Force and Kolaja, 2011). Additionally, TKIs are often identified
by the intended target(s) or the target specificity (Force et al.,
2007; Bellinger et al., 2015; Gharwan and Groninger, 2015). The
most common target groups that are used to classify TKIs include
EGFR/ERBB2 inhibitors, VEGFR inhibitors, ABL inhibitors, and
multi-targeted drugs that are designed to inhibit at least two
different target groups such as VEGFR and ABL (see Table 1

for descriptions of the important cellular signaling proteins
mentioned in the manuscript). Figure 1A shows the currently-
approved TKIs, grouped by the published targets, and indicates
how these classifications frequently overlap.

REPORTED SERIOUS CARDIAC SIDE
EFFECTS OF TKIs

The initial discovery of TKI-induced cardiotoxicity was made
during the groundbreaking clinical trials of trastuzumab, the
first such drug to be marketed (Seidman et al., 2002; De
Keulenaer et al., 2010). However, estimated cardiotoxicities of
3–7% with trastuzumab alone and 25% when the drug was
administered with an anthracycline (Slamon et al., 2001) were
only determined during a post hoc analysis. Similar retrospective
analyses have been performed to estimate that sunitinib causes
left ventricular dysfunction with an incidence of 4–11% (Yeh and
Bickford, 2009; Lenneman and Sawyer, 2016) and the VEGFR
inhibitor bevacizumab induces either cardiomyopathy or heart
failure in 1.5–3% of patients (Yeh and Bickford, 2009). These
examples demonstrate the difficulties associated with identifying
cardiotoxicity during drug development. Because clinical trials
are primarily focused on evaluating efficacy, they often lack
appropriate safety screening measures to identify side effects
(Force et al., 2007).

Overall, of the 30 TKIs currently marketed for use in
the United States, 26 list serious cardiac side effects as
a “black box warning” in their prescription information
(FDA and CDER, 2012; Boehringer Ingelheim International
GmbH, 2014; Gharwan and Groninger, 2015). The cardiac
related black box warnings of TKIs can be categorized
into: cardiomyopathy, arrhythmia, myocardial infarction,
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TABLE 1 | Biological signaling components potentially relevant to toxicity.

Common name Full name Description

EGF Epidermal growth factor Extracellular peptide that signals through autocrine and paracrine mechanisms

Neuregulin1 N/A Extracellular peptide that signals through autocrine and paracrine mechanisms

ERBB2/HER2 Human epidermal growth factor receptor 2 EGFR family receptor tyrosine kinase

ERBB1/EGFR Receptor for EGF EGFR family receptor tyrosine kinase

VEGF Vascular endothelial-derived growth factor Extracellular peptide that signals through autocrine and paracrine mechanisms

VEGFR Receptor for VEGF Receptor tyrosine kinase

PDGF Platelet-derived growth factor Extracellular peptide that signals through autocrine and paracrine mechanisms

PDGFR Receptor for PDGF Receptor tyrosine kinase

ABL1 Abelson murine leukemia viral oncogene homolog 1 cytoplasmic tyrosine kinase

BCR-ABL Fusion protein of ABL1 and Breakpoint cluster region protein (BCR) cytoplasmic fusion tyrosine kinase

Raf-1/c-Raf N/A cytoplasmic serine/threonine kinase

ERK Extracellular signal-related kinase cytoplasmic serine/threonine kinase

JNK c-Jun N-terminal kinase cytoplasmic serine/threonine kinase

PI3K Phosphatidylinositide 3-kinase cytoplasmic lipid kinase

Akt/PKB Also known as Protein Kinase B cytoplasmic serine/threonine kinase

Src/c-Src N/A cytoplasmic tyrosine kinase

AMPK AMP-activated protein kinase cytoplasmic serine/threonine kinase

hypertension, and pericardial effusion, based on the specific
potential adverse events listed in the package insert. In
Figure 1B, which indicates both the adverse events and the
target class for each TKI, we observe no obvious association
between the intended primary target, and the reported cardiac
risks.

MECHANISMS UNDERLYING
CARDIOTOXICITY CAUSED BY TKIs

The initial discovery of TKI-induced cardiotoxicity was met with
surprise due to the fact that cardiomyocytes are non-dividing
and terminally differentiated (Force et al., 2007). Since TKs were
mostly known for their role in proliferation and their association
with cancer, these kinases were not expected to have any essential
role in cardiomyocytes, and toxicity in heart was not anticipated
(Chen et al., 2008; Bellinger et al., 2015). The discovery of TKI-
induced cardiotoxicity, therefore, became a driving force for
uncovering the roles of tyrosine kinases in heart. The research
spurred by these adverse events has allowed us to appreciate that
many of the pathways responsible for proliferation in malignant
cells also play important roles in cardiomyocytes in: (1) survival
signaling; (2) mitochondrial and sarcoplasmic reticulum (SR)
homeostasis; and (3) electrical and contractile function.

Survival Signaling
The role of tyrosine kinases in cardiomyocyte survival signaling
was first discovered through the on-target cardiotoxicity caused
by trastuzumab. Before the cardiotoxicity reports, expression
of trastuzumab’s target, ERBB2, was reported to be low
in cardiomyocytes, and this receptor’s role was unknown
(Bellinger et al., 2015). However, subsequent studies have
discovered that ERBB2 plays an important role in maintaining

cardiomyocyte health, evidenced by the spontaneous dilated
cardiomyopathy that results from ERBB2 knockout (Crone et al.,
2002; De Keulenaer et al., 2010). More specifically, ERBB2 in
cardiomyocytes has been shown to serve as a co-receptor in a
critical cardiomyocyte survival pathway initiated by neuregulin-
1 (Mellor et al., 2011; Bellinger et al., 2015). Neuregulin-1, a
paracrine factor secreted by cardiac endothelial cells, activates
mitogenic pathways through ERBB2 heterodimer formation with
other members of the EGFR family, ERBB3 or ERBB4 (Chen
et al., 2008; De Keulenaer et al., 2010).

Similarly, another EGFR family member, ERBB1, has
also been implicated in cardioprotection and myocyte
survival (Mellor et al., 2011; Bellinger et al., 2015), including
cardiomyocyte defenses against the deleterious consequences
caused by excessive β-adrenergic receptor stimulation (Chen
et al., 2008). This role was based on the finding that an
ERBB1 inhibitor, erlotinib, exacerbates isoproterenol-induced
myocardial injury (Chen et al., 2008). Erlotinib is associated with
cardiotoxicity, including cardiac arrhythmia and myocardial
infarction (Gharwan and Groninger, 2015). One of the
downstream pathways common to signaling through ERBB1
and ERBB2 is the lipid kinase PI3K, which in turn activates
the protein kinase Akt. The PI3K-Akt axis is critical in survival
signaling, and dysregulation of this pathway has been shown to
induce ischemic heart disease, hypertrophy, and heart failure
(Reichelt et al., 2017).

Raf-1, which belongs to the Raf family of serine/threonine
kinases, is another important component of pro-survival
signaling that has been linked to both inherited heart disease
(Dhandapany et al., 2014), and TKI-induced cardiotoxicity.
Specifically, Raf-1 has been identified as a critical component of
cardiotoxicity caused by sorafenib (Force et al., 2007; Chen et al.,
2008), a multi-target TKI used to treat renal and liver cancers.
The inhibition of Raf-1 by sorafenib is thought to block survival
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A B

FIGURE 1 | TKI targets and associated adverse events. (A) Euler diagram of tyrosine kinase inhibitors grouped based on the primary intended target(s). The three

major primary targets are EGFR/ERBB2 (8 TKIs), VEGFR (11 TKIs), and ABL (6 TKIs). The category “Other” comprises five relatively newer TKIs with primary targets in

different categories, such as vemurafenib (B-Raf). Out of 30 approved TKIs, 18 were identified as having intended targets in more than one category. (B) Black box

warnings associated with tyrosine kinase inhibitors are indicated, with closely-related toxicities grouped to ease visualization. Cardiomyopathy category includes:

“cardiac dysfunction,” “congestive heart failure,” “left ventricular dysfunction,” and “cardiomyopathy.” Arrhythmia includes: “prolonged QT interval,” “cardiac

bradyarrhythmia,” and “cardiac arrhythmia.” Pericardial effusion includes both “pericardial/pleural effusion,” and “cardiac tamponade.” Four approved drugs have no

cardiac-associated boxed warning (i.e., no serious cardiac adverse events listed in the drug’s package insert).

signaling through the protein kinase ERK, and concurrently
to disinhibit pro-apoptotic kinases. This dual action of pro-
survival signaling inhibition and apoptotic signaling activation
can culminate in cell death (Force et al., 2007).

Sarcoplasmic Reticulum and Mitochondrial
Homeostasis
In addition to pro-survival signaling, TKs are known to be
closely linked to processes that maintain the health and function
of cardiomyocytes through mitochondrial and SR homeostasis
(Force and Kolaja, 2011). Mitochondria are responsible for
matching the cellular supply of ATP with the energetic demand
whereas the SR functions to both modulate the quantity of Ca2+

released with each heartbeat and to control the processing of
many critical proteins.

When TKI-induced toxicity involves mitochondrial or SR
function, the processes seem to be closely linked. Specifically,
mitochondrial dysfunction resulting from TKI treatment can
lead to membrane permeabilization and the release of reactive
oxidative species to the cytoplasm. This oxidative stress can in
turn lead to SR dysfunction through both altered Ca2+ release
and the activation of signaling pathways that may ultimately lead
to apoptosis (Groenendyk et al., 2010).

Cardiotoxicity caused by imatinib, a multi-targeted ABL
inhibitor, has been proposed to follow this precise mechanism
(Kerkelä et al., 2006; Force et al., 2007; Mellor et al., 2011). The
on-target effect of imatinib has been linked to the disturbance
of SR homeostasis via inhibition of an ABL isoform that is

localized in the SR. This can eventually initiate apoptosis through
JNK activation. Consistent with this hypothesis, postmortem
histological examinations of patients treated with imatinib have
revealed dilated SR structures, and experiments in isolated
cardiomyocytes shown that imatinib can induce mitochondrial
membrane potential collapse (Kerkelä et al., 2006).

Another example of interference with SR and mitochondrial
homeostasis is cardiotoxicity caused by themulti-kinase inhibitor
sunitinib. Sunitinib has been reported to cause ATP depletion
in cardiomyocytes through an off-target effect involving AMP-
activated protein kinase, or AMPK (Force et al., 2007). The
unintentional inhibition of AMPK is thought to activate energy-
consuming processes, including protein translation and lipid
biosynthesis, which can deplete ATP. Given the tremendous
energetic demands of the contracting cardiomyocyte, the
improper activation of ATP-consuming processes can be highly
toxic (Dyck and Lopaschuk, 2006; Zhang et al., 2008).

Excitation and Contraction
TKI-induced cardiotoxicity can also manifest itself as altered
excitation or contraction of cardiac myocytes. These detrimental
effects can occur through: (1) direct or indirect modulation
of cardiac ionic currents, resulting in pro-arrhythmic electrical
activity (Chen et al., 2008; Ghatalia et al., 2015); or (2) structural
remodeling that leads to altered myocyte contraction.

TKIs can induce electrophysiological abnormalities directly,
via block of ion channels, or indirectly, by altered intracellular
signaling that leads to a decrease in K+ currents. Because K+
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currents repolarize the cell membrane during action potentials,
either direct or indirect reductions of K+ currents can prolong
electrocardiographic QT intervals and increase arrhythmia risk.
TKIs that are known to block the most relevant K+ channel
(Kv11.1), encoded by the gene traditionally known as hERG
(subsequently renamed KCNH2), include crizotinib, sunitinib,
and nilotinib. These drugs have been shown to block the
channel in vitro and to prolong action potentials in human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) (Doherty et al., 2013). Indirect reductions in K+ current
may possibly be mediated by Src, a tyrosine kinase that can
augment current carried by Kv11.1 (Schlichter et al., 2014). Thus,
dasatinib and bosutinib, which are dual inhibitors of ABL and Src,
can potentially cause reduced K+ current and QT prolongation
(Xu et al., 2009; Gharwan and Groninger, 2015).

Src may also be an important part of the mechanism by
which TKIs can induce cellular structural remodeling and
impaired contraction. In cardiomyocytes, Src is important for
both the organization of sarcomeres and the formation of focal
adhesions that connect adjacent cells (Kuramochi et al., 2006).
In mice, genetic studies have shown that spontaneous cardiac
chamber dilation and disorganization of myofibrils can result
from knocking out any of several enzymes in the Src pathway
(Peng et al., 2006). Thus, TKIs that inhibit Src may disrupt
cardiac contraction by interfering with Src’s role in maintaining
myocyte structure.

COMPLEXITIES OF TKI-INDUCED
CARDIOTOXICITY AND THE NEED FOR A
SYSTEMS APPROACH

From survival and homeostasis to contractile function, tyrosine
kinases perform a wide variety of important roles in the
health and function of cardiomyocytes. Although considerable
progress has been made to decipher the roles of individual
TKs, the breadth of the different mechanisms involved makes
it difficult to draw general conclusions about TKI-induced
cardiotoxicity. Moreover, even when some mechanistic details
have been uncovered, our understanding is primarily qualitative,
and biological mechanisms cannot usually be connected to
factors such as dosing and the physiological characteristics of
individual patients. Given the past success of TKIs as cancer
therapeutics and the drive to develop additional TKIs, it would
be beneficial to develop a systematic strategy to: (1) evaluate the
potential cardiotoxicity of new TKIs; (2) predict the mostly likely
mechanisms involved; and (3) suggest strategies for mitigating
and/or reversing toxicity. Systems approaches that perform large-
scale measurements and quantitatively compare responses to
multiple drugs are likely to be extremely useful for understanding
the common and distinct features of cardiotoxicity caused by
diverse TKIs.

A common approach in systems-level pharmacology studies
is to utilize a cell based, high-throughput drug screening assay.
Although cardiovascular pharmacology has traditionally not
been well-suited for high throughput studies, the development of
hiPSC-CMs has expanded the possibilities. For instance, a recent
study described the development of a comprehensive assay that

evaluated cellular effects of TKIs in hiPSC-CMs (Sharma et al.,
2017). Using hiPSC lines from 13 individuals, the investigators
examined how 21 FDA-approved small molecule TKIs affected
cell viability, contractility, and gene expression. By integrating the
results with literature-reported TKI serum levels in patients, the
authors developed a novel cardiac safety index for TKIs (Sharma
et al., 2017).

Although this study represents a significantmilestone in that it
integrates cutting edge technologies such as deep sequencing and
high-throughput imaging, room for improvement nonetheless
remains. Specifically, the experiments performed in this study
represent snapshots of cell state after TKI treatment, and the data
can therefore provide only limited insight into the dynamics of
toxicity development. Moreover, experiments performed using
individual drugs cannot predict how either a second drug or a
circulating hormone (e.g., adrenaline, angiotensin) might either
exacerbate or protect against cardiotoxicity. Although it is of
course possible to expand the assay to treat cells with drug pairs
and/or add relevant physiological stimuli, it is not clear a priori
which additional perturbations might be informative or relevant.
Finally, even when unambiguous results are seen in cellular high-
throughput assays, the mechanistic details often remain hidden.
It would therefore be helpful to couple such high-throughput
measurements with integrative computational analyses that can
potentially overcome these limitations.

MECHANISTIC MATHEMATICAL
MODELING TO IMPROVE TOXICITY
TESTING

One way to address the aforementioned limitations is to use
mathematical models that mechanistically describe biological
dynamics. When the processes simulated by these models
overlap with toxicity mechanisms, the simulations can be used
to generate testable predictions, to guide experimental studies,
and ultimately to make decisions about new drugs based on
a quantitative understanding of benefits and risks. In this
context, models that describe biological mechanisms through
differential equations are frequently referred to as QSP models
(Leil and Bertz, 2014; Gadkar et al., 2016). Although precise
definitions remain a matter of debate, QSP models are generally
distinguished from both purely empirical, statistical approaches
such as computing a risk score for a drug based on a series
of measurements (Kramer et al., 2013; Mistry et al., 2015),
and pharmacokinetic models that can predict the effects of
dosing on cardiotoxicity (van Hasselt et al., 2012) but generally
offer only limited mechanistic insight. Although QSP models
have been exploited to understand cardiotoxicity caused by
anthracyclines (de Oliveira et al., 2016), the application of QSP
to TKI-induced cardiotoxicity is still in its early stages. Given the
recent development of QSPmodeling, it is instructive to consider
examples in which mechanistic models have been successfully
applied to the study of adverse events, in particular drug-induced
liver injury (DILI) (Huang et al., 2013; Shoda et al., 2014; Yang
et al., 2015), and drug-induced arrhythmias (Moreno et al., 2011;
Sarkar and Sobie, 2011; Britton et al., 2013; Cummins et al., 2014;
Grandi and Maleckar, 2016; Yang et al., 2016). Specifically, we
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emphasize how mechanistic models can be integrated with large
in vitro data sets, as these studies may provide an important
blueprint for future research on cardiotoxicity caused by kinase
inhibitors.

An example of the success of QSP models for toxicity
applications can be found in the development of DILIsym R©, a
mathematical model and software package used for predicting
DILI. DILIsym R© comprises multiple sub-models describing
relevant biological processes involved in hepatotoxicity such as
drug distribution in the liver, bile acid homeostasis, reactive
metabolite generation and disposition, oxidative stress, immune
responses, and the hepatocyte life cycle (Woodhead et al.,
2017). The value of this approach was recently demonstrated
in studies that examined differences in hepatotoxicity between
acetaminophen and its less toxic isomer 3′-hydroxyacetnilide.
Although the former drug can cause toxicity across many species,
the latter has been shown to cause DILI in humans and rats,
but not in mice. Using the mechanistic DILIsym R© model, a
testable hypothesis was generated in which the amount of reactive
metabolite produced from each isomer was identified as an
important contributor to the observed species differences, and
this prediction was confirmed experimentally in a later study
(Kyriakides et al., 2016). In addition to the consortium that has
developed the DILIsym R© package, other groups have gained
important insight into DILI through mathematical modeling
(Smith et al., 2016; Blais et al., 2017; Thiel et al., 2017).

To understand and predict drug-induced arrhythmias, e.g.,
Torsades de Pointes (TdP), the Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative is highly relevant. This
effort, part of the FDA’s Critical Path Initiative, aims to improve
the accuracy and cost effectiveness of screening for TdP risk.
Whereas current in vitro methods for predicting TdP risk focus
almost exclusively on block of Kv11.1 (i.e., the hERG channel), an
approach that is often inadequate, CiPA intends to both assess
how drugs block multiple ion channels and to combine these
measurements with recordings in hiPSC-CMs and mechanistic
simulations (Sager et al., 2014; Fermini et al., 2016). A couple
of recently-published studies highlight the value that is gained
by utilizing QSP models. Lancaster and Sobie, for example, used
models of human ventricular myocytes to simulate physiological
changes caused by 67 unique drugs, some that are known to
cause TdP, and others that are apparently safe. In addition to
providing a classificationmodel that was superior to Kv11.1 block
alone, the simulations provided testable predictions about the
most informative assays to perform in cellular experiments and
the specific ion transport pathways that, when affected by a drug,
may contribute to TdP risk (Lancaster and Sobie, 2016). More
recently, Li et al. showed that incorporating the kinetics of Kv11.1
block into simulations provides superior identification of TdP
risk than simply considering steady-state block measurements
(i.e., an IC50-value), and the study suggested an experimental
protocol for measuring drug block kinetics (Li et al., 2017).

The examples of both DILI and drug-induced TdP
demonstrate the value that can be added when mechanistic
modeling is used to address toxicity. The simulations can
uncover the reasons for counterintuitive results, such as drugs
that block Kv11.1 but are nonetheless safe (Kramer et al., 2013;
Lancaster and Sobie, 2016; Li et al., 2017), or drugs that only

cause hepatotoxicity in some species (Kyriakides et al., 2016;
Smith et al., 2016; Blais et al., 2017; Thiel et al., 2017; Woodhead
et al., 2017). The simulations can also suggest the prioritization
of experiments that are most likely to provide additional insight.

INITIAL EFFORTS TO USE QSP
APPROACHES TO UNDERSTAND
TKI-INDUCED CARDIOTOXICITY

TKI-induced cardiotoxicity is a problem that seems well-suited to
a QSP approach because tyrosine kinase signaling encompasses
large, complex networks with numerous feedback loops, and
understanding how a drug alters TK cascades is therefore
extremely complicated. Although mechanistic modeling to
predict TKI-induced cardiotoxicity is much less well-developed
than for DILI or TdP, efforts that may yield breakthroughs in the
next few years are currently underway.

As noted above, an important recent study by Sharma et al.
(2017) derived a “toxicity index” by examining effects of TKIs
in hiPSC-CMs through several assays. Although the large-scale
nature of this study justifies the “systems” label, and the toxicity
index is a quantitative risk score, it’s important to emphasize
that QSP modeling, which can provide mechanistic insight and
actionable predictions, is complementary to a high-throughput,
data-driven strategy such as that used in this study (Sharma et al.,
2017).

Another notable recent effort is a study by Shin et al. (2014).
These investigators combined experimental measurements with
simulations to uncover mechanisms by which high and sustained
doses of the β-adrenergic receptor agonist isoproterenol could
increase myocyte susceptibility to apoptosis (Shin et al., 2014).
This study is an important example of how simulations often
generate novel experimentally-testable predictions, and the work
can potentially be extended to examine TKI-induced toxicity.

To fill current gaps in knowledge and obtain new mechanistic
insight, the Drug Toxicity Signature Generation (DToxS) Center
at Mount Sinai has initiated a large-scale project to advance
cellular assays and computational approaches that can improve
our understanding of TKI-induced cardiotoxicity. One aspect
of this project involves employing QSP models that describe
biological processes potentially involved in this cardiotoxicity.
We outline here an approach by which whole transcriptome
expression assays can be integrated with mechanistic models
to classify drugs and generate novel, experimentally-testable
predictions.

For this part of the analysis, the project has designed
a standard experimental protocol (DtoxS—Drug Toxicity
Signature Generation Center—SOP, https://martip03.u.hpc.
mssm.edu/sop.php) that captures early effects of drugs,
as reflected in gene expression changes. The experiments
treat cultured cardiomyocyte-derived cells with potentially
cardiotoxic TKIs as well as drugs from different classes that
are presumably safe. After 48 h, mRNA is harvested, and
sequencing is performed to quantify drug-induced changes in
gene expression (compared with vehicle-treated controls). Data
are released at the DToxS website and can be freely-downloaded
(DtoxS—Drug Toxicity Signature Generation Center—Data
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FIGURE 2 | Computational pipeline for integrating gene expression data with QSP models to enable understanding of TKI-induced cardiotoxicity. The pipeline starts

with (A) mRNAseq data generated from drug treated cells. Using the mRNAseq data, parameters in the QSP model are altered to reflect changes in cell state after

48 h of drug treatment. Specifically, parameters describing maximal activity of model species are scaled based on the changes in gene expression (drug-treated vs.

untreated cells). (B) The QSP model (Ryall et al., 2012) is composed of ordinary differential equations (ODEs) that describe activation and inactivation of cellular

signaling dynamics. Simulations are performed to predict how drug-induced changes in gene expression will influence both basal signaling activity and how cells

respond to stimuli. For instance, example simulation results in (C) show BNP activity, before, and after stimulation with isoproterenol (a β-adrenergic receptor agonist),

in both untreated cells, and cells that have been exposed to two different TKIs for 48 h. These time course simulations predict drug-specific changes, such as an

increase in BNP signaling after nilotinib treatment (top) compared with a decrease after dasatinib treatment (bottom). From these time courses, summary statistics (D)

are collected from steady-state levels of BNP under two conditions (À basal activity and Á stimulus). (E) Using this pipeline, steady state changes in seven model

outputs were computed and summed to generate a metric that we termed the “hypertrophy index.” This provides a summary statistic of the overall hypertrophic risk of

a drug under different conditions (e.g., basal activity, left, and isoproterenol stimulation, right). (F) Hypertrophy indices computed, under three different conditions, from

data obtained in a single cell line after treatment with 24 TKIs, and six non-TKIs (control drugs that are presumed to not cause cardiotoxicity). Each circle represents an

individual drug, the line indicates the mean value for each group under basal activity (left), isoproterenol stimulation (middle), and endothelin-1 stimulation (right).

& Resources, https://martip03.u.hpc.mssm.edu/data.php). The
pipeline for integrating these released data with mechanistic
mathematical models is shown in Figure 2, top. Changes in
mRNA levels in drug treated cells (Figure 2A) can be translated
into parameter alterations in models that describe processes
potentially relevant to the toxicity (Figure 2B), and simulations
are then performed with these models. This workflow assumes
that before overt toxicity is induced, drugs can alter the cellular
state in relatively subtle ways. Mechanistic simulations may then
allow one to predict how this drug-induced altered cellular state
influences the response to various physiological stimuli.

For example, results shown here are obtained with a
QSP model that describes signaling events relevant to cardiac
hypertrophy through a system of 106 ordinary differential
equations, each one describing activity of a signaling component
(Ryall et al., 2012). This model was chosen for initial simulations
because the progression to heart failure due to pathological

remodeling often includes a transient induction of hypertrophy.
In addition, many known TKI targets (e.g., ERBB2, Raf-1) and
critical nodes in cardiac survival signaling (e.g., PI3K, Akt,
and ERK) are included. Using this model, simulations were
performed to predict how drug-induced network alterations
affected 7 hypertrophy biomarkers (the model’s “outputs”),
under conditions meant to simulate a variety of physiological
or pharmacological stimuli (e.g., stretch, angiotensin, EGF,
phenylephrine). For instance, time courses in Figure 2C show
simulated normalized levels of Brain Natriuretic Peptide (BNP)
under six conditions: before and after isoproterenol stimulation,
and in three groups of cells: untreated (control), nilotinib-treated,
and dasatinib-treated. BNP is an appropriate output to consider
because it is both measured in patients with hypertrophy and
heart failure and has been shown to be relevant for drug-induced
cardiotoxicity (Nousiainen et al., 2002; Sandri et al., 2005;
Skovgaard et al., 2014).
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These example simulation results, summarized in Figure 2D,
suggest that nilotinib leads to increases in BNP, both before
and after isoproterenol, whereas dasatinib may reduce the
upregulation of BNP that isoproterenol normally causes. The
hypertrophy index, a summary statistic, condenses results
by summing drug-induced changes across seven biomarkers
in response to different stimuli applied in the model. The
hypertrophy index confirms the impression from the simulated
time courses, namely a pro-hypertrophic response to nilotinib
contrasted with a slight anti-hypertrophic response to dasatinib
(Figure 2E).

By simulating responses to stimuli, using gene expression
changes induced by all drugs, patterns begin to emerge.
Specifically, in myocytes that are not exposed to a physiological
stimulus, TKIs and non-TKIs cause similar changes in
hypertrophy biomarkers (Figure 2F). However, simulations
predict that when TKI-treated myocytes are also exposed
to isoproterenol or endothelin-1, agonists that are used
experimentally to induce hypertrophy (Ichikawa et al., 1996;
Yamazaki et al., 1996; Shohet et al., 2004; Ryall et al., 2012),
the pro-hypertrophic response is exaggerated compared with
non-TKI-treated cells.

These preliminary simulation results indicate the potential
strengths of combining large scale measurements with
mechanism-based mathematical models. First the simulations
do not simply describe existing data—they can predict how
drug-treated cells will respond to an additional stimulus that
has not yet been applied experimentally. These predictions
can be subsequently tested. Second, the simulation approach
does not merely generate qualitative predictions; because the
quantitative models predict that some drugs and/or stimuli
may cause large effects whereas others cause only minor effects,
this provides a means to prioritize experimental tests and use
resources efficiently. Third, when clear differences are observed,
for instance between individual drugs or between drug classes,
the simulations predict the mechanisms responsible for the
differences.

FUTURE DIRECTIONS

Although the preliminary simulation results shown here are
encouraging, they also hint at the future research that must be
performed to fully realize the potential of this approach. First,
although the simulations predict how drug-induced changes
in gene expression may influence both baseline signaling and
cellular responses to stimuli, they do not describe direct
inhibition of kinase activity by drugs, which is of course the
more traditional and straightforward method for simulating
drug effects. We excluded these effects from initial simulations
because many TKI targets are not included in the model, but
future work will expand the model by systematically adding drug
targets based on published protein-protein interaction databases
(Warde-Farley et al., 2010) and large-scale kinase inhibition
assays (Anastassiadis et al., 2011; Davis et al., 2011). For such
work, a promising way to expand the model will be to use large-
scale, data-driven network identification algorithms (Thiagarajan
et al., 2017) that can provide an unbiased approach for identifying
potential off-targets.

A second important extension of the work will be to
simulate additional biological processes potentially involved in
cardiotoxicity. For instance, cell death via apoptosis, which
may be important in the development of toxicity caused
by some TKIs, has been described mathematically by many
previous models (Schleich and Lavrik, 2013; Shin et al.,
2014). Once these are tuned to reflect apoptotic signaling
in cardiac myocytes, the models can be integrated with the
experimental gene expression data to generate novel predictions.
Similarly, models describing mitochondrial function, including
the production of reactive oxygen species (Aon and Cortassa,
2012; Bazil et al., 2016; Wacquier et al., 2016), and the
coupling of electrical excitation, and contractile function
(Rice et al., 2008; Tewari et al., 2016), are also likely
to be relevant. Finally, once a number of QSP models,
describing additional processes, have been added, further
secondary analyses can be performed. These include sensitivity
analysis to identify the most important nodes in each model
(Sobie, 2009), systematic simulations to potential targets for
toxicity mitigation or reversal, and effects of combination
therapy.

CONCLUSIONS

Here, we have discussed contemporary challenges in
understanding TKI-induced cardiotoxicity and have illustrated
how a QSP approach can be used to address unresolved
questions and improve understanding. Previous successes
of QSP in illuminating and predicting other forms of drug
toxicity, including hepatotoxicity and drug-induced arrhythmia,
demonstrate its potential utility for other drug toxicities. The
initial results presented here show how mechanistic models can
be integrated with “omics” measurements such as mRNA-seq,
generating simulations that can suggest underlying mechanisms
and help in prioritizing costly experiments. In the coming years,
future work along these lines can be used to develop strategies
to mitigate or reverse TKI-induced cardiotoxicity, thereby
contributing to the development of therapeutic regimens that are
both effective and safe.
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Background: Torsades de pointes (TdP) is a life-threatening ventricular tachycardia

occurring in long QT-syndrome patients. It usually develops when multiple QT-prolonging

factors are concomitantly present, more frequently drugs and electrolyte imbalances.

Since proton–pump inhibitors (PPIs)-associated hypomagnesemia is an increasingly

recognized adverse event, PPIs were recently included in the list of drugs with conditional

risk of TdP, despite only few cases of TdP in PPI users have been reported so far.

Objectives: Aim of the present study is to evaluate whether PPI-induced

hypomagnesemia actually has a significant clinical impact on the risk of TdP in the general

population.

Methods: Forty-eight unselected patients who experienced TdP were consecutively

enrolled (2008-2017). Shortly after the first TdP episode, in those patients who did not

receive magnesium sulfate and/or potassium or calcium replacement therapy, serum

electrolytes were measured and their relationship with PPI usage analyzed.

Results: Many patients (28/48, 58%) were under current PPI treatment when TdP

occurred. Among TdP patients in whom serum electrolyte determinations were obtained

before replacement therapy (27/48), those taking PPIs had significantly lower serum

magnesium levels than those who did not. Hypomagnesemia occurred in ∼40% of

patients receiving PPIs (6/14), in all cases after an extended treatment (>2 weeks). In

patients taking PPIs the mean QT-prolonging risk factor number was significantly higher

than in those who did not, a difference which was mainly driven by lower magnesium

levels.

Conclusions: In unselected TdP patients, PPI-induced hypomagnesemia was common

and significantly contributed to their cumulative arrhythmic risk. By providing clinical

support to current recommendations, our data confirm that more awareness is needed

when a PPI is prescribed, specifically as regards the risk of life-threatening arrhythmias.

Keywords: proton-pump inhibitors, Torsades de pointes, serum magnesium levels, long-QT syndrome, sudden

cardiac death
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INTRODUCTION

Torsades de pointes (TdP) is a life-threatening polymorphic
ventricular tachycardia that can degenerate into ventricular
fibrillation (VF) and cause sudden cardiac death (SCD) (Drew
et al., 2010). It is characterized by a pattern of twisting points and
occurs in patients with long QT syndrome (LQTS), both acquired
and congenital. Indeed, in congenital-LQTS the more the heart
rate-corrected QT interval (QTc) prolongs, the greater the TdP
risk exponentially increases (i.e., 5–7% risk increase each 10ms
prolongation in QTc) until being significant for QTc>500ms;
such a value associated with a 2–3-fold higher risk for TdP (Drew
et al., 2010).

Since a marked QTc prolongation is usually required for
TdP development, in most cases the simultaneous presence
of multiple QTc-prolonging factors synergistically operating
in impairing ion channels responsible for the ventricular
repolarization process is necessary. Congenital factors are
included, mainly resulting from mutations affecting genes
encoding for potassium or sodium channels, as well as acquired
risk factors (Viskin, 1999; El-Sherif and Turitto, 2003; Drew et al.,
2010; Itoh et al., 2016). Among the latter factors, electrolyte
imbalances (i.e., hypokaliemia, hypocalcemia, hypomagnesemia)
and QT-prolonging drugs blocking the hERG potassium channel
are those most frequently implicated in TdP development.
Other established causes of acquired LQTS and TdP include
structural heart diseases, bradyarrhythmias, endocrine disorders,
liver diseases, nervous system injuries, HIV infection, starvation,
hypothermia and toxins (El-Sherif and Turitto, 2003; Drew
et al., 2010). In addition, autoimmunity (Lazzerini et al., 2017d)
(particularly anti-Ro/SSA antibodies) (Yue et al., 2015; Lazzerini
et al., 2016) and systemic inflammation (Lazzerini et al., 2015,
2017a,b) in the recent years are being increasingly recognized
as novel acquired QT-prolonging risk factors significantly
impacting TdP risk in the general population.

Proton–pump inhibitors (PPIs) are the most effective

therapeutic agents for acid related disorders (ARD), including

peptic ulcer disease and gastroesophageal reflux disease (Strand

et al., 2017). Moreover, such drugs are also used for the
prevention of non-steroidal anti-inflammatory drug-induced
gastric injury and as a part of Helicobacter pylori eradication
regimens (Strand et al., 2017). As a result, PPIs currently
represent the fifth best-selling drug in the market with millions of
chronic users worldwide (Patterson Burdsall et al., 2013). During
the last years, concern has been raised because of PPIs long-
term overutilization. In fact, in the clinical practice PPIs are often
prescribed in patients without a specific ARD, and such a habit
is leading to significant cost expenditure and possible adverse
events (Moayyedi and Leontiadis, 2012).

Hypomagnesemia is a potentially serious side effect of PPIs,
that could account for∼1% of all adverse events reported by drug
users (Famularo et al., 2013; Luk et al., 2013). Although several
data suggest an interference on intestinal magnesium absorption,
the exact underlying mechanism is poorly understood (Famularo
et al., 2013). In 2011 the US FDA warned that long-term
use of PPI has the potential to reduce circulating magnesium
levels, particularly in patients concomitantly receiving other

drugs capable to cause magnesium depletion such as diuretics
(2011)1. Accordingly, in 2016 the Arizona Center for Education
and research on Therapeutics (AZCERT) included the PPIs
omeprazole, esomeprazole, lansoprazole and pantoprazole in the
list of drugs with conditional risk of TdP and to be avoided in
patients with congenital LQTS (AZCERT, 2016), despite only
few cases of QTc prolongation and TdP have been reported in
patients with severe PPI-induced hypomagnesemia and/or taking
a PPI concomitantly with drugs known to directly prolong QTc
(Asajima et al., 2012; Bibawy et al., 2013; Hansen and Bruserud,
2016). As a result, it is now recommended that in patients taking a
PPI for an extended period of time (>2 weeks) serummagnesium
levels be monitored periodically, particularly if extended PPI
therapy is used in association with drugs carrying a known
risk of TdP (Asajima et al., 2012; 2016). Notably, a very recent
longitudinal observational study performed in a large primary
cohort of new users of acid suppression therapy followed for a
median of 5.7 years, found a significant association between PPI
use and risk of all-cause mortality. The risk was increased among
those with no documented medical indications for PPI use and
prolonged duration of use (Xie et al., 2017).

Regardless of official recommendations, available real-life
information on this subject is relatively poor so far. The present
study is specifically aimed at evaluating whether PPI-induced
hypomagnesemia has a significant clinical impact on the risk of
TdP in the general population. Thus, the actual usage of PPIs and
its relationship with serum magnesium levels were analyzed in a
cohort of TdP patients, prospectively and consecutively enrolled
independent of ongoing therapies and concomitant diseases.

PATIENTS AND METHODS

Study Populations
Local Ethical Committee approved the study, and patients gave
their oral and written informed consent in accordance with the
Principles of the Declaration of Helsinki.

We prospectively enrolled (from January 2008 to May 2017)
48 consecutive hospitalized patients who presented with TdP,
independent of ongoing therapies and concomitant diseases.
Since the only inclusion criteria was the occurrence of TdP, all
patients who came to our attention in that period of time were
enrolled. No patients were excluded. Demographic, clinical and
laboratory characteristics of study patients, as well as ongoing
treatment with QTc-prolonging medications are provided in
Table 1. In these patients, PPI usage was assessed, and a cut-
off time of 2 weeks was used to define treatment duration as
extended (>2 weeks) or not, according to current AZCERT
recommendations to minimize the risk of TdP in patients treated
with PPI (AZCERT, 2016).

ECG Recordings
Diagnosis of TdP was based on the presence of at least one
episode of polymorphic ventricular arrhythmia at a rate ranging

1FDA Drug Safety Communication: Low magnesium levels can be associated with

long-term use of proton pump inhibitor drugs (PPIs). Available at www.fda.gov/

Drugs/DrugSafety/ucm245011.htm Accessed May 26 (2017).
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TABLE 1 | Demographic, clinical and laboratory characteristics of patients with

Torsades de pointes.

Patients, n 48

Age, median years (interquartile range) 81(73–85)

Females, n 31/48(65%)

Mean QTc, ms(range) 596.0 ± 80.7(490–910)

Electrolyte imbalances, n 37/47(79%)

Hypokaliemia 28/45(62%)

Hypocalcemia 22/37(59%)

Hypomagnesemia 7/27(26%)

Concomitant diseases*, n 45/48(94%)

Cardiac diseases 40/48(83%)

Left ventricular hypertrophy 19/48(40%)

Dilated cardiomyopathy/heart failure 13/48(27%)

II-III degree atrioventricular block 10/48(21%)

Acute coronary syndrome 9/48(19%)

Chronic coronary artery disease 7/48(15%)

Sinus bradycardia 6/48(13%)

Extra-cardiac diseases 20/48(42%)

Diabetes mellitus type II 13/48(27%)

Chronic kidney disease 8/48(17%)

Hypothyroidism 2/48(4%)

Subarachnoid hemorrhage 1/48(2%)

Cirrhosis 1/48(2%)

Anorexia nervosa 1/48(2%)

HIV infection 1/48(2%)

QTc prolonging-medications, n 34/48(71%)

Amiodarone 14/48(29%)

Citalopram 5/48(10%)

Sertraline 4/48(8%)

Fluconazole 3/48(6%)

Trazodone 3/48(6%)

Levofloxacin 2/48(4%)

Clarithromycin 2/48(4%)

Promazine 2/48(4%)

Quetiapine 2/48(4%)

Mean medication number per patient 1.1 ± 1.0

Anti-Ro/SSA positivity, n 18/32(56%)

Systemic inflammation, n† 38/48(79%)

C-reactive protein, mg/dl(range) 2.66(0.1–29.65)

Definite inflammatory diseases 22/48(46%)

Acute infections 15/48(31%)

Immuno-mediated diseases 5/48(10%)

Others 2/48(4%)

Mean QTc-prolonging risk factor number per patient§ 5.3 ± 1.5

Except where indicated otherwise, data are expressed as mean ± standard deviation or

median (range).

Appropriate serum potassium, calcium or magnesium measurements available in 45, 37,

and 27 out of 48 patients, respectively; anti-Ro/SSA antibodies tested in 32 out of 48

patients.

*Diseases recognized to be a risk factor for QTc prolongation (Viskin, 1999; El-Sherif and

Turitto, 2003; Drew et al., 2010).
†
Increased C-reactive protein level (>0.5 mg/dl) with or without a definite inflammatory

disease. § Including electrolyte imbalances, diseases, QTc-prolonging medications, anti-

Ro/SSA positivity, and systemic inflammation (Viskin, 1999; El-Sherif and Turitto, 2003;

Drew et al., 2010; Yue et al., 2015; Lazzerini et al., 2016, 2017b).

from 160 to 240 beats/min, associated with QTc prolongation
(Drew et al., 2010; Figure 1). The QT interval was manually
measured on a standard 12-lead ECG, from the onset of the
Q wave or the onset of the QRS complex to the end of
the T wave, defined as the return to the T-P baseline. When
present, prominent U waves (>1mm) merging into T waves
were included in QT measurement (Gupta et al., 2007). QTc,
determined as the longest hand-measured QTc in any lead
(Rautaharju et al., 2009) was corrected for heart rate by the Bazett
formula (dividing the QT by the square root of the preceding R-R
interval of each beat: QT/

√
RR) to yield the QTc value. QTc was

measured from 3 non-consecutive beats (mean value) by a single
investigator.

Laboratory Analysis
Shortly after the first TdP episode [no later than 24 h (median
6 h, range 1–22 h)], patients underwent a venous withdrawal
to determine serum electrolyte levels, including potassium,
sodium, calcium, and magnesium. Potassium and sodium were
determined by indirect potentiometry (COBAS-6000 platform);
values were expressed as mEq/L (reference values: potassium 3.5–
5.5; sodium 132–148). Calcium and magnesium were assayed
by a colorimetric method (COBAS-6000 platform); values
were expressed as mg/dl (reference values: calcium 8.0-11.0;
magnesium 1.5–2.5).

Only determinations obtained before the administration of
intravenous magnesium sulfate and/or replacement therapy with
potassium or calciumwere considered appropriate to be included
in the study. As a result, serum potassium, calcium ormagnesium
measurements were available in 45, 37, and 27 out of 48 patients,
respectively.

Other laboratory parameters included circulating levels of
anti-Ro/SSA antibodies (see Supplementary Methods for more
details) and C-reactive protein (CRP), as well as pH, bicarbonates
and serum glucose.

Statistical Analysis
To compare TdP patients subgroups, the following parametric
or non-parametric statistical analyses were respectively carried
out: the two-tail Student’s unpaired t-test, or the two-tail Mann-
Whitney test to evaluate differences in quantitative variables;
the Pearson or Spearman rank correlation-test to verify possible
statistical association between quantitative variables; the two-
sided Fisher’s exact test to evaluate statistical correlation between
categorical variables. p < 0.05 were considered as significant.
All statistical analyses were performed using GraphPad-InStat,
version 3.06 for Windows 2000.

RESULTS

TdP Patients Characteristics
As detailed in Table 1, demographic, clinical and laboratory
characteristics of our cohort were fully consistent with those
expected in TdP patients based on established epidemiological
data. In fact, the large majority of subjects were females (31/48,
65%) and older than 65 years (median age:∼80 years). Moreover,
many recognized QTc-prolonging risk factors of acquired origin
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FIGURE 1 | Electrocardiographic findings of a patient with TdP and PPI-associated hypomagnesemia. ECG strip in sinus rhythm (A) and during TdP (B) from a

patient who was under current and extended treatment with oral lansoprazole (15mg/day), and had low magnesium levels (1.46mg/dl) and a QTc of 670ms. Red

vertical lines and arrow in lead II show QT interval.

were identifiable, particularly an underlying cardiac disease
(45/48, 83%, more frequently ventricular hypertrophy, dilated
cardiomyopathy/heart failure and atrio-ventricular blocks),

electrolyte imbalances (37/47, 79%) and QTc-prolonging
medications (34/48, 71%). Hypokalemia occurred in 62% of
patients (28/45), thereby representing the most common specific
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risk factor. Anti-Ro/SSA-52 kD antibodies were detected in 56%
of the tested cases (18/32), although a history of autoimmune
disease was present in two patients only (1 rheumatoid arthritis, 1
celiac disease). Themajority of TdP patients (38/48, 79%) showed
signs of systemic inflammation, as indicated by the increase in
CRP levels (>0.5 mg/dl; median value 2.66 mg/dl). A definite
inflammatory disease was present in 22/48 patients (46%), most
commonly an acute infection (n = 15, particularly sepsis and
pneumonia), but also chronic immune-mediated diseases (n =

5, including 3 chronic inflammatory arthritis), or acute aseptic
inflammatory processes (n = 2). Among drugs, amiodarone
was the most frequently administered (14/48, 29%). Notably, in
almost all cases more than one known QTc-prolonging factor
was simultaneously identifiable; on average ∼5. In addition, a
significant proportion of patients (25/48, 52%) experienced an
adverse short-term arrhythmic outcome, i.e., VF/cardiac arrest
(CA), and/or underwent electric shock (TdP rapidly degenerated
to VF/CA; out-of-hospital VF/CA followed with DC-shock, only
later revealing a manifestation of TdP episodes; sustained TdP
not responsive to medical therapy).

Proton-Pump Inhibitors Usage in TdP
Patients
In our cohort, a significant percentage of patients were
under active treatment with PPI when TdP occurred (28/48,
58%). Many subjects (16/25, 64%) were taking a PPI for an
extended period of time, i.e., >2 weeks. The most frequently
administered PPI was pantoprazole, followed by lansoprazole,
together accounting for ∼85% of the cases (24/28). Remaining
patients (n = 4), were administered with omeprazole (n = 3), or
esomeprazole (n = 1). In three patients under extended home
PPI therapy, the molecule was changed during hospitalization,
before TdP development (from oral lansoprazole or pantoprazole
to intravenous pantoprazole in two cases; from oral omeprazole
to oral pantoprazole in the other one). The commonest route
of administration was the oral one, but in 6/28 cases (21%)
where the PPI was being given intravenously at the time of TdP
occurrence (Table 2). Notably, none of the intravenously-treated
patients showed hypomagnesemia.

Serum Electrolytes Levels and Other TdP
Risk Factors in Patients Taking or Not
Taking Proton-Pump Inhibitors
Consistently with the findings obtained in the whole TdP
population, a high prevalence of electrolyte imbalances
(collectively ∼80%) was found in both patients taking (PPI+)
or not taking PPI (PPI−). However, while the prevalence of
hypokaliemia and hypocalcemia as well as serum potassium,
calcium (and sodium) levels in the two groups were overalapping,
circulating magnesium levels were significantly lower in PPI+
than in PPI− subjects (1.60 ± 0.21 vs. 1.84 ± 0.33 mg/dl, 1 =

−0.24 mg/dl; p = 0.03) (Figures 2, 3). Hypomagnesemia (<1.5
mg/dl) occurred 5-times more frequently in the PPI+ vs. PPI-
group (6/14, 43% vs. 1/13, 8%), although this difference did
not reach statistical significance (p = 0.07) (Table 3). Notably,
hypomagnesemia was found almost exclusively (6 out of 7 cases,

TABLE 2 | Proton-pump inhibitors use in patients with Torsades de Pointes.

Patients under active treatment with PPIs, n 28/48(58%)

Specific PPI used, n

Pantoprazole 18/28(64%)

Lansoprazole 6/28(21%)

Omeprazole 3/28(11%)

Esomeprazole 1/28(4%)

Treatment duration*

Extended therapy (>2 weeks), n 16/25(64%)

Not extended therapy (<2 weeks), n 9/25(36%)

Daily dose, mg†

Pantoprazole 33.3 ± 9.7

Lansoprazole 27.5 ± 6.1

Omeprazole 26.7 ± 11.5

Esomeprazole 20

Route of administration, n†

Oral 22/28(79%)

Intravenous 6/28(21%)

Except where indicated otherwise, values are expressed as mean ± standard deviation.

*Data missing in 3 out of 28 patients.
†
At the moment of TdP occurrence.

85%) in patients receiving PPI therapy; all cases of PPI-associated
hypomagnesemia (n = 6) were observed in patients under
extended PPI therapy (>2 weeks), involving all the 4 different
PPIs used in the cohort (pantoprazole, n= 3; lansoprazole, n= 1;
omeprazole, n= 1; esomeprazole, n= 1). Diuretics usage, which
was not different in the PPI+ vs. PPI− group (Table 3), was
not per se associated with significant magnesium changes in our
cohort. In fact, by comparing patients taking (n = 16) and not
taking diuretics (n = 11), neither serum magnesium levels (1.67
± 0.31 vs. 1.78 ± 0.26 mg/dl; p = 0.32, two-tail unpaired t-test)
nor the prevalence of hypomagnesemia (6/16, 37% vs. 1/11, 9%; p
= 0.18, two-sided Fisher’s exact test) were significantly different.
Although these findings suggest that diuretics alone, differently
to PPIs alone, were not sufficient to cause magnesium depletion,
nevertheless diuretics may exacerbate PPI-associated magnesium
reduction when administered in association. Indeed, in patients
concomitantly receiving PPIs and diuretics (n = 9, vs. others n
= 18) serummagnesium levels further decreased slightly (1.55±
0.21 vs. 1.80 ± 0.30 mg/dl, 1 = −0,25 mg/dl; p = 0.02, two-tail
Mann-Whitney test), and the prevalence of hypomagnesemia
increased, reaching statistical significance (5/9, 56% vs. 2/18,
11%; p = 0.02, two-sided Fisher’s exact test). Despite a specific
investigation, no any significant impact of other common
causes of hypomagnesemia was found in our cohort of patients
(see Supplementary Results for more details). Moreover, no
significant correlation was present between magnesium levels
and other continuous variables, particularly calcium (r = 0.33,
p = 0.10; Pearson correlation-test) potassium (r = 0.10, p =

0.57; Pearson correlation-test), sodium (r = 0.11, p = 0.58;
Spearman rank correlation-test) or CRP levels (r = −0.14, p
= 0.46; Spearman rank correlation-test), or QTc duration (r =
−0.19, p= 0.32; Pearson correlation-test).
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FIGURE 2 | Serum magnesium levels in TdP patients taking or not taking PPIs.

Patients taking PPIs (PPI+), n = 14; patients not taking PPIs (PPI−), n = 13.

Two-tail Student’s unpaired t-test, *p < 0.05. Horizontal dotted line indicates

the lower limit of reference values for serum magnesium levels, i.e., 1.5 mg/dl.

As regards the other QTc-prolonging risk factors of acquired
origin, individually considered, no significant differences in
terms of concomitant diseases, both cardiac and extra.-cardiac,
QTc prolonging medications use, anti-Ro/SSA positivity or
presence of systemic inflammation were observed by comparing
PPI+ vs. PPI− patients (Table 3). Nevertheless, when all these
factors were considered together, also including electrolyte
imbalances, the mean QTc-prolonging risk factor number per
patient was significantly higher in the PPI+ than the PPI- group
(5.8 ± 1.6 vs. 4.9 ± 1.4, 1: 0.9; p = 0.04). Notably, statistical
significance of this difference was lost if hypomagnesemia, i.e.,
the only individual TdP risk factor discriminating the two
groups, was selectively excluded by the total count (5.6 ± 1.5
vs. 4.9 ± 1.4, 1: 0.7; p = 0.07; Table 3). It is important to
underline that for a number of patients, some data on QT-
prolonging risk factors were missing, particularly serum levels of
potassium (available in 26/28 of PPI+ 19/20 of PPI− patients,
respectively), calcium (27/28 of PPI+ and 18/20 of PPI− patients,
respectively), magnesium (14/28 of PPI+ and 13/20 of PPI−
patients, respectively), and anti-Ro/SSA positivity (18/28 of PPI+
and 14/20 of PPI− patients, respectively). Nevertheless, when we
restricted the analysis to patients with full data only, i.e., 8 PPI+
and 10 PPI−, differences (1) in mean QTc-prolonging risk factor
number per patient remained completely unchanged, both when
all risk factors were considered (6.1 ± 1.7 vs. 5.2 ± 1.3, 1: 0.9)
and when hypomagnesemia was excluded (5.8 ± 1.4 vs. 5.1 ±

1.3, 1: 0.7), thus indicating that the results were not influenced
by missing data.

Conversely, PPI treatment did not seem to affect the short-
term outcome in our cohort of patients. In fact, the percentage
of subjects experiencing VF/CA, and/or that underwent electric
shock was not significantly different by comparing PPI+ vs.
PPI− patients (15/28, 54% vs. 10/20, 50%) (Table 3).

Finally, in order to specifically address the question of whether
magnesium levels are different between PPI+ patients who

developed TdP vs. PPI+ patients who did not, 21 hospitalized
patients matched for age, gender and concomitant diseases
(Supplementary Table 1), but without QTc prolongation or
history of TdP were prospectively enrolled as a control group
(C). Similarly to that observed in TdP subjects, more than a
half of control patients were under current treatment with PPIs
(12/21, 57%), in most cases for an extended period of time
(10/12, 83%) (Supplementary Table 2). Among these patients,
hypomagnesemia was found in 2 patients (2/21, 9%), one treated
and one untreated with PPIs. As shown in Figure 4A, circulating
magnesium levels were significantly lower in TdP vs. controls
(1.72± 0.30 vs. 1.91± 0.40 mg/dl; p= 0.0094). Such a difference
significantly increased when the comparison was restricted to
PPI-treated patients from the two groups (TdP/PPI+: 1.60± 0.21
vs. C/PPI+: 1.93 ± 0.48 mg/dl; p = 0.0007; Figure 4B), while
serummagnesium levels were not different in PPI-untreated TdP
vs. control patients (TdP/PPI−: 1.84 ± 0.33 vs. C/PPI−: 1.88 ±

0.30 mg/dl; p= 0.78, two-tail Student’s unpaired t-test).
As a confirmation of the results on subgroups, we also

evaluated the interaction between magnesemia and PPI
treatment (PPI+/PPI−), by combining (multiplying) the two
variables in the whole population (TdP vs. C). We found that
sample differences between TdP and C in such interaction-
corrected levels of magnesium were not longer statistically
significant (p= 0.09, two-tail Mann-Whitney test).

DISCUSSION

The key findings of the present study are the following: a large
proportion of patients (>50%) who developed TdP were under
current treatment with a PPI; TdP patients taking PPIs had
significantly lower serum magnesium levels with respect to TdP
patients not taking PPIs; hypomagnesemia frequently occurred
in patients receiving PPIs (∼40%, 6/14), in all cases after an
extended period of time (>2 weeks) of administration; in subjects
taking PPIs the mean QTc-prolonging risk factor number per
patient was significantly higher than it was in those not taking
PPIs, a difference which was mainly driven by lower magnesium
levels.

Magnesium, representing the most abundant intracellular
divalent cation, plays a key role in regulating potassium and
calcium channels in the heart (Gupta et al., 2007). Experimental
studies demonstrated that cytosolic magnesium promotes
repolarization of myocardial cells via modulating effects on
several potassium currents, including the rapid component of the
delayed rectifier potassium current (IKr) and transient outward
current (Ito) (Kelepouris et al., 1993; El-Sherif and Turitto, 2011).
Moreover, magnesiummarkedly inhibits the L(long-lasting)-type
calcium current (ICaL), possibly as a result of a direct block of
the L-type-calcium channel pore by external magnesium or via
modification of the activity of protein kinases or phosphoprotein
phosphatases (Zhao et al., 2015). ICaL determines the plateau
phase thereby critically contributing to action potential duration
(APD) (Viskin, 1999; El-Sherif and Turitto, 2003). Moreover,
ICaL is the main depolarizing current that generates early
after depolarizations (EADs), in turn representing the primary
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FIGURE 3 | Serum levels of calcium, potassium and sodium in TdP patients taking or not taking PPIs. (A) Serum calcium levels. Patients taking PPIs (PPI+), n = 20;

patients not taking PPIs (PPI−), n = 17. Two-tail Student’s unpaired t-test (p > 0.05). Horizontal dotted line indicates the lower limit of reference values for calcium

levels, i.e., 8.0 mg/dl. (B) Serum potassium levels. PPI+, n = 27; PPI−, n = 18. Two-tail Student’s unpaired t-test (p > 0.05). Horizontal dotted line indicates the lower

limit of reference values for potassium levels, i.e., 3.5 mEq/L. (C) Serum sodium levels. PPI+, n = 28; PPI−, n = 20. Two-tail Student’s unpaired t-test (p > 0.05).

Horizontal dotted line indicates the lower limit of reference values for sodium levels, i.e., 132 mEq/L.

electrophysiological mechanism underlying TdP development
(Viskin, 1999; El-Sherif and Turitto, 2003). This supports the
fact that hypomagnesemia is a recognized risk factor for QTc
prolongation and TdP (Viskin, 1999; El-Sherif and Turitto, 2003,
2011), as well as the clinical evidence that magnesium sulfate is
very effective for the treatment of TdP thus being considered the
standard of care for this arrhythmia (Drew et al., 2010).

PPI-induced hypomagnesemia, for the first time described
in 2006, has been increasingly recognized in the last years
as a potentially life-threatening adverse event whose actual
incidence is probably largely underestimated (Famularo et al.,
2013). Two recent systematic reviews and meta-analysis, each
one including nine studies and over 100,000 patients, consistently
found that PPI users have a ∼40–80% higher risk of developing
hypomagnesemia when compared to non-users (Park et al., 2014;
Cheungpasitporn et al., 2015).

PPI-associated hypomagnesemia occurs after extended
treatments (>2 weeks, but in most cases > 1 year), is
not clearly dose-related, and was reported with different
PPIs, thus suggesting a class effect. Until PPI interruption,
hypomagnesemia is refractory to oral or parenteral magnesium
replacement irrespective of high-dose supplementation; when
the PPI is stopped, serum magnesium levels returned to
normal in less than 2 weeks (2011; Famularo et al., 2013).
However, hypomagnesemia may recur after re-challenge with
the same or a different PPI. In these patients, when prolonged
antiacid treatment is needed, prescription of a H2 histamine

receptor-blocker (H2-blocker) may be an appropriate therapeutic
alternative (Famularo et al., 2013). In fact, although mechanisms
of PPI-induced hypomagnesemia are not clear, hypochlorhydria
does not seem to be involved. Pathogenesis possibly includes
both gastrointestinal and renal losses, via dysfunction of the
Transient Receptor Potential Melastatin 6/7 (TRPM6/7) located
in the intestine as well as in the distal convoluted tubule
(Famularo et al., 2013). Accordingly, recent data suggest that
carriers of TRPM6 polymorphisms are at increased risk (Hess
et al., 2017).

To date only three reports of patients who developed TdP
while they were taking a PPI (i.e., omeprazole, pantoprazole, or
lansoprazole, respectively) (Asajima et al., 2012; Bibawy et al.,
2013; Hansen and Bruserud, 2016) have been described in the
literature, in two cases associated with hypomagnesemia (Bibawy
et al., 2013; Hansen and Bruserud, 2016). The results of the
present study suggest that the phenomenon is significantly more
common than reported, being probably underestimated because
in the clinical practice PPIs do not currently receive the due
attention as a factor potentially contributing to QTc prolongation
and TdP. Consistently with literature data (Famularo et al.,
2013), PPI-associated hypomagnesemia seems to be a class
effect which requires extended drug administration to occur.
In fact, although in our TdP patients most subjects used
pantoprazole, hypomagnesemia was found to be associated
with all 4 PPIs included in the AZCERT list (AZCERT, 2016)
(i.e., pantoprazole, omeprazole, esomeprazole, lansoprazole),
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TABLE 3 | Demographic, clinical and laboratory characteristics in proton pump

inhibitor users (PPI+) vs. non-proton pump inhibitor users (PPI−).

PPI+ PPI− p

Patients, n 28 20

Age, median years (interquartile range) 80.5(73–85) 81.5(75–87.5)0.40

Females, n 18/28(64%) 15/20(75%) 0.53

Mean QTc, ms 591.9 ± 88.8601.5 ± 70.10.69

FV/CA/EcS 15/28(54%) 10/20(50%) 1

Electrolyte imbalances, n 22/28(79%) 15/19(79%) 1

Hypokaliemia 17/27(63%) 11/18(61%) 1

Hypocalcemia 12/20(60%) 10/17(59%) 1

Hypomagnesemia 6/14(43%) 1/13(8%) 0.07

Potassium, mEq/L (r.v.3.5–5.5) 3.25 ± 0.61 3.41 ± 0.74 0.47

Calcium, mg/dl (r.v.8.0–11.0) 7.71 ± 0.67 7.85 ± 0.65 0.44

Magnesium, mg/dl (r.v.1.5–2.5) 1.60 ± 0.21 1.84 ± 0.33 0.03

Sodium, mEq/L (r.v.132–148) 139.1 ± 10.0 136.1 ± 2.9 0.23

Diuretics use, n 19/28(68%) 10/20(50%) 0.24

Furosemide median daily dose, mg (range) 25(10–100) 72.5(20–500)0.58

Glucose, mg/dl 171.2 ± 78.8172.8 ± 80.40.96

pH 7.46 ± 0.11 7.50 ± 0.12 0.53

Bicarbonates, mmol/L 25.4 ± 1.8 25.3 ± 2.2 0.97

Concomitant diseases*, n 26/28(93%) 19/20(95%) 1

Cardiac diseases 23/28(82%) 17/20(85%) 1

Extra-cardiac diseases 14/28(50%) 6/20(30%) 0.23

QTc prolonging-medications, n 21/28(75%) 13/20(65%) 0.52

Amiodarone 8/28(29%) 6/20(30%) 1

Mean medication number per patient 1.3 ± 1.1 1.0 ± 0.9 0.17

Anti-Ro/SSA positivity, n 8/18(44%) 10/14(71%) 0.16

Systemic inflammation, n 23/28(82%) 13/20(80%) 1

Mean QTc-prolonging risk factor number per patient

Per patient† 5.8 ± 1.6 4.9 ± 1. 0.04

Mean QTc-prolonging risk factor number

Per patient† excluding hypomagnesemia 5.6 ± 1.5 4.9 ± 1.4 0.07

Wherever not specified, data are expressed as mean±standard deviation. Appropriate

serum potassium, calcium or magnesium measurements available in 45, 37, and 27 out

of 48 patients, respectively; anti-Ro/SSA antibodies tested in 32 out of 48 patients.

VF, ventricular fibrillation; CA, cardiac arrest; EcS, electric shock.

*Diseases recognized to be a risk factor for QTc prolongation (Viskin, 1999; El-Sherif and

Turitto, 2003; Drew et al., 2010).
†
Including electrolyte imbalances, diseases, QTc-prolonging medications, anti-Ro/SSA

positivity, and systemic inflammation (Viskin, 1999; El-Sherif and Turitto, 2003; Drew et al.,

2010; Yue et al., 2015; Lazzerini et al., 2016, 2017b).

Differences were evaluated by the two-tailed unpaired t-test, or the two-tailed Mann-

Whitney test. Difference in categorical variables were evaluated by the two-sided Fisher’s

exact test.

Statistically significant p values are reported in bold.

in all cases administered for an extended period of time
(>2 weeks). Our data seem also to confirm that the risk
of PPI-induced hypomagnesemia further increases when PPIs
are co-administered with diuretics, probably as a result of
an enhancement of the renal loss of magnesium. Conversely,
although in PPI users hypomagnesemia has been reported
to be often accompanied by hypocalcemia and hypokalaemia
(Famularo et al., 2013), the prevalence of these electrolyte
imbalances as well as serum calcium, potassium and sodium

FIGURE 4 | Comparison of serum magnesium levels in TdP patients and

controls. (A) Serum magnesium levels in all TdP patients (n = 27) vs. controls

(C, n = 21), regardless of PPI therapy. Two-tail Mann-Whitney test, **p < 0.01.

(B) Serum magnesium levels in TdP patients under PPI therapy (TdP/PPI+) (n

= 14) vs. controls under PPI therapy (C/PPI+, n = 12). Two-tail Student’s

unpaired t-test, ***p < 0.001. Horizontal dotted line indicates the lower limit of

reference values for magnesium levels, i.e., 1.5 mg/dl.

levels were similar in PPI+ vs. PPI−TdP patients, thus indicating
a rather selective effect of this class of drugs on magnesium levels.

Another important suggestion arising from the present study
is that PPI-associated changes in magnesium levels have a
relevant clinical impact by increasing the risk of developing
TdP in these patients. In fact, PPI users showed a significantly
higher mean total number of QTc-prolonging risk factors per
patient when compared to non-users. Nevertheless, despite a
comprehensive evaluation also taking into account recently
recognized “non-classical” QT-prolonging factors, such as anti-
Ro/SSA antibodies (Yue et al., 2015; Lazzerini et al., 2016, 2017d)
and systemic inflammatory activation (Lazzerini et al., 2015,
2017a,b), serum magnesium levels represented the only specific
TdP risk factor which was significantly different between the
two groups. Accordingly, when hypomagnesemia was excluded
from the total risk factor count, this difference was no longer
statistically significant.

Notably, we also found that magnesium levels in TdP/PPI+
patients were significantly lower when compared to C/PPI+
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matched for age, gender and concomitant diseases. It suggests
that TdP may act as a “clustering factor” for those patients,
among the general population, who are more susceptible to
the magnesium-lowering effect of PPIs, possibly as a result of
a genetic predisposition (Hess et al., 2017). This view, further
supporting the role of PPI-induced hypomagnesemia as a risk
factor for TdP, warrants specific investigation.

Although our data point to the conclusion that PPIs
can increase the risk of TdP by inducing hypomagnesemia,
the involvement of additional, possibly molecule-related
mechanisms could not be ruled out. In particular, this may be
the case of lansoprazole which has been recently associated to
an increased risk of QTc prolongation and TdP when used in
combination with ceftriaxone, via direct blocking effects of the
drug association on the hERG potassium channel (Lorberbaum
et al., 2016; Lazzerini et al., 2017c). Indeed, 2 patients in our
cohort were under current treatment with lansoprazole +

ceftriaxone when TdP occurred, in 1 case in the absence of
hypomagnesemia. Notably, it has been demonstrated that
also lansoprazole alone significantly inhibits hERG potassium
channel and related current IKr (−14%), although to a lesser
extent when compared to the drug combination (−58%)
(Lorberbaum et al., 2016). This may help explain why serum
magnesium level was normal in one out of three case reports
of PPI-associated TdP, in which lansoprazole administration
precipitated arrhythmia development in a patients under
long-term treatment with a drug known to directly prolong
QTc (disopyramide) (Asajima et al., 2012). Thus, it cannot be
ruled out that also in our patients, particularly those without
hypomagnesemia, lansoprazole (and possibly also the other
PPIs involved, since to date no specific patch-clamp studies are
available) could have contributed to promote TdP occurrence
also via a direct electrophysiological interference.

Our data suggest a number of important recommendations
to translate in the clinical practice. In particular, patients may
experience TdP in the presence of hypomagnesemia while
they were under active treatment with a PPI. Such patients
may be required to stop PPI treatment as it could have
significantly contributed to development and maintenance of
the electrolyte imbalance. Since it is expected that PPI-induced
hypomagnesemia is refractory to magnesium oral or parenteral
supplementation despite high doses (Famularo et al., 2013), drug
discontinuation is a key action to normalize serum magnesium
levels and thereby reduce the associated risk of TdP recurrence.
This measure may be of particular importance in patients
concomitantly requiring diuretic therapy, given the role of this
class of drugs in exacerbating magnesium depletion. Moreover,
based on the evidence that PPI-induced hypomagnesemia may
rapidly recur after re-challenge with the same or a different
PPI (median time ∼2 weeks; Famularo et al., 2013), the
alternative use of a H2-blocker may be appropriate in the
case the patient needs prolonged antiacid treatment. Finally,
since some data suggest that PPIs may also directly contribute
to QTc prolongation via electrophysiological effects on the

cardiomyocyte, it cannot be excluded that PPI discontinuation
could be a useful therapeutic measure even in TdP patients
without evidence of hypomagnesemia, particularly when the PPI
involved is lansporazole and other known QT-prolonging drugs
are concomitantly administered.

In conclusion, the present study demonstrates that PPI-
induced hypomagnesemia is a more than expected common
finding in unselected patients with TdP, significantly contributing
to increase the cumulative risk of developing this life-threatening
arrhythmia. Our real-life data provide important clinical
evidence in support to AZCERT recommendations which
cautiously already had warned about the potential role of
PPI-induced hypomagnesemia in promoting TdP, despite
only few cases were reported. Nevertheless, considering
the relative small sample size as well as the main focus on
magnesium levels, we did not perform any multivariate
analysis on our population. Since this may represent a
limitation of the study, larger sample studies are warranted
to confirm our results. They should include non-TdP
patients and/or younger populations, and could clarify
whether PPIs significantly influence the QTc also regardless
of hypomagnesemia.

In practice, more awareness is needed by the clinician when
a PPI is prescribed since the safety profile of this class of drugs
is probably not so neutral as commonly believed, specifically as
regards the risk of life-threatening arrhythmias and SCD.
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Warfarin is used as anticoagulant and Compound Danshen prescription (CDP) is able to
promote blood circulation. The combination might produce a synergic effect for patients
of coronary heart diseases (CHDs) with atrial fibrillation (AF). Whether the combination
increases the bleeding risk of warfarin is unclear, so the effects of Compound
Danshen dripping pill (CDDP) on the pharmacokinetics (PK) and pharmacodynamics
(PD) profiles of warfarin was investigated in patients. The dose and blood concentrations
of warfarin, the four indicators of blood coagulation, prothrombin time, activated
partial thromboplatin time, thrombin time, fibrinogen, and international normalized ratio
value were compared when with and without CDDP treatment. The population PK
(PPK) and PPK-PD models were established to assess patient demographics, genetic
polymorphisms and CDDP as covariates. And the Seattle Angina Questionnaire was
used to evaluate clinical efficacy, and the bleeding risk of combination was analyzed.
The results indicated that CDDP had little influence on PK and PD profiles of warfarin
in most patients and the combination of CCDP and warfarin would be a promising
alternative regime for CHD with AF patients. The study was registered on China Clinical
Trial Registry with number ChiCTR-ONRC-13003523.

Keywords: warfarin, compound Danshen dripping pill, pharmacokinetics, pharmacodynamics, patients, coronary
heart diseases, atrial fibrillation
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INTRODUCTION

It was reported that about 10%∼15% patients in coronary heart
diseases (CHDs) would be associated with atrial fibrillation
(AF). Moreover, about 30% patients in AF would be associated
with CHD (Jason et al., 2014). The main hazard of AF is
thromboembolic complications. Anticoagulants may reduce the
risk of death rate in AF patients by 38% (Alpesh, 2013), so
about 70–80% patients with AF are suitable for long-term use of
warfarin, which was initially used in humans in the early 1950s as
vitamin K antagonist (Liu et al., 2014; Darcy et al., 2017).

It is more than 100 years history in China that Compound
Danshen prescription (CDP) has being applied to treat CHD,
which consists of Radix salvia miltiorrhizae, Radix notoginseng,
and Borneolum (Xin et al., 2013). In order to get market
approval in the United States, the Compound Danshen dripping
pill (CDDP), one Chinese patent drug of CDP, had recently
completed a multinational phase III clinical trial. Pre-clinical and
clinical studies have suggested that CDDP may increase coronary
flow-rate and superoxide dismutase activity, expand blood
vessel, promote blood circulation, relieve blood stasis, improve
microcirculation, and improve hemorheological property, as well
as decrease myocardial oxygen consumption (Pei et al., 2004;
Zheng et al., 2007).

Concurrent use of CDDP with warfarin may be a desirable
combination that may produce a synergistic effect, to relieve
the symptoms of CHD with AF by CDDP part and meanwhile
to decrease the incidence of thromboembolic complication
by warfarin. Warfarin treatment is difficult to handle due to
its narrow therapeutic window with a large inter-individual
variability in the dose-response relationship (Zeng et al., 2016).
Both pharmacodynamic (PD) and pharmacokinetic (PK) factors
may contribute to more than 10–20 fold inter-individual
variability in dose requirement (Hamberg et al., 2007; Steven
et al., 2011; Zeng et al., 2016). Whether the CDDP could
have impact on the PK and/or PD characteristics of warfarin
increasing the bleeding risk as a result, is not clear. It is necessary,
therefore, to get the information about the interactions between
CDDP and warfarin. Only one literature report has been retrieved
to address the interactions between CDDP and warfarin in rats
(Chu et al., 2011), but any information on such interactions in
humans has not been reported.

