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Editorial on the Research Topic

Reviews in hematologic malignancies: 2023
Editorial

The research being applied to hematological malignancies is as diverse and

heterogeneous as the disease itself, all moving towards the ultimate goal of better

therapeutic outcomes. In this article Research Topic, molecular pathway targets for

therapy and the tumor microenvironment are highlighted for further research. Along

with current clinical trends, a focus on hematological composite tumors and treatment

guidance for developing countries like India are provided. Lastly, this Research Topic

would not be complete without discussing next generation sequencing (NGS) and machine

learning, which revolutionize molecular characterization, diagnostics and

treatment optimization.
Molecular pathways

Exploring molecular pathways to prevent tumor progression is an important area of

research. For instance, Schmid and Hobeika in their review on B-cell receptor (BCR)

signaling in chronic lymphocytic leukemia (CLL) present a detailed account on the biology

of various components of the signaling pathway. The importance of BCR signaling for CLL

is exemplified by the clinical success of inhibitors targeting Bruton’s tyrosine kinase (BTK),

a key component of the pathway. The authors also present an update on pre-clinical and

clinical efficacy of next-generation inhibitors of BCR, mechanisms that mediate resistance

to these inhibitors and strategies to overcome resistance. Uncontrolled cell proliferation is a

hallmark of cancers and William et al. explore the role of SKP2 (S-Phase kinase-related

protein 2), in promoting cell cycle progression through ubiquitin-mediated degradation of

cell cycle regulator proteins. Overexpression of SKP2 has been associated with poor

prognosis in solid tumors. This also appears to be the case in hematological
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malignancies. In addition, SKP2 overexpression is associated with

drug resistance in hematological malignancies. Research is needed

to develop novel inhibitors of SKP2 to overcome the

drug resistance.

A small nucleocytoplasmic shuttling protein myeloid leukemia

factor 1 (MLF1) is known to act as a ‘double-edged sword’ in a

context dependent manner. Li et al. review the role of MLF1 in

myeloid neoplasms. The precise role of MLF1 is poorly understood,

but it has been implicated in the development of acute myeloid

leukemia (AML) as well as myelodysplastic syndrome (MDS). For

example, high expression of MLF1 is associated with poor prognosis

in AML, but in a drosophila model of leukemia MLF1 reduced

RUX1-ETO-dependent leukemia cell proliferation. More research

into the role of MLF1 in the normal functioning of a cell will help

determine if it is a candidate for cancer therapeutics. On the other

hand, long non-coding RNAs (lncRNAs) are described as being

involved in a plethora of processes including tumorigenesis.

However, an in-depth understanding of each lncRNA is lacking.

Nylund et al. comprehensively summarize recent studies supporting

the clinical relevance of lncRNAs in multiple myeloma (MM).

Sequencing analyses have provided evidence that lncRNAs

contribute to disease development, treatment resistance, and

patient prognosis in MM. lncRNAs have been shown to modulate

chromatin remodeling and to impact gene expression. Targeting

lncRNAs is emerging as a possible therapeutic approach for cancer,

including MM.

Studying cell death mechanisms is important for refining cancer

therapy. Ferroptosis is a form of cell death which is different from

autophagy, apoptosis and necrosis and Chen et al. review its role in

leukemia. Ferroptosis is characterized by iron-dependent lipid

peroxidation and reactive oxygen species (ROS) accumulation,

which eventually becomes fatal to a cell. If ferroptosis could be

enhanced specifically in leukemic cells, this could serve as a possible

therapeutic. Several studies have demonstrated that current

therapies do induce ferroptosis, but some cancers are able to

evade cell death. Research is needed to investigate the specific

mechanisms that prevent ferroptosis.
Tumor microenvironment

The tumor microenvironment plays an important role in the

pathogenesis and progression of various hematological

malignancies. In their review, Ding et al. summarize the recent

findings on a crucial component of the tumor microenvironment

called cancer-associated fibroblasts (CAFs). Various cells of

mesenchymal stem cell origin can be reprogrammed into

activated CAFs by tumors. The CAFs in-turn support tumor

growth, drug resistance and metastasis. The authors highlight that

a comprehensive understanding of CAFs in hematologic cancer

would be important for innovative and next-generation cancer drug

design. Extracellular vesicles (EVs) are capable of mediating

complex crosstalk between tumor cells, as well as their

microenvironment. EVs shuttle various proteins, lipids and
Frontiers in Oncology 026
nucleic acids between cells. Bernardi et al. in their review

compiled key findings on the role of EVs in chronic myeloid

leukemia (CML). Of importance, the authors emphasize on

translational aspects such as the potential value of EVs for

monitoring minimal residual disease (MRD), as biomarkers for

optimizing treatments, and to analyze therapy efficacy. They also

present from the literature, interesting prospects to reprogram EVs

as targeted drug delivery vehicles for CML treatment.
Clinical trends

In the clinical setting, use of tyrosine kinase inhibitors (TKIs)

substantially changed the treatment perspective of CML, but

chronic use is associated with adverse events. Cheng et al. discuss

dose optimization strategies for TKIs in chronic myeloid leukemia

(CML). The authors summarize recent clinical trials and real-life

practices in which an increasing number of CML patients have

undergone a dose optimization strategy involving dose reduction

and discontinuation of TKI therapy. They discuss how treatment

discontinuation has now emerged as a therapeutic goal for CML

patients with a deep molecular response and has proven to be

feasible in about half of patients.

Survival of patients with acute lymphoblastic leukemia (ALL) has

greatly improved in the recent decade. However, for developing countries

like India, it remains a challenge due to direct costs such as the financial

cost of treatment and indirect costs such as the loss of productive years of

the patient and caregiver and the rise of more resistant forms of the

disease due to difficulties in timely treatment delivery. Mathews et al.

describe how a panel of 15 actively practicing clinicians developed a

consensus document for B-ALL management to offer assistance to

Indian hematologists/oncologists. Strategies like this are very important

to ensure that effective treatments are available to everyone.

The complexity of hematologic malignancies being managed

clinically is illustrated by a case discussed by Gu et al. Composite

lymphomas (CL) are an unusual type of hematologic malignancy,

accounting for 1-4.7% of all lymphomas. Even more uncommon are

CLs that comprise of both a B-cell and a T-cell tumor. The authors

present their case of a mixture of diffuse large B cell lymphoma

(DLBCL) and peripheral T-cell lymphoma, not otherwise specified

(PTCL-NOS). The mechanism by which CL arises has not been

elucidated, but hypotheses include virological and a specific

mutation in a progenitor cell. These are a challenging class of

lymphoma and will require further study to improve their poor

prognosis. Hepatitis B virus (HBV) is the most common cause of

liver disease worldwide and it is associated with lymphoma in

endemic regions. Rosenberg et al. provide an overview of hepatitis B

virus (HBV) infection in B-cell lymphoma. The authors emphasize

the importance of systematic screening and preventive antiviral

therapy for non-Hodgkin’s lymphoma (NHL) patients. The review

summarizes studies showing a connection between HBV and

lymphoma, particularly DLBCL. In addition, recent studies have

revealed that HBV-positive DLBCL has distinct mutational

signatures with differential outcomes.
frontiersin.org
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In another setting of hematological disorders, Nassani et al.

present an important clinical summary on the benefits and adverse

effects of androgen therapy in different BMF syndromes. Androgens

are an important class of molecules that are in clinical use for

treating various bone marrow failure (BMF) syndromes since

decades. Though their mechanism of action in stimulating

hematopoiesis is unresolved, they continue to prove to be an

important class of treatment for specific clinical scenarios. The

authors give practical recommendations for use of androgens for

BMF patients.
NGS and deep learning

Over the past decade, substantial advances have been made in

NGS technologies. Tomacinschii et al. provide a comprehensive

review of recent developments in NGS for the diagnosis and clinical

management of NHL patients. The data generated by NGS allows

the identification of genetic markers specific to different subtypes,

leading to a more accurate diagnosis and classification. The

integration of genomic and transcriptomic data can improve the

understanding of the mechanisms of tumor development and can

help select the optimal therapy. DL and artificial intelligence (AI)

are revolutionizing every field. Elsayed et al. review recent studies

that examine the use of DL in the diagnosis of ALL, focusing on the

analysis of bone marrow images. DL approaches, especially those

using Convolutional Neural Networks (CNN) techniques, have

achieved excellent results in classifying cancer cells. The authors

propose that DL methods have high potential for reliable

classification of ALL in a clinical context. Further models aim to

combine both image analysis and genomic data, which could lead to

improvements in ALL classification.

In conclusion, there are still avenues open for exploration to

improve the treatment of hematological malignancies. As current
Frontiers in Oncology 037
therapies, clinical guidelines, and the use of AI continue to get

refined and improved, they contribute to steadily improving

outcomes for patients with hematological malignancies.
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Myeloid leukemia factor 1: A
“double-edged sword” in
health and disease
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and Mingxia Shi1,2*

1Department of Hematology, the First Affiliated Hospital of Kunming Medical University,
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The occurrence and development of malignancies are closely related to abnormal

cell cycle regulation. Myeloid leukemia factor 1 (MLF1) is a small nucleocytoplasmic

shuttling protein associated with cell cycle exit, apoptosis, and certain immune

functions. Therefore, it is pertinent to explore the role of MLF1 in health and

diseases. Studies to date have suggested that MLF1 could act as a double-edged

sword, regulating biochemical activities directly or indirectly. In hematopoietic

cells, it serves as a protective factor for the development of lineages, and in

malignancies, it serves as an oncogenesis factor. The diversity of its functions

depends on the binding partners, including tumor inhibitors, scaffolding

molecules, mitochondrial membrane proteins, and transcription factors.

Emerging evidence indicates that MLF1 influences immune responses as well.

This paper reviews the structure, biological function, and research progress on

MLF1 in health and diseases to provide new insights for future research.

KEYWORDS

myeloid leukemia factor 1, nucleo-cytoplasmic shuttling protein, cell cycle regulation,
immune function, cell development and differentiation, malignancy development
Introduction

Myeloid leukemia factor (MLF) is a poorly characterized family of conserved proteins

which earliest member, myeloid leukemia factor 1 (MLF1), is associated with hemopoietic

lineage commitment and malignancies. MLF1 has so far been shown to be a double-edged

sword, acting as either a tumor suppressor or an oncogene, depending on the context of the

cell. MLF1 has been initially described in the leukemic fusion protein NPM-MLF1, which is

generated by a rare t(3;5)(q25.1;q34) chromosomal translocation in patients with acute

myeloid leukemia (AML) (1), and implicated in the development of AML and

myelodysplastic syndrome (MDS) (2). Although the role of NPM in the pathogenesis of

leukemia has been well studied (3–6), the contribution of MLF1 to normal hematopoiesis and

oncogenesis has not been adequately characterized. Several studies have demonstrated that

MLF1 can regulate cell cycle exit and differentiation, promote apoptosis, inhibit proliferation

in various cell types, enhance immune function, or impair the lymphocyte population.
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However, its biochemical activity remains largely unclear. Up to now,

no systematic overview of MLF1 studies in pathology and physiology

has been published. In this review, we summarized current knowledge

of MLF1 and provided a valuable reference for future research.
MLF1 structure and function

MLF1 gene is located on human chromosome 3 and encodes

MLF1 protein and its isoforms (7). MLF1 protein is a small

nucleocytoplasmic shuttling protein (268 amino acids), which has a

functional N-terminal nuclear export signal (NES) and two C-

terminal nuclear localization signals (NLS), allowing MLF1 to

shuttle between the nucleus and the cytoplasm (8, 9). MLF1 has a

characterized central domain preserved within the MLF family (10,

11), comprising two identifiable motifs that bind to 14-3-3 protein

and the COP9 signalosome by Ser34 and subunit 3 (CNS3), and a

SAM domain, which is involved in many different biological processes

and has RNA binding properties (12). Above features of MLF1 are

summarized in Figure 1. MLF is highly conserved across species from

Drosophila, murine, and shrimp to humans (13–15). The phenotypic

defects associated with MLF loss in Drosophila can be rescued by

humanMLF1 (16). MLF overexpression reduces Drosophila wing and

eye size (17), which is demonstrated by the fact that MLF activates the

bsk-JNK pathway by interacting with DREF (18). Additionally,

overexpressed MLF causes abnormal DNA synthesis in Drosophila

(19). Enforced expression of murine MLF1 suppresses a rise in the cell

cycle inhibitor p27Kip1 to disturb the development and the

differentiation of erythrocytes (20, 21). Microarray analysis

performed with MLF1-expressing cells has concluded that MLF1,

when expressed in the nucleus, inhibited calcium cycle proteins and
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CR6 (cytokine response protein) associated with differentiation and

growth arrest (8). Immune function is also associated with MLF1. It

has been identified in kuruma shrimp and characterized as MjMLF,

which plays a critical role both in antiviral and antibacterial

immunity. MjMLF could inhibit the lethal white spot syndrome

virus (WSSV) replication in vivo and accelerate Vibrio anguillarum,

a gram-negative bacteria, clearance in shrimp (22, 23). In contrast, a

study about lymphoma has shown that the overexpression of MLF1

increases lymphocyte apoptosis in vitro (13). Furthermore, MLF1

absence is consistently associated with the expansion of B- and T-cell

numbers in the spleen (24). These findings imply that MLF1 might

function as a context-dependent factor involved in the regulation of

normal physiological processes and that its absence or overexpression

leads to disease.
MLF1 and its distribution

MLF1 is widely expressed in different tissues. It is highly

presented in the testis, heart, lung, brain, thyroid gland, gall

bladder, kidney, and digestive system and is expressed to some

extent in human bone marrow, spleen, and lymph nodes (25). At

the cellular level, MLF1 transcripts are dominantly expressed in

CD34+ cells but only slightly in GlyA+, CD3+, CD19+, or CD14+

cells and granulocytes (2). These facts indicate that the expression of

MLF1 in CD34+ progenitor cells decreases during differentiation to

each lineage, especially toward the myeloid and erythroid lineage (15).

Cells at an early stage seem to need MLF1. At the subcellular level,

MLF1 is mostly found in the cytoplasm. The apoptosis-inducing

domain contained in MLF1 is unique because it requires dimerization

and nuclear transportation to induce cell death, whereas most of the
FIGURE 1

Schematic representation of human Myeloid Leukemia Factor 1 (MLF1) chromosome, gene and corresponding protein domains: (A) Diagram of MLF1
gene chromosome location. (B) The grey horizontal line represents the DNA sequence, red boxes on the sequence represent coding sequences (CDS) in
MLF1, and two green boxes at the ends indicate UTRs. Underneath, the numbers over the black lines indicate the amino acid positions, which
correspond to human MLF1 protein domains ([1] 14-3-3 protein binding domain (Ser34); [2] the COP9 signalosome subunit 3(CNS3) binding domain; [3]
MLF family characteristic domain; [4] a SAM domain). All sequences were obtained from the NCBI database.
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well-known ‘death domains’ function in the cytoplasm (26). However,

the relationship between the increased accumulation of MLF1 in the

cytoplasm and diseases is still unclear. Notably, a functional NES

sequence is important for both MLF1 protein and NMP-MLF1 fusion

protein to exert proleukemic effects. Additionally, studies have

demonstrated that an MLF1 mutant containing only NES sequence

inhibited proliferation more strongly than WT protein (9, 27). The

contribution of NPM to NPM-MLF1-induced leukemogenesis is

debatable (28), whereas NPM-MLF1 fusion protein without NES

sequence loses oncogenic transformation ability (9). However, the

regulatory mechanisms of the abnormal localization of MLF1 in the

nucleus remain unknown.
MLF1 networks

MLF1 plays an essential role in cell development by interacting

with multiple factors, which are summarized in Figure 2.

1. MLF1 in cell development and apoptosis. MLF1, shuttling

from the cytoplasm to the nucleus, binds COP9 subunit 3 (CSN3),

which leads to the downregulation of COP1; therefore, the cell cycle of

hematopoietic cells becomes arrested because the bonding accelerates

the accumulation of wild-type p53 in the nucleus (29). The above-

mentioned process has also been demonstrated in Drosophila (17).
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Tumor suppressor p53 remains a vital mechanism of inhibiting tumor

escape from apoptosis, and emerging evidence suggests that mutant

p53 also promotes inflammation and supports tumor immune

evasion (30, 31). Yoneda-Kato et al. have demonstrated that the

MLF1-induced growth arrest depended on the integrity of the p53

allele (29). This raises the question of whether MLF1 still acts as a

protective mechanism when p53 is mutated or if it enhances the

oncogenicity of mutated p53. Overexpression of MLF1 promotes

apoptotic death of the cells but is negatively regulated by 14-3-3

protein blocking its Bcl-XL homology domain 3 (BH3), which

prevents the cell from apoptosis (32, 33). 14-3-3 (RSXSXP) motifs

are involved in important cell processes, such as death, differentiation,

and division (34–36). Bcl-XL, a Bcl-2 family member, maintains a

fully functional immune system that ensures an efficient clearance of

senescent cells (37). The above-presented conclusion has been

obtained in lymphocytes, suggesting that MLF1 is required for

lymphocytes to respond to apoptotic stimulations. Additionally, the

nuclear content of MLF1 is also regulated by 14-3-3 protein, which

sequesters MLF1 in the murine cytoplasm (32), However, another

study has suggested the opposite conclusion that the distribution of

full-length human MLF1 is 14-3-3 protein-independent (38).

Therefore, the subcellular localization of MLF1 is probably

regulated by other unknown proteins. A yeast two-hybrid screen

has identified that MLF1 binds with an adaptor, which contains a 220-
FIGURE 2

Summary of MLF1 networks. Black arrows represent negative regulation (including inhibition or downregulation), orange arrows represent positive
regulation (including promotion or upregulation), orange dotted arrow represents speculation, and bidirectional yellow arrows indicate proteins
interacting with MLF1 protein. The red two-way arrow illustrates the shuttling of MLF1 between the nucleus and the cytoplasm.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1124978
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1124978
bp cDNA fragment and several potential phosphorylation sites in the

vicinity of both the NLS and NES. At the time of its isolation, it had no

homology to sequences in the database and was named Madm for

MLF1-adaptor molecule. Madm mediates phosphorylation of 14-3-3

binding site of MLF1, which then immunoprecipitates and localizes to

the cytoplasm. Thus, Madm might regulate the localization of MLF1

in the cytoplasm. In contrast to MLF1, which promotes the

maturation, ectopic expression of Madm suppresses differentiation

in myeloid cells (32). Louise N et al. have reported that MLF1

interacts with Manp, also known as scaffold attachment factor-A

(SAF-A), which is a member of the heterogeneous nuclear

ribonucleoprotein (hnRNP) family and homologous to hnRNP-U.

Manp localizes exclusively in the nucleus and redirects MLF1 into the

nucleus (8). Recent studies have suggested that hnRNP-U regulates

DNA replication, organizes large-scale chromosome structures, and

protects the genome from instability (39–41). The effects of MLF on

DNA synthesis have been previously discussed (19). However, the

relationship between MLF1 and hn-RNP in DNA synthesis

remains unclear.

2. MLF1 in immune function and leukemia. In a drosophila

model of leukemia, MLF has been demonstrated to control the

development of hematopoietic stem cells by stabilizing the RUNX

transcription factor Lozenge (LZ). MLF controls LZ activity and

prevents its degradation, which is critical to control crystal cell

number in the fly (42). Further study has shown that MLF and

DnaJ-1 interact through conserved domains to form a chaperone

complex that directly regulates LZ activity. Importantly, the

interaction controls RUNX transcription factor activity and Notch

signaling during blood cell development in vivo (43). RUNXmembers

are key regulators of hematopoiesis; particularly, RUNX1 functions as

a positive regulator for definitive hematopoietic stem cell emergence

and megakaryocyte and lymphocyte differentiation (44). RUNX1-

ETO, the mutant and infusion form of the RUNX1 protein, has been

identified in cancer. MLF1 stabilizes the human oncogenic fusion

protein RUNX1-ETO. Further study has indicated that MLF1 impairs

RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent

leukemia cell proliferation (42). It is reasonable to conclude that

MLF1 functions as a tumor suppressor gene in leukemia. However,

the expression level of MLF1 in healthy adults’ bone marrow is not as

high as expected. Moreover, high expression of MLF1 is associated

with poor prognosis for AML and MDS (2). To some extent, MLF1 is

required to inhibit the development of leukemia. However, it does not

always appear to be a protective factor, and when leukemia is

developed, MLF1 is positively correlated with leukemia (2).

Reasonably, it can be inferred that MLF1 is a context-dependent

gene, with its elevated expression being associated with leukemia

promotion and suppression in different settings. CCAAT/enhancer-

binding protein-a (C/EBPa) is a key transcription factor regulating

myeloid differentiation in normal hematopoiesis and is frequently

dysregulated in AML (45). Studies have shown that Trib1 and

RUNX1-ETO downregulate C/EBPa and induce AML in mouse

models (46, 47). MLF1 treatment upregulates the level of C/EBPa
by suppressing Trib1 or RUNX1-ETO, which causes the inactivation

of myeloid-derived suppressor cells (MDSCs) with potent antitumor

responses across different tumor models and cancer patients (48). In

mouse or leukemia cell models, the distribution of C/EBPa is

paralleled with MLF1 (49). MLF1-interacting protein (MLF1IP),
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also known as PB1P1, KLIP1, KLP1, CENP-U, and CENP-50,

specifically binds with MLF1, as shown by yeast two-hybrid analysis

and pulldown assays (50). MLF1IP differs from MLF1 without other

known protein homology. MLF1IP is a centromere-binding protein

(51) that shows 25% identity to the SMC family of proteins and some

homology to myosin, which is involved in actin cytoskeletal

organization (52). MLF1IP may be an erythroid lineage-specific

gene, as it is expressed exclusively in CFU-E erythroid precursor

cells but not in mature erythrocytes (50, 53). MLF1 drives the

occurrence of erythroleukemia as well (20, 21). A study has found

that NMP-MLF1 infusion protein is more likely to occur in M6

(according to FAB classification) patients than in other leukemia

types (54). Therefore, the interaction betweenMLF1IP andMLF1 will

most likely play a role in the occurrence of M6. High expression of

MLF1IP is associated with poor prognosis in several cancers, such as

breast cancer, glioma, and diffuse large B-cell lymphoma (DLBC)

(55). Furthermore,MLF1IP also plays a role in the development of the

immune system (56). However, the functional consequences ofMLF1

and MLF1IP interaction remain largely unknown. HAX-1, a 35-kDa

inner mitochondrial membrane protein, functions as an anti-

apoptosis protein (57), and its deficiency and overexpression result

in the loss of lymphocytes and tumorigenesis, respectively (58, 59).

This expression balance of MLF1 is also critical for its function. MLF1

has been recently revealed to directly associate with HAX-1 by co-

immunoprecipitation assay. Animal experiments have confirmed that

the two have interaction, and severe splenocyte and thymocyte

lymphopenia in Hax1−/− mice can be reversed by MLF1 deficiency

(13). However, it is unclear whether their effects on lymphocytes are

synergistic or antagonistic. As of now, despite conflicting evidence,

the relationship between MLF1 and immune function has not been

adequately investigated. Further research is required to clarify

this issue.

3. MLF1 in antitumor protection. MLF1 protein is directly

associated with the deubiquitinase ubiquitin-specific peptidase 11

(USP11), which is a promising therapeutic target. Additionally,

USP11 has promoted the accumulation of MLF2 in all tested cells

(60), whereas MLF1 and MLF2 are approximately 40% similar (11).

USP11 plays a dual role in the development of tumors (61, 62). Based

on the studies conducted so far, MLF1 may act as both a tumor

suppressor and tumor oncogene, depending on the context of the cell.

It is worth mentioning that MLF1 is a positive factor in various

biological processes, such as progenitor cell development and tumor

regression. Whether MLF1, together with upregulated USP11 protein,

enhances antitumor ability still needs further research.
MLF1 and disease

MLF1 functions as a double-edged sword in various diseases. An

early clinical study has found that t(3;5) is more likely to occur in M6

patients than in patients with other leukemia types (54). A preclinical

study has confirmed that MLF1 expression drives the occurrence of

erythroleukemia (20, 21). A significantly higher level of MLF1

expression is detected in over 25% of patients with immature AML

subtypes and higher malignant MDS (2). MLF1 is also upregulated in

lung squamous cell carcinoma and esophageal carcinomas (63, 64).

MLF1 overexpression results in aggregate formation; however, there
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is still controversy over the cause and effect of protein aggregate in

neurodegenerative diseases (65). The whole-exome sequencing of

small intestine neuroendocrine tumors has revealed that MLF1 is

therapeutically relevant (66). The presence of MLF1 protein inhibits

apoptosis caused by neurotoxicity induced by Huntingtin (HTT)

aggregates (67). An extensive genome-wide association study

(GWAS) has indicated that MLF1 expression is high in

neuroblastoma and that silenced MLF1 significantly suppresses

tumor proliferation (68). Recent research in the heart has shown

that the increased expression of MLF1 leads to accelerated apoptosis

and reduced cardiac cell proliferation (69). However, an aberrant

downregulation of MLF1 is also related to tumorigenesis. Aberrant

DNA methylation plays a significant role and is extensive (70), as

indicated by the higher incidence of aberrant DNA methylation of

known tumor-suppressor genes than that of mutations (71). MLF1 is

methylation-silenced in the gastric cancer cell line and is upregulated

27-fold after 5-AZA-dC treatment. There is a possibility that MLF1

silencing is causally related to the development and progression of

gastric cancer (72, 73). A comparative study has identified thatMLF1

is also a methylation marker for the detection of early gastric

neoplasia and field cancerization (74). Shuang Zhao et al. have

found that the expression levels of MLF1 were downregulated in

tumor tissues compared to normal tissues, which suggested that

MLF1 influences tumor ini t ia t ion and progress ion in

nasopharyngeal carcinoma (75). Defects in the centrosome and

cilium are associated with a set of human diseases. Ramona A. Hoh

et al. have found that MLF1 was associated with diseases, was

upregulated during ciliogenesis, and localized to centrioles and cilia

(76). Hypermethylated MLF1 gene in mantle cell lymphoma (MCL)

has been confirmed by genome-wide DNA methylation analysis, and

aberrant methylation is associated with inverse changes in mRNA

levels (77). Marcela B. Mansur et al. have identified a recurrent

somatic deletion on chromosome 3. This loss results in the

complete deletion of MLF1 and has not been previously described

in infant T-cell acute lymphoblastic leukemia (78).
Conclusion and future perspectives

In conclusion, MLF1 is a small shuttling protein playing a critical

role in biological and pathological processes. Currently, research

regarding MLF1 has mainly focused on cancer development, which

is still an obscure and disputed topic. In general, although there is

more evidence supporting the point that MLF1 contributes to tumor
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suppression, a few studies have confirmed the tumorigenesis of MLF1

in solid and hematologic tumors, which cannot be neglected.

Additionally, the functions of MLF1 in immune response still need

further investigations despite some already reported studies. Given

the complexity and variety of involved proteins, we may draw a

conclusion that MLF1 might be a double-edged factor in the

regulation of cell cycle, immunity, stem cell development, and

cancer. However, studies about MLF1 are still inadequate; therefore,

expanding the research on MLF1 is significant and may enrich the

knowledge of MLF1 in the above-mentioned conditions. On the other

hand, exploring regulations of MLF1 shuttling will provide a better

understanding of MLF1, which helps develop novel specific MLF1-

aimed drugs that might provide a promising strategy for cancer

treatment, as well as other pathologies, such as neurological

diseases. Therefore, analysis of the partner protein, localization, and

shuttling mechanism might provide new insights for future research.
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43. MillerM, Chen A, Gobert V, Augé B, BeauM, Burlet-Schiltz O, et al. Control of runx-
induced repression of notch signaling by mlf and its partner dnaj-1 during drosophila
hematopoiesis. PloS Genet (2017) 13(7):e1006932. doi: 10.1371/journal.pgen.1006932

44. Lin T-C. Runx1 and cancer. Biochim Et Biophys Acta Rev On Cancer (2022) 1877
(3):188715. doi: 10.1016/j.bbcan.2022.188715

45. Nakamae I, Kato J-Y, Yokoyama T, Ito H, Yoneda-Kato N. Myeloid leukemia
factor 1 stabilizes tumor suppressor C/Ebpa to prevent Trib1-driven acute myeloid
leukemia. Blood Adv (2017) 1(20):1682–93. doi: 10.1182/bloodadvances.2017007054

46. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G, et al. Aml1-eto
downregulates the granulocytic differentiation factor C/Ebpalpha in T (8,21) myeloid
leukemia. Nat Med (2001) 7(4):444–51. doi: 10.1038/86515

47. Dedhia PH, Keeshan K, Uljon S, Xu L, Vega ME, Shestova O, et al. Differential
ability of tribbles family members to promote degradation of C/Ebpalpha and induce
acute myelogenous leukemia. Blood (2010) 116(8):1321–8. doi: 10.1182/blood-2009-07-
229450

48. Hashimoto A, Sarker D, Reebye V, Jarvis S, Sodergren MH, Kossenkov A, et al.
Upregulation of C/Ebpa inhibits suppressive activity of myeloid cells and potentiates
antitumor response in mice and patients with cancer. Clin Cancer Res (2021) 27
(21):5961–78. doi: 10.1158/1078-0432.CCR-21-0986

49. Nakamae I, Kato JY, Yokoyama T, Ito H, Yoneda-Kato N. Myeloid leukemia factor
1 stabilizes tumor suppressor C/Ebpalpha to prevent Trib1-driven acute myeloid
leukemia. Blood Adv (2017) 1(20):1682–93. doi: 10.1182/bloodadvances.2017007054

50. Hanissian SH, Akbar U, Teng B, Janjetovic Z, Hoffmann A, Hitzler JK, et al. Cdna
cloning and characterization of a novel gene encoding the Mlf1-interacting protein
Mlf1ip. Oncogene (2004) 23(20):3700–7. doi: 10.1038/sj.onc.1207448

51. Minoshima Y, Hori T, Okada M, Kimura H, Haraguchi T, Hiraoka Y, et al. The
constitutive centromere component cenp-50 is required for recovery from spindle
damage. Mol Cell Biol (2005) 25(23):10315–28. doi: 10.1128/MCB.25.23.10315-
10328.2005

52. Cope MJ, Whisstock J, Rayment I, Kendrick-Jones J. Conservation within the
myosin motor domain: Implications for structure and function. Structure (1996) 4
(8):969–87. doi: 10.1016/S0969-2126(96)00103-7

53. Feng G, Zhang T, Liu J, Ma X, Li B, Yang L, et al. Mlf1ip promotes normal
erythroid proliferation and is involved in the pathogenesis of polycythemia Vera. FEBS
Lett (2017) 591(5):760–73. doi: 10.1002/1873-3468.12587
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With the advent of tyrosine kinase inhibitors (TKIs), the treatment prospects of

chronic myeloid leukemia (CML) have changed markedly. This innovation can

lengthen the long-term survival of patients suffering from CML. However, long-

term exposure to TKIs is accompanied by various adverse events (AEs). The latter

affect the quality of life and compliance of patients with CML, and may lead to

serious disease progression (and even death). Recently, increasing numbers of

patients with CML have begun to pursue a dose optimization strategy. Dose

optimization may be considered at all stages of the entire treatment, which

includes dose reduction and discontinuation of TKIs therapy. In general,

reduction of the TKI dose is considered to be an important measure to reduce

AEs and improve quality of life on the premise of maintaining molecular

responses. Furthermore, discontinuation of TKIs therapy has been

demonstrated to be feasible and safe for about half of patients with a stable

optimal response and a longer duration of TKI treatment. This review focuses

mainly on the latest research of dose optimization of imatinib, dasatinib, and

nilotinib in CML clinical trials and real-life settings. We consider dose reduction in

newly diagnosed patients, or in optimal response, or for improving AEs, either as

a prelude to treatment-free remission (TFR) or as maintenance therapy in those

patients unable to discontinue TKIs therapy. In addition, we also focus on

discontinuation of TKIs therapy and second attempts to achieve TFR.

KEYWORDS

tyrosine kinase inhibitors, dose optimization, chronic myeloid leukemia, dose
reduction, treatment-free remission
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Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative tumor

formed by clonal adult cases of leukemia (1). With the advent of

tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1, the

therapeutic prospect of CML has changed markedly (2). The

long-term survival of patients with CML in the chronic phase

(CP) has become close to normal life expectancy (3). Imatinib,

dasatinib and nilotinib are the most commonly used TKIs for CML

patients in clinical practice in China.

Long-term treatment with TKIs is accompanied with various

adverse events (AEs) that significantly affect the quality of life and

compliance of patients with CML, and have the potential to cause

significant disease progression and mortality. Severe AEs associated

with second-generation TKIs have also been reported. These

include pleural effusion (PE) and pulmonary hypertension

induced by dasatinib (4, 5) as well as nilotinib-related

dyslipidemia and arterial thrombosis (6, 7).

Recently, increasing numbers of patients with CML have begun

to pursue a dose optimization strategy, which included dose

reduction and discontinuation of TKIs therapy. Dose reduction of

TKIs has been suggested to be safe and feasible, and to elicit an

optimal response, in patients with CML. Also, the prevention and

management of AEs must also be considered to improve patient

compliance and reduce the risk of treatment interruption (8, 9).
Frontiers in Oncology 0216
Fassoni and colleagues developed a patient data-based

mathematical model which suggested that a reduction ≥50% of

the full dose of a TKI did not exacerbate outcomes from long-term

treatment (10). Importantly, the dose reduction of TKIs should be

considered as early as possible, but the clinical benefit of this

approach is controversial if chronic toxicity occurs, especially in

some specific settings (11). Furthermore, some patients with a

sustained deep molecular response (DMR, BCR::ABL1IS ≤ 0.01%)

can achieve relatively long-lasting safe discontinuation of TKIs

therapy [i.e., treatment-free response (TFR)].

In recent years, several clinical trials and real-life practices have

indicated that treatment discontinuation has become a new

therapeutic goal for patients with CML who are stable and have a

DMR (12, 13). However, about half of patients have molecular

recurrence and need re-introduction of TKIs therapy. Imatinib was

first applied to the treatment of CML two decades ago, and only 5%–

10% of patients can maintain TFR (14). Eighty percent of patients

continue to need long-term therapy with a TKI to achieve long-term

survival (though 20% of them meet the conditions for treatment

discontinuation) (15). Therefore, this review focuses mainly on the

latest research on the dose optimization of the TKIs imatinib,

dasatinib, and nilotinib in patients with CML. This information

includes dose reduction (Table 1) and TFR (Table 2). In this way, we

aim to provide important references for the formulation of

individualized therapeutic regimen for patients with CML.
TABLE 1 Clinical trials evaluating different imatinib, dasatinib and nilotinib doses.

TKIs Study TKIs dose Patients Publication time

Imatinib RIGHT trial (15) 800mg 115 2009

Baccarani et.al (16) 800mg VS. 400mg 216 2009

Cortes et.al (17) 800mg VS. 400mg 476 2010

Michel et.al (18) 800mg VS. 400mg 422 2019

Cervantes et.al (19) 300mg 246 2017

TDM-guide imatinib dose optimization Lankheet et.al (20) NR 109 2017

Adeagbo et.al (21) NR 126 2017

Dasatinib DASISION (22) 100mg/day VS. <100mg/day 519 2017

CA180-034 (23) 100mg qd VS. 140mg qd VS. 70mg bid VS. 50mg bid 670 2016

Naqvi et.al (24) 50mg 81 2020

DAVLEC (25) 20mg 52 2021

Latagliata et.al (26) 100mg/day VS. <100mg/day 65 2016

Iurlo et.al (27) 100mg/day VS. <100mg/day VS. >100mg/day 853 2018

TDM-guide imatinib dose optimization Shin et.al (28) NR 102 2021

Rousselot et.al (29) NR 287 2021

Nilotinib ENESTnd (30) 300mg bid VS. 400mg bid 563 2016

NILO-RED (31) 300/400mg bid VS. 300/400mg qd 67 2017

ENESTswift (32) 300mg bid VS. 400mg bid 20 2018
TKIs, tyrosine kinase inhibitors; qd, once daily; bid, twice daily; NR, not report.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1146108
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cheng et al. 10.3389/fonc.2023.1146108
Dose reduction

Imatinib

Several clinical trials have explored the efficacy of high-dose

imatinib (800 mg/day) treatment compared with standard-dose

therapy (16–19). High-dose imatinib appeared to elicit a faster

major molecular response (MMR, BCR::ABL1IS ≤ 0.1%), but the

prevalence of MMR was similar at 1 years or 2 years between the

two groups being assessed. However, an increased prevalence of

severe AEs and worse compliance by patients was reported in the

high-dose-imatinib arm. As a result, patients received imatinib at

800 mg/day initially which was later reduced to 400 mg/day. In
Frontiers in Oncology 0317
addition, dose reduction was accompanied by a reduction in the

prevalence of AEs and medical costs, and could improve patient

compliance. Claudiani and coworkers (8) conducted a retrospective

study of 246 patients with CML receiving treatment with a lower

dose of a TKI (imatinib, n = 90; dasatinib, n = 88; nilotinib, n = 81;

bosutinib, n = 39) after achievement of MMR because of intolerable

AEs. A “lower dose” of a TKI (mg/day) was defined as 200 or 300

for imatinib, 70, 50, 40 or ≤20 for dasatinib; 400, 300, or ≤200 for

nilotinib; 300, 200, or <200 for bosutinib. Their findings suggested

that dose reduction should not be recommended as routine clinical

practice, but could be an acceptable and safe option for patients who

cannot tolerate a standard dose of a TKI. Cervantes and

collaborators (56) found that a reduction to 300 mg/day in 43
TABLE 2 Characteristics of TKIs discontinuation trials.

Study N TKI Minimum TKIs
duration(y)

Minimum
DMR duration

(y)

TFR rate Resumed
treatment

France in 2007
(33)

12 IM 1.875 UMRD≥2 50% in the first 5 months positive BCR::ABL1
transcripts

STIM1 (34) 100 IM 3 UMRD≥2 43% at 6 months and 38% at 60 months Significant increase of
1-log or loss of MMR

A-STIM (35) 80 IM 3 MR4≥2 64% at 24 months and 61% at 36 months Loss of MMR, UMRD

STIM2 (36) 124 IM 3 DMR≥2 61.2% at 12 months Loss of MMR

TWISTER (37) 40 IM 3 UMRD≥2 47.1% at 24 months Loss of UMRD

KID (38) 90 IM 2 MR4.5>2 62.2% at 12 months
and 58.5% at 24 months

Loss of MMR

ISAV (39) 108 IM 2 UMRD≥1 48% at 36 months Loss of MMR

DOMEST (40) 99 IM 2 MR4≥2 70% at 6 months, 68% at 12 months, and 64% at 24
months

Loss of MR4

DADI (41) 63 DA 1 DMR≥2 49% at six months and 48% at 12 months Loss of MR4

First-line DADI
(42)

58 DA 3 DMR≥2 55% at 6 months Loss of MR4

D-STOP (43) 54 DA 2 DMR≥2 62.9% at 1 year Loss of MMR

DASFREE (44) 84 DA 2 MR4.5≥1 48% at 12 months and 46% at 24 months Loss of MMR

ENESTfreedom
(45)

190 NL 3 MR4.5≥2 51.6 at 48 weeks Loss of MMR

STAT2 (46) 78 NL 2 MR4.5≥2 67.9% at 12 months
and 62.8% at 24 months

Loss of MR4.5

ENESTop (47–
50)

126 NL 3 MR4.5≥1 57.9% and 53.2% at 48 week and 96 week, 52.0% and
46% at 144 weeks and 192 weeks, 42.9% at 5 years

Loss of MMR or MR4

NILSt (51) 149 NL NR MR4.5≥2 The TFR rate was 60.9% at both 1 and 3 years Loss of MR4.5

STOP-2G (52) 60 DA NL 3 MR4.5≥2 63.3% at 12 months
and 53.7% at 48 months

Loss of MMR

LAST (53) 172 IM NL
DA BO

3 MR4≥2 60.8% at 12 months Loss of MMR

EURO-SKI (54) 755 IM NL
DA

3 MR4≥1 61% at 6 months and 50% at 24 months Loss of MMR

GIMEMA (55) 293 IM NL
DA BO

7 DMR≥3 68% and 73% in imatinib and second-generation TKIs at
12 months and 62% at 34 months

Loss of MMR
TKI, tyrosine kinase inhibitor; IM, imatinib; DA, dasatinib; NL, nilotinib; BO, bosutinib; DMR, deep molecular response; MMR, major molecular response; TFR, treatment-free remission;
UMRD, undetected minimum residual disease; MR, molecular response.
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patients with CML who received imatinib (400 mg/day) initially as

first-line treatment with a sustained DMR improved tolerability

significantly and maintained a DMR continuously.

Therapeutic drug monitoring (TDM) is gradually becoming a

practical tool to achieve individualized medicine for patients

receiving targeted drugs (57). Peng and colleagues showed that

fixed-dose imatinib showed high inter-patient variability to plasma

exposure in patients with CML (58). An imatinib concentration in

plasma >1000 ng/mL in patients with CML can lead to a beneficial

clinical outcome (59, 60). Therefore, a TDM-based dose-adjustment

strategy could improve the efficacy, and reduce the toxicity and

medical cost, of imatinib therapy (20). In daily practice, Lankheet

and colleagues (21) monitored the proportion of patients who

reached the target trough concentration (Cmin) of a TKI

(imatinib, sunitinib, or pazopanib) after a TDM-based dose-

adjustment strategy. The proportion of patients with the target

Cmin increased from 38% to 64%, which suggested that a TDM-

based dose-adjustment strategy may be an effective strategy to

enable patients who received a TKI to achieve the target Cmin.

The population pharmacokinetics of imatinib in patients with CML

in Nigeria (61) showed that treatment with a standard dose of

imatinib may not elicit the desired effect in most patients, and that

exposure to low concentrations continuously might lead to drug

resistance. They suggested the need for a TDM-guided dose-

adjustment strategy of imatinib in this population. In summary,

those data indicated that dose reduction could be a feasible and safe

option for patients with a stable optimal response but who cannot

tolerate a standard dose of imatinib (22). If possible, the imatinib

concentration in plasma could be monitored to provide an

important reference for the dose adjustment of imatinib.
Dasatinib

Several studies have explored the efficacy and safety of standard-

dose dasatinib (100 mg/day) compared with low-dose therapy (<100

mg/day) in clinical trials and real-life settings. A retrospective

analysis of the DASISION trial (23) revealed that dose reduction of

dasatinib could maintain a superior prevalence of MMR while

reducing the risk of dasatinib-related AEs. Of 65 patients with

CML (age >65 years) receiving first-line treatment with dasatinib

(100 mg/day VS. <100 mg/day),10 patients who required permanent

drug withdrawal due to toxicity all received an initial dose of 100 mg/

day (24). Iurlo and colleagues (25) retrospectively evaluated 853 CML

patients who received dasatinib as first-line and second-line therapy

(100mg/dayVS. <100mg/day). A total of 196 episodes of PE (23.0%)

were identified, and 70.4% of PE events were observed in patients

who received 100 mg/day.

The CA180-034 study (26) enrolled patients with CML who

were resistant and intolerant to imatinib and who were switched to

dasatinib. The result of 7-year follow-up indicated that the clinical

response at 100 mg/day was similar to that of 70-mg twice daily or

140 mg/day, and was more beneficial in terms of toxicity. Initial

half-dose dasatinib therapy (50 mg/day) was suggested to be a safe

option for newly diagnosed CP-CML patients. The clinical response

and toxicity profile of initial treatment with half-dose dasatinib
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were more favorable compared with those documented in the

DASISION trial (27). The DAVLEC study (28) suggested that

low-dose dasatinib (20 mg/day) as the initial dose for older

pat ients with newly diagnosed CP-CML was worthy

of consideration.

Dasatinib exposure may be related to the clinical response and

toxicity profile. The dose-limiting toxicities (DLTs) and clinical

response of dasatinib were analyzed in patients with CP-CML at 17

hospitals in South Korea (62). Those results suggested that the

initial dasatinib dose could be reduced to 80 mg/day according to

dose adjusted for bodyweight (dose/BW) in South Korean CML

patients, especially for those with lower BW. Mizuta and coworkers

found that Patients experienced a higher risk of altered treatment

with a higher Cmin/D/W (dasatinib concentration adjusted by dose

(g), and bodyweight (kg)) (63). Therefore, TDM-guided dose-

adjustment strategy may have potential benefits for dasatinib

treatment (29). Rousselot and co-workers evaluated whether

TDM could reduce the prevalence of dasatinib-induced AEs at 12

months (30). All eligible patients received an initial dose of 100 mg/

day of dasatinib, followed by assessment of the Cmin of dasatinib.

Patients were assigned randomly to a dose-reduction strategy

(TDM) group and standard-dose strategy (control) group

according to Cmin ≥3 nmol/L. The cumulative prevalence of PE

was reduced significantly in the TDM group (15% vs. 4%, 35% vs.

11%, and 39% vs.12% at 1, 2 and 3 years, respectively, p = 0.0094),

whereas the prevalence of MMR was similar. A TDM-guided dose-

adjustment strategy for dasatinib was feasible and resulted in a

significant reduction in the incidence of PE events without

impairing the MMR rate upon long-term treatment.
Nilotinib

The ENESTnd study (64) reported that nilotinib (400 mg, twice

daily (bid) VS. 300 mg, bid) had equivalent efficacy, but high-dose

therapy led to longer 5-year overall survival compared with

imatinib. However, a higher prevalence of cardiovascular events

was observed in the high-dose arm. Furthermore, the ENESTswift

trial (31) suggested crossover with nilotinib (300 mg, bid) to be

efficacious and well tolerated in most patients treated with nilotinib

as second-line therapy. In the NILO-RED study (32), patients were

recommended to receive dose adjustments to a lower-dose once-

daily (qd) regimen after achieving a MMR with standard-dose

nilotinib bid schedule (first-line 300 mg, bid; and second-line 400

mg, bid) solely in case of severe toxicity. Switching to a nilotinib qd

regimen as maintenance therapy after achievement of MMR on

standard-dose schedule is feasible and safe in CP-CML patients

regardless of prior treatment history.
Discontinuation of TKIs therapy

Imatinib

In recent years, the experience of discontinuation of TKIs

therapy in patients with CML has been reported worldwide. A
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research team in France reported the first key study in 2007 (33).

They suggested that a certain proportion of patients with molecular

diseases not detected for ≥2 years could discontinue TKIs treatment

and maintain molecular remission. One-hundred patients with CP-

CML with undetectable molecular disease for ≥2 years were

involved in the STIM1 trial (34). Molecular relapse was defined as

a significant increase of 1-log reduction or loss of MMR in two

consecutive samples. The prevalence of molecular recurrence-free

survival was 43% at 6 months and 38% at 60 months, respectively.

The cumulative prevalence of molecular recurrence was estimated

to be ~60%. Furthermore, 55 patients who suffered molecular

relapse achieved a faster DMR after resumption of TKIs

treatment, and no patient had disease progression or mutations of

the ABL1 kinase domain. Eighty patients with CML who received

imatinib treatment were involved in the A-STIM study (35).

Molecular relapse was defined as loss of MMR. The TFR

prevalence was 64% at 24 months and 61% at 26 months,

respectively. In the STIM2 study, 50% of patients continued to

have TFR at 24 months (36). Forty patients with CP-CML enrolled

in the TWISTER study in Australia (37) received imatinib

treatment for >3 years and achieved 4.5-log reduction (MR4.5)

for ≥2 years. Molecular relapse was defined as loss of MMR. At 2-

year follow-up, the TFR prevalence was 47.1%, and most molecular

relapses occurred in the first 4 months after treatment

discontinuation. No patient had disease progression or mutations

of the ABL1 kinase domain, and imatinib therapy was restarted

successfully in all patients who suffered molecular relapse. The

Korean Imatinib Discontinuation (KID) study (38) aimed to

identify the predictors for safe and successful discontinuation of

imatinib therapy, and 90 patients with CML were enrolled. The

probability of achieving a sustained MMR at 12 months and 24

months was 62.2% and 58.5%, respectively. The ISAV study in Italy

(39) enrolled CML patients with 112 who received imatinib

treatment and who had undergone interferon-a treatment

previously. If patients maintained MR4.5 for ≥2 years, then

imatinib treatment was stopped. In that study, 50.9% of patients

lost their MMR. The DOMEST trial (40) was a multicenter phase-II

trial conducted in Japan to assess the clinical efficacy and safety of

discontinuing imatinib therapy in patients with CML. Patients with

sustained MR4.0 for ≥2 years were included. Molecular relapse was

defined as the loss of MR4.0, and resumed dasatinib or other TKIs

therapy. The prevalence of molecular recurrence-free survival was

69.6%, 68.6%, and 64.3% at 6, 12, and 24 months, respectively.

Lee and collaborators (65) aimed to identify the predictors for

successful discontinuation of imatinib therapy, and 48 patients with

CP-CML were enrolled. Patients were eligible for therapy cessation

after receiving imatinib treatment for ≥3 years, and to maintain

undetectable minimal residual disease (MRD) for ≥2 years. That

study also included 20 patients who suffered a post-transplant

relapse. Molecular relapse was defined as loss of UMRD or MMR.

After a median follow-up of 15.8 months, nine patients lost UMRD

and MMR in the non-transplant group, whereas all patients in the

post-transplantation group maintained UMRD. Previous

transplantation, imatinib duration, and UMRD duration were

significantly associated with sustained molecular responses.
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Campiotti and coworkers (66) conducted a systematic review to

assess the long-term safety of discontinuation of imatinib therapy in

patients with CML. Approximately 50% of patients had TFR, and

no death occurred 2 years after discontinuation of imatinib therapy.

Those results indicated that discontinuation of imatinib therapy

was feasible and safe for patients with CP-CML who had a

sustained DMR.
Dasatinib

STOP-2G (52) was the first multicenter observational study to

investigate the feasibility of discontinuation of second-generation

TKIs therapy. The discontinuation criteria were patients with ≥3

years for first-line or subsequent lines of dasatinib or nilotinib

therapy with sustained MR4.5 for >2 years. Molecular relapse was

defined as loss of MMR. Sixty patients were enrolled and the follow-

up was 12 months: 43.3% of patients suffered a relapse at a median

of 4 months. The TFR prevalence at 1 year and 2 years was 63.3%

and 53.6%, respectively. The DADI trial (41) in Japan included 63

patients with CML with a sustained DMR for >1 year. Molecular

relapse was considered to be the loss of DMR at any time point.

They found that 52.4% of patients experienced a relapse at a median

follow-up of 20 months, and all patients regained DMR 6 months

after resumption of dasatinib therapy. The first-line DADI trial (42)

was a multicenter phase-II trial in 23 Japanese hospitals, and aimed

to assess molecular relapse-free survival at 6 months after

discontinuation therapy. Fifty-eight patients with CML received

dasatinib as first-line treatment and had a sustained DMR for >1

year. Thirty-two patients maintained TFR at 6 months and TFR

prevalence at 6 months was 55.2%. The D-STOP trial (43) explored

the long-term outcome of 54 patients with CML who stopped

dasatinib treatment after achieving a sustained DMR for ≥2 years.

At a median follow-up of 16.2 months, 12 patients suffered

molecular relapse. The TFR prevalence at 12 months and 36

months was 62.9% and 44.4%, respectively. The DASFREE study

(44) enrolled 74 patients with CML who received dasatinib

treatment for >2 years and maintained MR4.5 for ≥1 year. At 2-

year follow-up, 51% of patients in the first-line-treatment arm and

42% in the second-line-treatment arm continued to have TFR. The

prevalence of TFR was 44% for patients who were resistant or

intolerant to first-line dasatinib treatment.

A meta-analysis was conducted in patients with CML under a

stable DMR to assess the prevalence of TFR and the long-term

safety of discontinuation of second-generation TKIs therapy (67).

Five single-armed, prospective cohort studies were included, and

517 patients were enrolled. The overall estimated TFR prevalence at

a follow-up of 12 months and 24 months was 57% and 53%,

respectively. Molecular recurrence occurred mainly in first 12

months after discontinuation therapy. Investigators discovered

that 96.5% of patients who resumed TKIs treatment after

molecular relapse could achieve MMR rapidly. During 2-year

follow-up, four patients died (including two non-CML-related

deaths: one died from arterial hemorrhage during the

consolidation phase, and the other death was due to heart failure).
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Nilotinib

The phase-II ENESTFreedom trial (45) was the first to evaluate

discontinuation of nilotinib therapy. It enrolled 215 patients who

received first-line nilotinib treatment and had stable MR4.5 for ≥2

years. All patients continued to receive 1 year of consolidated

nilotinib treatment after enrollment, and 190 patients underwent

discontinuation of nilotinib treatment. 48.9% of patients

maintained TFR at 96-week follow-up. Furthermore, TFR

prevalence was closely associated with the Sokal score at the

diagnosis (low risk: 61.3%; intermediate risk: 50.0%; high risk:

28.6%). At 5-year follow-up, 81 patients (42.6%) continued to

have TFR, and 76 (40.0%) had MR4.5. Patients who suffered a

relapse regained MMR (98.9%) and 92.3% had a DMR (68). The

STAT2 trial (46) evaluated the efficacy of 2-year consolidated

nilotinib (300 mg, bid) therapy for achieving TFR in CML

patients with sustained DMR. Molecular relapse was defined as

loss of DMR. Fifty-three patients continued to have TFR in the first

12 months among the 78 patients who were eligible to discontinue

nilotinib therapy. The TFR prevalence at 3 years was estimated to be

62.8%. Of the 29 patients who suffered a relapse, 25 patients

regained DMR after treatment resumption. The ENESTop study

evaluated the TFR prevalence in patients with CP-CML treated with

TKIs for >3 years and who achieved a sustained DMR after

replacing imatinib with nilotinib. The TFR prevalence was 57.9%

and 53.2% at 48 weeks and 96 weeks, respectively (47). Treatment-

free survival was 52.0% and 46% at 144 weeks (48) and 192 weeks

(49). At 5-year follow-up (50), 42.9% (54/126) of patients continued

to have TFR. Of the 59 patients who lost the MMR or DMR and

were re-introduced to nilotinib treatment, 98.3% regained the

MMR, 94.9% regained MR4, and 93.2% regained MR4.5. Overall,

AE rates decreased over the 5 years of TFR, and no patients suffered

disease progression or CML-related death. The NILSt study (51)

enrolled patients with DMR who received nilotinib consolidation

therapy for ≤24 months, and who maintained MR4.5 proceeded to

discontinuation of nilotinib treatment. Molecular relapse was

defined as loss of MR4.5. Eighty-seven patients (58.4%)

underwent discontinuation of nilotinib therapy. The TFR

prevalence was 60.9% at 1 year and 3 years, respectively. The

phase-II study GIMEMA CML 0307 (69) found that 24 (32.9%)

patients with a stable DMR discontinued nilotinib treatment at 10-

year follow-up, and the TFR prevalence at 2 years was 72.6%. The

overall TFR prevalence was estimated to be 24.7%.

LAST (53) was a prospective clinical trial that included 172

patients with CML from 14 academic medical centers in the USA,

which aimed to evaluate molecular relapse and patient-reported

outcomes after discontinuation of TKIs treatment. Molecular

relapse was defined as loss of the MMR. At a median follow-up

of 41.6 months, 112 (65.5%) continued to maintained MMR, and

104 (60.8%) achieved TFR. A total of 755 patients were enrolled

across Europe in the EURO-SKI trial (54): 94% of patients

discontinued imatinib therapy, and 2% and 4% discontinued

dasatinib therapy and nilotinib therapy, respectively. Patients

received TKIs treatment for ≥3 years and had sustained MR4 for

≥1 year. Relapse-free survival was 61% at 6 months and 50% at 24
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months. Disease progression was not observed. The optimal

duration of sustained MR4 before treatment discontinuation was

3.1 years calculated by a prognostic model, with 61% probability of

retaining MMR. The cutoff for imatinib therapy was 5.8 years, and

the molecular relapse-free survival was 63%. Also, 86% of patients

regained the MMR after restarting TKIs treatment. The GIMEMA

trial enrolled 293 Italian patients with CP-CML who discontinued

TKIs therapy (55). 72% patients received imatinib treatment, and

the remainder of patients received second-generation TKIs before

treatment discontinuation. At 12 months, the TFR prevalence was

68% in the imatinib arm and 73% in the second-generation-TKIs

arm. At a median follow-up of 34 months, the overall estimated

TFR prevalence was 62%, and disease progression did not occur.

Recently, several retrospective studies have assessed the safety of

discontinuation of TKIs therapy outside of clinical trials. One

research team (70) enrolled 236 patients with CML from 33

Spanish centers to evaluate the safety of discontinuation of TKIs

treatment in a real-life setting. Overall, the TFR prevalence was 64%

at 4 years, and no patients suffered disease progression. Most

patients who experienced molecular relapse regained the DMR

after resuming TKIs therapy for 3–5 months. Iino and coworkers

(71) assessed the outcome of 21 patients with CML who

discontinued TKIs treatment. The TFR prevalence at 2 years was

66.7%, and no patients experienced disease progression or died. A

retrospective study demonstrated that discontinuation of TKIs

therapy was safe (especially for patients with a stable DMR with a

longer duration of TKI treatment) (72): the prevalence of molecular

relapse was 25% in patients with a stable DMR and 85% in those

with an unstable DMR. Overall, discontinuation of dasatinib or

nilotinib therapy was feasible and safe for patients with a sustained

DMR and a longer duration of TKI treatment in clinical trials and

real-world settings.
Dose reduction before therapy
discontinuation

The DESTINY study (73) aimed to evaluate the outcome of

gradual dose reduction before TKIs discontinuation as well as the

safety of TFR for patients with less deep (but stable) remission. In

detail, patients from 20 UK hospitals were assigned to a MR4 group

and MMR group. TKIs treatment was reduced to half of the

standard dose (imatinib = 200 mg/day; dasatinib = 50 mg/day;

nilotinib = 200 mg, bid) for 12 months, then discontinued for a

further 24 months. Molecular relapse was defined as loss of MMR

that necessitated resumption of TKIs treatment at the full dose. The

primary endpoint was the proportion of patients who could first

experience half-dose therapy for 1 year, and then stop treatment

completely for a further 2 years, without losing the MMR. Of the

174 patients, 148, 10, and 16 were treated with imatinib, dasatinib,

and nilotinib, respectively. Forty-nine patients were assigned to the

MMR group and 125 to the MR4 group. Three patients in the DMR

group and nine patients in the MMR group suffered molecular

relapse during dose reduction. Eighty-four (67%) patients achieved

the primary endpoint and recurrence-free survival was 72% in the
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DMR group. Sixteen (33%) patients achieved the primary endpoint

and recurrence-free survival was 36% in the MMR group. No

patients suffered disease progression and two patients died due to

unrelated causes. All patients who relapsed regained the MMR

within 5 months of resumption of TKIs therapy.

In a retrospective analysis in 2020 (74), 26 patients with CML

received a low-dose TKI before discontinuation, and the TFR

prevalence at 5 years was 47.5% in the full-dose group and 58.8%

in the low-dose group. That study suggested that low-dose TKI

regimens before discontinuation of TKI therapy did not impair the

chance of achieving TFR in patients with CML. An investigation on

the attitude of hematologists practicing in Italy towards a low-dose

TKI regimen and its impact on TFR was undertaken (75). Results

showed that 64.4% of hematologists believed that TFR should not

be affected by low-dose TKIs. Furthermore, this strategy was

applied to 194 patients with CML. Except for three patients, all

patients reached a DMR with a median treatment duration of 61.0

months at the time of TFR. At a median follow-up of 29.2 months,

138 (71.1%) patients continued to have TFR, and the TFR

prevalence was improved significantly after dose reduction due to

AEs. However, outside of clinical trials, one-third of Italian

hematologists continued to harbor doubts about the safety of TFR

after patients received a low dose of TKIs. Interestingly, only 28.9%

of patients suffered molecular relapse, which was lower than that

reported in the standard dose therapy. That survey suggested that

TFR may be an effective and safe option, even in patients who

receive treatment with low-dose TKIs. Those findings suggest that

low-dose TKIs do not impair the opportunity to achieve TFR.

However, more prospective and multicenter clinical trials must be

undertaken to explore the efficacy and safety for patients receiving

low-dose TKIs before discontinuation of TKI therapy.
Second attempt to achieve TFR

A second attempt to achieve TFR may be considered for some

patients. The details of trials focusing on a second opportunity to

achieve TFR are shown in Table 3. Ross and collaborators (76)

conducted a study on a second discontinuation for 12 patients who

regained MR4.5 with restarted treatment after a first molecular

relapse. At a median of 8.6 years follow-up, the TFR prevalence was

50%. Patients who relapsed after the first discontinuation of TKIs

therapy and who regained a DMR were enrolled in the RE-STIM

trial (77). The TFR prevalence after a second attempt at therapy

discontinuation was 44.3% at 24 months, 38.5% at 36 months, and

33.2% at 48 months in 70 patients. In the TRAD trial (78), patients
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who suffered a relapse (loss of MR4 or MMR) after discontinuation

of imatinib therapy were resumed on dasatinib therapy (100 mg/

day). Patients who regained MR4 that was sustained for >1 year had

a second attempt at achieving TFR. The TFR prevalence after a

successful attempt at therapy discontinuation was 21.5% at 6

months. In the 2020 A-STIM study (79), 32 (49.2%) patients

underwent a second attempt to achieve TFR. The TFR prevalence

at the second attempt at treatment discontinuation was 35.8%.

Although the TFR prevalence of the second therapy discontinuation

was lower than that of the first treatment discontinuation (46.8%),

the failure of the first treatment discontinuation did not preclude

the success of the second treatment discontinuation. However,

patients who lost the MMR rapidly after the first treatment

discontinuation had a negligible chance of achieving TFR on a

second occasion using TKIs therapy alone.
Switching TKIs

Switching TKIs are required if there are intolerable toxicities,

failure to achieve treatment milestones, or a BCR::ABL1 mutation

that leads to resistance to specific TKI, (80, 81). The change is

mandatory and should be accompanied by BCR::ABL1 KD-

mutations tests in cases of failure/resistance. In the absence of

BCR::ABL1 KD-mutations, there are no definitive recommendation

for any particular TKIs. The criteria for selection of the second-line

TKIs are almost entirely patient-related and dependent upon

comorbidities, age, and the toxicity of the first TKI. If there is a

mutation for a specific TKI, further TKI selection should be select

accordingly. In case of warning response, the change is optional,

and dependent upon the patients’ long-term treatment goals and

personal factors (e.g., age, complications, tolerance and economic

situation). In the case of treatment-related complications and

intolerance, the decision to switch TKIs is in part subjective,

dependent upon the patient, physician, supportive care, and also

upon the clinical response levels. The choice of dose of converted

TKIs must take into account the clinical response and tolerance of

the patient, as well as the standard- or reduced-dose regimens.
Pediatrics CML

In addition to imatinib, dasatinib and nilotinib were approved

recently for pediatric CML treatment, which has expanded the

therapeutic options. Moreover, allogeneic stem cell transplantation

suggest to be third-line treatment for most pediatric cases (82).
TABLE 3 Characteristics of secondary TFR trials.

Study N TFR rate Resumed treatment

Ross et.al (76) 40 50% at a median of 8.6 years follow-up Loss of MMR

RE-STIM (77) 70 44.3% at 24 months, 38.5% at 36 months and 33.2% at 48 months Loss of MMR

TRAD (78) 25 21.5% at 6 months Loss of MR4 or MMR

2020 A-STIM (79) 65 46.8% and 35.8% at 1 year and 3 year Loss of MMR
MMR, major molecular response; TFR, treatment-free remission; UMRD, undetected minimum residual disease; MR, molecular response.
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However, children are actively growing during TKIs treatment, so

they develop unique AEs, such as growth disturbance (83).

