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Editorial on the Research Topic

Multimodal and Longitudinal Bioimaging Methods for Characterizing the Progressive Course

of Dementia

According to the World Health Organization, in 2015 dementia affected 47 million people
worldwide (or roughly 5% of the world’s elderly population), a figure that is predicted to increase
to 75 million in 2030 and 132 million by 2050 (World Health Organization, 2017). Dementia
represents one of the major causes of disability and dependency among older people worldwide.
Dementia is a broad category ofmostly progressive brain diseases affectingmemory, other cognitive
abilities and behavior, and interfering significantly with a person’s ability to maintain the activities
of daily living. Alzheimer’s disease (AD) is the most common cause of dementia in the elderly
accounting 60–70% of cases and affects approximately 30 million individuals worldwide (Prince
et al., 2013). Othermajor forms of dementia include vascular dementia, dementia with Lewy bodies,
Parkinson’s disease, frontotemporal dementia, etc.

Although new treatments are being investigated in clinical trials, no treatment to cure dementia
or to alter its progressive course exists. Today, we understand that dementia appears only after a
decade or more of brain degeneration (preclinical dementia) and current consensus has established
the need for early recognition.

An intensive research effort is being devoted to the development of novel neuroimaging
biomarkers that can provide an alert even before the cognitive decline appears. Structural and
functional magnetic resonance imaging (MRI) and functional and molecular nuclear medicine
neuroimaging techniques including single-photon emission computed tomography (SPECT)
and positron emission tomography (PET), are widely used in combination with other blood,
cerebrospinal fluid (CSF), and genetic biomarkers for early diagnosis of dementia.

Large multicenter studies are currently investigating the value of existing and novel multimodal
and longitudinal neurodegeneration biomarkers. The vast amount of data available represents an
opportunity for the development of more accurate statistical models of neurodegeneration enabling
the early recognition as well as the characterization of the progressive course of dementia.

The aim of the Research Topic “Multimodal and Longitudinal Bioimaging Methods for
Characterizing the Progressive Course of Dementia,” published in Frontiers in Aging Neuroscience,
was to present the current state of the art in the theory and practice of multimodal and longitudinal
neuroimaging analysis approaches for characterizing the progressive course of dementia. The
Research Topic features 14 research articles. Most of the contributions analyzed disease progression
and the relationships among underlying pathological changes.
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Differentiating between Parkinson’s disease (PD) and atypical
parkinsonian syndromes (APS) is still a challenge, specially at
early stages when the patients show similar symptoms. During
last years, several computational approaches have been proposed
in order to improve the diagnosis of PD, but their accuracy
is still limited (Segovia et al., 2015, 2017). The first paper of
the Research Topic is devoted to the development of analysis
methods for diagnosis of idiopathic Parkinson’s disease (IPD),
multiple system atrophy (MSA), and progressive supranuclear
palsy (PSP) (Guevara et al.). Ten healthy controls, 20 IPD, 39
PSP, and 41 MSA patients were studied using MRI and Structural
Imaging Evaluation with Normalization of Atrophy (SIENA)
(Smith et al., 2002).

Bipolar disorders such as the Late Onset Bipolar
Disorder (LOBD) is often difficult to be differentiated from
neurodegenerative dementias due to common cognitive and
behavioral impairment symptoms. In a multimodal study
Besga et al. determined differences in white matter (WM) tract
integrity between AD and LOBD cases, and their correlation
with systemic inflammatory, neurotrophic factors, and oxidative
stress blood plasma biomarkers. Differences in WM tract
integrity reflected greater behavioral and mood clinical features
of LOBD and together with alterations of neuroinflammatory
blood markers, different impact of neuroinflammation in
both diseases.

The paper by Yap et al. focuses on visualization of
hyperactivation in neurodegeneration based on prefrontal
oxygenation showing a comparative study of mild AD dementia,
mild cognitive impairment, and healthy controls. Functional
near-infrared spectroscopy (fNIRS) signals were analyzed
together with a semantic verbal fluency task (SVFT) to investigate
any compensation exhibited by the prefrontal cortex (PFC).
It was shown that the task-elicited hyperactivation in MCI
might reflect the presence of compensatory mechanisms, and
hypoactivation in mild AD dementia could reflect an inability
to compensate.

Several works have suggested that multimodal data analysis
has the potential to improve the diagnosis of dementia
(Ortiz et al., 2018). The paper by Höller et al. showed
that combining quantitative markers from SPECT and EEG
increased discrimination of MCI and AD cases from people with
depression, and that the resulting diagnostic accuracies were
higher than the diagnostic accuracy of each single modality alone.

The paper by Guan et al. addresses the development of MCI
subtype classification techniques to enable early intervention
with targeted treatment. A sample of 184 community-dwelling
individuals (aged 73–85 years) was analyzed and cortical surface
based measurements were computed from longitudinal and
cross-sectional MRI scans. Their results using feature selection
and a voting classifier suggested that longitudinal features
were not superior to the cross-sectional features for MCI
subtype classifications.

The paper by Sarica et al. provides a systematic review
of random forests (Ramírez et al., 2009, 2010, 2018) as
an enabling machine learning technique for automatic early
diagnosis and prognosis of AD using single and multi-modal
neuroimaging data.

Emerging imagingmodalities are also covered in this Research
Topic. Simultaneous EEG-fMRI acquisitions allow combining
the spatial resolution of fMRI with the temporal resolution
of EEG. The paper by Brueggen et al. carried out a study
of simultaneous fMRI-EEG acquisitions in a sample of AD
patients and controls and showed a reduced positive association
between alpha band power and BOLD fluctuations in AD
patients, compared to the control subjects. 18F-DMFP-PET is
a neuroimaging modality used to diagnose Parkinson’s disease
(PD) by examining postsynaptic dopamine D2/3 receptors.
Segovia et al. proposed a novel methodology to preprocess 18F-
DMFP-PET data that improves the accuracy of computer aided
diagnosis systems for PD. PET data were segmented into 4
maps according to the intensity and the neighborhood of the
voxels using an algorithm based on Hidden Markov Random
Field. Then, the maps were individually normalized so that
the shape of their histograms could be modeled by a template
Gaussian distribution. The results outperformed those reported
by previous approaches.

The article by Alderson et al. used a multimodal approach
to assess white matter integrity between thalamus and default
mode network (DMN) components and associated effective
connectivity in healthy controls (HCs) relative to aMCI patients.
Their methodology enabled the DMN of each subject to
be identified using independent component analysis (ICA)
and resting state effective connectivity that was calculated
between thalamus and DMN nodes. Significant changes in the
diffusivity metrics of thalamic white matter projection tracts
to hippocampus, posterior cingulate cortex and lateral inferior
parietal lobe were identified.

Based on the notion that amyloid may induce neuronal
network hypersynchony in eary AD stages the work by Mueller
and Weiner developed a graph and cluster analysis on a
sample of Florbetapir-F18 PET and task-free 3T functional and
structural MRI and found distinct pattern of hypersynchrony
with underlying white matter connectivity in amyloid positive vs.
negative cognitively normal older subjects.

Mutation carriers may exhibit distinct neuropathological
features of neurodegenerative diseases. As an example, patients
with frontotemporal dementia (FTD) or amyotrophic lateral
sclerosis (ALS) due to a C9orf72 mutation are characterized by
two distinct types of characteristic protein depositions. The study
by Schönecker et al. aimed to determine if mutation carriers
showed an enhanced degree of thalamic and cerebellar atrophy
compared to sporadic FTD and ALS patients or healthy controls.

The paper by Salvatore et al. analyzed progression of AD using
a machine learning method in a cohort of 200 subjects obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Subjects were followed-up for 24 months, and grouped as AD,
progressive-MCI to AD, stable-MCI, and cognitively normal
(CN). Structural T1-weighted MRI and neuropsychological
measures were used to train a classifier to distinguish mild-AD
patients (AD + progressive MCI) from subjects with a benign
cognitive course (stable-MCI + CN). Principal component
analysis (PCA) and partial Least squares (PLS) were used
as feature extraction methods similar to previous studies
(López et al., 2011; Segovia et al., 2012; Khedher et al., 2015).
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18F-labeled amyloid tracers have been approved with similar
efficacy to PIB and longer half-life: 18F-florbetapir in 2012,
18F-flutemetamol in 2013 and 18F-florbetaben (FBB) in 2014.
Based on the broad availability of PET-CT scanners, the work
by Segovia et al. proposed to include in the analysis the
information about gray matter neurodegeneration provided by
CT images in order to improve the diagnosis of AD. Specifically,
standardized uptake values (SUVs) from 18F-FBB PET data
were obtained using only voxels belonging to gray matter
in CT images. The results suggested that SUVs calculated
according to the proposed method allowed AD and non-
AD subjects to be more accurately differentiated. This agrees
with previous studies on the use of structural MRI scans to
correct amyloid PET data for spill out effect of signal from
gray matter to CSF and for spill in effect from white to gray
matter (Gonzalez-Escamilla et al., 2017).

Previous works have shown that beta-amyloid, tau,
neuroinflammation and neurodegeneration all play a significant
role in the etiology of Alzheimer’s disease (AD) (Lehmann et al.,
2013). In Su et al. a novel computational modeling approach for
multimodal MRI and PET inspired by reaction rate equation in
chemical kinetics is proposed to investigate the progression of
AD and relationships among underlying pathological changes.
The study is motivated by the fact that the relationship between
them is often unclear, mainly because the time scale associated
to dementia generally exceeds the one of other studies and the
challenge of observing the ordering of the pathological changes
during the progression of the disease.

In summary, the Research Topic provides a transnosological,
transdisciplinary view on current developments in neuroimaging
techniques and their application to neurodegenerative

dementias. It depicts a dynamic landscape of emerging
acquisition and analyses techniques that share, however, three
key features:

• The combination of modalities within and beyond imaging
techniques to improve group separation and modeling of
longitudinal decline

• The combination of data driven and model driven analysis
approaches to get the best from both worlds: full exploitation
of available data and top down restriction of the outcome space
based on a priori assumptions on disease pathogenesis

• Related to these features, the ability to test assumptions of
underlying disease mechanisms in combinatorial multimodal
imaging analyses, crossing even the boundaries of single
disease entities.

Such highly interdisciplinary approach serves as blueprint not
only for future research in neurodegenerative dementias but in
other neuropsychiatric diseases as well.
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Neurodegenerative dementia often has multiple types of underlying pathology,
for example, beta-amyloid, misfolded tau, chronic neuroinflammation and
neurodegeneration may coexist in Alzheimer’s disease. However, the relationship
between them is often unclear, in other words, whether one pathology is upstream or
downstream of others can be very difficult to investigate directly. This is partly because
the underlying pathology in dementia may precede detectable symptoms by several
years if not decades. The time scale associated with disease progression in dementia
generally exceeds that in conventional longitudinal imaging studies in humans, so
it is difficult to directly observe the temporal ordering of different pathologies. Also,
animal studies are not always transferable to patients due to obvious differences
between the two systems. To investigate the disease progression and relationships
among underlying pathological changes, we propose a novel computational modeling
approach for multimodal MRI and PET inspired by reaction rate equation in chemical
kinetics. We also discuss the possibility and prerequisites to use cross-sectional data to
generate preliminary hypothesis for future longitudinal studies. It has been shown that
the rate of change in some biomarkers can be approximated by the average trajectory
across patients at different stages of disease severity in cross-sectional studies. The
relationship modeled in our approach is akin to that in the control theory, and can
be assessed by demonstrating that the presence of one disease related biomarker
predicts dynamics in another. We argue that the proposed framework has important
implications for trials targeting different pathologies in dementia.

Keywords: MRI, PET, computational modeling, disease progression, AD, dementia

INTRODUCTION

Previous studies have shown that beta-amyloid, tau, neuroinflammation and neurodegeneration
all play a significant role in the etiology of Alzheimer’s disease (AD), but little is known
about their relationships (Edison et al., 2008; Lehmann et al., 2013). In particular, whether
one type of pathology is the upstream or downstream event to others has significant
impact on future trials appropriately targeting them at the right point in the disease
course (Jack et al., 2013). In addition, systematically determining potential treatment
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targets in diseases with multiple interacting pathologies has
strategic importance for effective treatments. In the case of
AD, beta amyloid has been regarded as an early event in the
disease progression therefore making it one of the potential
targets (Jack et al., 2013). However, the failures of several
recent trials of anti-amyloid therapy (Le Couteur et al., 2016)
may arguably be caused by the drugs were given too late in
the disease course to be effective. The co-existence of other
interacting pathologies might also reduce the efficacy of those
anti-amyloid drugs. So, investigating the relationship between
multiple pathologies and their associated imaging biomarkers
in dementia and determining alternative or complementary
treatment targets are necessary.

The relationship among more than one type of pathology
has primarily studied in animal models of AD, however, due
to the differences in techniques, the findings from those animal
research were largely inconsistent (Yoshiyama et al., 2007). In one
study, activated microglia was found to facilitate the propagation
of misfolded tau in mouse brains (Wes et al., 2014), and after
depletion of microglia in the mouse brain, the spread of tau
from the entorhinal cortex to the dentate gyrus was significantly
decrease (Asai et al., 2015). This evidence points to a causal effect
of neuroinflammation on the phosphorylation or propagation of
tau as microglia activations seems both sufficient and necessary
for tau phosphorylation and its trans-synaptic propagation.
Although some studies showing microglia activation preceded
tangle formation in P301S transgenic mice with overexpressed
mutant human tau, opposite pattern was found in Cx3cr1 mice
with tau deficiency that shows tau phosphorylation without
significant microglia activation and reduced neuroinflammation
(Yoshiyama et al., 2007). In addition, the obvious differences
between humans and animals limit the ability to translate
findings from the modal systems to human patients. To see how
different types of pathology interact in humans, it has required a
multimodal imaging study with PET and MRI in the same cohort
of participants to reveal the potential influences among them.
Recently such data is emerging, but the analysis and the inference
frameworks still lag behind in characterizing multimodal and
longitudinal imaging data in patients with dementia.

In neurodegenerative dementia such as AD, the development
of underlying pathology takes several years if not decades before
any detectable symptoms occur (Jack et al., 2013), so it is
challenging to study in humans using conventional longitudinal
design. This is because it is costly and difficult to follow large
cohort of healthy participants free from AD pathologies over
many decades with only very small proportion of them eventually
develops dementia. For imaging studies, the MR scanner will also
unavoidably change over time, making the data less comparable
at different time points. As a result, existing longitudinal human
imaging data only tracks a relatively short period (e.g., several
years) within the evolution of the disease in patients with
dementia (Ishiki et al., 2015). In addition, different biomarkers
may have different sensitivity to the underlying pathology.
So comparing biomarkers obtained from multimodal imaging
is nontrivial. With the absence of suitable longitudinal data
tracking the long-term evolution of dementia in humans and the
inconsistent evidence from animal models, studying interaction

among factors of dementia may sometimes rely on cross-sectional
data and by modeling the relationship within clinical populations
representing different severities and stages of disease progression.
Thus, ideal analysis methods for longitudinal data must also
consider cross-sectional data to be widely applicable in dementia
research.

Here, we proposed a novel computational modeling approach
based on reaction rate equation modeling in chemical kinetics
to infer relationship between more than one types of imaging
biomarker in dementia. The specific type of relationship in this
model was defined in a control theory sense (Friston et al.,
2016) meaning whether the presence of one disease related
pathological process (e.g., tau) in the past predicts to the
dynamics in another (e.g., beta-amyloid, microglia activation,
and neurodegeneration) expressed using differential equations
(Yang et al., 2011; Villemagne et al., 2013; Young et al., 2014;
Budgeon et al., 2017; Lturria-Medina et al., 2017; Oxtoby et al.,
2018).

THE LONGITUDINAL MODEL

With the advances of imaging technology, many types of
pathology can be measured in vivo using multimodal MRI and
multi-tracer PET within the same cohort (Passamonti et al.,
2016, 2018; Su et al., 2016). For example PET data is often in
the form of binding potential or SUVR that are proxies for the
concentration of a substance, e.g., some neurotoxic proteins. MRI
data is often in the form of gray matter volume as well as cortical
thickness. For simplicity, we will illustrate the approach by the
interaction between two substances measured from PET imaging,
each associated with a specific pathology. However, this model
can easily be extended to MRI and between PET and MRI.

Specifically, if one substance BP1 (related to one pathology)
is the upstream species of another substance BP2 (related to a
different pathology) in a biochemical reaction, we can express this
as Equation 1 (which is called balance equation).

aBP1 + bi6Bi → mBP2 + nj6Cj (1)

Where Bi and Cj represent a set of unknown substances
involved in this process and a, bi, m and nj represent a set of
unknown coefficients. Also, i and j are indices of these unknown
substances of which the number of them are also unknown.
Here, we do not assume this process is a single step reaction nor
substance represented by BP1 directly turns into BP2. It can be
seen that Equation 1 describes a specific form of relationship, i.e.,
BP1 is an up-stream event of BP2 instead of the vice versa. This
model is difficult to estimate because it contains too many free
parameters that we cannot evaluate empirically in patients. It will
be discussed later that Equation 1 remains useful to conceptualize
the relationship between multiple types of pathology in the
disease.

To reduce the number of free parameters in the model, we will
use chemical kinetics to calculate the speed of the reaction. Here,
we do not need to estimate the concentration of all products in Cj
if we can instead measure the speed at which BP2 is produced
because it will be perfectly correlated with the speed at which
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the reaction happens. In chemical kinetics, the speed at which
a reaction happens is expressed using the reaction rate equation
(Equation 2).

d[BP2]

dt
= −

d[BP1]

dt
= k[BP1]

x5[Bi]
y (2)

Where k is a reaction rate constant, x and y are unknown
reaction orders, and the concentrations [BP1] and [BP2] can
be measured by PET from human participants, example of
which are [18F]AV1451 for tau, [11C]PiB for beta-amyloid
and [11C]PK11195 for activated microglia. [A] denotes the
concentration of substance A while [A]0 represents the initial
value of the concentration at a predefined baseline time point.
In most diseases, the initial concentration of disease related
substance [BP1]0 is significantly lower compared with other
substances [Bi]0 that were already in the brains of healthy subjects
(i.e., [Bi]0 > > [BP1]0), we can apply the pseudo 1st order
approximation in chemical kinetics and simplify Equation 2 to
Equation 3 that only contains the concentration [BP1]. It should
be noted that the validity of this assumption is also depending
on the selection of the initial state. For AD, the MCI stage is
a relatively reasonable and clinical defined initial state for the
disease process, however, as new method for the early detection of
AD emerges, a more accurate initial state could be defined in the
future. Thus, for the longitudinal model, an ideal baseline state is
at the very early point of the diseases. As previously mentioned,
longitudinal data with such suitable baseline is still lacking.

d[BP2]

dt
= k[BP1]

x5[Bi]
y
0 = k′[BP1]

x (3)

Where k′ is a constant because we assume that the initial
concentrations of [Bi]0 are also constants. Finally, we apply
natural logarithm on both sides of the non-linear Equation 3,
which is more difficult to model and evaluate, resulting an
asymmetric linear model (Equation 4), which can be statistically
tested using linear regression as we explained in subsequent
sections.

ln(
d[BP2]

dt
) = ln(k′[BP1]

x) = ln(k′)+ x ln([BP1]) (4)

THE CROSS-SECTIONAL MODEL

As previously discussed, the progression of dementia often takes
years or decades, thus conventional longitudinal data are either
unavailable or unable to capture the full dynamic changes and
temporal ordering in underlying pathologies. Thus, short-term
follow-up data was often used to fit the common biomarker
trajectory building up a complete picture of the population time
course over a longer term (Budgeon et al., 2017). Although
the longitudinal model is still more powerful and likely to be
more accurate in revealing relationship between biomarkers, the
method proposed here should be considered with respect to
cross-sectional data when longitudinal data is not available see
similar approached used by Young et al. (2014). This allows us
to generate hypothesis from existing cross-sectional studies, and
then to test it with longitudinal data in the future.

In some cases, the average rate of change in tau pathology
over time has been shown to be consistent with their rate of
change across individual subjects with different disease severity
or disease progression score (Ishiki et al., 2015). In the cross-
sectional model under the above condition, we replace the total
derivative with respect to time in Equation 4 by partial derivative
with respect to an appropriate measurement of disease severity or
cognitive functioning (denoted by τ); see Equation 5.

ln(
∂[BP2]

∂τ
) = ln(k′)+ x ln([BP1]) (5)

In this model, we approximate the rates of longitudinal change
in regional PET binding and GM density for a cohort of patients
by the slope parameters with respect for the disease severity score
or cognition derived from a multiple linear regression model.
Here, we assumed that the pathological changed linearly with the
disease severity of cognitive measure. This assumption although
not true in the absolute sense, it avoids over-fitting the noise
when the sample size is limited, for example in most PET studies.
In order to control other known confounding factors, one can
include subject’s age, sex, and years of education as covariates in
the regression analysis.

STATISTICAL ANALYSIS

A critical step for computational modeling is empirical
validation, in other words, whether the proposed model explains
human data. So, one should fit the reaction rate model to the
imaging data, either longitudinal or cross-sectional. As the model
is a linear equation, the “goodness of fit” can be statistically
evaluated by linear correlation. In other words, if we hypothesize
that one type of pathology is the upstream event of another
under the assumption and formulation of this model, baseline
level of the former should be correlated with the rate of changes
in the latter either over time for longitudinal data or across
different degrees of dementia severities for cross-sectional data.
This approach can be extended in several ways. In addition,
we can also apply the modeling to the clinical and cognitive
data. Although they cannot be directly formulated within the
context of chemical reactions, the quantitative method does allow
inference to be drawn between these metrics and brain imaging
or other biomarkers.

The statistical tests for longitudinal and cross-sectional data
may be different. In the longitudinal case, the dynamic model can
be fitted to each individual subject’s time course data, hence the
group statistics can be computed using a random effect model
across multiple subjects after the model fitting at the individual
level for each brain area. However, in the case of cross-sectional
data or longitudinal data with short-term follow-up, the rate of
biomarker changes can only be estimated for the cohort as a
whole. Thus, the test for the fitness of the model cannot be done
using the methods for longitudinal data. Instead, it can be done
across different brain regions using repeated measure statistics,
and the inference can only be drawn for the whole brain. In
addition, for the cross-sectional model, including cognitive or
clinical data is more difficult than the longitudinal design because
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the rates of the biomarker changes are estimated for the group
rather than for the individuals.

Another challenging issue in computational modeling is
model comparison. Different methods have been proposed to
account for this issue, such as Bayesian model selection, which
gained increasing popularity in imaging analysis and generative
modeling in computational neuroscience (Wasserman, 2000).
These sophisticated methods deal with difference in model
complexity, i.e., the sampler model is the superior model
compared with a more complex model if both models can explain
the data equally well. This can be understood by the intuitive
Occam’s Razor principle, i.e., preferring the most parsimonious
model explaining the same variance. However, in our formalism,
all models have not only the same number of parameters but also
the same analytical form (Equation 4 or 5). As the complexities
between alternative models are identical, model comparison is
trivial and can be done by simply comparing the goodness of fit.

DISCUSSION

It is widely accepted that longitudinal imaging is very important
for the understanding of disease progression, staging pathology,
differential diagnosis, and determining prognosis during clinical
trials. Multimodal imaging including structural MRI, DTI,
functional MRI and multiple tracers PET has also gained the
attention because it allows complex etiologies behind dementing
diseases to be studied (Mak et al., 2014). However, the
mainstream analysis methods are still limited in their capacity to
handle longitudinal data and to systematically relate or combine
data from multiple imaging modalities. Moreover, mechanistic
interference on the interactions among different pathologies and
their associated biomarkers cannot be reliably drawn for the
following reasons. First, the majority of imaging data on dementia
is either cross-sectional or only tracks the disease progression
for a few years and often during the relatively late stages, e.g.,
after significant cognitive impairments and brain damages have
occurred. Such short-term follow-up data may be difficult to
reliably capture critical events during the disease course, in
particular during the pre-symptomatic stages. Second, existing
imaging data is often acquired from single site with relatively
small heterogeneous samples. The individual differences among
patients are often dramatic because the variation in clinical
diagnosis criteria and age as well as the possibility of mixed
pathologies or even misdiagnosis between dementia sub-types.

To analyze and model longitudinal and multimodal imaging
data with these limitations, several methods have been proposed.
For example, imaging biomarkers of pathology measured
at different time points from different individuals can be
mapped onto a hypothetical time axis representing ‘time-to-
dementia’ (Bateman et al., 2012). This approach allows us
to normalize different biomarkers from the heterogeneous
sample to a single continuous dimension so that temporal
ordering can be inferred. Other approaches use data-driven
methods to model biomarkers from different data points as
discrete events in the disease course. The temporal ordering
of events can then be inferred based on the co-occurrence

between each pair of different events and Markov chain
Monte Carlo methods (Young et al., 2014; Oxtoby et al.,
2018).

One advantage of our approach is that the hypothesis
about the relationship between different imaging biomarkers
are expressed explicitly as chemical reactions, i.e., using the
balance equation (Equation 1). Hence, underlying assumptions
have to be made explicit, an advantage of most computational
models. In this formalism, it is apparent that the temporal
ordering between different biomarkers cannot be inferred from
the quantity difference between each modeled substance alone.
For example, a greater concentration or binding potential in BP1
than in BP2 does not always imply that pathology related to BP1
is the upstream event of BP2. This is because that the coefficients
such as a and m in Equation 1 are unknown, so it is possible that
a small quantity of one substance at upstream results in a larger
quantity of another downstream, i.e., when a > m in Equation 1.
This may give the false inference that the downstream event
related to BP2 is preceding the upstream event related to BP1. By
the same token, the temporal ordering of the biomarkers cannot
be solely determined from the spatial extent which is another
common way to measure quantity in neuroimaging.

Finally, we argue that this dynamic perspective in modeling
biomarkers may be extended in order to be applied to not
only neurodegenerative diseases but also neurodevelopmental
conditions such ADHD and autism spectrum disorders as well
as normal development and aging. However, the limitation of
our methods is that it still assumes stationarity, i.e., the rate of
change in biomarkers (i.e., the 2nd order derivatives) does not
change over time. Future developments are needed to capture the
nonlinearity of the disease progression and heterogeneity of the
samples. Last but not least, this highly novel approach requires
extensive empirical validations using suitable longitudinal and
cross-sectional data from different diseases and ideally from
cohorts of different age ranges.
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18F-FBB PET is a neuroimaging modality that is been increasingly used to assess

brain amyloid deposits in potential patients with Alzheimer’s disease (AD). In this work,

we analyze the usefulness of these data to distinguish between AD and non-AD

patients. A dataset with 18F-FBB PET brain images from 94 subjects diagnosed with

AD and other disorders was evaluated by means of multiple analyses based on t-test,

ANOVA, Fisher Discriminant Analysis and Support Vector Machine (SVM) classification.

In addition, we propose to calculate amyloid standardized uptake values (SUVs) using

only gray-matter voxels, which can be estimated using Computed Tomography (CT)

images. This approach allows assessing potential brain amyloid deposits along with the

gray matter loss and takes advantage of the structural information provided by most of

the scanners used for PET examination, which allow simultaneous PET and CT data

acquisition. The results obtained in this work suggest that SUVs calculated according to

the proposed method allow AD and non-AD subjects to be more accurately differentiated

than using SUVs calculated with standard approaches.

Keywords: quantitative analysis, multivariate analysis, florbetaben, Alzheimer’s disease, support vector machine,

positron emission tomography

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting more than 5
million people in the United States (Alzheimer’s Association, 2018) and its prevalence in Europe
was estimated at 5.05% (Niu et al., 2017). In addition, the number of AD patients is expected
to increase during next decades because of the grow of the older population. Fortunately, the
development of new drugs has greatly improved the patient’s quality of life, especially when the
disease is detected at an early stage. Thus, an early and accurate diagnosis of AD is crucial.

The diagnosis of AD is usually supported by neuroimaging data of different modalities. During
the last decade, many research studies have demonstrated that both, structural and molecular
imaging, can be successfully used to evaluate patients with AD, including early stages and
prodromal AD (Johnson et al., 2012). Structural neuroimaging data such as magnetic resonance
imaging (MRI) or computed tomography (CT) allow us to estimate the global cerebral volume,
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which was found to significantly correlate with the rate of change
in mini-mental state examination scores, evidencing clinical
relevance to this marker in the disease progression (Frisoni et al.,
2010; Khedher et al., 2015). In addition, MRI and CT data can
be used to exclude treatable or reversible causes of dementia
(normal-pressure hydrocephalus, subdural hematoma, tumors,
etc.).

On the other hand, molecular neuroimages have been
widely used in differential diagnosis of dementia. For example,
Single Photon Emission Computer Tomography (SPECT) or
Positron Emission Tomography (PET) have been demonstrated
as valuable tools not only to separate AD patients and controls
(Segovia et al., 2010; Rathore et al., 2017) but also to monitor
the progression of AD (Hanyu et al., 2010). Probably, the most
common molecular neuroimaging modality for AD diagnosis is
the well-known 18F-Fludeoxyglucose (FDG) PET. These images
allow us to analyze the glucose brain metabolism and that way
to estimate the neurodegeneration of certain regions of the brain
(Illán et al., 2011; Perani et al., 2014; Cabral et al., 2015).

Conversely to 18F-FDG PET, amyloid imaging focuses on
the amyloid beta deposits that characterize AD. During last
years, several radiotracers have been proposed to examine these
AD hallmarks. The N-methyl-[11C]2-(4′-methylaminophenyl)-
6-hydroxybenzothiazole, more commonly referred to as
Pittsburgh Compound B (PIB), is an amyloid focused radiotracer
traditionally used for this purpose (Klunk et al., 2004). This drug
is a radioactive analog of thioflavin T, which binds to amyloid
plaques with high affinity, however, its reduced half-life (only
20 min) greatly limits its application (Klunk and Mathis, 2008).
Recently, new 18F-labeled tracers with similar efficacy to PIB and
longer half-life have been FDA approved: 18F-florbetapir in 2012,
18F-flutemetamol in 2013 and 18F-florbetaben (FBB) in 2014.
The validity of these radiotracers is supported by recent studies
(Landau et al., 2014; Rice and Bisdas, 2017) that emphasize the
added value of these radiotracers in discriminating between AD
and non-AD patients (Ceccaldi et al., 2018).

In this work, we analyze 18F-FBB PET data from AD and
non-AD patients using univariate and multivariate techniques.
In order to improve the diagnosis of AD we propose to
include in the analysis the information about gray matter
neurodegeneration provided by CT images. This approach takes
advantage of the majority of PET images are acquired on
scanners that allow simultaneous PET and CT data acquisition.
Specifically, we propose to calculate standardized uptake values
from 18F-FBB PET data using only voxels belonging to gray
matter in CT images. Previous works have followed similar
approaches (Villemagne et al., 2015; Rullmann et al., 2016)
but in those cases non-gray-matter voxels were discarded
only for the reference region and they were determined by
means of MRI images. The proposed approach was evaluated
using a dataset with 18F-FBB PET and CT scans from 94
subjects acquired during a longitudinal study carried out in
two hospitals from the Spanish National Health System. The
results suggest that using CT data along with 18F-FBB PET
neuroimages improves up to 7% the accuracy of separating
AD and non-AD patients, compared with using only PET
data.

2. MATERIALS AND METHODS

2.1. Participants
Ninety-four (94) subjects with cognitive impairments were
recruited in the Cognitive Behavioral Unit of two different
tertiary hospitals: the Virgen de las Nieves hospital in Granada,
Spain (72 patients) and the 9 de Octubre hospital in Valencia,
Spain (22 patients).

Patients were recruited according to the following clinical
criteria: patients with persistent or progressive unexplained
MCI Albert et al. (2011); Johnson et al. (2013), defined
according to revised Petersen criteria (Winblad et al., 2004);
patients fulfilling core clinical criteria for possible AD but an
atypical clinical course with no documented progression in the
patient’s records; patients fulfilling these core clinical criteria but
with cerebrovascular comorbidity, concomitant pharmacologic,
neurologic, or cognitive components (mixed etiology); and
those with a history of progressive dementia and atypically
early age at onset (≤ 65 years). All patients fulfilled clinical
appropriate use criteria for 18F-FBB PET scan according to
international consensus (Johnson et al., 2013). Exclusion criteria
were: the presence of a metabolic disorder (hypothyroidism,
vitamin B12 or folic acid deficiencies), psychiatric pathology
(schizophrenia or depression), MRI-diagnosed cerebrovascular
disease (infarction or hemorrhage), neurologic disease affecting
gnosis (Parkinsonian syndrome, epilepsy, etc.), pregnancy,
glycemia > 160 mg/dL, history of substance abuse, or age < 18
years.

Patients were evaluated using standardized
neuropsychological examinations that assessed the orientation,
attention, memory, executive function, language, visual and
constructive functions and behavior (Carnero Pardo, 2007). In
addition, a 18F-FBB PET and a CT scan were acquired for each
patient. The imaging protocol in both centers complied with
international guidelines (Minoshima et al., 2016). Specific details
are given in Table 1.

After at least 1 year of follow-up, experienced neurologists
established a final diagnosis for each patient on the basis of
neuropsychological examinations, the visual assessment of the
neuroimaging data and the clinical evolution of the patient. Two
subgroups were defined: (i) AD patients and (ii) healthy subjects
or patients with diseases other than AD. Table 2 shows the
group distribution and some demographic details of the patients.
Note that the second group is very heterogeneous and includes
patients with Parkinson’s disease, progressive supranuclear palsy
and psychiatry disorders among other conditions.

Each patient (or a close relative) gave written informed
consent to participate in the study and the protocol was accepted
by the Ethics Committee of the “Virgen de las Nieves” hospital
(Granada, Spain) and the “9 de Octubre” hospital (Valencia,
Spain). All the data were anonymized by the clinicians who
acquired them before being considered in this work.

2.2. Data Preprocessing
CT brain images were segmented using the unified segmentation
algorithm (Ashburner and Friston, 2005) implemented in
Statistical Parametric Mapping (SPM) version 12. This algorithm
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TABLE 1 | Protocol details to acquire neuroimaging data.

Center A Center B

Camera GE Discovery STE Siemens Biograph 16

Patient position Resting, with closed eyes Resting, with closed eyes

Operation 3D mode 3D mode

Filtering Z-Axis standard Z-Axis standard

Dose 300 MBq 300 MBq

Acq. start 90 min post injection 90 min post injection

Acq. duration 20 min 20 min

Matrix size (FBB) 168 × 168 168 × 168

Slice thichness (FBB) 4.01 mm 4.06 mm

Number of slices 70 70

Voxel size 16.08 (mm3 ) 16.48 (mm3)

Reconstruction VUE Point (5 it, 35 sub) Gaussian + OS-OM (6 it, 21

sub)

CT Parameters Low-dose, 80 mAs, 120 kV Low-dose, 50 mAs, 120 kV

Matrix size (CT) 512 × 512 512 × 512

Slice thichness (CT) 1 mm 1 mm

Corrections Scatter; CT attenuation; well

counter sensitivity and

activity; delayed event

subtraction and

normalization

Scatter; CT attenuation;

slice coincidence location

with CT

TABLE 2 | Demographic details of the patients considered in this work (µ and σ

stand for the average and the standard deviation respectively).

Sex Age

# M F µ σ range

AD 51 23 28 63.43 6.32 49–74

Non-AD 43 28 15 62.91 8.27 42–79

allows the separation of gray matter, white matter and
cerebrospinal fluid tissues from CT images. The 18F-FBB PET
images were also registered to a common space using SPM. This
proceduremade use of the deformation fields obtained during the
segmentation of the CT data in order to achieve a more accurate
transformation (Ashburner and Friston, 2007). As a result, we got
brain images in Montreal Neuroimaging Institute (MNI) space
with 121× 141× 121 voxels of 1.5× 1.5× 1.5 mm each.

2.3. Regions of Interest
Ten (10) regions of interest (ROIs) were defined to analyze
our 18F-FBB PET data: medial temporal, lateral temporal,
precuneus, posterior cingulate, anterior cingulate, frontal,
occipital, striatum, thalami, and parietal (Rodriguez-Vieitez et al.,
2016). Locations and sizes can be seen in Figure 1. These regions
are frequently associated to AD in the literature and allow
comparing our results with the ones obtained by other works
(Villemagne et al., 2012; Daerr et al., 2016; Tiepolt et al., 2016;
Tuszynski et al., 2016; Bullich et al., 2017). In order to parcel these
target regions in our brain images the Automatic Anatomical
Labeling (AAL) atlas was used (Tzourio-Mazoyer et al., 2002).

FIGURE 1 | Brain map encoding with colors the regions of interest used in this

work. They are known to be particularly useful for AD diagnosis and are widely

used in literature (Rodriguez-Vieitez et al., 2016). Axial slices at −36, −30,

−24, ..., 66 mm from the anterior commissure are shown.

2.4. Quatification of 18F-FBB PET Data
Using Structural Information
In the clinical practice, neuroimaging data are usually analyzed in
terms of standardized uptake values (SUV), which are often given
as a ratio of the uptake of a reference region (SUVR). Different
regions have been propose to be used as reference to calculate
SUVRs from amyloid PET data (Brendel et al., 2015; Klein et al.,
2015a,b; Kimura et al., 2016; Shokouhi et al., 2016). Despite there
is no general consensus, the use of the whole cerebellum (Daerr
et al., 2016; Bullich et al., 2017) or the cerebellar gray matter
(Villemagne et al., 2015) is usually accepted. The SUVR for a
given region, k, could be computed as:

SUVRk =
Nr

∑Nk
i=1 xi

Nk

∑Nr
j=1 xj

(1)

where xi is the intensity of the i-th voxel belonging to region k,
with i ∈ [1, 2...Nk] and similarly, xj stands for the intensity of the
j-th voxel belonging to a reference region, with j ∈ [1, 2...Nr]. In
this work, we used the whole cerebellum as reference region thus,
SUVRs for a given subject were weighted by the mean cerebellar
intensity of that subject. This analysis is somewhat similar to
the visual examination of the data traditionally performed by
experienced clinicians.

Instead of SUVR described by Equation 1, we propose to use
a similar measure that also takes into account structural data.
Specifically we propose to compute SUVRs using only voxels
belonging to gray matter, i.e., those whose position corresponds
to gray-matter voxels in CT data. That way we consider not only
the amyloid deposits but also the brain injury caused by the
disorder.

2.5. Fisher’s Discriminant Analysis
The Fisher’s discriminant ratio, J, (Theodoridis and
Koutroumbas, 2008) is a statistical measure widely used to
maximize the differences of means in between two or more
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FIGURE 2 | Areas with significant differences (p < 0.05, FWE) between

groups in 18F-FBB PET data. The color scale codifies the t-statistic values

(values below 4.81 are not significant).

classes respective to the within class variance (Lopez et al., 2009).
Mathematically it is defined as:

J(w) =
wTSBw

wTSWw
(2)

where w represent a direction in the data space and SB and SW
are respectively the “between classes” and the “within classes”
scatter matrices. Note that scatter matrices are proportional to
covariance matrices and, when only 2 classes are considered, SB
can be expressed as:

SB = (µ1 − µ2)(µ1 − µ2)
T (3)

where µi denotes the mean of the samples belonging to the i-th
class. This analysis was not applied to individual voxels (each
possible direction in the image space would correspond to a
specific voxel position) but to the SUVRs of the ROIs defined in
section 2.3. Thus, J was computed as:

Jr =

(

µ
(r)
1 − µ

(r)
2

)2

(

σ
(r)
1

)2
+

(

σ
(r)
2

)2 (4)

where µ
(r)
i and σ

(r)
i are, respectively, the mean and the standard

deviation of the SUVR of region r for subjects belonging to the
i-th class.

2.6. Support Vector Machine
A binary classification method is a statistical procedure intended
to assign a binary label (defining a category or group) to unseen
patterns represented by a set of features. To this end, supervised

TABLE 3 | AD target regions and areas with significant differences between AD

and non-AD patients in 18F-FBB PET data.

Region name Region size Area with significant diff.

Medial temporal 47171 mm 432 mm (0.92 %)

Lateral temporal 94907 mm 36732 mm (38.70 %)

Precuneus 24338 mm 9693 mm (39.83 %)

Posterior cingulate 2813 mm 551 mm (19.57 %)

Anterior cingulate 9603 mm 5346 mm (55.67 %)

Frontal 193730 mm 10424 mm (5.38 %)

Occipital 50117 mm 6248 mm (12.47 %)

Striatum 16326 mm 0 mm (0.00 %)

Thalami 7422 mm 0 mm (0.00 %)

Parietal 50763 mm 4715 mm (9.29 %)

The differences were determined by means of a t-test analysis.

methods build a function f :RD → ±1 using a set of known
patterns, xi and their labels, yi (training data):

(x1, y1), (x2, y2), ..., (xN , yN) ∈ (Rk × {±1}) (5)

Support Vector Machine (SVM) is a supervised classifier derived
from the statistical learning theory (Vapnik, 1998). In SVM the
classification function is built using a hyperplane, called maximal
margin hyperplane, that has the largest distance to the closest
training data pattern of any group:

g(x) = wTx+ w0 = 0, (6)

where w is the weight vector, orthogonal to the decision
hyperplane, and w0 is the threshold. SVM is able to work in
combination with kernel approaches when the linear separation
of the data is not possible (Müller et al., 2001). Once the
hyperplane is computed the classifier assigns a group label to each
new pattern according to the side of the hyperplane where it is.

In our experiments the cost parameter, C, was fixed to the
commonly accepted value of C = 1 and only linear kernels were
used. The evaluation of the classification performance was carried
out using a 10-fold cross-validation scheme (Varma and Simon,
2006). Given that we have data from 94 subjects, each fold uses
85 samples for training and 9 for test. In the training step of each
fold, SUVRs or voxel intensities from each training subject and a
binary label determining the group the subject belongs to (AD or
non-AD) were used as input data (variables xi and yi in Equation
5). In the test step, the classifier was used to estimate a label for
each test subject (represented by its SUVRs or voxel intensities).
The estimated labels were then compared with the real ones to
assess the classification performance.

2.7. ROC Analysis
In a classification procedure, the trade off between sensitivity
and specificity can be analyzed through a Receiver Operating
Characteristic (ROC) curve (Brown and Davis, 2006). In
these plots, each point represents a sensitivity/specificity pair
corresponding to a particular decision threshold. The upper
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FIGURE 3 | SUVR of the 10 target regions described in section 2.3. The values are grouped into 4 groups according to: (i) the class they belong to (AD or non-AD)

and (ii) how they were calculated (using all voxels (classical approach) or using only gray-matter voxels (proposed approach)). On each blue box, the central mark

indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

left corner correspond to a sensitivity and specificity of 100%,
therefore, the closer the ROC curve is to the upper left corner,
the highest accuracy. The area under the curve (AUC) allows
measuring how close is the solution to the optimal one and is
frequently used as a measure of the classification performance.