We conducted the study to explore the potential effects of
CDDP on the PK and PD of warfarin in patients. During
two periods on and off CDDP, we collected the dose and
blood concentration of warfarin, the four indicators of blood
coagulation, international normalized ratio (INR) value, and
to establish appropriate population pharmacokinetics (PPK)
and population pharmacodynamics (PPD) models to assess
patient demographics, genetic polymorphisms and CDDP as
covariates to evaluate the interaction effects of CDDP on
warfarin. The seattle angina questionnaire (SAQ) was used
to evaluate the effect of warfarin combined with CDDP
on CHD with AF patients. In addition, 2 years follow-up
was done after the two periods to learn about the drug
compliance, the incidence of bleeding and other important
outcomes, such as myocardial infarction, severe arrhythmia,

revascularization, death and so on. We hope the study
could provide useful clinical information for patients of CHD
with AF.

MATERIALS AND METHODS

Patients
The study was conducted in four hospitals in Tianjin from
November 2013 to January 2016. Participants, suffered from
CHD with AF, had been administrated warfarin with a long
time. The study included two periods, in the first period patients
took warfarin (Orion Corporation, Finland) at dose titration
manner guided by INR values on the daily determined basis
to guarantee the INR value maintained in the range of 2–3.
When the INR value reached stable and maintained for successive
2 weeks on the fixed dose of warfarin, then the participants
switched to the second period, in which, 10 dripping pills of
CDDP (Tianjin Tasly Group Co., Ltd, China) were added orally
to patients three times per day for at least 4 weeks. The dose of
warfarin was re-adjusted according to the changed INR value,
until the INR value was stable again and the dose of warfarin
was retained for 2 weeks. Four blood samples (4∗3 ml) were
collected at the end of each period for warfarin concentration
assay. The sampling time points were arranged at trough (before
the administration of warfarin), at peak, two random times on
elimination phase (before the next dose of warfarin). All the time
points of blood sampling and warfarin dosing were recorded
accurately.

This study was carried out in accordance with the
recommendations of Ethics committees of the Second Affiliated
Hospital of Tianjin University of TCM with written informed
consent from (ICF) all subjects. All subjects gave written
informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Ethics committees of
the Second Affiliated Hospital of Tianjin University of TCM in
August 2013.

Genotyping
The information of genes which affect the metabolism of
warfarin was obtained by literatures (Lin G.G. et al., 2015;
Zeng et al., 2016). In this study, genotyping of VKORC1,
CYP2C9∗3, CYP4F2, EPHX1, and PROC were detected. Genomic
DNA was isolated from peripheral blood leukocytes using a
Genomic DNA Purification kit. Individual single-nucleotide
polymorphism (SNP) loci were amplified using the polymerase
chain reaction, which provided a template for allele-specific
primer extension. All genotyping were performed using the
gene sequencing methods (Kumar et al., 2008; Jorgensen
et al., 2009; Steven et al., 2011; Lin G.G. et al., 2015). The
VKORC1 was classified by detection of 1173 C > T variant
(rs9923231), the CYP2C9∗3 was classified by detection of
1075 A > C variant (rs1057910), the CYP4F2 was classified
by detection of C > T variant (rs2108622), the EPHX1
was classified by detection of G > A variant (rs2292566),
the PROC was classified by detection of G > T variant
(rs5936).
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Bioanalysis
Plasma warfarin concentrations were determined using a high-
performance liquid chromatography tandem mass spectrometry
method. Good chromatographic separation was achieved on an
Astec CHIROBIOTIC V column (250 mm× 4.6 mm i.d., particle
size 5 µm) with acetonitrile-5 mm ammonium acetate with
0.1% acetic acid in water (30:70, v/v) as the mobile phase at a
flow rate of 0.50 mL/min (Jin et al., 2012). The column effluent
was analyzed using a mass spectrometer in multiple reactions
monitoring (MRM) mode by AB Triple Quad 5500 system
in positive mode. S-warfarin, R-warfarin, and Tolglybutamide
(Internal standard, IS) were extracted from plasma samples by
protein precipitation with acetonitrile. Calibration curves were
linear with 50.00–2000 ng/ml for S-warfarin and R-warfarin. Both
intra-day and inter-day precision and accuracy of S-warfarin and
R-warfarin were well within acceptance criteria (15%). The mean
absolute extraction recoveries of S-warfarin, R-warfarin, and IS
from human plasma were all more than 60.00%. The validated
method has been successfully applied to determine of S-warfarin
and R-warfarin in human plasma. Then total warfarin was the
sum of S-warfarin and R-warfarin.

Software
The population PK and PK-PD models were developed
using a nonlinear mixed-effect modeling approached with the
NONMEMTM (nonlinear mixed-effect modeling, version VII,
level 2.0, ICON Development Solutions, Ellicott City, MD,
United States). Goodness-of-fit diagnostic plots were prepared
with R software (3.2.1, R-project. org). All models were run using
the first-order conditional estimation method with interaction
(FOCEI).

PK Model Development
Structural Model
After inspection of the PK profiles, a one-compartment model
with first-order absorption was adopted as the optimal base
model for warfarin, R-warfarin, and S-warfarin. Structural PK
model was fit to plasma concentrations, and typical values of
absorption rate constant (Ka), apparent volume of distribution
(V/F), and oral clearance (CL/F) were calculated (where F
denotes bioavailability). In this study, each individual parameter
was expressed approximately as a coefficient of variation to be a
log-normal distribution with the mean of population parameters
according to results of previous researches (Maria et al., 2003;
Eunice et al., 2010; Mark et al., 2010; Juno et al., 2013).

Pij = PTV j · Exp(ηij) (1)

Where Pij was the PK Parameters j for ith individual, PTVj
was mean of predicted population of PK Parameters j, ηij was
a between-subject random variable distributed normally. PK
Parameters j was just about Ka, V/F, or CL/F.

The residual error model was assumed to be a mixed error
model as following:

CObs = CPred · (1+ ε1) + ε2 (2)

Where CObs was the observed plasma concentration, CPred
was the model prediction concentration. Both of multiplicative
residual error (ε1 ) and additive residual error (ε2 ) were assumed
as a normal distribution.

Covariate Models
These covariates were first explored graphically and each
potential covariate individually added to the base model if
graphical trends were shown. For the covariate models, stepwise
of a forward inclusion step and a backward elimination step
method was used. When a variable was considered for entering
in the final model, it must reduce the objective function value
(OFV) by more than 3.84 if p < 0.05 (5% significance level
assuming a one degree of freedom, 1OFV > 3.84, df = 1;
1OFV > 5.99, df = 2; 1OFV > 7.81, df = 3). The variable
that had the biggest impact on the OFV could enter first and
subsequent variables added according to their impact on the
OFV. The forward process described above was repeated again
until no further covariates were incorporated into the model.
Then, the backward elimination step was implementing. The
variables were retained in the model if its removal caused an
increase in OFV at least 6.63 if p < 0.05(1OFV > 6.63, df = 1).
The relative contribution of each covariate to the goodness of
fit was evaluated by deleting it from the full model. With these
restrictive criteria, only covariates showing statistically significant
and clinically relevant contributions were kept in the population
PK (PPK) model.

In our research, the covariate of weight was described by
allometric scaling equation:

Pi,j = PTV · (
WT
WT

)θ2 · Exp(ηi,j) (3)

Where Pi,j was the PPK parameters, PTV was a reference value
of PPK parameters, WT was weight, WT was median of WT,θ2
was effect value of WT to PPK parameter.

Other covariates (except weight) were divided into categorical
covariates (gender, genotyping, administrated CDDP) and
continuous covariates (age, BMI, ALT, AST, BUN, CRE, CRCL).

For the categorical covariates, the following equation was
adopted:

If (COV = l) Pi,j = (PTV + θl) · Exp(ηi,j) l = 2, ...m (4)

Where COV was a categorical covariate which had m levels, θl
was adjusted value for PTV to Pi,j.

For categorical covariates, the linear models were employed:

Pi,j = PTV · (1+ (COV − COV) · θ3) · Exp(ηi,j) (5)

Where COV was continuous covariates, COV was median
of continuous covariate, θ3 was a coefficient for the effect of
covariate to parameter.

PK–PD Model Development
The PK–PD model was developed only for S-warfarin, because
S-warfarin is the main active ingredient, which is 3–5 times more
potent than R-warfarin. According to the plot of relationship
between INR and concentration of S-warfarin, the Emax model
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was selected as the PD model. For the covariate models, stepwise
of forward and backward method was used as mentioned in PK
model.

Model Evaluation
Model Diagnostics
The PK models for warfarin, R-warfarin, S-warfarin, and PK-PD
model for S-warfarin was evaluated by the goodness of fit of these
models using visual inspection of diagnostic scatter plots of the
observed plasma concentrations (DV) versus mean population
predicted plasma concentrations (PRED), DV versus individual
predicted plasma concentrations (IPRED), conditional weighted
residuals (CWRES) versus time, individual weighted residuals
(IWRES) versus population predictions (PRED).

TABLE 1 | The demographic profile summary for subjects.

Characteristics Values (Range)

Number of patients 59

Number of plasma concentration points 404

Number of international normalized ratio (INR) 600

Dose of warfarin (mg) 3.41 (0.75− 7.50)

Concentration of S-warfarin (mg/L) 0.43 (0.10− 1.74)

Concentration of R-warfarin (mg/L) 0.89 (0.19− 3.11)

Concentration of Total-warfarin (mg/L) 1.32 (0.29− 4.85)

INR 2.17 (0.89− 4.83)

Gender (male/female) 38/21

Age (year) 63 (49− 79)

Weight (WT, Kg) 73 (50− 99)

BMI (kg/m2) 25.70 (16.03− 34.48)

VKORC1 (%)

T/T 54 (91.53%)

C/T 5 (8.47%)

CYP2C9∗3 (%)

A/A 51 (86.44%)

A/C 8 (13.56%)

CYP4F2 (%)

C/C 35 (59.32%)

C/T 19 (32.20%)

T/T 5 (8.47%)

EPHX1 (%)

A/A 2 (3.39%)

A/G 33 (55.93%)

G/G 24 (40.68%)

PROC (%)

G/G 11 (18.64%)

T/T 13 (22.03%)

T/G 35 (59.32%)

Alanine aminotransferase, ALT (U/L) 28.7 (10− 137)

Aspartate aminotransferase, AST (U/L) 22.9 (8− 80)

Blood urea nitrogen, BUN (mmol/L) 5.45 (2.30− 13.70)

Creatinine, CRE (mmol/L) 81.64 (48− 278)

Creatinine clearance rate, CRCL (ml/min) 85.39 (19.15− 158.7)

Systolic blood pressure, SBP (mmhg) 126.73 (93− 180)

Diastolic blood pressure, DBP (mmhg) 78.09 (60− 105)

Long use (LU) of warfarin 32 (54.24%)

FIGURE 1 | The participant flow chart.

Model Validation
Visual predictive check (VPC)
A visual predictive check (VPC) was performed to evaluate the
prediction of PK models for warfarin, R-warfarin, S-warfarin,
and PK-PD model for S-warfarin. The VPC were conducted by
comparing 1000 datasets simulated from the final parameters
with the observed plasma concentrations. The 95% predicted
intervals (PIs) obtained from the simulation were superimposed
and compared with the observations.

Bootstrap
A nonparametric bootstrap analysis was used to assess the
stability of the parameter estimates and to confirm the robustness
of the models. The 1000 bootstrap sample datasets were
re-sampled from random sampling with replacement from the
original data using individual as sampling unit. Next, population
parameters of final PK and PK-PD models for each dataset were
estimated. Then, the median and 95% confidence intervals (CI)
were constructed by obtaining the 2.5th and 97.5th smallest
values out of 1000 parameters estimated from bootstrap sample
datasets. Comparing with the mean and 95% CI, each estimated
parameter derived from the mean and its standard error of the
final parameters.

SAQ and Follow-Up
The SAQ was applied to evaluate clinical symptoms of patients.
The score of SAQ was collected after each period of clinical
trial, and compared by paired t-test. In order to learn about
more information about warfarin and CDDP administration, the
follow-ups were done every 6 months and lasted for 2 years.
The contents of follow-up included the length of taking the
combination of warfarin and CDDP and some important and

Frontiers in Pharmacology | www.frontiersin.org November 2017 | Volume 8 | Article 826232

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-08-00826 November 18, 2017 Time: 15:47 # 5

Lv et al. Effect of CDDP on Warfarin

TABLE 2 | The fixed dose and blood concentrations for patients in the first and
second period.

Mean SD P

Fixed doe of warfarin (mg)

First period 3.39 1.04 0.691

Second period 3.36 0.92

Blood concentrations of warfarin (mg/L)

First period (warfarin) 1.2225 0.5329 0.587

Second period (warfarin) 1.1849 0.4949

First period (R-warfarin) 0.8337 0.3597 0.650

Second period (R-warfarin) 0.8128 0.3132

First period (S-warfarin) 0.3887 0.2253 0.535

Second period (S-warfarin) 0.3721 0.2301

main outcomes, such as bleeding, myocardial infarction, severe
arrhythmia, revascularization, ACS, TIA, stroke, heart failure,
death, and other conditions causing hospitalization.

RESULTS

Patients
Sixty-four patients were enrolled from four hospitals in Tianjin
from November 2013 to January 2016. Fifty-nine patients
completed the trial, among which 21 patients were female, and
the mean age was 63 years (49–79 years). The demographic

information of the patients was presented in Table 1. There were
404 samples and 600 INR values available for analysis from the
59 patients. About 41 patients completed the follow-up. The
participant flow chart was shown in Figure 1.

Fixed Dose and Concentration of
Warfarin
In the two periods, the fixed doses of warfarin were
3.39 ± 1.04 mg and 3.36 ± 0.92 mg (P = 0.691), respectively.
The steady-state concentration in the two periods was
1.2225 ± 0.5329 mg kg−1 and 1.1849 ± 0.4949 mg kg−1

(P = 0.587) for warfarin, 0.8337 ± 0.3597 mg kg−1 and
0.8128 ± 0.3132 mg kg−1 (P = 0.650) for R- warfarin,
0.3887 ± 0.2253 mg kg−1 and 0.3721 ± 0.2301 mg kg−1

(P= 0.535) for S-warfarin. So, the fixed dose and the steady-state
concentration of warfarin were no statistically different between
warfarin alone and warfarin plus CDDP. The results were shown
in Table 2.

Four Indicators of Blood Coagulation
and INR Value
The results were shown in Table 3. The four indicators of
blood coagulation, prothrombin time (PT), activated partial
thromboplatin time (APTT), thrombin time (TT), fibrinogen
(FIB), and INR value between the two periods at the fixed
warfarin dose had no statistical differences which was compared
by paired t-test.

TABLE 3 | The INR value, four indicators of blood coagulation, and seattle angina questionnaire (SAQ) for patients in the first and second period.

Mean ± SD INR value PT (s) APTT (s) TT (s) FIB (g/L) SAQ (Score)

First period 2.42 ± 0.29 25.92 ± 2.43 47.74 ± 10.48 16.95 ± 1.64 3.47 ± 0.55 19.71 ± 5.05

Second period 2.40 ± 0.61 25.64 ± 5.01 49.24 ± 9.03 17.49 ± 1.60 3.49 ± 0.80 21.02 ± 5.07

P 0.893 0.803 0.514 0.120 0.874 0.002

TABLE 4 | The covariates of pharmacokinetics (PK) models for Warfarin, R-warfarin, and S-warfarin.

Warfarin R-warfarin S-warfarin

Description Estimate RSE (%) Description Estimate RSE (%) Description Estimate RSE (%)

Ka 0.999 43.7 Ka 0.586 129.4 Ka 1.69 74.6

CL/F 0.117 8 CL/F 0.158 3.7 CL/F 0.357 4.6

V/F 11.3 16 V/F 17.8 17.9 V/F 25.5 15.1

PROC on Ka(G/G) 1 PROC on Ka(G/G) 1 PROC on Ka(G/G) 1

PROC on Ka(T/T) 0.0355 45.6 PROC on Ka(T/T) 0.055 120.9 PROC on Ka(T/T) 0.21 98.1

PROC on Ka(T/G) 4.29 60.1 PROC on Ka(T/G) 4.52 121.2 PROC on Ka(T/G) 15.7 67.5

PROC on CL(G/G) 1 CDDP∗ on Ka −0.796 13.9

PROC on CL(T/T) 0.764 9.4 CYP2C9∗3 on CL(A/A) 1

PROC on CL(T/G) 0.941 9.1 CYP2C9∗3 on CL(A/C) 0.686 14.2

IIVKa/F 0(FIX) IIVKa/F 0.206 115.3 IIVKa/F 2.29 39.1

IIV CL/F 0.0552 8.8 IIV CL/F 0.072 9.4 IIV CL/F 0.105 7

IIV V/F 0.501 17 IIV V/F 0.588 18.9 IIV V/F 0.438 20

Prop.RE (sd) 0.172 8.8 Prop.RE (sd) 0.182 10.9 Prop.RE (sd) 0.18 7.3

Add.RE (sd) 0(FIX) Add.RE (sd) 0(FIX) Add.RE (sd) 0(FIX)

∗When CDDP was 0 represented the first period that patients was not administrated CDDP, and CDDP was 1 represented the second period that patients was
administrated CDDP.
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Structural Model for PK Models
The PK profile of warfarin was in accordance with one-
compartment model (Eunice et al., 2010; Steven et al., 2011)
or two-compartment model (Jiang et al., 2006; Hamberg et al.,
2007) based on literatures, including warfarin, S-warfarin, and
R-warfarin. One-compartment and two-compartment models
were both investigated for warfarin, S-warfarin and R-warfarin
in this study. By comparing OFVs, goodness of fit to the models,
as well as rational of parameters, one-compartment was chosen
as the optimal ones for initial structure models for warfarin,
S-warfarin, and R-warfarin.

Covariate Models for PK Models
Once the base structural models were established, potentially
significant covariates were evaluated as described. The OFVs
of structure models for warfarin, R-warfarin, and S-warfarin
were –622.414, –897.240, and –1448.94. When the covariate of
weight was on CL, OFV were –623.958, –898.783, and –1449.40
for warfarin, R-warfarin, and S-warfarin, respectively. When the
covariate of weight was on V, OFV were –622.423, –897.335,
and –1448.94 for warfarin, R-warfarin and S-warfarin,
respectively. Comparing with structural models, these OFVs
were not more than 3.84, so weight was not the significantly
covariates for warfarin, R-warfarin, and S-warfarin.

For warfarin models, in the forward models, three covariates
were brought in, PROC on CL, LU on CL, PROC on Ka, but
in the backward models, LU on CL was eliminated. At last, the
covariates of PROC on Cl and PROC on Ka were in the model.
For R-warfarin models, PROC on Ka and PROC on CL were in
the models, then PROC on CL was removed, so PROC on Ka was
the significantly covariate. For S-warfarin model, the covariates
PROC on Ka, CDDP on KA, CYP2C9∗3 on CL, EPHX1 on V and
VKORC1 on CL were in the forward models, then two covariates
were rejected, PROC on Ka, CDDP on KA and CYP2C9∗3 on
CL were in the models as the significantly covariates. The detail
information about the covariates for warfarin, R-warfarin, and
S-warfarin were shown in Table 4.

PK–PD Model
On the basis of the final PK model, individual estimates
of S-warfarin concentrations were predicted and used in the
development of PD model. Graphical analyses of the INR
observations versus time for S-warfarin demonstrated the Emax
model may be more suitable for PD model. So direct Emax
models, as well as BIOPH Emax models were investigated
in our research. The parameters of the two models were all
within a reasonable range, but OFV of BIOPH Emax model
decreased 16.35 compared with direct Emax model. Moreover,
there was a considerable time delay between INR response and
drug concentration. Therefore, BIOPH Emax model was at last
considered as the PD model of S-warfarin.

Once the basic structural model was established, potentially
significant covariates were evaluated. From the consequence of
forward and backward method and the reasonable parameters,
AST was finally brought on KE0 of PD model for S-warfarin.
The detail information about covariates of PK-PD model for
S-warfarin was shown in Table 5.

Model Evaluation
Model Diagnostics
The model diagnostic plots were shown in Figure 2. Figures 2A,B
demonstrated that all the data points distributed uniformly in
both sides of line y= x. Figures 2C,D demonstrated that CWRES
and IWRES distributed uniformly in both sides of line y= 0, and
the absolute value were less than 4. So, these models adequately
described the plasma concentrations, suggesting good fitness of
the PK models for warfarin, R-warfarin, S-warfarin, and PK-PD
model for S-warfarin.

Visual Predictive Check
The VPC plots were shown in Figure 3. Most of the observations
were in the 95% PIs, so the fit of the models were acceptable in
terms of visual or statistical biases for the prediction.

Bootstrap
The estimated parameters and 95% values from all bootstrap runs
for the PK models of warfarin, R-warfarin, and PK-PD model
of S-warfarin were given in Table 6. The data indicated that the
parameter estimated in PK models and PK-PD model had little
bias and the models were fairly robust.

The Results of SAQ and Follow-Up
The results of SAQ were shown in Table 3. The score of
SAQ during trail were 19.71 ± 5.05 for the first period and

TABLE 5 | The covariates of pharmacokinetics–pharmacodynamics (PK–PD)
models for S-warfarin.

Description Estimate RSE (%)

KA 1.44 44.2

CL/F 0.356 4.7

V/F 26.1 14.3

PROC on Ka(T/T) 0.272 64

PROC on Ka(T/G) 12.2 65.1

CDDP∗ on Ka − 0.728 20.1

CYP2C9∗3 on CL(A/C) 0.69 14.5

KE0 0.0365 48.2

E0 1.21 4.9

EMAX 3.54 81.1

EC50 0.889 113.6

AST ON KE0 0.0006 0.7

IIV KA 2.14 58.9

IIV CL/F 0.0984 14.5

IIV V/F 0.503 41.6

IIVE0 0.0196 54.6

IIVEC50 0.198 31.6

Residual errors

PK Prop.RE (SD) 0.014 7.7

PK Add.RE (SD) 0 (FIX)

PD Prop.RE (SD) 0.0112 5.3

PD Add.RE (SD) 0 (FIX)

∗When CDDP was 0 represented the first period that patients was not
administrated CDDP, and CDDP was 1 represented the second period that patients
was administrated CDDP.
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FIGURE 2 | The model diagnostics plots of pharmacokinetics (PK) models for warfarin (1), R-warfarin (2) and S-warfarin (3) and
pharmacokinetics–pharmacodynamics (PK–PD) model for S-warfarin (4). (A) The observed plasma concentrations (DV) versus mean population predicted plasma
concentrations (PRED), (B) The DV versus individual predicted plasma concentrations (IPRED), (C) The conditional weighted residuals (CWRES) versus time, (D) The
individual weighted residuals (IWRES) versus population predictions (PRED).

FIGURE 3 | The VPC plots of PK models for warfarin (A), R-warfarin (B), and S-warfarin (C) and PK-PD model for S-warfarin (D). The Shadows were the 95th PIs.

21.02 ± 5.07 for the second period. There was significant
difference between two periods (P = 0.002). During 2 years of
follow-up, the mean length of taking CDDP is 0.96 ± 0.80 years
and 1.70 ± 0.83 years for warfarin. Severe arrhythmia occurred
in one patient, revascularization in two patients, death in one
patient, and 16 patients were hospitalized due to other conditions.
The incidence of severe arrhythmia, revascularization, death, and
hospitalization were 2.44% (1/41), 4.88% (2/41), 2.44% (1/41),
and 39.02% (16/41).

DISCUSSION

In this study a total of 404 blood samples, instead of 472 as
required by protocol (eight for each patient), were collected for

warfarin assay. There were 600 INR values obtained in the study.
Being serious in nature of the heart disease, the compliance of the
enrolled patients in the study was relatively low. With the limited
number of patients enrolled in this study, we use the principle
of PPK algorithm with more detail information collected from
the participants, as described in the Guidance for Industry PPK
published by FDA which states “Since patients are studied in
more detail in this design, the design requires fewer subjects, and
the relationship of trough levels to patient characteristics can be
evaluated with more precision”. Similarly, in some other PPK-
PPD studies (Hamberg et al., 2007; Parker et al., 2015; Agarwal
et al., 2016; Pier et al., 2017), these numbers of subjects enrolled
were comparable to our study.

These CHD patients with AF had been taking warfarin for
a long period of time to decrease the risk of thromboembolic
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complications. The underlying conditions included hypertension
(28.8%), diabetes (18.7%), and cerebral ischemic stroke (16.9%)
in the study. Various medications were concomitantly used in
the patients due to its complicated property of the disease. More
frequently used drugs included β-blockers (39.0%), nitric esters
(33.9%), statins (22.0%), diuretics (22.0%), cardiac glycosides
(18.7%), calcium channel blockers (15.3%), and antidiabetic
drugs (15.3%). Identification of the effect of CDDP on profiles of
PK and PD of warfarin were established on a self-control design,
maintaining all concomitant medications except warfarin from
beginning to end of trial. The INR value, fixed warfarin doses and
trough concentration of plasma warfarin had not significantly
difference (P > 0.05) with or without CDDP. That suggested
there is no drug-drug interaction between CDDP and warfarin
in human, and CDDP did not affect anticoagulant mechanism of
warfarin because CDDP did not interfere metabolic process of
warfarin in human.

The PPK models for warfarin, S-warfarin and R-warfarin and
PPD model for S-warfarin were developed with assessing patient
demographics, genetic polymorphisms and CDDP as covariates.
The PK behavior of warfarin, S-warfarin and R-warfarin was in
accordance with one-compartment model or two-compartment
model based on literatures (Jiang et al., 2006; Hamberg et al.,
2007; Eunice et al., 2010; Steven et al., 2011). The One-
compartment models were more optimal and reasonable for
warfarin, either S-warfarin or R-warfarin in our study. The
consequence of CYP2C9∗3 on CL of S-warfarin was identical to
other researches (Chanan et al., 2016; Darcy et al., 2017), but
the age, gender, weight had no significant effects on S-warfarin
or R-warfarin which were inconsistent with some research
(Hamberg et al., 2007; John et al., 2012; Lin R.F. et al., 2015).
The gene of CYP4F2, PROC, VKOR, CYP2C9∗3, and EPHX1 were
investigated in this research. There was no precise conclusion
about the effects of gene subtypes on PK and PD characteristics
of warfarin due to limited distribution rate of each individual
subtype, which was consistent with other literatures (Özer et al.,
2011; Radka et al., 2015). The change of the fixed dose of warfarin
in EPHXI gene subtype A/A is higher than the other gene
types. Because only two patients with EPHX1 gene subtype A/A
were enrolled, it is difficult to make the conclusion that CDDP
affect the PK and PD characteristics of warfarin on this kind of
patient.

The study result also suggested by PPK model and PPD
model that there may be no influence of CDDP on PK and
PD of warfarin in patients, although CDDP was as a covariate
on Ka of S-warfarin. There had a great variation of Ka with a
higher RSE (43.7%, 129.4%, 74.6% for PK models of warfarin,
R- warfarin, and S- warfarin) meaning an incredible consequence

about absorption. The bioavailability of warfarin is more than
95% (Mark et al., 2010; Juno et al., 2013), some reports had
applied 100% bioavailability when developing models (Maria
et al., 2003; Hamberg et al., 2007; Steven et al., 2011). Moreover,
there were few reports to evaluate the absorption of warfarin due
to its high bioavailability.

The SAQ was applied to evaluate efficacy effect of the
co-treatment of warfarin and CDDP in the patients of CHD with
AF. It’s showed that there was significant difference in the SAQ
score with or without CDDP. It may indicate that CDDP can
improve the life quality of CHD with AF patients when both
INR and dose of warfarin are stable. During 2 years follow-
up, many patients still took the combination for a long time,
and there were no report about bleeding. So, the combination
of CDDP with warfarin might relieve clinical symptoms and
provide benefits for patients with CHD and AF. However, this
was not a randomized clinical trial, some researches would be
needed to further demonstrate the clinical efficacy.

CONCLUSION

In summary, robust and stable PK-PD models have been
successfully developed for evaluating the effect of CDDP on the
PK and PD of warfarin. The results indicated that CDDP did
not influence the INR stability and PK characteristic of warfarin
when warfarin was administrated simultaneously with CDDP
in most CHDs patients. Moreover, The SAQ and follow-up
results showed the CDDP combined with warfarin might provide
benefit in clinical practice for patients. This study would provide
some useful information of the combined regimen of CDDP and
warfarin for the treatment of CHDs with AF, but the result in
Chinese genetic subtypes of EPHX1 and the clinical efficacy study
need to be confirmed further.
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Anti-arrhythmic drugs are a mainstay in the management of symptoms related to

arrhythmias, and are adjuncts in prevention and treatment of life-threatening ventricular

arrhythmias. However, they also have the potential for pro-arrhythmia and thus the

prediction of arrhythmia predisposition and drug response are critical issues. Clinical trials

are the latter stages in the safety testing and efficacy process prior to market release, and

as such serve as a critical safeguard. In this review, we look at some of the lessons to be

learned from approaches to arrhythmia prediction in patients, clinical trials of drugs used

in the treatment of arrhythmias, and the implications for the design of pre-clinical safety

pharmacology testing.

Keywords: arrhythmias, cardiac, torsades de pointes, anti-arrhythmia agents, cardiac ion channels, long QT

INTRODUCTION

Cardiac arrhythmias range from the benign to the life-threatening. The former typically arise
in patients with structurally and functionally normal hearts, while the latter more commonly
arise in those with acquired or genetically-determined abnormalities in cardiac structure or
cellular electrophysiology. The two modalities currently available to directly target arrhythmias
with the aim of prevention and/or eradication are anti-arrhythmic drugs and catheter ablation.
Pharmacotherapy has been around for over 100 years, with quinine one of the first to be used
(Sneader, 2005), and ironically, one of the first to be associated with inducing arrhythmia (Schwartz
et al., 2016). For the majority of agents in use today, efficacy was based on clinical observation
rather than a priori understanding of molecular mechanisms. Anti-arrhythmic drugs have retained
a key role in the therapy of heart rhythm disorders, despite the advent of ablation. However,
their potential to cause harm through pro-arrhythmic effects has placed constraints on the use
of many existing drugs, and restricted the release of new agents to the market. The “catch-22”
facing such drugs is the requirement to alter cardiac electrophysiology enough, and under the right
circumstances, so as to prevent or terminate arrhythmias. Yet at the same time, they must not do so
too much or they risk triggering drug-induced arrhythmias. Thus, it would seem a fine balance has
to be achieved. In fact, what is required is detailed knowledge of the mechanisms of the arrhythmia
requiring treatment at the cellular, tissue and organ levels, and its vulnerable parameter(s) (Task
Force of the Working Group on Arrhythmias of the European Society of Cardiology, 1991; Rosen
and Janse, 2010). Even more problematic is that non-cardiac drugs sometimes developed for
relatively benign conditions can lead to malignant ventricular arrhythmias (Bednar et al., 2002).

Estimates of the incidence of drug-induced arrhythmia require the patient to come to medical
attention, and that the diagnosis be considered. The fact that many have concomitant structural
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heart disease makes disentangling drug-induced from
endogenous arrhythmia difficult. Partly because of this,
attention is focused on torsade de pointes (TdP), which outside
the setting of long QT syndrome (LQTS) is rare. TdP is also
characteristic of non-cardiac drug-induced long QT in patients
with normal hearts. With these considerations in mind, estimates
have been made (Sarganas et al., 2014).

Safety pharmacology seeks to exclude drugs with a significant
risk of pro-arrhythmia. The challenge is to set the threshold at
the correct level, so as to allow safe drugs to continue through
development and on to the market, and this is dependent on
the methods employed in risk assessment. These methods are
in the process of being modified, in light of advances in our
understanding of cellular electrophysiology, and the models
available. In this review, we focus on anti-arrhythmic drugs,
and the role of clinical data in informing our approaches to
assessment of their risks of pro-arrhythmia. We adhere to the
Vaughan-Williams classification system in referring to drugs by
class, acknowledging its limitations.

KEY CONCEPTS IN CARDIAC SAFETY
PHARMACOLOGY

Ion Channels and Cellular
Electrophysiology
Cardiomyocyte electrophysiology serves as the basis for
understanding arrhythmia mechanisms, pharmacological
anti-arrhythmic and pro-arrhythmic effects. The currents
responsible for generating these action potentials differ in atrial
and ventricular cardiomyocytes, and sinoatrial/atrioventricular
nodal tissue, as well as within different regions of each chamber
(Nerbonne and Kass, 2005; Grant, 2009; Figure 1).

Activation results in depolarization of the cellular membrane,
which if of sufficient magnitude to attain threshold voltage,
leads to generation of an action potential. This may then
excite a neighboring cell via gap junctions. If the source
current from one cell or group of cells is sufficient to
depolarize the neighboring cells (the “sink”), propagation occurs.
This cyclical process of transmembrane and intercellular ionic
fluxes requires reversal of the activation process, and this is
termed repolarization. Refractoriness is a distinct though closely
linked concept to repolarization, and describes the state of
a cell or tissue which is unexcitable, and unable to undergo
depolarization.

Mechanisms of Ventricular Arrhythmias
Traditionally, at a cellular and tissue level these have been
divided into disorders of impulse formation, disorders of
conduction/propagation, or a combination of both (Zipes
et al., 2005). With regards to tachyarrhythmias, the three
most commonmechanisms are abnormal automaticity, triggered
activity and re-entry. The latter two are considered most relevant
to ventricular arrhythmias. Triggered activity takes the form
of either early (EADs) or delayed afterdepolarizations (DADs).
EADs usually occur with delayed repolarization, which can cause
“repolarization instability,” rendering cells more susceptible to

premature depolarization (Shah et al., 2005). The postulated
mechanisms relate either to arrest of repolarization due to
diminished outward K+ currents, or abnormal Ca2+ influx,
either through L-type calcium channels or the Na+/Ca2+

exchange pump (Pogwizd and Bers, 2004; Shah et al., 2005).
They are best described as triggers for TdP in the setting of long
QT syndrome (LQTS). DADs occur during phase 4 following
completion of repolarization. They result from release of Ca2+

from the sarcoplasmic reticulum, which raises intracellular Ca2+

concentration ([Ca2+]i). The Na+/Ca2+ exchanger extrudes this,
with resultant import of Na+ and a net inward current which
causes premature depolarization (Nattel and Carlsson, 2006;
Figure 2).

Re-entry refers to a circus movement of wavefront
propagation, and wavelength is defined as the product of
conduction velocity and effective refractory period (ERP), and
as such, it represents the length (or volume) of tissue that is
refractory to new impulses. For re-entry to occur, wavelength
must be shorter than the re-entrant circuit path length. The
difference between these is known as the “excitable gap”—
the zone of non-refractory tissue between the wavefront and
wavetail. In theory therefore, prolonging wavelength beyond path
length should be antiarrhythmic. Indeed, this is the mechanism
of “Class III” anti-arrhythmics, though ironically, the discipline
of safety pharmacology in relation to anti-arrhythmic drugs has
arisen largely as a result of this effect. More complex iterations
of re-entry have been proposed, incorporating functional
refractoriness. In particular, the “leading circle model”, and
rotors are considered important in our attempts to understand
complex arrhythmias such as torsade de pointes and ventricular
fibrillation (Figure 3). “Substrate” is the term used to refer to
abnormal myocardium that either produces triggered activity,
or by virtue of fibrosis and/or altered cellular electrophysiology,
aids the creation of a path suitable for re-entry, or fosters wave
break and rotor formation.

QTc
The QT interval on the electrocardiogram (ECG) reflects the
time between depolarization and repolarization of the ventricles.
This interval varies with heart rate, so that a correction
must be made (QTc). Measurement of the QT interval and
adjustment for heart rate (utilizing the R-R interval—the time
between successive QRS complexes) are deemed two of the
major challenges of electrocardiography (Rautaharju et al., 2009).
Various formulae are available, and while based onmeasurements
from only 39 subjects, Bazett’s correction is most commonly
used (QTc = QT/

√
(R-R). The QT interval is relied upon as an

easily accessed biomarker, reflecting repolarization. Its relevance
is borne out by its prolongation in the LQTS, and its presaging
TdP. Nevertheless, it has a number of shortcomings (Rautaharju
et al., 2009; Sager et al., 2014).

Repolarization Reserve and Risk Modifiers
As with most rare but serious occurrences, a single factor is rarely
sufficient on its own to lead to a ventricular arrhythmia. In the
case of TdP in particular, this is due to repolarization reserve.
This describes a degree of redundancy among repolarizing
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FIGURE 1 | Schematic cardiac action potentials from different regions of the heart, with the currents that generate them. Colored lines indicate the phase of the action

potential that the current participates in. Inward currents are in red, outward currents in blue. Currents - INa, inward Na+; ICaT, T-type Ca2+; ICaL, L- type Ca2+; Ito,f,

fast transient outward; Ito,s, slow transient outward; IKur, ultra-rapid K+ delayed rectifier; IKs, slow K+ delayed rectifier; IKr, rapid K+ delayed rectifier; IK1, inward

rectifier; IKATP, ADP-activated K+ channel; IKACh, muscarinic-gated K+ channel; If, “funny” current; INCX, Na
+/Ca2+ exchange current.

FIGURE 2 | Schematic ECG, action potentials with afterdepolarizations, and

onset of torsade de pointes. (A) normal QRS complex and T wave on an ECG.

(B) action potential with early afterdepolarizations (EADs). (C) action potential

with delayed afterdepolarization (DAD, *). (D) ECG showing onset of TdP, with

a sinus beat (S) followed by a ventricular premature beat (VPB, blue) which is

triggered by an EAD.

currents, such that if one is reduced, others may compensate to
a degree, maintaining action potential duration, and preventing
EADs (Roden and Abraham, 2011). Nevertheless, reserve only
protects up to a point, and when several factors act in concert,
protection may be lost and arrhythmia may ensue. Ion channel

polymorphisms with subclinical effects, impaired clearance of
an ion channel-blocking drug, concurrent use of more than one
drug, female sex (Makkar et al., 1993; Gaborit et al., 2010) and
hormonal derangement (Lane et al., 2012) are just a few of the
factors that may modify risk (Figure 4).

DRUG-INDUCED ARRHYTHMIAS

Whilst the focus of safety pharmacology for anti-arrhythmics
is the potential to induce ventricular tachyarrhythmias, it is
worth considering other arrhythmias that may result. For
example, a number of drugs have been shown to trigger
atrial fibrillation (AF) (Strickberger et al., 1997; van der
Hooft et al., 2004; Kaakeh et al., 2012). For example, there
are good data for adenosine, dobutamine, theophyllines and
acute alcohol excess precipitating AF (Strickberger et al., 1997;
van der Hooft et al., 2004; Kaakeh et al., 2012). In the
setting of reduced clearance or concomitant administration,
atrioventricular (AV) nodal-blocking drugs such as beta-
blockers and calcium channel antagonists may induce heart
block.

Ventricular arrhythmias may occur as a result of therapy with
Class I agents (Falk, 1989; The Cardiac Arrhythmia Suppression
Trial (CAST) Investigators, 1989; Tisdale and Miller, 2010),
though this is exceedingly rarely seen in practice, likely as
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FIGURE 3 | Types of re-entry. (A) Classical anatomical re-entry. The wavelength is the product of conduction velocity and refractory period (shown in red). The

excitable gap is the section of the circuit which is unexcited, ahead of the wavefront. (B) Leading circle re-entry. The wavefront impinges on the wavetail such that

there is no excitable gap. In addition, centripetal invasion creates a central region of functional refractoriness. (C) Rotor re-entry. The wavefront and wavetail meet at a

phase singularity, which rotates around an unexcited core. The wavelength (distance between the wavefront and tail) varies according to distance from the phase

singularity. Modified from Pandit and Jalife (2013).

FIGURE 4 | Drug effects and interactions. AP, Action potential; EP, electrophysiological; EAD, early afterdepolarization; DAD, delayed afterdepolarization; TdP, torsade

de pointes; MMVT, monomorphic ventricular tachycardia; VF, ventricular fibrillation. Modified from Roden (2004).

a result of the restriction of use of these drugs to patients
without evidence of QRS or QT prolongation on the ECG, and
structurally normal hearts. Closer attention has been paid to
drugs that prolong the QT interval due to the risk of precipitating
TdP. Probably this largely stems from the fact there are more
drugs that affect repolarizing K+ currents than INa, so the
incidence of arrhythmias is higher due to more widespread use.
It may be that in addition, repolarizing currents have less reserve
than does INa, and phase 3 of the action potential is as a result,
more vulnerable.

At present, clinical practice relies largely on drug indication,
ECG markers, indices of cardiac contractility, electrolyte levels
and concurrent use of other medication with QT prolonging
effects (Drew et al., 2010) to guide risk assessment. More
accurate evidence-based scoring systems have been developed
(discussed below). Of the ECG biomarkers available, QRS
duration, QT interval, T wave morphology and non-sustained
or sustained VT are the most easily assessed and clinically
useful (Wellens et al., 2014). For example, there has been
interesting work done looking at periodic oscillations in
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repolarization as measured using the T-wave. The authors
found a low frequency oscillation <0.1Hz associated with
sympathetic activity but not heart rate variability or respiratory
ventilation. It correlated strongly with outcomes after myocardial
infarction (Rizas et al., 2014, 2017). However, it is complex
to measure. In the absence of a more readily available and
accessible measure of cardiac repolarization, the QT interval
has retained its role as an important biomarker despite its
many shortcomings (Hondeghem, 2006). However, even without
the difficulties in measurement, reliance on this oversimplifies
the assessment of drug-induced repolarization disturbance
(Hondeghem, 2006).

PRE-CLINICAL APPROACHES TO
SCREENING

A major issue for industry is identifying cardiac risk for non-
cardiac drugs: there seems to be little interest in developing
new antiarrhythmic agents for ventricular arrhythmia for
the reasons discussed below. However, it is also important
not to exaggerate potential toxicity and discard potentially
useful agents. Until recently, screening for pro-arrhythmia
was based on the International Conference on Harmonization
non-clinical and clinical evaluation guidelines, S7B and E14,
respectively (International Conference on Harmonsation of
Technical Requirements for Registration of Pharmaceuticals for
HumanUse, 2005a,b). Essentially, these focused onmeasurement
of the human ether-a-go-go related gene (hERG) channel current
IKr, and the ECG parameter QTc, as means of identifying drugs
with the potential to cause TdP. Heterologous expression systems
and animal models have been central to pre-clinical screening,
with guinea pig, rabbit, dog and monkey being the most utilized
species (Friedrichs et al., 2005; Champeroux et al., 2015). And
non-rodent models have demonstrated good correlation of in
vivo QT measurements with those in humans (Vargas et al.,
2015).

Whilst effective at excluding torsadogenic compounds from
market release, proposals for a new screening paradigm have
come about due to concerns about oversensitivity and low
specificity for detecting pro-arrhythmic potential with the
S7B/E14 guidelines, as well as a drive to reduce the number of
animals involved in experiments (Lu et al., 2008; Sager et al.,
2014; NC3Rs). In addition, improvements in understanding
of ion channel physiology, species differences in both cardiac
electrophysiology and pharmacokinetics (Haushalter et al.,
2008), developments in computer modeling, and the advent
of stem cell technology, have reached a stage where it is
advantageous to try to incorporate them in the process. A new
paradigm known as the Comprehensive in vitro Proarrhythmia
Assay (CiPA) has therefore been proposed, and is supported
by a number of national and international government and
commercial bodies (CiPA project, 2000). CiPA recommends
a move toward human-based approaches, with screening of
multiple ion channels and computer modeling central to
this. There is also the aspiration to use human induced
pluripotent stem cell (iPSC) models. Overall there is a move

away from the emphasis on IKr and the QT interval, due
to recognition of the co-dependence and interplay of ionic
currents, multichannel effects of drugs (Li et al., 2017), and
the shortcomings of the QT interval and importance of other
ECG parameters such as the PR and QRS intervals (Sager et al.,
2014).

CiPA is still in the process of being validated (Cavero et al.,
2016; Colatsky et al., 2016), and has not yet been accepted
to supersede the S7B/E14 guidelines. The hope that iPSC
derived cardiomyocytes can assume a confirmatory role within
the framework, is ambitious and perhaps the least certain of
CiPA’s four components, given their relative novelty. There is
a growing acceptance that these cells are immature compared
to native adult myocytes and are more fetal in terms of their
electrophysiology and other properties (Veerman et al., 2015;
Rodriguez et al., 2016). The latter may be circumvented by use
of human cardiac tissue, for example from organ donors (Page
et al., 2016), though this is not without its own difficulties,
chiefly the lack of availability in many countries. It may
be worthwhile to calibrate findings in iPSC cardiomyocytes
with those from human myocytes to validate measurements.
Nevertheless, a reappraisal of existing guidelines’ strengths
and weaknesses, and attempts to enhance the accuracy of
cardiac safety testing by making use of new techniques and
improved understanding, is commendable. And importantly,
the new paradigm is being systematically validated prior to
implementation.

CLINICAL TRIALS ON ANTIARRHYTHMIC
DRUGS

Clinical trials have been of paramount importance in the
field of safety pharmacology for anti-arrhythmics. Unexpected
findings have brought about the widespread use of beta-blockers
in heart failure, and the restricted use of many other drugs
such as flecainide and sotalol. They enable assessment of hard
endpoints rather than surrogates, and provide opportunities to
test repolarization and activation reserve in vivo. The main
stages in this development process are illustrated in Figure 5. An
overview of two of the most important trials is provided, prior to
looking at the evidence relating to a number of anti-arrhythmic
drugs. Rather than provide an exhaustive account of clinical trials
involving anti-arrhythmic drugs, we try to focus on randomized
trials that have been instructive in terms of safety, or changed
practice.

Cardiac Arrhythmia Suppression Trial
(CAST)
This landmark randomized controlled trial (RCT) was both
disappointing and hugely influential. To investigate whether
suppression of ventricular premature beats (VPBs) in patients
following myocardial infarction (MI) reduced their risk of
sudden death, patients were assigned to the Na+ channel/INa
blockers, encainide, flecainide, moricizine, or placebo (flecainide
also has some hERG/IKr-blocking effects, but INa blockade is
pharmacodynamically more important). A preliminary report
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FIGURE 5 | Milestones of research and development.

of the drug titration phase in 1989 revealed that despite their
apparent suppression of VPBs, there was an excess of arrhythmic
deaths in patients assigned to encainide or flecainide (The
Cardiac Arrhythmia Suppression Trial (CAST) Investigators,
1989). This was confirmed in the full report of 1498 patients
assigned to these two drugs or placebo. An excess of both
arrhythmic and non-arrhythmic cardiac deaths were seen (Echt
et al., 1991). A few points are noteworthy regarding the study.
Firstly, beta-blocker use was low by contemporary standards:
between 20 and 30% across all groups. Calcium channel blocker
use, primarily diltiazem, was high (47–53%), as was digitalis
(16–24%). Secondly, mean baseline left ventricular ejection
fraction (LVEF) was 39–40%. The second part of the study
comparing moricizine to placebo is less widely discussed, but
found similar results (The Cardiac Arrhythmia Suppression
Trial II Investigators, 1992). The drug was withdrawn in 2007
(Structural Bioinformatics Group at Charité, 2000). The fallout
has resulted in avoidance of flecainide (and other “Class IC”
drugs) in patients with “structural heart disease”—particularly
ischaemic heart disease with a history of MI, but extrapolated to
essentially anyone with any abnormality in ventricular structure
and function. The rationale for this has been questioned
(Kramer and Josephson, 2010). In terms of possible mechanisms
for the observed pro-arrhythmia, slowing of conduction
velocity with resultant facilitation of re-entry has been posited
(Ruskin, 1989), though late development of ischaemia and
accumulation of high drug levels may also have contributed
(Aliot et al., 2011).

Survival with Oral d-Sotalol (SWORD) Trial
This RCT recruited a similar patient demographic to CAST: those
with LVEF <40% and a history of MI (Waldo et al., 1996).

The objective was to evaluate whether a phase 3 K+ channel
(hERG/IKr) blocker, d-sotalol, reduced all-cause mortality
compared to placebo. The trial was stopped prematurely due
to an increased risk of death in the d-sotalol group (5.0 vs.
3.1%, relative risk 1.65, p = 0.006) (Waldo et al., 1996). This
was presumed to be primarily due to arrhythmias; unfortunately
beyond the fact that the risk of death was higher in women,
justification for this assumption could be challenged. In terms
of possible mechanisms for arrhythmic death, beta-blocker use
was again low pre-randomization (32–33%), and digoxin use was
high (48–50%). Importantly though, patients were initiated on
100mg twice daily of d-sotalol, and if tolerated with a QTc <

520ms, the dose was increased to 200mg twice daily. Then, if
this dose was tolerated with a QTc < 560ms, patients remained
on this dose for the study’s duration. Such QT prolongation is
well-established as a risk for TdP (Makkar et al., 1993; Drew et al.,
2010), and would be inconceivable in a modern trial.

Amiodarone
Amiodarone interacts with multiple ion channels, resulting in
reduced INa, IKr, IKs, ICaL, as well as antagonizing α- and β-
adrenoceptors and acetylcholine receptors (Zimetbaum, 2012;
Darbar, 2014). It has been studied in a large number of
randomized trials in the setting of AF or ventricular arrhythmias
(Doval et al., 1994; Julian et al., 1997; Roy et al., 2000; Bardy et al.,
2005; Singh et al., 2005; Connolly et al., 2006; Le Heuzey et al.,
2010). Paradoxically it often prolongs the QT interval, yet has
long been known to have a low incidence of TdP, possibly due
to its actions on inward currents (Lazzara, 1989; Vorperian et al.,
1997; Roden, 2004). There is a higher risk of bradycardic events
nevertheless (Vorperian et al., 1997). More recently, a meta-
analysis of over 8,000 patients in RCTs comparing amiodarone
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to placebo or control found amiodarone was associated with
a reduction in sudden cardiac death, though not a significant
reduction in overall mortality (Piccini et al., 2009). Notably,
in the GESICA trial it was found to confer improved survival
in the setting of heart failure (Doval et al., 1994). And in the
European Myocardial Infarct Amiodarone Trial (EMIAT), it was
demonstrated to reduce arrhythmic deaths by 35% in those with
LVEF ≤ 40%, though had no effect on all-cause or cardiac
mortality (Julian et al., 1997). The lack of benefit on overall
mortality was supported by SCD-HeFT (Bardy et al., 2005). Thus,
it is one of the few drugs considered safe for use in patients with
a history of MI and reduced LV function.

Beta-Adrenoceptor Antagonists
This class of drugs exerts effects via antagonism of β1
and/or β2-adrenoceptor signaling. β1-adrenoceptors signal via
the stimulatory G protein, Gs, and the cyclic adenosine
monophosphate (cAMP) and protein kinase A (PKA) cascade.
PKA increases ICaL, IKs and possibly INa (Brodde and Michel,
1999; Grant, 2009). β2-adrenoceptor signaling is more complex:
it also couples to Gs, but can also be induced to couple to Gi,
the inhibitory isoform (Xiao et al., 1995). This increases IKACh,
and may negatively regulate ICaL (Nagata et al., 2000; Zuberi
et al., 2010). β-adrenoceptor antagonists are the most studied
anti-arrhythmics, due to their use for both supraventricular and
ventricular arrhythmias, as well as heart failure and hypertension
(Packer et al., 1996, 2002; MERIT-HF Study Group, 1999; The
Cardiac Insufficiency Bisoprolol Study II, 1999; Pedersen et al.,
2014; Katritsis et al., 2017). They have been demonstrated to
reduce mortality in heart failure, including the risk of sudden
cardiac death (Hjalmarson, 1997; MERIT-HF Study Group, 1999;
The Cardiac Insufficiency Bisoprolol Study II, 1999; Packer et al.,
2002). Risk of pro-arrhythmia is essentially limited to the small
risk of AV conduction block, which in the absence of overdose,
severe renal dysfunction or concomitant AV nodal-blocking drug
use, occurs extremely rarely.

Dofetilide
A “pure” IKr blocker, dofetilide was investigated in patients with
severe LV impairment and heart failure as a treatment for AF
in the DIAMOND-CHF study (Torp-Pedersen et al., 1999). It
performed better than placebo in converting patients with AF
to sinus rhythm, though the rate of conversion by 1 month
was low (12% vs. 1%). Maintenance of sinus rhythm was also
higher for the dofetilide group. It was shown to be associated
with a reduced rate of hospitalization for worsening heart failure.
However, there was a 3.3% rate of TdP in those treated with the
drug. A subsequent trial (DIAMOND-MI) investigated use of
the drug in patients with recent MI and LV dysfunction (Køber
et al., 2000). Again, there was no effect on all-cause or cardiac
mortality, nor on arrhythmic deaths. It showed some efficacy in
restoring sinus rhythm in those with AF, but there was a TdP
event rate of approximately 1%. Further trials, predominantly in
AF and atrial flutter have confirmed its anti-arrhythmic efficacy,
but also its pro-arrhythmic potential (Bianconi et al., 2000; Singh
et al., 2000). Thus, dofetilide exhibits reasonable anti-arrhythmic
efficacy, and does not appear to increase mortality, yet there is a

significant risk of TdP such that its use requires close monitoring
(Abraham et al., 2015; Schwartz et al., 2016). Therefore, whilst
current guidelines indicate it can be used to treat atrial flutter
acutely (Katritsis et al., 2017), alternative drug therapy and
catheter ablation have rendered this largely obsolete, in Europe
at least.

Dronedarone
This multichannel blocking drug is similar to amiodarone
but with reduced extra-cardiac effects (Tadros et al., 2016).
Despite a promising start in trials such as EURIDIS/ADONIS
and ATHENA (Singh et al., 2007; Hohnloser et al., 2009),
subsequent trials in patients with permanent AF and heart failure
did not support its anti-arrhythmic potency, and moreover, it
was associated with worsening of heart failure and increased
mortality (Køber et al., 2008; Connolly et al., 2011). Nevertheless,
there does not appear to be a significant pro-arrhythmic
tendency, reinforcing the notion that drugs with multichannel
effects and complex actions can still be safe, in this regard at least.

ALTERNATIVE AND EVOLVING CLINICAL
APPROACHES

The preceding discussion has shown that there is room for
improvement in prediction of pro-arrhythmia. At the clinical
level, strategies can broadly be divided into those focusing on
the drugs, and those focusing on patient factors. Haverkamp
et al addressed both in 2001 (Haverkamp et al., 2001). They
identified many of the clinical risk factors still in use today, and
came up with what is to our knowledge the first attempt to
stratify drugs according to propensity to induce TdP. The list
of drugs was limited, and the classification was not developed.
Around the same time, the Georgetown University Center
for Education and Research on Therapeutics (GUCERT) was
awarded money to investigate the potential of drugs to induce
TdP. Subsequently based in Arizona and renamed, AZCERT,
a not-for-profit organization published lists of drugs known to
be associated with, and causative of QT prolongation and TdP
at www.qtdrugs.org. Currently the lists are available at www.
crediblemeds.org. Brugadadrugs.org is a similar website set up
by the University of Amsterdam Academic Medical Center,
providing advice on drugs to avoid, and drugs with possible
therapeutic use for patients with Brugada syndrome (University
of Amsterdam Academic Medical Center, 2017).

Clinical risk factors for ventricular fibrillation (VF) were
evaluated by Da Costa et al in 91 patients with pause-dependent
TdP in the setting of QT prolongation. LVEF, presence of
structural heart disease, and an index of QT dispersion were
found to be significant predictors (Da Costa et al., 2000). And
clinical scoring systems based on patient factors have been
developed. For example, Tisdale et al utilized data from 900
patients to develop a scoring system to predict QTc prolongation,
and then validated this in 300 additional patients (Tisdale et al.,
2013). Female sex, diagnosis of MI, sepsis, LV dysfunction,
administration of QT-prolonging drugs, use of loop diuretics,
serum K+

< 3.5 mEq/L and QT interval on admission >450ms
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were identified as independent risk factors. The system had
reasonable sensitivity and specificity. Although useful, it utilized
a biomarker rather than a patient outcome as an endpoint. Such
risk scores are likely to gain importance as electronic prescribing
becomes more widespread, with automated alert systems also
becoming more feasible (Haugaa et al., 2013).

The ultimate aim of precision medicine is to tailor treatment
to the specific patient and the genetic make-up is likely to play
a major role in determining this. There have been substantial
efforts to understand the genomic architecture of the heritability
of the QT interval in the general population. A variety of loci have
been identified from genome wide association study (GWAS)
findings (Arking et al., 2014). It was shown that one of the
signals in the nitric oxide synthase 1 adaptor protein predicted
predisposition to drug-induced long QT syndrome (Jamshidi
et al., 2012). Furthermore, Strauss and colleagues created a
“genetic QT” score, and investigated its ability to predict drug-
induced QTc prolongation, and TdP (Strauss et al., 2017). While
it was a significant predictor of both, the predictive power was
modest, leaving much of the variability unaccounted for.

IMPLICATIONS FOR SAFETY
PHARMACOLOGY

The literature on the use of antiarrhythmic drugs illustrates a
number of important points.

There Is No Universal Biomarker Predicting
Risk
The QTc remains an important biomarker, though it is far
from the only clinical marker of a drug’s pro-arrhythmic risk.
Clinical trials have demonstrated that amiodarone and beta-
blockers remain two of the safest agents in terms of pro-
arrhythmia. Their mechanisms are different, yet they both
exert anti-arrhythmic effects, and cardiac contra-indications are
few. Importantly, amiodarone confounds the predictive power
of IKr and QTc screening, by virtue of its APD and QT-
prolonging effects, with minimal associated pro-arrhythmic risk.
It highlights the oversensitivity of the S7B and E14 guidelines:
had it not been in use already, one of the most effective
and safe (in arrhythmia terms) drugs may have been excluded
from the market. Amiodarone’s cardiac safety, together with
flecainide’s and sotalol’s pro-arrhythmogenicity, serve as the
strongest reminders of the current importance of clinical trials
and post-marketing surveillance in bringing to light unexpected,
unpredicted and counterintuitive findings; of how predictions
based on theory may not be borne out in practice. But where this
is the case, there is an opportunity to learn.

Underlying Patient Pathology Is Important
The presence of pre-existing cardiac conditions such as LV
impairment and ischaemic heart disease modulate risk of pro-
arrhythmia, such that use of certain drugs, deemed safe in those
with structurally normal hearts, is given careful consideration
in patients with a history of these conditions. They, and other
risk modifiers, such as female sex, diuretic use, hypokalaemia,

and concomitant use of other QT-prolonging drugs, identified
in clinical reports and risk models (Drew et al., 2010), must be
included in in silico models (Wiśniowska and Polak, 2016) if
computer modeling and prediction is to fully realize its potential.
Identification of drugs with significant risk of arrhythmia may
enable us to gain insight into the reasons for this. For example,
the list of drugs available at www.crediblemeds.org may have
arisen due to similarities in the behavior of the drug molecules
in their interaction with ion channels, or alternatively their
pharmacokinetics. Ultimately, feedback such as this to pre-
clinical models, and clinical trials’ validation of these models will
hopefully lead, via an iterative process, to greater confidence in
the predictive powers of computer, animal and stem cell models
(Carusi et al., 2012), with a greater burden of safety testing and
prediction occurring in these, rather than in trials in humans.
Those models that cannot predict with reasonable accuracy must
be honed, or discarded. Increased pre-clinical predictive accuracy
should allow more compounds to reach the clinical trial stage.
This, together with post-marketing surveillance, will retain a key
role in highlighting unexpected findings, due to our inability
to completely account for human physiology, pathophysiology,
pharmacokinetics, and pharmacodynamics, as well as inter-
individual variability in these factors, in any model.

Ion Channels Remodel in Disease and
Disease Specific Models May Be
Necessary
Many of the experimental and computational approaches rely
on the assessment of a compound against parameters or cells
derived from healthy normal individuals. However, it is clear
that the expression of ion channels significantly remodels in
pathological states and this may account for proarrhythmia
under such conditions. For example, in atrial fibrillation the
expression of L-type calcium currents in the atria is reduced and
this in itself generates a substrate for further atrial fibrillation
(Wijffels et al., 1995; Gaspo et al., 1997; Yue et al., 1999). It is
clear that ion channel remodeling also occurs in many other
cardiac pathologies although is not so well defined (Nattel et al.,
2007). On this background individual genetic differences are
likely to modify the response (Munroe and Tinker, 2015). Thus,
we may see the development of disease specific computational
models and/or engineered cellular assay systems. In this regard
the development of computational approaches to explore models
with large numbers of varying parameters is likely to be valuable
(Britton et al., 2013, 2017).
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The utilization of mathematical modeling and simulation in drug development

encompasses multiple mathematical techniques and the location of a drug candidate

in the development pipeline. Historically speaking they have been used to analyze

experimental data (i.e., Hill equation) and clarify the involved physical and chemical

processes (i.e., Fick laws and drug molecule diffusion). In recent years the advanced

utilization of mathematical modeling has been an important part of the regulatory review

process. Physiologically based pharmacokinetic (PBPK) models identify the need to

conduct specific clinical studies, suggest specific study designs and propose appropriate

labeling language. Their application allows the evaluation of the influence of intrinsic

(e.g., age, gender, genetics, disease) and extrinsic [e.g., dosing schedule, drug-drug

interactions (DDIs)] factors, alone or in combinations, on drug exposure and therefore

provides accurate population assessment. A similar pathway has been taken for the

assessment of drug safety with cardiac safety being one the most advanced examples.

Mechanistic mathematical model-informed safety evaluation, with a focus on drug

potential for causing arrhythmias, is now discussed as an element of the Comprehensive

in vitro Proarrhythmia Assay. One of the pillars of this paradigm is the use of an in silico

model of the adult human ventricular cardiomyocyte to integrate in vitro measured data.

Existing examples (in vitro—in vivo extrapolation with the use of PBPK models) suggest

that deterministic, epidemiological and clinical data based variability models can be

merged with the mechanistic models describing human physiology. There are other

methods available, based on the stochastic approach and on population of models

generated by randomly assigning specific parameter values (ionic current conductance

and kinetic) and further pruning. Both approaches are briefly characterized in this

manuscript, in parallel with the drug-specific variability.

Keywords: variability, cardiac models, IVIVE, drug cardiac safety, modeling and simulation

INTRODUCTION

Mechanistic Modeling and Simulation Approach in the Process of
Drug Development in Light of the Recent Changes to
FDA/EMA/PMDA Regulations
The mathematical modeling and simulation (M&S) approach has held its place in the drug
development process since the very beginning. Havingmoved from academic curiosity to industrial
practice the approach is used to both analyze the data and understand the physical mechanisms
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involved. Model-informed drug development (MIDD) is here to
stay and it also has been recently indicated as one of the major
areas of scientific priority by the regulators (Huang et al., 2013;
Zineh et al., 2017). Initially, the outcome of pharmacometric
analyses has impacted the decision making process of drug
development (Miller et al., 2005; Lee et al., 2011). In recent
years regulatory support for mechanistic physiological modeling
has helped to bridge the gap between preclinical and clinical
observations with respect to understanding biological systems
(Rowland et al., 2015; Friedrich, 2016).

Special interest has been given to physiologically based
pharmacokinetic (PBPK) modeling defined by WHO as
“quantitative descriptions of the absorption, distribution,
metabolism, and excretion (ADME) of chemicals in biota based
on interrelationships among key physiological, biochemical
and physicochemical determinants of these processes”1. A
physiologically based pharmacokinetic approach is based on
a combination of the physiology, environment, and drug
specific information. These parameters are further utilized
in the mechanistic models describing the pharmacokinetics
(PK) and/or pharmacodynamics (PD) of a drug(s) of interest
(Rostami-Hodjegan, 2012). This is not a new concept and it is
suggested that the roots of PBPKmodels originate from the work
of Teorell, published in 1937 (Teorell, 1937). Recent scientific
advances and the development of models utilizing PBPK
scaffolding are invaluable in the situation where clinical trials are
extremely challenging or impossible. This includes specialized
populations and situations of special interest such as pregnant
woman and pediatric applications (Lu et al., 2012; Abduljalil
et al., 2014). PBPK models are utilized for various applications
throughout a drug’s life cycle. Results of their simulations can
be used to support the planning of specialized clinical studies,
support dosing recommendations and the labeling of products
(Zhao et al., 2011; Jones et al., 2015; Shepard et al., 2015; Wagner
et al., 2015). The simulation results are used in lieu of conducting
clinical studies or provide information that otherwise would
have been missing in some specific situations (Jamei, 2016).

The use of PBPK modeling was included in the guidance
documents for industry provided by the U.S. Food and Drug
Administration (FDA), the European Medicines Agency (EMA)
and theMinistry of Health Labor andWelfare (MHLW) of Japan.
The latter, namely the draft of the drug interaction guideline for
drug development and labeling recommendations published by
the Japanese Ministry of Health, Labor and Welfare in 2014,
suggested the PBPK application in the assessment of drug-
drug interaction (DDI; Saito et al., 2014). Recent guidelines
published by the FDA and EMA list several points in the drug
development process where PBPK modeling may be applicable
in order to support decisions in the premarketing, as well as
at postmarketing, stage2,3. PBPK analyses are currently widely
accepted and used not only as a research tool but also to

1www.who.int/ipcs/methods/harmonization/areas/pbpk/en/
2www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/

07/WC500211315.pdf
3www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/

Guidances/UCM531207.pdf

support drug registration applications including investigational
new drugs (INDs), new drug applications (NDAs), biologics
license applications (BLAs), or abbreviated new drug applications
(ANDAs; Sato et al., 2017). As of December 2016 there were
36 approved drugs, which provided PBPK M&S results, in the
U.S. new drug application labeling procedure. In addition to
PBPK, the Advisory Committee mentioned mechanistic safety
modeling, particularly, risk prediction/assessment as a promising
MIDD area4.

It is highly likely that the next application for PBPK
models is in the area of precision dosing and personalized
medicine (Hartmanshenn et al., 2016). This is achievable due
to the specific structure of the physiologically-based models,
where system description is clearly separated from the drug
and external parameters (i.e., dosing schema). The biological
parameters are described by large collections of anatomical
and physiological data derived from literature or existing
databases. For the assessment of inter- and to some degree intra-
individual variability, virtual individuals, and virtual populations
are randomly created (Jamei et al., 2009a).

In Vitro—in Vivo Extrapolation (IVIVE) as an
Approach
In vitro—in vivo extrapolation (IVIVE) as a phrase
covers all techniques utilized for the prediction of human
pharmacokinetics and pharmacodynamics based on the ADME
information ADME in addition to drug activity and toxicity.
It is crucial to mention that, in principle, the data comes from
the in vitro studies, where various models and techniques are
utilized. The main challenge is to translate the data, often
heterogeneous, from the level of a “Petri dish” to the complex
system of the human body. Therefore, what is needed are in vitro
methods mimicking basic phenomena occurring in a human
body at the cellular or subcellular level, and models describing
the human body as a biological system. The latter describing
models of human organs, tissues, or the whole body include the
incorporation of the above mentioned PBPK systems. There are
other approaches currently implemented, which combine and
merge traditional compartmental models and various systems
biology models, to describe biochemical and physiological
phenomena (Sorger et al., 2011). It’s worth adding that the
addition of available human in vivo data enriches the model and
can improve the degree of predictability (Tsamandouras et al.,
2015). Practical utilization of the IVIVE concept, with the use of
PBPK models and population data, covers various populations
from healthy individuals up to the special populations (e.g.,
diseased—renal insufficiency, cirrhosis etc.) and pediatric
populations (Sager et al., 2015).

Interestingly, conceptually similar approaches were
independently introduced in the pharmacokinetics and
pharmacodynamics area (Visser et al., 2014). The biophysically
detailed models describing cell electrophysiology can be used
for the in vitro—in vivo extrapolation, as proposed in the CiPA

4www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/

Drugs/AdvisoryCommitteeforPharmaceuticalScienceandClinicalPharmacology/

UCM544838.pdf
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Wiśniowska et al. Variability in the Cardiac Models

(Comprehensive in vitro Proarrhythmia Assay) initiative, as
described below (O’Hara et al., 2011; Gintant et al., 2016). There
is although one difference between the IVIVE/PBPK approach
and the proposed IVIVE/safety approach. The latter, namely
safety in vitro—in vivo extrapolation, has so far been done with
the use of models describing cell electrophysiology without
accounting for variability.

CiPA Initiative—What Does It Change,
Where We Are, and What Is Potentially
Lacking
Regardless of the opinion on the current changes—whether it is
a logical consequence of the evolutionary changes or Copernican
Revolution—we are witnessing a significant paradigm shift in the
area of drug cardiac safety assessment. The recently proposed
CiPA schema for the preclinical evaluation of proarrhythmic
liabilities proposes to assess proarrhythmic risk based on
in silico reconstructions of human ventricular electrical activity.
A biophysically detailed model aims to analyze repolarization
abnormalities such as EADs. The input information includes
in vitro measured data on the drug concentration-dependent
inhibition of multiple human cardiac currents (Colatsky et al.,
2016; Gintant et al., 2016). The O’Hara-Rudy (ORd) model
was chosen as the starting point for developing an in silico
model with the ultimate aim of providing a system suitable for
regulatory decision making (O’Hara et al., 2011). The model is
being further developed by the addition of a more mechanistic
description of drug-channel binding kinetics (Li et al., 2017). The
model proposes to generate output allowing for the separation
of the reference drugs into three distinct risk categories—low,
intermediate and high risk. The validation is planned to be
performed with the use of 28 (12) drugs as detailed in the report
presented at the FDA Briefing Document Pharmaceutical Science
and Clinical Pharmacology Advisory Committee Meeting March
15, 2017 Topic: Strategies, approaches, and challenges in model-
informed drug development (MIDD). According to the FDA’s
suggested strategy, estimation of the inter-individual variability
in a drug’s pharmacokinetics and pharmacodynamics is a key
issue in recent drug development. PBPK modeling addresses
this issue and so should mechanistic safety modeling. In PBPK,
the variability in PK prediction is assured by specifying the
population-dependent distribution of parameters’ values and
the covariation between these parameters (Jones et al., 2015).
Regarding cardiac risk assessment, the variability is already
observed at the stage of in vitro measurements, e.g., in drug
effects on the ventricular ion currents or in the effects on
human stem cell-derived cardiomyocytes (iPSC-CM) which
differ in channel gene expression profiles and patterns of
arrhythmic events after testing with the same model drug
(Elkins et al., 2013; Blinova et al., 2017). The observational
uncertainty together with other sources of uncertainty influence
computational model inputs, and consequently, the confidence
of the output, regardless of the electrophysiological model used
(Johnstone et al., 2016; Mirams et al., 2016). The frequently used
cardiac models do not account for physiological or experimental
variation in their default parametrization (Davies et al., 2016).

However, clinical observations leave no doubts that variability
is important, and drug-independent factors may play a crucial
role in triggering a drug cardiac effect. The analyses of case
reports of QT interval prolongation and ventricular arrhythmia,
associated with cisapride, revealed that often in the case of these
adverse events the patients had more than one contraindication
that predisposed them to arrhythmia. The drug was therefore
withdrawn from the U.S. market in 2000 (Wysowski et al., 2001).
The coincidence of multiple risk factors, both physiological and
pathophysiological was also the case for TdP induction after the
administration of certain drugs, e.g., erythromycin (Hancox et al.,
2014), quetiapine (Hasnain et al., 2014), methadone (Vieweg
et al., 2013b), and risperidone (Vieweg et al., 2013a). These
are all exemplary drugs which are known to pose the risk of
TdP according to the Credible Meds classification and are at
the same time safely used if taken properly5. The observed
variability in the PD response may come from the drug itself,
since for some compounds the QTc interval prolongation is said
to be dose or concentration-related (Krantz et al., 2003; Fanoe
et al., 2009). However, even then the variation in individual
QTc length cannot be explained solely by PK and factors that
affect the ADME processes. There are examples illustrating the
lack of correlation between electrophysiological changes and
drug plasma concentrations (Wiśniowska et al., 2016). Even
in healthy subjects the observed QTc changes, following drug
administration, may vary by about 80 ms (Jerling and Abdallah,
2005; Hulhoven et al., 2008) as age, sex, and race are said to
affect cardiac electrophysiology (Macfarlane et al., 1994) not
to mention observed circadian intra-subject variations (Molnar
et al., 1996).