Currently, there are lacking of sufficient data on efficacy and

safety to pediatric patients, TKI selection mostly to be reliant on

the clinical effects observed in adults.

Some research teams based in European groups recommend a

lower starting dose of imatinib in children with CP-CML (260–300

mg/m2/day) (84). However, Children’s Oncology Group CML

Working Group suggested a higher dose of imatinib was also well

tolerated (85), and the initial recommended dose is 340 mg/m2/day

(maximum to 600 mg). The initial dose of dasatinib is 400-100 mg/

m2 qd (maximum to 100 mg) in children with CP-CML (86), and

230 mg/m2/dose bid for nilotinib (maximum single dose of 400 mg)

(87). The dose should be recalculated every 3 months based on

changes in body-weight or more frequently if required, and could be

adjust on the basis of clinical response and tolerability, but the

maximum dose should not be exceeded.

Limited evidence regarding discontinuation of TKIs therapy is

available for pediatric CML, mostly in small studies and case series.

The Japanese Pediatric Leukemia/Lymphoma Study Group (88)

reported the first prospective pediatric discontinuation of TKIs trial

in 22 patients with CP-CML who had been taking TKIs for >3 years

and had sustained MMR (MR4.0) for >2 years. TFR at 12 months

was 50%. Of seven pediatric patients who discontinued imatinib,

two patients achieved TFR (85). The STOP IMAPED study enrolled

14 pediatric patients who were treated with imatinib for ≥3 years

and sustained DMR for ≥2 years to discontinued imatinib, the TFR

rate at 6 months was 28.6% (89). Millot and colleagues (90) reported

a TFR rate of 56% at 36 months after discontinuation of imatinib in

18 pediatric patients with sustained DMR for ≥23.9 months. Shima

and coworkers (91) evaluated the feasibility of discontinuation of

TKIs in pediatric CML patients. Twenty-two patients were eligible

to discontinue TKIs if they treated with TKIs for ≥3 years, and

sustained MR4.0 for ≥2 years. Their results showed the TFR rate to

be 50.0% at 12 months, and that all patients regained MR4.0 after

resumption of TKIs therapy. Therefore, discontinuation of TKIs

therapy in pediatric CML is not recommended outside of clinical

trials, and more prospective studies in pediatric CML are needed.
Conclusions

Recently, increasing numbers of patients with CML have begun

to pursue a dose optimization strategy, which included dose

reduction and discontinuation of TKIs therapy. In the real-life

settings, we will comprehensively consider the dose optimization

strategy base on the treatment goal, clinical response, tolerance, and

economic situation of patients. A dose-reduction regimen could

allow for broader clinical use of TKIs (even in patients with

comorbidities). For example, if the elderly patient with multiple

comorbidities or is previously intolerant to other TKIs, we may

suggest a half-dose of dasatinib treatment (50 mg/day). If

conditions permit, the dose can also be adjusted according to

blood concentration monitoring. For patients with sustained

optimal clinical response (MMR or DMR), reducing TKIs dose
Frontiers in Oncology 0822
can reduce AE and improve treatment compliance. The proposal of

TFR as a possible final treatment endpoint should be discussed with

patients (especially younger patients) at the diagnosis to achieve a

DMR rapidly and improve long-term compliance. For patients with

stable DMR and long duration of TKIs treatment, it is feasible and

safe to stop TKI treatment. Patients who discontinued TKIs should

follow the discontinuation standards recommended in ELN or

NCCN guidelines. For patients with stable DMR who want to

stop TKIs treatment but are afraid of relapse, we recommend to

reduce TKIs dose before discontinuation of TKIs therapy. For

patients who cannot achieve TFR, the TKIs dose must be reduced

without affecting the clinical response. Importantly, patients who

underwent dose optimization should be advised for more intensive

molecular monitoring, especially during the first 6 months. Once

the patients lose the optimal response, physicians should take

measures immediately, such as resuming to standard-dose

therapy, reintroducing TKIs treatment, or switching to other

TKIs, etc. However, evidence for dose optimization in pediatrics

CML is limited. Hence, evidence from novel, prospective clinical

trials and real-life clinical practice are required to explore dose-

optimization strategies, which may provide more promising options

for CML treatment.
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Introduction: Currently, there are no guidelines for the management of B-cell

lineage acute lymphoblastic leukemia (B-ALL) from an Indian perspective. The

diagnostic workup, monitoring, and treatment of B-ALL vary among different

physicians and institutes.

Objective: To develop evidence-based practical consensus recommendations

for the management of B-ALL in Indian settings.

Methods: Modified Delphi consensus methodology was considered to arrive at a

consensus. An expert scientific committee of 15 experts from India constituted the

panel. Clinically relevant questions belonging to threemajor domains were drafted

for presentation and discussion: (i) diagnosis and risk assignment; (ii) frontline

treatment; and (iii) choice of therapy (optimal vs. real-world practice) in relapsed/

refractory (R/R) settings. The questionnaire was shared with the panel members

through an online survey platform. The level of consensus was categorized into

high (≥ 80%), moderate (60%–79%), and no consensus (< 60%). The process

involved 2 rounds of discussion and 3 rounds of Delphi survey. The questions that
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received near or no consensus were discussed during virtual meetings (Delphi

rounds 1 and 2). The final draft of the consensus was emailed to the panel for final

review.

Results: Experts recommended morphologic assessment of peripheral blood or

bone marrow, flow cytometric immunophenotyping, and conventional

cytogenetic analysis in the initial diagnostic workup. Berlin–Frankfurt–Münster

(BFM)–based protocol is the preferred frontline therapy in pediatric and

adolescent and young adult patients with B-ALL. BFM/German Multicenter

Study Group for Adult Acute Lymphoblastic Leukemia–based regimen is

suggested in adult patients with B-ALL. Immunotherapy (blinatumomab or

inotuzumab ozogamicin) followed by allogeneic hematopoietic cell

transplantation (allo-HCT) is the optimal choice of therapy that would yield the

best outcomes if offered in the first salvage in patients with R/R B-ALL. In patients

with financial constraints or prior allo-HCT (real-world practice) at first relapse,

standard-intensive chemotherapy followed by allo-HCT may be considered. For

subsequent relapses, chimeric antigen receptor T-cell therapy or palliative care

was suggested as the optimal choice of therapy.

Conclusion: This expert consensus will offer guidance to oncologists/clinicians

on the management of B-ALL in Indian settings.
KEYWORDS

B-cell acute lymphoblastic leukemia, relapsed/refractory, India, management,
consensus, Delphi
1 Introduction

Acute lymphoblastic leukemia (ALL) is a heterogeneous

hematologic disorder characterized by the neoplastic proliferation

of clonal precursor B or T cells in the bone marrow, peripheral

blood, and extramedullary locations (1). B-cell lineage acute

lymphoblastic leukemia (B-ALL) is the most common subtype of

ALL, accounting for 85% of ALL cases (2). The survival outcomes

for patients with ALL have improved substantially in the recent

decade, especially among children primarily due to an increased

understanding of pathogenesis and molecular genetics, the

adoption of risk-stratified therapy, and the availability of newer

treatment options (3, 4). A review by Arora et al. reported overall

survival (OS) between 45% and 81% (follow-up: 4–5 years) in

Indian children (median age: 5–10 years) with ALL (4).

Radhakrishnan VS et al. reported a 5-year OS of 5.5%–58% and

overall relapse rates between 24.3% and 57.1% (median time: 9–24

months) in adolescent and young adult (AYA) and adult patients

(aged 10 years and above) with ALL (5). The monthly financial

burden of childhood ALL has been reported to be 7.2 times the

monthly per capita income of India (5). The burden of ALL in AYA

patients appears to be even higher in India because India has a

predominately younger patient population (5, 6). This also levies a

substantial financial burden on a developing country like India due

to the loss of productive years of both the patient and the caregiver,

exorbitant treatment costs, and lack of comprehensive health
0227
insurance coverage (5). Further, laboratory evaluation of ALL is

complex and often relies on advanced laboratory techniques, and

financial challenges create significant problems in the timely

delivery of treatment (5, 7). These often cause long interruptions

or abandoning of treatment, often after successful initiation, which

further leads to more resistant forms of the disease (8). It has been

shown that intensification of treatment with combination therapies

can lead to improvement in OS. However, the intensification of

therapy also remains a significant challenge in India (8). This is due

to limited resources to manage treatment-related adverse events,

high prevalence of multidrug-resistant infections, and prolonged

cytopenia with infections that further complicate cancer care (5, 8).

Currently, there is a lack of consensus on the diagnostic workup and

monitoring of B-ALL, and it varies among different physicians and

institutes. In addition, there is a lack of consensus on the utility of

different treatment options in frontline and relapsed/refractory (R/

R) settings. In recent times, novel targeted immunotherapies,

including monoclonal antibodies, antibody–drug conjugates, and

cellular therapies, have shown significant promise in R/R adult B-

ALL patients (9, 10). In lieu of the gaps identified, a countrywide

consensus regarding protocols for diagnosis, treatment, and follow-

ups that incorporate recent therapies is the need of the hour to

improve treatment outcomes of B-ALL in India (5). Given the

changing treatment landscape and the challenges faced in India, a

panel of experts assembled to understand the current treatment

scenario of B-ALL in India and reach a consensus regarding
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diagnostic and treatment approaches best suitable in the Indian

setting. In this article, we have summarized expert opinions and

recommendations on (i) diagnostic workup and risk assignment of

B-ALL; (ii) frontline treatment of B-ALL; and (iii) choice of therapy

in R/R B-ALL. Resource availability and cost constraints were

considered while drafting consensus recommendations.
2 Methodology

2.1 Panel selection

A panel of 15 experts was selected (Figure 1) based on their

academic track records and involvement in clinical research and

experience in the field of B-ALL from various areas of the country

(Table S1 in Supplementary Material). A chair was identified among

the panel members to drive the consensus process.
2.2 Evidence review

A literature review was carried out based on data from the

PubMed database to identify relevant articles between January 2001
Frontiers in Oncology 0328
and September 2022 using keywords such as “B-cell acute

lymphoblastic leukemia,” “diagnosis,” “management,” “relapsed/

refractory,” and “guidelines.” The questionnaire was broadly

segregated to include relevant questions under:
• Diagnosis and risk assignment

• Frontline treatment

• Choice of therapy in R/R settings (optimal and real-world

practice)
Defining optimal choice: Optimal choice is the best possible option

supported by evidence and is currently available in India, irrespective of

cost or any other constraints. This should consider the absence of

chimeric antigen receptor T-cell (CAR-T) therapy for second and

subsequent relapse and in patients who had already undergone

allogeneic hematopoietic cell transplantation (allo-HCT).

Defining real-world practice: Real-world choice is the best possible

option currently available in India, keeping in mind cost and other

constraints. This includes the option of a second allo-HCT in patients

who have received an allo-HCT upfront or at first relapse.

The questionnaire was finalized in discussion with the chair and

was rolled out to the panel members through an online survey

platform (Delphi survey—round 1).
FIGURE 1

Overview of the consensus process used to create the clinical consensus statement.
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2.3 Consensus process

The experts discussed the results of the survey during a virtual

expert panel meeting on April 22, 2022 (discussion—round 1).

Modified Delphi consensus methodology was considered to arrive

at a consensus (11). The level of consensus (Table 1) was

categorized into high (≥ 80%), moderate (60%–79%), and no

consensus (< 60%) (12). The differences in opinions were also

discussed for modification of statements for the next round of

voting (Delphi survey—round 2). The questions that received near

or no consensus in the first round were discussed during the second

meeting conducted virtually on August 6, 2022 (discussion—round

2). The recommendations were based on the responses to revised

questions. The final round of voting was conducted to determine

the definitive acceptance or rejection of a recommendation (Delphi

survey—round 3). The final draft of the consensus was emailed to

the panel for final review.
3 Results

The experts (N=15) analyzed evidence and guidelines on B-ALL

management published between January 2001 and September 2022.

Experts made their decisions based on the available evidence and

their current practices in India. An effort was made to address

optimal vs. real-world management of B-ALL based on loco-

regional constraints. This article will first discuss the international

guideline (the National Comprehensive Cancer Network [NCCN]

and the European Society for Medical Oncology [ESMO])

recommendations followed by expert consensus.
3.1 Diagnostic workup and risk assignment
of B-ALL

The diagnosis of ALL generally requires the demonstration of ≥ 20%

bone marrow lymphoblasts upon hematopathologist’s review of bone

marrow aspirate and biopsy materials (13–15). The NCCN and ESMO

clinical practice guidelines recommend a comprehensive diagnostic

approach in patients with ALL (13–15). This includes the following:
Fron
• Morphologic assessment of Wright–Giemsa–stained bone

marrow aspirate smears, hematoxylin–eosin–stained core

biopsy, and clot sections

• Immunophenotyping

o Myeloperoxidase expression

o B-lineage markers (CD19, CD79a, CD22, CD10, CD20,

CD24, cIgM, and sIg [kappa or lambda])
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o T-lineage markers (CD3, CD1a, CD2, CD5, CD7, CD4,

CD8, and TCR a/b or g/d)
• Cytogenetic analysis

• New genetics/genomics (gene expression profiling and next-

generation sequencing [NGS])
The NCCN guideline also recommends a computed

tomography (CT)/magnetic resonance imaging (MRI) scan of the

head with contrast (in patients with major neurologic symptoms),

testing for opportunistic infections, and an early allo-HCT

evaluation at the time of initial diagnosis (14, 15). Optimal risk

stratification and treatment planning require testing marrow or

peripheral blood lymphoblasts for specific recurrent gene

abnormalities using: (i) fluorescence in situ hybridization (FISH)

for recurrent genetic abnormalities; (ii) reverse transcriptase-

polymerase chain reaction (RT-PCR) testing for the detection of

BCR-ABL1 gene rearrangements, denoting an underlying t (9;22)

(q34.1;q11.2)/BCR-ABL1 chromosomal translocation typical of

Philadelphia chromosome-positive (Ph+) ALL; and (iii) NGS for

gene fusions and pathogenic mutations (13, 14).

The American Society of Clinical Oncology guidelines

recommend testing for (7):
• t(12;21)(p13.2;q22.1) [ETV6-RUNX1]; t(9;22)(q34.1;q11.2)

[BCR-ABL1]; t(v;11q23.3) [KMT2A (MLL) translocation];

iAMP21; and trisomy 4 and 10 in pediatric B-ALL.

• t(9;22)(q34.1;q11.2) [BCR-ABL1] and t(v;11q23.3) [KMT2A

(MLL)] translocation in adult B-ALL.
Consensus/recommendations on the diagnostic workup of
B-ALL

The initial workup for B-ALL patients should include an

evaluation of medical history and physical examination, along

with laboratory and imaging studies (Figure 2). Experts

recommended complete blood count, morphologic assessment of

per iphera l b lood or bone marrow, flow cytometr i c

immunophenotyping, and conventional cytogenetic analysis in

the initial diagnostic workup (high consensus). A minimum panel

of markers that includes CD19 plus CD22 for B-ALL is suggested

(high consensus). Other recommended tests include hepatitis B/C

and HIV evaluations. Female patients in reproductive age may

undergo pregnancy testing (moderate consensus), and all male

patients should be evaluated for testicular involvement of disease

(high consensus). Experts suggested a CT/MRI scan of the head

with contrast to detect meningeal disease, chloromas, or central

nervous system (CNS) bleeding for patients with major neurologic

symptoms at diagnosis. CNS involvement should be evaluated

through lumbar puncture at the time of initial scheduled
TABLE 1 Level of consensus.

High When ≥ 80% of participants agree/strongly agree or disagree/strongly disagree with a statement.

Moderate When 60%–79% of participants agree/strongly agree or disagree/strongly disagree with a statement.

Low When < 60% of participants agree/strongly agree or disagree/strongly disagree with a statement.
Level of consensus: Adapted from: Jünger S et al., 2012 (12).
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intrathecal therapy (high consensus). Assessment of cardiac

function is important for patients with prior cardiac history,

cardiac dysfunction, and elderly patients (moderate consensus).

Screening for opportunistic infections, early allo-HCT evaluation,

and donor search should be considered (moderate consensus).

Risk-directed treatment is an essential aspect of B-ALL

management. Thus, it is important to assign risk categories to

patients to ensure appropriate treatment decisions. The assignment

of risk categories is primarily dependent on the availability of

resources. The expert panel group at the 2013 Asian Oncology

Summit proposed a four-tier system (basic, limited, enhanced, and

maximum) based on which recommendations could be developed

(16). In the case of basic resource settings, risk assignment can be

based on age, presenting leukocyte count, and early treatment
Frontiers in Oncology 0530
response as assessed by peripheral blood blast cell count.

Additional molecular and cytogenetic features can be evaluated

with the availability of enhanced resources (16). This stratification

was modified and adapted to the Indian setting to evaluate the

experts’ opinions (Table 2).

Consensus/recommendations on risk assignment criteria
Experts recommended the following risk assignment criteria

best suitable in Indian settings (levels 2 and 3; moderate consensus):
• Age, leukocyte count, immunophenotype (T cell vs. B cell),

prednisone response or day 8 peripheral blood or bone

marrow response, end of induction bone marrow response.

If available, RT-PCR for BCR-ABL1, cytogenetics for

Philadelphia chromosome, or FISH for BCR-ABL1
FIGURE 2

Initial diagnostic workup: Summary of expert consensus/recommendations. B-ALL, B-cell lineage acute lymphoblastic leukemia; BM, Bone marrow;
PB, Peripheral blood; CT, Computed tomography; MRI, Magnetic resonance imaging; IV, Intravenous; NGS, Next-generation sequencing; CGH,
Comparative genomic hybridization; SNP, Single-nucleotide polymorphism; GEP, Gene expression profiling; TLS, Tumor lysis syndrome; DIC,
Disseminated intravascular coagulation.
TABLE 2 Risk assignment stratification of B-ALL.

Risk assign-
ment level Criteria

1 Age, leukocyte count, day 8 peripheral blood response

2
Age, leukocyte count, immunophenotype (T cell vs. B cell), prednisone response or day 8 peripheral blood or bone marrow response, end of induction
bone marrow response. If available, RT-PCR for BCR-ABL1, cytogenetics for Philadelphia chromosome, or FISH for BCR-ABL1

3 RT-PCR for BCR-ABL1 and MLL-AFF1, cytogenetics for hyperdiploid > 50, FISH for BCR-ABL1, and flow cytometry for MRD measurements

4
ABL-kinase domain mutation analysis, especially the T315I mutation for selection of alternative tyrosine kinase inhibitors, pharmacogenetics, NGS for
IgH/TCR rearrangements
B-ALL, B-cell lineage acute lymphoblastic leukemia; MRD, Minimal residual disease; RT-PCR, Real-time reverse transcription-polymerase chain reaction; FISH, Fluorescence in situ
hybridization; IgH: Immunoglobulin heavy chain; TCR, T-cell receptor; NGS, Next-generation sequencing.
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Fron
• RT-PCR for BCR-ABL1 and MLL-AFF1, cytogenetics for

hyperdiploidy > 50, FISH for BCR-ABL1, and flow

cytometry for MRD measurements
3.2 Frontline treatment of B-ALL

The ESMO recommends age stratification for appropriate

treatment of ALL as the treatment outcome of ALL is often age-

associated (AYA: 15/18 to 35/40 years; adults: 35/40 to ≤ 55/60

years; elderly: above 55/60 years), hence necessitating age-based

protocols (13). In India, currently there is a lack of consensus

regarding age thresholds to categorize pediatric, AYA, and adult

ALL (5). Various clinical trials have evaluated the efficacy and safety

of chemotherapy regimens (Berlin–Frankfurt–Münster [BFM],

Multicenter protocol 841 [MCP-841], Children’s Oncology Group

[COG], United Kingdom Acute Lymphoblastic Leukemia

[UKALL]) in the front line in children with ALL (15). Adapting

these protocols in Indian settings has improved patient outcomes in

the last decade; however, treatment-related mortality (11%–25%)

and disease relapse (relapse rates: 15%–41%) have been reported in

children in Indian settings (17–19). In 2013, the Indian

Collaborative Childhood Leukaemia group (ICiCLe) developed a

risk-stratified treatment protocol for the management of first

presentation ALL based on cytogenetics and MRD levels (at the

end of induction) in children (aged: 1–18 years) (20). Initial risk

classification was based on lymphoblast lineage, age, leucocyte

count, disease bulk, CNS disease status, leukaemia cytogenetics

and prednisolone response at treatment day 8. The final risk

stratification was determined at the end of the induction

treatment phase and was based on treatment response, including

remission status and the level of bone marrow MRD (20). The

protocol is specific to Indian patients with ALL and is designed to (i)

decrease toxicity and mortality in induction by shortening the

duration of prednisolone therapy in patients with non–high-risk

ALL and (ii) improve event-free survival in risk groups by replacing

doxorubicin with mitoxantrone in delayed intensification (20). In
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India, treatment protocols used in AYA and adult ALL include

MCP-841, BFM-90, chemotherapy plus tyrosine kinase inhibitor

(TKI), German Multicenter Study Group for Adult Acute

L ymph o b l a s t i c L e u k em i a (GMALL ) , a n d h y p e r -

cyclophosphamide, vincristine, doxorubicin, dexamethasone

(hyper-CVAD) (5). A real-world study by Malhotra P et al. found

that a modified BFM regimen in adult ALL patients (> 12 years) in

resource-limited settings resulted in complete remission (CR) of

85.6% after induction (5-year event-free survival: 21.6%) (21). A

retrospective study was done on Indian adult ALL patients, which

showed a 5-year OS of 38% and a CR rate of 82.2% with a modified

GMALL regimen (8, 22). A more recent report from the Indian

Acute Leukaemia Research Database and Hematology Cancer

Consortium highlighted that BFM protocol (BFM-90, BFM-95, or

BFM-2000) was the most common regimen used in AYA patients

(aged 15–29 years) with ALL (23).

Consensus/recommendations on frontline treatment of B-ALL
According to the experts, age, risk stratification, comorbidities,

and financial constraints are crucial factors in determining

treatment strategy. Patients should be categorized into AYA and

adults for the optimal choice of the treatment protocol. However,

there was no consensus on the age threshold to be used in practice.

Experts recommended BFM-based protocol as frontline therapy in

pediatric and AYA patients with B-ALL (high consensus). BFM/

GMALL-based regimen is suggested in adult patients with B-ALL

(moderate consensus). Figure 3 lists treatment protocols used in

pediatric, AYA, and adult patients with B-ALL.

3.2.1 MRD monitoring
The NCCN guidelines state that MRD is an essential

component of patient evaluation over the course of sequential

therapy (end of induction, consolidation, and surveillance) in

pediatric and adult patients with ALL (14, 15). The ESMO

guidelines recommend MRD monitoring to guide the decision of

chemotherapy or allo-HCT after consolidation in patients with ALL

(13). Furthermore, prolonged monitoring of BCR-ABL1MRD levels

is recommended, associated with resistance mutation screening

in patients with persistent MRD detection or re-increasing
FIGURE 3

Treatment protocols for children, AYA, and adults with B-ALL: Survey results based on experts’ clinical practice. BFM, Berlin–Frankfurt–Munster;
CVAD, Cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride (Adriamycin), and dexamethasone; UKALL, United Kingdom Acute
Lymphoblastic Leukemia; GMALL, German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia; ICiCLe, The Indian Childhood
Collaborative Leukemia; AYA, Adolescents and young adults.
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MRD levels (13). Table 3 lists different methods for MRD

assessment in patients with B-ALL and levels of sensitivity (24–26).

Consensus/recommendations on MRD assessment
MRD is the preferred criterion for determining outcomes in

patients with B-ALL. Experts recommended flow cytometry for

MRD assessment in patients with B-ALL. The consensus statements

on MRDmonitoring in patients with B-ALL have been summarized

in Table 4.

3.2.2 CNS prophylaxis
CNS prophylaxis aims to prevent relapse or CNS disease and

mainly includes intrathecal or systemic chemotherapy. Cranial

irradiation is often associated with secondary neoplasms,

neurocognitive dysfunction, endocrinopathy, and neurotoxicity

(27). A combination of high-dose systemic therapy with CNS

penetration (e.g., methotrexate or cytarabine) and intrathecal

chemotherapy is quite effective, with CNS recurrence incidence

being < 6% (28, 29). The NCCN recommends CNS prophylaxis to

be given throughout the entire course of treatment to all patients

(15, 30).

Consensus/recommendations
Fron
• In pediatric and AYA B-ALL patients, intrathecal

methotrexate and systemic therapy is the preferred option

for CNS prophylaxis (moderate consensus).

• In adult B-ALL patients, there was no consensus on the

choice of therapy.
Experts agreed that CNS prophylaxis is a must in adult B-ALL

patients; however, there was no consensus on the choice of therapy.

Experts suggested that a combination of systemic and intrathecal

chemotherapy may be considered for CNS prophylaxis in adult

patients with B-ALL. The use of CNS irradiation in addition to
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intrathecal methotrexate may be advised based on institutional

experience and infrastructure in resource-limited settings.
3.3 Treatment of R/R B-ALL

3.3.1 Prognostic factors
The definitions for “early” and “late” relapse differ among

different study groups. The BFM group study categorized time to

relapse or length of first CR as (i) very early relapse (less than 18

months from diagnosis); (ii) early relapse (more than 18 months

from diagnosis and less than 6 months of completion of frontline

therapy); and (iii) late relapse (more than 6 months after the

completion of frontline therapy) (31). In contrast, the COG

defined “very early time to relapse” as the length of first CR less

than 18 months from initial diagnosis; “intermediate” as 18–36

months after initial diagnosis; “early” relapse as within 36 months

after initial diagnosis; or (iv) “late” relapse as 36 months or more

after diagnosis (31). The ESMO and NCCN guidelines state that age

(< 1 year old or ≥10 years) and white blood cell (WBC) count (50 X

109 cells/L) on presentation are independent, clinically significant

prognostic factors predicting lower CR rate and shorter CR

duration in patients with B-ALL (13, 14). Unfavorable

cytogenetics, time to relapse, site of relapse, response to first

salvage therapy, performance of allo-HCT, and MRD during

second CR and before allo-HCT are significant prognostic factors

for survival after relapse (14, 31, 32).

Consensus/recommendations on prognostic factors
Experts used the BFM study group definition of “early” and

“late” relapse in their clinical practice (high consensus). The expert

panel agreed that the response to salvage (high consensus) and

performance of allo-HCT (moderate consensus) are two key

prognostic factors for CR and survival among relapsed B-ALL
TABLE 3 Different methods for MRD assessment and level of sensitivity in patients with B-ALL.

Techniques Sensitivity Applicability

Flow cytometry 10−4 Ph− B-ALL
Ph+ B-ALL

RT-PCR of Ig/TCR rearrangements 10−4–10−5 Ph− B-ALL
Ph+ B-ALL

RT-qPCR of BCR-ABL1 transcripts 10−4–10−5 Ph+ B-ALL

NGS of Ig/TCR rearrangements 10−6 Ph− B-ALL
Ph+ B-ALL
B-ALL, B-cell lineage acute lymphoblastic leukemia; RT-PCR, Real-time reverse transcription-polymerase chain reaction; RT-qPCR, Quantitative reverse transcription PCR; Ig, Immunoglobulin;
TCR, T-cell receptor; MRD, Minimal residual disease; Ph+, Philadelphia chromosome-positive; Ph−, Philadelphia chromosome-negative; NGS, Next-generation sequencing.
Adapted from: Hein K et al., 2022 (24), Abou Dalle I et al., 2020 (25), and Tierens A et al., 2021 (26).
TABLE 4 Expert consensus/recommendations on MRD monitoring in patients with B-ALL.

High
consensus

• Flow cytometry is indicated as the method of choice for MRD assessment. In addition to flow cytometry, RT-PCR may also be used in patients with
fusion transcripts.
• MRD-stratified protocols assist in decisions regarding the need and timing for allo-HCT.
• In patients undergoing allo-HCT, MRD assessments should be conducted before the transplant. For Ph+ B-ALL post-allo-HCT, long-term monitoring
with peripheral blood RT-qPCR can be considered once in 3 months.
B-ALL, B-cell lineage acute lymphoblastic leukemia; MRD, Minimal residual disease; RT-PCR, Real-time reverse transcription-polymerase chain reaction; allo-HCT, Allogeneic hematopoietic
cell transplantation; RT-qPCR, Quantitative reverse transcription polymerase chain reaction; Ph+, Philadelphia chromosome-positive.
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patients. Age, time to relapse, pre-transplant MRD negativity,

donor availability, and type are other factors that need to

be considered.
3.3.2 Choice of therapy for R/R B-ALL
Salvage treatment after B-ALL relapse involves inducing a

complete remission 2 (CR2) with intensive chemotherapy and

applying consolidation, re-intensification, and maintenance

therapy, or allo-HCT as a further intensification of treatment.

Several studies have reported poor survival outcomes (median

OS: 4.5–6 months; 5-year OS: 3%–10%) with conventional

chemotherapy regimens in relapsed adult B-ALL patients (33–36).

The ESMO 2016 guidelines suggest the use of new-generation TKIs,

according to the results of mutational analysis of BCR-ABL1

transcripts in patients with relapsed Ph+ ALL (13). In 2017,

blinatumomab (bispecific anti-CD3/CD19 monoclonal antibody)

and inotuzumab ozogamicin (InO; calicheamicin-based antibody–

drug conjugate targeting CD22) received full approval from the

Food and Drug Administration for R/R precursor B-ALL (Ph+ and

Ph−) in adults based on promising results from phase II and phase

III clinical trials (37–42). Both InO and blinatumomab have shown

beneficial outcomes in terms of achieving MRD negativity (39, 43).

InO treatment has shown improved rates of CR/CR with

incomplete hematologic recovery and OS vs. standard

chemotherapy (SC) in adult R/R ALL with high baseline disease

burden (bone marrow blast [BMB] > 90%) (44). Consequently, a

greater proportion of patients in the InO vs. SC arm proceeded to

stem cell transplantation, irrespective of baseline BMB

percentage (44).

In pediatric R/R B-ALL patients (Ph+ and Ph−), the NCCN

guideline recommend (15):
Fron
• Early or late first relapse: Initial treatment with systemic

therapy. If patients experience CR2 and are MRD-negative,

the options are either to continue chemotherapy and receive

maintenance therapy or allo-HCT. In the case of MRD-

positive or if the patient experiences the first relapse after a

prior allo-HCT, the options are chemotherapy,

blinatumomab, CAR-T therapy, or InO before the first or

second allo-HCT.

• Mult ip le re lapses : Trea tment opt ions inc lude

chemotherapy, blinatumomab, CAR-T therapy, or InO

and allo-HCT as consolidation therapy.
In Ph+ R/R B-ALL patients (AYA and adults), after ABL1

kinase domain mutation testing, the more recent NCCN 2021

guideline recommends (14):
• TKI with or without chemotherapy followed by allo-HCT

• Blinatumomab with or without TKI followed by allo-HCT

• InO with or without bosutinib (TKI-intolerant or refractory

B-ALL) followed by allo-HCT

• CAR-T therapy (in patients under 26 years with refractory

B-ALL or patients with ≥ 2 relapses and failure of 2 TKIs)

followed by allo-HCT.
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However, in Ph− R/R B-ALL patients (AYA and adults), after

MRD assessment, blinatumomab, InO, CAR-T therapy, or

chemotherapy may be considered followed by allo-HCT (14). In

2018, InO received permission from Central Drugs Standard

Control Organization (CDSCO), India, for the treatment of adults

with R/R CD22-positive B-ALL. It is also indicated in patients with

Ph+ R/R B-cell precursor ALL who have failed treatment with at

least one TKI therapy (45). Currently, the CDSCO has not approved

blinatumomab and CAR-T therapy for the management of R/R B-

ALL except under a trial setting in India.

Consensus/recommendations

Optimal choice of therapy for early or late first relapse: Experts
favored immunotherapy (InO or blinatumomab) followed by allo-

HCT for the treatment of R/R Ph+ and Ph− B-ALL patients after

the first relapse (early or late; medullary/extramedullary) and to

achieve MRD negativity (high consensus). The addition of TKI

should always be considered for Ph+ B-ALL patients. Experts

agreed that InO would be the optimal treatment of choice in

adult patients with R/R B-ALL with BMB ≥ 50% if there are no

resource limitations (high consensus). Concurrent use of InO with

intrathecal chemotherapy was agreed upon for R/R B-ALL patients

with systemic relapse and CNS disease (moderate consensus). To

balance the risk of relapse against the potential risk of conditioning

regimen-related toxicity, 4–6 weeks was agreed upon between the

last dose of InO and allo-HCT (high consensus). Regarding the

duration between the last dose of InO and the allo-HCT (where

there is a need to start maintenance therapy or another

chemotherapy schedule as a bridge for time to transplant), there

was an agreement that if the transplant is delayed more than 6

weeks, there is a need to start such therapy as early as possible.

However, no consensus was achieved regarding duration with

opinions varying between 4 and 8 weeks.

Real-world practice for early or late first relapse: In patients

with financial constraints or prior allo-HCT at first relapse, experts

recommended standard-intensive chemotherapy (with TKI for Ph+

B-ALL patients) followed by allo-HCT (high consensus). For late

relapse, risk stratification and considerations for transplant would

depend upon the protocol.

Optimal choice of therapy for early or late second and
subsequent relapse: For subsequent relapses, CAR-T therapy (if

available) or palliative care (in the absence of CAR-T therapy) was

suggested (early or late; medullary/extramedullary), assuming that

immunotherapy has already been used in the first relapse

(high consensus).

Real-world practice for early or late second and subsequent
relapse: No consensus was achieved for the treatment of patients

with R/R B-ALL (Ph+ or Ph−) in post-transplant second or

subsequent relapse.

Isolated testicular relapse is not treated differently from other

relapses if it is an early relapse (high consensus). There was no

consensus on whether isolated testicular relapse should be treated

differently from other relapses in case of late relapse. There was a

divided opinion between palliative care, low-intensity

chemotherapy, and immunotherapy regarding the optimal choice

of therapy for older R/R B-ALL patients (aged ≥ 60) unfit for

standard-intensity chemotherapy (no consensus).
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Table 5 summarizes expert recommendations for the

management of R/R B-ALL patients.
4 Discussion

The survival rates for patients with ALL have improved in the

recent decade. Improvements are largely due to advances in the

understanding of disease pathogenesis, molecular genetics,

incorporation of MRD testing, advent of new therapeutic agents,
Frontiers in Oncology 0934
adoption of risk-directed treatment, use of allo-HCT, and

improvements in supportive care. In recent times, novel targeted

immunotherapies, including monoclonal antibodies, antibody–

drug conjugates, and cellular therapies, have shown significant

promise in R/R settings. The biggest problem for resource-poor

countries like India is devising treatment strategies that will enable

patients to avail treatment at reasonable costs and obtain substantial

treatment benefits. High out-of-pocket expenditures for ALL

treatment and the absence of a nationwide comprehensive

universal health insurance scheme are some of the biggest

constraints in the management of ALL in India.
TABLE 5 Choice of therapy in relapsed/refractory B-ALL: Summary of expert consensus/recommendations.

•Optimal* choice of therapy for R/R Ph+ or Ph− B-ALL patients in the first relapse:

○ Use of immunotherapy agents (InO or blinatumomab) followed by allo-HCT is the optimal choice of therapy for R/R Ph+ or Ph− B-ALL patients in the first
relapse. The addition of TKI should always be considered for Ph+ B-ALL patients. The treatment approach remains the same for early and late relapse (medullary
and extramedullary) (high consensus).

○ Important determinants of allo-HCT include donor availability, depth of remission, comorbidities, and social support. Immunotherapy (preferably InO) is the
recommended choice of therapy that would yield the best outcomes if offered in the first salvage (high consensus).

○ In patients with persistent residual disease, alternative treatment approaches such as immunotherapies can enhance treatment outcomes. MRD negativity has a
significant impact on transplant outcomes. The choice of agent to achieve MRD negativity can be InO or blinatumomab (high consensus). Treatment with InO
before transplant is associated with both improved CR and MRD negativity (moderate consensus).

○ During treatment with InO, cytoreduction is necessary for those with WBC >10,000/µL (moderate consensus). Monitoring of liver enzymes is essential during
treatment with InO (high consensus).

○ Concurrent use of InO with intrathecal chemotherapy is recommended for R/R B-ALL patients with systemic relapse and CNS disease (moderate consensus).

○ The ideal period from the last dose of InO before proceeding with a transplant can be between 4 and 6 weeks. It is important to achieve a balance between
preventing VOD and the risk of relapse (high consensus).

○ Conventional maintenance therapy for 2 years is recommended for patients in remission after 6 cycles of InO, who do not undergo transplant (high consensus).

•Real-world** choice of therapy for R/R Ph+ or Ph− B-ALL patients in first relapse (high consensus):

○ Consensus was reached on the use of standard-intensive chemotherapy (with TKI for Ph+ patients) followed by transplant.

○ For late relapse, risk stratification and considerations for transplant would depend upon the protocol.

•Optimal* choice of therapy for R/R Ph+ or Ph− B-ALL patients in second and subsequent relapse (high consensus):

○ CAR-T therapy is preferred if available in clinical trial settings. Palliative care is to be considered in the absence of CAR-T therapy. This is assuming that
immunotherapy has already been used in the first relapse. The treatment approach remains the same for early and late relapse (medullary and extramedullary).

•Real-world**choice of therapy for R/R Ph+ or Ph− B-ALL patients in post-transplant second or subsequent relapse (no consensus):

○ For B-ALL patients with early isolated medullary relapse, responses were split between (i) palliative care and (ii) immunotherapy (InO/blinatumomab) followed by
allo-HCT.

○ For B-ALL patients with early isolated extramedullary relapse, responses were split between (i) palliative care and (ii) TKI (if Ph+) and/or chemotherapy followed
by allo-HCT.

○ For B-ALL patients with late relapse (both isolated medullary and isolated extramedullary), responses were split among (i) palliative care; (ii) TKI (if Ph+) and/or
standard-intensive chemotherapy followed by allo-HCT; (iii) TKI (if Ph+) and/or standard-intensive chemotherapy; and (iv) immunotherapy (InO/blinatumomab)
followed by allo-HCT.

•Isolated testicular relapse is not treated differently from other relapses if it is an early relapse (high consensus). There was no consensus on whether isolated testicular
relapse should be treated differently from other relapses in case of late relapse.

•Optimal* choice of treatment for R/R B-ALL patients with a high disease burden:

○ InO in adult patients with BMB percentage ≥50% (high consensus).

•Real-world** choice of treatment for R/R B-ALL patients with a high disease burden:

○ Standard-intensive chemotherapy (with TKI if Ph+) (high consensus).
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Currently, there are no country-specific guidelines/

recommendations for the diagnosis and management of B-ALL from

an Indian perspective. Moreover, due to the scarcity of well-designed

randomized controlled trials conducted in India, oncologists rely on

data from theWestern world. There is a lack of consensus on the utility

of treatment options in frontline and R/R settings. To the best of our

knowledge, this is the first practical consensus document to guide

clinicians on diagnosis, risk assessment, and treatment approach in line

with the latest available evidence and guideline recommendations in

Western countries. This consensus document will offer guidance to

Indian hematologists/oncologists and help achieve consistency in B-

ALL management across various healthcare settings.

Strengths: The panel members were selected to best represent

the breadth of knowledge and clinical expertise in the field from all

over India. There was no selection bias during the development of

the expert committee.

Limitation:
Fron
• Hematopathologists were not part of the Delphi consensus

panel. The panel was only limited to the clinicians with an

active practice in the field.

• The patient’s voice was not included in the consensus

process.

• Supportive care and follow-up are integral parts of the

management of B-ALL In the questions related to the

choice of therapy for R/R B-ALL, palliative care was one

of the options. The panel did discuss on palliative care;

however, the discussions were not elaborate.
5 Conclusion

In this article, we have summarized the Indian consensus on the

diagnosis and management of B-ALL. Experts recommended BFM-

based protocol in the front line in pediatric and AYA patients with

B-ALL. BFM/GMALL-based regimen was suggested in adult

patients with B-ALL. In R/R B-ALL patients with residual disease,

alternative treatment approaches such as immunotherapies can

enhance treatment outcomes. Immunotherapy was agreed upon

as the optimal choice of therapy that would yield the best outcomes

if offered in the first salvage in R/R B-ALL. InO was recommended

in R/R B-ALL patients with high tumor burden and CNS relapse. In

patients with financial constraints or prior transplant at first relapse

(real-world practice), standard-intensive chemotherapy (with TKI

for Ph+ B-ALL patients) followed by allo-HCT may be considered.

For older adults, because traditional chemotherapy has been poorly

tolerated, current strategies for B-ALL (both Ph+ and Ph−) rely on

palliation, low-intensity chemotherapy, or immunotherapy. CAR-T
tiers in Oncology 1035
therapy or palliation was suggested after transplant if patients

experience recurrent relapses.
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Bonemarrow failure syndromes are a heterogeneous group of diseases. With the

major advancements in diagnostic tools and sequencing techniques, these

diseases may be better classified and therapies may be further tailored.

Androgens, a historic group of drugs, were found to stimulate hematopoiesis

by enhancing the responsiveness of progenitors. These agents have been used

for decades to treat different forms of bonemarrow failure. With the availability of

more effective pathways to treat BMF, androgens are less used currently.

Nevertheless, this group of drugs may serve BMF patients where standard

therapy is contraindicated or not available. In this article, we review the

published literature addressing the use of androgens in BMF patients and we

make recommendations on how to best use this class of drugs within the current

therapeutic landscape.

KEYWORDS

androgen, aplastic anemia (AA), bone marrow failure (BMF), hematopoiesis,
anabolic steroid
Introduction

Aplastic anemia (AA) is a term used to describe a group of heterogeneous syndromes

that affect hematopoiesis and result in bone marrow failure (1). It can be inherited,

acquired or a result of exposure to certain toxins. This syndrome was first described by the

German physician Paul Ehrlich in 1885 (1). Back then, it used to be a fatal condition due to
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uncontrolled bleeding or overwhelming infections. The

advancement in allogeneic stem cell transplantation and

immunosuppressive treatment in the 20th century changed the

outcome of the disease dramatically (2, 3). The long term overall

survival of bone marrow failure (BMF) syndromes have remarkably

improved in the modern era and can exceed 90% (4). Trials

comparing transplant to conventional therapies (including

androgens) showed clear survival benefit of transplant compared

to conventional therapies (5, 6). Nevertheless, limitations and

challenges in the management of aplastic anemia and BMF still

exist. Allogeneic stem cell transplant may not be feasible for all

patients for a number of reasons, especially in countries with

limited resources. Alternatives to transplantation include

immunosuppressive therapy, growth factors, thrombopoietin

agonists and androgen therapy. The objective of this article is to

provide a comprehensive and systemic evaluation of the published

literature regarding the use of androgens in acquired and to a lesser

extent inherited bone marrow failure syndromes.
History of androgen use
in aplastic anemia

In the early days, the management of AA patients consisted of

supportive transfusions in addition to other interventions with

questionable efficacy (steroids, splenectomy, vitamins, etc.) (7).

The first indications about the possible efficacy of androgens in

bone marrow failure, were the spontaneous remission in two boys

upon pubescence and the development of myeloid metaplasia in a

patient taking testosterone for breast cancer (7). A small report

followed, where five AA patients who failed steroids and transfusion

were given testosterone and four of them achieved remarkable

responses in hemoglobin levels and transfusion independence

along with variable response in neutrophils and platelets (7). A

number of publications were reported thereafter supporting the role

of testosterone and anabolic steroids in aplastic anemia (8–11).

Overall, around 70% of patients on these studies achieved a

hemoglobin above 12 g/dl along with improvement in the platelet

and neutrophil numbers. Another multicenter trial recruited 45

patients with hypoproliferative or aregenerative anemia treated with

oxymetholone for a minimum of 3 months. Patients with

hypocellular marrow had the best response (12). In 1976, a

prospective randomized clinical trial showed superiority of

allogeneic bone marrow transplantation compared to standard of

care, which included androgen therapy (5). A clear reduction in

mortality was reported in the transplanted group compared to the

non-transplant group. Currently, with the consistent encouraging

results of transplant over the last decades, HSCT is considered the

standard of care for young, fit SAA patients with available donors.

Other trials compared different compounds of anabolic

steroids. One of these trials, showed better outcome with

methandrostenolone compared to other types of anabolic steroids,

while methanolone was associated with the worst response and

survival rates in this study (13). In another study, where 125

patients with AA were randomized to receive four different
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androgens (norethandrolone 1 mg/kg/day, fluoxymesterone 1 mg/

kg/day, stanozolol 1mg/kg/day and testosterone undecanoate 1.7

mg/kg/day) fluoxymesterone treated group had the best overall

survival. The worst survival rate was in patients on stanozolol (14).
Testosterone and anabolic
androgenic steroids

The body building action of androgens and their euphoric

action on the brain led to widespread illicit use of AAS. Hence,

all AAS were designated as class III controlled substances.

Nevertheless, these agents have shown significant benefits in a

number of disorders. Testosterone was first discovered in 1935

and found to have effects on both reproductive (androgenic) and

non-reproductive tissues (anabolic). It has been used in different

catabolic states due to its anabolic effects through nitrogen fixation

and as such protein synthesis (15). Virilization, on the other hand, is

one of the unwanted side effects. Numerous derivatives have been

developed aiming to prolong its biological activity, increase its

anabolic effects and decrease the androgenic side effects. These

derivatives are commonly known as anabolic androgenic steroids

(AAS) (15). More than a hundred synthetic products have been

developed by different reactions (17 a-alkylation, 17 b-
esterification, etc.) to overcome the rapid biotransformation of

testosterone and synthesize orally active longer acting compounds

(9, 15). Oxandrolone, oxymetholone and nandrolone are commonly

used AAS, whereas danazol (2,3-isoxazol-17a-ethynyltestosterone)
is a synthetic steroid with antiestrogenic, antigonadotropic, and

androgenic activities (15). Hepatotoxicity is a potential side effect of

anabolic steroids traditionally observed with the 17 a-alkylated
compounds (methyltestosterone, oxymetholone, oxandrolone,

norethandrolone, etc.) (16). Around a quarter of patients may

experience elevation in liver function tests while on therapy and

liver tumors are not uncommon (9). Early studies reported fatality

cases from liver disease and jaundice; however, it is unclear if these

were due to the anabolic steroids or other potential complications

observed in patients with BMF like viral hepatitis, iron overload.

The optimal recommended dose of androgens is not well defined;

however, it is well known that patients who do not respond to a

certain dose may achieve remission using a higher dose of the same

product. The recommended doses of the commonly used products

are: 2.5 mg/kg/d for oxymetholone and methanolone and 1 mg/kg/d

for methandrostenolone and Norethandrolone (9, 13). Given the

biological effects of AAS, serious adverse events can happen

(masculinization, aggression, liver dysfunction and adenomas

among others). Close medical supervision and dose adjustment to

the minimal effective dose is recommended. Androgens should be

avoided in pregnant women, cancer patients (prostate, breast, etc.),

patients with nephrotic syndrome or liver dysfunction and patients

with hypercalcemia of malignancy. The androgen side effects

(flushing, acne, hirsutism, change in voice, others) usually

disappear quickly after discontinuation (17). Table 1 is a

summary of side effects and authors’ recommendations on how to

mitigate these.
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Immunosuppression and androgens
therapy in aplastic anemia

A randomized trial compared anti-lymphocyte globulin (ALG)

(with androgens and haploidentical HSCT vs. Androgens alone)

showed 76% vs. 31% survival respectively at two years (p <0.002)

(18). Another trial randomized 121 patients to receive anti-

thymocyte globulin (ATG) alone or ATG with androgens showed

similar response (44% vs 42% respectively) and survival rates (19).

In a subsequent trial, 15 patients received ATG and methanolone

and 15 patients received ATG alone (20). The response rate was

73% in the combination group with eight complete responses

compared to 33% in the ATG alone group with two complete

responses (P = 0.01). The difference in survival (87% in the

combination arm vs 43%) was not statistically significant. Shahidi

et al. treated 23 AA patients with oxymetholone and cyclosporine

combination. Thirteen of these patients had already received ATG

and did not respond and the remaining 10 did not receive ATG. The

response rate was 38% and 70% respectively (21). Further, a

randomized controlled trial showed significant difference in

responses among males and females to androgens, where females

with low neutrophil counts had significant benefit from ATG

combined with androgens compared with ATG alone (22).

Bacigalupo et al. randomized 134 patients to ALG and

methylprednisolone with or without oxymetholone. At 4 months,

the response rate with significantly higher in patients who received

oxymetholone (56% vs 40%; P < 0.04) (22). In a relatively

recent report, Jaime-Pérez et al. reported the outcomes of fifty AA

patients (23). Thirteen patients were transplanted and 37 patients

were not eligible to transplant, had no access to IST, and as such

were treated with danazol (median dose 400 mg) and supportive

measures. The five-year OS was in favor of the transplant group
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(92% vs 41%, p = 0.001). The ORR in the danazol group was 46%

with a median time to respond of 3 months. Although, transplant

and IST are highly efficacious in AA, androgens continue to be an

option, even in the frontline, for transplant ineligible patients with

no access to modern IST.
Androgens for other BMF syndromes

Congenital bone marrow failure syndromes are a heterogeneous

group of cytopenias associated with various congenital defects and

cancer predisposition. HSCT is the only curative treatment for the

hematological complications related to these diseases, but many

patients are ineligible and androgens are considered the main non-

transplant modality to treat these patients. Early studies of using

androgens in these patients showed favorable responses (8).

Oxymetholone and danazol are frequently used for Fanconi

anemia (FA) and dyskeratosis congenita (DC) patients with

responses reaching up to 80% (24–26). Diamond-Blackfan anemia

patients are usually treated with steroids but many of them fail

steroids (tolerance, side effects, relapse) and eventually receive

androgens (24). Oxymetholone is the androgen of choice for

congenital anemias with a starting dose of 0.5-2 mg/kg/day.

Expectedly, response starts within 4-8 weeks and once a

hemoglobin concentration of 12 g/dl is reached the dose is

reduced gradually to the minimum effective dose to maintain

hemoglobin between 10-12 g/dl (25). In paroxysmal nocturnal

hemoglobinuria (PNH), a rare acquired clonal stem cell disorder,

androgens were efficacious to treat the anemia part of the disease

especially in patients with hypoplasia (27–29). However, androgens

have no effect on hemolysis and their impact on thrombogenesis

need to be watched closely in these patients.
TABLE 1 Potential side effects of androgens and authors’ recommendations on how to mitigate these.

Side effect Comments Mitigation plan

Virilization, Gain of body musculature Testosterone causes masculinization, flushing of skin and acne, deepening
and hoarsening of voice, changes in external genitalia

Use the smallest effective dose
whenever possible

Jaundice, hepatotoxicity, hepatoma,
hepatocellular carcinoma, Peliosis hepatis

Peliosis hepatis: blood filled enlarged sinusoids and cysts focally or
throughout the liver

Monitor Liver enzymes every 3
months
Initial Screen for hepatitis B, C,
Ferritin
Initial screening by liver US and every
6 months thereafter
Avoid concurrent hepatotoxic
medications
Consider Using non 17 alpha alkylated
androgens

Polycythemia Monitor hemoglobin Slow tapering of androgens once
normal hemoglobin is achieved

Hyperlipidemia Lipid profile return to normal within one month after stopping androgens Dietary advice to avoid excessive fat
intake
Avoid other cardiovascular risk factors
Exercise
Consider statin

Psychiatric and behavioral effects Monitor for psychiatric symptoms Use the smallest effective dose
whenever possible
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Fanconi anemia

Fanconi anemia is the prototype of inherited bone marrow

failure syndromes characterized by a number of mutations leading

to genetic instability and multiple cancer susceptibility with

frequent incidence of marrow failure and myelodysplasia (30–32).

Clinically, FA patients are characterized by diverse congenital

malformations (small stature, skeletal malformations,

hyperpigmentation, urogenital abnormalities, etc.) (32). In a small

cohort of FA patients, seven out of eight patients responded to

danazol 5 mg/kg/day and had stable counts up to 3 years (33). In

another cohort, seven out nine patients treated with oxandrolone

had a hematologic response with major side effects being elevated

liver function tests and virilzation (34). A retrospective trial

analyzed 70 patients who received androgens for FA. Out of 70

patients, 37 were evaluable. Oxymetholone was the most frequently

used androgen. Hematologic response was seen in 25 out 37

evaluable patients (68%) with a median of 6.5 g/dl improvement

in hemoglobin (median time to respond of 14 weeks), a median of

70000 platelet count increase (median time to respond of 11.5

weeks) and a median of 1350/ml improvement in neutrophils

(median time to respond of 12 weeks) (35). Virilization, liver

toxicity, liver adenomas and clonal evolution were the most

frequently reported adverse events. In the largest retrospective

trial addressing androgen use in FA patients, 66 patients were

reported; 49 received oxymetholone and 17 received danazol (36).

Danazol was started at a dose of 2-4 mg/kg/day and oxymetholone

was started at as dose of 0.5-1 mg/kg/day. After a median duration

of therapy of 18 months, 52 patients (78%) achieved hematologic

response and 30 patients (45%) had trilineage response. There was

no difference in response rates between danazol and oxymetholone.

Seven patients (11%) developed grade 3 liver toxicity that was

noticed more in patients on oxymetholone. Peliosis hepatis

developed in one patient on oxymetholone. The majority of

patients developed virilzation signs. These reports included

patients from different age groups (age range: 3 – 22 years).
Androgens for telomeropathies

Telomeres are essential for genomic stability but their length

decreases with each cellular division. Dyskeratosis congenita (DC)

is the prototype of telomeropathies. Androgens improve blood

counts and reduce transfusion frequency in telomeropathies.

Some studies have shown improvement in telomere length as well

(37–41), although other reports did not confirm this finding (42).

Apparently, the improvement in telomere length depends on the

underlying mutational profile (41). In a phase 1/2 study, danazol

(800 mg/day) was administered to patients with telomeropathies. In

12 evaluable patients, telomere elongation was achieved in all.

Hematologic response was seen in 19 of 24 evaluable patients

(79%) after 3 months of therapy. Liver toxicity (41%) and muscle

cramps (33%) were the most frequently reported side effects (37). In

another study, 26 DC patients were followed prospectively. Ten

patients received androgens and 16 were not treated. There was no
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statistical difference in telomere length in the two groups (42). Seven

out of the 10 treated patients had a consistent RBC and platelets

response to androgens. In a more recent report, seven patients were

treated with androgens (danazol, oxymetholone). All patients had

hematological response as well as significant increase in telomere

length (41). An ongoing trial (clinicaltrials.gov NCT02055456) is

evaluating nandrolone decanoate (parenteral androgen with no first

hepatic pass) in patients with telomeropathies. These reports

included patients from different age groups (age range: 3 – 66

years). Table 2 is a summary of androgen studies in AA and

BMF syndromes.
Mechanism of action and effects
on hematopoiesis

The exact mechanism of action of androgens in stimulating

hematopoiesis remains unknown, however it seems that the use of

supra-physiological doses of androgens cause erythropoiesis

expansion. This is in contrast to hematinic supplements (iron,

folate) where excess supply will not cause excessive response in

hematopoiesis. Earlier studies showed that androgens enhance the

responsiveness of erythroid progenitors to erythropoietin and

possibly enhance the growth of pluripotent and committed

granulocyte/macrophage progenitors (19). Some of the

anabolic steroids have unique properties, for example, danazol

inhibits interleukin-1 and TNF-a production (a property of

corticosteroids) and has myelosuppressive effects (43). More

recent studies showed that androgens stimulate erythropoietin

production and release, activation of the erythropoietin receptor

on progenitor cells and increase iron incorporation into the red cells

(44, 45). Additionally, androgens increase telomerase activity in

hematopoietic cells (39). Lately, a study showed that the chronic use

of oxymetholone improves hematological parameters by

diminution of quiescence and promotion of proliferation of

hematopoietic progenitors and stem cells. Oxymetholone down

regulated the transcription of osteopontin, a cytokine that up-

regulates the expression of certain interferons and interleukins,

which inhibits cellular proliferation. Hence, it was proposed that

oxymetholone suppression of osteopontin transcription induces

hematopoietic stem cell cycling (46). The earliest phase of

erythroid response is characterized by erythrocytosis that happens

shortly after initiating androgen therapy followed by delayed

improvement in hemoglobin. This delay is probably related to an

initial increase in erythrocyte destruction while patients are still

transfusion dependent. Usually, the improvement of hemoglobin

may be observed as early as 3 months or as late as 6 months after

starting androgen therapy (13). The increase in neutrophils usually

mirrors the response of hemoglobin. The response rate of

neutrophils was found to be 35.8% in one case series (8, 13).

Platelets are the latest to improve and usually show less

prominent improvement (13). The response rate of platelets is

observed in about one-third of cases. In one study, normal

platelets were achieved in 18 out of 67 patients (8, 13). Of note

that despite the minimal improvement in the numbers of
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TABLE 2 Important studies about androgens in BMF patients.

Author and
date

Number of
patients

Disease Androgen Response Comments

Camitta 1983
(18)

13 Severe acquired aplastic
anemia

Oxymetholone vs.
Antithoracic duct
lymphocyte globulin
(ATDLG)

31% OS in
androgen arm
Vs. 76% in ATG
group

ATG compared to androgen

Champlin R
1985 (19)

52 Moderate to severe Aplastic
anemia

ATG+Androgen
(oral androgen
oxymetholone or
fluoxymesterone)
Vs
ATG+placebo

ATG+Androgen
ORR 42%
ATG+Placebo
ORR 44%
P:>0.9
OS: 55 vs 50%
P:.65

Kaltwasser J
1988 (20)

30 Aplastic anemia ATG with or without oral
androgen (Methenolone)

ATG+androgen
ORR73%
ATG alone
ORR =31%
P=0.01
OS=87% vs 43%
p=0.15

Shahidi N
1990
(21)

23 Aplastic anemia oxymetholone and
cyclosporine

Post ATG failure
ORR: 38%
Not exposed to
ATG
ORR 70%

Bacigalupo A
1993 (22)

134 (69/65) Acquired aplastic anemia HALG +
methylprednisolone with or
without oxymetholone
(RCT)

ORR: 68% vs. 48%
For females:
78% vs. 27%

RCT
Response to androgen is more
prominent in females with low ANC

Shahidi NT
1961 (8)

7 Inherited aplastic anemia
Fanconi anemia

Testosterone + steroid Increase
reticulocytosis 7/7
Transfusion
independence 6/7

Most patients needed to stay on low
dose therapy

Scheckenbach
K 2012
(33)

8 Fanconi anemia Danazol ORR: 7/8

Rose SR 2014
(34)

9 Fanconi Anemia Oxandrolone ORR 7/9

Paustian L
2016 (35)

37 Fanconi anemia Oxymetholone
Danazol
Methonolone
Enanthate
Norethandrolone

ORR: 68% Median time to response 14 weeks

Ribeiro L 2015
(36)

66 Fanconi anemia Oxymetholone, danazol ORR 78%

Townsley DM
2016 (37)

27 telomere diseases Danazol ORR 79% All evaluable 12 patients had a gain in
telomere length at 24 months as
compared with baseline

HARTMANN
RC 1966 (28)

6 PNH flyoxymesterone ORR 5/6 Improved anemia in responders with
persistent low grade hemolysis

Halder R 2020
(29)

20 pediatric patients Classical PNH anemia with
hemolysis, normal platelets
and neutrophils

Danazol or stanazolol ORR 80%
CR 30%

Jaime-Pérez
2011 (23)

50 patients Aplastic anemia Danazol Vs Allogenic
transplantation

ORR in danazol
group =46%
OS (92% vs 41%, p
= 0.001). in favor of
transplant

(Continued)
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neutrophils and platelets, the clinical benefit, in terms of less

bleeding and infections is disproportionately higher (9).

Responding patients can achieve a normal hemoglobin level and a

protective platelets and neutrophils levels (8). The bone marrow

examination of patients receiving androgens show groups of

growing stromal cells, reduction of fat cells and the appearance of

erythroid hyperplasia foci. These changes are usually seen within 3

months of treatment initiation (7). In summary, response to

androgens starts 3 to 6 months after treatment initiation and

responding patients may enjoy durable response in around 50%

of cases while the other 50% will relapse with relapse being higher in

rapidly tapered patients (< 3 months) (9, 17). A second remission

can be achieved with re-treatment but these patients will need

continuous androgen therapy thereafter (17). Upon withdrawal of

androgens, the reticulocytes and hemoglobin drop within the first

month, and then stabilize during the second month with similar

effects in the neutrophils and platelets.
Practical author’s recommendations
and clinical scenarios

The diagnostic armamentarium is expanding with the use of

new and more comprehensive sequencing and molecular

techniques. These new diagnostic tools help to better delineate

these syndromes and to identify more patients with cryptic

alterations who may not benefit from immunosuppression. A

number of innovative ideas and approaches (gene therapy,

leucine, quercetin, etc.) to address the unmet needs of these

patients are in ongoing trials. Bone marrow failure patients who

are not candidates for transplant (elderly, comorbidities, no donors,

etc.) and patients with the non-severe forms are usually defaulted to

non-transplant medical interventions. In affluent countries, a

number of non-transplant options are available for this group of

patients. However, in restricted resources countries these novel

options are not readily available. Androgens are considered a classic

old group of medications that can stimulate hematopoiesis and as

such used for this group of disorders when modern resources are

not available or have failed already. Androgens result in

hematologic responses (transient in some patients however) in

most patients with FA and telomeropathies but does not alter nor

affect the risk of clonal evolution. A number of pros and cons have

to be considered when a decision is made to treat a BMF patient
Frontiers in Oncology 0643
with non-transplant modalities including the use of androgens.

Factors linked to a potential better response to androgens include

higher residual cellularity, mild to moderate cytopenia, toxin

induced BMF, women with lower absolute neutrophil count, the

use of higher dose of androgens and rapid improvement of counts

after androgen initiation (9, 13, 14). The presence of a number of

these factors in a patient may sway the managing team to consider

androgens, while the presence of contraindications may push the

team to consider alternatives. Below are selected scenarios in which

the authors’ believe androgen therapy should be considered.
- As a bridge to transplant in patients with symptomatic FA

and telomeropathies

- Older SAA patients, not candidate for HSCT and failed

standard immunosuppression therapy (IST) and

thrombopoietin mimetic (TPO) or TPO inaccessible

- Patients with renal failure precluding the use of calcineurin

inhibitors and failed TPO mimetic or TPO inaccessible

- Multiply relapsed patients after failing standard lines of

therapy

- PNH patients with no access to complement inhibitors and

parallel existing AA (AA/PNH overlap)
Currently, there are no published trials looking into the safety,

efficacy and different dosages of various AAS formulations to guide

the clinicians’ choice when treating BMF patients. New trials

looking into these issues are warranted.
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TABLE 2 Continued

Author and
date

Number of
patients

Disease Androgen Response Comments

Payal P.
Khincha 2018
(42)

10 patients treated
with androgen vs
16 untreated

dyskeratosis congenita oxymetholone danazol,
halotestin

ORR 7/10 There was no statistical difference in
telomere length among two groups

Martin
Kirschner
2021 (41)

7 patients dyskeratosis congenita danazol, oxymetholone ORR 7/7 All patients had hematological
response as well as significant increase
in telomere length
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Hematologic malignancies comprise a diverse range of blood, bonemarrow, and

organ-related disorders that present significant challenges due to drug

resistance, relapse, and treatment failure. Cancer-associated fibroblasts (CAFs)

represent a critical component of the tumor microenvironment (TME) and have

recently emerged as potential therapeutic targets. In this comprehensive review,

we summarize the latest findings on the roles of CAFs in various hematologic

malignancies, including acute leukemia, multiple myeloma, chronic lymphocytic

leukemia, myeloproliferative neoplasms, and lymphoma. We also explore their

involvement in tumor progression, drug resistance, and the various signaling

pathways implicated in their activation and function. While the underlying

mechanisms and the existence of multiple CAF subtypes pose challenges,

targeting CAFs and their associated pathways offers a promising avenue for the

development of innovative treatments to improve patient outcomes in

hematologic malignancies.