3. EXPERIMENT AND RESULTS

First, we carried out a t-test analysis on SPM to look for group
differences between AD and non-AD subjects for both, 18F-
FBB PET and CT data. As sugested in Friston et al. (2006),
a smoothed version of the brain images (Gaussian filter of 8
mm FWHM) was used. Results for PET images are shown in
Figure 2. In this case, we evaluated the hypothesis that data
from AD patients have higher intensity than those from non-AD
subjects (AD patients are expected to have a greater amyloid-
beta concentration). Voxels with significant differences (p <

0.05, FWE) between both groups are shown in a specific color
which depends on its t-statistic. In order to determine if the
colored regions match with target regions described in section
2.3, we calculated the percentage of those regions covered by

colored voxels. The results are shown in Table 3. No significant
effects were found for CT data. In this case, only the gray-
matter was used and two hypotheses were evaluated: non-AD
group has lower intensity than AD group (same as for PET
images) and AD group have lower intensity than non-AD group.
The latter hypothesis was the most plausible for CT images
since one might expect a greater neurodegeneration in AD
patients.

Afterwards, the advantages of computing SUVRs from 18F-
FBB PET data using only the gray-matter voxels were evaluated.
Figure 3 shows the median SUVR of each target region grouped
into four groups according to: i) the class they belong to (AD
or non-AD) and ii) how they were calculated: using all voxels
(classical approach) or using only gray-matter voxels (proposed
approach). The F-statistic (ANOVA) and corresponding p-value
were computed to determine whether AD and non-AD subjects
have different mean on target regions. Results using the classical
and the proposed procedure to calculate SUVRs are given in
Table 4.

The advantages of proposed SUVRs were also assessed by
means of the Fisher’s discriminant analysis. Jr values (Equation 4)
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TABLE 4 | F-statistics and corresponding p-values to determine whether AD and

non-AD patients have different mean on target regions.

Classical SUVR Proposed SUVR

Region F-statistic p-value F-statistic p-value

Medial temporal 7.9922 0.0058 6.6137 0.0117

Lateral temporal 50.3387 0.0000 53.6227 0.0000

Precuneus 27.7957 0.0000 34.3257 0.0000

Posterior cingulate 4.5438 0.0357 13.6022 0.0004

Anterior cingulate 37.1421 0.0000 41.8245 0.0000

Frontal 15.2235 0.0002 18.1024 0.0001

Occipital 17.4945 0.0001 17.9269 0.0001

Striatum 6.2384 0.0143 12.1945 0.0007

Thalami 0.0437 0.8349 0.7259 0.3964

Parietal 19.0551 0.0000 22.6125 0.0000

FIGURE 4 | Fisher’s discriminant ratio for SUVRs of target regions. Blue: Rates

for SUVRs computed using all the voxels in the region. Red: Rates for SUVRs

calculated using only gray-matter voxels. Larger values mean larger distances

between groups.

were computed to rate the usefulness of SUVRs of target regions
when separating AD and non-AD subjects. Figure 4 allows us to
compare the Jr values computed using all brain voxels with those
that considered only gray-matter voxels.

Subsequently, our data were analyzed in terms of their
usefulness to separate AD and non-AD patients using SVM
classification. Specifically, we estimated the accuracy, sensitivity
and specificity of a SVM classifier that separates the groups
using 18F-FBB PET data. Two approaches were applied: (i) using
SUVR of target regions as feature and (ii) using the intensity
of all the voxels in brain images as feature. In both cases we
compared the classification results when using or not the CT
data to exclude non-gray-matter voxels. For the approach using
all the voxels in brain images, the intensity of the voxels was
referenced to the mean uptake of the whole cerebellum. This
is similar to the intensity normalization performed during the
calculation of SUVRs but, in this case, the normalization was
individually applied to each voxel. The classification results are
shown in Table 5 and Figure 5. The trade off between sensitivity

FIGURE 5 | Intermediate accuracies obtained in the cross-validation

procedure. Blue boxes and circled dots represent accuracies’ range and

median respectively.

FIGURE 6 | ROC curves for the 4 SVM procedures implemented in this work.

and specificity of the SVM analyses was examined by means of
ROC curves. They are shown along with the AUC in Figure 6.

The weight map calculated by SVM (parameter w in Equation
6) allows us to examine the importance of each feature in
the classification procedure. SVM weights from systems using
SUVRs as feature are shown in Table 6 whereas those calculated
by systems using voxel intensities as feature are shown in
Figure 7. Note that in former systems only 10 regions were used,
thus only 10 weights were calculated. Similarly, the systems using
voxel intensities as feature computed as many weights as voxels
were used.

All the experiments were carried out on Matlab using its
statistical toolbox and specific ad hoc routines.

Frontiers in Aging Neuroscience | www.frontiersin.org June 2018 | Volume 10 | Article 15819

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Segovia et al. Quantitative Analysis of 18F-FBB PET and CT Data

4. DISCUSSION

The experiments carried out in this work corroborated that
18F-FBB PET is an useful neuroimaging modality to assist the
diagnosis of AD. Both, univariate and multivariate analyses
indicated that these data allow us to separate AD and non-AD
subjects with high accuracy. In addition, the regions commonly
focused on AD diagnosis show large group differences in 18F-FBB

TABLE 5 | Classification measures obtained by a SVM classifier when separating

AD and non-AD subjects using 18F-FBB PET data.

Data used as feature Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

SUVR (all voxels) 81.91 78.43 86.05

SUVR (gray-matter voxels) 82.98 76.47 90.70

Voxel intensity (all voxels) 81.91 80.39 83.72

Voxel intensity (gray-matter voxels) 86.17 84.31 88.37

TABLE 6 | Weight assigned to each target region by a SVM classifier that used

the SUVRs of those regions as feature.

ROI All voxels Gray-matter voxels

Medial temporal 0.09 0.17

Lateral temporal −1.90 −2.28

Precuneus −0.68 −0.88

Posterior cingulate 0.37 0.50

Anterior cingulate −0.81 −0.90

Frontal 1.10 1.45

Occipital 0.54 0.55

Striatum 0.31 0.48

Thalami 0.29 −0.16

Parietal 0.12 0.16

Two approaches to calculate SUVRs were assessed: using all the voxels in the region

(center column) and using only gray-matter voxels in the region (right column).

PET neuroimages. According to the results shown in Table 3,
lateral temporal, precuneus, posterior and anterior cingulate have
significant differences between groups. Additionally, the former
region is the more important one to separate the AD and non-
AD subjects as suggested by the results shown in Table 6. The
results shown in these tables should be carefully interpreted.
Table 3 contains the percentage of each ROI with significant
differences (p < 0.05, FWE) whereas Table 6 shows the weights
assigned by a SVM classifier to those regions when the SUVRs of
those regions were used to train the classifier. Thus, frontal is an
important region in the separation problem because the classifier
assigned it a high weight (relatively high compared with other
weights). However, only about 5.38% of voxels in this region
(according to the AAL atlas) showed significant differences in
the t-test. This suggest that the importance of frontal in the
separation problem is not homogeneous throughout the region
and some frontal “subregions” are more important than others.
It should be noted that frontal was defined as a big region
(with a volume of almost 200 cm3 in the AAL atlas), more
than 10 times larger than precuneus, a small region with high
significance but with not such a high weight. Lateral temporal
and anterior cingulate are also two important regions because
of their large absolute value in Table 6. SVM weights concern
the side of the hyperplane where patterns are placed. Thus,
negative weights are associated to regions that characterize
non-AD subjects (they “move” patterns toward the non-AD
space) whereas positive weights are associated to AD subjects
(they “move” patterns toward the AD space) (Caragea et al.,
2001). Observe that using only gray-matter voxels made the
weights more positive or more negative for all regions except
for thalami. This suggests that 18F-FBB PET data contain no
important information to separate the groups in this region.
This is consistent with t-test results, which found no significant
differences in thalami.

The t-test analysis has drawn two clear conclusions: (i) there
are significant group differences in 18F-FBB PET neuroimages
and, (ii) there are no significant group differences in CT data.
The latter conclusion can be explained by the composition of

FIGURE 7 | Weight assigned to each voxel by a SVM classifier trained using the intensity of all voxels as feature (left) and using the intensity of gray-matter voxels as

feature (right).
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the non-AD group, which contains a large proportion of subjects
with other diseases, including parkinsonian disorders, that could
have structural changes similar to AD. The lack of significant
group differences in CT datamay also be due to the neuroimaging
modality itself (Gado et al., 1983). Although a number of studies
(Grundman et al., 2002; Rathore et al., 2017) have reported
volumetric differences between AD and non-AD patients in MRI
data, the use of CT neuroimages to this purpose have been poorly
studied.

In this work we propose to use SUVRs from 18F-FBB
PET neuroimages that also considerer the gray matter
neurodegeneration in order to improve the diagnosis of
AD. In most cases, this information can be extracted from CT
data in a inexpensive and efficient way, since most of the scanners
used for PET are combined PET/CT devices. Specifically, we
propose to discard those voxels from 18F-FBB PET images not
belonging to gray matter in CT images and therefore, calculate
SUVRs using only the gray-matter voxels. The idea of discarding
non-gray-matter voxels was used in previous works (Villemagne
et al., 2015; Rullmann et al., 2016) to calculate the SUV of
the reference region or to perform intermediate corrections.
Here, we propose to apply it to the SUV calculation of all the
regions and, to this end, we propose to use CT data due to its
greater availability. This way to compute SUVs is similar to the
one used in Gonzalez-Escamilla et al. (2017) but we used CT
instead MRI images. The results obtained in this work suggest
that the proposed approach allows separating AD and non-AD
patients more accurately than using standard methods for SUVR
calculation. As shown in Figure 4, for 9 out of 10 ROIs the
computation of the SUVR that considered only the gray matter
separated the patient groups more than the SUVR computed
using standard methods. These results were corroborated
by ANOVA and SVM analyses. Tables 4, 5 show that mean
differences between groups are greater (higher F-statistics and
lower p-values) and accuracy rates in SVM classification are
larger when SUVRs were computed using only gray-matter
voxels.

SVM classification performed an accurate separation
(accuracy above 80% for the 4 studied feature sets) of the groups,
which is particularly important if we take into account that the
separation of AD patients from other neurological disorders
is more difficult than distinguishing between AD patients and
healthy subjects (as mentioned before non-AD group contains
a large number of patients with other disorders). Although the
heterogeneity of non-AD group could be seen as a limitation
of our study, this approach is, in our opinion, more interesting
because it is very similar to the clinical problem where clinicians
usually take care of non-healthy subjects and should differentiate
between AD and other disorders. The obtained accuracy rates

suggest that 18F-FBB PET data contain useful biomarkers to
develop computer-aided diagnosis systems for AD. Anyway, the
analysis of the reported accuracy rates should consider potential
labeling errors inherent in all diagnostics.

The proposed approach to calculate SUVRs must not be
confused with Partial Volume Effect correction (PVEc) methods
(Erlandsson et al., 2012; Matsubara et al., 2016; Rullmann et al.,
2016). In fact, the application of those corrections are compatible
with the way to calculate SUVRs that we are proposing. In this
work, we decided not using PVEc methods due to: (i) presently,
they are not routinely applied, neither in clinical nor in research
settings and (ii) these techniques depend on a range of model
assumptions and may result on noise amplification (Erlandsson
et al., 2012; Greve et al., 2016; Gonzalez-Escamilla et al., 2017).

5. CONCLUSIONS

In this work we have proposed to compute SUVRs from
amyloid-PET imaging considering also structural data.
Specifically, we proposed to use only gray-matter voxels,
estimated through CT images, to calculate SUVRs. In order to
evaluate the proposed approach, different experiments based
on t-test, ANOVA, FDR and SVM were carried out. A dataset
with 18F-FBB PET and CT brain images from 94 subjects
diagnosed with AD and other disorders was used for evaluation
purposes. The results of those experiments suggest that the
proposed method to calculate SUVRs allows separating AD
and non-AD subjects more accurately than SUVRs calculated
by standard methods. Additionally, the results obtained in
this work corroborated that 18F-FBB PET data are good
biomarkers to estimated brain amyloid deposits and are useful to
diagnose AD.
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There is no disease-modifying treatment currently available for AD, one of the
more impacting neurodegenerative diseases affecting more than 47.5 million people
worldwide. The definition of new approaches for the design of proper clinical
trials is highly demanded in order to achieve non-confounding results and assess
more effective treatment. In this study, a cohort of 200 subjects was obtained
from the Alzheimer’s Disease Neuroimaging Initiative. Subjects were followed-up for
24 months, and classified as AD (50), progressive-MCI to AD (50), stable-MCI
(50), and cognitively normal (50). Structural T1-weighted MRI brain studies and
neuropsychological measures of these subjects were used to train and optimize
an artificial-intelligence classifier to distinguish mild-AD patients who need treatment
(AD + pMCI) from subjects who do not need treatment (sMCI + CN). The classifier was
able to distinguish between the two groups 24 months before AD definite diagnosis
using a combination of MRI brain studies and specific neuropsychological measures,
with 85% accuracy, 83% sensitivity, and 87% specificity. The combined-approach model
outperformed the classification using MRI data alone (72% classification accuracy, 69%
sensitivity, and 75% specificity). The patterns of morphological abnormalities localized
in the temporal pole and medial-temporal cortex might be considered as biomarkers of
clinical progression and evolution. These regions can be already observed 24 months
before AD definite diagnosis. The best neuropsychological predictors mainly included
measures of functional abilities, memory and learning, working memory, language,
visuoconstructional reasoning, and complex attention, with a particular focus on some
of the sub-scores of the FAQ and AVLT tests.

Keywords: artificial intelligence, Alzheimer’s disease, clinical trials, magnetic resonance imaging,
neuropsychological tests, biomarkers, predictors

INTRODUCTION

According to the World Health Organization, there were 47.5 million people worldwide with
dementia in 2015, with 7.7 million new cases each year. The total number of people with dementia
is projected to reach 75.6 millions in 2030 and almost triple by 2050 to 135.5 millions (Dementia
Statistics, 2015; World Alzheimer Report, 2015; Khan et al., 2017). The most frequent dementia
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form is Alzheimer’s Disease (AD) (approximately 70%), whose
impact on the society in terms of costs as well as quality of life of
patients and families is impressive (Khan et al., 2017). There is no
AD-modifying treatment available to date, and one third of the
population will die with dementia if something does not change
in the approach of screening, diagnosis, prognosis and treatment,
including more proper design of clinical trials.

Currently, there are indeed more than 500 open clinical
studies on AD, according to ClinicalTrials.gov. Many other
clinical trials have been closed in the past years, few achieved
phase III and no one demonstrated a proper success rate. Most
of the past clinical trials enrolled people with advanced AD, and
clinicians recommended to treat patients at an earlier stage for
more effective results. Thus, current clinical trials try to enroll
subjects at an early phase of the disease: inclusion criteria are now
based on the selection of this specific patient group.

The patient’s self-reported experiences and the observed
cognitive, functional and behavioral symptomatology due to AD
over the longitudinal course of the illness are the current basis
for the clinical diagnosis of AD. However, they are insufficient
for detecting early AD subjects, considering also that only 33%
of subjects with mild cognitive impairment (MCI) progress to
AD (Mitchell and Shiri-Feshki, 2009). Furthermore, no standards
have been defined on the best neuropsychological outcomes to be
measured for this purpose.

For these reasons, clinical trials based only on
neuropsychological assessment risk (1) including subjects
with early dementia forms that are not caused by AD and (2)
lasting several years prior to be completed, when most of the
enrolled subjects have clearly progressed to AD. This leads to
confounding clinical-trial designs, and cause treatments to be
administered on patients who are not really affected by AD.

In 2011, after many scientific evidences, medical-imaging
studies were included in the revised diagnostic criteria for AD
in order to detect objective signs of disease in the subjects’
brain. Being positive to Positron Emission Tomography (PET)
with Aβ- or tau-specific radiotracers is used as an inclusion
criterion in most recent clinical trials, with the aim of measuring
the presence of brain β-amyloid plaques or tau deposition,
the recognized cause of AD pathogenesis. However, these PET
studies are expensive, invasive and difficult to be implemented
for technical and authorization problems, in particular in
non-western countries. Moreover, lack of success in clinical
trials of candidate drugs targeting amyloid or tau proteins
has led to target alternative mechanisms (e.g., Khan et al.,
2017).

Magnetic Resonance Imaging (MRI) is a less expensive
technique than PET, non-invasive and more common in both
western and non-western regions, and already recommended to
detect AD neuronal degeneration and to monitor AD progression
in clinical trials (Sperling et al., 2011). However, radiologists are
not always able to detect -by visual inspection- the presence of
subtle cerebral signs of neurodegeneration in MCI subjects, and
even when this is possible, they are not able to predict if a subject
will progress or not to AD.

Artificial-intelligence (AI) technology is emerging as an
effective tool for automatic, objective and more sensitive

assessment of imaging studies. Specifically, machine-learning
(ML) and pattern-recognition techniques have captured the
attention of the neuroimaging community as they have been
proven able to discover previously unknown patterns in imaging
data (Bishop, 2006; Wernick et al., 2010). In other words, these
algorithms are able to (1) extract information from imaging
data without a priori knowledge of where it may be encoded
in the images, and (2) combine the information encoded in
multiple inter- and intra-domain variables. This information
can then be used to design multivariate mathematical models
able to automatically predict the diagnostic class of a subject.
This characteristic may be of particular usefulness in the context
of early diagnosis, when pathological signs are not yet evident
by visual inspection (Salvatore et al., 2015a). In the last years,
different ML approaches have been applied to the automatic
diagnosis and prognosis of AD by means of cerebral MRI studies,
showing good performance even at an early stage of the disease
(e.g., Cuingnet et al., 2011; Moradi et al., 2015; Salvatore et al.,
2015b; Nanni et al., 2016). Furthermore, good results have been
obtained to translate the hidden image features used by ML
in performing subject classification, which are often typically
complex features, counter-intuitive and not meaningful per se to
clinicians (Haufe et al., 2014; Salvatore et al., 2015b; Huys et al.,
2016). Thus, results of ML classification by means of MRI brain
images can be more easily interpreted by clinicians and associated
to AD pathogenesis.

The aim of this study is to refine the application of ML systems
for the characterization of the progressive course of AD and to
predict the conversion of MCI to AD, trying to establish how long
before it would be possible to predict the diagnosis of probable
AD. Application of this approach to longitudinal datasets would
enable us to focus on the prognosis rather than the diagnosis and
to identify cost-effective biomarkers, which may be targeted for
prevention/intervention programs.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), and the Food and Drug Administration
(FDA), as a 5-year public private partnership, led by the principal
investigator, Michael W. Weiner, MD. The primary goal of ADNI
was to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments subjected to
participants could be combined to measure the progression of
MCI and early Alzheimer’s disease (AD) – see www.adni-info.
org.

As specified in the ADNI protocol2, each participant was
willing, spoke either English or Spanish, was able to perform all

1adni.loni.usc.edu
2http://www.adni-info.org/Scientists/ADNIStudyProcedures.html
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test procedures described in the protocol and had a study partner
able to provide an independent evaluation of functioning.

Inclusion criteria for cognitively normal (CN) subjects were:
Mini Mental State Examination (MMSE) (Folstein et al., 1975)
scores between 24 and 30, Clinical Dementia Rating (CDR)
of zero (Morris, 1993), and absence of depression, MCI and
dementia. Inclusion criteria for MCI were: MMSE scores between
24 and 30, CDR of 0.5, objective memory loss measured by
education-adjusted scores on the Logical Memory II subtest
of the Wechsler Memory Scale (Wechsler, 1987), absence of
significant levels of impairment in other cognitive domains, and
absence of dementia. Inclusion criteria for AD were: MMSE
scores between 20 and 26, CDR of 0.5 or 1.0, and criteria for
probable AD as defined by the National Institute of Neurological
and Communicative Disorders and Stroke (NINCDS) e by
the Alzheimer’s Disease and Related Disorders Association
(ADRDA) (McKhann et al., 1984; Dubois et al., 2007).

Serial MRI studies were performed to participants from
baseline, covering a follow-up period of several years. Each
participant was diagnosed at each time point of serial MRI
studies.

In the present work, a total of 200 subjects were retrieved
from the ADNI database, consisting into 50 subjects with a stable
diagnosis of CN state over the 24 months of follow up, 50 subjects
with a stable diagnosis of MCI (sMCI), 50 subjects with a stable
diagnosis of AD, and 50 subjects with an initial diagnosis of MCI
who showed a progression to AD (pMCI).

Two age- and sex-matched groups of subjects were created by
grouping, separately, AD with pMCI (100 subjects) and CN with
sMCI (100 subjects).

These subjects had all three serial MRI studies at three time
points after the baseline: 6, 12, and 24 months.

The 24-months point was chosen as the time-zero point for
a stable diagnosis. As a consequence, the three previous time
points were reconsidered (and renamed) as 24 months before
stable diagnosis, 18 months before stable diagnosis, and 12 months
before stable diagnosis.

Demographic and clinical characteristics of the groups
of ADNI subjects considered in this study are shown in
Table 1. ADNI Subject IDs as well as Image Data IDs can be
found at the following online repository: https://github.com/
christiansalvatore/Salvatore-200Longitudinal.

MRI and Neuropsychological Data
For each subject of Table 1, and for each time point (24 months
before stable diagnosis, 18 months before stable diagnosis,
12 months before stable diagnosis, and time-zero point of stable
diagnosis), structural MR images were downloaded from the
ADNI data repository. According to the ADNI acquisition
protocol (Jack et al., 2008), examinations were performed at 1.5
T using a T1-weighted sequence. We considered MR images
that had undergone the following preprocessing steps: (1) 3D
gradwarp correction for geometry correction caused by gradient
non-linearity (Jovicich et al., 2006), and (2) B1 non-uniformity
correction for intensity correction caused by non-uniformity
(Narayana et al., 1988). These preprocessing steps help improving
the standardization among MR images from different MR

sites and different platforms. MR images were downloaded in
3D NIfTI format. A further processing procedure was then
performed on the downloaded images, this procedure consisting
in: (1) image re-orientation; (2) cropping; (3) skull-stripping;
(4) image normalization to the MNI standard space by means
of co-registration to the MNI template (MNI152 T1 1 mm
brain) (Grabner et al., 2006; O’Hanlon et al., 2013). MR images
were then segmented into Gray Matter (GM) and White Matter
(WM) tissue probability maps, and smoothed using an isotropic
Gaussian kernel with Full Width at Half Maximum (FWHM)
ranging from 2 to 12 mm3, with a step of 2 mm3. After this phase,
all MR images (whole-brain, GM and WM) resulted to be of size
121× 145× 121 voxels. The whole process was performed using
the VMB8 software package installed on the Matlab platform
(Matlab R2016b, The MathWorks). MRI volumes were visually
inspected for checking homogeneity and absence of artifacts both
before and after the pre-processing step.

Neuropsychological data were also obtained for each subject
and for each time point from the ADNI data repository.
Neuropsychological data included both scores and subscores
of seven neuropsychological tests, namely the Functional
Assessment Questionnaire (FAQ), the Clock Test, the Rey
Auditory Verbal Learning Test (AVLT), the Digit Span (DS),
the Category Fluency Tests (Animals and Vegetables), the Trail
Making Test A-B (TMT A-B), and the Boston Naming Test
(BNT). The full list of neuropsychological scores and subscores
used in this study is reported in the Supplementary Table S1. All
scores and subscores underwent a z-score normalization before
being fed into the classification algorithm.

The Classification
For each subject of Table 1, and for each time point, T1-weighted
structural MR images and neuropsychological scores (and sub-
scores) were used as input data of an automatic binary classifier
to discriminate the two groups of subjects: (CN + sMCI) vs.
(pMCI + AD).

For this purpose we used an AI system based on a supervised
ML algorithm, tailored to learn from MRI images the prediction
model to classify different diagnostic AD groups (Salvatore et al.,
2015b).

The whole procedure is detailed in the following Sub-sections
and consists into: extraction of features from the three different
segmented MR images (whole-brain, GM or WM); ranking
of features extracted from MR images; ranking of normalized
neuropsychological scores and sub-scores; classification of
subjects using the extracted and ranked features, further selected
according to their ranking through a wrapper procedure. This
procedure is repeated for different combinations of selected

TABLE 1 | Demographic and clinical characteristics of the subjects considered in
this study.

Group type
(stable diagnosis)

# Subjects Age mean ± std.
[range]

Gender #M/#F
(%)

CN or sMCI 100 74.8 ± 6.4 [58.0–87.7] 55%

pMCI or AD 100 74.7 ± 7.1 [55.3–88.4] 54%
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features, and the classifier is optimized on that combination
showing the best classification performance (wrapper feature
selection and optimization of classification).

Feature Extraction and Ranking
Feature extraction and feature ranking were performed to reduce
the number of features to be handled by the classification
algorithm, to remove the noisy features while keeping the ones
relevant for group discrimination, and to reduce redundancy
in the dataset. Thus, this step allowed an enhancement of the
performance of the ML classifier while reducing computational
costs.

A Principal Component Analysis (PCA) was implemented
to perform feature extraction from the MRI volumes (López
et al., 2011; Salvatore et al., 2015a). In particular, this method
consists in applying and orthogonal transformation to the
original set of variables in order to obtain a new (smaller)
set of orthogonal variables called principal components. These
new variables define a subspace, called the PCA subspace.
The original dataset is then projected onto the PCA subspace,
this operation resulting in a smaller set of features which are
referred to as PCA coefficients and which can be used to
replace the original dataset. This new dataset of PCA coefficients
maximizes the variance of the dataset, under the constraint
of orthogonality among the extracted variables. The number
of extracted features cannot be higher than the value of the
smaller dimension of the original dataset – 1. In our case,
being the dimension of the dataset equal to S × N, where
S is the number of samples (200) and N the number of
features (MRI voxels + neuropsychological features, > 106),
then the number of extracted PCA coefficients will be at
most 199.

Feature ranking was applied to PCA coefficients extracted
from MR images, as well as to neuropsychological scores and sub-
scores. FDR was implemented to perform feature ranking, which
aims at sorting features according to their class-discriminatory
power. This index was computed for each variable as follows:

FDR =
(µA − µB)2

σ2
A + σ2

B
(1)

where the numerator expresses the squared difference between
the mean of that variable in class A and class B, while the
denominator expresses the sum of the squared variances of that
variable in class A and in class B.

A second independent feature-extraction technique based
on Partial Least Squares (PLS) (Wold et al., 1984; Ramírez
et al., 2010; Khedher et al., 2015) was implemented. The
approach used in PLS is similar to the one used in PCA.
However, differently from PCA, this technique involves the
concurrent use of information from both the set X of observed
variables (the original dataset itself) and the corresponding set
T of diagnostic labels. Specifically, PLS consists in computing
orthogonal vectors (also in this case called components) by
maximizing the covariance between the two sets of variables
X and T. The original variables are then projected onto the
new space spanned by the computed orthogonal vectors. These

projections are then used as input features for the classification
system.

The feature-extraction-and-ranking technique based on
PCA+FDR and the feature-extraction technique based on
PLS were implemented independently from each other. The
performances of the classifier implemented using these two
techniques were then compared.

The Classifier
A Support Vector Machine (SVM) was used as a binary classifier
(Cortes and Vapnik, 1995). The SVM algorithm was able to
construct a predictive model based on a set of features from
subjects with known stable diagnosis, called training dataset. This
predictive model was then used to automatically classify new
subjects (with unknown diagnosis) as belonging to one of the two
diagnostic classes.

The predictive model computed by SVM was the one that
maximized the margin between the two diagnostic classes,
represented by a hyper-plane whose analytical form is given by:

y (x) =
N∑

n=1

wn • tn • k (x, xn)+ b (2)

Here N is the number of subjects in the training set, wn is the
weight assigned by SVM to each subject n in the training set
during the training phase, tn represents the diagnosis of the
subject n of the training set, k(x,xn) is the kernel function, and
b is a threshold parameter.

In our analyses, we implemented a linear kernel SVM on
the Matlab platform (R2016b, The MathWorks), also including
algorithms from the biolearning toolbox of Matlab.

Wrapper Feature Selection, Optimization of
Classification, Performance Evaluation
In order to find the best configuration of parameters for the
classification, a wrapper feature selection and optimization of
classification was performed. Specifically, the features to be
selected were the MRI features extracted and ranked using
PCA and FDR, and the neuropsychological scores and sub-
scores normalized and ranked using FDR. The parameters to be
optimized were only related to the MR image preprocessing, and
they included the tissue probability map (whole-brain, GM or
WM), and the FWHM of the smoothing kernel (FWHM = 2, 4,
6, 8, 10, and 12 mm3 or no smoothing).

Wrapper feature selection and optimization were performed
using a fivefold Nested-Cross-Validation (Nested CV) approach
(Varma and Simon, 2006). In this approach, the original dataset
(100 subjects with CN or sMCI and 100 subjects with AD
or pMCI) was split into 5 subsets of equal size: 4/5 subsets
were used in an inner training-and-validation loop to perform
feature selection and parameter optimization; the remaining 1/5
subset was then used in an outer test loop for the performance
evaluation of the classifier. This procedure was repeated five
times, until all subsets were used once for testing in the outer
loop.

For each round, the set of selected features and optimal
parameters was estimated in the inner loop as the one that
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maximized the accuracy of classification. For each round, the
performance was estimated in the outer loop in terms of accuracy,
sensitivity, and specificity of classification. Mean accuracy,
sensitivity and specificity was calculated averaging across all 5
rounds.

Given that the number of subjects in the whole dataset was
200 (i.e., 100 CN + sMCI and 100 pMCI + AD), for each round
of nested CV the number of subjects used to train the classifier
was 128, the number of subjects used to optimize the classifier
was 32 (inner loop), and the number of subjects used to evaluate
the performance of the classifier was 40 (outer loop).

The whole process was performed for each time point
(24 months before stable diagnosis, 18 months before stable
diagnosis, and 12 months before stable diagnosis).

In order to assess the statistical significance of each
performance metric (accuracy, sensitivity, and specificity of
classification), we performed a permutation test. Specifically,
the classifier was run as described above, but the labels were
computed as a random permutation of the original label set. This
procedure was repeated for a total of 1000 iterations. A p-value
indicating the statistical significance of each performance metric
was then calculated as the fraction of the total number of
iterations for which the performance (accuracy, sensitivity, or
specificity, respectively) resulted to be greater than or equal to
the performance observed using the original labels.

MRI and Neuropsychological Predictors
A three-dimensional map of voxel-based intensity distribution of
MRI differences between (CN + sMCI) and (pMCI + AD) was
generated for each round of the inner training-and-validation
loop. The map was created for the set of selected features
and optimal parameters obtained using the PCA+FDR feature-
extraction-and-ranking technique. The maps generated during
the 5 rounds of nested CV were then averaged in a single
final map.

The importance of each voxel was computed as in our
previous papers (Cerasa et al., 2015; Salvatore et al., 2015b)
based on the predictive model generated by SVM. Specifically,
during the training phase, SVM assigns a weight to each sample
in the training set corresponding to the importance of that
sample in defining the predictive model. By multiplying each
sample of the training set by the corresponding weight, and
by adding resulting weighted samples on a voxel-basis, it is
possible to generate a three-dimensional map of the weights
of each voxel. Furthermore, the method proposed by Haufe
et al. (2014) to compute activation patterns in backward models
was applied in order to ensure the correct interpretation of the
weights.

Voxel-based maps were then normalized in intensity (to
a range between 0 and 1) and superimposed on a standard
stereotactic brain using a proper color scale. This procedure was
performed for each time point (24 months before stable diagnosis,
18 months before stable diagnosis, and 12 months before stable
diagnosis) (Cerasa et al., 2015; Salvatore et al., 2015b).

The most frequent neuropsychological scores and subscores
among those selected in all rounds were also identified. Also
in this case, these results were obtained for the classifier

implemented using the PCA+FDR feature-extraction-and-
ranking technique. These features were sorted in descending
order according to their frequency. The features occurring with
a higher frequency than 5% were shown as best predictors.

RESULTS

The Classification
Classification results when using PCA+FDR as feature-
extraction-and-ranking technique are shown in Table 2 for
the classification of (CN + sMCI) vs. (pMCI + AD). Using
only MRI data, accuracy, sensitivity, and specificity of the
classification were 0.72 ± 0.08, 0.69 ± 0.12, and 0.75 ± 0.08,
respectively, at the time point 24 months before stable diagnosis;
0.77 ± 0.05, 0.78 ± 0.07, and 0.76 ± 0.10 at the time point
18 months before stable diagnosis; 0.75 ± 0.08, 0.79 ± 0.14, and
0.71 ± 0.11 at the time point 12 months before stable diagnosis.
As a benchmark, we also measured the performance of the
classifier in discriminating (CN + sMCI) vs. (pMCI + AD) at
the time-zero point of stable diagnosis (that is, when all pMCI
had manifested their progression to AD). In this case, accuracy,
sensitivity and specificity resulted to be 0.79 ± 0.08, 0.83 ± 0.14,
and 0.75 ± 0.10, respectively. The performances of the proposed
method result to be statistically significant as assessed by means
of permutation tests (p < 0.001). On the other side, no statistical
difference was found among the performance obtained at the
four different time points (p = 0.51, one-way ANOVA). The
p-values (multiple comparisons for one-way ANOVA) for all the
possible binary combinations of time points are reported in the
Supplementary Table S2.

When using MRI and neuropsychological data in
combination, accuracy, sensitivity, and specificity were
0.85 ± 0.05, 0.83 ± 0.09, and 0.87 ± 0.06, respectively, at
the time point 24 months before stable diagnosis; 0.85 ± 0.09,
0.86 ± 0.11, and 0.83 ± 0.17 at the time point 18 months before
stable diagnosis; 0.87 ± 0.06, 0.86 ± 0.11, and 0.87 ± 0.03 at the
time point 12 months before stable diagnosis. Accuracy, sensitivity
and specificity at the time-zero point of stable diagnosis were
0.92 ± 0.01, 0.91 ± 0.04, and 0.93 ± 0.03, respectively. The
performances of the proposed method result to be statistically
significant as assessed by means of permutation tests (p < 0.001).
On the other side, no statistical difference was found among the
performance obtained at the four different time points (p= 0.20,
one-way ANOVA). The p-values (multiple comparisons for
one-way ANOVA) for all the possible binary combinations of
time points are reported in the Supplementary Table S3.

Furthermore, when comparing –at different time points–
the accuracy of classification obtained using MRI and
neuropsychological data in combination with respect to the
one obtained using MRI alone, the combined approach resulted
to perform statistically better -at the 5% significance level- than
the single-modality approach at the time points of 24 months
before stable diagnosis (p = 0.01), 12 months before stable
diagnosis (p = 0.03), and at the stable-diagnosis time point
(p = 0.01). No statistical difference was found at the time point
of 18 months before stable diagnosis (p= 0.15).
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TABLE 2 | Classification performance in terms of accuracy, sensitivity, and specificity for (CN + sMCI) vs. (pMCI + AD) at the considered time points, using MR images
alone or coupled with neuropsychological measures, with PCA+FDR as feature-extraction-and-ranking technique.

24 m before stable diagnosis 18 m before stable diagnosis 12 m before stable diagnosis Stable-diagnosis time point

MRI

Accuracy 0.72 ± 0.08 0.77 ± 0.05 0.75 ± 0.08 0.79 ± 0.08

Sensitivity 0.69 ± 0.12 0.78 ± 0.07 0.79 ± 0.14 0.83 ± 0.14

Specificity 0.75 ± 0.08 0.76 ± 0.10 0.71 ± 0.11 0.75 ± 0.10

MRI + Neuropsychological data

Accuracy 0.85 ± 0.05 0.85 ± 0.09 0.87 ± 0.06 0.92 ± 0.01

Sensitivity 0.83 ± 0.09 0.86 ± 0.11 0.86 ± 0.11 0.91 ± 0.04

Specificity 0.87 ± 0.06 0.83 ± 0.17 0.87 ± 0.03 0.93 ± 0.03

The performance of the classifier at the time point of the stable diagnosis is also shown.

TABLE 3 | Classification performance in terms of accuracy, sensitivity, and specificity for (CN + sMCI) vs. (pMCI + AD) at the considered time points, using MR images
alone or coupled with neuropsychological measures, with PLS as feature-extraction technique.

24 m before stable diagnosis 18 m before stable diagnosis 12 m before stable diagnosis Stable-diagnosis time point

MRI

Accuracy 0.79 ± 0.07 0.81 ± 0.04 0.81 ± 0.05 0.82 ± 0.04

Sensitivity 0.79 ± 0.07 0.81 ± 0.07 0.83 ± 0.08 0.82 ± 0.07

Specificity 0.78 ± 0.08 0.81 ± 0.07 0.79 ± 0.05 0.81 ± 0.04

MRI + Neuropsychological data

Accuracy 0.81 ± 0.07 0.83 ± 0.12 0.84 ± 0.06 0.85 ± 0.05

Sensitivity 0.82 ± 0.08 0.83 ± 0.10 0.86 ± 0.07 0.87 ± 0.09

Specificity 0.80 ± 0.11 0.83 ± 0.18 0.82 ± 0.10 0.83 ± 0.04

The performance of the classifier at the time point of the stable diagnosis is also shown.

Classification results obtained when using PLS as feature
extraction technique are shown in Table 3. Using only MRI
data, accuracy, sensitivity and specificity of the classification
were 0.79 ± 0.07, 0.79 ± 0.07, and 0.78 ± 0.08, respectively, at
the time point 24 months before stable diagnosis; 0.81 ± 0.04,
0.81 ± 0.07, and 0.81 ± 0.07 at the time point 18 months before
stable diagnosis; 0.81 ± 0.05, 0.83 ± 0.08, and 0.79 ± 0.05 at
the time point 12 months before stable diagnosis. The benchmark
performance of the classifier at the time-zero point of stable
diagnosis was 0.82 ± 0.04 accuracy, 0.82 ± 0.07 sensitivity and
0.81± 0.04 specificity. The performances of the proposed method
resulted to be statistically significant as assessed by means of
permutation tests (p < 0.001). No statistical difference was found
among the performance obtained at the four different time points
(p= 0.76 for accuracy, one-way ANOVA). The p-values (multiple
comparisons for one-way ANOVA) for all the possible binary
combinations of time points are reported in the Supplementary
Table S4.

When using a combination of MRI and neuropsychological
data, accuracy, sensitivity and specificity were 0.81 ± 0.07,
0.82 ± 0.08, and 0.80 ± 0.11, respectively, at the time point
24 months before stable diagnosis; 0.83 ± 0.12, 0.83 ± 0.10, and
0.83 ± 0.18 at the time point 18 months before stable diagnosis;
0.84 ± 0.06, 0.86 ± 0.07, and 0.82 ± 0.10 at the time point
12 months before stable diagnosis. The benchmark performance of
the classifier in terms of accuracy, sensitivity and specificity at the
time-zero point of stable diagnosis was 0.85 ± 0.05, 0.87 ± 0.09,
and 0.83 ± 0.04, respectively. The performances of the proposed

method result to be statistically significant as assessed by means of
permutation tests (p < 0.001). No statistical difference was found
among the performance obtained at the four different time points
(p= 0.88 for accuracy, one-way ANOVA). The p-values (multiple
comparisons for one-way ANOVA) for all the possible binary
combinations of time points are reported in the Supplementary
Table S5.

Furthermore, when comparing –at different time points–
the accuracy of classification obtained using MRI and
neuropsychological data in combination with respect to the
one obtained using MRI alone, no statistical difference was
observed (p = 0.23 at the time point of 24 months before
stable diagnosis; p = 0.65 at the time point of 18 months before
stable diagnosis; p = 0.11 at the time point of 12 months before
stable diagnosis; p= 0.08 at the stable-diagnosis time point).

Making a pairwise comparison (paired-sample t-test) between
the performance obtained using PCA+FDR vs. PLS (for each
time point and for each domain), results show that -at the
5% significance level- the classifier implemented using PLS
performed statistically better (in terms of accuracy) than the
one implemented using PCA+FDR at the time points of 24
and 18 months before stable diagnosis when using MRI alone
(p = 0.03 in both cases). A comprehensive table showing all
pairwise p-values can be found in Supplementary Table S6.

MRI and Neuropsychological Predictors
The voxel-based pattern distribution of MRI differences
found as results of classification between CN + sMCI
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and pMCI + AD are shown in Figures 1–3, for the three
considered time points, respectively (i.e., 24 months before
stable diagnosis, 18 months before stable diagnosis, and
12 months before stable diagnosis). The voxel-based pattern
distribution of MRI differences at the time-zero point of stable
diagnosis is also shown in Figure 4. All patterns were shown
according to the color scale with a threshold of 35%, and
superimposed on a standard stereotactic brain in order to
allow a better localization of the brain regions identified by the
classifier.

FIGURE 1 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time point 24 months before stable
diagnosis. The pattern is shown according to the color scale with a threshold
of 35%, and superimposed on a standard stereotactic brain.

FIGURE 2 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time point 18 months before stable
diagnosis. The pattern is shown according to the color scale with a threshold
of 35%, and superimposed on a standard stereotactic brain.

Similarly, the best neuropsychological predictors and
corresponding status/domain/subdomain found for the
classification of (CN + sMCI) vs. (pMCI + AD) for the
considered time-points are reported in Table 4. Findings are
sorted in descending order according to their frequency. The
complete list of best neuropsychological predictors with the
corresponding names as reported in the ADNI data repository
can be found in Supplementary Table S7.

DISCUSSION

The main finding of our work was that, using structural T1-
weighted MRI brain studies and specific neuropsychological
measures, our classifier was able to identify mild-AD patients who
need treatments 24 months before AD definite diagnosis with an
85% accuracy, 83% sensitivity, and 87% specificity (see Table 2,
when considering the method implemented using PCA+FDR).
More interestingly, the performance obtained by our multi-
modal classifier in distinguishing normal subjects (or stable MCI)
from patients who will evolve to AD 24 months before stable
diagnosis is comparable (p > 0.2) to the ones obtained at 18,
12 months before stable diagnosis and, even more important, to
the one obtained at the time of definite diagnosis. Furthermore,
the combined classification approach model outperformed the
other classification considered in this study using single MRI data
(72% classification accuracy, 69% sensitivity, and 75% specificity)
(Table 2, p < 0.05, when considering the method implemented
using PCA+FDR).