There are also special populations that should be considered
when assessing drug triggered cardiac effects. First of all, the
cardiac action potential is affected in patients with cardiac
channelopathies associated with genetic mutations. One of the
main congenital phenotypes is long QT syndrome (LQTS)
which is prevalent in 1:3,000–1:5,000 in the general population
(Goldenberg and Moss, 2008) manifesting with a QTc length of
above 460 ms (Abriel and Zaklyazminskaya, 2013). The most
frequent mutations that are responsible for congenital LQTS
were found in genes that code for proteins in the potassium hERG
channel (KCNQ1 and KCNH2) and the Nav1.5 sodium channel
(SCN5A; Bohnen et al., 2016). The LQTS patients are said to be
particularly vulnerable to drug-related arrhythmias (Goldenberg
et al., 2008). Also, comorbidities were found to contribute to
QTc-prolongation. The analysis conducted by Vandael et al.
(2017) revealed strong evidence for ischemic cardiomyopathy,
hypertension, arrhythmia, and thyroid disturbances to be risk
factors contributing to QTc interval prolongation.

Variability in Cardiac Models—Stochastic
vs. Deterministic Approach
Mathematical models of cardiac cell electrophysiology have
proved their value and now hold an established position in
research and drug development (Amanfu and Saucerman, 2011;
Davies et al., 2016). It all began with the work of Hodgkin and

5https://crediblemeds.org/
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Huxley where they modeled the cell membrane as a capacitor
with batteries and resistors and described its electrophysiological
behavior (Hodgkin and Huxley, 1952). The following ordinary
differential equation was established:

dV

dt
=

Iion − Istim

Cm
,

where V is voltage, t is time, Iion is the sum of all transmembrane
ionic currents, Istim is the externally applied stimulus current,
and Cm is cell capacitance of the membrane per unit surface area
(Ten Tusscher and Panfilov, 2006). Beginning from the relatively
simple Noble’s model (Noble, 1962), cardiac electrophysiology
models have evolved tremendously, and now include a detailed
description on cardiac ion channels, pumps and transporters,
as well as intracellular calcium handling (Noble, 2007; Fink
et al., 2011). The models proved successful for studying
cardiac physiology and understanding pathological changes (e.g.,
arrhythmias) associated with diseases over the last decades and
currently they are used in the safety assessment of drugs (Mirams
et al., 2012; Roberts et al., 2012; Davies et al., 2016; Gintant
et al., 2016). To be a vital element of the safety-related decisions
made through the various stages of drug development and in
the clinic, the models have to ascertain credibility, i.e., properly
reproduce the electrophysiology of a population and individual
patients. The question arises asking if it is feasible to use a
single traditional cardiac model with input parameters being
the mean values, averaged across many subjects, and generating
an output as a single value, thus presenting behavior a of
“representative” cell. Until recently there wasn’t much interest in
the variability in the field of cardiac electrophysiology modeling.
Several approaches have now been proposed, and implemented,
to introduce variability into cardiac models and account for
inter- and intra-patients differences. All of the approaches stem
from the belief that the “average patient” does not exist and
a traditional model cannot accurately explain the observed
differences between patients.

Stochastic Approach
Physiological variability can be investigated and modeled by
constructing populations of experimentally calibrated models.
This approach has been introduced a while ago and is further
developed by researchers from various organizations including,
but not limited to, the Department of Pharmacology and Systems
Therapeutics, Mount Sinai School of Medicine, New York (Sobie,
2009; Sarkar et al., 2012), the Department of Computer Sciences
at Oxford University (Britton et al., 2013; Sánchez et al., 2014;
Muszkiewicz et al., 2016; Pueyo et al., 2016; Zhou et al., 2016),
and other (Marder and Taylor, 2011). Variability in a model’s
behavior is accomplished by the multiplication of its parameter
values by sampled scaling factors, which results in an ensemble
of possible outputs instead of an average one. Once the baseline
model (appropriate for the research question) is selected, the
parameters of variation have to be chosen, and the ranges for
parameter sampling need to be defined. Both depend on the
study aim and the target population (e.g., healthy, diseased) to
be investigated.

There are multiple approaches available for generating the
population of models. For example, parameters and their ranges
generate high-dimensional spaces from which their values are
sampled using different sampling algorithms (e.g., the Latin
Hypercube, Monte Carlo method) to generate an ensemble of
variant models (Drovandi et al., 2016). The candidate models
are simulated to mimic, for example, experimental settings
regarding bath solution composition, voltage protocol, and
pacing rate. The pool of models is pruned according to the
boundaries for a range of permitted model outputs, defined by
minimal and maximal values observed in the experiment. Such
calibration yields the experimentally-calibrated populations of
models presenting electrophysiological behavior that reproduce
the results of experiments which can be further analyzed for the
parameters underlying the observed response variability (Britton
et al., 2013). The model could also be employed to assess a range
of responses across the population under certain conditions,
e.g., diseased, or reflecting drug application (Muszkiewicz et al.,
2016).

The other approach is based on parameter sensitivity analysis
techniques which can be applied to generate quantitative
predictions based on considering behaviors within a population
of models (Romero et al., 2009). In the single parameter scanning
one can increase or decrease the parameter of interest, run
simulation and save the simulation results. Such procedure can
be performed for multiple parameters, with the use of various
techniques and the outcome is expressed in a quantitative
manner. Sobie and colleagues have also utilized more complex
procedures and varied all parameters at once (Sarkar and
Sobie, 2010, 2011). Assuming that the endpoint of interest is
dichotomous in nature (i.e., EAD occurence)Morotti and Grandi
proposed technique based on the multivariate logistic regression
analysis, allowing for sensitivity analysis and investigating factors
influencing the endpoint occurrence at the same time (Morotti
and Grandi, 2016).

The methodology applied to experimentally-calibrated
populations of models can be regarded as the refinement and
extension of the sensitivity analysis method and populations
of models constructed without a calibration step. In the latter
two, values of single or multiple parameters are varied in a
predefined range, while allowable values of model outputs
are not constrained with experimental data thus may not be
representative for certain subject groups. All of thesemodels offer
valuable insights into sources of variability and the pathological
background of different heart conditions. Moreover, they allow
the assessment of not only the average drug effect on cardiac
electrophysiology, but also allow the screening of drug effects
across a certain population. They, however, cannot be employed
to evaluate the risk of an individual patient who is to be treated
with a certain drug. This is because most variability sources
considered by the model (e.g., ion channels conductance, gating
kinetics, densities, resting membrane potential, membrane
potential, upstroke velocity) are factors whose values cannot
be determined for the particular patient. Another problem
is the requirement to define the cut off threshold for non-
physiological simulation results, since such a decision is always
arbitrary.
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Deterministic Approach
The other approach is based on the observation and description
of the biological parameters characterizing the system of interest,
in this case the human organism. Data describing demographic,
genetic, anatomical, and physiological factors are collected and
analyzed to describe the distribution of the parameter in a

population and allow constructing its virtual counterpart instead

of an average patient. Also some of those factors can be correlated

with the parameters of a cardiomyocyte model, e.g., age and
the cardiomyocyte volume and area (Polak et al., 2012). The
main data sources remain the published scientific reports and
clinical databases (ICRP, 2002; Valentin, 2003). This approach
allows for differentiation between different populations; both
healthy (e.g., considering ethnicity) and diseased (e.g., obese,

renally impaired, diabetic), or of special interest (e.g., pregnant
women, pediatric population; Jamei et al., 2009b). Equations

describing the distribution of the system parameters for the PBPK
model are derived from the distributions of data based on real

populations and patients. Additionally, such an approach takes
into account the dynamic changes observed with the parameter

of choice (e.g., circadian changes of heart rate). An application
includes the ontogeny description and age dependent variation
of the chosen parameters (Salem et al., 2013). What is also of
importance is the option to define the inter-correlation between
various parameters. A virtual population can be generated from

values and formulae describing demographic, anatomical, and
physiological variables using a correlated Monte Carlo approach
which protects from the non-physiological combinations of the
model parameters (e.g., kidney size and liver size). This allows

the prediction of variability before the clinical study phase, in
contrast to a statistical approach (e.g., population PK analysis),
which requires prior clinical data to characterize variability.

Additionally it allows for the clear separation of information
on the system (i.e., human body) from that of the drug (e.g.,
physicochemical characteristics), and the environment (e.g.,
dose, concomitant drugs).

It is obvious that the model prediction will depend on the
quality of the gathered data, correctness of the analysis, and
appropriateness of the conclusions drawn from the distribution
of the parameters. Therefore, the criteria of inclusion and
exclusion for the reports and papers (in addition to certain
values) have to be defined prior to the commencement of the data
collection process. The same applies to the statistical analysis, and
all methods and tools.

There are multiple biological parameters influencing the
ECG and its behavior. From a biological perspective, factors
influencing cardiac electrophysiology can be classified into one
of three key groups: (i) demography; (ii) anatomy, and/or
physiology; and (iii) genetics. Examples of the most important
parameters are listed below:

(i) Demography—age, gender
(ii) Anatomy and/or physiology—plasma ions concentrations

(K+, Ca2+), cardiomyocyte size (volume, area),
cell electric capacitance, heart wall thickness,
heterogeneity of cells across heart wall, heart rate, sex
hormones

(iii) Genetics—common polymorphisms and mutations at the
level of ion channels/pumps/exchangers

For some of the above mentioned parameters statistical
models describing their distribution in the population were
developed based on the available data. This includes relationship
between age, human left ventricle cardiomyocyte volume,
and electric capacitance (Polak et al., 2012), left ventricular
heart wall thickness (Fijorek et al., 2014a), or plasma ions
concentration (Fijorek et al., 2014b). The latter, namely plasma
ions concentration, together with the heart rate follow the
circadian variability (Massin et al., 2000; Sennels et al., 2012).
Such time of the day dependent variation influences the
ECG and the parameters including QT (Karjalainen et al.,
1994). Therefore, models describing the diurnal variability of
such crucial parameters are also being developed and utilized
(Fijorek et al., 2013a,b). They are also included in the virtual
population generators, which build the virtual individuals being
exposed to the drug in the in silico conditions (Mishra et al.,
2014; Wiśniowska and Polak, 2016). The main limitation of
this method is the limited amount of data available for the
model building and information relating to the inter-correlation
between parameters.

It is undisputable that sources of variability identified and
already incorporated into in silico models cannot explain the
whole observable inter- and intra-individual variability. The
question is if it is already sufficient to provide reliable predictions.

Drugs-Specific Variability
In the model-based drug safety assessment, apart from system-
dependent variability, there is also another source of variability
(or rather uncertainty) introduced into the model. The effects
caused by exposure to a drug are modeled as concentration-
dependent changes of ion currents known to be affected by the
drug. The drug-channel interaction is quantified experimentally
by constructing a Hill plot characterized by IC50 and the Hill
coefficient value. There is no standardized protocol for drug-
triggered ion channel block measurement, however multiple
cell models and voltage protocols are accepted. This results in
significant discrepancies between IC50 values reported for a
given compound (amiodarone: 0.015–38.3 microM; cisapride:
0.0051–1.6 microM; dofetilide 0.003–25 microM; E4031: 0.001–
15.8 microM; moxifloxacin: 0.93–398.1 microM; propafenone:
0.085–123 microM; to give just a few examples)6. Additional,
uncertainty introduced into in silico models comes from
uncertainty in the Hill coefficients of reported concentration-
inhibition curves, especially when ion channel blocking potency
for a compound is estimated by high-throughput screening
methods (Elkins et al., 2013). Moreover, even the well-controlled
experiments, carefully conducted in the same experimental
settings, generate different results. This can be due to the
measurement errors, intrinsic- and extrinsic-variability between
samples. The subjective selection of IC50 values, which are taken
as inputs into in silico models, may lead to misleading results.
Drug-specific uncertainty is an undesirable type of variability,

6www.tox-database.net
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however infeasible to eliminate. The use of averaged values has
been proposed tominimize drug-specific bias (Elkins et al., 2013).
The question remains how, if possible, average results produced
with different methods and experimental settings.

The situation is even more complex when the aim is to model
a response to a drug in a realistic population where other drug-
related factors like concomitant medicines, compliance, food and
alcohol consumption have to be accounted for since all these
factors can substantially influence the response.

CONCLUSIONS

Drug pro-arrhythmic potency is a function of the intrinsic
characteristics of the chemical structure and external parameters
associated with the drug. The latter, namely external parameters,
includes system-dependent and environment-dependent items.
Therefore, to properly predict and assess the potential risk all
significant elements should be considered. Translation of the
in vitro data to an in vivo situation, e.g., to optimize clinical
trials, requires such an approach. There are at least two ways to
describe the population specific variability, as described above,
and these elements should be accounted for in the in silico based
cardiac safety assessment. On the other hand, the choice of an
assessment method depends on the actual stage of the drug
development cycle. In the early stages, including discovery phase
such complexity is not necessary, but as the compound advances
along the development process, the assessment should be more
detailed and comprehensive.

It is worth noting that the diseased population would probably
require even more parameters, and the variability would be
larger, as compared against healthy individuals. This is because
of the interrelation of parameters directly (e.g., cell volume
and capacitance), and indirectly (e.g., thyroid-related diseases
and fluid-electrolyte balance disruption) influence the heart cells

electrophysiology. Examples of the above-mentioned parameters
and their analysis clude hypertrophic cardiomyopathy (HCM)
of various character (Polak and Fijorek, 2012). It is worth
noting that stochastic approach, based on the virtually simulated
population of models can be used to identify ionic mechanisms
driving electrophysiological abnormalities not only in HCM, but
also atrial fibrillation, and other diseases, accounting for of the
disease specific variability (Liberos et al., 2016; Passini et al.,
2016). Modeling and simulation approach can be also utilized
to analyze the influence of genetic modifications at the level of
ionic channels on the cardiacmyocytes electrophysiology (Glinka
and Polak, 2013). This includes the recently published example
of the population of models optimized to recapitulate clinical
long QT phenotypes (Mann et al., 2016). The detailed discussion
of this element, namely the disease related variability is out of
the current manuscript scope. There is however clear gap in all
current approaches, namely comprehensive, or to be precise—
as comprehensive as possible—parametrization of the disease
of choice, including all known parameters. This would allowed
to simulate population of virtual individuals closely mimicking
those met in the clinical settings. The models usage could be than
extended from the drugs’ safety assessment to the drugs therapy
optimization.
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Wiśniowska et al. Variability in the Cardiac Models

comprehensive overview of clinical trials. BMC Pharmacol. Toxicol. 17:12.

doi: 10.1186/s40360-016-0053-1

Wysowski, D. K., Corken, A., Gallo-Torres, H., Talarico, L., and

Rodriguez, E. M. (2001). Postmarketing reports of QT prolongation and

ventricular arrhythmia in association with cisapride and food and drug

administration regulatory actions. Am. J. Gastroenterol. 96, 1698–1703.

doi: 10.1111/j.1572-0241.2001.03927.x

Zhao, P., Zhang, L., Grillo, J. A., Liu, Q., Bullock, J. M., Moon, Y. J., et al. (2011).

Applications of physiologically based pharmacokinetic (PBPK) modeling and

simulation during regulatory review. Clin. Pharmacol. Ther. 89, 259–267.

doi: 10.1038/clpt.2010.298

Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart,

P., et al. (2016). In vivo and in silico investigation into mechanisms of

frequency dependence of repolarization alternans in human ventricular

cardiomyocytes. Circ. Res. 118, 266–278. doi: 10.1161/CIRCRESAHA.115.

307836

Zineh, I., Abernethy, D., Hop, C., Bello, A., McClellan, M. B., Daniel, G. W.,

et al. (2017). Improving the tools of clinical pharmacology: goals for 2017 and

beyond. Clin. Pharmacol. Ther. 101, 22–24. doi: 10.1002/cpt.530

Conflict of Interest Statement: SP is a Simcyp (part of Certara) employee.

The other authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.
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Early prediction of cardiotoxicity is critical for drug development. Current animal models

raise ethical and translational questions, and have limited accuracy in clinical risk

prediction. Human-based computer models constitute a fast, cheap and potentially

effective alternative to experimental assays, also facilitating translation to human. Key

challenges include consideration of inter-cellular variability in drug responses and

integration of computational and experimental methods in safety pharmacology. Our

aim is to evaluate the ability of in silico drug trials in populations of human action

potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion

channel information, and to compare simulation results against experimental assays

commonly used for drug testing. A control population of 1,213 human ventricular AP

models in agreement with experimental recordings was constructed. In silico drug

trials were performed for 62 reference compounds at multiple concentrations, using

pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers

were quantified, together with occurrence of repolarization/depolarization abnormalities.

Simulation results were used to predict clinical risk based on reports of Torsade

de Pointes arrhythmias, and further evaluated in a subset of compounds through

comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient

recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs).

Drug-induced changes in silico vary in magnitude depending on the specific ionic

profile of each model in the population, thus allowing to identify cell sub-populations

at higher risk of developing abnormal AP phenotypes. Models with low repolarization

reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-

pump) are highly vulnerable to drug-induced repolarization abnormalities, while those

with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high

susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict

clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers

are in overall agreement across different assays: in silico AP duration changes reflect

the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated
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upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate

that human in silico drug trials constitute a powerful methodology for prediction of clinical

pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment

pipelines.

Keywords: in silico drug trials, drug safety, drug cardiotoxicity, Torsade de Pointes, computer models, human

ventricular action potential

INTRODUCTION

Cardiotoxicity is one of the main causes of withdrawal during
drug development, and identifying at early stages drugs that may
cause adverse effects in specific human sub-populations is still a
major challenge (Stevens and Baker, 2009; Laverty et al., 2011).
Adverse effects can potentially lead to lethal arrhythmias, and are
therefore a major cause of concern.

Before clinical testing, drugs undergo a thorough pipeline
of preclinical testing, including identification of drug effects on
cardiac ion channels (and particularly hERG), as well as in a
variety of animal experiments (Leishman et al., 2012; Vargas
et al., 2015). Animal models are good for predicting QT interval
prolongation (Vargas et al., 2015), and some of them, including
rabbit wedge preparations, rabbit isolated hearts and the in vivo
atrioventricular block dog, have shown sensitive predictions of
drug-induced Torsade de Pointes (TdP) (Valentin et al., 2004; Liu
et al., 2006; Sugiyama, 2008). However, most of these studies only
consider a small set of drugs. In fact, independent assessment
against a larger number of compound (in the order of magnitude
of those tested in silico in this contribution) highlight a prediction
accuracy of 75% (Lawrence et al., 2008).

More recently, in silico and in vitro tests are considered
as potentially important human-based tools for safety
pharmacology evaluation, through the use of computational
multiscale human modeling and human stem cell-derived
cardiomyocytes (Bass et al., 2015; Rodriguez et al., 2016).
Their profile has also been raised by the Comprehensive
in vitro Proarrhythmia Assay (CiPA) initiative promoted by the
pharmaceutical industries, the United States Food and Drug
Administration (FDA), the Health and Environmental Sciences
Institute and the Cardiac Safety Research Consortium (Sager
et al., 2014; Colatsky et al., 2016).

The widespread translation of in silico modeling from
academia to industrial and regulatory settings requires increasing

Abbreviations: AP, Action potential; APDXX, Action potential duration at

XX% of repolarization; CiPA, Comprehensive in vitro Proarrhythmia Assay;

CT, Ca2+-transient; CTBR, Ca2+-transient beat rate; CTDXX, Ca
2+-transient

duration at XX% of the initial base value; DA, Depolarization abnormalities;

dV/dtMAX, Maximum upstroke velocity; EADs, Early after-depolarizations;

EFTPCmax, Maximal effective therapeutic free concentration; GX, IX conductance;

h, Hill coefficient; hiPS-CMs, Human induced pluripotent stem cell-derived

cardiomyocytes; IC50, Concentration for 50% channel inhibition; ICaL, L-type

Ca2+ current; IK1, Inward rectifier K+ current; IKr, Rapid delayed rectifier K+

current; IKs, Slow delayed rectifier K+ current; INa, Fast Na
+ current; INaK, Na

+-

K+ pump current; INaL, Late Na
+ current; INCX, Na

+-Ca2+ exchanger current; Ito,

Transient outward K+ current; ORd, O’Hara-Rudy dynamic human ventricular

model; RA, Repolarization abnormalities; RMP, Resting membrane potential; TdP,

Torsade de Pointes; Tri90−40, AP triangulation; Vm, Membrane potential; Vpeak,

Peak voltage.

the credibility of the models, understanding of their predictive
power through comparison with existing experimental methods,
and facilitating their uptake through the provision of software
that can reduce the technical barriers of in silico methods for
non-specialist users.

The aim of this study is to evaluate the ability of in silico
drug trials using human ventricular model populations to predict
the risk of drug-induced adverse cardiac events, based on ion
channel information, and to identify ionic profiles underlying
a higher risk of repolarization abnormalities. In silico drug
trials were run for a large set of reference compounds with
cardiac effects, and simulation results were analyzed to extract
several biomarkers of drug pro-arrhythmic cardiotoxicity and
compared against clinical reports of TdP arrhythmias. Because
in silico drug trials are likely to be embedded in existing safety
pharmacology pipelines and thus combined with experimental
methodologies, it is important to evaluate their consistency with
experimental recordings. Therefore, the outputs of the in silico
drug trials for a sub-set of 15 reference compounds with varied
modes of action were compared against the well-established
electrocardiogram (ECG) recordings from isolated rabbit wedge
preparations Lu et al. (2016) as well as the more recently
considered technique of Ca2+-transient (CT) recordings from
human induced pluripotent stem cell-derived cardiomyocytes
(hiPS-CMs) (Lu et al., 2015; Zeng et al., 2016), even if with still
controversial advantages (Abi-Gerges et al., 2017).

MATERIALS AND METHODS

Control Population of Human Ventricular
Action Potential (AP) Models
All the in silico drug trials presented in this study were performed
in a population of 1,213 human ventricular control models, built
using the O’Hara-Rudy dynamic (ORd) model (O’Hara et al.,
2011) as baseline and the methodology described by Britton
et al. (2013) and further discussed by Muszkiewicz et al. (2016).
The ORd human ventricular AP model was chosen for this
study because of: (i) the large number of human ventricular
experimental data obtained from more than 140 hearts used
in its construction and evaluation; (ii) its ability to reproduce
and probe pro-arrhythmic mechanisms, including repolarization
abnormalities and APD alternans, as shown in multiple studies
and reviewed by Britton et al. (2017); (iii) its choice within the
CiPA initiative (Sager et al., 2014; Colatsky et al., 2016).

Ionic conductances were sampled in the [0–200]% range of
the baseline model values, to include both healthy and potentially
abnormal ionic current profiles (with low/high ion channel
densities corresponding to loss/gain-of-function of specific ionic
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channels due to e.g., genetic mutations), but still with a healthy-
looking AP. These are important as they have been implicated
in increased pro-arrhythmic risk (Sanguinetti and Tristani-
Firouzi, 2006; Itoh et al., 2016; Wang et al., 2016). Nine ionic
conductances were considered: fast and late Na+ current (GNa

andGNaL respectively), transient outward K
+ current (Gto), rapid

and slow delayed rectifier K+ current (GKr and GKs), inward
rectified K+ current (GK1), Na

+-Ca2+ exchanger (GNCX), Na
+-

K+ pump (GNaK), and the L-type Ca2+ current (GCaL).
Only the APmodels exhibiting a phenotype in agreement with

human experimental data from undiseased hearts (Britton et al.,
2017) were selected for the control population, which consists
of 1,213 models. A more detailed description of the control
population used in this study is included in the Supplementary
Material, together with the experimental AP biomarker ranges
used for the calibration process (Table S1) and the scaling factors
of the ionic conductances for the 1,213 models (Table S2).

In silico Drug Assay Design
A total of 62 reference compounds were considered in this study.
The list includes antiarrhythmic drugs in Classes I, III, and IV, as
well as other drugs used for different purposes but with known
effects on cardiac ion channels. Most of these drugs have a
multichannel action, which makes prediction and interpretation
of cardiotoxicity challenging. Drugs were selected to include all
the ones in Kramer et al. (2013), as well as 15 compounds widely
used as reference compounds, which were characterized in more
depth both in simulations and experiments and are listed in
Table 1.

Each drug was assigned to a TdP risk category, based on the
classification by CredibleMeds R© (Woosley and Romer, 1999),
available on www.crediblemeds.org (as of July 2017): 1 (high
risk), the drug prolongs the QT interval and is clearly associated
with a known TdP risk, even when taken as recommended; 2
(possible risk), the drug prolongs the QT interval, but there is
a lack of evidence of TdP risk when taken as recommended;
3 (conditional risk), the drug is associated with TdP but only
under certain circumstances, e.g., excessive dose or interaction
with other drugs; NC (not classified), the drug was reviewed by
CredibleMeds R© but the evidence available was not enough to
assign it to any of the previous categories, and therefore no action
was taken. Of the 62 compounds, 24 are classified as high risk and
13 as potential/conditional risk, for a total of 37 drugs associated
with TdP risk. Verapamil (classified as NC) and the remaining
24 compounds (not listed) are considered as TdP category 0 (no
TdP risk) for the purpose of this study.

Drug effects were simulated using a simple pore-block model
consistent with data available for drug/ion channel interactions,
consisting of IC50 and Hill coefficient (h) for each drug/ion
channel. Up to 7 ion channels were considered for this study:
fast Na+ current (INa), rapid/slow delayed rectified K+ current
(IKr/IKs), transient outward K+ current (Ito), L-type Ca2+

current (ICaL), inward rectifier K+ current (IK1), and late Na+

current (INaL). The experimental IC50 and h used for the drug
assays were collected mainly from three different sources: (i) our
internal database, measured with either manual or automated
patch-clamp techniques (when the IC50 concentration was not

TABLE 1 | List of the 15 compounds considered for in silico drug assays

comparison against in vitro hiPS-CMs and ex vivo rabbit wedge preparations,

including a short description and the clinical TdP Risk category based on

CredibleMeds® (Woosley and Romer, 1999).

Compound Description TdP risk

category

1 BaCl2 Barium Salt 0

2 Bepridil Antiarrhythmic Class IV 1

3 Dofetilide Antiarrhythmic Class III 1

4 Flecainide Antiarrhythmic Class Ic 1

5 Lidocaine Antiarrhythmic Class Ib Local Anaesthetic 0

6 Mexiletine Antiarrhythmic Class Ib 0

7 Moxifloxacin Antibiotic 1

8 Nimodipine Used for Hypertension 0

9 Nisoldipine Used for Hypertension 0

10 Phenytoin Antiarrhythmic Class Ib Antiepileptic 0

11 Primidone Anticonvulsant 0

12 Procainamide Antiarrhythmic Class Ia 1

13 Ranolazine Antianginal 3

14 Sparfloxacin Antibiotic 1

15 Verapamil Antiarrhythmic Class IV 0

Risk categories from CredibleMeds® (Woosley and Romer, 1999): 1, high TdP risk; 3,

conditional TdP risk; 0, no TdP risk (drugs not included in the CredibleMeds® database).

reached in the experiments, an estimate was computed from
the percentage of block at the maximum tested concentration,
with h equal to 1); (ii) (Kramer et al., 2013), data acquired with
automated patch-clamp; (iii) (Crumb et al., 2016), data acquired
with manual patch-clamp.

For the compounds that were included in more than one
of these datasets, multiple inhibitory profiles were considered
to investigate the impact of variability in drug characterization.
Each IC50 and h set was simulated separately, resulting in 87
different drug trials: each trial is referred to with the name of
the compound together with a roman numeral, to differentiate
multiple entries (e.g., Bepridil I, Bepridil II, Bepridil III).

Multiple concentrations were investigated for each
compound, chosen to match those used in the experimental
drug assays, as well as to explore different multiples of the
maximal effective free therapeutic concentration (EFTPCmax),
up to 100-fold. The EFTPCmax values were taken from literature,
mainly from Kramer et al. (2013) or Crumb et al. (2016). When
multiple values were found for the same compound, the higher
one was considered for simulations.

The full list of compounds, together with the IC50, Hill
coefficient and the EFTPCmax used for in silico drug trials is
provided in Table S3.

Simulations and Simulated Data Analysis
All the simulations presented in this study were conducted using

Virtual Assay (v.1.3.640 © 2014 Oxford University Innovation
Ltd. Oxford, UK), a user-friendly C++ based software package
with a graphical user interface for in silico drug assays, to
facilitate its use by non-experts in computational modeling,
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and available upon request. Virtual Assay uses the ordinary
differential equation solver CVODE, part of the open-source
Sundials suite (Hindmarsh et al., 2005; Serban and Hindmarsh,
2005), implementing time adaptive Backward Differentiation
Formulas with relative and absolute tolerance equal to 1e-5 and
1e-7, respectively. Our results could therefore be replicated using
other software products, as Matlab (Mathworks Inc. Natwick,
MA, USA) or Chaste (Pitt-Francis et al., 2008). As an example, a
comparison of simulations obtained with Virtual Assay and with
theMatlab solver ode15s (Shampine and Reichelt, 1997) is shown
in the Supplemental Material, Figure S2. Simulation results were
analyzed both in Virtual Assay and in Matlab.

Following drug application, all models were stimulated at
1 Hz for 150 beats, and the last AP trace in each simulation
was analyzed. AP biomarkers were extracted, including: AP
duration at 40, 50, and 90% of repolarization (APD40, APD50,

APD90); APD90 dispersion, defined as the difference between
the maximum and minimum value of APD90 in the population
(1APD90), AP triangulation, defined as the difference between
APD90 and APD40 (Tri90−40); maximum upstroke velocity
(dV/dtMAX); peak voltage (Vpeak); resting membrane potential
(RMP), computed as in Britton et al. (2017). Drug-induced
changes in those biomarkers are presented as percentage change
in median with drug, compared to control (no drug).

All AP traces were automatically checked for repolarization
and depolarization abnormalities (RA and DA, respectively).
RA were defined as the presence of a positive derivative of
the membrane potential (Vm) 150 ms after the AP peak
(representative of early after-depolarizations, EADs), or when the
membrane potential did not reach the resting condition following
an AP upstroke (Vm > −40 mV) by the end of the beat. DA
were defined as AP traces in which the upstroke phase was
compromised, i.e., when the max upstroke Vm was lower than
0 mV, or when the time needed to reach 0 mV was longer than
100 ms.

Drugs were classified as risky when RA occurred in the
population of models at different concentrations, based on: true
positives (drug with reports of TdP risk classified as risky);
true negatives (drug with no reports of TdP risk classified
as safe), false positives (drug with no reports of TdP risk,
classified as risky); false negatives (drugs with reports of TdP
risk, classified as safe). The performances of the classification
were evaluated based on: sensitivity, defined as the number
of true positives divided by the sum of true positives and
false negatives; specificity, defined the number of true negatives
divided by the sum of the true negatives and false positives;
accuracy, defined as the sum of true positives and true negatives
divided by the total number of drugs. Classification results
based on RA were compared against the ones obtained for APD
prolongation at 10x EFTPCmax. APD90 prolongation threshold
to define risk was fixed to 6%, considering the correspondence
between QTc and APD90, and the current guidelines suggesting
QTc prolongation >20 ms (which correspond to 5.7% for a
normal QT of 350 ms) as a definite risk factor for TdP (Salvi
et al., 2010). Results for the population of models were also
compared against the same results obtained with the single ORd
model.

A scoring system was developed by integrating RA occurrence
at multiple concentrations. The fraction of models developing
RA was multiplied by a factor inversely related to the drug
concentration at which those RA occur (e.g., 1/100 for RA
occurring at 100x EFTPCmax). Contributions from all the
different concentrations were added together, and the total score
was normalized, according to the following formula (where nRAi

is the number of models showing RA at the tested concentration
i, wi = EFTPCmax / i is the weight inversely related to the tested
concentration i, and nmod is the total number of models in the
population).

TdP score =

∑

i(wi*nRAi)

nmod*
∑

i(wi)
(1)

The TdP score thus obtained varies between 0 and 1, where 0
corresponds to a drug with no RA, and 1 to a drug which develops
100% of RA at every concentration. By using the proposed
score, RA are considered more severe when occurring at low
concentrations and/or affecting a high fraction of the population
of models.

Experimental Drug Assays
In silico results were compared with properties computed
from ECGs in rabbit wedge preparations and CT recordings
from hiPS-CMs. Experimental data were acquired for the 15
compounds listed in Table 1 at multiple concentrations, as
described below.

Recordings of ECGs from left ventricular rabbit wedge
preparations have been previously described and partly published
in Lu et al. (2016). The biomarkers extracted include QRS
complex and QT interval duration, defined as the time from
the onset of the QRS complex to the point at which the final
downslope of the T wave crossed the isoelectric line.

CT recordings from hiPS-CMs (Cor 4U) were acquired as
part of this study on pre-plated preparations from Axiogenesis
(Cologne, Germany). Full method details are included in the
Supplementary Material. Quantified biomarkers included CT
beat rate (CTBR) and duration at 90% of the initial base value
(CTD90), known to be correlated with APD (Gauthier et al., 2012;
Spencer et al., 2014), similarly to other studies (Lu et al., 2015;
Zeng et al., 2016).

All experimental results are presented as median percentage
changes with respect to the baseline. Drug-induced changes
in experimental values need to be compared against the effect
measured without drugs, i.e., with vehicle, defining cut-off values.
In the rabbit wedge, the changes measured with the vehicle were
always quite small: <5% for QT and <3% for QRS. On the
other hand, in CT assays using hiPS-CMs, the lower and upper
limit were 19% and 24% of the baseline, with 95% confidence
interval (n = 222 vehicle controls). Therefore, only CTD90

prolongations >25% were considered relevant for this assay. In
silico, no biomarker changes are observed when the drug effect
is not included, since the models are paced until steady state:
therefore, the cut-off value is equal to 0%. Statistical analysis was
performed with the Wilcoxon-Mann-Whitney Test by using R
Project for Statistical Computing, and p < 0.05 was considered
as significant. Very small p-values (e.g., p < 1e-6) were obtained
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in all simulation results due to the high number of models
considered, and therefore we focus on the magnitude of the
differences observed (White et al., 2014).

RESULTS

In silico Drug Assays: Drug-Induced
Changes in Action Potential (AP)
Biomarkers
In silico drug trials for a total of 62 reference compounds
were performed in the control population of 1,213 human
ventricular AP control models, based on the ORd model (O’Hara
et al., 2011) and constructed as described in Methods. Before
drug application, all the models exhibit a healthy-looking AP
phenotype, in agreement with human experimental recordings
from un-diseased hearts (Figure S1A). When including drug
effect for concentration up to 100-fold the EFTPCmax, eachmodel
responds in a different way, depending on its underlying ionic
properties. We first evaluated drug-induced changes in the AP
biomarkers.

Figure 1 shows APD90 and dV/dtMAX distributions from the
in silico population for 5 compounds (Dofetilide I, Flecainide
I, Nimodipine, Ranolazine I, and Verapamil II) at multiple
concentrations. Extended results for additional compounds,
including all AP biomarkers, are shown in Figures S3–S31.

Most drugs (all except Nimodipine and Nisoldipine) result in
APD prolongation at 40, 50, and 90% of repolarization, as well as
increased AP triangulation (Tri90−40), mainly as a result of hERG
channel block (e.g., Figure 1, left column and A–C in Figures
S3–S31). For 30x EFTPCmax dose, Flecainide III, Bepridil I, and
Dofetilide III showed the largest APD90 prolongations (+180%,
+175%, and+157%, respectively).

APD prolongation caused by BaCl2 (mainly due to IK1 block)
is stronger in APD90 compared to APD40 and APD50 (Figures
S3A–C). As a secondary effect of IK1 block, BaCl2 leads to
a decrease in RMP (Figure S3H), which also exhibits larger
variability, while for all the other compounds it remains almost
constant (H in Figures S3–S31).

Consistent with their expected mode of action, class I
anti-arrhythmic drugs (Procainamide, Lidocaine, Mexiletine,
Phenytoin, Flecainide) as well as other drugs affecting Na+

channels as secondary effect (e.g., Bepridil) show a strong
decrease of upstroke velocity (e.g., Figures 1D,H), together with
a decrease of Vpeak (F, G in Figures S3–S31).

Verapamil II represents an interesting example of the
combined block of IKr and ICaL (Figure 1I). For low
concentrations (0.01–0.1 µM) the Ca2+ block is predominant,
and APD90 is slightly decreased (−1 and −4% respectively),
whereas IKr block compensates its effects for higher
concentrations (>0.5µM), resulting in a clear APD prolongation
(e.g., +38% for 1 µM). Verapamil II also leads to slower AP
upstroke for high concentrations (Figure 1J).

Results obtained using the baseline ORd model (Figure 1
and Figures S3–S31, black diamonds) are in overall agreement
with the range of AP biomarkers in the population of human
models. This is with the exception of cases in which the baseline

ORd yields abnormal APs for high doses of certain drugs (e.g.,
Dofetilide I 0.1 and 0.2 µM, Figures 1A,B). In those cases, the
human population of models still allows exploration of the full
concentration range for each compound.

In silico Characterization of Drug-Induced
Phenotypic Variability
Drug action resulted in an increase in the phenotypic variability
yielded by the human ventricular population, as illustrated
in Figure 2 for Moxifloxacin III (Figure 2A) and Dofetilide
I (Figure 2B), mainly blocking IKr, and for Flecainide I
(Figure 2C), inhibiting both IKr and INa. Following drug
application, some models in the in silico population display
normal but prolonged APs (gray traces) while a fraction develop
repolarization abnormalities (RA, pink traces). Due to its strong
effect on INa, Flecainide I (Figure 2C) also cause an overall
reduction of dV/dtMAX, visible in the upstroke phase of the AP,
and depolarization abnormalities (DA, green traces) in specific
models.

Quantitative analysis of the underlying ionic mechanisms
reveals consistency on the mechanisms underlying RA and DA
across different drugs and concentrations. Models displaying RA
are characterized by low GKr, and GNaK, and high GCaL and
GNCX, i.e., a reduced repolarization reserve (Figures 2D–F, pink
vs. gray boxplots). Low GKs also plays a role when a larger
fraction of the population displays RA (Figures 2D,E). Models
displaying DA are characterized mainly by low GNa/GCaL/GNaL,
i.e. the net inward current in the initial phase of the AP is reduced
(Figure 2F, green vs. gray boxplots).

Repolarization Abnormalities Occurrence
Predicts TdP Risk
We hypothesized that occurrence of RA following drug
application in the human population would be predictive of
in vivo TdP, given the potential mechanistic link between
them (El-sherif et al., 1990; Dutta et al., 2016). In silico drug
trial predictions were evaluated against clinical reports of TdP
using the TdP risk categories provided by CredibleMeds R©

(Woosley and Romer, 1999) and further described in Methods.
When multiple inhibitory profiles were simulated for the same
compound, the worse scenario was considered, i.e., the higher
occurrence of RA, and the larger APD90 prolongation.

Figure 3 shows the classification results for the 49 compounds
with either high or no TdP risk (Figure 3A), and for the full
set of 62 compounds (Figure 3B) based on RA occurrence
up to 100x EFTPCmax and APD90 prolongation >6% at 10x
EFTPCmax for both the population of models (top row), and
the single ORd model (bottom row). Accuracy reached 96% for
the classification of high vs. no TdP risk compounds using the
RA-based classification with the in silico population of models,
compared to 80% based on APD prolongation (Figure 3A).
Using the single ORd model, the higher accuracy was 76% and
was obtained using APD prolongation as biomarker.

When including also compounds with possible/conditional
risk (Figure 3B), accuracy with the RA-based classification for
the in silico population was 89%, compared to 81% based on APD
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FIGURE 1 | Explanatory examples of in silico drug trial results in a population of human computational models, showing drug-induced changes on APD90 and

dV/dtMAX (left and right column, respectively) for 5 compounds (Dofetilide I, Flecainide I, Nimodipine, Ranolazine I and Verapamil II). Results are presented as boxplots

of AP biomarkers for the population of human ventricular models at increasing concentrations (A–J). Results for the single ORd model are shown as black diamonds.

On each box, the central mark is the median of the population, box limits are the 25 and 75th percentiles, and whiskers extend to the most extreme data points not

considered outliers, plotted individually as separate crosses. Extended results for the selected 15 reference compounds, including all the AP biomarkers, are available

in the Supplementary Material, Figures S3–S31.
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FIGURE 2 | Explanatory examples of variability in drug response in the in silico population of human AP models, with the underlying ionic mechanisms. Representative

AP traces of different drug-induced AP phenotypes are shown on the left side for Moxifloxacin III (A), Dofetilide I (B), and Flecainide I (C) at selected concentrations.

Models with a normal AP are shown in gray, while models displaying RA and DA are shown in pink and green, respectively. In each panel, the baseline ORd model is

highlighted in black. The distribution of ionic conductances for the different AP phenotypes is shown on the right side (D–F), by using boxplots of the corresponding

scaling factors, and with the same color code. For each conductance, the values shown (between 0 and 2) represent the scaling factors of the models in the

population compared to the baseline ORd model, which had all the scaling factors equal to 1. Boxplots description as in Figure 1.
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FIGURE 3 | In silico prediction of in vivo TdP risk for the 49 compounds belonging to TdP risk category 0 and 1 (A) and for all the 62 tested compounds (B). In each

panel, predictions based on the occurrence of RA in any of the model at 1x, 10x, 30x, and 100x EFTPCmax (1st column) are compared against predictions based on

APD90 prolongation >6% at 10x EFTPCmax (2nd column). Results obtained using the population of models (top half) are compared against the ones for the baseline

ORd model (bottom half). High sensitivity/specificity/accuracy (>80%) are highlighted in bold.

prolongation (48 and 77% based on RA and APD prolongation,
respectively, for the single ORd model).

In summary, all drugs with high TdP risk (category 1) were
correctly identified as risky with the RA-based classification in the
in silico population, and only 5 drugs with possible/conditional
TdP risk (category 2 and 3) resulted as false negatives: Clozapine,
Dasatinib, Paroxetine, Saquinavir, Voriconazole. It is worth
noting that drugs with possible/conditional TdP risk lack
evidence of pro-arrhythmic risk when taken as recommended:
TdP reports are usually related to excessive dose or interaction
with other drugs.

Overall, classification based on APD prolongation exhibited

high sensitivity, but low specificity. Indeed, many compounds

prolong APD without being associated with TdP risk, e.g.,

Verapamil, thus resulting in false positives. On the contrary, false

positives are rare in the RA-based classification (Lidocaine and

Mexiletine), and they only develop RA at the maximum tested

concentration (100x EFTPCmax). Indeed, both Lidocaine and

Mexiletine are Class Ib anti-arrhythmic drugs, which have been

associated with cardiotoxicity in case of overdose (Denaro and
Benowitz, 1989).

RA-based classification is dependent on the maximum
tested concentration: a higher concentration is more likely
to provoke RA in the in silico population, thus increasing

sensitivity but possibly decreasing specificity, since even safe
drugs might lead to RA at very high doses. We reported
here the classification results obtained for concentrations up
to 100x EFTPCmax, and a comparison between results for 30x
and 100x EFTPCmax is included in the Supplementary Material
(Figure S32).

A New Scoring System to Evaluate In vivo

Risk of Drug-Induced TdP
Figure 4 shows all the tested compounds classified using the TdP
score computed from the in silico drug trials using the fraction of
models displaying RA at each tested concentration, as described
in Methods. The TdP score varies from 0 to 1, and is higher when
RA occur at low concentrations and/or affecting a high fraction
of the population of models.

The distribution of compounds in the safe zone (TdP equal
to 0, left side) and risky zone (TdP > 0, right side) reflects
the classification results summarized in the confusion matrix
with the higher (89%) accuracy (Figure 3). All safe compounds
(no reported TdP risk, green dots) have a TdP score equal
to 0, except Lidocaine and Mexiletine. All compounds with
known risk of TdP (TdP risk category 1, red dots) have a
positive score, and tend to be distributed toward the right end
of the plot. Most of the compounds with possible or conditional

Frontiers in Physiology | www.frontiersin.org September 2017 | Volume 8 | Article 668266

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Passini et al. Human In Silico Drug Trials

FIGURE 4 | TdP score for all the 62 compounds, based on the occurrence of RA in the population of human AP models at 1x, 10x, 30x, and 100x EFTPCmax. The

TdP score, which varies between 0 and 1, was computed by taking into account both the fraction of models displaying RA and the concentrations at which RA occur,

as described in Methods. The logarithmic scale was considered to maximize the visual separation between safe and risky drugs, and log10(0) was approximated with

the machine precision (10−16). All compounds with no report of TdP risk (in green) have 0 as TdP score (left side), except for Lidocaine and Mexiletine. All high risk

compounds (in red) have a high TdP score (right side). Most of the compounds with possible or conditional TdP risk (in orange and yellow, respectively) have a TdP

score >0, except for Paroxetine, Voriconazole, Clozapine, Dasatinib, and Saquinavir.

TdP risk (TdP risk category 2 or 3, orange and yellow dots,
respectively) have a positive score, except Clozapine, Dasatinib,
Paroxetine, Saquinavir, Voriconazole. The TdP score is also
dependent on the maximum considered concentrations. Again,
higher concentrations lead to an increase in sensitivity while
decreasing specificity. A comparison between the TdP scores
computed up to 30x and 100x EFTPCmax is included in the
Supplementary Material (Figure S33).

In silico Drug Assays are in Agreement
with Rabbit Wedge and hiPs-CM
Experimental Recordings
In silico drug trials are likely to be used as an additional tool
for drug safety assessment in combination with experimental
methods. It is therefore important to evaluate the consistency
between in silico results and experimental data. Thus, simulation
results for the 15 reference compounds with varied actions on ion
channels (Table 1) were compared against recordings obtained
using rabbit wedge and hiPS-CM preparations, as two techniques
considered in safety pharmacology. In Figure 5, changes in QT
interval duration in rabbit wedge, CTD90 in hiPS-CMs and in
silico APD90 (from red to green, left side) were compared to
evaluate drug-induced changes in repolarization. Changes in
QRS complex duration in rabbit wedge and in silico dV/dtMAX

were quantified to evaluate drug effects on depolarization
(Figure 5, from purple to blue, right side). Negative variations in

dV/dtMAX are considered as positive changes in depolarization
time (opposite sign), to facilitate the comparison.

Drug-induced effects on biomarkers are in overall agreement
for all three methodologies. Figure 5 presents consistent
increase/decrease of QT, CTD90 and APD90, as well as
consistency between positive changes in QRS and reduction of
dV/dtMAX. Variations are generally larger in the in silico APD90

than in QT interval in rabbit wedge, indicating higher sensitivity
of the in silico assay, and the wider range of ionic scenarios
evaluated in the virtual population than in the limited number
of experiments.

For Verapamil at 0.1 µM, small changes were observed in
both QT interval in rabbit wedge and simulated APD, whereas
CTD90 in hiPS-CMs was reduced. Such a reduction in CTD90

in the hiPS-CMs is also accompanied by a significant increase in
beating rate (CTBR+61%), which does not occur in silico and in
the rabbit wedge experiments as these are paced externally.

For Lidocaine and Mexiletine, their main effect is fast INa
block, which results in a decreased dV/dtMAX in the in silico
models, and a wider QRS complex in the rabbit wedge ECG.
Furthermore, both in vitro CTD90 and in silico APD90 are
prolonged, whereas QT interval decreases slightly (Lidocaine)
or remains unchanged (Mexiletine) in rabbit wedge, suggesting
that in vitro CT and in silico AP are more prone to display
prolongation for non-selective Class I anti-arrhythmic drugs. It
is worth noticing that the AP prolongation in silico is reduced
when inhibition of the INaL current is taken into account in
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FIGURE 5 | Continued
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FIGURE 5 | Continued

Qualitative and quantitative comparison of in silico drug trial results in the population of human ventricular AP models against ECG from rabbit wedge preparations and

Ca2+ transient recordings from hiPS-CMs, for 15 reference compounds. On the left side (from red to green) are shown the drug-induced changes in the biomarkers

related to the repolarization phase: QT interval in rabbit wedge, CTD90 in hiPS-CMs and APD90 in silico. On the right side (from purple to blue) are shown the

drug-induced changes in the biomarkers related to the depolarization phase: QRS interval from rabbit wedge and dV/dtMAX in silico. For each assay, colors are scaled

to span from the 15th to the 85th percentiles of the % changes observed in the biomarkers when considering drug effects, compared to no drug, and with respect to

the cut-off values (3 and 5% for rabbit wedge QRS and QT, 25% for hiPS-CMs CTD90, and 0% for in silico APD90 and dV/dtMAX ). To facilitate comparison, negative

variations in dV/dtMAX were considered as positive changes in the depolarization time, and vice versa. When multiple combinations of IC50 and h were tested in

simulation for the same compound, the corresponding in silico result sections consist of multiple sub-columns. Statistically significant changes in experiments have

been highlighted in bold.

the simulations, corresponding to Lidocaine II and Mexiletine
II (APD90 +84% vs. +68%, Mexiletine I vs. Mexiletine II, 100
µM). The tendency for prolongation under Na+ block of in silico
AP and hiPS-CMs CT is confirmed also for another class I anti-
arrhythmic drug (Phenytoin), which causes negligible changes in
both CTD90 and in silico APD90, and a decrease in QT interval in
rabbit wedge.

Bepridil constitutes a good example of multichannel block,
intended to block ICaL, but also affecting IKr and INa. In the
rabbit wedge, the QT interval is relatively prolonged at low
concentrations (0.3–1 µM), compared to more selective Ca2+

blockers (e.g., Nimodipine and Nisoldipine), and it goes back to
normal (+4%) at 10 µM. Both hiPS-CMs CT and in silico AP are
prolonged in a dose-dependent manner, confirming once again
the higher sensitive to IKr block of these techniques.

Interestingly, BaCl2 effects are of smaller magnitude in hiPS-
CMs compared to rabbit wedge preparation and in silicomodels:
relevant CTD90 prolongation was detected only at 100 µM
(+47%), while up to 10µM (more than 2-fold BaCl2 IC50 for IK1)
the drug-induced effects on CT were negligible. This may be due
to differences in IK1 expression between the cell types considered
(Liang et al., 2013; Kim et al., 2015).

In silico results for compounds with multiple sets of IC50 and
h are in overall agreement with each other, even if the magnitude
of drug-induced changes may vary. As an example, the decrease
in dV/dtMAX for the three variations of Flecainide is almost the
same at 10 µM (−64, −61, and −68%, respectively), while for
lower concentrations the differences between the three inhibition
profiles are more noticeable (e.g., −25, −7, and 0% at 1 µM,
respectively).

DISCUSSION

In silico human electrophysiology drug trials using a population
of human AP models were conducted for 62 compounds with
varied electrophysiological profiles to evaluate their ability to
predict clinical pro-arrhythmic risk and their consistency with
electrophysiological recordings currently considered in safety
assessment.

The main findings of this simulation study are:

1. RA occurrence in populations of human models proves to be
more predictive of clinical TdP risk than APD prolongation
and standard biomarkers obtained with the single ORdmodel.
Accuracy of 96% and specificity of 92% was obtained in the

classification of high risk vs. safe drugs, compared to 80
and 64%, based on APD prolongation. 100% sensitivity was
achieved considering RA in the population compared to 17%
with the single ORd model.

2. Human virtual cardiomyocytes exhibiting RA in in silico
drug trials displayed low repolarization reserve, caused by
low IKr/IKs/INaK and high ICaL/INCX, which is consistent
with the prevalence of cardiotoxicity in patients with disease
conditions such as myocardial ischaemia and heart failure.
Low depolarization reserve caused by weak INa/INaL/ICaL was
associated with DA under INa block.

3. A TdP risk score was developed to translate the high
accuracy of RA abnormalities for risky drug classification
into a non-binary system considering both data for multiple
concentrations and the frequency of RA. This metric is higher
when RA occur in a large fraction of the population of models,
and at lower concentrations, thus informing on the likelihood
of drug-induced adverse cardiac events in the population.

4. Drug-induced APD changes in silico are consistent with the
ones measured in QT interval from rabbit wedge ECGs
and CTD recorded from hiPS-CMs. Drugs affecting the
depolarization phase provoke a decrease of dV/dtMAX in silico
and a widening of QRS interval rabbit wedge ECGs. To show a
qualitative and quantitative agreement between in silico drug
trial results and two experimental models commonly used
in safety pharmacology, is fundamental to build confidence
in the integration of computer models for cardiotoxicity
assessment.

Our results support the potential of RA in the in silico human
population as a good predictor of clinical TdP risk, with
sensitivity, specificity and accuracy higher or comparable to the
ones obtained through animal studies (Valentin et al., 2009).
RA-based classification for all 62 compounds reached 89% of
accuracy, compared to 75% obtained for 64 compounds in rabbit
isolated Langendorff heart model (Lawrence et al., 2006; Valentin
et al., 2009). The in vivo atrioventricular block dog model showed
sensitive predictions of drug-induced TdP, but in a limited set
of 13 compounds (Sugiyama, 2008). Animal studies accuracy is
higher when predicting QT prolongation rather that in vivo TdP
risk: 85 and 79% for 19 compounds based on QT prolongation
in in vivo dog studies and hERG assays, respectively (Valentin
et al., 2009; Wallis, 2010); 90% accuracy for 40 compounds based
on non-rodent QT prolongation (Vargas et al., 2015). However,
“it is generally known that the sensitivity and the specificity of
the QT interval prolongation as a surrogate marker of TdP is
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rather poor: only in 46% of the cases the TQT study results were
concordant with the TdP risk classification, and 89% of drugs
prolonging QT interval in thorough QT studies were approved
by the FDA” (Wiśniowska et al., in press). This is confirmed in our
study by the fact that RA-based predictions in the population of
human models have higher accuracy compared to the ones based
on APD prolongation, due to a higher specificity (92 vs. 64% for
62 compounds).

Our methodology also offers mechanistic insights into sub-
populations at higher risk, which is a key advantage with
respect to previous in silico and in vitro studies (Kramer et al.,
2013; Lancaster and Sobie, 2016). We identify human in silico
cardiomyocytes with high propensity to develop RA as those
with low INaK/IKs/IKr and high INCX/ICaL. The ionic profile is
consistent with ionic remodeling in cardiac specific diseases
such as heart failure (Carmeliet, 1999; Coppini et al., 2013;
Coronel et al., 2013), suggesting disease modeling as crucial when
investigating cardiotoxicity in response to drug action (Walmsley
et al., 2013; Gomez et al., 2014; Elshrif et al., 2015; Dutta et al.,
2016; Passini et al., 2016).

The range of concentrations considered for drug trials plays an
important role in risk prediction. Expanding the concentration
up to 100x EFTPCmax allows to account for possible overdose, but
most importantly for inter-subject variability in protein binding
and metabolism, which can lead to important different in blood
concentrations in patients taking the same drug dose, or even
hormones which might change the effect of the drug on ion
channels (Shuba et al., 2001). As an example, Amiodarone is a
very controversial drug, considered safe by most clinicians but
at the same time known to be associated with TdP risk (Jurado
Román et al., 2012), and indeed belonging to TdP risk category
1. Amiodarone is almost completely bound to plasma proteins:
reported values in literature range from 95.6% (Lalloz et al.,
1984; Latini et al., 1984) to 99.98% (Veronese et al., 1988). In
addition, absorption following oral administration is erratic and
unpredictable (Latini et al., 1984). This can lead to EFTPCmax

variation of more than 100-fold, with a big impact on drug-
induced ion channels block.

An additional consideration about in silico trials concerns
variability of recorded IC50 values. We show one possible way
to consider this variability, by evaluating its implications in the
in silico human population. In most cases, results obtained with
different IC50 values were in overall agreement, thus building
confidence in the answer provided. Should these results disagree,
leading to contrasting scenarios, new ion channel recordings and
experiments might be required for further drug characterization
and refined in silico predictions. This may incorporate for
example more detailed models of ion channel structure, based on
the most recent crystallographic studies on human ion channels
(Sun andMacKinnon, 2017;Wang andMacKinnon, 2017). Other
in silico tools are also available at the ion channel level, to evaluate
potential drug effects on the hERG channel, using ligand-based
(Durdagi et al., 2011; Braga et al., 2015; Chemi et al., 2017)
or receptor-based (Brindisi et al., 2014; Dempsey et al., 2014)
approaches.

Indeed, in silico results are strictly dependent on the quality
and consistency of the data used as inputs, which include ion

channel assays costing time and money. In silico trials are a cheap
complement to experimental methods following ion channel
screening, which for some channels is already routine (hERG).

When fully integrated in the early stages of drug development,
in silico methods provide predictions to partly replace animal
experiments, thus reducing the corresponding costs. Therefore,
in silico drug trials are likely to play soon a major role in drug
development, identifying drug cardiotoxicity in the pre-clinical
phase, thus improving the quality of new candidate drugs and
reducing drug failure at later stages.

Our results are obtained using experimentally-calibrated
population of human models for in silico drug trials. The wide
range of conductances considered includes extreme up- or down-
regulation of ion channels, which can be linked to specific
mutations or diseased conditions known to be pro-arrhythmic
(Sanguinetti and Tristani-Firouzi, 2006; Itoh et al., 2016; Wang
et al., 2016). Previous studies have also considered aspects of
population variability for gender and age, mostly by changing
cell volume and area (rather than ionic conductances) using
a commercial software (Polak et al., 2012). The same software
was also recently used to investigate potential drug-induced
arrhythmias for 12 drugs (Abbasi et al., 2017). In that study,
variability was taken into account by using different AP models
(Ten Tusscher, 2003; Ten Tusscher and Panfilov, 2006; O’Hara
et al., 2011) and different cell types (endo-, epi-, and mid-
myocardium). However, their results were presented only for a
single model (mid-) since it was the one most prone to develop
drug-induced APD prolongation and EADs.

Our results also demonstrate consistency between human-
based in silico simulations and recordings obtained from
experimental models traditionally used in safety pharmacology,
including rabbit wedge ECGs (Lu et al., 2016) and hiPS-CMs CT
recordings. Previous in silico studies have focused on predictions
of QT prolongation in human (Mirams et al., 2014; Lancaster
and Sobie, 2016) and animal models (Bottino et al., 2006;
Davies et al., 2012; Beattie et al., 2013). Evaluating the in
silico results against experimental data is important as in silico
tools are likely to be used in combination with experimental
recordings for validation and identification of potential unknown
effects. Importantly, our results also identifies discrepancies
between in silico results and experimental and clinical data, when
considering compounds with strongmultichannel action, leading
to large AP prolongation in silico and only a moderate increase
of rabbit wedge QT. The potential causes of such discrepancies
include: (i) differences in the balance of inward/outward currents
in human adult cardiomyocytes as represented in silico with
respect to rabbit wedge preparations, which may lead to higher
sensitivity to hERG block. Indeed, it has been shown that APD
prolongation due to IKr block is more pronounced in human,
compared to rabbit (Bányász et al., 2011; O’Hara and Rudy,
2012); (ii) the fact that in silico results in our study are focused
on single cell electrophysiology, as opposed to tissue (rabbit
wedge) or whole heart, where coupling and other mechanisms
may act to modulate AP duration, as supported by the fact that
both in silico APD and hiPS-CMs CTD show larger prolongation
compared to rabbit QT; (iii) the IC50 values were often estimated
based on current blocks measured at low drug concentrations,
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while simulations explored much higher ones. This can therefore
lead to an overestimation of current blocks, producing a larger
AP increase than expected. Further work could address these
important factors.

To conclude, this study demonstrates that in silico drug
trials in populations of human cardiomyocyte models
constitute a powerful methodology to predict clinical risk
of arrhythmias based on ion channel information. This study
also highlights ionic profiles that have a higher risk of developing
drug-induced abnormalities. This methodology is therefore
ready for its integration into the existing pipeline for drug
cardiotoxicity assessment, and contribute to the reduction of
animal experiments in the near future.

AUTHOR CONTRIBUTIONS

All the authors conceived and designed the study; EP performed
the in silico drug assays, analyzed the data, prepared the
figures and drafted the manuscript; HL, JR, and AH performed
experimental drug assays; RG, OB, and EP developed the
software; EP, OB, AB, and BR interpreted the results; all the
authors edited and revised the manuscript.

FUNDING

EP, OB, AB, and BR are supported by BR’s Wellcome
Trust Senior Research Fellowship in Basic Biomedical
Sciences (100246/Z/12/Z), an Engineering and Physical
Sciences Research Council Impact Acceleration Award
(EP/K503769/1), the CompBioMed project (European
Commission grant agreement No 675451), the NC3Rs
Infrastructure for Impact award (NC/P001076/1) and
Project Grant (NC/P00122X/1), the Oxford British Heart
Foundation Centre of Research Excellence (RE/08/004/23915,
RE/13/1/30181) and the TransQST project (Innovative
Medicines Initiative 2 Joint Undertaking under grant agreement
No 116030, receiving support from the European Union’s
Horizon 2020 research and innovation programme and
EFPIA).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fphys.
2017.00668/full#supplementary-material

REFERENCES

Abbasi, M., Small, B. G., Patel, N., Jamei, M., and Polak, S. (2017). Early

assessment of proarrhythmic risk of drugs using the in vitro data and single-

cell-based in silicomodels: proof of concept. Toxicol. Mech. Methods 27, 88–99.

doi: 10.1080/15376516.2016.1256460

Abi-Gerges, N., Pointon, A., Oldman, K. L., Brown, M. R., Pilling, M. A., Sefton,

C. E., et al. (2017). Assessment of extracellular field potential and Ca2+

transient signals for early QT/pro-arrhythmia detection using human induced

pluripotent stem cell-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods

83, 1–15. doi: 10.1016/j.vascn.2016.09.001

Bányász, T., Bárándi, L., Harmati, G., Virág, L., Szentandrássy, N., Márton, I., et al.

(2011). Mechanism of reverse rate-dependent action of cardioactive agents.

Curr. Med. Chem. 18, 3597–3606. doi: 10.2174/092986711796642355

Bass, A. S., Hombo, T., Kasai, C., Kinter, L. B., and Valentin, J.-P. (2015). “A

historical view and vision into the future of the field of safety pharmacology,”

in Principles of Safety Pharmacology, Handbook of Experimental Pharmacology

Vol. 229, eds M. K. Pugsley and M. J. Curtis (Berlin; Heidelberg: Springer),

3–45. doi: 10.1007/978-3-662-46943-9_1

Beattie, K. A., Luscombe, C., Williams, G., Munoz-Muriedas, J., Gavaghan,

D. J., Cui, Y., et al. (2013). Evaluation of an in silico cardiac safety

assay: using ion channel screening data to predict QT interval changes

in the rabbit ventricular wedge. J. Pharmacol. Toxicol. Methods 68, 88–96.

doi: 10.1016/j.vascn.2013.04.004

Bottino, D., Penland, R. C., Stamps, A., Traebert, M., Dumotier, B., Georgieva,

A., et al. (2006). Preclinical cardiac safety assessment of pharmaceutical

compounds using an integrated systems-based computer model of the heart.

Prog. Biophys. Mol. Biol. 90, 414–443. doi: 10.1016/j.pbiomolbio.2005.06.006

Braga, R. C., Alves, V. M., Silva, M. F. B., Muratov, E., Fourches,

D., Lião, L. M., et al. (2015). Pred-hERG: a novel web-accessible

computational tool for predicting cardiac toxicity. Mol. Inform. 34, 698–701.

doi: 10.1002/minf.201500040

Brindisi, M., Butini, S., Franceschini, S., Brogi, S., Trotta, F., Ros, S., et al. (2014).

Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for

developing effective antipsychotics: synthesis, biological characterization, and

behavioral studies. J. Med. Chem. 57, 9578–9597. doi: 10.1021/jm501119j

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher,

D. J., et al. (2013). Experimentally calibrated population of models predicts and

explains intersubject variability in cardiac cellular electrophysiology. Proc. Natl.

Acad. Sci. U.S.A. 110, E2098–E2105. doi: 10.1073/pnas.1304382110

Britton, O. J., Bueno-Orovio, A., Virág, L., Varró, A., and Rodriguez, B. (2017).

The Electrogenic Na+/K+ pump is a key determinant of repolarization

abnormality susceptibility in human ventricular cardiomyocytes: a population-

based simulation study. Front. Physiol. 8:278. doi: 10.3389/fphys.2017.00278

Carmeliet, E. E. (1999). Cardiac ionic currents and acute ischemia: from channels

to arrhythmias. Physiol. Rev. 79, 917–1017.

Chemi, G., Gemma, S., Campiani, G., Brogi, S., Butini, S., and Brindisi, M. (2017).

Computational tool for fast in silico evaluation of hERG K+ channel affinity.

Front. Chem. 5:7. doi: 10.3389/fchem.2017.00007

Colatsky, T., Fermini, B., Gintant, G., Pierson, J. B., Sager, P., Sekino, Y.,

et al. (2016). The comprehensive in vitro proarrhythmia assay (CiPA)

initiative - Update on progress. J. Pharmacol. Toxicol. Methods 81, 15–20.

doi: 10.1016/j.vascn.2016.06.002

Coppini, R., Ferrantini, C., Yao, L., Fan, P., Del Lungo, M., Stillitano, F.,

et al. (2013). Late sodium current inhibition reverses electromechanical

dysfunction in human hypertrophic cardiomyopathy. Circulation 127,

575–584. doi: 10.1161/CIRCULATIONAHA.112.134932

Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., and

Bernus, O. (2013). Electrophysiological changes in heart failure and their

implications for arrhythmogenesis. Biochim. Biophys. Acta 1832, 2432–2441.

doi: 10.1016/j.bbadis.2013.04.002

Crumb, W. J., Vicente, J., Johannesen, L., and Strauss, D. G. (2016). An evaluation

of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay

(CiPA) proposed ion channel panel. J. Pharmacol. Toxicol. Methods 81,

251–262. doi: 10.1016/j.vascn.2016.03.009

Davies, M. R., Mistry, H. B., Hussein, L., Pollard, C. E., Valentin, J.-P., Swinton,

J., et al. (2012). An in silico canine cardiac midmyocardial action potential

duration model as a tool for early drug safety assessment. AJP Hear. Circ.

Physiol. 302, H1466–H1480. doi: 10.1152/ajpheart.00808.2011

Dempsey, C. E., Wright, D., Colenso, C. K., Sessions, R. B., and Hancox, J. C.

(2014). Assessing hERG pore models as templates for drug docking using

published experimental constraints: the inactivated state in the context of drug

block. J. Chem. Inf. Model. 54, 601–612. doi: 10.1021/ci400707h

Denaro, C. P., and Benowitz, N. L. (1989). Poisoning due to class 1B antiarrhythmic

drugs: lignocaine, mexiletine and tocainide. Med. Toxicol. Adv. Drug Exp. 4,

412–428. doi: 10.1007/BF03259923

Frontiers in Physiology | www.frontiersin.org September 2017 | Volume 8 | Article 668271

http://journal.frontiersin.org/article/10.3389/fphys.2017.00668/full#supplementary-material
https://doi.org/10.1080/15376516.2016.1256460
https://doi.org/10.1016/j.vascn.2016.09.001
https://doi.org/10.2174/092986711796642355
https://doi.org/10.1007/978-3-662-46943-9_1
https://doi.org/10.1016/j.vascn.2013.04.004
https://doi.org/10.1016/j.pbiomolbio.2005.06.006
https://doi.org/10.1002/minf.201500040
https://doi.org/10.1021/jm501119j
https://doi.org/10.1073/pnas.1304382110
https://doi.org/10.3389/fphys.2017.00278
https://doi.org/10.3389/fchem.2017.00007
https://doi.org/10.1016/j.vascn.2016.06.002
https://doi.org/10.1161/CIRCULATIONAHA.112.134932
https://doi.org/10.1016/j.bbadis.2013.04.002
https://doi.org/10.1016/j.vascn.2016.03.009
https://doi.org/10.1152/ajpheart.00808.2011
https://doi.org/10.1021/ci400707h
https://doi.org/10.1007/BF03259923
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Passini et al. Human In Silico Drug Trials

Durdagi, S., Duff, H. J., and Noskov, S. Y. (2011). Combined receptor and ligand-

based approach to the universal pharmacophoremodel development for studies

of drug blockade to the hERG1 pore domain. J. Chem. Inf. Model. 51, 463–474.

doi: 10.1021/ci100409y

Dutta, S., Mincholé, A., Zacur, E., Quinn, T. A., Taggart, P., and Rodriguez,

B. (2016). Early afterdepolarizations promote transmural reentry in ischemic

human ventricles with reduced repolarization reserve. Prog. Biophys. Mol. Biol.

120, 236–248. doi: 10.1016/j.pbiomolbio.2016.01.008

El-sherif, N., Craelius, W., Boutjdir, M., and Gough, W. B. (1990). Early

afterdepolarizations and arrhythmogenesis. J. Cardiovasc. Electrophysiol. 1,

157–160. doi: 10.1111/j.1540-8167.1990.tb01057.x

Elshrif, M. M., Shi, P., and Cherry, E. M. (2015). Representing variability and

transmural differences in a model of human heart failure. IEEE J. Biomed. Heal.

Inform. 19, 1308–1320. doi: 10.1109/JBHI.2015.2442833

Gauthier, L. D., Greenstein, J. L., andWinslow, R. L. (2012). Toward an integrative

computational model of the guinea pig cardiac myocyte. Front. Physiol. 3:244.

doi: 10.3389/fphys.2012.00244

Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., and Trenor, B.

(2014). Electrophysiological and structural remodeling in heart failure

modulate arrhythmogenesis. 1D simulation study. PLoS ONE 9:e106602.

doi: 10.1371/journal.pone.0106602

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,

et al. (2005). SUNDIALS: suite of nonlinear and differential/algebraic equation

solvers. ACM Trans. Math. Softw. 31, 363–396. doi: 10.1145/1089014.1089020

Itoh, H., Crotti, L., Aiba, T., Spazzolini, C., Denjoy, I., Fressart, V., et al. (2016). The

genetics underlying acquired long QT syndrome: impact for genetic screening.

Eur. Heart J. 37, 1456–1464. doi: 10.1093/eurheartj/ehv695

Jurado Román, A., Rubio Alonso, B., Martín Asenjo, R., Salguero Bodes, R.,

López Gil, M., and Arribas Ynsaurriaga, F. (2012). Proarrhythmic potential

of amiodarone: an underestimated risk? Rev. Española Cardiol. 65, 292–294.

doi: 10.1016/j.rec.2011.05.018

Kim, J. J., Yang, L., Lin, B., Zhu, X., Sun, B., Kaplan, A. D., et al. (2015). Mechanism

of automaticity in cardiomyocytes derived from human induced pluripotent

stem cells. J. Mol. Cell. Cardiol. 81, 81–93. doi: 10.1016/j.yjmcc.2015.01.013

Kramer, J., Obejero-Paz, C. A., Myatt, G., Kuryshev, Y. A., Bruening-Wright, A.,

Verducci, J. S., et al. (2013). MICE models: superior to the HERG model in

predicting torsade de pointes. Sci. Rep. 3:2100. doi: 10.1038/srep02100

Lalloz, M. R. A., Byfield, P. G. H., Greenwood, R. M., and Himsworth, R. L.

(1984). Binding of amiodarone by serum proteins and the effects of drugs,

hormones and other interacting ligands. J. Pharm. Pharmacol. 36, 366–372.

doi: 10.1111/j.2042-7158.1984.tb04400.x

Lancaster, M. C., and Sobie, E. A. (2016). Improved prediction of drug-induced

torsades de pointes through simulations of dynamics and machine learning

algorithms. Clin. Pharmacol. Ther. 100, 371–379. doi: 10.1002/cpt.367

Latini, R., Tognoni, G., and Kates, R. E. (1984). Clinical

pharmacokinetics of amiodarone. Clin. Pharmacokinet. 9, 136–156.

doi: 10.2165/00003088-198409020-00002

Laverty, H. G., Benson, C., Cartwright, E. J., Cross, M. J., Garland, C., Hammond,

T., et al. (2011). How can we improve our understanding of cardiovascular

safety liabilities to develop safer medicines? Br. J. Pharmacol. 163, 675–693.

doi: 10.1111/j.1476-5381.2011.01255.x

Lawrence, C. L., Bridgland-Taylor, M. H., Pollard, C. E., Hammond, T. G.,

and Valentin, J.-P. (2006). A rabbit Langendorff heart proarrhythmia model:

predictive value for clinical identification of Torsades de Pointes. Br. J.