KEYWORDS

cancer associated fibroblast (CAF), hematologic malignancies, crosstalk,
chemoresistance, therapeutic target
Introduction

Hematologic malignancies encompass a diverse array of blood, bone marrow, and

organ-related disorders. Presently, leukemias and lymphomas can be treated using drugs or

drug combinations, such as chemotherapy, targeted therapies, immunotherapy, immune

checkpoint inhibitors, and chimeric antigen receptor-T (CAR-T) cells. These treatments

have significantly enhanced patient prognoses. However, emerging drug resistance poses a

major challenge, leading to relapse and treatment failure (1).
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CAFs constitute the largest proportion of stromal cells in the

tumor microenvironment (TME) (2). The origin of CAFs remains a

subject of debate, with fibroblasts andmesenchymal stem cells (MSCs)

from bone marrow (BM) and adipose tissue reservoirs believed to be

their primary source (3). No specific markers exist for CAFs, although

elevated alpha-smooth muscle actin (aSMA) expression is considered

indicative of activated CAFs (4). Exhibiting enhanced proliferative and

migratory capabilities, CAFs significantly influence tumor progression

(5). Numerous studies have established the critical role of CAFs in

solid tumors such as pancreatic, breast, colon, gastric, and liver

malignancies (6–10). Further research has also explored targeting

mechanisms like the TGFb signaling pathway and the JAK/STAT

signaling pathway (11, 12). The significance of CAFs in tumor

progression and drug resistance is increasingly acknowledged,

making them a focal point of recent research. Promisingly, several

CAF-targeting therapies have entered clinical trials (5, 13).

The intricate interplay between CAFs and cancer cells is crucial

for their interaction and is evident in hematologic tumors as well

(Figure 1). For instance, bone marrow stromal cells can adopt CAF

phenotypes, with the latter secreting various cytokines to stimulate

tumor cell growth, infiltration, and endosteal niche reconstruction.

Concurrently, TME remodeling provides tumor stem cells

additional time for clonal reproduction, resulting in the

continuous emergence of new genetic mutations that drive disease

progression. This CAF-mediated remodeling also contributes to

drug resistance, relapse, and tumor cell progression. In this article,

we provide a comprehensive review of recent literature and

summarize the roles of CAFs in hematologic tumors, as well as

their potential value in disease treatment.

CAFs in acute leukemia (AL)

AL is characterized by the abnormal differentiation and

proliferation of hematopoietic stem cells, which impedes normal
Frontiers in Oncology 0247
hematopoiesis (14). Zhai et al. found that the presence of

abundant reticulin fibers was associated with poor outcomes in

acute myeloid leukemia (AML) (15). Their study showed that

CAFs expressing elevated levels of FSP1, aSMA, or FAP protein

were extensively distributed within the bone marrow (BM) of

AML patients. They also proposed that CAFs could potentially

shield leukemia cell lines (THP-1/K-562) from chemotherapy

(15). By targeting growth differentiation factor-15 (GDF15) or

suppressing GDF15 expression, the sensitivity of leukemic cells to

chemotherapy increased, suggesting that GDF15 secretion by

CAFs may play a crucial role in mediating the chemoprotective

effects of CAFs (15).

Pan et al. carried out a series of investigations on CAFs in B-cell

acute lymphoblastic leukemia (B-ALL) (16). They discovered that in

newly diagnosed and relapsed B-ALL patients, bone marrow

mononuclear cells had a higher percentage of CAF markers

aSMA and FAP (16). Additionally, when BM-MSCs were co-

cultured with leukemia cells, they adopted a CAF phenotype,

which led to increased production of tumor-promoting growth

factors and reduced daunorubicin-induced damage to B-ALL cells

(16). Notably, while the chemoprotective effects of MSCs and CAFs

on B-ALL were somewhat similar, CAFs proved to be more effective

than MSCs in promoting the aggressiveness of B-ALL cells (16).

Subsequent research indicated that the overexpression of TGF-

b plays a critical role in promoting the differentiation of BM-MSCs

into CAFs, which may be dependent on the SDF-1/CXCR4 pathway

(16, 17). The TGF-b receptor inhibitor LY2109761 and the CXCR4

antagonist AMD3100 both reduce CAF activation, offering a novel

approach for chemotherapeutic regimens in AL (16–18). Li et al.

isolated and cultured the first fibroblast tumor cell line, HXWMF-1,

derived from CAFs in a 6-year-old B-ALL patient. They found

compelling evidence that leukemic cells could potentially induce the

malignant transformation of CAFs in a BALB/c nude mouse

model (19).
FIGURE 1

The crosstalk between CAF origins, CAFs and hematological malignancies. CAFs can emanate from a wide array of origins, encompassing
mesenchymal stem cells, normal fibroblasts, myofibroblasts, endothelial cells, adipocyte pericytes, monocytes and macrophages, each exhibiting
distinct phenotypes. The crosstalk between CAFs and hematological malignancies plays an important role in the development of blood cancer.
Hematological malignancies are capable of facilitating the conversion of these diverse CAF origins into activated CAFs via numerous paracrine
pathways. Subsequently, these activated CAFs can enhance the malignant phenotype of hematological malignancies through paracrine routes.
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CAFs in multiple myeloma (MM)

MM is a disorder characterized by malignant plasma cell

proliferation. The TME plays a substantial role in MM

pathophysiology by secreting various cytokines that promote

plasma cell survival, proliferation, and treatment resistance (20).

Notably, the expression of CAF markers (FSP1, aSMA, FAP) in the

bone marrow (BM) of patients with active MM was significantly

higher (21). MM cells were found to induce CAF proliferation and

enhance MM cell adhesion, proliferation, and apoptosis inhibition

(21). The interaction between the two may be mediated through the

SDF-1a/CXCR4 axis and integrins (21). Ciavarella et al. discovered

that the activation levels of CAFs in MM patients at different clinical

stages correlated with the expression of the fibrinolytic system (22).

Compared to patients in the quiescent phase, CAFs in active MM

patients exhibited higher transcriptional levels of u-PAR and u-PA.

Selectively silencing u-PAR significantly suppressed CAF

phenotype and function (22). Meanwhile, Kanehira et al.

demonstrated that lysophosphatidic acid receptors 1 and 3

influenced the transition of MSCs to CAF differentiation,

resulting in distinct outcomes (23).

Several targeted therapies for MM have emerged, but most have

encountered drug resistance. For example, bortezomib, the first

protease inhibitor approved by the FDA for MM treatment, has

demonstrated limited efficacy in most patients due to the

development of drug resistance (24). Several studies have

investigated the vital role CAFs play in this issue. In vitro

experiments indicated that CAFs from bortezomib-resistant

patients inhibited bortezomib-induced apoptosis in MM cells. It is

well-known that cellular autophagy contributes to drug resistance.

When bortezomib-resistant CAFs are exposed to bortezomib, the

autocrine TGF-pathway, which fosters autophagy, may become

activated. Conversely, using TbR-I/II inhibitors to block Smad2/3

and autophagic pathways may help counteract MM resistance (25).

CAR-T treatments targeting BCMA can detect and eradicate

malignant plasma cells in MM patients, making them a promising

therapeutic option. A study by Sakemura et al. revealed through ex

vivo experiments that MM-CAFs inhibited antigen-specific

proliferation of BCMA CAR-T cells via TGF-b secretion,

consequently dampening their anti-myeloma activity (26).

Simultaneously, targeting both MM cells and their CAFs with

CAR-T cells reduced drug resistance development and slowed

tumor progression, suggesting a new treatment approach (26).
CAFs in chronic lymphocytic
leukemia (CLL)

CLL is a cancer characterized by the uncontrolled growth of

mature lymphocytes in the blood, bone marrow, lymph nodes, and

spleen (27). In the context of CLL, CAFs play a critical role in

disease progress ion and interact ion with the tumor

microenvironment. CLL cells have the ability to activate the AKT

pathway and stimulate the proliferation of MSCs via platelet-

derived growth factor (PDGF) receptors (28). Furthermore, both
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bone marrow-derived MSCs and endothelial cells (ECs) can adopt a

CAF phenotype when exposed to CLL-derived exosomes (29).

These exosomes contain various molecular signals that can

influence the behavior of recipient cells. Recent research has

shown that CLL cells can trigger the transformation of BM-MSCs

into CAFs by releasing exosomes containing miR-146a, which in

turn inhibits USP16 (30). Additionally, a significant presence of

aSMA(+) stromal cells was identified in infiltrating lymph nodes,

further confirming the existence of numerous CAFs in CLL patients

(29) . CAFs play a cruc ia l role in shaping the CLL

microenvironment by influencing various immune cell functions.

They release cytokines and chemokines that contribute to T cell and

myeloid cell immunosuppression, and activate the AKT and NF-kB
pathways, all of which promote tumor progression (31).
CAFs in myeloproliferative
neoplasms (MPNs)

MPNs are malignant diseases characterized by excessive

proliferation within the myeloid lineage, and aSMA, a CAF

marker, is significantly elevated in MPN patients (32). Research

suggests that aSMA expression levels influence the self-renewal and

differentiation potential of MSCs, indicating a possible connection

between aSMA expression and MPN development and prognosis

(33). Primary myelofibrosis (PMF) is an MPN subtype

characterized by progressive myelofibrosis. The development of

myelofibrotic processes in PMF is currently believed to be

associated with excessive stimulation of MSCs by growth

factors (34).

In MPNs, lysyl oxidase (LOX), a stromal cross-linking protein,

contributes to increased bone marrow stromal deposition. The use

of a LOX inhibitor (BAPN) to decrease reticulin fibers supports

LOX’s role in myelofibrosis development (35). LOXL2 expression is

found to be elevated in MPN patients, especially those with PMF

(36). Higher levels of LOXL2 may contribute to MPN progression

by modulating the function of peripheral stromal cells that display a

cancer-associated fibroblast phenotype (36). Furthermore, LOXL2

is considered a key factor in driving the differentiation of

mesenchymal stem cells (MSCs) into CAFs (37). These

discoveries provide novel perspectives for targeted MPN

treatments. Simtuzumab, a monoclonal antibody that inhibits

LOXL2, is currently being tested in phase II clinical trials (38).

In PMF patients, there is a significant expansion of clonal

tumorigenic fibroblasts, a particular type of CAFs, which are

functionally different from normal fibroblasts. This difference may

be associated with JAK2 signaling, and these fibroblasts contribute

to the progression of myelofibrosis (34). On the other hand, the

fibroblast differentiation inhibitor SAP (PRM-151) substantially

increases the survival rate of NSG mice transplanted with PMF

bone marrow cells and reduces the development of myelofibrosis

(34). Longhitano et al. found that exposure to IGFBP-6 leads to an

increased expression of CAF markers (aSMA, FAP, TGF-b) in HS5

cells. Their research suggests that IGFBP-6 triggers the

differentiation of MSCs into CAFs and indicates a connection
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between the IGFBP-6/SHH/TLR4 axis and alterations in the PMF

microenvironment. This offers new perspectives on the

pathogenesis of fibrosis in PMF patients (39).
CAFs in lymphoma

Lymphoma is the most prevalent hematologic malignancy,

divided mainly into non-Hodgkin’s lymphoma (90%) and

Hodgkin’s lymphoma (10%) (40). CAF-like cells and their

precursors are present in secondary lymphoid organs (SLOs) before

lymphoma onset, playing a crucial role in the progression of

malignancies. For example, fibroblastic reticular cells (FRCs) form

the structural foundation of SLOs and are essential for organ

development, T and B cell compartmentalization, and adaptive

immune response involvement. This provides a supportive

microenvironment for the proliferation of malignant B cells (41).

Numerous studies indicate that CAFs can aid lymphocyte survival by

enhancing glycolysis (42, 43). Metabolic analyses have shown that

elevated concentrations of CAF-secreted pyruvate decrease

intracellular ROS production in primary lymphoma cells, augment

tumor cell dependence on the citric acid cycle, and boost tumor cell

survival (44). Furthermore, CAFs modulate the expression of the

pyrimidine transporter protein ENT2 in tumor cells by secreting

exosomes containing miR-4717-5p, resulting in chemoresistance (43).

Diffuse large B-cell lymphoma (DLBCL), the most prevalent

lymphoma type, triggers the activation process of CAFs. Activated

CAFs display a compensatory suppressive response by increasing

PD-L1 expression and reducing the lytic-killing activity of CD8 T

cells against tumor cells (45, 46). These findings offer a fresh

perspective on the disease’s initiation. Two CAF subtypes have

been identified in adult T-cell leukemia/lymphoma (ATLL): CAFs/

EGRhigh and CAFs/EGRlow. CAFs in ATLL were found to

significantly contribute to CD4 T-cell proliferation
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(47). Additionally, CAF/EGRhigh influences CD8 and NKT cell

expansion through EGFR (47). These findings suggest potential

avenues for targeted therapy.
CAF-related targets and pathways in
hematologic malignancies

CAFs have emerged as critical contributors to hematologic

malignancies, influencing tumor progression and drug resistance.

While the underlying mechanisms of CAF activation and function

in hematologic malignancies are not yet fully understood, recent

research has highlighted several potential therapeutic targets and

pathways (48). Targeting CAFs and their associated pathways could

provide an innovative approach to treating hematologic

malignancies and enhancing patient outcomes. As research into

the interplay between CAFs and hematologic malignancies

continues, there is a promising prospect for developing novel

treatments that target CAFs and improve clinical outcomes

for patients.

Table 1 provides a summary of the latest research advancements

in CAF-related targets and pathways within the context of

hematologic malignancies.
Discussion

In recent years, the understanding of cancer biology has

expanded, leading to the identification of various cellular and

molecular players involved in tumor progression. One such player

is CAFs, which have been implicated in the progression of solid

tumors. However, their role in blood cancers remains

underexplored. In this discussion, we will delve into the potential
TABLE 1 Passways/targets associated with CAFs in hematological malignancies.

Target/
Pathway

Hematologic
Malignancy

Discovery/Advancement

TGF-b signaling
pathway

AL, MM Overexpression of TGF-b induces differentiation of BM-MSCs into CAFs; TGF-b receptor inhibitors reduce CAF activation
(16–18)

JAK/STAT
signaling
pathway

AL, PMF Clonal tumorigenic fibroblasts in PMF patients have functional differences associated with JAK2 signaling; targeting the JAK/
STAT pathway may provide a new approach for AL treatment (34)

SDF-1/CXCR4
pathway

AL, MM The activation of BM-MSCs into CAFs is dependent on the SDF-1/CXCR4 pathway; CXCR4 antagonists may reduce CAF
activation (16, 21)

Autophagy MM Bortezomib-resistant CAFs may foster drug resistance through the autocrine TGF-b pathway and autophagy; blocking the
TGF-b pathway may counteract drug resistance (25)

LOX/LOXL2 MPN LOXL2 drives MSC differentiation into CAFs and contributes to MPN progression by modulating peripheral stromal cells;
LOX inhibitors and LOXL2 inhibitors are being tested for targeted MPN treatment (35–37).

PD-1/PD-L1
pathway

DLBCL Activated CAFs increase PD-L1 expression and reduce CD8 T cell lytic-killing activity against tumor cells (45, 46)

SHH/TLR4 axis MPN IGFBP-6 may trigger the differentiation of MSCs into CAFs via the IGFBP-6/SHH/TLR4 axis (39)

Exosomal miR-
4717-5p

Lymphoma CAFs modulate ENT2 expression in tumor cells by secreting exosomes containing miR-4717-5p, resulting in
chemoresistance (43)
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involvement of CAFs in blood cancers and evaluate their suitability

as a promising therapeutic target.

To begin, it is essential to understand the role of CAFs in the

tumor microenvironment. CAFs are key stromal cells that modulate

the extracellular matrix, support angiogenesis, and produce a

myriad of growth factors and cytokines. These actions contribute

to the tumor-promoting milieu, ultimately enhancing cancer cell

survival, proliferation, and metastasis. Given their critical role in

solid tumors, it is plausible to assume that CAFs may have similar

functions in blood cancers.

Blood cancers, such as leukemia, lymphoma, and myeloma,

arise from the malignant transformation of cells in the blood, bone

marrow, or lymphatic system. Although these cancers lack the solid

tumor architecture, they still interact with the surrounding

microenvironment, which may include CAFs. For instance,

interactions between leukemia cells and bone marrow stromal

cells, including fibroblasts, have been reported to support

leukemia cell survival and contribute to therapeutic resistance.

This suggests that CAFs could be critical players in the

pathogenesis of blood cancers.

Targeting CAFs as a therapeutic strategy in blood cancers may

have several advantages. First, as stromal cells, CAFs are genetically

more stable than cancer cells, making them less likely to develop

resistance to targeted therapies. Second, by disrupting the crosstalk

between CAFs and cancer cells, the tumor-promoting

microenvironment could be altered, potentially enhancing the

efficacy of existing treatments. Finally, targeting CAFs may have a

synergistic effect when combined with other therapies, leading to

improved clinical outcomes.

However, it is important to consider the challenges and

limitations associated with targeting CAFs in blood cancers. One

of the primary challenges lies in the heterogeneity of CAFs, as they

can originate from various cell types and exhibit diverse phenotypes

and functions. This complexity may hinder the development of

specific CAF-targeted therapies and could necessitate the

identification of common signaling pathways or markers that can

be targeted across different CAF subpopulations (4, 5). Cancer

boasts a multifaceted biological composition and structure,

encompassing cancerous cells, stromal cells, and the extracellular

matrix (49). Historically, the majority of treatments have primarily

aimed at cancer cells themselves (49). However, recent research has

shed light on the significant influence the TME has on the behavior

of cancer cells and their response to therapies (49, 50). Notably,

CAFs, which constitute the most prevalent type of stromal cells

within the TME, play a crucial yet understated role in the inception,

progression, and metastasis of cancer (49). Consequently, focusing

research on TME and CAF markers has emerged as a pivotal

component of innovative strategies for the design and discovery

of next-generation cancer drugs (49). However, unlike the case with

solid tumors, the study of the tumor microenvironment and CAF

markers in fibroblasts associated with hematological malignancies is

still in its early stages (49, 51, 52). This remains an important area

for future exploration and research.

Another challenge is the potential for off-target effects, given

that CAFs share similarities with normal fibroblasts. Developing

therapies that selectively target CAFs without affecting healthy
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fibroblasts is essential to minimize adverse side effects.

Furthermore, the dynamic nature of the tumor microenvironment

and the reciprocal interactions between CAFs and cancer cells may

result in compensatory mechanisms that limit the efficacy of CAF-

targeted therapies. Therefore, understanding the molecular

mechanisms underlying these interactions is crucial for the

development of effective treatment strategies (53).

In light of these challenges, future research should focus on

elucidating the molecular and cellular mechanisms that govern

CAFs’ involvement in blood cancers. High-throughput screening

technologies, such as single-cell RNA sequencing, could provide

valuable insights into the heterogeneity of CAF populations and

identify potential therapeutic targets (54–56). Additionally, the

development of advanced in vitro and in vivo models that more

closely mimic the tumor microenvironment will be essential for

evaluating the safety and efficacy of novel CAF-targeted therapies.

Moreover, the potential synergistic effects of combining CAF-

targeted therapies with other treatment modalities, such as

chemotherapy, immunotherapy, and targeted therapies, should be

investigated. This combinatorial approach may help overcome

potential resistance mechanisms and improve clinical outcomes

for patients with blood cancers.

In summary, the targeting of CAFs in blood cancers presents a

promising therapeutic strategy, but it is not without challenges.

Future research should address the limitations and obstacles

associated with CAF-targeted therapies and explore the potential

benefits of combining these treatments with existing therapies. By

deepening our understanding of CAFs’ role in blood cancers and

overcoming the hurdles associated with their targeting, we may be

able to unlock new, more effective treatment options for patients

suffering from these malignancies.
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Nearly a billion people worldwide are infected with the hepatitis B Virus (HBV)

and about a third of them have chronic infection. HBV is an important cause of

morbidity and mortality, including acute and chronic hepatitis and hepatocellular

carcinoma (HCC). Screening and control of primary HBV infection through

vaccination represent a major advance in global public health, but large

sections of the world population, in both developed and underdeveloped

countries, remain unscreened and unvaccinated. In addition to being a global

cause of liver disease, an important role of HBV in lymphoma has also emerged.

First, the high risk of HBV reactivation in previously infected patients receiving

chemo-immunotherapy necessitates the systematic evaluation of HBV

serological status in all non-Hodgkin’s lymphoma (NHL) cases and preemptive

antiviral therapy for those who may have chronic or occult HBV infection.

Second, HBV has been shown to infect lymphocytes, namely B-cells, and has

been associated with a higher risk of developing B-cell lymphoma, most clearly

in countries where HBV is endemic. While the risk of HBV reactivation with

chemoimmunotherapy in NHL is well known, the role and the impact of HBV as a

global lymphoma risk factor and potential oncogenic driver in B-cells are very

poorly understood. Here, we review the clinical and scientific evidence

supporting an association between HBV and B-cell lymphoma, with a

particular focus on diffuse large B-cell lymphoma (DLBCL) and provide an

overview of the estimated impact of HBV infection on the biology and clinical

course of DLBCL. We also discuss ways to gain a better insight into the unmet

need posed by HBV in lymphoma and whether assessing immune responses to

HBV, measuring viral loads, and detecting the presence of HBV-encoded

proteins in tumor tissue could be integrated into the molecular and clinical risk

stratification of patients with DLBCL.
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1 Introduction

Viral infections are associated with several types of cancer with

widely different levels of risk in different populations and

geographical areas and the global role of viruses as oncogenic

drivers is widely recognized. Six viruses (HBV, Hepatitis C Virus

[HCV], Epstein-Barr Virus [EBV], Human papillomavirus [HPV],

Human T-Cell Lymphotropic Virus [HTLV-1], and Human Herpes

Virus-8 [HHV-8]) are classified as class I carcinogenic agents by the

International Agency for Research on Cancer (IARC) (1) and about

10% of all cancers worldwide can be attributed to viruses (2). Global

vaccination campaigns for HPV and HBV have been implemented,

and efforts to test the efficacy and safety of vaccines for EBV are

ongoing in clinical trials (NCT04645147, NCT05164094) (3). In

addition, ongoing studies show the potential of targeted therapies

for virus-associated cancers. EBV-targeting adoptive cellular

immunotherapies (4) and new treatments that use the presence of

oncogenic viruses as an intrinsic tumor-specific vulnerability are

being investigated. For example, a small molecule inhibiting the

EBV protein EBNA-1 (VK-2019) has shown promising anti-tumor

efficacy in preclinical models of EBV-positive cancers (5) and a

Phase I clinical trial of VK-2019 in nasopharyngeal carcinoma

(NPC) is ongoing (NCT04925544). Additionally, the combination

of the histone deacetylase (HDAC) inhibitor Nanatinostat and the

nucleoside analog valganciclovir (VGCV) was recently granted

orphan drug designation (ODD) for EBV-positive lymphomas by

the FDA, based on initial Phase 1/2 data (6), and an international

multi-cohort Phase 2 clinical trial (Naval-1) is ongoing

(NCT05011058) (7). These studies show the potential of

developing targeted therapies for virus-associated cancers.

Awareness of the linkage between carcinogenic viruses and

cancers remains inadequate in the public and in parts of the

medical and advocacy communities. This is the case of the

association between prior infection with HBV and risk of B-cell

lymphoma, in particular diffuse large B-cell lymphoma (DLBCL),

the most common type of aggressive B-cell lymphoma worldwide

(1). While the importance of chronic HBV infection in the

development of HCC is well established, its role as a risk factor

for DLBCL is less known. Consequently, education efforts to

increase awareness of symptoms of DLBCL among HBV

seropositive patients are inadequate, potentially leading to a delay

in diagnosis of DLBCL in this patient population. Likewise, the

impact of HBV vaccination and antiviral therapy on the risk of

developing DLBCL remains unknown.

The goal of this paper is to provide a background on HBV

infection and DLBCL, and then critically review the evidence

supporting a role for chronic HBV infection in DLBCL, outline

the criteria currently defining HBV-associated DLBCL, provide

available estimates of its frequency and distribution globally and

in the U.S., and review the distinctive aspects of HBV-associated

DLBCL that have been identified. We will also offer an assessment

of the unmet need and opportunity in terms of scientific discovery

and public health impact.
Frontiers in Oncology 0254
2 Background

2.1 Hepatitis B Virus

2.1.1 HBV as a global health problem
In the United States, 850,000 individuals are estimated to be

living with HBV (8). The prevalence of past or present HBV

infection amongst people in the U.S. is 4.3% (9). However,

populations of foreign-born minorities, with a higher prevalence

of HBV, are likely underrepresented in this calculation. This

pathogen is thought to be responsible for over 296 million

chronic infections worldwide (10). Further, in 2021, the World

Health Organization (WHO) reported that only 30.4 million people

living with HBV knew their HBV status, accounting for only 10% of

the total people in the world living with chronic HBV infection (10).

HBV infection carries a heavy financial toll for patients and

healthcare systems, with total HBV hospitalization charges in the

U.S. increasing from $357 million in 1990 to $1.5 billion in 2003

(11). In 2019, the total mean all-cause annual healthcare costs for

HBV patients with Medicare who had decompensated cirrhosis,

HCC, received liver transplants, or had compensated liver disease

was $479,595 (12). This financial burden is felt globally (13). The

significant financial and health impact of HBV makes

understanding this virus and its sequelae important.

2.1.2 HBV’s life cycle
HBV is an enveloped virus with a circular, partially double-

stranded DNA genome, which belongs to the Hepadnaviridae

family. The infectious virion consists of a lipid envelope

containing the HBV surface antigen (HBsAg). This surrounds an

inner nucleocapsid composed of the HBV core antigen (HBcAg)

complexed with virally encoded polymerase (14). The viral genome

contains 4 overlapping open reading frames that encode proteins

essential for viral replication (14). HBV entry into host cells is

mediated by low-affinity binding to heparan sulfate proteoglycans

(HSPGs), followed by high-affinity binding to sodium taurocholate

co-transporting polypeptides (NTCPs). Glypican 5 is an HSPG that

preferentially binds HBV (15, 16). HSPGs are found at the surface

and in the extracellular matrix of most human cells. At least some of

the virus’ hepatotropic nature is thought to be due to the prevalence

of glypican 5 in the liver.

2.1.3 Infection, clinical manifestations,
and outcomes

Worldwide, the most common route of HBV transmission is

perinatal transmission, especially in endemic areas (15). HBV is also

transmitted through percutaneous and mucous membrane

exposures and sexual intercourse with infected individuals (8).

Once the infection is acquired, the host can experience an acute

infection with complete recovery, a fulminant course with hepatic

failure, or a chronic infection (17).

The infection is diagnosed by detecting HBsAg and anti-

hepatitis B core IgM antibody (HBcAb) in plasma. Chronic HBV
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is characterized by the persistent presence of HBsAg in the serum

for greater than 6 months, in addition to HBcAb (18). Chronic HBV

infections are typically characterized by four phases, varying in

length and defined by laboratory results and clinical symptoms.

Mortality among adults with chronic HBV far exceeds that of

uninfected individuals. One study including 39,206 patients

concluded that those with chronic HBV infection had a 1.9-fold

(95% CI 1.1–3.3) increased hazard of all-cause mortality compared

to uninfected people, and a 13.3-fold (95% CI 3.9–45.5) increased

hazard of liver-related mortality (19). Hepatocellular carcinoma

(HCC) is closely associated with HBV, with studies showing that

chronically infected individuals have 100 times the risk of

developing HCC than non-carriers (20). Unfortunately, deaths

from chronic HBV infection are increasing, with a rising

incidence of HCC of particular concern in endemic areas like

Africa and the Western Pacific (21). Professional medical

societies, such as World Health Organization (WHO) and the

American Association for the Study of Liver Diseases (AASLD),

vary in their recommendations for screening and treatment (22).

There are significant barriers to effective HBV screening,

prevention, and treatment, with an impact that may not be

limited to chronic disease and HCC, but may include B-cell

lymphoma, specifically diffuse large B-cell lymphoma (DLBCL).
2.2 Diffuse large B-cell lymphoma

Non-Hodgkin ’s Lymphomas (NHLs) are hematologic

malignancies of mature lymphocytes and one of the more

common cancers in the United States, accounting for about 4% of

all cancers (23). DLBCL is an aggressive NHL that comprises about

30% of all lymphoma cases. It is the most common subtype of NHL

in the U.S (24) and worldwide (25). DLBCL is most prevalent in

elderly patients, with a median age at diagnosis in the 7th decade of

life. The incidence of DLBCL varies by race, with racial differences

in age and gender distribution (26–28). However, the incidence of

DLBCL increases with age for all races (27).

In clinical practice, DLBCL is frequently classified based on

immunohistochemistry (IHC)-defined cell-of-origin (COO). There

are two major subtypes, a germinal center B-cell (GCB) type and a

non-GCB type, corresponding to the activated B-cell (ABC) type

defined by gene expression profiling (29). The use of cytogenetics

and fluorescence in situ hybridization (FISH) further classify

DLBCL by identifying chromosomal translocations in tumor cells,

in particular rearrangements involving MYC (8q24), BCL-2

(18q21), and BCL-6 (3q27). DLBCL carrying genetic

rearrangements of both MYC and BCL-2 genes, with or without a

rearranged BCL-6 gene, were formerly known as double-hit (or

triple-hit if BCL-6 is also involved) lymphomas. Double hit and

triple hit (DH/TH) DLBCL represent approximately 10% of all

DLBCL and are particularly aggressive and chemotherapy-resistant.

Data are emerging about the impact of deletions or inactivating

mutations of TP53, a tumor suppressor gene involved in cell cycle

arrest and apoptosis. TP53 mutations are present in about 10% of

DLBCL cases and are an independent predictor of poor prognosis

(30, 31). More recently, next generation sequencing (NGS) studies
Frontiers in Oncology 0355
of whole genomes and transcriptomes in untreated DLBCL have

identified several genetic clusters and molecular subgroups

characterized by specific cancer-driving signatures and epigenetic

pathways, with distinct outcomes (32–34).

The International Prognostic Index (IPI) is a risk stratification

tool for DLBCL patients taking into account age, performance

status, serum lactate dehydrogenase (LDH), number of extranodal

sites, and stage (35). This scale, or one of its modifications, is the

mainstay of risk stratification in DLBCL (36). While multiple

studies report inferior outcomes in patients with EBV-positive

(37), HCV-positive (38), and HBV-positive lymphomas (39),

serological status and quantitative viral load measurements have

not been included in any of the risk-stratification tools for

lymphoma, except for plasma EBV DNA in extranodal NK/T-cell

lymphoma (ENKTL) (40).

The standard first-line therapy for most DLBCL patients is the

combina t i on o f t he chemothe r apy r e g imen CHOP

(cyclophosphamide, doxorubicin, vincristine, and prednisone),

with rituximab, a monoclonal antibody that targets the pan-B cell

surface antigen CD20. This regimen is referred to as R-CHOP. With

this regimen, 60-65% of patients are cured. The prognosis is poor

for 35-40% of patients who relapse following R-CHOP or have

refractory disease. Current research is focused on finding better

risk-stratification tools, to identify patients who will do well with R-

CHOP versus those who may require more aggressive regimens

up-front.

Patients with DH/TH DLBCL generally have more aggressive

clinical courses, with advanced-stage presentation, extranodal

involvement, higher serum LDH, and a high IPI score. DH/TH

DLBCL carries a particularly poor prognosis, with a 5-year survival

of <30% (41). TP53 is also commonly mutated in DH/TH DLBCL

and Double-Hit Signature (DHITsig)-positive DLBCL, which adds

an unfavorable feature to these patients (42). Therapeutic

approaches more aggressive than R-CHOP are often used for DH

DLBCL, but overall survival rates remain poor (43).
3 Association between hepatitis B
Virus and B-cell lymphomas

3.1 Hepatitis B Virus and
non-Hodgkin’s lymphoma

It is well known that HBV increases the risk of HCC. Studies

show that chronically HBV-infected individuals have 100 times the

risk of developing HCC than non-infected individuals (20).

Epidemiological and seroprevalence studies have shown that HBV

also increases the risk of other types of cancer, such as NHL. This

association, particularly between HBV and B-cell lymphomas, has

been documented in studies from both endemic and non-endemic

areas. A 2007 case-control study conducted in the U.S. showed that

patients (N=3,888) with chronic HBV infection were 2.8 times more

likely to develop NHL than matched controls (N=205,203; HR =

2.80, 95% CI = 1.16-6.75). This study controlled for age, race, sex,

income, Charlson comorbidity index, study site, and HCV infection

(44). A recent 2018 meta-analysis of 58 published studies included
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data on 53,714 NHL cases and 1,778,591 controls. The studies were

from Asia (N=46), Europe (N=8), North America (N=2), Africa

(N=1) and Oceania (N=1). The meta-analysis found that HBV-

infected individuals were 2.5 times more likely to develop NHL than

non-infected individuals (45). These findings have been replicated

(46, 47). A recent cohort study by Spradling (47) used data from the

U.S. National Cancer Institute (NCI) and the National Program of

Cancer Registries to assess the incidence of specific cancers in

patients ≥20 years old with HBV compared to non-HBV-infected
Frontiers in Oncology 0456
patients of the same age range. Patients with previous or current

HCV or Human Immunodeficiency Virus (HIV) coinfection were

excluded. Results showed, with a 95% confidence interval, that

patients with HBV had over 2.5 times the risk of developing NHL

compared to the general population. Thus, multiple case-control

and cohort studies from endemic and non-endemic areas show that

HBV infection is associated with a 2-3 fold higher risk of developing

NHL, compared to controls, leading to the question of the

mechanism behind this association (Table 1, Figure 1).
TABLE 1 Summary of studies analyzing HBV and its effect on Non-Hodgkin Lymphoma (NHL) and Diffuse Large B-Cell Lymphoma (DLBCL).

Study (Year) Location Sample Key Findings

An J, Kim JW,
Shim JH, et al.
(2018) (48)

South Korea 95,034 patients with
non-hepatocellular
malignancy, 118,891
controls

HBV was positively associated with DLBCL (AOR 1.75, p = 0.003 for men, AOR
4.37, p < 0.001 for women) when compared to other B-NHLs

Cheng C-L, Huang
S-C, Chen J-H,
et al. (2020) (49)

Taiwan 416 DLBCL cases Compared with DLBCL patients who were HBsAg-negative, HBsAg-positive
patients had a lower overall response rate (ORR) (76.5% vs. 85.5%, p = .043),
poorer 5-year overall survival (OS) rate (57.2% vs. 73.5%, p <.001), and shorter 5-
year progression-free survival (PFS) rate (47.2% vs. 60.7%, p = .013).

Dalia S, Chavez J,
Castillo JJ, Sokol L.
(2013) (50)

Asia, Australia, Europe, U.S. 1,377 NHL cases and
2,633,274 controls

HBV was positively associated with all NHL subsets when compared with the
control population (OR 2.24; 95% CI 1.80 – 2.78; p ¾ 0.001). HBV was positively
associated with DLBCL specifically (OR 2.05; 95% CI 1.25 – 3.35; p ¾ 0.001)

Kim M, Lee YK,
Park B, Oh DJ,
Choi HG. (2020)
(51)

South Korea 929 NHL cases, 3716
controls

HBV rates were higher in the NHL group than in the control group (OR 3.25; 95%
CI 1.99 – 5.31; p < 0.001)

Lai Y-R, Chang
YL, Lee CH, Tsai
TH, Huang KH,
Lee CY. (2022)
(52)

Taiwan 54,157 HBV or HCV
cases and 270,785
controls

Incidence of NHL was significantly higher in patients with HBV than in patients
from the general population (HR 1.49; 95% CI 1.94 – 3.19)

Li M, Gan Y, Fan
C, et al. (2018)
(45)

Africa, Asia, Europe, North
America, Oceania

53,714 NHL cases and
1,778,591 controls.

HBV infected individuals were 2.5 times more likely to develop NHL than non-
infected individuals. (95% CI 2.20 – 2.83)

Li M, Shen Y,
Chen Y, et al.
(2020) (53)

China 411 NHL cases, 957
controls

Positive rates of HBsAg (OR 3.11; 95% CI 2.20 – 4.41) and HBeAg (OR 3.99; 95%
CI 1.73 0 9.91) were significantly higher in patients with NHL. Prevalence of
HBsAg was significantly increased in B NHL (OR 3.36; 95% CI 2.33 – 4.84) but
not in T-cell NHL.

Mahale P, Engels
EA, Koshiol J.
(2019) (46)

U.S. 1,825,316 first cancer
diagnoses and 200,000
controls

HBV was positively associated with DLBCL (OR 1.24; 95% CI 1.06 – 1.46)

Nath A, Agarwal
R, Malhotra P,
Varma S. (2010)
(54)

China, Egypt, Italy, Japan,
Romania, Saudi Arabia,
Singapore, South Korea, Turkey

3,262 NHL patients with
1,523,205 controls and
3,888 HBV patients with
205,203 controls

HBV was positively associated with NHL when compared with the control
population (OR 2.56; 95% CI 2.24 – 2.92)

Spradling PR, Xing
J, Zhong Y, et al.
(2022) (47)

U.S. 5,773 HBV cases Compared with the general population, substantially higher incidence among
HBV-infected patients was observed for NHL (SRR 2.52)

Ulcickas Yood M,
Quesenberry CP,
Guo D, et al.
(2007) (44)

U.S. 3,888 chronic HBV
patients and 205,203
controls

Patients with chronic HBV infection were 2.8 times more likely to develop NHL
than matched controls (HR = 2.80, 95% CI = 1.16-6.75)

Yi H, Chen JJ, Cen
H, Yan W, Tan
XH. (2014) (55)

China, Denmark, France,
Germany, Greece, Italy,
Netherlands, Norway, South
Korea, Spain, Sweden, United
Kingdom

5,396 B NHL cases and
20,671 controls

HBV was positively associated with B-NHL when compared with control
population (OR 2.98; 95% CI 2.30 – 3.86)
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3.2 HBV’s Lymphotropism

The ability of HBV to infect human lymphocytes has been

reported in multiple studies but remains poorly understood

(Table 1). A 2011 study used human bone marrow (BM) from

the iliac crest of healthy volunteers aged 18-36 years, who had no

serologic evidence of current or previous HBV infection. BM cells

were exposed to HBV in vitro for 24 hours. Following a ten-week

incubation period, the BM stem cells were harvested, and their

DNA was extracted. HBsAg and HBeAg levels were then measured

using electrochemiluminescence (56). This approach assessed the

efficiency with which HBV productively infected bone marrow stem

cells in vitro, based on the expression of HBV-encoded proteins.

Results showed that the infection efficiency was comparable to its

ability to infect primary human hepatocytes and human hepatoma

cell lines (56). Later studies confirmed this finding (57). It was

further shown that the HBV residing in a patient’s BM stem cells

could infect HBV-naïve hepatocytes in transplanted livers. This

finding was important as it presented a possible source of graft re-

infection following stem cell transplantation in patients with

chronic HBV (58, 59).

During HBV’s life cycle, viral DNA can be integrated into the

genome of infected cells (60). Integrated genomes can serve as

templates for RNAs coding for viral proteins. HBV genome

integration is a primary driver of HCC. Known cancer genes such

as the telomerase reverse transcriptase (TERT) (61), mixed-lineage

leukemia 4 (MLL4) (62), and Cyclin E1 (CCNE1) (63) are

preferential integration sites in HCC and about one-third of the

genes recurrently targeted by HBV integration are cancer-related

genes (64). Recently, Svicher et al. published an overview of the

mechanisms of HBV DNA integration into immune cells,

highlighting the hypothesis that the oncogenic effect of HBV in

lymphoma is driven by the integration of HBV DNA into

lymphocytes (65). It was noted that peripheral blood
Frontiers in Oncology 0557
mononuclear cells (PBMCs) may act as a extrahepatic reservoir

for HBV infection.

HBV DNA integration has been shown to affect multiple gene

sites (65), as shown in Figure 2. A 2020 study identified the

integration of HBV DNA in the lymphoma cells of 34 individuals

with NHL (53). In total, 313 integration sites were identified. Half of

the integration occurred in intergenic regions (49.5%), and the

remaining took place in introns (44.7%), 3’-untranslated region

(1.6%), gene upstream region (1.3%), and gene downstream region

(1.3%). In the NHL samples, HBV integration had preferential

targets. Seven genes, ANKS1B, CAPZB, CTNNA3, EGFLAM,

FHOD3, HDAC4, and OPCML were found to be repeatedly

targeted by HBV DNA integration. HBV DNA is regarded as a

strong cis activator of flanking genes, so integration can influence the

expression of target genes over a long distance (60). Six of the seven

genes were found to be overexpressed in NHL, based on publicly

available databases such as TCGA. KEGG (Kyoto Encyclopedia of

Genes and Genomes) analysis of the HBV-targeted genes in NHL

revealed that terms related to developmental process and cell

differentiation, signal transduction, cell junction, and

transcriptional regulation were significantly enriched (p<.05). Axon

guidance was the most impacted pathway (p<0.0001), followed by

Ras signaling, glycosaminoglycan biosynthesis, and cytokine-

cytokine receptor interaction (p<.05). These pathways are also

enriched in studies of HBV-targeted genes in HCC which implies

that some pathways are commonly affected by HBV integration in

HCC and NHL. This study is important, as it demonstrates that HBV

DNA can integrate into the genome of NHL cells, affecting genes that

have been reported to play an oncogenic role in other cancers.

Numerous in vitro and in vivo studies have shown the

lymphotropism of HBV. In vitro, HBV was shown to be able to

infect bone marrow progenitor cells and inhibit their growth (66).

Mature lymphocytes were also shown to be infected with HBV, with

HBV mRNA found in B-cells and T-cells (67). In vivo studies, most
FIGURE 1

Timeline of published case-control and cohort studies (*) and meta-analyses (^) that observed that HBV patients are more likely to develop Non-
Hodgkin Lymphoma (NHL). HBV+ = positive for HBsAg.
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notably with chimpanzees, showed that chimpanzees with chronic

HBV infection showed HBV DNA in PMBCs (68). Svicher et. al.

further discusses the evidence that HBV infection is persistent in

hematopoietic and lymphoid cells, which may act as a site for HBV

reactivation and genome changes (65).
3.3 HBV and DLBCL

Multiple retrospective studies and meta-analyses have shown

that in patients chronically infected with HBV, the most common

type of NHL is DLBCL (16, 39, 50, 54, 55). HBV-associated DLBCL

has been shown to have an incidence of 14.3% in West Africa and,

according to a meta-analysis, has poor prognosis (69, 70). A 2018

study by An et al. (48) revealed a significantly positive link between

HBV infection and DLBCL (adjusted odds ratio [AOR] 1.75, p =

0.003 for men, and AOR 4.37, p < 0.001 for women) when

compared to other B-NHL. A 2020 study by Cheng et al. (49),

including 426 patients with DLBCL at the National Taiwan

University Hospital in Taipei, Taiwan, found that 23.6% of the

patients were positive for HBsAg. When compared to HBsAg-

patients, HBsAg+ patients were younger, diagnosed more

frequently with advanced-stage disease, had lower overall
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response rates to R-CHOP (57.2% vs 73.5%, p < 0.001), and had

shorter 5-year progression-free survival rates (47.2% vs 60.7%,

p=0.013) (49). Another 2020 study, including data from 929

patients with NHL and 3716 healthy subjects in Korea, found that

HBV rates were higher in the NHL group than in the control group

(p < 0.001). The adjusted OR of HBV infection in patients with

NHL was 3.25 (95% CI, 1.99 – 5.31) (51). Lastly, a 2022

retrospective cohort study used the nationally representative

database in Taiwan to investigate the correlation between HBV

and NHL. The study showed that the incidence rate of NHL was

significantly higher in patients with HBV than in patients from the

general population (HR, 2.49; 95% CI, 1.94 – 3.19) (52) (Table 2).

HBV proteins can be detected in tissue biopsies from patients

with DLBCL and chronic HBV infection. Huang et al. assessed

tumor biopsies from 96 HBsAg+ and 10 HBsAg- DLBCL patients

treated at five Chinese centers (16). The HBV antigen HBx, a

protein essential for viral replication, was present in the lymphoma

cells in 48.9% of HBsAg+ DLBCL patients; additionally, the HBV

antigen Pre-S2, a component of HBsAg, was detected in the

lymphoma cells of 57.2% HBsAg+ DLBCL patients. The authors

also showed that the presence of HBx antigen in DLBCL cells was

associated with high MYC expression (Table 3).

The mutational landscape of HBV-associated DLBCL in a

cohort of 275 Chinese patients was assessed in a landmark 2018

study by Ren and colleagues (39). This study showed that DLBCL

patients with concomitant HBV infection were characterized by a

younger age (median age, 42 vs. 60 years; p <.0001), more advanced

disease stage at diagnosis, and shorter overall survival. GC-type and

ABC-type DLBCL were equally frequent. An enhanced rate of

mutagenesis and an increased total mutation load were observed

in HBsAg+ DLBCL genomes (median, 15,036 vs. 9,902 mutations).

In addition, more non-silent mutations were observed in HbsAg+

DLBCLs (median, 99 vs 66). The genome-wide mutational

signatures of 60 DLBCL cases were characterized based on the 96

possible mutation types. Seven mutational signatures were extracted

from the cohort and three were significantly enriched in HBsAg+

tumors. One of the signatures was linked to APOBEC enzymes, a

family of proteins with anti-viral functions (71), suggesting that

HBV-associated DLBCLs are associated with distinct mutational

signatures. Additionally, TMSB4X, FAS, UBE2A, DDX3X, CXCR4,

KLF2, and SGK1, were significantly more mutated in the HBsAg+

group. Some of these genes are potential targets for activation-

induced cytidine deaminase (AID), the driver of somatic
FIGURE 2

HBsAg+ DLBCL key gene mutations (data taken from Ren W. et al.
(39)).
TABLE 2 Summary of studies showing differential outcomes in HBV-positive and HBV-negative DLBCL patients.

Study (Year) Location Sample Key Findings

Cheng C-L, Huang S-
C, Chen J-H, et al.
(2020) (49)

Taiwan 416 DLBCL
cases

HBsAg+ patients were younger and diagnosed more frequently with advanced stage disease; these patients had
lower ORR to R-CHOP (57.2% vs 73.5%, p < 0.001) and shorter 5-year PFS rates (47.2% vs 60.7%, p=0.013),
compared to HBsAg- patients

Li M, Shen Y, Chen
Y, et al. (2020) (53)

China 411 NHL
cases, 957
controls

HBV patients had a significantly higher level of serum LDH (p < 0.001), a more advanced stage of NHL (p =
0.001), a worse ECOG performance status (p = 0.029), and a less favorable prognosis (p = 0.023).

Ren W, Ye X, Su H,
et al. (2018) (39)

China 275 DLBCL
cases

DLBCL patients with concomitant HBV infection were characterized by a younger age (median age, 42 vs 60
years; p <.0001), a more advanced disease stage at diagnosis (p = 0.0002), higher international prognostic index
(p = 0.007) and reduced overall survival.
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hypermutation (SHM) in the immunoglobulin (Ig) genes during B-

cell maturation and selection in the germinal center. The study also

showed that the frequency of chromosomal translocations involving

BCL6 was significantly increased in HBsAg+ DLBCL genomes (57%

vs 28%; p = .0472), suggesting that BCL6 dysregulation plays a role

in HBV-associated DLBCL. Finally, antigen processing and p53

signaling pathway-associated genes were significantly upregulated

in HBsAg+ DLBCLs (Figure 3). These mutations or deletions carry

a particularly poor prognosis for DLBCL. Interestingly, most of the

genes that were mutated in HBV-associated DLBCLs were not

mutated in HBV-associated HCC or HBV-positive lung

adenocarcinoma, suggesting that genetic alterations found in

HBV-associated DLBCL may be B-cell specific. The finding of

APOBEC signatures and the lack of sequence homology of the

CD3 region on characterization of the V(D)J region of
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immunoglobulin heavy chain (IgH) suggest that the lymphoma

was due to direct carcinogenic effects of the virus rather than due to

chronic antigen stimulation. Based on these observations, the

authors proposed that HBsAg+ DLBCL should be considered and

classified as a distinct subtype of DLBCL (Table 4).
4 Open questions and
future directions

Most of the sero-epidemiological studies that have assessed the

link between B-cell NHL and HBV, and in particular the impact of

chronic HBV infection on clinical outcomes, have been performed

in East Asian countries, where HBV is endemic. Several

environmental and host- or tumor-specific factors, however, may
TABLE 3 Summary of studies showing integration of HBV genome/expression of HBV genes in lymphoma.

Study
(Year)

Location Sample Key Finding

Lau KC,
Joshi SS,
Gao S,
et al.
(2020)
(57)

China, U.S. 52 HBV
cases

The replicative potential of HBV within lymphoid cells was evidenced by up-regulation of viral DNA in peripheral blood
mononuclear cells (PBMC) supernatant after ex vivo mitogen-stimulation. Increased viral replication was evidenced by
increased levels of HBV cccDNA and enhanced viral mRNA expression.

Li M,
Shen Y,
Chen Y,
et al.
(2020)
(53)

China 411 NHL
cases, 957
controls

HBsAg, HBcAg, and HBV DNA were detected in 34.4%, 45.2%, and 47.0% of the NHL tissues, respectively. There was a total
of 313 HBV integration sites isolated from the NHL tissues. Terms related to developmental process and cell differentiation,
signal transduction, cell junction, and transcriptional regulation were significantly enriched (p<.05). Axon guidance was the
most impacted pathway (p<0.0001), followed by Ras signaling, glycosaminoglycan biosynthesis, and cytokine-cytokine receptor
interaction (p<.05). These pathways are also enriched in studies of HBV-targeted genes in HCC which implies that some
pathways are commonly affected by HBV integration in HCC and NHL.

Ma R,
Xing Q,
Shao L,
et al.
(2011)
(56)

––– ––– Results showed that the ability of HBV to infect bone marrow stem cells in vitro was comparable to its ability to infect primary
human hepatocytes and human hepatoma cell lines.
FIGURE 3

Comparison of mutated genes from HBsAg+ and HBsAg- DLBCL (data from Ren W. et al. (39)).
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confound the strength of the association between HBV infection

and clinical outcome in B-cell NHL, including DLBCL. In addition,

while two positive meta-analyses have been published, the relatively

limited sample size of each individual study (the largest study by

Ren et al. had 275 patients) and the bias inevitably present in

retrospective datasets make any final conclusion about the impact of

HBV on survival and response to treatment in DLBCL premature. It

is therefore of significant interest to determine if such findings can

be confirmed in non-endemic countries, in populations of different

racial and ethnic backgrounds, and ideally in larger studies. In terms

of ascertaining relative risk, considering that the prevalence of HBV

infection is not as high in the U.S., it will be more challenging to

validate the higher prevalence of B-NHL among patients with HBV

infection, compared to endemic countries. However, focusing on

subsets of U.S. patients with a higher prevalence of HBV infection

but not from endemic areas may mitigate this challenge. A large

enough multi-center retrospective study in North America or

Europe in an unselected DLBCL population could provide a

dataset addressing whether the higher prevalence and inferior

survival outcomes of patients with concomitant HBV and DLBCL

observed in Asia can be confirmed. If a study in non-endemic areas

were to strongly suggest or confirm the inferior clinical outcome of

DLBCL patients with concomitant HBV, it would also be important

to determine if these disparities affect specific subsets of DLBCL

patients, based on patient characteristics (ethnicity, race, age,

comorbidities) or subtype of DLBCL (cell-of-origin, double hit, or

double expressor status) defined by the standard of care methods

(IHC, FISH). These questions can be addressed by a retrospective

study, since all patients diagnosed with B-NHL in the U.S.,

including those with DLBCL, are screened for prior HBV

infection prior to initiating therapy, with serologies for HBsAg,

HBsAb, and HBcAB.

Of even greater interest is whether the mutational spectrum and

the prevalence and specificity of the genomic signatures described

by Ren and colleagues in HBV-associated DLBCL can be confirmed,

although such studies will require more resources and coordination

among centers. Given the increase in mutagenesis observed in

HBsAg+ DLBCL (39), it would be important to determine if there

is an association between HBV and one or more of the genetic
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subtypes of DLBCL defined by Schmitz et al. (34) and Chapuy et al.

(32) The off-target AID-associated mutagenesis observed in

lymphoma cases with HBV integration and the BCL6

chromosomal translocations in HBV associated DLBCL (39)

could potentially lead to a higher prevalence of DH/TH

lymphomas among HBV associated DLBCL. By specifying the

DLBCL subtypes most impacted by HBV, it might also be

possible to propose a mechanism by which HBV infection

contributes to the development of DLBCL, and more broadly, B-

cell NHL. This could also elucidate new prognostic factors and aid

in earlier detection, treatment, or prevention of NHL in chronic

HBV patients. Finally, it remains unclear, even from the

retrospective studies conducted in Asia, whether past HBV

exposure (HBsAg-, HBcAb+) confers an increased risk of B-NHL

and worse clinical outcomes for B-NHL, or whether the presence of

chronic HBV infection (HBsAg+, HBcAb+) is what ultimately

confers these risks (discussed below).

Because HBV virus antigens can be detected in DLBCL cells via

IHC in HBsAg+ patients using formalin-fixed paraffin-embedded

(FFPE) tissue (16), the clinical relevance of such findings can be

assessed in retrospective studies, to determine whether the presence

of HBV antigens in the lymphoma cells of HBV associated DLBCL

leads to distinct clinical characteristics or outcomes. For example:

assuming that a linkage between chronic (or past) HBV infection is

confirmed, is the presence of HBV antigens in the lymphoma cells

necessary to confer worse clinical outcomes? This will be essential in

the design of prognostic tools based on HBV status and for

developing personalized therapies for these patients.

In need of further investigation is also the issue of occult HBV

infection (OBI), defined as a condition where replication-competent

HBV DNA is present in the liver or other tissues, with or without

detectable HBV DNA in blood or plasma, in HBsAg-negative

patients. HBV genome sequences were recently detected by NGS

in plasma, normal B-cells, and tumor tissues from 40 HBsAg-

negative DLBCL patients, 27 of which (68%) had OBI (72).

Sequencing of these gene segments revealed a high frequency of

viral DNA variants, including a T1762A/A1764G missense

mutation in the basal core promoter and an HBsAg missense

mutation that could account for HBsAg negativity and therefore
TABLE 4 Summary of major genomic findings in HBV-positive DLBCL.

Study
(Year)

Location Sample Key Findings

Huang X,
Young
KH, Guo
W, et al.
(2020) (16)

China 96 HBsAg
+ and 10
HBsAg-
DLBCL
cases

The HBV antigen HBx, a protein essential for viral replication, was present in the lymphoma cells in 48.9% of HBsAg+
DLBCL patients; additionally, the HBV antigen Pre-S2, a component of HBsAg, was detected in the lymphoma cells of
57.2% HBsAg+ DLBCL patients. Notably, the authors also showed that the presence of HBx antigen in DLBCL cells was
associated with high MYC expression (p = 0.0302). The frequency of MYC gene rearrangement was significantly higher in
HBV+ DLBCL cases than in the HBV- group.

Ren W, Ye
X, Su H,
et al.
(2018) (39)

China 275
DLBCL
cases

An enhanced rate of mutagenesis and an increased total mutation load were observed in HBsAg+ DLBCL genomes. More
non-silent mutations were observed in HbsAg+ DLBCLs (p = 0.048).
TMSB4X, FAS, UBE2A, DDX3X, CXCR4, KLF2, and SGK1, were significantly more mutated in the HBsAg+ group (p <
0.05).
The frequency of chromosomal translocations involving BCL6 was significantly increased in HBsAg+ DLBCL genomes (57%
vs 28%; p = .0472)
Antigen processing and p53 signaling pathway-associated genes were significantly upregulated in HBsAg+ DLBCLs (p =
0.015 and 0.036, respectively), as were BCL6-trageted, ZFP36L1-bound, and FOXO1-bound genes (p = 0.008, 0.000, 0.002,
respectively).
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OBI status. The accumulation of viral variants could provide HBV

with a survival advantage and drive lymphomagenesis in DLBCL in

the absence of clinically overt chronic HBV infection. Additional

support for the clinical impact of OBI in patients with lymphoma

comes from studies showing that HBV reactivation in HBsAg-

negative lymphoma patients receiving chemo-immunotherapy can

occur (73–75), suggesting the need for antiviral prophylaxis in this

group, and from a case-control study from Japan showing that

patients with OBI had a higher prevalence of DLBCL than other

groups (76).

Lastly, the association of HBV with indolent B-cell NHL might

also be of interest, considering that HBV-associated follicular

lymphoma (FL) was recently reported to also have distinct

clinical and genetic features and worse outcomes (77–79).
5 Conclusions

The available evidence shows that chronic HBV infection is

associated with a higher risk of developing B-cell NHL, particularly

DLBCL, with odds ratios consistently ranging between 2.0 and 4.0.

The relative risk of lymphoma associated with HBV infection is

significantly lower compared to that of HCC, but, considering the

global prevalence of HBV, it amounts to a very high burden of

aggregate lymphoma risk. There is also evidence that DLBCL patients

with chronic HBV infection have more aggressive disease, greater

frequency of high-risk IPI, and inferior outcomes with R-CHOP,

compared to patients without chronic HBV infection. Differential

risk, clinical presentation, and outcome studies come almost

exclusively from endemic areas, such as China, Taiwan, and Japan,

and need to be confirmed in non-endemic settings. HBV-positive

DLBCL showed a distinct gene expression profile, spectrum of

somatic mutations, and genetic signatures enriched in pathways

associated with high mutagenesis, suggesting that HBV-associated

DLBCL are a distinct subtype. Finally, the risk of developing B-NHL

in patients with OBI needs to be better studied considering the

magnitude of the population at risk.
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Next generation sequencing (NGS) is a technology that broadens the horizon of

knowledge of several somatic pathologies, especially in oncological and

oncohematological pathology. In the case of NHL, the understanding of the

mechanisms of tumorigenesis, tumor proliferation and the identification of

genetic markers specific to different lymphoma subtypes led to more accurate

classification and diagnosis. Similarly, the data obtained through NGS allowed the

identification of recurrent somatic mutations that can serve as therapeutic

targets that can be inhibited and thus reducing the rate of resistant cases. The

article’s purpose is to offer a comprehensive overview of the best ways of

integrating of next-generation sequencing technologies for diagnosis,

prognosis, classification, and selection of optimal therapy from the perspective

of tailor-made medicine.

KEYWORDS

lymphomas, non-Hodgkin lymphomas, genomics, diagnosis, next-generation sequencing
1 Introduction

Non-Hodgkin’s lymphomas (NHL) are hematopoietic tumors that develop from the

malignant proliferation of the lymphatic tissue. NHLs are the most common hematological

neoplasms, accounting for roughly 3% of cancer cases worldwide. According to the most

recent GLOBOCAN data, 544,352 new cases of NHL were diagnosed worldwide in 2020

(1, 2).
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Classifications of non-Hodgkin’s lymphomas have undergone

numerous refinements and completions over time, ranging from

classifications based on the histological and immunological profile

of tumors (Rappoport classification (3), Kiel classification (4), Lukes

and Collins classification (5), etc.) to current classifications systems

(World Health Organization Classifications from 2016 and 2022

and The International Consensus Classification of Mature

Lymphoid Neoplasms (6–8)) which divides non-Hodgkin’s

lymphomas according to histological, immunohistochemical and

gene expression profiles (GEP).

Healthcare practitioners prefer also to group NHL subtypes

based on the speed of disease progression. For example, indolent B-

cell lymphomas, such as follicular lymphomas, marginal zone

lymphoma, small lymphocytic lymphoma, proceed as chronic

incurable diseases, in which the clinical course is slow-progressing

and oligosymptomatic for a long period of time but for the

treatment of which, however, regular exposure to toxic cytostatic

drugs and/or radiation therapy is required (9).

On the other hand, aggressive B-cell lymphomas represent a

heterogeneous category of lymphomas that may involve precursor

lymphoid neoplasms (B-lymphoblastic leukaemia/lymphoma NOS

and B-lymphoblastic leukaemia/lymphoma with recurrent genetic

abnormalities) as well as a variety of mature B-cell lymphomas, like

Burkitt lymphoma, mantle cell lymphoma, primary effusion

lymphoma, and diffuse large B-cell lymphoma. They have

aggressive behavior, with frequent extranodal involvement and

require immediate treatment, otherwise, resulting in patient’s

rapid desmise. Although modern treatment regimens can increase

survival in certain patients with aggressive large-cell lymphomas

(approximately 60% in diffuse B-large-cell lymphoma, about 30% in

peripheral T-cell lymphomas), disease progression remains the

leading cause of death (1, 9–11).

The notable progress in recent years should be attributed to the

advances in molecular genetics. These advancements have enabled a

shift from analyzing individual genes and markers to conducting

comprehensive studies on multiple genes or their expressed

products concurrently, particularly in the context of cancer

research (12–14). The emergence of high-tech genome-wide

research methods and their integration into publicly available

databases make it possible to obtain more detailed information

about the mechanisms of oncogenesis, explain the division of

tumors by histological types, differentiate gene networks that

determine the main stages of tumor pathogenesis, and study the

mechanisms of drug resistance (15–18).. The study of gene

expression profiles in certain types and subtypes of tumors makes

it possible to identify additional markers associated with the clinical

course, the risk of invasion and metastasis, as well as to supplement

and refine the existing classification or propose a new one based on

the molecular characteristics of the tumor (19–22).

The beginnings of gene study date back to Sanger et al. who

introduced his chain termination method for sequencing DNA in

1977 (23), that quickly gained great acceptance and popularity

around the world, becoming in fact the first generation of the DNA

sequencing technology (24, 25).
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Next-generation sequencing(NGS) is a method of sequencing

multiple DNA or RNA products in parallel. This technique is also

known by other names (eg, short-read sequencing, deep sequencing,

second-generation sequencing). In contrast to Sanger sequencing, the

speed of sequencing and the amount of DNA sequence data

generated by NGS are exponentially higher, and the cost of

production is significantly lower (26). The most complete

molecular assessment lymphoma genetics was obtained by using

whole genome sequencing of all coding sequences (exome) by high-

throughput next-generation parallel sequencing (WES). WES studies

were performed for each of the major immunomorphological

subtypes of lymphomas: DLBCL, Burkitt lymphoma, follicular

lymphoma, mantle, splenic marginal zone lymphoma, and

peripheral T-cell lymphomas (27).

The contemporary diagnosis of NHLs is based on

morphological and immunophenotypic studies, as well as

chromosomal and molecular analyses, which are indicated as

diagnostic procedures to establish high-precision diagnoses (28).

The current recommendations, however, do not provide clear

stipulations for the conditions of sequencing techniques used for

NHL diagnosis and prognosis. There is no uniform strategy at this

time, and aspects such as gene selection, sequencing platform, read

depth, and variant analysis may vary among laboratories. Therefore,

standardization of the panels is needed especially taking into

account the fact that the NGS panels of the lymphoid lineage are

becoming more accessible for clinical practice.