Although the discrimination of (CN + sMCI) vs.
(pMCI + AD) is not common in the literature, our results
can be compared with the classification performance of
studies focused on predicting the conversion to Alzheimer’s
dementia. These studies usually limit their attention to the binary
classification of pMCI vs. sMCI. In a recent review considering 30
studies applying ML for the diagnosis of AD using only structural
MRI (Salvatore et al., 2015a), the mean classification accuracy
in discriminating pMCI vs. sMCI was found to be 0.66 ± 0.11.
Another study tried to distinguish AD patients from stable MCI
patients using only structural MRI features (Diciotti et al., 2012).
A classification accuracy of 0.74 was reported (0.72 sensitivity,
0.77 specificity), although they used a private cohort of 21 mild
AD and 30 MCI patients, and the gold-standard diagnosis was
not based on follow-up examinations. Some other studies tried
to automatically classify pMCI vs. sMCI using only MRI features
(e.g., Cui et al., 2011; Koikkalainen et al., 2012; Ye et al., 2012;
Casanova et al., 2013; Peters et al., 2014; Runtti et al., 2014;
Dukart et al., 2015; Eskildsen et al., 2015; Moradi et al., 2015;
Ritter et al., 2015; Salvatore et al., 2015b; Nanni et al., 2016), with
a classification accuracy ranging from 0.51 to 0.75.

To the best of our knowledge, this is one of the few works able
to answer the question whether a multidisciplinary classification
model coupling cognitive, functional and behavioral measures
with structural MRI brain studies is better than a model based
only on structural MRI. Four studies attempted the task of
classifying pMCI vs. sMCI using both structural-MRI features
alone and in combination with neuropsychological measures
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(Cui et al., 2011; Runtti et al., 2014; Dukart et al., 2015;
Moradi et al., 2015). The classification accuracy of these studies
ranges from 0.62 to 0.75 when using structural MRIs alone,
and from 0.62 to 0.82 when using both structural MRIs and
neuropsychological measures, showing a slight improvement (the
mean intra-study improvement was 0.06± 0.04).

Another challenging finding of our study was that patterns of
morphological abnormalities localized in the temporal pole and
medial-temporal cortex might be considered as biomarkers of
clinical progression and evolution (Figures 1–4). These regions

FIGURE 3 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time point 12 months before stable
diagnosis. The pattern is shown according to the color scale with a threshold
of 35%, and superimposed on a standard stereotactic brain.

FIGURE 4 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time-zero point of stable diagnosis. The
pattern is shown according to the color scale with a threshold of 35%, and
superimposed on a standard stereotactic brain.

can be already observed at the time point of 24 months before
stable diagnosis (Figure 1). When considering the subsequent
time points (Figures 2–4), the voxel-based pattern distribution
of MRI-related neurodegeneration is similar to that one at
24 months before stable diagnosis, but progressively more
extended, which could be a consequence of a more advanced
process of structural neurodegeneration. There is an increasing
interest proven by literature in understanding progression-
related brain changes using structural MRI, describing an
association between progression and atrophy, especially of the
parietal and posterior cingulate regions, extending into the
precuneus and medial temporal regions including hippocampus,
amygdala, and entorhinal cortex. This pattern of progression-
atrophy association is even evident at mild stages of cognitive
impairment. The purpose of our work is out from explaining
mechanisms behind the structural pattern distribution related to
MRI images of different stages of disease progression. However,
the progressive pattern seems to be consistent with Braak
pathological studies (Braak and Braak, 1991), showing that
during the development of AD pathology, tau tangles increase,
associated with synapse loss and neurodegeneration.

Finally, we demonstrated that some cognitive, functional,
and behavioral measures emerged as best predictors for
AD progression. These include measures of functional
abilities, memory and learning, working memory, language,
visuoconstructional reasoning, and complex attention (see
Table 4). More specifically, the best neuropsychological
predictors for the classification of (CN + sMCI) vs. (pMCI +AD)
at the time point of 24 months before stable diagnosis include
measures of functional abilities, memory and learning, working
memory, and language. When considering the subsequent time
points, involved domains are similar to the ones at 24 months
before stable diagnosis. Interestingly, some of the sub-scores
obtained through the administration of the FAQ (domain:
functional abilities) and AVLT (domain: memory and learning)
are always selected as best neuropsychological predictors at all
the considered time points. Moreover, it must be noted that the
best neuropsychological predictors at the time point of stable
diagnosis include only measures from these two tests, which
could be a consequence of a more advanced impairment in
these two domains. Neuropsychological assessment can be time
intensive, and the experience of practitioners can impact on the
reliability and efficiency of the assessment. Our results can help
the work of clinicians in optimizing the choice of cognitive tests
to be administered at no costs for effectiveness. In a previous
study of our group, Battista et al. (2017) demonstrated that it is
possible to use a selected subset of neuropsychological measures
to automatically diagnose AD patients with an accuracy of 90%.

It should be underlined that -in the present study- most of the
best neuropsychological predictors at the time point of 24 months
before stable diagnosis are components of the AVLT or partial
scores of FAQ related to learning and verbal episodic memory
or prospective memory. These findings may confirm that the best
neuropsychological predictors of conversion from amnestic MCI
to AD are tests of episodic memory, as recently pointed out by
Gainotti et al. (2014). Furthermore, also in the above-cited paper
by Battista et al. (2017) the subset of selected neuropsychological
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TABLE 4 | Best Neuropsychological predictors and corresponding status/domain/subdomain found for the classification of (CN + sMCI) vs. (pMCI + AD).

Time point Neuropsychological predictor Status/domain/subdomain
of predictor

24 months before
stable diagnosis

Ability in remembering appointments, family occasions, holidays, medications in FAQ
Ability in writing checks, paying bills, or balancing checkbook in FAQ
Ability in assembling tax records, business affairs in FAQ
Total score of trial 5 in AVLT
Ability in keeping track of current events in FAQ
Total intrusions of trial 1 in AVLT
Correct answers in the Backwards task in Digit-Span Test
Correct answers in Vegetables task in Category Fluency Test
Correct answers after a 30-min delay in AVLT

Functional abilities
Functional abilities
Functional abilities
Memory and learning
Functional abilities
Memory and learning
Working memory
Language
Memory and learning

18 months before
stable diagnosis

Ability in writing checks, paying bills, or balancing checkbook in FAQ
Ability in remembering appointments, family occasions, holidays, medications in FAQ
Total score of trial 3 in AVLT
Total score of trial 5 in AVLT
Total score of trial 6 in AVLT
Ability in assembling tax records, business affairs in FAQ
Ability in traveling, driving, or arranging to take public transportation in FAQ
Presence of the two hands in CLOCK test
Ability in shopping alone for necessities in FAQ
Ability in keeping track of current events in FAQ
Total score of FAQ
Total of trial 4 in AVLT
Spontaneously given correct responses in BNT
Corrected responses following phonemic cues in BNT
Symmetry of number placement in CLOCK test
Presence of the two hands, set to ten after eleven in CLOCK test
Time to complete Part A of the test in TMT
Time to complete Part B of the test in TMT
Correct answers after a 30-min delay in AVLT
Recognition errors in AVLT

Functional abilities
Functional abilities
Memory and learning
Memory and learning
Memory and learning
Functional abilities
Functional abilities
Visuoconstructional reasoning
Functional abilities
Functional abilities
Functional abilities
Memory and learning
Language
Language
Visuoconstructional reasoning
Visuoconstructional reasoning
Complex attention
Complex attention
Memory and learning
Memory and learning

12 months before
stable diagnosis

Ability in writing checks, paying bills, or balancing checkbook in FAQ
Ability in remembering appointments, family occasions, holidays, medications in FAQ
Total of trial 3 in AVLT
Number of correct responses following a phonemic cue in BNT
Ability in assembling tax records, business affairs in FAQ
Ability in shopping alone for necessities in FAQ
Ability in traveling, driving, or arranging to take public transportation in FAQ
Total score of FAQ
Total of trial 4 in AVLT
Total of trial 5 in AVLT
Total correct answers after a 30-min delay in AVLT
Total of trial 6 in AVLT
Ability in keeping track of current events in FAQ
Ability in paying attention to and understanding a TV program, book, or magazine in FAQ
Total score of the CLOCK test

Functional abilities
Functional abilities
Memory and learning
Language
Functional abilities
Functional abilities
Functional abilities
Functional abilities
Memory and learning
Memory and learning
Memory and learning
Memory and learning
Functional abilities
Functional abilities
Visuoconstructional reasoning

Time-zero point of
stable diagnosis

Ability in writing checks, paying bills, or balancing checkbook in FAQ
Total score of FAQ.
Total of trial 4 in AVLT
Ability in remembering appointments, family occasions, holidays, medications in FAQ
Ability in paying attention to and understanding a TV program, book, or magazine in FAQ
Ability in traveling out of the neighborhood, driving, arranging to take public transportation in FAQ
Ability in assembling tax records, business affairs, or other papers in FAQ
Ability of the subject in preparing a balanced meal in FAQ
Total of trial 6 in AVLT
Ability in playing a game of skill such as bridge or chess, working on a hobby in FAQ
Correct answers after a 30-min delay in AVLT

Functional abilities
Functional abilities
Memory and learning
Functional abilities
Functional abilities
Functional abilities
Functional abilities
Functional abilities
Memory and learning
Functional abilities
Memory and learning

Results are reported for the three considered time points (i.e., 24 months before stable diagnosis, 18 months before stable diagnosis, and 12 months before stable
diagnosis) and for the time-zero point of stable diagnosis. Best neuropsychological predictors are sorted in descending order according to their frequency (the frequency
of that measure in all loops). The status/domain/subdomain corresponding to the neuropsychological predictor is also reported.

measures able to automatically diagnose AD patients was mainly
composed of measures related to episodic memory (namely,
scores and subscores of AVLT, Logical Memory Test and

Alzheimer’s Disease Assessment Scale-Cognitive Behavior) and
measures addressing functional abilities in daily life (namely,
total score and subscores of FAQ).
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With respect to the numerous other ML methods proposed
for the automatic classification of AD patients by means of brain
MRI images (Cuingnet et al., 2011; Salvatore et al., 2015a), our
approach has several points of strength.

Firstly, we validated our data on a large, multi-center
independent cohort study, namely the ADNI public database.
The use of large, public cohorts for training machine-learning
classifiers allows a higher generalization ability than using
private cohorts, which are often obtained from single-center
studies. Moreover, the use of public databases is crucial for the
comparison of the classification performance of different studies
(Cuingnet et al., 2011), which is not recommended for studies
using different private inhomogeneous cohorts. Mainly because
of these reasons, in the last few years, the use of large, public data
repositories is becoming more frequent in the field of ML applied
to neuroimaging data, as reported in a recent review (Salvatore
et al., 2015a). However, to date this is not a standard practice, and
several studies still make use of private cohorts.

A second point of strength is that our algorithm requires a
limited number of imaging studies to be trained, nearly a hundred
studies per diagnostic class. This point is particularly important
if considered with respect to the new classification approaches
that are recently emerging as state-of-the-art techniques in
the computer-vision community, namely deep-learning. These
techniques have proven to be high performing in most automatic-
classification tasks (Sharif Razavian et al., 2014), but their
application in medicine, in particular in the neuroimaging field,
is still limited. This is due to the requirement of at least a
thousand of imaging studies per diagnostic class in order to
reduce overfitting problems.

The third point of strength is the ability of our classification
algorithm to return the best MRI and neuropsychological
predictors, that is, the most important structural-brain patterns
and neuropsychological scores for distinguishing the two
diagnostic classes. Specifically, these predictors can be interpreted
as early signs of the disease, and thus be used as surrogate
biomarkers of AD. In the case of structural-MRI predictors,
this may be particularly useful in monitoring the course of the
neurodegeneration or the efficacy of a treatment.

Another advantage of our classification algorithm is that data
used as input can be collected in a single examination session
following routinely clinical protocols (T1-weighted MRI on 1.5T
systems) and non-invasive and inexpensive measures obtained
through the administration of standard neuropsychological tests.

Lastly, with respect to the use of structural MRI volumes, it
must be noted that our classification algorithm does not require
any interaction or pre-processing by the neuroradiologists on the
original acquired images. This helps avoiding any issue arising
from inter- and intra-operator inhomogeneities.

From a methodological point of view, we must underline two
further points of strength. The first is the number of features used
for training the classification algorithm, which was lower than
the number of subjects in the two classes. This practice is useful
as it prevents any curse-of-dimensionality issue. The second is
the independence between neuropsychological measures used as
features and measures used as gold standard to perform the
original classification in the four diagnostic groups (AD, pMCI,

sMCI, and CN). This practice warrants the avoidance of double-
dipping in the classification process (Kriegeskorte et al., 2009).

However, we should also recognize some limitations of our
work:

Limited Generalization Ability and Reliability. Further
investigations are needed in order to assess the generalization
ability and reliability of our multimodal MRI/cognitive-based
classifier, and its applicability at an individual subject level.
Our results are based on subjects in the United States and
Canada, thus validation studies including subjects from other
regions worldwide are lacking. Moreover, our predictive results
have been obtained by a cross-validation approach using these
subjects, and this may not accurately generalize our findings to a
general population. We have used an SVM classifier since it offers
different advantages, for example, is particularly appropriate for
non-linear and big data such as whole-brain MRI images, also
in combination with data from other modalities (e.g., biological
and neuropsychological data). However, in order to confirm our
results, we should have used more classifiers among the variety
of ML methods already validated for automatic classification
of medical images, e.g., Artificial Neural Networks, Linear
Discriminant Analysis, regression models, Bayesian approaches,
Decision Trees, and Random Forests.

Limited Clinical Questions. In this work we developed a
predictive model able to address CN and sMCI subjects to
a different therapeutic option with respect to pMCI and AD
subjects. Our approach cannot be used for screening patients for
specific AB or tau target drug clinical trials.

Approximately 27% of subjects meeting clinical inclusion
criteria for mild-AD were found Ab-negative, thus, our
multimodal classifier does not allow to avoid variance into
analyses due to these patients. Aβ-negative mild-AD subjects are
not expected to progress clinically on the expected trajectory,
adding variance into analyses where a slowing of progression is
being measured. Clinical trials of putative therapeutics for AD
should use a baseline measure of brain Aβ or tau as an inclusion
criterion, such as PET amyloid studies, even if a recent work
demonstrated that measuring Aβ status from MRI scans in mild-
AD subjects is possible and may be a useful screening tool in
clinical trials (Tosun et al., 2016).

Limited Neuropsychological Predictors. Our work considered
neuropsychological scores and sub-scores obtained from seven
neuropsychological tests as candidate predictors. Whilst this
offered a certain amount and details of information on different
cognitive domains (a total of 64 scores were used as input data) as
well as on behavioral and functional status, many other measures
coming from other tests were excluded from our analysis only
because not available for all the considered subjects. This limits
our findings. A best accuracy in the prediction model could be
achieved by using more neuropsychological measures (selected
on the basis of their classification performance).

Limited Dynamic View of the Disease Progression. This study
lacks of a dynamic view of the disease progression in terms
of linking the imaging data between different time points.
Although the different patterns of cerebral changes in AD/MCI
over several time points have been compared in this paper,
the proposed analysis was cross-sectional in nature at each
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time point, thus not investigating cross-time-point relationships
with the predictive models. This would be a fundamental step
for advancing our knowledge about neuropathological staging
of Alzheimer-related changes. However, it should be kept in
mind that in the last 10 years a plethora of longitudinal
studies have provided consistent evidence on the evolution
of neurodegenerative changes in AD brain. Recent advances
in molecular neuroimaging have greatly facilitated our ability
to detect neurodegenerative pathology in vivo, particularly in
the very early stages of AD. As recently reviewed by Sperling
et al. (2014), the inexorable progression of neurodegeneration
characterizing patients with AD begins well more than a decade
prior to the stage of clinically detectable symptoms. Amyloid-β
(Aβ) accumulation may be evident 20 years before the stage of
dementia, whilst substantial neuronal loss became evident by the
stage of MCI. The challenge in this new era of neuroimaging
application on AD is to demonstrate the real role played
by the first hallmark of AD: Aβ accumulation. The general
opinion is that Aβ is necessary, but not sufficient in isolation,
to predict imminent decline along the AD trajectory. For this
reason, structural neuroimaging can be useful for increasing
the accuracy of automated diagnostic methods. Overall Aβ

accumulation begins in the temporal cortex in very early AD
phases, promoting dysmetabolism and neural losses. In the next
phases, pathological changes move toward associative neocortex,
mainly including orbitofrontal cortex, precuneus and prefrontal
cortex, finally reaching the primary motor system along the AD
trajectory. Our findings are thus in agreement with the well-
known neurodegenerative staging of AD brain.

Limited Prediction Over the Course of Disease. In this study
we were not able to establish if predicting progression to AD
of MCI patients could be possible even at an earlier time than
the 24 months prior to the definite diagnosis, since the number
of subjects provided by ADNI with an entire multimodal set of
measures and with a longer follow up that 24 months is not
sufficient for training-and-classification purposes.

Our classifier has been trained on measures of cognitive
impairment obtained through clinically administered
neuropsychological-test predictors. Thus, with this
configuration, it cannot be used for screening presymptomatic
subjects. However, in principle, our classifiers could be trained
even over a different set of cognitive/behavioral and functional
data, measured during daily life of CN subjects in order to
capture domains that are affected first by the disease, eventually
combined with their MRI brain studies in order to detect
very subtle brain changes and on biological CSF with proper
established cut points.

As pointed out in a recent review by ADNI (Weiner et al.,
2017), longitudinal studies aimed at the early diagnosis and
prognosis of AD are able to increase the power of clinical trials, as
they can help in the selection of trial participants likely to decline.
In these studies, the use of ML algorithms has been proved
effective to measure surrogate diagnostic biomarkers, especially
in challenges involving MCI subjects, but have been poorly
validated for detecting the power of measures of longitudinal
changes over time as surrogate predictive biomarkers of the
disease.

In our study we demonstrated that it is possible to predict
the conversion of MCI to probable AD up to 24 months
before the definite diagnosis. Although better suited to trials
of treatments aiming to repair brain tissue rather than clear
Aβ, our approach may improve the feasibility of clinical trials
by reducing costs and increasing the power to detect disease
progression.

In conclusions, to our knowledge, this is one of the few
works able to answer the question whether a multidisciplinary
classification model coupling cognitive, functional and behavioral
measures with structural MRI brain studies is better than a
model based on structural MRIs alone. Since T1-weighted MRI
scans are acquired routinely in clinical trials for other purposes
and neuropsychological assessment can be easily performed
to complement routine clinical trials, our multimodal pMCI
classifier might be useful as a screening tool that could be applied
to reduce the number of non-progressive subjects not to be
treated.
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Background: The neuropathology of patients with frontotemporal dementia (FTD) or
amyotrophic lateral sclerosis (ALS) due to a C9orf72 mutation is characterized by two
distinct types of characteristic protein depositions containing either TDP-43 or so-called
dipeptide repeat proteins that extend beyond frontal and temporal regions. Thalamus
and cerebellum seem to be preferentially affected by the dipeptide repeat pathology
unique to C9orf72 mutation carriers.

Objective: This study aimed to determine if mutation carriers showed an enhanced
degree of thalamic and cerebellar atrophy compared to sporadic patients or healthy
controls.

Methods: Atlas-based volumetry was performed in 13 affected C9orf72 FTD, ALS and
FTD/ALS patients, 45 sporadic FTD and FTD/ALS patients and 19 healthy controls.
Volumes and laterality indices showing significant differences between mutation carriers
and sporadic patients were subjected to binary logistic regression to determine the best
predictor of mutation carrier status.

Results: Compared to sporadic patients, mutation carriers showed a significant volume
reduction of the thalamus, which was most striking in the occipital, temporal and
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prefrontal subregion of the thalamus. Disease severity measured by mini mental status
examination (MMSE) and FTD modified Clinical Dementia Rating Scale Sum of Boxes
(FTD-CDR-SOB) significantly correlated with volume reduction in the aforementioned
thalamic subregions. No significant atrophy of cerebellar regions could be detected.
A logistic regression model using the volume of the prefrontal and the laterality index of
the occipital subregion of the thalamus as predictor variables resulted in an area under
the curve (AUC) of 0.88 while a model using overall thalamic volume still resulted in an
AUC of 0.82.

Conclusion: Our data show that thalamic atrophy in C9orf72 mutation carriers goes
beyond the expected atrophy in the prefrontal and temporal subregion and is in
good agreement with the cortical atrophy pattern described in C9orf72 mutation
carriers, indicating a retrograde degeneration of functionally connected regions. Clinical
relevance of the detected thalamic atrophy is illustrated by a correlation with disease
severity. Furthermore, the findings suggest MRI volumetry of the thalamus to be of
high predictive value in differentiating C9orf72 mutation carriers from patients with
sporadic FTD.

Keywords: C9orf72, frontotemporal dementia, amyotrophic lateral sclerosis, atlas based volumetric MRI analysis,
thalamus, cerebellum, salience network

INTRODUCTION

Frontotemporal dementia (FTD) and amyotrophic lateral
sclerosis (ALS) are heterogeneous neurodegenerative disorders
that are associated with one another in approximately 15% of
the cases (Lomen-Hoerth et al., 2002). FTD can present with
socially inappropriate behavior, apathy, lack of empathy, changes
in diet and compulsive behaviors. Compared to Alzheimer’s
disease there is typically a relative preservation of memory
and visuospatial function (Perry and Miller, 2013). ALS is
a motor neuron disease that is characterized by progressive
degeneration of upper and lower motor neurons. It typically
manifests with progressive muscle weakness, muscular atrophy,
spasticity and fasciculations (Lomen-Hoerth et al., 2002). The
most common known cause of familial FTD, familial ALS or
patients with a mixed presentation of both diseases (FTD/ALS)
is a hexanucleotide expansion mutation in a non-coding region
of C9orf72 (Cruts et al., 2013). Compared to sporadic patients
c9orf72 mutation carriers have a greater frequency of psychotic
symptoms like delusions, hallucinations or paranoid ideation and
show more severe memory impairment (Snowden et al., 2015).

Previous neuroimaging studies on c9orf72 mutation carriers
have shown relatively symmetrical atrophy most prominent in
the frontotemporal cortex and the insula, in keeping with the
atrophy pattern described in sporadic patients (Boxer et al.,
2011; Mahoney et al., 2012; Whitwell et al., 2012). In contrast
to sporadic patients, however, c9orf72 mutation carriers appear

Abbreviations: ALS, amyotrophic lateral sclerosis; AUC, area under the curve;
DPR, dipeptide repeat proteins; FTD, frontotemporal dementia; FTD-CDR-SOB,
FTD modified Clinical Dementia Rating Scale Sum of Boxes; HC, healthy controls;
LI, laterality index; LPBA40, LONI Probabilistic Atlas; MDN, mediodorsal nucleus;
MMSE, mini mental status examination; OTH, Oxford Thalamic Connectivity
Atlas; ROC, receiver operating characteristic; SN, salience network.

to have more parietal and occipital cortical atrophy creating a
more diffuse cortical atrophy pattern. Furthermore bithalamic
and cerebellar involvement have been described (Yokoyama
and Rosen, 2012; Bede et al., 2013; Prado et al., 2015; Floeter
et al., 2016). Moreover, volumetric imaging data from the
genetic frontotemporal dementia initiative (GenFI) show an
early affection of thalamus and cerebellum in C9orf72 mutation
carriers compared to healthy controls (HC) as well as to GRN and
MAPT mutation carriers (Rohrer et al., 2015).

A neuropathological hallmark of C9orf72 mutation carrier
status is the intracellular deposition of five dipeptide repeat
proteins (DPR). These proteins are a product of repeat-
associated non-ATG translation from sense and antisense
transcripts (Ash et al., 2013; Gendron et al., 2013; Mori et al.,
2013a,b). Most frequent dipeptide repeat pathology, particular
inclusions of poly (GP) or poly (GA) can be detected in
neocortex, hippocampus and cerebellum but dipeptide repeat
inclusions are also abundant in thalamus (Schludi et al.,
2015).

These recent neuropathological and neuroimaging findings
provide evidence for an underappreciated role of the cerebellum
and thalamus in the pathogenesis of FTD and ALS caused
by a repeat expansion in C9orf72 (Prado et al., 2015; Rohrer
et al., 2015; Schludi et al., 2015). We hypothesized that
thalamus and cerebellum show an enhanced degree of atrophy
in C9orf72 expansion carriers compared to sporadic patients
and that thalamic atrophy goes beyond the expected atrophy
in the prefrontal and temporal subregion of the thalamus in
C9orf72 mutation carriers. In the current study, we therefore
aimed to elucidate the regional brain atrophy focusing on
thalamic and cerebellar atrophy in C9orf72 mutation carriers
compared to patients with sporadic FTD or FTD/ALS and healthy
controls.
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MATERIALS AND METHODS

Ethics Statement
The study was performed according to the declaration of Helsinki
(1991). Ethical approval for conduction of the study has been
obtained at the coordinating site at the University of Ulm
and all participating centers of the German consortium for
frontotemporal lobar degeneration. Written informed consent
was obtained from every participant.

Subjects
A total of 77 participants from the cohort of the German
consortium for frontotemporal lobar degeneration (Otto et al.,
2011) were included in the study: 13 symptomatic C9orf72
mutation carriers (8 FTD, 2 ALS, 3 FTD/ALS), 45 with sporadic
FTD (Medford and Critchley, 2010) or FTD/ALS (Snowden et al.,
2015) in whom a pathological C9orf72 expansion, MAPT or
GRN mutation has been excluded and 19 healthy elderly control
subjects. Diagnosis was made according to current international
consensus criteria (Brooks et al., 2000; Rascovsky et al., 2011).
Demographic features of participants are listed in Table 1.

Participants underwent general cognitive screening using
the mini mental status examination (MMSE). To quantify the
severity of dementia symptoms the FTD modified Clinical
Dementia Rating Scale Sum of Boxes (FTD-CDR-SOB)
(Knopman et al., 2008) score was used. Additionally age,
education, disease duration and the occurrence of a positive
family history were assessed.

MRI Acquisition
All patients and controls underwent whole-brain T1-weighted
MRI on 3T scanners, and on 1.5T scanners, where 3T scanning
was not available. An array head coil with a minimum of 8
channels was used. 3D-MPRAGE sequences were acquired in
sagittal orientation with 1 mm x 1 mm in-plane resolution, slice
thickness 1 mm, and TR/TE = 2300/2.03 ms.

MRI Data Processing and Volumetric
Analysis
After pseudonymization and conversion from DICOM to
ANALYZE 7.5 format the 3D T1-weighted images were processed
by a fully automated and observer-independent method of
atlas- and mask-based MRI volumetry using the Statistical
Parametric Mapping 12 software (Wellcome Trust Centre
for Neuroimaging, London, United Kingdom)1. The method
has been described in detail elsewhere (Huppertz et al.,
2010, 2016; Opfer et al., 2016) and was already applied
to neurodegenerative diseases in various cross-sectional and
longitudinal studies (Kassubek et al., 2011; Frings et al., 2012,
2014; Höglinger et al., 2014; Huppertz et al., 2016; Schönecker
et al., 2016). In short, each T1 image was normalized to
Montreal Neurological Institute (MNI) template space using
diffeomorphic anatomical registration through exponentiated Lie
algebra (DARTEL) (Ashburner, 2007) and segmented into gray

1www.fil.ion.ucl.ac.uk/spm

matter, white matter, and cerebrospinal fluid components using
the ‘unified segmentation’ algorithm of Statistical Parametric
Mapping 12 with default parameters. The DARTEL algorithm
is a highly elastic registration method resulting in a more
precise registration of the individual brain to MNI space than
the normalization methods in previous SPM versions, thereby
also improving the adaptation to the space of the atlases used
in the further post-processing. The volumes of specific brain
structures and compartments were calculated by voxel-by-voxel
multiplication and subsequent integration of normalized and
modulated component images (gray matter, white matter or
cerebrospinal fluid) with predefined masks in the same space.
These masks are derived from different probabilistic brain atlases,
such as the LONI Probabilistic Brain Atlas (LPBA40) provided
by the Laboratory of Neuroimaging (LONI) at the University
of California, Los Angeles, United States2 (Shattuck et al., 2008)
and the probabilistic thalamic connectivity atlas provided by the
Nuffield Department of Clinical Neurosciences at the University
of Oxford, United Kingdom (Oxford Thalamic Connectivity
Atlas; OTH)3 (Behrens et al., 2003). Target structures were
chosen a priori for analysis of group differences in volume
(13 in total, see Table 2). As our study aimed to determine
the amount of thalamic and cerebellar atrophy of C9orf72
mutation carriers compared to sporadic patients and HC,
we included as regions of interest cerebellum, cerebellar
vermis plane and pons as derived from structures and further
parcellations in the LPBA40 atlas (Huppertz et al., 2016)
and in addition all structures of the OTH atlas, i.e., overall
thalamic volume as well as the primary motor, sensory, posterior
parietal, occipital, temporal and prefrontal subregion of the
thalamus that are connected to the corresponding cortical zone.
Furthermore, since frontotemporal cortex shows pronounced
atrophy in C9orf72 mutation carriers as well as in sporadic
patients the frontal and temporal cortex as derived from
the integration of single gyri of the LPBA40 atlas (Huppertz
et al., 2010) have been included as regions of interest as
well.

Statistical Analysis
Data were analyzed using SPSS23. Non-dichotomized mean
scores of demographic and neuropsychological data were
compared across the three groups (C9orf72 mutation carriers,
sporadic patients and HC) via Kruskal–Wallis test and Mann–
Whitney test. Chi-square analysis was used to check for
significant differences in gender and family history across all
groups. Standard statistical significance level was set at p < 0.05.

For each region of interest the individual volume at clinic
presentation was determined in ml. For comparison, the
measured volumes were corrected by individual intracranial
volume and standardized to the mean intracranial volume
of healthy controls.

For group comparisons of volumetric data, a Kruskal–Wallis
test was performed. Significance levels for the Kruskal–Wallis test
were adjusted according to Bonferroni correction (p < 0.0038).

2http://www.loni.usc.edu/atlases/
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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TABLE 1 | Demographics and neuropsychological measures of the study sample.

C9orf72 Sporadic HC C9orf72 vs. HC C9orf72 vs. sporadic sporadic vs. HC

N 13 45 19

Gender (M/F) 8/5 26/19 12/7 n.s. n.s. n.s.

Positive family history (Y/N) 8/5 12/33 1/18 + + n.s.

Age 64.1 (8.5) 62.8 (9.4) 65.9 (10.1) n.s. n.s. n.s.

Education 12.8 (2.7) 13.2 (3.3) 13.7 (3.1) n.s. n.s. n.s.

Disease duration 2.5 (3.5) 3.2 (3.7) n.s.

MMSE 25.8 (3.1) 25.6 (4.1) 29.0 (0.9) + n.s. +

FTLD-CDR-SOB 3.7 (1.0) 6.3 (2.9) 0.4 (0.6) + n.s. +

n.s., not significant; +p < 0.05.

TABLE 2 | Anatomical structures selected for volumetric analysis per group mean and SD (in ml), and pairwise post hoc Bonferroni test results.

Dependent variable C9orf72 Sporadic HC C9orf72 vs. HC C9orf72 vs. sporadic Sporadic vs. HC

Frontal 246.90 (26.96) 265.37 (33.10) 296.54 (15.82) + n.s. +

Temporal 158.31 (11.97) 164.44 (18.78) 181.70 (14.08) + n.s. +

Cerebellum 109.46 (9.82) 109.44 (11.43) 113.33 (10.24) n.s. n.s. n.s.

Cerebellar vermis plane 949.72 (101.54) 973.68 (96.92) 1020.74 (86.26) n.s. n.s. n.s.

Pons 15.30 (1.40) 15.23 (1.76) 15.25 (1.36) n.s. n.s. n.s.

Thalamic regions

Thalamus all 15.70 (1.49) 17.62 (1.62) 19.09 (1.50) + + +

Primary motor 0.97 (0.08) 1.03 (0.07) 1.06 (0.08) n.s. n.s. n.s.

Sensory 1.11 (0.09) 1.18 (0.09) 1.23 (0.09) + + n.s.

Premotor 1.70 (0.15) 1.84 (0.14) 1.92 (0.14) + + n.s.

Posterior parietal 3.09 (0.27) 3.35 (0.26) 3.50 (0.25) + + n.s.

Occipital 1.41 (0.13) 1.62 (0.18) 1.77 (0.16) + + +

Temporal 2.91 (0.29) 3.45 (0.48) 3.92 (0.43) + + +

Prefrontal 4.52 (0.37) 5.14 (0.51) 5.70 (0.46) + + +

n.s., not significant; +p < 0.05, corrected for multiple comparisons.

Results of post-hoc tests were regarded significant if they survived
an additional Bonferroni correction for multiple pairwise group
comparisons. Spearman’s test was used to explore significant
correlations between volumetric data and neuropsychological
variables. Significance level was adjusted according to Bonferroni
correction (p < 0.0038) as well.

Furthermore, to assess laterality of overall thalamic volume
and thalamic subregions a laterality index (LI) defined as the
ratio [(left − right)/(left + right)] was calculated (Seghier, 2008;
Okada et al., 2016) for each study group. LIs can range from −1
to 1 with a positive LI indicating a leftward asymmetry. One-
sample Wilcoxon signed rank tests were calculated to evaluate
whether LIs were significantly different from zero. A Kruskal–
Wallis test was performed for group comparisons of LIs. As for
the volumetric analysis significance level was adjusted according
to Bonferroni correction (p< 0.00625) and an additional post hoc
Bonferroni correction was performed.

Parameters showing a significant difference between C9orf72
mutation carriers and sporadic patients in the former analyses,
i.e., overall thalamic volume and the volumes of the sensory,
premotor, parietal, occipital, temporal and prefrontal subregion
of the thalamus, the LI of the primary motor, sensory, premotor,
occipital and prefrontal subregion of the thalamus as well as
the neuropsychological parameters MMSE and FTD-CDR-SOB

were subjected to a forward stepwise binary logistic regression
to determine the best predictor of diagnosis. Furthermore, the
receiver operating characteristic (ROC) curve was created to
evaluate the utility of the model at distinguishing between
C9orf72 mutation carriers and sporadic patients.

RESULTS

Demographics and Cognitive Scores
Demographics and cognitive scores of the study sample can
be seen in Table 1. Participant groups did not differ in terms
of gender, age, education and disease duration. Patient groups
(C9orf72 mutation carriers and sporadic patients) performed
significantly worse at cognitive screening tests (MMSE and FTD-
CDR-SOB) compared to HC but did not differ significantly
from one another. C9orf72 mutation carriers had, as expected,
significantly more frequently a positive family history compared
to sporadic patients and HC (see Table 1).

Volumetric Analysis
Kruskal–Wallis test revealed significant differences of the
volumes of the frontal and temporal lobe, overall thalamic
volume (Figure 1) and the volumes of the sensory, premotor,
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FIGURE 1 | Volumes of frontal and temporal lobe, cerebellum and thalamus. ∗ Indicates significant differences.

posterior parietal, occipital, temporal and prefrontal subregion
of the thalamus (Figure 2). No significant differences could be
detected for the cerebellum, the cerebellar vermis plane and pons
as well as for the primary motor subregion of the thalamus
(Figures 1, 2).

Post hoc Bonferroni tests showed that sporadic patients
compared to HC had reduced volumes of the frontal and
temporal lobe as well as reduced volumes of overall thalamus
and the occipital, temporal and prefrontal subregion of the
thalamus (Figures 1, 2 and Table 2). Similarly, C9orf72 mutation
carriers had significantly smaller volumes of frontal and temporal
lobe as well as all investigated thalamic subregions apart from
the primary motor subregion (i.e., sensory, premotor, posterior
parietal, occipital, temporal and prefrontal subregion of the
thalamus) compared to HC. No significant differences of frontal
and temporal lobe volumes could be detected between C9orf72
mutation carriers and sporadic patients. However, although
sporadic patients were somewhat more advanced, both in disease
duration and in the FTD-CDR-SOB, C9orf72 mutation carriers
showed significantly smaller volumes of the sensory, premotor,
posterior parietal, occipital, temporal and prefrontal subregion of
the thalamus (Figure 2 and Table 2).

Correlation Analysis
Correlation analysis showed a significant positive/negative
correlation of MMSE/FTD-CDR-SOB with overall thalamic
volume (rs = 0.352, rs = −0.406), the volumes of the prefrontal
(rs = 0.368, rs = −0.453), temporal (rs = 0.377, rs = −0.423)
and occipital (rs = 0.367, rs = −0.385) subregion of the thalamus
as well as with frontal (rs = 0.392, rs = −0.607) and temporal
(rs = 0.364, rs =−0.391) lobe volume (Figure 3).

Laterality Indices
Laterality indices were investigated in this study as well. All
study groups showed positive LIs of the occipital, prefrontal, and
posterior parietal subregion of the thalamus and significantly
negative LIs of the primary motor, sensory, premotor and
temporal subregion of the thalamus. Overall thalamic volume
showed significantly positive LIs in sporadic patients and HC
but was not significantly different from zero in C9orf72 mutation
carriers.

Kruskal–Wallis test revealed significant group differences of
the LIs of overall thalamus and of the primary motor, sensory,
premotor, occipital and prefrontal subregion of the thalamus.
Only for the posterior parietal and the temporal subregion
of the thalamus, no significant group differences could be
detected. C9orf72 mutation carriers differed significantly from
sporadic patients in the aforementioned LIs. Furthermore LIs
of overall thalamus, sensory, premotor, occipital and prefrontal
subregion of the thalamus differed significantly between C9orf72
mutation carriers and HC. No significant differences of LIs
could be detected between sporadic patients and HC. For every
investigated thalamic subregion as well as for overall thalamus,
C9orf72 mutation carriers showed the lowest LIs (Table 3).

Binary Logistic Regression
Target volumes, LIs and neuropsychological variables that
showed a significant difference between C9orf72 mutation
carriers and sporadic patients were subjected to a forward
stepwise binary logistic regression to determine the best predictor
of diagnosis. The optimal logistic regression model using the
volume of the prefrontal subregion of the thalamus (B = −2.54)
and the LI of the occipital subregion of the thalamus (B =−24.81)
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FIGURE 2 | Volumes of thalamic subregions. ∗ Indicates significant differences.

FIGURE 3 | Linear correlation between volumetric data and neuropsychological variables. There is a significant negative/positive correlation of
FTD-CDR-SOB/MMSE with the volumes of the prefrontal, temporal and occipital subregion of the thalamus.
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TABLE 3 | Laterality indices of overall thalamus and thalamic subregions, and pairwise post hoc Bonferroni test results.

Dependent variable C9orf72 Sporadic HC C9orf72 vs. HC C9orf72 vs. sporadic Sporadic vs. HC

Overall thalamus 0.0061 0.0327 0.0349 + + n.s.

Primary motor −0.0956 −0.0687 −0.0722 n.s. + n.s.

Sensory −0.0731 −0.0494 −0.0503 + + n.s.

Premotor −0.0795 −0.0531 −0.0548 + + n.s.

Posterior parietal 0.0360 0.0576 0.0525 n.s. n.s. n.s.

Occipital 0.2373 0.2698 0.2814 + + n.s.

Temporal −0.0713 −0.0448 −0.0419 n.s. n.s. n.s.

Prefrontal 0.0366 0.0632 0.0690 + + n.s.

n.s., not significant; +p < 0.05, corrected for multiple comparisons.

as predictor variables (p < 0.05; Nagelkerke’s R2 = 0.441) resulted
in an area under the curve (AUC) of 0.88 (95% CI: 0.80 –
0.97). The highest combination of sensitivity and specificity was
acquired with a sensitivity of 1.00 and a specificity of 0.69 at a
predicted probability cutoff of 0.14.

A logistic regression model using only overall thalamic
volume as predictor variable (B = −0.82, p < 0.05; Nagelkerke’s
R2 = 0.327) still resulted in an AUC of 0.82 (95% CI: 0.70 –
0.94). The highest combination of sensitivity and specificity was
acquired with a sensitivity of 0.69 and a specificity of 0.84 at a
predicted probability cutoff of 0.33. The ROC curves are shown
in Figure 4.

DISCUSSION

Neuropathological data show that DPR protein aggregates are
abundant in the thalamus (Schludi et al., 2015). This is in
accordance with previous reports of significant thalamic atrophy
in C9orf72 mutation carriers (Sha et al., 2012; Mahoney et al.,
2012; Irwin et al., 2013). Furthermore, an early affection of
the thalamus in presymptomatic C9orf72 mutation carriers has
been shown (Rohrer et al., 2015). Here we show a significant
volume reduction of certain thalamic subregions of symptomatic
C9orf72 mutation carriers compared to sporadic patients and
HC and reveals overall thalamic volume to be a useful predictor
of C9orf72 mutation carrier status. The negative correlation of
thalamic volume and clinical parameters highlights the important
role of the thalamus in the pathogenesis of C9orf72 associated
clinical pictures of FTD and ALS.

C9orf72 mutation carriers present more frequently with
psychotic symptoms and show more severe memory impairment
than sporadic patients (Boeve et al., 2012; Snowden et al., 2015).
In our study cohort, disease severity measured by MMSE and
FTD-CDR-SOB was not only correlated with the volumes of
the frontal and temporal lobes but also with overall thalamic
volume and the volumes of the prefrontal, temporal and occipital
subregion of the thalamus, illustrating their clinical relevance.
These subregions furthermore showed the most striking
volumetric differences between C9orf72 mutation carriers and
sporadic patients. The occipital subregion includes lateral
geniculate nucleus and parts of the inferior pulvinar, temporal
subregion includes parts of the mediodorsal nucleus (MDN) and

FIGURE 4 | Receiver operating characteristic curves for logistic regression
models of C9orf72 mutation carriers versus sporadic patients. Model 1: Using
the prefrontal subregion of the thalamus and the LI of the occipital subregion
of the thalamus as predictor variables results in an AUC of 0.88. Model 2:
Using only overall thalamic volume as predictor variable still results in an AUC
of 0.82.

the medial and inferior pulvinar and the prefrontal subregion
includes some of MDN, ventral anterior nucleus and anterodorsal
and anteromedial nucleus (Behrens et al., 2003; Johansen-Berg
et al., 2005).

The “Salience Network (SN)” (Seeley et al., 2007) is an intrinsic
connectivity network that is activated in response to emotionally
significant stimuli and contributes to complex brain functions
like guidance of behavioral responses, production of subjective
feelings and initiation of cognitive control (Menon and Uddin,
2010; Medford and Critchley, 2010). The SN is anchored in the
dorsal anterior cingulate and anterior insula but also includes
various subcortical structures. Comparable SN disruption despite
contrasting atrophy patterns in C9orf72 mutation carriers and
sporadic patients has been described (Lee et al., 2014). Atrophy
of the medial pulvinar nucleus that has prominent reciprocal
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connections to major hubs of the SN (Romanski et al., 1997)
could only be detected in C9orf72 mutation carriers. As medial
pulvinar nucleus atrophy predicted reduced SN connectivity,
a strategic atrophy of the medial pulvinar nucleus has been
proposed to contribute to SN disruption in C9orf72 mutation
carriers (Lee et al., 2014). We therefore hypothesize that especially
atrophy of the medial pulvinar nucleus may have led to the
detected volume reduction of the temporal subregion of the
thalamus of C9orf72 mutation carriers in our study cohort.