Pharmacol. 149, 845–860. doi: 10.1038/sj.bjp.0706894

Lawrence, C. L., Pollard, C. E., Hammond, T. G., and Valentin, J.-P. (2008).

In vitro models of proarrhythmia. Br. J. Pharmacol. 154, 1516–1522.

doi: 10.1038/bjp.2008.195

Leishman, D. J., Beck, T. W., Dybdal, N., Gallacher, D. J., Guth, B. D.,

Holbrook, M., et al. (2012). Best practice in the conduct of key nonclinical

cardiovascular assessments in drug development: current recommendations

from the Safety Pharmacology Society. J. Pharmacol. Toxicol. Methods 65,

93–101. doi: 10.1016/j.vascn.2011.08.006

Liang, P., Lan, F., Lee, A. S., Gong, T., Sanchez-Freire, V., Wang, Y., et al. (2013).

Drug screening using a library of human induced pluripotent stem cell-derived

cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation

127, 1677–1691. doi: 10.1161/CIRCULATIONAHA.113.001883

Liu, T., Brown, B. S., Wu, Y., Antzelevitch, C., Kowey, P. R., and Yan, G. X. (2006).

Blinded validation of the isolated arterially perfused rabbit ventricular wedge

in preclinical assessment of drug-induced proarrhythmias. Hear. Rhythm 3,

948–956. doi: 10.1016/j.hrthm.2006.04.021

Lu, H. R., Gallacher, D. J., and Yan, G. X. (2016). Assessment of drug-

induced proarrhythmia: the importance of study design in the rabbit left

ventricular wedge model. J. Pharmacol. Toxicol. Methods 81, 151–160.

doi: 10.1016/j.vascn.2016.06.006

Lu, H. R., Whittaker, R., Price, J. H., Vega, R., Pfeiffer, E. R., Cerignoli, F., et al.

(2015). High throughput measurement of Ca++ dynamics in human stem cell-

derived cardiomyocytes by kinetic image cytometery: a cardiac risk assessment

characterization using a large panel of cardioactive and inactive compounds.

Toxicol. Sci. 148, 503–516. doi: 10.1093/toxsci/kfv201

Mirams, G. R., Davies, M. R., Brough, S. J., Bridgland-Taylor, M. H., Cui, Y.,

Gavaghan, D. J., et al. (2014). Prediction of thorough QT study results using

action potential simulations based on ion channel screens. J. Pharmacol.

Toxicol. Methods 70, 246–254. doi: 10.1016/j.vascn.2014.07.002

Muszkiewicz, A., Britton, O. J., Gemmell, P., Passini, E., Sanchez, C., Zhou, X.,

et al. (2016). Variability in cardiac electrophysiology: using experimentally-

calibrated populations of models to move beyond the single virtual

physiological human paradigm. Prog. Biophys. Mol. Biol. 120, 115–127.

doi: 10.1016/j.pbiomolbio.2015.12.002

O’Hara, T., and Rudy, Y. (2012). Quantitative comparison of cardiac

ventricular myocyte electrophysiology and response to drugs in human

and nonhuman species. AJP Hear. Circ. Physiol. 302, H1023–H1030.

doi: 10.1152/ajpheart.00785.2011

O’Hara, T., Virág, L., Varró, A., and Rudy, Y. (2011). Simulation of

the undiseased human cardiac ventricular action potential: Model

formulation and experimental validation. PLoS Comput. Biol. 7:e1002061.

doi: 10.1371/journal.pcbi.1002061

Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi,

S., et al. (2016). Mechanisms of pro-arrhythmic abnormalities in

ventricular repolarisation and anti-arrhythmic therapies in human

hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 96, 72–81.

doi: 10.1016/j.yjmcc.2015.09.003

Pitt-Francis, J., Bernabeu, M. O., Cooper, J., Garny, A., Momtahan, L., Osborne,

J., et al. (2008). Chaste: using agile programming techniques to develop

computational biology software. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.

366, 3111–3136. doi: 10.1098/rsta.2008.0096

Polak, S., Fijorek, K., Glinka, A., Wisniowska, B., and Mendyk, A. (2012).

Virtual population generator for human cardiomyocytes parameters: in

silico drug cardiotoxicity assessment. Toxicol. Mech. Methods 22, 31–40.

doi: 10.3109/15376516.2011.585477

Rodriguez, B., Carusi, A., Abi-Gerges, N., Ariga, R., Britton, O. J., Bub, G.,

et al. (2016). Human-based approaches to pharmacology and cardiology:

an interdisciplinary and intersectorial workshop. Europace 18, 1287–1298.

doi: 10.1093/europace/euv320

Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., and Stockbridge, N. (2014).

Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report

from the Cardiac Safety Research Consortium. Am. Heart J. 167, 292–300.

doi: 10.1016/j.ahj.2013.11.004

Salvi, V., Karnad, D. R., Panicker, G. K., and Kothari, S. (2010). Update

on the evaluation of a new drug for effects on cardiac repolarization in

humans: issues in early drug development. Br. J. Pharmacol. 159, 34–48.

doi: 10.1111/j.1476-5381.2009.00427.x

Sanguinetti, M. C., and Tristani-Firouzi, M. (2006). hERG potassium channels and

cardiac arrhythmia. Nature 440, 463–469. doi: 10.1038/nature04710

Serban, R., and Hindmarsh, A. C. (2005). “CVODES: the sensitivity-enabled ODE

solver in SUNDIALS,” in Volume 6: 5th International Conference on Multibody

Systems, Nonlinear Dynamics, and Control, Parts A, B, and C (Long Beach, CA:

ASME), 257–269. doi: 10.1115/DETC2005-85597

Shampine, L. F., and Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM J.

Sci. Comput. 18, 1–22. doi: 10.1137/S1064827594276424

Shuba, Y. M., Degtiar, V. E., Osipenko, V. N., Naidenov, V. G., and

Woosley, R. L. (2001). Testosterone-mediated modulation of HERG

blockade by proarrhythmic agents. Biochem. Pharmacol. 62, 41–49.

doi: 10.1016/S0006-2952(01)00611-6

Frontiers in Physiology | www.frontiersin.org September 2017 | Volume 8 | Article 668272

https://doi.org/10.1021/ci100409y
https://doi.org/10.1016/j.pbiomolbio.2016.01.008
https://doi.org/10.1111/j.1540-8167.1990.tb01057.x
https://doi.org/10.1109/JBHI.2015.2442833
https://doi.org/10.3389/fphys.2012.00244
https://doi.org/10.1371/journal.pone.0106602
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1093/eurheartj/ehv695
https://doi.org/10.1016/j.rec.2011.05.018
https://doi.org/10.1016/j.yjmcc.2015.01.013
https://doi.org/10.1038/srep02100
https://doi.org/10.1111/j.2042-7158.1984.tb04400.x
https://doi.org/10.1002/cpt.367
https://doi.org/10.2165/00003088-198409020-00002
https://doi.org/10.1111/j.1476-5381.2011.01255.x
https://doi.org/10.1038/sj.bjp.0706894
https://doi.org/10.1038/bjp.2008.195
https://doi.org/10.1016/j.vascn.2011.08.006
https://doi.org/10.1161/CIRCULATIONAHA.113.001883
https://doi.org/10.1016/j.hrthm.2006.04.021
https://doi.org/10.1016/j.vascn.2016.06.006
https://doi.org/10.1093/toxsci/kfv201
https://doi.org/10.1016/j.vascn.2014.07.002
https://doi.org/10.1016/j.pbiomolbio.2015.12.002
https://doi.org/10.1152/ajpheart.00785.2011
https://doi.org/10.1371/journal.pcbi.1002061
https://doi.org/10.1016/j.yjmcc.2015.09.003
https://doi.org/10.1098/rsta.2008.0096
https://doi.org/10.3109/15376516.2011.585477
https://doi.org/10.1093/europace/euv320
https://doi.org/10.1016/j.ahj.2013.11.004
https://doi.org/10.1111/j.1476-5381.2009.00427.x
https://doi.org/10.1038/nature04710
https://doi.org/10.1115/DETC2005-85597
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1016/S0006-2952(01)00611-6
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Passini et al. Human In Silico Drug Trials

Spencer, C. I., Baba, S., Nakamura, K., Hua, E. A., Sears, M. A. F., Fu, C. C.,

et al. (2014). Calcium transients closely reflect prolonged action potentials

in iPSC models of inherited cardiac arrhythmia. Stem Cell Rep. 3, 269–281.

doi: 10.1016/j.stemcr.2014.06.003

Stevens, J. L., and Baker, T. K. (2009). The future of drug safety testing:

expanding the view and narrowing the focus. Drug Discov. Today 14, 162–167.

doi: 10.1016/j.drudis.2008.11.009

Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models

for predicting drug-induced torsades de pointes in patients with remodelled

hearts. Br. J. Pharmacol. 154, 1528–1537. doi: 10.1038/bjp.2008.240

Sun, J., and MacKinnon, R. (2017). Cryo-EM structure of a KCNQ1/CaM complex

reveals insights into congenital long QT syndrome. Cell 169, 1042–1050.e9.

doi: 10.1016/j.cell.2017.05.019

Ten Tusscher, K. H. W. J. (2003). A model for human ventricular tissue. AJP Hear.

Circ. Physiol. 286, H1573–H1589. doi: 10.1152/ajpheart.00794.2003

Ten Tusscher, K. H. W. J., and Panfilov, A. V. (2006). Cell model for

efficient simulation of wave propagation in human ventricular tissue under

normal and pathological conditions. Phys. Med. Biol. 51, 6141–6156.

doi: 10.1088/0031-9155/51/23/014

Valentin, J.-P., Bialecki, R., Ewart, L., Hammond, T., Leishmann, D.,

Lindgren, S., et al. (2009). A framework to assess the translation of safety

pharmacology data to humans. J. Pharmacol. Toxicol. Methods 60, 152–158.

doi: 10.1016/j.vascn.2009.05.011

Valentin, J.-P., Hoffmann, P., De Clerck, F., Hammond, T. G., and Hondeghem, L.

(2004). Review of the predictive value of the Langendorff heart model (Screenit

system) in assessing the proarrhythmic potential of drugs. J. Pharmacol.

Toxicol. Methods 49, 171–181. doi: 10.1016/j.vascn.2004.03.008

Vargas, H. M., Bass, A. S., Koerner, J., Matis-Mitchell, S., Pugsley, M. K., Skinner,

M., et al. (2015). Evaluation of drug-induced QT interval prolongation in

animal and human studies: a literature review of concordance. Br. J. Pharmacol.

172, 4002–4011. doi: 10.1111/bph.13207

Veronese, M., McLean, S., and Hendriks, R. (1988). Plasma protein binding of

amiodarone in a patient population: measurement by erythrocyte partitioning

and a novel glass–binding method. Br. J. Clin. Pharmacol. 26, 721–731.

doi: 10.1111/j.1365-2125.1988.tb05311.x

Wallis, R. M. (2010). Integrated risk assessment and predictive value to

humans of non-clinical repolarization assays. Br. J. Pharmacol. 159, 115–121.

doi: 10.1111/j.1476-5381.2009.00395.x

Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., and

Rodriguez, B. (2013). mRNA expression levels in failing human hearts predict

cellular electrophysiological remodeling: a population-based simulation study.

PLoS ONE 8:e56359. doi: 10.1371/journal.pone.0056359

Wang, H.-G., Zhu, W., Kanter, R. J., Silva, J. R., Honeywell, C., Gow, R.

M., et al. (2016). A novel NaV1.5 voltage sensor mutation associated with

severe atrial and ventricular arrhythmias. J. Mol. Cell. Cardiol. 92, 52–62.

doi: 10.1016/j.yjmcc.2016.01.014

Wang, W., and MacKinnon, R. (2017). Cryo-EM structure of the open

human Ether-à-go-go-Related K+ channel hERG. Cell 169, 422–430.e10.

doi: 10.1016/j.cell.2017.03.048

White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C., and White, C.

(2014). Ecologists should not use statistical significance tests to interpret

simulation model results. Oikos 123, 385–388. doi: 10.1111/j.1600-0706.2013.

01073.x
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Background: In silico modeling could soon become a mainstream method of

pro-arrhythmic risk assessment in drug development. However, a lack of human-specific

data and appropriate modeling techniques has previously prevented quantitative

comparison of drug effects between in silicomodels and recordings from human cardiac

preparations. Here, we directly compare changes in repolarization biomarkers caused

by dofetilide, dl-sotalol, quinidine, and verapamil, between in silico populations of human

ventricular cell models and ex vivo human ventricular trabeculae.

Methods and Results: Ex vivo recordings from human ventricular trabeculae in

control conditions were used to develop populations of in silico human ventricular

cell models that integrated intra- and inter-individual variability in action potential (AP)

biomarker values. Models were based on the O’Hara-Rudy ventricular cardiomyocyte

model, but integrated experimental AP variability through variation in underlying ionic

conductances. Changes to AP duration, triangulation and early after-depolarization

occurrence from application of the four drugs at multiple concentrations and pacing

frequencies were compared between simulations and experiments. To assess the

impact of variability in IC50 measurements, and the effects of including state-dependent

drug binding dynamics, each drug simulation was repeated with two different IC50

datasets, and with both the original O’Hara-Rudy hERG model and a recently

published state-dependent model of hERG and hERG block. For the selective

hERG blockers dofetilide and sotalol, simulation predictions of AP prolongation and

repolarization abnormality occurrence showed overall good agreement with experiments.

However, for multichannel blockers quinidine and verapamil, simulations were not in

agreement with experiments across all IC50 datasets and IKr block models tested.

Quinidine simulations resulted in overprolonged APs and high incidence of repolarization

abnormalities, which were not observed in experiments. Verapamil simulations

showed substantial AP prolongation while experiments showed mild AP shortening.
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Conclusions: Results for dofetilide and sotalol show good agreement between

experiments and simulations for selective compounds, however lack of agreement from

simulations of quinidine and verapamil suggest further work is needed to understand the

more complex electrophysiological effects of these multichannel blocking drugs.

Keywords: safety pharmacology, dofetilide, sotalol, quinidine, verapamil, cardiac modeling

INTRODUCTION

Cardiotoxicity is a major cause of attrition during drug
development (Piccini et al., 2009). The current difficulty of
predicting cardiotoxic effects of new drug candidates plays a
major role in the termination of drug development programmes
(Cook et al., 2014). Currently, the pro-arrhythmic potential of a
candidate drug is assessed preclinically using a combination of an
in vitro hERG channel assay and in vivo animal cardiovascular
studies (Anon, 2005a), followed by a Thorough QT study—
an ECG-based study of cardiac repolarization in the later
stages of drug development (Anon, 2005b; Wiśniowska et al.,
2017). While this strategy has been effective in preventing
approval and marketing of new drugs with strongly pro-
arrhythmic potential (Ewart et al., 2014; Vargas et al., 2015),
QT prolongation alone is an imperfect marker for fatal pro-
arrhythmic effects (Shah, 2005) and can result in ending
development of safe drugs (Stockbridge et al., 2013; Polak et al.,
2015).

The Comprehensive in vitro Pro-Arrhythmia Assay (CiPA), a
public-private collaboration with the aim of updating the existing
cardiac safety testing paradigm, has been proposed to improve
the assessment of new drug candidates’ pro-arrhythmic risk
(Sager et al., 2014). CiPA will consist of multiple components
including an ion channel screen of seven channels, combined
with an in silico modeling component that will model the effect
of new drugs on a human ventricular action potential (AP)
using data from the ion channel screens (Colatsky et al., 2016;
Fermini et al., 2016). Therefore, in silicomodeling is likely to soon
become part of mainstream pro-arrhythmic risk assessment in
drug development (Rodriguez et al., 2016; Li et al., 2017; Windley
et al., 2017).

Recently, several modeling methodologies have been
developed to address simulating the effects of different sources
of variability and the effect this has on the response of
cardiomyocytes to drugs. In particular, methodologies have
been developed to integrate the large amount of inter-individual
variability present in electrophysiological recording, which is
hypothesized to contribute to inter-individual variability of drug
response, with traditional cardiac modeling that uses a single
model representative of average cardiomyocyte behavior (Sarkar
and Sobie, 2010; Davies et al., 2012; Britton et al., 2013; Sadrieh
et al., 2013; Groenendaal et al., 2015). Methods are also under
development to probabilistically quantify the high levels of
uncertainty in measured drug IC50 values (Mirams et al., 2014;
Johnstone et al., 2016).

However, the lack of human-specific data and appropriate
modeling techniques have prevented assessment of the degree
to which in silico models can predict potentially pro-arrhythmic

drug-induced changes to the cardiac AP, including change to
quantitative biomarkers such as action potential duration (APD)
and triangulation (Hondeghem et al., 2001), and the occurrence
of qualitative phenomena such as early after-depolarizations
(EADs) (Qu et al., 2013). The ability to predict these cellular
biomarkers of pro-arrhythmic risk underpins the use of in silico
modeling to predict pro-arrhythmic risk for new drugs.

In this study, we systematically and quantitatively compare
drug-induced changes in repolarization biomarkers predicted by
human ventricular cell models against changes observed from
AP recordings of human ventricular trabeculae (Page et al.,
2016). We investigate four drugs commonly used as reference
drugs, three of which are torsadogenic: dofetilide; dl-sotalol; and
quinidine, and verapamil, which is a non-torsadogenic drug.
Both the average drug response and the variability in drug
response are compared against experiments using populations
of models (Britton et al., 2013, 2017; Muszkiewicz et al.,
2016) to mimic observed inter- and intra-heart variability in
AP biomarkers through variability in underlying ion channel
densities. The O’Hara-Rudy (ORd) ventricular cell model
(O’Hara et al., 2011), which has been selected by a consensus
of in silico modelers for use in CiPA’s in silico assay (Colatsky
et al., 2016; Fermini et al., 2016), is used as the baseline model
for the populations ofmodels.Multiple recent datasetsmeasuring
drug block using both standard IC50-based approaches (Kramer
et al., 2013; Crumb et al., 2016) and state- and voltage-
dependent models of hERG block (Li et al., 2017) are used to
obtain simulation results from a variety of drug block models.
We identify areas of qualitative and quantitative agreement
and disagreement between simulations and this specific set of
experiments and discuss strategies for interpreting the results of
in silico drug response predictions.

We find that quinidine and verapamil produce substantial
disagreement between experiments and simulations across
multiple concentrations, IC50 datasets, and hERG block models,
while dofetilide and sotalol have generally good agreement
between experiments and simulations in both degree of AP
prolongation and development of repolarization abnormalities.

METHODS

Experimental Data Acquisition
Microelectrode AP recordings from stimulated ex vivo human
ventricular trabeculae at 1 and 2 Hz were obtained as described
in detail in Page et al. (2016). Briefly, undiseased donor hearts
were obtained from organ donors in the United States with legal
consent. Trabeculae were dissected from the inner endocardial
wall of the ventricle and used for microelectrode recording at
∼37◦C. Each trabecula was paced under control conditions to
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establish a baseline for that trabecula for each frequency, and
then three increasing concentrations of drug were applied. For
each step of this protocol, trabeculae were paced at both 1 and
2 Hz. For this study, we used the baseline control recordings
and recordings from the two higher concentrations of each drug,
as at the lowest concentration of each drug the effect of the
drug was small compared to experimental variability. In addition,
only data from left ventricular trabeculae were used, to remove
electrophysiological differences between left and right ventricles
as a source of variability. All donor hearts used in this study
included recordings from at least three left ventricular trabeculae.
Examples of AP traces used in this study are shown in Figure S1
in the Supplementary Material.

Baseline Human Ventricular Cell Model
The ORd model (O’Hara et al., 2011) of the human ventricular
cardiomyocyte was used as the baseline model for our
investigations, as it is particularly well-suited for studying human
ventricular repolarization; is one of the most recent, widely
used and extensively tested models of the human ventricular
cardiomyocyte using experimental recordings from over 140
human hearts; and has been identified as the model to be used
in the in silico component of CiPA (Colatsky et al., 2016; Fermini
et al., 2016).

Models were paced at 1 and 2 Hz using a biphasic stimulus
protocol to approximate the electrotonic effects of tissue coupling
(Livshitz and Rudy, 2009). Model code is available in the
Supplementary Material and includes the modification proposed
by Passini et al. (2016) of the INaF inactivation gate to improve
upstroke robustness over different conductance profiles.

Simulating Experimental Variability in AP
Biomarkers through Variability in Ionic
Conductances Using Populations of
Models
Based on the ORd model and using the methodology described
in Britton et al. (2013) and Britton et al. (2017), we first
created an initial pool of 20,000 candidate models by varying
11 ionic conductances for the following currents: INaF, INaL,
ICaL, Ito, IKr, IKs, IK1, INCX, INaK, IRyR, and ISERCA, with
resulting differences in baseline electrophysiological properties
and responses to drug application. Each conductance was
randomly selected using Latin Hypercube Sampling (McKay
et al., 1979) across a range of 0.25–1.75 times the baseline
value of that conductance in the original ORd model. This
range was selected for two reasons. Firstly, this range allows
substantial conductance variability while disallowing extremely
low conductance values, which would only be expected to
occur under pathological conditions. This reflects the undiseased
nature of the human hearts used in this study. Secondly, the
range allows up to sevenfold variation in conductances, in line
with the range of conductance variability reported from studies
of neurons (Schulz et al., 2006). This is an approximation as
equivalent measurements for cardiomyocytes have not yet been
reported, although variability in the conductances of individual
currents in cardiomyocytes are known to be highly variable (Qi

et al., 2008; Xiao et al., 2008) and affected by a wide range
of external factors including circadian rhythms, hormones and
pacing rate (Qi et al., 2008; Jeyaraj et al., 2012; Odening and
Koren, 2014). Finally, conductances were independently sampled
as no evidence of covariation has been reported. Should advances
in experimental methods allow for a better characterization of
ionic conductances in intact tissue, these assumptions can be
reviewed.

As different hearts were used in different experiments of
drug block, we created populations of models based on the
AP biomarker ranges for each individual heart. Due to the
limited number of trabeculae available for each heart, biomarker
ranges were calculated as the minimum and maximum values
of each biomarker observed across all trabeculae from that
heart at a particular pacing frequency. Ranges were calculated
for both 1 and 2 Hz pacing in control conditions. Five AP
biomarkers were used for filtering: APD10 (APD at 10%
of repolarization); APD30; APD90; triangulation (APD90–
APD30); and the maximum negative (repolarization) gradient
of membrane potential with respect to time. These biomarkers
were selected to focus on accurate representation of the
variability during repolarization, without using a large number of
biomarkers. The biomarker ranges for some hearts were narrow,
and using larger numbers of biomarkers resulted in fewer models
being found that were within range for all biomarkers. There was
therefore a trade-off between the number of models in each of the
final populations and the number of biomarkers that each model
in a population was guaranteed to be within the experimental
range for.

For each heart, the biomarker ranges calculated from
trabeculae from that heart were used to select from the pool
of 20,000 candidate models only those models which had all
biomarkers within the ranges calculated for that heart, for both
pacing frequencies. These models formed a population of models
for the heart, where all models in the population had different
conductance parameters, representing different possible ionic
profiles that all produced AP biomarkers that were consistent
with the observed variability between preparations from that
heart. The populations of models therefore allow evaluation of
predictions of the variability of response to drug application, not
just the average response, and allow consideration of a wide range
of ionic scenarios. The information content from action potential
measurements such as those typically recorded in human-based
studies is insufficient to identify the specific conductances of a
cardiomyocyte. We therefore chose to analyse a wide range of
ionic scenarios that are consistent with experimental recordings.
This allows testing the hypothesis that variability in ionic
conductances is critical for the comparison of experiments and
simulations of drug block.

Biomarker Calculation
Biomarkers were calculated from the final pacing cycle of each
simulation, and from the mean of a sequence of 30 pacing cycles
from each experimental recording. In simulations, EADs were
classified as depolarizations that occurred more than 100 ms after
the beginning of a pacing cycle with a voltage gradient >0.01
mV/ms. For recordings, EADs were classified as any abnormal
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depolarizations during phases 2 or 3 of an AP, after the upstroke
completed but before normal repolarization was complete.

Simulations
Simulations were performed using the CVODE adaptive timestep
ODE solver (Hindmarsh et al., 2005) implemented within the
CHASTE software package (Pitt-Francis et al., 2008). Data
analysis was carried out using Python scripts.

Simulation of Drug Effects–Simple Pore
Block Model
Drug effects were first simulated using a simple pore block model
using IC50 and Hill coefficient data. The blocked fraction of a
current I was calculated as:

B =
1

1+
(

C
IC50

)h
,

where B is the fraction of I that is blocked by a compound, C
is the concentration of the compound, and IC50 and h are the
measured IC50 and Hill coefficient of the compound against that
current, respectively. B was calculated for each simulation, and
the conductance of each affected current was multiplied by the
unblocked fraction (1− B) to simulate block.

IC50 values have substantial uncertainty attached to them,
and there is considerable variability between studies reporting
IC50s of the same compounds. We chose to use and compare
IC50 values from two recent studies, by Crumb et al. (2016),
which assessed six ion channels (hERG—IKr, KvLQT1/mink—
IKs, Kv4.3–Ito, Kir2.1–IK1, Nav1.5—INaF and INaL, and Cav1.2—
ICaL), and by Kramer et al. (2013), which assessed 3 (hERG—
IKr, Nav1.5—INaF, and Cav1.2—ICaL). We simulated two separate
datasets to indicate whether variability in IC50 values and
number of channels assessed substantially altered simulation
results.

For each simulation of drug block, only models from the
populations that corresponded to hearts that had been used
for experiments with that drug were simulated. For each drug,
simulations were performed at 1 and 2 Hz, for two different
concentrations an order of magnitude apart. The fractional
blocks of ionic currents calculated for each drug, concentration,
and dataset are listed in Table S1 in the Supplementary Material.

Simulation of Drug Effects–Dynamic hERG
Block Model
To capture possible changes to effective hERG block caused by
the binding kinetics of the drugs used in this study, we also
performed repeats of each drug simulation with the ORd model’s
formulation of IKr replaced with the state-based model of IKr
and IKr block developed by Li et al. (2017). Unlike the simple-
pore block model, this model of hERG block integrates data on
drug-specific binding timescales and degrees of trapping, as well
as the steady-state concentration dependence of channel block.
Briefly, this model uses a state-transition modeling approach
with six unbound states (two closed; two closed and inactivated;
one open; and one open and inactivated) and three drug-bound
states (open and bound; closed and bound; and inactivated,
open and bound). Therefore, transient binding and unbinding

of drugs during the AP can be simulated, and a trapping
parameter determines the degree to which each drug can prevent
a bound open channel from closing. Each drug simulation was
repeated using this state-based hERG and hERG block model by
replacing the ORdmodel’s IKr formulation and simple pore block
model of IKr block. In simulations for drugs with multichannel
block, the previous drug blocks calculated from the Crumb and
Kramer datasets were used for non-IKr currents. Changes to
model biomarkers in control conditions caused by replacing the
IKr model are summarized in Table S2 in the Supplementary
Material.

Statistics
Intra-individual, inter-individual and total variability in
biomarker values was assessed using coefficients of variation
(CV). Effects on AP biomarkers of drug application were assessed
using change relative to control conditions. Drug response data
from experiments and simulations are visualized using boxplots.
The central box indicates the central quartiles and median of the
data. Boxplot whiskers extend to the farthest data point less than
two times the interquartile range from the median.

RESULTS

Inter-Heart APD Biomarker Variability is of
Similar Magnitude to Intra-Heart Variability
Figure 1 displays the mean APD30, APD50, and APD90 values
recorded for each trabecula from the baseline control period
of each experiment, for 1 and 2 Hz pacing, grouped by donor
heart. Variability between trabeculae from the same heart (intra-
individual variability) and between the means of different hearts
(inter-individual variability) is quantified in Table 1. CVs for
intra- and inter-individual variability were of similar magnitude–
neither source of variability made a dominant contribution to
total biomarker variability.

Development of the Populations of Models
in Control Conditions
Figure 2 shows the biomarker distributions for the full
experimental dataset and the models accepted for nine
standard AP biomarkers, including the five biomarkers used
for calibration. 860 models were accepted in total across all
populations. Model biomarkers show good overlap with the
range and shape of the experimental biomarker distribution for
seven of the biomarkers, with the two exceptions being resting
membrane potential (RMP) and action potential amplitude
(APA). RMP is more variable between experiments than
between models, which may be due to experimental fluctuations,
particularly in extracellular K+, that are not modeled in
this study. APA (the difference between RMP and peak
membrane potential) has similar variability between models and
experiments, but the distribution mean is shifted ∼ +20 mV in
the model distribution relative to experiments.

The accepted models were in range with experimental
biomarkers at both frequencies for 14/16 hearts (model APs
for each population are shown in Figure 3). The majority of
hearts had substantial variability between trabeculae (Figure 1)
but for two hearts, the biomarker ranges between experiments
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FIGURE 1 | Variability of APD30/50/90 values under control conditions for ventricular trabeculae from different donor hearts. Each dot indicates mean results of 30

action potentials from one trabeculae, each row represents data from a different donor heart. Top: 1 Hz pacing. Bottom: 2 Hz pacing.

were very narrow and none of the 20,000 tested models were
within range, simultaneously, for the five tested biomarkers at
both 1 and 2 Hz pacing frequencies. The 860 accepted models
provided acceptable coverage of the biomarker space for the
purpose of our study, which was to allow comparison of drug
response between experiments and simulations (rather than to
construct a population for every heart).

Figure 4 shows the overlap between experimental and model
biomarkers for models accepted into all of the populations for
APD90 and triangulation, two biomarkers of pro-arrhythmic

risk that were also used to calibrate the populations. There is
generally good coverage of the experimentally-observed range of
biomarkers, potentially highlighting the ability of the ORdmodel
and variability in ionic conductances to account for variability
in human electrophysiological measurements, although for the
most outlying combinations of biomarkers there were no
candidate models that were in range for all five biomarkers
at both pacing frequencies simultaneously. This highlights the
fact that in spite of the large conductance variability imposed,
simulations did not yield the most outlying combinations of
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TABLE 1 | Total, intra- and inter-heart variability.

Biomarker Mean (n = 89) Intra-individual

CV

Inter-individual

CV

Total CV

APD90 312 ms 0.12 0.12 0.17

APD30 171 ms 0.14 0.12 0.18

Triangulation

90–30

141 ms 0.21 0.17 0.28

Intra-individual variability was defined as the mean of CVs that were each calculated using

biomarker values from an individual heart. Inter-individual variability was defined as the CV

calculated from the mean biomarker values from each heart. Total variability was defined

as the CV calculated from biomarker values from all trabeculae.

biomarker values observed in experiments. Therefore, this type
of quantitative comparison also allows identification of potential
limitations of the ORd model in capturing outlying behaviors
from experiments through variability in conductances, which
may require sources of variability beyond ion channel densities
to account for the variability in experimental recordings.

Comparison of Experimental and
Simulated Drug Application for Dofetilide,
Sotalol, Quinidine, and Verapamil Using
Multiple Ic50 Datasets and Ikr Models
Using data from studies by Kramer et al. (2013) and Crumb
et al. (2016), we simulated application of four reference drugs,
three that have high risk torsadogenic classifications (quinidine,
dofetilide, dl-sotalol) and one that is classified as low risk, but has
a significant hERG IC50 (verapamil).

Quinidine and verapamil, in addition to both being
multichannel blocking compounds, are also known to have
“untrapped” hERG binding dynamics, which means when
bound to hERG they block the channel from closing and so can
unbind at polarized membrane potentials (Zhang et al., 1999;
Tsujimae et al., 2004; Windley et al., 2017). Depending on the
timescales of channel binding and unbinding, this can result
in reduced effective block. Due to the potential effects of these
binding dynamics, which are not incorporated in the simple pore
block model of drug action, we hypothesized that inclusion of
these binding dynamics would improve agreement of quinidine
and verapamil simulations with experiments, and that not
accounting for these effects could result in overestimating the
effects of hERG block, as demonstrated in a simulation study
by Di Veroli et al. (2014). Therefore, we additionally evaluated
the effects of replacing the ORd model’s original IKr model with
the recently developed state-based dynamic IKr model from Li
et al. (2017), which includes state- and voltage-dependent drug
binding and includes parameterized models for the four drugs
used in this study.

Figures 5–8 show the changes to repolarization biomarkers
APD90 and triangulation under application of each drug for all
models in the relevant populations of models for that drug (the
populations that were calibrated using data from the hearts that
were used in experiments with that drug), and for the original
baseline ORd model, compared to experimental results recorded
from trabeculae. Figures also indicate models and trabeculae that

developed EADs and other repolarization abnormalities (e.g.,
repolarization failure) under drug application. Biomarker and
repolarization abnormality data is additionally summarized in
the Supplementary Material (Tables S3–S5).

As expected, there were substantial differences between drugs
in the levels of qualitative and quantitative agreement between
experiments and simulations. We therefore break down the
agreement in changes to APD90, triangulation, and occurrence
of EADs between experiments and populations of models using
each of the IC50 datasets and IKr models, for each individual
drugs used in this study.

Dofetilide
Dofetilide is a potent and selective IKr blocker that prolongs the
QT interval and is classified as a high-risk compound for drug-
induced torsade de pointes (TdP). Qualitatively, application
to human trabeculae caused substantial concentration-
dependent APD90 and triangulation increase (Figure 5) at
both concentrations tested (0.01 and 0.1 µM, Free Therapeutic
Concentration (FTC) = 0.002 µM), which was captured by
the populations of models and the baseline ORd model using
all datasets. EADs occurred in trabeculae from 2/3 tested
hearts at 0.1 µM, but did not occur at 0.01 µM. Simulations
with the Crumb dataset and the dynamic hERG model both
reproduced this behavior at 1 Hz (4/26 models developed
repolarization abnormalities in both sets of simulations at
0.1 µM, 0/26 models at 0.01 µM), but no repolarization
abnormalities were detected at either concentration using the
Kramer dataset, or in any simulation at 2 Hz pacing. The baseline
ORd model only developed EADs at 0.1 µM using the Crumb
dataset.

Quantitatively, for 0.1 µM dofetilide, APD90 and
triangulation changes (1APD and 1Triangulation) from
all datasets were consistent with experiments at 1 Hz pacing,
with the distributions of experiments and models overlapping,
but not for 2 Hz, where experimental AP prolongation was
>1 Hz, unlike all other drugs and concentration studied. In
this case, experiments showed prolongation beyond the cycle
length. This skipping behavior was not reproduced in any
simulations, as the stimulus current was always sufficient to
initiate a new AP, while in experiments the stimulus could cause
a transient depolarization. Therefore, it is possible that at 2 Hz
AP prolongation was>1 Hz due to the additional inward current
provided during repolarization by the stimulus.

At the lower dofetilide concentration (0.01 µM), the two
IC50 datasets gave substantially different results to each
other, neither of which overlapped with the experimental
range at 1 Hz. Simulations using the Crumb dataset over-
predicted the experimental results, with much higher 1APD
and 1Triangulation, and level of variability, than that observed
experimentally. In contrast, use of the Kramer dataset under-
predicted APD and triangulation increases and variability.
However, the dynamic hERG model produced 1APD and
1Triangulation distributions between these two datasets, which
did overlap with the experimental range at both pacing
frequencies.
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FIGURE 2 | Distributions of experimental and model biomarkers. Normalized histograms and probability density estimates for biomarkers from all trabeculae (green,

n = 89) and from all populations of models (blue, n = 860) under control conditions 1 Hz pacing.

Overall, simulations captured the effects of
dofetilide—substantial AP prolongation along with incidence of
repolarization abnormalities at the higher tested concentration.
The comparison with experiments was reasonable for all three
sets of simulations at 1 Hz, although no simulations captured
the skipping behavior observed at 2 Hz. This could possibly be
due to mismatch between experimental and simulated stimulus
current strengths. Use of the dynamic hERGmodel produced the
best overall agreement with experiments, as it had overlap with
experimental 1APD90 and 1Triangulation ranges for three out
of four concentration and frequency combinations (excepting

0.1 µM at 2 Hz), and showed occurrence of repolarization
abnormalities.

Sotalol
Like dofetilide, dl-sotalol is a selective IKr blocker, although it
also has beta-adrenergic receptor blocking effects in vivo. Sotalol
is torsadogenic and prolongs the QT interval. In the Kramer
dataset it was also measured as causing non-negligible block of
Cav 1.2 (ICaL); however this was not replicated in the Crumb
dataset. Application of sotalol caused concentration-dependent
APD and triangulation increase in experiments at both tested
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FIGURE 3 | AP traces of models in each heart-specific population of models. AP traces for each heart-specific population of models, and trace from the ORd

baseline model for reference. 2/16 hearts did not have any of the 20,000 candidate models in range for all biomarkers and therefore had no accepted models, so are

excluded from the figure. 860 out of the 20,000 candidate models were accepted into at least one population.

concentrations (10 and 100 µM, FTC = 14.7 µM), which was
captured by all simulations (Figure 6). EADs did not occur
at either concentration in any experiments, and this was also
reflected in all simulations, as no model developed repolarization
abnormalities.

At 100 µM, all sets of simulations displayed overlap with
experiments for APD90 increase, although simulations with the
Kramer dataset under-predicted the amount of triangulation and
APD increase. Overall, results using the dynamic IKr model
were similar to those using the default IKr model, but for
both IC50 datasets use of the dynamic model caused a small
increase in APD and triangulation which improved agreement
with experiments. For 10 µM, all simulation datasets were fully
within the experimental range for both biomarkers, however
this was partly because experimental results for 10 µM sotalol
displayed much higher variability than simulations. In contrast,

for dofetilide, variability at the lower concentration—0.01 µM—
was of similar magnitude for experiment and simulations,
and less than the variability of the higher concentration—0.1
µM. One potential reason for this is the relatively low IKr
block predicted for 10 µM Sotalol (12.6% from Crumb et al.
14.7% from Kramer et al.) results in a low dispersion of APD
prolongation, lower than the intrinsic experimental variability
that would be present without drug application, which then
dominates the total experimental variability but is not present in
simulations.

Overall, sotalol simulations have relatively good agreement
with experiments, due to the absence of repolarization
abnormalities in all experiments and simulations, and the
overlap between simulation and experimental ranges for APD90
and triangulation. The main disagreement between experiments
and simulations is that the wide variability observed in both
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FIGURE 4 | Calibration of heart-specific populations of models using

biomarker ranges. Values from all individual trabeculae (colored dots–each

color corresponds to a donor heart), and for all models accepted into any

population (gray dots) are shown for APD90 vs. triangulation, two of the five

biomarkers used to construct the populations, which are also biomarkers of

drug-induced pro-arrhythmic risk.

biomarkers at 10 µM in the experiments is uniformly not
replicated across all simulations.

Quinidine
Quinidine is a multichannel blocker, with significant IC50s found
for all 3 channels measured in Kramer et al. (Nav1.5/INaF,
hERG/IKr, Cav1.2/ICaL) and 3/7 of the channels measured by
Crumb et al. (hERG/IKr, KvLQT1/IKs, and Kv4.3/Ito). Crumb
et al. also detected block for Nav 1.5 and Cav 1.2 however an IC50
was not reached for these channels during experiments and so
was not calculated.

Experimentally, quinidine caused a moderate increase in
APD90 and triangulation (Figure 7) at the higher applied
concentration (10 µM, FTC = 3.2 µM), and no substantial
change at the lower concentration (1 µM) for both 1 and 2 Hz
pacing. In addition, no EADs were observed in any experiments.
However, 10 µM quinidine had the highest predicted level of
hERG block out of all drugs and concentrations tested in this
study for both sets of IC50s; the Crumb and Kramer hERG
IC50s predicted 95% and 97% IKr block respectively for 10 µM
quinidine (Table S1). In the simulations of quinidine’s effects,
the Kramer IC50s for quinidine (which measured IC50s for INaF,
ICaL and IKr) resulted in higher APD and triangulation increases
at both concentrations than were observed experimentally, and
EADs were observed in 15/501 models at 10 µM (and none at
1 µM). For the Crumb dataset, in which IC50s were found for
IKs, Ito, and IKr, EADs and other repolarization abnormalities
(e.g., repolarization failure) occurred in a large majority of

models (421/501) at 10 µM, and for 1/501 models at 1 µM
at 1 Hz pacing. The ORd baseline model also developed
complete repolarization failure using the Crumb IC50s for
10 µM quinidine. Results for 2 Hz pacing for both sets of
IC50s were similar except that no model using the Kramer
IC50s developed repolarization abnormalities (Table S5). For
10 µM quinidine, the 1APD90 and 1Triangulation values
using the Crumb dataset were highly variable; however these
values, particularly from models showing APD shortening,
were due to abnormal APs with repolarization abnormalities,
rather than due to shortening of normal APs. At 1 µM,
the Crumb dataset, like the Kramer dataset, generated much
higher levels of APD90 and triangulation increase than seen
experimentally.

Quinidine both binds and unbinds rapidly from the hERG
channel (Tsujimae et al., 2004; Li et al., 2017;Windley et al., 2017).
Therefore, depending on the balance between the timescales
of these two processes, there was the possibility that modeling
state-dependent block of quinidine would reduce effective AP
prolongation. However, results using the dynamic IKr model
with the other measured IC50s produced similar levels of AP
prolongation and EAD prevalence compared to the default ORd
IKr model.

Overall, simulations of quinidine predicted far greater APD
and triangulation increase (for both Crumb and Kramer datasets
and both IKr block models) than seen in these experiments,
and both datasets predicted occurrence of repolarization
abnormalities that were also not observed in any trabeculae. The
Kramer dataset, which included IC50s for both Nav 1.5 and Cav
1.2 as inward currents, and only hERG as an outward current,
still predicted far higher AP prolongation than experiments.
Quinidine appears to be a particularly challenging drug to
model, which could be due to the wide range of both inward
and outward ionic currents that it blocks, and our study
identifies that additional experiments are required for its detailed
characterization.

Verapamil
Verapamil blocks both hERG and Cav 1.2 (ICaL). Despite
blocking hERG, it is non-torsadogenic and is known to have only
a small effect on APD and on the QT interval (Johannesen et al.,
2014; Vicente et al., 2015) which has been hypothesized to be due
to its hERG binding kinetics (Zhang et al., 1999; Di Veroli et al.,
2014) and/or counteracting effects of ICaL block.

Recordings obtained with verapamil applied at 0.1 and 1
µM (FTC = 0.081 µM) showed minor APD shortening of
similar magnitude at both concentrations (Figure 8), while in
all sets of simulations most models produced concentration-
dependent APD and triangulation increase, in qualitative
disagreement with experiments. A minority of models developed
AP shortening, predominantly in 2 Hz simulations. For
simulations at the lower concentration (0.1 µM) this was
due to drug-induced shortening of normal APs, in line
with experimental results. However for simulations at the
higher concentration (1 µM) shortening was caused by AP
prolongation beyond the duration of the pacing cycle. For
these models, the APD was longer than the pacing cycle and
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FIGURE 5 | Dofetilide. Changes to APD90 and triangulation relative to control from application of 0.01 and 0.1 µM dofetilide during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al. from Kramer et al.

and from use of the hERG model by Li et al. As Crumb and Kramer datasets both measured only hERG IC50s for dofetilide, unlike the other tested compounds, there

is only one result from use of the dynamic model. Dots indicate results from individual trabeculae and models, crosses show the result from the baseline ORd model.

Red symbols indicate simulations and experiments where repolarization abnormalities occurred.

so repolarization was incomplete during the next stimulus.
This lead to a reduced upstroke and shortened APD on
the subsequent pacing cycle. This behavior was not observed
in experiments. However, simulations and experiments were
in agreement for repolarization abnormality occurrence: no
repolarization abnormalities were detected in any experiments or
simulations.

Quantitatively, both Crumb and Kramer datasets generated
similar distributions of APD and triangulation increase to
each other, suggesting that uncertainty in IC50 values is less
likely to be the source of the mismatch with experiments
for verapamil. Instead, the simple pore drug model and

IC50 data used in this study may not be sufficient to
approximate the electrophysiological effects of verapamil
due to its binding kinetics, and/or the balance of L-type
calcium and hERG currents in the ORd model may not be
accurate.

Verapamil can unbind from hERG channels at voltages close
to typical cardiac resting membrane potentials (Zhang et al.,
1999; Windley et al., 2017), although the timescale is relatively
slow (time constant of recovery ∼100 s at −80 mV). This type
of “untrapped” behavior has been shown in simulation studies
(Di Veroli et al., 2014) to potentially reduce AP prolongation
due to hERG block relative to a “trapped” hERG blocker (e.g.,
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FIGURE 6 | Sotalol. Changes to APD90 and triangulation relative to control from application of 10 and 100 µM sotalol during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al. from Crumb et al.

with IKr replaced by the Li et al. IKr model; from Kramer et al. and from Kramer et al. with IKr replaced by the Li et al. IKr model. Dots indicate results from individual

trabeculae and models, crosses show the result from the baseline ORd model.

dofetilide). Therefore, this was an important drug to simulate
with the dynamic hERG model, as neglect of its unbinding
dynamics could potentially cause a substantial overestimation of
AP prolongation.

However, Figure 8 shows that use of the dynamic hERG
model did not substantially alter predictions of APD
prolongation compared to the simple-pore block model
using only IC50 data. For example, for the Crumb dataset,
mean 1APD90 at 1 µM, 1 Hz pacing was 148 ± 32 ms for
populations using the ORd IKr model, 198 ± 43 ms with the
dynamic IKr model, while for the Kramer dataset in the same
conditions, with the ORd IKr model 1APD90 was 195 ± 40
ms, and 194 ± 43 ms with the dynamic IKr model. Therefore,
across all models simulated, use of a drug block model of IKr

that included data on binding rates and trapping behavior did
not improve the agreement of simulated APD prolongation with
experimental results (experimental1APD90 in this case was−15
± 30 ms).

Overall, no set of simulations was consistent with the minor
AP shortening caused by verapamil in experiments, as all
sets of simulations instead showed AP prolongation. However,
all simulations were consistent with the observed lack of
repolarization abnormalities.

Comparison of Drug Block Datasets and
Modeling Methodologies
In this study we simulated two different IC50 datasets and two
different models of IKr and IKr block, each combination of
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FIGURE 7 | Quinidine. Changes to APD90 and triangulation relative to control from application of 1 and 10 µM quinidine during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al. from Crumb et al.

with IKr replaced by the Li et al. IKr model; from Kramer et al.; and from Kramer et al. with IKr replaced by the Li et al. IKr model. Dots indicate results from individual

trabeculae and models, crosses show the result from the baseline ORd model. Red symbols indicate simulations and experiments where repolarization abnormalities

occurred.

which produced a different simulated response to each drug.
In addition we performed simulations with both populations
of experimentally-calibrated models, and the baseline ORd
model. Figure 9 summarizes the differences between simulation
predictions and experimental results for the mean and standard
deviation of 1APD90 and 1Triangulation, separated by drug,
drug block dataset, and modeling methodology. Figure 9 shows
results for dofetilide and sotalol only as for quinidine and
verapamil, all drug block datasets have the same qualitative
mismatch with experiments. This makes a quantitative

comparison redundant—all simulations can be thought of
as being equally mismatched for these drugs.

We see from this comparison that the overall best drug block
dataset for predicting1APD90 and1Triangulation tested in this
study is the dynamic IKr and IKr block model by Li et al. using the
IC50s from Crumb et al. for non-hERG channels. In particular,
the dynamic IKr model is consistently better than the default ORd
IKr model using both Crumb and Kramer IC50s in all tested
cases for both dofetilide and sotalol. Comparisons between the
ORd baseline model and average of the populations of models are
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FIGURE 8 | Verapamil. Changes to APD90 and triangulation relative to control from application of 0.1 and 1 µM verapamil during 1 and 2 Hz pacing. In each panel,

response is shown for (left to right): human ventricular trabeculae, populations of models using drug effects calculated using data from Crumb et al.; from Crumb et al.

with IKr replaced by the Li et al. IKr model; from Kramer et al. and from Kramer et al. with IKr replaced by the Li et al. IKr model. Dots indicate results from individual

trabeculae and models, crosses show the result from the baseline ORd model.

inconclusive: the baseline ORdmodel is closer to experiments for
dofetilide, while the average of the populations of models is closer
for sotalol. However, only the populations of models and not
the baseline ORd model can provide predictions on variability
of drug response.

DISCUSSION

Main Findings
In this study, changes in repolarization biomarkers and EAD
occurrence caused by application of dofetilide, sotalol, quinidine,
and verapamil were compared between in silico simulations using
populations of human ventricular models and ex vivo human
ventricular trabeculae. The four reference drugs examined in

this study all blocked hERG but included both selective and
multichannel blockers, as well as drugs in high and low TdP
risk categories. Experimental data therefore spanned a wide
range of effects from high APD prolongation with widespread
EAD occurrence (dofetilide) to mild APD shortening with
no EADs (verapamil). In silico populations of models were
calibrated to reflect experimentally-observed AP variability
between trabeculae from the same donor heart in control
conditions, through variation in underlying ionic conductances.
These populations were used to simulate the effects of each drug
at multiple pacing rates and concentrations using IC50 data from
two recent studies (Kramer et al., 2013; Crumb et al., 2016),
and with both the ORd model’s original model of hERG, and
a recently developed state-dependent dynamic model of hERG
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FIGURE 9 | Summary of average difference in mean and standard deviation between experiment and simulation for 1APD90 and 1Triangulation. Absolute

differences in mean (top) and standard deviation (bottom) between experiments and simulations for 1APD90 and 1Triangulation are shown for dofetilide (left) and

sotalol (right), for each drug block dataset. Differences in mean are shown for both the mean of the populations of models (dark blue) and the single biomarker value

produced by the ORd baseline model (light blue), while differences in standard deviation can only be shown for the populations of models. Values for each drug block

dataset are averaged across all concentrations and frequencies used in this study. Results for dofetilide show only one block dataset for the dynamic hERG model as

neither Crumb nor Kramer IC50 datasets contained non-hERG IC50s for dofetilide (for sotalol, Kramer et al. measured an IC50 for Cav 1.2).
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and hERG block (Li et al., 2017) that integrates additional drug-
specific data on hERG binding rates and trapping to model
state-dependent block.
The main findings of this study were:

1) Comparison of in silico and ex vivo results showed overall
agreement in APD90 and triangulation increase and EAD
occurrence for both selective hERG blockers (dofetilide
and sotalol). These drugs caused high APD prolongation,
and dofetilide also caused EAD occurrence at the higher
tested concentration (0.1 µM), while sotalol did not. These
behaviors were all replicated at both pacing frequencies for
sotalol and at 1 Hz for dofetilide. At 2 Hz EADs were not seen
in dofetilide simulations, and simulated APD prolongation
was lower overall than experiments due to skipping behavior,
resulting in APs that were longer than one pacing cycle, which
did not occur in simulations.

2) Experimental results for quinidine and verapamil, both
multichannel blocking drugs, were generally not in
agreement with simulations, due to prediction by simulations
of substantially higher AP prolongation than observed
experimentally. Although both quinidine and verapamil
have untrapped hERG binding dynamics (Zhang et al., 1999;
Tsujimae et al., 2004; Li et al., 2017), simulations using
the recent state- and voltage-dependent model of IKr by
Li et al. (2017) did not substantially improve agreement
with experiments or reduce AP prolongation. However
verapamil simulations did not develop any repolarization
abnormalities such as EADs, in agreement with experiments.
Quinidine simulations showed a very high incidence of
repolarization abnormalities using the Crumb IC50s but a
substantially lower incidence with the Kramer IC50s, most
probably because the Crumb et al. study calculated IC50s
for multiple potassium currents but was not able to reach a
measurable IC50 for either Nav 1.5 (INaF) or Cav 1.2 (ICaL),
while the Kramer et al. study calculated IC50s for Nav 1.5 and
Cav 1.2 as well as hERG. Overall, results for quinidine and
verapamil suggest that inclusion of channel binding dynamics
in the hERG block model are not sufficient to bring in silico
results in line with experiments at the concentrations and
frequencies tested, and suggest further studies are necessary
to understand the biophysical mechanisms of these drugs’
electrophysiological effects.

Explanations for Qualitative Mismatch of
APD Changes but Consistency in Lack of
EADs Caused by Verapamil
Ex vivo (Figure 8) and in vivo recordings (Johannesen et al.,
2014; Vicente et al., 2015) show that verapamil causes minor
QT and APD shortening or no effect. However, voltage clamp
studies have consistently reported substantial hERG block in the
concentration range tested in this study (Kramer et al., 2013;
Crumb et al., 2016; Li et al., 2017). There are twomain hypotheses
in the literature regarding the lack of APD prolongation from
verapamil despite thismeasured hERG block. The first hypothesis
is that block of ICaL by verapamil counteracts the AP prolonging
effects of IKr block as both inward and outward currents are

reduced, which produces the observed minor shortening of
APD. However, the effects of IKr block alone are substantial
and variable (e.g., Figures 5, 6). Therefore, it seems that this
mechanism would require fine tuning of the ratios of ICaL
and IKr block, as well as the baseline cellular conductances
GKr and GCaL, to consistently allow ICaL block to cancel out
the effects of IKr block alone, which multiple voltage clamp
studies predict to be substantial at the concentrations tested.
For example, for 1 µM verapamil both Crumb and Kramer
datasets predict greater IKr block (68 and 77% respectively)
than for 100 µM sotalol, the effects of which can be seen in
Figure 6. It therefore seems unlikely that block of ICaL could be a
sufficient mechanism to precisely cancel out the AP prolongation
from hERG block. However, verapamil’s ICaL block could be
one of several contributing factors that collectively limit the
AP prolongation from its IKr block, and experimental and in
silico studies indicate it is the main mechanism preventing the
occurrence of EADs under verapamil application.

The second hypothesis for verapamil’s effects on APD is that
IKr block from verapamil is overestimated by dose-response
curve models parameterized from voltage clamp experiments
that do not measure its hERG binding dynamics. Data from
Zhang et al. (1999) show that verapamil is an untrapped
hERG blocker–when bound it reduces the probability of the
hERG channel closing, increasing the probability of verapamil
unbinding at voltages close to the resting membrane potential.
This contrasts with other hERG blockers, such as dofetilide,
that do not prevent the channel from closing and therefore
remain bound when the membrane is polarized. Therefore,
IC50s measured from voltage clamp studies that do not account
for this may overestimate the level of IKr block, and therefore
the level of AP prolongation, caused by verapamil under
normal pacing conditions. A simulation study by Di Veroli
et al. (2014) suggests that verapamil’s increased unbinding
from hERG relative to compounds such as dofetilide could
result in reduced AP prolongation during normal pacing,
depending on binding timescales. However, use of the dynamic
hERG model incorporating verapamil’s untrapped dynamics
did not substantially lower AP prolongation. Therefore, the
mechanism(s) that limit the impact of verapamil’s measured IKr
block are currently unclear.

Mismatch in APD Prolongation and EAD
Occurrence for Quinidine
Experimentally, quinidine causes QT and AP prolongation
(Nademanee et al., 1990; Vicente et al., 2015), and is classified as
a high risk torsadogenic drug. These features were qualitatively
replicated in simulations (Figure 7); however the degree of AP
prolongation was overestimated by simulations compared to
ex vivo results. Additionally, while no EADs were recorded
from any trabeculae under quinidine application, repolarization
abnormalities occurred for themajority of models when using the
IC50s from Crumb et al. in which only potassium channel IC50s
were able to be calculated for quinidine, as recorded blocks of INa
and ICaL at the maximally tested concentration were too low to
estimate IC50s, and in a small minority of models when using the
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IC50s from Kramer et al. which included block of ICaL which is
known to suppress EAD formation.

We can suggest four possible hypotheses for why simulations
overestimated quinidine-induced AP prolongation. Firstly, as
quinidine significantly blocks a particularly large number of
channels, the compound effects of measurement uncertainty
across multiple channels could result in a substantial total
uncertainty when all channel blocks are integrated into an action
potential model. Estimates of the hERG IC50 for the same
drug across different studies have been shown to vary by an
order of magnitude (Polak et al., 2009), and for a multichannel
blocker like quinidine, this measurement uncertainty will be
compounded over multiple ion channels. The second hypothesis
is that the IKr current in the ORd model could have too large
an influence on APD relative to other currents. However, the
results for dofetilide and sotalol (Figures 5, 6) show that over a
range of different conductance profiles the ORd model provides
good agreement with experiments for selective block of IKr
across multiple compounds, which provides confidence that the
strength of IKr relative to other currents is reasonable. Thirdly,
inward currents acting during repolarization, particularly ICaL,
may be too weak in the ORd model, so that block of these
currents produces too little reduction in APD prolongation when
combined with IKr block. This could be tested in future studies
by comparing simulations to experiments with more selective
calcium channel blockers. If APD shortening in experiments
is found to be substantially larger than in simulations using
the ORd model, this would support this hypothesis. Finally,
quinidine is known to be an untrapped hERG blocker (Tsujimae
et al., 2004), so simple-pore block models may overestimate
the degree of hERG block. However, quinidine binds rapidly to
hERG channels (Windley et al., 2017), which would limit the
effects of transient unbinding, and simulations with the dynamic
hERG model did not show substantial differences to using only
IC50 data (Figure 7). Therefore, the causes of mismatch between
experiment and simulations for quinidine in our study require
further investigation and could include a range of contributing
factors.

Limitations
This study investigated the response of models derived from
a single baseline model, the ORd model, although with two
different models of IKr and a wide range of different conductance
profiles, to mimic biological variability in ion channel densities.
Other sources of variability that are known to influence the
electrophysiological phenotype, such as alterations in channel
structure to change gating dynamics, are not included in this
study. Other human ventricular models (e.g., ten Tusscher and
Panfilov, 2006; Grandi et al., 2010) also have different balances
of ionic currents and therefore produce different results in
simulations and have different strengths and weaknesses. In
particular, we found that across a wide range of conductances
the ORd model could not reproduce the range of action potential
amplitudes observed in this dataset, which were in the range
of 87–119 mV (Figure 2). It is possible that the discrepancy
in action potential amplitude could impact repolarization and
ideally a modification to the model could be found to rectify this

issue, but we have not yet found an appropriate modification.
However, the ORd model was chosen as the baseline model
for this study due to its integration of human-specific voltage-
clamp and current-clamp recordings from human ventricular
cardiomyocytes, and its current relevance for in silico drug testing
due to being selected as the model of choice for the in silico
section of CiPA (Fermini et al., 2016).

To incorporate inter- and intra-heart variability into
simulation predictions, we chose to use the population of
models methodology. However, other methodologies for
integrating biological variability into cardiac modeling have been
developed and could have been used, including multivariate
partial regression analysis (Sobie, 2009; Sarkar and Sobie, 2010;
Sadrieh et al., 2013) and particularly cell-specific modeling
(Davies et al., 2012; Groenendaal et al., 2015). Each of these
methodologies has particular strengths, e.g., partial least
squares regression analysis can constrain model parameters
and identify relationships between many model parameters
and outputs simultaneously without the need for additional
experimental data while cell-specific modeling can estimate
best-fit parameter sets for recordings from specific cells, and can
take advantage of information from dynamically rich pacing
protocols (Groenendaal et al., 2015). The advantage of using
cell-specific modeling in this study would have been the ability
to find a unique model that agreed with the experimental
recordings for each trabecula. However, the likelihood of each
model accurately representing conductances of the associated
preparation would be low as experimental recordings typically
recorded from human preparations, such as those available here,
would not contain enough information to constrain each model.
These techniques are still under investigation.

Instead, we decided populations of models were a good
choice of methodology for the purposes of this study. Although
populations of models do not reconstruct the conductances
of a particular preparation, they can find models with a wide
range of ionic profiles that are all consistent with experimental
biomarkers. This is ideal for simulating drug effects, as a
wide range of possible responses, including outliers, can be
evaluated. If the response to a simulated drug is different to
experimental results across all or most models, as with quinidine
and verapamil, this can then suggest that the mismatch is due
to other causes, such as the model of drug block, or non-
conductance sources of variability, rather than the specific set(s)
of conductances in one or a few models. In addition, all current
methods for incorporating experimental variability rely on the
equations of an underlying baseline cell model such as the
ORd model. Regardless of which model is chosen, there will
likely be experimentally observed combination of AP biomarkers
across different pacing protocols that cannot be simultaneously
reproduced by a model with any set of conductances, due to the
structure of the model equations. Therefore, no matter which
methodology is used it may not be possible for all experimental
observations to be reproduced in simulations with a single set
of underlying model equations. Our study yields important
quantitative information on the ability of the ORd model with
variations in ionic conductance and current knowledge on drug
action to reproduce experimental recordings.
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The simple pore block model of drug action assumes that
channel block is independent of the state of each ion channel.
For many drugs this is an effective approximation; however
for others, incorporating state-dependent block and binding
information could be necessary to explain mismatches between
simulations and experiments. Therefore, we also evaluated the
state-dependent hERG block model by Li et al. (2017). Use of
this model did not result in substantial changes in simulation
results compared to the ORd baseline hERGmodel, however only
one parameterization of this block model was available for each
drug. Given the substantial uncertainty in measurements of IC50
values it is likely there is also substantial uncertainty in the drug
block parameters measured for the Li et al. model. Replications
of the type of voltage clamp studies used to parameterize these
drug block models would be necessary to determine the level of
uncertainty in hERG binding and trapping parameters, combined
with further simulation studies to understand the effects this
uncertainty has when propagated to AP-level models.

Future Work
The identification of mismatches between experiments and
simulations is vital for continued improvement of in silico cardiac
models and for identifying areas where our understanding of
electrophysiological mechanisms of drug action is inconsistent
with experimental data. We hope this study will motivate
combined experimental and simulation studies that can explain
the causes of the mismatches for quinidine and verapamil,
and in doing so allow iterative modification and improvement
of the ORd model and other cardiac cell models. This
iterative improvement has been an important part of cardiac
electrophysiology from the beginning of the field (Noble, 2011).

Future studies could also build on this work by analyzing a
wider range of drugs, particularly other multichannel blockers,
and selective blockers of channels other than hERG. This would
provide a more thorough understanding of agreement and
disagreement across a broad range of ion channel blocking
compounds, providing confidence where selective block showed

good agreement between simulations and experiments (e.g., as
for dofetilide and sotalol in this study) and identifying areas
for model modification where there is significant mismatch.
In particular, it will be important to investigate whether the
results for quinidine and verapamil are representative of other
multichannel blockers that block hERG, or are outliers due to
unique features of these two drugs. If the former, then it is likely
the ORd model will need modification, if the latter, then the
mismatch may be due to an incomplete understanding of the
mechanisms of verapamil and quinidine block.
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Early drug discovery prediction of proarrhythmia potential and its covariates.

AAPS J. 17, 1025–1032. doi: 10.1208/s12248-015-9773-1

Polak, S., Winiowska, B., and Brandys, J. (2009). Collation, assessment and

analysis of literature in vitro data on hERG receptor blocking potency for

subsequent modeling of drugs’ cardiotoxic properties. J. Appl. Toxicol. 29,

183–206. doi: 10.1002/jat.1395

Qi, X. Y., Yeh, Y. H., Xiao, L., Burstein, B., Maguy, A., Chartier, D., et al.

(2008). Cellular signaling underlying atrial tachycardia remodeling of L-type

calcium current. Circ. Res. 103, 845–854. doi: 10.1161/CIRCRESAHA.108.

175463

Qu, Z., Xie, L. H., Olcese, R., Karagueuzian, H. S., Chen, P. S., Garfinkel, A.,

et al. (2013). Early afterdepolarizations in cardiac myocytes: beyond reduced

repolarization reserve. Cardiovasc. Res. 99, 6–15. doi: 10.1093/cvr/cvt104

Rodriguez, B., Carusi, A., Abi-Gerges, N., Ariga, R., Britton, O., Bub, G.,

et al. (2016). Human-baed approaches to pharmacology and cardiology:

an interdisciplinary and intersectorial workshop. Europace 18, 1287–1298.

doi: 10.1093/europace/euv320

Sadrieh, A., Mann, S. A., Subbiah, R. N., Domanski, L., Taylor, J. A.,

Vandenberg, J. I., et al. (2013). Quantifying the origins of population

variability in cardiac electrical activity through sensitivity analysis of the

electrocardiogram. J. Physiol. 591, 4207–4222. doi: 10.1113/jphysiol.2013.

251710

Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., and Stockbridge, N. (2014).

Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report

from the Cardiac Safety Research Consortium. Am. Heart J. 167, 292–300.

doi: 10.1016/j.ahj.2013.11.004

Sarkar, A. X., and Sobie, E. A. (2010). Regression analysis for constraining free

parameters in electrophysiological models of cardiac cells. PLoS Comput. Biol.

6:e1000914. doi: 10.1371/journal.pcbi.1000914

Schulz, D. J., Goaillard, J. M., and Marder, E. (2006). Variable channel expression

in identified single and electrically coupled neurons in different animals. Nat.

Neurosci. 9:356. doi: 10.1038/nn1639

Shah, R. R. (2005). Drug-induced QT interval prolongation-regulatory guidance

and perspectives on hERG channel studies. Novartis Found. Symp. 266,

251–285. doi: 10.1002/047002142X.ch19

Sobie, E. A. (2009). Parameter sensitivity analysis in electrophysiological

models using multivariable regression. Biophys. J. 96, 1264–1274.

doi: 10.1016/j.bpj.2008.10.056

Stockbridge, N., Morganroth, J., Shah, R. R., and Garnett, C. (2013). Dealing

with global safety issues: was the response to QT-liability of non-cardiac drugs

well-coordinated? Drug Saf. 36, 167–182. doi: 10.1007/s40264-013-0016-z

ten Tusscher, K. H., and Panfilov, A. V. (2006). Alternans and spiral breakup in

a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291,

H1088–H1100. doi: 10.1152/ajpheart.00109.2006

Tsujimae, K., Suzuki, S., Yamada, M., and Kurachi, Y. (2004). Comparison of

kinetic properties of quinidine and dofetilide block of HERG channels. Eur.

J. Pharmacol. 493, 29–40. doi: 10.1016/j.ejphar.2004.04.015

Vargas, H. M., Bass, A. S., Koerner, J., Matis-Mitchell, S., Pugsley, M. K., Skinner,

M., et al. (2015). Evaluation of drug-induced QT interval prolongation in

animal and human studies: a literature review of concordance. Br. J. Pharmacol.

172, 4002–4011. doi: 10.1111/bph.13207

Frontiers in Physiology | www.frontiersin.org August 2017 | Volume 8 | Article 597291

https://doi.org/10.1177/1087057115594589
https://doi.org/10.1016/j.yjmcc.2009.09.019
https://doi.org/10.1371/journal.pcbi.1004242
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1161/01.CIR.103.15.2004
https://doi.org/10.1038/nature10852
https://doi.org/10.1038/clpt.2014.155
https://doi.org/10.12688/wellcomeopenres.9945.1
https://doi.org/10.1038/srep02100
https://doi.org/10.1161/CIRCEP.116.004628
https://doi.org/10.1016/j.bpj.2009.05.062
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1016/j.vascn.2014.07.002
https://doi.org/10.1016/j.pbiomolbio.2015.12.002
https://doi.org/10.1161/01.CIR.81.3.790
https://doi.org/10.1016/j.hrthm.2011.06.014
https://doi.org/10.1016/j.hrthm.2014.06.023
https://doi.org/10.1371/journal.pcbi.1002061
https://doi.org/10.1016/j.vascn.2016.05.016
https://doi.org/10.1016/j.yjmcc.2015.09.003
https://doi.org/10.1016/j.ahj.2009.06.007
https://doi.org/10.1098/rsta.2008.0096
https://doi.org/10.1208/s12248-015-9773-1
https://doi.org/10.1002/jat.1395
https://doi.org/10.1161/CIRCRESAHA.108.175463
https://doi.org/10.1093/cvr/cvt104
https://doi.org/10.1093/europace/euv320
https://doi.org/10.1113/jphysiol.2013.251710
https://doi.org/10.1016/j.ahj.2013.11.004
https://doi.org/10.1371/journal.pcbi.1000914
https://doi.org/10.1038/nn1639
https://doi.org/10.1002/047002142X.ch19
https://doi.org/10.1016/j.bpj.2008.10.056
https://doi.org/10.1007/s40264-013-0016-z
https://doi.org/10.1152/ajpheart.00109.2006
https://doi.org/10.1016/j.ejphar.2004.04.015
https://doi.org/10.1111/bph.13207
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Britton et al. Human Cardiac Drug Block Comparison

Vicente, J., Johannesen, L., Mason, J. W., Crumb, W. J., Pueyo, E., Stockbridge, N.,

et al. (2015). Comprehensive T wave morphology assessment in a randomized

clinical study of dofetilide, quinidine, ranolazine, and verapamil. J. Am. Heart

Assoc. 4:e001615. doi: 10.1161/JAHA.114.001615

Windley, M. J., Abi-Gerges, N., Fermini, B., Hancox, J. C., Vandenberg, J. I., and

Hill, A. P. (2017). Measuring kinetics and potency of hERG block for CiPA. J.

Pharmacol. Toxicol. Methods. doi: 10.1016/j.vascn.2017.02.017
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Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) have

applications in diseasemodeling, cell therapy, drug screening and personalizedmedicine.

Computational models can be used to interpret experimental findings in iPSC-CMs,

provide mechanistic insights, and translate these findings to adult cardiomyocyte

(CM) electrophysiology. However, different cell lines display different expression of ion

channels, pumps and receptors, and show differences in electrophysiology. In this

exploratory study, we use a mathematical model based on iPSC-CMs from Cellular

Dynamic International (CDI, iCell), and compare its predictions to novel experimental

recordings made with the Axiogenesis Cor.4U line. We show that tailoring this model

to the specific cell line, even using limited data and a relatively simple approach, leads to

improved predictions of baseline behavior and response to drugs. This demonstrates the

need and the feasibility to tailor models to individual cell lines, although a more refined

approach will be needed to characterize individual currents, address differences in ion

current kinetics, and further improve these results.

Keywords: cardiomyocytes, stem cell derived, electrophysiology, mathematical model, pharmacology, variability,

computational model

1. INTRODUCTION

Induced pluripotent stem cells (iPSCs) can be generated by harvesting fully differentiated and
mature somatic cells from donors and reprogramming them to the pluripotent state (Takahashi
et al., 2007; Yu et al., 2007). From this state, similarly to embryonic stem cells (ESCs), iPSCs can
be differentiated into cell types used for drug screening, disease modeling, cell therapy, and testing
of personalized treatments (Robinton and Daley, 2012; Shi et al., 2017). But unlike ESCs, iPSCs
are harvested from mature donors, which greatly increases their availability, can provide patient-
specific cells, and avoids ethical issues associated with the use of embryonic cells (Holm, 2008).
Compared to animal ex-vivo cell models, iPSCs avoid issues of inter-species differences in protein
expression and cellular physiology (Houser et al., 2012; Milani-Nejad and Janssen, 2014).
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Differentiation of iPSCs into cardiomyocytes (CMs)
is a relatively well-established methodology (Lian et al.,
2013), allowing iPSC-derived CMs to be used in many
different applications. These iPSC-CMs share some important
characteristics with adult CMs: In terms of gene expression,
iPSC-CMs show a pattern that is consistent with adult CMs
(Kattman et al., 2011; Burridge et al., 2014; Bedada et al., 2016).
Functionally, iPSC-CMs display most major types of ion current
seen in adult CMs, including the fast inward sodium current
(INa), the transient outward potassium current (Ito), the L-
and T-type calcium currents (ICaL and ICaT), the rapid and
slowly activating delayed rectifier potassium currents (IKr and
IKs), and the hyperpolarization-activated pacemaker current
(If) (Ma et al., 2011; Liang et al., 2013; Knollmann, 2013). In
addition, iPSC-CMs can be created with genetic mutations
that are presented in inherited cardiovascular diseases such as
long QT syndrome (Moretti et al., 2010; Itzhaki et al., 2011;
Yazawa et al., 2011; Egashira et al., 2012; Terrenoire et al., 2013),
catecholaminergic polymorphic ventricular tachycardia (Fatima
et al., 2011; Itzhaki et al., 2012; Jung et al., 2012; Kujala et al.,
2012), and arrhythmogenic right ventricular cardiomyopathy
(Ma et al., 2013). Using iPSC-CMs to investigate these mutations
can provide crucial insights into cellular arrhythmia mechanisms
and the genotype-phenotype correlation of cardiovascular
diseases.