The purpose of this article is to provide a comprehensive

overview of the gene panels that are identified in different NHL

types by the use of NGS techniques.
2 B-cell lymphomas

B-cell lymphomas represent the predominant type of NHL

diagnosed globally. About 85-90% of NHL cases are derived from

B cells, whereas the remaining lymphomas originate from T cells or

NK cells (6, 29). This epidemiological circumstance likely explains

the greater inclination for studying the genomic and transcriptomic

features of these neoplasms by various research groups. In the

following sections, we will describe the specifics of gene expression

profiles in some of the most common types of NHL. Table 1

includes a summary of the most common GEP associated with

different types of B-cell lymphomas.
2.1 Diffuse large B cell lymphoma

Diffuse large B cell lymphoma (DLBCL) is the most frequent

type of non-Hodgkin lymphoma in the world, accounting for 30–

40% of all occurrences depending on the geographical region (44).

Traditionally, DLBCL cases were classified according to cell-of-

origin (COO), with two different subtypes described: germinal

center B-cell like (GCB) and activated B-cell like (ABC), and with

about 10–15 percent of cases remaining unclassifiable (45).
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Patients who have the GCB subtype have a better prognosis

than those who have the ABC subtype. Although COO can help

predict the outcome, the GCB and ABC subtypes are still very

heterogeneous raising the question of a more accurate prognostic

stratification (6, 44, 46).

In 2017, Reddy et al. conducted a study that used whole-exome

and transcriptome sequencing of tumors from 1,001 newly

diagnosed DLBCL patients to determine genetic drivers of the

disease and establish probable links to clinical outcomes (47).

As a result, the authors identified 150 genes that are directly

involved in the pathogenesis of DLBCL. These genes can be

classified into four main categories:
Fron
1) genes involved in signaling pathways (for example, MTOR,

PIK3R1, PIM2, BTK);

2) genes associated with transcription and translation in the

cell (for example, SF3B1, XPO1, HIST1H1E);

3) genes responsible for the stages of B cell differentiation (for

example, EBF1, IRF4, PAX5, POU2F2, YY1);

4) genes responsible for cell growth and proliferation (for

example, MYC, CHD8, BCL2).
Also, MYD88 was chosen as a critical mutation in the ABC

subtype, whereas XPO1 was chosen as an essential mutation in GCB

DLBCL. The publication is limited by the lack of explanation in case
tiers in Oncology 0366
of DNA mutation-based disease clustering, focusing only on RNA-

based or translocation-based classification with DNA

mutations (47).

Chapuy et al. in 2018, proposed a DNA-based classification of

DLBCL. In this study WES was performed on 304 patients samples.

C1–C5 were the names given to these clusters, permitting the

classification of ABC and GCB-DLBCL cases into two different

groups with favorable and adverse outcomes. ABC subtypes were

divided into two groups: a lower risk group with a putative marginal

zone origin (C1) characterized by NOTCH2 mutations/BCL6

translocation, and one with a higher risk (C5) with chromosome

18q gain with BCL2 and MALT1 gene overexpression and CD79B

and MYD88 mutations. The C2 subgroup was associated with

biallelic loss or mutation of TP53 and widespread somatic copy

number alterations. Additionally, C2 tumors frequently showed

copy loss of 9p21.13/CDKN2A and 13q14.2/RB1. Two other

subtypes of the GCB were identified (C3 and C4). C4, which was

associated with low risk disease and revealed mutations impacting

the BCR/PI3K, JAK/STAT, and BRAF pathways. Conversely,

mutations impacting BCL2 translocation, PTEN, and epigenetic

mediators such as KMT2D, CREBBP, and EZH2 were all linked to

the poorer prognosis of the C3 subgroup (17).

Schmitz et al. used whole-exome and transcriptome sequencing,

DNA copy number analysis, and deep targeted amplicon

sequencing to examine data from 574 DLBCL patients. As a

result, four different subtypes of DLBCL were identified: MCD

(based on the presence of MYD88L265P and CD79B mutations),

BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based

on the presence of NOTCH1 mutations), and EZB (based on the

presence of EZH2 mutations and BCL2 translocations) (30). There

are numerous parallels between Chapuy’s and Schmitz’s subgroups,

including the following: C1 resembles the BN2 group, C3 overalps

EZB, and C5 is similar to MCD.

A follow-up to the findings of Schmitz et al. was the research

done by Wright et al. examining the initially unclassified cases. The

researchers identified two other subtypes, one with high levels of

aneuploidy and mutation of TP53, and the second ST2 (SGK1 and

TET2 mutations). These corresponded closely to the Chapuy

subgroups, C2 and C4. Thus, each of the five Chapuy clusters

could now be mapped to one of the Schmitz genetic subgroups.

LymphGen is the name given to this classification at the moment

(31). The correlation between these three molecular classifications is

shown in Figure 1.

Recently, studies incorporating clinical, biochemical, and

genetic data into multimodal machine learning models have

yielded to the elaboration of a gene expression profiling tool that

is offering encouraging results in terms of more accurate DLBCL

prognostication (48).
2.2 Follicular lymphoma

Follicular lymphoma (FL) represents the second most common

non-Hodgkin lymphoma and the most prevalent indolent

lymphoma. The chromosomal translocation t(14;18)(q32:q21), in

which the immunoglobulin heavy chain (IGH) enhancer region at
TABLE 1 Genetic profile of B cell lymphomas.

Type of
lymphoma

Genetic profile References

Diffuse large B cell
lymphoma, GCB
subtype

BCL2/BCL6, EZH2,GNA13, IRF8,
MYC, SGK1, STAT3, TNFR14

(17) (30, 31) (6)
(32)

Diffuse large B cell
lymphoma, ABC
subtype

CD79b, EP300, KMT2D, MYD88d,
PIM1, PRDM1

(17, 30, 31) (6)
(32)

Follicular
lymphoma

DTX1, EP300, EZH2, ARID1A,
CREBBP, CARD11, FOXO1,
HIST1H1E, MEF2B, NOTCH2,
UBE2A

(33, 34) (32)
(35)

Marginal zone
lymphoma

BTK, NOTCH2, BCL10, BIRC3,
CARD11, KLF2, PLCG2, PTPRD

(32, 36)

Mantle zone
lymphoma

BTK, NOTCH1/2, MALT1, ATM,
BCL10, BIRC3, CDKN2A, IKBKB,
MAP3K14, NSD2, PLCG2,
SMARCA4, TP53, TRAF2

(37) (38, 39)
(32) (40)

Small lymphocytic
lymphoma/
Chronic
lymphocytic
leukemia

ATM, BIRC3, BTK, NOTCH1,
PLCG2, POT1, SF3B1, TP53d

(32, 41) (42)

Primary
mediastinal large
B-cell lymphoma

STAT6, XPO1, B2M, NFKBIE,
PTPN1,TNFAIP3

(6, 32) (43)

Burkitt lymphoma ID3, TCF3, CCND3, TP53, CDKN2A,
MYC, DDX3X, PTEN, PIK3R1,
ARID1A, SMARCA4, GNA13, ROCK1

(6, 32)
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14q32 and the B-cell lymphoma 2 (BCL2) gene at 18q21 are

juxtaposed, is the hallmark of FL, which is identified in about

90% of cases (49). NGS research has been useful not only in creating

a list of genomic events that occur in addition to t(14;18), but also in

identifying new potential genetic drivers. The high frequency of

mutations affecting epigenetic control is the second distinguishing

feature of FL.

Deregulation of such processes (e.g. aberrant DNA

hypermethylation) has been recognized as a central feature of

hematologic malignancies, and FL in particular, observed in 80%

of cases (50). The histone methyltransferases KMT2D (90%) and

EZH2 (25%) as well as the histone acetyltransferases CREBBP (30–

60%) and EP300 (9%) are among the most commonly mutated

genes (51). A clinical-genomic score was created using seven genes

including those mentioned above, to predict Failure-Free Survival

(FFS) and Overall Survival (OS) (33).

In the era of FL treatment with conventional chemotherapy, the

scientists found that mutations in EP300, FOXO1, CREBBP, and

CARD11 (providing poor prognosis) and MEF2B, ARID1A, and

EZH2 (providing good prognosis) in association with clinical

parameters of the FLIPI score, improved PFS and OS prediction.

Furthermore, the m7-FLIPI was able to reclassify almost half of the

high-risk FLIPI patients into a low-risk m7-FLIPI group, mainly

through the discovery of EZH2 mutations (33, 34). An another

research on the m7-FLIPI score across different populations with FL

suggests that this molecular score has no impact on patients with

FL, treated in the first line, with chemotherapy-free regimens (52,

53). In addition, another study has shown that four mutant genes in

FL samples (NOTCH2, DTX1, UBE2A, and HIST1H1E) were linked

to shorter transformation time to DLBCL (35).

In a recent study performed by Gao et al., for the first time, they

studied the genomic and transcriptomic characteristics that could

predict progression of disease within 24 months (POD24). As a
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result of this study, they identified genomic markers that are able to

predict POD24 in patients with FL. So, HIST1H1D, known as a

driver mutation, was significantly correlated with POD24.

Furthermore, gains of 6q22.2 (HIST1H1D) and 18q21.33 (BCL2)

and loss of 1p36.13 (NBPF1) predicted POD24 independent of

FLIPI (54).
2.3 Mantle cell lymphoma

Mantle Cell lymphoma (MCL) is an incurable type of aggressive

lymphoma with a median survival of approximately 5 years (38, 55).

The revised World Health Organization classification from 2016

identified two molecular routes of MCL dividing them in cases of

Nodal MCL and Leukemic non-nodal MCL (10-20% of cases, more

indolent) (6, 39).

More than 30 years have passed since the first report of the well-

known hallmark genetic alteration t (11,14) (q13; q32)/CCND1::

IGH, which is seen in 95 percent of MCL cases. The result of

juxtaposition of heavy-chain immunoglobulin (IGH) enhancer

region (on 14q32) next to CCND1 (on 11q13), results in its

overexpression of Cyclin D1 (56, 57).

MCL was divided into two categories by the WHO

classification: classical MCL and indolent leukemic non-nodal

MCL. Indolent leukemic non-nodal MCL is characterized by

mutated IGHV and primarily SOX11 negativity, as well as

peripheral blood, bone marrow, and occasionally splenic

involvement but no major nodal involvement. Classical MCL is

characterised by unmutated or minimally mutated IGHV and

mostly SOX11 positivity (6, 58).

In recent years, genomic techniques have revealed mutations

with prognostic implication for MCL. A recent meta-analysis

summarized the most common mutations discovered using
FIGURE 1

The sankey plot shows the relative proportion of cases from the Chapuy et al. classification that correlates with the Schmitz et al. molecular groups
and LymphGen classification.
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molecular methods in MCL patients. Among the most common

mutant genes were: ATM (43.5%) followed by TP53 (26.8%),

CDKN2A (23.9%), and CCND1 (20.2%). Aberrations in IGH

(38.4%) and MYC (20.8%) were also discovered, mostly by

cytogenetic techniques. Other prevalent baseline mutations

included NSD2 (15%), KMT2A (8.9%), S1PR1 (8.6%), and

CARD11 (8.5%). The authors propose that a panel of these genes

shall be added to NGS panels (55). CDNK2A deletion, ATM,

NOTCH1/2, NSD2 mutations were highlighted as markers of poor

prognosis. Other mutations were described to have potential

diagnostic, therapeutic and predictive role, such as those in

BIRC3, BTK, PLCG2, SMARCA4 and MAP3K14 (40, 59, 60).

Agarwal et al. discovered genetic patterns that separates

responders and nonresponders in a prospective study performed

on patients with MCL. ATMmutations were found in the majority of

patients who had a complete response, while chromosome 9p21.1-

p24.3 loss and/or mutations in SWI-SNF chromatin-remodeling

complex components were found in all patients with primary

resistance and two-thirds of patients with relapsed disease (61).

TP53 mutation is another significant indicator of MCL

prognosis. Patients with TP53 mutation were related to the

blastoid morphology of MCL, elevated Ki-67, high-risk MIPI, and

MIPI-c. When compared to TP53-unmutated cases, TP53

mutations lead to inferior results in terms of response following

both induction and autologous stem cell transplantation, as well as

shorter PFS (62, 63).

Recently, Yi et al. (37) conducted a WES study on 152 samples

of MCL patients, classifying MCL molecularly into 4 distinct

clusters (C1-C4). C1 had a 5-year OS of 100% and it was

associated with mutant immunoglobulin heavy variable (IGHV),

CCND1 mutation, amp(11q13), and active B cell receptor (BCR)

signaling. C2 was linked with del(11q)/ATM mutations, activation

of NF-kB and DNA repair pathways, and it was associated with a 5-

year OS of 56.7%. C3 was characterized by mutations in SP140,

NOTCH1, and NSD2, as well as downregulation of BCR signaling

andMYC targets, and had a 5-year OS of 47%. C4 included patients

with del(17p)/TP53 mutations, del(13q), and del(9p), as well as

active MYC pathway and hyperproliferation signatures, and it was

associated with a poor prognosis (5-year OS of only 14.2%) (37).
3 NK/T-cell lymphomas

Malignant T/NK lymphomas(TNKL) are a distinct group of

non-Hodgkin’s lymphomas that account for an estimated 10-15%

of the total NHL, with a higher incidence in certain geographic areas

(Asia, South America) (64, 65). TNKL, like other malignant

proliferative disorders, exhibit genetic instability and

chromosomal abnormalities, which combined induce malignant

transformation. Therefore, the use of NGS and GEP represent a

chance to discover new patterns that can have real prognostic and

theranostic impact on TNKL. Despite this, for various reasons,

compared to B cell lymphomas, there are fewer reports of the use of

NGS, WES, WGS in the case of TNKL. Next, we will attempt to

compile the existing data which has genuine prognostic or
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therapeutic implications. Similarly, data on GEP within distinct

TNKLs will be reported in Table 2 separately.
3.1 Angioimunoblastic T-cell lymphoma

AITL is a distinct clinicopathologic, and genetic subtype of

peripheral T-cell lymphoma (PTCL). AITL is the second most

prevalent PTCL subtype worldwide, accounting for 15% to 20%

of all PTCL cases, and the most common subtype in the Western

world, accounting for more than 30% of all PTCL cases (18, 84, 85).

In 2007, De Leval et al. identified the cell of origin being the T

follicular helper cell (TFH) based on the use of gene expression

profile studies (86). CD28 (9.4–11.3%), DNMT3A (20–30%), IDH2

(20–45%), TET2 (47–83%), and RHOAmutations (50–70%) are the

most common genetic alterations detected in AITL.

The RHOA G17V is the result of a valine substitution for glycine

at aminoacid 17, which causes the protein to lose its ability to bind

GTP. Furthermore, patients with RHOA mutations are thought to

have enhanced microvascular density and to exhibit a high number

of follicular helper T-cell markers (87). In contrast to other

mutations such as TET2 and DNMT3A, which can occur in both

tumor and nontumor cells of AITL patients, RHOA mutations

appear to be limited to tumor cells, indicating that they play an

important role in AITL pathogenesis (67, 88).
TABLE 2 Genetic profile of T cell lymphomas.

Type of T/NK
non-Hodgkin
lymphoma

Genetic profile References

Angioimmunoblastic
T-cell lymphoma

RHOA, TET2, IDH2, DNMT3A,
CD28

(66) (67, 68)

Adult T-cell
leukemia/lymphoma

PLCG1, PRKCB, CARD11, VAV1,
IRF4, FYN, CCR4, CCR7, GATA3,
HNRNPA2B1, GPR183, CSNK2A1,
CSNK2B

(69–71)

Extranodal natural
killer/T-cell
lymphoma, nasal
type

TP53, DDX3X, MGA, STAT3,
STAT5B, MLL2, ARID1A, EP300,
ASXL3, BCOR, MSN, JAK3,
KMT2D

(72–74)

Intestinal T-cell
lymphoma

STAT5B, SETD2, JAK1, JAK3,
STAT3, SOCS1, KRAS, TP53

(75) (76)

Mycosis fungoides/
Sezary Syndrome

TCR, MYC, TOX, TP53, NCOR1,
PTEN, FAS, DNMT3A, USP28,
CAAP1, TMEM244, EHD1,
MTMR2, RNF123, TOX, BAIAP2,
CPN2, GPR128, CAPN12, FIGLA

(77–79)

Subcutaneous
panniculitis-like T-
cell lymphoma

mTOR/AKT/PI3K, HAVCR2 (80)

Peripheral T- cell
lymphoma, NOS

TP53, CDKN2A, WWOX,
ANKRD11, pY-STAT3

(81)

Breast Implant-
Associated
Anaplastic Large Cell
Lymphoma

JAK1, STAT3 (82, 83)
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TET2 encodes a 2-oxoglutarate/Fe2+–dependent oxygenase

that participates in the epigenetic control of gene expression by

catalyzing the oxidation of DNA 5-methylcytosine to 5-

hydroxymethylcytosine. TET2 was first described as a tumor

suppressor in myeloid neoplasms, but afterward, a high loss of

function in TET2 was identified in PTCL and especially AITL (89–

91). TET2 mutations are also found in hematopoietic cells in a

borderline disease called clonal hematopoiesis of indeterminate

potential (CHIP), and are associated with the risk of clonal

malignancy over time. The fact that not all people with CHIP

associated with a TET2 mutation can develop malignant

haemopathy indicates that it is necessary to acquire secondary

mutations for the malignant transformation to take place (92, 93).

Loss-of-function mutations inDNMT3A, a DNAmethyltransferase,

are common in AITL and frequently co-occur with TET2mutations

(68). Cooperation between DNMT3A and TET2mutations has been

found to result in malignant transformation in mice models (94).

In the mitochondria, the isocitrate dehydrogenase 2 (IDH2)

gene normally encodes enzymes that convert isocitrate to alpha-

ketoglutarate (2-oxoglutarate, aKG). The neomorphic enzymatic

activity of the mutant enzymes catalyzes the conversion of alpha

ketoglutarate to 2-hydroxyglutarate (2-HG), an oncometabolite

that inhibits the function of the TET family of enzymes (68).

AITL is the only type of PTCL in which recurrent IDH2

mutations appear. Mutations in position R172 of IDH2 are

specific for AITL and typica l ly co-occur with TET2

mutations (68).

TET2, DNMT3A, and IDH2 mutations occur early in

hematopoietic stem cell development, contributing to increased

clonal hematopoiesis and greater hematopoietic stem cell self-

renewal, but they do not impact T cell differentiation and are

therefore considered non-lineage impact mutations, according to

a recent review by Yu et al. (91) Late in the T-cell lineage

differentiation, mutations in RHOA, VAV1, VAV::STAP2, CD28,

CTLA::CD28, ITK::SYK, PLCy1, and TNFRSF21 induce malignant

T-cell transformation (91). Considering hypermethylation as the

fundamental pathogenetic mechanism of AITL, the use of

hypomethylating drugs appears to be a reasonable therapeutic

option, and is currently in the clinical trials phase (95, 96).
3.2 Mycosis fungoides/Sézary syndrome

The nosological entities known as Mycosis fungoides (MF) and

Sézary Syndrome (SS) account for about 75% of all Cutaneous T-

cell lymphomas (97). SS is a generalized form of the condition that

manifests itself clinically with erythrodermic lesions along with

lymph node and blood involvement at onset. MF is a disorder with

limited expansion in the skin area, being associated with a good

prognosis (77, 98).

The difference in COO can explain the clinical distinctions

between MF and SS. MF and SS develop from different subtypes of

CD4 + memory T cells; The source cell in the case of MF are T

resident memory (Trm) cells exhibiting CCR4 +/CLA +/L-selectin-/

CCR7– (TRM), which have a higher tropism to the skin and

epithelial barriers, while in the case of SS the COO are T-cell
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central memory cells (Tcm) that express CCR4 +/Lselectin +/CCR7

+, and these cells have the ability to migrate between skin, lymph

nodes and blood (99).

Recent NGS research in MF/SS has found a high rate of C>T

transitions (40–74%), a mutational signature linked to ultraviolet B

(UVB) exposure that is uncommon to be seen in other

hematological neoplasms (100–102).

Litvinov et al. described 17 genes (CCL18, CCL26, FYB, T3JAM,

MMP12, LEF1, LCK, ITK, GNLY, IL2RA, IL-26, IL-22, CCR4,

GTSF1, SYCP1, STAT5A, TOX) that identified those patients who

are at risk of progression and differentiated MF/SS from benign

dermatological diseases (103).

The accuracy of diagnosing SS using distinct gene panels has

been demonstrated by Nebozhyn et al. and Michel et al. in two

separate papers. Nebozhyn et al. used a panel of five genes (STAT4,

GATA3, PLS3, CD1D, and TRAIL) that could correctly separate

patient samples from controls with 90% accuracy. On the other

hand, Michel et al. used a signature based on four genes (PLS3,

Twist1, CD158k/KIR3DL2, and NKp46) with the ability to separate

SS samples from control samples in 100% of cases. They noted that

only the Twist1 gene has a diagnostic sensitivity of SS of 91%

(104, 105).

The largest retrospective WES evaluation of CTCL to date

utilized publicly available sequencing data from nine studies,

comprising 220 patients with CTCL, which included 186 SS

patients and 25 MF patients (106). This study identified fifty-five

putative driver genes and implicated seventeen gene mutations

previously not described as being involved in CTCL. These novel

mutations target pathways that are involved chromatin remodeling

(BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58,

RFXAP), MAPK signaling (MAP2K1, NF1), NF-kB signaling

(PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1),

RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing

(U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell

differentiation (RARA) (106). The JAK/STAT pathway, which

includes JAK1, JAK3, STAT3, and STAT5B, is frequently affected

by gain-of-function mutations and amplifications in CTCL

resulting in the hyperactivation of this signaling pathway (106).

Nevertheless, genomic studies in MF/SS do not allow to have a

complete picture as in B cell lymphomas on the prognostic

stratification of cases or the establishment of molecular

classification, this will most likely be the moment of interest for

further investigations.
4 The use of liquid biopsy in non-
Hodgkin lymphomas

Currently, the diagnosis of non-Hodgkin’s lymphoma is based

on excisional biopsy of the tumoral tissue. Tissue biopsies, however,

are invasive methods of diagnosis with a several disadvantages, such

as the risks of tissue biopsy (bleeding, infection, functional

disability, etc.), the difficulty of obtaining biopsy samples, and do

not allow the dynamic heterogeneity of the case to be assessed (107).

The concept of liquid biopsy which is a non-invasive technique,

and can be used to explore the entire mutational landscape of the
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lymphoma. Liquid biopsy allows for an evaluation of lymphoma at

the stage of diagnosis, and prognostic stratification.

Both healthy cells and malignant cells release nucleic acids

(DNA, mRNA, and miRNA) into body fluids like the cerebrospinal

fluid, peripheral blood, and urine. The term “cell-free DNA”

(cfDNA) refers to non-cell-bound DNA fragments discovered in

the circulatory system. cfDNA often contains both normal DNA

and circulating tumor DNA (ctDNA). The lysis of circulating tumor

cells (CTCs), apoptosis, necrosis, or the release of DNA from tumor

cells into the bloodstream are possible origins for the tumor-specific

part of cfDNA. Because cfDNA can emerge from both malignant

and non-malignant cells, assays for the detection of ctDNA are

more specific for tumor identification in the case of non-Hodgkin’s

lymphomas (108, 109).

Close monitoring of NHL cases by using ctDNA quantification

of liquid biopsies can identify the genetic heterogeneities that

appear between the primary tumor and the primary areas of

metastasis, as well as between various locations of metastases.

This information can then be used to find biomarkers indicative

of spreading mechanisms and lymphomatous transformation.

Multiple studies including a recent meta-analysis, have shown

higher levels of cfDNA in cancer patients compared with healthy

controls. Different subsets of lymphoma can be distinguished at the

time of diagnosis with the help of NGS-based analysis of ctDNA.

Furthermore, ctDNA load strongly reflects tumor burden, as it

appears to correlate significantly with lactate dehydrogenase (LDH)

and the International Prognostic Index (IPI), as observed in

DLBCL, NKTCL and other types of lymphomas (110–113). In

DLBCL, interim ctDNA monitoring during therapy directly

evaluates tumor kinetics response and foretells early treatment

failure. The determination of interim levels of ctDNA has a

greater sensitivity than existing imaging methods, creating a so-

called “window of opportunity” during which, the earlier initiation

of salvage therapy prior to clinical relapse to be diagnosed, has the

potential to improve outcomes (114).

In the case of DLBCL, initial levels of ctDNA are significantly

associated with the International Prognostic Index (IPI), total

metabolic tumor volume (TMTV), lactate dehydrogenase (LDH)

concentrations, and the Ann Arbor stage. Pretreatment ctDNA

concentrations have been demonstrated to be highly accurate

predictors of clinical outcomes in univariate and multivariate

analysis in those trials, and hence gain prognostic importance (43,

115, 116). ctDNA in DLBCL can also be used for the real-time

assessment of treatment response, increases in ctDNA levels and

changes in KMT2D mutation status have been found to be useful

indicators of disease progression (117). The depth of response is an

important predictor of outcomes in the post-treatment surveillance

of NHL subtypes. Relapsed NHL likely originates from MRD below

the current level of detection, and a recent systematic review

demonstrated that between 7% and 20% of DLBCL patients in

remission by PET scans will ultimately relapse (118). A recent MRD

study on DLBCL patients treated with CAR-T cell therapy has

shown better sensitivity and predictive value for progression to

treatment than the PET scan (119). This study, among others,
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suggests that liquid biopsy and NGS would create an excellent

platform for assessing the efficacy of treatments (116).

In the case of extranodal natural killer/T cell lymphoma

(ENKTCL), a recent study explored the use of ctDNA

methylation markers for diagnosing, continuously monitoring,

and predicting the prognosis. This research has proposed a score

formed by 7 ctDNA markers, namely HLX-AS1, MIR12123,

CHST12, DLK1, LINC02115, MIR3973, and NCAM, which

achieves over 90% accuracy in distinguishing ENKTCL from

nasopharyngeal carcinoma, nasopharyngitis, and normal

conditions (120).

However, despite the encouraging data of NHL evaluation by

liquid biopsies, few validation studies have been published at the

moment (121), with the vast majority of the data presented

requiring validation in further research.
5 NGS use for a personalized
approach and future perspective
of use

NHL remains a condit ion treated primari ly whit

chemoimmunotherapy. The standard of care for years has been

frontline R-CHOP, despite multiple attempts to investigate more

aggressive regimens like R-DA-EPOCH or incorporate new

therapies like obinutuzumab, bortezomib, or ibrutinib. Frontline

R-CHOP cures around 60% of DLBCL cases. Nowadays, DA-

EPOCH-R is utilized as the first-line therapy for double/triple hit

lymphomas, primary mediastinal B cell lymphoma, and HIV-

associated DLBCL.

The discovery by Wilson et al. that the co-occurrence of

mutations in MYD88 and CD79B can predict response to

ibrutinib is an illustration of possible clinical utility of genomic

profile data in DLBCL, that may have a real impact in the

practice (122).

In MCL, the data obtained through genome sequencing allowed

the identification of a group of patients in whom there are

inactivating mutations in the SWI-SNF chromatin-remodeling

complex that lead to BCL-XL upregulation and subsequent

resistance to the therapeutic combination with ibrutinib and

venetoclax (61).

Many T-cell lymphomas harbor mutations in epigenetic

regulatory genes, such as TET2, DNMT3A, and IDH2, but they

are most frequently seen in AITL. Therefore, the use of drugs from

the class of HDAC inhibitors or demethylating agents may have a

potential beneficial role.

Recently Huang et al. have proposed the DrugComboExplorer,

a computational systems biology tool that concurrently integrates

pharmacogenomics profiles of 5585 drugs and bioactive

compounds from the NIH LINCS program (Library of Integrated

Network-based Cellular Signatures) and genomic profiles for

specific cancer types (i.e., signaling pathways, interactome, and

pharmacological data). This tool does large-scale medication
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combination prediction and integrates multi-omics data from

cancer patients including non-Hodgkin lymphomas (123).

In conclusion, the knowledge provided by the genomic mapping

of non-Hodgkin’s lymphomas in near future will allow the targeting

of molecular pathways that cause treatment refractoriness or, on the

contrary, the inhibition of which is vital in stopping uncontrolled

tumor proliferation. Personalized medicine will not only select a

single mutation that it will inhibit through the action of a drug, but by

selecting molecular targets that have a synergistic costimulatory or

inhibitory effect thus self-potentiating. The increased interest in this

field confirms that the integration of genomic and transcriptomic

data will allow a better understanding of the therapy of malignant

lymphomas and of tumor resistance.
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78. Iżykowska K, Przybylski GK, Gand C, Braun FC, Grabarczyk P, Kuss AW, et al.
Genetic rearrangements result in altered gene expression and novel fusion transcripts in
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Acute lymphoblastic leukemia (ALL) poses a significant health challenge,

particularly in pediatric cases, requiring precise and rapid diagnostic

approaches. This comprehensive review explores the transformative capacity

of deep learning (DL) in enhancing ALL diagnosis and classification, focusing on

bone marrow image analysis. Examining ten studies conducted between 2013

and 2023 across various countries, including India, China, KSA, and Mexico, the

synthesis underscores the adaptability and proficiency of DL methodologies in

detecting leukemia. Innovative DL models, notably Convolutional Neural

Networks (CNNs) with Cat-Boosting, XG-Boosting, and Transfer Learning

techniques, demonstrate notable approaches. Some models achieve

outstanding accuracy, with one CNN reaching 100% in cancer cell

classification. The incorporation of novel algorithms like Cat-Swarm

Optimization and specialized CNN architectures contributes to superior

classification accuracy. Performance metrics highlight these achievements,

with models consistently outperforming traditional diagnostic methods. For

instance, a CNN with Cat-Boosting attains 100% accuracy, while others hover

around 99%, showcasing DL models’ robustness in ALL diagnosis. Despite

acknowledged challenges, such as the need for larger and more diverse

datasets, these findings underscore DL’s transformative potential in reshaping

leukemia diagnostics. The high numerical accuracies accentuate a promising

trajectory toward more efficient and accurate ALL diagnosis in clinical settings,

prompting ongoing research to address challenges and refine DL models for

optimal clinical integration.

KEYWORDS

acute lymphoblastic leukemia, bone marrow images, medical image analysis, deep
learning, convolutional neural networks, diagnosis, classification
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1 Introduction

Acute lymphoblastic leukemia (ALL) encompasses a range of

lymphoid neoplasms that originate from precursor cells of both B-

lineage and T-lineage cells (1). These neoplasms may primarily

manifest as an extensive leukemic process involving both the bone

marrow and peripheral blood, or they can display localized tissue

infiltration with limited bone marrow involvement, termed

lymphoblastic lymphoma (LBL) (2). Although ALL and LBLs

exhibit distinct clinical features, they appear to represent a

continuous biological spectrum. The current classification by the

World Health Organization categorizes these conditions as B- or T-

lymphoblastic leukemia/lymphoma (3). ALL is the most common

pediatric malignancy, with pediatric ALL constituting

approximately 80% of cases (4, 5). However, when it arises in

adults, ALL takes on a particularly different clinical presentation.

Notably, in the recent era of novel agents, not all cases of adult ALL

have a poor prognosis; in fact, some individuals now experience

good prognoses (6). In the United States, the estimated occurrence

of ALL is about 1.6 cases per 100,000 individuals (7, 8). Research

conducted among children has pinpointed genetic conditions that

make a fraction of ALL cases more likely to occur including Down

syndrome, Fanconi anemia, Bloom syndrome, and Ataxia

Telangiectasia (9–11).

The initial phase of the diagnostic process for ALL, particularly

to distinguish it from acute myeloid leukemia (AML) involves

examining the bone marrow. This is crucial because ALL, as per

its definition, invariably manifests with bone marrow participation

(12, 13). Additional specialized tests are used to complement bone

marrow evaluation such as peripheral blood smear (PBS)

assessment and flowcytometric immunophenotyping (14, 15).

However, bone marrow aspiration and biopsy remains the gold

standard for ALL diagnostic confirmation, which provides a

complete examination of cellular structure and appearance which

could help indicate prognosis and evolution of the disease later on

(16). While this approach allows for more precise classification and

subtyping, it is an invasive process that can be painful, especially in

pediatric patients, and getting appropriate samples can be difficult.

Peripheral blood smears, on the other hand, require studying blood

samples under a microscope to analyze blood cell morphology.

Although they provide a rapid and non-invasive method of

detecting blasts, their diagnostic depth may not be as extensive as

bone marrow analysis.

Artificial intelligence (AI) and machine learning (ML)

breakthroughs have sparked a revolution in medical image

analysis and hematological diseases as previously explored by our

group (17–21). Deep learning (DL) is a subset of ML that uses

artificial neural networks to learn from data. Convolutional neural

networks (CNNs) are one type of DL algorithm that has been

particularly successful in image classification tasks (22). CNNs are

designed to recognize patterns in images by using a series of

convolutional layers that extract features from the input image.

These features are then passed through a series of fully connected

layers that classify the image based on the extracted features (22).

CNNs have demonstrated exceptional ability in evaluating and
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interpreting medical images, including microscopic bone marrow

images (23, 24).

In addition to the strides made in deep learning-based

approaches, it is essential to acknowledge recent non-DL-based

works that have contributed to the field of hematological disorder

detection (25). Despite their contributions, these non-deep learning

methods often face limitations in handling the complexity and

variability present in hematological images. They may struggle to

adapt to diverse morphologies and may require extensive manual

tuning for optimal performance. DL methods, with their ability to

automatically learn hierarchical features and patterns, offer a

promising alternative that can potentially overcome some of these

limitations, providing a more adaptive and robust solution for

hematological disorder detection.

Although DL models in ALL diagnosis are widely studied, the

focus has primarily been on peripheral blood smear (PBS) samples,

neglecting the crucial bone marrow aspirates and biopsies, which

are the gold standard for leukemia diagnosis. Recent reviews have

also missed the majority of studies involving digital image analysis

of microscopic bone marrow images (26, 27). Therefore, the goal of

this review is to investigate the uses of DL in redefining ALL

diagnosis and categorization using bone marrow images, possibly

leading to the development of automated systems that assist

healthcare personnel in making precise and timely ALL

diagnoses. Performance metrics of several DL models and

architectures in the detection and/or classification of ALL will be

discussed. Furthermore, we will discuss the possible limitations and

benefits of applying these models.
2 Materials and methods

2.1 Search strategy

We developed our search strategy on the 11th of June 2023 in

the PubMed/MEDLINE database. To ensure a broad search

strategy, we used many terms, such as ‘acute lymphoblastic

leukemia’, ‘acute lymphocytic leukemia’, ‘acute lymphoid

leukemia’, ‘ALL’, ‘artificial intelligence’, ‘machine learning’, ‘deep

learning’, and ‘neural network’. The search was not restricted by

language or time frame. The developed search strategy was

transferred to Scopus, Embase, and Web of Science databases

using the Polyglot translator (28). The studies were then

transferred to EndNote X9, where duplicates were detected

and omitted.
2.2 Eligibility criteria

The review will encompass studies that meet specific inclusion

criteria: (1) utilization of human ALL samples, (2) publication in

English, (3) employment of DL techniques for diagnosing/

classifying ALL, (4) utilization of bone marrow samples, and (5)

reporting of performance metrics. Studies not meeting these criteria

will be excluded, ensuring a focused and relevant analysis.
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2.3 Study selection and screening

After applying our search strategy to the mentioned databases,

studies were transferred to EndNote X9, where duplicates were

identified and removed. Remaining articles were uploaded to the

Rayyan platform for additional screening (29). In Rayyan, titles and

abstracts were screened for preliminary eligibility by two reviewers,

and any discrepancies were settled by consensus. The whole texts of

the papers that had been determined to be eligible were then

acquired and independently double-screened for inclusion or

exclusion using the mentioned criteria, with discrepancies

resolved through screening by a third member if needed.
2.4 Data extraction

The data extraction process involved the extraction of pertinent

information from included studies, comprising the last name of the

primary author and the publication year, country of origin, dataset

utilized, the targeted outcome under investigation, the applied

validation methodologies, the employed models, and their

corresponding performance metrics including accuracy, precision,

sensitivity (recall), specificity, and F1 score. Furthermore, the

strengths and limitations associated with each model were noted.

Two investigators examined and obtained data from the eligible

study independently. When they were unable to reach an

agreement, they held a meeting with all team members. Only if it

was agreed upon in the team meeting was the study included in the

final review.
2.5 Aims

This review aims to provide an extensive examination of

contemporary DL algorithms employed for the diagnosis and

classification of ALL, with a specific emphasis on bone marrow

samples. The principal objective entails a comprehensive evaluation

of the performance of the diverse DL models featured in each study.

Concurrently, a secondary aim involves the analysis of the relative

merits and constraints of individual models in comparison

to others.
3 Results

3.1 Study selection

The PRISMA flow diagram, shown in Figure 1, depicts the

process of selecting studies for this review. Initially, our database

search yielded 496 results, with an additional article found through

manual extraction. After removing 282 duplicates with EndNote

and Rayyan, we evaluated the remaining 215 items based on their

titles and abstracts. Through this screening process, we excluded

195 articles not eligible for further screening and were left with 20

for full-text screening. We retrieved and examined the complete

texts of the 20 studies and based on a variety of reasons listed in
Frontiers in Oncology 0376
Figure 1, we eliminated 10 more articles. Ultimately, 10 studies were

included in our review.
3.2 Study characteristics and
data collection

Table 1 presents the attributes and data gathered from the

studies included in this analysis. It evaluates the effectiveness of

deep learning models implemented for the diagnosis and

categorization of ALL through bone marrow imagery. For a more

comprehensive understanding, the specific metrics for accuracy

(ACC), precision (PRE), sensitivity (SEN), specificity (SPE), and

F1-score are provided for each model. In summary, the studies

covered were published between 2013 and 2023, predominantly

originating from India (n = 5), China (n = 3), KSA (n = 1), and

Mexico (n = 1). Among these, five studies utilized the SN-AM

dataset, comprising microscopic bone marrow aspirate images from

patients diagnosed with B-cell ALL and Multiple Myeloma

(MM) (40).

Notably, Yang et al. employed the SN-AM dataset in

conjunction with the ALL-IDB1 database of peripheral blood

smear images for external validation (38). Their model’s training

and testing employed bone marrow samples from patients

representing diverse leukemia families and subtypes. Zhou et al.

introduced a novel “AI-cell platform” database for white blood cell

(WBC) classification using bone marrow images, externally

validating their model on authentic clinical samples of ALL and

acute myeloid leukemia (AML) (39). The remaining four studies

retrospectively sourced bone marrow aspirate images from hospital

records. In terms of validation methods, only two studies conducted

both external and internal validation, specifically utilizing a Train-

Test Split approach. The remaining eight studies solely relied on

internal validation via Train-Test Split (6) and k-fold cross-

validation (2). Most of the studies employed CNNs as their

classifier model, incorporating various layers, optimizations, and

supplementary algorithms. The architecture of CNNs, as adapted

from Kavitha et al, is depicted in Figure 2. A singular study deviated

by utilizing radial basis function neural networks with a fuzzy logic

algorithm in place of CNNs. The prevalence of CNNs, transfer

learning, gradient boosting algorithms, and other elements typically

associated with supervised learning tasks underscores these models’

intent for tasks involving labeled training data. Most models

exhibited remarkable performance in their designated tasks.

Notably, the models achieved high accuracy, with some reaching

100%, demonstrating the robustness of DL in ALL diagnosis.

Table 2 provides an overview of the strengths and limitations of

each DL model discussed in the review. Each model’s outcomes,

including feature selection, boosting algorithms, and optimized

hyperparameters, are highlighted as strengths. However,

limitations such as the lack of external validation, dependency on

image quality, and computational complexity are also discussed.

These strengths and limitations are crucial in evaluating the

practical applicability and potential challenges associated with

each DL model. For instance, the discussion on the lack of

external validation emphasizes the need for further validation on
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TABLE 1 Performance of DL models in ALL diagnosis and classification using bone marrow images.

Authors
(Year)

Country Dataset & Sample Size Validation
(IV/EV)

Best Model(s) ACC
(%)

PRE
(%)

SEN
(%)

SPE
(%)

F1
(%)

Devi et al.
(2023) (30)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

CNN (Convolutional Leaky
RELU) with Cat-
Boosting algorithm

100 100 99.9 100

CNN (Convolutional Leaky
RELU) with XG-
Boosting algorithm

97.12 98.5 99 97.2

Duggal et al.
(2017) (31)

India BM samples (ALL [4469],
healthy [4469])

IV (5-fold CV) Texture-CNN with an additional
SD-Layer

93.20 93.08

CNN (AlexNet) with an
additional SD-Layer

88.5 88.32

Huang et al.
(2020) (32)

China BM samples (ALL [23], AML
[53], CML [10], healthy [18])

IV
(Train-Test)

CNN (DenseNet121) with
Transfer Learning technique

99

Ikechukwu
et al.
(2022) (33)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

CNN (i-Net) 99.18 99.30 99.18 99.19

Kavitha et al.
(2022) (34)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

CNN with Cat-
Swarm Optimization

99.6 99.2 99.5 99.3 99.89

Kumar et al.
(2020) (35)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

Dense CNN (DCNN) 97.25 100 93.97 95.19 96.89

(Continued)
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FIGURE 1

Schematic representation of the literature review process.
sin.org

https://doi.org/10.3389/fonc.2023.1330977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Elsayed et al. 10.3389/fonc.2023.1330977
diverse datasets to ensure the generalizability of the models.

Moreover, the acknowledgment of computational complexities

and interpretability issues provides insights into areas where

improvements and future research could be directed.
3.3 Specialized CNN designs

Section 3.3 is a discussion of studies that focused on developing

specialized CNN designs, including the integration of specific

enhancements, additional layers, and boosting algorithms to

increase classification accuracy. It will be divided into studies

using the SN-AM dataset and studies using retrospectively

collected hospital bone marrow samples.

3.3.1 B-ALL and MM classification using the SN-
AM dataset

B-ALL and MM are hematologic malignancies that arise from

various stages of B-cell development. Despite their evident clinical

and pathological distinctions, certain resemblances exist in their
Frontiers in Oncology 0578
morphological attributes and molecular characteristics, rendering

their differentiation challenging. This subsection focuses on a series

of studies that employ the SN-AM dataset, containing bone marrow

images from patients with B-ALL and MM, to develop specialized

CNN designs for accurate classification. In the four studies, the

model was evaluated using internal validation through train-test

split, partitioning data into training, validation, and testing sets with

no external validation.

The article by Devi et al. addresses the segmentation and

classification of white blood cancer cells within bone marrow

microscopic images. The research methodology starts with data

preprocessing, effectively eliminating dataset anomalies. Following

that, dataset diversity and comprehensiveness are augmented

through data augmentation techniques. The proposed model then

utilizes the Convolutional Leaky RELU with CatBoost and XGBoost

(CLR-CXG) algorithm for image segmentation and feature

extraction, which are key processes for accurate classification.

Binary classification is executed through CNN, accompanied by

gradient boosting using CatBoost and XGBoost algorithms

individually. The interaction between CNN and boosting
FIGURE 2

Convolutional neural network and its layers, adapted from Kavitha et al.
TABLE 1 Continued

Authors
(Year)

Country Dataset & Sample Size Validation
(IV/EV)

Best Model(s) ACC
(%)

PRE
(%)

SEN
(%)

SPE
(%)

F1
(%)

Ordaz-
Gutierrez et al.
(2013) (36)

Mexico BM samples (ALL [118],
healthy [62])

IV
(Train-Test)

Hybrid of Fuzzy Logic
and RBFNN

96.7 98.00 91.00

Rehman et al.
(2018) (37)

KSA BM samples (ALL L1 [100],
ALL L2 [100], ALL L3 [30],
healthy [100])

IV (10-
fold CV)

CNN (AlexNet) 97.78

Yang et al.
(2023) (38)

China BM samples (ALL [306], AML
[500], CML [162],
healthy [291])

IV (Train-
Test)
EV (SN-AM)

Hybrid of CNN and ViT
(MobileViTv2)
with MultiPathGAN

96
(IV)
99.72
(EV)

Zhou et al.
(2021) (39)

China AI-cell database1 (ALL [24],
AML [25])

IV (Train-
Test)1

EV
(BM samples)

Ensemble of CNNs
(ResNext101_32x8d,
ResNext50_32x4d,
and ResNet50)

89
(EV)

86
(EV)

95
(EV)
frontier
ACC, Accuracy; PRE, Precision; SEN, Sensitivity SPE, Specificity; BM, Bone Marrow; ALL, Acute Lymphoblastic Leukemia; MM, Multiple Myeloma; AML, Acute Myeloid Leukemia; CML,
Chronic Myeloid Leukemia IV, Internal Validation; EV, External Validation; CNN, Convolutional Neural Network; SD-Layer, Stain Deconvolutional Layer; ViT, Vision Transformer; RBFNN,
Radial basis function neural network.
1Performance metrics of internally validated WBC classifier model: Accuracy: 82.93%, Precision: 85.67%, F1 score: 82.93%, AUC: 98.70%.
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algorithms mainly occurs in the classification phase. The features

extracted by the CNN are used as inputs to the boosting algorithms,

which refine the classification decision. This combination allows for

a more accurate and efficient classification of blood cancer cells.

This CLR-CXG approach aims to minimize bias and amplify

accuracy in cancer cell classification, primarily discerning between

B-ALL and MM. Internal validation is achieved by partitioning the

dataset into train, test, and validate sets. CNNs play a pivotal role in

image classification, recognizing important features within images

through weight and bias assignment. To address challenges like

input-output consistency and GPU expenses, the CLR-CXG model

introduces modifications into the CNN architecture. A novel

element is the incorporation of the Leaky RELU activation

function, elevating the architecture’s capabilities. The results

impeccably show that CatBoost and XGBoost algorithms enhance

accuracy and computational efficiency. The CLRC algorithm

achieves an impressive 100% accuracy, precision, and specificity

in cancer cell classification, complemented by a sensitivity (recall) of

99.9% and an F1 score of 100. Meanwhile, CLRXG attains 97.12%

accuracy, alongside precision, sensitivity (recall), and specificity

values of 98.5%, 99%, and 97.2%, correspondingly. Despite these

achievements, the article has many limitations including absence of

information regarding resource allocation, memory usage, and

energy efficiency.

Moreover, the study by Ikechukwu et al. introduces a novel deep

CNN model named “i-Net” for classification of ALL using

microscopic images. The proposed approach utilizes data from

the SN-AM and ALL-IDB datasets, both sourced from the cancer

imaging archive (TCIA) repository. Initially, augmentation

balanced limited data. Data preprocessing involved grayscale

conversion, contrast enhancement, and resizing. For

segmentation, they used a UNet model with InceptionV2

architecture, while a custom CNN was designed for image

classification. The authors employed two well-known pre-trained

deep learning networks, ResNet-50 and VGG-19. However, they

adapted the weights and learning parameters instead of using pre-

existing ones. An upgraded CNN model, “i-Net,” was introduced,

adding convolutional layers and fine-tuning hyperparameters for

better classification accuracy. To prevent overfitting during

training, the authors used data augmentation, dropout

regularization, and batch normalization techniques. The proposed

“i-Net” achieved 99.18% accuracy on the SN-AM dataset,

surpassing ResNet-50 (84.5%) and VGG-19 (93.5%). The model’s
TABLE 2 Strengths and limitations of DL models reported.

Authors
(Year)

Outcome Strengths Limitations

Devi et al.
(2023) (30)

Classification of B-ALL
and MM using CNNs
with
boosting algorithms.

Feature
selection
Use of boosting
algorithms
Reduced
pre-processing

Lack of external
validation
Limited dataset
Complex
segmentation

Duggal
et al.
(2017) (31)

Differentiating
malignant WBCs from
normal WBCs using a
CNN with a SD-Layer.

Stain
deconvolution
Minimal
additional
parameters
Generalization
potential

Lack of external
validation
Stain variation
challenges
Complexity for
large datasets

Huang et al.
(2020) (32)

Distinguishing between
different types of
leukemia using a CNN
with transfer learning.

Multiple
leukemia types
Feasibility for
small datasets
Minimize need
for
segmentation

Lack of external
validation
Misclassification
of leukemias
Limited
interpretability

Ikechukwu
et al.
(2022) (33)

Detection and
classification of B-ALL
and MM using a CNN
with
tuned hyperparameters.

Simplified
architecture
Feature
selection
capability
Real-
time
applicability

Lack of external
validation
Limited dataset
Limited
interpretability

Kavitha
et al.
(2022) (34)

Detection and
classification of B-ALL
and MM using a CNN
with Cat-Swarm
Optimization
algorithms.

Outperforms
ML models
Optimized
hyperparameters
Real-
time
applicability

Lack of external
validation
Limited dataset
Computational
complexity

Kumar
et al.
(2020) (35)

Detection and
classification of B-ALL
and MM using a Dense
CNN with
fewer parameters.

Outperforms
ML models
Feature
extraction
capability
Real-
world
application

Lack of external
validation
Limited dataset
Limited
interpretability

Ordaz-
Gutierrez
et al.
(2013) (36)

Diagnosis of ALL using
fuzzy logic algorithm
and Radial basis
function
neural network.

Handling of
ambiguity
Thorough
cellular
assessment
Detection of
ALL at
early stages

Lack of external
validation
Dependency on
image quality
Specific
cellular features

Rehman
et al.
(2018) (37)

Detection and
classification of ALL
and ALL subtypes (L1,
L2. L3) using CNN.

Rapid diagnosis
Robust
segmentation
Assist
pathologists

Lack of external
validation
Limited dataset
Dependency on
image quality

Yang et al.
(2023) (38)

Diagnosis and
classification of
leukemias using

External
validation
Lightweight
hybrid network

Sensitivity to
data quality
Lack of real-
world scenarios

(Continued)
TABLE 2 Continued

Authors
(Year)

Outcome Strengths Limitations

MobileViTv2 classifier
and MultiPathGAN.

Flexibility
and adaptability

Zhou et al.
(2021) (39)

Diagnosis of ALL in
real clinical scenarios
using an ensemble of
CNN models.

Real-world &
external
validation
Large dataset
Mimics
hematologist
workflow

Single-center
data
Prospective
validation
needed
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generalization was tested, highlighting its potential for clinical

decision support systems. Despite l imitations due to

computational constraints and a smaller dataset, the proposed “i-

Net”model outperformed established models, showing promise for

clinical use.

Furthermore, Kavitha et al. introduce a groundbreaking

methodology for the diagnosis and classification of bone marrow

cancers, with a particular focus on ALL and MM. The proposed

model employs optimized deep CNNs utilizing a novel CAT (Cat

Swarm Optimization) algorithm for hyperparameter tuning (41).

The process involves three essential phases: data preparation, data

augmentation, and classification. The data preparation phase

involves capturing microscopic images from bone marrow

aspirate slides, which are stained using the Jenner-Giemsa

method. These raw images are then pre-processed to create a

dataset that is utilized for both training and testing purposes.

Data augmentation techniques are employed to alleviate

overfitting concerns and augment the model’s ability to

generalize. The architecture of the CNN incorporates

convolutional layers for feature extraction, pooling layers for

dimension reduction, and fully connected layers for accurate

classification. The introduction of the CAT algorithm further

enhances the model’s overall performance by drawing inspiration

from the behaviours of cats, combining seeking and tracing modes

to effectively optimize the network’s parameters. The evaluation of

the proposed approach is conducted using the SN-AM dataset. The

results showcase remarkable achievements, with an outstanding

accuracy of 99.6% attained in accurately predicting ALL. This

performance surpasses that of pre-trained deep learning models,

such as AlexNets, VGG-16 Nets, and U-Nets. The proposed model’s

superiority is further substantiated through comprehensive

comparisons with other machine learning methodologies,

including support vector machines, random forest, and naïve bayes.

Lastly, the study conducted by Kumar et al. introduces a robust

mechanism for classifying B-ALL and MM using CNNs. The study

leverages deep learning techniques to automate the classification

process, eliminating errors associated with manual assessment. The

model is trained on cell images, undergoing preprocessing and

feature extraction. It employs a dense convolutional neural network

(DCNN) framework for classification, depicted in Figure 3, and

achieved an impressive overall accuracy of 97.2%. Notably, the

model demonstrates exceptional precision, sensitivity, specificity,

and F1 score, with a precision of 100%, sensitivity of 93.97%,

specificity of 95.19%, and an F1 score of 96.89%. The CNN

architecture comprises convolution, max-pooling, and fully

connected layers. Data augmentation techniques enhance

generalization, while feature selection relies on the Chi-square

test. Training utilizes an Adam optimizer with a sigmoid cross-

entropy loss function and a learning rate of 0.01. Comparisons with

machine learning methods and transferred learning models like

VGG-16 were conducted. Random Forests achieved an accuracy

of 96.83% on the dataset. However, the proposed CNN model

significantly outperforms these approaches, boasting higher

precision, sensitivity, specificity, and F1 score. Its capacity to

extract features directly from images, coupled with adaptability

across datasets, underscores its advantages. Although
Frontiers in Oncology 0780
acknowledging limitations stemming from dataset size, the study

underscores the potential of the proposed model as a reliable tool

for diagnosing bone marrow blood cancers.

3.3.2 ALL diagnosis using retrospectively
collected hospital bone marrow samples

This subsection focuses on another set of studies that address

the diagnosis of ALL through the analysis of retrospectively

collected bone marrow samples from hospital patients. These

studies emphasize the importance of accurate and efficient

diagnosis for different leukemia subtypes.

The article by Duggal et al. presents an innovative convergence

of deep learning techniques and stain deconvolution in the domain

of medical image analysis. While CNNs have proven successful in

medical imaging, the authors highlight a crucial limitation: CNNs

primarily function in the RGB color space, potentially missing the

nuanced tissue-stain interactions crucial for precise diagnostics. To
FIGURE 3

Kumar et al.’s proposed convolutional neural network-
based methodology.
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address this, the study introduces the stain deconvolution layer

(SD-Layer). Positioned at the forefront of CNN architectures, this

layer operates in the optical density (OD) color space. Beer-

Lambert’s law is employed to convert RGB microscopic images

into the OD space, revealing pixel stain quantities that hold key

diagnostic information. The SD-Layer operates on two fronts:

converting RGB to OD space and using backpropagation to

derive optimal stain basis vectors for diverse cell types. OD

images are then deconvolved with these vectors, providing tissue-

specific stain absorption quantities as input for downstream CNN

layers. The study focuses on differentiating malignant WBCs from

normal ones in cancer detection, particularly ALL. Texture-CNN

and CNN (AlexNet) are evaluated using the SD-Layer in two

modes: frozen (fixed stain vectors) and trainable (refined vectors).

Impressively, the SD-Layer, initialized with stain basis vectors from

SVD of the reference image, notably enhances classification

accuracy for both architectures. This enhancement is attributed

not to model capacity but to the biologically meaningful image

representation the SD-Layer offers. With a well-structured dataset

of around 9000 cell nuclei, balanced between normal and malignant

cells and stained with Jenner-Giemsa, the study’s robustness is

underscored. Rigorous training and augmentation techniques yield

high performances on 5-fold cross-validation accuracy in

distinguishing malignant from normal WBCs. The Texture-CNN

achieves 93.20% accuracy and 93.08% F1 score with an additional

SD-Layer, while CNN (AlexNet) achieves 88.5% accuracy and

88.32% F1 score with an additional SD-Layer. SD-Layer bridges

RGB limitations, leveraging the OD space to capture crucial

diagnostic insights. As medical imaging evolves, this study paves

the way for harnessing stain quantities to enhance classification

accuracy and diagnostic efficacy across diverse scenarios.
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Moreover, Rehman et al., proposes a computer-aided system that

combines image processing and deep learning to improve ALL

diagnosis accuracy, depicted in Figure 4. The study focuses on

classifying ALL into its subtypes and distinguishing reactive bone

marrow (normal) using stained bone marrow images. The authors

collect a dataset of bone marrow images from patients with ALL and

normal cases. The images are captured using a digital microscope and

processed to segment the regions of interest. A novel segmentation

technique based on thresholding is introduced, followed by the

application of CNNs for classification. The dataset is split into

training and testing sets to train the CNN model. The researchers

utilize the AlexNet architecture with transfer learning to fine-tune the

model to the new data. To assess the effectiveness of their approach,

the authors perform experiments and compare the results with other

classification methods such as naïve Bayesian, K-nearest neighbor,

and support vector machine. The proposed method achieves an

impressive accuracy of 97.78% on the test dataset. The classification

accuracy is plotted against the number of iterations, demonstrating

that higher accuracy can be achieved with more epochs and a lower

learning rate. The training time is also noted, with the proposed

architecture taking approximately 163.63 seconds for 20 epochs. The

authors highlight the significance of their work, as it provides an

automated solution for accurate ALL diagnosis and classification. By

employing DL techniques, the proposed system improves the

accuracy of classification, which could significantly assist

hematologists and pathologists in their diagnostic processes.

Despite the promising results, this study does have limitations. The

dataset size might impact the generalizability of the model, and

external validation on larger datasets is necessary.

Lastly, Huang et al.’s study addresses leukemia classification and

diagnosis through bone marrow cell morphology, employing CNNs
FIGURE 4

Rehman et al.’s proposed convolutional neural network-based methodology.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1330977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Elsayed et al. 10.3389/fonc.2023.1330977
alongside transfer learning. Traditional manual microscopy for

leukemia diagnosis is subjective and error-prone, motivating an

automated, precise approach. Their proposed method utilizes

CNNs for identifying AML, ALL, and chronic myelocytic

leukemia (CML). The researchers obtained microscopy images

from healthy subjects and leukemia patients, implementing

preprocessing techniques like perfect reflection and adaptive

filtering to enhance quality and reduce background noise. They

employed three CNN architectures for classification models on both

raw and preprocessed datasets: Inception-V3, ResNet50, and

DenseNet121. Transfer learning was leveraged to optimize model

performance by extracting features or fine-tuning pre-trained

models. In line with internal validation practices, the dataset is

divided into a training set (991 samples) and a prediction set (331

samples) using a 3:1 ratio. The training set is utilized to train the

models, while the prediction set serves as unseen data for testing the

model’s generalization capability. DenseNet121 excelled among

the CNN architectures, consistently achieving superior

performance. Transfer learning notably expedited model

convergence, significantly boosting accuracy. The study’s outcomes

indicate that the DenseNet121 model on the preprocessed dataset

garnered the highest accuracy at 74.8%. After transfer learning, its

accuracy surged to 95.3%, a notable 20.5% improvement. The model

exhibited accuracy rates of 90% for normal samples, 99% for ALL,

97% for CML, and 95% for AML, demonstrating efficacy in

classifying various leukemia types. Nonetheless, the model faced

challenges distinguishing immature granulocytes and lymphocytes,

affecting AML classification accuracy. Its adaptability to rare

leukemia types remains to be explored. Huang et al.’s study

contributes a rapid, accurate, and objective method for leukemia

diagnosis by merging CNNs with transfer learning. The combination

overcomes the limitations of manual methods, catering to efficient,

precise medical imaging despite small sample sizes. Though it

confronts challenges, like distinguishing specific cell types, the

study offers a promising path towards enhancing leukemia

diagnosis and classification.
3.4 Ensemble and hybrid designs

In this section, we explore studies that utilize ensemble

techniques and hybrid approaches, combining multiple models to

enhance diagnosis accuracy. The subsequent subsections present

the findings from these studies and provide insights into their

contributions to the field.

3.4.1 ALL Diagnosis using a hybrid of fuzzy logic
and radial basis function neural network

This subsection examines the work by Ordaz-Gutierrez et al.,

which introduces an algorithm for diagnosing ALL using a

combination of robust fuzzy logic and radial basis function neural

networks (RBFNN). The primary aim of this research is to develop a

reliable method for diagnosing ALL, particularly in developing

countries like Mexico, where laboratory resources and equipment
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might be limited. The algorithm leverages bone marrow aspirates to

extract specific features related to the disease. The process begins

with acquiring microscopic cell images, which are then converted to

grayscale to eliminate unnecessary color information and reduce

processing time. Histogram equalization enhances image contrast.

The segmentation stage involves utilizing the Sobel edge detection

and mathematical morphology algorithms to isolate cells from the

images. Suitable mathematical expressions are utilized to analyze

cell size, circularity, and nuclei-to-cytoplasm ratio, crucial for ALL

diagnosis. The heart of the method lies in applying fuzzy logic,

chosen for incorporating human knowledge and mathematical

modeling. The algorithm determines if a cell has ALL based on

computed features. Fuzzy membership values combine using

algebraic expressions to generate a diagnosis variable that

classifies cells. To enhance the algorithm, a radial basis function

(RBF) neural network is introduced, improving classification

accuracy. Trained on a dataset, the algorithm achieves high

sensitivity (98.00%) and specificity (91.00%). The results of the

proposed method are promising, outperforming comparative

methods, showing superiority in detection rates. The potential for

real-time diagnosis is highlighted due to efficient feature extraction

and RBF’s computational speed.

3.4.2 Diagnosis of leukemias using a hybrid of
CNN and vision transformer

Here, we delve into the article by Yang et al. which presents a

deep learning-based approach for diagnosing leukemias using bone

marrow aspirates. The study collected 2033 microscopic images of

bone marrow samples, encompassing images for 6 disease types and

1 healthy control, from two Chinese medical websites. These images

were divided into training, validation, and test datasets. To address

variations in staining styles, a novel method called “stain domain

augmentation” was introduced using the MultiPathGAN model.

This technique normalized stain styles and expanded the dataset. A

lightweight hybrid model named MobileViTv2, combining

strengths of CNNs and vision transformers (ViTs), was developed

for disease classification. MobileViTv2 achieved an average

accuracy of 94.28% on the test set, with the highest accuracy

values (98%, 96%, and 96%) obtained for MM, ALL, and

lymphoma, respectively. Patient-level prediction accuracy

averaged 96.72%. The model outperformed both CNNs and ViTs

despite using only 9.8 million parameters. Furthermore,

MobileViTv2 was compared to other deep learning models,

demonstrating its superiority. The model’s effectiveness was also

externally validated on public datasets (ALL-IDB1 and SN-AM),

achieving high accuracy values of 99.75% and 99.72%, respectively.

This indicates its robust generalization ability. While the model

shows promise, there are some limitations. The dataset size is

relatively small, and efforts to collect more images from various

scanning devices could enhance its performance. Additionally, the

model’s application is primarily focused on diagnosing broad

disease categories, not specific subtypes. Future research could

explore finer disease subtype classification and optimization of

the model.
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3.4.3 Leukemia diagnosis using ensemble CNN
models in real clinical scenarios

This subsection explores Zhou et al.’s study, which develops a

deep learning-based system for leukemia diagnosis and evaluates it

using real clinical scenarios. The subsection discusses the unique

aspects of the system, its effectiveness in diagnosing different types

of leukemia, and its practical utility in clinical settings. The

researchers collected 1,732 bone marrow images, containing

27,184 cells, from children with leukemia in a dataset named “AI-

cell platform”. This dataset was used to train a CNN architecture for

the differential count of WBCs. Unlike prior approaches that

preprocess images, this study used raw images without pre-

processing. The developed system mimicked the process of

hematologists by detecting and excluding uncountable and

crushed cells, classifying remaining cells, and making diagnoses

utilizing different configurations of ResNet and ResNeXt

architectures for WBC detection and classification, as depicted in

Figure 5. The ensemble of CNNs, comprising ResNeXt101_32x8d,

ResNeXt50_32x4d, and ResNet50, emerged as the top-performing

configuration. On internal validation using Train-Test Split, the

ensemble model demonstrated very high performances for

classifying WBCs (82.93% accuracy, 86.07% precision, and

82.02% F1 score). On external validation using real-world clinical

samples of bone marrow, the system showed notable performance

in diagnosing ALL (89% accuracy, 86% sensitivity, and 95%

specificity). The validation results reveal significant insights into

the ensemble’s performances and underscore its robustness and its

potential for effectively diagnosing leukemia subtypes. Additionally,

it accurately detected bone marrow metastasis of lymphoma and

neuroblastoma (average accuracy of 82.93%). The system’s

development was unique in using raw clinical images and

replicating the hematologists’ workflow. The CNN differentiated

crush cells, commonly excluded during manual counts, and

demonstrated high accuracy across diverse WBC types.