Another thalamic node that is part of the SN is the MDN.
Studies detected significant atrophy of MDN in early stages of
FTD (Seeley et al., 2008). MDN is believed to be involved in
the pathogenesis of schizophrenia (Young et al., 2000; Alelú-
Paz and Giménez-Amaya, 2008) and has been shown to play an
important role in working memory and episodic memory (Gaffan
and Parker, 2000; Watanabe and Funahashi, 2012; Mitchell
and Chakraborty, 2013). It is involved in memory formation
and influences emotional connotations also via extralemniscal
pathways, e.g., connecting to the amygdala. For ALS a more
frequent bulbar onset in mutation carriers is discussed. With
view to FTD, mutation carriers may present with more psychosis
displaying delusions and hallucinations and/or catatonic features.
Also, late-onset dementia and depressive syndromes with
cognitive impairments were reported (Ducharme et al., 2017).
We hypothesize that MDN atrophy is reflected by the volume
reduction of the temporal and prefrontal subregion of the
thalamus of C9orf72 mutation carriers and that MDN atrophy
leads to a disruption of SN and thereby contributes to the
distinct clinical characteristics of mutation and non-mutations
carriers.

Several studies have reported greater occipital (Boxer et al.,
2011; Khan et al., 2012; Whitwell et al., 2012) and parietal
(Sha et al., 2012; Whitwell et al., 2012) volume loss of
C9orf72 mutation carriers compared to sporadic patients.
The detected volume loss of the occipital, posterior parietal
and sensory subregion of the thalamus of C9orf72 mutation
carriers may therefore be due to a common degeneration
of functionally connected regions. The fact that the atrophy
pattern in our C9orf72 mutation carrier study group goes
beyond the expected atrophy in the frontal and temporal
subregion of the thalamus is an indicator that atrophy in
mutation carriers may exceed the SN and is in keeping with
the described cortical pattern of atrophy detected in mutation
carriers that also goes beyond the sporadic FTD-associated
atrophy pattern.

In a recent volumetric MRI study, a classification accuracy
of 93% could be obtained to discriminate between C9orf72
mutation carriers, MAPT and GRN mutation carriers and
sporadic patients by using 26 regional volume and asymmetry
scores (Whitwell et al., 2012). A more conservative model
requiring 14 variables was able to classify 74% of patients
correctly. In contrast to the aforementioned study, we compared
only C9orf72 mutation carriers and sporadic patients. As group
sizes differed in our study cohort, classification accuracy cannot
directly be compared. Furthermore, as multicollinearity was
present in our data, results of binary logistic regression have
to be interpreted with caution. However, multicollinearity does

not bias the result of logistic regression, but only affects
calculations regarding individual predictor variables (Midi et al.,
2010). The optimal logistic regression model resulted in an
AUC of 0.88 while a logistic regression model using only
overall thalamic volume as predictor variable still resulted in an
AUC of 0.82. Both AUCs correspond to very good diagnostic
accuracy (Šimundić, 2008). Our data therefore provide evidence
of a combination of the volume of the prefrontal subregion
and the LI of the occipital subregion of the thalamus and
overall thalamic volume respectively to be of high predictive
value in identifying C9orf72 mutation carriers. MRI volumetry,
especially of subcortical regions of interest, may therefore help
to differentiate between C9orf72 mutation carriers and sporadic
patients, regardless of the presence of a positive family history.
This is particularly useful since prediction of mutation status is
extremely difficult based on clinical features alone. Nonetheless,
the addition of clinical information like prominent psychosis or
memory impairment (Boeve et al., 2012; Snowden et al., 2015),
co-occurring FTD and ALS symptoms (DeJesus-Hernandez
et al., 2011) and a positive family history may further improve
prediction.

As in previous studies examining thalamic asymmetries in
control subjects, we were able to detect left greater than right
asymmetry in our HC (Flaum et al., 1995; Okada et al., 2016).
Leftward asymmetry could also be detected in sporadic patients.
Mainly the posterior parietal, occipital and prefrontal subregion
of the thalamus seem to contribute to the detected overall
leftward asymmetry, whereas the primary motor, premotor,
sensory and temporal subregion of the thalamus display a
rightward asymmetry. In contrast, although each thalamic
subregion showed either rightward or leftward asymmetry, no
significant overall thalamic asymmetry could be detected in
C9orf72 mutation carriers. This is consistent with the symmetric
cortical atrophy pattern detected in C9orf72 mutation carriers
(Mahoney et al., 2012; Whitwell et al., 2012).

Although abundant DPR pathology within granule cell layer
of the cerebellum seems to be a consistent finding in C9orf72
mutation carriers (Al-Sarraj et al., 2011; Irwin et al., 2013) and
a number of studies have reported more prominent cerebellar
atrophy in C9orf72 mutation carriers compared to sporadic
patients (Mahoney et al., 2012; Whitwell et al., 2012; Irwin et al.,
2013), we were not able to detect significant group differences
with respect to cerebellar volume. In a recent study, focal atrophy
localized to lobule VIIa-Crus I in the superior-posterior region
of the cerebellum could be detected in C9orf72 mutation carriers
compared to HC (Bocchetta et al., 2016). As this area is connected
via the thalamus to the prefrontal cortex (Krienen and Buckner,
2009; Stoodley and Schmahmann, 2010) and therefore with
the SN (Caulfield et al., 2016) and is associated with goal-
directed behaviors, its involvement in C9orf72-associated FTD
and ALS seems plausible. Perhaps an investigation of cerebellar
subregions would have revealed atrophy clusters specific for
C9orf72 mutation carriers.

A limitation of the current study that needs to be considered
is the small number of C9orf72 mutation carriers enrolled
(N = 13) which rendered subdividing C9orf72 mutation carriers
in FTD, FTD/ALS and ALS patients impossible. Further studies
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of larger cohorts subdividing the different C9orf72 mutation
carrier phenotypes are necessary. Furthermore multi-scanner
data-sets and scans performed on 3T scanners and on 1.5T
scanners have been pooled in the analyses. However multi-site
studies offer a good possibility to investigate rare disorders like
neurodegenerative diseases caused by c9orf72 mutation carrier
status. Another limitation of our study was the absence of a
neuropathological confirmation of our sporadic patient study
group which leaves the possibility that a percentage of cases had a
mismatch of clinical diagnosis and underlying pathology.

Keeping these limitations in mind, our findings reveal a
combination of the volume of the prefrontal subregion and the
LI of the occipital subregion of the thalamus and overall thalamic
volume respectively to be useful predictors of mutation carrier
status. We furthermore demonstrated that the thalamic atrophy
pattern in C9orf72 mutation carriers goes beyond hubs of the
SN and is in good agreement with the cortical atrophy pattern
detected in C9orf72 mutation carriers, indicating a retrograde
degeneration of functionally connected regions.
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Observations in animal models suggest that amyloid can cause network hypersynchrony

in the early preclinical phase of Alzheimer’s disease (AD). The aim of this study was

(a) to obtain evidence of paroxysmal hypersynchrony in cognitively intact subjects

(CN) with increased brain amyloid load from task-free fMRI exams using a dynamic

analysis approach, (b) to investigate if and how hypersynchrony interferes with memory

performance, and (c) to describe its relationship with gray and white matter connectivity.

Florbetapir-F18 PET and task-free 3T functional and structural MRI were acquired in 47

CN (age = 70.6 ± 6.6), 17 were amyloid pos (florbetapir SUVR >1.11). A parcellation

scheme encompassing 382 regions of interest was used to extract regional gray matter

volumes, FA-weighted fiber tracts and regional BOLD signals. Graph analysis was used

to characterize the gray matter atrophy profile and the white matter connectivity of each

subject. The fMRI data was processed using a combination of sliding windows, graph

and hierarchical cluster analysis. Each activity cluster was characterized by identifying

strength dispersion (difference between pos and neg strength) their maximal and minimal

pos and neg strength rois and by investigating their distribution and association with

memory performance and gray and white matter connectivity using spearman rank

correlations (FDR p < 0.05). The cluster analysis identified eight different activity clusters.

Cluster 8 was characterized by the largest strength dispersion indicating hypersynchrony.

Its duration/subject was positively correlated with amyloid load (r = 0.42, p = 0.03)

and negatively with memory performance (CVLT delayed recall r = −0.39 p = 0.04).

The assessment of the regional strength distribution indicated a functional disconnection

between mesial temporal structures and the rest of the brain. White matter connectivity

was increased in left lateral and mesial temporal lobe and was positively correlated with

strength dispersion in the cross-modality analysis suggesting that it enables widespread

hypersynchrony. In contrast, precuneus, gray matter connectivity was decreased in the

right fusiform gyrus and negatively correlated with high degrees of strength dispersion

suggesting that progressing gray matter atrophy could prevent the generation of

paroxysmal hypersynchrony in later stages of the disease.

Keywords: amyloid, intermittent, functional connectivity, cognitively intact, hypersynchrony, resting state fMRI,

DTI, gray matter map
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INTRODUCTION

Abnormal functional connectivity measured by task-free fMRI
is one of the earliest manifestations of amyloid positivity in
cognitively intact subjects (e.g., Sperling et al., 2009; Sheline
et al., 2010; Jack et al., 2013; Wang et al., 2013; Brier et al.,
2014; Steininger et al., 2014; Jones et al., 2016). Findings
in animal models suggest that the early preclinical phase
of Alzheimer’s disease (AD) before the onset of cognitive
impairment is characterized by hypersynchrony, i.e., an increased
tendency for synchronous firing of larger than normal neuron
populations that has been linked to increased connectivity
or hyperconnectivity in task-free fMRI (Palop and Mucke,
2016; Shah et al., 2016). The findings in human studies in
this early preclinical phase are far from consistent with some
studies findings increased connectivity (e.g., Lim et al., 2014;
Matura et al., 2014; Jiang et al., 2016; Schultz et al., 2017;
Sepulcre et al., 2017) and others decreased connectivity (e.g.,
Sheline et al., 2010; Wang et al., 2013; Steininger et al., 2014;
Elman et al., 2016) or both but in different regions (Mormino
et al., 2011). Differences between study populations, techniques
used to assess functional connectivity, regions investigated etc.,
undoubtedly contribute to these conflicting findings. However,
it is also possible that these discrepancies reflect the true nature
of abnormal functional connectivity at this early stage. In all
these studies it is usually assumed that hyperconnectivity or
hypoconnectivity are sustained. An alternative explanation is that
hyper- and/or hypoconnectivity are paroxysmal and therefore
that the observation of one or the other just reflects the preferred
state of the brain at the time of the exam. There is evidence that
this is indeed the case for the early stage hyperconnectivity. For
example it has been shown in animal models of AD and also in
patients suffering from familial AD that high levels of amyloid
and amyloid precursor protein can cause intermittent neuronal
hyperactivity in form of epileptic discharges (Palop et al., 2007;
Palop and Mucke, 2010; Busche et al., 2012; Grienberger et al.,
2012; Mucke and Selkoe, 2012; Talantova et al., 2013; Vossel et al.,
2013; Kellner et al., 2014; Born, 2015; Stargardt et al., 2015).
Only about 2% of the patients diagnosed with mild cognitive
impairment (MCI) or dementia due to sporadic AD show overt
epileptiform discharges during routine EEG recordings though.
Intermittent unspecific EEG abnormalities, e.g., episodic focal or
diffuse slowing of the background activity, indicative for low level
focal or diffuse paroxysmal hypersynchrony are more common
in MCI and AD and can be found in 20–45% of the routine
EEGs (Liedorp et al., 2009, 2010; Kramberger et al., 2013). If
paroxysmal hypersynchrony severe enough to be detected by
routine EEG occurs in the more advanced stages, it is very well-
possible that it is already present in a more subtle form in
the preclinical stage and contributes to the conflicting resting
state findings depending on its severity and frequency in the
study population. Furthermore, complex interictal epileptiform
discharges as well as diffuse unspecific EEG abnormalities have
been associated with impaired cognitive performance (Smits
et al., 2011; Kleen et al., 2013) which raises the possibility that also
more subtle types of hypersynchrony in the preclinical stages of
AD could already have a negative impact on cognition.

The traditional type of task-free fMRI analysis calculates
functional connectivity from the correlation of the BOLD
signal fluctuations across the whole acquisition time and thus
makes the implicit assumption that these fluctuations stay stable
during this time. In diseases that are known or suspected
to be associated with paroxysmal events short, infrequent
hyperconnectivity phases are likely to be canceled out by longer
phases of physiological activity or cause unspecific connectivity
disturbances. Studies interested in investigating the dynamic
behavior of the BOLD signal therefore use modifications of the
traditional stationary approach of which the sliding window
approach is one of the most commonly used (Hutchison et al.,
2013).

The overall objective of this study was to use a combination of
sliding windows with graph and cluster analysis to seek evidence
for paroxsymal focal or diffuse hyperconnectivity suggesting
paroxysmal low level hypersynchrony in cognitively normal
elderly subjects with and without increased brain amyloid load
and to characterize its spatial pattern. The second objective was
to investigate if these phases could affect cognition by correlating
their duration with memory performance and by investigating
to what degree lateral and mesial temporal lobe structures, i.e.,
structures not only known to be involved in memory processes
but also to be affected early in AD, participate in these phases.
It was assumed that hyperconnectivity phases are more likely
to have a negative impact on memory performance if they last
longer and if this activity interferes with mesial temporal lobe
connectivity. The third and last objective was to investigate a
potential relationship between structural (gray and white matter)
connectivity and the severity of the functional hyperconnectivity
phases. It was assumed that structural connectivity had to be
intact to enable network hypersynchrony, i.e., that gray matter
atrophy due to synapse and/or neuron loss would prevent the
brain from generating the type of abnormal firing associated with
hypersynchrony and that white matter damage would prevent the
synchronization of remotely abnormally firing regions.

METHODS

Study Population
A total of 47 elderly (60 years and older), cognitively intact
subjects who were recruited from local Memory Clinics and the
community with flyers and advertisements in local newspapers
participated in this study. Exclusion criteria included any poorly
controlled medical illness (untreated diabetes, hypertension,
thyroid disease) and/or use of medication or recreational drugs
that could affect brain function, a history of brain trauma,
brain surgery or evidence for ischemic events (stroke but not
white matter hyperintensities or small lacunes) and skull defects
on the MRI. Normal cognitive functioning was assessed by
a battery of standard tests that included the Mini Mental
State Examination (MMSE), Clinical Dementia Rating (CDR),
California Verbal Learning Test II (CVLT-II), theWechsler Adult
Intelligence Scale III (WAIS III, digit symbol, matrix reasoning),
and the Delis-Kaplan Executive Function System (DKEF, trail
making, verbal fluency, design fluency). From this battery,
three CVLT-II subtests Short Free Discriminability and Delayed

Frontiers in Aging Neuroscience | www.frontiersin.org December 2017 | Volume 9 | Article 41849

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Mueller and Weiner Amyloid Effects on Functional and Structural Connectivity

Recall Discriminability, were chosen to assess the impact of
amyloid-associated hyperactivity on cognitive function because
an association between these measures and brain structure had
been demonstrated in a previous study in this cohort (Mueller
et al., 2011). Please see Table 1 for demographic details of the
final study population. All participants underwent structural and
functional MR imaging and had a florbetapir exam to determine
the amyloid beta plaque load. The study was approved by the
committees of human research at the University of California,
San Francisco (UCSF) and VA Medical Center San Francisco,
and written informed consent was obtained from all subjects
according to the Declaration of Helsinki.

PET
Florbetapir F18 PET exams were acquired either at the VA
Medical Center, San Francisco on a GE Discovery 690 PET
scanner or at the China Basin Campus of the University of
California, San Francisco on a GE Discovery STE VCT PET
system. The participants were injected with 10 mCi (370 MBq)
of florbetapir followed by 10min PET acquisition 50min later.
The images were reconstructed and normalized to a florbetapir
template on which several gray matter regions of interest known
to be vulnerable to amyloid deposition in the temporal and
parietal lobes, precuneus and anterior and posterior cingulate
were labeled. The mean count from each of these regions was
extracted and regional Standard Uptake Value Ratios (SUVR)
were calculated using whole cerebellum as the reference region.
The global SUVR was calculated by averaging the SUVRs from
all cortical labels. Participants with a global SUVR equal or higher
than 1.10 were considered to be amyloid positive.

MR Acquisition
All images were acquired on a Siemens Skyra 3T MR system
equipped with a 20 channel receive coil. The following sequences
were obtained as part of a larger research protocol. (1) T1-
weighted gradient echo MRI (MPRAGE) of entire brain,
TR/TE/TI= 2300/2.96/1,000ms, 1.0× 1.0× 1.0mm3 resolution,
acquisition time = 5.30min for tissue segmentation. (2)
PD/T2 weighted 2D turbo spin-echo sequence, TR = 3,210,
TE1/2= 101/11ms, 1.0× 1.0× 3.0 mm3 resolution, acquisition

TABLE 1 | Subject characteristics.

Amyloid negative Amyloid positive

n = 30 n = 17

Age 70.2 (6.3) 72.1 (6.3)

SUVR 1.02 (0.06) 1.25 (0.11)*

ApoE4 pos/neg 7/23 8/11

CDR 0.0 (0.00) 0.00 (0.0)

MMSE 29.8 (0.5) 29.6 (0.8)

CVLT-II immediate recall discriminability 2.3 (0.4) 2.4 (0.7)

CVLT-II short free recall discriminability 2.6 (0.7) 2.5 (0.9)

CVLT-II delayed recall discriminability 2.6 (0.7) 2.5 (0.9)

DKEF verbal fluency 13.9 (3.33) 13.9 (3.4)

Digit symbol 65.6 (17.1) 64.1 (12.2)

time: 3.43min, for co-registration between T1 and EPI data.
(3) 2D gradient echo EPI sequence TR/TE = 3,000/30ms, flip
angle = 80, 2.5 × 2.5 × 3mm resolution, no gaps, acquisition
time = 8.00min for dynamic task-free analysis. Subjects were
instructed to refrain from caffeinated beverages on the day of
the exam, to close their eyes and to relax but stay awake and
think of nothing in particular during the scan. (4) EPI-based
diffusion weighted imaging (TR/TE, = 7,200/73ms, 2 × 2 ×

2 resolution, 64 diffusion encoding directions with b = 1,000
s/mm2, acquisition time: 7.2min.

Image Processing
Task Free Functional Imaging Data
The first six time frames were discarded to allow the
MRI signal to achieve T1 equilibrium. The remaining 154
timeframes/subject underwent slice time correction, motion
correction and realignment onto a mean EPI image in the T1
space, spatial normalization using the transformation matrices
generated during the warping of the gray matter maps onto the
gray matter template with re-sampling to a 1.5 × 1.5 × 1.5mm
resolution. Framewise displacement (Power et al., 2012) was used
to assess the motion during the exam. Conn 17a (www.nitrc.org/
projects/conn, Whitfield-Gabrieli and Nieto-Castagnon, 2012) a
SPM based toolbox for task and task-free fMRI analysis was
used for further processing including linear detrending and band
pass filtering (0.008–0.09Hz) with simultaneous denoising. The
latter included the aCompCorr routine to reduce the effects of
physiological noise (eroded white and csf maps, five components
each) and motion regression (six affine motion parameters and
six first order temporal derivatives). In addition to that, ART
as implemented in the conn preprocessing was used to identify
timeframes with motion exceeding a movement threshold of
0.9mm which ensures that conn disregards these timeframes
during the denoising procedure but leaves the original time series
intact. No global signal removal was performed since this is
known to falsely increase anti-correlations between time series
(Murphy et al., 2009). The AICHA atlas was used to extract
the denoised mean time series and to estimate the functional
connectivity.

Stationary or Time Average Analysis
Timeframes identified as having excessive motion by ART were
removed and the functional connectivity matrix calculated. The
routines provided by the Brain Connectivity Toolbox (https://
sites.google.com/site/bctnet), in particular the weight conserving
measures “strength,” was used for this purpose (Rubinov and
Sporns, 2011). Weight conserving measures have the advantage
that they can be applied to fully connected networks, i.e., it is not
necessary to define an arbitrary threshold to generate the type
of sparse network required by the more commonly used non-
weighted equivalents degree. Strength is defined as the sum of
weights of links connected to a node or roi. A roi has a high pos
strength if its BOLD fluctuations are positively correlated with a
large number of that of other rois and a high negative strength
if its BOLD fluctuations are negatively correlated with a large
number of that of other rois. Positive (Spos) and negative (Sneg)
nodal strength and nodal strength dispersion (Sdisp), defined as
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difference between nodal positive and negative strength, were
used to assess the effects of group, age, and SUVR on functional
connectivity. Sdisp increases when Spos increases and Sneg
simultaneously decreases, i.e., shows a strength profile consistent
with hyperconnectivity or hypersynchrony, and was therefore
used as a proxy of hypersynchrony.

Dynamic Analysis
A sliding windows approach was used to explore temporal
variations of functional connectivity. Based on observations that
robust estimations of the functional connectivity without loss of
potentially interesting fluctuations are possible with window sizes
around 30–60 s (Hutchison et al., 2013), a window with the size
of 45 s (15 timeframes) that was advanced with increments of one
TR along the artifact corrected time series was chosen resulting
in 138 windows/subject or 6,486 windows for all 47 subjects that
were converted into 6,486 correlation matrices using Pearson
correlation (cf Figures 1A–C).

Graph analysis was again used to describe the interactions
between the different nodes in each window (please see
Figure 1D). The strength outputs for each window were
combined to obtain a map showing the fluctuations of pos and

neg strength over the whole acquisition time for each roi for
each subject (Figure 1E) and then concatenated across subjects
(Figure 1F) to obtain population maps of pos and neg strength
(Figure 1F). The nodal positive and negative strength in each
window of this population map were converted into z-scores
using mean and standard deviation of the nodal strength of
the amyloid neg CI as reference with the following formula:
strength z-score of node x in window n = strength of node x
in window n – mean of strength of node x from all windows
in reference data set/standard deviation of strength of node x
from all windows in reference data set. The thus calculated
nodal z-scores/window were averaged over all nodes to obtain
global positive and negative strength z-scores for each window
in each subject (Figure 1G). Hierarchical cluster analysis (Ward’s
minimum variance methods with the cubic clustering criterion
to identify optimal cluster number) was used to identify different
global negative and positive strength profiles in amyloid pos and
neg subjects (optimal cluster number= 11, please see Figure 1H.
The output generated by ART was used to identify windows with
motion outliers in the real data and to calculate the percentage
of motion outliers for each cluster. Clusters 9–11 consisted of
more than 50% ofmotion outliers (range 75–100%) and therefore

FIGURE 1 | Overview of processing steps. An example of denoised BOLD signal timeseries of an amyloid neg subject is depicted on the upper right side (A). The

timeseries is divided into overlapping 45 s long epochs or windows using a sliding windows approach (B), and a correlation matrix calculated using Pearson

correlation (C). Graph analysis is used to describe the interactions between the different ROIs for each window (D) that are combined to obtain maps that depict the

fluctuations of positive (pos) and negative (neg) strength over the subject’s whole timeseries (E). For the analysis the strength maps of all 47 subjects were combined

(F), converted into z-scores using the mean and std from the amyloid neg CN group as a reference from which the mean from all nodes is calculated for pos strength

and neg strength (G). This is used as the input for a hierarchical cluster analysis to identify windows with a similar global pos and neg strength profile (H). The output

from ART is used to identify windows with excessive motion or global signal fluctuations (I) and to eliminate them from all further analyses. The right-most panel shows

the cluster assignment for the sample subject (J). Each of the 138 windows in this subjects strength maps has been assigned to a cluster which allows to determine

how many different clusters or activity states occur in each subject and how long they last (duration = no of windows assigned to the cluster/activity state).
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were considered to represent “motion clusters” and were not
further evaluated. This also eliminated windows that despite not
meeting the ART threshold for motion outliers themselves had
a similar graph analytical profile as windows that did meet that
threshold and were therefore likely to be affected by subthreshold
motion. Forty-one percent of the windows assigned to cluster
1 had been identified as motion outliers and therefore cluster
1 was considered as “motion contaminated.” All other clusters
had 20% or less motion outliers and were together with cluster
1 fully evaluated after excluding all motion outlier windows.
Eliminating windows with excessive motion results in a more
rigorous elimination of motion artifacts than just eliminating
the motion affected timeframe alone because it also eliminates
timeframes with subthreshold motion that usually accompany
timeframes with suprathreshold motion (Figures 1I,J).

The last step was to investigate if certain clusters tended
to occur together. This was done by calculating the “cluster
neighborhood” or the frequency by which a window that had
been assigned to cluster A were next to a window assigned to
one of the other clusters in a data set. The frequencies with
which the other clusters appeared were compared with Fisher’s
exact test (p < 0.05 with Bonferroni correction for multiple
comparisons) to identify those cluster(s) that were significantly
more often found in the neighborhood of cluster A than others
clusters. Table 2 summarizes the global strength profiles of the
eight clusters expressed as z-scores. Clusters 1–8 were further
characterized by investigating the following features.

1. At the global level by investigating the relationship between
SUVR and memory performance (short and delayed recall
of the CVLT) and the time (counts of windows assigned to
cluster/subject) each strength profile or activity type could be
observed in an individual CN.

2. At the nodal level by determining mean nodal strength
dispersion for each cluster to investigate differences between
the distribution of brain regions with high and low strength
dispersion between clusters. Given the a priori hypotheses
re memory, the distribution within the medial temporal
regions (hippocampus, parahippocampus and fusiform gyrus)
and lateral temporal regions (superior, middle and inferior
temporal gyrus) was of particular interest. Finally, the
relationship between the time a particular strength dispersion

profile was observed in an individual CN and SUVR and
memory performance was investigated.

Volumetric Imaging Data
The T1 images were segmented using the new segmentation
algorithm as implemented in SPM12. The gray matter maps
were warped onto a symmetrical gray matter atlas in MNI space
while preserving the total amount (modulation) using SPM12’s
DARTEL routine and corrected for intracranial volumes (ICV)
using the individual’s combined gray/white/csf volumes. The
resulting gray matter maps were then converted into z-score
maps using the mean and standard deviation of the gray matter
maps of 32 healthy young controls (mean age: 28.2 ± 6.7) who
had been studied with the same sequence on the same magnet
and whose images had undergone the same processing. The atlas
of intrinsic connectivity of homotopic areas (AICHA, Joliot et al.,
2015) consisting of 384 homotopic cortical, and subcortical gray
matter regions of interest (gm roi) was used to extract the mean
z-score values for each gm roi. In order to investigate how the
mean gray matter z-score in one region is related to that of other
regions the so-called profile similarity index (PSI) was calculated.
The PSI between gm roi x and gm roi y was defined as follows:

rawPSI = (cROIA-meanroi)/abs((gm roi x-meanroi)

− (gm roi y-meanroi))

cROIA is either gm roi x or gm roi y whichever is larger, meanroi,
is mean over all 384 gm rois.

The rawPSI is calculated for each and every combination
between two gm rois resulting in a 384 × 384 matrix for every
subject. RawPSI-values exceeding the 95 percentile of all PSI-
values in the map are replaced by the PSI-value at the 95
percentile to remove outliers caused by a difference of 0 or
very small differences between two gm rois. The rawPSI map is
then converted into the final PSI map by multiplying it with a
normalization term n defined as n = 1/(range of all raw PSI in
map). A negative PSI indicates a gray matter loss and a positive
PSI a gray matter increase relative to the subject’s mean z-score.
The resulting PSI map of a healthy older individual is determined
by atrophic changes due to normal aging. Although an individual
PSI map is defined by individual anatomical features, it is
assumed to share many features with PSI maps of other healthy

TABLE 2 | Global strength profiles of all non-motion clusters.

Cluster ID NoWindows meanSposZ meanSnegZ Median fwd Neighbors No amyloid neg vs. pos Strength profile type

1 163 −0.116 0.438 0.258 2, 3 19/9 Non-balanced negative

2 909 −0.097 0.086 0.241 4 28/17 Non-balanced negative

3 926 −0.490 0.155 0.192 4, 2 23/16 Non-balanced negative

4 1,202 −0.332 −0.069 0.224 5, 2, 3 30/16 Balanced

5 928 −0.182 −0.259 0.232 4, 7 28/17 Balanced

6 452 0.362 −0.197 0.236 7, 2 23/12 Non-balanced negative

7 775 0.102 −0.476 0.236 5, 8, 6 22/14 Non-balanced negative

8 302 0.618 −0.727 0.253 7, 6 14/7 Non-balanced negative

fwd, framewise displacement. please see text for details. Neighboring clusters, bold, cluster that appears most often together with this cluster, non-bold clusters also appearing together

with this cluster but less often than bold cluster.
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elderly subjects. A pathological process though, e.g., gray matter
loss in medial temporal structures due to tau pathology, will
change the appearance of the PSI map. Graph theory is used to
characterize each subject’s PSI map. A gm roi has a high strength
if it has experienced a similar degree of gray matter loss as the
majority of the other gm rois and a low strength if there are
only few other gm rois with similar gray matter atrophy. This
project focused on differences of negative strength (sSneg) since
the focus of this study was on additional gray matter atrophy due
to a pathological process. The influence of group (amyloid pos
CN vs. amyloid neg CN), age and SUVR on nodal negative gray
matter strength was investigated.

Diffusion Weighted Imaging Data
ExploreDTI (Leemans et al., 2009) was used to process the DTI
data. After correction for motion and eddy-current induced
geometric distortions (Leemans and Jones, 2009; Irfanoglu et al.,
2012), diffusion tensors were calculated using a non-linear
regression procedure. Whole brain fiber tracking was done
using a deterministic streamline method and fiber pathways
reconstructed by defining seed points uniformly throughout the
brain (FA thresholds = 0.2, angle threshold = 30 degrees, step
size 1). The reconstructed fiber tracts were parcellated using the
AICHA parcellation that had been warped onto each subject’s
B0 map in subject space. White matter connectivity maps were
generated by identifying the number fiber connections passing
through both rois and extracting the mean FA from those
fibers. Graph analysis using weight conserving measures, i.e.,
positive strength, was used to describe each subject’s white matter
connectivity map at the nodal level (wm rois) and to assess
group differences (amyloid pos CN vs. amyloid neg CN) and the
influence of age and SUVR on white matter connectivity. White
matter connectivity is denoted with cFA.

Cross-Modality Analysis
The influence of white and graymatter connectivity on stationary
and dynamic functional strength, dispersion was assessed by
correlating each nodes strength dispersion with that of its own
white (cFA positively correlated with Sdisp) and gray matter
(sSneg negatively correlated with Sdisp) connectivity and with
the white and gray matter connectivity of every other node.
To reflect the temporal aspect of the dynamic analysis, nodal
Sdisp was weighted by the time during which this cluster was
observed in the individual before correlating it with white/gray
matter connectivity measures. To facilitate the interpretation
of these cross-modality analyses, the brain was divided into 20
regions (left and right, lateral frontal, medial frontal, cingulate,
insula, lateral temporal, medial temporal, lateral parietal, medial
parietal, occipital, and subcortical) and significant correlations
between rois within a region or with rois in other regions counted
(regional cross-modality connectivity matrix). To account for
the different number of rois within a region, the connectivity
within or between regions was expressed as a ratio (count of
significant correlations/no of rois in region with fewer rois). The
overall connectivity of each region was determined by summing
up the region’s entries in the cross-modality connectivity matrix
along the x and y axis (region connectivity summary). Upper and

lower 99% confidence intervals were calculated for each region
summary to identify regions with an increased (>99% upper
confidence interval) and decreased (<99% lower confidence
interval) cross-modality interaction by bootstrapping (10,000
iterations).

Statistics
Stationary fMRI analysis/white matter and gray matter
connectivity analyses: two-tailed Spearman correlation analyses
corrected (FDR p < 0.05) for multiple comparisons were used to
assess each nodes strength with age and SUVR.

• Cross-modality analyses: one-tailed Spearman correlation
analyses corrected for multiple comparisons (FDR p < 0.05)
were used to identify significant correlations between rois.

• Dynamic analysis: Mann Whitney and one tailed Spearman
correlation tests were used to test for differences of the
occurrences of different clusters between amyloid pos and
amyloid neg CN and to investigate the relationship between
cluster counts and SUVR, age and cognitive function. JMP
12.1.0 was used for the cluster analysis, the statistical toolbox
in Matlab was used for all other statistical analyses.

RESULTS

Functional Connectivity
Stationary Analysis
Figure 2A displays rois whose nodal strength correlated with
age and SUVR. Age was significantly negatively correlated with
Spos of rois in the left supramarginal gyrus and right cuneus
and positively with a roi in the right putamen. Sneg was
positively correlated with age in rois in the left superior frontal,
medial temporal and right thalamus and in the left and right
anterior insula and mesial prefrontal region. Sdisp was negatively
correlated with age in rois of the left supramarginal gyrus
and middle temporal gyrus, right mesial prefrontal gyrus and
cingulum and bilateral anterior insula.

Spos and Sdisp were positively correlated with SUVR in the
left anterior superior temporal gyrus and Sneg was negatively
correlated with SUVR in the left orbital-frontal, anterior insula,
parieto-occipital and precuneus region and the right superior
temporal region. There were no significant correlations between
stationary Spos, Sneg, or Sdisp and short or delayed recall
discriminability. Taken together, increasing age induced a shift
from positive to negative strength, while SUVR had the opposite
effect and demonstrated evidence for a SUVR associated focal
hypersynchrony in the left superior temporal gyrus.

Dynamic Analysis
The number of different clusters or types of activity observed in
a subject ranged between 4 and 8 (median: 6). Please see also
Table 2. Clusters 1–5 were characterized by a relative decrease
of Spos that was accompanied by a decrease of Sneg in clusters
4 and 5 and an increase of Sneg in clusters 1–3. Clusters 6–
8 were characterized by an increase of Spos and a decrease of
Sneg. Clusters 1–3 and clusters 6–8 represent unbalanced states
in which one connectivity type dominates. In the case of clusters
1–3 the balance is shifted toward negative strength indicating the

Frontiers in Aging Neuroscience | www.frontiersin.org December 2017 | Volume 9 | Article 41853

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Mueller and Weiner Amyloid Effects on Functional and Structural Connectivity

FIGURE 2 | Summary of the structural and stationary connectivity analyses. Regions with positive correlations are displayed in red, those with negative correlations in

blue. (A) Summarizes the findings of the stationary functional analysis for each of the measures, i.e., positive strength (Spos), negative strength (Sneg) and strength

dispersion (Sdisp, calculated as difference between Spos and Sneg) with age and SUVR. (B) Displays the findings for atrophy-based gray matter connectivity (please

see Methods in text body for details). On the left side regions whose negative structural strength (sSneg) is positively correlated with age, and on the right side regions

whose sSneg is positively correlated with SUVR. There was no overlap between regions affected by age and those affected by amyloid load. (C) Displays the findings

for white matter connectivity (please see Methods in text body for details). cFA is FA weighted stream line count connecting two regions. Correlations with age are

displayed on the left and those with SUVR on the right. Again, there was no overlap between regions correlated with age and those correlated with SUVR.

presence of a large number of negative correlations between rois.
In clusters 6–8 the balance is shifted toward positive strength
consistent with predominately positive correlations between rois.
Clusters 4 and 5 represent balanced states during which Spos

and Sneg are both slightly reduced. Clusters with similar strength
profiles tended to be neighbors indicating that those with less
pronounced strength profile represent a transition from one
strength profile into another, e.g., from unbalanced negative to
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balanced. Cluster 8 had the highest Spos and lowest Sneg and
consequently the largest Sdisp of all clusters, i.e., represented
a highly unbalanced state favoring positive correlations which
is consistent with a strength profile of hypersynchrony. Cluster
8 was also the only cluster whose window counts/subject were
positively correlated with a subject’s SUVR (r = 0.42, p < 0.03)
and negatively with a subject’s memory performance (CVLT short
free recall, r = −0.43, p < 0.03, delayed recall r = −0.39,
p < 0.04). Please see Supplementary Table 1 for other clusters.

Figure 3 displays the mean nodal Spos (yellow-red) and
nodal Sneg (green-blue) and maximal (75–100 percentile, red)
and minimal (0–25 percentile, blue) Sdisp nodes for each
cluster. Although the global Spos and Sneg of most clusters
differed (please see Table 3), the distribution of the respective
maxima and minima was quite similar. Although the extent
of involvement varied, the mesial temporal region including
the inferior temporal and fusiform gyrus and the orbito-frontal
region were identified as minimal Sdisp zones in all eight clusters.
The minimal Sdisp zones were caused by a lower Spos but
higher Sneg compared to other regions. Additional less consistent
minimal Sdisp zones were found the dorso-lateral and mesial
frontal cortex. The middle and superior temporal gyrus, lateral
temporo-parietal region, lateral and medial occipital gyri without
occipital poles, and the precuneus were identified as maximal
Sdisp zones in all eight clusters. The mesial superior frontal
region, anterior cingulate, the paracentral lobules, and pre- and
post-central gyri were identified as additional less consistent
maximal Sdisp zones. In accordance with its profile in the cluster
analysis, cluster 8 was characterized by the highest global mean
Spos and lowest global mean Sneg. This shift from Sneg to Spos
at the global level was also observed in the lateral temporal lobe
where over 50% of its area were identified as maximal Sdisp zones
and only 23% as a medium (25–50 percentile) Sdisp zones which
was clearly smaller than in other clusters (please see Table 3.).
The mesial temporal regions showed the opposite pattern, i.e.,
only 9% of its area were identified as maximal Sdisp regions
but over 55% as medium Sdisp zone. This indicates that large
parts of the mesial temporal lobe were not able to engage in the
high Sdisp activity observed in the lateral temporal lobes and
other extratemporal brain regions. This pattern was only found
in Cluster 8.

The next step was to investigate a potential relationship
between memory performance and the observed type of strength
re-distribution. To this purpose windows characterized by larger
than normal (above upper 99% confidence interval) maximal
Sdisp zones and lower than normal (below lower 99% confidence
interval) medium Sdisp zones in the lateral temporal regions
and windows characterized by smaller than normal (below lower
99% confidence interval) maximal Sdisp and larger than normal
(above upper 99% confidence interval) medium Sdisp zones
were identified in each cluster and counted for each subject.
In cluster 8, the counts of windows with smaller than usual
medium Sdisp zones (25–50 percentile) in the lateral temporal
lobe were negatively correlated with short free recall (r = −0.56,
p= 0.005) and delayed recall (r =−0.53, p= 0.008). The counts
of windows with larger than usual maximal Sdisp zones in the
lateral temporal lobe were also significantly negatively correlated

with short recall and delayed recall but these correlations did not
survive correction for multiple comparisons. The counts with
larger than usual medium (25–50 percentile) Sdisp zones in the
mesial temporal region were negatively correlated with delayed
recall (r = −0.53, p = 0.008). The correlations between counts
of windows with larger than usual medium Sdisp zones for short
recall and those for smaller than usual high Sdisp zones were also
significantly negatively correlated with short recall and delayed
recall but did not survive correction for multiple comparisons.
Taken together, the findings indicate that a shift of the strength
distribution toward higher Spos with simultaneous decrease of
Sneg in the lateral temporal lobe that excludes a large part of the
medial temporal lobe could have an adverse effect on memory
performance if they occur frequently or over a longer time.
None of the other clusters showed this kind of relationship with
memory performance.

Structural Connectivity
Figure 2B shows gm rois whose sSneg was significantly
correlated with age. Positive correlations indicating increased
connectivity with other gray matter regions with similar degrees
of age-related atrophy were found in gm rois in the left
supramarginal gyrus, right superior temporal, parahippocampal
and parieto-occipital regions and bilateral posterior insula. A
roi in the right caudate was negatively correlated with age. A
single roi in the right fusiform gyrus was positively correlated
with SUVR. When a more liberal threshold was used (p < 0.01)
additional rois with positive correlations between sSneg and
SUVR were found in the left and right fusiform gyrus and the left
precueneus. Taken together, age and SUVR were both positively
correlated with sSneg. Age-related sSneg increases were diffuse
while SUVR-related Sneg increases were restricted to fusiform
gyrus and precuneus. There was no overlap between rois showing
age-related sSneg increases and rois showing SUVR related sSneg
increases.

Wm rois whose cFA was negatively correlated with age
were found in left and right orbito-frontal, inferior frontal,
occipital, lateral parietal, precuneus and cingulate regions, in
left precentral, rolandic, middle frontal, anterior insula and
right superior and medial frontal, superior temporal, fusiform
and thalamus regions. Wm rois with cFA that was positively
correlated with SUVR were found in left superior temporal,
hippocampus, fusiform regions and right superior frontal and
middle temporal regions and bilateral precuneus (cf. Figure 2C).
Taken together, age was negatively correlated with cFA and
age-related cFA decreases were widespread but were more
common prefrontal. In contrast, cFA was positively correlated
with SUVR. Significant correlations were restricted to rois within
the temporal lobes and precuneus. There was no overlap between
rois correlated with age and those correlated with SUVR.

Cross-Modal Correlations
Figure 4 shows the regional cross-modality connectivity matrices
and the graphical representation of the region connectivity
summaries for the stationary analyses and each cluster. All
clusters except No. 1 had several regions with above threshold
positive correlations between Sdisp and cFA indicating that white
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FIGURE 3 | Summary of the cluster characterization. The upper row shows the distribution of Spos in warm colors (please see color bar at the bottom of the figure),

the middle row shows the Sneg distribution in cold colors (please see color bar at the bottom) and the lower row the maxima (>75 percentile) of S disp in red and the

minima (<25 percentile) in blue. Please see Results section for a description of the findings.
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TABLE 3 | Summary of regional strength distribution.