In drug screening and discovery, iPSC-CMs can be used to
evaluate proarrhythmic risk. Here, iPSC-CMs can be used as
in vitro models that closely resemble human physiology and
patient-specific conditions (Ebert et al., 2012; Mathur et al., 2015;
Avior et al., 2016). Recently, such in vitro studies have become
more important for drug evaluation (Friedrichs et al., 2005;
Pugsley, 2005; Lindgren et al., 2008; Giorgi et al., 2010) and the
use of iPSC-CMs in drug safety pipelines has been proposed by
the Food and Drug Administration (FDA)-led “Comprehensive
in vitro Proarrhythmia Assay” (CiPA) initiative (Sager et al.,
2014; Ando et al., 2017). As part of CiPA it is intended that
iPSC-CMs act as a check on mathematical model predictions of
pro-arrhythmic risk.

However, some care needs to be taken when interpreting
the results of experiments on iPSC-CMs, as many differences
between iPSC-CMs and adult CMs still exist. For example, iPSC-
CMs have a smaller average cell size (Polak and Fijorek, 2012),
lack T-tubules (Lieu et al., 2009) and have lower contractile force
(Rodriguez et al., 2014). Their calcium handling machinery is
underdeveloped, including changes to calcium-induced calcium
release, buffering in the sarcoplasmic reticulum and recycling
of calcium by SERCA (Sedan and Binah, 2011; Blazeski et al.,
2012), although this is still under debate (Hwang et al.,
2015). The expression levels of some ion channel genes also
show some important differences. Unlike adult CMs, iPSC-
CMs have little IK1 current (van den Heuvel et al., 2014),
and a prominent If current (Knollmann, 2013; Keung et al.,
2014). These different current characteristics of iPSC-CMs
give rise to a relatively positive diastolic potential and slower
upstroke velocity compared with adult CMs. The need to further
understand these sub-cellular differences, to translate findings
in iPSC-CMs to adult myocytes, and to understand how they

relate to cell and tissue-level effects, has driven researchers to
develop computational models of iPSC-CMs (Paci et al., 2013,
2015).

Each iPSC-CM cell line is developed from a donor with a
particular genetic background, using a specific set of protocols
from differentiation to maturation. Besides the differences in
iPSC-CM and adult-CM electrophysiology, differences between
iPSC-CM cell lines have also been shown (Okano et al., 2013;
Priori et al., 2013; Moran et al., 2014; Du et al., 2015). Cell-to-
cell variability of ion current characteristics within a single line
of iPSC-CMs was also observed (López-Redondo et al., 2016)
which, as in adult CMs, can have strong implications for our
understanding of cell electrophysiology and prediction of drug
effects (Mirams et al., 2016).

To use and trust iPSC-CMs as an in vitro model for drug
screening and disease modeling, it is crucial to evaluate
the differences between cell lines and the intra-cell line
variability, and to understand how these differences impact
experimental outcomes (Karakikes et al., 2015; Del Álamo
et al., 2016). Computational modeling can be used to
understand and to quantify this intra- and inter-cell line
variability, and to gain mechanistic insights into iPSC-CM
electrophysiology.

But how detailed does such modeling work need to be? Can a
model based on one cell line be used to make inferences about
another? How much, and what type of experimental data is
needed to tailor a model to a new cell type, or even an individual
cell?

In this exploratory study, we compared electrophysiological
characteristics of the Cor.4U iPSC-CM cell line (Axiogenesis
AG, Germany) to a model by Paci et al. (2013), based
on the Ma et al. (2011) studies of an iPSC-CM cell line
from Cellular Dynamics International (CDI), iCell. First, we
measured the maximum conductances of sodium, calcium
and lumped outward currents in individual Cor.4U cells,
and by comparing this to model predictions we attempted
to infer the maximum conductances of the individual ionic
currents. We focused on the maximum conductances of INa,
ICaL, IKs, INaCa. These maximum conductances were then
used to tailor the Paci et al. (2013) model to create cell-
specific models of 22 different Cor.4U cells. Using these
tailored models to simulate APs, we found a variety of AP
waveforms exhibiting a high level of variability similar to that
found in real iPSC-CMs. We then optically measured action
potential durations (APDs) in iPSC-CM cultures under both
control and drug-applied conditions, and found that—in most
cases—tailored models predicted the resulting changes better
than the original model. This suggests that the ion current
composition differs between cell lines, and highlights the need
to tailor in silico models to different cell lines to interpret
drug-induced alterations to their electrophysiology. Our results
also show that even a relatively simple approach, in which
only the maximum conductances are considered with limited
experimental data, can already provide useful information in
this regard, but that more intricate methods will be needed to
characterize differences in outward currents between iPSC-CM
cell lines.
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2. METHODS

2.1. Current Measurements in Cor.4U Cells
Sodium, calcium, and lumped outward currents were measured
in Cor.4U cells in the whole-cell patch clamp configuration
using theNanion SyncroPatch 96 platform (Nanion Technologies
GmbH, Germany). Sodium and lumped outward currents were
measured using an intracellular solution containing (in mM)
50 KCl, 60 KF, 10 NaCl, 10 HEPES, and 20 EGTA (pH: 7.2),
and a bath solution containing (in mM) 150 NaCl, 4 KCl, 1
MgCl2, 1.2 CaCl2, 10 HEPES, and 5 glucose (pH: 7.4). Calcium
current recordings were made using an intracellular solution
containing (in mM) 50 CsCl, 60 CsF, 10 TEA-Cl (a potassium
current blocker), 5 HEPES, 10 EGTA, 4 Na2-ATP, 0.1 Na-GTP,
and 0.1 cAMP (pH: 7.2) and a bath solution containing (in mM)
130 NMDG, 10 BaCl2, 4 CsCl2, 1 MgCl2, 2 CaCl2, 10 HEPES,
and 5 glucose (pH: 7.4). All currents were recorded at room
temperature.

For the sodium current measurements, cells were held at
−80mV and then stepped to potentials ranging from −60 to
60mV with 10mV increments, before returning to the holding
potential. The step duration was 20ms and the interval between
steps was 5 s. The calcium current experiments used a similar
protocol, but with 200ms steps from −40 to 40mV. Outward
current was measured with 500ms steps from−40 to 50mV, with
a 10 s interval between steps. All three protocols are shown in
Supplementary Figure S1.

For the outward current experiments, we fitted directly to
the experimental current traces (see section 2.5), and so leak
correction was applied using Ileak = V/Rleak where Rleak was the
leak resistance estimated at the holding potential. Capacitance
artifacts were filtered out by omitting the first 10ms after each
change in potential (see e.g., Ogden and Stanfield, 1994).

2.2. Patch Clamp AP Measurements in
iPSC-CMs
Action potentials in iCell iPSC-CMs (CDI, USA) plated
on coverslips were measured in whole-cell patch clamp
configuration using a HEKA amplifier (EPC 10 USB Triple,
HEKA Elektronik, Germany). Recordings were made using a
pipette solution containing (in mM) 10 NaCl, 125 KCl, 1 MgCl2,
10 HEPES, 0.1 Na3GTP, 5 Mg-ATP, 5 EGTA (pH 7.2) and a
bath solution containing (in mM) 150 NaCl, 4 KCl, 1.2 CaCl2, 1
MgCl2, 10 HEPES (pH 7.4). Cells were stimulated at a frequency
of 1.0Hz, for at least 50 cycles before recording.

2.3. Optical Mapping AP Measurements in
Cor.4U Cultures
Action potentials were recorded from Cor.4U cultures with
optical mapping using the CellOPTIQ electrophysiology
platform (Clyde Biosciences Ltd). Cells were incubated in serum-
free media at 35 ± 2◦C, and transiently loaded with voltage
sensitive fluorescent dye di-4-ANEPPS (20µL of stock solution
27mM in ethanol; University of Connecticut Health Center). The
loaded dye was then excited with a peak wavelength 470 nm LED,
and the emitted fluorescence from the Cor.4U iPSC-CMs was
recorded at a sample frequency of 10 kHz. Measurements were

performed before and after addition of Dofetilide, Quinidine,
Sotalol and Verapamil at the concentrations shown in Table 1.
Paracetamol was applied as a negative control.

A semi-automatic data analysis method based in Wang et al.
(2015) was employed to normalize the data. In short, heuristics
were used to form an initial estimate of the start and end time
of the AP. The region just before the estimated upstroke was
used to determine Vnormalized= 0, while the 95th percentile of the
data during the (estimated) AP was used as Vnormalized= 1. We
then calculated the final APD90 and APD50 from this normalized
signal.

2.4. Simulated Experiments
Simulations of the patch clamp protocols were carried out
using the model by Paci et al. (2013). Initial intracellular and
extracellular ion concentrations were set to the values used in
the experiments. For the INa, ICaL, and Ioutward voltage clamp
experiments, concentrations were clamped (corresponding to
the buffering effects of the pipette), but for AP simulations
concentrations were allowed to vary following model equations.
The temperature parameter in the model, which affects reversal
potentials as well as ICaL permeability and IKr, INaK, and INaCa
kinetics, was set to 25◦C (298K) to match the experimental
temperature. Simulations were run using Myokit (Clerx et al.,
2016), with CVODE (Hindmarsh et al., 2005) set to the
default tolerance settings of abs_tol= 10−6 and rel_tol= 10−4.
Model code was imported from a CellML (Cuellar et al.,
2003) file downloaded from the Physiome model repository
(Yu et al., 2011). Numerical integration was carried out using
NumPy/SciPy (Jones et al., 2001). All codes and data are
freely available from https://gitlab.com/MichaelClerx/tailored-
ipsc-models.

2.5. Estimating Maximum Conductances of
Individual Ion Currents
The maximum conductance of INa was estimated by scaling the
INa conductance in the Paci model to match the peak current
recorded experimentally with the sodium protocol (n= 35 cells),
based on the assumption that the peak current is composed of
INa alone. We tested this assumption by running a simulated
experiment, where we observed that INa alone would reach 1.01×
the initial inward deflection after each voltage step. So the peak is
almost entirely due to sodium and only decreased slightly by the
presence of other currents. Similarly, the recordings made with
the calcium protocol (n= 25 cells) were used to directly infer the
maximum conductance of ICaL.

To estimate the conductances of the remaining major
currents, we used the recordings made with the outward-current
protocol (n = 22 cells). Using the iPSC model by Paci et al.
(2013) we simulated the response to this protocol of INa, ICaL,
IK1, IKr, IKs, Ito, If, and INaCa (see Supplementary Figure S2).
We then tried to find a weighted sum of these simulated
currents that could replicate the measured signal. This was done
by minimizing the sum of square errors between measured
and simulated current during the voltage steps, using the
optimization method CMA-ES (Hansen, 2006). The procedure
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TABLE 1 | Summary of the applied reference drugs which are a variety of multi-channel blockers, including the IC50 values for the corresponding ion channels, and the

applied drug concentration (x).

IC50 [µM] Dofetilide Quinidine Sotalol Verapamil

IKr 0.0052a 0.3b 111.4d 0.25d

INa 147.9a 16.6c 7013.9d 32.5d

ICaL 26.7a 15.6c 193.3d 0.2d

IKs 415.8a No significant effect No significant effect No significant effect

x [µM] 0.03, 0.1, 0.3, 1.0 0.01, 0.1, 1.0, 10 0.3, 3.0, 30, 300 0.01, 0.1, 1.0, 10

The IC50 data are from a, Obejero-Paz et al. (2015); b, Po et al. (1999); c, Mirams et al. (2011); and d, Kramer et al. (2013).

was repeated for each of the 22 measured cells, resulting in a
unique set of scaling factors per cell.

While this protocol was intended to find values for only
the outward currents (such as IKr, IKs, and Ito) we chose to
vary the inward currents INa and ICaL in the optimization to
reduce the risk that any inward currents in the signal would
erroneously be attributed to the outward currents (see e.g., Sarkar
and Sobie, 2010). Note that we do not use these fitted INa and
ICaL conductances because we fit these from other dedicated
experiments; they were included here just to yield more accurate
outward current fits. After finding that the most prominent
outward currents were IKs and INaCa (see section 3.2), we ran a
second optimization with only IKs and INaCa: little change was
observed, but we expect that fitting outward currents together
with INa and ICaL is likely to yield slightly more accurate results.

Convergence of the optimization results was verified by
repeating the process 10 times, using different random seeds
for each run. We found that the L2 norm of the difference
between the first and repeated scaling factor vectors was smaller
than 10−5 for all 10 random starting points. To further verify
the identifiability of the problem, we performed the same
analysis on synthetic data (with synthetic noise), and were
able to successfully infer the conductance scaling factors (see
Supplementary Figure S4 and Supplementary Table S1). We note
that this analysis assumes the kinetics of the currents have low
model discrepancy, i.e., reflect the kinetics of the real currents
well.

Finally, to quantify the contribution of each current to the
total outward current, we defined a contribution score ci for each
current Ii as:

ci =
|Ifinal,i|

∑

j |Ifinal,j|
(1)

where Ifinal,i was defined as the current measured at the end of the
final step of the outward-current protocol. This measure simply
gives us a sense of the proportion of outward current that is
contributed by each individual component during the end of the
50mV step, but it is not used in tailoring the models.

2.6. Predicting the Shape of the AP
Next, the estimated maximum conductances were used to tailor
the Paci et al. (2013) model to individual cells from the Cor.4U
cell line. A total of 22 model variants were parameterized,

corresponding to the 22 cells for which the outward current was
measured. Since we found many currents were not discernible in
the recorded outward current (see Table 2), we only applied the
cell-specific scaling factors for IKs and INaCa. All tailored models
used the same INa and ICaL scaling factors, found in the inward
current experiments which were measured in different cells and
hence any covariance could not be accounted for. The remaining
currents were left unchanged, as they are necessary for other
cellular behavior, such as homeostasis, even though they might
not contribute strongly to the recorded outward current. Note
that we have used only linear scaling of the conductances, and the
current kinetics of the original currents were not altered. Finally,
Na+, K+, and Ca2+ evolve in time according to the Paci et al.
(2013) model, to mimic the intact cell conditions of our optical
mapping experiments.

These tailored models were then used to simulate baseline
APs, as well as APs with drug perturbation. The effects of drugs
on ion current maximum conductances were modeled using the
Hill equation (Hill, 1910; Weiss, 1997).

f (x) =
1

1+ (x/IC50)h
(2)

where x denotes the concentration of the applied drug, IC50 is
the inhibitory concentration 50% value, h is the Hill coefficient,
and f (x) is a scaling factor for the maximum conductance that
varies from 0 (full block) to 1 (no block).

For each cell and each drug, a model was created where
the maximum conductances of the ion currents were scaled
according to Equation (2) using the IC50 values from Table 1

and a Hill coefficient of 1.0. For comparison, the same scaling
factors were applied to an original model with the untailored
conductance values from Paci et al. (2013).

In our optical mapping experiments, cells formed a
spontaneously-beating and electrotonically-coupled monolayer.
However, in this preparation not all cells beat at their
spontaneous rates. Most cells will fire an AP when triggered
by an activation wave from their neighbors rather than
spontaneously, and a relatively small region of (by definition)
faster spontaneously-beating cells sets the pacing rate for the
entire monolayer. Therefore, to mimic this effect, we paced
the cells at the mean rates observed in the optical mapping
experiments, for a given compound, to account for any AP rate
dependency. We used the cycle lengths of 1.375 s for Dofetilide,
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TABLE 2 | The scaling factors (s) and the relative contribution (c) of individual ion currents to the measured outward current in Cor.4U cells (n = 22).

Cell INaCa IKs IKr IK1 If

s c s c s c s c s c

1 3.32 28.5 139 71.2 — — — — — —

2 2.08 21.2 129 78.5 — — — — — —

3 7.55 50.3 125 49.5 — — — — — —

4 21.1 43 467 56.8 — — — — — —

5 6.89 29.9 270 70 — — — — 1.18 —

6 9.3 42.4 211 57.4 — — — — — —

7 0.951 29.6 37.6 69.9 — — — — — —

8 1.54 56.7 19.5 42.8 — — 0.118 0.000258 — —

9 1.7 35.2 52 64.3 — — — — — —

10 1.67 98.6 — — — — 0.104 0.000362 — —

11 0.38 16.7 31.5 82.5 — — — — — —

12 0.696 38.2 18.6 60.9 — — — — — —

13 3.05 25 153 74.7 — — — — — —

14 1.28 14.7 125 84.9 — — — — — —

15 1.19 34.1 38.3 65.3 — — — — — —

16 3.02 51.4 47.3 48 — — — — — —

17 2.35 59 27 40.4 — — — — — —

18 4.03 32.7 138 66.9 — — — — — —

19 5.74 73.4 28.9 22 1.84 4.5 0.513 0.000388 — —

20 2.35 80.5 9.18 18.8 — — 1.18 0.0024 — —

21 3.77 40.2 93.7 59.6 — — — — — —

22 13.9 44.6 288 55.1 — — — — — —

Values lower than 10−10 are shown as dashes (—). The scaling factors are taken with respect to the maximum conductance found in the original Paci et al. (2013) model. Ito values

were lower than 10−10 for all cells. Because of the many low values for Ito, IKr, IK1, and If, only the values for INaCa and IKs were used to create the tailored models.

1.176 s for Quinidine, 0.933 s for Sotalol, 0.905 s for Verapamil
and 1.0 s for Paracetamol and all other experiments. To allow
direct comparison with the optical mapping data, the simulated
AP was normalized using the same algorithm (see section 2.3).

3. RESULTS

3.1. INa and ICaL in Cor.4U Cells
Figure 1 shows the peak current-voltage relationships for INa
and ICaL, measured in Cor.4U cells. The mean peak current
in 35 cells (INa) and 25 cells (ICaL) is plotted, as are the 25th
and 75th percentiles. Compared to the prediction of the original
Paci et al. (2013) model (created from iCell iPSC-CM data),
the experimental data show a lower amplitude of both currents
in Cor.4U cells. We had to scale by a factor 0.69 to match
the mean peak INa, and 0.80 to match the mean peak ICaL
recordings. The simulated INa peaked at the same potential as
the experimental data, suggesting the activation kinetics of INa in
iCell and Cor.4U cell lines are similar. The simulated ICaL kinetics
followed the Paci et al. (2013) model, and were left-shifted
relative to experimental data. Further experiments established
that this shift was due to a right-shift in the experimental IV
curve due to Ba2+ being present in the ICaL voltage clamp
experiment bath solution (see Supplementary Figure S3), hence
we do not adjust the kinetic terms and tailor only the maximum
conductance.

3.2. The Outward Protocol Strongly Elicits
IKs
Figure 2 (left panel) shows the current measured with the
outward-current protocol in a single Cor.4U cell. To analyse the
composition of this current, we simulated the same protocol, and
looked for a sum of scaled transmembrane currents from the Paci
et al. (2013) model that gave a similar result (see section 2.5).
We repeated this process for each of the 22 cells with measured
outward current, and obtained the scaling factors s for each cell
and current shown in Table 2. Note that the scaling factors s are
relative to the original Paci et al. (2013) model. In many cases, the
optimization routine indicated that the kinetic profile of certain
currents was not discernible in the measured outward current.
This is indicated in the table with a dash (—) for any scaling factor
smaller than 10 -10. After seeing these results, as a comparison,
we also tried fitting by varying only IKs and INaCa (and using the
scaling factors for INa and ICaL determined previously), and the
results are similar (see Supplementary Table S2).

For most cells, we found that the measured responses differed
greatly, in both the shape and size of the currents, from
the original model predictions (see Supplementary Figure S4),
leading to a poor quality of fit (see Supplementary Figure S5).
As a result, the best reconstructions of the simulated current
relied almost entirely on a greatly amplified IKs current, along
with strong INaCa, while other currents such as IKr and If were
notably absent. Based on this, we might assume that IKs and
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FIGURE 1 | Current-voltage relationship for INa (left) and ICaL (right). The red lines represent the mean peak current measured experimentally in 35 (INa) and 25 cells

(ICaL), and the shaded areas show the 25th and 75th percentiles of the experimental data. The peak-current voltage relation simulated with the unaltered Paci et al.

(2013) model for the same protocol is shown in blue. The orange lines show the simulated results after scaling to match the maximum current.

FIGURE 2 | Left: Experimentally measured outward current in cell 19 during the outward protocol. Data to the left of the vertical red was omitted to remove

capacitance artifacts. Right: Simulated transmembrane current during the same protocol, as set during the optimization process for cell 19. Note that this figure

includes all scaling factors set by the optimization routine (see section 2.5), including ones not included in the final tailored models (such as INa and IKr). More

examples of fits are shown in Supplementary Figure S5.

INaCa are more strongly expressed in Cor.4U cells than in the
iCell cells the Paci et al. (2013) model was based on. As an initial
verification of these findings, we repeated some outward current
measurements in the presence of Chromanol (an IKs blocker),
see Supplementary Figure S6 for an example where IKs is indeed
significant. The near-zero contributions of other currents (e.g.,
IKr) does not imply that these currents are completely absent in
Cor.4U cells, but instead suggests that the currents as simulated
from the model could not be found in our recordings using the
specified patch clamp protocol. This is a strong hint that changes
to the kinetics of the currents will be required to accurately
simulate the ion currents in Cor.4U cells at this temperature
using the model by Paci et al. (2013). Such a mismatch in

kinetics would also explain the large remaining errors between
measurements and fit seen in Supplementary Figure S5, causing
other currents, such as IKr, to be fitted as absent. This is discussed
further in section 4.4.

3.3. Tailored Models
We then created tailored models by modifying the original Paci
et al. (2013) model in two ways: First, we scaled the maximum
conductances of INa and ICaL by a factor 0.69 and 0.8 respectively,
to match the averaged data from the inward current experiments.
We then further modified this model to create 22 tailored models
based on the 22 cells in which outward current was measured, by
applying the IKs and INaCa scaling factors from Table 2.
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3.4. Variability in Ioutward Predicts Variability
in AP
Significant variability in the outward currents was observed
among the Cor.4U cells. This can be seen from the scaling
factors in Table 2, but it is also evident when directly inspecting
the currents measured from different cells (see Supplementary
Figure S5) or when looking at peak Ioutward (see Supplementary
Figure S7).

Figure 3 (left panel) shows APs simulated with the tailored
models. A wide variety of APs could be seen, with some
models showing a spike-and-dome waveform, some showing a
more triangular waveform, and with a varying slope in resting
potential (leading to different degrees of auto-excitation). Some
models also show beat-to-beat alternans, or fail to completely
depolarize. The corresponding contribution of themajor currents
throughout the APs are also shown in Supplementary Figure S8.

Recordings of APs in single iPSC-CMs show a similar variety
of AP waveforms. Figure 2 (right panel) shows APs measured
in 7 different iCell iPSC-CMs. Again, various waveform
morphologies (roughly corresponding to atrial, ventricular and
sinoatrial node APs) and differing levels of auto-excitability can
be distinguished. Whilst these recordings are for a different cell
line than our tailored models, the inter-cell variability in channel
expression within a batch of iPSC-CMs has not been observed to
be markedly different between cell lines (see e.g., the relative size
of the “error bars” in Figure 2 of Blinova et al., 2017).

3.5. Tailored Models Improve Predictions of
APD
Figure 4 (left panel) shows the median of all simulated traces as
shown in Figure 3, along with the 25th and 75th percentiles. The
optically recorded APs from the Cor.4U cells were plotted on the
same graph (the median shown as black line and the 25th and
75th percentiles shown as gray shading). Due to the increased
outward current, the tailored models exhibit a shorter APD
than the original model, that matches the measured APDs more

closely in the early and late repolarization phase. A histogram
of APDs in measured and simulated cells is shown in Figure 4

(right panel), with the blue line representing the result from
the original model. A similar histogram for APD50 is shown in
Supplementary Figure S9.

3.6. Tailored Models Can Give Better
Prediction of Drug Block Effects
Figure 5 shows the dose-response curves of the APD90 of four
drugs, measured experimentally and simulated using the original
and tailored models. Equivalent results using the of the APD50

are shown in Supplementary Figure S9. Results for the control
drug paracetamol are shown in Supplementary Figure S10. For
all four drugs tested, although not fitting the experimental data
exactly, the tailored models match the measured data more
closely than the original model. For Dofetilide in particular,
the tailored models show a realistically smaller increase in
APD than the original model, which shows alternans and
then repolarization failure at higher drug concentrations. For
Quinidine, although the tailored models do not fit better at
the highest concentration, we improve the predictions at lower
concentrations.

Predictions made with the adult-CM model by O’Hara et al.
(2011) are shown for comparison. Note how the adult CMmodel
predicts APD prolongation with Verapamil, whereas both the
tailored and original iPSC-CM models accurately predict the
shortening that is observed in iPSC-CM optical mapping. Such
qualitative differences highlight the need for models specific to
iPSC-CMs to interpret experimental findings in these cells.

4. DISCUSSION

Pre-clinical studies with iPSC-CMs can be used to evaluate
proarrhythmic risk of compounds at the early drug discovery
and development phase for compound optimization, and these
experimental results can directly contribute to the design of safe

FIGURE 3 | Predicted variability in the tailored action potential models is similar to inter-cell variability in a batch of iPSC-CMs. Left: Simulated APs from the 22 tailored

cell-specific Cor.4U models exhibit a variety of AP waveforms. Right: Experimentally measured APs in seven individual iCell iPSC-CMs also show significant variability.
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FIGURE 4 | Left: The predicted 1Hz steady pacing APs from the individual cell optimized models (orange), the original Paci model (dashed blue), and optical

mapping measurements (black) in the control conditions. We show the median and 25th and 75th percentiles of the optical mapping (gray) and action potential

models (orange). All data shown are normalized (see section 2.3). For models that exhibited strong alternans (i.e., where only every second AP showed a

spike-and-dome morphology) the longer of the two APs was used. Right: A histogram of APD90 in the fitted models and optical mapping control (drug free)

experiments. As we might expect, there is more variation in APD in the individual-cell tailored action potential models than the electrotonically-coupled tissue

measurements, but the distribution is centred appropriately.

first-in-human doses. Ideally, for reliable risk identification and
translation, the electrophysiology of iPSC-CMs should accurately
reflect that of adult cardiomyocytes. Yet the characteristics of
iPSC-CMs are influenced by donor genetic background as well
as differentiation and maturation protocols, and so differences
between iPSC-CM cell lines may be expected, as well as
differences from adult CMs. Mathematical models of the cellular
AP can be used to gain mechanistic insight into such differences
and to build a quantitative translational framework between
iPSC-CMs and human adult CMs.

In this study we compared novel measurements in Cor.4U
iPSC-CMs with predictions from a model based on the iCell
cells. We found a decrease in INa and ICaL current densities,
but a large increase in IKs and more modest increases in INaCa.
Using the simple method of scaling maximum conductances—
without altering ion current kinetics—we created models tailored
to individual iPSC-CMs. The obtained fits were not optimal,
which suggests that the ion current kinetics in the iCell-
cell based model by Paci et al. (2013) do not closely match
those in Cor.4U cells. However, like real iPSC-CMs, these
tailored models show differences in AP from cell to cell,
with AP waveforms broadly similar to ventricular, atrial and
sinoatrial-node APs. The predicted single-cell APD90 was
shorter in tailored models than in the original model, and
showed a better match with optical mapping measurements
in electrotonically-coupled iPSC-CM cultures. The effects of
Dofetilide, Quinidine, Sotalol and Verapamil on APD were
simulated, and again the tailored models provided a closer fit.
These results show that there are important electrophysiological
differences between iPSC-CM cell lines, but that relatively simple
adjustments to computational iPSC-CM models can already
partially accommodate them. This has important implications
for the suggested drug-screening workflows: one should really

combine both iPSC-CM measurements and computational
modeling of iPSC-CM for better interpretation of the iPSC-CM
data in terms of its variability and translational power.

4.1. Cell-Line Differences in Ion Current
Densities
We obtained maximum conductance values for the inward
currents INa and ICaL that are lower than suggested by the
Paci et al. (2013) model based on iCell cells, while IKs
and INaCa were increased in most Cor.4U cells. The slight
reduction in ICaL and increase in IKs suggests a decrease
in APD. This was borne out by the AP simulations, and
was consistent with our optical mapping measurements which
showed shorter APDs compared to the AP simulated by
the original Paci model. Our simulations displayed a similar
degree of AP variability to the experimental iPSC recordings,
but larger variability than the optical mapping measurements.
Both findings are consistent given that electrotonic coupling
of cells (present in the optical mapping experiments) reduces
variability.

A potential explanation of the large IKs current is suggested
by Lei et al. (2017). It shows that both the KCNQ1 and
KCNE1 (subunits of the channel carrying IKs) were present in
our Cor.4U cells, however, KCNE1 was not as well expressed
in iCells. The difference in KCNE1 expression could lead to
the observed larger IKs currents in the Cor.4U cells compared
to iCells, and hence a shorter APD and less prolongation
under IKr blockers, which is in agreement with Blinova et al.
(2017). Our observation is supported by Silva and Rudy
(2005) who found that native IKs (from channels comprised of
both KCNQ1 and KCNE1) activates more than with KCNQ1
only.
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FIGURE 5 | Dose-response curves of the APD90 for four drugs: Dofetilide, Quinidine, Sotalol, and Verapamil. The individual optical mapping measurements are

shown as black dots, with the median shown as a dotted black line. Predicted responses from the original model are shown in blue, and the tailored model predictions

are shown in orange (solid line is median and shaded region indicates 25th–75th percentiles. Models (tailored or original) that exhibited strong alternans (i.e., where

only every second AP showed a spike-and-dome morphology) were omitted from the figure. Because this caused the number of predictions in the tailored model

distribution to vary, the minimum and maximum number of predictions per drug is shown as n = minimum − maximum. At higher concentrations, Dofetilide block

causes repolarization failure in both the original model and the O’Hara model.

4.2. Cell-to-Cell Differences in iPSC-CMs
iPSC cardiomyocytes, from the same donor and
differentiated/matured in the same way, can display vastly
different AP waveforms, reminiscent of those of ventricular,
atrial, and sinoatrial-node cells. Our tailored models, created
by varying the maximum conductances of INaCa and IKs,
showed a similar model-to-model (cell-to-cell) variety in style of
generated APs. This shows that variation in genetic expression,
which correlates directly with maximum conductance (Schulz
et al., 2006), could be enough to explain the different AP
waveforms observed in iPSC-CMs. However, it does not
preclude other explanations, and it is possible the APs could
take on a more distinct shape if differences in ion channel
kinetics were also included. As discussed in a recent white
paper, the inclusion of cell-cell variability, as well as variability
between cell lines is an important research area (Johnstone et al.,
2016).

4.3. Predictions of Drug Action
The sharp increase in IKs seen in our Cor.4U tailored models
suggests Cor.4U cells have a stronger reliance on IKs as a
repolarizing force, and will therefore be less likely to show AP
prolongation when treated with IKr blocking drugs (see, e.g., the
Figure 5 of Blinova et al., 2017, which shows, for 8 out of 12 drugs
with comparable concentrations and prolongation in iCells, the
Cor.4U cells have a smaller APD prolongation than the iCells).
Consistent with this suggestion, simulations of treatment with
the potent IKr blocker Dofetilide showed only a modest increase
in APD at concentrations that caused the iCell-cell based model
to display excessive AP prolongation resulting in alternans.
Treatment with Quinidine, a less potent IKr blocker, showed
similar results. The modest APD increase predicted by the
tailored models underestimated the APD prolongation observed
in the data, suggesting the role of IKr as a repolarizing force was
underestimated in these models. More refined experiments will
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need to be conducted to separate the outward currents and to
better estimate IKr conductance. Application of Verapamil, which
blocks ICaL as well as IKr, had a smaller effect in our tailored
models than in the original model, which is consistent with the
lowered levels of IKr and ICaL.

The strong IKs-reliance we observedmay be problematic when
using these iPSC-CMs as models for ventricular myocytes, where
IKs only plays a major part when other repolarizing currents are
blocked or in the presence of sympathetic stimulation (Jost et al.,
2005).

4.4. Limitations and Future Work
This study showed the need to build cell-line or even cell-
specific models for iPSC-CMs, and this work serves as a pilot
attempt for such an approach. However, a refined study with
additional experiments will be needed to improve the tailored
models further.

As might be expected, the ion current profiles during voltage
steps could not be recreated well using this approach. It is likely
that ion channel kinetics also vary between cell lines due to (e.g.,)
differences in subunit expression (Lei et al., 2017), although this
could also be partly due to the difference of temperature, and that
the model we used does not accurately capture the kinetics of
ion currents in Cor.4U cells. Channel kinetics play an important
role in the contribution of a current to the different phases of
the AP. Modifying the kinetic parameters which characterize
the voltage-current relationship for the activation, inactivation,
deactivation, etc. of a channel could change both the current
and the AP, and would influence responses to drugs. Varying
the kinetic parameters would also alter the conductances we
estimated by fitting the outward current. Further tailoring the
models to include refitted kinetic parameters may lead to further
improvements in predictive power. However, since models of ion
channel kinetics contain many parameters, specifically designed
experiments (e.g., with channel blockers and/or specialized
voltage protocols) will be required to refine these tailored
models.

The method of fitting multiple currents to a single
experimental recording is a highly useful approach, as it reduces
the number of experiments needed to tailor a model. However,
due to the limitation of experiments being performed in
different cells, we were not able to examine the covariance
between the inward and outward currents. Also, since it depends
on the number of current conductances to be fitted and
the experimental data (e.g., the quality of the data and the
actual current shape), one may run into problems of practical
identifiability if one tries to refit kinetic parameters here (e.g.,
multiple combinations of conductance and kinetic parameters
that can provide an equally good fit, as in Fink and Noble,
2009). Additional experimental data with refined experimental
designs will be needed to identify all parameters; for example,
to perform experiments with channel blockers to isolate the
contribution of particular currents, or to iteratively refine the
models using a dynamic clamp approach (Devenyi et al.,
2017).

Variability/noise on drug-ion channel interaction parameters
(IC50s) from different labs or repeats of experiments will also

impact our simulation predictions. A probabilistic uncertainty
quantification framework using the techniques proposed in
Elkins et al. (2013), Johnstone et al. (2017) could be used in future
to address this.

Our Cor.4U-tailored predictions of both baseline AP and drug
responses matched the optical mapping data more closely than
the un-tailored model. However, these optical mapping data were
gathered from cultures of spontaneously beating electrotonically
coupled cells, while our simulations are of paced single iPSC-
CMs. Another avenue for future work would be to combine (a
representative distribution of) tailored cell-specific models into
heterogeneous tissue models (Bowler et al., 2016).

4.5. Implications for Drug Testing
iPSC-CMs have gained significant popularity as an in vitro
model for drug screening and, as one pillar of the CiPA
strategy, are anticipated to become a routine part of the
cardiac safety pipeline. It is therefore critical to understand
how to interpret the iPSC-CM data variability (intra- and inter-
cell line variability) and to translate these data to the adult
human situation. Mathematical models are a promising tool
to integrate data, gain mechanistic insights and perform this
translation.

Our results show that differences between iPSC-CM
cell lines can be analyzed and understood using tailored
computational models. Furthermore, even models based on
relatively simple methods (e.g., scaling maximum conductances)
and a limited set of measurements (two inward current and
one outward current experiments) can lead to improved
predictions of baseline and drug-blocked electrophysiology
parameters.

5. CONCLUSIONS

Using a combination of novel experiments and computational
work, we have shown that Cor.4U cells display different ion
current densities than the previously characterized model, which
is based on iCell data. This included an increased reliance on IKs
for repolarization with an accompanying decreased reliance on
IKr. Incorporating these effects in cell-specific models of iPSC-
CMs correctly predicted that this would lead to a shortening
of the baseline APD and a reduced reaction to IKr-blocking
drugs. These predictions were confirmed in optical mapping
experiments with reference drugs, although further refinements
to these methods are clearly needed. We conclude that tailoring
models to specific cell lines—even with imperfect information—
will be a valuable tool for understanding the electrophysiology
of iPSC-CMs and the actions of ion channel-blocking
drugs.
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Background: Human induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs) have emerged as a promising experimental tool for translational

heart research and drug development. However, their usability as a human adult

cardiomyocyte model is limited by their functional immaturity. Our aim is to analyse

quantitatively those characteristics and how they differ from adult CMs.

Methods and Results: We have developed a novel in silico model with all essential

functional electrophysiology and calcium handling features of hiPSC-CMs. Importantly,

the virtual cell recapitulates the immature intracellular ion dynamics that are characteristic

for hiPSC-CMs, as quantified based our in vitro imaging data. The strong “calcium clock”

is a source for a dual function of excitation-contraction coupling in hiPSC-CMs: action

potential and calcium transient morphology vary substantially depending on the activation

sequence of underlying ionic currents and fluxes that is altered in spontaneous vs.

paced mode. Furthermore, parallel simulations with hiPSC-CM and adult cardiomyocyte

models demonstrate the central differences. Results indicate that hiPSC-CMs translate

poorly the disease specific phenotypes of Brugada syndrome, long QT Syndrome

and catecholaminergic polymorphic ventricular tachycardia, showing less robustness

and greater tendency for arrhythmic events than adult CMs. Based on a comparative

sensitivity analysis, hiPSC-CMs share some features with adult CMs, but are still

functionally closer to prenatal CMs than adult CMs. A database analysis of 3000

hiPSC-CM model variants suggests that hiPSC-CMs recapitulate poorly fundamental

physiological properties of adult CMs. Single modifications do not appear to solve this

problem, which is mostly contributed by the immaturity of intracellular calcium handling.

Conclusion: Our data indicates that translation of findings from hiPSC-CMs to human

disease should be made with great caution. Furthermore, we established a mathematical

platform that can be used to improve the translation from hiPSC-CMs to human, and

to quantitatively evaluate hiPSC-CMs development toward more general and valuable

model for human cardiac diseases.

Keywords: human induced pluripotent stem cell-derived cardiomyocytes, excitation-contraction coupling,

arrhythmias, repolarization, computational modeling
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INTRODUCTION

Human induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs) have emerged as promising tools for cardiac
research. In theory, hiPSC-CMs provide an accessible source of
human cardiomyocytes without ethical and practical concerns
that entail the use of human cardiac tissue or cells. From
the experimental point of view hiPSC-CMs also solve the
problems related with inter-species comparisons, thus enhancing
the translation between basic research and clinical science.
Moreover, since hiPSC-CMs retain the genetic identity of the
individual donor, they enable generation of patient- and disease-
specific cells that can be employed in procedures of personalized
medicine. While hiPSC-CMs have become useful and popular
cellular models to study mechanisms of human cardiac diseases
(Blazeski et al., 2012; Iglesias-García et al., 2013; Eschenhagen
et al., 2015) and for drug screening (Zeevi-Levin et al., 2012; Engle
and Puppala, 2013), increasing attention has been paid to the
question how similar they are compared with the adult human
cardiomyocytes (Knollmann, 2013; Hwang et al., 2015; Kane and
Terracciano, 2015).

Initially, justification for using hiPSC-CMs as a model for
human cardiomyocytes came from the notion that they express
most of the basic components underlying excitation-contraction
coupling, membrane voltage regulation and even signaling
cascades of cardiac myocytes (Ivashchenko et al., 2013; Karakikes
et al., 2015). Furthermore, hiPSC-CMs have ion currents for
depolarization (INa, ICaL, If) and repolarization (Ito, IKr, IKs, IK1)
of the membrane, which together produce, in subpopulations
of hiPSC-CMs, action potential (AP) waveforms resembling
that of human cardiomyocytes (Karakikes et al., 2015). hiPSC-
CMs also express the central components of cardiac excitation-
contraction (E-C) coupling, including L-type calcium channels
and sodium-calcium exchangers (NCXs) (Ma et al., 2011; Yazawa
et al., 2011; Zhang X.-H. et al., 2013; Uzun et al., 2016), as
well as structures and proteins for sarcoplasmic reticulum (SR)
calcium release and uptake (Germanguz et al., 2011; Itzhaki
et al., 2011; Lee et al., 2011; Zhang X.-H. et al., 2013; Kim et al.,
2015). However, the environment where all these components
operate and interact differs substantially from the native or
mature one. That is, compared to adult cardiomyocytes, hiPSC-
CMs are much smaller and instead of having a rectangular
shape they can also be round or polygonal (Hwang et al.,
2015). Furthermore, iPSC-CMs lack a regular ultrastructure
(Gherghiceanu et al., 2011; Itzhaki et al., 2011) and T-tubule
network (Li et al., 2013; Kane et al., 2015). This results in
poor co-localization of calcium channels and ryanodine receptors
(RyRs) as well as non-uniform distribution of calcium release
(Gherghiceanu et al., 2011; Rao et al., 2013). Therefore, in hiPSC-
CMs the upstroke and decline rates of the whole-cell Ca2+

signals are substantially slower than in adult cardiomyocytes
(Lee et al., 2011; Hwang et al., 2015). The emerging function
has characteristics not shared with adult cardiomyocytes such as
spontaneous beating, depolarized diastolic membrane potential,
flat action potential duration restitution, slow Ca2+ signals
and negative force-frequency relationship (Kane et al., 2015;
Karakikes et al., 2015).

To evaluate quantitatively the translational potential of hiPSC-
CMs, we constructed a mathematical model recapitulating their
common in vitro features. Previous mathematical hiPSC-CM
models focused mainly on the action potential morphology and
sarcolemmal ion currents (Zhang H. et al., 2012; Paci et al., 2015).
However, for a side-by-side comparison with detailed models of
adult cardiomyocytes a more comprehensive hiPSC-CM model
is required. One central feature to be included into such a model
is a realistic representation of calcium dynamics, as well as
cell-type-specific interplay between Ca2+ signals and membrane
voltage. Employing the novel in silico hiPSC-CM model in
standard simulations, sensitivity analysis and construction of a
screenable database enabled us to (1) study the physiological
properties of hiPSC-CM, (2) probe the biological relevance of
the phenotypic variability of hiPSC-CMs reported in vitro, (3)
compare properties side-by-side to human adult ventricular
(Grandi et al., 2010) and atrial (Grandi et al., 2011) myocytes
as well as to embryonic cardiomyocytes (Korhonen et al., 2010),
and (4) explore to what extent different heart diseases can be
recapitulated in hiPSC-CMs.

RESULTS

Structural and Functional Characteristics
of hiPSC Cardiomyocytes
The structural immaturity affects calcium-induced calcium
release (CICR) and limits the maximum cycle frequency by
posing a substantial delay of about 50–90ms between the central
and peripheral calcium signals (Lee et al., 2011; Zhang G. Q. et al.,
2013). While RyR and SERCA (SR Ca2+ ATPase) proteins are
distributed throughout the cytosol (Ivashchenko et al., 2013) the
bulk of the SR is located in the perinuclear region (Figure 1A and
Supplementary Figure 1), with some extensions of SR throughout
the cytosol (Itzhaki et al., 2011; Zhang X.-H. et al., 2013). In
embryonic cardiomyocytes, with similar structures, the whole cell
calcium transients are triggered from the perinuclear SR (Rapila
et al., 2008) and the calcium propagation in the cytosol is boosted
with local Ca2+ releases from SR extensions (Korhonen et al.,
2010). According to our 2-D calcium diffusion measurements
(Figure 1B) the speed of Ca2+ propagation in hiPSC-CMs
(Figure 1C) is very similar to that of embryonic mouse myocytes
both in vitro (Korhonen et al., 2010) and also when modeled
in silico (Korhonen et al., 2010) (Figure 1D). Instead of pure
diffusion, CICR underlies the “fire–diffusion–fire” propagation of
the Ca2+ wave inside hiPSC-CMs.

Although hiPSC-CMs express a functional pacemaker current
(If), the density of the current is not sufficient on its own
for spontaneous action potential (AP) generation (Kim et al.,
2015). Spontaneous activation of hiPSC-CMs thus relies on
interaction between the “Ca2+ clock” and the “membrane clock,”
similar sinoatrial node cells (SANCs) (Maltsev and Lakatta,
2013). Indeed, stabilization (Kim et al., 2015) or inhibition (Kim
et al., 2015; Zhang et al., 2015) of RyRs, as well as SERCA
inhibition (Zhang et al., 2015) all reduce or abolish spontaneous
activity in hiPSC-CMs. This suggests that automaticity depends
on spontaneous Ca2+ release from SR initiated by activity of both
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FIGURE 1 | Calcium handling characteristics of hiPSC-CMs. (A) Representative confocal image from a hiPSC-CM immunostained with SERCA2a antibody and line

plots illustrating the localization of the stain in the cells. (B) Recording of calcium diffusion in hiPSC-CM; from left to right: fluorescence reference image (orange line:

line-scan place), photograph of the experimental setup (yellow arrow—patch pipette), line-scan recording obtained during injection of 1µM Ca2+ solution from patch

pipette, and line-scan profile at two different position (blue arrow—near the injection place, red—near central SR). (C) The time-to-target plots for average in vitro

(mean ± SEM, n = 10) and in silico data are very similar to previously published mouse embryonic ventricular myocyte data from Korhonen et al. (2010). (D)

Schematic presentation of the in silico hiPSC-CM model components and geometry, for the acronyms and detailed description of the model components, please see

Methods section. Ca2+ concentrations in the central sarcoplasmic reticulum and two local release sites at 2 and 4µm distance from the sarcolemma (E) and in the

cytosol (F), at 1Hz pacing. (G) Comparison of AP characteristics in the hiPSC-CM model (red bars) to in vitro data (blue bars; mean ± SEM) listed in Supplementary

information, Supplementary Table 4.

RYRs and inositol-1,4,5-trisphosphate receptors (IP3Rs) (Itzhaki
et al., 2011). That is, released calcium increases the cytosolic
calcium concentration ([Ca2+]i) and triggers a depolarizing
current via sodium-calcium exchanger (NCX) (Kim et al., 2015),

serving as a trigger for AP. In line with previous reports
(Fine et al., 2013; Zhang X.-H. et al., 2013), our data shows
a strong expression (Supplementary Figure 1) and function
(Supplementary Figure 2) of NCX in hiPSC-CMs. Furthermore,
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immunostaining of IP3R shows their strong presence around the
nucleus (Supplementary Figure 1), confirming previous findings
(Itzhaki et al., 2011).

Based on this data we constructed the new model by
first merging the cell geometry and ultrastructure of mouse
embryonic myocyte model (Korhonen et al., 2010) with the
membrane electrophysiology of a recent hiPSC-CM model
(Paci et al., 2015) (Figure 1D). After this step, extensive
model parameter fitting was done based on our own in vitro
measurements and literature data (Supplementary Tables 1–
3). The resulting model recapitulates the central immature
characteristics of hiPSC-CMs, such as spontaneous activity
(Kim et al., 2015) and inhomogeneous subcellular calcium
distribution (Lee et al., 2011; Zhang G. Q. et al., 2013)
(Figures 1E,F, 2A and Supplementary Figure 3). Moreover,
basic characteristics of calcium signaling parameters, such as
calcium transient and caffeine pulse decays and ratio between
SR and SL calcium fluxes, are in line with the in vitro values
(Supplementary Figures 2A–C). Finally, as the comparison of AP
characteristics with literature data shows, the hiPSC-CM model
is well within the range of reported in vitro values (Figure 1G,
Supplementary Table 4).

Mode of Activation Alters Membrane
Currents and Calcium Cycling
A common feature of hiPSC-CMs separating them from mature
atrial or ventricular CMs is their spontaneous beating. In
literature, it appears that experimental results obtained in both
modes of excitation, spontaneous and stimulated, are considered
equivalent. Also in our in silicomodel, the AP morphology varies
rather little depending on mode of activation (Figure 2B). AP
amplitude and upstroke velocity are smaller in spontaneous vs.
paced mode, while AP duration is almost identical. However,
the fundamental ion currents and order of their activation are
quite different depending on mode of activation (Figures 2D–F).
In the spontaneous mode, the excitation trigger is the calcium
release from the SR (Figures 2A,C), and thus the first membrane
current to activate is INCX (Figure 2D). In the paced mode, the
activation sequence is reversed and therefore the timing and
dynamics of intracellular calcium is different, resulting in smaller
calcium removal (18%, forward) and entry (54%, reverse) via
NCX in spontaneous than paced mode. Depolarization of the
membrane potential leads to activation of INa, which then further
leads to activation of ICaL. As the rate of depolarization is much
slower in spontaneous vs. paced mode, the amplitude of INa is
drastically smaller,−91%, (Figure 2E); a result of a phenomenon
known as accommodation. The same phenomenon, affects ICaL
and Ito amplitudes as well, which are 45 and 54% smaller in
spontaneous vs. paced mode, respectively (Figures 2E,F). The
total sodium and calcium entries are only 3 and 17% smaller,
respectively, in the spontaneous mode and the amplitude of the
calcium transient (CaT) is only 10% smaller in the spontaneous
vs. evoked mode.

Longer time course and altered timing of CaT in respect to
AP also impacts the AP repolarization in spontaneously activated
cells, enhancing calcium extrusion by NCX, which causes a

depolarizing inward current at the late repolarization phase, thus
creating a “tail” for the AP (Figure 2B). While this difference is
subtle, it has a significant effect on excitability, as the availability
of INa, and thus refractoriness, has a very steep dependence
on membrane potential in this voltage range (Skibsbye et al.,
2016). NCX function is also strongly affected by the diastolic
membrane potential, which is typically depolarized by up to 30–
40mVs in hiPSC compared adult CMs (Supplementary Figure 8).
The detailed analysis show that forward mode is hampered
and reverse mode enhanced at more depolarized potentials
(Supplementary Figure 8F).

Sensitivity analysis of the hiPSC-CM model activated with
either of the two modes demonstrates that if the cell is activated
spontaneously, the AP parameters (triangulation, APtri and
duration, APD90) depend more on NCX current and less on
potassium currents (IKr, IK1) compared to stimulated cells
(Figure 2G). These findings highlight that the impact of any
intervention aimed at modulating a specific component in
hiPSC-CMs E-C coupling will depend on whether the cells are
spontaneously active or electrically stimulated.

Functional Dissimilarities of hiPSC-CM
Compared to Adult Human
Cardiomyocytes
To elucidate the contribution of basic components to calcium
cycling, we simulated the effect of 50 and 90% block of ICaL,
NCX and SERCA (Figures 3A–D). While some of the changes
are similar, the effect of ICaL block on AP amplitude and duration
is more dramatic in hiPSC-CMs (Figure 3B) and blocking of
SERCA reduces the CaT amplitude much more in adult CM
(Figure 3D). Sensitivity analysis (Figure 3E and Supplementary
Figures 4A–D) indicates that the contribution of ICaL on CaT
is more significant in adult CMs. In hiPSC-CMs, APD is much
more sensitive to changes in the rapid delayed rectified (IKr)
and inward-rectified (IK1) potassium currents, indicating that
adult CMs have a stronger repolarization reserve. According to
a sensitivity analysis based similarity index (Figure 3F), the AP
of hiPSC-CM shares underlying mechanisms with both adult
ventricular and atrial CMs, while the CaT dependencies are more
similar between adult ventricular and atrial CMs than between
hiPSC-CMs and either adult cell type. Interestingly, even though
mouse embryonic cardiomyocytes lack two potassium currents
(Ito, IKr), hiPSC-CMs appear to be functionally very similar with
mouse embryonic myocytes as well (Supplementary Figure 4).

Limited Translation of Pathology from
hiPSC-CMs to Adult Cardiomyocytes
To assess the translational potential of hiPSC-CMs and
directly compare hiPSC-CMs and adult cardiomyocytes to each
other, we next implemented the modifications involved in
Brugada Syndrome (BrS), Long QT Syndrome (LQTS) and
catecholaminergic polymorphic ventricular tachycardia (CPVT).

We simulated BrS by replicating a Navβ1b/H162P mutation
(Yuan et al., 2014) (Figure 4A). In hiPSC-CMBrS model variant,
the normal activation of INa does not elicit an AP (Supplementary
Figure 5A). However, it is possible to overcome the increased
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FIGURE 2 | Two modes of Excitation-Contraction coupling in hiPSC-CMs. (A) Transient increase of intracellular Ca2+ concentration and Ca2+ diffusion in

spontaneous (left) and paced (right) mode in silico measurements. The spatiotemporal representation is analogous to a line scan measurement in vitro. (B) AP in

spontaneous (left) and paced, 1Hz, (right) modes. (C) Ca2+ concentration in central sarcoplasmic reticulum and two local release sites at 2 and 4µm distance from

the sarcolemma. Sodium-calcium exchanger current (D), sodium and calcium current (E), and transient outward and delayed rectified potassium currents (F) in

spontaneous (left) and paced (right) mode. The values in legends (D,E) indicate the ion flux integral over one AP cycle. Note: the direction of INCX in paced mode

changes biphasically, while the spontaneous mode involves three phases. (G) Heatmap presentation of correlation coefficients of varied cellular components with eight

different biomarkers in spontaneous (left) and paced (right) mode. MDP, minimum diastolic membrane potential; APamp, amplitude of the action potential; DDRtrimax,

maximum diastolic depolarization rate; APtri, action potential triangulation; APD90, action potential duration at 90% repolarization; Cadias, minimum calcium

concentration during diastole; CaTamp, amplitude of the calcium transient.

excitation threshold by using a stronger stimulus current, which
depolarizes the membrane potential enough to activate the ICaL
(Supplementary Figure 5C). Interestingly, the AP morphology
in the hiPSC-CMBrS model differs very little from the control
(Figure 4A). The peak of AP is reached 3.9ms later and there is a
slight deceleration of the late phase of AP repolarization (APD90

+10%,+25.2ms). In adult CM, BrS blunts the initial spike of AP
and slows the late repolarization slightly more (APD90 +14%,

+35.8ms). INa is so small in hiPSC-CM, and BrS reduces it
even further to the extent, that ICaL becomes the predominant
depolarizing current (Figure 4B).

In a previously reported LQT2 mutation (c.A2987T KCNH2),
the conductance of IKr was reduced by 33%, which resulted
in increased action potential duration in hiPSC-CMs in
vitro (APD50 +38% and APD90 +41%) (Bellin et al., 2013).
The simulations with hiPSC-CMLQT2 model replicates those
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FIGURE 3 | hiPSC-CM vs. adult CM phenotype in silico. (A) Comparison of AP and CaT in hiPSC (left) and adult (right) cardiomyocytes. Effect of 50 and 90% block of

L-type calcium channel (B), NCX (C) and SERCA (D) on AP and CaT in hiPSC (left) and adult (right) cardiomyocytes. For the NCX case, the results of 90% block are

not shown, due to Ca2+ overload. (E) Correlation coefficients of sensitivity analysis. Same biomarkers as in Figure 2G. (F) Similarity index (sum of absolute difference

of correlation coefficients) for APD90 and CaTamp vs. seven key parameters, and average values (avgs). Comparisons made between hiPSC vs. human adult

ventricular (haV) myocyte, hiPSC vs. human adult atrial (haA) myocyte, and human adult ventricular vs. atrial myocyte.

findings nicely (APD50 +29% and APD90 +60%, Figures 4C,D).
However, running the same simulations with the adult CM
model predicts substantially smaller changes (APD50 +13% and
APD90 +12%, Figure 4C). This finding demonstrates that the
repolarization reserve is much smaller in hiPSC-CMs compared

to adult CMs, which also causes arrhythmias in the virtual hiPSC-
CMLQT2 cell (Supplementary Figure 6).

Next, we simulated CPVT-type arrhythmias in hiPSC-CM
and adult CMs with randomly timed SR Ca2+ releases via
RyRs (Figures 4E–H). According to the simulations, due to
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FIGURE 4 | Translation of disease mechanisms from hiPSC-CM to adult CM in silico. (A) Effect of Brugada-associated Navβ1b/H162P mutation (Yuan et al., 2014) on

AP morphology in hiPSC (left) and adult (right) cardiomyocytes. (B) Fast sodium (blue line) and L-type calcium (green line) currents underlying the depolarization phase

of the AP in BrS in hiPSC (left) and adult (right) cardiomyocytes. Corresponding wildtype currents in hiPSC-CM are shown in Figure 2. (C) Effect of LQT2-associated

c.A2987T KCNH2 mutation on AP repolarization in hiPSC (left) and adult (right) cardiomyocytes in silico. (D) AP duration in silico and in vitro mean ± SEM, as reported

by Bellin et al. (2013). (E) Sarcoplasmic reticulum Ca2+ release (Jrel) caused by random RyR openings (CPVT-like condition) in hiPSC (left) and adult (right)

cardiomyocytes in silico. (F) Example of a primary (1) and secondary (2) Jrel in hiPSC-CM during one AP cycle. (G) Early and delayed after depolarizations in hiPSC

(left) and adult (right) CM in silico. (H) Arrhythmogenic coupling efficiency (ACE) in hiPSC and adult CM, quantified as deviations in membrane voltage compared to

control, is much stronger in hiPSC-CMs.

the self-propagating nature of the hiPSC-CM calcium release
(Figure 1), spontaneous RyR openings result in a complete
release of SR calcium and whole cell CaT (Figures 4E,F).
Moreover, as NCX has a larger role in calcium cycling of hiPSC-
CMs (Figure 3), they are more prone to extra SR calcium release
(Jrel) induced membrane depolarizations CMs (Figure 4E) and
have a higher arrhythmogenic coupling efficiency (ACE) than
adult CMs (Figures 4G,H).

Immature E-C Coupling Is the Limiting
Factor of hiPSC-CM Functional Phenotype
As hiPSCs are differentiated into hiPSC-CMs with variable
techniques in different laboratories, they display a wide range
of phenotypes (Figure 5A and Supplementary Tables 1–4). To
analyse this huge variability, we created a database (Prinz
et al., 2003) of 3,000 in silico hiPSC-CMs (Figure 5B), in which
the parameter space was defined based on >25 publications
(Supplementary Tables 1–4). As the time period of differentiation
is variable in the published data, the resulting parameter

space covers a wide field of theoretically possible hiPSC-CMs
phenotypes. If and IKs conductances were not varied in the
database, as in the in vitro ranges they had virtually no effect on
the AP dynamics, please see section Database Simulations and
Sensitivity Analysis for further details. We ran simulations both
in the spontaneous and evoked/paced mode for all the virtual
cells in the database. Some combinations of parameter values
resulted in nonviable phenotypes (exclusion criteria described in
section Materials and Methods). As a result, the number of viable
in silico cells in database was reduced from 3,000 to 940 and 235
in the evoked (freq = 1Hz) and spontaneous mode, respectively
(Figures 5D,E).

One of the key features of mature myocardium and
cardiomyocytes is AP duration restitution (APDR): action
potential becomes shorter, when the heart beat rate or the pacing
frequency is increased (Figure 5 in Grandi et al., 2010). Thus,
we explored the in silico database to see what kind of parameter
value combinations would result in such a phenotype. In the
database, it is possible to plot a biomarker such as APD90 (APD
at 90% repolarization) as a function of the parameters that have
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FIGURE 5 | Analysis of an in silico database of hiPSC-CMs. (A) Ranges of variability in ion current conductances based on literature search. (B) Workflow in the

database analysis. (C) 3D surface plot of APD90 as a function of three ion current parameters. The variable color of the data points is not quantitative or related to the

color bar scale. Instead, it is just a way to increase the contrast of the dots against the surfaces. Histograms of maximum diastolic potential (D) and AP peak potential

(E) in spontaneous and paced modes. Histograms of maximal frequency of AP duration restitution (APDR) (F) and force-frequency response (FFR) (G). Maximum

pacing frequency for monotonic APDR and FFR. (H) Relative parameter values in the (1) spontaneous and (2) paced modes, as well as, (3) in the monotonic APD

restitution and force-frequency response subpopulations, compared to the whole database.

been varied to build the population of models (Figures 5A,C).
While there are a small number of cells that had a monotonically
decreasing AP duration even up to ∼2Hz (Figure 5F), APD
restitution is relevant only if there is a positive force-frequency
relation (FFR) as well. Monotonically positive FFR was present
up to 1.4Hz (Figure 5G and Supplementary Figure 7) in the
in silico cell database. Cross-comparison of the APDR and
FFR subcollections showed that just 30 of 3,000 virtual cells

recapitulated these basic features. The average parameter values
of INa (+13%), IKr (+5%), IK1 (−59%), NCX (−10%) and
SERCA (+16%) were statistically different (p < 0.05) in the
spontaneously active subpopulation of 235 cells compared to
the whole database (Figure 5H, blue bars). In the paced mode,
the subpopulation of virtual cells with proper excitability (n
= 940) had smaller, yet statistically significant deviations in
the average parameter values for INa (+4%), IKr (+3%), IK1
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(−40%), NCX (−3%) and SERCA (+3%). Surprisingly, cell
variants recapitulating APDR+FFR (n= 30) had only a stronger
IK1 (18%) and a weaker SERCA (−20%) (Figure 5H, red bars).
From those 30 APDR+FFR in silico cells only two had an APD90

in the range of 250–300ms. Interestingly, both of these ideal in
silico hiPSC-CMs actually have about 40% smaller IK1 current
density than on average in the database (Figure 6A), which
contradicts the view that weak IK1 would be one of the limiting
immature features of hiPSC-CMs (Meijer van Putten et al., 2015;
Vaidyanathan et al., 2016). A side-by-side comparison shows that

even though there is a rather good match in AP morphology
with adult CM, the underlying ion currents and dynamics of
the ideal hiPSC-CM still differ substantially from their mature
counterparts (Figure 6). As in previous comparison scenarios, it
appears that the ultrastructure-related differences in intracellular
calcium handling cannot be overcome.

We also repeated the simulations with Brugada syndrome,
LQT2 and CPVT-like model variants using a parameter
combination that was found to be most favorable in the database
analysis. The simulation shown in Supplementary Figure 9

FIGURE 6 | Comparison of ideal hiPSC-CM and adult CM in silico. (A) The most favorable parameter combination (red line) plotted with the full parameter range of

the database on background (gray bars). Action potential (B), calcium transient (C), sodium current (D), calcium current (E), sodium-calcium exchanger current (F)

transient outward, rapid and slow delayed rectified potassium currents (G–I), inward rectified potassium current and sodium-potassium pump current (J), and

RyR-mediated Ca2+ release fluxes from the sarcoplasmic reticulum (K). In the hiPSC-CM model, there are three spatially distinct release locations, as described in

detail in Figure 1.
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indicate that the hiPSC-CM model with ideal parameters is
slightly closer to the adult CM phenotype. That is, in the hiPSC-
CMBrS model, INa persists as the main depolarizing current. In
the virtual hiPSC-CMLQT2 cell, increase of APD is also slightly
smaller than in the model that has average parameters. However,
the susceptibility to arrhythmogenic CPVT-like events is not
changed.

DISCUSSION

Human iPSC-cardiomyocytes have emerged as popular cell
models to study a variety of human cardiac diseases as well as
for drug testing. In theory, hiPSC-CMs provide the first routinely
accessible equivalent for native human cardiac myocytes, and
solve the problems related to inter-species comparisons, which
potentially hinder the development of therapies for human
diseases. However, as more hiPSC-CM data is cumulating,
concerns have risen regarding whether they are useful models
for studying arrhythmias (Knollmann, 2013; Sinnecker et al.,
2013) and electrophysiology (Han et al., 2014; Christ et al.,
2015), or if their calcium signaling is comparable with that of
adult cardiomyocytes (Hwang et al., 2015; Kane and Terracciano,
2015). To address these open questions, we have developed
a novel mathematical model that recapitulates the functional
characteristics of hiPSC-CMs, allowing us to compare them
systematically and quantitatively with their adult counterparts.

How Does Immaturity of hiPSC-CMs
Shape Calcium Dynamics?
According to our in silico analysis, many of the immature
functional features are related to structures involved in
intracellular calcium handling. Adult cardiomyocytes are
relatively large cells, capable of generating strong, spatially
homogenous Ca2+ signals at high frequency (Cannell et al., 1995;
Bers, 2002). Although hiPSC-CMs express the same components
for calcium handling, their Ca2+ signals are substantially
slower and show much higher degree of spatial inhomogeneity
(Li et al., 2013) (Figures 2, 3). This is not a surprise since
spatiotemporal properties of calcium signals are not only
affected by the efficiency of release and uptake but also Ca2+

propagation in the cytosol, which is relatively slow (diffusion
constant ≈ 30 ms/µm) even at short (<15µm) distances and
is exponentially slower at longer distances (Korhonen et al.,
2010). To overcome this biophysical obstacle, adult ventricular
cardiomyocytes have unique cell membrane invaginations
called T-tubules, which form a 3-D structure linking membrane
and SR Ca2+ channels, thus minimizing the calcium diffusion
distances in the cytosol (Cannell et al., 1995; Bers, 2002). Even
though hiPSC-CMs have subcellular structures for enhancing
Ca2+ propagation (Figure 1 and Supplementary Figure 1),
the lack of T-tubules has profound functional effects. Firstly,
there is a substantial delay of about 100ms between the central
and peripheral calcium signals (Figures 1, 2), which poses an
absolute lower limit for the length of single E-C coupling cycle,
and thus limits the maximal beating rate (Figure 5) (Korhonen
et al., 2010). Secondly, this delay slows down the upstroke and

decline rates of the whole cell CaTs in hiPSC-CMs, making
them substantially slower than adult cardiomyocytes (Figure 3)
(Lee et al., 2011; Hwang et al., 2015). This may appear as a
minor detail, however, slower CaT kinetics change the timing
of [Ca2+]i -dependent currents during AP. Therefore, e.g.,
INCX contributes much more to the late AP repolarization in
hiPSC-CMs than in adult CMs (Figure 3). In addition, compared
to adult CMs, hiPSC-CMs rely more on sarcolemmal (ICaL, INCX)
than SR (RyR) calcium sources (Figure 3) (Lee et al., 2011).
Importantly, larger INCX enhances the link between [Ca2+]i
and Vm and thus makes hiPSC-CMs more susceptible to after
depolarization-triggered arrhythmias such as those triggering
CPVTs (Figure 4). These features are important to consider,
as hiPSC-CM should reflect the electrical stability/instability of
adult human CMs, when they are used for drug testing or disease
modeling.

What Are the Functional Implications of
Spontaneous vs. Evoked Mode in
hiPSC-CMs?
While hiPSC-CMs are excitable and capable for CICR upon
electrical excitation, one sign of their immaturity is that alongside
with the normal E-C coupling they have the ability to generate
spontaneous calcium oscillation for pacemaking (Figure 2 and
Supplementary Figure 3) (Kane et al., 2015). Our detailed
comparison of twomodes of hiPSC-CMs activation (spontaneous
vs. evoked) shows that there are substantial differences in the
dynamics and magnitudes of ion currents, even though AP
morphology was roughly similar in both modes (Figure 2). In
the spontaneous mode, the rate of depolarization is much slower
than in paced mode, during both triggering and upstroke phase
of the AP. This causes a so-called accommodation phenomenon
to happen in many of the ion channels: activation is so slow
that inactivation starts to take place simultaneously. Therefore,
the amplitudes of INa, ICaL and Ito are drastically smaller in
spontaneous than paced mode. There is also a subtle difference
in the final phase of AP repolarization: in the paced mode hiPSC-
CMs display a very slow “tail” in the AP. As there is a very
steep dependence of INa availability on membrane potential in
this voltage range, this influences cardiac refractoriness, contrary
to adult human ventricular CMs. It is important to consider
these mode-dependent mechanisms, when utilizing hiPSC-CMs
in experiments. For example, in drug screening, the effect of an
ion channel blocker will be different in spontaneous vs. evoked
mode of activation of the cells.

How Well Do Pathologies Translate from
hiPSC-CMs to Adult Cardiomyocytes?
Human-iPSC-CMs exhibit a heterogeneous phenotype,
usually representing a mixed population of cells with diverse
electrophysiological characteristics (Ivashchenko et al., 2013;
Uzun et al., 2016). While the profile of ion channel expression is
qualitatively similar to adult CM, the functional immaturity of
hiPSC-CMs has raised concerns about their usability as disease
models. Our analysis of BrS, LQT2 and CPVT scenarios confirms
the doubts (Figure 4). For example, implementing a Brugada
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syndrome associated loss-of-function INa into the hiPSC-CM
model reduces the excitability drastically and ICaL becomes
the main depolarizing current instead of INa, which does not
happen in adult CMs. The LQT2 simulation results demonstrate
concretely the effect of a much smaller repolarization reserve
in hiPSC-CMs, which together with the immature calcium
handling makes them also much more sensitive to repolarization
abnormalities, such as spontaneous SR Ca2+ release events in
CPVT.

What Are the Building Blocks of a Mature
as Possible hiPSC-CM Phenotype?
Clearly, the electrophysiological differences between hiPSC-CMs
and adult CMs complicate the comparison of these two cell
types. Among the attempts aimed at reducing these differences,
increased density of inward rectifying potassium current, IK1,
has gained a lot of attention. As IK1 is important in stabilizing
the resting membrane potential in adult cells, enhancing its
magnitude has the potential to stop spontaneous beating of
hiPSC-CMs (Meijer van Putten et al., 2015; Vaidyanathan et al.,
2016). However, our database analysis suggests that modification
of IK1, or any other ion current, is not enough to induce
functional properties characterizing adult CMs such as action
potential duration restitution or force-frequency relationship in
hiPSC-CMs. Single modification of any of the varied parameters
do not appear to solve these problems, which are mostly
contributed by the immaturity of intracellular calcium handling.

Conclusive consensus of the physiological properties of
hiPSC-CMs is lacking partly because the reported in vitro
data is rather variable. As long as standardized experimental
protocols do not exist, wealth of the variability originates form
divergence of the maturity of cells used and the experimental
conditions. Therefore, validation of hiPSC-CMs as a human
cardiomyocyte model should take into account the variability
as one of the features the hiPSC-CMs. Database analysis was
used here to simulate the impact of the variability in the
reported hiPSC-CM parameters to the phenotype of the cells. In
practice, database analysis answers the question: what is the best
possible hiPSC-CMs phenotype that the current methods can
produce? Only 30 out of 3,000 parameter combinations produced
a phenotype with fundamental physiological cardiomyocyte
properties (APD restitution and FFR), and only in a very
limited frequency range (up to ∼1.5Hz). Even though, the
analysis was done in “ideal conditions”: the variables did
not have any interdependence, i.e., all of them were varied
independently, which is not likely the case in biological
context. This finding also raises anticipation for the more
advanced, and hopefully standardized, hiPSC-CM maturation
protocols that are expected to deliver more mature-like
cardiomyocytes.

Limitations of the Study
The chamber-specificity of hiPSC-CMs is a rather controversial
topic, and there is no standard way for making this distinction.
The most common way has been to use some sort of AP
morphology index; however, this simplified technical approach
has been rightfully criticized (Kane and Terracciano, 2017).

Therefore, we opted not to implement separate atrial- and
ventricular-like hiPSC-CM model versions. When reliable
quantitative physiological criteria for determining the chamber-
specificity have been established and taken into use, the
developed hiPSC-CM model should be updated to have atrial-
and ventricular-like versions accordingly.

We have not done a detailed comparison of the mechanisms
of the “Ca2+ clock” and the “membrane clock” in hiPSC-CM vs.
SANC. An in-depth analysis of the principal cellular components
contributing to spontaneous activation would be very interesting
and timely, as a model incorporating more in vitro human SANC
data was recently published (Fabbri et al., 2017). However, this
kind of a comparison is beyond the scope of this study.

Cellular signaling forms another layer of complexity to the
regulation rhythmic activity in cardiomyocytes. As more in vitro
hiPSC-CM data emerges on phosphatases, Ca2+/calmodulin-
dependent protein kinase II, Phospholipase C pathway, guanylate
cyclase, etc., the developed hiPSC-CM model needs to extended
so that it can be employed in future research on those
topics.

The spontaneous activation frequency of the novel hiPSC-
CM model is 45.1 BPM, which is within the range of values
reported in vitro (Supplementary Table 4). Accordingly, pacing
experiments could not be simulated at 0.5Hz frequency, which
has been used in many in vitro studies. Instead, we used 1Hz as
the standard pacing frequency.

In the database simulations, the sample size of the
spontaneously beating virtual cells was significantly smaller
(n = 235) than the subpopulation that had proper excitability
under pacing conditions (n = 940). However, in both scenarios,
deviations of the same five parameter values (INa, IKr, IK1, NCX,
and SERCA) from the average still reached statistical significance.
Furthermore, the more focused analysis was done with the paced
virtual cell population. So, the starting size of the database
(n = 3,000) should not affect the conclusions made in that part
of the study.