Furthermore, the system achieved successful ALL diagnosis in

clinical practice, providing evidence of its practical utility.

Comparison with existing studies revealed the uniqueness of this

research in its broader variety of cell types, achieving high accuracy

across complex clinical scenarios. Prior studies often focused on
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single-cell classification or employed pre-processed images,

hindering real-world applications. While this study excelled in

leukemia diagnosis, the limited dataset size for certain cell types

posed challenges. However, the study’s innovative use of ensemble

models mitigated this issue, enhancing overall accuracy.
4 Discussion

Recent advancements in medical image analysis have yielded

remarkable progress in the automated detection and classification

of acute leukemia, a critical hematological malignancy. Deep

learning techniques have emerged as pivotal tools, demonstrating

the potential to revolutionize diagnostic accuracy and efficiency.

Key studies have explored acute leukemia detection and

classification intricacies, addressing essential elements such as

datasets, validation methodologies, and performance metrics.
4.1 Previous literature

The existing literature on AI-based acute lymphoblastic

leukemia (ALL) classification, as discussed in systematic reviews

by Das et al. (42) and Mustaqim et al. (43), reveals notable

limitations that our review seeks to address. While these reviews

have explored recent advancements in AI-based ALL classification,

they primarily emphasize studies and datasets focused on peripheral

blood samples. Although peripheral blood samples provide valuable

insights, the gold standard for leukemia diagnosis has long been

bone marrow samples, given their ability to offer a more

comprehensive understanding of the disease’s characteristics.

Bone marrow samples are particularly crucial for accurately

distinguishing different leukemia subtypes. By including studies

that utilize bone marrow samples in the context of AI-based ALL

classification, our review fills this crucial gap in the literature,

contributing to a more holistic understanding of advancements in

leukemia diagnosis and emphasizing the significance of bone

marrow analysis in achieving accurate and reliable results.

Additionally, Alsalem et al.’s (44) comprehensive review on
FIGURE 5

Zhou et al.’s proposed framework for white blood cell classification.
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automated acute leukemia detection and classification complexities,

while valuable, predominantly focuses on studies applying artificial

intelligence to peripheral blood smear (PBS) samples (45–48).

Similarly, Deshpande et al. (49) adopt an AI-centric approach,

enhancing diagnostic accuracy through microscopic blood cell

analysis. While these approaches contribute significantly to the

field, they underscore the need for a more inclusive examination of

bone marrow samples, as we address in our review. Furthermore,

the literature showcases the effectiveness of deep learning models in

distinguishing acute leukemia subtypes, such as the work by

Anilkumar et al. (50) on automated B cell and T cell acute

lymphoblastic leukemia differentiation using blood smear samples

and Boldú et al.’s (51) introduction of ALNet for effective diagnosis

of acute leukemia lineages using peripheral blood cell images.

Moreover, Ouyang et al.’s (52) proposal of a convolutional neural

network-based acute promyelocytic leukemia diagnosis highlights

the versatility of deep learning across various subtypes. Laosai &

Chamnongthai’s innovative approach using CD markers of blood

cells for automated acute leukemia classification (15) adds another

dimension to the literature. Notably, the significance of well-

annotated datasets, such as ALL-IDB, SN-AM, C-NMC, and

SDCT-AuxNet, in standardizing algorithm evaluation is

acknowledged in the literature (53, 54). Finally, the literature

emphasizes the importance of integrating real-world clinical

scenarios and transfer learning to improve model robustness (55,

56), aspects that our review aims to further elucidate and emphasize

in the context of bone marrow samples.
4.2 Specialized CNN designs

Several studies have been dedicated to the development of

specialized CNN architectures, aiming to enhance the accuracy of

classification. Devi et al. introduced the CLR-CXG model,

synergizing convolutional leaky rectified linear units (ReLU) with

CatBoost and XGBoost boosting algorithms for cancer cell

classification. This integration showcased promising results,

underlining the potential of hybrid models. The “i-Net” model by

Ikechukwu et al. effectively combined pre-trained deep learning

networks, segmentation techniques, and data augmentation to

achieve exceptional accuracy in segmenting and classifying acute

lymphoblastic leukemia (ALL). Kavitha et al. contributed an

optimized deep CNN architecture for diagnosing bone marrow

cancers, leveraging the Cat Swarm optimization (CAT) algorithm

for hyperparameter tuning. By focusing on precise segmentation

and feature extraction using deep CNNs, this study demonstrated

the power of specialized designs in achieving robust classification.

Additionally, Kumar et al. emphasized the automatic detection of

white blood cell cancers, specifically ALL and MM using CNNs.

Their study highlighted the capacity of CNNs to discern pertinent

features within images, effectively enhancing classification accuracy.
4.3 Hybrid and ensemble designs

Hybrid and ensemble methodologies also emerged as valuable

avenues for leukemia diagnosis. Ordaz-Gutierrez et al. introduced a
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practical hybrid approach, uniting the RBFNN with the fuzzy logic

algorithm for ALL diagnosis. This study’s emphasis on resource-

constrained settings underscores the importance of accessible and

effective models. Yang et al. ventured into hybrid modeling by

integrating CNNs with ViTs to diagnose hematologic malignancies

through bone marrow images. By incorporating stain domain

augmentation and hybrid modeling, this study showcased the

potential of blending diverse deep learning techniques. Zhou et al.

devised a deep learning-based system for leukemia diagnosis,

employing an ensemble of multiple CNN models. The exceptional

performance observed in classifying different white blood cell types

and accurately diagnosing ALL in clinical scenarios exemplified the

potential of ensemble techniques for practical medical applications.
4.4 Practical implications and limitations

The discussed studies offer a promising path for improving ALL

diagnosis and classification through specialized CNN designs,

hybrid models, and ensemble techniques. However, recognizing

associated limitations is essential. One of the key limitations of the

reviewed studies is the relatively small dataset sizes. While these

studies demonstrate the potential of DL in ALL diagnosis, the

limited data may raise concerns about the generalizability of the

results. It is noteworthy that only two out of the ten reviewed studies

employed external validation. This is a significant limitation, as

relying solely on internal validation can lead to inflated

performance metrics. To address these limitations, further efforts

are required. This includes exploring larger datasets, refining

segmentation techniques, and assessing clinical feasibility. It is

imperative to develop a comprehensive evaluation framework that

incorporates external validation and real-world clinical testing to

enhance the robustness and generalizability of AI models for ALL

diagnosis and classification. Moreover, considering the complexity

of leukemia diagnosis, incorporating more complex samples, such

as those with 10-15% blast in normal marrow, is vital for a thorough

assessment of deep learning’s potential in distinguishing normal

and malignant blasts.
4.5 Future considerations

Future research endeavors should consider the incorporation of

molecular and genomic data into the analysis pipeline. Combining

these data sources with image-based analyses can potentially

provide a more holistic and accurate assessment of ALL cases.

Furthermore, the development of AI models that can effectively

integrate and interpret both image and molecular/genomic data

represents an exciting avenue for future research in the field. By

confronting limitations and pursuing the identified research

agenda, the field can move into a new era of accurate, efficient,

and accessible methods for diagnosing and classifying leukemia

using bone marrow images. This advancement holds the potential

to revolutionize clinical practices, enabling timely interventions and

personalized treatment strategies. Moreover, establishing

standardized protocols for external validation and benchmarking
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across different datasets and institutions will be instrumental in

establishing the reliability and generalizability of deep learning

models. Ultimately, as these future directions unfold, they will

contribute to the ongoing refinement and deployment of AI-

powered tools in the realm of ALL diagnosis and classification,

improving patient outcomes and advancing the field of medical

image analysis.
5 Conclusion

In conclusion, this review highlights the potential of deep

learning models in enhancing acute lymphoblastic leukaemia

diagnosis and classification. The proposed methodologies could

revolutionize leukaemia diagnostics, providing accurate tools for

early detection and treatment. Specialized CNN architectures,

hybrid models, and ensemble techniques demonstrate the

adaptability of deep learning in medical image analysis. However,

limitations like small datasets and lack of external validation must

be acknowledged. The reported high model performance metrics

might be overestimated without robust validation. Future research

should focus on refining and validating models, utilizing larger

datasets, and conducting clinical feasibility studies. Collaborative

efforts could integrate AI tools for precise leukaemia diagnosis,

advancing patient care and reshaping medical imaging diagnostics.
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Cell death is a complex process required to maintain homeostasis and occurs

when cells are damage or reach end of life. As research progresses, it is apparent

that necrosis and apoptosis do not fully explain the whole phenomenon of cell

death. Therefore, new death modalities such as autophagic cell death, and

ferroptosis have been proposed. In recent years, ferroptosis, a new type of

non-apoptotic cell death characterized by iron-dependent lipid peroxidation

and reactive oxygen species (ROS) accumulation, has been receiving increasing

attention. Ferroptosis can be involved in the pathological processes of many

disorders, such as ischemia-reperfusion injury, nervous system diseases, and

blood diseases. However, the specific mechanisms by which ferroptosis

participates in the occurrence and development of leukemia still need to be

more fully and deeply studied. In this review, we present the research progress

on the mechanism of ferroptosis and its role in leukemia, to provide new

theoretical basis and strategies for the diagnosis and treatment of clinical

hematological diseases.

KEYWORDS

programmed cell death, ferroptosis, leukemia, reactive oxygen species, immunotherapy,
iron metabolism
1 Introduction

The term “ferroptosis” was coined in 2012, when screens for small-molecule

compounds capable of inhibiting the growth of RAS-mutant cancer cells were

performed. In the 1950s, Harry Eagle et al. found that cysteine-deficient cells had a

different pattern of cell death than those caused by other amino acid deficiencies. In the

1970s, a cysteine-dependent liver cell death involving glutathione (GSH) depletion was

reported. At the same time, Shiro et al. found that alpha-tocopherol, an inhibitor of lipid

peroxidation, saved cell death from GSH and cysteine deficiency. Ursini et al. isolated an

enzyme named glutathione peroxidase 4 (GPX4) in 1982, which can inhibit iron-catalyzed

lipid peroxidation. GPX4 protects cell death related to lipid peroxidation and oxidative

stress. Dolma et al. discovered in 2003 that a small molecule compound named erastin
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could target the inhibition of RAS expressing tumor cells. Erastin

induced death cell showed no apoptotic features and could not be

inhibited by apoptosis inhibitors, suggesting new non-apoptotic cell

death form. In 2012, Dixon et al. coined the term “ferroptosis” as

erastin induced cell death. Ferroptosis refers to an iron-dependent

form of regulatory cell death caused by lipid peroxide overload on

the cell membrane. This is a new kind of cell death, which is

different from the traditional forms of autophagy, apoptosis,

necrosis, and other cell death. Morphologically, mitochondrial

volume decreases, density increases, mitochondrial crest

disappears, and lipid reactive oxygen species (ROS) increases in

the cytoplasm (1). The fatal accumulation of lipid peroxides is a

fundamental feature of ferroptosis and involves the confrontation

between ferroptosis production and ferroptosis defense systems in

cells. Ferroptosis occurs when its promotion of cellular activity

significantly exceeds the antioxidant buffer provided by the

ferroptosis defense system (2–4).

Ferroptosis is affected by a range of different genes including

multiple cancer-related signaling pathways which have been shown

to participate in ferroptosis. For example, p53 and BRCA1-related

protein 1 (BAP1) induce ferroptosis in tumor cells through multiple

signaling pathways, which act as a natural barrier to cancer

development (5, 6). Oncogene-mediated or oncogene-signal-

mediated ferroptosis avoidance contributes to tumor occurrence,

progression, metastasis, and treatment resistance regulation (7, 8).

Conversely, the unique metabolism of cancer cells, their high load of
Frontiers in Oncology 0288
ROS, and their specific mutations make some of these cells

inherently susceptible to ferroptosis, thus exposing therapeutic

targets for certain cancer types (9–11). With the continuous

development of research, ferroptosis has been confirmed to be

closely related to the occurrence of tumors, respiratory system,

cardiovascular system, nervous system, ischemia reperfusion injury,

and other diseases. Recent studies have shown that ferroptosis also

plays an important role in the development and progression of

hematological diseases, especially leukemia. The present study

mainly describes the role of ferroptosis in leukemia, research

progress and provides new targets and new ideas for the

diagnosis and treatment of leukemia.
2 Mechanism of ferroptosis

Ferroptosis is caused by the accumulation of lipid peroxidation,

leading to the destruction of membrane structures. The prerequisite

for ferroptosis is polyunsaturated fatty acids -containing

phospholipids (PUFA-PLs) synthesis with peroxidation.

Sensitivity to ferroptosis is regulated by several factors, including

GSH and REDOX regulatory systems, such as System Xc-, GPX4

regulation, CoQ10-NAD (P) pathway, glutamine metabolic

pathway, and NRF2 regulation (Figure 1). In this section, there

are mainly describes Ferroptosis prerequisites, Ferroptosis defense

mechanisms, and Upregulation of ferroptosis defenses.
FIGURE 1

Molecular mechanisms of ferroptosis.
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2.1 Ferroptosis prerequisites

The crux of ferroptosis execution is PUFA-PLs synthesis with

peroxidation. As outlined in this section, PUFA-PL synthesis and

peroxidation, Iron metabolism, and Mitochondrial metabolism

constitute the main prerequisites driving ferroptosis.

PUFA-PL synthesis and peroxidation: The key to triggering

ferroptosis is the catalytic oxidation of phospholipids containing

PUFA into polyunsaturated fatty acids, which leads to the fatal

accumulation of lipid peroxides on the cell membrane and

subsequent membrane rupture, resulting in ferroptosis. It is the

main prerequisite of ferroptosis. Acyl-coenzyme A (CoA)

synthetase long chain family member 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) are critical

mediators of PUFA-PL synthesis (12, 13). ACSL4 and LPCAT3

play an important role in the biosynthesis and remodeling of

phosphatidylethanolamine (PE), which can activate PUFAs and

affect transmembrane properties (14). ACSL4 catalyzes the linking

of free PUFAs, which include arachidonic and adrenal acid to CoA

forming PUFA-CoAs such as arachidonic acid-CoA or adrenal acid

-CoA. These products are then subsequently re-esterified by

LPCAT3 and incorporated into PLs to form PUFA-PLs which

include arachidonic acid-phosphatidylethanolamine or adrenic

acid-phosphatidylethanolamine (Figure 1).

Acetyl-coa carboxylase (ACC) catalyzes the carboxylation of

acetyl-CoA to produce malonyl CoA, which is required for

synthesis of some PUFAs (15, 16). Human cytochrome P450

redox reductase (POR) mediated or arachidonic lipoxygenase

(ALOXs) mediated enzymatic reactions have also been shown to

promote lipid peroxidation (17, 18) (Figure 1). POR’s ability to

promote lipid peroxidation appears to be indirect, through the

production of H2O2 (18). The ALOX gene plays an important role

in driving ferroptosis. The mammalian ALOX family, consisting of

six members (ALOXE3, ALOX5, ALOX12, ALOX12B, ALOX15,

and ALOX15B), which play a context-dependent role in driving

ferroptosis . For example , spermidine/spermidine n1-

acetyltransferase 1 (SAT1), a target gene for tumor protein p53

(TP53), mediates the expression of ALOX15 (but not ALOX5 and

ALOX12) and is involved in TP53-mediated ferroptosis (3).

Interestingly, other studies have cast doubt on the role of ALOX

genes in ferroptosis (19). ALOX12 does not depend on GPX4 and

ALOX15 binds to phosphatidylethanolamine binding protein 1

(PEBP1), mediating RSL3-induced ferroptosis in bronchial

epithelial cells, renal epithelial cells, and neuronal cells (20).

Iron metabolism: Iron is a key nutrient involved in ATP

production via the mitochondrial chain complex, DNA synthesis

in the process of ribonucleic acid reductase, oxygen transport,

antioxidant defense (peroxidase and catalase), oxygen sensitive

factors such as hypoxia-inducer factor-HiIF - and proline

hydroxylase, and many other enzymes. Nutrient iron exists

mainly as iron ions, which can be reduced by iron reductase.

Systemic iron homeostasis is maintained by a balance of iron

uptake, recycling, and loss. Iron mainly comes from food intake

and the elimination of aging red blood cells, existing as Fe2+ and

Fe3+. Ferrous ions are internalized into intestinal cells by active

transport mechanisms in the gastrointestinal tract. Iron can also be
Frontiers in Oncology 0389
internalized into the blood through the basolateral membrane

through ferroportin 1 (FPN1; the only known iron exporter), iron

through the binding of ferriferous carriers to lipidin-2 (LCN2), and

subsequent endocytosis returned into the cell (21, 22). However,

Fe3+ combines with transferrin (TF) on the cell membrane to form

TF-Fe3+, which is finally combined with transferrin receptor 1

(TFR1) and is swallowed in vivo. Excess iron is stored in the liver

primarily through ferritin (FTH and FTL). High iron levels cause

the liver system to secrete hepcidin, the most relevant regulator of

iron metabolism in the system. Hepcidin is a protein of iron

transport from cells which binds to ferritin transporters on iron-

storage cells such as intestinal epithelial cells and macrophages. This

leads to internalization and degradation of the hepcidin-transporter

complex, which effectively shuts down nutrient iron uptake and

iron release from internal iron stores. Expression of hepcidin is

controlled by a regulatory feedback mechanism of active

erythropoiesis: erythropoiet-derived erythroferone (ERFE), growth

differentiation factor 11 (GDF11), growth differentiation factor 15

(GDF15), and twisted gastrin protein homology 1 (TWSG1) have

been shown to affect liver hepcidin secretion. Interestingly,

leukemia cells require more iron than normal cells. In particular,

cancer patients require a large number of red blood cell transfusions

due to normal dyserythrogenesis and anemia caused by

chemotherapy, and excess iron is common in leukemia patients.

Excess iron and reactive oxygen species (ROS) catalyze

production and promote malignant transformation of

hematopoietic stem cells through niacinamide adenine dinucleotide

phosphate oxidase (NOX) and subsequent glutathione (GSH)

consumption (23).

Iron’s ability to gain and lose electrons between its oxidized Fe3+

and Fe2+ forms allow it to participate in radical generation reactions.

Among these processes is the Fenton reaction, where ferrous iron

contributes an electron to hydrogen peroxide to produce hydroxyl

radicals that induce ROS production. Abnormal iron accumulation

and subsequent excess ROS levels produce oxidative stress, induce

DNA, protein, or lipid damage, and even lead to cell death. It is

important to note that these oxidation actions of iron can promote

the development of tumors and are thought to be necessary for the

development of cancer (24). Nuclear receptor coactivator 4 (NCOA4)

is the target of the ferritin transporter, which mediates ferritinophagy,

a selective autophagy that degrades ferritin by lysosomes. Selective

autophagy degrades ferritin. Ferritinophagy increases free iron in

cells. Iron pools can be coated by lysosomes via NCOA4, and then

degrade and release a large amount of Fe2+, which increases the

sensitivity of cells to ferroptosis (25). Inhibition of ferritin

macrophages mediated by NCOA4 increases iron storage and

limits iron cell apoptosis in ferroptosis (25, 26)(Figure 1).

Mitochondrial metabolism: Overexpression of ferritin

mitochondria (FTMT), an iron-storage protein in mitochondria

whose primary function is to provide energy for cells through

oxidative phosphorylation, is a major site of iron metabolism and

ROS production which inhibits erastin-induced ferroptosis in

neuroblastoma cells (27). This suggests that FTMT has a

widespread anti-iron declining effect. Iron chaperone PCBP1

delivers Fe2+ to ferritin, thereby limiting ferroptosis in

hepatocytes (28). The role of mitochondria in the biosynthetic
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pathway of cell metabolism also contributes to ferroptosis.

Ferroptosis requires tricarboxylic acid (TCA) cycling (29) and

various non-fusion reactions in mitochondria. These reactions

may drive ferroptosis by promoting ROS, ATP, and/or PUFA-PL

production (30, 31).
2.2 Ferroptosis defense mechanisms

The imbalance between injury and defense signals eventually

leads to cell death. Ferroptosis defence mechanisms involve cellular

antioxidant systems that directly neutralize lipid peroxides. As

discussed below, there are mainly introduction the following

two systems.

The GPX4–GSH system: GPX4 belongs to the GPX protein

family (32, 33) and is the only GPX member capable of converting

PL hydroperoxides into PL alcohols (34, 35). GPX4 is a key

regulator of ferroptosis, and inhibition of its activity leads to the

accumulation of lipid peroxides in cells, which signal ferroptosis in

cells. Down-regulation of GPX4 increased susceptibility to

ferroptosis, while up-regulation inhibited ferroptosis (36). GPX4

consists of three subtypes with different subcellular localization,

namely cytoplasmic GPX4, mitochondrial GPX4, and nuclear

GPX4. These isomers are encoded by the same GPX4 gene and

have different transcription start sites, resulting in the n-terminal

GPX4 protein of the mitochondrial or nuclear localization

sequence. Only cytoplasmic GPX4 has a protective effect against

ferroptosis (37). Cytoplasmic GPX4 re-expression significantly

inhibited GPX4-deletion induced cell death in mouse embryonic

fibroblasts. The expression or activity of GPX4 is controlled by

selenium and glutathione (38, 39). Reducing glutathione (GSH), for

GPX4 is a thiol-containing tripeptide derived from glycine,

glutamic acid, and cysteine, of which cysteine is the rate-limiting

precursor. GSH is the most abundant reducing agent in mammalian

cells and is a cofactor of many enzymes. For glutathione synthesis, it

is mainly formed by the redox of cysteine through the xc-/cystine/

glutamate transporter (Figure 1).

Cystine glutamate transporter (system Xc-) is an amino acid

reverse transporter widely distributed in the phospholipid bilayer

and is an important part of the cellular antioxidant system. System

Xc- is composed of solute carrier family 7 member 11 (SLC7A11)

solute carrier family 3 member 2 (SLC3A2), an amino acid reverse

transporter that can transfer cystine into cells and glutamate 1:1.

Most cancer cells acquire intracellular cysteine-mediated cystine

uptake (the oxydimer form of cysteine) primarily through the Xc-

system, followed by reduction of cystine to cysteine in the

cytoplasm (40, 41). Through the exchange of system Xc- (40),

cysteine and glutamic acid are transported inside and outside the

cell, and then participate in the synthesis of GSH. Inhibition of

cysteine absorption can inhibit the activity of system Xc-, which can

affect the synthesis of GSH and ultimately inhibit the activity of

GPX, leading to the decline of cellular antioxidant capacity, lipid

ROS accumulation, and inducing ferroptosis. Overexpression of

apoptosis-inducing factor associated 2 (AIFM2) may eliminate

GPX4 to inhibit ferroptosis (42) (Figure 1).
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Seven members of solute vector family 11 (SLC7A11; Also

called xCT) (43) is a transporter subunit in the system Xc-. The

expression or activity of SLC7A11 is regulated by many factors,

such as TP53 (6), NRF2 (44), BRCA1-related protein 1 (BAP1) (5),

and BECN1 (45). Inhibition of SLC7A11 by small molecule

compounds (such as erastin) can cause glutathione depletion to

trigger ferroptosis (46). After GPX4 inactivation (10), some cancer

cell lines remain resistant to ferroptosis, suggesting the presence of

additional ferroptosis defense mechanisms (Figure 1).

CoQH2 system: Some recent studies suggest that ferroptosis

defense systems can be divided into two main parts, GPX4 system

and CoQH2 system. CoQH2 is an endogenous ferroptosis inhibitor,

which has antioxidant effect in cell membrane and can reduce the

oxidative damage of cell membrane. In addition to GPX4 system,

DHODH/FSP1/CoQ pathway is another key inhibitory mechanism for

lipid peroxidation and ferroptosis. DHODH is an enzyme involved in

pyrimidine synthesis, which can reduce ubiquinone (CoQ) to

ubiquinol (CoQH2) in the mitochondrial inner membrane. When

GPX4 is dramatically inactivated, the flux through DHODH (3)

increases significantly, leading to enhanced CoQH2 production,

neutralizing lipid peroxidation, and defense against ferroptosis in

mitochondria. The inactivation of mitochondrial GPX4 and

DHODH releases powerful mitochondrial lipid peroxidation and

triggers intense ferroptosis. Cytoplasmic GPX4 was also found to be

significantly localized in the mitochondrial membrane gap

(37) (Figure 1).

As a major suppressor of ferroptosis, FSP1 was originally described

as a p53 response gene and therefore was originally called p53 response

gene 3 (PRG3). FSP1, also known as AIFM2, is localized in the plasma

membrane (as well as other subcellular compartments), and its plasma

membrane localization appears to be necessary and sufficient to

function FSP1’s role in inhibiting ferroptosis (47, 48). Doll et al. and

Bersuker et al. found that FSP1 inhibits lipid peroxidation and

ferroptosis by reducing CoQ (or its partially oxidized product

hemihydroquinone) to CoQ2. This may directly reduce lipid radicals

to terminate lipid autoxidation, or indirectly via regenerating oxidized

a-tocopheryl radical (Vitamin E), a powerful natural antioxidant (47,

48). FSP1 acts as a NADPH-dependent CoQ redox enzyme, and can

catalyze CoQ10 regeneration depending on NADPH, thereby

improving the ability of free radical capture to protect cells, and also

has a protective effect against ferroptosis caused by GPX4 deletion. This

protective effect of CoQ reveals why some cells and tissues, such as

highly metabolically active liver cells, contain large amounts of

extracellular CoQ, which is inconsistent with its typical role in the

mitochondrial electron transport chain. CoQ is synthesized mainly in

the mitochondria (49), but detected in non-mitochondrial membranes,

including the plasma membrane (50). Unanswered questions remain

about the potential role of other CoQH2 producing mitochondrial

enzymes in the regulation of ferroptosis.
2.3 Upregulation of ferroptosis defenses

Despite the prevailing importance of GPX4 and CoQH2 for

limiting ferroptosis, both the signal pathways and the tumor
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microenvironment influence the function of ferroptosis in

tumorigenesis and tumor therapy.This section focuses on the role

of these two pathways that inhibit ferroptosis.

Hippo–YAP signaling in ferroptosis: The Hippo -Yap

pathway is involved in a variety of biological functions, including

cell proliferation and organ size control (51). Wu et al.

demonstrated the role of intercellular interactions and

intracellular NF2-YAP signaling in dictating ferroptosis, which

can promote the survival of GPX4 knockout cells (9). Because

YAP targets include several regulators of ferroptosis, including

transferrin receptors ACSL4, TFR1, and possibly other genes,

susceptibility to ferroptosis depends on Hippo pathway activity,

with increased susceptibility in response to Hippo inhibition and

YAP activation (9). Yang et al. found that in renal cell carcinoma

(RCC), Transcription Regulator 1 (TAZ) is abundantly expressed

and regulates ferroptosis through Epithelial Membrane Protein 1

(EMP1)-NOX4 (52).

Nuclear factor E2 erythroid 2-like-2 (NRF2): The NRF2

transcription pathway can up-regulate the expression of

antioxidant genes or cell protective genes in various oxidative

stress processes. As a major regulator of antioxidant defense,

transcription factor NRF2 (53, 54) controls the transcription of

many genes involved in GPX4-GSH-mediated ferroptosis defense.

Sun et al. report that NRF2 plays a central role in protecting

hepatocellular carcinoma (HCC) cells against ferroptosis, and

NRF2 signaling is up-regulated in many human cancer types

(55) (Figure 1).

Ferroptosis in the tumor microenvironment: Recent studies

have also shown that the tumor microenvironment (TME), which is

a multicellular environment, includes the extracellular matrix,

immune cells, blood vessels, tumor cells, and other cells. In

particular, immune cells determine whether ferroptosis in tumor

cells will occur. CD8+ cytotoxic T cells are the main agents of anti-

tumor immunity in the TME (56), secreting interferon-g (IFN-g)
and subsequently inhibiting cystine uptake by cancer cells via

down-regulation of SLC7A11 expression, thereby increasing lipid

peroxidation and ferroptosis in tumors. Ferroptotic cancer cells can

release several immunostimulatory signals, such as high mobility

group box 1 (HMGB1) (57), calreticulin (58), ATP (59), and

phosphatidylethanolamine (60). These factors can promote

dendritic cell maturation, increasing the efficiency of

macrophages in the phagocytosis of ferroptotic cancer cells, and

further enhance the infiltration of CD8+ T cells into tumors.

Immunotherapy, combined with induction of ferroptosis, is a

promising therapeutic approach. Drijvers et al. (61) found that

Acyl-CoA synthetase ACSL4 mediates GPX4 inhibitor-induced

sensitivity changes and ferroptosis in activated CD8+ T cells.

CD8+ T cells can inhibit tumor cells by inducing iron decay and

pyrosis (62, 63).
3 The role of ferroptosis in leukemia

Leukemia comprises a group of heterogeneous hematopoietic

stem/progenitor cell malignancies characterized by abnormal

proliferation of primitive cells in the bone marrow that interfere
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with normal blood cell production. Its occurrence involves multiple

gene changes including the transferrin receptor 1 gene, the

hemochromatosis (HFE) gene, and several genes related to

iron metabolism.

At present, chemotherapy, immunotherapy, and hematopoietic

stem cell transplantation (HSCT) are still the main treatments for

leukemia. Despite advances in treatment, the results remain

disheartening. Relapse or refractory disease and resistance to

chemotherapy are the main reasons for treatment failure.

Overcoming drug resistance is a major challenge in cancer

treatment. Combination therapy prevents drug resistance by

combining drugs with different targets, modes of action, and

distribution of side effects in the body to reduce toxicity (64).

As a newly discovered programmed cell death mode, ferroptosis

is regulated by multiple pathways such as lipid metabolism,

mitochondrial metabolism and iron metabolism. Through this

new death mode, it provides a new idea for improving the

prognosis of leukemia patients. However, leukemia cells seem to

be able to escape oxidative stress and reduce ferroptosis through

some mechanisms.
3.1 Acute myeloid leukemia

Acute myeloid leukemia (AML) is a clonal hematopoietic

disease caused by a variety of genetic and epigenetic impairments,

characterized by impaired differentiation and uncontrolled

proliferation, with varying prognoses (65). The incidence of AML

increases with age, with a mortality rate of over 90% (66) at

diagnosis after age 65. Ferroptosis provides a new idea for the

treatment of AML, and a variety of drugs have been shown to

induce ferroptosis.

Sorafenib has been approved as a tyrosine kinase inhibitor for

the treatment of liver, kidney, and thyroid cancers for more than 15

years, and has recently been shown to be effective in AML patients

with FLT3-ITD mutations (67). Concurrently, it also inhibits

system Xc- and thus induces ferroptosis (46). Imatinib Mesylate

(IMA) (68)down-regulates the expression of NRF2 and up-

regulates the expression of p53 and TFR. These results provided

compelling evidence that ferroptosis participates in IMA-induced

cardiotoxicity. Ferroptosis could be regarded as a target to protect

against cardiotoxicity in IMA-exposed patients.

APR-246 (69) is a novel drug for the treatment of TP53-mutant

AML. Its main mechanism of action is to promote the binding of

p53 mutants to DNA targets to reactivate the transcriptional

activity of p53 and exert tumor inhibitory effects. APR-246 (70)

increases oxidative stress by depleting GSH and inhibiting

thioredoxin reductase, leading to the accumulation of ROS and

further promoting tumor cell death. Birsen et al. (71) found that the

observed early p53-independent cell death induced by APR-246

is ferroptosis.

NEAT1 (72) is bound to cytoplasmic disheveled 2 (DVL2) and

tripartite motif containing 56 (TRIM56), which promotes the

degradation of DVL2 and inhibits Wnt signaling, inhibiting the

self-renewal of AML stem cells. Zhang et al. (73) found that

ferroptosis inducers erastin and RSL3 increased NEAT1
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expression by promoting the binding of p53 to the NEAT1

promoter. Induced NEAT1 promoted the expression of MIOX by

competitively binding to miR-362-3p. MIOX increased ROS

production and decreased the intracellular levels of NADPH and

GSH, resulting in enhanced erastin- and RSL3-induced ferroptosis.

Aldo-keto reductase family 1 member C2 (AKR1C2),

suppressor of cytokine signaling1 (SOCS1) (74), dipetidyl

peptidase-4 (DPP4) (75), and human immunodeficiency virus

type I enhancer-binding protein zinc finger 3(HIVEP3) (76) can

be used as predictive adverse prognosis. Long non-coding RNAs

(lncrnas) (77) associated with ferroptosis have also been shown to

accurately predict the prognosis of AML and optimize treatment

strategies for AML.

Acetaldehyde dehydrogenase 3a2 (Aldh3a2) (78) is l-gmp

dependent and not seen in n-gmp. It protects AML cells from

oxidative cell death, and Aldh3a2 inhibition improves leukemia

outcomes in vivo without compromising normal hematopoiesis.

Aldh3a2 inhibition combined with ferroptosis inducer or standard

AML induction chemotherapy deserves further consideration as a

cancer treatment.

High mobility base Box 1 (HMGB1) (79) is a transcription

factor involved in the process of chromatin remodeling, DNA

recombination, and repair. HMGB1 is found in the cytoplasm

and, via translocation, is expressed on the cell surface membrane

or diffuse in the extracellular space. This can be caused by various

cellular stressors, causing HMGB1 to migrate from the nucleus to

the cytoplasm in response to erastin in HL-60/NRASQ61L cell lines

and acts as a positive regulator of ferroptosis, possibly enhancing

resistance to anticancer therapy.

At present, a variety of drugs have been confirmed to promote

or inhibit ferroptosis in AML cells, but there is still a lack of large-

scale studies, and further research is still needed to support the

development. There are still many challenges in the clinical

application of ferroptosis in the treatment of leukemia.
3.2 Acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is a common malignant

disease of the blood system, which manifests as abnormal clonal

proliferation of naive or immature T and B lymphocytes. These cells

will infiltrate bone marrow, blood, or other tissues and organs,

causing abnormal hematopoietic function of bone marrow and

immune dysfunction. Vincristine (VCR) is often used as a

treatment for ALL (80). Studies have found that VCR promotes

ferroptosis by enhancing the expression of lncRNA LINC00618 and

inhibiting the transcription of SLC7A11, suggesting that ferroptosis

is involved in the mechanism of action of VCR.

RSL3 is an inducer of ferroptosis that binds and inactivates

GPX4, mediating ferroptosis regulated by GPX4 (81). Probst et al.

treated ALL cell lines with RSL3 causing lipid peroxidation, ROS

production, and cell death (82). Hydnocarpin D (HD) can trigger

ferroptosis through the accumulation of lipid ROS and the

reduction of GSH and GPX4, while the inhibition of autophagy

prevents the ferroptosis (83). PAQR3 (progestin and adipoQ

receptor family member 3) is involved in the occurrence of many
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tumors as a tumor suppressor and can inhibit the proliferation of

human leukemia cells and induce cell apoptosis (84). Jin et al. found

that PAQR3 inhibits cell proliferation and aggravates ferroptosis in

ALL by regulating the stability of NRF2. Hong et al. (85, 86)

demonstrated the critical role of ferroptosis in Philadelphia

chromosome negative (Ph-neg) B-ALL patients, with sorafenib

potentially improving survival in high-risk Ph-neg B-ALL patients.

Artesunate (ART), a semi-synthetic water-soluble derivative of

Artemisia annua L., is a natural product extracted from artemisia

annua L. Apoptosis induced by ART corresponded to the activation

of caspase-8/9/3. The expression of Bcl-xL, Bcl-2, myeloid

leukemia-1, survivin, X-linked apoptosis inhibitor protein, and

apoptosis inhibitor 1/2 were decreased, with increased expression

of Bak. ART increased the activation of intracellular ROS and DNA

damage marker gamma-H2Ax. In the ATLL mouse model,

intraperitoneal injection of ART reduced tumor burden (87).

Poricoic acid A (PAA) (88) strongly reduced the cell viability of

T-ALL cell lines. Mitochondrial dysfunction was also elevated by

PAA, along with enhanced cellular reactive oxygen species (ROS)

production. PAA treatments provoked ferroptosis in T-ALL cells

with reduced glutathione (GSH) levels and elevated malonaldehyde

(MDA) contents. As a new mode of regulatory cell death,

amplification of ferroptosis effect may be a new idea for drug

development and disease treatment.
3.3 Chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) is a disease with different

genetic characteristics and treatment responses. CLL is

characterized by the cloning and proliferation of mature CD5-

positive B cells in the blood, bone marrow, lymph nodes, and

spleen, resulting in immune system decline, organ dysfunction, and

slow progressive systemic failure and depletion.

Ferroptosis is less well studied in the CLL field. SLC7A11 is the

main functional subunit of system Xc- to transport cystine into cells

to synthesize GSH. Inhibition of SLC7A11 expression can induce

ferroptosis. The expression of SLC7A11 is low in CLL compared to

the high expression level of SLC7A11 in other systemic solid

tumors. This will lead to an increase in intracellular ROS, and as

CLL cells are more prone to oxidative stress, they may be sensitive

to ferroptosis inducers.

Ferroptosis is an autophagy-dependent form of cell death.

BECN1 affects the occurrence and progression of autophagy, and

its repeated allelic deletion and expression variation have been

reported in tumors (89). Gong et al. (90) proposed a novel FPS

model for prognostic prediction of CLL and established nine

ferroptosis genes associated with CLL prognosis.
3.4 Chronic myelogenous leukemia

Chronic myelogenous leukemia (CML) is a hematopoietic

malignancy caused by reciprocal translocation of Philadelphia

chromosomes 9 and 22. Ferroptosis has been less studied in the

field of CML. Cysteine metabolism plays a key role in cancer cell
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survival in the study of CML related fields. Cysteine deficiency has

been reported to inhibit tumor growth and induce ferroptosis in

pancreatic cancer cells. It has also been reported that cysteine

depletion can induce ferroptosis in CML cells in vitro, and

thioredoxin reductase 1 (TXNRD1) (91), which is related to cell

redox metabolism, is a key factor regulating ferroptosis.
4 Conclusion and outlook

Ferroptosis, as a newly discovered form of programmed cell

death, has a broad prospect in tumor therapy. We have

systematically and comprehensively illustrated the relationship

between ferroptosis and leukemia, and found that ferroptosis

plays an important role in disease progression. PUFA-PL

synthesis and peroxidation, intracellular ROS levels, and

homeostasis of various metabolic pathways can affect cell

sensitivity to ferroptosis, thus inducing ferroptosis in blood cells.

Iron accumulation and lipid peroxidation may be considered as

intermediate events, but they are not the final executors of

ferroptosis. Leukemia cells seem to escape oxidative stress

through certain mechanisms, such as the upregulation of

ferroptosis defenses and ferroptosis defense mechanisms, which

reduce the occurrence of ferroptosis. However, the study of

ferroptosis in hematological diseases is still in the early stage, and

its specific mechanism needs to be further studied. At present, most

studies affect the activity of antioxidants such as GPX4 through

exogenous ferroptosis inducers, causing the accumulation of ROS

and thus promoting ferroptosis. There are few large studies on

ferroptosis inducers in the treatment of leukemia. The pathogenesis

of leukemia is complex, and often involves multiple pathways and

targets. The previous multi-drug combination chemotherapy with

cytotoxic drugs could easily cause serious adverse consequences

such as bone marrow suppression and immune destruction. Novel

target inhibitors related to ferroptosis, or their combination with

existing cytotoxic agents, may further enhance the efficacy of

existing single agents, delay drug resistance and improve

prognosis. Although the treatment of leukemia with ferroptosis

inducers is not mature at present, but it still has high research value.

In summary, we are currently in the middle of an important

phase in the development of ferroptosis research. The occurrence
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and development of ferroptosis, its transcriptional regulation

mechanism, and the development of effective regulatory targeted

drugs are of utmost importance, providing a new direction for

clinical diagnosis and treatment of blood diseases. New treatments

based on ferroptosis will be developed and put into clinical use

soon, guided by specific biomarkers and a precise assessment of a

patient’s background.
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The complex nature of
lncRNA-mediated chromatin
dynamics in multiple myeloma
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Laboratory, Uppsala University, Uppsala, Sweden
Extensive genome-wide sequencing efforts have unveiled the intricate

regulatory potential of long non-protein coding RNAs (lncRNAs) within the

domain of haematological malignancies. Notably, lncRNAs have been found to

directly modulate chromatin architecture, thereby impacting gene expression

and disease progression by interacting with DNA, RNA, and proteins in a tissue-

or condition-specific manner. Furthermore, recent studies have highlighted the

intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a

rationale to explore the possibility of therapeutically targeting lncRNAs

themselves or the epigenetic mechanisms that govern their activity. Within the

scope of this review, we will assess the current state of knowledge regarding the

epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to

chromatin remodelling in the context of multiple myeloma.

KEYWORDS

lncRNA, chromatin regulation, multiple myeloma, epigenetics, RNA modifications,
haematological malignancies
Introduction

Multiple myeloma (MM) is a heterogeneous haematological malignancy characterized

by the clonal expansion of malignant plasma cells within the bone marrow (1). It represents

the second most prevalent haematological malignancy and it is marked by complex genetic

aberrations, including chromosomal translocations, copy number alterations, and somatic

mutations, affecting pathways critical to cell cycle regulation, DNA repair, and epigenetic

modulation (2–4). Treatment strategies include high-dose chemotherapy regimens,

autologous stem cell transplantation, as well as targeted therapies such as proteasome

inhibitors and immunomodulatory agents. Despite these therapeutic innovations, disease

relapse and drug resistance remain as substantial challenges (5). Thus, treatment of MM is

clinically challenging and new therapeutic interventions are required. Prior studies, by us

and others, have suggested that the epigenetic machinery plays a crucial role in MM

pathogenesis, including aberrant DNA methylation and abnormal histone modification

patterns (6–14). Furthermore, more recently, dysregulation of long non-protein coding
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RNAs (lncRNAs) has been suggested to contribute to MM

pathogenesis, patient outcome and drug resistance (15–17).

Additionally, dysregulation of lncRNAs has been shown to

contribute to disease progression by influencing critical pathways

involved in proliferation, apoptosis, immune response, and drug

resistance (18, 19). Unravelling the complex network of lncRNA-

mediated molecular mechanisms could therefore unveil novel

therapeutic targets and diagnostic markers in MM.

lncRNAs represent the largest group of non-protein coding

RNAs, however, to date their functions remain largely unexplored.

lncRNAs are transcripts exceeding 200 nucleotides in length, and

their transcriptional regulation mirrors that of protein-coding

genes, including processes such as histone modifications,

chromatin compaction, and chromatin remodelling. The

biogenesis of lncRNAs encompasses a spectrum of events,

including 5’ capping, splicing, variation in exon and intron

dimensions, and the addition of polyadenylation (poly(A)+) tails.

Notably, features like poly(A)+ tails and 5’ capping play

fundamental roles in determining the transcript stability of

lncRNAs. In contrast to messenger RNAs (mRNAs), lncRNAs

transcripts exhibit a diminished steady-state, as they are

commonly less evolutionary conserved (20). lncRNAs can be

transcribed from multiple genomic locations, including

promoters, enhancers, intergenic regions, as well as in

bidirectional and antisense directions. Typically residing within

the nucleus, lncRNAs tend to manifest pronounced cell and tissue

specificity (21). In addition, a substantial fraction i.e., 81% of

lncRNAs, exhibit a limited degree of evolutionary conservation,

while 3% of lncRNAs manifest ultra-conservation (22).
Frontiers in Oncology 0297
Functionally, lncRNAs perform a diverse array of functions

both within the nucleus and the cytoplasm. These molecules

regulate gene expression by engaging in intricate interactions with

RNA, DNA and proteins, including chromatin-modifying enzymes.

Within the nuclear domain, lncRNAs have been categorized into

four fundamental archetypes: signal, decoy, guide, and scaffold

lncRNAs (Figure 1). Signal lncRNAs respond to specific stimuli,

promoting integration of signals for the transcription of targeted

genes (23). Decoy lncRNAs, on the other hand, can bind proteins,

such as transcription factors and chromatin modifiers, resulting in

transcriptional control by impeding the binding capacity to their

targets (24). Guide lncRNAs have the ability to reposition

ribonucleoprotein complexes to designated loci, both in cis and in

trans, thereby altering the gene expression patterns. Finally,

scaffold-associated lncRNAs engage in temporally and spatially

regulated interactions with DNA, different types of RNAs and

proteins, thereby bolstering the stability of complexes involved in

either transcriptional activation or suppression. Additionally,

lncRNAs operate as microRNA (miRNA) sponges, sequestering

miRNAs to avert mRNA degradation (25). To date, various

lncRNAs have been described to localize with chromatin, where

they interact with different chromatin-associated proteins to

promote or repress their binding potential to specific DNA

locations. These chromatin-associated lncRNAs have been

implicated in MM pathogenesis and disease outcome. In addition,

lncRNAs do not only act as regulators of the epigenetic landscape

but can also themselves be epigenetically regulated by DNA and

chromatin modifications as well as by RNA modifications, referred

to as the epitranscriptomics. Among these, RNAmodifications such
FIGURE 1

Overview of lncRNA functions. lncRNAs can regulate transcription by acting as a scaffold by binding proteins together in a complex structure. A
secondary function of a lncRNA is as a guide of proteins or other molecules to target genomic location. lncRNAs can directly bind to genomic
regions within the genome to transduce signal activation of DNA-bound molecules. Furthermore, a lncRNA can act as a decoy, preventing different
molecules such as proteins to bind to targeted genomic regions. In addition, lncRNAs can regulate miRNAs function by acting as a miRNA sponge,
preventing miRNA-mRNA binding, thus inhibiting mRNAs degradation. Image was created with biorender.com.
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as, N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-

methylcytosine (m5C), and 7-methylguanosine (m7G), play a

crucial role in regulating various aspects of lncRNA function,

structure, stability, localization, and lncRNA-mediated

interactions (26–34) (Figure 2).

We and others have shown the importance of lncRNAs in

chromatin remodelling and the impact they have on MM patient

outcome (6, 15–17). In fact, aberrant lncRNA expression has

been demonstrated to have an oncogenic role in MM

pathogenesis and progression (35, 36). In this review, we

present an overview of the role of lncRNAs in the context of

MM through their epigenetic regulation and functional effects on

chromatin remodelling.
The functional impact of lncRNAs in
epigenetic regulation

lncRNAs have been suggested to affect multiple layers of cellular

function, encompassing processes such as cellular biogenesis of

macromolecules, differentiation, gene expression and chromatin

remodelling. The recent establishment of a comprehensive

genome-wide lncRNA-chromatin interactome has provided

insight into the intricate orchestration of chromatin compaction

by lncRNAs, subsequently impacting gene expression patterns (37–

39). Notably, the functional implications of lncRNA-mediated
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chromatin remodelling in the context of cancer have gained

considerable interest, however a summary within the domain of

MM is currently lacking.
Epigenetic regulation of lncRNAs by DNA
methylation and histone modifications

The expression of lncRNAs can be regulated by different

epigenetic machineries, such as DNA methylation (40). DNA

methylation plays an important role in regulating cell-type

specific gene expression. The DNA methylation process consists

of the deposition of methyl groups to the 5-carbon position of

cytosine in a CpG dinucleotide, resulting in gene suppression when

located along the promoter or transcription start site and gene

transcription when found in the gene body. This process is catalysed

by the DNA methyltransferases, DNMT1 and DNMT3A/B and can

be reversed by the DNA demethylase enzymes TET1-3 (41).

Disrupted DNA methylation has been shown to promote

carcinogenesis and disease progression in multiple cancers (3, 42,

43). In fact, it has previously been suggested that promoter DNA

hypermethylation is accountable for decreased expression of 35

lncRNAs in hepatocellular carcinoma (40, 44). Furthermore,

patients with lower expression of these lncRNAs had increased

expression of the DNA methyltransferase genes DNMT1,

DNMT3A, and DNMT3B. In contrast, patients with higher
FIGURE 2

Proposed overview of RNA modifications on lncRNA. Schematic overviews are provided for the different lncRNAs modifications. (A) The m6A modification
is deposited by a protein complex constituted mainly by METTL3, METTL14 and the cofactor WTAP. There are multiple m6A readers identified, namely
YTHDF1/2/3, IGF2BP1/2/3, HNRNPs and ZC3H13. The demethylation of m6A is catalysed by FTO and ALKBH5. (B) NSUN2 has been reported as the sole
writer of the m5C modification in lncRNAs. The m5C can be identified by ALYREF and YBX1 and it is speculated that the removal is catalysed by TETs. (C)
m1A is suggested to be deposited by TRMT10C, TRMT6/61 and NML on lncRNAs. Multiple readers have been identified in other types of RNAs, as
YTDHF1-3 and YTHDC1 and the removal is mainly associated to FTO and ALKBH1/3/7. (D) The exact manner of how m7G modification is deposited on
lncRNAs is currently unknown. Three different complexes can take the role of a writer, METTL1 and WDR4, RAM and RNMT or WBSCR22 and TRTM112.
Currently both readers and erasers on m7G are unknown and represented with ? in the figure. Image was created with biorender.com.
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expression of this panel of lncRNAs, exhibited lower expression of

the DNAmethyltransferases (40). Li et al. reported that the lncRNA

BM742401, defined as a tumour suppressor in gastric cancer and

chronic lymphocytic leukaemia, undergoes silencing in MM cell

lines due to promoter hypermethylation. Notably, decreased

BM742401 levels enhanced MM cell migration, while in newly

diagnosed MM patients, silencing by elevated DNA methylation

levels in the promoter of the lncRNA BM742401 correlated with

poor overall survival. This underscores the significant impact that

epigenetic regulation of lncRNAs can exert on disease progression

(45). Similarly, DNA methylation-mediated silencing of the

lncRNA KIAA0495 has been reported in MM cell lines, although

it was not found to be relevant for the progression of the disease

(46) (Table 1).

An additional level of transcriptional regulation is through

chromatin compaction. DNA is packed into chromatin fibres

wrapped around a histone octamer, ultimately forming a

nucleosome. The nucleosome consists of the four histone proteins

H2A, H2B, H3 and H4. Each histone protein has in its N-terminal

domain a histone tail that can be reversibly subjected to

methylation, acetylation, phosphorylation, ubiquitination,

sumoylation and histone tail clipping which control chromatin

compaction, thus either promoting or inhibiting transcription

factor binding, DNA repair, replication and genomic

recombination. The majority of studies have concentrated on

examining histone modifications related to protein coding genes

and non-protein coding genes such as miRNAs (59–62).
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Consequently, additional research is warranted to elucidate the

influence of histone modifications on lncRNAs’ regulation and the

potential implications in various diseases, including MM.
Interplay between lncRNAs and
chromatin modifiers

Although, data is largely lacking how regulation of lncRNAs by

the deposition of histone modifications may directly influence their

expression, there is now emerging data indicating that lncRNAs

may act as recruiters, guides and scaffolds for protein complexes

including chromatin modifiers, thus epigenetically influencing the

expression of other genes. Prior studies have shown that PRC2-

mediated gene silencing is important for MM pathogenesis and

disease progression, both in vivo and in vitro (7, 8, 10, 43).

Furthermore, several lncRNAs have been suggested to regulate

the enzymatic activity of PRC2 by binding to the catalytic subunit

EZH2. Moreover, lncRNAs can modulate PRC2 activity by acting as

a complex recruiter to target genomic locations. For instance, the

lncRNA PVT1 was recently described to be overexpressed in

primary MM patient samples and associated with poor prognosis,

a seemingly independent feature from patients’ cytogenetic

background (6). Moreover, PVT1 was shown to interact directly

with EZH2, facilitating recruitment of PRC2 to target genomic loci

and transcriptional repression of genes associated with pro-

apoptotic and tumour suppressor functions (6) (Table 1).
TABLE 1 Function and clinical implications of lncRNAs in multiple myeloma.

lncRNA Expression Function Downstream effects Prognosis Reference

BM742401 Downregulated Unknown Promote cell migration Poor OS (45)

KIAA0495 Downregulated Unknown Unknown Not involved (46)

PVT1 Upregulated PRC2 recruiter Silencing of tumor suppressor genes & pro-
apoptotic genes

Poor OS (6)

ANRIL Upregulated Guide for PRC1/2 Resistance to bortezomib Poor OS (47)

H19 Upregulated miRNA sponge & activator of BRD4 Imbalance of osteogenesis/osteolysis Poor OS (48)

CRNDE Upregulated Unknown Proliferation through IL6 signalling Poor OS (49)

MIAT Upregulated Unknown Resistance to bortezomib Poor OS (50)

HOTAIR Upregulated Activation of NF-kB & JAK2/
STAT3 signalling

Resistance to dexamethasone Unknown (51)

RROL Unknown Chromatin scaffold Promote cell growth Unknown (52)

AIR Upregulated Unknown Unknown Unknown (53)

HOXB-
AS1

Upregulated mRNA stabilizer Unknown Unknown (54)

DARS-AS1 Unknown Unknown Promoting the mTOR pathway Unknown (55)

MALAT1 Upregulated Scaffold for protein complexes &
miRNA sponge

Increased proliferation & reduction of pro-apoptotic
gene expression

Poor OS (25, 56, 57)

NEAT1 Upregulated Unknown Chemotherapeutic resistance Poor OS (25, 58)

GAS5 Upregulated Unknown Unknown Poor OS (25)
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Similarly to the function of PVT1, the lncRNA ANRIL, was

described to exert a guiding function for PRC1 and PRC2 DNA

binding in MM and was demonstrated to promote resistance to

conventional therapies such as bortezomib by guiding PRC2 to

promote gene silencing of the tumour suppressor gene PTEN. High

expression of ANRIL has been associated with poor overall survival

in MM (47) (Table 1). Furthermore, upregulation of the lncRNA

H19 correlates with worse prognosis and promotes the imbalance of

osteogenesis and osteolysis in MM by acting as a miRNA sponge,

resulting in upregulation of E2F7, which is a transcriptional

activator of EZH2 and thus affecting the suppression of PTEN

(48). In addition, increased H19 activity has been shown to activate

the chromatin reader protein BRD4 in MM (63). BRD4 is a well-

known epigenetic reader of acetylated lysine and assists in the

transmission of epigenetic memory during cell division (64, 65).

BRD4 has been identified as a therapeutic vulnerability and

potential target in MM (66) (Table 1).

The lncRNA CRNDE epigenetically regulates the transcription

of DUSP5 and CDKN1A in solid tumours by facilitating PRC2

recruitment (67). Overexpression of CRNDE has been described to

be associated with poor prognosis by regulating proliferative

capacity through IL6 signalling in MM, however, no direct

interaction between CRNDE and PRC2 has been proven (49).

Recruitment of the histone H3 lysine 4 methyltransferase MLL

has been suggested to occur through the binding to the lncRNA

MIAT, which can then guide MLL to the promoter region of the

collagen degradation enzyme MMP9. Inhibition of MIAT resulted

in the loss of transcriptional activity ofMMP9, which is suggested to

reduce proliferative capacity and cell migration in non-small cell

lung cancer (68). In MM, MIAT is overexpressed and has been

associated with sensitivity to bortezomib treatment (50) (Table 1).

Interestingly, additional lncRNAs have been suggested to play

important roles in chromatin regulation. The lncRNA HOTAIR has

been demonstrated to bind to the PRC2 complex and can further

interact with the TF-silencing complex formed by LSD1/CoREST/

repressor element 1, promoting gene repression (69). In addition,

HOTAIR may function as a stabilizing component of PRC2, as well

as a scaffold for complex-complex interactions (69). In MM,

HOTAIR has been described to be upregulated in primary patient

samples and to contribute to the oncogenic activation of the JAK2/

STAT3 signalling pathway (51) (Table 1). Similarly, the MIR17HG-

derived lncRNA, RROL, has been demonstrated to act as a

chromatin scaffold for protein interactions and to promote MM

cell growth (52). lncRNAs such as AIR and HOXB-AS1 have been

described to have a guiding function through which they recruit the

histone methyltransferases G9a and SET1/MLL to target locations

to induce gene repression or activation, respectively (53, 70).

Interestingly, HOXB-AS1 has been described to be upregulated in

MM, acting as a stabilizer for mRNA (54) (Table 1). In another

aspect of epigenetic regulation, DARS-AS1 promotes the

recruitment of the histone methyltransferases METTL3 and

METTL14 to DARS mRNA to induce m6A modification and

enhance translation in cervical cancer (71). In MM, DARS-AS1

has been described to regulate HIF-1a in promoting the mTOR

pathway (55) (Table 1).
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Increased expression of the lncRNAs GAS5, MALAT1 and

NEAT1 in MM patients, is associated with poor outcome and

worse overall survival (25) (Table 1). GAS5 has the ability to act

as decoy for different molecules by functioning as a DNA mimic,

thus preventing DNA motif binding (72). One of the most

abundant and most studied lncRNAs is MALAT1 which has been

implicated in various functions during MM pathogenesis by acting

as a scaffold for proteins involved in DNA repair (56) and as a

miRNA sponge (57). Interestingly it has also been described to

promote gene silencing by PRC2 recruitment in various cancers

(73–75). Recent studies in colorectal cancer have suggested that the

lncRNA NEAT1 promotes histone H3 lysine 27 acetylation in genes

associated with stemness (76). In addition, NEAT1 has further been

implicated in lung cancer by recruiting DNMT1 to the promoter

regions of genes regulating cytotoxic T-cell infiltration. In fact,

inhibition of NEAT1 leads to loss of DNMT1 binding to these

promoter regions and thus activating gene expression (77). In MM,

overexpression of NEAT1 has been associated with poor patient

outcome. In addition, and further supporting a clinical relevance,

inhibition of NEAT1 promoted increased sensitivity to

chemotherapeutic treatment (58) (Table 1).
Epigenetic regulation of lncRNAs by
RNA modifications

RNA modifications on lncRNAs may influence their stability,

subcellular localization, and interactions with DNA, proteins and

other RNA molecules. These modifications can also affect lncRNA

regulation and contribute to their reported functional diversity (33).

Dysregulation of RNA modifications on lncRNAs has been

associated with various diseases, including MM (33, 78–80).

The deposition of the N6-methyladenosine (m6A) mark may

give rise to structural changes in lncRNAs, thus modifying lncRNA-

protein interactions. Additionally, the m6A modification can

modulate gene transcription, influence the subcellular localization

of lncRNAs and regulate lncRNAs’ stability (81–84). There is an

interdependent connection between the m6A modification and

lncRNAs. Notably, lncRNAs have the ability to influence the

stability and degradation of enzymes involved in m6A, as well as

facilitate their integration into protein complexes (85–87). One

example of this function is the lncRNA FEZF1-AS1, the knockdown

of which led to an increased apoptosis by regulating the signalling of

IGF2BP1, an m6A reader protein, in MM (88). Furthermore,

dysregulation of m6A-related enzymes has been associated with

disease progression, enhancing tumour growth and cell

proliferation in MM (89–95). Significantly, m6A studies in MM

showed a correlation between exosome-induced drug resistance and

high levels of m6A on the lncRNAs LOC606724 and SNHG. Wang

et al. identified METTL7A as an additional component of the m6A

methyltransferase complex and described how its regulation is

mediated by EZH2. Depletion of EZH2 simultaneously reduced

METLL7A protein methylation levels, thus altering the m6A levels

on the lncRNAs LOC606724 and SNHG (96). Studies in prostate

cancer show that high levels of m6A on NEAT1 have been
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associated with bone metastasis (79, 97). Although no studies of

m6A on NEAT1 have been performed in MM, high expression of

NEAT1 in patients have been correlated with poor prognosis (98).

In addition, NEAT1 can enhance the preservation of DNA integrity,

thus promoting survival of MM cells (99). Moreover, knockdown of

NEAT1 improved dexamethasone drug response in MM cell

lines (100).

5-methylcytosine (m5C) has previously been described to exert

important functions on DNA and has also been found to occur on

RNA (78). The biological impact of RNA m5C primarily affects

RNA localization, stability and transcription efficiency (101).

Interestingly, NSUN2 has been reported as the sole writer of the

m5C mark on lncRNAs (79). In MM, dysregulated deposition of

RNA m5C has been correlated with disease progression and

immune microenvironment regulation (102). Furthermore, recent

studies have elucidated the importance of this modification in

various other cancer types, including lung adenocarcinoma,

pancreatic cancer, and colon cancer (79, 103–105).

Modifications of lncRNAs also include the deposition of N1-

methyladenosine (m1A), which alters RNA secondary and tertiary

structure, subsequently affecting its capacity to interact with RNA

binding proteins. However, the function of m1A in lncRNAs is not

fully elucidated, and the m1A modification has so far only been

reported in the lncRNA MALAT1 (80, 106). Despite the absence of

studies focusing on the m1A modification in MM, as previously

mentioned, MALAT1 overexpression is correlated with worse

prognosis, and the oncogenic role of MALAT1 in promoting MM

tumorigenesis has been widely studied (35, 56, 107). MALAT1

dysregulation in MM has been associated with a wide range of

processes including cell proliferation, DNA repair mechanisms,

metastasis, drug resistance, and angiogenesis pathways (57, 107–

109). Nonetheless, if these functions are mediated by chromatin

remodelling and regulated via RNA modifications remains to be

further investigated.

The N7-methy lguanos ine (m7G) modifica t ion i s

predominantly found at the 5´cap of mRNA, ribosomal RNAs

(rRNAs) and transfer RNAs (tRNAs). However, the impact of m7G

on lncRNAs remains uncertain, probably attributed to the absence

of 5´cap on less conserved lncRNAs (110, 111). Nevertheless, Yang

et al. constructed the first model based on eight m7G-related

lncRNAs to predict patient prognosis in colon cancer (112).

Similarly, RNA m7G MeRIP-seq uncovered the significance of

m7G-enriched lncRNAs in acute myeloid leukemia cells and

unravelled a potential role of this modification in modulating

gene expression, thereby enhancing drug resistance (111).

However, the role of m7G modification in MM remains at

present unknown.
Discussion

The pathogenic impact of lncRNAs in MM and other

haematological malignancies is unravelling. Recently, there have

been large sequencing efforts in various cancers including MM that

have suggested a clinical importance of lncRNAs. In MM, lncRNAs

have been implicated in clinically relevant elements such as disease
Frontiers in Oncology 06101
development, progression, drug resistance and patient outcome

(25). Studies on the epitranscriptomics of lncRNAs through the

addition of methyl groups to the lncRNA transcripts have gained

increased attention and have furthered added an additional level of

complexity to how lncRNAs contribute to cellular processes, such as

RNA stability, translational efficiency of mRNAs and protein

complex formation. However, the exact nature of these

modifications needs to be further investigated in the context of

MM. Moreover, not only can the expression of lncRNAs be

epigenetically regulated but can in turn regulate chromatin

modifying enzymes. Although lncRNA-chromatin interactions are

clearly more dynamically investigated in some areas, such as in the

recently shown context of PRC2 recruitment, deep functional

evaluation of lncRNAs in MM is still lacking. It is apparent that

this field is underdeveloped and a complete picture of how lncRNAs

impact the pathophysiological processes in MM remains uncertain.