Measure Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Global Spos 76.6 (3.8) 76.7 (1.9) 66.9 (1.5) 70.8 (1.4) 74.3 (1.0) 87.7 (3.1) 81.1 (2.1) 92.9 (3.5)

Sneg 64.8 (1.4) 57.7 (1.5) 59.1(1.4) 54.8 (0.8) 51.0 (0.6) 52.1 (2.3) 46.9 (1.5) 42.2 (1.8)

% Low S disp 19.6 20.2 20.1 20.3 20 21.2 21 18.9

% Medium Sdisp 56.3 50.5 52.1 48.2 51.5 51.2 51.4 51.2

% High S disp 24.1 29.3 27.8 31.5 28.5 27.6 27.6 29.9

Temporal lateral Spos 76.5 (5.7)* 77.0 (5.4)* 67.1 (3.2)* 71.2 (4.1)* 75.0 (6.1)* 86.5 (9.2)* 81.0 (4.8)* 94.1 (8.5)

Sneg 62.6 (5.0)* 56.8 (5.1)* 58.0 (3.1)* 53.6 (2.8)* 50.0 (4.4)* 53.3 (8.3)* 46.4 (3.5)* 41.6 (4.4)*

% Low S disp 11.7 22.9 19 20.5 21.9 31.4 27.2 26.5

% Medium Sdisp 55.6 43.5 42.2 35.9 43.4 44.4 41.5 23.5

% High S disp 32.7 33.6 38.8 43.6 34.7 24.2 31.3 50.0

Temporal medial Spos 75.1 (6.6)* 74.4 (5.3)* 65.2 (2.5)* 68.8 (4.2)* 71.7 (5.5)* 84.2 (11.8) 78.4 (7.1)* 86.3 (11.2)

Sneg 63.5 (5.4)* 57.8 (4.8)* 58.2 (2.6)* 54.4 (3.5)* 51.4 (4.7)* 54.4 (9.0)* 48.2 (5.9) 46.2 (7.6)

% Low S disp 32.3 41.7 33.2 37.7 42.3 42.6 37.6 35.3

% Medium Sdisp 46.5 37.1 48.9 49.3 44.5 38.8 43.8 55.5

% High S disp 21.2 21.2 17.9 13 13.2 18.6 18.6 9.2

*Significant different compared to cluster 8, global Spos, all clusters except 1 and 2 different, global Sneg all clusters different. pos, pos strength, Sneg, neg strength, S disp, strength

dispersion, low, within 0–25 percentile; high, with 75–100 percentile, % coverage of total lat TL or med TL area. Bold highlights S disp behavior unique to cluster 8.

matter connectivity had a role in maintaining Sdisp regardless
of the magnitude of Sdisp. The most prominent Sdisp cFA
correlations were found for Cluster 3 and 6 with 13, respectively,
14 above threshold regions. Cluster 8 had only three above
Sdisp/cFA threshold regions, one of them the left mesio-temporal
region. Cluster 8 and 7, i.e., both clusters with an unbalanced
positive strength profile and high Sdisp were the only clusters that
had several regions with above threshold negative correlations
between Sdisp and sSneg indicating an adverse effect of gray
matter atrophy on maintaining activity characterized by high
S disp.

DISCUSSION

There were two major findings: (1) The dynamic functional
connectivity analysis revealed paroxysmal phases of unbalanced
activity characterized by a widespread increased strength
dispersion, i.e., high pos strength associated with low neg
strength, consistent with hypersynchrony in cluster 8. The
duration of these phases was positively correlated with amyloid
load indicating a relationship between amyloid load and the
occurrence and severity of these paroxysmal phases. The
widespread shift toward positive strength at the expense
of negative strength also included large parts of lateral
temporal lobes but mostly spared mesial temporal lobe
structures, indicating a state of functional disconnection of the
mesial temporal region. The duration of this mesial temporal
disconnection state was negatively correlated with memory
performance. This paroxysmal widespread hypersynchrony seen
in the dynamic analysis was only weakly reflected in the
traditional time-averaged analysis that showed decreased neg
strength in isolated rois in the frontal, parietal and temporal

lobes and increased pos strength in the superior temporal lobe.
There was no association with memory performance in the
time averaged analysis. (2) Amyloid load was associated with
an increased white matter connectivity in the left lateral and
mesial temporal lobe and precuneus and with an increased
atrophy related connectivity in the right fusiform gyrus. The
findings of the cross-modality analysis suggest that the increased
white matter connectivity enabled the brain to maintain the
hypersynchrony and that the altered gray matter connectivity
in the mesial temporal lobe contributed to the functional
disconnection of this region. Taken together, the findings support
the notion that increased amyloid load in CN is associated with
phases of widespread paroxysmal hyperconnectivity consistent
with hypersynchrony and that these phases could have a negative
impact onmemory. The findings of the structural analysis suggest
that this widespread paroxysmal hypersynchrony depends on an
intact structural connectivity, i.e., that they either become less
widespread or vanish completely when the neurodegenerative
process progresses. The following paragraphs will discuss these
findings in more detail and attempt to put them into the context
of the current knowledge.

The first major finding of this study was that an
increasing amyloid load was associated with increasingly
longer paroxysmal states characterized by increased positive
strength and simultaneously decreased negative strength
resulting in a widespread increased strength dispersion. This
hyperconnectivity pattern is consistent with a widespread
low level hypersynchrony that has also been described in AD
animal models at a very early stage of the disease (Busche and
Konnerth, 2016; Shah et al., 2016). Although widespread, the
strength dispersion had regional maxima in the medium and
superior temporal lobes, lateral temporo-parieto-occipital region
and precuneus. Regional strength dispersion minima caused
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FIGURE 4 | Summary of the results of the cross-modality correlation for each cluster (1–8 from top to bottom) and the stationary analysis (bottom). On the left side

significant positive correlations between S disp and cFA are summarized by their regional cross-modality connectivity matrices displaying 20 regions (x from left to

right and y top to bottom 1, left lateral frontal, 2, left medial frontal, 3, left cingulate, 4, left insula, 5, left lateral temporal, 6, left medial temporal, 7, left lateral parietal, 8,

left medial parietal, 9, left occipital and 10, left subcortical, 11, right lateral frontal, 12, right medial frontal, 13, right cingulate, 14, right insula, 15, right lateral temporal,

16, right medial temporal, 17, right lateral parietal, 18, right medial parietal, 19, right occipital, and 20, right subcortical) and a graphical representation of region

connectivity summary where regions with above thresholds are indicated with a filled circle. On the right, significant negative correlations between S disp and sSneg

are summarized in the same way.
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by decreased pos strength with simultaneously increased neg
strength were located in in the orbito-frontal region, mesial
temporal and inferior temporal region. This strength pattern
indicates that the BOLD signal in these regions was anti-
correlated to that of the majority of other regions. Interestingly,
the other activity states or clusters showed very similar maxima
and minima even though the strength dispersion during those
phases was far less prominent. This can be interpreted as
evidence that paroxysmal hypersynchrony enhances existing
strength patterns in the brain rather than re-configuring them.
Only about 45% of the CN (14 amyloid neg CN, seven amyloid
pos CN) displayed cluster 8 activity in their task-free fMRI. The
absence of hyperconnectivity phases in the other amyloid pos
CN does not allow for the conclusion that they are free of such
episodes though. It is possible that hyperconnectivity phases
are less frequent, less severe or less widespread in these subjects
and therefore not detected during the 8min task-free fMRI with
the approach used in this study. That being said it is equally
possible that the hyperconnectivity phases indeed occur only in a
subset of the amyloid pos and neg subjects who share a common
unknown predisposition that renders the brain susceptible to
paroxysmal hypersynchrony and that increasing brain amyloid
enhances that predisposition. It will be necessary to investigate
this question in longitudinal studies that acquire task-free fMRI
over a longer time, e.g., 20–30min.

The cognitive performance of participants in this study
was within the age appropriate range and not different
between subjects with and without increased brain amyloid.
Nonetheless memory performance was negatively correlated
with the duration of these paroxysmal hypersynchrony phases.
This suggests that these phases might negatively affect cognitive
function if they become longer or occur more frequently. To
better understand how these transient hypersynchrony states
interfere with memory performance, their spatial and temporal
pattern in the mesial and lateral temporal lobe was investigated
in more detail. Compared to other activity clusters, the high
strength dispersion zone during cluster 8 activity engaged a larger
part of the lateral temporal region (50% compared to 24–44%
in other clusters) which led to a smaller moderate strength
dispersion zone (23% compared to 35–55% in other clusters).
These findings can be interpreted as evidence that the lateral
temporal lobe is able to engage in the hypersynchronous activity
causing the extreme strength dispersion in other parts of the
brain. This was not the case in the mesial temporal region where
the high strength dispersion zone was smaller (9% compared
to 13–25% in other clusters) but the intermediate strength
dispersion zone was larger than that of other activity clusters
(55 vs. 31–49%). The increased zone of intermediate strength
dispersion indicates that the hypersynchronous activity that
dominates other brain regions is not able to completely overcome
the anti-correlated BOLD activity in the mesial temporal region
resulting in a functional disconnection of these structures during
these phases. The finding of a negative correlation between
memory performance and the frequency of windows in which
extreme manifestations of this mesial temporal disconnection
and of the temporal lateral hypersynchronization were observed
also supports this hypothesis.

The extreme strength profile of cluster 8 activity, i.e.,
synchronization of the BOLD fluctuations over a large brain
region but failure to engage mesial temporal lobe structures,
can be explained by the findings of the structural connectivity
analyses. While age had the expected effect on white matter
connectivity, i.e., was negatively correlated with white matter
connectivity in mostly frontal regions, amyloid load was
positively correlated with white matter connectivity in lateral
temporal lobe structures and to a lesser degree also in mesial
temporal structures and in the precuneus. Although one has
to be careful when interpreting DTI findings in regard of
white matter integrity/functionality (Jones et al., 2013), the
positive correlation with SUVR and the normal cognitive
function suggests that amyloid did not have a negative impact
on white matter connectivity at this early stage. This is
in accordance with other cross-sectional studies that found
normal or increased FA in amyloid positive CN in the
absence of widespread tau accumulation (Racine et al., 2014;
Wolf et al., 2015; Rieckmann et al., 2016; Kantarci et al.,
2017). Normal or even increased white matter connectivity
facilitates the generation and spread of the hypersynchronous
activity hypothesized to be responsible for the prominent
strength dispersion characterizing cluster 8 activity. It also
supports normal between-region interactions as evidenced in the
cross-modality analysis that found one or more regions with
above threshold correlations between strength dispersion and
white matter connectivity in almost all clusters. In contrast,
amyloid had a negative effect on gray matter connectivity
in the mesial temporal region as evidenced by the positive
correlation between SUVR and atrophy-related connectivity
in the right fusiform cortex that was accompanied by more
widespread mesial temporal connectivity loss at more liberal
statistical thresholds. It seems reasonable to assume that
subtle atrophy in the mesial temporal region contributed to
the functional disconnection of this region during cluster 8
activity. This assumption is also supported by the findings
of the cross-modality analysis. Clusters 8 and 7 that are
both characterized by a high strength dispersion show several
regions with an above threshold number of negative correlations
between atrophy affected gray matter connectivity and strength
dispersion.

A SUVR exceeding the threshold used for amyloid positivity
in this study indicates a diffuse, widespread pathology with
amyloid deposits in the lateral superior temporal, lateral and
midline frontal and parietal regions and beyond (Braak and
Braak, 1997). The prolonged widespread hypersynchrony phases
with maxima in the lateral temporal and temporoparietal,
lateral frontal regions, and precueus observed in the amyloid
pos CN in this study are consistent with this widespread
amyloid pathology. The circumscribed gray matter atrophy
and the localized functional disconnection in the mesial
temporal region however seem at odds with a diffuse pathology
and also with the widely acknowledged observation that
amyloid pathology correlates poorly with neurodegeneration.
A circumscribed pathology with signs of neurodegeneration
is commonly associated with tau pathology. Interestingly, the
strength dispersion minima in the mesial, inferior temporal
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and orbito-frontal regions are not only different from that
seem in young controls (cf. Supplementary Figure 1) but also
correspond well to the pattern of tau pathology at this stage
(Schöll et al., 2016; Pontecorvo et al., 2017; Schultz et al.,
2017; Sepulcre et al., 2017). The “dual” association of the
mesial temporal structural and functional findings with amyloid
(significant correlation with SUVR) on the one hand and with
tau (regional preference, neurodegeneration) on the other hand
is interesting because it ties into the observation that amyloid
facilitates the development of widespread tau pathology that
characterizes the clinical manifest stages of AD (Musiek and
Holtzman, 2015). The mechanisms of this interaction are still
far from clear and are one of the major research topics of
the AD field (Pooler et al., 2015; Lewis and Dickson, 2016;
Ayers et al., 2017). In the context of this study’s findings, it
is particularly interesting that neuronal activity is supposed to
play a major role in some of the proposed mechanisms. It is
tempting to speculate that the type of widespread low level
hypersynchronous activity that characterizes cluster 8 could
represent a type of neuronal activity that is particularly well-
suited to enable tau spreading. If this is true, amyloid pos
subjects who show prolonged phases of this activity in task-
free fMRI, would be expected to be at higher risk to develop
a widespread tau pathology, cognitive impairment and brain
atrophy associated with it than amyloid pos subjects who do
not show hyperconnectivity phases or only very short phases.
Given the negative correlation between atrophy-related gray
matter connectivity and functional strength dispersion, it would
be expected that the spreading tau leads to the development
of widespread gray matter atrophy with secondary impact on
white matter connectivity. As a consequence of the increasingly
impaired structural connectivity the widespread functional
hyperconnectivity of the early stage would be gradually replaced
by a widespread hypoconnectivity in the later stages (Schultz
et al., 2017). Identifying amyloid pos CN with hypersynchronous
phases at an early stage and suppressing that activity with a
suitable medication (Bakker et al., 2015) could prevent this
hypothesized interaction between amyloid and tau and thus
eventually delay or even prevent the development of cognitive
impairment.

To our knowledge, this is the first study that combines
a dynamic task-free fMRI analysis with white and gray
matter connectivity analyses to investigate structure-function
associations in amyloid pos and neg CN. There are previous
studies that used different approaches of dynamic task-free
analysis to investigate functional dynamics in preclinical and
early AD. For example, Jones et al. (2012) investigated the
dwell time of subnetworks in the dorsal and posterior DMN
in AD patients and found shorter dwell times in brain states
with posterior DMN contributions and longer dwell times in
those with dorsal DMN contributions in AD compared to
controls. Demirtaş et al. (2017) used effective connectivity to
study global and regional fluctuations of synchronization over
the whole range of the AD from healthy controls to fully
developed AD and found amonotonous decrease over the disease
course. Kang et al. (2017) used regional homogeneity (ReHo)
to investigate functional synchronization in amyloid neg and

pos CN and found positive correlations between amyloid load
and ReHo in the lingual gyrus, left fusiform gyrus, and right
middle temporal gyrus in amyloid pos subjects, i.e., evidence
for a localized hypersynchrony. Quevenco et al. (2017) finally
used a sliding windows approach combined with PCA in CN
and found a reduced anterior-posterior connectivity in CN
whose cognitive functions worsened over 2 years compared
to those who did not decline but no significant association
between this connectivity reduction and amyloid load. While
these studies clearly show that dynamic task-free fMRI analyses
help to better understand the impact of beta amyloid on brain
function, the study populations and/or analysis methods differ
from the approach used in this study which complicates a
comparison of the findings. The same is also true for the only
previous study that investigated gray matter connectivity at the
single subject level in amyloid pos and neg CN so far. Tijms
et al. used a high resolution parcellation to assess similarities
of gray matter structure instead of gray matter loss as was
done in this study. They used graph analysis designed to look
at sparse binary networks to describe gray matter disruptions
and found a lower whole brain connectivity density and a less
efficient network organization in amyloid pos CN (Tijms et al.,
2016).

The study has several limitations. (1) Amyloid load was
assessed using a region of interest approach to calculate
global SUVR. Given the objective of this study it would have
been desirable to use quantitative fluorbetapir maps. However,
differences in the acquisition of the PET data at the two sites
prevented the reconstruction of quantitative maps. (2) Given
the potential association of some of the findings with tau
pathology, it would have been desirable to obtain tau PET
images as well. However, this was not possible due to budgetary
restraints and the limited availability of the tracer at the time
of this project. (3) The cross-modality analysis used simple
spearman correlations between each and every roi of the two
modalities and FDR to correct for multiple comparisons. This
approach is not uncommon, but there exist more sophisticated
multivariate statistical approaches, e.g., partial least square or
sparse canonical correlation, and it cannot be excluded that
these would have detected additional interesting associations
between modalities. (4) The study population in this study
was small and thus these findings have to be considered as
preliminary and need to be confirmed in different and ideally
larger populations that have amyloid and tau imaging, e.g., the
new ADNI.
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Supplementary Figure 1 | Summary of cluster characterization in 20 young

(mean age: 25.6 ± 4.8, range 21–40) healthy and cognitively normal subjects who

were studied with the same magnet and with the same imaging protocol. The

task-free data was processed in the same way as described for the older subjects

with the exception that the Spos and Sneg z-scores were calculated with all 20

subjects as reference. The cluster analysis identified 8 clusters (4 motion clusters),

the remaining clusters are displayed. The upper row shows the distribution of

Spos in warm colors (please see color bar at the bottom of the figure), the middle

row shows the Sneg distribution in cold colors (please see color bar at the bottom)

and the lower row the maxima (>75 percentile) of S disp in red and the minima

(<25 percentile) in blue. Please note that the Sdisp minima in the temporal lobes

of these young subjects are confined to the parahippocampus and that the

maxima extent into the inferior temporal lobe gyri. Finally, even though cluster 4

has a non-balanced positive profile, the dispersion is smaller than that of cluster 8

in the old population.

Supplementary Table 1 | Correlations No of cluster counts/subject with amyloid

load and memory.
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Alzheimer’s disease (AD) and its prodromal state amnestic mild cognitive impairment
(aMCI) are characterized by widespread abnormalities in inter-areal white matter
fiber pathways and parallel disruption of default mode network (DMN) resting state
functional and effective connectivity. In healthy subjects, DMN and task positive network
interaction are modulated by the thalamus suggesting that abnormal task-based DMN
deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter
circuitry. Thus, this article uses a multimodal approach to assess white matter integrity
between thalamus and DMN components and associated effective connectivity in
healthy controls (HCs) relative to aMCI patients. Twenty-six HC and 20 older adults
with aMCI underwent structural, functional and diffusion MRI scanning using the
high angular resolution diffusion-weighted acquisition protocol. The DMN of each
subject was identified using independent component analysis (ICA) and resting state
effective connectivity was calculated between thalamus and DMN nodes. White matter
integrity changes between thalamus and DMN were investigated with constrained
spherical deconvolution (CSD) tractography. Significant structural deficits in thalamic
white matter projection fibers to posterior DMN components posterior cingulate cortex
(PCC) and lateral inferior parietal lobe (IPL) were identified together with significantly
reduced effective connectivity from left thalamus to left IPL. Crucially, impaired
thalamo-cortical white matter circuitry correlated with memory performance. Disrupted
thalamo-cortical structure was accompanied by significant reductions in IPL and PCC
cortico-cortical effective connectivity. No structural deficits were found between DMN
nodes. Abnormal posterior DMN activity may be driven by changes in thalamic white
matter connectivity; a view supported by the close anatomical and functional association
of thalamic nuclei effected by AD pathology and the posterior DMN nodes. We conclude
that dysfunctional posterior DMN activity in aMCI is consistent with disrupted cortico-
thalamo-cortical processing and thalamic-based dissemination of hippocampal disease
agents to cortical hubs.

Keywords: diffusion MRI, tractography, effective connectivity, Alzheimer’s disease, mild cognitive impairment,
default mode network, thalamus, resting state
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative
disorder affecting approximately 6% of people over the age
of 65 and accounting for 60%–70% of dementia cases (Burns
and Iliffe, 2009). Typically, the AD-prodromal stage presents
as mild cognitive impairment (MCI; Stephan et al., 2012)
clinically defined as cognitive difficulties beyond those expected
based on age and education, but insufficient to interfere with
daily activities (Petersen et al., 1999; Petersen, 2004). MCI can
present with a variety of symptoms but is termed amnestic
MCI (aMCI) in cases where memory loss is the predominant
symptom.

In AD, the first neurofibrillary tangles appear in the
parahippocampal regions (Stage I) followed later, and
accompanied by cognitive symptoms, in the hippocampus
formation (stage III; Braak and Braak, 1991a,b, 1995).
Understandably, this knowledge has reinforced focus on
the hippocampus in the context of memory loss in AD but much
less well-known and less well-understood are the appearance of
tangles and plaques in the thalamic nuclei in parallel with those
in the hippocampus. Their appearance is often characterized as
an event downstream of the hippocampus pathology transmitted
by the projections of the mammillary bodies, but this view
is challenged by metabolic studies indicating that the earliest
consistent declines occur not in hippocampus but in posterior
cingulate cortex (PCC; Minoshima et al., 1994, 1997) where
amyloid deposition is highest (Buckner et al., 2005; Mintun
et al., 2006). The thalamus, with its dense network of reciprocal
interconnections with both hippocampus and PCC, is therefore
implicated by association (Vann et al., 2009; Aggleton et al.,
2010).

Such a view is supported by detection of thalamic atrophy
in pre-symptomatic familial AD on average 5.6 years prior
to expected symptom onset (Ryan et al., 2013) together with
increased amyloid burden (Knight et al., 2011a,b) and substantial
evidence suggesting that thalamic atrophy is present in MCI
prior to AD (Chételat et al., 2005; Shiino et al., 2006; de
Jong et al., 2008; Ferrarini et al., 2008; Cherubini et al., 2010;
Roh et al., 2011; Pedro et al., 2012; Zhang et al., 2013).
Structural irregularities have a sufficient impact on thalamo-
cortical circuits to allow healthy subjects to be differentiated
from those with MCI through impaired functional integrity
(Cantero et al., 2009). Conversely, carriers of the apolipoprotein
ε2 allele i.e., those showing a genetic predisposition against
developing AD, demonstrate significantly enhanced functional
(Patel et al., 2013) and structural (Chiang et al., 2012) integrity
of the thalamus.

Analysis of low frequency BOLD signal oscillations have
revealed several resting state networks. Of these, the default
mode network (DMN; Raichle et al., 2001; Greicius et al., 2003;
Damoiseaux et al., 2006) has consistently been identified as
dysfunctional in both MCI and AD in the context of amyloid
burden (Hedden et al., 2009; Drzezga et al., 2011; Mormino
et al., 2011; Sheline et al., 2011) and genetic risk (Roses,
1996; Sheline et al., 2010; Wang et al., 2012; Chhatwal et al.,
2013).

The DMN comprises medial prefrontal cortex (mPFC),
middle temporal gyrus (MTG), lateral inferior parietal lobes
(IPL), PCC and hippocampus regions. These nodes have
been identified as important hubs within the cortex (Buckner
et al., 2009) whose persistent background activity and dense,
long range interconnectivity may facilitate the early deposition
and prion-like transmission of amyloid plaques (Wermke
et al., 2008; Raj et al., 2012). DMN topography is therefore
recapitulated in the pattern of atrophy, hypometabolism and
amyloid deposition within the cortex (Buckner et al., 2005,
2008).

Thalamus appears to play a role modulating distributed
cortical networks (Di and Biswal, 2014). It is therefore of
note, that direct structural connections between the thalamus
and DMN (or thalamo-DMN pathway) components have
been described in vivo using diffusion tensor imaging (DTI;
Fernández-Espejo et al., 2012) and that these are sites of
atrophy (Zarei et al., 2010). Crucially, lesions to the thalamus
are known to cause DMN dysfunction (Jones et al., 2011).
One suggestion is that abnormal task-induced deactivation
of DMN response patterns in aMCI are a consequence of
impaired thalamo-cortical signaling (Pihlajamäki and Sperling,
2009).

The thalamus sends widespread connections to its ipsilateral
cortical hemisphere which are returned via cortico-thalamic
feedback connections. Together these form a thalamo-cortico-
thalamic feedback loop (Sherman and Guillery, 2006; Sherman,
2007; Zhang et al., 2008, 2010). Such an arrangement is critical
for generating the ubiquitous oscillations of the cortex recorded
by EEG and fMRI but its contribution (and other subcortical
components) to regulating the DMN in health and disease is
largely unexplored. On this basis, we chose to investigate the
impact of impaired thalamo-cortical microscopic white matter
anatomy on interactions in the DMN in aMCI patients.

We performed constrained spherical deconvolution (CSD)-
based probabilistic fiber tractography of the thalamo-DMNwhite
matter pathways in a cohort of older adults with aMCI and
healthy age-matched controls. We also examined the effective
connectivity of the resting state thalamo-DMN interactions
using a spatio-temporal formulation of Granger Causality (GC).
In contrast to simple statistical correlation (i.e., functional
connectivity), effective connectivity is more ambitious and
attempts to quantify the causal influence one region exerts
over another. Given that thalamo-cortical neural signals appear
to coordinate distributed networks (Di and Biswal, 2014),
such an approach provides greater scope for clarifying the
interactions between thalamus and cortex during the transition
between health and disease. We predicted that abnormal DMN
causal activity would be linked to structural deficits in the
thalamo-DMN pathway.

MATERIALS AND METHODS

Participants
Twenty six HC participants and 20 older participants with aMCI
took part in the study. The HCs were community-dwelling

Frontiers in Aging Neuroscience | www.frontiersin.org November 2017 | Volume 9 | Article 37064

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://www.frontiersin.org/journals/aging-neuroscience#articles


Alderson et al. Disrupted Thalamus Connectivity in aMCI

older adults recruited from the greater Dublin area (Ireland)
via newspaper advertisements. They underwent a health
screening questionnaire and a neuropsychological assessment,
the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD; Morris et al., 1989), in order to rule
out possible cognitive impairment before inclusion in the
study. The CERAD battery has been shown to be sensitive
to the presence of age related cognitive decline (Welsh
et al., 1991, 1992). All of the older participants included
in the study scored no more than 1.5 SD below the
standardized mean scores for subjects of a similar age and
education level on any of the sub-tests. The aMCI participants
were recruited from memory clinics in St. James Hospital
and St. Patrick’s Hospital in Dublin, Ireland, and were
diagnosed by a clinician according to the Peterson criteria
(Petersen et al., 1999)—i.e., abnormal memory scores for
age and education level with no dementia. Four were single
amnestic aMCI, and 16 were multi-domain aMCI (Petersen,
2004). Neuropsychological measures were administered or
supervised by an experienced neuropsychologist and included
the Mini-Mental State Examination (MMSE; Folstein et al.,
1975) and Cambridge cognitive examination (Huppert et al.,
1995).

All of the participants were right-handed with no history
of head trauma, neurological disease, stroke, transient ischemic
attack, heart attack, or psychiatric illness. They completed the
Geriatric Depression Scale (GSD; Yesavage et al., 1983), the
Eysenck Personality Questionnaire Revised Edition Short Scale
(EPQ-R; Eysenck and Eysenck, 1994), and a Cognitive Reserve
Questionnaire (Rami et al., 2011) before the MRI scan (Table 1).
The groups did not differ in terms of age, gender, education
level, or levels of cognitive reserve as assessed by the self-report
Cognitive Reserve Questionnaire. The aMCI group had lower
MMSE scores, higher GDS scores, and scored lower on the
EPQ measure of extraversion than the HC group. The study
had full ethical approval from the St. James Hospital and
the Adelaide and Meath Hospital, incorporating the National
Children’s Hospital Research Ethics Committee and St. Patrick’s
University Hospital Research Ethics Committee. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

TABLE 1 | Results of independent samples t-tests, except for gender which was
compared with a Fischer’s exact test.

HC (n = 26) aMCI (n = 20) p∗ (df = 44)

Gender 15 M, 11 F 10 M, 10 F 1.00
Age 69.30 ± 6.35 69.05 ± 7.55 0.90
Ethnicity White (Irish) White (Irish) -
Education 13.38 ± 3.73 14.32 ± 3.02 0.38
MMSE 28.65 ± 0.85 27.05 ± 2.17 0.0013
GDS 0.77 ± 1.07 2.58 ± 2.27 0.0008
EPQ E 8.04 ± 2.47 5.53 ± 3.37 0.0061
EPQ N 2.69 ± 2.43 3.78 ± 3.39 0.21
CR 16.65 ± 3.62 16.58 ± 4.97 0.95

Standard deviations are indicated. Statistically significant differences are indicated
in bold. MMSE, Mini-Mental State Exam; GDS, geriatric depression scale; EPQ E,
Eysenck personality questionnaire extraversion scale; EPQ N, Eysenck personality
questionnaire neuroticism scale; CR, cognitive reserve scale.

MRI Data Acquisition
Whole-brain high angular resolution diffusion imaging
(HARDI) data were acquired on a 3.0 Tesla Philips Intera
MR system (Best, Netherlands) equipped with an eight channel
head coil. A parallel sensitivity encoding (SENSE) approach
(Pruessmann et al., 1999) with a reduction factor of two was
used during the diffusion weighted image (DWI) acquisition.
Single-shot spin echo-planar imaging was used to acquire
the DWI data with the following parameters: echo time
(TE) = 79 ms, repetition time (TR) = = 20,000 ms, field of
view (FOV) = 248 mm, matrix = 112 × 112, isotropic voxel
of 2.3 mm × 2.3 mm × 2.3 mm, and 65 slices with 2.3 mm
thickness with no gap between the slices. Diffusion gradients
were applied in 61 isotropically distributed orientations with
b = 3000 s/mm2, and four images with b = 0 s/mm2 were
also acquired. A high-resolution 3D T1-weighted anatomical
image was acquired for each participant with the following
parameters: TE = 3.9 ms, TR = 8.5 ms, FOV = 230 mm, slice
thickness = 0.9 mm, voxel size = 0.9 mm × 0.9 mm × 0.9 mm.
Resting-state fMRI data were also acquired during the scanning
session. The scan lasted for 7 min during which time the
participants were asked to keep their eyes open and fixate on
a cross hairs in the center of a screen behind the MR scanner,
visible via a mirror. The BOLD signal changes were measured
using a T2∗-weighted echo-planar imaging sequence with
TE = 30 ms and TR = 2000 ms. Each volume of data covered
the entire brain with 39 slices, and the slices were acquired
in interleaved sequence from inferior to superior direction.
Two-hundred and ten volumes of data were acquired, with voxel
dimensions of 3.5 mm× 3.5 mm× 3.85 mm and a 0.35 mm gap
between the slices.

Face-Name Encoding and Recognition
Task Protocol
Relationships between the participants’ structural/effective
connectivity measures and memory were subsequently examined
using data obtained from a face–name recognition task following
the resting-state scan. The participants viewed a series of
27 emotional faces (Erwin et al., 1992) with a name presented
underneath each one. This task was an implicit memory task,
in that the participants later completed a surprise memory
tasks to test their retention of both the faces and the face–name
pairs, however, at the time of encoding, they were not explicitly
asked to remember the face–name pairs. Rather, the participants
were instructed to judge whether the names matched or suited
the faces. It was explained that this was a subjective decision,
with no right or wrong answer. The participants responded
yes or no by pressing a button on a MR-compatible response
pad held in their right or left hand, respectively, using the
index finger of either hand. Each face–name combination was
presented for 4 s and was shown twice during the run. The
faces were positive, negative, or neutral in valence and there
were equal numbers of valence types as well as gender. The
presentation of the face–name pairs was grouped according
to the emotional valence of the faces. In each instance, a
group of either two, three, or four faces of one valence type
was presented randomly using an event-related paradigm,
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subsequently, there was a delay during which a white cross
hair was presented (control condition). The duration of the
white cross was varied according to the duration of the face
stimulus. For instance, if a single face was presented for 4 s
the subsequent white cross was also shown for 4 s and then
the next block of faces began. The stimuli were delivered using
Presentation v.16.1 (Neurobehavioral Systems, Albany, CA,
USA).

Approximately 15 min following the encoding phase, the
participants performed a short computer-based recognition task.
The emotional faces were presented one at a time on a black
background with three names underneath. One of the names was
the correct name; one name was a name that had been paired
with a different face (distractor; incorrect name), while the third
name was a new name (foil; incorrect name). The participants
responded by pressing a button on the left, middle, or right side of
a keyboard to correspond with the relative position of the name
on the screen. The stimuli were presented for 5 s and followed
by an inter-trial interval of 5 s. This longer trial length was to
facilitate performance of this task as it was quite challenging.
Before the task began, the participants completed a short practice
run of five trials.

Resting State Pre-Processing
FMRI data processing was carried out using FMRI Expert
Analysis Tool (FEAT) Version 6.00, part of FMRIB’s Software
Library (FSL)1. Registration to high resolution structural and/or
standard space images was carried out using FNIRT (Andersson
et al., 2007). The following pre-statistics processing was applied;
motion correction usingMCFLIRT (Jenkinson et al., 2002), slice-
timing correction using Fourier-space time-series phase-shifting,
non-brain removal using BET (Smith, 2002), spatial smoothing
using a Gaussian kernel of FWHM3.0mm, grand-mean intensity
normalization of the entire 4D dataset by a single multiplicative
factor, highpass temporal filtering (Gaussian-weighted least-
squares straight line fitting, with sigma = 50.0 s).

Resting State Effective Connectivity
GC is a standard statistical tool for detecting the directional
influence one system component exerts over another. The
concept, originally introduced by Wiener (1956), and later
incorporated into a data analysis framework by Granger (1969)
is described as follows. If historical information from time series
X significantly improves prediction accuracy of the future of
time series Y in a multivariate autoregressive model (MVAR),
GC is identified. This may be viewed as a measure of model
prediction error where GC quantifies the reduction in prediction
error when past values of X are included in the explanatory
variables of Y (Schelter et al., 2006). By fitting a time invariant
MVAR model to the experimental time series the classic
GC formulation ignores crucial time-varying properties of the
system. Such an approach makes the tacit assumption that the
longer the time series, the more reliable the GC estimates.
While this may be correct in static circuit representations
(Smith et al., 2011), under time-varying conditions this principle

1www.fmrib.ox.ac.uk/fsl

is no longer valid. A more robust method is to divide the
time series into equal windows and consider them separately.
Here, an optimal trade-off between the length of the time
windows and the accuracy of the estimated coefficients for
each window must be determined. Time windows that are too
short prevent the accurate estimation of parameters, while time
windows that are too long increase the probability of incorrect
inferences of GC. Accordingly, the current article utilizes a
novel spatio-temporal GC formulation to quantify the effective
connectivity changes between region of interest (ROI; Luo et al.,
2013). In this framework, finding the optimal time window
length reduces to the solution of a constrained optimization
problem,

minl0 (m)

(
GCerr(l0(m))+

1
GCavg(l0(m))

)
where we seek to simultaneously minimize model prediction
error GCerr (i.e., the weighted average of the variances of
the residuals in each time window) and maximize detected
causality information GCavg (i.e., the average GC over all time
windows). This is performed for time windows of different length
lo(m) = t1, . . ., tm. The time window producing the lowest
Bayesian information criterion (BIC) is considered optimal.
By considering optimal time windows, the spatio-temporal
framework allows a more reliable and precise estimate of GC
in experimental datasets with time varying properties. This
approach has been shown to yield more accurate estimates of GC
on resting state fMRI data than traditional GC metrics. In this
case, the last 208 time points for each region under consideration
were extracted from the functional image volume and divided
into four windows with the first two time points removed to
avoid start up transients. In terms of spatial resolution, GC is
calculated between all pairs of voxels from the two ROI under
consideration. The mean GC among all pairs of voxels was then
used as the final estimate.

CSD White Matter Tractography Using
MRtrix3
A method for controlling free water contamination of tissue
and the resultant partial volume effects is especially important
around the fornix where atrophy and cerebrospinal fluid (CSF) is
prevalent. The free water elimination technique (Pasternak et al.,
2009) has been successfully applied in previous tractography
studies of ageing and aMCI (Metzler-Baddeley et al., 2012a,b;
Fletcher et al., 2014; Kehoe et al., 2015) however at higher
b-values the Gaussian assumption underlying the bi-tensor
model is no longer valid and a more simple heuristic is indicated.
Accordingly, we use the standard free water elimination
approach to identify and mask voxels with high free water
content but fit the conventional DTI model to each voxel.

The dwipreproc preprocessing script was to perform eddy
current-induced distortion and motion correction using the FSL
tool eddy (Andersson and Sotiropoulos, 2016). The standard
MRtrix3 processing script dwibiascorrect was used to eliminate
low frequency intensity inhomogeneities across the DWI series.
The script uses bias field correction algorithms available in the
FSL software package (Zhang et al., 2001).
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Probabilistic white matter tractography was performed on
the DWIs using the MRtrix3 software package2. Crossing fibers
were resolved using the CSD algorithm (Tournier et al., 2004,
2012). MRtrix3 pre-processing included computing the diffusion
tensors images (or diffusion ellipsoids) for each voxel fromwhich
the fractional anisotropy (FA), axial (DA), radial (RD) and mean
(MD) diffusivity.

Whole-brain tractography was performed using every voxel
as a seed point. The principle diffusion orientation at each
point was estimated by the CSD tractography algorithm, which
propagated in 0.1 mm steps along this direction. At each new
location the fiber orientation(s) was estimated before the tracking
moved a further 0.1 mm along the direction that subtended the
smallest angle to the current trajectory. A trajectory was followed
through the data until the scaled height of the fiber orientation
density function peak dropped below the default threshold, or
the direction of the pathway changed through an angle of more
than 90◦.

Anatomical masks were used to divide the results into
circumscribed regions. The DMN was defined by probabilistic
template (Wang et al., 2014) and the hippocampus and thalamus
using the Harvard-Oxford subcortical structural atlas (Figure 1).
Streamlines beginning in one mask and terminating in another
were considered in a pairwise fashion for all ROI. In addition,
the FSL tool FMRIB’s Automated Segmentation Tool (FAST)
was used to derive a white matter brain mask to constrain
tractography. Any tracks tracts exiting the white matter were
considered spurious and discarded. Tracts were prevented from
propagating between hemispheres by a stop region placed down
the midline corresponding to the corpus callosum.

Statistically significant differences in the mean FA, DA, RD
and MD of tracks in HC vs. aMCI were tested by way of a
two tailed two sample t-test at p < 0.05 corrected for multiple
comparisons.

Independent Component Analysis (ICA)
The DMN was identified for each subject using ICA. Analysis
was carried out using Probabilistic ICA (Beckmann and Smith,
2004) as implemented in Multivariate Exploratory Linear
Decomposition into Independent Components (MELODIC)
Version 3.14, part of FSL. The following data pre-processing
was applied to the input data: masking of non-brain voxels,
voxel-wise de-meaning of the data, normalization of the
voxel-wise variance. Pre-processed data were whitened and
projected into a 62-dimensional subspace using probabilistic
Principal Component Analysis where the number of dimensions
was estimated using the Laplace approximation to the Bayesian
evidence of the model order (Minka, 2001; Beckmann and
Smith, 2004). The whitened observations were decomposed
into sets of vectors which describe signal variation across
the temporal domain (time-courses) and across the spatial
domain (maps) by optimizing for non-Gaussian spatial source
distributions using a fixed-point iteration technique (Hyvärinen,
1999). Estimated component maps were divided by the
standard deviation of the residual noise and thresholded by

2http://www.mrtrix.org/

fitting a mixture model to the histogram of intensity values
(Beckmann and Smith, 2004). The number of components
was automatically estimated. The component corresponding
to the DMN was selected by cross correlating all the
components with a probabilistic DMN template (Wang et al.,
2014). The fMRI BOLD signal was extracted from DMN
components mPFC, MTG, IPL and PCC, combined with
those extracted from hippocampus and thalamus masks, and
analyzed using the spatio-temporal GC method to determine
the effective connectivity. A standard two tailed t-test was
used to determine significant differences between the HC
and aMCI patients at p < 0.05 corrected for multiple
comparisons.

RESULTS

Comparison of Resting State
Thalamo-DMN Effective Connectivity in HC
vs. aMCI Subjects
The spatio-temporal GC effective connectivity analysis revealed
significant differences in a circumscribed set of regions at the
Bonferroni corrected threshold of p < 0.0014.

In aMCI, several incoming connections to PCC and
left IPL showed reduced casual connectivity. An especially
pronounced decrease in causal interaction to left IPL from other
DMN components, hippocampus, and thalamus was observed
(Figure 2A). Reduced connectivity to left IPL included incoming
connections from left thalamus (t(44) = 3.77, p < 0.001), left
(t(44) = 4.3, p < 0.0001) and right (t(44) = 3.80, p < 0.001)
MTG and from right IPL (t(44) = 3.83 p < 0.001). These changes
correspond to a highly significant (t(44) = 5.10, p < 0.00001)
decrease in average FA in the white matter between left thalamus
and left IPL (Figure 2B).

Also in aMCI, significant reductions in connectivity to PCC
from left MTG (t(44) = 3.93, p < 0.001) were found, together
with significant reductions in connectivity to right IPL from PCC
(t(44) = 3.73, p < 0.001) (Figure 2A).

Comparison of Thalamo-DMN
Microstructural Integrity in HC vs. aMCI
Subjects
In aMCI, CSD white matter tractography identified statistically
significant increases at the Bonferroni corrected threshold
in average DA, RD and MD in the white matter fiber
pathways connecting thalamus to hippocampus, PCC and IPL
(Figure 3). Significant decreases in average FA were also
detected in the white matter between thalamus and IPL. These
included:

Significant decreases in FA (Figure 2B) between right
thalamus and right IPL (t(44) = 3.81, p < 0.001) and between left
thalamus and left IPL (t(44) = 5.24, p < 0.00001).

Significant increases in DA (Figure 2C) between right
thalamus and right hippocampus (t(44) = −4.68, p < 0.0001),
right hippocampus and PCC (t(44) = −4.02, p < 0.001), left
thalamus and left hippocampus (t(44) = −5.33, p < 0.00001), left
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FIGURE 1 | Regions of interest moving from inferior (top left) to superior (bottom right) defining thalamo-DMN white matter tractography masks. DMN components
mPFC, MTG, IPL, and PCC were defined using probabilistic template (Wang et al., 2014) while thalamus and hippocampus were defined using the Harvard-Oxford
subcortical structural atlas.

thalamus and PCC (t(44) = −3.91, p < 0.001), left hippocampus
and left IPL (t(44) = −4.13 p < 0.001), and left hippocampus and
PCC (t(44) =−3.91, p < 0.001).

These changes were recapitulated in the MD metric
(Figure 2D) with significant increases between right
hippocampus and PCC (t(44) = −3.69, p < 0.001), left thalamus
and left hippocampus (t(44) = −4.34, p < 0.0001), left thalamus
and PCC (t(44) < −3.63, p = 0.001) and left hippocampus and
PCC (t(44) =−4.17, p < 0.001).

Finally, a significant increase in RD (Figure 2E) between left
hippocampus and PCC (t(44) =−3.66, p< 0.001) was also found.

Empirical Measures of Effective and
Structural Connectivity Predict Memory
Performance
To investigate whether empirical measures of effective and
structural connectivity relate to memory, we regressed the
diffusivity and GC metrics against the results from a face-name
encoding and recognition task using gender, age and motion
parameter estimates as covariates of no interest.

The aMCI cohort displayed a significant negative correlation
between the integrity of the left thalamo-cortical white matter
connectivity and memory in three DMN regions (Figure 4A)
including IPL (t(24) = −2.43, p < 0.05), hippocampus
(t(24) = −2.31, p < 0.05), and PCC (t(24) = −2.21, p < 0.05). The
healthy subjects displayed no such relationship.

Conversely, the healthy cohort demonstrated a significant
negative correlation between the effective connectivity of IPL and

memory and three other DMN regions (Figure 4B) including left
MTG (t(24) =−2.47, p< 0.05), right IPL (t(24) =−2.54, p< 0.05),
and PCC (t(24) = −2.21, p < 0.05). The same relationship
was absent in the aMCI cohort. All results survived multiple-
comparison correction with FDR (q < 0.1).

DISCUSSION

The appearance of atrophy, tangles and plaques in thalamus
is often characterized as a secondary process resulting from
atrophy in the hippocampus and the prion-like transmission of
pathology along the white matter topography (Raj et al., 2012).
But such a view is inconsistent with evidence suggesting
that the earliest metabolic changes occur not in hippocampus
but in posterior DMN node PCC. Thus, structural deficits
in thalamus may be driving early PCC hypometabolism
and initiating the cascade of DMN functional anomalies
typically associated with early AD. Accordingly, we used
a multimodal approach to assess the impact of thalamo-
cortico-thalamic feedback loop integrity on DMN functionality
in aMCI.