Conclusion and Future Perspectives
The presented computational platform provides a quantitative
tool for assessing hiPSC-CM properties, as well as comparing
and translating hiPSC-CM findings to adult CMs. Our analysis
suggests that the physiological properties of hiPSC-CMs differ
from adult CMs in a way that warrants caution. As hiPSC-CMs
show less robustness and greater tendency for arrhythmic events
than adult CMs, translation of findings from e.g., particular
ion channel mutation or pharmacological interventions is
not straightforward. There is variability between different cell
lines and culture conditions; however, the main bottleneck
appears to be the structural immaturity of hiPSC-CMs. Recent
efforts by multiple laboratories have succeeded in producing
hiPSC-CMs with features, including e.g., functional T-tubule
development (Parikh et al., 2017), more mature-like excitability
(Lemoine et al., 2017) and contractile function (Mannhardt
et al., 2016). This study provides a useful modeling framework
for analyzing and improving those methods and techniques
further.
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MATERIALS AND METHODS

Derivation of Induced Pluripotent Stem
Cells
Healthy fibroblast donor was recruited from Kuopio University
Hospital (Kuopio, Finland; Approved by the committee on
Research Ethics of Northern Savo Hospital district (license no
64/2014). Written informed consent was obtained from the
donor. Skin biopsy derived fibroblasts were reprogrammed with
CytoTune R© iPS Sendai Reprogramming kit (Thermo Scientific,
MA, USA) as previously described (Holmqvist et al., 2016),
with slight modifications. Briefly, fibroblasts (1 × 105) were
transduced with 3 or 4 separate vectors including the four
Yamanaka factorsOCT-3/4, KLF-4, SOX-2 and c-MYC. One week
after transduction, 0.75 × 105 cells were seeded on the top
of mitotically inactivated (10µg/ml mitomycin-C for 2.5 h in
37◦C) human foreskin fibroblast feeder cells (CRL-2429, ATCC,
Manassas, VA) growing in 10 cm petri dish. First colonies started
to appear a week later, and they were re-seeded by picking up
individual colonies. The pluripotency of created hiPSC line was
assessed as in our earlier studies (Qu et al., 2013).

Maintenance of iPS Cells and
Cardiomyocyte Differentiation
IPS cells were maintained in mTESR1 medium (Stem Cell
Technologies, Canada) on human recombinant laminin-521
(Biolamina, Sweden) coated dishes at 37◦C in a humidified
5% CO2 incubator. Cells were passaged with Tryple Express
dissociation reagent (Thermo Fisher Scientific, MA, USA) 1–2
times a week just before cultures became confluent. Cells used
in this study were between passages 5 and 23.

IPS cells were differentiated into cardiomyocytes using a
protocol based on modulation of Wnt pathway (Lian et al.,
2012). After dissociation into single cell suspension with Tryple
Express, cells were plated on Matrigel (Corning Incorporated,
NY, USA) coated dishes in mTESR1 medium. When the cells
had reached full confluency, medium was changed to RPMI
medium [RPMI 1640 Medium (Thermo Fisher Scientific, MA,
USA) 1X B27 (Thermo Fisher Scientific, MA, USA), 100 U/mL
penicillin-100µg/mL streptomycin (Thermo Fisher Scientific,
MA, USA)] supplemented with 12µMCHIR99021 (Tocris, UK).
After 24 h, CHIR99021 was removed and cells were kept in RPMI
medium for 48 h. Next, cells were incubated in RPMI medium
supplemented with 5µMIWP2 (Tocris, UK) for 48 h, after which
cells were kept in RPMI medium for 3–8 weeks, before preparing
them for experiments.

For immunocytochemistry, patch-clamp and Ca2+ imaging
spontaneously contracting hiPSC clusters were dissociated to
single cells with a solution containing 2 mg/mL collagenase type
II (Worthington, NJ, USA) and 2 mg/mL pancreatin (Sigma-
Aldrich, MO, USA). Cells were plated in RPMI medium on glass
coverslips coated with laminin (Sigma-Aldrich, MO, USA) at a
density that allowed analysis of single cardiomyocytes. Cells were
kept in RPMI medium for 3–7 days after plating, after which
solution was changed to serum containing medium {Dulbecco’s
Modified Eagle Medium (Thermo Fisher Scientific, MA, USA)
[10% fetal bovine serum (GEHealthcare Life Sciences, UT, USA),

100 U/mL penicillin-100µg/mL streptomycin]}. Cells were kept
in serum containing medium for another 3–10 days before
immunological or live cell analysis.

Electrophysiological Recordings in
Isolated hiPSC Cardiomyocytes
Patch-Clamp Experiments
All experiments were carried out at 37◦C (TC2BIP, Cell
MicroControls, USA). Coverslips with attached cells were
transferred to the recording chamber (Cell MicroControls,
USA, flow rate approx. 1–2 mL/min, chamber volume 0.4mL)
perfused with Dulbecco’s modified Eagle medium plus glutamax
I (DMEM, bubbled with 95% O2, 5% CO2). Whole-cell voltage-
clamp (Axopatch 200B, Digidata 1440A, Molecular Devices Inc.,
USA) was used for Ca2+ current and current-clamp (I = 0)
for action potential (AP) recordings. Patch electrodes (Harvard
Apparatus, United Kingdom) were pulled and fire polished with
Sutter P-97 (Sutter Instrument Company, Novato, CA). Patch
electrodes for current recordings had resistances of 1.5–2.5 M�

and 5–7 M� for AP recording and Ca2+ solution injection.
Recordings were carried out after a membrane rupture of 5min.
The cell capacitance and series resistance were compensated
electronically. The cells with an unstable or high access resistance
were discarded. Under voltage clamp control cells were held at
−80mV. Membrane capacitance and resistance were estimated
in response to a 5mV pulse. The current amplitudes were
normalized to cell capacitance. Recordings were carried out at a
sampling rate of 10 kHz, and low-pass Bessel filtered at 5 kHz was
used.

L-Type Ca2+ Current Recordings
To characterize the L-type Ca2+ current (ICaL) we used the
protocol described previously (Xu et al., 2011). The cells were
perfused with Tyrode solution containing (in mM): 130 NaCl,
5.4 KCl, 1 CaCl2, 1 MgCl2, 0.3 Na2HPO4, 10 HEPES, and 5.5
glucose, pH 7.4 with NaOH, after establishment of whole-cell
was switched to recording solution (solutions were bubbled with
100% O2). The internal solution contained (in mM): 110 CsOH,
90 aspartic acid, 20 CsCl, 10 tetraethyl ammonium chloride (TEA
chloride), 10 HEPES, 10 EGTA, 5 Mg-ATP2, 5 Na2-creatine
phosphate, 0.4 GTP-Tris, 0.1 leupeptin (pH 7.2 with CsOH)
and bath solution: 125 N-methyl-glucamine, 5 4-aminopyridine,
20 TEA chloride, 2 CaCl2, 2 MgCl2, 10 glucose, 10 HEPES
(pH 7.4 with HCl). After an initial 1-sec prepulse at −40mV,
Ca2+ currents were elicited using 200-ms voltage steps from
−30 to +50mV in 10-mV increments. Voltage-dependence of
inactivation was assessed by holding cells at various potentials
from −40 to +10mV for 2 s, followed by a 100-ms test pulse to
+10mV.

AP Recordings
Action potentials were elicited by a 1-ms current injection, and
recorded using the current-clamp mode (Yang et al., 2005). Only
well attached hiPSC-CMs with visible spontaneous contractions
we included in the analysis. The cells that had APs without
overshoots (peak amplitude at positive membrane potential)
or/and with prominent membrane voltage drop were discarded.

Frontiers in Physiology | www.frontiersin.org February 2018 | Volume 9 | Article 80317

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Koivumäki et al. Translational Potential of Human iPSC-CMs

The intracellular solution contained (in mM): 120 K-aspartate, 8
KCl, 1MgCl2, 7 NaCl, 2 Na2-phosphocreatine, 5Mg-ATP, 0.3 Na-
GTP, and 10 HEPES, (pH 7.2 with KOH) and the bath solution
was DMEM.

Confocal Calcium Imaging
Calcium imaging was performed as previously described
(Mutikainen et al., 2016). Cardiomyocytes were loaded with
Fluo-4-acetoxymethyl (AM)-ester (2µM, Invitrogen) in DMEM
for 20min in an incubator (37◦C, 5% CO2) and then coverslips
with attached cells were placed into the recording chamber.
Experiments were carried out after a period of 20min to allow
deesterification of the dye. [Ca2+]i measurement was performed
with a confocal inverted microscope (FluoView 1000; Olympus,
Japan). To measure myocyte calcium [Ca2+]i transients, the cells
were excited at 488 nm and the emitted light (500–600 nm) was
collected through water immersion 60X objective lens, using the
line-scan mode. To stimulate the cells, myocytes were stimulated
with 1-ms voltage square pulses (Grass stimulator, S48) 50% over
the excitation threshold through platinum electrodes. In some
experiments, caffeine (10mM, Sigma) was applied directly to the
studied area with a local perfusionmanifold (Cell MicroControls,
USA). Fluo-4 fluorescence intensity is expressed as an F/F0-ratio,
where F is the background subtracted fluorescence intensity and
F0 is the background subtracted minimum fluorescence value
measured from each cell at rest. The images were analyzed with
FluoView and ImageJ (imagej.nih.gov/ij/) softwares.

Calcium Injections for Measuring Diffusion
The whole-cell voltage-clamp mode was used for 1µM Ca2+

solution injection into fluo2-loaded cells (5µM; TEFLabs, Inc;
Austin, USA). The pipette was attached to a membrane with
a Giga-seal (>3G�). Patch-pipettes were filled with injection
solution containing (in mM): 0.84 CaCl2, 130 KCl, 5 Na2-
creatine phosphate, 5 Mg-ATP2, 1 EGTA, 10 HEPES, pH 7.2
with KOH, 1.042µM free Ca2+ (Smith et al., 1984). Injection of
pipette solution was performed immediately after cell membrane
rupturing, as previously described (Korhonen et al., 2010), by a
3ms pressure pulse through pipette holder with microinjector
(Picopritser II, Parker Instrumentation). The cells were held at
a−70mV.

Immunofluorescence Labeling
Cells cultured on glass coverslips were washed once with
Dulbecco’s phosphate buffered saline (PBS, Sigma-Aldrich, MO,
USA), fixed with 4% paraformaldehyde (in PBS) for 5min and
permeabilized with 0.5% Triton-X (in PBS) (Sigma-Aldrich, MO,
USA) for 10min. Coverslips were washed twice with PBS for
5min after which they were incubated with blocking buffer
[PBS (10% FBS, 0.05% Triton-X)] for 1 h. After blocking, cells
were incubated with primary antibody in blocking buffer for
1 h, washed, and incubated with secondary antibody in blocking
buffer for 1 h. All labeling steps were performed at room
temperature. Nuclei were stained with 14.3µM DAPI (Thermo
Fisher Scientific, MA, USA). Primary antibodies used were:
Serca2 ATPase (mouse monoclonal, ab2861, Abcam, UK) (1:500
dilution), Ryanodine receptor (mouse monoclonal, ab2827,

Abcam, UK) (1:100), IP3 receptor type 1 (rabbit polycolonal,
ab111087, Abcam, UK) (1:100) and Sodium/calcium exchanger
(mouse monoclonal, MA3-926, Thermo Fisher Scientific, MA,
USA) (1:100). Secondary antibodies were, anti-Mouse IgG (goat
polyclonal, A11001, Thermo Fisher Scientific, MA, USA) (1:750)
and anti-Rabbit IgG (goat polyclonal, A21245, Thermo Fisher
Scientific, MA, USA) (1:750).

Statistics
Data and statistical analyses were made using Origin9 software
(OriginLab Corp., Northampton, MA, USA).

Novel in Silico hiPSC-CM Model
The usefulness of mathematical modeling as a tool requires
that the fundamental properties of the cell are recapitulated
accurately. In the special case of hiPSC-CMs, this means that the
model needs to have a proper representation of the mechanisms
of automaticity: the so-called calcium and membrane clocks.
Previous mathematical hiPSC-CM models focused mainly on
the action potential morphology and sarcolemmal ion currents
(Zhang H. et al., 2012; Paci et al., 2015) and did not recapitulate
the spontaneous SR Ca2+ release, which is a central feature of
hiPSC-CMs. Accordingly, we developed a new in silico model
that merges the cell geometry and immature intracellular calcium
handling of a previously published mouse embryonic ventricular
myocyte model (Korhonen et al., 2010) with the membrane
electrophysiology of a recent hiPSC-CMmodel (Paci et al., 2015),
using the ventricular-like variant of that model (Figure 1D).

As shown by the time-to-target analysis of intracellular Ca2+

diffusion (Figure 1C) and cell size comparison (Supplementary
Figure 2I and Supplementary Table 3), the geometry and calcium
handling of the embryonic cell model is applicable to hiPSC-
CM modeling as well. Furthermore, to properly recapitulate
the mechanisms of automaticity, three components of the
electrophysiology part of the model were modified to be better
in line with in vitro data (Supplementary Figure 2). Firstly, new
formulation (Skibsbye et al., 2016) was adopted for the INa and
fitted to the Ma et al. (2011) in vitro hiPSC-CM data. Secondly,
the ICaL formulation with a new one (Koivumäki et al., 2014), and
fitted the properties to our own in vitro data. Thirdly, activation
kinetics of the funny current (If) were modified to be better in
line with Sartiani et al. (2007) in vitro data.

The virtual hiPSC-CMmodel (Figure 1D) accounts for

• sarcolemmal fast and background sodium currents (INa and
INab),

• sarcolemmal L-type and background calcium currents (ICaL
and ICab),

• sarcolemmal potassium currents (Ito, transient outward;
IKr, rapid delayed-rectified; IKs, slow delayed-rectified; IK1,
inward-rectified; If, hyperpolarization activated),

• ion pumps and exchangers (SERCA, sarcoplasmic reticulum
calcium ATP-ase; PMCA, plasmalemmal Ca2+ ATP-ase; NCX,
sodium-calcium exchanger; NKA, sodium-potassium ATP-
ase), and

• sarcoplasmic reticulum Ca2+ release channels (RyR,
Ryanodine receptor; IP3R, Inositol trisphosphate receptor).
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Importantly, the novel in silico model recapitulates the
mechanisms of automaticity, as reported in previous in vitro
studies (Supplementary Figure 3). That is, a full block of
sodium calcium exchanger (NCX) stops the spontaneous activity,
while a partial If block (corresponding to 3µM Ivabradine)
has virtually no effect on automaticity (Kim et al., 2015).
Recapitulating the cell-type-specific interplay between Ca2+

signals and membrane voltage is a central requirement for
making comprehensive in silico comparisons between adult CMs
and hiPSC-CMs, both in physiological and pathophysiological
scenarios.

The parameter values for the main ion currents were defined
based on an exhaustive literature search, the results of which
are shown in Figure 5 and in the supplementary material
(Supplementary Tables 1–4). The parameter set was frozen
on 06/2016. The chamber-specificity of hiPSC-CMs is rather
controversial topic, as there is no standard way for making this
distinction (Kane and Terracciano, 2017). Furthermore, many of
the publications do not make a distinction, so we decided not to
do it either. This way we were able to include much more in vitro
data for model parameterization.

The basic outputs of the average model, in spontaneous and
evoked mode, are shown in Figures 1, 2, 6B–K.

Source code of the developed hiPSC-CM model will be freely
available via email upon request, as well as distributed via the
ResearchGate networking portal in Matlab format.

Experimental Protocols in Silico
Unless stated otherwise, all the in silico results were obtained
either at spontaneous or stimulated steady-state. In the
stimulated mode, action potentials were evoked by using a
current pulse, whose amplitude was 1.5-times the threshold
and length 0.5ms. In the voltage clamp experiments (INa and
ICaL), we used protocols and conditions identical to the in vitro
measurements.

The following biomarkers were measured from the in silico
data:

• MDP: minimum (negative) diastolic membrane potential
• APpeak: peak potential of the action potential
• APamp: amplitude of the action potential
• APD30: action potential duration at 30% repolarization
• APD90: action potential duration at 90% repolarization
• APtri: action potential triangulation = (APD90 −

APD30)/APD90

• Cadias: minimum Ca2+ concentration during diastole
• CaTamp: amplitude of the calcium transient

Caffeine application experiments were simulated by holding the
RyR constantly open (50%), while blocking LTCC and SERCA.
The time-to-target analysis of intracellular Ca2+ diffusion was
done from data obtained while holding the virtual cell in voltage
clamp (Vhold = −80mV). Time for Ca2+ diffusion to a certain
distance was defined with a threshold of 220 nM. A 2µM Fluo-
4 (Kd = 335 nM) was included in the cytosolic Ca2+ buffer
composition. To mimic the Ca2+ puff from the patch pipette, the
L-type Ca2+ channel held constantly open [ICaL = 0.5 ∗ (Vm -
ECa)] for 10ms.

To define the dependence of NCX function on diastolic
membrane potential (Supplementary Figure 8), a standard
current stimulus pulse was used together with steadily changing
baseline. During the 60-s protocol diastolic membrane potential
was depolarized from about−80 to about−60mV.

To elucidate the contribution of basic calcium cycling
components, we simulated the effect of 50 and 90% block
of ICaL, NCX and SERCA (Figures 3B–D), both in the
novel hiPSC-CM model and in the previously published
human ventricular (Grandi et al., 2010) CM model. The
blocking effects were implemented by reducing maximum
conductance/current/turnover rate by either 50 or 90% from the
control parameter value.

Database Simulations and Sensitivity
Analysis
Weused both a conventional sensitivity analysis and the so-called
database approach or population-based method for exploring
biological robustness and variability. For the sensitivity analysis,
we varied the parameter values for the maximum conductances
of Ito, IKr, IK1, ICaL, and INa, as well as maximum transport
rates of SERCA and NCX by ±10% (n = 14). Correlation
coefficients were calculated using Matlab’s built-in function
corrcoef. Similarity index for APD90 and CaTamp was calculated
as a sum of the relative contribution of the seven cellular
components on the chosen set of biomarkers (APD90 and
CaTamp).

In the database approach, we varied the same seven key
parameters in the model according to available literature in vitro
data (Figure 5, Supplementary Table 1). This experimentally-
calibrated approach of creating a population of models was
introduced by Prinz et al. (2003) in the context of in silico studies
of neurons, and later applied also in computational cardiac
studies by e.g., Romero et al. (2009).

We excluded the hyperpolarization activated or funny
current (If) and slow delayed rectified potassium current (IKs)
from the group of varied parameters. This was done to
limit the computational load of database simulation, which is
exponentially proportional to number of varied parameters. Also,
the exclusion was physiologically justified, as changing If and IKs
conductances in the in vitro ranges had virtually no effect on the
AP dynamics. Instead, we studied If contribution separately to
test if the current is large enough to contribute to spontaneous
activity (Supplementary Figure 3E).

Database simulation were carried out with three protocols:

• In the spontaneous mode, simulations were run for 260 s and
the last 10 s were saved for analysis.

• In the stimulated mode, simulations were run for 260 s at 1Hz
pacing and the last 5 APs were saved for analysis.

• In the APD restitution and FFR experiment, simulations were
run for 60 s at each pacing frequency (1, 1.2, 1.4, 1.6, 1.8, 2.0,
2.2Hz) and the last AP was saved for analysis.

All simulations were started from the control 1Hz pacing steady-
state. The 260-s simulation duration was justified by the estimate
that the time constants for settling of [Na+]i and [K+]i was
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about 130 s in the model. In the database simulations, we used
a slightly larger current pulse (amplitude 2-times the threshold)
to evoke action potentials. APD restitution was measured as the
shortening of APD90 and FFR as the increase of CaT amplitude
(surrogate measure of force, as the model does not include the
description of the contractile element).

Pathological in Silico Model Variants
We chose Brugada Syndrome (BrS), Long QT Syndrome (LQTS)
and catecholaminergic polymorphic ventricular tachycardia
(CPVT) as the three principal types of inherited arrhythmia that
have electrical origin and manifest as abnormalities in excitation,
repolarization and depolarization.

Multiple ion channel mutations are associated with BrS. We
chose a Navβ1b/H162P (Yuan et al., 2014) mutation as an
example case, in which the properties of INa are altered so that (1)
current amplitude is reduced by 48%, (2) steady-state inactivation
curve is shifted by 6.7 mVs toward negative potentials, and (3)
slow and fast recovery from inactivation are 75 and 46% slower,
respectively.

To quantify the effect of LQT2-associated c.A2987T KCNH2
mutation on AP repolarization in both hiPSC and adult
cardiomyocytes, conductance of rapid delayed inward rectifying
potassium current (IKr) was decreased by 33%, based on the in
vitro data from Bellin et al. (2013).

CPVT-like conditions were elicited both in hiPSC and
adult cardiomyocytes, by forcing random RyR openings and
subsequent calcium releases from the SR. Early and delayed
afterdepolarizations caused by forced random RyR openings
(Figure 4). Arrhythmogenic coupling efficiency (ACE) was
quantified as deviations in membrane voltage compared to
control.

Human Adult Cardiomyocyte in Silico

Models
To compare the hiPSC phenotype and human adult
cardiomyocytes, we used the previously published ventricular
(Grandi et al., 2010) and atrial (Grandi et al., 2011) cell

models. In the BrS, LQT2 and CPVT-like model variants, the
same pathology related modifications of model parameters
were implemented as in the hiPSC-CM model. We chose
to use ventricular and atrial CM models from the same
Grandi et al. model familiy, so that a direct comparison
between human adult ventricular and atrial myocytes was
possible.
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Dynamic clamp, a hybrid-computational-experimental technique that has been used

to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a

promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological

safety testing. Through the injection of computationally simulated conductances into

isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly

expanded the capabilities of patch clamp outside traditional static voltage and

current protocols. Recent applications include fine manipulation of injected artificial

conductances to identify promising drug targets in the prevention of arrhythmia and the

direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used

to enhance existing experimental models by addressing their intrinsic limitations, which

increased predictive power in identifying pro-arrhythmic pharmacological compounds.

Here, we review the recent advances of the dynamic clamp technique in cardiac

electrophysiology with a focus on its future role in the development of safety testing and

discovery of anti-arrhythmic drugs.

Keywords: dynamic clamp, cardiac electrophysiology, cardiac modeling, arrhythmia mechanisms, antiarrhythmic

drugs, pharmacology & drug discovery

INTRODUCTION

The search for successful anti-arrhythmia therapeutics is rooted in the voltage clamp and current
clamp techniques, which have provided the mechanistic details behind the ionic membrane
currents that compose the cardiac action potential (AP). While basic science has made great
leaps in identifying and characterizing the basic factors involved in arrhythmia, the translation
of these advances into successful therapies has been lackluster. Nonetheless, investigators have
been using a combination of experimental and computational approaches to unravel the complex
mechanisms underlying cardiac arrhythmia. Using this approach, experimental measurements,
typically in single cells from mammalian hearts, are used to develop biophysically detailed
mathematical models that can be scaled up to the tissue and whole-organ levels where
arrhythmia occurs. Unlike experiments, computational modeling readily allows for the precise
perturbation of particular parameters individually or in controlled combinations (simulating,
e.g., the multifactorial nature of many disorders), but results are reliant on the accuracy of the
model and its many components. The dynamic clamp technique is a merger between experimental
and computational techniques that has been gaining traction as a hybrid method for elucidating
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arrhythmia mechanisms and possible therapeutics.
Traditional patch clamp protocols are typically static and

predetermined, such as sequential voltage steps used to study
membrane current dependencies. Dynamic clamp is an extension
of patch clamp, where measurements from the cell are used
to modify a continuously changing experimental protocol in
a real-time feedback loop (Robinson and Kawai, 1993; Sharp
et al., 1993). Earlier work has shown broad application—coupling
of separate cardiomyocytes through an artificial gap junction
(Tan and Joyner, 1990; Joyner et al., 1991; Spitzer et al., 1997;
Verheijck et al., 1998; Zaniboni et al., 2000; Huelsing et al.,
2001), injection of measured current from a transfected cell
into a primary isolated myocyte (Berecki et al., 2005, 2006),
antrhomorphization of mouse cardiac APs (Ahrens-Nicklas and
Christini, 2009; Bot et al., 2012), and more recently in the
study of cardiomyocyte coupling to unexcitable cells (McSpadden
et al., 2012) and fibroblasts/myofibroblasts (Nguyen et al., 2012;
Brown et al., 2016). The history of dynamic clamp has been
reviewed in detail elsewhere (Prinz et al., 2004; Wilders, 2006;
Ravagli et al., 2016). Here, we focus on a specific configuration
of this technique, called the dynamic model clamp (referred
hereafter as dynamic clamp), where a mathematically based
model of a conductance is injected to the cell in real-time.
Characteristically, this mathematical model describes a specific
voltage and time-dependent membrane current determined by a
set of differential equations. Measured voltage of a cell in a patch
clamp configuration is fed into a mathematical model at high
rates, from which the calculated current is injected back into the
cell (Figure 1A).

Central to the dynamic clamp experimental rig is the software,
which acts as the interface between the patch-clamp hardware
and mathematical models. Accurate and rapid sampling of the
membrane potential and computation of the virtual conductance
is required to mimic sufficiently a biological conductance
(Bettencourt et al., 2008). These requirements necessitate hard
real-time control. In this context, the feedback loop must
complete every iteration within a specified time constraint,
typically 50–100 µs (10–20 kHz) in cardiomyocyte dynamic
clamp experiments, a feat not possible on standard operating
systems and software due to technical limitations. The works
discussed here predominately use two software platforms—
DynaClamp (Berecki et al., 2005, 2006) and the Real-Time
eXperimental Interface (RTXI, www.rtxi.org; Ortega et al., 2014;
Patel et al., 2017). Both platforms utilize a customized real-time
Linux operating system and are freely available.

In this review, we discuss how investigators have used the
dynamic clamp technique to test theoretical drug targets, validate
and improve existing cardiac mathematical models, and design
assays for cardiotoxicity testing.

INVESTIGATION OF ARRHYTHMIA
MECHANISMS

Drug Target Identification
Dynamic clamp studies on the cardiac L-type Ca2+ current
(ICaL) by Madhvani et al. identified arrhythmia mechanisms,

which could potentially be targeted by anti-arrhythmic drugs
(Madhvani et al., 2011, 2015). The authors specifically focused
on the role of ICaL in the formation of early after depolarizations
(EADs), i.e., secondary depolarizations during phase 2 and 3 of
the AP resulting from a transient failure of AP repolarization.
EADs are used as a marker of cardiac arrhythmia due to its
propensity to trigger a premature AP and subsequently initiate
cardiac arrhythmias, such as Torsades de pointes (TdP) or
ventricular fibrillation, which in turn can lead to sudden cardiac
death (Cranefield and Aronson, 1991). EADs require an inward
current that can overcome and reverse repolarization, which can
be fulfilled by ICaL, the major inward current during phase 2 and
3 of the AP. Madhvani et al. aimed to investigate the dependence
of EADs on the biophysical properties of ICaL, but the lack of
an assortment of drugs known to finely alter this current makes
traditional patch clamp experiments impractical. Thus, to mimic
theoretical perturbations to ICaL properties in vitro dynamic
clamp was used instead.

In rabbit ventricular myocyte exhibiting EADs, induced with
either hydrogen peroxide (Figure 1B, top) or hypokalemia,
they replaced native ICaL (blocked with nifedipine) with a
virtual model-based ICaL, which was injected using dynamic
clamp (Figure 1B, middle). The consequences of alterations in
ICaL biophysical properties were investigated by manipulating
the parameters underlying the modeled current. For example,
shifting the half-maximal activation voltage by 5mV abolished
EADs and returned AP duration (APD) to normal values
(Figure 1B, bottom). Note that H2O2 affects multiple inward
currents in addition to ICaL, such as the late sodium current (Xie
et al., 2009), but modification of ICaL alone was able to eliminate
EADs.

The mechanistic basis for the observed behavior was
established in earlier work describing a window current region
between −40 and 0mV (January and Riddle, 1989) where
the steady-state activation and inactivation curves overlap. In
this region, a fraction of the L-type Ca2+ channels are not
inactivated and available for possible reactivation and generation
of an EAD. A positive shift in the steady-state activation curve
reduces this window region and eliminates EADs. In their
later work, Madhvani et al. systematically perturbed all ICaL
model parameters and measured the consequences to EAD
formation, confirming that parameter changes that reduced
the window current region (depolarizing shifts to steady-state
activation, or hyperpolarizing shifts to steady-state inactivation)
were highly effective at EAD prevention (Madhvani et al.,
2015). Based on these observations, the authors identified the
purine analog Roscovitine, originally developed as an anti-cancer
agent, as a promising anti-arrhythmic due to its ability to
decrease the window current through a reduction to the late
component of ICaL. Preliminary work has shown Roscovitine did
indeed abolish EADs in myocytes and terminated ventricular
tachycardia/fibrillation in whole rat hearts (Karagueuzian et al.,
2017), supporting its therapeutic potential. Notably, this work
illustrates a new paradigm in the search for new classes of
anti-arrhythmic drugs.

Using a similar approach to the ICaL studies, Altomare
et al. investigated the human ether-a-go-go related gene (hERG)
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FIGURE 1 | Using dynamic patch clamp to reveal drug targets and systematically test computational models. (A) Schematic of the dynamic model clamp

configuration. (B) Rabbit ventricular myocytes produce EADs during hydrogen peroxide exposure at a pacing cycle length of 5 s at 37◦C (middle). Replacement of

ICaL with a virtual conductance through dynamic clamp after block with nifedipine recapitulates appearance of EADs (middle). By varying the half-maximal of activation

by 5mV, EADs are abolished (bottom). Adapted with permission (Madhvani et al., 2011). (C) Prediction of a 40% increase or decrease of different cardiac currents

based on a computational model of a ventricular guinea pig cardiomyocyte are tested with dynamic clamp, revealing a substantial mismatch. Adapted with permission

(Devenyi et al., 2017).

channel responsible for the rapid portion of the delayed
rectifier K+ current (IKr) (Altomare et al., 2015). Mutations
and drug perturbations to IKr result in abnormal repolarization,
clinically highlighted by long- or short- QT syndrome. The
authors examined how IKr biophysical properties influenced
APD and its temporal variability by blocking and subsequently
replacing native IKr in guinea pig ventricular cardiomyocytes
using dynamic clamp. The modeled current was shown to
recover control AP parameters adequately, which reveals the
properties described in the model are sufficient to describe the
contribution of IKr to APD and its stability. The voltage and
time dependent properties of IKr were systematically perturbed,
and then compared to control and drug block conditions. This
approach allowed a detailed examination of the consequences
of each current property in isolation. The study showed both
APD and its variability were most sensitive to changes to steady-
state inactivation. Alternatively, while steady-state activation had
little impact on APD, significant changes to APD variability
were observed. This suggests that variability in APD, rather than

mean APD, may be more sensitive in detecting IKr-dependent
repolarization abnormalities.

Dynamic clamp has also been used successfully in studies of
the transient outward K+ current (Ito), where dynamic clampwas
used to vary Ito conductance in ventricular (Dong et al., 2006,
2010; Nguyen et al., 2015) and atrial cardiomyocytes (Workman
et al., 2012). Given the fact existing Ito blocking drugs are non-
selective (Ridley et al., 2003; Aréchiga-Figueroa et al., 2010),
these studies provided important insight into the relationship
between Ito and the morphology and duration of the AP. Dong
et al. sought to understand the impact of Ito on the mechanical
properties of cardiomyocytes. Ito is responsible for the presence
of the characteristic phase-1 notch of the AP, and conflicting
evidence suggested notch prominence can either increase or
decrease ICaL, respectively, enhancing or reducing contraction.
Canine ventricular epicardial myocytes are characterized by a
prominent phase-1 notch, which endocardial myocytes generally
lack (Antzelevitch et al., 1991). By swapping Ito conductance
levels of both cell-types using dynamic clamp, Dong et al. found
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that endocardial cells in which the small native Ito was substituted
by a larger epicardial-like Ito displayed diminished contractility,
and demonstrated that Ito acts as a negative regulator of
contractility through reduction of ICaL peak magnitude (Dong
et al., 2010).

Workman et al. investigated the influence of Ito on atrial
arrhythmogenesis, a topic which was unclear due to the lack
of Ito specific drugs (Workman et al., 2012). Reduction of
Ito through dynamic clamp revealed AP prolongation, and
additional β-adrenergic stimulation evoked EADs. Ito increase
or exposure to the β-blocker atenolol prevented EAD formation.
This suggests Ito enhancement holds promise in arrhythmia
prevention, at least in the atrium. On the other hand, the dynamic
clamp study by Nguyen et al. showed that Ito enhancement
potentiated EADs in rabbit ventricular myocytes with reduced
repolarization reserve, i.e., the intrinsic redundancy against
excessive APD (Roden, 1998). By affecting the early AP phases, Ito
augmentation can alter other voltage-dependent repolarization
currents, leading to decreased late repolarization reserve and
increased EAD formation (Nguyen et al., 2015).

It is important to note that the dynamic clamp technique
suffers from a major limitation, i.e., the lack of ion selectivity in
the current injection. Given physiological intracellular solutions
contain predominantly K+, dynamic clamp of ICaL current will
be carried mainly by K+, and not Ca2+. Thus, the simulated
conductance—which should be Ca2+-dependent per se, is unable
to trigger secondary intracellular Ca2+ release and contraction.
In an attempt to compensate for this limitation, Madhvani et al.
simulated the intracellular Ca2+ transient, which was then fed
back into the ICaL model (Madhvani et al., 2011, 2015), whereas
Devenyi et al. included ion selectivity in their simulations
(Devenyi et al., 2017). While especially true for Ca2+ due to its
major role as a secondary messenger, caution should be applied
when interpreting results of virtual conductance injection, as
transient changes in intracellular concentrations can affect ion
channel behavior.

Improvement of Cardiac Computational
Models
The Comprehensive in vitro Proarrhythmia Assay (CiPA)
initiative seeks to introduce a new cardiac drug safety testing
paradigm that combines in vitro drug effects on multiple ion
channels, computational modeling of cardiac currents and AP,
and the use of human stem-cell derived cardiomyocytes (Sager
et al., 2014; Colatsky et al., 2016). Computational modeling has
proven to be a vital tool in cardiac arrhythmia research, and is
expected to be instrumental in the future pipeline in drug testing.
Confidence in model accuracy is directly tied to dynamic clamp
results, as errors in the formulation of the mathematical model
used can skew results. However, this limitation can be exploited
because only accurate models can fully rescue behavior after drug
block.

Ravagli et al. compared two computational models of the
hyperpolarization-activated funny current, If (Ravagli et al.,
2016), which plays a major role in the pacemaker activity
current of sinoatrial node (SAN) cells. The authors used a

dynamic clamp rescue experiment, where ivabradine was used
to partially block If current, and a dynamic clamp injected
model current was used to rescue control behavior. They showed
one model significantly outperformed the other by restoring
spontaneous activity in SAN cells, identifying the more accurate
mathematical formulation of their experimental data. Bartolucci
et al. used this strategy to validate an optimized formulation
of the IKr current (Bartolucci et al., 2015). The original Luo-
Rudy model (Luo and Rudy, 1994), derived from voltage clamp
step protocols (Sanguinetti and Jurkiewicz, 1990), fit poorly
to their experimentally measured IKr current data obtained
with AP clamp. After optimization to the AP clamp data,
their new model strongly diverged from the widely used Luo-
Rudy formulation and fully reversed IKr block during dynamic
clamp.

Devenyi et al. used dynamic clamp to artificially scale multiple
cardiac currents in guinea pig ventricular myocytes using a
single whole cell model (Devenyi et al., 2017). Altogether,
this amounted to a rapid and efficient testing of multiple
computationally-based hypotheses within the same cell under
static conditions. By comparing their experimental results of
the current perturbations to the predicted results from the
computational model, the authors noted significant discrepancies
(Figure 1C). First, the basal APD was shorter, and second,
current perturbations in the experiment were generally larger
than predicted by the model. The authors then used the new
experimental data to reparameterize the model through unbiased
fitting with a genetic algorithm, yielding a new model that
could recapitulate the experimental data well. Interestingly, while
the original model had a large ratio between the slow (IKs)
and rapid (IKr) portions of the delayed rectifier K+ current,
the fitting consistently reversed this ratio. This finding was
then verified experimentally, and further in-silico investigation
into the consequences to cardiac arrhythmia showed IKs is
better able to prevent EADs during increased L-type Ca2+

current.
These studies illustrate how dynamic clamp can be used

to experimentally validate computational models, which are
typically built from heterogenous data sets spanning numerous
experiments, under consistent conditions. Thereafter, new data
can be used to further refine the models and advance mechanistic
understanding.

DRUG SAFETY TESTING PLATFORMS

Dynamic clamp has also been utilized in the development
of new assays for assessment of drug proarrhythmic risks.
The current regulatory framework used to prevent approval
of drugs with the potential to induce TdP is focused on two
main areas: the propensity of the drug to block the hERG
channel in vitro, and whether the drug prolongs the QTc
interval of the ECG. Though largely successful at preventing
proarrhythmic drugs from entering the market, the approach
has been criticized due to its low specificity, as hERG block
and QT prolongation do not always carry torsadogenic risk
(Sager et al., 2014; Colatsky et al., 2016). Consequently, it is
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generally agreed that many promising drugs that may have little
arrhythmogenic risk have their development terminated due
to failing either criteria. As mentioned previously, the CiPA
initiative considers human stem-cell derived cardiomyocytes a
key component in future drug safety assays (Sager et al., 2014;
Colatsky et al., 2016), and dynamic clamp has been used to
address key limitations.

Human induced pluripotent stem cell derived cardiomyocytes
(hiPSC-CMs) are being used as an alternative to traditional
animal models, cell lines, and heterologous expression systems
in the study of cardiac electrophysiology mechanisms and drug-
induced arrhythmia. Due to the inherent difficulty in obtaining
human cardiac tissue for study, hiPSC-CMs may provide an
accessible source of human cell lines and includes the additional
capacity to produce patient-specific lines. However, as with
human embryonic stem cell derived cardiomyocytes, hiPSC-CMs
exhibit an immature phenotype. These cells are stereotypically
characterized by spontaneous activity, elevated maximum
diastolic potentials, low maximum upstroke velocity, and highly
variable APD (Hoekstra et al., 2012). A major contributing
factor for these issues is hiPSC-CMs lack of the inward
rectifying K+ current (IK1), which plays a major role maintaining
a stable resting potential in quiescent cardiomyocytes (Doss
et al., 2012). The lack of IK1 is a cumulative issue, in that
a generally depolarized membrane potential influences other
cardiac currents, such as lowering the availability of fast
Na+ channels due to inactivation, which reduces upstroke
velocity.

Bett et al. implemented a dynamic clamp based approach to
resolve the immaturity issue in hiPSC-CMs through the addition
of a virtual IK1 current (Bett et al., 2013). The original erratic AP
morphology of hiPSC-CMs (Figure 2A) was transformed to an
AP profile similar to those seen in adult human cardiomyocytes
(Figure 2B), with a stable resting membrane potential and fast
upstroke velocity. Seeking to test the impact of the dynamic
clamp transformation in response to drug perturbation, hiPSC-
CMs were exposed to the Ca2+ agonist BayK-8644 at room
temperature. Without dynamic clamp, drug addition ceased
spontaneous AP generation (Figure 2C) most likely due to BayK-
8644 induced Ca2+ loading. This is in stark contrast to what is
expected from ventricular cardiomyocytes in humans and other
mammalian species, where an increase in depolarizing Ca2+

currents is expected to increase APD and abnormal activity, such
as EADs.With IK1 dynamic clamp, however, APD prolongation is
evident in stimulated APs (Figure 2D). This illustrates that while
hiPSC-CMs are sensitive to BayK-8644, lack of IK1 can mask the
relevance of drug effects.

Building upon this work, Putten et al. used multiple IK1
models in their dynamic clamp experiments to examine the
impact of varying degrees of rectification (Meijer van Putten
et al., 2015), a biological feature of the IK1 current due to
differential expression of the channel (Kir2.x) subunits (Wang
et al., 1998). Additionally, IK1 channelopathies were investigated
by modifying their Kir2.1 model to represent gain-of-function
and loss-of-function mutations. The gain-of-function mutation
was based on the E299V mutation associated with short QT
syndrome 3, and the loss-of-function mutation was based

on the heterozygous dominant-negative mutation in KCNJ2
associated with Andersen-Tawil syndrome. The top panel of
Figure 2E plots the different current-voltage relationships of the
modified models. The bottom panel of Figure 2E shows the
corresponding APs when these models are used in the calculation
of the virtual IK1 current during dynamic clamp. Consistent
with short QT, the gain-of-function mutation significantly
decreased APD, while the loss-of-function had only a marginal
effect.

More recently, hiPSC-CM studies augmented with IK1
dynamic clamp have provided insight into cardiac abnormalities
such as Brugada syndrome (Veerman et al., 2016), long QT
syndrome (Rocchetti et al., 2017), and familial atrial fibrilliation
(Marczenke et al., 2017). While ion channel dysfunction has
been associated with Brugada Syndrome, mainly the cardiac
fast Na+ current, Veerman et al. found no clear cellular
electrophysiological abnormalities in patient-derived hiPSC-
CMs, suggesting that other factors, such as fibrosis, could also
be underlying mechanisms (Veerman et al., 2016). Rocchetti
et al. recently studied hiPSC-CMs derived from a long QT
patient carrying a heterozygous mutation in one of the
three calmodulin encoding genes (Rocchetti et al., 2017). The
patient-specific cells exhibited prolonged APD and failure to
shorten with increased pacing rate, which the study linked
to impairment of Ca2+-dependent inactivation of ICaL. The
ICaL blocker verapamil reversedmutation-induced repolarization
abnormalities. Marczenke et al. explored the role of mutations
of the KCNA5 gene, encoding the channel responsible for
the ultrarapid delayed rectifier K+ current, in familial atrial
fibrillation (Marczenke et al., 2017). The authors generated
a functional KCNA5 knockout hiPSC-CM line combining
CRISPR/Cas9-mediated mutagenesis and atrial- or ventricular-
specific differentiation through manipulation of retinoic acid
signaling (Devalla et al., 2015). They observed a strictly atrial-
specific disease phenotype, where atrial KCNA5 knockout hiPSC-
CMs exhibited prolonged APD and EADs at low stimulation
frequencies vs. insignificant changes in the ventricular variant.
These works highlight the potential of hiPSC-CMs in cardiac
patient-specific and subtype-specific disease modeling.

IK1 dynamic clamp is becoming more common to hiPSC-CM
studies to reduce variability in experimental metrics, eliminate
spontaneity due to elevated resting membrane potential, and
yield a more physiological relevant phenotype. Verkerk et al.
systematically analyzed the impact of IK1 dynamic clamp
on AP characteristics in atrial and ventricular hiPSC-CMs,
and provided an in-depth comparison of the methodology
and experimental variability of the studies discussed above
(Verkerk et al., 2017). While IK1 dynamic clamp appears
to reduce the variability of most AP parameters, enthusiasm
of reducing the large experimental variability of hiPSC-CMs
is tempered by the observation that APD variability is not
affected. However, elimination of spontaneous depolarizations
allows for stimulus at static frequencies, permitting investigation
into rate-dependence. More importantly, static pacing reduces
beat-to-beat variability, granting a greater ability to detect
AP parameter changes. Verkerk et al. also investigated the
impact of different mathematical formulations of the injected
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FIGURE 2 | Addressing the immature electrophysiological phenotype of hiPSC-CMs. General lack of the IK1 current in hiPSC-CMs plays a major role in their immature

phenotype, which was compensated for through IK1 dynamic clamp. (A) Spontaneous and erratic activity is typical of hiPSC-CMs (average resting potential = −63 ±

5.8mV, n = 21). (B) After injection of a virtual IK1 current via dynamic clamp, cells become quiescent and produce adult-like stimulated APs (average resting potential

= −84 ± 0.1, n = 21). (C) When exposed to the Ca2+ agonist BayK-8644, increased Ca2+ loading terminated spontaneous AP generation. (D) Exposure of

BayK-8644 along with IK1 dynamic clamp prolonged APD compared to (B). (A–D) adapted with permission (Bett et al., 2013). (E) Top panel, current to voltage

relationships of IK1 models representing wild-type Kir2.1, loss-of-function mutation, and gain-of-function mutation. Corresponding AP morphology during dynamic

clamp injection of hiPSC-CMs of each model is shown in the bottom panel. Adapted with permission (Meijer van Putten et al., 2015).

IK1 current, by comparing the models used in several studies
discussed previously (Bett et al., 2013; Meijer van Putten et al.,
2015; Rocchetti et al., 2017). Not surprisingly, the parameter
selection of IK1 current density and kinetics can influence
relevant AP metrics. Conversely, the flexibility inherent to model
modification provides a means to tailor the IK1 current to specific
cell types, such as ventricular or atrial.

The low throughput of dynamic clamp is a major limitation to
its use as part of a drug testing hiPSC-CM platform. Techniques
to increase maturation and IK1 density, such as 3D culturing
(Lemoine et al., 2017) and adenovirus-mediated overexpression
of IK1 (Vaidyanathan et al., 2016), may circumvent the need for
dynamic clamp, but are currently not widely used. Automated
patch clamp offers a possible route to increase throughput, but
brings a new set of issues, such as interfacing with proprietary
equipment and the use of single suspended cells. In a promising
recent advance, Goversen et al. have successfully combined IK1
dynamic clamp with automated patch clamp of hiPSC-CMs,
suggesting the feasibility of high-throughput application as a
drug testing platform (Goversen et al., 2017).

In summary, dynamic clamp has been utilized in a number
of exciting studies to address some of the inherent limitations
of hiPSC-CMs, suggesting a promise as a component of safety

pharmacology testing. Furthermore, the ability to modify the
underlying mathematical models to examine channelopathies
expands the capabilities of this platform.

CONCLUSION

By coupling mathematical models with biological experiments,
dynamic clamp has provided a powerful tool in the search
for potential anti-arrhythmic therapies through model-
based perturbations, enhanced hiPSC-CMs as a platform for
pharmacological safety testing, and used to clarify and improve
mathematical models of cardiac electrophysiology. Dynamic
clamp allows fine manipulation of numerous parameters like
in-silico studies, but is performed in the context of experimental
biology. This approach has enabled investigators to test
theoretical perturbations in real-time and in live cells, and the
power of this technique is represented by the broadness seen
in the studies discussed here. It is expected dynamic clamp
will continue to elucidate the mechanisms underlying cardiac
arrhythmia and identify novel drug targets, and could evolve
into a high-throughput assay, e.g., on automated patch clamp
platforms to improve maturity of hiPSC-CMs.
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Cardiomyocytes and Simulations of
Ik1 Ion Channels in Real-Time
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An important aspect of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) proposal

is the use of human stem cell-derived cardiomyocytes and the confirmation of their

predictive power in drug safety assays. The benefits of this cell source are clear; drugs

can be tested in vitro on human cardiomyocytes, with patient-specific genotypes if

needed, and differentiation efficiencies are generally excellent, resulting in a virtually

limitless supply of cardiomyocytes. There are, however, several challenges that will have

to be surmounted before successful establishment of hSC-CMs as an all-round predictive

model for drug safety assays. An important factor is the relative electrophysiological

immaturity of hSC-CMs, which limits arrhythmic responses to unsafe drugs that are

pro-arrhythmic in humans. Potentially, immaturity may be improved functionally by

creation of hybrid models, in which the dynamic clamp technique joins simulations

of lacking cardiac ion channels (e.g., IK1) with hSC-CMs in real-time during patch

clamp experiments. This approach has been used successfully in manual patch clamp

experiments, but throughput is low. In this study, we combined dynamic clamp with

automated patch clamp of iPSC-CMs in current clamp mode, and demonstrate that

IK1 conductance can be added to iPSC-CMs on an automated patch clamp platform,

resulting in an improved electrophysiological maturity.

Keywords: automated patch clamp electrophysiology, cardiomyocyte, stem cell, dynamic clamp, inward rectifying

potassium ion channels, safety pharmacology

INTRODUCTION

The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative aims to find new means of
predicting the proarrhythmic risk of newly developed drugs (Gintant et al., 2016), which do not
rely exclusively on hERG block, and not on QT prolongation at all. Key aspects are to include
results of computer simulations of drug effects on heart rhythm and in vitro assays using human
stem cell-derived cardiomyocytes (hSC-CMs).
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Characterization of the hSC-CM electrophysiological
phenotype has so far shown that these CM express most, but
not all cardiac ion channels, which has implications for their
use in safety pharmacological assays (Jonsson et al., 2012; van
den Heuvel et al., 2014). Importantly, the inward rectifying
potassium current, IK1 (de Boer et al., 2010), that is highly
expressed in adult CMs is not, or hardly, expressed by hSC-CMs
(Doss et al., 2012; Goversen et al., 2017), while the pacemaker
current If is expressed consistently. As a result, hSC-CMs
display a pacemaker-like phenotype, with a depolarized and
unstable resting membrane potential, resulting in spontaneous
triggering of action potentials. This is an important issue, as the
action potential waveform affects the activity and availability
of many cardiac ion channels, as these are voltage-sensitive
and rely on a negative resting membrane potential between
beats to recover from inactivation after an action potential.
For example, in hSC-CMs, sodium channel availability during
the action potential is minimal, even though the channels are
expressed in sufficient levels. As a consequence, we found in a
previous study that, except for drugs blocking the hERG channel,
none of the tested drugs that are known to be proarrhythmic
in adult cardiomyocytes triggered arrhythmias (early-after-
depolarizations) in hSC-CMs (Jonsson et al., 2012). More recent
studies have found that iPSC-CMs are not sufficiently mature
to detect risks associated with inhibition of the late sodium
current (Blinova et al., 2017), or peak sodium current (Ando
et al., 2017). Interestingly, adenovirus mediated overexpression
of IK1 channels in iPSC-CM was demonstrated to improve drug
responses (Li et al., 2017).

Several approaches are being adopted to improve the
electrophysiological phenotype, for instance overexpression
of the IK1 channel, which has shown promising results
(Vaidyanathan et al., 2016). Another, more controllable approach
is to use dynamic clamp to add simulated IK1 channels to hSC-
CMs (Wilders, 2006; Ortega et al., 2017). The essence of dynamic
clamp is that a hybrid model is created by connecting a real
cell with a computer simulation of (parts of) a cell. For this
to work, one needs a computer simulation that is running in
real-time—simultaneously with the experiment on the real cell—
so there is an instantaneous interaction between the real cell
and the simulation. This works well, and has been described by
several groups that applied it in manual patch clamp experiments
(Bett et al., 2013; Meijer van Putten et al., 2015). Addition
of simulated or overexpressed IK1 channels results in a stable,
more negative resting membrane potential, increased action
potential amplitude, and upstroke velocity, thereby bringing the
action potential waveform much closer to that of adult human
ventricular cardiomyocytes. The expectation is that this approach
will result in a more reliable prediction of drug effects, but this
hypothesis has yet to be studied systematically (Goversen et al.,
2017).

When considering the use of dynamic clamp in safety
pharmacology, the low throughput and complex nature of
manual patch clamp in combination with dynamic clamp is
problematic. Additionally, as noted in the literature (Meijer
van Putten et al., 2015), current implementations require the

simultaneous use of two computers that both require user
interaction during the experiment, which is not very practical.
In this study, we have developed a remote-controlled dynamic
clamp system with the purpose to couple and integrate it with
automated patch clamp devices, in order to increase throughput
and develop new predictive assays using hSC-CMs that are in line
with the aims of the CiPA initiative. In this study, we demonstrate
its application by creating hybrid human cardiomyocyte models
by the addition of virtual IK1 current to single, suspended human
iPSC-CMs, and recording action potentials on an automated
patch clamp device.

MATERIALS AND METHODS

iPSC-CM Culture and Dissociation
Differentiated iPSC-derived cardiomyocytes (Cor.4U,
kindly provided by Axiogenesis AG, Germany and Cellartis
Cardiomyocytes, kindly provided by Takara Bio Europe AB,
Sweden) were cultured according to the suppliers’ instructions.
The cells were dissociated by incubating them for 15–30min in
TrypLE (Gibco) until detached from the surface of the culture
flask, and then kept at 4◦C for 30min before pipetting them to
individualize the cells.

Automated Patch Clamp Electrophysiology
Recordings from single iPSC-CMs were done using a Nanion
Patchliner automated patch clamp device at 20◦C and standard
medium resistance NPC-16 chips. After catching an iPSC-CM,
obtaining a gigaseal and breaking into whole cell configuration,
several experiments were performed.

From a holding potential of −100mV, current-voltage
recordings were made using voltage steps from −80 to 40mV
for 20ms increasing in 10mV steps at 2 s intervals (sodium
ion currents), and from −40 to 40mV for 200ms increasing
in 10mV steps at 5 s intervals (calcium ion currents), with a
100ms pre-pulse to −40mV to inactivate sodium ion currents.
IK1 current were recorded from a holding potential of −40mV,
with voltage steps from−120 to+30mV for 1,200ms increasing
in 10mV steps. IK1 was blocked by adding 10µM Ba2+, from
these recordings we calculated the Ba2+-sensitive steady-state
current and report these in I-V diagrams.

Next, the recording mode was switched to current clamp and
the effect of adding simulated IK1 conductance to the iPSC-CM
using dynamic clamp was tested. To this end, a current stimulus
was optimized for each cell individually to reliably induce action
potentials (APs) at a rate of 0.5Hz. The stimulus was 1ms long
and ranged from 0.6 to 3 nA. The same stimulus was used to
trigger APs while exposing the cells to increasing simulated IK1
conductance. If the conductance was set too low, no effect on the
AP was detectable, if set too high, no AP could be induced. The
simulated IK1 conductance range varied considerably between
individual cells, 200 to 2,000 pS/pF were used across cells.

All experiments were done using extracellular solution
containing (in mmol/L) 140 NaCl, 10 HEPES, 5 Glucose, 4 KCl, 2
CaCl2, 1 MgCl2, pH 7.4 (NaOH), 298 mOsm, and intracellular
solution containing 110 KF, 10 KCl, 10 NaCl, 10 HEPES,
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FIGURE 1 | Block diagram showing connections between Patchliner, patch clamp amplifier and dynamic clamp system. For a more detailed depiction of the dynamic

clamp system we refer to Supplementary Figure 1.

TABLE 1 | iPSC-CMs can be captured efficiently using automated patch clamp

and display Na+ and Ca2+ currents.

Capture rate (%) INa larger than 50pA (%) ICa,L larger than 50pA (%)

58 (28/48) 71 (20/28) 68 (19/28)

Six experiments were performed using a total of 3 chips, therefore 48 potential sites on

the chip were available and 28 Cellartis iPSC-CMs were captured (with seal resistance

>150 MΩ ) resulting in a success rate of 58% for capture.

10 EGTA, pH7.2 (KOH), 285 mOsm. In some experiments,
potassium salts were replaced by cesium salts to expose calcium
ion currents otherwise obscured by potassium ion currents. Since
potassium currents turned out to be negligible, no difference
referring to (real) potassium conductance was observed between
those recordings.

TABLE 2 | Average electrophysiological parameters iPSC-CMs.

RSeal (M�) CM (pF) Rs (M�) INa at −30mV ICa,L at 10mV

(nA) (pA)

976 ± 144 (28) 37 ± 6 (28) 6.0 ± 0.9 (28) −5.4 ± 1.5 (7) −157 ± 24 (18)

Shown are values for seal resistance (RSeal ), cell capacitance (Cm) and series resistance

(Rs ) for Cellartis Cardiomyocytes captured with seal resistance > 150 MΩ. Na+ current

at −30mV and Ca2+ current at 10mV is also shown. Number of cells shown in brackets.

Note that the average current is taken from the IV curves and not all cells which had a

detectable Na+ current were used for the IV analysis.

Dynamic Clamp System
Experiments were done using a dynamic clamp system developed
in house at UMC Utrecht, Utrecht, The Netherlands. The
system runs on the Labview RT operating system, and simulates
IK1 current in response to membrane potential measured
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FIGURE 2 | Typical recordings from hiPSC Cellartis Cardiomyocytes recorded on the Patchliner. (A) Na+ currents in response to increasing voltage steps.

(B) Corresponding current-voltage plot for an average of 7 cells. A Boltzmann fit revealed a Vhalf of activation of −46mV. (C) Ca2+ currents in response to increasing

voltage steps. (D) Corresponding current-voltage plot for an average of 18 cells. A Boltzmann fit revealed a Vhalf of activation of −5.8mV. (E) Raw traces of Ca2+

current in control conditions (black) and after inhibition by increasing concentrations of nifedipine (blue). (F) The concentration response curve (normalized to maximum

block) for nifedipine for an average of 5 cells. The average concentration response curve was fitted with a standard Hill-equation which revealed an

IC50 = 252 ± 186 nM (n = 5).
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from the iPSC-CM. Real-time simulation of the IK1 current
was done using the model by Ishihara et al. (2009), and
simulations were done at 20 kHz, on four independent channels,
allowing simultaneous dynamic clamp of four iPSC-CMs. We
have included as supplementary information the used IK1
model (Supplementary Data Sheet 1), a diagram explaining our
dynamic clamp implementation (Supplementary Figure 1) and
a flowchart describing the various steps taken during the dynamic
clamp experiments (Supplementary Figure 2).

The dynamic clamp system is coupled to the HEKA EPC-
10 Quattro amplifier that is part of the Patchliner setup (see
Figure 1). The connections couple the membrane potential of
each iPSC-CM with each IK1 simulation channel and return the
computed IK1 current to the iPSC-CM via the external stimulus
input of the EPC-10 amplifier. Remote control is achieved via
additional couplings that allow bi-directional communication
between the dynamic clamp system and the Patchliner setup. For
this we use the standard digital input and output channels of the
HEKA EPC-10 Quattro amplifier. These are used to continuously
read dynamic clamp system status and set model parameters
(e.g., IK1 conductance, membrane capacitance or external K+ ion
concentration) when needed. Converting a model parameter to a
digital command was done using macros in Patchmaster.

Because of this tight integration with the APC and its
software, no direct user interaction with the dynamic clamp
setup is necessary. The dynamic clamp system is completely

controlled from within the HEKA PatchMaster or the Patchliner
PatchControlHT software used to run experiments, and can
be set automatically using the programming features in these
software programs (i.e., Protocol Editor in PatchMaster or Tree
Editor in PatchControlHT).

Statistics
All results are presented as mean ± standard error of the mean
(s.e.m.). Differences in mean outcomes were tested using a One-
way ANOVA followed by Tukey’s multiple comparisons test,
p-values smaller than 0.05 were considered significant.

RESULTS

Na+ and Ca2+ Currents in iPSC-CMs
Single iPSC-CMs dissociated from iPSC-CM cultures were
loaded in the automated patch clamp device and studied in
voltage clamp mode to record Na+ and Ca2+ currents. Capture
of the iPSC-CM in the patch clamp chip was efficient, with
appropriate seals in 58% of captured cells (see Table 1). After
obtaining whole cell configuration, Na+ and Ca2+ currents could
be recorded in∼70% of iPSC-CMs (see Table 2).

Current-voltage relations of both currents were similar to
those reported for iPSC-CMs inmanual patch clamp experiments
(Ma et al., 2011), showing maximal peak current amplitudes at
−30mV for Na+ currents (Figures 2A,B) and 10mV for Ca2+

FIGURE 3 | IK1 recorded in Cor.4U cells on the Patchliner. (A) Example of a cell with IK1, shown are responses to a voltage step protocol to −120mV for 1,200ms

from a holding potential of −40mV in control conditions (black) and in the presence of 10µM BaCl2 (red). (B) Average current-voltage relationship of the

Ba2+-sensitive current for an average of 7 cells. (C) Current traces of an example cell which does not express IK1 in control (black) and with 10µM BaCl2 (red).

(D) Corresponding current-voltage plot of an average of 3 cells showing no Ba2+-sensitive current.
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currents (Figures 2C,D). The Ca2+ currents could be blocked by
nifedipine with an IC50 of 252± 186 nM, confirming we recorded
current conducted by L-type Ca2+ channels (Figures 2E,F).

IK1 Currents in iPSC-CMs
Functionality of IK1 currents was studied in single dissociated
iPSC-CMs that were loaded in the automated patch clamp device.
Voltage clamp studies in control solution, and in presence of
10µM Ba2+ to block IK1 currents, showed that we could record
Ba2+-sensitive currents with some resemblance of IK1 in 7 out of
12 cells. Examples of cells showing Ba2+-sensitive and insensitive
currents can be found in Figures 3A,C, respectively. However,
current densities were low, and both the reversal potential
(which was less negative than expected) and the rectification
of the currents were not as observed in adult cardiomyocytes
(Figures 3B,D).

Single Suspended iPSC-CMs Have
Depolarized Membrane Potentials
While the voltage clamp experiments demonstrated that the
cardiac Na+ and Ca2+ channels remain functional after
dissociation, recording action potentials from iPSC-CMs in
suspension was challenging. After switching to current clamp
mode, the resting membrane potential of iPSC-CMs was typically
between 0 and −15mV. A negative resting membrane potential
close to the reversal potential of K+ could be achieved by
injecting a small constant, negative holding current. After that,
action potentials could be triggered with a brief depolarizing
stimulus. However, the action potentials were very short and

FIGURE 4 | Dynamic clamp used to simulate IK1 conductance on action

potentials (APs) of Cellartis Cardiomyocytes. The simulated IK1 conductance

could replace injected current to achieve a native resting membrane potential

(RMP) of approximately −94mV. The cells repolarized faster and the AP

duration decreased with increasing IK1 conductance. Note: in order to keep a

RMP of −94mV in the absence of simulated IK1 conductance, −180pA of

holding current was injected. This was removed upon addition of IK1 and RMP

remains at −94mV.

had a monotonic repolarization without a plateau phase,
which does not match well with adult human cardiac action
potentials (see Figure 4, black trace labeled “−180 pA”). The IK1
channels expressed in fully differentiated human cardiomyocytes
hyperpolarize the resting membrane potential of these cells,
bringing it close to EK . An important difference with a constant
hyperpolarizing current is that IK1 channels close upon strong
depolarization, allowing development of the plateau phase of
the cardiac action potential. In order to improve our methods,
and obtain better action potential recordings from suspended
single iPSC-CMs, we implemented the dynamic clamp technique
on our automated patch clamp device in order to inject
simulated IK1.

Hybrid Models of Suspended iPSC-CMs
and Simulated Ik1 Channels Produce
Longer Action Potentials with a Plateau
Phase
Our dynamic clamp implementation is in many ways similar to
other published implementations (Bett et al., 2013; Ortega et al.,
2014;Meijer van Putten et al., 2015), but differs in two aspects: the
functional integrationwith existing patch clamp control software,

FIGURE 5 | Effects of adding simulated IK1 on AP parameters. (A) Adding IK1
prolongs the APD90 of action potentials recorded from Cellartis

Cardiomyocytes (n = 4) compared to constant current injection. With

increasing IK1 conductance, the prolongation of the action potential becomes

smaller, consistent with the role of IK1 in the final repolarization of the cardiac

action potential. (B) Upstroke velocity of the action potentials after addition of

simulated IK1 is high, as with constant current injections, and decreases

slightly with increasing IK1 conductance.
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and the model used to compute IK1. Earlier work has used IK1
formulations that model the current as a steady-state current,
i.e., without time-dependence. The model by Ishihara et al. used
in this study is a more detailed, time-dependent model that
includes the rectifying effects of Mg2+ and polyamines, as well
as two modes of channel closure by spermine (Ishihara et al.,
2009). Including this more detailed model is relevant, as time and
voltage dependent Mg2+ block or unblock can significantly affect
action potential duration (Ishihara et al., 2002).

In current clamp experiments with suspended iPSC-CMs, we
injected virtual IK1 current with varying conductance densities
(GK1), depending on the specific cell. At depolarized potentials

(>−40mV), the Ishiharamodel does not generatemuch outward
current, therefore increasing GK1 did not immediately induce
hyperpolarization. This could be solved by briefly injecting a
hyperpolarizing current, bringing the membrane potential to
values inducing a sufficiently large outward IK1 current. As a
result, the membrane potential was maintained at or close to
EK (which was −95mV for the simulated IK1 channels) due
to the injected virtual IK1 current. After this, the constant
hyperpolarizing current was switched off, as it was only needed
to start the experiment.

Action potentials recorded from iPSC-CMs with addition
of virtual IK1 differed from the earlier recorded brief and

FIGURE 6 | Action potentials recorded simultaneously after adding simulated IK1. (A) Action potentials from 3 cells recorded in parallel on a Patchliner Quattro.

(B) Simulated IK1 was recorded for each of the 3 cells and is shown. Note the brief increase in IK1 during the upstroke of the action potential, where IK1 channels

respond with increased current to the depolarization induced by the pacing stimulus, which is in line with the slight decrease observed in upstroke velocity with

increasing IK1 conductance.

Frontiers in Physiology | www.frontiersin.org January 2018 | Volume 8 | Article 1094337

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Goversen et al. Adding Virtual IK1 to iPSC-CMs on APCs

monotonically repolarizing action potentials. Injecting IK1
resulted in a stable resting membrane potential, fast upstroke
velocities, and prolonged action potential duration with
a clear plateau phase (Figure 4). Further increasing GK1,
resulting in injection of more IK1, caused a small additional
hyperpolarization, but more significantly, also shortened action
potential duration (Figure 5A) and slightly decreased upstroke
velocity (Figure 5B). This is consistent with the role of IK1 in
cardiomyocyte electrophysiology, as it contributes to resting
membrane potential stability and the final repolarization phase
of the action potential (de Boer et al., 2010). A benefit of our
newly developed approach is that experimental throughput
can be moderately increased as we can record from, and inject
IK1 into, 4 cells in parallel. In Figure 6 we show an example
of an experiment in which we were able to record APs from
3 iPSC-CM in parallel (Figure 6A) and have also plotted the
injected IK1 (Figure 6B). The fourth channel was available but
for this channel no cell was captured successfully. Additional
experiments, in which we studied the effect of GK1 on upstroke
velocity, showed that we could perform a dynamic clamp
experiment in 20 out of 28 wells in 7 experimental runs that used
4 wells per run (71% success rate), see Supplementary Figure 3.

Addition of Virtual Ik1 Channels Restores
Sensitivity of the Plateau Phase to
Pharmacological Modulation
In earlier experiments, it proved difficult to observe effects of
Ca2+ channel antagonists or agonists on the action potential
shape of suspended iPSC-CMs when injecting a constant
hyperpolarizing current (data not shown), most likely due to
suppression of the plateau phase. After observing the restoration
of the plateau phase when injecting virtual IK1 current, we tested
if the action potential became again sensitive to manipulation
of the L-type Ca2+ current. After injecting IK1 (on average GK1

was 267 ± 42 pS/pF) we observed an APD90 of 118 ± 21ms
(n = 6), which significantly prolonged after enhancing the L-
type Ca2+ channel with 1µM BayK-8644 to 155± 31ms (n= 6,
see Figures 7A,B). In contrast, blocking the L-type Ca2+ channel
with 30µMnifedipine caused a shortening to 81± 14ms (n= 6).
These findings demonstrate that enabling the plateau phase of the
action potential of suspended iPSC-CMs by addition of virtual
IK1 channels restores action potential sensitivity to L-type Ca2+

channel modulation.

DISCUSSION

In this study, as a proof of principle, we have demonstrated
that the dynamic clamp technique can be used in combination
with automated patch clamp devices, thereby creating a higher
throughput alternative to manual patch clamp. Using dynamic
clamp to add virtual IK1 channels to suspended iPSC-CMs
allowed us to record action potentials with waveforms that are
more representative of the human fully differentiated ventricular
cardiomyocyte. This is especially relevant to the CiPA initiative,
which aims to use hSC-CMs in drug safety testing.

FIGURE 7 | (A) The calcium channel agonist BayK-8644 increased AP

duration while simulated IK1 was added (blue trace). Conversely, the calcium

channel antagonist nifedipine decreased AP duration (red trace) as compared

with control (black trace). In this experiment, IK1 was injected at 400 pS/pF

and RMP was −94mV. (B) Average responses from 6 cells showing

significantly increased APD90 after exposure to 1µM BayK-8644 (*p < 0.05)

and decreasing APD90 after exposure to 30µM nifedipine.

Achieving higher throughput evaluation of drug effects on
action potentials generated by iPSC-CMs will most likely require
the use of isolated, suspended cells, as these can be used
with automated patch clamp devices. The depolarized resting
membrane potential of freshly isolated iPSC-CMs is a challenge
that can be overcome, at least to some extent, by using the
dynamic clamp technique (this study), but will also require
improvement in the dissociation methods used. Dissociation of
cardiomyocytes with enzymes disrupting the extracellularmatrix,
whether native or created in culture, is known to affect the
function of IKr, IKs, and IK1 channels (Yue et al., 1996; Hoshino
et al., 2012). Hoshino et al. demonstrated that the approach
used to isolate cardiomyocytes from neonatal mouse hearts has a
significant impact on IK1 channel function and restingmembrane
potential. Using enzymatic perfusion of the hearts preserved IK1
channels, while the chunk digestion method resulted in four to
five times smaller IK1 currents and a depolarization of ∼20mV.
The approach used in this and other studies to obtain single,
suspended iPSC-CMs is very similar to the chunk digestion
method, and we have indeed observed only small Ba2+-sensitive
currents, which may be smaller than those observed in studies
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using adherent iPSC-CM (Ma et al., 2011; Doss et al., 2012; Nunes
et al., 2013). Further improvement of cell dissociation protocols
may improve results with iPSC-CMs on automated patch clamp
devices. This is supported by recent work by Rajamohan et al.
who have used a two-step dissociation protocol and recorded
APs from the dissociated iPSC-CMs using both manual and
automated patch clamping approaches (same device as used in
this study). From the data in this study it appears that the two-
step protocol yields cells with a more hyperpolarized membrane
potential (Rajamohan et al., 2016).

In the present study, we provide proof-of-principle that
automated patch clamp devices and dynamic clamp can be
combined successfully. The resulting action potential durations
and waveforms are very comparable to those obtained in manual
patch clamp experiments in which IK1 was added to iPSC-CMs
using dynamic clamp (Bett et al., 2013; Meijer van Putten et al.,
2015), including the action potential prolongation in response to
Bay-K8644. However, more research will be needed to establish
the method, and to define its limits and benefits. A better insight
into the effects of the specific IK1 model that is applied is needed,
as well as a well-defined algorithm that allows us to determine
which amount of added IK1 results in the most predictive results
and therefore the best safety pharmacology assay. This should
subsequently be demonstrated using the set of drugs defined by
CiPA. If these goals can be reached, performing predictive patch
clamp experiments with iPSC-CMswith an increased throughput
becomes feasible.
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Current cardiac drug safety assessments focus on hERG channel block and QT

prolongation for evaluating arrhythmic risks, whereas the optogenetic approach

focuses on the action potential (AP) waveform generated by a monolayer of human

cardiomyocytes beating synchronously, thus assessing the contribution of several ion

channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing

by light-induced pacing in combination with non-invasive, all-optical measurements of

cardiomyocyte APs and will improve assessment of drug-induced electrophysiological

aberrancies. With the help of patch clamp electrophysiology measurements, we aimed

to investigate whether the optogenetic modifications alter human cardiomyocytes’

electrophysiology and how well the optogenetic analyses perform against this gold

standard. Patch clamp electrophysiology measurements of non-transduced stem

cell-derived cardiomyocytes compared to cells expressing the commercially available

optogenetic constructs Optopatch and CaViar revealed no significant changes in action

potential duration (APD) parameters. Thus, inserting the optogenetic constructs into

cardiomyocytes does not significantly affect the cardiomyocyte’s electrophysiological

properties. When comparing the two methods against each other (patch clamp vs.

optogenetic imaging) we found no significant differences in APD parameters for the

Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest

increases in APD-values measured with optogenetic imaging. Thus, to broaden the

screen, we combined optogenetic measurements of membrane potential and calcium

transients with contractile motion measured by video motion tracking. Furthermore, to

assess how optogenetic measurements can predict changes in membrane potential, or

early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a

hERG potassium channel blocker, and drug effects were measured at both spontaneous

and paced beating rates (1, 2Hz). Cumulating doses of E-4031 produced prolonged

APDs, followed by EADs and drug-induced quiescence. These observations were

corroborated by patch clamp and contractility measurements. Similar responses,

although more modest were seen with the IKs potassium channel blocker JNJ-303.