While their functions continue to unfold, targeting lncRNAs arises

as compelling innovative treatment option in cancer,

including MM.
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Extracellular vesicles (EVs) are various sets of cell-derived membranous

structures containing lipids, nucleic acids, and proteins secreted by both

eukaryotic and prokaryotic cells. It is now well recognized that EVs are key

intercellular communication mediators, allowing the functional transfer of

bioactive chemicals from one cell to another in both healthy and pathological

pathways. It is evident that the condition of the producer cells heavily influences

the composition of EVs. Hence, phenotypic changes in the parent cells are

mirrored in the design of the secreted EVs. As a result, EVs have been investigated

for a wide range of medicinal and diagnostic uses in different hematological

diseases. EVs have only recently been studied in the context of Chronic Myeloid

Leukemia (CML), a blood malignancy defined by the chromosomal

rearrangement t(9;22) and the fusion gene BCR-ABL1. The findings range from

the impact on pathogenesis to the possible use of EVs as medicinal chemical

carriers. This review aims to provide for the first time an update on our

understanding of EVs as carriers of CML biomarkers for minimal residual

disease monitoring, therapy response, and its management, as well as the

limited reports on the use of EVs as therapeutic shuttles for innovative

treatment approaches.

KEYWORDS

Chronic Myeloid Leukemia, extracellular vesicles, exosomes, vesicular markers,
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1 Pathogenesis of Chronic
Myeloid Leukemia

Chronic Myeloid Leukemia (CML) is a blood cancer

characterized by the uncontrolled growth of myeloid cells at

different stages of maturation that may be detected both in the

bone marrow (BM) and in the peripheral blood (PB) (1). Classically

subdivided into three clinical forms, the chronic (CP), accelerated

(AP), and blastic phases (BP), the CML represented the pathfinder

for many discoveries in the medical domain (2). The translocation t

(9;22), also known as Philadelphia (Ph)-chromosome, was

identified as the hallmark of CML (3), and the subsequent

identified BCR-ABL1 fusion gene is the central player in the

pathogenesis of CML. BCR-ABL1 encodes a 210 KD chimeric

protein with constitutively active tyrosine kinase activity that

promotes several downstream signaling pathways in neoplastic

cells (4). In particular, the expression of this oncoprotein leads to

altered adhesion to stromal cells and the extracellular matrix,

promoting survival and inhibiting apoptosis (3). In addition,

cellular transformation and the acquisition of self-renewal

capacity are facilitated. Tyrosine kinase inhibitors (TKIs) are the

mainstay of current CML treatment. Thanks to their

administration, high remission rates have been recorded, and

improvements in patient survival rates have been observed.

Current guidelines endorse using imatinib, dasatinib, nilotinib,

and bosutinib as frontline treatment options in CML patients (5).

On the other hand, third-generation TKI ponatinib and newer

asciminib are intended for patients previously treated with two or

more TKIs or those harboring the T315I mutation (6). Nevertheless,

CML continues to be a significant challenge in clinical practice due

to the difficulty in predicting its progression and prognosis and the

inter-patients variability in CP’s duration and treatment response.

Indeed, the presence of the BCR-ABL1 oncoprotein is known to

provide for the acquisition of additional genetic abnormalities,

likely by increased genomic instability (7). The consequence of

this clonal evolution is associated with an increased incidence of

relapse, poor prognosis, resistance to TKIs treatment, and,

unfortunately, the advancement into blastic crisis (8). The more

frequent additional genetic abnormalities detected are duplication

of the Ph chromosome, trisomy 8, isochromosome 17, loss of

chromosome Y or monosomy 7. In addition, like other

hematological malignancies, loss of Tp53 is associated with

increased resistance to apoptosis (9, 10). Other important

elements in the CML scenario are the leukemic stem cells (LSC)

resident in the bone marrow niche. LSC are characterized by the

presence of BCR-ABL1 rearrangement and a quiescence that leads

to the absence of BCR::ABL1 transcript. The non-transcription of

the fusion gene makes LSC undetectable by conventional

approaches, such as the quantification of BCR::ABL1 transcript by

real-time PCR that is the basis of the minimal residual disease

(MRD) monitoring (11, 12). Recently, extracellular vesicles (EVs)

and exosomes have generated considerable interest in cancer

research (13–15). Increasing evidence suggests that these vesicles

are important in regulating immune stimulation or suppression that

can drive inflammatory, autoimmune, and infectious disease
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pathology (16). Given their involvement in disease progression

and treatment resistance, EVs have been proven to play an active

role in the tumor microenvironment (TME) in the past few years

(17, 18). Several findings indicate that they also play a key role in the

hematological field and appear to be actively released by LSC. Less is

known about their function in CML, especially regarding their

potential clinical significance. The purpose of this review is to

provide for the first time an overview of the data presented about

EVs in CML with a special focus on their role as a shuttle of disease

markers and, wherever possible, as new therapeutic approaches.
2 The extracellular vesicles

Extracellular vesicles (EVs) are a heterogeneous group of cell-

derived membranous structures secreted by both eukaryotic and

prokaryotic cells containing lipids, nucleic acids, and proteins.

Chargaff and West firstly observed EVs as procoagulant platelet-

derived particles in normal plasma in the mid-40s (19). Their

presence in various body fluids was then discovered through

several studies during the 1970s-80s (20–22). Concomitantly,

other researchers observed their origin from tumor masses. The

term exosome was born in the same period, referring to vesicles

released by multi-vesicular bodies that fuse with the cell membrane.

Finally, in the early 2000s, thanks to the evidence that EVs contain

nucleic acids, including RNAs such as microRNA (miRNA), EVs

acquired substantially renewed interest as players in the cell-to-cell

communication (23, 24). Advancing on these pioneering studies,

EVs have been resulted as released by most cell types and isolated

from different biological fluids (25, 26).

In 2012 The International Society for Extracellular Vesicles

(ISEV) was founded. ISEV, including scientists involved in the

study of extracellularly secreted vesicles, is considered the reference

for the EVs classification and EVs analysis promotion. Based on the

current knowledge, EVs can be roughly classified into two main

subtypes regarding their physical characteristics and biogenesis

pathway: small-EVs (sEVs) and large-EV. The formers have a

diameter that ranges between 30–150 nm and include the so-

called exosomes. These vesicles derive from intraluminal vesicles

formed by the inward budding of the endosomal membrane during

the maturation of multivesicular endosomes (MVEs). These are

intermediates within the endosomal system and released through

the fusion of MVEs with the cell surface. On the other hand, large-

EVs represent a heterogeneous population of microvesicles with a

diameter that can reach up to 1000 nm. Large vesicles are generated

by the outward budding and fission of the cellular lipid membrane

and the subsequent secretion of vesicles into the extracellular space

(27). As previously stated, EVs are currently established as pivotal

mediators of intercellular communication, capable of functionally

transferring bioactive molecules from the cell of origin to another in

both physiological and pathological pathways. Indeed, released EVs

may interact with the releasing cells, therefore acting as autocrine

mediators, and with other cell types located both close and far from

the cell of origin. Indeed, they act as paracrine or endocrine

mediators. EVs exchange information between cells by shuttling
frontiersin.org
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several types of molecules, such as proteins, lipids, and the above

reported nucleic acids, many of which are selectively sorted inside

vesicles (28). Among these regulatory molecules, the miRNAs are

expressed by all cell types. Identifying miRNA related to

hematological diseases opened up new avenues in biomarkers

research. MiRNAs are a family of short, noncoding RNAs that

participate in the post-transcriptional regulation of gene expression.

They modulate the translation of messenger RNAs (mRNAs)

through mechanisms based on the binding of complementary

sequences to 3’UTR of mRNA. Their expression is a dynamic

process that reflects the evolution of the physiological and

pathological condition at the cellular level, which could be an

innovative tool in the hematological fields. Indeed, it is well

known that they play key roles in almost every cellular process (29).

It is clear that EVs composition largely depends on the status of

the producer cells and therefore, one can say that phenotypic

alterations in the cell of origin are mirrored by the composition

of the secreted EVs, both in terms of EVs type and in terms of

cargoes. As a consequence, a multitude of therapeutic and

diagnostic applications have been explored for EVs (30, 31).

Diagnostic applications take advantage of the different

information shuttled by the specific EVs, like the presence of a

genetic mutation associated with a disease. On the other hand,

therapeutic approaches exploit the EVs capacity to carry and release

potentially bioactive molecules (32). In the CML context, the main

cells with which the leukemic cell communicates via sEVs are

hematopoietic and mesenchymal stem cells, myeloid-derived

suppressor cells and endothelial cells (ECs) (33). It is well known

that tumor-derived EVs have a remarkable impact on the different

recipient cells. Indeed, their effect on cellular proliferation and

resistance to apoptosis, induction of angiogenesis, evasion from

immune response, transfer of mutations, and modulation of the

TME sustains their role as central mediators in key cancer

processes. Recent studies confirmed the above-cited pro-

tumorigenic activity also in the case of CML-derived EVs. In fact,

recent data suggest that they could establish an autocrine loop with

their producing cells, through a ligand-receptor interaction

mediated by the exosome-associate TGF-b1 (34). Taverna et al.

underlined that EVs released from CML cells could affect ECs

directly by inducing their release of proangiogenic cytokines, such

as IL8, thus modulating neovascularization, which plays an

important role in the development and progression of CML (35).

The same group has also highlighted that exosomal transfer of miR-

126 to ECs directly modulates the adhesive and migratory abilities

of CML cells themselves. Other groups reported that the

communication between CML cells and surrounding BM stromal

cells by CML-derived EVs leads to the inhibition of osteogenesis

and thus promotes CML progression. Together, they showed that

CML-derived EVs reduce the tumor-suppressive miR-320 in donor

cells, resulting in enhanced cell growth in vivo models (36).

Additionally, CML-derived EVs released by in vitro models may

transfer the BCR::ABL1 mRNA to normal BM cells, inducing BCR–

ABL1 ectopic expression. This intercellular transfer of active

biomolecules changes cells’ behavior and promotes disease

progression. The disease progression is partially favored by

changes in the TME (37) and the immune system’s tolerance. It
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could be driven by leukemia-derived EVs, as supposed by an

Iranian Group who reported that EVs derived by an in vitro

model of CML drive a tumor-favorable functional performance in

T cells (38). This latter evidence has been confirmed by Swatler and

colleagues, who demonstrated that leukemic sEVs derived from

CML cells promoted leukemia engraftment, associated with an

abundance of immunosuppressive T regulatory lymphocytes

(Tregs). In the used animal model, the recipient cells changed

their transcriptional profile and activated a suppressive activity and

effector phenotype by regulating specific receptors’ expression (39,

40). For these reasons, the analysis of sEVs’ features, cargoes, and

their potential roles in pathogenesis investigations, patients’

management, and therapy delivery increased the interest of

scientists in these small “bullets”.
3 sEVs as shuttle of CML markers

As reported above, circulating sEVs cargo has been deeply

analyzed to detect potential shuttled leukemia markers (41).

Despite the recurring availability of leukemic cells in myeloid

leukemias in either BM and/or PB, many groups have conducted

studies aiming to improve the sensitivity of the analysis and to

reduce the number of invasive and painful BM biopsy (42).

Considering the role played by the sEVs and the successful results

obtained in the solid tumors by oncologists, these sEVs have also

been investigated for their ability to shuttle leukemic biomarkers.

DNA, miRNA, mRNA, protein, or lipid profiles associated with

different hematologic malignancies are expected to be identified in

patients’ sEVs (43). In the CML scenario, the recent insight of

circulating sEVs as leukemic biomarkers has highlighted their

potential for more sensitive liquid biopsy approaches for an

accurate MRD monitoring, a TFR optimization, and an optimal

evaluation of drug efficacy. In the following sections, we will

critically present and discuss the main results of these pivotal

aspects of adult CML patient management.
3.1 sEVs for CML MRD monitoring

Thanks to the high efficacy of TKIs targeting BCR-ABL1, the

efforts of physicians involved in CML moved from “save the

patient” to “monitor the patient” as best as possible. The present

strategy for MRD monitoring is based on the quantification of

BCR::ABL1 transcript on PB cells, normalized for a reference gene

(ABL1 is mainly used). The MRD quantification is internationally

standardized and routinely performed by quantitative real-time

PCR (RT-qPCR). Two main molecular classes are identifiable.

Major Molecular Response (MMR) and Deep Molecular Response

(DMR). MMR (also defined as MR3.0) consists of the reduction of

the BCR::ABL1 transcript level by at least 3 logs and results in BCR::

ABL1/ABL1 ratio < 0,1%. DMR, defined as a BCR::ABL1/ABL1

ratio ≤ 0.01%, can be further subdivided into MR4.0, MR4.5, or

MR5.0 when the logarithmic reduction is 4, 4.5, or 5 logs. These

reductions are identifiable by BCR::ABL1/ABL1 ratio ≤ 0.01%, ≤

0.0032%, and ≤ 0.001%, respectively. The sample is considered good
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quality when ABL1 transcript copies are more than 10.000 at

MR4.0, 32.000 at MR4.5, and 100.000 at MR5 (44). These

minimums are essential for the definition of the DMR classes in

case of undetectable BCR::ABL1 transcript.

Due to the pivotal importance of MRD monitoring in CML

patients, sEVs seemed to be very interesting biological tools to

support a sensitive, reliable, and relevant detection of resident active

leukemic cells. Some years ago, CML researchers questioned the

potential role of CML-derived vesicles as disease biomarkers and

new sources for the detection of the BCR::ABL1 transcript. The first

method relied on the isolation of EVs from the plasma of CML

patients via ExoQuickTM Exosome Precipitation Solution and the

identification of BCR::ABL1 transcripts based on nested PCR. Even

though only patients in the blast and accelerated phases pre-sent

BCR::ABL1 transcript within vesicular cargo, vesicular RNA

sequence analysis indicated 99% similarity with human cellular

BCR::ABL1 (45). Further studies have been carried out as a result of

the development of more sophisticated and potent technologies for

sEVs isolation and transcript detection, such as dPCR (46, 47).

Specifically, it was reported the feasibility of detecting BCR::ABL1

vesicular transcripts in CP-treated CML patients with undetectable

MRD levels by standard monitoring (48). The hypothesis of using

sEVs content analysis to enhance the detection of active leukemia

cells still present in patients’ bodies has been highlighted by this

crucial result. Bernardi et al. used a commercial kit immuno-

capturing sEVs expressing a pan-cancer antigen to examine the

viability of a leukemia-derived sEVs enrichment. Leukemia sEVs

enrichment and a BCR::ABL1 transcript detection technique based

on dPCR gave the proposed approach a head start (49). The

researchers showed for the first time that BCR::ABL1 transcripts

could be detected in exosomes circulating in CML patients’ PB, even

in cases of patients under TKIs treatment and presenting

undetectable MRD levels (50). Moreover, these BCR::ABL1-

positive exosomes have been reported as useful in determining

the molecular remission grade.

Deviating from the classical MRDmonitoring strategy based on

the cellular BCR::ABL1 transcript quantification, in the last decade

the role of miRNAs in various biological developmental processes

and the alteration of their expression was found to broadly influence

the phenotype of many cancer subtypes. Many studies have

identified hundreds of differentially expressed genes at each stage

of the disease using the microarray approach on CML cell lines (51,
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52). Flamant and colleagues showed an increased expression of

miR-150 and miR-146a, and reduced expression of miR-142-3p and

miR-199b-5p in CML cells after 2 weeks of TKI treatment,

identifying miRNA as easily measurable biomarkers to monitor

the response to TKI (53). Indirectly, it may be considered a measure

of viable leukemic cells. Similar recently published results

demonstrated that a higher miR-150 and miR-146a expression

level predict early response rate in imatinib-treated CML patients

(54, 55). Other groups described vesicular miR-29b, miR-320a,

miR-30a, and miR-30e as overexpressed in a CML cell line. These

miRNA showed to play a role of tumor suppressor, reducing cell

proliferation and inducing apoptosis by interfering with BCR-ABL1

activated pathways (56, 57). Moreover, the comparison of vesicular

miRNAs between CML patients and healthy subjects highlighted a

set of these non-coding RNA differentially expressed in CML

patients. This evidence suggests they could play a role in the

clinical diagnosis, prognostication, and evaluation of treatment

response. For example, the expression of miR-506 and mir451a

was shown to be noticeably lower in CML patients than in healthy

controls. Moreover, the expression is significantly reduced by the

leukemic progression in AP and BP (58, 59). On the other hand,

miR-21 increased in CML patients with higher expression in the

advanced stages of the disease (60). Some of the main relevant

differences in vesicular miRNA expression in CML are recapitulated

in Table 1.

A very interesting breakthrough in the field of sEVs was

directed by Valadi and colleagues in 2007. They first reported

that exosomes, along with their lipid and protein cargo, contain a

significant amount of nucleic acids, particularly mRNAs (24), which

lately resulted in translatable into proteins by recipient cells (64).

This means that EVs shuttle genetic information. Of note, the term

“exosomes” used in the presented studies refers to the EVs

classification valid at the time of publication. These new findings,

along with the multiple studies regarding the role of miRNAs as

disease markers, open the way for exploring vesicular ribonucleic

acids as novel reliable disease biomarkers in MRD monitoring.
3.2 sEVs in TFR optimization

Among CML patients, a number of them may sustain a TKIs

therapy discontinuation, after which they may achieve “treatment-
TABLE 1 Differences in vesicular miRNA expression in CML and their potential implication in clinical practice.

miRNA EVs Source Expression Biomarker Ref

miR-506 Serum Down-regulation Diagnostic, Prognostic (58)

miR-451a Plasma Down-regulation Prognostic (59)

miR-21 Blood Up-regulation Prognostic,treatment response (60)

miR-146a Plasma Up-regulation Treatment response (54)

miR-148b Blood Down-regulation Treatment response (61)

miR-215 Plasma Down-regulation Treatment response (62)

miR-199b Plasma Down-regulation Treatment response (63)
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free remission” (TFR) (65). Generally, TKIs discontinuation

strategy is adopted in patients that present deep and durable (2 or

3 years) molecular response (DMR), as routinely assessed through

RT-qPCR. Nevertheless, many clinical trials demonstrated that no

more than 50% can maintain TRF (66). In the last years, it has

become clear that the intrinsic limitations of RT-qPCR, among

which is the reduced precision in the quantification of the low levels

of the target (BCR::ABL1 transcript), are to be considered the main

culprit in the erroneous selection of patients eligible for a TKIs

discontinuation program. As anticipated, the advent of dPCR

opened the way for novel MRD monitoring strategies. dPCR was

developed to overcome some of the major limitations of

conventional amplification technologies, increasing precision,

accuracy, and sensitivity. Bernardi and colleagues underlined that

dPCR offers an accurate quantification of BCR::ABL1 transcripts in

circulating sEVs, even in patients presenting undetectable MRD

levels by conventional monitor. Indeed, it has been proven the

capacity of this strategy to improve the detectability of cells

releasing BCR::ABL1-positive sEVs. Would this approach support

the selection of patients eligible for TKIs therapy discontinuation

aiming at TFR? (50). Further studies are needed to answer this

question, even if the preliminary results reported in other disease

settings are very encouraging (67–69). In order to find potential

alternative markers for stopping TKIs use, the role of vesicular

miRNA has also been studied. In particular, miR-215 expression

was downregulated in the research by Kazuma Ohyashiki et al., both

at the cellular and sEVs levels, in CML cases with successful

imatinib discontinuation (62). The same authors found that the

downregulation of miR-148b had similar effects in TFR patients

(61). This data indicates that these miRNA may help with immune

surveillance in CML patients with safe TKI discontinuation (61, 62).

Regardless, achieving TFR in a CML setting involves the

management of several side effects. Musculoskeletal pain is a

common symptom following TKIs discontinuation. However,

further insight is still needed to determine the potential

contributing variables to this clinical condition. The discovery of

a potential main character was made possible by analyzing the

exosomal miRNA that circulates in CML patients who have stopped

using TKIs. TaqMan low-density array was used to profile exosomal

miRNAs, and the results showed that exosomal miR140-3p was

substantial ly elevated in CML patients who reported

musculoskeletal pain compared to patients who did not (p =

0.0336) and healthy controls (p = 0.0022). MiR140-3p is thought

to have a biological role in inflammation, and CML patients who

have experienced symptom relief have substantially lower exosomal

levels of the protein. These findings suggest that exosomal miRNA

analysis could be used to identify treatment side effects or

effectiveness when TKIs are being used (70).
3.3 sEVs for therapy efficacy

Despite the TKIs’ above-mentioned remarkable effectiveness in

treating CML, a tiny percentage of patients develop drug resistance

while receiving TKIs therapy. Physicians are still triggered by it. The

BCR-ABL1 protein’s acquired point mutations are primarily linked
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to TKIs resistance, but little is known about how resistance traits

can develop in cells lacking these variants. One of the most recent

processes, similar to what has been seen in acute myeloid leukemia

cells, is the vesicular-mediated transfer of molecules from resistant

to sensitive CML cells (71). In particular, high levels of exosomal

miR365 have been reported in cases of lower drug sensitivity and

lower apoptosis rate. The exposure of sensitive CML cells to

exosomes released by resistant and miR365-rich cells induced

drug resistance. This process is due to the inhibition of pro-

apoptotic proteins in sensitive CML cells (72). In support of these

results, the influence of circulating miRNA in CML-derived cells

has been demonstrated even when they are not carried by vesicles.

Hershkovitz-Rokah et al. demonstrated the capacity of miR-30e to

sensitize K562 cells and patient primary cells to imatinib treatment

through regulation of cell cycle progression between G1 and S

phases (73). MiR-199b targets HES1, a transcription factor involved

in the Notch pathway and highly conserved among multicellular

organisms. It regulates cell-fate determination during development

and maintains adult tissue homeostasis. Expression studies have

revealed downregulation of miR-199b in CML patients presenting

9q deletion. A lower level of miR-199b was found in imatinib-

resistant patients, suggesting that it could be considered one of the

factors for drug resistance (63).

Moreover, an additional study confirmed that exosomes

released by imatinib−resistant K562 (K562IR) cells and

internalized by imatinib−sensitive cells of the same line (K562IS)

could increase the survival of the latter. This phenomenon was

observed even in the presence of toxic doses of imatinib (2 mM).

K562IR-exosomes characterization led to three specific cell-surface

markers, namely, IFITM3, CD146, and CD36, that resulted in

upregulation when compared to K562IS-exosomes. The

upregulation of these proteins was later verified in the K562IR

cells confirming that sEVs mirror the parental cell’s features. Flow

cytometric analysis further demonstrated the potential of CD146 as

a cell surface marker expressed by K562 cells presenting imatinib

resistance. These results suggest that exosomes and the related

membrane proteins could be potential diagnostic markers of drug

resistance in CML patients treated with TKIs (74). Conversely,

miR328 has been reported as significantly associated with sensitivity

to first-generation TKI in another in vitro CML model. For

instance, in vitro delivery of alkalized exosomes, containing or

not miR328 as cargo, elevated endogenous miR328 levels,

inducing sensitivity to imatinib. Moreover, endogenous miR328

suppression produced imatinib resistance in the K562 CML cell line

(75). Similarly, miR-185 expression sensitizes Ph+ cells to TKIs-

induced apoptosis and affects their proliferation rate, partly through

a BCR-ABL1-kinase-dependent mechanism. Overall, restoration of

miR-185 expression had an evident effect on the survival of patient-

derived TKI-insensitive stem/progenitor cells isolated in patients

and cultured in vitro in the presence of TKIs (76). In addition, the

imatinib sensitivity of K562 cell line was tested in another trial

administering exosomes released by human umbilical cord MSCs

(hUC-MSCs) during the cell culture. Exosomes released by hUC-

MSCs alone seem to unaffected cell viability but promote imatinib-

induced cell death. Moreover, they activate caspase-9 and caspase-3

more than imatinib alone (77). Lately, Chen X. et al., elucidated the
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role of miR-146a-5p/USP6/GLS1 in leukemia and chemoresistance

of leukemia cells and confirmed hUC-MSC exosomes capacity to

promote imatinib-induced cell apoptosis through miR-145a-5p/

USP6. USP6 levels were elevated and related to a poor prognosis

in BM aspiration samples from CML patients. Compared to clinical

samples that were imatinib-sensitive, USP6 was markedly increased

in imatinib-resistant samples. Leukemia cells’ apoptosis was

dramatically reduced by USP6 overexpression in response to

imatinib. Increased GLS1 ubiquitination caused by overexpression

of USP6 reduced GLS protein. A mechanistic investigation revealed

that miR-146a-5p and GLS1 were both required for USP6 control of

the imatinib resistance of CML cells. Through miR-145a-5p/USP6,

the administration of hUC-MSCs exosomes increased imatinib-

induced cell death. Therefore, through miR-146a-5p and its target

GLS1, hUC-MSC exosomes increased imatinib-induced death of

K562-R cells by decreasing GLS1 ubiquitination and increasing GLS

protein. The research sheds fresh information on the role of miR-

146a-5p/USP6/GLS1 signaling in leukemia chemoresistance (78).

Little is known about the role of second-generation TKIs.

Although no data are reported on the role of vesicles in this

context, direct expression of miRNA still appears to have an

important place in the interaction of other TKIs besides imatinib.

This also supports what above reported and commented. Indeed,

the combined expression of different miRNAs was recently

investigated in CML cells exposed to nilotinib. Particularly, miR-

145 and miR-708 expressions were associated as a predictive

indicator of nilotinib response at the treatment-naïve state. In

addition, higher expressions of miR-150 and decreased levels of

miR-185 were found in nilotinib non-responders, compared with

nilotinib responders (79). Liu et al. described one of the possible

mechanisms through which dasatinib could be able to overcome

imatinib resistance. Their reports highlighted that dasatinib
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promotes cellular apoptosis by downregulation of Akt/mTOR

pathway activities. Moreover, dasatinib prevents exosomal release

through the downregulation of beclin-1 and Vps34-dependent

autophagic activity. These results suggest distinct dasatinib-

induced activation of apoptotic response and exosome generation

in CML cells resistant to first-generation TKI (80). Hence, the

synergy of exosomes and TKIs may be considered an effective

approach to improve the response rate during CML treatment and

provide an interesting basis for new therapeutic strategies designed

for chemoresistant/target therapy-resistance leukemia.

All of the cited mechanisms are summarized in Figure 1.
4 EVs as shuttle of
therapeutic molecules

Despite the success of TKIs-based therapy, the exploration of

exosome-based therapy, which combines the vesicles with both

TKIs and unusual molecules, was surprisingly more prevalent in

CML. The target of CML blasts was reported in an outstanding

work using modified exosomes loaded with imatinib. HEK293T cell

line transfected with plasmids encoding the exosomal protein

Lamp2b fused to a portion of interleukin 3 (IL3) was used. The

researchers selected this protein because it is known that the IL3

receptor is overexpressed on the surface of CML blasts. It was found

that imatinib and BCR-ABL1-silencing RNA could be delivered to

CML cells by exosomes produced by the transfected cells. In

sensitive and resistant models, as well as in vitro and in vivo

models, this ability resulted in reduced leukemia cell proliferation.

For example, in a mouse model, imatinib-laden IL3-exosomes

significantly reduced the tumor burden when compared to
FIGURE 1

Small-EVs and some of their encapsulated miRNA show opposite effects on the efficacy of TKI administration to CML cells. In particular, vesicular
miR-365 drives resistance to TKI in the recipient cells. Conversely, miR-328, miR-146a-5p and miR-185 drive sensitivity to TKI. TKI, Tyrosine
Kinase Inhibitors.
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imatinib-free IL3-exosomes, regular exosomes loaded with

imatinib, and imatinib alone (p <0.0005) (81). Similarly, CML

exosomes exposed to a TGF-b1 receptor inhibitor or a specific

neutralizing TGF-b1 antibody significantly reverse the proliferation
of CML cells compared to those exposed to TGF-b1 enriched

LAMA84 exosomes (34). These pivotal data strongly support the

application of exosomes as specific drug delivery tools even in CML,

as observed in TKIs-resistant cells. The authors achieved these

impressive results after many evidences obtained by using exosomes

for delivery of unconventional molecules in vitromodels of CML. In

particular, the authors reported the impact of curcumin on CML

exosome composition (82) and the use of common lemon-juice-

derived small vesicles. The latter were able to suppress leukemia

proliferation in xenograft models using NOD/SCID mice

subcutaneously inoculated with CML cells. On the other hand,

alkalized exosomes have been shown to block miR328 lysosomal

degradation and thus sensitize CML cells to imatinib (75). In

addition, the exosomes specifically reached the leukemic site

within the mice model and activated apoptotic cell processes (83).

Recently, Cochran et al. showed that Natural Killer-derived

exosomes (NKexo) were able to maintain the anti‐leukemia

capacity of their donor NK‐cells, NKexo resulted in cytotoxic

against malignant hematopoietic cell lines (K562 and Jurkat), thus

acting as a potential acellular therapeutic modality (84). Results

showed that low doses of NK3.3 EVs inhibited the growth of K562

cells over 72 h, while high doses of NK3.3 EVs were cytotoxic. These

findings were verified by Samara’s group’s latest study (85), which

additionally provided a more comprehensive analysis of the time‐

and dose‐dependent antileukemic activity of NKexo, on a wider

variety of leukemia cell lines and ex-vivo models derived from

patients’ samples. Firstly, they showed that NKexo (20 mg) have the
ability to increase apoptosis rates by up to 64.37 (± 11.7%) across all

biomodels, including K562. In contrast, healthy‐donor PB

Mononuclear Cells presented no alteration, suggesting a selective

cytotoxic effect targeting leukemia cells. Moreover, NKexo cytolytic

activity via the release of cytotoxic effectors was confirmed, and a

reduction in cell count, ranging between 65% and 84%, was seen in

all leukemia cell lines tested, including K652. Finally, the clonogenic

potential of treatment‐naïve CML-derived cells was significantly

reduced by 20 mg of NKexo during a 14 days long cell culture. The

relative colony‐formation efficiency of CML cells was reduced by an

average of 28 ± 14% (p ≤0.005). Similarly, umbilical cord

mesenchymal cell-derived exosomes were proven able to promote

Imatinib-induced apoptosis in K562-R cells via miR-146a-5p and

its target USP6, which suppress GLS1 ubiquitination, causing an

increase in GLS protein (78). Zang et al. recently demonstrated that

another source of mesenchymal cell-derived exosomes, such as

human BM, could inhibit the proliferation of CML cells in vitro

via miR-15a and arrest the cell cycle in the G0/G1 phase. On the

other hand, the same authors found that these mesenchymal

exosomes promoted the proliferation and decreased the sensitivity

of CML cells to TKIs, resulting in drug resistance in the xenograft

tumor model (86). Finally, to assess innovative therapeutic

approaches, another very interesting strategy was evaluated to

increase treatment outcomes in CML patients. Indeed the authors
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developed a sophisticated liposome conjugated with Begelomab

(anti-CD26) loaded with venetoclax to target CD26+ CML LSCs/

progenitor cells selectively. They proved that the CD26+ LSCs/

progenitor cells could be eliminated after antigen binding and drug

release without any side effects on CD26− cells (87).
5 Conclusions

In this review, we have brought together the main knowledge

about extracellular vesicles, comprehensively addressing various

crucial CML aspects. CML has been the first disease for which a

targeted therapy was identified, paving the way for novel

treatments in other hematological fields. Over the course of its

history, there has been a gradual improvement in monitoring and

new goals of treatment, such as TFR, have been attained. Despite

few data available, if compared to other cancers, EVs could have

multiple applications in CML. Undoubtedly, many efforts have

been made to evaluate the role of EVs in treatment response

monitoring and encouraging results have been observed in MRD

monitoring. It is fascinating to see the possible application of

these extracellular bodies into TKIs-resistant disease and their

role, such as shuttle for other specific drugs. On the other hand,

the lack of standardization, and the large variability in EVs, imply

that their use is still limited to often speculative valuations.

Further research is needed to understand their role. In

summary, this review could be an essential source of knowledge

for future studies about EVs as a crucial mediator for new

therapeutic strategies in CML.
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B cell antigen receptor (BCR) signaling is a key driver of growth and survival in

both normal and malignant B cells. Several lines of evidence support an

important pathogenic role of the BCR in chronic lymphocytic leukemia (CLL).

The significant improvement of CLL patients’ survival with the use of various BCR

pathway targeting inhibitors, supports a crucial involvement of BCR signaling in

the pathogenesis of CLL. Although the treatment landscape of CLL has

significantly evolved in recent years, no agent has clearly demonstrated

efficacy in patients with treatment-refractory CLL in the long run. To identify

new drug targets and mechanisms of drug action in neoplastic B cells, a detailed

understanding of the molecular mechanisms of leukemic transformation as well

as CLL cell survival is required. In the last decades, studies of genetically modified

CLL mouse models in line with CLL patient studies provided a variety of exciting

data about BCR and BCR-associated kinases in their role in CLL pathogenesis as

well as disease progression. BCR surface expression was identified as a

particularly important factor regulating CLL cell survival. Also, BCR-associated

kinases were shown to provide a crosstalk of the CLL cells with their tumor

microenvironment, which highlights the significance of the cells’ milieu in the

assessment of disease progression and treatment. In this review, we summarize

the major findings of recent CLL mouse as well as patient studies in regard to the

BCR signalosome and discuss its relevance in the clinics.
KEYWORDS

chronic lymphocytic leukemia (CLL), B cell receptor (BCR) signaling, IGHV, CD79a/b
(Iga/Igb), PI3K/AKT, SYK, BTK
1 The complex role of the BCR signaling in CLL

Among all types of adult leukemia, chronic lymphocytic leukemia (CLL) is the most

prevalent lymphoproliferative disease. It is distinguished by the culmination of

characteristically 19- and CD5-positive malignant B cells in the bone marrow, blood,

spleen and other lymphoid tissues (1–3). CLL displays a highly heterogeneous clinical
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course, ranging from fast progression with poor outcomes to an

indolent course of disease with a good prognosis and regular life

expectancy (4). Consistent with this, the selection of a suitable

therapy relies on common parameters such as lymphocyte doubling

time and the clinical stage of the disease. To date, no single agent to

treat CLL was detected (3, 4).

The B cell antigen receptor (BCR) complex consists of an

immunoglobulin (Ig) transmembrane protein that is associated

with two signal-transmitting subunits, named CD79a (Iga) and

CD79b (Igb) (5). It is critical for normal B cell maturation and

survival that the BCR has the capacity to create signals through the

Iga/Igb signaling heterodimer at vital stages during B cell

development (6). Moreover, BCR-mediated signaling plays an

essential role in the pathogenesis of CLL, as evidenced by

multiple sources. First of all, CLL cells retain the surface

expression of the BCR, which is a common characteristic among

neoplastic B cell malignancies (7). This is based on the fact that

malignant B cells derive advantages from the pro-survival signals

that are initiated as a result of BCR activation. Second, there is

genetic proof across various groups indicating that BCR expression

is required for both CLL development (8, 9) and persistence (10,

11). Third, B cell malignancies often exhibit BCR signaling

dysregulation and pathways triggered downstream of the BCR

were shown to be highly activated in CLL cases (12). BCR-

mediated signaling is the primary operating pathway in CLL cells

which was identified through gene expression profiling data,

particularly in the lymph node (LN) microenvironment, which is

thought to support growth and survival of CLL cells (13). Last and

most importantly, targeted therapy using BCR pathway inhibitors is

a promising approach to treat CLL (14). This is evidenced by the

exceptional clinical efficacy of inhibitors targeting BCR signaling,

such as ibrutinib (Bruton’s tyrosine kinase (BTK) inhibitor) or

idelalisib (Phosphatidylinositol 3-kinase (PI3K) inhibitor), in

reversing the CLL disease phenotype suggests an enormous

importance of BCR-derived survival signals for CLL cell

persistence (15–18).

In more than 30% of cases, patient‐derived CLL cells express

similar, or even identical, BCRs with corporate stereotypic features

and sequence similarities (19, 20). According to the expressed

stereotypic BCR heavy chain, CLL cells are classified into distinct

CLL subsets. Each subset displays common genomic abnormalities

(21) as well as highly homogeneous clinical and biological

properties (22). Altogether, the IGHV-D-J gene recombination

pattern and the amino acid constitution of the heavy chain

variable complementarity determining region 3 (HCDR3)

categorize these stereotyped CLL cases into 19 major subgroups

(1, 22, 23). Very recently, a detailed study on BCR stereotypy

reported that not only 30% but even 41% of all CLL cases can be

categorized into stereotypic subgroups with overall 29 major subsets

(20). Most interestingly, the clinical outcome of CLL is determined

by the molecular specifics of the stereotyped interactions between

BCRs (24). For example, tightly bound and long-lasting BCR-BCR

crosslinking interactions in the CLL subset #4 lead to B cell anergy.

This is a clinically inactive state which is specifically observed in

CLL clones of the subgroup #4 (24, 25).. In contrast, subgroup #2

CLL cases have a more aggressive course of disease due to a low-
Frontiers in Oncology 02116
affinity and rapidly dissolving BCR-BCR interaction, leading to an

enhanced signaling activity by the BCR (24).

This significant limitation in the CLL Ig gene repertoire

proposes that BCR recognition of a restricted set of antigen

epitopes results in the selection and expansion of B cell clones

that ultimately enter the pathogenesis of CLL. Epidemiological

studies did show that several infectious diseases can be linked to

the development of CLL, and CLL-associated Igs react with a variety

of viruses or pathogens, suggesting a pathogen-induced CLL

development (26–28). In an Eµ-TCL1 mouse study, however, an

accelerated development of leukemia could not be observed due to

an acute or chronic infection. Preferably, a BCR-mediated

autoantigen recognition resulted in the pathogenesis of CLL (8).

Interestingly, the murine CLL cells preferred the selection of specific

light chains that allowed BCR cross-reaction with a large number of

autoantigens (8). This is consistent with the hypothesis, based on

evidence obtained in CLL patients, that light chains in combination

with defined heavy chains are important for the formation of the

leukemic BCR specificity (29, 30). Iacovelli et al. observed that

autonomous BCR signaling as well as low-affinity BCR interactions

with self-antigens were actively selected during leukemia

development in Eµ-TCL1 mice, implying a crucial involvement of

these two factors in the pathogenesis of CLL (9). Furthermore, in

this model, autoantigen-induced BCR signaling resulted in a more

aggressive course of CLL (9). Similarly, a correlation between the

response to BCR binding and shorter survival was reported in CLL

patient analyses (31). In PtC-reactive Em-TCL1 leukemic cells, the

response to autoantigen stimulation also resulted in a more

aggressive disease (32). Therefore, aberrant autoantigen-induced

responses induce an accelerated CLL progression, underlining the

great variance in the clinical course of CLL. However, not only low-

affinity but also high-affinity BCR-antigen cross-linking cooperates

with autonomic BCR-BCR interactions in triggering CLL. For

instance, high-affinity binding between three stereotypically

mutated CLL subset BCRs and the Fc portion of human IgG was

reported, as well as high-affinity binding to the fungal antigen

b- (1, 6)-glucan (33, 34).
1.1 CLL-associated mutations in the IGHV
and IGLV genes

On the basis of the somatic hypermutation (SHM) status in the

variable region of the Ig heavy-chain (IGHV) gene, CLL can be

categorized into two main types of disease: the unmutated CLL (U-

CLL) and the mutated CLL (M-CLL) (35). While in U-CLL cases,

the IGHVs show > 98% identity to the germline Ig sequence, the

IGHVs of M-CLL show less than 98% homology to the germline

sequence. In particular, this IGHV-mutation-based classification

represents a strong prognostic marker for CLL. In general, U-CLL

cases are associated with a more aggressive form of CLL relative to

the mainly indolent course of disease in M-CLL patients, which also

experience a longer progression-free survival (PFS) (35, 36). The

CLL-Ig repertoire is characterized by the high representation of

particularly selected IGHV-coding genes termed IGHV1-69,

IGHV3-21, IGHV3-23, IGHV3-7 and IGHV4-34 (37, 38). The
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IGHV1-69 gene is most frequently selected in the U-CLL group,

whereas the IGHV3-21, IGHV3-23, IGHV3-7, and IGHV4-34

genes are typically associated with a high mutational burden (37,

38). Among the CLL subsets expressing stereotyped HCDR3

sequences, Murray et al. observed recurrent amino acid

modifications in the IGHV domain, especially in those expressing

IGHV4-34 and IGHV3-21 genes, which show unique structures of

SHM (39). Since the described mutations are represented in low

frequency among non-CLL IGHV domains, they can be considered

as CLL-specific (39). CLL research mainly focuses on studying

IGHV sequence structures. However, increasing evidence suggests

that the Ig light chain (IGLV) sequence has effects on the clinical

course and the outcome of CLL as well [reviewed in (40)]. Lately,

the IGLV3-21 gene was identified as a prognostic marker for CLL

with a poor prognosis, independent of the corresponding heavy-

chain (41). Compared to the overall incidence of CLL (7%),

increased recurrence of the IGLV3-21 gene (28%) was observed

in high-risk CLL cohorts (41). Furthermore, a specific mutant form

of the IGLV3-21, the IGLV3-21G110R, was highlighted to play an

important role in the pathogenesis and prognosis of CLL. This

mutation increases the probability of homotypic BCR interactions,

resulting in autonomous BCR signaling (42). Thus, IGLV3-21R110–

expressing CLL cells represent a definite subset of CLL with poor

prognosis, irrespective of the IGHV mutational status (42).

The self-activation of CLL-derived BCRs is a significant factor

in the development of CLL. This is accomplished through the

interaction of CLL-derived BCRs with specific BCR epitopes that

are unique to certain subsets. This interaction results in the

activation of BCR-mediated pro-survival signaling within CLL cells.
2 BCR-mediated autonomous
signaling in CLL

Autonomous, antigen-independent BCR signaling was

identified as the mechanistic basis of malignant BCR signaling in

most of the CLL cases (9, 43). Self-activation of the CLL-derived

BCRs is a significant factor in the progression of CLL pathogenesis.

This autonomous signaling is induced by the BCRs’ ability to

interact with their own defined BCR epitopes that are unique to

certain CLL subsets. This interaction results in the activation of

BCR-mediated pro-survival signaling within CLL cells (9, 43). This

antigen-independent signaling is enabled by an intermolecular

cross-link of an oncogenic HCDR3 domain with unique motifs

located between the FR2 and FR3 domains within the Ig molecule

(43). Each CLL case may acquire specific autoreactive BCRs

through certain affinity maturation processes, including the

incorporation of distinct SHMs and class-switch recombination

(24, 39). Structural analysis of the CLL subset #2 and #4 BCRs

revealed the origin of the G110R mutation, which is crucial for

homotypic BCR interaction, by a nonsynonymous SHM of the

G110 residue in the IGLJ germline segment of the BCR (24). CLL

patients carrying the IGLV3-21*01 light chain allele exhibit a higher

risk of generating CLL. This specific allele facilitates the acquisition

of the malignant G110R mutation, which promotes strong BCR-
Frontiers in Oncology 03117
BCR interaction initiating self-directed BCR signaling (42).

Autonomous signaling causes higher basal Calcium (Ca2+)

signaling and increased activity of signaling factors downstream

of the BCR such as BTK, the spleen tyrosine kinase (SYK), and the

phosphatidylinositol 3-kinase (PI3K) (44). Most importantly,

reversion of the R110 residue into G110 abolishes BCR

autonomous signaling (24).
3 BCR-mediated downstream
signaling in CLL

3.1 The BCR signaling subunits Iga and Igb

The BCR is associated with a signaling heterodimer that

consists of two subunits, Iga and Igb. The Iga/Igb subunit is

required for a proper membrane transport of the Igs for BCR

surface expression. Moreover, the mediation of BCR signaling by

the Iga/Igb heterodimer is essential for the maturation,

differentiation and survival of B cells (6, 45). The Iga/Igb
subunits are implicated in the BCR complex formation and

stabilization. Furthermore, Iga and Igb facilitate assembly and

steadiness of BCR, promote IgM transport to cell surface and

increase BCR surface expression levels by regulating its

glycosylation (45, 46). In CLL samples, defective glycosylation

and subsequent impaired folding of the IgM and CD79a chains

leads to impaired BCR assembly as well as reduced surface

membrane (sm)IgM expression (47). It was revealed that CLL

cells expressing low CD79b protein levels also exhibit reduced

expression levels of IgM-BCR complexes. The cytokine IL-4,

however, is able to restore CD79b and smIgM expression and is

thereby enhancing the activation of BCR-mediated survival

signaling in CLL cells (48).

Recently, our group demonstrated that an induced loss of the

Iga subunit in CLL cells of a Eµ-TCL1 mouse model, results in an

almost complete loss of the diseased cells, indicating a crucial

involvement of the BCR in the persistence of CLL cells (10).

Similarly, we could show that Tam-induced deletion of the

intracellular Igb signaling domain in isolated CLL B cells of mb1-

CreERT2;IgbDc/fl;Eµ-TCL1 mice leads to a significant CLL cell

regression within 8 weeks (Figures 1A, B). In these mice, efficient

deletion of the Igb-encoding gene could be monitored by an induced

GFP expression (49) (Figure 1D). GFP+ cells with Igb-tail-deficiency
maintained IgM BCR surface expression (Figure 1C) whereas their

viability in vivo and in vitro was reduced (Figures 1A, E). This

indicates that the survival, as well as the progression of CLL, depends

on the functionality of BCR to generate signals via the Iga/Igb
heterodimer, making it an essential factor.

Furthermore, we were interested if Igb signaling tail is essential

for CLL progression. Thus, our group tested whether B cells with a

constitutive loss of the Igb signaling tail in the early pro B cell stage

are able to develop CLL in an Eµ-TCL1 mouse model. Indeed,

constitutive deletion of the Igb signaling tail in B cells resulted in

CLL outbreak of the IgbDc/Dc;Em-TCL1 mice at an age of 12-14

months. The development of the disease was indicated by the
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accumulation of an increased number of CD5+B220low CLL B cells

in the spleen of the mouse in combination with splenomegaly

(Figures 2A, C, D). Efficient deletion of the Igb tail was validated by

flow cytometry (Figure 2B). The malignant transformation of B cells

in IgbDc/Dc;Em-TCL1 mice despite their Igb-tail deficiency indicates
that expression of the Igb-tail is not essential for the pathogenesis
and persistence of CLL. In addition, CLL cells of IgbDc/Dc;Em-TCL1
mice were not susceptible to anti-Igb antibody treatment compared

to CLL cells that originated from conventional Eµ-TCL1 mice

(Figure 3) indicating that the CLL cells survive independently of

Igb-tail signaling. So, it is possible that the CLL cells found a way to

circumvent Igb-tail deficiency via deregulation of specific BCR-
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regulated pathways. However, the susceptibility of Igb-tail sufficient
CLL cells to anti-Igb antibody treatment suggests a potential clinical

efficacy of anti-Igb antibodies in CLL treatment. However, a clinical

phase I trial of polatuzumab vedotin, an anti-Igb antibody fused to a
microtubule-disrupting drug named monomethyl auristatin E, did

not show any clinical responses in CLL (50). The missing effect is

probably caused by the low or absent Igb surface expression levels

observed in CLL patients. This also explains the lack of Igb-
targeting chimeric antigen receptor T cell studies in CLL therapy,

although they show high efficacy in other B cell lymphomas, such as

the diffuse large B cell lymphoma (DLBCL) (51). Interestingly,

mutations in the extracellular and transmembrane regions of the
A B

C

D E

FIGURE 1

Igb signaling tail deficiency in Eµ-TCL1 mice leads to CLL cell reduction. (A) Flow cytometry assessment was performed on B cells from the
peripheral blood (PBL) of diseased mb1-CreERT2;IgbDc/fl;Eµ-TCL1 mice, 1 week (left), 3 weeks (middle), plus 8 weeks (right) following the initiation of
Tamoxifen (Tam) treatment. The dot plots of the anti-CD19 versus GFP staining are shown. The CD19+GFP+ gated region indicates Igb tail deficient
B cells, while the CD19+GFP- gated region marks the Igb tail sufficient B cell population. The B220 vs CD5 staining of the CD19+GFP+ gated cells is
depicted below. The B220-CD5+ population represents diseased CLL cells, while the B220+CD5+ gated region exhibits healthy cells. The average
relative frequency of the cells within the gate is indicated by the numbers in the dot plots. The data is presentable for three independent mouse
analyses. (B) Eight weeks after administering Tam treatment to mb1CreERT2;IgbDc/fl;Eµ-TCL1 mice, the percentage of B cells in the CD19+GFP+ and
CD19+GFP− B cell populations was quantified. The graphs display the respective average percentage of B cells ± SEM, while p-values were
determined by a Student’s t-test (two-tailed; ** p < 0.01). The cell count for each group consists of data from three mice. (C) After two weeks of
Tam treatment, the fluorescence intensity of IgM BCR expression in CD19+GFP− (red) or CD19+GFP+ (blue) B cells of mb1-CreERT2;IgbDc/fl;Eµ-TCL1
CLL mice was determined. The results presented in the histogram are representative of three self-contained experiments. (D) Flow cytometry was
used to analyze the expression of GFP in mb1-CreERT2;IgbDc/fl;Eµ-TCL1 CLL cells that were either treated with 4-OHT in vitro (+4-OHT blue) or kept
untreated (-4-OHT red) for 5 days (5d). The fluorescence intensity of CD19+ B cells was determined and indicated in histograms. The data is
presentable of three self-sufficient experiments. (E) The survival of B cells in mb1-CreERT2;IgbDc/fl;Eµ-TCL1 CLL cells was statistically analyzed on day
5, 7, 9, and 12 following in vitro 4-OHT treatment (+4-OHT; light grey). The control remained without treatment (-4-OHT; dark grey). The graphs
display the mean ± SEM and p-values were determined by the Student’s t-test (two-tailed; **** p < 0.0001; ** p < 0.01). The results of three
independent analyses are presented.
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Igb-encoding gene B29 were detected in CLL patients, which show

aberrant BCR signaling (52). However, no mutations of the Iga-
encoding gene were observed (45). It might be possible that the

mutations in the B29 gene play a role in CLL oncogenesis. So far,

only the Igb subunit of the BCR complex was targeted for therapy of

B cell diseases. However, recently a synergistic potential of

combined Iga-targeted and Igb-targeted therapy of B cell

leukemia was observed. Showing high antitumor activity in

DLBCL, this method may also be an option in the future

treatment of CLL (53).

The Iga/Igb heterodimer forms the center of the intricate BCR

signaling network with essential functional implications for both

normal and leukemic CLL cells. Overall, we could show that the

expression of a functional BCR complex is essential for the survival

of CLL cells (Figure 1), CLL development, however, could take place

despite restricted BCR signaling in Igb signaling tail deficient B cells

(Figure 2). It might be interesting to identify to what extent the

detected mutations of Igb modulate BCR signaling or play a role in

CLL leukemogenesis. Studies focusing on the mechanism of Iga/Igb
ubiquitination and glycosylation in CLL may also uncover another

layer of BCR signal regulation.
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3.2 The Src family kinase LYN

BCR signaling is initiated by the enzymatic activation of the

receptor-associated Src family kinases (SFKs), like LYN, FYN, LCK

and BLK. Activated SFKs stimulate the phosphorylation of the

immunoreceptor tyrosine-based activation motifs (ITAMs) located

in the cytoplasmic Iga/Igb signaling subunit of the BCR. This

results in the recruitment and activation of tandem Src homology 2

(SH2) domain-containing effectors, like SYK, which cause the

initiation of several BCR downstream signaling pathways

(Figure 4) (54, 55). The LCK/YES novel kinase (LYN) is distinct

from other SFKs in its additional capability to induce

phosphorylation of the immunoreceptor tyrosine-based inhibitory

motif (ITIM) of inhibitory surface receptors, which recruit tyrosine

phosphatases like SHP-1/2 and PP2A. These phosphatases

attenuate the B cell activation response triggered by the BCR (56).

SHP-1, for instance, counteracts the phosphorylation of the Iga
ITAMs and the BCR signaling effector SYK (57). LYN, as a key

regulator of the BCR signaling pathway, is overexpressed in CLL

patients, and elevated LYN protein levels correlate with a shorter

treatment-free survival (58). The increased activity of the LYN
A

B C D

FIGURE 2

Igb-tail deficiency in a Eµ-TCL1 mouse model results in CLL development. (A) Flow cytometry analysis was conducted on B cells isolated from the
spleen of 14-month-old IgbDc/Dc;Em-TCL1 mice and WT control mice. The dot plot depicts the B220 vs CD5 staining of CD19+CD93− gated mature B
cells, and the IgM vs IgD staining of CD5+B220low CLL cells of IgbDc/Dc;Em-TCL1 mice or on normal CD5− B220+ B cells of WT mice. The data
presented is representative of three self-contained mouse analyses. (B) Flow cytometry was used to analyze isolated splenic B cells from IgbDc/Dc;Em-
TCL1 mice and WT mice. The fluorescent intensity of Igb expression is represented in a histogram. (C) The absolute number of B cells in the
peritoneal cavity of 14-month-old IgbDc/Dc;Em-TCL1 mice and the control mice of the same age were quantified. The graphs represent the average
count ± SEM. A two-tailed Student’s t-test was conducted to obtain the p-values. The cell count for each group comprises two mice. (D) The
images show the spleen of a mb1- IgbDc/Dc;Em-TCL1 mouse and a WT mouse.
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kinase observed in CLL cells is also associated with defects in

apoptosis mediated by interactions of LYN with the procaspase-8

(59) or SHP-1 (60). Thus, SHP-1 is also found to be expressed at low

levels in CLL cells compared to the expression in normal B

cells (60).

Although LYN is well-known to balance BCR signaling, LYN

activation seems to be dispensable in the development of CLL, since

B cell specific gain- and loss-of-function mutations of LYN showed

no significant changes in CLL progression in Eµ-TCL1 mice

(61, 62). However, several studies suggest an emerging new role

of LYN as a crucial regulator within the CLL tumor

microenvironment supporting leukemic cell growth and CLL

progression (61, 63, 64). For example, LYN-deficiency in

macrophages reduces their capability to support CLL cell survival

(61). Furthermore, LYN controls the stromal fibroblast polarization,

which was shown to support CLL cell survival and leukemic

progression. Genetic Lyn deletion in stromal cells, for instance,

results in reduced expression of c-JUN. This transcription factor is

required to induce Thrombospondin-1 expression, which impairs

CLL viability by binding to CD47 (64). Thus, the efficacy of LYN

inhibition in CLL is to some extent based on an emerging new

function of LYN in regulating the tumor microenvironment and the

dialog between leukemic cells and bystander cells.

Targeting LYN in vitro using the Src/c-Abl tyrosine kinase

inhibitor dasatinib blocks CLL cell proliferation and triggers

apoptosis in isolated CLL cells (65). Moreover, as a result of

dasatinib treatment, reduced BCR-downstream signaling

activation and a block in the anti-apoptotic MCL-1-dependent

increase in CLL cell survival was observed (66). However, the

clinical LYN-targeting drug dasatinib shows by far less
Frontiers in Oncology 06120
effectiveness in the treatment of CLL patients compared to other

BCR pathway inhibitors, that will be described later. In a phase II

clinical trial, dasatinib treatment achieved partial responses in 3

out of 15 patients (20%; 90% CI 6-44%), and nodal response in 9

patients (60%), indicating only partial success in a small

population of patients with relapsed and refractory CLL (67).

These findings question the importance of LYN in CLL

development and progression. However, since dasatinib has a

wide target spectrum it is not a precise tool for evaluating

functional relevance of LYN in CLL. CLL studies using different

LYN-targeting inhibitors would offer additional insights into the

role of LYN in the treatment of CLL.
3.3 The spleen tyrosine kinase family

3.3.1 SYK in ‘tonic’ BCR signaling
The spleen tyrosine kinase is part of the SYK family of

cytoplasmic non-receptor tyrosine kinases. It is a key component

in the BCR-mediated signal transmission and regulates numerous

physiological functions in B cells. Recruitment of SYK to

phosphorylated ITAM sequences leads to the phosphorylation of

more ITAM tyrosines of adjacent BCRs. This generates a positive

feedback loop amplifying BCR signal transduction (57). Moreover,

SYK directly phosphorylates and activates BTK and mediates PI3K

activation by the phosphorylation of its adaptor CD19 (55). The

activation of BCR signaling by SYK is counteracted by the tyrosine

phosphatase SHP-1 (Figure 4) (57).

Gene expression of SYK along with its downstream signaling

pathways is significantly enhanced in CLL cells (68, 69).
FIGURE 3

Anti-Igb treatment does not affect the progression of CLL cells lacking Igb-tail. CLL cell survival in Eµ-TCL1 and IgbDc/Dc;Em-TCL1 mice was analyzed
using flow cytometry one day before and two weeks after administering an anti-Igb antibody. The dot plot illustrates the staining of anti-B220 vs
anti-CD5 mature B cells after gating on the CD19+CD93− cell population. CLL cells can be identified by expression of the characteristic
markers CD19+CD93−CD5+B220low.
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Interestingly, SYK expression in U-CLL cells is increased compared

to leukemic cells harboring mutated IGHV domain genes (69).

Additionally, SYK is constitutively phosphorylated on activating

tyrosines (68). However, to date, no mutations of SYK were detected

in patients with CLL (70). Impaired BCR signaling was associated

with CLL progression, making SYK a prospective therapeutic target

in treating the disease. Preclinical studies in CLL cell lines displayed

an effective block in the BCR signaling mediated basal activity of

several pro-survival factors after SYK inhibition. These factors

include AKT, the extracellular signal-regulated kinases (ERK),

plus the anti-apoptotic factor MCL-1, which causes apoptosis of

malignant CLL cells (68). Moreover, SYK was observed to be

essential in integrin signaling, a-tubulin phosphorylation and

CXCL12-mediated polarization of B lymphocytes (71). Thus,

inhibition of SYK activity results in markedly reduced migration

of the CLL cells toward CXCL12, a key homing attractor.
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Furthermore, SYK inhibition reduces the adhesion to VCAM-1,

an important stromal integrin ligand, and decreases the secretion of

CCL4 and CCL3 in CLL cells (72). This disruption of the interaction

between the CLL microenvironment and the surrounding stroma

through SYK inhibitors attenuates the integrin-/chemokine-

mediated protective stromal survival effects in CLL (72). In

addition, SYK inhibitors were shown to abrogate CD40 ligand-

induced blastogenesis and CLL cell proliferation but not the

proliferation of normal B lymphocytes (73).

3.3.1.1 SYK-targeting inhibitors

In clinical trials, the SYK inhibitors fostamatinib disodium (74),

entospletinib (75) and cerdulatinib (76), for example, did show

selective CLL growth-inhibitory effects. Fostamatinib is the first

reported SYK inhibitor (also known as R788), that is metabolized to

R406 in vivo. In a Eµ-TCL1 murine CLL model, fostamatinib was
FIGURE 4

BCR signaling pathway and BCR-associated CXCR4 signaling in CLL. Activated Src family kinases (SFKs), such as LYN, stimulate the phosphorylation
of the immunoreceptor tyrosine-based activation motifs (ITAMs) located in the cytoplasmic Iga/Igb signaling subunit of the BCR. This results in the
recruitment and activation of SH2 domain-containing effectors, like SYK and ZAP-70, which phosphorylate BTK and CD19. SHP-1 inhibits the
phosphorylation of the Iga ITAMs and SYK. Phosphorylated CD19 recruits the PI3K to the cell membrane, where it phosphorylates PIP2 to generate
PIP3. Thereby, PI3K creates an essential docking platform for PH domain-containing signaling factors, such as PDK1, BTK and AKT. Binding to PIP3

results in membrane recruitment and activation of PDK1, BTK and AKT, which mediate the initiation of several BCR downstream signaling cascades,
such as RAS/RAF/MEK/ERK signaling, NFAT, NF-kB and mTORC1 signaling. The phosphatase PTEN represses PI3K signaling by PIP3

dephosphorylation, generating PIP2. NFAT is activated by increased cytoplasmic Ca2+ concentrations, which are induced by PLCg. NF-kB is retained
in an inactive state by the inhibitor IkB. Phosphorylation of IKK leads to IkBs phosphorylation and degradation, finally resulting in NF-kB activation.
TSC1/2 inhibits RHEB GTPase activity, which is required to induce mTORC1 activation. AKT- or ERK-mediated inhibition of TSC2, results in mTORC1
activation. In addition, binding of CXCL12 to CXCR4 induces CLL cell migration, survival and chemotaxis via the activation of the downstream
signaling pathways MAPK/ERK, PI3K/AKT, PLCg/Ca2+ and NF-kB. This figure was created with BioRender.com. BCR, B cell receptor; LYN, LCK/YES
novel kinase; SYK, spleen tyrosine kinase; ZAP-70, CD3z-chain-associated protein of 70 kDa; SHP-1, Src homology region 2 domain-containing
phosphatase-1; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3,
phosphatidylinositol-3,4,5-triphosphate; PDK1, 3-phosphoinositide-dependent protein kinase 1; PKB/AKT, protein kinase B; BTK, Bruton’s tyrosine
kinase; PLCg, phospholipase Cg; PKC, protein kinase C; CXCL12, chemokine C-X-C motif ligand 12; CXCR4, C-X-C motif chemokine receptor; RAS,
RAF, Rat sarcoma protein family; MEK; ERK, extracellular-signal-regulated kinase; IKK, IkB kinase complex; IkB, inhibitor of nuclear factor kB; NF-kB,
nuclear factor kappa-light-chain-enhancer of activated B cells; NFAT, nuclear factor of activated T-cells; TSC1/2, tuberous sclerosis complex 1/2;
RHEB, Ras homolog enriched in brain; mTOR complex mTORC1, mechanistic target of rapamycin; Ca2+, Calcium-Ion; GTP, Guanosine-5′-
triphosphate; GDP, Guanosindiphosphat; P, phosphorylation.
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found to selectively inhibit the growth of the leukemic B cell

population, which resulted in significantly prolonged the animal

survival (77). Fostamatinib showed an overall response rate (ORR)

of 54.5% [only partial response (PR)] and a median progression-

free survival (PFS) of 6.4 months (95% CI, 2.2-7.1) in CLL patients

participating in a clinical phase I/II study (74). Entospletinib (GS-

9973), like other classes of drugs inhibiting BCR signals, disrupts the

cellular interactions with the tumor microenvironment and causes a

redistribution of CLL cells, which clinically manifests by LN

depletion and transient lymphocytosis (75). In an entospletinib

phase II trial, patients with relapsed/refractory (R/R) CLL showed

an ORR of 61% (95% CI, 44.5%-75.8%; all partial responses) and a

median PFS of 13.8 months (95% CI, 7.7 months to not reached)

(Table 1) (75). However, in another phase II study later on with R/R

CLL patients that received prior treatment with a BCR inhibitor, the

ORR of entospletinib was only 32.7% (95% CI, 21.7-45.3%) with a

PFS of 5.6 months (95% CI, 3.7-8.3) (Table 1) (78). Recently, a

phase I/II clinical trial of the CD20-targeting drug obinutuzumab in

combination with entospletinib in patients with R/R CLL was

completed with a promising outcome. Among the 21 R/R-CLL

participants that received ≥1 prior therapy, the ORR was 67% (95%

CI, 43-85%) with 14% (95% CI, 3-36%) achieving a complete

response (CR), and 53% a partial response (PR). Median PFS was

27.5 months (95% CI, 16 months – not reached) (Table 1) (79).

Cerdulatinib (PRT062070), an inhibitor of SYK and the Janus

kinases JAK1/3, inhibits BCR- along with IL4-mediated signaling

in CLL cells and reduces CCL3/CCL4 production to overcome

stromal support (96). Moreover, cerdulatinib effectively induces

apoptosis and inhibits the proliferation of ibrutinib-resistant CLL

cells protected by the tumor microenvironment (97). Cerdulatinib

treatment in a phase I study resulted in a restricted response in 3 out

of 8 R/R CLL patients, demonstrating promising antitumor activity

(76). A phase IIa study (NCT01994382) continued to assess

cerdulatinib’s tolerability and efficacy in patients affected by R/R

B cell lymphomas, including CLL, and displayed an ORR of

61% (80).