We found significant structural abnormalities in the
thalamo-PCC and thalamo-IPL white matter fiber pathways in
the aMCI cohort (Figures 2B–E). A pronounced reduction in left
thalamo-IPL effective connectivity (Figure 2A) corresponded
with significant thalamo-IPL structural impairment (Figure 2B).
Critically, the integrity of thalamic white matter andmemory was
correlated in the aMCI cohort but not in the HCs (Figure 4A).
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FIGURE 2 | (A) Significantly reduced incoming effective connectivity to left IPL from thalamus and posterior DMN nodes. (B) Significantly reduced FA in thalamo-IPL
tracts where the magnitude of reduction corresponded to the degree of effective connectivity disruption in (A). (C) Significantly reduced DA in the left Papez circuit
including hippocampo-thalamus, thalamo-PCC and PCC-hippocampal tracts. (D) As in (C), significantly reduced MD in the left Papez circuit. (E) Significantly
reduced RD in left hippocampo-PCC tracts.

In general, the gradient of structural impairment followed a
hippocampo-thalamo-PCC axis consistent with a prion-like
dissemination of pathology (Raj et al., 2012) along the major

white matter fiber pathways of the Papez circuit (Papez, 1937).
No structural abnormalities were identified between cortical
DMN components mPFC, MTG, IPL and PCC, however
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FIGURE 3 | Example thalamo-DMN white matter tracts from a single representative healthy subject.

significant disruption to incoming IPL effective connectivity
was observed (Figure 2A), and this distinguished HC and aMCI
memory performance (Figure 4B).

Overall, our findings are broadly suggestive. One
interpretation is that disrupted effective connectivity in posterior
DMN nodes PCC and IPL is, to some extent, inspired by
incipient thalamo-cortical deafferentation. If true, this finding
may help explain abnormal task-induced DMN response
patterns typically found in aMCI and AD subjects (Pihlajamäki
and Sperling, 2009).

Impaired Hippocampo-Thalamo-PCC
White Matter Anatomy and Abnormal PCC
Effective Connectivity
The current article identified significant structural impairment
between fiber pathways connecting hippocampus and thalamus

(Figures 2C,D), thalamus and PCC (Figures 2C,D), and PCC
and hippocampus (Figures 2C–E). Measures of left thalamo-
cortical structural integrity (including tracts to hippocampus and
PCC) correlated with memory performance in the aMCI cohort
but not in the HCs (Figure 4A).

Impaired structural relations within the hippocampo-
thalamo-PCC complex are likely mediated by their close
anatomical association. Together these structures comprise
a limbic-diencephalic memory network (Nestor et al., 2003)
connected through the circuit of Papez (1937). This structure
runs from hippocampus through fornix to anterior thalamus
via mammillary bodies and onto PCC before returning to
hippocampus to complete the circuit. Interestingly, the
current study identified a decreasing gradient of structural
impairment between hippocampus, thalamus, and PCC,
suggesting that structural deafferentation of PCC through
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FIGURE 4 | (A) Significant association between structural integrity of thalamo-cortical white matter pathways and memory performance in aMCI subjects.
(B) Significant association between inferior parietal lobe effective connectivity and memory performance in HCs.

impaired hippocampus and thalamus fiber pathways, likely stems
from pathology and atrophy originating in the hippocampal
complex. Such a view is consistent with postmortem studies
indicating that thalamic nuclei connected to hippocampus
are a site of primary degeneration in AD (Xuereb et al.,
1991).

Previous work has highlighted a staged disconnection
process occurring both along the cingulum bundle between
hippocampus and PCC (i.e., the direct route) and within the
memory circuit of Papez encompassing thalamic intermediaries
(i.e., the indirect route; Villain et al., 2008). Such findings
are consistent with early PCC hypometabolism (Matsuda,
2001; Valla et al., 2001; Mosconi et al., 2008; Zhu et al.,
2013; Mutlu et al., 2016) where it frequently presents
before clinical diagnosis (Minoshima et al., 1997; Johnson
et al., 1998) as part of a constellation of metabolic effects
focused around medial temporal lobe and thalamus, when
memory loss is still a relatively isolated feature (Nestor
et al., 2003). Interestingly, PCC hypometabolism appears
to correlate with remote hippocampus atrophy early in
MCI but transition to both remote and local effects over
the course of progression to AD (Teipel and Grothe,
2016).

The current study identified a significant correlation
between the structural integrity of hippocampo-thalamus
and thalamo-PCC fiber pathways (i.e., the indirect route)

and memory in the aMCI cohort which was absent in the
HCs (Figure 4A). A similar pattern was identified in the
hippocampo-PCC fiber pathway (i.e., the direct route) however
this did not survive correction for multiple comparisons.
Dysfunction of structures along the hippocampal output
pathways to PCC have been linked to episodic memory
impairment (Yakushev et al., 2011).

The PCC’s hub status (Hagmann et al., 2008) may predispose
to amyloid deposition, atrophy, and hypometabolism (Buckner
et al., 2005, 2009) where remote often diffuse damage
accumulates as altered PCC connectivity through a form of
diaschisis (Meguro et al., 1999; Leech and Sharp, 2014). One
suggestion is that direct thalamo-PCC (Figures 2C,D) and distal
thalamo-IPL (Figure 2B) white matter structural deficits operate
in tandem to initiate a cascade of aberrant effective connectivity
in PCC (Figure 2A). Taken together, these findings are consistent
with a progressive disconnection of PCC from downstream
cortical and subcortical sources with differential effects operating
on the direct vs. indirect hippocampo-PCC pathways.

Impaired Thalamo-IPL White Matter
Anatomy and Abnormal IPL Effective
Connectivity
The current article identified significant impairments in
thalamic white matter circuitry serving bilateral IPL where the
magnitude of diffusivity change (Figure 2B) correlated with the
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intensity and extent of effective connectivity disruption in each
hemisphere (Figure 2A).

Marked structural deficits were observed in left thalamo-IPL
white matter connectivity together with significantly reduced
effective connectivity from left thalamus. In the aMCI cohort,
measures of reduced thalamo-IPL structural integrity correlated
with memory performance (Figure 4A). Left thalamo-IPL
structural abnormalities were accompanied by widespread
decreases in effective connectivity from other DMN regions.
Similarly, in right hemisphere, thalamo-IPL structural deficits
coocurred with disrupted incoming and outgoing IPL effective
connectivity. Crucially, the relationship between IPL effective
connectivity andmemory was disrupted in the aMCI subjects but
not in the HCs (Figure 4B).

Several converging findings implicate the pulvinar nucleus
of the thalamus in this dysfunction. The pulvinar nuclei appear
to play a role in cortico-cortical communication where they
receive driving input from IPL and relay signals back to cortex
via ascending thalamo-cortical projections (Saalmann et al.,
2012). Since direct cortico-cortical projections far outnumber
projections to pulvinar nucleus from cortex, the pulvinar is
unlikely to be the primary route for the transfer of cortico-
cortical sensory signals, rather, it may act to coordinate
interactions between distributed cortical networks as a function
of attention (Basso et al., 2005). Interestingly, entorhinal
cortex connects directly to pulvinar nucleus via a non-fornical
temporopulvinar tract (Saunders et al., 2005; Zarei et al., 2013)
which may provide a conduit for the prion-like transsynaptic
spread of disease agents originating in hippocampus (Raj
et al., 2012). Consistent with this hypothesis, the present study
identified significant structural impairment between thalamus
and hippocampus (Figures 2C,D).

Taken together, these findings are consistent with the idea
that disrupted posterior DMN node effective connectivity is,
to some extent, mediated by impaired thalamo-cortical white
matter circuitry.

Methodological Considerations
Some limitations should be noted. The major weakness of
the article is that each thalamic nucleus has specific cortical
connections and functions, yet the present analysis uses
a holo-thalamic approach. It would be more informative
to determine whether sub-nuclei show differential causal
interactions between specific regions of thalamus and crucial
DMN nodes and likewise, whether these connections show
varying degrees of structural impairment. Such an approach
would reveal the specificity of AD pathology for individual
thalamic nuclei. Analyzing the entire thalamus may dilute
these results. Our findings should therefore be considered as
preliminary evidence warranting further investigation.

It should also be noted that the indirect relationship between
fMRI BOLD signal and the underlying neural mechanism is
especially problematic when applying GC and should be noted
as a weakness in the present study. First, the study’s sampling
rate (repetition time or TR) of 2 s is considerably slower than
the millisecond temporal resolution of the neuronal activity we
seek to qualify. Second, the temporal precedence assumptions

of GC can be violated by regional differences in the latency of
the hemodynamic response (Handwerker et al., 2004; Friston,
2011). Since neurovascular coupling can be altered in complex
ways by disease, the likelihood of such an event is magnified in
the aMCI patient cohort (Handwerker et al., 2012). One typical
scenario, is that region X causally influences Y at the neuronal
level but has a longer time-to-peak in its HRF due to pathology
of the neurovasculature. Thus, GC analysis of BOLD signal may
incorrectly suggest that Y is causally implicated in causing X.
Simulations show that GC performs well when the HRF delay
between regions is short (Deshpande et al., 2010; Schippers
et al., 2011) however sufficiently fast sampling, on par with the
neuronal delays themselves, is required to ensure GC is fully
invariant to HRF latency (Seth et al., 2013). Other simulations
suggest that the relationship between GC at the neuronal level
and GC at the fMRI level is reasonably preserved over a range
of sampling rates and convolution parameters (Wen et al., 2013).
Whatever the case, sub-second temporal resolutions have been
made available (Feinberg et al., 2010; Feinberg and Yacoub, 2012)
and are standard as part of the Human Connectome Project (Van
Essen et al., 2013). The most recent advances enable a temporal
resolution as fast as 50 ms (Boyacioglu and Barth, 2013).

Critically, GC makes no claims regarding the underlying
physical mechanisms responsible for the observed differences in
causal relationships between regions. In contrast, the dynamic
causal modeling approach (DCM; Di and Biswal, 2014) explicitly
specifies dynamic effective relationships at the neuronal level,
allowing the most likely structural model for generating the
observed data to be identified. Applying DCM in future
studies will help clarify thalamic involvement in posterior DMN
dysfunction.

The choice of CSD-based tractography reflects the growing
recognition that assumptions underlying the DTI model may not
always be met in practice (Wheeler-Kingshott and Cercignani,
2009; Jones, 2010; Jones and Cercignani, 2010). The DTI
model can only capture a unitary fiber direction within a
single voxel despite observations that 90% of the brain is
composed of multiple crossing fibers (Jeurissen et al., 2013).
For this reason CSD attempts to map several fiber directions
per voxel by taking advantage of the high number of diffusion
encoding directions and large b-values acquired using the
HARDI acquisition protocol (Tournier et al., 2007, 2008; Mielke
et al., 2012; Farquharson et al., 2013). Using large b-values
has an additional advantage. By allowing a sufficiently long
diffusion path to be measured water molecules are more
likely to collide with their container. This may be relevant in
patients with neurodegenerative disorders who have increased
permeability of membranes, greater extracellular space due to
axonal atrophy, demyelination and glial pathology (Acosta-
Cabronero and Nestor, 2014). To date, only a handful of
tractography studies have utilizedHARDI data and large b-values
(Thiebaut de Schotten et al., 2011; Meng et al., 2013; Yeatman
et al., 2014; Xie et al., 2015) and only one specifically in clinical
aMCI and AD (Kehoe et al., 2015).

The absence of indirect biomarkers of AD pathology (CSF
biomarkers and/or amyloid PET imaging) should also be
acknowledged as a weakness in the present article.

Frontiers in Aging Neuroscience | www.frontiersin.org November 2017 | Volume 9 | Article 37072

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://www.frontiersin.org/journals/aging-neuroscience#articles


Alderson et al. Disrupted Thalamus Connectivity in aMCI

CONCLUSION

The dynamic nature of thalamo-cortical dialog suggests that
abnormalities in DMN operation may best be understood from
the perspective of thalamic dysfunction. The present study
employed diffusion imaging and effective connectivity to clarify
the relationship between the physical integrity of thalamic white
matter projections and the activity of the DMN. Significant
changes in the diffusivity metrics of thalamic white matter
projection tracts to hippocampus, PCC and IPL (Figures 2B–D)
were identified. Effective connectivity changes corresponding to
the same regions were also observed (Figure 2A). Interestingly,
no structural deficits were found betweenDMNnodes suggesting
that early changes in DMN activity could be a result of impaired
thalamo-cortical structural integrity.

Such a conclusion is supported by previous resting state MEG
(Garcés et al., 2014), EEG (Schreckenberger et al., 2004; Garcés
et al., 2013; Moretti, 2015) and fMRI (Greicius et al., 2004; Sorg
et al., 2007; Damoiseaux et al., 2012) studies citing disruption
in posterior thalamo-cortical alpha sources. Significant evidence
suggests that thalamo-cortical circuitry underlie the generation
and modulation of alpha and theta rhythms and that average
power is attenuated in these frequency bands for MCI and
AD subjects (Jeong, 2004; Koenig et al., 2005; Jelles et al.,
2008; Park et al., 2008). Several recent modeling studies have
proposed a candidate mechanism citing impairment to thalamic
reticular fibers in MCI and AD as the source of the dysfunction
(Bhattacharya et al., 2011, 2013; Li et al., 2011; Abuhassan et al.,
2014).

A corollary of this discussion is the extent to which
cortical activity is dependent on cortico-cortical verses thalamo-
cortical connections. It has been suggested that thalamic nuclei
coordinate distributed cortical regions through cortico-thalamo-
cortical pathways. Abnormalities originating in thalamic to PCC
and IPL white matter may therefore be sufficient to engender
posterior DMN dysfunction without appealing to comparable
deficits in cortico-cortical tracts between DMN nodes. Such
a view is consistent with the anatomy and timeline of
pathogenesis with thalamic nuclei demonstrating pathology
an earlier stage of the disease than cortex. Cortical atrophy

may therefore be in response to thalamic white matter
disruption with commensurate causal abnormalities occurring
in response to changes in thalamo-cortical signaling rather
than being instigated by structural changes within the cortex.
Importantly, the present study is unable to confirm this
hypothesis. Other scenarios, in which cortical pathology is
causing a degeneration of thalamo-cortical tracts is also
possible or likewise, a parallel disruption in both thalamus and
cortex.

Overall, these results provide a compelling and previously
unexplored physical basis for posterior DMN dysfunction and
abnormal fMRI task-induced deactivation response patterns in
aMCI and AD patients and underscore the need to consider
neurodegenerative changes within a wider system context
including contributions of both cortical and subcortical thalamic
components. This work complements a growing body of
evidence that suggests effective connectivity is disrupted in
neurodegenerative disorders such as aMCI andAD and that these
changes are underpinned by structural deficits. For these reasons,
joint effective and structural studies will play an increasingly
important role in the future as we seek to understand how
pathological changes in structural connectivity are reflected in
altered network effective connectivity.
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18F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson’s

disease (PD) that allows us to examine postsynaptic dopamine D2/3 receptors. Like other

neuroimaging modalities used for PD diagnosis, most of the total intensity of 18F-DMFP-

PET images is concentrated in the striatum. However, other regions can also be useful

for diagnostic purposes. An appropriate delimitation of the regions of interest contained

in 18F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this

manuscript we propose a novel methodology to preprocess 18F-DMFP-PET data that

improves the accuracy of computer aided diagnosis systems for PD. First, the data were

segmented using an algorithm based on Hidden Markov Random Field. As a result, each

neuroimage was divided into 4 maps according to the intensity and the neighborhood

of the voxels. The maps were then individually normalized so that the shape of their

histograms could be modeled by a Gaussian distribution with equal parameters for all the

neuroimages. This approach was evaluated using a dataset with neuroimaging data from

87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine

classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by

the proposed method provided higher accuracy results than the ones preprocessed with

previous approaches.

Keywords: PET image segmentation, 18F-DMFP-PET data, intensity normalization, Hidden Markov Models,

Gaussian distribution, Parkinson’s disease

1. INTRODUCTION

Neuroimaging data have become an essential tool to diagnose the most frequent neurodegenerative
disorders: Alzheimer’s and Parkinson’s disease. Initially, the neuroimages were visually inspected
by experienced clinicians in order to corroborate a previous tentative diagnosis based on
neuropsychological and behavioral tests. To this end, they looked for areas of low activation located
in specific brain regions that are known to be affected by the supposed disorder. During the last
decade, the neuroimaging community has progressively increased the use of computer toolboxes
to analyze neuroimaging data (Friston et al., 2006; Schrouff et al., 2013). These tools are able to
carry out statistical analyses that perform a more exhaustive examination of the huge amounts of
information contained in the data and remove the subjectivity inherent to the visual inspection
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of the neuroimages (Górriz et al., 2017). However, these
statistical analyses require additional preprocessing steps that
make neuroimages from different subjects comparable. Two
procedures are usually performed: spatial registration and
intensity normalization (Saxena et al., 1998; Dukart et al., 2013).
The former ensures that a given voxel from different neuroimages
corresponds to the same anatomical position while the latter
removes the differences due to the scanner used or the amount
of radiopharmaceutical injected (Salas-Gonzalez et al., 2013).
Even when all the data are acquired using a single scanner, an
intensity normalization of the data is desirable. Several studies
suggested that the absolute values of cerebral blood flow and
other metabolic measurements have a coefficient of variance
about 15% in healthy elderly subjects and as high as 30% in
patients suffering neurodegenerative disorders (Leenders et al.,
1990; Huang et al., 2007; Borghammer et al., 2009). In addition to
spatial registration and intensity normalization, a segmentation
step can be carried out. This procedure consists on partitioning
the data into two or more maps each one containing information
of different classes. For example, brain Magnetic Resonance
Imaging (MRI) data are usually segmented into gray matter,
white matter and cerebrospinal fluid. Segmentation is common
in studies that use structural data but it has been also used for
functional data. In Moussallem et al. (2012) the authors used
a threshold (adjusted by an ad hoc function) to segment 18F-
FDG-PET data in order to delimit tumors. A more sophisticated
approach for the same purpose was demonstrated in Li et al.
(2017).

18F-DMFP-PET is a neuroimage modality that is increasingly
being used as an effective tool to distinguish between idiophatic
and non-idiophatic parkinsonian patients and therefore to assist
the diagnosis of Parkinson’s disease (PD) (la Fougère et al., 2010).
In contrast to DaTSCAN (widely used for PD diagnosis; Towey
et al., 2011; Illán et al., 2012; Segovia et al., 2012;Martínez-Murcia
et al., 2014), 18F-DMFP-PET is able to image the postsynaptic
striatal dopaminergic deficit that characterizes non-idiopathic
parkinsonian variants such as multiple system atrophy (MSA)
or progressive supranuclear palsy (PSP). Because of this, most
of the studies with 18F-DMFP-PET are focused on analyzing the
striatal region, even though this neuroimaging modality contains
moderate signal intensities in regions other than the striatum that
can be useful in PD diagnosis (Segovia et al., 2015, 2017).

In this work, we propose a methodology to preprocess
18F-DMFP-PET data that improves the results of subsequent
analyses. The proposed method consists of two steps: data
segmentation using Hidden Markov Random Fields (HMRF)
and intensity normalization using the Gaussian distribution. The
segmentation step divides each neuroimage into 4 maps: (i) high-
signal voxels (located in the striatum), (ii) medium-signal voxels
(located in most of the regions other than the striatum), (iii) low-
signal voxels (most of then correspond to the cerebrospinal fluid),
and (iv) voxels with intensities around zero (located outside
the brain). The second step normalizes the intensities of each
map using a Gaussian model. This approach was evaluated and
compared with previous approaches using 87 neuroimages and
a system based on Support Vector Machine (SVM) classification
(Vapnik, 2000). The obtained results suggest that our procedure

improves the automatic separation of idiopathic and non-
idiopathic parkinsonian patients. In addition, it allows us to
independently analyze the striatum and the remaining regions of
the brain.

2. MATERIALS AND METHODS

2.1. Ethics Statement
Each patient (or a close relative) gave written informed consent
to participate in the study and the protocol was accepted by the
Ethics Committee of the University of Munich. All the data were
anonymized by the clinicians who acquired them before being
considered in this work.

2.2. 18F-DMFP-PET Neuroimaging
Database
Eighty-seven 18F-DMFP-PET neuroimages were used to evaluate
the preprocessing approach proposed in this work. These
data were collected during a longitudinal study carried out
by the University of Munich (la Fougère et al., 2010). The
neuroimages were acquired 55 min after the 18F-DMFP injection
(which was synthesized using an automatic synthesis module
as described in la Fougère et al., 2010) by means of a
Siemens/CTI camera. Neuroleptics, metoclopramide and other
medications and dopamine agonists that could potentially
interfere were withdrawn before the data acquisition according
to their biologic half-life. The emission recording consisted of
3 frames of 10 min each, acquired in 3-dimensional mode. The
resulting images were reconstructed as 128 × 128 matrices
of 2 × 2mm voxels by filtered backprojection using a Hann
filter.

All the patients included in the study were referred to
18F-DMFP-PET examination from local movement disorder
clinics. They showed parkinsonian movement disorders and
nigrostriatal degeneration that were confirmed by a 123I-FP-CIT
SPECT scan according to widely accepted criteria (Koch et al.,
2005). They were monitored during 2 years after the 18F-
DMFP-PET acquisition and at this time the neuroimaging data
were labeled according to the last diagnosis. Specifically, the
last diagnosis was based on the response to an apomorphine
challenge test or the response to dopamine replacement
therapy and follow-up clinical examinations, paying special
attention to orthostatic hypotension, cerebellar signs, eye
movement disorders, spasticity or other atypical symptoms.
Table 1 shows the resulting groups and some demographic
details.

TABLE 1 | Group distribution of the neuroimaging data considered in this work

(µ and σ stand for the mean and the standard deviation, respectively).

Sex Age

# M F µ σ Range

PD 39 22 17 61.38 11.14 35–81

MSA 24 20 4 68.42 10.73 43–85

PSP 24 12 12 69.29 7.33 55–84
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Before applying the proposed method and the subsequent
classification, the data were spatially registered using the template
matching algorithm implemented in Statistical Parametric
Mapping (SPM) (Friston et al., 2006). This procedure makes
each neuroimage matches a given template, pursuing the same
position (in the neuroimage space) in different neuroimages
corresponds to the same anatomical position. The template was
computed as follows: first all the neuroimages were registered
to a randomly chosen one. The registered images and their
hemisphere midplane reflections were then averaged (this step
ensured a symmetric template). Finally the resulting image was
smoothed and used to register the whole dataset (Ashburner
et al., 1997).

2.3. Markov Models
A Markov model (a.k.a. Markov chain) is a discrete stochastic
process in which the next state only depends on the current state.
If unobserved (hidden) states are assumed, the model is known as
hidden Markov model (HMM). This work is focused on Markov
random fields (MRF) that can be considered a generalization of
Markov models for multiple-dimensions problems.

2.3.1. Markov Random Fields

Markov random field theory is a branch of probability theory
for analyzing the spatial or contextual dependencies of physical
phenomena. A MRF is a family of random variables that satisfies
theMarkovianity property and can be described by an undirected
graphical model.

Let S = {1, 2, ...,N} be the set of indexes in space, and N =

{Ni, i ∈ S} a neighborhood system, with Ni being the set of sites
neighboring i and satisfying that i /∈ Ni and i ∈ Nj ⇐⇒ j ∈ Ni.
A random field is said to be a MRF on S with respect to a
neighborhood systemN if and only if Li (2001):

P(x) > 0,∀x ∈ χ

P(xi|xS−{i}) = P(xi|xNi )
(1)

where x = (x1, x2, ..., xN) is a configuration in S and χ is the set
of all possible configurations in S. AMRF can be characterized by
a Gibbs distribution, allowing us to redefine the probability P(x)
as (Hammersley-Clifford theorem):

P(x) =
1

Z
exp(−T−1U(x)) (2)

where:

Z =
∑

x∈χ

exp(−T−1U(x)) (3)

is a normalizing constant, T is a constant called temperature and
usually fixed to 1 and U(x) is the energy function, defined as a
sum of clique potentials Vc(x) over all possible cliques, C:

U(x) =
∑

c∈C

Vc(x) (4)

In this context, a clique c for the graph constituted by S and N

(S contains the nodes and N the links) is defined as a subset of S
whose elements are neighbors to one another (Li, 2001).

2.3.2. Hidden Markow Random Fields

Hidden Markow random fields are a generalization of HMMs
that assume MRFs (more than one dimension) instead of
Markov models (one dimension) and therefore, they can be
directly applied to two and three-dimensional problems, such as
neuroimage segmentation.

A HMRF is characterized by an unobservable (hidden) MRF
X = {Xi, i ∈ S} assuming values in a finite state space L, an
observable random field Y = {Yi, i ∈ S} assuming values in a
finite state space D, and a conditional independence restriction
(Zhang et al., 2001). For any particular configuration x ∈ χ , every
Yi follows a known conditional probability distribution p(yi|xi)
of the same functional form f (yi; θxi ). Given that (conditional
independence):

P(y|x) =
∏

i∈S

P(yi|xi) (5)

the joint probability of (X,Y) can be written as:

P(y, x) = P(y|x)P(x) = P(x)
∏

i∈S

P(yi|xi) (6)

Since P(yi, xi|xNi ) = P(yi|xi)P(xi|xNi ) (because of the local
characteristics of MRFs), the marginal probability distribution of
Yi can be computed in function of the parameter set θ and XNi :

p(yi|xNi , θ) =
∑

l∈L

p(yi, l|xNi , θ) =
∑

l∈L

f (yi; θl)p(l|xNi ) (7)

2.4. Automatic Segmentation Based On
HMRF
The segmentation based on HMRF assigns a label li ∈ L =

{1, 2, 3, 4}, i = {1, ...N} to each voxel in a 18F-DMFP-PET
neuroimage according to both intensity and neighborhood. Let
y = {y1, y2, ..., yN} be the intensity levels of theN voxels that form
a 18F-DMFP-PET neuroimage. In this procedure we looked for a
labeling x = (x1, x2, ..., xN), where xi ∈ L is the label assigned to
the voxel yi. Formally we estimated (MAP criterion):

x̂ = argmax
x∈χ

{P(y|x)P(x)} (8)

where x̂ is an estimation of x and considered a particular
realization of the MRF X. Using the equivalence between MRFs
and Gibb distributions the Equation (8) can be written as Zhang
et al. (2001):

x̂ = argmin
x∈χ

{U(y|x)+ U(x)} (9)
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where U(y|x) is the likelihood energy. Estimating x̂ involves
estimating the parameter set θ = {θl, l ∈ L}, where θl =

(µl, σl), since we assumed a Gaussian function for each of the
maps resulting from the segmentation of y. A k-means algorithm
was used to initialize the labeling x̂. Then, an Expectation-
Maximization (EM) algorithm was carried out to alternatively
estimate the parameter set, θ , and the label set, x̂.

Altogether, this segmentation procedure divides a neuroimage
into 4 maps: (i) voxels with intensity close to zero (mainly
voxels outside the brain), (ii) low-signal voxels, with very limited
diagnostic value, (iii) medium-signal voxels, and (iv) high-signal
voxels, with high diagnostic value (located in the striatal region).
In order to reduce the computational burden, the segmentation
procedure was only applied to an ad-hoc neuroimage computed
as the average of all the 18F-DMFP-PET images in our dataset (the
result is shown in Figure 1). Then, the resulting maps were used
as binary masks to segment the neuroimages in our dataset.

In this initial work, only striatal voxels were considered to
separate idiopathic and non-idiopathic patients. Thus, only the
maps containing high-signal voxels (one map per neuroimage)
were used in the subsequent analyses.

2.5. Intensity Normalization Based on the
Gaussian Distribution
The intensity of high-signal voxels largely differs from one
patient to another, even among patients suffering the same

parkinsonian disorder. This can be noted on Figure 2, which
shows the histogram of the map containing these voxels for the
first 20 patients in our dataset (all of them were diagnosed with
idiopathic parkinsonim).

In order to reduce these differences without losing the
discriminant information contained in the data, an additional
normalization step was performed. This procedure modeled
the histogram of a given map of each patient by a Gaussian
distribution. Then, these data were modified so that the
Gaussians corresponding to all the patients have approximately
same mean and standard deviation. First, parameters Gµ and Gσ

were computed:

Gµ =
1

n

n
∑

i = 1

µpi (10)

Gσ =
1

n

n
∑

i = 1

σpi (11)

where µpi and σpi respectively stand for the mean and standard
deviation of the Gaussian associated to data from patient pi, and n
is number of patients/neuroimages in our dataset. The data from
each patient were then modified as follows:

p
(NORM)
i = Gσ

pi − µpi

σpi
+ Gµ (12)

FIGURE 1 | Segmentation of the image computed as the average of all the 18F-DMFP-PET neuroimages (the map with the voxels outside the brain was not

represented). Note that two regions of interest, containing medium-signal and high-signal voxels, are clearly delimited.
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FIGURE 2 | Histograms associated to the striatal voxels of the first 20 neuroimages in our dataset. All of them correspond to idiopathic parkinsonian patients.

Figure 3 illustrates the transformation carried out by this
procedure. It shows the shape of the histograms of our data
before and after the normalization. Note that this procedure was
independently applied to the data of each patient and in our case,
it was only used to normalize the maps with high-signal voxels,
however it can be also applied other maps obtained from the
segmentation.

3. RESULTS AND DISCUSSION

In order to evaluate the advantages of preprocessing 18F-DMFP-
PET data with our methodology, a statistical classification
analysis was carried out. To this purpose, a SVM classifier
(Vapnik, 2000) was used after the preprocessing steps to separate
the idiopathic and non-idiopathic patients in our database (i.e.,
PD vs. MSA and PSP). As it is common in PD diagnosis
(Winogrodzka et al., 2001; Constantinescu et al., 2011; Niccolini
et al., 2014; Prashanth et al., 2014) we used only the voxels at
the striatum, as selected by the maps with high-signal voxels (the
othermaps resulting from the segmentation were discarded). The
normalized intensity values of the selected voxels were directly
used as feature.

The classification performance was estimated by means of
a k-fold cross-validation scheme (k = 5). In order to avoid
biased results, all the parameters required by the method were
fit inside the cross-validation loop, using only the training data.
A nested loop was also used to adjust the parameter C of the
SVM classifier (Varma and Simon, 2006). Table 2 shows the
achieved accuracy, sensitivity and specificity (idiopathic patients
were considered as positive) and compares these results with the
ones obtained by other approaches: (i) selecting voxels at the
striatum by means of an atlas and, (ii) using all the voxels of the
brain. In these cases, the intensity of the voxels was normalized
using the normalization to the maximum (Saxena et al., 1998).

The results shown in Table 2 suggest that our preprocessing
method allows improving the automatic separation of
parkinsonian patients. The relatively low rates achieved by
the SVM classifier are due to the dataset used in this work.
Most of the neuroimages correspond to patients in a very initial
stage. In fact they were acquired 2 years before obtaining the
final diagnosis used to label the data. In addition, the whole
brain approach also suffers from the small sample size problem
(Duin, 2000). In this classification the number of features is
larger and many of these features correspond to regions of low
signal in 18F-DMFP-PET data, which are not useful to separate
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FIGURE 3 | Gaussian distributions modeling the histograms of the maps with high-signal voxels from all the neuroimages in our database before (left) and after (right)

the proposed intensity normalization. Note that after normalization the histogram corresponding to all the maps can be modeled by a Gaussian with the same shape.

TABLE 2 | Accuracy, sensitivity and specificity obtained by a SVM classifier when

separating idiopathic and non-idiopathic Parkinsonism.

Features set Accuracy (%) Sensitivity (%) Specificity (%)

Striatum (proposed method) 75.86 74.36 77.08

Striatum (atlas) 72.41 66.67 77.08

All the voxels 65.52 56.41 72.92

the groups. In terms of sensitivity and specificity, the obtained
results show that the proposed method largely improve (about
8%) the ability of the classifier to correctly detect the positive
subjects (idiopathic Parkinsonism) however the improvement
in the true negative rate is limited, specially when compared
with the atlas-based approach. This fact can be explained by
the heterogeneity of the negative group (composed by subjects
diagnosed with MSA and PSP), which makes more difficult to
characterize the data.

As mentioned above, the analysis of neuroimaging data for
diagnostic purposes in PD-related studies is commonly focused
on the striatum. In fact, post-mortem studies reveled that most
of the neuropathological hallmarks of PD are gathered in this
area (Rinne et al., 1991; Hartmann, 2004; Nagatsu and Sawada,
2007). Nonetheless the region to be analyzed highly depends on
the neuroimage modality or, more specifically, on the binding
properties of the radiotracer used. For example, studies using
123I-FP-CIT (Winogrodzka et al., 2001; Spiegel et al., 2007)
frequently constraint their analyses to the striatum, since this
radiotracer binds to dopamine transporters, whereas studies
based on 18F-FDG usually analyze the whole brain (Hellwig
et al., 2012; Garraux et al., 2013) since this drug measures the
brain metabolism. 18F-DMFP is commonly used to study the
striatal dopamine (Schreckenberger et al., 2004) and indeed, the

vast majority of high-intensity voxels in 18F-DMFP-PET images
are gathered in the striatum. However, these data show a not
insignificant part of the total intensity in regions other than the
striatum (Segovia et al., 2017). The segmentation methodology
proposed in this work allows scientists to independently analyze
high-signal and medium-signal voxels (respectively located in
the striatum and in the remaining regions in 18F-DMFP-PET
data) while low-signal voxels (with low signal-noise ratio) are
discarded.

Compared with an atlas-based approach, our segmentation
method not only provides a higher accuracy in the subsequent
classification procedure but also allows the separation of regions
of interest in the image space. Thus, it is not necessary to
transform the data to the atlas space, avoiding the distortions
introduced by these procedures (Ashburner and Friston, 2007).

A comparison between the striatum region obtained by
the HMRF-based segmentation method and the atlas-based
approach is shown in Figure 4. A quantitative analysis
of this comparison reveals that: (i) the striatum region is
about 30% larger when obtained by means of the atlas-
based approach; (ii) most of the voxels selected by the
proposed method (about 72%) were also selected by the
other approach. Thus, the improvements in the classification
procedure are probably because the HMRF-based segmentation
provide a more accurate delimitation of the discriminant
voxels. Most of these voxels are located in the striatum
but not all the voxels in the striatum should be considered
to separate idiopathic and non-idiopathic Parkinsonism.
According to the results shown in Table 2, discarding these
moderately discriminant voxels of the striatum provides
larger sensitivity rates but have a reduced impact in the
specificity.

The motivation to use Gaussian distributions to model the
histogram of the maps resulting from the segmentation is
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FIGURE 4 | Overlap of the striatum mask obtained by the HMRF-based segmentation (red) and the atlas-based approach (blue). Four axial slices located respectively

at −6, 0, 6, and 12 mm from the anterior commissure are shown.

FIGURE 5 | Histogram of a 18F-DMFP-PET neuroimage corresponding to a

patient diagnosed with idiopathic Parkinsonism.

explained by the Figure 5, which shows the histogram of a
18F-DMFP-PET neuroimage. The two Gaussians corresponding
to maps with the low-signal and medium-signal-voxels can
be clearly identified. The Gaussian for high-signal voxels
has much less height than the remaining ones and can
not be appreciated in Figure 5 but it can be identified in
the histograms of Figure 2. Finally, the voxels with intensity
very close to zero could be modeled by a fourth Gaussian.
Indeed, the segmentation of a 18F-DMFP-PET neuroimage
using this algorithm is similar to model the histogram of that
neuroimage by a sum (or mixture) of 4 Gaussians (Segovia
et al., 2010; Górriz et al., 2011). Nevertheless, the HMRF
approach takes into account both, the voxel intensity and
the voxel neighborhood to associate each voxel to a specific
map/Gaussian.

In this work, the segmentation method was applied only
to an average neuroimage and the result was used to parcel
each individual neuroimage. This approach requires lower
computational burden than the straightforward alternative
consisting on applying the segmentation algorithm to each
neuroimage. Additionally the resulting maps are of equal size for

all the neuroimages, what allows us to directly use the voxels as
feature in the subsequent classification step.

4. CONCLUSION

In this manuscript we described a novel methodology to
preprocess 18F-DMFP-PET data in order to improve the
diagnosis of Parkinsonism. The preprocessing method
was carried out in two steps. First, using a HMRF-based
approach, each neuroimage was divided into 4 maps
according to the intensity and the neighborhood of the
voxels. Then, the intensity of the voxels was normalized
using the properties of the Gaussian distribution. To
this end, the histogram of each map was modeled by a
Gaussian distribution with the same parameters for all the
neuroimages.

This methodology was evaluated using a dataset with
neuroimaging data from 87 patients diagnosed with idiopathic or
non-idiopathic Parkinsonism. Using the proposed methodology,
we selected and normalized the high-signal voxels of each
neuroimage. These data were used to train a SVM classifier
in order to separate idiopathic and non-idiopathic subjects,
obtaining an accuracy rate about 75%. These results outperform
those reported by previous approaches, what suggests that our
preprocessing method improves the computer tools currently
used to assist the diagnosis of Parkinsonism.
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Objective: Machine learning classification has been the most important computational

development in the last years to satisfy the primary need of clinicians for automatic

early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been

successfully applied for reducing high dimensional and multi-source data in many

scientific realms. Our aim was to explore the state of the art of the application of RF

on single and multi-modal neuroimaging data for the prediction of Alzheimer’s disease.

Methods: A systematic review following PRISMA guidelines was conducted on this

field of study. In particular, we constructed an advanced query using boolean operators

as follows: (“random forest” OR “random forests”) AND neuroimaging AND (“alzheimer’s

disease” OR alzheimer’s OR alzheimer) AND (prediction OR classification). The query

was then searched in four well-known scientific databases: Pubmed, Scopus, Google

Scholar and Web of Science.

Results: Twelve articles—published between the 2007 and 2017—have been included

in this systematic review after a quantitative and qualitative selection. The lesson learnt

from these works suggest that when RF was applied on multi-modal data for prediction

of Alzheimer’s disease (AD) conversion from the Mild Cognitive Impairment (MCI), it

produces one of the best accuracies to date. Moreover, the RF has important advantages

in terms of robustness to overfitting, ability to handle highly non-linear data, stability in

the presence of outliers and opportunity for efficient parallel processing mainly when

applied on multi-modality neuroimaging data, such as, MRI morphometric, diffusion

tensor imaging, and PET images.

Conclusions: We discussed the strengths of RF, considering also possible limitations

and by encouraging further studies on the comparisons of this algorithm with other

commonly used classification approaches, particularly in the early prediction of the

progression from MCI to AD.

Keywords: random forest, Alzheimer’s disease, mild cognitive impairment, neuroimaging, classification
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INTRODUCTION

The Alzheimer’s disease (AD), a common form of dementia,
is a progressive neurodegenerative disorder that affects mostly
elderly people (Berchtold and Cotman, 1998). It is characterized
by a decline in cognitive function, including progressive loss
of memory, reasoning, and language (Collie and Maruff, 2000).
Mild cognitive impairment (MCI) is an intermediate state
between healthy aging and AD, which is not severe enough to
interfere with daily life. Although not all MCI subjects develop
to AD and they remain cognitively stable for many years, the
incidence of progression is evaluated between 10 and 15% per
year (Palmqvist et al., 2012). There is no generally accepted cure
for AD, but several treatments exist for delaying its course. For
this reason, it is extremely important to early detect the MCI
subjects that are at imminent risk of conversion to AD.

The diagnosis of AD is based primarily on multiple variables
and factors, such as, demographics and genetic information,
neuropsychological tests, cerebrospinal fluid (CSF) biomarkers,
and brain imaging data. Moreover, for the assessment of the risk
of conversion from MCI, the rate of change of these variables
could represent a further source of knowledge. In particular, the
neuroimaging technologies, such as, magnetic resonance imaging
(MRI), functional MRI (fMRI), diffusion tensor imaging (DTI),
single photon emission tomography (SPECT), and positron
emission tomography (PET) have been widely and successfully
applied in the study of MCI and AD (Greicius et al., 2004;
Matsuda, 2007; Fripp et al., 2008; Frisoni et al., 2010; Acosta-
Cabronero and Nestor, 2014). The choice of the neuroimaging
modality depends on the duration and severity of the disease,
for example when MRI could not reveal any brain alterations,
fMRI, SPECT, or PET are able to assess metabolic abnormalities
and DTI could be used for investigating the microstructural
disruption of the white matter (WM).

The high dimension of all the features considered in the
diagnosis of AD and in the progression from MCI, and their
complex interactions make it very difficult for humans to
interpret the data. Computer aided diagnosis (CAD) represents a
valuable automatic tool for supporting the clinicians by teaching
to computers to predict incipient AD. Machine learning and
pattern recognition algorithms have been proven to efficiently
classify AD patients and healthy controls (HC) and to distinguish
between stable MCI (sMCI) subjects and progressive MCI
(pMCI) that converted to AD (Zhang et al., 2012; Falahati et al.,
2014; Trzepacz et al., 2014). In general, the machine learning
methods used on neuroimaging data rely on a single classifier,
such as, the widely used Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), or Naïve Bayes. However, in
the last years, ensembles algorithms resulted to be a reliable
alternative to single classifiers showing better performance than
the latter, especially when multi-modality variables are combined
together. Although among all ensembles approaches Random
Forest (RF) (Breiman, 2001) produced the best accuracies in
many scientific fields (Menze et al., 2009; Calle et al., 2011; Chen
et al., 2011) and in other neurological diseases (Sarica et al., 2017),
it is still poorly applied in the prediction of AD, and only lately
researchers payed their attention to it. In particular, RF showed

important advantages over other methodologies regarding the
ability to handle highly non-linearly correlated data, robustness
to noise, tuning simplicity, and opportunity for efficient parallel
processing (Caruana and Niculescu-Mizil, 2006). Moreover, RF
presents another important characteristic: an intrinsic feature
selection step, applied prior to the classification task, to reduce
the variables space by giving an importance value to each feature.

For all these reasons, the main goal of this systematic review
was to highlight the role of RF as the ideal candidate for handling
the high-dimensional problem and the variable redundancy in
the early diagnosis of AD. We sought to review the literature in
this area to identify all the works that applied the RF algorithm
on single and multi-modality neuroimaging data, eventually
combined with demographics and genetic information, and
with neuropsychological scores. Our aim was also to evaluate
how well, in term of accuracy, RF was able to classify AD
and to distinguish between sMCI and pMCI, and how its
intrinsic feature selection procedure could improve this overall
accuracy.