In conclusion, optogenetic measurements of AP waveforms combined with optical
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pacing compare well with the patch clamp gold standard. Combined with video motion

contractile measurements, optogenetic imaging provides an appealing alternative for

electrophysiological screening of human cardiomyocyte responses in pharmacological

efficacy and safety testings.

Keywords: optogenetics, human iPSC-derived cardiomyocytes, optical action potential, contractile motion, hERG,

cardiac electrophysiology, arrhythmia, safety pharmacology

INTRODUCTION

Present cardiac safety assessments focus on the in vitro block
of the human rapid component of the delayed inward rectifier
IKr (hERG) channel, combined with in vivo QT prolongation
for evaluating the arrhythmic risks of novel drug candidates
in preclinical development. Block of the hERG channel delays
cardiac repolarization, prolonging the action potential duration
(APD) and the QT interval on ECG, and potentially increases
the risk for the development of the cardiac arrhythmia Torsades
de Pointes (TdP) (Sanguinetti et al., 1995; Redfern et al., 2003;
Gintant et al., 2016). However, although these assays have been
effective in preventing drugs that induce TdP proarrhythmia
from entering the market, it has been recognized that a drug’s
proarrhythmic effect often is shaped by its action on multiple
ion channels (Mirams et al., 2011). The lack of specificity of
the hERG assay therefore often leads to unwarranted attrition
of drugs, which is costly for the pharmaceutical industry. A
more focused approach to address and eliminate cardiovascular
toxicity early in development has thus been proposed by the
Comprehensive in vitro Proarrhythmia Assay (CIPA) initiative
(Gintant et al., 2016). CIPA proposes a multimodal approach
of cardiac safety screening based on the integrated effects of
drugs on the multiple cardiac ion channels that define cardiac
excitability and repolarization and that play a role in delayed
ventricular repolarization. Reconstructions of the drug effects are
evaluated in silico on a computationally reconstructed human
ventricular cardiomyocyte action potential (AP) (Cavero and
Holzgrefe, 2014; Fermini et al., 2016; Gintant et al., 2016;
Page et al., 2016). Finally, predicted effects are verified with
electrophysiological experiments in human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CM).

Numerous methodology development studies have appeared
which have tried to assess the criteria set up by CIPA. Optical,
non-invasive measurements of AP parameters performed in
hiPSC-CM has been associated with great potential over the
current gold standard, patch clamping, since it focuses on the
AP waveform from multiple cells beating synchronously and
thus assesses the contribution of several ion channels on the
overall drug effect (Entcheva, 2013; Ambrosi and Entcheva, 2014;
Chang Liao et al., 2015; Dempsey et al., 2016; Klimas et al.,
2016). Optogenetics utilizes light sensitive proteins (microbial
opsins), that are genetically encoded and expressed on the
cardiomyocyte plasma membrane, where they function as optical
actuators or sensors, which enables all-optical shaping of the
AP. Hochbaum and colleagues developed several optogenetic
constructs, of which Optopatch2 utilizes a modified version of
the channelrhodopsin cation channel (CheRiff) that in response

to blue light at 488 nm depolarizes the cardiomyocyte, enabling
pacing of cardiomyocytes at elevated beating rates. By combining
this optogenetic actuator with the genetically encoded voltage
indicator QuasAr2, a modified, non-pumping version of the
protein pump Archaerhodopsin3, which in response to red light
at 640 nm generates an optical signal that is proportional to the
membrane potential, all optical electrophysiological experiments
were demonstrated in neuronal cells (Hochbaum et al., 2014),
and later in hiPSC-CMs (Dempsey et al., 2016). Another
construct CaViar, based on the genetically encoded voltage sensor
Arch(D95N) combined with the genetically encoded calcium
sensor, GCaMP5f, was developed to allow for simultaneous
AP dynamics and intracellular calcium transient determinations
(Hou et al., 2014).

Traditional electrophysiological methods, such as calcium
imaging, measures the ionic functions which regulate the
contractile movement of the cells. However, these measurements
do not directly quantify the biomechanics of the cell. Different
video-based block matching methods have been developed
to non-invasively measure the contractile movement in
cardiomyocytes and the results on cellular biomechanics have
been linked to clinical findings (Kiviaho et al., 2015; Laurila et al.,
2016). Since contractile cardiotoxicity also is a safety concern,
combining optogenetic electrophysiology experiments with
contractile measurements would therefore bring added value to
safety screens. Furthermore, the arrhythmogenic sensitizing by
light-driven pacing in combination with optical measurements
of cardiomyocyte APs is essential to detect toxic drug effects
evident only under elevated beat rates. Due to the stringent
and meticulous requirements of cardiac safety testing it is of
utmost importance that these novel tools are studied in detail
to understand how the optogenetic modifications possibly alter
human cardiomyocytes’ electrophysiology. The purpose of this
study was to characterize the optogenetic constructs (Optopatch
and CaViar) against non-transduced cardiomyocytes, and more
importantly, to compare how well-optogenetic analyses perform
against the gold standard, patch clamp electrophysiology.

MATERIALS AND METHODS

Cell Culture
Human induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs), Cor.4U R©, were acquired from Axiogenesis Inc.
(Germany). These spontaneously beating cells represent a
mixture of atrial, nodal and ventricular cardiomyocytes, with
60% being of the ventricular type. Cor.4U R© hiPSC-CMs were
delivered as fresh cells in T25-flasks (Nunc©, Thermo Fisher
Scientific) and kept in an incubator (5% CO2, 37

◦C) and fed
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daily with Cor.4U R© complete culture medium (Axiogenesis Inc.)
supplemented with 1X Antibiotic-Antimycotic (Thermo Fisher
Scientific) to prevent bacterial and fungal infection. For further
passaging T25 flasks were pre-coated with 10µg/ml fibronectin
(Sigma) in PBS (with Ca2+ and Mg2+, Gibco R©, Thermo
Fisher Scientific) for 3 h at 37 or at 4◦C o/n and the solution
was removed shortly before plating the cells. For passaging,
cells were detached using Accumax (Millipore) according to
the manufacturer’s instructions. The cells were collected by
centrifugation (200 g, 3min), the supernatant was removed and
the cell pellet was gently re-suspended in the culture medium.
Viable cells were counted using the trypan blue exclusion method
and the cell density calculated according to viable cells. After
plating, the cells were kept in the cell culture hood for 15min
to ensure that the cells settled evenly.

Lentiviral Transduction of Cardiomyocytes
To express light-gated voltage sensors and actuators on the
plasma membrane of the hiPSC-CMs, the cells were transduced
with lentiviral vectors bearing the constructs of interest.
CaViar, pJMK019 (Addgene plasmid # 42168) and CMV-
Optopatch2_FCK, pMOS001 (Addgene plasmid # 62984) were
gifts fromAdamCohen, acquired through the non-profit plasmid
repository Addgene. The production of lentiviral particles,
lentiviral titer determinations and replication competent virus
(RCV) tests were purchased from the Biomedicum Virus Core
Unit in the Faculty of Medicine, University of Helsinki. For
the toxicological testing of lentiviral particles, four different
amounts of lentivirus stock were tested for both optogenetic
constructs (0.25, 0.50, 0.75, and 1.00 pg/cell for CaViar; 0.50, 0.75,
1.00, and 1.25 pg/cell for Optopatch, as determined by the p24
capsid protein concentration), where final concentrations used
are underlined. For the transduction procedure, the lentiviral
stock was diluted 1:2 in serum-free BMCCmedium (Axiogenesis)
supplemented with polybrene (4µg/ml final concentration) to
assist the penetration of the viruses through the cell membrane.
The cells were incubated for 6–7 h with the lentivirus mix and
then washed with PBS to remove excess virus. The lentiviral
transduction was confirmed by CheRiff-tagged GFP or GCaMP5f
introduced in the transduced cells, imaged by an EVOS R© FL
Imaging System. After the lentiviral transduction, the cells were
washed with 3x PBS and supplemented with fresh culture
medium daily. 24 h after the transduction procedure the cells
were screened for cytotoxicity and cytolysis using an absorbance-
based lactate dehydrogenase (LDH) release assay (Pierce, Thermo
Fisher Scientific). In order to get rid of the replicative virus
prior to patch clampmeasurements and optogenetic imaging, the
transduced cells were passaged for two times during a time period
of 2–3 weeks in a BSL2 safety level laboratory. Passaging was done
as described above and cells were re-plated in fibronectin-coated
T25 flasks.

Patch Clamp Electrophysiological
Measurements
Whole-cell recordings were performed using an EPC 9/2
double patch clamp amplifier and pulse v 8.80 software
(HEKA Elektronik, Lambrecht, Germany). For current clamp

recordings, non-transduced control hiPSC-CMs and hiPSC-
CMs expressing the optogenetic constructs were plated as sub-
confluent monolayer in fibronectin-coated petri dishes (30mm,
Nunc), which were placed on an inverted microscope (Olympus
IX71) and visualized using an AxioCam HRM digital camera
(AxioVision 4.6 software). For the recordings cells were perfused
with a bathing solution composed of 143mM NaCl, 4mM KCl,
1.2mM MgCl2, 1.8mM CaCl2, 5mM D-glucose, and 10mM
HEPES (pH 7.4 NaOH). The internal pipette solution contained
122mM K+-Gluconate, 30mM KCl, 1mM MgCl2, 5mM
HEPES (pH 7.2, KOH). The microelectrodes were pulled from
borosilicate glass (outer diameter 1.5mm) on a two-stage pipette
puller (PC-10, Narishige) and heat polished with a Micro Forge
MF-90 heater (Narishige). The resistance of the pipettes used in
the experiments were 2.5–3.5 M�. Membrane capacitance and
series resistance were compensated electronically. The HEKA
amplifier was set to current clamp at zero applied current, and
spontaneous APs were recorded for 20 s in each data sweep.
The cells were superfused with the bathing solution at a rate
of 1.0 ml/min. All experiments were done at 37◦C by using a
TC-344B Dual automatic temperature controller (Warner). To
minimize the volume in the petri dish, a petri dish insert was used
(Bioscience Tools). Action potentials were digitized at 10 kHz and
low-pass filtered at 3 kHz.

Preparation of Cells for Optogenetic
Measurements
For the optogenetic imaging, transduced hiPSC-CMs were plated
as confluent monolayer on Geltrex (Gibco R©, Thermo Fisher
Scientific)-coated glass-bottom dishes (10mm Ø, P35G-1.5-10-
C, MatTek), by seeding 90,000 cells per dish. Geltrex was
pre-incubated on the glass-bottom dishes at 37◦C for 1 h and
removed shortly before plating the cells. After plating, cells
were left in the cell culture hood for 15min to ensure an even
monolayer of the cells. Cells were cultured on glass-bottom
dishes for 1 week to ensure full integration of the beating
monolayer. Just before the optogenetic imaging the culture
medium was exchanged for imaging buffer, which was identical
to the patch clamp bathing solution. Separate dishes were utilized
for spontaneous beating, 1 and 2Hz pacing (three dishes for each
condition).

Drug Dilutions
Dried powders of E-4031 and JNJ-303 (Tocris) were dissolved
in DMSO to make a stock concentration of 10mM. Compounds
were solubilized by vortexing the stock solution at RT and stock
solutions were stored at −20◦C until use. The drug dilutions
were prepared fresh at the day of the experiment from stocks
in imaging buffer and kept at 37◦C in 5% CO2. For optogenetic
imaging, the addition of drugs started from a blank (fresh
imaging buffer) to check proper beating of the monolayer,
followed by vehicle and drug doses. The entire volume (2ml) in
the dish was exchanged at each drug dose, as we noted that the
cells needed fresh buffer at regular intervals for proper beating. A
delay of∼1min before imaging was allowed in order for the drug
to take effect. The vehicle DMSO concentrations were 0.001%
(v/v) for E-4031 series and 0.03% (v/v) for JNJ-303 series. The
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final concentrations for E-4031 were 3, 10, 30, and 100 nM and
the final concentrations for JNJ-303 were 0.03, 0.1, 0.3, 1, 3,
and 10µM. For E-4031 patch clamp measurements drugs were
diluted in bathing solution and administered through perfusion.

Optogenetic Measurement Setup
The optogenetic imaging platform was designed for fast
photo manipulation and analysis of live cells. The platform
included an environmental chamber (5% CO2, 37

◦C, EMBL), a
fully motorized inverted wide field epifluorescence microscope
(Nikon Eclipse Ti-E equipped with a Nikon IR-based Perfect
Focus System, PFS). Pulses (10ms) of blue laser illumination
(Argon, λ = 488 nm, 17 mW/mm2) were used to pace CheRiff
at 1 or 2Hz frequencies and a red laser λ = 647 nm, Ef = 550
mW/mm2 excited fluorescence of QuasAr2. For CaViar imaging,
the laser lines were used in combination with a beam splitter
(Hamamatsu Gemini) to allow simultaneous use of the two
separate illumination sources (λ = 647 nm, Ef = 550 mW/mm2

to excite fluorescence of ArchD95N and λ = 488 nm, Ef =

3 mW/mm2 for GCaMP5f). Fluorescence was collected via a
60× oil immersion objective (PlanApo VC) with a numerical
aperture (NA) of 1.4. Illumination was limited to the ocular field
of view (FOV, 22mm) of the Nikon Ti-E inverted microscope by
adjusting the field stop. The illuminated area was calculated from
the FOV and the objective magnification (giving a surface area
of 0.106 mm2). Optical power was measured on the microscope
sample plane with an EXFO X-Cite XR2100 power meter. Laser
illumination at 488 nm was measured with the acousto-optic
tunable filter (AOTF) set to 100% transmission (giving a power
reading of 1.8 mW). At 647 nm the laser output was set to 100
mW and the AOTF transmission was limited to 50% to avoid
saturation (giving a power reading of 9.7 mW). The actual laser
power used for imaging at 647 nm (laser output 300 mW, AOTF
100%) was calculated assuming a linear response (resulting in a
power of 58.2 mW). The software for the platform operation was
NIS-Elements advanced research v. 4.2 with 6D image acquisition
module. Signals were recorded with an Andor iXon3 897 back-
illuminated EMCCD camera (512 × 512 px) or Andor iXon+
885 EMCCD camera (1,004 × 1,002 px) for CaViar. Imaging
was conducted at a framerate of 50 frames per second. The raw
imaging data from optogenetic imaging was recorded as image
sequences, from which the total intensity signal was exported
to MS Excel in numerical format. The raw data trace was
acquired as an average signal from the cells in the whole FOV.
To calculate averages for each condition or drug concentration,
image sequences from six FOVs were recorded.

Automated Data Processing and Curve
Analysis
For the automated processing of optogenetic raw data traces
and the analysis of key features of cardiac electrophysiology,
we developed the cPot Cardiac Action Potential Calculator
software, written inMATLAB.With cPot, all raw data traces from
optogenetic imaging were normalized by fitting the acquired
signal to an exponential function. Then, peaks with larger than a
selected threshold (10% of maximum amplitude) were detected
in the normalized signal. The detected peak time points and

their respective signal values were then used to determine the
AP parameters and other key features. The key features analyzed
and reported in this study were APD at 90, 50, and 30%
repolarization (APD90, APD50, and APD30, s, respectively),
beat to beat interval (s), frequency (Hz), maximum signal level
of the peak, i.e., amplitude (1F/F for optogenetics, mV for
patch clamp) and minimum signal level between peaks (MDP).
Respective percentage levels for APDs were determined so that
100% was the overall change in signal from Peak Height to the
following MDP. Patch clamp data was analyzed with cPot in
the same way, but without normalization since the baseline in
patch clamp measurements is steady. Optogenetic calcium traces
for contraction analysis were normalized by fitting the acquired
signal to an exponential function.

Simultaneous Contraction Analysis of
Video Microscopy
The contractile movement of the cardiomyocytes was analyzed
from Optopatch and CaViar video microscopy sets using a semi-
automatic CellVisus tool (Ahola et al., 2014). It uses particle
image velocimetry based on minimum quadratic difference
to determine velocity vector fields between consecutive video
frames. Directional motion velocity signals are calculated from
AP video data by using an estimated beating focus point as a
reference. Contraction signals are generated from these motion
velocity signals by integrating with respect to time and fitting the
signal on a spline for baseline correction. Contraction amplitude
was normalized to comply with the AP and the calcium
transient for illustration. Here, we analyzed the motion from AP
measurement in both Optopatch and CaViarmicroscopy from 10
image sequences each.

For signal characterization, calcium transient duration (CTD)
parameters at different amplitude levels were calculated. Calcium
transient durations (CTD) parameters CTD90, CTD50, and
CTD30 were calculated by determining percentage values so that
100% was the overall change in signal from Peak Height to the
following MDP. For contraction movement, we calculated the
contraction time and relaxation time, as well as total contraction
duration (CD) parameters CD90, CD50, CD30 defined by
the beginning of the contraction and the end of relaxation
movement. Further, we measured the time difference between
the AP, calcium transient and contraction signal peaks from the
same region of interest. The effect of E-4031 to contraction was
measured by analyzing in total 92 image sequences for vehicle
and 3, 10, 30 and 100 nM drug concentrations. In addition to
the CD parameters listed above, average motion magnitude was
measured.

Statistical Testing
The APD-values were beat rate adjusted, so that beating
intervals were corrected to 60 bpm by Fridericia’s correction
formula (based on the cube-root of beating interval). Statistical
comparisons were done either with a Student’s two-sample t-test,
or for cumulating drug responses with a one-way ANOVA with
Dunnett’s test for statistical significance. Significant p-values were
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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RESULTS

Lentiviral Transduction of hiPSC-CMs with
Optogenetic Constructs Exhibit No
Significant Side Effect on the
Electrophysiological Properties of
Cardiomyocytes
To validate the effect of lentiviral transduction of hiPSC-

CMs with the optogenetic construct Optopatch (Hochbaum

et al., 2014), we measured AP parameters with patch clamp

electrophysiology and optogenetic imaging and compared

the results against non-transduced control cells (Figure 1).

There were no significant changes in the APD at 90%

repolarization (Figure 1A), at 50% repolarization (Figure 1B), at

30% repolarization (Figure 1C), nor in beating rates (Figure 1D)

between non-transduced cells and Optopatch-transduced cells.

Nor were there any significant changes between the two methods

of measurement: patch clamp electrophysiology and optogenetic

imaging. The same stemmed for peak amplitude (Figure 1E),

although this could only be compared using patch clamp

electrophysiology, as the measured parameter for patch clamp

(mV) is not measured by optogenetic imaging. A summary

for the numerical AP parameters measured on non-transduced

and Optopatch-transduced cells in Figures 1A–E is outlined

in Figure 1F. Pearson correlations for the measured APD

parameters were 0.99 (p < 0.001) both for non-transduced

against Optopatch-transduced cells, as well as for correlations

between APD parameters measured by patch clamp and

optogenetic imaging. Thus, we propose that inserting the

Optopatch construct into cardiomyocytes does not affect the

cardiomyocyte’s electrophysiological properties. To determine

the amount of viral particles for delivery of the constructs to

the cells, initial optimizations were performed with four different

lentiviral concentrations of Optopatch, in which the lowest

concentration yielded a monolayer of cells that did not pace at

elevated frequencies and the highest concentration resulted in

some cell death, therefore the second highest concentration of

virus was used. However, screened by an absorbance-based LDH

cytotoxicity method, this toxicological measurement revealed

no significant cytotoxicity or cytolysis in any of the used

lentivirus concentrations compared to non-transduced Cor.4U R©

cells (Supplementary Figure 1).
The optogenetic construct CaViar (Hou et al., 2014) holds

the potential to measure changes in intracellular calcium
in addition to AP dynamics and we therefore additionally
validated the effect of transducing hiPSC-CMs with CaViar,
and measured AP parameters (Figure 2) similarly as for the
Optopatch construct. There were no significant changes in
APD90 (Figure 2A), APD50 (Figure 2B), APD30 (Figure 2C),
beating rates (Figure 2D) nor in amplitude (Figure 2E) between
non-transduced cells and CaViar-transduced cells, measured
by patch clamp electrophysiology. Pearson correlation values
for the measured APD parameters were accordingly 0.99 (p
< 0.001). This indicated that inserting the CaViar construct
into hiPSC-CMs does not affect the electrophysiology of the
cardiomyocyte. Neither was there any toxicity in any of the
used concentrations of CaViar in toxicological measurement.

However, when comparing APD parameters for the CaViar
construct acquired with optogenetic imaging against those
acquired with patch clamp electrophysiology, modest, but still
statistically significant changes for APD90 and APD30 were seen.
Thus, e.g., APD90 measured by patch clamp (300 ± 16ms)
and optogenetic imaging (350 ± 4ms) exhibited a statistical
difference, whereas APD50 did not. However, correlations values
for all measured APD-values were still 0.98 (p < 0.001). A
summary for the numerical AP parameters measured on non-
transduced and CaViar-transduced cells in Figures 2A–E is
outlined in Figure 2F.

Simultaneous Measurement of Action
Potential, Calcium Transients, and
Contractile Motion: Signal
Characterization and Timings
Action potentials, calcium transients, and contractions
were measured from CaViar and Optopatch recordings.
Representative signals from a CaViar recording are shown in
Figure 3A, and from an Optopatch recording in Figure 3B.
The CaViar measurements displays the AP (red) preceding
the calcium transient (green), which is then followed by a
contraction (blue). Contraction ended rapidly after reaching a
peak (slope coefficient −0.0108). The calcium transient curve
showed very similar kinetics (slope coefficient −0.0114). The
timing of peaks (Table 1) for both constructs well adheres
to cellular physiology. There was ∼30ms interval between
the AP and calcium peaks, and a 10ms interval between the
calcium and contraction peaks, thus a total of 40ms between
the AP and contraction peaks in CaViar measurements. For
Optopatch measurements, the same value was 50ms, albeit
with a 30ms variance indicating a close similarity to the AP-
contraction dynamics of the two constructs. The Optopatch
construct does not allow for calcium measurements and
therefore the AP-Calcium interval could not be calculated.
When measuring the directional velocities, contraction time
was measured to be 180ms in CaViar measurements and
180ms in Optopatch measurements. Relaxation times were 270
and 230ms, respectively. The difference was not statistically
significant in a two-sample t-test.

The measured signals were further characterized by peak
width parameters at 90, 50, and 30 signal amplitude levels.
The results are shown in Table 2. None of the differences were
statistically significant indicating very similar characteristics of
the two constructs, CaViar and Optopatch. Linear correlations
were calculated for the characterization parameters. The results
were −0.14 for CD90/CTD90, 0.18 for CD50/CTD50, and 0.48
for CD30/CTD30.

Optogenetic and Patch Clamp
Measurements Show Dose-Dependent
APD Prolongation and Early
Afterdepolarizations upon Exposure to the
hERG Potassium Channel Blocker E-4031
Many compounds have failed early on in drug development
due to block of the hERG potassium channel, and we
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FIGURE 1 | Validation of action potential parameters of virally non-transduced (control) and Optopatch-transduced hiPSC-derived cardiomyocytes with patch clamp

electrophysiology and optogenetic imaging. Action potential parameters of Optopatch-transduced cells were measured with patch clamp electrophysiology and

optogenetic (opto) imaging and the results compared against non-transduced control cells measured with patch clamp. (A) Action potential duration (APD) at 90%

repolarization, (B) at 50% repolarization, and (C) at 30% repolarization, as wells as (D) beating intervals and (E) peak amplitude. (F) Summary of parameters

measured in (A–E), averages and S.E.M, control; n = 16, Optopatch measured with patch clamp; n = 11, Optopatch measured with optogenetic imaging; n = 26.

therefore assessed whether optogenetic measurements can show
proarrhythmia events or early afterdepolarizations (EADs),
which are known effects of hERG channel block. We utilized
the potent and selective hERG blocker E-4031, as it commonly
has been used as a positive control. Cumulating doses of E-4031
(3–100 nM) were applied to Optopatch-transduced hiPSC-CMs,
and drug effects were measured by optogenetic imaging and by
patch clamp. In optogenetic measurements, both spontaneous
and optically paced beating rates (1 and 2Hz) were screened,
whereas patch clamp measurements only enabled recordings
at spontaneous beating rates. Cumulating doses of E-4031
produced prolonged APDs dose-dependently in both methods
(Figure 4).

In optogenetic measurements, averaged APDs from three
dishes showed that APD90 at 30 nM E-4031 concentration
was prolonged to 176% over vehicle APD90 (spontaneous
beating), 167% under 1Hz pacing and 143% at 2Hz, with
EADs evident at 30 nM under spontaneous and 1Hz beat rates.
APD90 was further increased to 219% over vehicle at 100 nM
for 1Hz and to 158% at 2Hz. At 100 nM E-4031, APD90
decreased to 136% over vehicle under spontaneous beating which
represented an average of the different behaviors seen; either very
prolonged APDs with EADs or a decrease in peak amplitude
with an increase in frequency, finally followed by drug-induced
quiescence until beating stopped (Figures 4A,E). Similarly, in
patch clamp measurements, the prolongation of APD90 (140%)

was accompanied by EADs at 30 nM E-4031. APD90 further
increased to 247% at 100 nM. In optogenetic measurements,
a significant (p < 0.001) dose-dependent decrease in peak
amplitude was evident at both spontaneous (22% over vehicle),
1Hz (37%) and 2Hz (46%) at 100 nM of E-4031 (Figure 4D).
Representative traces for each drug concentration are shown in
Figure 4E.

Contractile measurements revealed a dose-dependent (E-
4031), non-significant prolongation of CD90 up to 10 nM
(Table 3). EADs were detected as small twitches from 30 nM
onwards after contraction and initial relaxation had occurred.
E-4031 dose-dependently increased total relaxation time, being
significant at 30 nM (p < 0.05). Motion magnitude decreased
dose-dependently, reaching significance at 30 nM (p < 0.05). At
30–100 nM level, some image sequences could not be analyzed
due to the motion reaching levels undetectable by the method.

The IKs Blocker JNJ-303 Prolongs APD
Slightly and Decreases Peak Amplitude
Dose-Dependently, under Both
Spontaneous and Elevated Beating Rates
Cumulating doses of JNJ-303 (0.03–10µM) were applied to
hiPSC-CMs, and drug effects weremeasured at both spontaneous
and 1–2Hz paced beating rates (Figure 5). Prolongation of
APD90 was seen at 100–300 nM JNJ-303 under spontaneous
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FIGURE 2 | Validation of action potential parameters of virally non-transduced (control) and CaViar-transduced hiPSC-derived cardiomyocytes with patch clamp

electrophysiology and optogenetic imaging. Action potential parameters of CaViar-transduced cells were measured with patch clamp electrophysiology and

optogenetic (opto) imaging and the results compared against non-transduced control cells measured with patch clamp. (A) Action potential duration (APD) at 90%

repolarization, (B) at 50% repolarization, and (C) at 30% repolarization, as well as (D) beating intervals and (E) peak amplitude. (F) Summary of parameters measured

in (A–E), averages and S.E.M, control; n = 16, CaViar measured with patch clamp; n = 9, CaViar measured with optogenetic imaging; n = 24. *p < 0.05, **p < 0.01,

***p < 0.001.

beat rates, and at 30–100 nM JNJ-303 under paced frequencies
(Figure 5A). The prolongations were however statistically non-
significant. A significant dose-dependent decrease in peak
amplitude was evident already at 1µM (58% of vehicle),
decreasing to 45% at 10µM under spontaneous beating. A
similar decrease in the peak amplitude was also seen under 1Hz
pacing, whereas only 10µM exhibited a significant decrease in
peak amplitude (49% of vehicle) under 2Hz pacing (Figure 5B).
The cells stopped responding to pacing frequencies already at
100 nM of JNJ-303, but AP recordings were still continued under
light stimulation at indicated pacing rates.

DISCUSSION

The present study was conducted to evaluate the optogenetic
electrophysiology tools against the gold standard, patch clamp
electrophysiology. Moreover, we evaluated how well-optogenetic
tools and contractile motion measurements can predict
proarrhythmia events and delayed repolarization (EADs) in
cardiac drug safety screens.

Block of the potassium channel hERG plays a critical role
in defining ventricular repolarization, however mechanistic and
translational studies demonstrate that block of IKr alone is not
highly specific for predicting either delayed repolarization or
clinical proarrhythmia events (Gintant et al., 2016). Indeed,

several drugs such as verapamil and ranolazine are potent hERG
blockers, but are not associated with either QT prolongation
or risk of TdP (Chouabe et al., 1998; Schram et al., 2004).
It has been estimated that 60% of new molecular entities
developed as potential therapeutic targets test positive in
hERG blocking assays and are thus abandoned early on in
the development pipeline (Gintant et al., 2016). However,
these hERG-expressing immortalized cell-based assays do not
represent the highly differentiated human cardiac myocyte.
The technology of generating hiPSC-cardiomyocytes holds great
potential for preclinical cardiac efficacy and safety screens
(Grskovic et al., 2011; Matsa et al., 2014). These cells are
somewhat immature, and phenotypically more close to an
embryonic myocyte than adult, reflected in their less-negative
resting potential, reduced upstroke velocities and spontaneous
automaticity. In spite of this, hiPSC-CMs have been shown to
respond in a highly predictable manner to over 40 compounds
that have a known pharmacological effect on the human
heart (Fermini et al., 2016). In addition, hiPSC technology
enables the generation of cardiomyocytes from patients with
e.g., congenital long-QT syndrome. Drug responses and toxicity
measurements adapted on these cells could thus bring toxicity
screens to a deeper level, stratifying patient responses and
reducing late-stage clinical failures (Grskovic et al., 2011; Matsa
et al., 2014). To overcome the shortcomings in current drug
safety screens, the CIPA initiative proposes the investigation
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FIGURE 3 | Simultaneous measurements of APD, calcium transients and cell contractility. Representative signals from (A) a CaViar-transduced cardiomyocyte

recording showing the action potential (red), calcium transient (green), and contraction (blue) simultaneously, and from (B) an Optopatch-transduced cardiomyocyte

recording showing the action potential (red) and contraction (blue), measured over time (s). Amplitudes describe changes in calcium (A) and action potential (B). The

insets are close-ups of a single peak.

TABLE 1 | Simultaneous measurement of CaViar and Optopatch peak intervals

and contraction time parameters.

AP-calcium

peak

interval (ms)

AP-contraction

peak interval

(ms)

Contractile

time (ms)

Relaxation

time (ms)

CaViar 30 ± 20 40 ± 20 180 ± 30 270 ± 70

Optopatch n.a. 50 ± 30 180 ± 30 230 ± 50

The measures illustrate mean ± standard deviation (ms), (n = 10), n.a., not applicable;

AP, action potential.

of drug effects on multiple human cardiac currents, tested in
hiPSC-CMs.

Although hiPSC-CM transmembrane potential measured
with patch clamp electrophysiology provide the most detailed
characterization of electrophysiological effects on cellular

repolarization, this technique is slow, technically demanding and
very low-throughput (Gintant et al., 2016). Extracellular field
potential recordings obtained through multielectrode arrays

provide a means of adapting the assay to a high-throughput
format, and communicates the rate of electrical activity and

the timing of repolarization, but lack information regarding

the morphological changes in the configuration of the AP

and the actual end of repolarization. Voltage sensing optical

platforms however offers significant advantage over these

platforms (Chang Liao et al., 2015; Dempsey et al., 2016;
Hortigon-Vinagre et al., 2016; Klimas et al., 2016), as they

provide information on the whole AP waveform, which
represent a readout of the integrated activity of multiple cardiac
ion channels. Additionally, since the cardiotoxic effect of
some drugs is evident only at elevated beat rates, insertion of
genetically encoded actuators enables light-induced pacing of
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cells to higher beat frequencies. Combination of optogenetic
pacing and voltage sensitive dyes has been reported (Park
et al., 2014; Klimas et al., 2016), however the suitability of
fluorescence dyes for long term incubations is questioned since
fluorescent dyes can cause photodynamic damage to isolated
cardiomyocytes under prolonged incubation (Schaffer et al.,
1994) or potentially alter the electrophysiological properties of
the cells (Novakova et al., 2008). HiPSC-CMs can be maintained
in culture for a long time, and thus these cells per se (in contrast to
primary animal myocytes) permit long-term experiments. Non-
invasive optogenetic measurements on hiPSC-CMs transduced
with genetically encoded optical actuators and sensors therefore
enable in vitro evaluation of chronic drug effects and delayed
cardiotoxicity, as reported in (Dempsey et al., 2016). Optogenetic
electrophysiology assessment tools thus have the potential to
improve sensitivity and specificity in the early detection of
genuine cardiotoxicity risks, thereby reducing the likelihood of
mistakenly discarding viable drug candidates and speeding the
progression of worthy drugs into clinical trials (Dempsey et al.,
2016; Gintant et al., 2016; Klimas et al., 2016).

We have evaluated hiPSC-CMs transduced with the
commercially available constructs Optopatch and CaViar
(Hochbaum et al., 2014; Hou et al., 2014) against non-transduced
cells with patch clamp electrophysiology and shown that
none of the measured AP parameters were affected. There
were no significant differences in APD at 90, 50, or 30%
repolarization, nor in peak amplitude or beat rates. The APD90
for Optopatch was 300 ± 12ms measured with patch clamp
and 320 ± 8ms measured with optogenetic imaging, both of
which compare well to the computational human ventricle
APD90-value of 300ms (O’Hara et al., 2011), as well as to
reported APD90-values for ventricular-like hiPSC-CMs (312–
320ms) (Zhang et al., 2009; Lahti et al., 2012). The measured
APD parameters were selected from recommendations by
the CIPA initiative, and were calculated by a MATLAB-based
software that was generated by us. When looking at how
well the optogenetic imaging experiments compared to patch
clamp measurements, we found no significant differences
between the two techniques for the Optopatch construct
(Figure 1), whereas for the CaViar construct the APD90- and
APD30-values exhibited modest, but significant differences
for APD parameters between the two techniques (Figure 2).
We utilized the CaViar construct published by Hou et al.
(2014) that contains the Arch(D95N) voltage indicator and not
the QuasAr2 voltage indicator published by Dempsey et al.
(2016), as this newer version of CaViar was not available from
Addgene at the time of our experiments. Compared to QuasAr2,
Arch(D95N) has been shown to exhibit slower responses to
voltage transients (Gong et al., 2013), which might provide a
possible explanation for the prolongation of the APD in the
Caviar expressing cells measured with optogenetic imaging.
The largest difference was seen at APD90, measured close to
the base of the AP, where small changes in the AP waveform
due to the slower kinetics of the Arch(D95N) can results in
a broader AP waveform. The newer CaViar version based on
the QuasAr2 voltage indicator might possibly alleviate this
shortcoming.

In order to rule out most methodological restrictions related
to the cellular material, we used only the well-documented,
standardized and validated commercial Axiogenesis Cor.4U R©

hiPSC-CMs in our experimentations (typical confluent cell
monolayer is illustrated in Supplementary Figure 2). Future
experiments should be focused on ruling out the contribution
of atrial hiPSC-CMs, as well as on comparing the results from
Cor.4U R© cells used in this study to ventricular-enriched hiPSC-
CMs such as vCor.4U R© cells. In the future, continued evaluation
of the most optimal cell platform will provide great value in
further validating the cellular system best compatible with the
optogenetic electrophysiology tools. The experimental procedure
for lentiviral delivery of the optogenetic constructs was quite
time-consuming, as cells had to be kept at the viral core facility
until RCV negative, which took 2–3 weeks, including washing
and media exchange every day, as well as one passage of the
cells which resulted in loss of cardiomyocytes. One of the
bigger drawbacks of optogenetic imaging is the lack of ability to
determine absolute values for the resting potential. However, the
cardiac AP waveform is sensitive to resting membrane potential,
and changes in APD are expected if compounds induce a shift
in resting voltage (Dempsey et al., 2016). We can calculate
percentile differences in amplitude peak height but not compare
these to amplitudes measured by patch clamp, which yields
accurate numerical values. The red voltage fluorescence trace
photobleaches in the first few seconds of imaging, yielding a
fluorescence trace with a steep descend. To solve this problem
and to accurately measure AP parameters from curves, a
normalization step was inserted in the automated processing
of raw data by the cPot software. Dempsey et al. (2016) tested
for photobleaching or phototoxicity arising from imaging of
QuasAr2 in cardiomyocytes by measuring fluorescence during
500 s of continuous red laser illumination (500 mW/mm2) and
showed a modest signal amplitude decrease of 12% during the
acquisition with a small variability in the AP width, which was
within the natural variation in spontaneously beating hiPSC-
CMs.

Contractile and structural cardiotoxicity, seen with e.g., some
kinase-targeted cancer drugs, represent another safety concern
(Cheng and Force, 2010). Cellular electric impedance assays have
been implemented with multielectrode assays for contractility
measurements (Obergrussberger et al., 2016), but do not provide
the spatial resolution to detect movements within the cell in
detail, in contrast to the minimum quadratic difference method
based on video motion tracking used here (Ahola et al., 2014,
2017). We aimed to evaluate whether optogenetic measurements
of cardiomyocyte electrophysiology can be combined with an
assay measuring the end point of the cardiomyocyte electrical
activity, i.e., contraction and relaxation. To our knowledge this is
the first study to combine videomotion tracking with optogenetic
measurement of APD and calcium transients (Figure 3, Table 1).
The measurement setup provided a detailed view on the key
components related to cardiomyocyte function, and revealed a
physiological order of AP, calcium and contraction peaks (Bers,
2002). It widens the scope of studying drug effects as changes
in any of the three signals can be quantified simultaneously.
Motion analysis can also reveal information that is beyond the
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FIGURE 4 | Optogenetic and patch clamp measurements of APD parameters under increasing doses of the hERG channel inhibitor E-4031. Quantification of the

electrophysiological parameters (A) APD90, (B) APD50, (C) APD30, and (D) AP amplitude as a function of E-4031 concentrations, at spontaneous beating (black

trace) rate and under 1Hz (blue) and 2Hz (red) pacing rates in the optogenetic imaging. Patch clamp measurements are represented as a green trace in (A–C). Dots

on y axis represent vehicle. Results are means ± S.E.M. from n = 14–20 (opto measurements) and n = 3–5 (patch clamp measurements). The table summarizes the

percent change of the drug-induced response in comparison to vehicle and indicates the statistical significance, where *p < 0.05, **p < 0.01, ***p < 0.001.

(E) Representative traces of alterations in the optical AP waveform induced by the indicated concentrations of the hERG channel inhibitor, E-4031 at spontaneous

beating and under 1 and 2Hz pacing rates, as well as action potential traces measured with patch clamp.
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TABLE 2 | Characterization of calcium transient and contraction signals measured using CaViar and Optopatch.

CD90 (ms) CD50 (ms) CD30 (ms) CTD90 (ms) CTD50 (ms) CTD30 (ms)

CaViar 290 ± 60 170 ± 30 130 ± 30 470 ± 60 210 ± 20 140 ± 20

Optopatch 250 ± 40 170 ± 30 140 ± 30 n.a. n.a. n.a.

CTD, calcium transient duration; CD, contraction duration. The measures illustrate mean ± standard deviation (ms), (n = 10), n.a., not applicable.

TABLE 3 | The effect of cumulating doses of E-4031 on CD90, relaxation time and

motion magnitude in spontaneously beating Optopatch-transduced hiPSC-CMs.

E-4031 (nM) CD90 (ms) Relaxation time (ms) Change in motion

magnitude (%)

0 (vehicle) 220 ± 50 180 ± 50 100

3 230 ± 50 200 ± 50 99

10 250 ± 70 220 ± 80 71

30 180 ± 60* 270 ± 170* 59*

100 190 ± 90 280 ± 170* 22*

The measures illustrate mean ± standard deviation (ms) in CD90 and relaxation time and

percentage change in motion magnitude, (n = 18, 17, 20, 21 and 16, for vehicle, 3, 10,

30 and 100 nM, respectively).

*p < 0.05.

electrical properties and ion fluxes in cardiomyocytes, such as
actual biomechanical timing and possible intracellular motion
defects (Ahola et al., 2014). From the contractile motion point
of view, Optopatch and CaViar appear to function similarly, as
can be seen as the relatively similar values describing contraction-
relaxation parameters between the two constructs (Tables 1, 2).
None of the differences found were statistically significant (p
< 0.05). The correlations between CD and CTD parameters
indicated that a connection between the two can be found, but
one cannot be directly deduced from the other. A very low
correlation value was found in CD90, indicating high variance
near baseline. This is not unexpected, as a prolongation in
calcium transient near baseline does not equate to longer cell
relaxation. The measured correlation values are lower than
previously reported by Ahola et al. (2017) where the correlations
were in the range of 0.6–0.7. However, the differences may be
explained by a different calculation method of the measurement
parameters in these two studies.

To assess how optogenetic measurement can reveal changes
in cardiomyocyte repolarization we exposed the hiPSC-CMs
to the hERG potassium channel blocker E-4031 (Figure 4).
IKr inhibition by E-4031 prolonged APD in the late phase of
repolarization consistent with the role of IKr in phase 3 of
repolarization in the adult ventricular myocyte (Gintant, 2000).
Cardiomyocytes showed cellular arrhythmias in response to
cumulating doses of E-4031. 100 nM E-4031 has been shown to
induce EADs in stem-cell derived cardiomyocytes (Peng et al.,
2010). We, similarly to Obergrussberger et al. (2016) detected
significant APD90 prolongation already at 30 nM under both
spontaneous and paced beat rates in optogenetic measurements
as well as under spontaneous beating measured by patch clamp.
In both methods, the prolongation of APD under spontaneous
beat rate was followed by EADs at 30–100 nM concentration of
E-4031. In optogenetic imaging, however, exposure to 100 nM

E-4031 more often resulted in a decrease in signal amplitude with
an increase in frequency, followed by drug-induced quiescence.
In patch clamp, the somewhat large variations in APD S.E.M.s
were due to a small sample size in the labor-intensive patch
clamp method. However, the two methods showed significant
prolongation of APD90, as well as EADs detected at the same
concentration (30 nME-4031). Thus, we show that E-4031, which
in clinical settings has been shown to cause the proarrhythmic
event TdP, also when measured with optogenetic tools caused
an increase in the APD and induced EADs. In contraction
signals, E-4031 increased relaxation duration, decreased motion
magnitude and caused EADs at 30 nM levels. The results suggest
that contraction analysis can be a feasible tool in detecting
drug responses in high-throughput applications. However, large
sample sizes are required for definite conclusions as high
concentrations applied to individual cells or small clusters may
terminate the beating altogether, causing variances in measured
parameters.

Repolarization of the cardiac AP is not only dependent on
the hERG channel but on several ion channels including the
IKs, the second main potassium channel involved in ventricular
repolarization, and thus the length of the QT interval. To
assess whether optogenetics could detect activities of this
channel, we applied JNJ-303, a potent blocker of IKs, to hiPSC-
CMs. Previous studies using this drug revealed no peculiar
activity in standard hERG screens, but subsequently evoked
unprovoked TdP in vivo in an anesthetized dog model (Towart
et al., 2009). Our results (Figure 5) revealed a statistically non-
significant, yet visible prolongation of the APD90 already at
low concentrations of JNJ-303 under both spontaneous and
paced rates, accompanied by possible delayed afterpolarizations
(DADs). A significant decrease in signal amplitude starting
from 1µM JNJ-303, accompanied by an increase in frequency,
which was followed by drug-induced quiescence and finally
beating arrest, thus indicating blocking activity of cardiomyocyte
repolarization. Additional experiments with a sodium channel
blocker could have shed light on how inhibited depolarization
could be measured by optogenetic imaging, though this has been
already reported by Dempsey et al. (2016).

Finally, we have shown that optogenetics reliably can detect
changes in the AP waveform, including APD prolongation,
EADs, and drug-induced quiescence. Yet, we do not propose that

optogenetic electrophysiology experiments completely replace

comprehensive patch clamp electrophysiological assessments,

but it allows for a faster prediction of successful and safe

drug candidates in a high-throughput screening (HTS) format.
Optogenetics could be utilized in the early stages of preclinical
drug development and could thus extensively reduce cost for the
pharmaceutical industry. Selected candidates taken further for
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FIGURE 5 | Optogenetic measurements of APD parameters under increasing doses of the IKs blocker JNJ-303. (A) Representative traces of alterations in the AP

waveform induced by the indicated concentrations of the IKs blocker JNJ-303 at spontaneous beating (black) and under 1 (blue) and 2Hz (red) pacing rates. (B) AP

amplitude as a function of JNJ-303 concentrations, at the spontaneous beating rate and under 1 and 2Hz pacing rates. Dots on y axis represent vehicle. Results are

means ± S.E.M. from n = 14–25. The table summarizes the percent change in amplitude of the drug-induced response in comparison to vehicle and indicates the

statistical significance, where **p < 0.01, ***p < 0.001.

clinical trials could then be studied in detail on a single cell level
with patch clamp.

In conclusion, we have shown that optogenetic imaging
allows for AP waveform recordings from a cardiomyocyte
monolayer. Due to the non-invasiveness and non-toxicity of
genetically encoded voltage sensors and actuators, chronic drug
exposures are enabled. Furthermore, light-induced pacing of cells
to elevated beat rates allows for arrhythmogenic sensitization.
With the high throughput screening compatibility of hiPSC-CMs
and the optogenetic technique, broader high content screens
can be established with integrated contractility studies. Thus,
optogenetic measurements provide an appealing alternative
to electrophysiological screening of human cardiomyocyte
responses for pharmacological efficacy and safety testing.
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Supplementary Figure 1 | Virus-induced cytotoxicity (LDH release)

measurements. (A) Optopatch-transduced hiPSC-CMs revealed no significant
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increase in cytotoxicity or cytolysis compared to control (Cor.4U®

non-transduced cells, dotted line), measured at 24 h after lentiviral

transduction. (B) Neither CaViar-transduced hiPSCs revealed any significant

cytotoxicity over control cells. Results are means ± S.E.M. from n = 3.

OD, optical density.

Supplementary Figure 2 | Confluent monolayer of hiPSC-derived

cardiomyocytes. Phase contrast microscopy image (20X) showing typical

structural characteristics and cell density of confluent monolayer of Cor.4U®

hiPSC-CMs cultured on Geltrex-coated glass-bottom dishes for optogenetic

imaging. Scale bar = 100µm.
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Cardiac safety remains the leading cause of drug development discontinuation. We

developed a human cardiomyocyte-based model that has the potential to provide a

predictive preclinical approach for simultaneously predicting drug-induced inotropic and

pro-arrhythmia risk.

Methods: Adult human primary cardiomyocytes from ethically consented organ donors

were used to measure contractility transients. We used measures of changes in

contractility parameters asmarkers to infer both drug-induced inotropic effect (sarcomere

shortening) and pro-arrhythmia (aftercontraction, AC); contractility escape (CE); time to

90% relaxation (TR90). We addressed the clinical relevance of this approach by evaluating

the effects of 23 torsadogenic and 10 non-torsadogenic drugs. Each drug was tested

separately at four multiples of the free effective therapeutic plasma concentration (fETPC).

Results: Human cardiomyocyte-based model differentiated between torsadogenic and

non-torsadogenic drugs. For example, dofetilide, a torsadogenic drug, caused ACs

and increased TR90 starting at 10-fold the fETPC, while CE events were observed

at the highest multiple of fETPC (100-fold). Verapamil, a non-torsadogenic drug, did

not change TR90 and induced no AC or CE up to the highest multiple of fETPCs

tested in this study (222-fold). When drug pro-arrhythmic activity was evaluated at

10-fold of the fETPC, AC parameter had excellent assay sensitivity and specificity

values of 96 and 100%, respectively. This high predictivity supports the translational

safety potential of this preparation and of the selected marker. The data demonstrate

that human cardiomyocytes could also identify drugs associated with inotropic effects.

hERG channel blockers, like dofetilide, had no effects on sarcomere shortening,

while multi-ion channel blockers, like verapamil, inhibited sarcomere shortening.
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Conclusions: Isolated adult human primary cardiomyocytes can simultaneously predict

risks associated with inotropic activity and pro-arrhythmia and may enable the generation

of reliable and predictive data for assessing human cardiotoxicity at an early stage in drug

discovery.

Keywords: human heart, adult human primary cardiomyocyte, pro-arrhythmia, inotropy, risk assessment, drug

discovery and development

INTRODUCTION

Cardiac safety remains the leading cause of drug development
discontinuation and withdrawal of marketed drugs (Piccini et al.,
2009). Consequently, during the last decade strategies have been
extensively employed to evaluate the cardiac safety of novel drugs
at the preclinical stage. However, the strategies employed thus
far have proven to be prone to false positive signals, which may
lead to prematurely discontinue the development of potentially
useful drugs. In other cases, the occurrence of false negative
results has led to serious adverse events during clinical trials.
The limited predictivity of the current strategies has stimulated
a quest for more reliable tools (Sager et al., 2014; Holmes
et al., 2015; Gintant et al., 2017). Given that the challenges in
translating preclinical findings into successful clinical studies,
seem to originate, at least in part, from the use of animal
models and the inability of different species to quantitatively
recapitulate human cardiac physiology and pharmacology (Perel
et al., 2007; Seok et al., 2013), the use of adult human cardiac
tissue has the potential to provide the preclinical models
needed to enhance preclinical to clinical translation. Human
heart tissues and human isolated myocytes have been used
for decades in ex-vivo studies of human physiology (see, for
example, Bustamante et al., 1982; Beuckelmann et al., 1992;
Wettwer et al., 1993, 1994; Näbauer et al., 1996; Iost et al.,
1998; Näbauer and Kääb, 1998; Jost et al., 2005; Brandenburger
et al., 2012; Coppini et al., 2014; Boukens et al., 2015).
However, the adoption of these methods to drug discovery
has been hampered by the limited availability of human tissue
for research, the variability in the quality of the samples, and
the technical challenges related to human tissue’s procurement
and experimental interrogation. For human cardiac tissue to
have practical utility in preclinical cardiac safety assessment,
it is necessary to develop and validate: (i) methodologies that
can provide tissue of high and consistent quality; (ii) assays
that can generate predictive data and are relatively simple
and scalable to medium or high throughput format. To this
aim, we have developed procedures that consistently allow the
procurement and experimental interrogation of human heart
tissue preparations to reliably assess the toxicity risks of novel
drugs (Page et al., 2016). In order to further increase the
throughput and scalability of the human ex-vivo heart model, we
are now reporting on the implementation of a cell-based assay
that utilizes adult human primary cardiomyocytes.

Regular heart beat and myocardial contractility (inotropy) are
the essential properties of cardiac function and depend on the
electro-mechanical dynamics of cardiac tissue. The consequence
of drug-induced irregular heart beat (pro-arrhythmia; Sager et al.,
2014) and/or changes in contractility (inotropic liability; Harmer

et al., 2012; Gallacher et al., 2016; Pugsley et al., 2017) can limit
the utility of potential novel therapeutic applications. Therefore,
it is highly recommended to assess the potential of novel drugs
to induce pro-arrhythmia and inotropic risk early in the drug
discovery process before advancing into later development work.

Abnormal ventricular repolarization, such as the kind
observed in patients with long QT syndrome, can cause
not only electrical disorders (pro-arrhythmia) but also affect
the heart’s contractile function (Belardinelli et al., 2009; De
Ferrari and Schartz, 2009). Long QT syndrome patients exhibit
abnormal left ventricular contraction, which can appear as single
or double-peaked contraction transient (Nador et al., 1991;
De Ferrari et al., 1994), increased dispersion of myocardial
contraction and abnormal left ventricular relaxation (Nakayama
et al., 1998; Haugaa et al., 2009). This correlation between
electrical (action potential, AP) and mechanical (contraction)
abnormalities is a consequence of the tight functional coupling
(Lou et al., 2011; Kang et al., 2016), and suggest that similarly
to the genetic disorders which affect the QT interval, drug-
induced ventricular repolarization abnormalities could lead to
contractility changes. Along these lines, we investigated the
possibility of developing a cardiomyocyte-based model that
would allow the simultaneous evaluation of drug-related risks for
pro-arrhythmia and inotropic liabilities. The main motivation of
this investigation was to develop a cardiomyocyte-based model
that uses adult human primary cardiomyocytes to provide a
novel and predictive preclinical approach for the simultaneous
prediction of drug-induced inotropic and pro-arrhythmia risk.
In order to facilitate the scalability of the model, we focused on
the simple measurement of a contractility-related parameter: we
recorded the fractional sarcomere shortening, using a digital, cell
geometry measurement system (IonOptixTM; Abi-Gerges et al.,
2013) and then used measures of changes in the contractility
transients to infer both inotropic as well as pro-arrhythmia risk.
To address the clinical relevance of this approach, we performed
a validation study to test the effects of a set of 33 reference
drugs with well-characterized clinical outcomes. Both positive
and negative controls were selected, including 23 torsadogenic
and 10 non-torsadogenic drugs. We found that the isolated
cardiomyocytes accurately exhibited drug-induced contractility
changes and pro-arrhythmia that are consistent with the known
clinical safety profiles of the drugs tested.

MATERIALS AND METHODS

Donor Heart Procurement
All human hearts used for this study were non-transplantable
and ethically obtained by legal consent (first person or next-
of-kin) from organ donors in the United States. Our recovery
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TABLE 1 | Donor characteristics.

Heart no. Donor

identifier

Age Sex Ethnicity BMI COD EF (%)

1 160610HHA 26 F Hispanic 26.9 Anoxia 65

2 161102HHA 39 M Caucasian 22.5 CVA/ICH 60

3 161115HHA 27 M Hispanic 25.9 Anoxia 60

4 161201HHA 37 F Caucasian 29.1 Anoxia 65

5 170712HHB 29 F Asian 21.9 Anoxia N/Aa

6 170815HHA 56 M Caucasian 28.1 Head trauma 55

7 170822HHA 45 M Hispanic 24.7 Head trauma 70

8 170906HHA 38 F Caucasian 19.5 AS/Suicide N/Aa

9 170915HHA 21 M Caucasian 32.0 Head trauma 65

10 171008HHA 45 M Hispanic 21.1 CVA/Stroke 55

11 171025HHA 33 M Hispanic 30.3 CVA/ICH 60

F, Female; M, Male; BMI, Body Mass Index; COD, Cause Of Death; EF, Ejection Fraction;

CVA, Cerebrovascular Accident; ICH, Intracranial Hemorrhage; AS, Asphyxiation; HH,

Human Heart; HHA, the 1st heart received on the day; HHB, the 2nd heart received the

same day.
aOrgan procurement organization could not transplant the heart and consequently no

echocardiography was performed; N/A, Not available.

protocols were pre-approved by IRBs at each transplant center.
Furthermore, all transfers of the donor hearts are fully traceable
and periodically reviewed by US Federal authorities. Donor
characteristics are shown in Table 1 and exclusion criteria were
previously described (Page et al., 2016).

Cardiomyocyte Contractility Measurement
Upon arrival at our laboratory, hearts were re-perfused with ice-
cold proprietary cardioplegic solution as previously described
(Page et al., 2016). Adult human primary ventricular myocytes
were isolated enzymatically from the ventricles (Supplementary
Figure 1). Digestion of the cardiac tissue was conducted at 37◦C
for ∼25min utilizing a proprietary solution which included a
cocktail of proteolytic enzymes. Solutions and cells described
in this paper will be available upon request. Contractility
transients were measured as previously described (Harmer
et al., 2012; Butler et al., 2015; Supplementary Video 1).
Briefly, cardiomyocytes were placed in a perfusion chamber
(FHC Inc., Bowdoin, ME, USA) mounted on the stage of an
inverted Motic AE31E microscope (StellarScientific, MD, USA)
and continuously perfused from a gravity fed system at 4
ml/min with myocyte Tyrode solution (see composition below)
heated to ∼36◦C using an inline heater (Cell MicroControls,
Norfolk, VA, USA). A video-based cell geometry system was
used to measure sarcomere dynamics (IonOptix, MA, USA;
Ren and Wold, 2001). The myocytes were field stimulated
at voltage 50% above threshold at a 1Hz pacing frequency,
with a biphasic pulse of 3ms duration, using a pair of
platinum wires placed on opposite sides of the chamber and
connected to a MyoPacer EP stimulator (IonOptix). Images
were acquired at a rate of 240Hz using an IonOptix MyoCam-
S CCD camera. Digitized images were displayed within the
IonWizard acquisition software (IonOptix). Optical intensity
data were collected from a user-defined rectangular region of
interest placed over the myocyte image. The optical intensity

data represent the bright and dark bands corresponding to
the Z-bands of the cardiomyocyte. The IonWizard software
analyzes the periodicity in the optical density along the myocyte
detecting the Z-bands by means of a fast Fourier transform
algorithm.

The stability of sarcomere shortening transients was assessed
by continuous recording for 2min in Tyrode’s solution
establishing the vehicle control (in 0.1% dimethyl sulfoxide,
DMSO). Subsequently, the test article concentration was applied
for a minimum of 250 s period or until a steady-state effect was
achieved. Four ascending concentrations of the test article were
used, providing cumulative concentration-effect (C-E) curves.
Analysis was performed using the IonWizard software. For each
test condition, data for 15 contractions with or without AC or CE
events were averaged, to obtain a single representativemonotonic
contractility transient. A series of polynomials were fitted to
the five different phases of the monotonic transient. From this
representative transient, fractional sarcomere shortening (which
indicates the percentage of peak contraction relative to the
resting length; µm) and TR90 (time to 90% relaxation; ms)
were used to quantify sarcomere dynamics and delay in the
relaxation of cardiomyocytes after contraction, respectively. An
AC (after-contraction) was visually identified as change in the
slope of the contractility transient that occurred before the next
stimulus-induced contraction. CE (contractility escape) was also
visually identified when the electrical stimulus did not result
in a contraction transient. Presence or absence of AC and CE
events was determined by examining non-averaged transients
for the 4-min application article concentration. Results are
expressed as mean ± s.e.m. Treatment effects on sarcomere
shortening and TR90 were expressed relatively to the myocyte’s
specific baseline control period. AC and CE were expressed as
incidence: number of cells showing events normalized by the total
number of cardiomyocytes. Hill curves were fitted to sarcomere
shortening C-E data using SigmaPlot v13 (Systat Software Inc.,
CA, USA) and used to determine IC50 (concentration inducing
50% decrease in sarcomere shortening). A comparative set of
experiments were also performed with quinidine and verapamil
on ventricular myocytes isolated from beagle dog hearts as
previously described (Abi-Gerges et al., 2013). The dog beagle
hearts were obtained from BTS Research (CA, USA) following
the vendor’s Institutional Review Board-approved protocols.
Differences were tested for statistical significance using the
paired Student’s t-test. A value of P < 0.05 was considered
significant.

Assessment of variability was assessed as previously described
(Page et al., 2016). The intra-heart and inter-heart total
variabilities were evaluated as follows. For baseline vehicle
condition, the intra-heart variability for each parameter of the
contractility transient was calculated as the average of the all SDs
(Standard Deviations) generated from all the individual cells for
all of the hearts. Inter-heart (Total) variability was calculated as
the SD of all cells pooled at each parameter for all hearts. For
dofetilide, the mean and SD of the percent change effect in the
cells from each heart were calculated separately for each of the
four test concentration periods. For each concentration period,
the intra-heart variability was then calculated as the average of
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TABLE 2 | Concentrations tested in adult human primary cardiomyocyte-based model and ratio to clinical concentrations.

Drug name Clinical TdP risk Cell/Heart (n) fETPC (µM)b,c Concentrations tested (µM) Concentrations as multiple of fETPC

Ajmaline 5/1 0.065 0.065 0.195 0.65 1.95 1 3 10 30

Astemizolea 4/1 0.0003 0.0003 0.0009 0.003 0.009 1 3 10 30

Azimilidea 6/1 0.07 0.07 0.21 0.7 2.1 1 3 10 30

Bepridila 7/1 0.032 0.032 0.096 0.32 0.96 1 3 10 30

Chlorpromazinea 8/2 0.0345 0.0345 0.1035 0.345 1.035 1 3 10 30

Cisapridea 7/2 0.00258 0.00258 0.0258 0.0774 0.258 1 10 30 100

Clarithromycina 8/2 1.2 1.2 12 36 120 1 10 30 100

Clozapinea 4/1 0.071 0.071 0.213 0.71 2.13 1 3 10 30

D,L-Sotalola 8/2 14.7 1.5 15 150 450 0.1 1 10 30

Disopyramidea 7/2 0.7 0.7 2.1 7 21 1 3 10 30

Dofetilidea 6/1 0.002 0.002 0.02 0.06 0.22 1 10 30 100

Domperidonea 8/1 0.02 0.02 0.2 0.6 2 1 10 30 100

Droperidola 4/1 0.016 0.016 0.048 0.16 0.48 1 3 10 30

Erythromycin 7/1 0.17 0.17 0.51 1.7 5.1 1 3 10 30

Flecainide 3/1 0.753 0.753 2.259 7.53 22.59 1 3 10 30

Ibutilidea 4/1 0.1 0.1 0.3 1 3 1 3 10 30

Moxifloxacin 5/1 10.96 10.96 32.88 109.6 328.8 1 3 10 30

Ondansetrona 4/1 0.372 0.372 1.116 3.72 11.16 1 3 10 30

Procainamide 4/1 54.186 54.186 162.558 541.86 1625.58 1 3 10 30

Quinidinea 4/1 3 0.3 3 30 100 0.1 1 10 30

Sematilide 6/1 4.449 4.449 13.347 44.49 133.47 1 3 10 30

Terodiline 4/1 0.145 0.145 0.435 1.45 4.35 1 3 10 30

Vandetaniba 4/1 0.3 0.3 0.9 3 9 1 3 10 30

Diltiazema 4/1 0.128 0.128 0.384 1.28 3.84 1 3 10 30

Diphenhydramine 5/1 0.034 0.034 0.102 0.34 1.02 1 3 10 30

Loratidinea 4/1 0.00045 0.00045 0.00135 0.0045 0.0135 1 3 10 30

Mexiletinea 7/1 2.5 0.25 2.5 25 75 0.1 1 10 30

Mibefradil 6/1 0.012 0.012 0.036 0.12 0.36 1 3 10 30

Nifedipinea 4/1 0.0077 0.0077 0.0231 0.077 0.231 1 3 10 30

Nitrendipinea 4/1 0.00302 0.00302 0.00906 0.0302 0.0906 1 3 10 30

Ranolazinea 3/1 2 2 20 60 200 1 10 30 100

Tamoxifena 6/1 0.0221 0.0221 0.0663 0.221 0.663 1 3 10 30

Verapamila 4/1 0.045 0.01 0.1 1 10 0.2 2 22 222

aCiPA-selected drug; bRedfern et al. (2003); cCiPA Stem Cell Working Group; TdP, Torsades de Pointes; fETPC, free Effective Therapeutic Plasma Concentration; Red, Positive

pro-arrhythmia risk; Green, Negative pro-arrhythmia risk.

the all of the SDs generated from all the three individual hearts.
Total variability was calculated as the SD of the mean percent
change of all the cells pooled at each concentration period for
dofetilide.

Solutions and Test Articles
The standard myocyte Tyrode solution contained (in mM):
NaCl 145, KCl 4, CaCl2 1.8, MgCl2 1, glucose 11.1 and HEPES
10, pH 7.4 with NaOH. The reference drugs selected for this
investigation were obtained from Sigma (CA, USA). Drugs were
initially formulated in DMSO as a 1,000x stock solution. Stock
solutions were diluted to the working concentrations in 0.1%
DMSO on the day of the experiment. The test concentrations are
indicated in Table 2. Ratio to fETPCs (free Effective Therapeutic
Plasma Concentration) and replicates information are also
shown in Table 2.

RESULTS

In order to record contractility transients in isolated
cardiomyocytes, we utilized bright-field optical imaging and
measured sarcomere length. With the ultimate goal of assessing
both electrical (AP) as well as mechanical (contractility)
drug-induced effects, we decided to focus our analysis on
four parameters: TR90, incidence of AC, incidence of CE and
sarcomere shortening. TR90 is correlated to the duration of
the cardiac AP and delays in AP repolarization are expected
to be associated with extension of the TR90 (Dipla et al., 1999;
Undrovinas et al., 2006). Early-afterdepolarization (EAD) is
an AP abnormality that results in a transient slope change of
the AP during the repolarization phase. EAD is potentially of
great relevance in the context of pro-arrhythmia risk assessment
since this is believed to be the underlying cause of re-entrant
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TABLE 3 | Distributions of baseline values of the contractility parameters in 189 human ventricular cardiomyocytes from 11 donor hearts.

Parameter Mean ± s.e.m. Minimum Maximum Median Quartile 1 Quartile 3

Sarcomere length (µm) 1.78 ± 0.01 1.49 1.96 1.79 1.73 1.84

Cont. vel. (µm/s) −0.87 ± 0.02 −2.21 −0.29 −0.80 −1.07 −0.60

Sarc. short. (%) 4.31 ± 0.13 1.82 12.4 3.79 3.04 5.18

Rel. Vel. (µm/s) 0.98 ± 0.04 0.26 2.99 0.82 0.57 1.27

Peak (µm) 1.70 ± 0.01 1.21 1.89 1.72 1.64 1.78

TPeak (ms) 168 ± 3 101 341 162 140 189

TR70 (ms) 263 ± 5 147 560 251 216 308

TR80 (ms) 286 ± 6 160 620 266 229 334

TR90 (ms) 337 ± 8 189 693 314 263 403

Cont. vel., Contraction velocity; Sarc. short., Sarcomere shortening; Ret. Vel., Relaxation velocity; Tpeak, Time to peak; TR70, TR80, and TR90, Time to 70, 80, and 90% relaxation,

respectively.

arrhythmia (Roden et al., 1996; El-Sherif and Turitto, 1999).
The mechanical equivalent of EAD electrical abnormality is
an after-contraction (Kaumann and Olson, 1968; Noda et al.,
2004), a transient change of slope in the contractility transient,
typically in the later portion of the relaxation phase. Drugs
that interfere with cardiac depolarization or in other ways
suppress the generation of a cardiac AP, result in complete
inhibition of the contractility transient, an event we refer to
as CE. Therefore, changes in three parameters measured from
contractility transients, TR90, AC and CE can provide useful
information with regards to the drug-induced alterations of
the electrical behavior of cardiac cells. In addition, changes in
fractional sarcomere shortening provide direct measurement of
inotropic effects in cardiomyocytes.

Stability of the Contractility Transient in
Adult Human Primary Ventricular
Cardiomyocytes
Baseline properties of the contractility transients in adult human
primary ventricular cardiomyocytes were investigated in 189
cardiomyocytes from 11 human donor hearts (Table 1). First,
we calculated TR90, incidence of AC and CE, and sarcomere
shortening in baseline vehicle control at a pacing rate of 1Hz
(Table 3). The distributions of the contractility parameters from
all the vehicle baseline control periods show that at baseline, the
physiological properties of isolated ventricular cardiomyocytes
fall within the expected ranges (see section Discussion; Table 3;
Supplementary Figure 2) with time to peak (TPeak) at 168 ± 3.
ms and TR90 at 337 ± 8ms. It is also important to note that
during the vehicle baseline period, we never observed AC or
CE events. We further assessed the intra-heart and inter-heart
(Total) variability of contractility parameters in the presence
of vehicle controls (Supplementary Figure 3). Our data showed
that the intra-heart variability for sarcomere shortening, TPeak
and TR70-90 accounted for almost 90% of the Total observed
variability for each of these contractility transient parameters
after exposure to the vehicle.

Next, we assessed the stability of the human cardiomyocyte
preparation. We recorded vehicle time-control data in four
cardiomyocytes (one heart) using multiple additions of vehicle
solution spaced by 4min each, to mimic the experimental

conditions that we were set to use with the test drugs.
Cardiomyocytes exhibited stable behavior for the duration of
the recordings, up to 20min (Figure 1). No AC or CE were
observed and only a small, non-significant increase in TR90 was
observed (1st, 2nd, 3rd, and 4th vehicle applications increased
TR90 by 0.4 ± 2, 6 ± 2, 6 ± 3, and 5 ± 4%, respectively; p
> 0.05; Figure 1A). Similarly, the measurements of sarcomere
shortening in myocytes demonstrated good stability (Figure 1B).

Effects of Torsadogenic Drugs on Adult
Human Primary Cardiomyocytes
To begin assessing the pharmacological responses of isolated
adult cardiomyocytes, we selected 33 drugs, including 23
known torsadogenic (like cisapride, clarithromycin, d,l-sotalol,
dofetilide, domperidone, quinidine) and 10 not previously
associated with TdP arrhythmias (like mexiletine, ranolazine,
verapamil; Johannesen et al., 2014; Colatsky et al., 2016; Fermini
et al., 2016). Specifically, we were interested in establishing
the correlation, if any, between the parameters measured in
contractility transients, the clinical incidence of pro-arrhythmia
and inotropic liability. The effects of the 23 torsadogenic
drugs on adult human primary ventricular cardiomyocytes are
shown in Figures 2–4, Table 4, and Supplementary Figures 4–12.
Dofetilide most notably caused frequent occurrence of AC [in
up to 50% of the recorded contraction transients; Figure 2C;
n = 6 cells (1 heart)]. At the lower concentrations, the AC
events consisted of a single ectopic small AC (Figure 2A), but
at higher concentrations larger amplitude double-peak AC were
also observed (Figure 2B). In addition, dofetilide resulted in
a significant prolongation of the relaxation phase, with TR90
increase to 17 ± 6% at 10-fold of the fETPC and to 26 ± 7% at
100-fold of fETPC (Figure 2C). CE events were observed in 17%
of the recordings, at the highest concentration tested (Figure 2C).

Cisapride resulted in AC events at all concentrations tested
and with the highest incidence at the two highest concentrations
tested: 43% at 30-fold fETPC and 30% at 100-fold fETPC
[Figure 3A, n = 7 cells (2 hearts)]. CE events were observed
at the highest concentration tested in 14% of the contraction
transients. No significant changes in TR90 were observed
at any concentration (Figure 3A). Domperidone induced AC
events at all concentrations tested, CE at all concentrations

Frontiers in Physiology | www.frontiersin.org December 2017 | Volume 8 | Article 1073359

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Nguyen et al. Human Cardiac Safety Assessment of Drugs

FIGURE 1 | Stability of contractility recordings over time in

human cardiomyocytes. (A) Change in TR90 and % incidence of AC and CE

induced by sequential additions of vehicle (V) in human cardiomyocytes at 1Hz

pacing frequency. P > 0.05 vs. V-values. (B) Vehicle effect curve for sarcomere

shortening. V1, V2, V3, and V4 correspond to the 1st, 2nd, 3rd, and 4th

applications of vehicle.

above the fETPC and significant and concentration-dependent
prolongation of the relaxation phase [Figure 3B, n = 8 cells (1
heart)]. Quinidine and clarithromycin induced concentration-
dependent increases in AC incidence, CE and prolongation of the
relaxation phase [Figure 3C, n = 4 cells (1 heart) for quinidine;
Figure 4A, n = 8 cells (2 hearts) for clarithromycin]. d,l-sotalol
[Figure 4B, n = 8 cells (2 hearts)] also caused a concentration-
dependent increase in TR90 and AC incidence but it did not
induce CE events.

The translation predictivity of the AC parameter was used
to calculate assay performance values for the adult human
primary cardiomyocyte-based model (Figures 2–4; Table 4;
Supplementary Figures 4–12). In comparison with clinical
torsadogenic risk and when predicting pro-arrhythmic risk
at 10-fold the fETPC of the 23 torsadogenic drugs, the
human cardiomyocyte assay has an excellent sensitivity (96%)
for predicting clinical pro-arrhythmic risk with very low
false negative rate. This outstanding predictivity confirms the
translational safety potential of the AC marker and sensitivity
of human primary adult cardiomyocytes to the effects of the
23 torsadogenic drugs we tested; in particular this cellular
preparation exhibits changes in contractility parameters that are

FIGURE 2 | Typical contractility transients recorded from an adult human

primary ventricular myocyte in the presence of vehicle control and after

exposure to dofetilide at 0.02µM (A), 10-fold the fETPC, non-fitted averaged

transients) and 0.06µM (B, 30-fold the fETPC, non-fitted and non-averaged

transients) at a pacing frequency of 1Hz. Note that contractility transients

shown in this figure were obtained from the same cardiomyocyte. (C) Mean %

change in TR90 and AC & CE incidence when cardiomyocytes were incubated

with dofetilide at 1Hz. *P < 0.05 vs. values from vehicle.

related to the AP changes expected to be induced by the drugs
(Redfern et al., 2003; CredibleMeds R©, https://crediblemeds.org/).
It is also important to note that the observed changes occurred
at concentration ranges that are clinically relevant: all 23 drug
induced contractility abnormalities, that are potentially related to
pro-arrhythmia risk, starting at the fETPC.

