Brucellosis is a neglected bacterial zoonotic disease with economic and public health importance in pastoral communities of sub-Saharan Africa. A cross-sectional study was conducted from December 2021 to April 2022, to estimate the prevalence and identify the associated risk factors causing brucellosis in animals and associated with occupational diseases in humans from three selected districts of “the Somali Pastoral region,” Eastern Ethiopia. In this study, 1,000 serum samples were screened for anti-Brucella spp. antibodies using Rose Bengal Plate Test (RBPT) and further confirmed using a competitive enzyme-linked immunosorbent assay (cELISA). A structured questionnaire was used to collect the biodata of tested animals and animal attendants to test the association between explanatory and outcome variables. The overall animal level prevalence was 5% (95% CI, 6.1–7.2.0) in small ruminants, 2.9% (95% CI, 1.5–4.9) in camels, and 2.0% (95% CI, 0.2–3.7) in occupationally linked humans. Herd size and herd history of retained fetal membranes were risk factors associated with Brucella spp. seropositivity in animals (p < 0.05). Disposing of retained fetal membranes was significantly associated (p < 0.05) with Brucella spp. seropositivity in humans. Evidence of brucellosis in various livestock species and associated seropositivity in humans indicates the need for a coordinated One Health approach, considering sociocultural dynamics of pastoral communities in controlling brucellosis to safe guard public health and increase livestock productivity.
Influenza A viruses are important pathogens that can cause diseases with high mortality in humans, animals, and birds; and wild birds are considered the primary reservoir of all subtypes in nature. After discovering the H9 influenza A viruses in bats, questions arose about their potential to serve as an additional natural reservoir and about the priority of the viral origin: Did the virus initially circulate in bats and then transmit to birds or vice versa? Influenza A viruses of the H9 subtype are of particular interest because fatal infections of humans caused by H5, H7, and H10 influenza viruses contained RNA segments from H9 viruses. Recently, a novel subtype of influenza A virus (H19) was reported and it was closely related to the H9 bat influenza A virus by its hemagglutinin structure. The genome of novel H19 has revealed a mixed characteristic genomic signature of both avian and bat influenza viruses. The time to most recent common ancestor (TMRCA) estimates have shown that the divergence time between the bat and avian H9-similar influenza virus occurred approximately at the end of the XVIII century. This article discusses the evolution and possible origin of influenza viruses of the H9 subtype isolated from bats and birds. The obtained data, along with the known data, suggest that the primary reservoir of the H9 influenza virus is wild birds, from which the virus was transmitted to bats. We hypothesize that the novel H19 could be a descendant of an intermediate influenza virus that was in the transition stage of spillover from avian to bat hosts.
Diseases passed to humans from animals (zoonoses) constitute 75% of emerging infectious diseases. Farmed animals are considered a high zoonotic risk, especially poultry and pigs as evidenced by recent outbreaks of avian and swine influenza. This review sought to collate recent knowledge of the disease risks from keeping pigs and chickens intensively and in close proximity to each other. Recent knowledge on influenza viruses compounds the public health concerns; no longer are concerns about “mixing vessel” hosts limited to pigs, but several other animal species too at a high level of probability—most notably chickens and humans. More generally, scientific literature establishing positive associations between intensive animal farming, human population growth, reduced biodiversity, and increased zoonoses risks is abundant. This includes the publication of relevant systematic reviews. The collected scientific evidence on this issue is clear: there is exceptionally strong evidence for a link between low animal welfare levels and high zoonotic risks, exacerbated by animal crowding, low genetic diversity, compromised hygiene, and high animal stress levels which compromise immune systems. Based on this evidence, further industrialized animal farms—especially poultry and pig farms or a mix thereof, and particularly in areas that already have a high concentration of farmed animals—should not generally be permitted to proceed. Instead, efforts should concentrate on supporting arable agriculture (or transitions toward this) and de-intensifying remaining animal farms, in alignment with One Health/One Welfare approaches within which animal health and welfare are integral parts of any farming operation. Among numerous other factors, this would involve reducing stocking densities down to 11 kg/m2 (around five chickens/m2) for meat chickens, and down to one pig/1.5 m2 for pigs (assuming a 100 kg pig).
The deletion of orphan response regulator CovR reduces the growth rate of Streptococcus suis serotype 2 (S. suis 2). In this study, metabolome and transcriptome profiling were performed to study the mechanisms underlying the poor growth of S. suis 2 caused by the deletion of orphan response regulator CovR. By comparing S. suis 2 (ΔcovR) and S. suis 2 (SC19), 146 differentially accumulated metabolites (upregulated: 83 and downregulated: 63) and 141 differentially expressed genes (upregulated: 86 and downregulated: 55) were identified. Metabolome and functional annotation analysis revealed that the growth of ΔcovR was inhibited by the imbalance aminoacyl tRNA biosynthesis (the low contents of L-lysine, L-aspartic acid, L-glutamine, and L-glutamic acid, and the high content of L-methionine). These results provide a new insight into the underlying poor growth of S. suis 2 caused by the deletion of orphan response regulator CovR. Metabolites and candidate genes regulated by the orphan response regulator CovR and involved in the growth of S. suis 2 were reported in this study.
Viruses of the Lyssavirus genus are classified into several genotypes (GT1 to GT7), of which only GT1 (classic rabies virus—RABV) has a cosmopolitan distribution and circulates in Brazil. GT1 is subdivided into several antigenic variants (AgV) maintained in independent cycles with a narrow host range and distinct geographic distributions, namely, AgV1 and AgV2 found in dogs, AgV3 in the vampire bats Desmodus rotundus, and AgV4 and AgV6 in bats non-hematophagous Tadarida brasiliensis and Lasiurus cinereus, a common variant of marmoset (Callithrix jacchus), and crab-eating fox (Cerdocyon thous). In this study, we performed phylogenetic analysis to identify at the antigenic variant level; six RABV genomes derived from the Rabies Surveillance in the north and northeast regions of Brazil. The analysis resulted in the formation of 11 monophyletic clusters, each corresponding to a particular variant, with high bootstrap support values. The samples were positioned inside the AgV3, AgV6, and Callithrix variant clades. This is the first report of the AgV6 variant found in northern Brazil, which provides valuable information for rabies surveillance in the country. The possibility of viral spillover has been much debated, as it deals with the risk of shifting transmission from a primary to a secondary host. However, more genomic surveillance studies should be performed, with a greater number and diversity of samples to better understand the transmission dynamics of each variant to detect changes in its geographic distribution and spillover events.