Random Forest Algorithm
RF (see Figure 1 for an illustration) is a collection or ensemble
of Classification and Regression Trees (CART) (Breiman et al.,
1984) trained on datasets of the same size as training set, called
bootstraps, created from a random resampling on the training
set itself. Once a tree is constructed, a set of bootstraps, which
do not include any particular record from the original dataset
[out-of-bag (OOB) samples], is used as test set. The error rate
of the classification of all the test sets is the OOB estimate of

FIGURE 1 | Illustration of a random forest construct superimposed on a

coronal slice of the MNI 152 (Montreal Neurological Institute) standard

template. Each binary node (white circles) is partitioned based on a single

feature, and each branch ends in a terminal node, where the prediction of the

class is provided. The different colors of the branches represent each of the

trees in the forest. The final prediction for a test set is obtained by combining

with a majority vote the predictions of all single trees.
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FIGURE 2 | PRISMA workflow of the identification, screening, eligibility, and inclusion of the studies in the systematic review.

the generalization error. Breiman (1996) showed by empirical
evidence that, for the bagged classifiers, the OOB error is accurate
as using a test set of the same size as the training set. Thus,
using the OOB estimate removes the need for a separate test set.
To classify new input data, each individual CART tree (colored
branches in Figure 1) votes for one class and the forest predicts
the class that obtains the plurality of votes.

RF follows specific rules for tree growing, tree combination,
self-testing and post-processing, it is robust to overfitting and
it is considered more stable in the presence of outliers and in
very high dimensional parameter spaces than other machine
learning algorithms (Caruana and Niculescu-Mizil, 2006; Menze
et al., 2009). The concept of variable importance is an implicit
feature selection performed by RF with a random subspace
methodology, and it is assessed by the Gini impurity criterion
index (Ceriani and Verme, 2012). The Gini index is a measure of
prediction power of variables in regression or classification, based
on the principle of impurity reduction (Strobl et al., 2007); it is
non-parametric and therefore does not rely on data belonging
to a particular type of distribution. For a binary split (white
circles in Figure 1), the Gini index of a node n is calculated as
follows:

Gini (n) = 1−
∑2

j= 1
(pj)

2

where pj is the relative frequency of class j in the node n.

For splitting a binary node in the best way, the improvement
in the Gini index should be maximized. In other words, a low
Gini (i.e., a greater decrease in Gini) means that a particular
predictor feature plays a greater role in partitioning the data into
the two classes. Thus, the Gini index can be used to rank the
importance of features for a classification problem.

METHODS

For the present systematic review, we followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines (Liberati et al., 2009; Moher et al., 2009).
The statement consists of a checklist of recommended items to
be reported and a four-step flow diagram (Figure 2).

Published titles and abstracts in the English language from
the first of January 2007 to the first of May 2017 were
searched systematically across the following databases: PubMed,
Scopus, Google Scholar, and Web of Science. The search
terms were concatenated in an advanced query using boolean
operators as follows: (“random forest” OR “random forests”) AND
neuroimaging AND (“alzheimer’s disease” OR alzheimer’s OR
alzheimer) AND (prediction OR classification). After the initial
web search, duplicate items among databases were removed.

During the screening phase, to be assessed for eligibility,
studies were required to: (1) investigate a cohort of AD in
cross-sectional case-control or longitudinal design, (2) analyze
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neuroimaging data, (3) apply RF algorithm as Machine Learning
technique for the classification of AD patients.

To reduce a risk of bias, two authors (A.S. and A.C.)
independently screened paper abstracts and titles, and analyzed
the full papers that met the inclusion criteria, as suggested by
the PRISMA guidelines. The reference lists of examined full-text
papers were also scrutinized for additional relevant publications.

Data extracted from the studies—finally included in the
qualitative synthesis—were: (1) sample diagnosis, (2) sample size
and mean age, (3) neuroimaging acquisition type, (4) features
of interest, (5) RF classification parameters, (6) classification
performance validation, and (7) selected findings in terms of
classification performance.

RESULTS

Study Selection
Figure 2 reported the four phases—identification, screening,
eligibility and inclusion—of the process for the selection of the
studies in this review. Nineteen records were excluded after the
initial screening of title and abstract and three more records were
removed after the full-text assessment, following the inclusion
criteria. Finally, 12 studies were included in qualitative synthesis.

Study Characteristics
Data extracted from the studies were summarized in Table 1. In
particular, we reported those characteristics that are related to
the highest performance reached by RF in each study. Regarding
the cohort diagnosis, two works (Tripoliti et al., 2007; Lebedev
et al., 2014) investigated Alzheimer’s patients (AD) and healthy
controls (HC), four works (Cabral et al., 2013; Sivapriya et al.,
2015; Maggipinto et al., 2017; Son et al., 2017) had AD, HC,
and MCI, two studies (Gray et al., 2013; Moradi et al., 2015)
considered AD, HC, stable MCI (sMCI), and progressive MCI
(pMCI, converted to AD), two had sMCI and pMCI (Wang et al.,
2016; Ardekani et al., 2017), one had HC and MCI (Lebedeva
et al., 2017) and one (Oppedal et al., 2015) had AD, HC, and
Lewy-body dementia (LBD) patients.

All studies, except two (Cabral et al., 2013; Maggipinto et al.,
2017), which used FDG-PET and DTI acquisition respectively,
investigated structural MRI data alone (Lebedev et al., 2014;
Moradi et al., 2015; Ardekani et al., 2017; Lebedeva et al., 2017)
or in combination with features extracted from other modalities,
that is FDG-PET (Gray et al., 2013; Sivapriya et al., 2015),
florbetapir-PET (Wang et al., 2016), FLAIR (Oppedal et al., 2015)
and fMRI (Tripoliti et al., 2007; Son et al., 2017).

Eight works (Tripoliti et al., 2007; Cabral et al., 2013; Lebedev
et al., 2014; Moradi et al., 2015; Sivapriya et al., 2015; Ardekani
et al., 2017; Lebedeva et al., 2017; Maggipinto et al., 2017)
applied feature selection/elimination for reducing the dimension
of the variables space. The number of trees used in the RF
was not specified in two cases (Moradi et al., 2015; Son et al.,
2017). Finally, we reported in the column Results of Table 1
the—highest—overall accuracies of binary or ternary classifiers
reached by each study, except for the one (Tripoliti et al., 2007)
that provided only sensitivity and specificity. Figure 3 presented
a comparison—where applicable—of accuracies obtained by the

studies for the binary models AD vs. HC (Figure 3A, with a mean
of 88.8%), MCI vs. HC (Figure 3B, with a mean of 79%), sMCI
vs. pMCI (Figure 3C, with a mean of 74%), and the multi-class
problem AD vs. HC vs. MCI (Figure 3D, with a mean of 71.42%)

More details about individual works, such as, the results
obtained with other algorithms or other subsets of features, could
be found in the next section.

Results of Individual Studies
Tripoliti et al. (2007)
Tripoliti et al. (2007) conducted a study on 41 subjects, divided
into three groups: 12 subjects were AD patients (mean age 77.2, 7
females), from very mild to mild following the Clinical Dementia
Rating (CDR = 0.5/1), 14 subjects were healthy young controls
(mean age 21.1, 9 females, CDR= 0) and 14 were healthy elderly
subjects (mean age 74.9, 9 females, CDR= 0).

The cohort underwent a visual fMRI finger tapping task.
Raw structural and functional images were preprocessed for
correction of motion artifacts, registered and normalized.

Demographic and behavioral data were grouped with the
features extracted from the data preprocessing phase: (i) head
motions parameters; (ii) volumetric measures, i.e., volumes
obtained from the segmentation of gray matter (GM), WM
and CSF; (iii) activation patterns, consisting in several measures
derived from the activated voxels and clusters; (iv) hemodynamic
measures extracted from the BOLD responses, such as, the
amplitude of venous volume or of vascular signal. Authors
applied a feature selection on this dataset for reducing the
dimensionality by removing highly correlated variables. Selected
features were used for training a RF classifier with 10 trees,
and the performance was assessed using 10-fold cross-validation
accuracy. Two separated datasets were evaluated: the first
consisted of AD patients and both young and old healthy
subjects, while the second consisted of AD and only old controls.
Sensitivity and specificity of the two binary classifiers were
ranging from 94 to 98%, depending of the subset of selected
features. The highest values were obtained on the dataset that
included AD and old controls, with a 98% of both sensitivity and
specificity.

Gray et al. (2013)
Gray et al. (2013) selected a cohort of 147 subjects from the ADNI
database, consisting of 37 AD patients (mean age 76.8, 14 females,
CDR= 0.5/1), 75MCI patients divided into 34 stableMCI (sMCI,
mean age 75.7, 12 females, CDR= 0.5) and 41 subjects progressed
to AD (pMCI, mean age 76.1, 12 females, CDR = 0.5), and 35
HC (HC, mean age 74.5, 12 females, CDR = 0). All subjects
underwentmorphological 1.5TMRI, FDG-PET, and CSF analysis
at the baseline and authors used already pre-processed data by
ADNI. In particular, structural MRI and FDG-PET images were
motion-corrected, examined for major artifacts and registered to
the standard space MNI. Eighty-three volumetric region-based
features were extracted from MRI, while signal intensities of
239,304 voxels were obtained from FDG-PET. Biological features
were CSF-derived measures of Aβ , tau, and ptau. Furthermore,
a categorical variable describing the ApoE genotype was used as
genetic feature.
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TABLE 1 | Characteristics of each of the twelve studies included in the systematic review.

Study Cohort Nr. of subjects

(mean age, nr. of

females)

Neuroimaging

acquisition

Features of interest Classification

parameters

Performance

validation

Results

Tripoliti et al., 2007 AD

HC

12 (77.2, 7)

14 (74.9, 9)

– 1.5 T MRI

– Task-based

fMRI

– Demographic data;

– Behavioral data;

– Head motions

parameters;

– Volumetric

measures;

– Activation patterns;

– BOLD-derived

hemodynamic

measures.

– Feature selection

based on correlation;

– RF with 10 trees.

10-fold

cross-validation

sensitivity/

specificity

AD vs. HC: 98%/98%

Gray et al., 2013 AD

sMCI

pMCI

HC

37 (76.8, 14)

34 (75.7, 12)

41 (76.1, 12)

35 (74.5, 12)

– 1.5 T MRI

– FDG-PET

– Volumetric

measures;

– FDG-PET voxel

intensities

whole-brain;

– CSF-derived

measures;

– Genetic information.

– RF with 5,000 trees. Stratified repeated

random sampling

accuracy on a

separate test set

AD vs. HC: 89%

MCI vs. HC: 74.6%

sMCI vs. pMCI: 58.4%

Cabral et al., 2013 AD

MCI

HC

59 (78.2, 25)

59 (77.7, 19)

59 (77.4, 21)

– FDG-PET – FDG-PET voxel

intensities;

– Feature selection

with Mutual

Information criterion;

– Decomposition by

the one-vs.-all

scheme;

– Aggregation scheme

with voting strategy

(MAX);

– RF with 100 trees.

Repeated 10-fold

cross-validation

accuracy

AD vs. MCI vs. HC:

64.63%

Lebedev et al.,

2014

AD

HC

185 (75.2, 92)

225 (75.95, 110)

– 1.5 T MRI – Non-cortical

volumes;

– Cortical thickness;

Jacobian maps;

– Sulcal depth.

– Recursive feature

elimination with Gini

index;

– RF with 1,000 trees.

Overall accuracy

on a separate test

set

AD vs. HC: 90.3%

Moradi et al., 2015 AD

sMCI

pMCI

HC

200(55-91, 97)

100 (57-89, 34)

164 (77-89, 67)

231 (59-90, 112)

– 1.5 T MRI – GM density values;

– Age;

– Neuropsychological

scores.

– Feature selection

with regularized

logistic regression

framework

10-fold

cross-validation

accuracy

sMCI vs. pMCI: 82%

Oppedal et al.,

2015

AD

LBD

HC

57 (N.A.)

16 (N.A.)

36 (N.A.)

– 1.0/1.5 T MRI

– FLAIR

– Local binary pattern

(LBP);

– Image contrast

measure (C).

– RF with 10 trees. 10-fold nested

cross-validation

accuracy

AD vs. LBD vs. HC:

87%

AD+LBD vs. HC: 98%

AD vs. LBD: 74%

Sivapriya et al.,

2015

AD

MCI

HC

140 (N.A.)

450 (N.A.)

280 (N.A.)

– MRI

– FDG-PET

– Volumetric

measures;

– FDG-PET uptake

ROI-based;

– Neuropsychological

scores.

– Feature selection

with particle swarm

optimization

approach coupled

with the Merit Merge

technique (CPEMM);

– RF with 100 to 1,000

trees.

5-fold

cross-validation

accuracy

AD vs. MCI vs. HC:

96.3%

Wang et al., 2016 sMCI

pMCI

65 (72.2, 26)

64 (72.5, 29)

– 1.5 T MRI

– florbetapir-

PET

– FDG-PET

– Morphological

measures;

– florbetapir-PET

uptake whole-brain;

– FDG-PET uptake

whole-brain.

– RF with 500 trees. Leave-one-out

cross-validation

accuracy

sMCI vs. pMCI:

73.64%

(Continued)
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TABLE 1 | Continued

Study Cohort Nr. of subjects

(mean age, nr. of

females)

Neuroimaging

acquisition

Features of interest Classification

parameters

Performance

validation

Results

Ardekani et al.,

2017

sMCI

pMCI

78 (74.75, 24)

86 (74.10, 31)

– 1.5 T MRI – Hippocampal

volumetric integrity;

– Neuropsychological

scores.

– Feature selection

with Gini index;

– RF with 5,000 trees.

OOB estimation of

classification

accuracy

sMCI vs. pMCI: 82.3%

Lebedeva et al.,

2017

MCI

HC

32 (78.1, 22)

40 (76.4, 29)

– 1.5/3 T MRI – Cortical thickness;

– Subcortical volumes.

– MMSE

– Feature selection

with Gini index;

– RF with 5,000 trees.

OOB estimation of

classification

accuracy

MCI vs. HC: 81.3%

Maggipinto et al.,

2017

AD

MCI

HC

50 (N.A.)

50 (N.A.)

50 (N.A.)

– DTI – TBSS FA voxels; – Feature selection

with the Wilcoxon

rank sum test and

ReliefF algorithm;

– RF with 300 trees.

Repeated 5-fold

cross-validation

accuracy

AD vs. HC: 87%

MCI vs. HC: 81%

Son et al., 2017 AD

MCI

HC

30 (74, 18)

40 (74.3, 21)

35 (76.06, 23)

– 3 T MRI

– rs-fMRI

– Subcortical volumes;

– Eigenvector centrality

of functional

networks ROI-based.

N.A. Repeated

leave-one-out

cross-validation

accuracy

AD vs. MCI vs. HC:

53.33%

Data are related to the highest performance reached by random forest. AD, Alzheimer’s disease; HC, healthy controls; MCI, Mild cognitive impairment; cMCI, converter MCI; pMCI,

progressive MCI; LBD, Lewy-body dementia; MRI, Magnetic resonance imaging; fMRI, functional MRI; rs-fMRI, resting state fMRI; PET, positron emission tomography; FDT-PET,

fluorodeoxyglucose PET; DTI, Diffusion tensor imaging; GM, Gray matter; ROI, Region of interest; MMSE, Mini mental state examination; TBSS, Tract-based spatial statistics; OOB,

out-of-bag; N.A., not applicable.

FIGURE 3 | Histograms of the overall accuracy (%) reached by the studies—where applicable—for the binary classifiers (A) AD vs. HC, (B) MCI vs. HC and (C) sMCI

vs. pMCI, and for the ternary problem (D) AD vs. MC vs. HC. See also Table 1. AD, Alzheimer’s disease; HC, healthy controls; MCI, Mild cognitive impairment; cMCI,

converter MCI; pMCI, progressive.

Three different binary datasets were used for the RF
classification: AD vs. HC, MCI vs. HC, sMCI vs. pMCI. The
performance of each classifiers was evaluated with a stratified
repeated random sampling approach, where, in each of the
100 runs, the dataset was divided into training (75%) and
test set (25%). Accuracy on the test set was then calculated
as the mean of all the 100 repetitions. The RF models
were trained with 5,000 trees on the feature data from
each of the four modalities independently and the feature
importance ranking was extracted. As further analysis, authors
measured the similarity between pairs of examples from the RF
classifiers and applied a Manifold learning approach on data
from single-modality and on combined/concatenated features
(multi-modality).

Although the single-modality classification results were
comparable between the original dataset and the embedded
feature one, the latter presented the best performances as
following: 86.4% for the AD vs. HC with the FDG-PET data,
73.8% for MCI vs. HC with the genetic data, 58.4% for the sMCI
vs. pMCI with MRI data. A slight increase of the accuracy was
obtained with the multi-modality classification for AD vs. HC
(+2.6%) and for MCI vs. HC (+0.8%), while for pMCI vs. sMCI
there was a small decrease (−0.4%).

Cabral et al. (2013)
Cabral et al. (2013) collected 177 subjects from the ADNI
database, divided into three balanced groups: AD patients
(mean age 78.2, 25 females, CDR > 0.5), MCI patients (MCI,
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mean age 77.7, 19 females, CDR = 0.5) and HC (mean age
77.4, 21 females, CDR = 0). Authors analyzed FDG-PET
data, acquired 24 months after the first visit and already pre-
processed by ADNI. In particular, they used the voxel intensities
(VI) as features of interest, for a total of 309,881 variables.
The original dataset was decomposed by using the one-vs.-all
scheme, resulting into three subsets: AD vs. ALL, MCI vs. ALL,
HC vs. ALL. The Mutual Information criterion was used for
extracting the optimal features with the highest ranking value,
separately for each pairwise problem. The selected features were
then used for training three binary RF models with 100 trees.
As aggregation scheme for the ternary problem, the voting
strategy (MAX) was applied. The classification performance
was then assessed by the 10-fold cross-validation accuracy,
repeated 5 times with fold randomization. The ternary RF
classifier provided a multiclass accuracy of 64.63%. It must be
addressed that the authors applied other two algorithms, linear
and RBF SVM, obtaining, respectively, an accuracy of 66.33% and
66.78%.

Lebedev et al. (2014)
The study of Lebedev et al. (2014) was based on a cohort of 575
subjects from ADNI database, divided into three main groups:
185 AD (mean age 75.2, 92 females, CDR = 1), 165 patients
with MCI (mean age 75.46, 62 females, CDR = 0.5) of which
149 progressed to AD within 4 years, and 225 HC (mean age
75.95, 110 females, CDR = 0). The MCI group was split into
six subgroups according to the month of MCI-to-AD conversion
(6th-, 12th-, 18th-, 24th-, 36+th-month converters and non-
converters).

The features of interest were extracted from 1.5 T MRI images
using a surface-based cortex reconstruction and volumetric
segmentation. In particular, (i) non-cortical volumes, (ii) cortical
thickness (CTH), (iii) Jacobian maps and (iv) sulcal depth were
measured for each subject. The ability of these parameters
in distinguishing AD from HC, was assessed individually and
with a combination of measurements of CTH and non-cortical
volumes.

The feature importance was assessed with the intrinsic
characteristic of RF consisting of the recursive feature
elimination (RFE) with the Gini index as criterion and
10,000 trees. The performance of models—with and without
RFE—was evaluated as the overall accuracy on a separate
test set with 35 AD and 75 HC. Findings revealed that
the highest accuracy (90.3%) for the classifier AD vs. HC
was obtained with the RFE on the combined dataset with
thickness and non-cortical volumes. An increase of 0.7%
was found in this accuracy when authors combined all
models by a majority vote approach. The majority vote
method resulted to have also the best ability to predict
MCI-to-AD conversion 2 years before actual dementia
onset with sensitivity/specificity of 76.6/75%. As further
analysis, authors found that the adding of ApoE genotype and
demographics data did not improve the overall accuracy in
distinguishing AD from HC, while it showed an increase of
sensitivity/specificity (83.3/81.3%) in the prediction of MCI
conversion.

Moradi et al. (2015)
Moradi et al. (2015) obtained baseline data for their analysis from
the ADNI database and they selected 825 subjects grouped as:
200 AD patients (age range 55–91, 97 females), 100 stable MCI
(sMCI, age range 57–89, 34 females), 164 MCI progressed to AD
within 3 years from the baseline (pMCI, age range 77–89, 67
females) and 231 HC (age range 59–90, 112 females). Another
group of 100 unknownMCI (uMCI, age range 54–90, 81 females)
diagnosed as MCI at the baseline but with missing diagnosis at
36 months follow-up was also considered. For integrating the
unlabeled group of uMCI into the training set and assigning
them to the pMCI or sMCI class, the authors used a low density
separation (LDS) approach for semi-supervised learning.

All subjects underwent 1.5 T MRI acquisition and the T1-w
scans were preprocessed following the voxel-based morphometry
approach. In particular, T1-w images were corrected, spatially
normalized and segmented into GM, WM, and CSF. The GM
maps were then further processed for extracting 29,852 GM
density values—for each subject—used as MRI features for the
classification task.

The high number of GM voxels was reduced with a feature
selection approach consisted in the regularized logistic regression
framework applied only on the dataset with AD and HC
subjects. The selected variables were then aggregated with age and
cognitive measurements and used for building the RF classifier
for predicting AD in MCI patients, i.e., sMCI vs. pMCI.

The RF model performance was evaluated as the mean
accuracy calculated by 10-fold cross-validation. The highest
accuracy in distinguishing the MCI-to-AD conversion reached
almost the 82%when the concatenatedmeasures—age, cognitive,
and voxel—and the combination of LDS and RF were considered.
The importance analysis of MRI features, age, and cognitive
measurements calculated by RF classifier revealed that the first
three most predictive variables were: MRI voxels, the Rey’s
Auditory Verbal Learning Test (RAVLT) and the Alzheimer’s
Disease Assessment Scale—cognitive subtest 11 (ADAS-cog
total-11).

Oppedal et al. (2015)
In Oppedal et al. (2015), a total of 73 mild dementia subjects,
divided into 57 AD patients and 16 LBD patients, together with
36 HC were investigated. The cohort MRIs were acquired in
different research centers with 1.0/1.5 T scanners and FLAIR
images were also obtained. T1-w images were corrected,
registered and segmented for extracting the white matter (WM)
tissue. From the pre-processed FLAIR images, the WM lesions
(WML) maps were automatically created. In a second phase
of the study, authors applied the local binary pattern (LBP)
approach as a texture descriptor on both T1 and FLAIR images
and their derived WM and WML maps as ROIs. For enhancing
the discriminative power of LBP, an image contrast measure (C)
was added as variable for every voxel in the specified ROI. The
total number of features for each subject was 48, resulting from
the combination of LBP and C values in each ROI.

Feature selection and classification were performed with a RF
classifier with 10 trees and the 10-fold nested cross validation
accuracy was used as the performance metric. In particular, three
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RF models were built: (i) a ternary problem HC vs. AD vs. LBD,
(ii) a binary classifier HC vs. AD+LBD and (iii) another binary
model AD vs. LBD.

For the ternary problem—HC vs. AD vs. LBD—the best
accuracy (87%) was reached when the classifier was trained on the
texture features extracted from the T1 images in the WMLmasks
(T1WML). Results of the model HC vs. AD+LBD revealed that
the highest accuracy (98%) was obtained also when only T1WML
variables were considered. On the contrary, for distinguishing
AD from LBD with the maximum accuracy (74%) the texture
features should be extracted from the T1 in the WM ROI.

Sivapriya et al. (2015)
Four datasets from the ADNI database were used by Sivapriya
et al. (2015) and three different groups of subjects were selected:
AD, MCI, and HC. The number of subjects in each dataset varied
according to the features considered: (i) Neuropsychological
dataset (150 AD, 400 MCI, 200 HC), (ii) Neuroimaging dataset
(250 AD, 200 MCI, 250 HC), (iii) Baseline combined data with
both neuropsychological and neuroimaging measures (140 AD,
450 MCI, 280 HC), and (iv) combined dataset (150 AD, 400
MCI, 200 HC). Some of the neuropsychological tests used were
the Clinical dementia ratio-SB, the ADAS, the RAVLT, and the
MOCA. Authors used already pre-processed MRI data by ADNI
for their study, in particular neuroimaging measures extracted
from T1-w and FDG-PET images, consisting in volumes and
average PIB SUVR of several regions of interest (ROIs).

The feature selection and classification task was composed
by three main phases in which RF performance was evaluated
together with other ensemble algorithms—Naïve Bayes, J48 and
SVM. Each classifier was trained with each of the four datasets,
after that they were dimensionally reduced with a particle swarm
optimization approach coupled with the Merit Merge technique
(CPEMM). The performance of the classification models was
evaluated with the 5-fold cross-validation accuracy of the ternary
problemAD vs.MCI vs. HC. RF—implemented with 100 to 1,000
trees—showed its best multi-class accuracy (96.3%) when it was
trained on the baseline combined dataset and the same result
was obtained with the CPEMM feature selection methodology.
It must be addressed that RF reached comparable performance of
the other classification algorithms, except for SVM that presented
the lowest accuracies in the delineation of dementia.

Wang et al. (2016)
The study of Wang et al. (2016) included 129 subject with
MCI (CDR = 0.5) from the ADNI database. The cohort was
divided into 65 stable MCI (sMCI, mean age 72.2, 26 females)
and 64 progressive MCI (pMCI, mean age 72.5, 29 female),
who converted to AD within 3 years from the baseline. All
subject underwent the acquisition of 1.5 T MRI, florbetapir-
PET and FDG-PET. Authors analyzed already pre-processed
neuroimaging data by ADNI, separately grouped according to
the modality of acquisition, i.e., features extracted from the T1-
w images and the uptake of florbetapir and FDG. A dataset
with a combination of these multimodal measures was also
evaluated. Three classification algorithms—partial least square

(PLS, informed and agnostic), linear SVM and RF (500 trees)—
were trained on these four different datasets. Their ability in
distinguishing sMCI from pMCI was assessed with the leave-
one-out cross-validation accuracy. RF showed the best accuracy
(73.64%) when it was trained on the combined multi-modal
features dataset. A comparable result (76.74%) on the same
dataset was reached by SVM. On the contrary, informed PLS
generally outperformed both RF and SVM especially when the
three neuroimaging modalities are fused (81.4% of accuracy).

Ardekani et al. (2017)
Ardekani et al. (2017) applied their classification task on a
cohort of 164 MCI (CDR = 0.5) patients from the ADNI
database, divided into 78 stable MCI (sMCI, mean age 74.75, 24
females) and 86 MCI converted to AD within 3 years from the
baseline (pMCI, mean age 74.10, 31 females). All selected subjects
underwent two 1.5 T MRI acquisitions, at the baseline and at
∼1 year later. Neuropsychiatric scores of these two time points
were also considered in the analysis. T1-w images—without
any pre-processing—were used for calculating the hippocampal
volumetric integrity (HVI), defined as the fraction of volume
of a region that is expected to surround the hippocampus in a
normal brain that is occupied by tissue (rather than CSF). The
HVI is measured—separately for each hemisphere—as the area
under the histogram curve for voxel values above a CSF intensity
threshold. The HVI measures and the neuropsychiatric scores
were merged for a total of 16 features for each subject, including
their average rate of change between the baseline and the 1-year
follow-up.

Several RF models (5,000 trees) were trained on different
feature subsets and their performance were evaluated with the
OOB estimation of classification accuracy. The mean reduction
of Gini impurity index was used for the assessment of the variable
importance.

The highest accuracy (82.3%) in distinguishing between sMCI
and pMCI was reached when the combination of neuroimaging
and neuropsychiatric features was considered as training set. The
classifiers built only on the baseline measures or only on HVI
values showed indeed poor performance. The variable ranking
of the 16 features revealed that—according to the impurity
criterion—ADAS cognitive test was the most important one,
followed by the rate of change of the right HVI.

Lebedeva et al. (2017)
The work of Lebedeva et al. (2017), was aimed at predicting MCI
and dementia in late-life depression (LLD) patients 1 year prior
to the diagnosis. The analysis was conducted on a cohort of 32
patients (MCI-DEM, mean age 78.1, 22 females) including 21
MCI and 8 AD, and a group of 40 age—sex—matched HC (mean
age 76.4, 29 females) from the PRODE prospective multicenter
study (Borza et al., 2015). All subjects underwent 1.5/3 T MRI
acquisition at the baseline and after 1 year. T1-w images were
pre-processed for extracting CTH and subcortical volumes (SV)
with a standard pipeline, for a total of 148 features. Clinical and
neuropsychological assessment was performed for each subject at
both time points.
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Several RFmodels (5,000 trees) were built for classifyingMCI-
DEM or MCI vs. HC at 1-year follow—up, by varying the feature
space, i.e., separated CTH and SV variables, a combination of
CTH and SV, and with/without the addition of demographic
and clinical data. The OOB overall accuracy was assessed as
performance metric. The model for discriminating MCI-DEM
fromHC reached the best result (81.3% of OOB overall accuracy)
when the CTH, SV, and MMSE values were combined together.
The accuracy resulted to be higher (90.1%) in the model of
MCI (excluding AD patients) vs. HC with SV and MMSE as
training features. The variable importance ranking—measured
with the Gini criterion—showed that, in every RF models, the
most relevant features were the right ventral diencephalon, the
middle anterior corpus callosum and the right hippocampus.

As further analysis, authors used their PRODE cohort (MCI-
DEM and HC) as test set for the RF model previously built by
Lebedev et al. (2014) on AD and HC from ADNI database. The
accuracy was better (67%) when only SV measures were used
than when SV and CTH were combined (57.5%).

Maggipinto et al. (2017)
The cohort investigated by Maggipinto et al. (2017) was obtained
from ADNI database and it consisted of 150 subjects divided into
three groups: 50 AD, 50 MCI, and 50 HC with an age range from
55 to 90. Diffusion-weighted scans acquired with a 3 T scanner
was used for this machine learning study, randomly selected
from the baseline and follow-up visit. DTIs were pre-processed
for correction of movement artifacts and eddy currents with a
standard pipeline. A diffusion tensor was fitted for each subject
and fractional anisotropy (FA) and mean diffusion (MD) maps
were extracted. The FA andMDmaps were then used as input for
a tract-based spatial statistics (TBSS) analysis, which—for each
subject —produced∼120,000 voxels for each diffusion metric.

In a first phase, authors assessed the importance value of the
voxels in discriminating AD from HC with two different feature
selection methods: the Wilcoxon rank sum test and the ReliefF
algorithm, which were used both within a non-nested and nested
approach. For the classification task, fifteen subsets were then
created by selecting an increasing number—from 50 to 3,000—of
most discriminating voxels, ordered by decreasing importance.
RF models were trained with 300 trees on each of these feature
subspaces and their performance was evaluated with a repeated
(100 runs) 5-fold cross-validation accuracy.

The models built on the FA features selected with the non-
nested approach showed the highest accuracies in both binary
problems, AD vs. HC (87%) and MCI vs. HC (81%). The non-
nested variable selection resulted to produce better results than
the nested one also when MD voxels were used for training the
classifiers (83% for AD vs. MCI and 79% for MCI vs. HC).

Son et al (2017)
A sample of 105 subjects was selected by Son et al. (2017) from
the ADNI database. The cohort was divided into three age—
sex—matched groups: 30 AD (mean age 74, 18 females), 40
MCI (mean age 74.3, 21 females) and 35 HC (mean age 76.06,
23 females). All participants underwent 3 T acquisition of T1-
w images and resting state functional MRI (rs-fMRI). Structural

scans were pre-processed for correcting movement artifacts and
smoothed, and then they were segmented into WM, GM, and
CSF. The volumes of 10 subcortical regions were calculated as
measure of atrophy. The rs-fMRI images were pre-processed and
registered onto the T1-w and aligned to the MNI standard space.
Given a set of ROIs from the AAL atlas as nodes, the functional
networks were constructed by defying the edges as correlation
values between nodes. Authors quantified the connectivity of the
functional networks within the 10 subcortical regions with the
eigenvector centrality measure among AD andHC,MCI andHC,
and AD and MCI.

The ternary problem, AD vs. MCI vs. HC, was evaluated
by training a RF classifier with the SV and the eigenvector
centrality measures as features. The multi-class accuracy of the
RF model was assessed with a repeated (105 runs) leave-one-out
cross-validation approach. Authors reached a poor performance
(accuracy: 53.33%) in distinguishing among AD, MCI, and HC
subjects. However, they identified distinctive regional atrophy
and functional connectivity patterns characterizing each binary
problem AD vs. HC (thalamus, putamen and hippocampus
bilaterally and left amygdala), MCI vs. HC (left putamen and
right hippocampus), andMCI vs. AD (bilateral hippocampus and
right amygdala).

DISCUSSION

RF has been successfully applied in many scientific realms such
as, the bioinformatics, proteomics, and genetics (Menze et al.,
2009; Calle et al., 2011; Chen et al., 2011), but it was less applied
on neuroimaging data for the prediction of the Azheimer’s
disease. The present paper is the first, to our knowledge, that
systematically analyzed the literature of the last 10 years on
the use of the RF algorithm on neuroimaging data for the
early diagnosis of AD. In this review, we summarized the
characteristics of twelve works (Tripoliti et al., 2007; Cabral et al.,
2013; Gray et al., 2013; Lebedev et al., 2014; Moradi et al., 2015;
Oppedal et al., 2015; Sivapriya et al., 2015; Wang et al., 2016;
Ardekani et al., 2017; Lebedeva et al., 2017; Maggipinto et al.,
2017; Son et al., 2017) by focusing our attention on performance
reached by their algorithms.

A direct comparison of the results of the selected works is
influenced by several factors, such as, the different sample sizes,
neuroimaging modalities, and different methods for the feature
selection. However, we found several points in common among
papers, such as, similar performance validation approaches,
as well as a general trend showing that the classification
based on a combination of features extracted from different
categories improved the ability in predicting AD. Another
important common aspect of the selected articles is the use of
data from the ADNI database. Indeed, 10 works (Cabral et al.,
2013; Gray et al., 2013; Lebedev et al., 2014; Moradi et al., 2015;
Sivapriya et al., 2015; Wang et al., 2016; Ardekani et al., 2017;
Lebedeva et al., 2017; Maggipinto et al., 2017; Son et al., 2017)
applied their methodologies on ADNI cohorts.

The best accuracies—around 90%—for the binary problem
AD vs. HC, were observed when the RF classifiers were trained
on high-dimensional and multi-modality data (Tripoliti et al.,
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2007; Cabral et al., 2013; Gray et al., 2013; Lebedev et al., 2014).
Superior performance of these models can be explained by the
ability of RF to detect less extensive changes in the variables,
which could be not revealed by others algorithms. Moreover,
Moradi et al. (2015) showed that RF was more immune to the
data type thanks to its capability to handle discrete data and to
apply an efficient discretization algorithm on continuous data
type before the learning step.

The binarymodels for distinguishingMCI fromHC and stable
MCI from progressive MCI showed lower accuracies, around
82%, although it was similarly improved by multi-modal data
classification (Figure 3). In particular, the inclusion of age as well
as cognitive measurements (MMSE and ADAS-cog), in the space
of features, significantly increased the classification of MCI vs.
HC (Gray et al., 2013; Lebedeva et al., 2017; Maggipinto et al.,
2017) and the AD conversion prediction inMCI patients (Moradi
et al., 2015; Wang et al., 2016; Ardekani et al., 2017). On the
contrary, for the conundrum between sMCI vs. pMCI, Gray
et al. (2013) found that the accuracy reached on multi-modality
classification is not significantly different from that obtained with
MRI information alone. Interestingly, authors suggested that the
lack of improvement in distinguishing the progression to AD,
could be overcame by incorporating longitudinal information,
as indeed Ardekani et al. (2017) demonstrated afterwards by
considering the rate of change of variables.

Three works (Cabral et al., 2013; Sivapriya et al., 2015; Son
et al., 2017) investigated the ternary problem: AD vs. MCI vs.
HC, but only the work of Sivapriya et al. (2015) reached a
reliable accuracy of 96.3%. The low performance of the other
two studies—64.63% of Cabral et al. (2013) and 53.33% of Son
et al. (2017)—might be due to the heterogeneous pattern of
brain changes across the three groups and the inability of RF
to model the too large variability in the stages of pathological
process. Thus, although RF can be naturally extended to multi-
class problems, the AD vs. MCI vs. HC ternary model could not
be still translated into a real-world clinical scenario.

Another interesting observation was that, both in binary and
ternary problems, feature selection based on the Gini index,
improved the overall performance and this is true also for
the works in which only a neuroimaging modality was used
(Lebedev et al., 2014; Ardekani et al., 2017; Lebedeva et al.,
2017; Maggipinto et al., 2017). Other kinds of feature selection
and extraction, applied prior to the RF classification, showed
also an improvement in the overall accuracies (Tripoliti et al.,
2007; Cabral et al., 2013; Moradi et al., 2015; Oppedal et al., 2015;
Sivapriya et al., 2015; Wang et al., 2016; Ardekani et al., 2017;
Lebedeva et al., 2017; Maggipinto et al., 2017).

A further interesting characteristic of the RF algorithm in
the AD realm was the estimates of the features importance. The
ranking of the variables plays an important role because it could
assess which of the features contribute most to the prediction
by also providing a correspondence to anatomical regions or
structures with a biologically plausible connection to pathology
(Gray et al., 2013; Lebedev et al., 2014; Moradi et al., 2015;
Ardekani et al., 2017).

A limitation of this systematic review concerns the lack of
information about the tuning of the RF parameters. In particular,

poor information were reported in the selected works about how
the number and depth of trees in the forest or the splitting criteria
were chosen. Although, this tuning is performed automatically
by RF, how external assessment of these parameters (i.e., cross-
validation approach) would improve the overall accuracies is still
unknown.

Again, what still remains to be assessed is the performance
of RF algorithm on multi-site data. As already demonstrated
for rs-fMRI datasets from different sites (Abraham et al., 2017;
Dansereau et al., 2017), the accuracy and the reliability of
the biomarkers extraction could be enhanced by dramatically
increasing the cohort size. Moreover, it was shown that classifiers
trained on data from multiple sources will likely generalize
better to new observations (Dansereau et al., 2017), avoiding the
overfitting. Thus, it would be interesting to evaluate how well RF
could classify when it is trained on features that are not invariant
across sites and how the sample heterogeneity influences its
performance.

This systematic review provided, for the first time, a
framework for the exploration of the RF algorithm and of its
strength in predicting AD when high-dimensional and multi-
modal neuroimaging data are combined with demographics,
genetic and cognitive scores. Indeed, as recently stated by
Rathore et al. (2017), no single neuroimaging modality is
enough to reach optimal accuracy for automatic AD prediction,
but only through the combination of different methodologies,
the classification task could be effectively translated into the
clinical realm. Our work supported the idea that there is some
complementary information between modalities and that this
knowledge can be successfully explored with a combination
of classifiers rather than a single one. The RF, as a bagging
ensemble model, provided promising results, but with possible
limitations. Thus, given the high accuracies reached by RF
in the classification of dementia, we aimed at encouraging
further studies, especially for comparing and integrating this
algorithm with other machine learning approaches, such as,
the deep learning, which recently showed its potentiality in
the investigation of neuroimaging correlates (Shen et al., 2017;
Vieira et al., 2017). In the future, the aggregation of multi-
approaches (RF, Deep-learning and SVM), multimodal (MRI,
DTI, PET) and multi-sites data would drastically increase
our ability to extract reliable biomarkers of neurodegenerative
diseases.
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Simultaneous resting state functional magnetic resonance imaging (rsfMRI)–resting
state electroencephalography (rsEEG) studies in healthy adults showed robust positive
associations of signal power in the alpha band with BOLD signal in the thalamus,
and more heterogeneous associations in cortical default mode network (DMN) regions.
Negative associations were found in occipital regions. In Alzheimer’s disease (AD),
rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently
reported a reduced power within the alpha band. The present study is the first to employ
simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band
power and BOLD signal, compared to healthy controls (HC). We hypothesized to find
reduced positive associations in DMN regions and reduced negative associations in
occipital regions in the AD group. Simultaneous resting state fMRI–EEG was recorded
in 14 patients with mild AD and 14 HC, matched for age and gender. Power within
the EEG alpha band (8–12 Hz, 8–10 Hz, and 10–12 Hz) was computed from occipital
electrodes and served as regressor in voxel-wise linear regression analyses, to assess
the association with the BOLD signal. Compared to HC, the AD group showed
significantly decreased positive associations between BOLD signal and occipital alpha
band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal
lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels). This group effect was
more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band.
Notably, we observed a high inter-individual heterogeneity. Negative associations were
only reduced in the lower alpha range in the hippocampus, putamen and cerebellum.
The present study gives first insights into the relationship of resting-state EEG and fMRI
characteristics in an AD sample. The results suggest that positive associations between
alpha band power and BOLD signal in numerous regions, including DMN regions, are
diminished in AD.

Keywords: Alzheimer’s disease, alpha rhythm, electroencephalography, functional magnetic resonance imaging,
default mode network
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INTRODUCTION

In Alzheimer’s disease (AD), resting state functional
magnetic resonance imaging (rsfMRI), and resting state
electroencephalography (rsEEG) have only been used separately
to measure pathological changes. RsfMRI studies showed
decreased activity (Greicius et al., 2004; Zhu et al., 2013; Li
et al., 2015) and disrupted functional connectivity (Greicius
et al., 2004; Zhang et al., 2009, 2010; Agosta et al., 2012; Koch
et al., 2012; Weiler et al., 2014; Xia et al., 2014) in the default
mode network (DMN) in AD. The DMN includes the anterior
and posterior cingulate cortex, precuneus, medial prefrontal
cortex, inferior parietal cortex, and hippocampal formation
(Shulman et al., 1997; Raichle et al., 2001; Greicius et al., 2003;
Buckner et al., 2008). Functionally, it has been associated with
episodic memory (Mazoyer et al., 2001; Buckner et al., 2008;
Weiler et al., 2014) and self-referential thinking (Raichle et al.,
2001; Greicius et al., 2004; Buckner et al., 2008; Knyazev,
2013). Furthermore, rsEEG analyses showed reduced power
within the alpha band (8–12 Hz) at early AD stages, as well
as a slowing of the alpha rhythm and increased presence of
lower frequency bands (Brenner et al., 1986; Dierks et al., 1993;
Huang et al., 2000; Jeong, 2004). The alpha band is the dominant
rhythm in healthy adults during a state of relaxed wakefulness,
keeping the eyes closed (Berger, 1929; Zschocke and Hansen,
2012; Hinrichs, 2015). It originates from thalamo-cortical
neurons projecting to the occipital cortex (Lorincz et al., 2009;
Hughes et al., 2011; Zschocke and Hansen, 2012; Babiloni et al.,
2015) – a projection pathway that may be disrupted in AD,
as shown previously in studies using a computational model
(Bhattacharya et al., 2011) and fMRI functional connectivity
(Zhou et al., 2013). Functionally, alpha band power was shown
to correlate positively with internal mental processes (Knyazev
et al., 2011). Moreover, subdivisions of the alpha band may
be related to different cognitive functions: the lower alpha
band (8–10 Hz) may be associated with attention, while the
upper alpha band (10–12 Hz) may be associated with memory
processes (Klimesch, 1999). In addition, alpha band power has
been suggested to play a role in an inhibitory gating mechanism
of the visual system, suppressing unattended visual information
(Berger, 1929; Palva and Palva, 2007; Tuladhar et al., 2007;
Zumer et al., 2014). Power within the alpha band has been
shown to correlate negatively with hemodynamic activity in the
occipital cortex (Goldman et al., 2002; Moosmann et al., 2003;
Gonçalves et al., 2006; Mantini et al., 2007; Scheeringa et al.,
2012).