To determine the reproducibility and reliability of adult
human primary cardiomyocytes, dofetilide was tested in three
donor hearts. Data summaries for the effects of dofetilide on
sarcomere shortening, TR90, AC, and CE incidence are shown in
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FIGURE 3 | Mean % change in TR90 and AC & CE % incidence when

cardiomyocytes were treated with cisapride (A), domperidone (B) and

quinidine (C). *P < 0.05 vs. values from vehicle.

Supplementary Figures 13, 14. An unmarked level of variability
was seen with sarcomere shortening (Supplementary Figure 13),
TR90 (Supplementary Figure 14A), AC events (Supplementary
Figure 14B), and CE incidence (Supplementary Figure 14C).
For example, the mean dofetilide-induced % changes in TR90
at 30-fold the fETPC were found to be 21 ± 12, 24 ± 5,
and 18 ± 5% in donor hearts 1 (n = 6 cells), 2 (n = 4
cells), and 3 (n = 5 cells), respectively. We further assessed the
level of variability by assessing the intra-heart and inter-heart
(Total) variability of cell responses to dofetilide (Supplementary
Figure 15). Our data show that the intra-heart variability for
TR90 accounted for 90% of the Total observed variability of
the TR90 parameter after exposure to dofetilide concentrations
(Supplementary Figure 15A). For the inter-heart variability for
the dofetilide concentration period corresponding to the top
test concentration, the total SD related to the mean percent

FIGURE 4 | Mean % change in TR90 and AC & CE % incidence when

cardiomyocytes were treated with clarithromycin (A) and D,L-sotalol (B).

*P < 0.05 vs. values from vehicle.

change in TR90 effects was 13.3, while the intra-heart SD
for the same concentration period was 12.7. The same was
true for the variability of sarcomere shortening (Supplementary
Figure 15B). Taken together, these data establish that the inter-
donor variability is relatively small and does not add significant
noise beyond what is inherent to this experimental approach.

We also confirmed that similar data could be obtained when
the experiments were conducted in blinded or non-blinded
fashion. For example, the effects of ibutilide were found to
be similar in blinded experiments and in unblinded testing
[Supplementary Figures 16, 17; n= 5 blinded cells (1 heart)].

Given that canine in-vivo models are extensively used for
drug cardiac safety assessment (Pollard et al., 2010) and isolated
adult cardiomyocytes from dog hearts are also commonly
tested for early risk assessment (Abi-Gerges et al., 2010;
Harmer et al., 2012), we compared the effects of quinidine
in human and dog adult cardiomyocytes. Quinidine elicited a
significantly larger increase in TR90 in myocytes from human
hearts compared to canine hearts [Supplementary Figure 18A,
n = 5 (1 heart)]. Furthermore, AC and CE events were only
observed in quinidine-treated human myocytes (Supplementary
Figure 18A). These data underscore the potential limitations of
canine cardiomyocyte model in recapitulating the pharmacology
observed in human cardiomyocytes.

Effects of Non-torsadogenic Drugs on
Adult Human Primary Cardiomyocytes
Non-torsadogenic drugs, like mexiletine, ranolazine, and
verapamil, are approved drugs with low clinical torsadogenic
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TABLE 4 | Pro-arrhythmia prediction of the adult human primary cardiomyocyte-based model.

Drug name Clinical

TdP risk

Pro-arrhythmia risk at 10-fold fETPC

AnaBios Adult human

primary ventricular

cardiomyocytes (Sarc.

short., AC)

Amgen hiPSC-CMs

(iCell®, MEA FPD),

Qu and Vargas

(2015)

Amgen

hiPSC-CMs

(iCell®, MEA EAD),

Qu and Vargas

(2015)

JiCSA

hiPSC-CMs

(iCell®, MEA

Score), Ando

et al. (2017)

FDA hiPSC-CMs

(iCell®, MEA

Arrhythmia),

Blinova et al.

(2017)

FDA hiPSC-CMs

(Cor.4U, MEA

Arrhythmia),

Blinova et al. (2017)

Ajmaline Not tested Not tested Not tested Not tested

Astemizolea False negative Not tested Not tested Not tested Not tested

Azimilidea Not tested Not tested Not tested Not tested Not tested

Bepridila Not tested Not tested False negative False negative False negative

Chlorpromazinea Not tested Not tested False negative False negative False negative

Cisapridea False negative False negative False negative

Clarithromycina Not tested Not tested Not tested Not tested

Clozapinea Not tested Not tested False negative Not tested Not tested

D,L-Sotalola Not tested Not tested

Disopyramidea Not tested Not tested Not tested Not tested

Dofetilidea

Domperidonea Not tested Not tested Not tested Not tested

Droperidola Not tested Not tested Not tested Not tested

Erythromycin Not tested Not tested Not tested Not tested

Flecainide Not tested Not tested

Ibutilidea Not tested Not tested Not tested Not tested

Moxifloxacin Not tested False negative False negative

Ondansetrona Not tested Not tested Not tested Not tested

Procainamide Not tested Not tested Not tested Not tested

Quinidinea Not tested Not tested

Sematilide Not tested Not tested Not tested Not tested

Terodiline False negative False negative Not tested Not tested

Vandetaniba Not tested Not tested Not tested Not tested

Diltiazema Not tested Not tested

Diphenhydramine Not tested Not tested False positive Not tested Not tested

Loratidinea Not tested Not tested Not tested Not tested

Mexiletinea False positive Not tested False positive Quiescent

Mibefradil Not tested Not tested

Nifedipinea Not tested Not tested Not tested Not tested

Nitrendipinea Not tested Not tested Not tested Not tested

Ranolazinea False positive False positive False negative

Tamoxifena Not tested Not tested Not tested Not tested

Verapamila Not tested Not tested Quiescent

aCiPA-selected drug; Red, Positive pro-arrhythmia risk; Green, Negative pro-arrhythmia risk; Sarc. short., Sarcomere shortening; hiPSC-CM, human induced pluripotent stem cell-

derived cardiomyocyte; iCell®, hiPSC-CMs from Cellular Dynamics; MEA, Micro-electrode array; FPD, Field Potential Duration; JiCSA, Japan iPS Cardiac Safety Assessment; FDA,

Food and Drug Administration; Cor.4U, hiPSC-CMs from Axiogenesis AG; EAD, Early afterdepolarization; fETPC, free effective therapeutic plasma concentration.

risk (Redfern et al., 2003; Colatsky et al., 2016; Fermini et al.,
2016; CredibleMeds R©). While mexiletine and verapamil are not
expected to delay ventricular repolarization, ranolazine can elicit
prolongation of the QT interval in the electrocardiogram (ECG)
(Duff et al., 1987; Giardina and Wechsler, 1990; Johannesen
et al., 2014). None of the three drugs induced AC at any of
the concentrations tested (Figures 5, 6). However, mexiletine
induced CE events in 30% of the transients, at the highest
concentration tested [30-fold the fETPC; n = 7 cells (1 heart);
Figure 5A]. This observation is consistent with the known

sodium channel inhibitory activity of mexiletine (Qu et al., 2013).
Relaxation time was significantly prolonged only by ranolazine at
the highest concentration tested [100-fold of fETPC; 37± 11%; n
= 3 cells (1 heart); Figure 5B]; this finding is consistent with the
fact that ranolazine is known to induce QT interval prolongation
at concentrations above the therapeutic dose (Chaitman, 2004;
Johannesen et al., 2014). Ranolazine was also able to induce
CE events, which is consistent with its known inhibitory action
on sodium and calcium voltage gated channels (Antzelevitch
et al., 2004). The data shows that the cardiac safety margins
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FIGURE 5 | Mean % change in TR90 and AC & CE % incidence when

cardiomyocytes were treated with mexiletine (A) and ranolazine (B). *P < 0.05

vs. values from vehicle.

are different for the three with mexiletine inducing CE events
10-fold above the fETPC, ranolazine above 30-fold the fETPC
and verapamil not exhibiting any signal potentially predictive of
pro-arrhythmia up to the highest concentration tested [220-fold
of the fETPC; n = 4 (1 heart); Figure 6]. However, when
the effects of verapamil were compared in dog and human
adult cardiomyocytes, we observed that in dog cardiomyocytes
verapamil induced a significant prolongation of the relaxation
time: at 30- and 220-fold of fETPC, verapamil increased TR90
by 85 ± 19% [n = 4 cells (1 heart); Supplementary Figure 18B]
and 3± 4% (Figure 6B), respectively. These results highlight the
inability of the dog cardiomyocyte model to accurately predict
the effects of verapamil on the human heart.

The AC parameter was again used to calculate specificity
value for the adult human primary cardiomyocyte-based
model (Figures 5, 6; Table 4; Supplementary Figures 19–21). In
comparison with clinical torsadogenic risk and when predicting
risk at 10-fold the fETPC of the 10 non-torsadogenic drugs, the
human cardiomyocyte assay has an excellent specificity (100%)
for predicting the safety of the 10 non-torsadogenic drugs. Thus,
adult human primary cardiomyocytes have a great value as a
specific assay to predict the safety of drugs.

Effects of Reference Drugs on Sarcomere
Shortening in Adult Human Primary
Cardiomyocytes
We then analyzed the effects of the 33 reference drugs on
sarcomere shortening in adult human primary ventricular

FIGURE 6 | (A) Typical non-fitted averaged contractility transients recorded

from an adult human primary ventricular myocyte in the presence of vehicle

control and after exposure to verapamil at 0.01, 0.1, 1, and 10µM (0.2-, 2-,

22-, and 222-fold the fETPC, respectively) at a pacing frequency of 1Hz.

(B) Mean % change in TR90 and AC & CE % incidence when cardiomyocytes

were incubated with verapamil at 1Hz. P > 0.05 vs. values from vehicle.

cardiomyocytes. For example, while dofetilide and d,l-
sotalol, hERG channel blockers, had no effects on sarcomere
shortening (Figures 7A,B), multi-ion channel blockers, like
cisapride, clarithromycin, domperidone, mexiletine, ranolazine,
quinidine, and verapamil all inhibited sarcomere shortening
(Figure 7). Additionally, the concentration-dependence of the
negative inotropic effects of these multi-ion channel blockers
(Figures 7A,C) is also evaluated in the context of the fETPC
(Figures 7B,D). The same was true for other hERG channel
blockers (like erythromycin, moxifloxacin and sematilide) and
multi-ion channel blockers (Supplementary Figures 4–12 and
19–21; Table 5). Thus, these data demonstrate that human
cardiomyocytes are of great value to screen/identify drugs
associated with inotropic effects, help ranking compounds for
progression to next drug discovery phases and establish human
safety margins (Table 5).

When the effects of quinidine on sarcomere shortening were
compared in human and dog cardiomyocytes, we found that the
drug was 11-fold more potent in human ventricular myocytes
compared to canine cells (Supplementary Figures 22A,B).
Conversely, the negative inotropic effect of verapamil was
similar between human and canine cells (Supplementary
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FIGURE 7 | Effects of positive and negative controls on human cardiomyocyte contractility. Drug-effect curves for sarcomere shortening are shown as a function of

concentrations tested (A,C) or multiple of fETPCs (B,D). The 0.0001 and 0.001µM represent the normalized vehicle data for drugs in (A) and (B), respectively. IC50

(µM) and ratio (IC50/fETPC) values for the effects of multi-ion channel blockers on sarcomere shortening were found to be 0.02 and 8 for cisapride, 16 and 13 for

clarithromycin, 0.2 and 10 for domperidone, 0.9 and 0.4 for mexiletine, 17 and 9 for ranolazine, 3.6 and 1 for quinidine, and 0.04 and 2 for verapamil.

Figures 22C,D). These data clearly show the ability of isolated
human cardiomyocytes to identify multi-ion channel drugs
associated with inotropic risk and further stress the challenges in
cross-species translation for cardiac risk assessment.

DISCUSSION

In the present work, we wanted to evaluate the potential of a
novel strategy for addressing pre-clinical cardiac risk assessment.
The goal was to establish and validate, a novel approach that
would be: (i) human-relevant and cell-based; (ii) amenable
to high-throughput screening; (iii) reliant on non-invasive
measurements; (iv) simple to implement and yet able to provide
a rich data set that could address both pro-arrhythmia as well as
inotropic risks. We have recently established methods that enable
standardized organ procurement protocols and the experimental
utilization of ventricular trabeculae from human donor hearts for
ex-vivo cardiac safety studies (Page et al., 2016). Our previous
work established the low donor-to-donor variability with regards
to physiological and pharmacological properties of these ex-vivo
preparations and provided evidence for the ability of that model
to distinguish between pro-arrhythmic and non-pro-arrhythmic
drugs. We now further extend the previous work by reporting
on the isolation and experimental interrogation of human
ventricular cardiomyocytes. We describe the use of ventricular
human cardiomyocytes for drug cardiac safety assessment using
an ex-vivo model which addresses all four features discussed
above: (i) the assay we developed is based on human cells; (ii)
it relies on the measurement of contractility, an endpoint for

which numerous options are available for performing medium-
or high-throughput assays; (iii) it utilizes bright field optical
imaging for measuring sarcomere shortening. This provides a
non-invasive methodology which avoids the use of fluorescent
dyes and the potential for chemo- or photo-toxicity; and (iv)
the optically-based measurement of sarcomere shortening is
simple to implement but, thanks to the utilization of refined
analysis endpoints of the contractility transients, enables tracking
parameters relevant to pro-arrhythmia risk as well as inotropic
risks.

One critical component of our work is the utilization of data
obtained from contractility measurements to infer the effects of
drugs, not only with regards to inotropic effects, but also for
making prediction of pro-arrhythmia risk. The justification for
this approach derives from the tight functional coupling between
the electrical and mechanical behavior of cardiac cells (Lou et al.,
2011; Kang et al., 2016). It is well-documented that abnormal
ventricular repolarization leads to contraction abnormalities: for
example, delays in the repolarization phase of the cardiac AP
and triggered EADs, result in delays of relaxation phase and AC
events in the contraction cycle (Nador et al., 1991; De Ferrari
et al., 1994; Nakayama et al., 1998; Belardinelli et al., 2009; De
Ferrari and Schartz, 2009; Haugaa et al., 2009).

We first established that our methods could provide human
adult myocytes exhibiting the functional parameters expected
of healthy and functionally competent cardiac tissue. Our data
on the contractility parameters (summarized in Table 3) are in
agreement with previous reports (Gerdes et al., 1992; Davies
et al., 1995, 1996; del Monte et al., 1995). Furthermore, our
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TABLE 5 | Sarcomere shortening effects for reference drugs measured in adult

human primary cardiomyocytes.

Drug name Top test

concentration

(µM)

Human

myocyte effect

IC50 (µM) Ratio

(IC50/fETPC)

Ajmaline 1.95 −ve inotrope 2 31

Astemizolea 0.009 No effect >0.009 30

Azimilidea 2.1 −ve inotrope 1.07 15

Bepridila 0.96 −ve inotrope 0.7 22

Chlorpromazinea 1.04 −ve inotrope 1.02 28

Cisapridea 0.26 −ve inotrope 0.02 8

Clarithromycina 120 −ve inotrope 16 13

Clozapinea 2.13 −ve inotrope 1.5 21

D, L-Sotalola 450 No effect >450 >30

Disopyramidea 21 −ve inotrope 9.3 13

Dofetilidea 0.2 No effect >0.2 >100

Domperidonea 2 −ve inotrope 0.2 10

Droperidola 0.48 −ve inotrope 0.18 11

Erythromycin 5.1 No effect >5.1 >30

Flecainide 22.6 −ve inotrope 1.1 2

Ibutilidea 3 −ve inotrope 2 20

Moxifloxacin 329 No effect >329 >30

Ondansetrona 11.2 −ve inotrope 14 34

Procainamide 1625 −ve inotrope 2215 38

Quinidinea 100 −ve inotrope 3.6 1

Sematilide 133 No effect >133 >30

Terodiline 4.35 −ve inotrope 0.7 5

Vandetaniba 9 −ve inotrope 2.7 9

Diltiazema 3.84 −ve inotrope 1 8

Diphenhydramine 1.02 −ve inotrope 0.6 17

Loratadinea 0.0135 −ve inotrope 0.0175 35

Mexiletinea 75 −ve inotrope 0.9 0.4

Mibefradil 0.36 −ve inotrope 0.18 13

Nifedipinea 0.23 −ve inotrope 0.04 5

Nitrendipinea 0.091 −ve inotrope 0.06 18

Ranolazinea 200 −ve inotrope 17 9

Tamoxifena 0.663 −ve inotrope 0.99 36

Verapamila 10 −ve inotrope 0.04 2

IC50; Concentration inducing 50% decrease in sarcomere shortening; Hill equation using

SigmaPlot v13 was fitted to sarcomere shortening concentration-effect curves, assuming

drugs would eventually cause complete inhibition of the contractility when they decreased

sarcomere shortening by ≥25%. aCiPA-selected drug; fETPC, free effective therapeutic

plasma concentration.

measurements of sarcomere shortening, as well as the findings
from the previously cited papers, are all well within the range
of the distance between the Z-bands (i.e., sarcomere length)
of 1.6–2.2µm in human hearts (Klabunde, 2005). Our baseline
sarcomere shortening, TPeak and TR90 values agree with those
reported by Lyon et al. (2009), although they are not consistent
with the data reported by delMonte et al. (1995): TPeak and TR90
were higher in the del Monte study. A plausible explanation for
the discrepancy is that, in del Monte study, the cardiomyocytes
were paced at lower frequency, 0.2Hz, compared to the 1Hz
pacing frequency used throughout our study. Interestingly, the

TR90-values that were observed in this study and in the study by
Lyon et al. (2009) are almost identical to the values previously
reported for AP duration at 90% repolarization (Franz et al.,
1988; Kang et al., 2016; Page et al., 2016), further supporting
the functional interrelation between the electrical (AP) and
mechanical (contractility) in cardiomyocytes (see also Lou et al.,
2011). Additionally, cardiomyocytes obtained from 11 donor
hearts showed a relatively low total variability for the contractility
parameters after exposure to the vehicle control. The stability of
the human adult cardiomyocyte preparation was then evaluated
in time-matched vehicle control experiments. During the course
of these experiments, and for the total of 20min per experiment,
no significant change was observed in sarcomere shortening and
TR90, and AC or CE were not observed.

Next we assessed the effects of reference drugs with well-
characterized clinical outcomes, including 23 torsadogenic and
10 non-torsadogenic drugs. Torsadogenic drugs, like dofetilide
and d,l-sotalol, two hERG blockers, caused an increase of
TR90 and evoked AC events starting at 10-fold fETPCs. These
findings agree with clinical measurements of the QT interval
following administration of these drugs, as well as reports of
TdP arrhythmia for the same molecules (see, for example, Soyka
et al., 1990; Torp-Pedersen et al., 1999; Johannesen et al., 2014;
Colatsky et al., 2016). Moreover, dofetilide and d,l-sotalol did
not significantly affect sarcomere shortening up to the highest
multiple of fETPCs (100- and 30-fold, respectively). Dofetilide
and d,l-sotalol lack of effect on cardiomyocyte contractility
is in agreement with myocardial contractility data reported
in clinical studies (FDA labels for both drugs; Brooks et al.,
1970; Rasmussen et al., 1992; Holubarsch et al., 1995). Similarly
to dofetilide and d,l-sotalol, other torsadogenic drugs (like
cisapride, clarithromycin, domperidone, and quinidine) also
increased TR90 and induced ACs. While cisapride, domperidone
and quinidine induced ACs starting at fETPCs, clarithromycin
induced ACs starting at 10-fold the fETPC. These findings agree
with the data reported for these 4 drugs in humans (see, for
example, Koster and Wellens, 1976; Roden et al., 1986; Lee et al.,
1998; Vitola et al., 1998; Kamochi et al., 1999; Barbey et al., 2002;
Johannes et al., 2010; van Noord et al., 2010; Johannesen et al.,
2014; Colatsky et al., 2016). In contrast to dofetilide and d,l-
sotalol, cisapride, clarithromycin, domperidone, and quinidine
inhibited sarcomere shortening in cardiomyocytes, as had been
previously shown in human myocardium (Nawrath and Eckel,
1979; Kirch et al., 1992). This effect on sarcomere shortening is
in line with the ability of these drugs to simultaneously block,
not only the hERG potassium channel (Redfern et al., 2003), but
also other cardiac ion channels, like Na+ and Ca2+ channels
(Gluais et al., 2003; Harmer et al., 2011; Mirams et al., 2011;
Kramer et al., 2013; Crumb et al., 2016). The remaining 17
torsadogenic drugs displayed similar torsadogenic and inotropic
behaviors. Additionally, AC incidence seen at fETPCs in our
study is consistent with reports of TdP cases with therapeutic
concentrations (like with quinidine; Koster and Wellens, 1976;
Roden et al., 1986). TdP risk is also known to increase with
increasing concentrations as a result of administering a high dose
or drug accumulation in plasma or in cardiac tissue (Mounsey
and DiMarco, 2000; Reiffel and Appel, 2001). Such a dose-risk
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relationship was observed in our study in which AC incidence
increased as the testing concentration was elevated. Moreover,
human cardiomyocytes identified with excellent sensitivity (96%)
drugs associated with pro-arrhythmic risk, displayed consistent
reproducibility of ibutilide- and dofetilide-induced inotropic
and pro-arrhythmia risk with a relatively low total variability
of the pharmacological response to dofetilide. Altogether, our
data with the 23 torsadogenic drugs support the potential
of these human cardiomyocytes, combined with measurement
of contractility transients, to significantly enhance preclinical
cardiac safety assessment by stopping true positive compounds
from being developed as novel therapies. Pacing frequency may
influence kinetic drug binding in ion channels and usage of
one pacing frequency may lead to false negative outcomes.
However, human cardiomyocytes assessed at only 1Hz pacing
frequency (our study) had an excellent sensitivity. This indicates
that these 1 Hz-paced cells would only be associated with 4%
chance in incorrectly categorizing drugs as false negatives. If
the chemical space of a drug discovery project is found to be
frequency-dependent, re-assessment of 1 Hz-categorized true
negative compounds at slower or faster pacing rate would
be recommended. Finally, cell-to-cell coupling may attenuate
AC events in multicellular cardiac preparations compared
to isolated uncoupled cardiomyocytes. Preliminary findings
show that ventricular trabeculae, like human cardiomyocytes,
could differentiate between the safety of ranolazine and the
torsadogenic potential of dofetilide, and identify the inotropic
risk associated with ranolazine (data not shown). Although
these data are very encouraging, a future study is necessary to
determine the influence of cell-to-cell coupling on the prediction
of drug-induced pro-arrhythmic risk.

The 10 non-pro-arrhythmic drugs used in this study are
multi-ion channel blockers (Liu et al., 1998; He et al., 2003;
Antzelevitch et al., 2004; Kramer et al., 2013; Anon, 2014;
Crumb et al., 2016); possibly due to their multi-ion channel
activity, they were also able to decrease sarcomere shortening
in human isolated cardiomyocytes. Importantly though, none
of these non-pro-arrhythmic drugs induced AC events, even
when tested at large multiples of fETPCs. For example,
mexiletine, ranolazine, and verapamil induced no AC events
at 30-, 100- and 222-fold above fETPCs, respectively. The
lack of clinical QT interval prolongation and pro-arrhythmia
risk with these three drugs (see, for example, Ritchie et al.,
2006; Johannesen et al., 2014; Vicente et al., 2015) has been
explained with their ability to simultaneously inhibit the hERG
channel and Ca2+ channels (verapamil; Vicente et al., 2015;
Crumb et al., 2016) or late Na+ inward currents (mexiletine
and ranolazine; Johannesen et al., 2016; Vicente et al., 2016).
In fact, these electrophysiological effects may explain the anti-
arrhythmic activity of mexiletine and ranolazine (Duff et al.,
1987; Giardina and Wechsler, 1990; Moss et al., 2008). In
agreement with our sarcomere shortening data, verapamil and
mexiletine (dosed at high multiples of the therapeutic plasma
levels) were found to reduce contractility and cardiac ejection
fraction (Gottlieb and Weinberg, 1992; Ritchie et al., 2006).
Moreover, mexiletine (Shanks, 1984; Stein et al., 1984; Sami and
Lisbona, 1985) and ranolazine (Murray and Colombo, 2014)

were shown to not affect contractility at therapeutic plasma
levels. This emphasizes the importance of assessing drug effects
as a function of the fETPC. Therefore, use of C-E curves
normalized to the fETPC enables a more accurate ranking of
drug risk and consequently more educated decision at early drug
discovery stage. Consequently, human cardiomyocytes identified
with excellent specificity (100%) the safety of the 10 non-
torsadogenic drugs tested in this study and, when combined with
measurement of contractility, they may have a great value in
identifying true negative compounds and hence supporting the
development of new drugs without inotropic and pro-arrhythmia
risk.

Side by side comparison in human and canine adult
cardiomyocytes for two of the compounds highlighted the
potential for interspecies differences in pharmacological
responses. In our experiments cardiomyocytes from dog
exhibited limited sensitivity to the effects of quinidine, with a
right shift in the concentration dependence of TR90 prolongation
and no observed AC or CE events, which in our model would
result in underestimation of the pro-arrhythmic risk of this drug.
In addition, quinidine had a more potent negative inotropic
effect in human compared to dog myocytes. The underlying
cause for these discrepancies could be the different affinities of
the drug for canine and human K+, Na+, and Ca2+ channels; it is
also possible that species-specific differences in the relative levels
of expression of channels responsible for inward and outward
currents, may lead to the discrepancy in pharmacological
responses. In the case of verapamil, both human and dog
myocytes exhibited similar inotropic effects, but in dog myocytes
a significant prolongation of the TR90 was observed, which
was not measured in the human cells. Such a lack of cross
species consistency of drug effects is an obvious concern, given
how much reliance is still placed on the use of animal models
for complex in-vivo cardiovascular safety studies. Given the
discrepancies that we and others have highlighted (Perel et al.,
2007; Seok et al., 2013), it would seem prudent to assess each
new drug candidate using the approach we have described to
circumvent the translatability issues of the animal model.

Recent efforts to develop and validate new robust, reliable
and predictive human cardiac safety assessment tools (Sager
et al., 2014; Holmes et al., 2015; Gintant et al., 2017) have been
focused primarily on human stem cell-derived cardiomyocytes
(hSC-CMs) (see, for example, Zhao et al., 2016; Gintant et al.,
2017). It has been pointed out that hSC-CM lack several features
found in their adult primary homologs (van Meer et al., 2016)
and attempts at improving the extend of hSC-CMs maturation
have been made (Veerman et al., 2015; Sala et al., 2016). In
Table 4 we have summarized the findings of different studies
in which the same 33 drugs presented in this study were used.
While the degree of success of hSC-CMs in correctly classifying
pro- and non-proarrhythmic drugs varies, it is also apparent
that hSC-CMs have a particularly high rate of false positive
and false negative findings when multi-ion channel blockers are
tested. This is not surprising, given the known challenges in
fully differentiating these cells into a desired cardiac subtype and
maturing them to the adult phenotype, which most likely results
in non-physiological levels of expression of the conductances
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that govern the cardiac AP (Qu et al., 2013; Blinova et al.,
2017).

Another major initiative currently underway to improve the
existing cardiac safety paradigm is the CiPA (Comprehensive
in vitro Pro-arrhythmia Assay; Sager et al., 2014; Fermini
et al., 2016). Functional assessment of drug effects on multiple
cardiac ion channels from cell lines and in-silico modeling of
drug effects, to generate a pro-arrhythmia score, are the core
elements of the CiPA initiative (Sager et al., 2014). Under the
strategy being currently evaluated, CiPA-derived prediction of
risk could then be confirmed in hSC-CMs (Sager et al., 2014;
Colatsky et al., 2016; Crumb et al., 2016; Fermini et al., 2016;
Gintant et al., 2016; Li et al., 2017; Windley et al., 2017).
Each element of the CiPA strategy faces significant challenges.
Predictive in-silico modeling of drug effects critically depends
on the accurate measurement of drug effects for each one of
the ion channels included in the simulation (Fermini et al.,
2016). This is of fundamental importance both at the stage
of algorithm parameters’ tuning as well as at the later stage
of drug risk evaluation. While the experimental measurement
of IC50 for each one of the channels being modeled is a
seemingly straightforward task, two often overlooked challenges,
undermine the reliability of these measurements. While many
technologies are available for obtaining precise measurements of
the concentration-response inhibition curves, obtaining accurate
measurements is extremely difficult. In particular, a very large
proportion of small molecules active on the principal inward
conductances (Na+ and Ca2+ inhibitors) exhibit use dependence.
This renders the magnitude of observed inhibition completely
dependent upon both the specific voltage waveform as well as
the stimulation frequency. Therefore, a truly accurate IC50 could
only be obtained by performing the measurement using voltage
clamp recordings while stimulating the cells with the cardiac AP
waveform at the physiological rate of about 1Hz. Technical and
biological constraints render this experimental design extremely
challenging and impractical with the result that the IC50 for the
inward conductances are often not accurate. This is compounded
by the second challenge, which is created by the fact that the
cardiac AP is the result of the non-linear interaction of many
inward and outward conductances. The non-linearity amplifies
the effects of errors in the IC50, when one attempts to combine all
the drug’s effect on the various ion channels in a simulation aimed
at modeling the pharmacological effects on the cardiac AP.

In principle, human adult primary cardiomyocytes could
bypass all the above-mentioned challenges and limitations.
These cells provide a naturally integrated system and are the
minimal unit recapitulating all the key features of cardiac
function: AP generation and excitation-contraction coupling. By
virtue of their derivation from human adult hearts, they do
not require any re-engineering or other artificial manipulation
of their gene expression profile. In fact, they could provide
the most clinically relevant model for the early assessment
of potential cardiac risks of new drugs. This strategy would
require adequate throughput to enable the screening of tens to
hundreds of molecules per week. The endpoint we have used

in the present study provide both low technical complexity
and high degree of information with regards to drug’s effect

and pro-arrhythmia and inotropic risks. Recent technological
developments hold great promises for the ability to implement
optically based contractility measurements in high throughput
platforms and could greatly facilitate the adoption of this
innovative approach. Importantly, the data generated in the
model we have developed, could be used to fine tune the
parameters of in-silico models of the human heart (see Britton
et al., 2017), without requiring any reliance on difficulty to
measure individual ion channel effects. The in-silico models
could then be invaluable for deconvoluting the signals that
a drug may generate in the human adult myocyte assay,
providing specific guidance as to the mechanism underpinning
the observed signals and therefore guiding targeted medicinal
chemistry effort to remove the undesired activity. This new
paradigm may potentially have the following core elements:
(i) Functional evaluation of drug effects on human ventricular
myocytes; (ii) modeling-based deconvolution of the observed
drug effects, if any, and identification of the potential undesired
activities; (iii) mitigation of the liability withmedicinal chemistry;
and (iv) confirmation of successful elimination of the liability in
cardiomyocytes. If the compound is found not to be associated
with inotropic and pro-arrhythmia risk, it could simply progress
to next discovery milestone. Finally, in addition to the study
of normal adult human primary cardiomyocytes presented in
the present study, the opportunity now exists for the use of
adult cardiomyocytes from highly prevalent disease conditions
(diabetes, cardiac hypertrophy, heart failure, etc.) or disease- and
patient-specific hSC-CM lines, and therefore, for the ability to
assess how cardiac toxicity risk may be affected by common
comorbidities.

In conclusion, the results of the present investigation suggest
that the adult human primary cardiomyocyte-based model has
the potential to simultaneously predict risk associated with
inotropic activity and pro-arrhythmia, and enables, for the
first time, the generation of reliable and predictive human
cardiotoxicity data during early phases of the drug discovery
process.
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Hugo M. Vargas 1
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To assess drug-induced pro-arrhythmic risk, especially Torsades de Pointe (TdP),

new models have been proposed, such as in-silico modeling of ventricular action

potential (AP) and stem cell-derived cardiomyocytes (SC-CMs). Previously we evaluated

the electrophysiological profile of 15 reference drugs in hESC-CMs and hiPSC-CMs

for their effects on intracellular AP and extracellular field potential, respectively. Our

findings indicated that SC-CMs exhibited immature phenotype and had the propensity

to generate false positives in predicting TdP risk. To expand our knowledge with

mature human cardiac tissues for drug-induced pro-arrhythmic risk assessment, human

ventricular trabeculae (hVT) from ethically consented organ donors were used to evaluate

the effects of the same 15 drugs (8 torsadogenic, 5 non-torsadogenic, and 2 discovery

molecules) on AP parameters at 1 and 2 Hz. Each drug was tested blindly with 4

concentrations in duplicate trabeculae from 2 hearts. To identify the pro-arrhythmic risk

of each drug, a pro-arrhythmic score was calculated as the weighted sum of percent

drug-induced changes compared to baseline in various AP parameters, including AP

duration and recognized pro-arrhythmia predictors such as triangulation, beat-to-beat

variability and incidence of early-afterdepolarizations, at each concentration. In addition,

to understand the translation of this preclinical hVT AP-based model to clinical studies,

a ratio that relates each testing concentration to the human therapeutic unbound Cmax

(Cmax) was calculated. At a ratio of 10, for the 8 torsadogenic drugs, 7 were correctly

identified by the pro-arrhythmic score; 1 was mislabeled. For the 5 non-torsadogenic

drugs, 4 were correctly identified as safe; 1 was mislabeled. Calculation of sensitivity,

specificity, positive predictive value, and negative predictive value indicated excellent

performance. For example, at a ratio of 10, scores for sensitivity, specificity, positive

predictive value and negative predictive values were 0.88, 0.8, 0.88 and 0.8, respectively.

Thus, the hVT AP-based model combined with the integrated analysis of pro-arrhythmic

score can differentiate between torsadogenic and non-torsadogenic drugs, and has a

greater predictive performance when compared to human SC-CM models.

Keywords: action potential, Pro-arrhythmic risk, human ventricular tissue, TdP assessement, In-vitro models
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INTRODUCTION

The pharmaceutical industry has been conducting studies
according to ICH S7B guideline (ICH S7B, 2004) for preclinical
assessment and ICH E14 (ICH E14, 2005) guideline for
clinical evaluation since 2005 to understand drug-induced pro-
arrhythmic risks, especially Torsades de Pointes (TdP). In
July of 2013, a novel paradigm, the comprehensive in-vitro
pro-arrhythmic assessment (CiPA), was proposed (FDA-HESI-
Cardiac Safety Research Consortium Workshop, Sager et al.,
2014) as a definitive approach for directly assessing pro-
arrhythmic risks using in-vitro and in-silico approaches that
incorporate multi-ion channel potencies, i.e., moving beyond
hERG potency alone. The CiPA approach for assessing pro-
arrhythmic risk is composed of 3 models (Sager et al., 2014),
(1) potency determination of 3–7 cardiac ion channels; (2) in-
silico action potential (AP) modeling; and (3) drug effects on
the electrical activity of human stem cell-derived cardiomyocytes
(hSC-CM). The CiPA initiative has propelled a multitude of in-
vitro activities in assay development and validation, in particular
in regard to hSC-CM and in-silico modeling of ventricular
electrophysiology (e.g., Abi-Gerges et al., 2017; Ando et al., 2017;
Blinova et al., 2017).

For understanding the potential of hSC-CM in assessing pro-

arrhythmic risk, we have tested a set of 15 compounds (ten

hERG blockers; four Na channel blockers; one IKs blocker) with

a well understood pro-arrhythmic potential in two models of
hSC-CM: (1) human embryonic stem cell (hESC)-CM model
using traditional patch clamp technique (Qu et al., 2013), and (2)
human induced pluripotent stem cell (hiPSC)-CM model using
Maestro multi-electrode array (MEA) platform (Qu and Vargas,
2015). This set includes 6 compounds that are included in the
CiPA calibration set: dofetilide, sotalol, cisapride, terfanadine,
mexiletine, and ranolazine, with 2 in each TdP risk categories
(high, intermediate, and low). We found that AP recordings in
hESC-CM are sensitive to repolarization delay induced by hERG
blockers, but less sensitive for identifying Nav1.5 inhibition, and
insensitive to a potent and specific IKs blocker. Consistently,
MEA recordings in hiPSC-CM demonstrate that this model
would have a high false positive rate when evaluating pro-
arrhythmic risk, which could lead to premature termination
of drug candidates, a highly undesirable outcome for early
safety screening assays. In addition, this model is not able to
differentiate Na+ channel blockade from hERG blockade due to
reduced repolarization reserve in hSC-CM. Our experiences with
hSC-CM indicate that pro-arrhythmia risk assessment in hSC-
CM is not ready for primetime. Our findings are consistent with
the outcome of a recent industry survey conducted by the Safety
Pharmacology Society (Authier et al., 2017), which reported that
only 21% of responders considered hSC-CM representative of
adult cardiomyocytes and provide reliable data as a nonclinical
safety assay.

To calibrate the performance of in-silico modeling of
ventricular AP and hSC-CM, it is important to benchmark
adult human ventricular APs, presently regarded as the gold
standard for the investigation of pharmacological targets and
for the prediction of the pro-arrhythmic potential of novel

compounds. A recent publication by Page et al. (2016) described
the AP recordings in human ventricular trabeculae for assessing
pro-arrhythmia risk by testing 3 TdP agents and 2 non-TdP
agents. The TdP risk of these 5 agents were differentiated clearly
in this human tissue-based platform by measuring AP-related
parameters. To validate this approach independently, we tested
and analyzed blindly the same 15 agents that have been tested
in hSC-CM (Qu et al., 2013; Qu and Vargas, 2015) in human
ventricular trabeculae so that a head-to-head comparison could
be performed between electrophysiological recordings in hSC-
CM and AP recordings in mature human ventricular tissue.

METHODS

Donor Heart Procurement
All human hearts that were used for this study were obtained
by legal consent from organ donors in the US. Policies for
donor screening and consent are the ones established by the
United Network for Organ Sharing. Organizations supplying
human tissues to AnaBios follow the standards and procedures
established by the US Centers for Disease Control and are
inspected biannually by the Department of Health and Human
Services. Tissue distribution is governed by internal IRB
procedures and compliance with HIPAA regulations regarding
patient privacy. All organ donor transfers to AnaBios are fully
traceable and periodically reviewed by US Federal authorities.

AnaBios obtained donor hearts from adults aged 17–60
years old. Some donors were trauma victims but the following
conditions were excluded: Ejection fraction <45%, HIV, cardiac
death, HBV, congenital LQT syndrome, HCV, LOT syndrome,
MRSA, downtime >20min, ongoing infections, positive blood
cultures without treatment and 48-h results.

Donor hearts from males and females were harvested using
AnaBios’ proprietary surgical techniques and tools and were
shipped to AnaBios via dedicated couriers. Upon arriving at
AnaBios, each heart was assigned a unique identifier number that
was reproduced on all relevant medical history files, data entry
forms and electronic records.

Recording of Action Potentials in Human
Ventricular Trabeculae
Tissue dissection: the procedures of tissue dissection and
recording were similar to what had been previously described
(Page et al., 2016). Briefly, the human heart was transferred
into a dissection vessel containing a cold (4◦C), fresh
proprietary dissection solution. The heart was maintained
completely submerged in dissection solution. Ventricular
trabeculae were dissected and transferred to the recording
chamber.

Recording of APs: The approach used to record APs is
similar to that in a recent study (Page et al., 2016). Briefly, a
single tissue was mounted into the experimental chamber filled
with oxygenated Tyrode’s external solution. The temperature
of the solution was maintained at 37◦C with flow rate at
5 mL per minute. The tissue was allowed to equilibrate for
30–60 min with stimulation (3 V, 3 ms) at a frequency of
1.0 Hz. High impedance borosilicate microelectrodes were
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prepared with a tip resistance of 10–20 M� once filled with
3 M KCl. Upon tissue impalement, the membrane potential
was allowed to stabilize (typically, around −85 mV). Tissues
with resting membrane potentials more positive than −75
mV were rejected. Bipolar stimulation at 1.5x threshold was
applied and recordings were performed in continuous mode
with sampling at 20 kHz using ADInstruments and LabChart
Software.

Tissue exclusion Criteria: (1).Interruption of
perfusion/oxygenation; (2). Absence of Aps following
stimulation at baseline; (3). Time frame of drug exposure
not respected; (4). Unstable response to stimulation at
baseline; (5). Resting membrane potential (RMP) > −75
mV; 7). Maximal amplitude of AP (AMAX) < 70 mV;
8). AP duration at 90% repolarization (APD90) < 200ms
or >450ms.

Experimental Procedure: Each test article was evaluated
at 4 concentrations in 4 ventricular trabeculae derived from
a minimum of 2 donor hearts. Testing concentrations were
chosen based upon human free ETPC, aiming to cover 1–
100-fold of human free ETPC. All tissues tested respected the
treatment sequence and time course designated in Figure 1.
Briefly, following stabilization of each tissue, APs were collected
and assessed for 31 min in vehicle control solution (Tyrode with
0.1% DMSO) at stimulation frequencies of 1 Hz for 25min,
2Hz for 3min and then 1Hz for 3min. Following this vehicle
control period, 4 concentrations of a test compound were applied
sequentially and cumulatively. Each concentration was applied
for 31 min with the same stimulation sequence as in vehicle
controls.

Data Analysis
For each frequency tested, the last 30 APs acquired at the end of
the period were averaged for vehicle controls and for each test
article concentration. Analysis at 1 Hz included only the last 30
APs of the initial 25-min incubation period. The following AP
parameters and pro-arrhythmia variables were analyzed offline
upon the completion of recordings:

1) RMP (mV)
2) AMAX (mV)
3) AP duration at percent repolarization (APD20, APD30,

APD50, APD60, APD90) (ms)
4) Short term variability analysis of AP duration (STV):

Beat-to-beat variability of repolarization was quantified

as STV from APD90 Poincare plots over a period
of 30 sec. STV for all APDs was calculated as STV
= 6|APDn+1−APDn|/(30×

√
2), where APD (n) and

APD(n+1) are the APDs for the nth AP and the following
one, respectively.

5) Triangulation (APD90-APD30)
6) AP instability was calculated for all APD90 values as the

standard deviation (SD) of 30 consecutive APs.
7) APD alternans was calculated as the difference for successive

Odd and Even APD90 values for 30 consecutive APs.
8) Maximum APD Dispersion was calculated as the difference

of Maximum APD90-Minimum APD90 values of 30
consecutive APs.

9) Effective refractory period [ERP(APD)]: Ratio of (APD50-
APD20)/APD50 was analyzed to describe ERP of
the AP.

10) Beat Escape incidence (%): Electrical stimulus did not trigger
an AP following repolarization.

11) Refractoriness Escape incidence (%): Electrical stimulus did
not initiate an AP because APD exceeded the inter-stimulus
interval.

12) EAD incidence (%): An early afterdepolarization (EAD) was
identified as abnormal depolarization during phase 2 or
phase 3 of the AP.

Compound effects were quantified relative to the data collected
during the vehicle control period (see Figure 1). Threshold values
for changes over baseline control for APD30, APD50, APD90,
Triangulation and STV at 1 and 2Hz pacing frequencies have
been determined in a previous validation study (Page et al.,
2016). Additionally, based on AnaBios historical data, threshold
values for changes over baseline control for AP instability,
APD alternans, Maximum APD dispersion and ERP (APD)
were based upon an effect level of 10%. When applicable,
differences were tested for statistical significance using the
unpaired Student’s t-test. A value of P < 0.05 was considered
significant.

AP parameters and pro-arrhythmia variables were combined
into a meaningful, single score to assess the pro-arrhythmic risk
of a compound at each concentration tested. The pro-arrhythmic
potential of compounds at 1 or 2Hz was determined by assigning
a weighted scale to each variable (Table 1). The maximum score
(the sum) calculated at either 1 or 2Hz was selected as The
Pro-Arrhythmic Potential Score for each concentration. Based
on historical data of this APD assay, a score ≤ 10 indicates

FIGURE 1 | Experimental procedures for each compound tested in each tissue. Baseline APs were collected and assessed for 31min in vehicle control solution

(Tyrode with 0.1% DMSO) at stimulation frequencies of 1 Hz for 25min, 2Hz for 3min and then 1Hz for 3min. Following baseline, 4 concentrations of a test

compound were applied sequentially and cumulatively. Each concentration was applied for 31 min with the same stimulation paradigm as in control condition.
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TABLE 1 | Determination of the pro-arrhythmia score.

Parameter Measurement and calculation Increase (% change) and

incidence (%) at 1Hz

Weighted

scale

Decrease (% change)

at 1Hz

Weighted

scale

Action potential duration (APD) Measured at 20, 30, 50, 70, and 90%

repolarization (ADP20, APD30, APD50,

APD70, and APD90). APD data were

expressed as the mean of 30 consecutive

APDs.

0–10

>10–15

>15–20

>20–30

>30–40

>40–50

>50–100

>100

0

1

3

5

7

9

11

13

0–10

>10–15

>15–20

>20–30

>30–40

>40–50

>50–100

>100

0

−1

−3

5

7

9

11

13

Short term variability of APD90

[STV(APD90)]

Beat-to-beat variability of repolarization was

quantified as STV from APD Poincaré plots

over a period of 30 sec and calculated as

STV = 6|APDn+1−APDn|/(30 ×
√
2),

where APD (n) and AP variability D(n + 1)

were the APD90s for the nth AP and the

following one, respectively.

0–102

>102–120

>120–140

>140–160

>160–180

>180–200

>200

0

2

4

6

8

10

12

0–102

>102-120

>120–140

>140–160

>160–180

>180–200

>200

0

−2

−4

−6

−8

−10

−12

AP triangulation Calculated as the difference of

APD90-APD30.

0–10

>10–15

>15–20

>20–30

>30–40

>40–50

>50–100

>100

0

2

4

6

8

10

12

14

0–10

>10–15

>15–20

>20–30

>30–40

>40–50

>50–100

>100

0

−2

4

6

8

10

12

14

Maximum APD dispersion

APD alternans

Effective refractory period

[ERP(APD)]

Calculated as the difference of Maximum

APD90 - Minimum APD90 of 30

consecutive APs.

Calculated as the APD difference for

successive Odd and Even APD90 of 30

consecutive APs.

Ratio of APD50-APD20/APD50

0–10

>10–20

>20–30

>30–40

>40–50

>50–100

>100

0

2

4

6

8

10

12

0–10

>10–20

>20–30

>30–40

>40–50

>50–100

>100

0

−2

−4

−6

−8

−10

−12

APD90 instability Calculated as the standard deviation (SD) of

30 consecutive APD90

0–10

>10–20

>20–30

>30–40

>40–50

>50–100

>100

0

1

3

5

7

9

11

0–10

>10–20

>20–30

>30–40

>40–50

>50–100

>100

0

−1

−3

−5

−7

−9

−11

AP Escape incidence (%)

Refractoriness Escape incidence

(%)

Electrical stimulus did not trigger an AP

following repolarization.

Electrical stimulus did not initiate an AP

because APD exceeded the inter-stimulus

interval.

0

<10

>10–20%

>20–30%

>30–40%

>40–50%

>50–100

0

2

4

6

8

10

12

EAD incidence (%) An early afterdepolarization (EAD) was

identified as abnormal depolarization during

phase 2 or phase 3 of the AP, which was

caused by an increase in the frequency of

abortive APs before normal repolarization

was completed.

0

<10

>10–20

>20–30

>30–40

>40–50

>50–100

0

4

8

12

16

20

24

Similar weighted scales were used for STV(APD90) at 2Hz, although increase or decrease % changes in STV(APD90) were as follows: 0–164%, >164–200%, >200–220%, >220–

240%, >240–260%, >260–300% and >200%. A linear weighted scale was assigned to each variable and this assignment took into consideration (i) the role of each variable during

pro-arrhythmia and (ii) drug-induced % change or % incidence. To identify the pro-arrhythmic risk of each drug, a pro-arrhythmic score was calculated as the weighted sum of %

drug-induced changes in various AP parameters at each concentration. Score was determined at 1 and 2Hz pacing frequencies and the maximum score at 1 or 2Hz was selected as

The Representative Score. Based on historical AP data analysis, a score size of 10 was applied to all drugs: score ≤10 indicated no pro-arrhythmic potential, while a score >10 indicated

a pro-arrhythmic potential. Whereas decrease or increase in weighted scales for each variable indicated anti-pro-arrhythmic potential or potential pro-arrhythmia risk, respectively, a

significant decrease in APD90 or triangulation indicated potential pro-arrhythmia risk. Threshold values for changes over baseline control for AP parameters in this human ex-vivo AP

model were reported in Page et al. (2016).
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a non-pro-arrhythmic potential, while a score ≥ 10 indicates
pro-arrhythmic potential.

Reagents
Sertindole (CAS # 106516-24-9) and Moxifloxacin (151096-
09-2) were purchased from ChemPacific (MD, USA), L768673
(Selnick et al., 1997) was purchased from Albany Molecular
Research Inc. (N Y, USA), Cisapride (81098-60-4) was from
Tocris Bioscience (MO, USA), Ranolazine, Alfuzosin, Mexiletine,
Flecainide, Terfenadine, Lamotrigine, DL-sotalol, and Terodiline
were from Sigma-Aldrich (MO, USA), Dofetilide was synthesized
at American Custom Chemicals Corporation (San Diego,
CA), Tolterodine (214601-13-5) was from Toronto Research
Chemicals (Toronto, Canada), and AMG 1 was synthesized
at Amgen Medicinal Chemistry (Thousand Oaks, CA). All
compounds were dissolved in DMSO to make stock solutions.

RESULTS

Effect of Tolterodine and Terodiline on AP
in Human Ventricular Trabeculae
Both tolterodine and terodiline are relatively potent hERG
blockers (Martin et al., 2006), yet tolterodine is considered
safe in the clinic (Malhotra et al., 2007), whereas terodiline
was withdrawn from the market due to adverse cardiac events
(Thomas et al., 1995). To understand the performance of
AP recording and analysis in hVT, Tolterodine and terodiline
profiles were characterized side-by-side.

The concentration-dependent effects of tolterodine and
terodiline on AP in human ventricular trabeculae are shown in
Figure 2, which were recorded separately in 2 example tissues.
To understand the translation from ex-vivo AP recordings to
clinical observations, the testing concentrations were converted
to multiple of free effective therapeutic concentrations (ETPC)
in the clinic, which equals testing concentrations divided by

free ETPC. As shown in Figure 2, tolterodine increased the
duration of AP repolarization at 0.1 and 1µMwith predominant
prolongations of phase 3 without notably affecting phase 2. In
addition, tolterodine had negligible effects on the amplitude of
AP up to the highest testing concentration, 1µM.

On the other hand, terodiline significantly modified the AP
morphology by lengthening the phase 3 while shortening the
phase 2 of AP repolarization, in addition, terodiline decreased the
amplitude of AP, especially at 30µM.

To further analyze the effects of tolterodine and terodiline
on hVT AP, percent changes of APD normalized by baseline
values, including APD30, APD50, and APD90, were derived at
stimulation frequencies of 1 Hz and 2 Hz (Figure 3). Consistent
with the observation in Figure 2, tolterodine induced a
concentration-dependent increase of APD50 and APD90, which
represent the early and late stages of the phase 3 repolarization.
On the other hand, APD30, the phase 2 repolarization, was not
affected. Effects of terodiline on AP duration exhibited a differing
profile compared to tolterodine (Figure 3B). The late stage of
phase 3 repolarization, APD90, was prolonged, however, phase 2,
APD30, and the early stage of phase 3, APD50, were shortened.

Effects of Tolterodine and Terodiline on
Pro-arrhythmic Parameters in Human
Ventricular Trabeculae
To understand beat-to-beat variability of repolarization, the
short-term variability (STV) of AP duration was quantified from
APD90 Poincare plots over a period of 30 beats in control
and under treatments of tolterodine (A) and terodiline (B) in
Figure 4. As shown in Figure 4, under the stimulation frequency
of 2 Hz, there is minimal variation of APD90 in the presence
of tolterodine, however, significant increase of APD90 oscillation
was observed in the presence of terodiline.

The concentration and frequency-dependent effects of
tolterodine and terodiline on pro-arrhythmic parameters,

FIGURE 2 | Example AP traces from hVT in control and in the presence of increasing concentrations of tolterodine (A) and terodiline (B) as labeled. Stimulation was

applied at a frequency of 1 Hz. Telterodine was tested at concentrations of 0.01, 0.03, 01, and 1µM (as shown), and terodiline was tested at concentrations of 0.3, 3,

10, and 30µM (as shown). Calibration: 20 mV; 100ms. Tolterodine prolonged phase 3 of AP repolarization AP without prominent effects on AP amplitude, while

terodiline decreased AP amplitude, shortened phase 2, lengthened phase 3 of repolarization.
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FIGURE 3 | Concentration-dependent changes of APD, including APD30,

APD50, and APD90, in the presence of increasing concentrations of

tolterodine (A) and terodiline (B) under stimulation frequencies of 1 and 2 Hz.

Tolterodine induced a concentration-dependent increase of APD90 and

APD50 with minimal effects on APD30. Terodiline prolonged APD90, but

shortened APD50 and APD30. *P < 0.05 versus values from vehicle.

including APD90, triangulation, STV and EAD incidence
were described and overlaid in Figure 5. Tolterodine (A) and
terodiline (B) did not induce EAD at any testing concentrations
under either stimulation frequencies. For both compounds,
the changes in APD90 and triangulation are not frequency-
dependent, while effects on STV are more prominent under 2Hz
than under 1Hz, a characteristic of use-dependent effect.

Effects of tolterodine (A) and terodiline (B) on STV and
triangulation as a function of APD90 change were described
under stimulation frequencies of 1 Hz and 2 Hz in Figure 6.
For both compounds, triangulation became greater with APD90
prolongation, however, the relationship between triangulation
and APD90 was linear in the case of tolterodine (Figure 6A).
While for terodiline, it is a non-linear relationship with
accelerated increase of triangulation with lengthening of APD90.
The initial 3 testing concentrations of terodiline, APD90 was
not affected by less than 10%, however, change in triangulation
increased to 20% and greater. This accelerated increase of
triangulation was observed at both stimulation frequencies

(Figure 6B). The effect of triangulation was not use-dependent
for tolterodine, but reverse use-dependent for terodiline.

Both tolterodine and terodiline produced minimal changes in
STV as a function of APD90 prolongation at 1 Hz, and increase of
stimulation frequency from 1 to 2 Hz augmented STV (Figure 6).
While the increase of STV by tolterodine was minimal as a
function of APD90 prolongation, terodiline produced magnified
changes of STV at 2Hz as a function of APD90 prolongation.
With less than 10% change in APD90 at the first 3 testing
concentrations of terodiline, STV was increased to 2.2 (third
concentration) from 0.9 (first conccentration), a 144% increase.
Therefore, effects of tolterodine and terodiline on STV were use-
dependent, and had distinct profiles as a function of APD90
prolongation.

Assessment of Pro-arrhythmic Risk-Based
on Multiples of Clinical Exposure
All compounds were evaluated in the samemanner as tolterodine
and terodiline, the raw data and percent changes of each
parameters were described in the Supplementary Material. The
value of APD and its derived pro-arrhythmic parameters in
human ventricular trabeculae for predicting pro-arrhythmic risk
was evaluated by integrating and deriving a pro-arrhythmic
score at each testing concentration of each compound (Table 1).
Testing concentrations were converted to a multiple of human
effective therapeutic plasma concentrations in the unbound
fraction. Figure 7 showed the pro-arrhythmic scores as a
function of the multiple of free ETPC for tolterodine and
terodiline. Figure 8 included the subsequent compounds tested.
Two agents, AMG1 and L 768,673 were not displayed due to
a lack of human exposure data. Pro-arrhythmic scores were
classified into 2 categories based upon the score: unsafe (>10)
and safe (<10). Assay performance of pro-arrhythmic scores
at a 10-fold of human free ETPC for predicting TdP risk was
calculated for the 13 compounds that have human clinical data
(Table 2). As shown in Table 2, at a pro-arrhythmic score of
> 10, 7 out of 8 compounds are identified correctly as TdP
positive, while sertindole was incorrectly identified as a TdP
negative. At a pro-arrhythmic score of < 10, 4 out of 5 TdP
negative compounds were correctly identified, while lamotrigine
was identified incorrectly as TdP positive. However, the TdP risk
of sertindole and the lack of TdP risk of lamotrigine have been
challenged, this will be discussed in detail later.

Consistent with initial observations, at 10-fold human
free ETPC, pro-arrhythmic score had high sensitivity (0.88),
specificity (0.8), positive predictive value (0.88), and negative
predictive value (0.8) (Table 2).

DISCUSSION

Drug-induced pro-arrhythmia was assessed by determining the
pro-arrhythmic score, a comprehensive score derived from APD
and other AP-associated parameters, in hVT. Risk assessment
was performed by comparing the pro-arrhythmic score to known
clinical exposure, free Cmax. To the best of our knowledge, this
is the first blinded study with an extensive reference compound
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FIGURE 4 | Poincaré plots of APD90 in the presence of increasing concentrations of tolterodine (A) and terodiline (B) under 2 Hz stimulation. Tolterodine induced

minimal APD90 variation, while terodiline produced concentration-dependent increase of APD90 oscillation.

FIGURE 5 | Concentration-dependent plots of mean changes in APD90, triangulation, STV, and EAD incidence in the presence of tolterodine (A) and terodiline

(B) under stimulation frequencies of 1 and 2 Hz. *P < 0.05 versus values from vehicle.

set tested for their effects on ventricular APs in authentic healthy
human cardiac tissues. The comprehensive analysis of multiple
AP parameters and comparison of the pro-arrhythmic risk of
various drugs using a single score in the context of their human
clinical exposure clearly distinguished TdP-positive and TdP-
negative compounds (Table 2).

As shown in Table 2, at a pro-arrhythmic score of >10, 7
out of 8 compounds were identified correctly as TdP positive,
while sertindole was incorrectly identified as a TdP negative.
At a pro-arrhythmic score of <10, 4 out of 5 TdP negative
compounds were correctly identified, while lamotrigine was
identified incorrectly as TdP positive.

Assay Performance Depends Critically
Upon Categorization of TDP Risk in Human
Sertindole is an antipsychotic medication developed for the
treatment of schizophrenia (Karamatskos et al., 2012). In Europe,
sertindole was approved and marketed in 1996, but the drug

was withdrawn from the market in 1998 due to concerns of
QTc prolongation and potential high risk of fatal arrhythmias
in patients. Further clinical epidemiological studies did not
provide clear evidence that patients on sertindole were at a
significantly increased risk of cardiac arrhythmia and cardiac
death (Toumi et al., 2003; Lindström et al., 2005; Spina and
Zoccali, 2008). In 2002, sertindole was reintroduced for restricted
use in clinical trials. It is a potent hERG blocker with a sub-
micromolar IC50 (Rampe et al., 1998; Qu and Vargas, 2015).
However, preclinical electrophysiological studies conducted in
animal models of pro-arrhythmia have demonstrated that QTc
prolongation induced by sertindole does not sufficiently elicit
serious and fatal ventricular arrhythmias (Eckardt et al., 2002;
Thomsen et al., 2003; Lindström et al., 2005). Therefore, the
outcome of current study is consistent with the risk profile of
sertindole in both preclinical and clinical settings. If sertindole
is categorized as TdP-negative, the assay sensitivity would be
perfect with a value of 1.
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FIGURE 6 | Effects of tolterodine (A) and terodiline (B) on STV and triangulation as a function of APD90 change under stimulation frequencies of 1 and 2 Hz. Note for

tolterodine, there is a linear relationship between triangulation, STV, and APD90. While for terodiline, there is an accelerated change in triangulation compared to

changes in APD90 and there is also an accelerated change in STV at a stimulation frequency of 2Hz.

FIGURE 7 | Plots of proarrhythmic score for tolterodine (A) and terodiline

(B) against multiples of free ETPC. Red means unsafe, and green means safe.

Lamotrigine has been approved for the treatment of
generalized seizures, partial seizures, Lennox–Gastaut syndrome,
and bipolar disorder (Rogawski and Loscher, 2004). It inhibits the
voltage-gated sodium channels, including Nav1.5, it also inhibits

hERG channels (Danielsson et al., 2005). It has an IC50 value
of 110 µM for hERG, and 40 µM for Nav1.5 in our previous
experiments (Qu andVargas, 2015). Therefore, at free therapeutic
exposure (approximately 17µM, Dixon et al., 2008) inhibition
of hERG channels does not translate into an effect on QT or
a pro-arrhythmia risk, which has been demonstrated in a TQT
study (Dixon et al., 2008). This correlates well with the current
finding that at therapeutic exposure the pro-arrhythmic score is
below 10 and lamotrigine is not associated with a pro-arrhythmic
risk.

However, when tested at concentrations of 100, 300, and

1,000µM, lamotrigine blocks hERG channels in addition to

inhibition of Nav1.5 and consequently increases its association
with pro-arrhythmia risk and conduction delay. The conduction
delay further enhances the reverse use-dependence block of
hERG channels by lamotrigine. Our findings clearly indicate
that this is the case (pro-arrhythmic score is above 40 at
these concentrations). There are many clinical case studies
for understanding the risk of lamotrigine in terms of its
risk of sudden unexpected death, the reported results are
conflicting. On one hand, no statistically significant difference
in rate of sudden unexpected death between lamotrigine
and control groups (e.g., Tomson et al., 2013) has been
reported. On the other hand, Aurlien et al. (2012) have
shown the evidence that incidence of sudden unexpected death
was significantly higher among female patients with epilepsy
who were being treated with lamotrigine than among female
patients with epilepsy who were not taking lamotrigine. In
addition, FDA requires warning labels on the risk of sudden
unexpected death in association with the use of lamotrigine.
Clinically, overdose of lamotrigine has been shown to be linked
to QTc prolongation and pro-arrhythmic risk (e.g., Chavez
et al., 2015). In summary, pro-arrhythmia classification of
lamotrigine depends on its exposure level and safety margin. At
super-therapeutic concentrations, lamotrigine is associated with
arrhythmic risk. If lamotrigine is classified as pro-arrhythmic,
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FIGURE 8 | Plots of proarrhythmic score for 11 individual compounds, as labeled, against their free ETPC, (A) Alfuzosin, (B) Cisapride, (C) Dofetilide, (D) Flecainide,

(E) Lamotrigine, (F) Mexiletine, (G) Moxifloxacin, (H) Ranolazine, (I) Sertindole, (J) Sotalol, and (K) Terfenadine. Red means unsafe, and green means safe.
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then the outcome of our current study is perfect with a
specificity of 1.

Pro-arrhythmia Risk Assessment in Mature
Human Cardiac Tissue with Sharp
Electrode AP Recording: Superior to
Stem-Cell Derived Cardiomyocytes with
MEA Recording
Previously, we have tested the same 15 compounds and
characterized their pharmacological profiles in human induced
pluripotent stem cell derived cardiomyocytes (hiPSC-CM) with
extracellular field potential recordings (Qu and Vargas, 2015).
Our study results indicate that hiPSC-CM would have a high
false positive rate when evaluating pro-arrhythmic risk (Table 3).
In contrast, current study using the same 15 compounds
demonstrated excellent assay performance with sensitivity,
specificity, positive predictive value, and negative predictive value
all 0.8 and above (Tables 2, 3). This side-by-side comparison with
the same set of compounds gives us a greater understanding of
the models tested. The results provide us with more confidence
that authentic mature human cardiac tissue with sharp electrode
AP recording is superior to stem-cell derived cardiomyocytes
with MEA recording in assessing a drug’s pro-arrhythmic risk.

EAD Is a Rare Electrical Event in Normal
Human Ventricular Trabeculae
Early afterdepolarization of ventricular myocytes represents a
trigger event that has been implicated as the primary mechanism
for ventricular arrhythmia induction in acquired and congenital
long QT syndromes, including TdP (Weiss et al., 2010).
Interestingly, at the concentration ranges used in our study, some
of them are at greater than 100-fold of human free therapeutic
Cmax, EAD was only detected in one trabecula, which was
under the treatment of moxifloxacin at 91-fold hETPC. None of
the other TdP-positive compounds elicited EAD in hVT. Two
compounds, dofetilide and sotalol, have previously been tested
in a similar experimental design (Page et al., 2016). Lack of
EAD was also observed for sotalol. For dofetilide, Page et al.
(2016) had observed EAD in 9 out of 21 trabeculae at a testing
concentration of 0.1 uM, a 33% incidence. In the current study,
dofetilide was tested at 0.003, 0.01, 0.03, and 0.3µM without
any EAD in a total of 4 trabeculae. However, dofetilide did
prolong APD starting at 0.003 uM in a concentration-dependent
manner with 105% increase of APD90 at 0.3 uM (data not
shown), which is comparable with the magnitude of APD90
prolongation observed at 0.1 uM in Page et al. (2016) (∼100%).
The lack of EAD in the current study could be due to the
combination of low incidence (33%) and much smaller number
of trabeculae (n = 4) compared to the previous study (Page
et al., 2016). Therefore, EAD incidence in AP recordings is
not a sensitive biomarker for pro-arrhythmic risk in normal
human ventricular trabeculae, false negative rate would be
very high if pro-arrhythmic risk was based solely upon EAD
incidence.

TABLE 2 | Performance of action potential recordings and Pro-arrhythmic score

analysis in hVT.

Pro-arrythmic score

TdP, Human 10X

Sertindole

Dofetilide

Cisapride

Terfenadine

Terodiline

Sotalol (D,L)

Moxifloxacin

Flecainide

Mexiletine

Tolterodine

Alfuzosin

Ranolazine

Lamotrigine

Sensitivity 0.88

Specificity 0.8

Positive Predictive Value 0.88

Negative Predictive Value 0.8

An Integrated Analysis of AP and
Associated Parameters Is Powerful in
Differentiating TDP-Positive from
TDP-Negative Agents
In analyzing electrophysiological data, multiple endpoints can
be derived. For pro-arrhythmic risk assessment, it’s a major
challenge to determine which endpoint is more important and
has more predictive value. Combinations of various endpoints in
a weighted manner with expression as an integrated arrhythmic
score have been previously successfully used in the A-V ablated
isolated rabbit heart model (Hondeghem and Hoffman, 2003;
Hondeghem et al., 2003; Lawrence et al., 2006). A similar
approach has been taken for the current study with a quantitative
arrhythmic score determined by combining all parameters of AP
and AP-related parameters, including APD30, APD50, APD90,
triangulation, STV, AP instability, APD alternans, Maximum
APD dispersion and ERP, etc (details shown in Table 1). In
addition, pro-arrhythmic scores are considered in relation to
human free ETPC and at multiples above the highest free ETPC.
The validation with 8 TdP-positive and 5 TdP-negative agents
has demonstrated that this approach is able to differentiate
the positive from the negative drugs with high sensitivity and
specificity values (Tables 2, 3).

Take an example of tolterodine and terodiline. Both agents
are relatively potent hERG blockers (Martin et al., 2006), yet
tolterodine is considered safe in the clinic (Malhotra et al., 2007),
whereas terodiline was withdrawn from the market because of
adverse cardiac events (Thomas et al., 1995). We tested both
compounds in ion channel assays, including hERG, Nav1.5, and
L-type Ca channel assays (Qu and Vargas, 2015), confirming
that both agents are potent hERG channel blockers. In human
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TABLE 3 | Comparison of Assay Performance.

TdP, Human iPSC-CM iPSC-CM hVT

Field Potential duration Early After depolarization Arrythmic score

10X 10X 10X

Sertindole

Dofetilide

Cisapride

Terfenadine

Terodiline

Sotalol (D,L)

Moxifloxacin

Flecainide

Mexiletine

Tolterodine

Alfuzosin

Ranolazine

Lamotrigine

Sensitivity 0.88 0.38 0.88

Specificity 0.6 1 0.8

Positive predictive value 0.78 1 0.88

Negative predictive value 0.75 0.5 0.8

ventricular trabeculae, both compounds increased AP duration,
increased triangulation and short-term variability (Figures 2–
5). If examining each of the parameter in isolation, it’s difficult
to distinguish one from the other in regard to their pro-
arrhythmic potentials. When a single pro-arrhythmic score was
derived by combining all the parameters in a weighted manner
and then related to their human free ETPC, their TdP risks
were clearly separated (Figures 7A,B). This case study indicates
that AP recordings in hVT combined with analysis of pro-
arrhythmic score can differentiate agents that inhibit hERG with
significant QTc prolongation and associate with TdP risk, such
as terodiline, from agents that inhibit hERG with significant
QTc prolongation but not associated with TdP risk, such as
tolterodine.

LIMITATIONS

There were several limitations in this study: (1) The tissue in this
study came from the trabeculae of the left and right ventricles,
which may or may not represent the characteristics of the entire
ventricles, because myocardium from different regions of the
heart reflect the specialized electrophysiological functions of the
region, have different configurations of APs (Schram et al., 2002);
To our knowledge, ion channel (hERG, SCN5A, KvLQT1, and
KCNE1) distribution at the gene and protein levels in human
ventricular trabeculae has not been published. However, it has
been shown that SCN5A expression is greater in the endo-
than the epi- myocardium, which cause the maximal rate of
depolarization (dV/dtmax) higher in the endo-myocardium than
in the epi-myocardium (Gaborit et al., 2007). Ikr (hERG) is
expressed throughout the myocardium of the human heart with

higher expression in epimyocardium than in endomyocardium
(Szabo et al., 2005). A more relevant study was performed in
human ventricular trabeculae (Jost et al., 2005) that recorded
Ikr and Iks (KvLQT1 + KCNE1) with patch clamp technique
and specific blockers of Ikr and Iks were used for inhibiting
the currents. In addition, this study and a recent study (Jost
et al., 2013) showed that there is a robust prolongation of
APs in human ventricular trabeculae in response to specific
hERG blockers, therefore it is reasonable to postulate that there
is abundant hERG in human ventricular trabeculae. (2) Our
evaluation was limited by the trabeculae sample size utilized for
each concentration. In the previous study (Page et al., 2016), it
was recommended that a sample size of at least 2 hearts and
3 trabeculae per heart is necessary to detect drug-related AP
changes. In the current study, 2 hearts and 2 trabeculae from
each heart were tested for each concentration, a design may not
be sufficient for small drug-induced changes; (3) Our conclusion
are limited by the number of agents tested, a larger panel of
test compounds, including both TdP-positive and TdP-negative
standard compounds, would provide increased confidence, and
assist in understanding the performance of AP recordings in hVT
and analysis of pro-arrhythmic score as a newmodel for assessing
pro-arrhythmic risk; (4) A single calculation of human free ETPC
data is a limitation, because there are multiple sources for clinical
exposure data, which could introduce selection bias into the ratio
calculation.

CONCLUSIONS

This study has tested multiple compounds in authentic human
ventricular tissue for their effects on AP, and subsequent
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determination of pro-arrhythmic scores by calculating the
weighted sum of drug-induced changes in various AP parameters
and pro-arrhythmia variables. The outcome reported here has
demonstrated that this approach yields better performance
compared to hSC-CM. Importantly, this approach is able to
differentiate agents that inhibit hERG with significant QTc
prolongation and associate with TdP risk from agents that inhibit
hERG with significant QTc prolongation but not associated with
TdP risk.

Therefore, use of primary human cardiac tissues to evaluate
pro-arrhythmia risk in vitro (Page et al., 2016) could prevent the
confounding influences of the embryonic ion channel expression
and spontaneous beat rate observed with hSC-CM, and enable
a robust and definitive electrophysiological evaluation in mature
ventricular myocytes. The performance characteristics of mature
ventricular tissue shown here surpass the reliability of iPSC-
CM for pro-arrhythmia detection, which give us confidence in
employing them for cardiac safety assessment. While the use
of mature cardiac tissues does not provide a good screening
tool due to the low throughput nature of the assay and
the requirement for large numbers of human hearts, this
limitation may be overcome by placing this model later in

the drug development process, i.e., used only for secondary or
Supplemental Purposes.
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