Altogether, by effectively blocking BCR downstream signaling

activity and by disrupting the protective interactions with the CLL

microenvironment, SYK inhibition represents a promising strategy

for treating R/R-CLL. The best SYK-targeting efficacy in CLL

treatment was reached by the SYK inhibitor entospletinib in

combination with the CD20-targeting drug obinutuzumab.

3.3.2 ZAP-70 - a prognostic marker in CLL
The two SYK family members SYK and the CD3z-chain-

associated protein of 70 kDa (ZAP-70) are structurally

homologous and also have a similar functional role in initiating

proximal receptor signaling with slight differences, for example in

their dependency on Src-family kinases for their catalytic activation

(98). Although ZAP-70 was first solely described in T cells, it is also

expressed partially in B-CLL cases and was found in other B cell

malignancies (99). Although the activation of ZAP-70 was observed

to be not quite efficient in CLL cells, the kinase is able to enhance

BCR signaling independent of the phosphorylation status of its

activating tyrosines (100). It was shown that ZAP-70 constitutively

promotes gene expression, protein synthesis as well as
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microenvironment interactions in CLL cells. ZAP-70 mediated

tonic BCR signaling induces an enhanced transcription of the

genes coding for the proto-oncogene MYC and the T cell

chemokines CCL3/CCL4. These chemokines stimulate the

recruitment of T cells into proliferation centers, where they

provide a supportive microenvironment. Thereby, ZAP-70

improves CLL cell fitness to survive and proliferate and further

drives disease progression (101). This tonic BCR signaling is solely

present in U-CLL patients and relies on the ability of ZAP-70 to

stimulate the activation of AKT (102). Aberrant ZAP-70 expression

in CLL correlates with an unmutated IGHV gene status the

selection of unmutated IGHV region genes (103), the expression

of a typically self-reactive BCR (43) and a poor clinical outcome

(102). In contrast, B CLL cells lacking ZAP-70 expression are

mainly anergic, lose BCR responsiveness, and generally result in a

more indolent course of disease (104). Hence, ZAP-70 is used as a

reliable prognostic marker for CLL (103). Recent findings suggest

that ZAP-70 largely suppresses SYK-mediated BCR-signaling and

rather redirects BCR-SYK-mediated signaling from Ca2+-NFAT

signaling toward the activation of the PI3K signaling pathway

(105). This helps B cell clones to escape the NFAT-induced

anergic state followed by negative selection that would typically

cause elimination of autoreactive or pre-oncogenic B cells. Thus,

expression of ZAP-70 in B cells allows sustained signaling induced

by autoreactive BCRs, thereby facilitating malignant BCR-mediated

B cell transformation (105).

Most interestingly, ZAP-70 not only mediates constitutive BCR

signaling, but recently was also found to regulate chemokine-

mediated signaling. For example, the CCL19- and CCL21-induced

cell migration of U-CLL cells is regulated by the function of ZAP-70

to enhance CCR7 signaling (102). This new data was also presented

in the ASH meeting 2023 (102). It provides important new

explanations for the enhanced CLL cell fitness in ZAP-70 positive

CLL and the more aggressive clinical course of the disease. To what

extent this activity of ZAP70 is linked to the expression of

unmutated IGHV region genes in CLL still requires clarification.
3.4 PI3K/AKT signaling in CLL

The phosphatidylinositol 3-kinase (PI3K) transduces signals

from the BCR, chemokine receptors, plus adhesion receptors,

thereby promoting the development, survival, chemotaxis as well

as the cytoskeletal rearrangement of B cells (54, 106). By generating

the lipid phosphatidylinositol-3,4,5-triphosphate (PIP3), PI3K

creates an essential docking platform for PH domain-containing

signaling factors, such as BTK, the 3-phosphoinositide-dependent

protein kinase 1 (PDK1), or the protein kinase B (PKB, also known

as AKT). Binding to PIP3 results in membrane recruitment and

activation of the named signaling factors, which mediate the

initiation of several BCR downstream signaling cascades

(Figure 4) (12, 55). BCR-dependent signaling via the PI3K-AKT-

axis is believed to provide the essential “tonic signal”, that is

required for malignant transformation and progression of CLL

cells (107). Recently, AKT was found to be overactivated in high-

risk CLL and in more than 50% of CLL patients having Richter’s
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TABLE 1 Outcome of selected clinical trials using BCR signaling targeting inhibitors.

Target Agent Phase Patient
[n]

Response Trial information

LYN Dasatinib II 15 PR 20% (90% CI, 6-44%), nodal response 60% (13% CR;
47% PR)

Relapsed fludarabine-treated CLL patients,
73% with high-risk del(11q) or del(17p) (67)

SYK Fostamatinib I/II 11 mPFS 6.4 months (95% CI, 2.2-7.1), ORR 54.5% (PR) R/R CLL patients (74)

Entospletinib II 49 ORR 32.7% (95% CI, 21.7-45.3%), NR 48.8%, mPFS 5.6
months (95% CI, 3.7-8.3)

R/R CLL patients, which received prior
therapy with a BCR signaling inhibitor (78)

Entospletinib II 41 ORR 61% (95% CI, 44.5%-75.8%), only PRs, mPFS 13.8
months (95% CI, 7.7 months - not reached)

R/R CLL patients (75)

Entospletinib
+
Obinutuzumab

I/II 21 ORR 67% (95% CI, 43-85%), CR 14% (95% CI, 3-36%),
PR 53%, mPFS 27.5 months (95% CI, 16 months -
not reached)

R/R CLL patients that received ≥1 prior
therapy (79)

Cerdulatinib IIa 28 ORR 61% R/R CLL patients, median No. of 3 prior
therapies (80)

PI3K Idelalisib I 54 ORR 72% (95% CI, 58.4%-83.5%), PR 39%, PRwL 33%,
mPFS 15.8 months

R/R CLL patients, median No. of 5 prior
therapies, unmutated IGHV 91%, del (17p)/
mutTP53 24% (81).

Idelalisib
+
Rituximab

III 110 ORR 85.5% (95% CI, 77.5-91.5%), CR 0.9%, PR 84.5%,
mPFS 20.3 months (95% CI, 17.3 to 26.3 months), OS
40.6 months (95% CI, 28.5-57.3 months)

R/R CLL patients, median No. of 3 prior
therapies,
unmutated IGHV 83.6%,
del(17p)/mutTP53 43.2% (17)

Idelalisib
+
Rituximab +
Bendamustine

III 207 ORR 70% (95% CI, 63-76%), CR 1.4%, PR 68.6%, mPFS
20.8 months (95% CI, 16.6-26.4 months; HR = 0.33)

R/R CLL patients, unmutated IGHV 84%,
del(17p)/mutTP53 33% (82).

Duvelisib III 160 ORR 74%, CR 0.6%, PR 72.5%, PRwL 0.6%, mPFS 13.3
months (HR = 0.52)

R/R CLL patients, median No. of 2 prior
therapies, del(17p)/mutTP53 19% (18).

BTK Ibrutinib Ib/II 31 ORR 87%, CR 35%, PR 45%, PRwL 6%, mPFS NR First-line treated patients, unmutated IGHV
48%, del(17p) 6% (16).

Ibrutinib Ib/II 101 ORR 89%, CR 10% PR 76%, PRwL 3%, mPFS 52 months
(95% CI, 38–70)

R/R CLL patients, median No. of 4 prior
therapies, unmutated IGHV 78%, del(17p)
34% (16)

Ibrutinib
+
Venetoclax

III 260 ORR 95.4% (95% CI, 92.1-97.6%), CR 71.5% (95% CI,
65.6%, 76.9%), mPFS NR, 3-year PFS rate 97.2% (HR =
0.13; 95% CI, 0.07-0.24)

First-line treatment,
treatment-naive CLL,
unmutated IGHV 56.9%, del(11q) 20.6%, del
(13q) 31.4% (83).

Acalabrutinib I/II 99 ORR 97%, CR 7%, PR 90%, mPFS NR, estimated 48-
month PFS rate 96% (95% CI, 89-98%)

TN CLL, unmutated IGHV 62%, mutTP53
18%, del(17p) 10% (84).

Acalabrutinib Ib/II 134 ORR 94% (95% CI, 89-97%), CR 4%, PR 84%, PRwL 6%,
mPFS NR, estimated 45-month PFS 62% (95% CI,
51-71%)

R/R CLL patients, median No. of 2 prior
therapies, unmutated IGHV 73%, del(17p)
23%, del(11q) 18% (85).

Acalabrutinib II 60 ORR 78% (95% CI, 66-88%), CR 8%, PR 65%, PRwL 5%,
mPFS NR, 36-month PFS 58% (95% CI, 42-71%) and OS
rate 78% (95% CI, 65-87%)

ibrutinib-intolerant R/R CLL patients,
median No. of 2 prior therapies, del(17p)
28% (86)

Zanubrutinib III 109 ORR 94.5%, CR 3.7%, PR 87.2%, PRwL 3.7%, mPFS NR,
18-month PFS 88.6% (95% CI: 79.0–94.0) and OS rate
95.1% (95% CI: 88.4–98.0)

treatment-naïve CLL with del(17p)
100% (87).

Zanubrutinib I/II 192 ORR 91%, CR 8%, PR 83%, mPFS 61.4 (95% CI, 40.5 –

NR) months, 36-month PFS 72.9% and OS 80%
R/R CLL patients, unmutated IGHV 40.6%,
del(17p) 14.6%, mutTP53 50%, del(11q)
22% (88).

Zanubrutinib
+
Obinutuzumab

Ib 45 ORR (TN) 100%, 30% CR, 70% PR; ORR (R/R) 92%, 28%
CR, 64% PR; mPFS NR

R/R CLL patients (56%), TN CLL
(44%) (89)

(Continued)
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transformation (RT), a highly aggressive form of lymphoma that is

developed by 2 – 10% of patients during the clinical progression of

CLL (108). Moreover, Kohlhaas et al. identified constitutive AKT

activation as a driver of CLL to initiate RT through enhanced Notch

signaling of the RT CLL cells with the T cells of their tumor

microenvironment (108). The phosphatase and tensin homolog

(PTEN) is a tumor suppressor that antagonizes PI3K/AKT

s igna l ing . PTEN repres se s PI3K s igna l ing by PIP3

dephosphorylation, which leads to cell cycle arrest as well as

apoptosis (12, 54). In CLL patients, PTEN expression was shown

to be downmodulated. Furthermore, genetic deletion of Pten results

in significantly accelerated CLL development in Eµ-TCL1 mice,

which underlines its crucial involvement in malignant

transformation (10). In line with this, allelic variances in the Pten

gene-containing locus 10q23.3 could be identified in CLL patients

as well as a total loss of heterozygosity. However, no direct genetic

Pten mutations were found (109). Furthermore, a decreased PTEN

expression is associated with a poor CLL prognosis (110), indicating

an essential role of PTEN downregulation in the leukemogenesis

and progression of CLL.

3.4.1 PI3K-targeting inhibitors
The PI3K is categorized into three different classes (I, II, III).

The PI3Ks of class I can be subdivided into four isoforms: PI3Ka,
PI3Kb, PI3Kg, and PI3Kd. The isoforms PI3Kg plus PI3Kd are

expressed in CLL cells and have distinct important functions in
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regulating BCR signaling, cell migration as well as CLL cell adhesion

to stromal cells (111). Idelalisib, a selective PI3Kd inhibitor,

suppresses BCR-mediated signaling as well as CLL cell

interactions with the protective tumor microenvironment (112).

This causes CLL cell mobilization, resulting in transient

lymphocytosis and size reduction of the LNs (113). In a phase I

clinical study with idelalisib, a consistent decrease of AKT

phosphorylation, reduced secretion of stroma-derived factors

(CD40L, CCL2, CXCL13, tumor necrosis factor (TNF)-a) as well
as CLL-derived chemokines such as CCL3, CCL4, CCL17 and

CCL22 could be observed. Moreover, Idelalisib treatment exhibits

a beneficial safety profile and induces a fast and stable disease

reduction in R/R CLL patients with poor prognosis, that received a

median of 5 prior therapies (81). The ORR of this study reached

72% (95% CI, 58.4%-83.5%), while 39% of the patients had a PR,

and 33% showed treatment-induced lymphocytosis. The overall

median PFS was 15.8 months, but 32 months with the higher (now

recommended) dose of ≥150 mg (81). In patients with R/R CLL,

combined therapy of idelalisib and rituximab (a CD20-tageting

antibody, frequently used in CLL therapy) results in a higher

median overall survival (OS) compared to rituximab therapy

alone (17, 114). The OS was 40.6 months (95% CI, 28.5 - 57.3

months) and 34.6 months (95% CI, 16.0 months – not reached

(NR)) for idelalisib-rituximab-treated and placebo-rituximab-

treated patients, respectively (more data in Table 1) (17).

However, relative to the placebo group, idelalisib increased the
TABLE 1 Continued

Target Agent Phase Patient
[n]

Response Trial information

Tirabrutinib I 28 ORR 96%, estimated mPFS 38.5 months, median OS
44.9 months

R/R CLL patients, median No. of 4 prior
therapies (not BTKi), unmutated IGHV
84%, mutTP53 52%, del(17p) 36% (90, 91).

Tirabrutinib
+
Idelalisib
+
Obinutuzumab

II 30 ORR 93.3% (95% CI, 80.5-98.8%), CR 6.7%, PR 86.7,
mPFS NR (90% CI, 22.3-NR), 24-month PFS 80.6% (90%
CI, 41.1%-94.9%), and OS 96.7% (90% CI, 83.9%-99.3%)

R/R CLL, unmutated IGHV 63%, del(17p)/
mutTP53 33% (92).

Pirtobrutinib I/II 247 ORR 82.2% (95% CI, 76.8-86.7), CR 1,6%, PR 71,7%,
PRwL 8.9%, mPFS 22.1 months (95% CI, 19.6-27.4)

R/R CLL patients, median No. of 3 prior
therapies (all BTKi), mutBTKC481 37.8%,
mutPLCg2 8%, del(17p)/mutTP53
46.6% (93)

Pirtobrutinib I/II 100 ORR 79.0% (95% CI, 69.7-86.5%), PR 70%, PRwL 9%,
mPFS 16.8 months (95% CI, 13.2-18.7)

R/R CLL patients, median No. of 3 prior
therapies, 100% prior BTKi and BCL2i
treatment (93)

Nembtabrutinib I 29 ORR 75% (PR), mPFS NR (95% CI, 16.7 months – NR)
for patients treated at 65mg once daily (n = 8)

R/R CLL, median No. of 5 prior therapies,
mutBTKC481 82.8%, mutTP53 38%, del(17p)
24% (94).

Nembtabrutinib I/II 57 ORR 56% (95% CI, 42 – 69%), CR 3.5%, PR 26.3% PRwL
26.3%, mPFS 26.3 months (95% CI, 10.1 - NR)

R/R CLL, median No. of 4 prior therapies
(cBTKi 95%, cBTKi + BCL2i 42%,
mutBTKC481 65%, del(17p) 33%, mutTP53
32% (95).

Vecabrutinib Ib 30 (1/30) PR 0.4%, (11/30) stable disease 37%. R/R CLL, median No. of 4 prior therapies,
mutBTKC481 55.2%, del(17p)/
mutTP53 73.3%
ORR, overall response rate; CR, complete remission; PR, partial remission/response; PRwL, partial response with lymphocytosis; mPFS, median progression-free survival; OS, median overall
survival; NR, not reached; CI, confidence interval; HR, hazard ratio; R/R, relapsed refractory; TN, treatment-naïve.
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incidence of grade ≥ 3 diarrhea, grade ≥ 3 colitis and grade ≥ 3

pneumonitis to 16.4%, 8.2% and 6.4%, respectively (17). A different

combined therapy of the chemotherapy drug bendamustine,

rituximab, and idelalisib indicates improved the median PFS

relative to bendamustine-rituximab combined treatment in R/R

CLL patients (PFS 20.8 (95% CI, 16.6 – 26.4%) vs 11.1 (8.9 – 11.1%)

months; hazard ratio (HR) = 0.33 (95% CI, 0.25 – 0.44%). For

additional results see Table 1. However, a higher risk of infection

and generally higher incidence of serious adverse events were

observed in the idelalisib-treated group (82). By now, some novel

PI3K inhibitors have been developed, including copanlisib (115),

duvelisib (116), and umbralisib (117). Based on promising results in

a phase III trial (ORR 74%, mPFS 13.3 months (HR = 0.52)), the

PI3Kd and PI3Kg dual inhibitor duvelisib was approved by the FDA
for the treatment of R/R CLL in the year 2018 (18).

Despite the striking success of PI3Kd inhibitors in CLL therapy,

development of resistance upon idelalisib treatment was observed in

several patients (81, 114). Recently, hyperactivated insulin-like

growth factor1 receptor (IGF1R) signaling was described as a

possible mechanism of PI3Kd inhibitor resistant CLL cells,

suggesting IGF1R-targeted treatment as an effective strategy to

overcome PI3Kd inhibitor resistance (118, 119).

In general, the PI3K-AKT signaling axis represents a promising

therapeutic target providing an alternative strategy in the treatment

of high-risk R/R-CLL. According to recently published data,

especially the patients refractory to prior ibrutinib treatment tend

to show a more favorable response to idelalisib therapy (120).

However, the increased risk of infection and the higher incidence

of serious adverse events observed in combination clinical trials

comprising ibrutinib treatment (17, 82) questions the tolerability of

this PI3K-targeting drug.

3.4.2 AKT-targeting inhibitors
Another promising drug, named OSU-T315, targets the PI3K-

AKT signaling axis in a different way: it specifically prevents AKT

activation by blocking AKT membrane recruitment without

modifying the activation status of receptor-associated kinases.

With the disruption of AKT recruitment to lipid rafts, OSU-T315

targets CLL cell survival and triggers caspase-dependent CLL cell

apoptosis. In vitro, OSU-T315 evidences potential therapeutic

effectiveness in high-risk CLL patients with unmutated IGVH, del

(17p13.1) or resistance to ibrutinib. Moreover, treatment with

OSU-T315 significantly prolonged the survival of TCL1 mice

(121). This AKT-targeting inhibitor presents an outstanding

novel mechanism in the therapy of CLL and possibly also other

B-cell malignancies. Further investigations in a phase I/II clinical

trial would provide interesting insights in the tolerability and

efficacy of this agent in the treatment of R/R CLL.
3.5 The Bruton’s tyrosine kinase

The Bruton’s tyrosine kinase (BTK), a Tec family kinase, is

considered a key regulator of (oncogenic) BCR signaling, critical for

the pathogenesis and progression of CLL cells (122). BTK is
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activated downstream of the BCR via PH domain-mediated

membrane recruitment to PIP3, followed by phosphorylation,

either by SYK or an SFK (123). This results in phospholipase C

g2 (PLCg2) activation, which in turn induces the activation of

downstream MAPK signaling pathway and the transcription

factor nuclear factor of activated T-cells (NFAT). Thereby, BTK

links the BCR to its downstream signaling effectors (Figure 4) (55).

Due to chronic BCR signaling, most CLL cell clones show increased

BTK expression as well as constitutive phosphorylation compared

to non-malignant B cells (124–126). Beyond its classical role in

mediating BCR signaling, BTK also has some other molecular

effects. As a key regulator of CXC-chemokine receptor 4 and 5

signaling, BTK controls B cell migration in response to the so-called

homeostatic chemokines CXCL12 and 13, as well as tissue homing,

integrin-mediated adhesion, homeostasis or cellular retention in

supportive lymphoid niches (127). The survival and relapse of CLL

cells are thought to partially depend on the interaction of leukemic

cells with their tumor microenvironment along with the LN-

resident CLL cells (128). Thus, functional inhibition of BTK in

primary CLL cells strongly reduces BCR- plus chemokine-

controlled retention of leukemic B cells in their protective tumor

microenvironment (129). In addition, BTK was shown to function

in monocyte/macrophage cell populations, which represent a

relevant component of the CLL tumor microenvironment (130).

Altogether, BTK provides a promising therapeutic target.

3.5.1 BTK inhibitor ibrutinib
The BTK inhibitor ibrutinib has revolutionized the treatment of

CLL patients. In February 2014, ibrutinib was approved by the FDA

and nowadays is preferred as first-line therapy for the majority of

CLL patients. In a clinical phase Ib/II study, ibrutinib showed high

efficacy both, in first-line treatment settings with an ORR of 87%

(CR 35%, PR 45%) and in the treatment of R/R CLL (ORR 89%; CR

10% PR 76%) (16). The median PFS was not reached (95% CI, not

estimable (NE)-NE) in CLL patients with first-line treatment and 52

months (95% CI, 38–70) in R/R CLL patients. The estimated PFS

rate of 7 years was 83% with first-line treatment and 34% with

treatment for R/R CLL (16). Ibrutinib covalently interacts with the

active site of BTK at cysteine 481 and thereby prevents the signal

transmission to BTK-downstream survival pathways such as

mitogen-activated protein kinase (MAPKs), PI3K or nuclear

factor-kB signaling (126, 131). This results in reduced CLL cell

proliferation and apoptosis (126, 131). Increasing evidence indicates

a crucial inhibitory role of ibrutinib on constituents of the CLL

microenvironment (132). For example, ibrutinib effectively blocks

the secretion of survival factors (such as BAFF, CD40L, IL-4, IL-6,

TNF-a) and inhibits fibronectin binding, as well as the cellular

interaction with the stroma. Thereby, the dialog of the tumor cells

with the microenvironment is interrupted (126). In addition,

ibrutinib treatment causes a decrease in CD4+ and Th17 T cells

together with a diminished expression of activation markers on T

cells (132). This may be a side-effect of ibrutinib’s ability to also

inhibit other kinases such as the interleukin-2-inducible kinase

(ITK). ITK is a BTK homolog that plays a role in the activation

of T cells as well as natural killer cells (133). Ibrutinib also inhibits
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chemokine-mediated cellular migration and reduces the production

of BCR-induced chemokines such as CCL3 and CCL4 in CLL cells.

This results in early transient lymphocytosis together with a

reduction in disease progression (134). In ibrutinib-treated CLL

patients, the transient lymphocytosis correlates with a size

reduction of the spleen and LNs, followed by a rise of leukemic

cells in the blood (135). Ibrutinib is supposed to prevent the

interaction between CLL cells and microenvironmental stroma

cells that support the propagation, maintenance, as well as the

resistance of malignant CLL cells (136, 137). By doing so, ibrutinib

initiates CLL cell evasion from protective niches, leading to the

apoptosis of CLL cells due to a lack of stromal support (132, 138).

The most common primary reasons for CLL patients to discontinue

ibrutinib treatment were disease progression (first-line, 6%; R/R,

38%) and adverse events (first-line, 26%; R/R, 23%) (16). Although

ibrutinib shows already great efficacy with a high ORR in

monotherapy, several ongoing clinical studies are currently

aiming to discover a combination therapy that increases the

efficacy and tolerability of an ibrutinib-monotherapy in the

treatment of CLL. In a recent phase III study, presented at the

ASH meeting 2023, a significantly improved response in CLL

patients treated with a combination of ibrutinib and the BCL2

inhibitor venetoclax was observed with a 3-year PFS rate of 97.2%

and an ORR of 95.4% (95% CI, 92.1-97.6%) (Table 1). Severe

adverse effects were reported in 51% (83). With these results, the

combination of ibrutinib and venetoclax indicates superior clinical

efficacy and suggests a strong synergy of BCL2 and BCR-dependent

pathways. Consequently, ibrutinib-venetoclax seem to be a

promising combination for a successful first-line treatment in

combatting CLL.
3.5.2 CLL patient’s resistance to ibrutinib
Despite its huge clinical effectiveness, resistance and/or relapse

of CLL in patients receiving ibrutinib therapy was frequently

observed. The majority of ibrutinib-resistant CLL patients (~

85%) acquired mutations in the BTK or PLCg2 expressing genes.

Especially, the BTKC481S mutation is frequently described. It

disables ibrutinib’s capacity to irreversibly bind BTK, culminating

in poor clinical outcomes (139). The R665W and L845F mutations

of PLCg2, which were identified in ibrutinib-resistant patients, are

hypermorphic and induce BCR signaling independent of the BTK

activity (140). Both PLCg2 mutants are highly sensitive to activation

via the Rho GTPase RAC2, suggesting an important role of RAC2 in

activating PLCg2 in a BTK-independent manner (141).

Furthermore, SYK and LYN, respectively, were shown to play a

role in inducing mutant PLCg2 activity, since inhibition of either

SYK or LYN impairs mutant PLCg2-mediated signaling (142).

Another study showed that CLL-specific PLCg2 mutants such as

PLCg2S707Y are still responsive to a catalytical inactive BTK variant

with reduced sensitivity to covalent BTK inhibitors. This activity of

noncatalytic BTK may constitute a primary CLL resistance to

active-site BTK inhibitors (143). To overcome ibrutinib resistance

in CLL treatment, several second-generation BTK inhibitors were

generated and extensively studied to evaluate their tolerability plus

efficacy in patients with R/R CLL (reviewed in (144)).
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3.5.3 Novel covalent BTK inhibitors
3.5.3.1 Acalabrutinib

Acalabrutinib (ACP-196) also binds irreversibly to the BTK

C481 active site, however, with a higher selectivity compared to

ibrutinib since it is just weakly interacting with the TEC kinase and

shows no inhibition of ITK or EGFR, resulting in less adverse effects

(145, 146). Among all new-generation BTK inhibitors, acalabrutinib

is presently the most advanced drug in clinical development and

demonstrates an impressive ORR of 97% (90% PR; 7% CR) in

treatment-naïve CLL. In this phase I/II clinical study, the median

PFS of acalabrutinib-treated CLL patients was not reached and the

48-month PFS was estimated to 96% (95% CI, 89-98%) (Table 1).

Serious adverse events were reported in 38% of the CLL patients

(84). In R/R CLL patients, acalabrutinib treatment reached an ORR

of 94% (95% CI, 89-97%; 4% CR; 84% PR), and an estimated 45-

month PFS of 62% (95% CI, 51-71%) (85). In an ongoing phase II

study, acalabrutinib presently showed high efficacy and safety in

most R/R CLL patients unable to tolerate ibrutinib with an ORR of

78% (95% CI, 66-88%), and an estimated 36-month PFS rate of 58%

(95% CI, 42-71%) (Table 1). Related to aclarubicin treatment, severe

adverse events were experienced by 17% of the patients (86).

Another phase III clinical study compared the efficacy of

acalabrutinib relative to idelalisib-rituximab or bendamustine-

rituximab treatment in R/R CLL patients. The patients treated

with acalabrutinib reached a significantly increased 12-month PFS

of 88% (95% CI, 81-92%) compared to idelalisib-rituximab or

bendamustine-rituximab treatment (68%; 95% CI, 59-75%) (147).

3.5.3.2 Zanubrutinib

Zanubrutinib (BGB-3111) is another covalent BTK inhibitor

that irreversibly binds C481 in the BTK active site. Compared to

ibrutinib, zanubrutinib exhibits a higher selectivity. Initial data of

clinical studies indicate a beneficial activity and safety profile of

zanubrutinib in CLL patients, in monotherapy or combined with

obinutuzumab (87, 89). At an average follow-up of 18.2 months in a

clinical phase III trial, zanubrutinib therapy in treatment-naïve CLL

patients with del(17p) mutation achieved an ORR of 94.5% (CR

3.7%, PR 87.2%, PRwL 3.7%), and the 18-month PFS rate was

estimated to 88.6% (95% CI: 79.0–94.0) (Table 1) (87). In R/R CLL,

the ORR of zanubrutinib was 91% (CR8%, PR 83%), with a median

PFS of 61.4 months 61.4 (95% CI, 40.5 – NR), and a 36-month PFS

and OS of 72.9% and 80%, respectively. Severe adverse effects were

reported in 56.9% (Table 1) (88). ORR of the Zanubrutinib plus

obinutuzumab combination therapy was 100% (n = 20; 30% CR,

70% PR) in treatment-naïve CLL patients and 92% (n = 23; 28% CR,

64% PR) in patients with R/R CLL. The median follow-up was 29

months, median PFS was not reached and serious adverse events

were reported in 49% of the patients (89).

3.5.3.3 Tirabrutinib

Tirabrutinib (ONO/GS-4059) covalently inhibits BTK by

preventing Tyr223 auto-phosphorylation. Similar to acalabrutinib

and zanubrutinib, tirabrutinib was well tolerated in a first ongoing

phase I clinical evaluation in patients with R/R CLL, showing an

estimative median PFS of 38.5 and 44.9 months overall survival
frontiersin.org

https://doi.org/10.3389/fonc.2024.1339620
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schmid and Hobeika 10.3389/fonc.2024.1339620
(90). Like in the other BTK inhibitors, a large number of patients

(82%) exhibit transient CLL cell lymphocytosis (91). Two phase II

trials in R/R CLL patients currently assesses the efficacy and safety

of tirabrutinib in combination with entospletinib or idelalisib,

without or with the addition of obinutuzumab (NCT02983617

and NCT02968563). Initial data shows high efficacy and

tolerability in relapsed CLL patients treated with a combination

of tirabrutinib, idelalisib and obinutuzumab with an ORR of 93.3%

(95% CI, 80.5-98.8%), and a 24-month PFS and OS of 80.6% (90%

CI, 41.1%–94.9%) and 96.7% (90% CI, 83.9%–99.3%), respectively.

Serious treatment-emerged adverse events were experienced in

36.7% (92).

3.5.4 Novel non-covalent BTK inhibitors
Noncovalent (reversible) BTK inhibitors differ from the

previously mentioned compounds in noncovalently binding BTK,

resulting in selective inhibitory effects regardless of a C481S BTK

mutation (148). Noncovalent BTK-inhibitory drugs were generated

in order to successfully improve the treatment in R/R CLL patients

with BTK-inhibitor resistance bearing a BTK C481S mutation. In

preclinical trials, the non-covalent BTK inhibitors pirtobrutinib

(LOXO-305) (149), nemtabrutinib (ARQ-351) (150), vecabrutinib

(SNS-062) (151), and fenebrutinib (GDC-0853) (152), inhibited

BCR signaling in BTK C481 mutant cells and/or in animal models.

3.5.4.1 Pirtobrutinib

The non-covalent, orally available, BTK inhibitor Pirtobrutinib

(LOXO-305) reversibly blocks the ATP binding site on BTK. It is

highly selective with a more than 300-fold selectivity for BTK in

98% of tested kinases (153). Recently, a phase I/II clinical study

revealed promising effectiveness of pirtobrutinib in the therapy of

patients with heavily pretreated CLL. Patients that received prior

BTK inhibitor treatment achieved an ORR of 82.2% (95% CI, 76.8-

86.7; CR 1,6%, PR 71,7%, PRwL 8.9%), with a median PFS of 22.1

months (95% CI, 19.6-27.4). An ORR of 79.0% (95% CI, 69.7-

86.5%; PR 70%, PRwL 9%) and a median PFS of 16.8 months (95%

CI, 13.2-18.7) was observed in the subgroup of patients who had

previously received both a BTK inhibitor and a BCL2 inhibitor

(Table 1) (93). 37.8% (84/222) of the treated patients exhibit a

BTKC481 mutation. Notably, the ORR of patients with a BTKC481

mutation was with 89% (95% CI, 90-95%) significantly higher

compared to the ORR of CLL patients without BTKC481

mutation (74%; 95% CI, 64-82%). Moreover, pirtobrutinib is well

tolerated in most CLL patients. Only 2.6% discontinued

pirtobrutinib therapy due to treatment-related adverse events

(93). An ongoing phase III clinical trial is currently comparing

the efficacy of pirtobrutinib in combination with venetoclax and

rituximab to the standard therapy venetoclax-rituximab in

previously treated R/R CLL patients (NCT04965493).

3.5.4.2 Nembtabrutinib

Nemtabrutinib (ARQ-351) is a reversible, non-covalent BTK

inhibitor that binds and inhibits the kinase activity of BTK

independent of the C481 residue. As a result, nemtabrutinib

targets both, normal BTK and the C481-mutated forms of BTK.
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In preclinical studies, nembtabrutinib increased survival over

ibrutinib in Em-TCL1 mouse models and was able to suppresses

BCR-induced activation of PLCg2 and BTK-C481S mutants,

occurring in patients with clinical resistance to ibrutinib (150). In

a first-in-human phase I clinical study, nembtabrutinib showed

preliminary efficacy in a patient population with advanced R/R CLL.

An ORR of 75% (PR) was reached by 8 CLL patients treated at 65mg

once daily (n = 8), including 6 patients with a BTK mutation.

Median PFS was not reached (95% CI, 16.7 months –NR) (Table 1)

(94). Another phase I/II study of nemtabrutinib in R/R B-cell

malignancies reported an ORR of 56% (95% CI, 42 – 69%; CR

3.5%, PR 26.3% PRwL 26.3%) with a median PFS of 26.3 months

(95% CI, 10.1 - NR) (Table 1) (95). Notably, 95% of CLL patients

received prior treatment with a covalent BTK inhibitor (cBTKi) and

42% had prior cBTKi and BCL2 inhibitor therapy. Moreover, 63%

of the CLL study population exhibited a BTK-C481S mutation (95).

In general, nembtabrutinib shows promising efficacy in the

treatment of high-risk CLL patients with clinical resistance/

relapse to previous therapy and successfully targets BTK-C481

mutations facilitating CLL cell resistance to several covalent BTK

inhibitors. Moreover, the clinical safety was manageable with 11.4%

(94) and 13% (95) of patients, respectively, that discontinued

treatment due to treatment-related adverse events. An ongoing,

open-label, phase III trial is presently investigating the safety and

efficacy of nemtabrutinib in combination with venetoclax as

second-line or later therapy for R/R CLL patients (NCT05947851).

3.5.4.3 Vecabrutinib

In a preclinical characterization using an Em-TCL1 mouse

model, vecabrutinib (SNS-062) significantly reduced tumor

burden and improved animal survival (151). However, first results

of a phase Ib clinical study (NCT03037645) in CLL patients with or

without BTK mutation reveal that vecabrutinib did not translate to

such a strong response as expected. In general, vecabrutinib was

well-tolerated, but merely resulted in modest clinical benefit, with

0.4% PR (1/30) and 37% (11/30) of the CLL patients having a stable

disease (Table 1) (154). Despite strong preclinical evidence, the

efficacy of vecabrutinib was not sufficient to combat CLL in

refractory patients. Consequently, the clinical development and

evaluation of vecabrutinib in the treatment of B-cell malignancies

was terminated (154).

3.5.5 Emerging resistance to novel BTK inhibitors
Despite the promising results of the novel noncovalent BTK

inhibitors, mechanisms of resistance to these drugs could already be

observed. Similar to ibrutinib-resistance, mutations in PLCg2 and

BTK are the predominant resistance mechanisms to acalabrutinib

treatment. BTK C481 mutations occurred in 43% of acalabrutinib-

treated CLL patients at the time of disease progression, T474I

mutation in 21% and PLCg2 mutations were found 29% (155).

On-target BTK mutations (e.g. A428D, V416L, T474I, M437R,

L528W) and PLCg2 mutations allow CLL cells to escape the BTK

inhibitory effects in CLL patients treated with the noncovalent

inhibitor pirtobrutinib (156). Recent data, presented at the ASH

meeting 2023, show that in all CLL patients that had a BTK C481S
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mutation prior to pirtobrutinib therapy, the C481S mutation

declines on pirtobrutinib treatment. However, at disease

progression this mutation is replaced by a T474I BTK mutation

in 3 of 5 patients, while the BTK L528W mutation, that inactivates

kinase function is observed in one of 5 patients (157). The kinase-

inactive mutation BTK L528W was also enriched in CLL patients,

which acquired resistance to the second-generation BTK inhibitor

zanubrutinib (158). Similarly, BTK plus PLCg2 mutations, including

mutations in the BTK amino acids L528, A428, and V416, were

discovered in REC-1 mantle cell lymphoma (MCL) cell lines, which

are resistant to vecabrutinib, pirtobrutinib, and fenebrutinib.

Interestingly, only REC-1 cells resistant to nemtabrutinib

acquired no BTK or PLCg2 mutation, suggesting a different

mechanism in the development of resistance (159).
3.6 MAPK signaling

The mitogen-activated protein kinase (MAPK) signaling

pathway is activated downstream of the BCR and plays a pivotal

role in the regulation of cell differentiation, proliferation, survival,

plus cell migration (160). Nearly half of CLL patients show activated

MAPK signaling, suggesting a pathogenic role of this pathway in

CLL (161). In addition, several studies identified activated MAPK

signaling as a key oncogenic driver of CLL development and

progression, with approximately 5 – 8% of CLL patients

harboring at least a single genetic mutation in this pathway.

Mutations of the MAPK signaling pathway include the RAS genes

(NRAS, KRAS), BRAF, and the novel putative driver MAP2K1 (162,

163). Furthermore, CLL patients carrying such mutations

frequently correlate with an aggressive course of disease,

exhibiting adverse biological characteristics like an increased

CD49d, ZAP-70 expression, trisomy 12 or unmutated IGHV

regions and also show a significantly shorter treatment-free

survival (163, 164).

Despite its activation in CLL, targeting MAPK signaling does

not show significant effects on CLL viability. Paradoxically, MAPK

signaling inhibitors promote MAPK signaling activity, reduce the

expression of negative modulators of their pathway, and augment

AKT-mediated signaling (165). In line with this, genetic deletion or

inhibition of the inhibitory phosphatases DUSP1 or DUSP6, which

are negatively regulating MAPK signaling, results in reduced CLL

cell survival. Apoptosis following DUSP1/6 inhibition was also

evident in drug-resistant CLL (166). This appears surprising since

MAPK activity is actually well-known for its effects in promoting

cell survival. But the B cell-specific physiological effects of the

MAPK pathway vary to a great extent. For example, according to

the cell type and stimuli, activation of a specific MAPK, named

extracellular signal-regulated kinase (ERK), can also trigger

apoptotic processes causing cell death (167). Similarly, active

ERK1/2 is also associated with cell death during the B cell

negative selection, which serves to avert autoimmunity (168). In

these cases, acute activation of MAPK signaling promotes the

aggregation of mitochondrial reactive oxygen species, thereby

inducing cell death mediated by the DNA damage response (167,

168). This phenomenon was also observed after DUSP1/6
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inhibition in CLL (166), which supports an important role of

DUSP1/6-mediated negative regulation of MAPK signaling in

CLL cells survival and proposes DUSP1/6 inhibition along with

subsequent over-active MAPK signaling as a potential new CLL

therapy approach. In contrast, the MEK1/2 inhibitor binimetinib in

monotherapy or combined with the BCL-2 inhibitor venetoclax

shows great effectiveness in causing CLL cell death (169). Besides,

CLL cells with trisomy 12 are susceptible to ERK and MEK

inhibition (170). Furthermore, the ERK inhibitor rulixertinib

reduces ERK phosphorylation in MAPK-mutant CLL clones

(163). This suggests a dual role of MAPK activity in CLL, which

may depend on the CLL subset/cell type.
3.7 NF-kB signaling

The nuclear factor k-light-chain-enhancer of activated B cells

(NF-kB) is retained in an inactive state by inhibitor proteins (IkB).
Activation of the IkB kinase complex (IKK) leads to IkBs
phosphorylation and subsequent degradation, which finally

results in NF-kB translocation into the nucleus to induce target

gene transcription (Figure 4) (171, 172). In B cells, NF-kB mediated

transcription can be activated by several upstream signaling

pathways including inflammatory cytokines, BCRs, toll-like

receptors (TLR) or TNF receptors, like the B cell-activating factor

receptor (BAFFR) or CD40 ligand. Activated NF-kB controls

multiple processes, such as differentiation, cell cycle progression,

and survival (171). Moreover, NF-kB signaling is found to be

constitutively activated in CLL patients, indicating that aberrant

NF-kB activation plays a crucial role in CLL pathogenesis and

progression (13). In CLL cells, activation of the BCR successively

increased the NF-kB mediated transcription, indicated by a 23%

higher detectable target gene expression (173). Moreover, a few

recurrently mutated genes involved in the activation of NF-kB were

observed in CLL at a low frequency (> 5%) (i.e. mutations in

MYD88, BIRC3, NFKBIE) (174–177). The mutated myeloid

differentiation primary response 88 (MYD88) protein imitates

constitutively active TLR signaling and thus intensifies BCR–

mediated NF-kB signaling (177). The loss-of-function mutation

in the gene coding for the baculoviral IAP repeat containing 3

(BIRC3) prevents negative regulation of the MAP3K14/NF-kB
inducing kinase (NIK), a key activator of NF-kB signaling (174).

The mutation in the inhibitory IkBϵ molecule encoding gene

NFKBIE is associated with significantly enhanced NF-kB
activation and is most frequently found in poor-prognostic

subgroups of CLL (176). It was shown that cross-talk of CLL cells

with the tumor microenvironment results in NF-kB activation,

which provides pro-survival signals to the malignant CLL clones by

increasing the expression of various anti-apoptotic genes (13, 178).

Thus, NF-kB activity correlates with a dismal CLL outcome and

represents an essential mechanism of CLL resistance (13, 178). Most

interestingly, resistance mutations to BTK inhibitors were revealed

to arise only through NF-kB and not via PI3K-RAS-MAPK-

mediated signaling of the BCR pathway. Following BTK

inhibition, CLL cells only select gain-of-function alterations that

are mediated by NF-kB signaling, highlighting BTK’s significant
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role in BCR-induced activation of NF-kB (179). Hence, targeting

NF-kB signaling represents a potential future therapeutic approach

to overcome CLL resistance which is supported by NF-kB survival

signaling originating from the protective tumor microenvironment.

A first in vitro study shows promising effects in targeting the NF-kB
inducing kinase (NIK) by the inhibitor CW15337 in CLL cell

clones (180).
4 Tumor microenvironment and BCR-
associated pathways in CLL

In addition to the signals originating from the BCR, CLL cell

survival depends on various co-stimulatory signals, which can occur

through direct cellular interactions or via soluble factors. These

signals are essential for CLL cell survival by facilitating proliferation

as well as migration and homing of the malignant cells to protective

niches where they are able to undergo cell division. One BCR-

associated pathway with continuously rising importance in

regulating migration and homing of CLL is the CXCR4

signaling pathway.
4.1 CXCR4 signaling

The C-X-C motif chemokine receptor 4 (CXCR4) regulates the

movement of B cells toward the chemokine C-X-C motif ligand 12

(CXCL12), its corresponding chemokine ligand. Interaction of

CXCL12 with CXCR4 triggers the activation of several downstream

pathways such as MAPK/ERK, PI3K/AKT, PLCg/Ca2+ and NF-kB
signaling (Figure 4) (181, 182). For CLL cells, CXCR4 expression is

critical for the migration toward specific niches, where the leukemic

cells are protected by a survival- and growth-promoting

microenvironment (183). This is why in CLL patients, CXCR4 is

upregulated and associated with adverse prognosis. In line with this,

CLL patients exhibiting low CXCR4 levels are associated with good

prognosis as well as a significantly decreased risk of disease

progression (184). An oncogenic hyperactivated form of CXCR4 in

Eµ-TCL1 mice was described to collaborate with TCL1 in

accelerating the progression of CLL (182). Upon ibrutinib

treatment, a downmodulation of CXCR4 expression levels and

CXCR4 signal inhibition in CLL cells could be identified in Eµ-

TCL1 mice (185). Lately, it was reported that CRISPR-Cas9 induced

disruption of CXCR4 signaling significantly affects not only the

migration and homing of CLL cells with RT, but also reduces cell

growth in murine and patient-derived xenograft models and impairs

BCR-mediated signaling (186). This is a first evidence that targeting

the CXCR4 pathway possibly represent a potent new therapeutic

target in CLL patients with or without RT. Regarding the emerging

importance of CXCR4 in CLL progression and survival, CXCR4

inhibitors are presently investigated in clinical studies (187).

In addition, it was revealed that according to CXCR4 expression

in combination with CD5 (a surface molecule characteristically

expressed on CLL B cells), CLL clones can be defined into

subgroups varying in the time elapsed since the last cell division
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(also called “age”): the newly originated, proliferative fraction

(PF; CXCR4DimCD5Bright), the double dim fraction (DDF;

C X C R 4 D i m CD 5 D i m ) , t h e i n t e r m e d i a t e f r a c t i o n

(IF; CXCR4IntCD5Int), the double bright fraction (DBF;

CXCR4Br i gh tCD5Br i gh t ) and the rest ing fract ion (RF;

CXCR4BrightCD5Dim) (188–190). The last-born cells are thought

to enter the circulation as PFs and from there transition to either a

low CD5 (DDF) or a high CXCR4 (IF and DBF) phenotype,

eventually converging into RFs (190). Besides, the fractions also

differ in smIgM and smIgD BCR densities, since young cells of the

PF show high IgM/IgD surface expression, whereas cells with low

IgM/IgD expression were the oldest (RF) (190). While in CLL

patients the peripheral blood mainly consists of quiescent CLL cells

of the RF, the CLL cells residing in LNs are actively proliferating

cells of the PF (CXCR4DimCD5Bright) (189, 191). In compliance,

gene expression analyses revealed that LNs are specific sites, where

the upregulation of genes associated with BCR activation as well as

CLL cell proliferation takes place (13). Furthermore, the high

proliferation rate in LNs correlates with aggressive disease, rapid

lymphocyte doubling, and shorter treatment-free survival

compared to CLL with low growth rates (13, 191). Most

interestingly, the different intraclonal fractions show variable

susceptibility to CLL therapy, since older CXCR4-positive CLL

cells (RF and DBF) were observed to be less susceptible to in vivo

inhibition by ibrutinib relative to younger cells (190). This points

out the necessity to develop new treatment strategies specifically

targeting all points in the life cycle of the various intraclonal

fractions of a CLL clone.
5 BCR signaling in the CLL
cell metabolism

Deregulated cellular energy metabolism is a well-known

hallmark of cancer. Like all malignant cells, CLL cells make

adaptations to meet their increased metabolic needs. The

mechanistic target of rapamycin (mTOR) complex is crucial for

the coordination of energy, oxygen, nutrient and growth factor

availability in the cell as well as the regulation of cellular growth and

survival (192). mTOR forms two structurally and functionally

unique complexes, mTORC1 and mTORC2. Although both

complexes are crucial mediators of cellular metabolism, solely

mTORC1 is directly activated by nutrient, oxygen, and energy

availability, which is ultimately resulting in DNA, protein, and

lipid synthesis as well as cellular growth (193). By inducing the

activation of mTORC1, BCR signaling is (among others) directly

implicated in the regulation of B cell metabolism. The tuberous

sclerosis complex 1/2 (TSC1/2) negatively regulates mTORC1 by

inhibiting RHEB GTPase activity, which is required to induce

mTORC1 activation. BCR-mediated activation of the MAPK and

PI3K/AKT signaling cascades leads to the phosphorylation and

inhibition of TSC2, which ultimately results in the activation of

mTORC1 (194).

In CLL, BCR signaling was found to regulate cellular metabolism

via the PI3K/AKT/mTOR signaling axis. Genetic deletion as well as
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inhibition of PI3Kd results in a significant reduction of the metabolic

flux in CLL cells (195). Moreover, metabolic flux analysis of 140 CLL

patients revealed that patients that are diseased with the more

aggressive form of U-CLL exhibit significantly higher glycolytic

activity compared to M-CLL patients. These results indicate that the

IGHV mutational status of CLL cells is directly linked to their

glycolytic activity, most likely by BCR-mediated signaling (196).

Similar to the IGHV mutational status, glycolytic capacity was

found to be a reliable predictor of overall survival in CLL patients

(196). Moreover, the proliferative drive in CLL cells is associated with

high MYC and mTOR activity promoting mitochondrial biogenesis

and leading to increased oxidative phosphorylation (OXPHOS).

Increased MYC-mTOR-OXPHOS activity cooperates to drive cell

growth and meet the increased energy needs in CLL (197). Due to the

increased PI3K/AKT/mTOR pathway activity in CLL, studies

targeting PI3K/AKT/mTOR signaling indicated pro-apoptotic

effects in the treatment of CLL and other B cell leukemias (198).

Thus, PI3K/AKT/mTOR signaling may present a future therapeutic

target in the treatment of CLL, probably also in combination with

already existing therapeutics. For example, combined mTOR and

electron transport chain inhibition were found to synergistically

counteract venetoclax resistance in CLL (199). This synergistic effect

may provide an opportunity to enhance the efficacy of the BCL2

inhibitor venetoclax, which is frequently used in the treatment of CLL.
6 Conclusion

Our understanding of the CLL pathogenesis regarding BCR-

mediated signaling, tumor microenvironment, and co-stimulatory

signals has markedly improved during the last years. Furthermore,

the range of therapeutic options to treat CLL has considerably

increased. The development of next-generation drugs targeting

BCR signaling crucial for CLL cell pathogenesis and survival has

significantly ameliorated the clinical course of CLL patients. Several

inhibitors targeting BCR downstream signaling pathways are already

in clinical use and show high efficacy in CLL therapy (16–18, 74).

Among all therapeutics targeting BCR-signaling, BTK-targeting

inhibitors show the most beneficial clinical responses in the

treatment of CLL. With an ORR of 95.4% (95% CI, 92.1-97.6%), a

CR of 71.5% (95% CI, 65.6%, 76.9%) and a median 3-year PFS rate of

97.2% (HR = 0.13; 95% CI, 0.07-0.24), the combination of the BTK

inhibitor ibrutinib with the BCL2 inhibitor venetoclax indicates

superior clinical efficacy and suggests a strong synergy of BCL2 and

BCR-dependent pathways (83). Inmost cases, disease progression is a

result of specifically acquired mutations that allow the CLL cell to

escape the inhibitory mechanism of the therapeutic agent. Due to

constant research and improvement of the current therapeutics, novel

drug combinations as well as next-generation inhibitors are also able

to partially overcome therapy resistance in refractory CLL. Reversible,

non-covalent BTK-inhibitors, such as pirtobrutinib or nemtabrutinib

for instance, successfully target CLL cells exhibiting a BTK-C481

mutation and show promising efficacy in the treatment of CLL

patients that have developed clinical resistance to ibrutinib therapy
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(93, 94). However, despite the immense progress in CLL research, no

agent has clearly demonstrated efficacy in R/R CLL patients in the

long run. The emerging importance of the tumor-supporting

microenvironment in CLL progression and survival represents a

novel point of action in the treatment of CLL. CXCR4-targeting

inhibitors may present a promising mechanism to enhance the

efficacy of existing treatment options by preventing CLL cell

migration to these protective niches. Moreover, the variable

susceptibility to CLL therapy of the different intraclonal fractions

(187) points out the necessity to develop new treatment strategies

specifically targeting all points in the life cycle of a CLL clone. Thus,

continuous research in the field of CLL to understand the molecular

mechanisms of leukemic transformation as well as CLL cell survival is

of utmost importance to identify new drug targets or combinations

and mechanisms of drug action in the future.
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Composite diffuse large B-cell
lymphoma and peripheral T-cell
lymphoma: a case report with
two-year follow-up and
literature review
Jiwei Gu †, Juan Qian † and Xin Cao*

Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
Composite lymphoma is an uncommon type of lymphoid malignancy, and those

consisting of concurrent diffuse large B-cell lymphoma (DLBCL) and peripheral

T-cell lymphoma, not otherwise specified (PTCL-NOS) in the same organ are

rare. Here, we report a case of a 75-year-old male patient admitted to our

emergency department with intestinal obstruction presenting with abdominal

pain and vomiting. He underwent partial resection of the small intestine under

general anesthesia, and subsequent histopathology confirmed the mass to be

composite DLBCL and PTCL-NOS. The patient received chemotherapy with a

rituximab-based regimen and achieved complete remission (CR). However, the

recurrent disease presented with obstruction again ten months after treatment.

He refused a second surgery, but salvage treatment was not effective. The patient

survived for 20 months after diagnosis. In addition, we did a literature review to

understand the clinical features, pathology, treatment, and prognosis of this type

of composite lymphoma.
KEYWORDS

diffuse large B cell lymphoma, peripheral T-cell lymphoma, treatment, composite
lymphoma, intestine
Introduction

Composite lymphoma (CL) is an uncommon type of lymphoid malignancy, accounting

for approximately 1.0%–4.7% of all lymphomas (1). Those consisting of concurrent B- and

T-cell tumors are especially rare. Diffuse large B-cell lymphoma (DLBCL) is the most

common and heterogeneous B-cell neoplasm, generally expressing CD20. Peripheral T-cell

lymphoma (PTCL) is a group of highly heterogeneous invasive non-Hodgkin’s lymphoma

(NHL) originating from mature T cells or T cells in the thymus. T cells generally do not

express CD20. However, a small subpopulation of T cells also was found expressing CD20.

They may be found in healthy controls, autoimmune diseases, and hematological
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malignancies (2). CD20 expression in PTCL, not otherwise specified

(PTCL-NOS), has rarely been reported in the literature, and its

clinical significance has not been established yet (3, 4). Twelve cases

of DLBCL and PTCL-NOS that occur simultaneously in the same

tissue have been reported (4–13). Here, we describe a composite

DLBCL and PTCL-NOS case with CD20 expression who presented

to the hematology department with intestinal obstruction.
Case presentation

In October 2019, a 75-year-old man was admitted to the

emergency department with worsened abdominal pain

accompanied by vomiting. He had abdominal discomfort, night

sweats, and loss of appetite and weight for two weeks. A computed

tomography (CT) scan showed the thickened upper jejunal wall

accompanied by obstructive dilatation of the proximal intestine and

multiple enlarged lymph nodes. He received partial small intestine

resection and was transferred to the hematology department due to

the intraoperative pathology indicating malignant lymphoma.

Physical examination didn’t show palpable lymph nodes. He had

a ten-year history of hypertension, hyperglycemia, and psoriasis

with a penicillin allergy. Complete blood cell count showed mild

lymphocytopenia: white blood count (WBC): 2.8×109/L,

hemoglobulin concentration (Hb): 109g/L. A stool routine test

was weakly positive for occult blood. Other results included

lactate dehydrogenase (LDH) 189U/L (0-247U/L), b2-
microglobulin (b2-MG) 3.00 ug/ml (1.00-3.00 ug/ml). Epstein-

Barr virus (EBV) test showed EBV early antigen IgM (-), EBV

viral capsid antigen (VCA) IgM (-), EBV-VCA IgG (+), EBV core

antigen IgG (+), EBV-DNA (-). No apparent abnormalities were

found on bone marrow biopsy, smear, or flow cytometry.

Histopathology of small bowel resection (Figures 1, 2) is as

follows. (1) DLBCL was found in the small intestine (1 cm,

6.5 cm, and 16 cm away from the incision), which was germinal

center B-cell-like (GCB) DLBCL according to the Hans algorithm.

Immunohistochemical (IHC) studies of the tumors showed that the

lesion was positive for CD20, CD79a, CD21, Mum-1, Bcl-6, BCL2,

CD10, and negative for CD3, CD5, CD43, and CyclinD1. The Ki67

proliferation index was 60%. EBV encodes in situ hybridization of

small RNA (EBER) was negative. (2) The thickened area of small

intestine mucosa indicated PTCL-NOS next to the DLBCL. IHC
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showed tumor cells were positive for CD2, CD3, CD4, CD5, CD7,

CD20, PAX5, and negative for CD56, TdT, EBER with Ki67

proliferation index of 30%. (3) Three of the 30 mesenteric lymph

nodes were infiltrated with PTCL-NOS. IHC was positive for CD2,

CD3, CD5, CD43, CD20, Bcl2, while negative for CD10, CD79a,

Mum1, Bcl6, CyclinD1, PAX5, OCT2, MPO, CD34, TdT. CD7 was

lost in part of the tumor cells. The Ki67 proliferation index is about

10%. The immunoglobulin heavy chain gene (IgH) rearrangement

test in DLBCL was positive, and IgH rearrangement and T cell

receptor (TCR) rearrangement in the part of PTCL-NOS were

negative. We arranged an 18F- fluorodeoxyglucose (FDG)

positron emission computed tomography (PET-CT) for him. The

images showed that the operative area of the small intestine was

slightly disorganized. A slight thickening of the intestinal wall at the

anastomosis and its adjacent area was accompanied by a significant

progressive increase of FDG uptake, suggesting the infiltration of

residual lymphoma lesions. The increased FDG uptake of the

multiple segments of the small intestine in the left abdomen and

lymph nodes in the pelvic mesenteric indicated the involvement of

lymphoma (Figure 3). Combined with clinical manifestations and

laboratory findings, he was diagnosed with composite DLBCL and

PTCL-NOS, and the Eastern American Cancer Collaboration

(ECOG) physical condition score was 2. He received three cycles

of R-CHOP (Rituximab, Cyclophosphamide, Epirubicin,

Vindesine, Prednisone) and achieved partial remission (PR)

(Figure 3B). We tried to add Chidamide but failed with severe

gastrointestinal reaction and fatigue. The patient took rituximab

monotherapy in the fourth course due to fever and neutropenia.

Then, he continued three cycles of R-CHOP chemotherapy; the last

chemo date was in March 2020. On August 20, 2020, a PET-CT

scan showed the disease was in metabolic remission with a Duveil

score of 3 (Figure 3C). There were no complaints of discomfort in

the clinic and no complaints of discomfort during follow-up until

March 2020. However, he presented with obstruction again at the

end of January 2021, about ten months after treatment, and a CT

scan confirmed recurrent disease in the small intestine. He refused a

second surgery or endoscopy. Chemotherapy with R-CHOPE

(etoposide) relieved his bowel obstruction, however, with

increased pleura effusion. Salvage treatment R-GDP (Rituximab,

gemcitabine, cis-platinum, Prednisone) was also ineffective. The

patient died in May 2021 at a local hospital. He survived for 18

months after diagnosis.
A B C

FIGURE 1

Histopathological results of different parts. (A) Hematoxylin-eosin (HE) staining (100X) of the junction between the diffuse large B-cell lymphoma
(DLBCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) in the intestinal mucosa. (B) HE staining of intestinal mucosa with
PTCL-NOS (×400). (C) HE staining of the intestinal mucosa with DLBCL (×400).
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Discussion

Custer first introduced the term CL in 1954. Kim et al. further

modified the concept of CL to the simultaneous occurrence of more

than one histologically distinct lymphoma in the same anatomical

organ in 1977 (14). Most CLs reported in the literature are classical

Hodgkin’s lymphoma (HL) combined with non-Hodgkin’s

lymphoma (NHL) or two different B-cell NHL, while the

concurrence of B-NHL and T-cell lymphoma is rare (6, 15).

DLBCL is the most common B-cell member, followed by hairy

cell leukemia, chronic lymphocytic leukemia/small lymphocytic

lymphoma, and splenic marginal zone lymphoma. The most

common T-cell components are large granular lymphocytic

leukemia and angioimmunoblastic T-cell lymphoma (4, 16–18).

However, the co-occurrence of DLBCL and PTCL-NOS is rare, with

12 cases reported in the literature (6–13). In this case, it occurred in

the small intestine with abnormal expression CD20 in PTCL-NOS.

In addition to our case, twelve cases of CL with DLBCL and

PTCL-NOS have been reported. We summarized the

clinicopathological features of these cases in Table 1. The male-

to-female ratio was 2.25:1, ranging from 25 to 91 years (median: 67).

Three were Asian, and ten were Caucasian. The occurrence site

included the larynx (1 case), lymph node (3 cases), small intestine (2

cases), and bone (1 case), while the data of the remaining 6 cases

were missing. Four of the ten patients had a history of hematological
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diseases, including polycythemia vera, Hodgkin’s lymphoma,

cutaneous T-cell lymphoma, and indolent B lymphoma. Of the

three reported cases that provided the CD20 information, two were

positive, and one was negative. Three patients were positive for

EBER in DLBCL while negative for PTCL-NOS components. Six

patients were negative for EBER in both DLBCL and PTCL-NOS. In

another case, EBER was weakly positive in DLBCL but not in PTCL-

NOS. The other three cases didn’t mention the EBER result. Six of

ten patients showed positive TCR gene rearrangement. Eight out of

ten patients showed IgH gene rearrangement. Five patients received

chemotherapy, one with chemotherapy combined with

radiotherapy, one used topical therapy, one refused treatment,

and five cases did not show the details. One patient achieved PR

after four cycles of chemotherapy but died of surgery. One patient

died of cachexia six months after topical treatment. Six patients

were unknown about the prognosis. The median follow-up time for

the seven cases was eleven months (1-101 months).

The pathogenesis of CL is still unclear. Scholars proposed some

hypotheses for the coexistence of T-cell and B-cell tumors in the

same tissue (4, 5, 8, 19, 20). One of the most commonly mentioned

is the virological hypothesis. EBV infection may cause simultaneous

or sequential transformation of B cell and T cell components,

leading to the development of the two types of lymphoma (8, 20).

On the one hand, the expression of EBV antigen in neoplastic B

cells may stimulate the proliferation of T cells and eventually
A B C

D E F
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FIGURE 2

Immunohistochemical staining (IHC) of the two components. Positive IHC staining of CD20 (A), CD10 (B), MUM1 (C), Bcl-6 (D), Ki67 (E) and negative
staining of EBER (F) in DLBCL. Positive IHC staining of CD20 (G), CD3 (H), CD5 (I), CD7 (J), Ki67 (K) and negative staining of EBER (L) in PTCL-NOS.
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transform into T-cell lymphoma via clonal selection. Alternatively,

the first appearance of T-cell lymphoma may also result in a

deficiency in innate immunity that renders host B cells more

susceptible to EBV infection, leading to transformation into B-cell

neoplasms. In such cases, the patient’s T-cell and B-cell tumor

components tend to be EBER positive (8, 21). Although this patient

was positive for EBV-associated IgG, the pathology indicated that

EBER was negative for both T and B cell components. Virological

theories still can not explain our case and other instances of CL

without a virological basis.

Another proposed mechanism in this era of high-throughput

genome sequencing is the hypothesis of acquired oncogene

mutations in lymphoid progenitor cells. Wang et al. (5) reported

a case of CL composed of PTCL and mantle cell lymphoma, and

both components were positive for the CCND1/IgH fusion gene

and cyclin D1 overexpression. Therefore, the authors believed there

were specific genetic variations in lymphoid progenitor cells. Then,

other genomic modifications evolve into heterogeneous subclones,

resulting in the co-development of T - and B-cell tumors. Given the

clonal correlation between the two tumor components, authors

assumed that the two tumors may share a co-progenitor cell or grow

in the same microenvironment. The progress of genomics provides

an ideal tool for studying the clonal origin and clonal evolution of

similar composite lymphoid tumors (22). It is helpful to investigate

the tumor lineage of CL by analyzing the genomic profiles of B-cell

and T-cell tumors. However, the results of high-throughput

sequencing of genes for the components of the two tumor cells

were lacking in this patient. In conclusion, the pathogenesis of CL of
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B cell and T cell origin is complex, and there may be multiple

pathophysiological pathways (4, 5, 20).

Another feature of our case is the aberrant expression of CD20

in PTCL-NOS. The incidence of CD20 expression in T cell

lymphoma reported in the literature was about 5-8% (23). There

are several hypotheses about its pathogenesis. First, as there are a

small number of CD20 weakly expressed normal T cells in

peripheral blood, bone marrow, and lymph nodes during normal

hematopoiesis (24), it is speculated that CD20-positive T cell

lymphoma originates from this group of malignant T cell subsets.

Second, CD20 expression can be induced by T lymphocytes in the

process of stimulation or proliferation and activation in vitro (25).

Thus, CD20 expression may also be related to the activation of T-

cell lymphoma cells. Third, there are progenitor cells with the

potential to differentiate into B cells, T cells, and NK cells in cord

blood (26), so CD20-positive PTCL may also be the product of the

malignant transformation of progenitor cells at a stage of

differentiation. In our case and another case reported in the

literature (7), the intensity of CD20 in PTCL-NOS was weaker

than that of DLBCL counterparts. Therefore, we suspect these two

components may have different cellular origins, but the exact

mechanism needs further investigation.

Chemotherapy therapy and radiation are common and effective

treatments for lymphoma. In CL, the choice of the treatment regimen

and the patient’s prognosis is mainly based on the more aggressive

type of lymphoma (27). In this case, DLBCL exists simultaneously

with PTCL-NOS. Therefore, this patient was treated with rituximab

and CHOP. Rituximab has been widely used in treating CD20-
A

B

C

FIGURE 3

PET/CT scan after small bowel resection (A), three cycles of R-CHOP (B), and five months after treatment (C). The arrows demonstrated the lesions
where abdominal masses disappeared.
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TABLE 1 Clinical and pathological features of 13 patients with composite diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL.NOS).

Molecular
information

Treatment and follow-up Citation

OS

TCR+, IgH+ Polychemotherapy,
alive after 101 months

(8)

TCR-, IgH- Untreated, lost to follow-up (8)

TCR+, IgH+ Intrathecal injection with methotrexate,
follow-up for six months, died of cachexia.

(8)

TCR-,IgH+ N/A (6)

TCR+, IgH+ Achieve CR after six cycles of R-CHOP,
with no disease progression for 15 months.

(9)

TCR-, IgH+ Achieved CR after six cycles of R-CHOP
and radiation, with no disease progression
for 6 months.

(10)

TCR+, IgH+ Achieved PR after 4 cycles of R-CHOP but
died of bleeding at the surgical site.

(12)

TCR+, IgH- Achieve CR after six cycles of R-CHOP
and radiation, with no disease progression
for 8 months.

(7)

N/A N/A (13)

N/A N/A (13)

N/A N/A (12)

TCR+, IgH+ N/A (11)

TCR-, IgH+ Achieved CR after six cycles of R-CHOP,
with disease progression after 11 months,
and died four months later.

This case

t; R-CHOP, Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; +, positive; -, negative.
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Year Country Sex Age Site Other
sites

involved

Past
medical
history

CD20
expression

of
PTCL.NOS

EBER

DLBCL PTCL.

2002 Germany M 25 N/A Lymph nodes,
spleen,

epidural space

N/A N/A + -

2002 Germany F 89 N/A Lymph nodes N/A N/A + –

2002 Germany F 91 N/A Lymph nodes,
bone

marrow, skin

N/A N/A + -

2005 America M 35 Tibia Tibial soft tissue None N/A – –

2006 America M 49 Ileum None Gastroesophageal
reflux

- - -

2008 Italy M 67 Lymph
node

Bone marrow Tuberculosis N/A – –

2012 America M 43 laryngeal Lung, stomach,
and mesenteric
lymph nodes

Hodgkin
lymphoma

N/A +(weak) N/

2011 Japan F 67 cervical
lymph
node

Bone,
epidural space

None Positive – –

2016 America M 82 N/A N/A polycythemia
vera

N/A + (Unspecified)

2016 America F 33 N/A N/A Cutaneous
T lymphoma

N/A -(Unspecified)

2016 America M 70 N/A N/A un-specific N/A + (Unspecified)

2019 Japan M 73 Axillary
lymph
nodes

N/A Indolent
B lymphoma

N/A – –

2019 China M 75 Small
intestine

Mesenteric
lymph nodes

Psoriasis Positive - -

N/A, Not Applicable; EBER, Epstein-Barr virus encodes in situ hybridization of small RNA; TCR, T cell receptor rearrangement; IgH, Immunoglobulin gene rearrangemen
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positive B-cell lymphoma, while the efficacy in CD20-positive T-cell

lymphoma is still unclear. Shao et al. reported a T-cell lymphoma

with CD20 expression showing excellent response to rituximab with

gemcitabine, oxaliplatin, and L-asparaginase (R-pGEMOX) instead

of initial chemotherapy without rituximab (28). Mangogna A. et al.

provide a PTCL-NOS case with aberrant expression with CD20 and

CD79a who did not benefit from rituximab-based chemotherapy

(29). Kakinoki et al. considered that the effectiveness of rituximab

may be associated with the intensity of CD20 expression in T cells,

and patients with abundant CD20 expression will benefit the most

from treatment with R-based chemotherapy (30). This patient and

another case reported in the literature with CD20-positive PTCL-

NOS were treated with a standard R-CHOP regimen for six courses

and achieved CR. From the literature and our case data, five patients

received R-CHOP therapy, four patients achieved CR, one patient

achieved PR, and the median follow-up time was 11 months.

However, with extended follow-up, our patient relapsed.

Unfortunately, he refused to undergo another biopsy, so the type of

recurrent lymphoma remains unknown. and he eventually died from

the disease.
Conclusion

In conclusion, the simultaneous occurrence of DLBCL and

CD20-positive PTCL-NOS in the same tissue is infrequent in

clinical practice, and it is not easy to diagnose and easy to miss

and misdiagnose. To correctly diagnose this rare disease, clinicians

must work with pathologists carefully, combining multiple

detection methods, using as many tissues as possible in the

biopsy, and avoiding lymph node puncture. Due to the poor

prognosis associated with the simultaneous development of

numerous histological types of lymphoma and the lack of data on

treatment and outcome, the exact prognosis, treatment options,

molecular genetic changes, and the mechanism of the disease

occurrence still need to be further studied and explored.
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of ubiquitin ligase SKP2 in
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SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of

substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It

is associated with ubiquitin-mediated degradation in the mammalian cell cycle

components and other target proteins involved in cell cycle progression, signal

transduction, and transcription. Being an oncogene in solid tumors and

hematological malignancies, it is frequently associated with drug resistance

and poor disease outcomes. In the current review, we discussed the novel role

of SKP2 in different hematological malignancies. Further, we performed a limited

in-silico analysis to establish the involvement of SKP2 in a few publicly available

cancer datasets. Interestingly, our study identified Skp2 expression to be altered

in a cancer-specific manner. While it was found to be overexpressed in several

cancer types, few cancer showed a down-regulation in SKP2. Our review

provides evidence for developing novel SKP2 inhibitors in hematological

malignancies. We also investigated the effect of SKP2 status on survival and

disease progression. In addition, the role of miRNA and its associated families in

regulating Skp2 expression was explored. Subsequently, we predicted common

miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we

discussed current approaches and future prospective approaches to target the

Skp2 gene by using different drugs andmiRNA-based therapeutics applications in

translational research.
KEYWORDS

AML, leukemia, hematological cancers, miRNA, Skp2, oncogene, in silico,

cancer genomics
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Introduction

Poly ubiquitination is the binding of numerous ubiquitin

molecules into the same target protein. Generally, the

polyubiquitination of proteins is induced by different signaling

molecules and co-operates for protein degradation by the

proteasomes. This post-translational modification process

(Polyubiquitination) regulates numerous cellular events, including

cell growth, proliferation, differentiation and apoptosis in

mammalian cells (1). Any deregulation in the ubiquitination

machinery and its components could disarrange the cellular

homeostasis and initiate the process of neoplastic transformation

in various cancers. The step by step action of the ubiquitin-

activating (E1), ubiquitin-conjugating (E2), and ubiquitin-ligating

(E3) enzymes associated with the ubiquitin-proteasome system

(UPS), mediate ubiquitination by which they degrade targeted

substrate proteins (2).

The SKP1, CUL1, F-box protein (SCF) complex consists of

three core components that remain constant: RING-box 1 (RBX1),

a RING-finger protein responsible for recruiting the E2 ubiquitin-

conjugating enzyme; Cullin 1 (CUL1), acting as the scaffolding

protein; and S-phase kinase-associated protein 1 (SKP1), an

unchanging adaptor that links the core SCF complex with a

variable F-box protein and its corresponding target protein (3).

The specificity of the SCF complex for particular targets is

determined by F-box proteins, with each F-box protein

recognizing and binding a specific set of substrates. In humans,

there are a total of 69 F-box proteins, categorized into three families

based on their substrate recognition domains: (1) FBXW with

WD40 repeats; (2) FBXL with leucine-rich repeats (e.g., FBXL1,

also known as the S-phase kinase-associated protein 2 [SKP2]); and

(3) FBXO with other domains (4). To regulate the levels of specific

protein targets, each F-box protein recruits one of its substrates,

often phosphorylated, to the core SCF complex, facilitating

polyubiquitination and subsequent degradation by the 26S

proteasome (5). With a total of 69 distinct F-box genes, it

suggests the existence of up to 69 unique SCF complexes, each

responsible for regulating a diverse array of protein targets (4).

Few well-characterized F-box proteins regulate substrates which

are involved in cell cycle regulation, signal transduction, and

transcription (Table 1) (33). Among these, one of the E3 ligases
Abbreviations: SKP2, S-phase kinase-associated protein 2; CSC, Cancer Stem

Cell; ALDH, Aldehyde dehydrogenase; AML, Acute myeloid leukemia; CDK,

Cyclin dependent Kinase; SCF, Chemokine (C-X-C motif) ligand; DNMT, DNA

methyltransferase; FAO, Fatty Acid Oxidation; GBM, Glioblastoma multiforme;

HCC, Hepatocellular Carcinoma; PTEN, Phosphatase and tensin homolog; HIF,

Hypoxia-inducible factor; IFN-g, Interferon-gamma; TCGA, The Cancer

Genome Atlas; BRCA1, Monoclonal antibody; MDSC, Myeloid-derived

suppressor cells; BRCR-ABL, The breakpoint cluster region protein also known

as renal carcinoma antigen NY-REN-26; mTORC, Mammalian Target of

Rapamycin Complex; MAPK, Mitogen-activated protein Kinase; CUL1,

Cullin1; JAK, Janus kinase; TAM, Tumor-associated macrophages; TAN,

Tumor-associated neutrophils; TET, Ten-eleven translocation proteins; TGF b,

Transforming growth factor b; TNBC, Triple-negative breast cancer; TNF a,

Tumor necrosis factor a.
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called SKP2 (S-Phase Kinase Associated Protein 2 (~ 45kDa)), a

member of the F box family (34), is recognized as a pro-oncogene.

These F-box proteins are mostly composed of one of the four

subunits of ubiquitin-protein ligases complex named SCFs but do

not always recognize substrates in a phosphorylation-dependent

manner. In this complex of SCF’s, the F-box is referred to as a

subunit, which serves as the recognition site for protein substrates.

The N-terminal F-Box domain of the F-box binds to SKP1 and

thereby connects with the SCF complex. After that, C-terminal

Leucine-rich repeat (LRR) and WD40 repeats support substrate

binding. Association of SKP1-SKP2 is found in humans (35). SKP2

assembles to SCF-type E3 ubiquitin ligase complex along with

Cullin-1, Skp1, and Rbx1 (36–39). In addition, the requirement of
TABLE 1 SKP2 and its known substrates.

Substrate Function Reference

E2A B/T Cell Development (6)

p27 Cell Cycle Control (7)

p21 Cell Cycle Control (8)

p57 Cell Cycle Control (9)

p130 Cell Cycle Control (9)

Cyclin D1 Cell Cycle Control (10)

Cyclin E Cell Cycle Control (11)

Cyclin A Cell Cycle Control (12)

RAG2 DNA Repair (13)

BRCA2 DNA Repair (14)

ORC1P DNA Replication (15)

CDT1 DNA Replication (16)

MKP1 ERK Signaling (17)

TAL1 Erythroid Differentiation (18)

E2F1 Gene Transcription (19)

MEF Gene Transcription (20)

TOB1 Gene Transcription (21)

MYC Gene Transcription (22)

MYB Gene Transcription (23)

FOXO1 Gene Transcription (24)

FOXO3A Gene Transcription (24)

RBL2 Gene Transcription (25)

MLL Gene Transcription (26)

UBP43 Interferon Signaling (27)

USP18 Interferon Signaling (28)

RASSF1A Microtubule Stabilizer (29)

SMAD4 Signal Transduction (30)

CDK9 Transcriptional Elongation (31)

HPV-E7 Viral Oncogenesis (32)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1288501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


William et al. 10.3389/fonc.2024.1288501
cell cycle regulator CDK subunit 1 [CKS1] is important for CF

SKP2-mediated ubiquitinylation of p27 (7).

Skp2 gene plays a significant role in cell cycle progression and

cell survival through ubiquitin-mediated degradation of many

tumor suppressor proteins (p27, p21, p57, p130, FOXO1, BRCA2,

RASSF1A, TOB1), cell cycle regulatory proteins (Cyclin D & E,

E2F1, etc.) and oncogenes (c-MYC, MYB) (Figure 1) (40, 41). The

target interruption of SKP2 leads to the accumulation of Cdk

inhibitor p27, which leads to G1 phase cell cycle arrest. SKP2

mediates the degradation of p27 via ubiquitination through the 26S

proteasome pathway (42, 43). Additionally, proteins like RING E3

ligases, are essential for the interaction of the E2-conjugating

enzyme along with the SKP1adaptor protein (36). In addition,

scaffold and ring finger proteins like Rbx1 are also required to

target the substrate via its E3 ligase activity (36).
SKP2 in cancers

Higher expression of Skp2 is associated with tumor initiation

and progression (Table 2) (44). Concurrently, the level of SKP2

oscillates during the cell cycle and is controlled by both

transcriptional and post-transcriptional mechanisms. During cell

cycle regulation, low expression of Skp2 is observed in both G0/G1

and late M/early G1, while a high level of SKP2 is found during G1/

S transition, peaking at the S phase. Moreover, Cdk inhibitor p27 is

usually stable in G0/G1 phase and unstable in the G1/S phase (8,

45). Cyclin E and E2F-1 proteolysis are essential for their rapid

turnover during G1 to S phase progression, which directly increases

the abundance of SKP2 during this time (46). Further, p300

acetylates SKP2 in the Nuclear Localization Signal (NLS) region,

thereby mediates its localization in the cytoplasm, and enhances the

stability of SKP2 (Figure 2) (43).
Frontiers in Oncology 03145
A high level of Skp2 and a low level of p27 expressions are

associated with poor prognosis in solid tumors. Similarly, an inverse

correlation between Skp2 and p27 gene expression is also frequently

found in hematological malignancies (47, 48). Thus an

overexpression of the Skp2 gene concomitantly decreases the

expression level of the p27 gene in diverse cancer types (Figure

3). However, the molecular mechanisms and the cause of p27 gene

loss and elevated levels of Skp2 gene expression are not wholly

investigated in all cancer types. To further support the significance

of SKP2, an in-vivo xenograft mice model exhibiting high

expression of the Skp2 gene was found to promote tumor growth

(46). Surprisingly, following depletion of the SKP2, tumor

development is dramatically reduced by inducing programmed

cell death and cell senescence (49). Furthermore, another study

on glioblastoma cells also demonstrated that depletion of SKP2

inhibits cancer progression via promoting cellular senescence (50).

Similarly, transgenic mouse models overexpressing Skp2 have

shown tumor growth in various tissues, but the cause of how

SKP2 triggers neoplastic transformation is elusive (51).

While gene amplification may result in an enhanced Skp2

expression in cancers, oncogenic signals could also contribute to

its elevated expression. Oncogenic alterations leading to higher

expression of JAK2V617F mutation, BCR-ABL, and Her2/Neu,

which further activates Jak/Stat, and PI3K/AKT signals thereby

inducing Skp2 gene expression in malignant cells (33, 52). However,

in the nucleus, BCR-ABL mediated transcription of Skp2 is

associated with PI3K/AKT/SP1 pathway and mTORC2 via mTOR

signaling pathways, implicating the modulation of p27 level

expression. Mainly through PI3-kinase signaling, the mTORC2

pathway elevates the Skp2 expression, thereby reducing the p27

expression and initiating cancer progression (53, 54). Furthermore,

p300 acetylates K68 and K71 residues of SKP2 during oncogenicity,

sustaining their stability and enhancing retention in the cytoplasm
FIGURE 1

SCFSKP2 complex. The SCFSKP2 complex plays a pivotal role in regulating cell cycle progression and maintaining cellular homeostasis. SKP2, an F-box
protein within the complex, acts as a substrate recognition component. It recognizes specific target substrates marking them for ubiquitination.
Once ubiquitinated, the tagged proteins are targeted for degradation by the 26S proteasome. The SCF complex serves as an E3 ubiquitin ligase,
facilitating the transfer of ubiquitin molecules to substrates. Ultimately, this polyubiquitination signals the proteasome to recognize and degrade the
marked proteins, regulating key cellular processes and ensuring proper cell cycle dynamics.
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(43). SKP2 promotes cellular invasion and migration by

suppressing the tumor suppressor genes/protein expression and

regulates its downstream targets, such as p21, p27Kip1, and FOXO1

(55). Aberrant regulation of the SKP2/p27 axis has also been noted

in gastric cancer suppression, wherein MESP2 binds competitively

to TCF4 (56). In addition, high SKP2 endorses cancer progression

through the activation of various growth and survival-signaling

pathways, for example, PTEN, ARF, pRB, FOXO1, and high Her2/

Neu, etc. SKP2 acetylation and phosphorylation regulates its SCF E3
Frontiers in Oncology 04146
ligase activity in the cytoplasm during cancer progression, and AKT

phosphorylates SKP2 at Ser72 during metastasis. The cytosolic

SKP2 activates AKT and PTEN loss, implicating SKP2

translocation from the nucleus to the cytosol through Ser72

phosphorylation and induces tumor growth (57). Additionally,

through neddylation, Cul-1 stabilizes the SKP2-SCF complex and

negatively regulates the SKP2-SCF complex, Cul-1 dissociates from

Cand1 by Cul1 neddylation and deneddylation of Cul1is mediated

by Cop9-signalosome (CSN) protein complex (58). However, a

complete SCF ligase activity is still largely unknown. Clinically, the

elevated expression of Skp2 is recognized as a poor prognostic

marker in many solid tumor cancers and hematological

malignancies (1). Concerning hematological malignancies, SKP2

being a crucial regulator of the cell cycle, plays a multifaceted role.

SKP2 aberrations have been implicated in malignancies like acute

myeloid leukemia, chronic lymphocytic leukemia, T-cell acute

lymphoblastic leukemia, chronic myelogenous leukemia, multiple

myeloma, primary effusion lymphoma, Diffuse large B-cell

lymphoma, extranodal natural killer (NK)/T-cell lymphoma,

myeloproliferative diseases etc. (Figure 4), disrupting

hematopoietic differentiation and fostering genomic instability.

The following delineates the role of SKP2 in the above

mentioned malignancies.
SKP2 in acute myeloid leukemia

Skp2 expression is recognized as an independent prognostic

factor in AML. High expression of Skp2 is associated with shorter

disease-free survival and overall survival. Interestingly, siRNA

mediated knocking down of Skp2 in AML cell lines HL-60/A

resulted in cell cycle arrest reversing the multidrug resistance by

downregulating MRP gene expression (59). However, further

studies are required to showcase the cause of Mrp gene

modulation in AML. The RNAi-based disruption of anti-miR-

196b activity or pharmacologic inhibition of the Cks1-Skp2-

containing SCF E3-ubiquitin ligase complexes significantly

elevated the level of p27Kip1, which induces monocytic

differentiation (60), noticeable reduction of leukemogenic

potential, induced apoptosis and suppressing human AML

growth (48). SKP2 and p27Kip1 are localized in the cytoplasm

(61), which hints that an aberrant regulatory pathway is conducted

through SKP2-mediated p27Kip1 proteolysis in most AML cases

(62). On the other hand, SKP2 is positively correlated with

phosphorylated PTEN, suggesting that the pPTEN-SKP2 axis

might be a promising therapeutic target in AML (63).

AML is a complex heterogeneous disease with diverse

pathologies. There are conflicting reports on the Skp2 expression in

AML. While results from TCGA shows a downregulation of SKP2 in

AML (LAML), studies from other investigators reported an elevated

SKP2 in AML (63). A possible reason for this apparent conflicting

reports is due to the complex aetiology of AML. To improve the

predictive value and therapeutic specificity of the Skp2 gene in solid

and hematological malignancies, we analyzed the TCGA data (data

not shown). We performed different statistical analyses on diverse
frontiersin.o
TABLE 2 SKP2 expression profile across tumor samples (derived from
gepia2.cancer-pku.cn).

SKP2 Overexpressed Cancer SKP2
Underexpressed
Cancer

ACC – Adrenocortical Carcinoma KICH –

Kidney Chromophobe

BLCA – Bladder Urothelial Carcinoma LAML – Acute
Myeloid Leukemia

BRCA - Breast invasive carcinoma PRAD –

Prostate Adenocarcinoma

CESC - Cervical squamous cell carcinoma and
endocervical adenocarcinoma

THCA –

Thyroid Carcinoma

CHOL – Cholangiocarcinoma

COAD - Colon adenocarcinoma

DLBC - Diffuse Large B-cell Lymphoma

ESCA - Esophageal carcinoma

GBM - Glioblastoma multiforme

HNSC - Head and Neck squamous
cell carcinoma

KIRC - Kidney renal clear cell carcinoma

KIRP - Kidney renal papillary cell carcinoma

LGG - Brain Lower Grade Glioma

LIHC - Liver hepatocellular carcinoma

LUAD - Lung adenocarcinoma

LUSC - Lung squamous cell carcinoma

OV - Ovarian serous cystadenocarcinoma

PAAD - Pancreatic adenocarcinoma

PCPG - Pheochromocytoma and Paraganglioma

READ - Rectum adenocarcinoma

SARC – Sarcoma

SKCM - Skin Cutaneous Melanoma

STAD - Stomach adenocarcinoma

TGCT - Testicular Germ Cell Tumors

THYM – Thymoma

UCES - Uterine Corpus Endometrial Carcinoma

UCS - Uterine Carcinosarcoma
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populations. Our TCGA analysis relied on an online portal

exploration, and the data was generated with an interactive web-

portal (UALCAN tools (http://ualcan.path.uab.edu) through a

TCGA-level setup. The three different RNA-sequence gene

expression data and 31 different clinical cancer types’ data were

used for analysis, such as 1). Relative expression of the gene(s) across

tumor and normal samples, as well as in various tumor sub-groups

based on individual cancer stages over and under-expressed genes in
Frontiers in Oncology 05147
individual cancer types, tumor grade, race, body weight, or other

clinical pathologic features 2) effect of gene expression level on patient

survival. Finally, we used 3) in silico validation studies for target genes

(derived from the GENT2 database). Results depict that leukemia

showed a marginally increased trend in Skp2 expression as compared

to lymphoma and Myeloma (Supplementary Table 1). Survival

analysis also revealed a poor DFS (disease-free survival) with high

Skp2 expression, as also seen in leukemia vs lymphoma.
FIGURE 2

Regulation of Skp2 gene expression. The expression of Skp2 is intricately regulated by various signaling pathways, showcasing its significance in
cellular homeostasis and proliferation. Key mitogenic signaling pathways like, Notch, PI3K/Akt and IKK, converges to SKP2 thereby modulating its
expression. The coding region of Skp2 contains functional domains essential for its function. The D-box is crucial for recognition by the anaphase-
promoting complex (APC/C), marking SKP2 for degradation during cell cycle progression. The NLS (nuclear localization signal) guides SKP2 into the
nucleus. The F-box domain is characteristic of SKP2’s role in the SCF complex, facilitating substrate recognition. Finally, the LRR (leucine-rich repeat)
domain contributes to protein-protein interactions, enabling SKP2 to engage with other components of the SCF complex and its target substrates,
orchestrating precise control over cell cycle checkpoints and cellular processes.
FIGURE 3

SKP2-p27 axis. The SKP2-p27 axis is a critical regulatory pathway governing cell cycle progression and proliferation. SKP2, a component of the SCF
complex, targets the cyclin-dependent kinase inhibitor p27 for ubiquitination and subsequent proteasomal degradation. This ubiquitin-mediated
destruction of p27 relieves its inhibitory effect on cell cycle progression, allowing cells to transition from G1 to S phase. Dysregulation of the SKP2-
p27 axis is implicated in various cancers (solid and, including hematological malignancies), emphasizing its pivotal role in maintaining proper cell
cycle control and highlighting its potential as a therapeutic targetin various malignancies.
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Regulation of Skp2 gene in other
hematological malignancies

SKP2 in Chronic Lymphocytic
Leukemia (CLL)

Chronic Lymphocytic Leukemia (CLL) is the most commonly

diagnosed leukemia in the Western world. CLL, also named B cell

malignancy, is characterized by indolent lymph proliferative

disorder, where immature B cells expressing CD5+, CD19, CD23,

and CD20 B-cells progressively accumulate in the peripheral blood,

bone marrow and lymph nodes (64). During the last decades,

modern therapeutic approaches significantly improved to induce

CLL apoptosis at various levels, but CLL remains incurable due to

its drug resistance/relapse. Interestingly, the significantly higher

expression [mean of 3 fold-protein] of a cell cycle inhibitor, p27,

was detected in CLL tonsil and peripheral blood B lymphocyte

samples as compared to healthy B cells. Besides, the expression of

Myc is relatively low in CLL in comparison with normal healthy B

cells. The inversely correlated MYC and p27 in CLL, and the larger

set of CLL in cohort patient studies clearly demonstrated that the

Skp2 gene is involved in p27 degradation. In a similar report, high

Skp2 expression correlated with highMyc and low p27 expression in

most of the CLL cases. On the other hand, low SKP2 samples

showed high p27, and the mean MYC protein levels were

significantly higher than high SKP2 levels in comparison with

Tonsil and CLL. These findings demonstrated that through the
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MYC-SKP2-p27 axis pathway, MYC induces p27 degradation via

upregulating the Skp2 gene in CLL (45).
SKP2 in T-cell acute
lymphoblastic leukemia

T-cell acute lymphoblastic leukemia malignancy is a subtype of

leukemia arising from thymocytes. In fact, T-ALL constitutes

around 12-15% of newly diagnosed cases of ALL in pediatric

patients, notable for its distinctive clinical and biological

characteristics (65). Based on the current modern combination

therapy, long-term therapies are needed to be improved, especially

with aged group patients. The molecular mechanism of different

gene functions in T-ALL is complex, including the chromosomal

translocation of c-Myc, Hox 11, Tal1, and Lmo, with the T-cell

receptor locus (66, 67). High prevalence activation of mutated

Notch signaling pathway emerged as an important genetic

component for T-ALL pathogenesis. Interestingly, in T-ALL

Notch, signaling pathways are found to regulate the Skp2

expression and its protein target substrate p27. In T-ALL cells,

the interaction of NOTCH 1 intracellular domain (ICD) with the

Skp2 promoter triggers Skp2 expression levels and reduces p27Kip1

levels. The pharmacological agents blocking NOTCH signaling

pathways reduce the expression of SKP2, and accumulate the

p27Kip1, subsequently leading to G1 cell cycle arrest. Overall,

NOTCH/SKP2/p27Kip1 axis might contribute to the pathogenesis

of T-ALL (68).
FIGURE 4

Involvement of SKP2 in hematological malignanices. SKP2, a critical player in hematological malignancies, features prominently in various cancers
including acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and T-cell acute lymphoblastic leukemia (T-ALL), chronic
myelogenous leukemia (CML), multiple myeloma, primary effusion lymphoma (PEL), and diffuse large B-cell lymphoma (DLBCL), Extranodal natural
killer (NK)/T-cell lymphoma and myeloproliferative diseases. Mediated through diverse pathways such as PI3K/Akt, NFkB, and MYC, overexpression of
SKP2 is often correlated with aggressive disease and poor outcomes, highlighting its significance in cancer biology and emphasizing the need for
targeted therapeutic interventions.
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SKP2 in Chronic Myelogenous Leukemia

Chronic Myelogenous Leukemia (CML) is the type of leukemia

cancer subtype where dysregulation of myeloid cell growth in the

bone marrow leads to the accumulation of undifferentiated white

blood cells in the blood. CML is characterized by the translocation

of BCR/ABL1 genes- chromosome t(9, 22)(q34;q11. 2). Almost 95%

of CML patients have BCR/ABL translocation in the chromosomes

(69). This translocation elevates the transcription level of SKP2

expression. SKP2-mediated p27Kip1 dysregulation has been

observed in many types of cancers, and proteasome inhibitor BTZ

reduces the expression of Skp2 in CML (70). On the other hand, the

inverse relationship between SKP2 and p27Kip1 has been noticed

after the gene silencing of Skp2 in CML (69, 71).
SKP2 in multiple myeloma

Multiple myeloma (MM) malignancy develops due to

uncontrolled plasma cell proliferation and relapses in most

patients, which remains a challenge for modern chemotherapeutic

treatments. Interestingly, Myristoylated alanine-rich C-kinase

substrate (MARCKS) overexpression plays an essential role in

drug resistance in MM. Activated MARCKS (p-MACKS)

modulates the SKP2/p27-signaling axis. SKP2 mediates E2F1-

induced cell proliferation and cell cycle progression through the

reduction of p27Kip1. MARCKS activation by siRNA/drug

(enzastaurin) reduces the MM resistance cell growth and induces

apoptosis. The current study demonstrated that targeting

MARCKS-mediated SKP2 will be a more helpful therapy against

MM resistance. Furthermore, cyclin-dependent kinases regulatory

subunit 1 (CKS1, encoded in humans by the CKSB1 gene), cell cycle

protein regulates p27Kip1, and p21CIP1 depends on Skp2

expression. Similar to the above study, SKP2/p27Kip1, and

CKSB1 were also found to be inversely correlated in MM cell

lines (46).
SKP2 in primary effusion lymphoma

Primary effusion lymphoma (PEL) is a rare, aggressive,

immune-compromised type B cell lymphoma. It is associated

with human herpesvirus type-8 infection, which commonly

occurs in malignant effusions of the body cavities. In PEL, the

LANA-2 gene (KSHV latent gene vIRF-3), binds to SKP2 and

regulates c-MYC-dependent gene transcription by recruiting c-

Myconin, its promoter regulatory region (72). Since c-MYC is a

proto-oncogene, it regulates cell proliferation and survival in

cancers. High expression of vIRF-3 induces the c-MYC

ubiquitylation, plays a critical role in c-MYC mediated

transcription, and stabilizes the c-MYC protein, leading to c-

MYC-induced KSHV combined lymphomagenesis. Numerous

studies have found that targeting SKP2 by proteasome inhibitor

(MEG1320) or knocking down Skp2, stabilizes the p27Kip1, thereby

triggering the mitochondrial-induced cell death by the caspase-
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dependent pathway (73). Interestingly, a plant compound Apigenin,

also down-regulates the SKP2, stabilizes the p27Kip1 expression,

and induces apoptosis in PEL cells (74).
Diffuse large B-cell lymphoma (DLBCL)

Diffuse large B-cell lymphoma (DLBCL) is a sub-type of B-cell

cancer. In adults, 30-40% of Non-Hodgkin’s Lymphomas are

DLBCL, thereby portraying DLBCL as the most common type of

Non-Hodgkin Lymphona (75). One of the biggest challenges of

DLBCL is that there is a relapse recorded in more than 50% of

patients succeeding treatment with increased mortality (76). The

cause of DLBCL resistance is still unclear. However, numerous

studies demonstrate that dysregulation of oncogenic/tumor

suppressor gene regulation and impairment of repair pathways

contribute to developing DLBCL relapse. Interestingly, SKP2 is

highly observed in DLBCL, which is significantly correlated with the

worst clinical outcome compared to low SKP2-expressing patients.

Further, high Skp2 in patients displayed a poor prognosis and less

survival. High Skp2 correlated with Ki-67 but not with p27,

demonstrating SKP2 as an independent prognostic marker of

clinical outcome (77). Bortezomib (BTZ) treatment reduces SKP2

via escalation of p27Kip1protein, including XIAP, cIAP1, and

survivin, implicating the SKP2/p27Kip1 signaling pathway in

DLBCL pathogenesis (78). Unfortunately, in other studies,

Rituximab via the CHOP-mediated pathway did not provide

beneficial outcomes for DLBCL patients with high Skp2 and low

p27 expression (79).
SKP2 in extranodal NK/T-cell lymphoma

Extranodal natural killer (NK)/T-cell lymphoma (ENKL) is a

rare, aggressive type of malignancy in the lymph nodes besides GI

tract, skin, and testis. ENKL shows poor survival among patients.

The ENKT is often associated with Epstein–Barr virus (EBV)

infection. The expression of Skp2 levels is significantly increased,

and an inverse correlation between SKP2 and p27Kip1 was

observed with patients infected with EBV and phenotype of SKP

+/p27– in ENKL (80). Overall these studies suggest that SKP2 plays

a major role in the pathogenesis of ENKL carcinogenesis mediated

through EBV (80, 81).
Role of SKP2 in myeloproliferative
diseases (MPD)

BCR-ABL induces MPD via impaired cell cycle regulation by

destabilization of p27, which inhibits cyclin-dependent kinases

(CDK). In contrast, BCR-ABL inhibition induces p27 and reduces

Skp2, which leads to G1 arrest (33). A similar regulation pattern was

also observed where leukemic cells were transformed by FLT3-ITD,

JAK2V617F, and TEL-PDGFRb, which suggests that SKP2/p27

passage may act as a common target for leukemogenic tyrosine

kinases. The in vivo mice transplanted with BCR-ABL–infected
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SKP2_/_marrow resulted in myeloproliferative syndrome with an

increased survival rate compared with recipients of BCR-ABL-

expressing SKP2-/- marrow (33). At the same time, in the

SKP2-/_model, the nuclear p27 expression is higher than SKP2-/-

counterparts, demonstrating that leukemogenesis attenuation is

regulated by high p27 levels in both MPD and CML (33, 82). The

mutation of JAK2V617F commonly occurs in MPD, but in the case

of its subset of polycythemia vera, homozygous JAK2V617F

mutation is common. Therefore, mitotic recombination and

duplication of the mutant allele are developed in MPD/CML.

JAK2V617F mutation modulates the Skp2 expression through

STAT3/STAT5 transcription factors on the SKP2 promoter

regulatory region (52). Therefore, inhibiting SCF-SKP2 for p27

stabilization recognition may be more beneficial for a therapeutic

approach in MPD/CML and other hematological malignancies.
Role of SKP2 in hematopoietic
stem cells

The hematopoiesis process is a crucial step in producing diverse

blood cells. This process undergoes long-term HSCs (LT-HSCs)

and short-term HSCs (ST-HSCs), compartments that are the

primary sources of hematopoiesis. LT-HSCs self-renewal

themselves in order to maintain HSC pool and differentiate into

multipotent progenitors, and they can further differentiate into

lymphoid progenitors and myeloid progenitors, which produce

mature blood cells, whereas ST-HSCs have limited self-renewal

ability to differentiate into multipotent progenitors (69, 82).

However, the mechanism of HSCs quiescence is largely unknown,

and re-entering the cell cycle by HSCs is very crucial. Interestingly,

SKP2 is involved in regulating HSC quiescence, pool size, self-

renewal capability, etc. (83). In HSCs, the SKP2 deletion stabilizes

the CKIs p21Cip1, p27Kip2, P57Kip2, and p130, increasing

proliferation and reducing the stem cell self-renewal capability

(83). SKP2 targets SKI inhibitors that inhibit cell cycle

progre s s ion f rom G1 to S phase (68 , 84 ) . Due to

myelosuppression and post-transplantation occurrences, high

expression of Skp2 is associated with neoplastic transformation,

including HSC and its progenitors. High expression of Skp2

sufficiently provides hematopoietic stress.

On the other hand, depletion of SKP2 reduces HSC mitotic

activity and enhances HSC quiescence, increasing pool size and

maintenance (83). The depleted SKP2 results in HSC impairment

during myeloablative stress because of their inability to enter the cell

cycle, thereby protecting HSC regeneration. SKP2 negatively

regulates cyclin D1, which might be responsible for SKP2

maintenance of HSC quiescence, pool size, and self-renewal

capability (9, 85, 86). SKP2 acts as a critical regulator for HSC

quiescence and self-renewal capability and gives a novel paradigm

for HSCs. SKP2 maintains the HSC homing and residence in the

endosteal niche. SKP2 deficiency reduces the expression of b-

catenin and its target genes. Since SKP2 maintains homing of

HSC succeeding the post-transplantation, SKP2 might be helpful

as a predictive marker for monitoring transplantation efficiency
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(87). Depleted Skp2 expression enhances the sensitivity of HSCs and

CMLs to chemotherapeutic drugs and triggers the long-term HSC

reconstitution ability (9). Therefore, targeting SKP2 increases BM

transplantation efficiency and sensitizes the cancer cell or CSC

against chemotherapy. These model studies clearly demonstrate

that future SKP2 targeting-based therapy will be an efficient

approach against different cancer types, including HMs.
Relationship between microRNAs and
Skp2 gene

MicroRNAs are small non-coding RNAs (10-24nts), and it

regulate gene expression at the posttranscriptional level and play

a critical role in cancer development (88). Mounting evidence

displays the significant roles between miRNAs and Skp2 gene

expression. MicroRNA-186 regulates Skp2 expression in pituitary

tumors, induces p27Kip1-mediated cell cycle deregulation, and

modulates cell proliferation. Similarly, human esophageal

squamous carcinoma reduces cell proliferation and induces

apoptosis (89, 90). In ovarian cancer, the expression of miR-30a-

5p is low, but overexpression of miR-30a-5p reduces migration,

invasion, and metastasis by posttranscriptional down-regulating

SKP2 gene expression (91). Since the miR-34a is downregulated

in prostate cancer, overexpressing miR-34a downregulates RhoA

and suppresses the c-Myc-SKP2 -Miz1 transcriptional assembly

complex c-Myc-pTEFB complex that elongates transcription of

numerous genes and affects the cellular function (92).

Nevertheless, the reason for Skp2 down-regulation through mir-

34 has not been completely investigated yet in human renal

carcinoma cells and prostate cancer (92). SKP2 mRNA is

predicted to be a target of mir-7, but unfortunately,

overexpressing miR-7 only reduces the SKP2 protein level but not

at the transcriptional level. The SKP2-miR-7 mediated G1/S phase

transition increases p27kip1 and reduces all G1 cell cycle indicators,

such as Cks1, Cdk1/2, and CyclinD1/3, which suggests that

overexpression of miR-7 arrests the CHO cell growth at G1 phase

during cell undergoes stress (93, 94). miR-340 targets SKP2, inhibits

non-small cell lung cancer tumor cell proliferation and induces

apoptosis by targeting multiple negative regulators of p27 (95).

Overexpressing miR-21-5p, miR-26-5p, and miR-30-5p in MCF-7

and tamoxifen-resistant MCF-7 cell lines showed marked reduction

of SKP2 mRNA expression level (96). miR-203 targets SKP2 and

regulates cell cycle and self-renewal in the hematopoietic stem cells

and leukemia cells (97). Tumor suppressor miR-340 represses, the

Skp2 expression, inhibits tumor cell proliferation, migration, and

invasion, and induces apoptosis in hepatocellular carcinoma (95).

miR-26, miR-182, miR-340, and miR-506 share the 3’UTR of both

SKP2 and PCNX and suppress their expression in non-small cell

lung cancer (NSCLC) (98). Ectopic expression of miR-21 down-

regulates the SKP2 in ovarian cancer cells (60). Apart from

miRNAs, the long noncoding RNA meg3 and miR-3163 also

coordinately repress the Skp2 expression at the translation level

and inhibit NSCLC cell growth, reducing NSCLC cell growth (99).

miR-138 mimics or EZH2 inhibitor combined with a proteasome
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inhibitor, bortezomib-cavalcade, significantly reduces the MM

tumors in a xenograft model by targeting RBPMS (100). To

identify the SKP2 targeting miRNAs, we predicted through

“TargetScan”, “MicroT-CDS” and “miRDB”: databases, where we

found the seven most common miRNAs:` hsa-miR-21-5p, hsa-

miR-590-5p, hsa-miR-26a-5p, hsa-miR-1297, hsa-miR-26b-5p,

hsa-miR-30d-5p, hsa-miR-30a-5p (data not shown).
Possible role of SKP2 on drug
resistance in hematological
malignancies–HM

In HM, the patients undergoing chemotherapy don’t respond to

drugs. The molecular mechanism behind cancer/tumor cell’s

resistance to chemotherapy is elusive. Surprisingly, overexpression

of Skp2 is associated with resistance and sensitization after pre-

operative doxorubicin-based chemotherapeutically could aid in

cancer cell death and successful chemotherapy in primary breast

cancer patients (101, 102). SKP2 positively regulates the MAD2 via

the p27-CDKs-E2F1 signaling pathway (103). Inhibition of SKP2

sensitizes paclitaxel-treated A549 and NCI-H1299 cells (103). SKP2

knockdown and/or inhibition sensitized the paclitaxel resistance

prostate cancer cells, suggesting that SKP2 inhibitors might be the

potential drugs against SKP2 upregulated cancers. Based on the

SKP2 status in CML, USP10 inhibition significantly reduced the

imatinib-sensitive and imatinib-resistant CML cell proliferation

(71). Compound A (CpdA) interferes with SCF(SKP2) ligase by

preventing the incorporation of SKP2 and induces G (1)/S cell-cycle

arrest, SCF(SKP2)- and p27-dependent apoptosis, subsequently

inducing p21 accumulation and other SCF(SKP2) substrates

without affecting heat-shock protein response in MM (104).

These studies indicate that SCF-SKP2 targeting agents may

probably overcome the multidrug resistance mechanism and

chemo-sensitize the MM cells (104). Furthermore, in breast

cancer, SKP2 reactivates AKT-mediated resistance to PI3K

inhibitors. Depletion of SKP2 reduces tumor growth in xenograft

mice models (54). This study demonstrated that SKP2 plays a

significant role in tumor progression and drug resistance. In lung

cancer, small molecular inhibitors downregulated SKP2 and

sensitized the lung cancer cells to paclitaxel. SKP2 has also been

noted in stabilizing Mcl-1, conferring radioresistance in colorectal

cancers (105).

In numerous malignancies, high SKP2 prevents apoptosis in a

p53-dependent manner and promotes tumor progression and drug

resistance (106). Combining SKP2 inhibitor C25 with

bromocriptine sensitized the prolactinoma cells and induced

apoptosis (107, 108). In multiple myeloma combinations of

DT204, BTZ prevailed over drug resistance and induced

apoptosis in proteasome inhibitors resistance cells. Both in vitro

and in vivo model results strongly suggest that a combination of

novel drug SCF-SKP2 inhibitor (DT204) and BTZ triggered

synergistic anti-myeloma activity in the xenograft myeloma

mouse model. Thus, targeting SCF-SKP2 by an SKP2 inhibitor

combined with BTZ is a novel strategy to overcome drug resistance
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in MM. In addition, SKP2 inhibitor DT204 enhances the efficacy of

BTZ-based therapies in multiple myeloma patients who are already

BTZ-resistant (109). Proteosomal degradation of SKP2 also

facilitates suppression of breast cancer growth by inducing

autophagic cell death via F-box protein FBX041 (110). We

previously showed that inhibition of pMARCKS potentiates BTZ-

induced upregulation of p27 and p21 and downregulation of SKP2

(46). From a therapeutic perspective, it is noteworthy that targeting

MARCKS can induce cell-cycle arrest and enhance apoptosis via

E2F-1/SKP2/P27 axis in resistant MM cells (94). Therefore,

identifying the molecular mechanism of drug resistance in HM is

essential in the future. SCF-SKP2 inhibitors are the most widely

used drugs to target the Ub++ proteasome system more precisely

than PIs pharmacologically.
Role of epigenetic modifiers in
drug resistance

SKP2 is a key regulatory protein involved in controlling cell

cycle progression and the degradation of specific target proteins

(111). It plays a crucial role in maintaining normal cell growth and

proliferation (111). However, dysregulation of SKP2 has been

implicated in various cancers, including leukemia, and is also

associated with drug resistance (109). Overexpression of Skp2 in

leukemia cells can contribute to drug resistance through several

mechanisms (112). SKP2-mediated degradation of pro-apoptotic

proteins may decrease the ability of cells to undergo apoptosis in

response to chemotherapy (112). Enhanced cell cycle progression

driven by SKP2 can lead to faster tumor cell growth, making it more

challenging for drugs to keep pace with cell division (111, 113).

SKP2 may influence DNA repair mechanisms, potentially reducing

the effectiveness of DNA-damaging chemotherapeutic agents (114,

115). It is a critical player in regulating cell cycle progression and

protein degradation, and its activity is intricately linked to

epigenetic processes involving heritable changes in gene

expression and chromatin structure without alterations in the

DNA sequence (116). SKP2 can influence epigenetic regulation in

multiple ways.
Regulation of epigenetic modifiers

SKP2 can target specific proteins for ubiquitin-mediated

degradation. Some of these target proteins include epigenetic

modifiers such as histone deacetylases (HDACs) and histone

methyltransferases (84, 117). By controlling the levels of these

epigenetic modifiers, SKP2 can indirectly impact the acetylation

and methylation status of histones, leading to changes in chromatin

structure and gene expression (118). SKP2-mediated degradation of

certain epigenetic regulators can affect chromatin remodeling

complexes. Alterations in chromatin structure can lead to changes

in gene accessibility, potentially impacting gene expression patterns.

SKP2 can interact with various transcription factors and co-factors

involved in epigenetic regulation (22, 119). These interactions can

modulate the activity of transcription factors, influencing their
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ability to bind to specific genomic regions and regulate gene

expression (Figure 5).
Epigenetic effects on Skp2 expression

Conversely, epigenetic modifications, such as DNAmethylation

and histone modifications, can also regulate the expression of Skp2.

Aberrant epigenetic changes may result in dysregulated Skp2

expression, contributing to altered cell cycle control and

tumorigenesis. Epigenetic modifications can directly impact the

expression of genes that are targets of SKP2-mediated degradation.

Altered epigenetic regulation of these genes may influence their

susceptibility to SKP2-dependent degradation (22). Dysregulation

of Skp2 and its interaction with epigenetic processes are associated

with various diseases, including cancer (1). Aberrant Skp2

expression and epigenetic alterations can contribute to

tumorigenesis, metastasis, and drug resistance (1, 120, 121).

Understanding the interplay between SKP2 and epigenetics is

critical for unraveling the complexities of cancer biology and

other diseases. Targeting SKP2 and its associated epigenetic

processes may hold promise for developing novel therapeutic

strategies, especially in the context of cancers where Skp2 is

dysregulated and contributes to disease progression. Additionally,

research in this field continues to uncover the intricate mechanisms

through which SKP2 and epigenetics intersect, providing insights

into potential therapeutic targets and diagnostic markers. The

regulation of SKP2 by epigenetic mechanisms plays a significant
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role in controlling its expression levels and activity. In the case of

SKP2, several epigenetic mechanisms can in turn influence

its expression.

The Skp2 gene promoter is reported to be hypermethylated in

some cancer types, decreasing SKP2 expression (122). Reduced Skp2

expression due to DNA methylation can contribute to cell cycle

dysregulation and impact cancer progression (122). There is also a

cancer-grade specific methylation. Results from TCGA depict that

leukemia showed a marginally increased trend in Skp2 expression

compared to leukemia and myeloma. Survival analysis also revealed

a poor DFS (disease-free survival) with high Skp2 expression, as also

seen in leukemia vs lymphoma (63, 123).

Histone modifications, including acetylation and methylation of

histone proteins, can influence chromatin structure and gene

accessibility. While histone H3 lysine 4 (H3K4) methylation is

linked to gene activation, H3K9 and H3K27 methylation are

associated with gene repression. Epigenetic changes in histone

modifications near the Skp2 gene are reported to modulate its

transcriptional activity (124). In addition to histone

modifications, specific miRNAs can target and degrade SKP2

mRNA or inhibit its translation, reducing SKP2 protein levels.

Changes in miRNA expression profiles in cancer or other diseases

can influence Skp2 expression through post-transcriptional

regulation as discussed before (125, 126). lncRNAs have been

identified as regulators of Skp2 expression, either by promoting

its transcription or by destabilizing SKP2 mRNA (127).

Epigenetic changes can also influence the recruitment and

activity of chromatin remodeling complexes that alter chromatin
FIGURE 5

Host cell epigenetic modifications by SKP2. SKP2, beyond its canonical role in cell cycle regulation, influences host cell epigenetics through diverse
mechanisms. Elevated SKP2 levels correlate with altered DNA methylation patterns and histone modifications, impacting gene expression. SKP2
promotes the degradation of key epigenetic regulators, disrupting the balance between chromatin modifications and transcriptional control. These
modifications contribute to the development and progression of various diseases, including hematological malignancies. On the other hand, the
expression of SKP2 is fine-tuned by a complex interplay of different miRNA and lnCNRA leading to its suppression or overexpression in different
cancer types.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1288501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


William et al. 10.3389/fonc.2024.1288501
structure and gene accessibility. These complexes can either

promote or inhibit the transcription of the Skp2 gene by

modulating the chromatin landscape around its promoter region.

Epigenetic regulation of Skp2 is particularly relevant in cancer,

where dysregulated Skp2 expression can contribute to uncontrolled

cell proliferation and tumorigenesis (112). Understanding the

epigenetic modifications that affect SKP2 and their functional

consequences is essential for developing targeted therapies that

can restore normal SKP2 regulation in cancer cells. Additionally,

research in this area continues to uncover the intricate details of

SKP2 epigenetic regulation and its implications in various diseases.

SKP2 can also promote immune evasion in cancer by regulating

immune checkpoint molecules, immune response pathways, Treg

function, antigen presentation, and the overall immune

microenvironment (127). Understanding the role of SKP2 in

immune evasion is crucial for developing strategies to enhance

immune responses against cancer cells and improve the efficacy of

immunotherapies (1). Targeting SKP2 or its downstream signaling

pathways may represent a potential approach to mitigate immune

evasion and enhance the immune system’s ability to recognize and

eliminate cancer cells.
Future prospective of SKP2 inhibitors
in HMs

Based on several reports, downregulation of Skp2 induces the

p27, promotes apoptosis, and sensitizes different types of cancers.

However, further research is necessary to combat challenging tasks

to identify the compound/inhibitors that are selectively employed

for targeting the protein-protein interaction that holds the E3ligase

together. Recently, the following inhibitors were developed against

SKP2, named Bortezomib [FDA approved], Prodigiosin, Arsenic

trioxide, Apigenin, curcumin, NSC689857, NSC681152, C1, C2,
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C16, C20, Compound A, Compound ZL25, and preclinical research

compounds (Figure 6; Table 3) (8, 37, 74, 94, 109, 137, 162, 163).

BTZ, or pharmacological commercial name PS-341,/Valcade

specifically, reversibly inhibits the 26S proteasome, an enzyme

complex for regulating protein degradation under a controlled

fashion. BTZ comprises of a peptide-like backbone and a

boronate group, of which the latter exhibits a stronger binding

affinity to the active site threonine, resulting in increased potency

and selectivity toward the proteasome (164). In cancers,

proteasomes’ inhibition leads to the building up of the protein

substrates required for the cell cycle and apoptosis. Interestingly,

BTZ suppresses the expression of Skp2 and increases the p27Kip1

expression in many types of cancers, and it has also been proven to

significantly improve xenograft cancer cells in mice models.

Furthermore, when BTZ combines with cisplatin, it suppresses

cell proliferation and induces apoptosis by declining SKP2 and

aiding in the accumulation of p27 expression. Recent studies denote

combining a novel SKP2 inhibitor DT204 and BTZ synergistically

induced anti-myeloma activity and sensitized drug resistance in

MM. The antiproliferative effect of BTZ in CML implies that

proteasomal inhibitors are highly potent, thus suggesting that it

might be beneficial for a strategic intervention for CML (109).

Considering natural products, Apigenin (4 ′ , 5 , 7-

trihydroxyflavone) is a natural plant product commonly found in

dietary flavonoids found in various fruit and vegetables. Hussain

et al. demonstrated that Apigenin triggers apoptosis in Primary

effusion lymphoma (PEL) cells, suppressing the activation of AKT/

PKB pathway via downregulating Skp2, hypo-phosphorylation of

Rb, and accumulating p27Kip1 expression levels, which suggest that

Apigenin may possibly have future therapeutic potential in PEL

(74). Curcumin induces cell death by inhibiting PI3-Kinase/AKT

Pathway in B-Precursor Acute Lymphoblastic Leukemia.

In addition, the pursuit of novel anti-HM therapeutic strategies

does not just restrict to SKP2 inhibition, but also remains through
FIGURE 6

Targeting SKP2 for cancer therapy. Targeting SKP2 is emerging as a promising strategy for hematological malignancy. Inhibition of Cullin neddylation
with MLN4924 disrupts SCF complex activity, leading to SKP2 degradation. CdpA hinders the SKP1-SKP2 interaction, while SMIP004 directly
suppresses SKP2 expression. Compounds like SKPins disrupt SKP2-CKS1 or SKP2-p27 interactions, impeding cell cycle progression. Furthermore,
targeting CDK inhibitors or using proteasome inhibitors like bortezomib prevents SKP2-mediated degradation of key proteins. These multifaceted
approaches highlight the potential of SKP2 as a therapeutic target, offering diverse strategies to intervene in cancer progression and enhance
treatment outcome.
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selective inhibition of the ubiquitination–proteasome axis. To

enhance specificity and selectivity in targeting, a promising

avenue involves the focus on the E2–E3 complex (165, 166),

given that the E2–E3 interaction imparts a high level of specificity

and selectivity to the response by influencing specific ubiquitin

bonds. Similarly, targeting the substrate binding domains of E3s

offers a valuable opportunity. Inhibiting the interaction between a

specific E3 and its target enhances specificity while minimizing off-

target and side effects, potentially due to the limited impact on

cellular events. As protein–protein interactions influence the

specificity and selectivity of E3s, a deeper understanding of the

three-dimensional structure of E3 enzymes through approaches like

crystallography and cryo-electron microscopy will provide insights

for developing novel inhibition strategies. Notably, Proteolysis

Targeting Chimeras (PROTACs) (167) and molecular glues (168)

represent effective approaches for promoting ubiquitination-

mediated degradation of specific proteins, thereby contributing to

increased substrate specificity.

Additionally, advancements in targeted drug delivery involve

the use of cell membrane-coated nanoparticles (CNPs) and

exosomes (169). CNPs, with their synthetic core containing

anticancer drugs covered by a naturally derived cell membrane,

offer a potential tool for precise delivery to disease sites. While

promising, the translation of these strategies to clinical applications

necessitates further technical improvements. Microenvironment-

responsive drug-delivery systems based on nanoparticles and

exosomes hold potential for guiding the release of SKP2/SCF

component inhibitors in HM-specific microenvironments.
TABLE 3 SKP2 inhibitors in hematological malignancies and
solid tumors.

Tumor Type Compound Reference

Hematological Malignancies

T cell Leukemia SZL-P1-41 (128)

SKPin C1 (128)

Myeloid Leukemia Linichlorin A (129)

Diosmetin (130)

All-trans
retinoic acid

(1)

Chronic Lymphocytic Leukemia Bortezomib (131)

Melanoma Linichlorin A (132)

SKPin C1 (133)

Betulinic Acid (132)

miR-590-5p (134)

Bortezomib (135)

Multiple Myeloma Neosetophomone B (136)

CdpA (8)

SKPin C1 (137)

Bortezomib (138)

Solid Malignancies

Prostate Carcinoma SZL-P1-41 (139)

Gartanin (140)

Safranal (141)

SMIP004 (142)

Flavokawain A (143)

Lung Carcinoma SZL-P1-41 (139)

SKPin C1 (144)

MLN4924 (144)

Flavokawain A (144)

SMIP004 (103)

Curcumin (145)

Tubocapsanolide A (146)

Hepatocellular Carcinoma Longikaurin A (147)

SZL-P1-41 (139)

Breast Carcinoma Flavokawain A (148)

Linichlorin A (149)

Gentian Violet (149)

Diosgenin (150)

Rottlerin (151)

Curcumin (24)

Lycopene (55)

(Continued)
TABLE 3 Continued

Tumor Type Compound Reference

Solid Malignancies

Quercetin (55)

Osteosarcoma SZL-P1-41 (139)

Flavokawain A (152)

Cervical Cancer Linichlorin A (149)

Gentian Violet (149)

Bladder Carcinoma Flavokawain A (143)

ABT-751 (153)

Glioblastoma Curcumin (154)

Endometrial Carcinoma SKP2E3Li C2 (155)

Colorectal Carcinoma 7-azaindoles (156)

Dioscin (49)

Sulforaphane (157)

Pancreatic Carcinoma Curcumin (158)

Rottlerin (159)

Head and Neck Squamous
Cell Carcinoma

Curcumin (160)

Ovarian Carcinoma Nitidine Chloride (161)
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Moreover, the identification of synergistic combinations holds

significant importance for advancing cancer treatment strategies. In

the context of synthetic drug-target interaction, particularly those

involving DNA damage-response genes and ubiquitination-

mediated vulnerabilities, preclinical studies underscore the

potential of combining these approaches with PARP inhibitors

(170). CRISPR/Cas9- or RNAi- or shRNA-based whole genome

screening, coupled with genomic and transcriptomic data analysis,

contributes to predicting new synthetic lethal interactions for

alternative anticancer therapeutic approaches. Recent discoveries,

such as the identification of new substrates targeted by

ubiquitination, including sugars alongside proteins, broaden the

scope of this post-translational modification as a master regulator

with potential implications for treating various pathologies,

including HMs (171).
Discussion and concluding remarks

HMs account for a substantial number of newly diagnosed cases

in most oncology settings. These malignancies are most common in

the Western world. They occur due to several factors, such as

abnormality of cytogenetic, epigenetic, gene mutations, and other

environmental factors that influence the progression of HM (172,

173). In HM, blood cancer cells grow uncontrolled and function

abnormally. Commonly, HM’s are categorized into three major

subtypes: such as Lymphoma, Leukemia, and Myeloma (174).

Among these, AML is developed among adults. More than 80%

of cases re-occurred in patients over the age of 60, and 20-30% of

cases are children. However, the average survival rate among all HM

types is small, especially among elderly patients due to drug-

resistant drug resistance or relapse after advanced chemotherapy

and transplantation treatments. The molecular mechanism of drug

resistance or relapse is not entirely understood in HMs. Compared

to proteasomal inhibitors BTZ, E3 ligase drugs specifically block the

entire protein degradation with less toxicity.

The components of E3 ligases such as MDM2, FBW7, RBX2/

ROC2, RBX1/ROC1, Cullins, and many others are referred to as

oncogenes or tumor suppressors; similarly, essential proteins such as

p53 and Notch are associated during cancer development. The inverse

correlation between SKP2 and p27 cell cycle regulators in HM and

solid cancer demonstrated the shared mechanism of neoplastic

transformation (175). However, Skp2 gene function has not been

fully investigated in hematological malignancies. Hence, we analyzed

in-silico RNA seq using available TCGA datasets. Our results (data not

shown) demonstrated that the M7 AML within the French American

classifications exhibited a high expression of Skp2, while there seems to

be no significant difference in expression among different ethnic races.

High Skp2 gene promoter methylation among African American

populations illustrates the complexity of epigenetic aberration (data

not shown), and increased expression of Skp2 across tumors

demonstrates a common mechanism of SKP2 drug resistance. Poor

survival rates among the African American population and FLT3

mutation suggested that common mutation patterns are linked with

overexpression of the Skp2 gene (figure not shown). Our heatmap

analysis demonstrated both positively and negatively correlated genes
Frontiers in Oncology 13155
with SKP2; identifying the relationship with complex gene network

functions that may support drug resistance mechanisms in various

aspects (Supplementary Table 2). In addition, our STRING analysis

(data not shown) demonstrated protein networks of SKP2 interaction,

which will prompt the identification of the associated factors involved

in the drug resistance mechanisms. Escalated expression of Skp2 in

Basso Lymphoma results demonstrated strong evidence of a common

mechanism involved in triggering the Skp2 gene in HM and a crucial

player in Hematopoietic stem cells (data not shown).

Similarly, miRNAs are also found to be a crucial player in drug

resistance affecting various genes. Hence, we highlighted the SKP2 gene

function by projecting the essential role of miRNAs across various

types of solid tumor malignancies. However in HM, only miR-203 was

found to target SKP2 in Leukemia and hematopoietic stem cells.

Our miR target prediction and Venn diagram analysis

demonstrated common miRNAs such as hsa-miR-21-5p, hsa-

miR-590-5p, hsa-miR-26a-5p, hsa-miR-1297, hsa-miR-26b-5p,

hsa-miR-30d-5p, hsa-miR-30a-5p Skp2 gene (data not shown).

Overexpression of mir-21-5p induces apoptosis and cell cycle

arrest by down-regulating SKP2 and overcoming Bortezomib

resistance in Multiple Myeloma. Similarly, some reports

demonstrated that targeting the EZH2/miR-138 axis might be a

potential therapeutic target against MM (100). Nevertheless, more

evidence is required to validate Skp2 gene regulation and its

function in other HM, including AML (100). In the future,

identifying the posttranscriptional and feedback regulatory loop

mechanism of SKP2 will support the miRNA rational therapeutic

approaches against relapse. Finally, we demonstrated the

significance of SKP2 targeting drugs in HM, which strongly

suggests a potential therapeutic strategy; however, miRNA

mimics/miRNA inhibitors alongside natural products

combination such as Apigenin, Dioscin, Arsenic trioxide,

NSC689857, NSC681152, C1, C2 with, C16, C20, Compound A,

and Compound ZL25 will open a new doorway for understanding

the molecular mechanism of drug resistance or relapse in HM

patients (49, 74, 160, 163, 176).

SKP2 remarkably promotes phosphorylation, ubiquitination, and

degradation of PDCD4 (Programmed cell death protein 4), thereby

facilitating cell proliferation and survival in breast cancer cells. SKP2

and PDCD4 displayed an inverse correlation in this cancer (177).

Interestingly, its expression exhibits dynamic patterns, with some cases

demonstrating overexpression in cancer samples compared to normal

tissues, while others exhibit elevated levels in control samples relative to

cancerous tissues. A high throughput screening identified SKP2 as a

potentially novel cancer drug target (41), suggesting that

pharmacologic SKP2 inactivation may limit tumor progression and

overcome chemoresistance. However, in prostate cancer, SKP2 exhibits

an opposite trend with high expression associated with a gain in

mesenchymal and CSC-like phenotype compared with epithelial cells

(178). This variability underscores the complexity of SKP2’s role in

cancer progression and highlights the need for personalized therapeutic

approaches. Given its diverse implications, personalized therapies

targeting SKP2 may offer a tailored strategy to address the specific

expression patterns observed in individual patients, potentially

enhancing treatment efficacy and minimizing adverse effects. As

researchers unravel the intricacies of SKP2’s involvement in
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hematological malignancies, the exploration of targeted interventions

holds promise for advancing precision medicine in cancer therapy.

Thus, we can conclude that SKP2 is critical in regulating

multiple cellular functions related to cell growth, differentiation,

and cell cycle. These alterations could perturb the delicate balance

and contribute to different pathological states like cancer. But the

in-depth and detailed exploration of these aspects of SKP2 biology

will be not only helpful in understanding cancer but also in

discovering a therapeutic target. It has been observed that SKP2

dysregulation is one of the fundamental driver events for

oncogenesis. These observations show that SKP2 is an oncogenic

modulator; hence, its expression status is vital in cancer prognosis

and determining treatment response. Small molecule activators or

inhibitors for SKP2 hold tremendous promise against various

cancers. It was reported that an expression of Skp2 confers drug

resistance, and hence targeting SKP2 appears to be crucial for

overcoming drug resistance in cancer chemotherapy. Therefore

efforts have been made to develop novel inhibitors targeting SKP2

(43). However, more clinically relevant human tumor models, such

as PDX and organoids and genetic mouse models should be applied

to carefully evaluate the efficacy of Skp2 inhibitors. Further research

is of utmost necessity to delineate the signaling pathway for SKP2

and identify its cellular target function to understand the molecular

mechanism of drug resistance in different cancer types.
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