In order to assess the temporal association within subjects,
the two modalities need to be measured simultaneously. The
simultaneous rsfMRI-rsEEG measurement allows investigating
the correlation of the BOLD signal fluctuation (as measured
with rsfMRI) with the power fluctuation in specific frequency
bands (as measured with rsEEG) over time. This method has
previously been applied in young healthy subjects, correlating
power fluctuations within the alpha band with BOLD signal
fluctuations within each voxel. Most of these studies found
that alpha band power fluctuation correlated positively with
BOLD signal fluctuations in the thalamus (Goldman et al.,

2002; Moosmann et al., 2003; Gonçalves et al., 2006) and in
cortical DMN regions (Mantini et al., 2007; Jann et al., 2009,
2010; Scheeringa et al., 2012). On the other hand, some studies
reported only weak or no positive associations (Laufs et al., 2003a;
Gonçalves et al., 2006; Mo et al., 2013). Negative associations were
found between alpha band power fluctuation and BOLD signal
fluctuation in occipital, parietal, and frontal cortical regions in
young HC subjects (Goldman et al., 2002; Laufs et al., 2003a,
2006; Moosmann et al., 2003; Gonçalves et al., 2006; Mantini
et al., 2007; Scheeringa et al., 2012).

The present study is the first to employ simultaneous
fMRI-EEG measurement in AD patients. Its aim was to explore
its feasibility and to investigate the relationship of alpha band
power fluctuation and BOLD signal fluctuation in AD patients
compared to HC subjects. As previous research showed alpha
band power to correlate significantly with gray matter volume in
AD (Babiloni et al., 2009, 2013, 2015), we additionally controlled
for volume of the hippocampus, which is affected early in the
disease (Devanand et al., 2007; den Heijer et al., 2010; Frisoni
et al., 2010; Jack et al., 2011). We hypothesized to find positive
associations between occipital alpha band power fluctuation and
BOLD signal fluctuation in regions of the DMN in both groups
(AD and HC), with a reduced association in the AD group.
Secondly, we hypothesized to find positive associations of alpha
band power fluctuation and BOLD signal fluctuation in the
thalamus in both groups, but a weaker association in AD. Finally,
we expected to find negative associations with BOLD signal
fluctuation in the occipital cortex, with reduced associations in
the AD group (Moretti, 2004).

MATERIALS AND METHODS

Participants
The groups consisted of n = 14 individuals each, matched
for age and gender (see Table 1 for demographic and clinical
characteristics). Initially, n = 18 patients with mild AD and
n = 17 elderly healthy control (HC) subjects participated in
the study, of which one patient aborted the scan session, and
three patients were excluded due to radiological abnormalities.
Three female participants in the HC group were randomized
out, in order to match the groups for gender. Patients were
recruited via the memory clinic at the University Medicine
Rostock (UMR); HC subjects were recruited via the database
of the UMR, containing healthy subjects who were originally
recruited via advertisement. HC were required to score within
one standard deviation on all subscales of the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) battery
(Morris et al., 1989). Patients were clinically diagnosed with
probable AD dementia according to the NINCDS-ADRDA
and NIA-AA criteria (McKhann, 1984; McKhann et al.,
2011). All subjects underwent general medical, neurological
and psychiatric assessment. Neuropsychological assessment was
conducted using the CERAD battery. Laboratory analyses and
APOE genotype sequencing were carried out. Subjects exhibited
no neurological or radiological abnormalities (e.g., normal
pressure hydrocephalus or extensive microinfarcts), and no
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psychiatric diseases. AD patients showed no signs of dementia
not due to AD (e.g., vascular dementia). The study was
approved by the local ethics committee of the University
Rostock. All participants gave written informed consent, and all
procedures were carried out in accordance with the Helsinki
declaration.

Data Acquisition
Electroencephalography and fMRI data were recorded
simultaneously during 7.5 min of resting state (eyes-closed).
For the EEG recording, MRI-compatible measurement devices
(Brain Products, Gilching, Germany) and the software Brain
Vision Recorder1 were used. EEG was recorded at 32 electrodes
that were positioned according to the international 10-20-system
(Jasper, 1958). The reference electrode was located between
Fz and Cz, the ground electrode at AFz. Impedances of the
electrodes of interest (O1, O2, and Oz) were kept below 8 k�,
except for one AD patient (18 k�). An additional ECG channel
was attached to detect cardio-ballistic artifacts. EEG data were
sampled at 5 kHz. The EEG amplifier sampling interval was
phase-synchronized to the fMRI main frequency via the Syncbox
(Brain Products, Gilching, Germany) in order to preclude EEG-
fMRI-sampling-jitter artifacts. The EEG hardware (i.e., amplifier
and powerpack) was placed at the head end of the scanner tube
and weighted with sand bags to prevent hardware motion.

Functional magnetic resonance imaging images were acquired
using a 3-Tesla Siemens Magnetom scanner with a T2-weighted
echo-planar imaging sequence (TR: 2.6 s, TE: 30 ms, FOV:
224 mm, thickness: 3.5 mm, number of slices: 180). The
anatomical images were recorded using a T1-weighted MPRAGE
sequence (TR: 2.5 s, TE: 4.37 ms, FOV 256 mm, thickness: 1 mm,
number of slices: 192). Foam wedges were used to stabilize the
head. Subjects were instructed to stay awake, keeping their eyes
closed. The EEG signal was visually controlled for signs of sleep
(offline).

Data Preprocessing
EEG Data
Data were preprocessed using Brain Vision Analyzer software
(Version 2.0, Brain Products, Gilching, Germany). First, data
were downsampled to 250 Hz. Imaging and ECG pulse artifacts

1www.brainproducts.com

TABLE 1 | Demographic and clinical characteristics of the study subjects;
mean ± SD (range).

AD (n = 14) HC (n = 14) p∗

Age 75.3 ± 5.7 (64–82) 73.4 ± 3.1 (68–79) 0.276

Gender (male/female) 10/4 10/4 n. a.

Education (years) 14.4 ± 2.7 (8–17) 13.6 ± 2.8 (11–20) 0.417

MMSE score 24.6 ± 3.1 (17–28) 28.7 ± 0.8 (27–30) <0.001

APOE status (E2/E3;
E2/E4; E3/E3; E3/E4;
E4/E4)

0; 2; 4; 6; 1 2; 1; 7; 2; 1 n. a.

∗ Independent samples t-test, 2-sided.

were eliminated using the average artifact subtraction method
described by Allen et al. (1998, 2000), which is included in the
Brain Vision Analyzer software. Briefly, the imaging artifacts
were automatically marked based on recurring patterns, the
thus-defined intervals were averaged and their means subtracted
from each interval. ECG pulse artifacts were removed by
constructing an average ECG artifact template and subtracting
it from the EEG data. Data were high-pass (0.5 Hz) and low-
pass (70 Hz) filtered. Additionally, a notch filter was applied at
50 Hz. Using Independence Component Analysis (ICA), artifacts
caused by eye movement, temporal electrode noise and residual
pulse artifacts were removed. In case the electrode noise could
not be eliminated by removing two independent components,
the disturbed channel was removed and interpolated by
topographical triangulation (occipital channels were not affected
by this). After ICA, the data were again visually inspected for
residual artifacts. No sleep patterns (i.e., K-complexes or sleep
spindles) were present. EEG data from the AD group showed
more artifacts such as eye movement and muscle activation,
especially during the second half of the scan time, possibly
constituting a sign of growing unrest. Two AD subjects showed
a shift in frequency from alpha to theta over time. These artifacts
were removed. The EEG signal was re-referenced to a common
reference, obtained by averaging across all channels.

The electrodes O1, O2, and Oz were chosen as electrodes
of interest, since alpha activity is best expressed at occipital
electrodes (Moosmann et al., 2003; Laufs et al., 2003a; Mo et al.,
2013). The arithmetic mean of electrophysiological activity from
O1, O2, and Oz was calculated. Using complex demodulation,
the EEG time courses of power within the total (8–12 Hz), lower
(8–10 Hz), and upper (10–12 Hz) alpha band were extracted
for each individual and exported to MATLAB (Mathworks, Inc.,
Sherborn, MA, United States) for the creation of statistical model
regressors.

MRI Data
Functional magnetic resonance imaging data preprocessing was
performed using SPM82 implemented in Matlab 7 (Mathworks,
Natick) and the VBM8 toolbox (Version 4143). The first six
volumes were removed to eliminate saturation effects. Slices were
referenced to the temporally middle slice. After realignment of
the functional images, the anatomical images were coregistered to
the realigned mean functional image. The structural T1-weighted
MPRAGE images were segmented into gray matter, white matter
and cerebrospinal fluid compartments and warped to standard
MNI space, using the default MNI standard template and the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL) method (Ashburner, 2007) implemented
in VBM8. The resulting deformation fields were used to warp
the functional images to standard space. Spatial smoothing
of the normalized functional images was performed with a
Gaussian Kernel of 8 mm full-width half-maximum (FWHM).
In order to reduce slow drift artifacts, a high-pass filter with
a cut-off period of 128 s was applied to the voxel time

2http://www.fil.ion.ucl.ac.uk/spm/
3http://dbm.neuro.uni-jena.de/vbm8/

Frontiers in Aging Neuroscience | www.frontiersin.org October 2017 | Volume 9 | Article 319101

www.brainproducts.com
http://www.fil.ion.ucl.ac.uk/spm/
http://dbm.neuro.uni-jena.de/vbm8/
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-09-00319 October 4, 2017 Time: 16:16 # 4

Brueggen et al. Simultaneous fMRI-EEG in Alzheimer’s Disease

courses. From the segmented gray matter images, gray matter
volume of the left and right hippocampus was calculated
for each subject, using binarized inclusive masks that had
been created for the IXI template in MNI space according
to the international harmonization protocol for hippocampus
segmentation (Grothe et al., 2012; Boccardi et al., 2015).
The volume of the left and right hippocampus was pooled
and normalized by dividing it by the total intracranial
volume.

A regressor containing one-second intervals of artifact-free,
averaged spectral power of the pooled occipital electrodes and
an additional on/off regressor of no interest (containing timing
information of artifacts longer than 1 s) were created. Separate
regressors were built for power within the total alpha (8–12 Hz),
lower alpha (8–10 Hz) and upper alpha band (10–12 Hz). The
regressors of interest were convolved with an a priori defined
hemodynamic response function (HRF) (Cohen, 1997) within the
SPM first-level (single subject) processing pipeline (for a diagram
see Supplementary Figure 1).

Statistical Analysis
For comparing relative alpha band power at the pooled occipital
channels (O1, O2, and Oz) between groups, Fast Fourier
transformation (FFT) across 1-s-segments was used. Two-sided
independent samples t-tests were used to compare relative
alpha power and normalized hippocampal gray matter volume
between groups. Separate general linear models were specified
for total alpha, lower alpha and upper alpha, respectively,
using SPM8 (Friston et al., 2007). The models included a
regressor variable containing the power information for the
respective HRF-convolved alpha band, a mean term regressor,
a covariate regressor containing the artifact information, and
the covariates age, gender, and years of education. For the first-
level analysis, positive and negative t-contrasts were specified
for each subject, testing for the effects of the alpha band power
regressor, controlled for the artifact regressor. This resulted in
individual statistical parametric maps of positive and of negative
associations of the total, lower or upper alpha power fluctuation
over time, respectively, with the BOLD fluctuation in each voxel
of the brain. The resulting maps of EEG regressor weights were
used for group comparisons in one- and two-sample t-tests. The
one-sample t-tests were performed for the AD and HC group
separately, testing for positive and negative associations of each
alpha regressor weight across all subjects in the respective group.
For the two-sample t-test, a contrast of HC > AD was defined for
positive and negative associations, respectively. The second-level
analyses were additionally controlled for the covariate regressor
normalized hippocampal gray matter volume.

All statistical results were restricted to voxels within gray
matter, by thresholding the default IXI template in VBM8
at p < 0.3 and using it as inclusive mask. Statistical
significance levels were set at p < 0.01 (uncorrected for multiple
comparisons). Only clusters with a voxel count ≥ 50 were
considered. Resulting clusters were visually compared to a
functional connectivity based DMN atlas (Shirer et al., 2012).

FIGURE 1 | Alzheimer’s disease (AD) group effect, showing positive
associations of total alpha band power fluctuation and BOLD signal (p < 0.01,
uncorr., cluster threshold ≥ 50).

RESULTS

Alpha Power Fluctuations
The mean relative alpha band power was not significantly
different between the groups (AD: 35.0 ± 17.7%; HC:
32.0 ± 21.6%, Supplementary Table 1). However, at visual
inspection, a morphological difference in the form of dysmorphic
alpha waves was observed in the AD group.

Association of Alpha Band Power and
fMRI BOLD Dynamics
Positive Associations
At group level, the AD group showed positive associations of total
alpha band power with BOLD fluctuation in the cerebellum (one
sample t-test, p < 0.01, uncorr., Figure 1 and Supplementary
Table 2). Lower alpha band power correlated positively with
clusters in the right inferior temporal lobe, right hippocampus,
left putamen and cerebellum (p < 0.01, uncorr.) (Supplementary
Table 2). In contrast, power within the upper alpha frequency
showed no significant positive associations in any regions.

The HC group showed positive associations of total alpha
band power with mainly frontal and temporal cortical regions,
including superior, middle and inferior frontal cortex, temporal
pole, parietal cortex, thalamus, putamen and cerebellum (one
sample t-test, p < 0.01, uncorr., Figure 2 and Supplementary
Table 3). Within the lower alpha frequency, fewer associations
were present, which were located mainly in frontal regions,
left inferior temporal lobe, thalamus and cerebellum. Most
associations were found within the upper frequency, located
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FIGURE 2 | Healthy controls (HC) group effect, showing positive associations
of total alpha band power fluctuation and BOLD signal (p < 0.01, uncorr.,
cluster threshold ≥ 50).

mainly in the hippocampus, thalamus, occipital, temporal and
frontal cortex, including anterior cingulate cortex and middle
cingulate, putamen and caudate nucleus, as well as cerebellum
(Supplementary Table 3).

Compared to the HC group, the AD group showed
significantly decreased positive associations of total alpha
band power with BOLD fluctuation in clusters in the frontal
cortex (superior, middle, inferior, precentral gyrus, and anterior
cingulate cortex), inferior temporal lobe and thalamus (two-
samples t-test, p < 0.01, uncorr., Figure 3 and Supplementary
Table 4). Similar decreased associations were found for the upper
alpha band power (superior frontal lobe, insula and parietal
lobe) (Figure 4 and Supplementary Table 4). Regarding the lower
alpha band power, the AD group showed decreased positive
associations with scattered clusters in the superior frontal lobe,
compared to the HC group (Supplementary Table 4).

At the individual level, first-level analyses revealed positive
associations of power within the total alpha band range with
regions that belong to the DMN (Shirer et al., 2012) in n = 6 HC
subjects and in n = 3 AD patients (Table 2). For an example, see
Supplementary Figures 2, 3.

Normalized hippocampal gray matter volume was lower in
the AD group, although not significantly (independent samples
t-test; T(26)= 1.735, p= 0.095). Entering it as covariate regressor
in the general linear models did not essentially change the results
of the one- and two-sample t-tests (Supplementary Figures 4–6).

Negative Associations
At group level, the AD group showed negative associations of
total band alpha power with clusters in the occipital, frontal

and temporal cortex (one-sample t-test, p < 0.01, uncorr.,
Supplementary Table 5). In the upper alpha band, associations
were only significant in the occipital cortex. Lower alpha
band power showed no significant associations (Supplementary
Table 5).

The HC group showed significant negative associations
of total alpha band power with clusters in the precentral
gyrus and superior temporal cortex (one-sample
t-test, p < 0.01, uncorr., Supplementary Table 6). No
suprathreshold clusters were found in the upper alpha
band. Lower alpha band power showed pronounced
negative associations with the frontal cortex, mainly in
the precentral and paracentral gyrus, and with the parietal
cortex, temporal and middle cingulate cortex (Supplementary
Table 6).

Compared to the HC group, the AD group did not exhibit
significantly reduced negative associations of total or upper alpha
band power with BOLD signal fluctuation in any voxel clusters.
Regarding the lower alpha band, significantly decreased negative
associations were found in the hippocampus, putamen and
cerebellum (two-sample t-test, p < 0.01, uncorr., Supplementary
Table 7).

At the individual level, first-level analyses revealed negative
associations of alpha band power with BOLD fluctuations in both
anterior and posterior regions in n = 5 AD patients and n = 7
HC subjects, associations in mainly frontal regions in n = 3
AD patients and n = 2 HC subjects, and associations in mainly
posterior regions in n= 1 HC subject.

DISCUSSION

The study successfully applied simultaneous fMRI-EEG to an
AD sample for the first time and showed a reduced positive
association between alpha band power and BOLD fluctuations in
the AD patients, compared to the HC subjects. In the HC group,
positive associations between alpha band power and BOLD
fluctuations were observed in numerous regions, including DMN
regions. Although present in all alpha sub-bands, they were
especially evident in the upper alpha frequency band. The
reduction of these positive associations in the AD patients might
be due to altered functional interaction between the brain regions
(Greicius et al., 2004; Zhang et al., 2009, 2010; Agosta et al., 2012;
Weiler et al., 2014; Xia et al., 2014). The functional associations
were not altered by the correction for hippocampal volume,
indicating that they were not driven by atrophy.

Based on previous simultaneous fMRI-EEG studies with
healthy participants, we hypothesized to find a positive
association of alpha band power and BOLD signal fluctuation in
the thalamus in HC subjects (Goldman et al., 2002; Moosmann
et al., 2003; Gonçalves et al., 2006). In the light of the
disrupted integrity of the thalamo-cortical system, we expected
this association to be reduced in the AD patients (Bhattacharya
et al., 2011; Zhou et al., 2013). In line with the hypothesis,
these associations were present in the HC group and were
decreased in the AD group. Additionally, in both groups, we
found more positive associations of the upper alpha band
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FIGURE 3 | Group comparison HC > AD of positive associations of total alpha band power fluctuation and BOLD signal (p < 0.01, uncorr., cluster threshold ≥ 50).

FIGURE 4 | Group comparison HC > AD of positive associations of upper alpha band power fluctuation and BOLD signal (p < 0.01, uncorr., cluster threshold ≥ 50).

power with the thalamus compared to the lower alpha band.
This might indicate a frequency-specificity. Also, as thalamo-
cortical activity underlies alpha generation and modulation
(Bhattacharya et al., 2013), future functional connectivity studies
might investigate whether decreased associations of alpha band
power and thalamic BOLD fluctuations are related to the
thalamo-cortical connectivity in AD (Zhou et al., 2013).

The third hypothesis included finding negative associations
with BOLD signal fluctuation in the occipital cortex. Negative
associations were found at group level in AD patients in the
occipital cortex, as well as superior medial frontal cortex and
temporal cortex. However, we did not find negative associations
with the occipital cortex in HC subjects at group level. This is
in contrast to a number of fMRI-EEG studies in young healthy
subjects, showing negative associations of alpha band power
with BOLD signal in the occipital cortex (Goldman et al., 2002;

TABLE 2 | First-level analyses: number of subjects (n) showing positive
associations of alpha band power and BOLD signal fluctuations, significant at
p < 0.01 (uncorr.).

Default mode network∗ Thalamus

AD

Total alpha (8–12 Hz) 3 3

Lower alpha (8–10 Hz) 3 2

Upper alpha (10–12 Hz) 4 3

HC

Total alpha (8–12 Hz) 6 5

Lower alpha (8–10 Hz) 4 3

Upper alpha (10–12 Hz) 7 5

∗Encompassing three or more of the following regions: precuneus, PCC, ACC,
medial prefrontal cortex, and inferior parietal lobe.

Moosmann et al., 2003; Gonçalves et al., 2006; Mantini et al.,
2007; Scheeringa et al., 2012). In the light of the overall accepted
theory that alpha band represents a hallmark of the resting state
of the brain (e.g., Gonçalves et al., 2006), we would have expected
it to correlate negatively with BOLD signaling in the respective
region. Instead, we found negative associations at HC group level
in frontal, temporal and parietal regions. Although unexpected,
this result is in line with a few other studies that reported an
absence of negative associations with BOLD signal in the occipital
cortex (Laufs et al., 2003a,b; Jann et al., 2009).

Interestingly, positive as well as negative associations with the
cerebellum were present in almost all subjects. The cerebellum
has received little attention in previous fMRI-EEG research
(Scheeringa et al., 2012). FMRI studies showed impaired
functional connectivity of the cerebellum in AD (Zheng et al.,
2017), and a sensitivity of the cortico-cerebellar coupling to
amyloid-β load in HC (Steininger et al., 2014). It would be
interesting for future research to investigate the association
of alpha band power and the integrity of cortical-cerebellar
functional processes during rest.

A general limitation of fMRI resting state measurement is
its high variability over time (Cole et al., 2010; Chen et al.,
2015). The instruction to keep the eyes closed and to stay awake
leaves room for spontaneous cognitive processes with varying
attentional states. Possibly, the activation of the DMN might
have been more robust if a task-based study design had been
used, for example involving tasks of self-referential thinking or
autobiographical memory (Andreasen et al., 1995; Mitchell, 2006;
Gobbini et al., 2007; Spreng and Grady, 2010; Knyazev et al.,
2011; Fomina et al., 2015). However, to be able to draw inferences
on a potential clinical use, a resting state paradigm was needed.
Another limitation is the relatively liberal statistical threshold. As
this was the first study to employ simultaneous rsfMRI-rsEEG in
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AD patients, we aimed to assess the feasibility and to explore the
associations in the whole brain.

We noted a high regional variability of both positive and
negative associations between alpha band power fluctuation and
BOLD signal between individual subjects, which has also been
reported in previous studies (Goldman et al., 2002; Gonçalves
et al., 2006; Laufs et al., 2006). Variability has been suggested
to be partly caused by fluctuations in vigilance (Goldman et al.,
2002; Laufs et al., 2006). Although our data were visually
controlled for sleep, fluctuations in vigilance may have been
present, particularly as an increase in artifacts in AD patients
toward the end of the scan time was noted. The effect of
vigilance on the association patterns of rsEEG and rsfMRI should
be addressed in future research. Our results of high inter-
individual heterogeneity, taken together with findings of high
inter- and intra-individual variability observed in other resting
state fMRI-EEG studies (Goldman et al., 2002; Laufs et al., 2003a,
2006; Moosmann et al., 2003; Gonçalves et al., 2006; Jann et al.,
2009; Olbrich et al., 2009), also highlight the importance of future
research with larger samples to be able to identify subgroups.
Furthermore, our results support the necessity to differentiate the
alpha band into sub-bands, as more HC subjects showed positive
association patterns within the upper sub-band. This agrees with
some other studies that investigated separate sub-bands (Laufs
et al., 2006; Jann et al., 2009, 2010), linking sub-bands to different
cognitive functions (e.g., Klimesch, 1999) and even indicating
the possibility of predicting conversion from MCI to AD by
calculating the ratio of power in alpha sub-bands (Moretti, 2015).

CONCLUSION

The present study showed diminished positive associations
between alpha band power fluctuation and BOLD signal
fluctuations in several brain regions in AD patients, compared

to HC subjects. These regions included (but were not limited
to) DMN and thalamic regions. This study demonstrates the
feasibility of measuring simultaneous rsEEG and rsfMRI signal
fluctuations in a clinical AD population. Further research is
needed to corroborate and expand its results.
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Amnestic MCI (aMCI) and non-amnestic MCI (naMCI) are considered to differ in etiology

and outcome. Accurately classifying MCI into meaningful subtypes would enable early

intervention with targeted treatment. In this study, we employed structural magnetic

resonance imaging (MRI) for MCI subtype classification. This was carried out in a

sample of 184 community-dwelling individuals (aged 73–85 years). Cortical surface

based measurements were computed from longitudinal and cross-sectional scans. By

introducing a feature selection algorithm, we identified a set of discriminative features, and

further investigated the temporal patterns of these features. A voting classifier was trained

and evaluated via 10 iterations of cross-validation. The best classification accuracies

achieved were: 77% (naMCI vs. aMCI), 81% (aMCI vs. cognitively normal (CN)) and

70% (naMCI vs. CN). The best results for differentiating aMCI from naMCI were achieved

with baseline features. Hippocampus, amygdala and frontal pole were found to be most

discriminative for classifying MCI subtypes. Additionally, we observed the dynamics of

classification of several MRI biomarkers. Learning the dynamics of atrophy may aid

in the development of better biomarkers, as it may track the progression of cognitive

impairment.

Keywords: mild cognitive impairment, longitudinal data, early diagnosis, MRI, biomarker, feature selection,

machine learning

INTRODUCTION

Mild cognitive impairment (MCI) is thought to be a transitional stage between cognitively normal
and dementia (Petersen, 2004). Previous studies have shown that neuroimaging biomarkers are
potential predictors of cognitive impairment (Shi et al., 2010; Cuingnet et al., 2011; Davatzikos
et al., 2011; Falahati et al., 2014; Trzepacz et al., 2014; Bron et al., 2015; Jung et al., 2016; Lebedeva
et al., 2017). Many researchers have developed and implemented machine learning systems which
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use neuroimaging biomarkers for more accurate identification of
individuals with MCI or dementia (Cui et al., 2012a; Shao et al.,
2012; Lebedev et al., 2014; Min et al., 2014; Moradi et al., 2015;
Yun et al., 2015; Cai et al., 2017; Guo et al., 2017). Early diagnosis
is an essential step in the prevention and early treatment of MCI
and dementia.

MCI is clinically heterogeneous with different risks of
progression to dementia. Clinical subtypes of MCI have been
proposed to broaden the concept, and included prodromal
forms of a variety of dementias (Petersen, 2004). MCI is
termed “amnestic MCI” (aMCI) when memory loss is the
predominant symptom. Almost 10% to 15% aMCI individuals
tend to progress to clinically probable Alzheimer’s disease (AD)
annually (Grundman et al., 2004). Additionally, MCI is termed
“non-amnesticMCI” (naMCI) when impairments are in domains
other than memory. Individuals with naMCI were more likely to
convert to dementia other than AD, such as vascular dementia or
dementia with Lewy bodies (Tabert et al., 2006). The progression
of different MCI subtypes to a particular type of dementia has
yet to be clearly delineated. On the other hand, MCI does not
necessarily lead to dementia, since some studies suggested that
MCI subjects have higher rates of reversion to normal cognition
than progression to dementia (Brodaty et al., 2013; Pandya et al.,
2016). A population-based study found that the reversion rate
is lower in aMCI compared with naMCI (Roberts et al., 2014).
Reliably identifyingMCI of different subtypes would enable more
efficient clinical trials and facilitate better targeted treatments.

Longitudinal measurements of Magnetic Resonance Imaging
(MRI) in MCI and dementia may provide crucial predictors
for tracking the disease progression of dementia (Misra et al.,
2009; Risacher et al., 2010; Liu et al., 2013; Mayo et al., 2017).
However, only a few studies used longitudinal data for automated
classification of MCI and dementia (McEvoy et al., 2011; Li et al.,
2012; Zhang et al., 2012a; Ardekani et al., 2017; Huang et al.,
2017). Zhang et al. proposed an AD prediction method using
longitudinal data which achieved greater classification results
than using baseline visit data (Zhang et al., 2012a). Huang et al.
presented a longitudinal measurement of MCI brain images
and a hierarchical classification method for AD prediction.
Their method using longitudinal data consistently outperformed
the method using baseline data only (Huang et al., 2017).
Despite these efforts, employing machine learning technique
with longitudinal MRI features for MCI subtypes classification is
rarely studied. And an additional aspect of research when using
longitudinal MRI measurements is to identify the biomarkers
that remain significant during the time course.

In this study, we used machine learning technique to classify
MCI subtypes by employing cross-sectional and longitudinal
MRI features. We reported nine independent classification
experiments, whereby we compared two groups in each
experiment: aMCI vs. cognitively normal (CN), naMCI vs. CN,
naMCI vs. aMCI, using features measured at baseline, two-
year follow-up, and longitudinally. The longitudinal features
were employed by calculating the means and changes of the
cross-sectional measurements. Clinical classifications at two-year
follow-up were used as the comparison. The features used for
classification were cortical surface based, including sulcal width,

cortical thickness, cortical gray matter (GM) volume, subcortical
volumes and white matter hyper-intensity (WMH) volume. We
compared the classification performance using cross-sectional
features and longitudinal features. In addition, we performed
feature selection and analyzed the temporal patterns of the
selected biomarkers.

MATERIALS AND METHODS

Participants
Participants were members of the Sydney Memory and Aging
Study (MAS), a longitudinal study of community-dwelling
individuals aged 70–90 years recruited via the electoral roll
from two regions of Sydney, Australia (Sachdev et al., 2010).
Individuals were excluded at baseline if they had a previous
diagnosis of dementia, mental retardation, psychotic disorder
including schizophrenia or bipolar disorder, multiple sclerosis,
motor neuron disease, developmental disability, or progressive
malignancy. The study was approved by the Ethics Committees of
the University of New SouthWales and the South Eastern Sydney
and Illawarra Area Health Service.Written informed consent was
obtained from each participant.

Diagnosis
Participants were diagnosed with MCI using the international
consensus criteria (Winblad et al., 2004). Specifically, the
presence of cognitive impairment as determined by performance
on a neuropsychological measure of at least 1.5 standard
deviations below published normative values for age and/or
education on a test battery covering five cognitive domains
(memory, attention/information processing, language, spatial
and executive abilities), a subjective complaint of decline in
memory or other cognitive function either from the participant
or informant, and normal or minimally impaired instrumental
activities of daily living attributable to cognitive impairment
(total average score <3.0 on the Bayer Activity of Daily Living
Scale, Hindmarch et al., 1998).

MCI were classified into two subtypes (aMCI or naMCI)
according to cognitive impairment profiles (Petersen, 2004).
Participants with no impairments on neuropsychological tests
were deemed to have normal cognition. In this study, we included
individuals who had MRI scans from both baseline and 2-year
follow-up (wave-2), and a wave-2 diagnosis of either cognitively
normal or MCI. Demographic characteristics were detailed in
Table 1. A total of 184 participants met these criteria, including
115 cognitively normal (CN), 42 aMCI, and 27 naMCI. The MRI
measurements used in the present study have been previously
published (Liu et al., 2013).

Image Acquisition
MRI scans were obtained with a 3-T system (Philips Medical
Systems, Best, The Netherlands) using the same sequence for
both baseline and follow-up scans: TR = 6.39 ms, TE = 2.9 ms,
flip angle = 8◦, matrix size = 256 × 256, FOV = 256 × 256 ×

190 mm, and slice thickness= 1 mm with no gap, yielding 1× 1
× 1 mm3 isotropic voxels.
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TABLE 1 | Demographic characteristics of the sample.

Time point Diagnostic group No. of subjects (male) Age mean (SD) Years of Edu mean (SD) MMSE score mean (SD)

Baseline Total 184 (91) 77.48 (4.40) 11.79 (3.60) 28.16 (1.32)

CN 117 (56) 77.12 (4.43) 11.93 (3.53) 28.39 (1.23)

aMCI 40 (28) 78.36 (4.11) 11.81 (3.96) 27.58 (1.32)

naMCI 27 (7) 77.76 (4.65) 11.14 (3.42) 28.00 (1.44)

Wave-2 Total 184 (91) 79.38 (4.40) 11.79 (3.60) 28.40 (1.41)

CN 115 (53) 78.78 (4.15) 12.06 (3.42) 28.83 (1.16)

aMCI 42 (30) 81.26 (4.98) 11.87 (4.16) 27.64 (1.59)

naMCI 27 (8) 79.03 (3.72) 10.49 (3.27) 27.78 (1.40)

CN, cognitively normal; aMCI, amnestic mild cognitive impairment (MCI); naMCI, non-amnestic MCI; Edu, education, MMSE, Mini-mental state examination.

Image Processing
Sulcal Measures

Cortical sulci were extracted from the images via the following
steps. First, non-brain tissues were removed to produce images
containing only GM, white matter (WM) and cerebrospinal
fluid (CSF). This was done by warping a brain mask defined
in the standard space back to the T1-weighted structural MRI
scan. The brain mask was obtained with an automated skull
stripping procedure based on the SPM5 skull-cleanup tool
(Ashburner, 2009). Individual sulci were identified and extracted
using the BrainVisa (BV, version 3.2) sulcal identification pipeline
(Rivière et al., 2009). A sulcal labeling tool incorporating 500
artificial neural network-based pattern classifiers (Riviere et al.,
2002; Sun et al., 2007) was used to label sulci. Sulci that were
mislabeled by BV were manually corrected. For each hemisphere,
we determined the average sulcal width for five sulci: superior
frontal, intra-parietal, superior temporal, central, and the sylvian
fissure. Sulcal width was defined as the average 3D distance
between opposing gyral banks along the normal projections to
the medial sulcal mesh (Kochunov et al., 2012). The five sulci
investigated in the present study were chosen because they were
present in all individuals, large and relatively easy to identify
after facilitating error detection and correction, and located on
different cerebral lobes. For each hemisphere, we calculated the
global sulcal index (g-SI) as the ratio between the total sulcal area
and outer cortical area (Penttilae et al., 2009). We calculated the
g-SI of each brain with no manual intervention using BV.

Cortical Thickness, GM Volume

We computed average regional GM volume, average regional
cortical thickness using the longitudinal stream in FreeSurfer
5.1 (http://surfer.nmr.mgh.harvard.edu/) (Reuter et al., 2012).
This stream specifically creates an unbiased specific within-
subject template space and image using robust, inverse consistent
registration (Reuter and Fischl, 2011; Reuter et al., 2012).
Briefly, this pipeline included the following processing steps,
skull stripping, Talairach transforms, atlas registration, spherical
surface maps, and parcellation of cerebral cortex (Desikan et al.,
2006; Reuter et al., 2012). We applied Desikan parcellation
(Desikan et al., 2006) which resulted 34 cortical regions of interest
(ROIs) in each hemisphere. We visually inspected registration

and segmentation. Scans were excluded if they failed visual
quality control, resulting in an unequal number of scans available
for different brain structures. We calculated both the cortical
thickness and the regional volumes for every cortical regions of
the Desikan parcellation.

Subcortical Volume

Subcortical brain structures were extracted using FSL’s FIRST
(FMRIB Image Registration and Segmentation Tool, Version
1.2), a model-based segmentation/registration tool (Patenaude
et al., 2011). We included the following left and right subcortical
structures: thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, and nucleus accumbens. Briefly, the FIRST algorithm
modeled each participant’s subcortical structure as a surface
mesh, using a Bayesian model incorporating a training set of all
images. We conducted visual quality control of FSL results using
ENIGMA protocols (http://enigma.ini.usc.edu/). Three slices of
each of coronal, sagittal and axial planes were extracted from each
linearly transformed brain. For comparison, an outline of the
templates was mapped onto the slices. We confirmed that the size
of the participant brain corresponded with that of the template,
verified that the lobes were appropriately situated, and confirmed
that the orientation of the participant matched the template.

WMHs

WMHs were delineated from coronal plane 3D T1-weighted and
Fluid Attenuated Inversion Recovery (FLAIR) structural image
scans using a pipeline described in detail previously (Wen et al.,
2009). For each hemisphere, we calculated WMH volumes of
eight brain regions: temporal, frontal, occipital, parietal, ventricle
body, anterior horn, posterior horn, and cerebellum.

We obtained neuroimaging measurements of all participants
at baseline and wave-2. The changes and the means values of
thosemeasurements were considered as the longitudinal features.
There were altogether 178 MRI measurements for baseline and
wave-2 feature sets, which included 12 sulcal measurements,
68 thickness measurements, 68 volume measurements, 14
subcortical measurements, and 16 WMH measurements. With
the means and the changes, the longitudinal feature set included
356 MRI measurements.
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Feature Selection
The aims of feature selection were to maximize the performance
of classification by identifying the most discriminative features,
and help in understanding the neuropathological basis of
neurocognitive impairments such as MCI and dementia.
Supervised feature selection methods were often divided into
three categories, namely “filter,” “wrapper,” and “embedded,”
respectively (Mwangi et al., 2014). A particular problem of those
methods was that when they were applied in the neuroimaging
fields, where the number of features largely exceeded the number
of examples, the cross-validation based error estimates usually
led to results with extremely large variances (Dougherty et al.,
2010; Tohka et al., 2016).We proposed a feature selectionmethod
in this study to reduce the variances by integrating the filter
and the wrapper procedures within the subsampling iterations.
The optimal feature subset consisted of the features which were
most frequently selected in all the subsamples of data. The
discriminative abilities of the features were assessed in terms of
the selection frequencies.

Figure 1 shows the flowchart of the feature selection
procedure used in our study. We first randomly subsampled
the training set 100 times. During each subsampling iteration,

FIGURE 1 | Illustration of the feature selection procedure. This procedure

integrate filter and wrapper methods within the subsampling procedure. The

optimal features consisted of the features which were most frequently selected

in all the subsamples of data. The final optimal feature set was determined by

validating classification performance on the training data. We used feature

ranking with ANOVA F-value as the filtering process, and the recursive feature

elimination algorithm as the wrapping process. A single experiment within a

cross-validation (CV) iteration is depicted. SVM = support vector machine.

data were divided into two subsets of equal size, subset A and
subset B. Subset A was processed by a filter to select features. The
selected features were then applied to subset B. The subset B was
processed by a wrapper to further reduce the number of features.
After the subsampling processes, features were subsequently
ranked in order of selection frequencies. The final optimal feature
set was then determined by validating classification performance
on the training data, using features chosen on the basis of
frequency rank thresholds.

In the filter stage, ANOVA (analysis of variance) F-value
were used to rank features on the basis of correlations with
their diagnostic label. The top 100 features were selected at
this stage. Then in the wrapping stage, the recursive feature
elimination algorithm (Guyon et al., 2002) was used to further
remove less informative features. Among the top 100 features,
20 were retained in this stage. The selection frequencies could
be 100 at maximum or 0 at minimum. To mitigate the curse-
of-dimensionality problem, the final feature set was limited with
less than 10 features, and a variation section was established for
the feature set to achieve the best validation performance. Given
a frequency rank threshold Nf (Nf ǫ [10, 9, 8]), we randomly
split the training data into 2 subgroups: one for training a SVM
(Vapnik, 1995) classifier with top Nf features, and the other for
validation. The kernel for the SVM is the radial basic function
(rbf). This step was repeated 5 times, and the recall scores were
computed (the recall score is the ratio Tp/(Tp + Fn), where
Tp is the number of true positives and Fn is the number of
false negatives). We chose the recall score as the criteria to
minimize the impact of sample proportion imbalance. The top Nf
features with the highest average recall score became the optimal
feature set. We also evaluated the selected features using 2-tailed
t-test.

Classification and Validation
The imbalance of the sample could lead to a suboptimal
classification performance. This study investigated a population-
based sample, consisting of more cognitively normal individuals
than MCI. There was also a large difference between the sample
sizes of different MCI subtypes. We addressed this problem by
using the data-resampling technique (Chawla et al., 2002; Dubey
et al., 2014). An overview of the procedure is shown in Figure 2.
We used a combination of oversampling and undersampling
(Batista et al., 2004). K-means clustering (Macqueen, 1967)
algorithm was used for oversampling, where new synthetic data
were generated by clustering the minority class data. Briefly, Ns
samples were clustered into Ns/3 clusters, and Ns/3 centroids
were generated. Then these centroids and the original samples
were combined for the next iteration of oversampling. The
oversampling procedure was repeated until the size of minority
class was 2/3 the size of the majority class. K-Medoids clustering
(Hastie et al., 2001) algorithm was used for undersampling,
where actual data points from the majority class were chosen
as the cluster centers. The final training set was a combination
of the oversampled minority class data and the undersampled
majority class data. While resampling the training set, the test
set remained the same. The training set was resampled 3 times
to reduce the bias due to random data generation. Then the
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FIGURE 2 | Overview of the proposed classification model. In this model, a training set and a test set were derived from the dataset using data points from both

majority and minority classes (shown in the left rectangle of the figure). A combination of oversampling and undersampling technique was applied to the training set to

generate a resampled training set. The training set in each cross-validation iteration was resampled three times to reduce the bias due to random dataset generation.

Then feature selection was applied to select the most discriminative features. Then the classification model was trained on the dimension-reduced training set, and

evaluated on the test set.

feature selectionmethod was applied on those resampled training
sets, thus producing 3 learning models. These models were
combined using majority voting, where the final label of an
instance was decided based on the majority votes received from
all the models.

We chose Voting Classifier for classification (Maclin and
Opitz, 1999). A Voting Classifier combines conceptually different
machine learning classifiers and uses a majority vote or the
average predicted probabilities (soft vote) to predict the class
labels. The advantage of Voting Classifier is to balance out
the individual weaknesses of a set of equally well performing
models. We chose SVM (rbf kernel), Logistic Regression (LR)
(Cox, 1958), and Random Forest (RF) (Breiman, 2001) as the
estimators of the Voting Classifier. All the estimators were
with default settings of parameters. Specific weights (1:4:1)
were assigned to SVM, LR and RF via the weights parameter.
The weights were selected experimentally to aim at a better
sensitivity score. We started with the equal weights (1:1:1),
and changed the weights to obtain the best results. The
predicted class probabilities of each classifier were collected,
multiplied by the weights of classifiers, and averaged. The final
class label was then derived from the class label with the
highest average probability. As different features had different
scales, we standardized all the training data within a 0–1
range, and the same procedure was then applied to the test
data.

We evaluated our method using stratified Shuffle Split
cross-validation procedure, also known as Monte Carlo cross-
validation (Berrar et al., 2007), which returned stratified
randomized folds by preserving the percentage of samples for
each class. The cross-validation procedure was repeated 10 times
with a fixed 9:1 train-test ratio. The final classification results
represented the average of these 10 independent experiments.We
applied four metrics to assess the performance of the model: the
accuracy, the specificity, the sensitivity, and the area under the
receiver operating characteristic curve (AUC). AUC is a better
measure than accuracy in imbalanced data sets and real-world
applications (Huang and Ling, 2005; Bekkar et al., 2013).

It was important to note that we obtained a unique set of
selected features in each training set. The training set in each
cross-validation iteration was resampled 3 times, thus producing
3 resampled training sets. In each training set, the maximum
possible selection frequency of one feature was 100. Considering
the feature selection and data-resampling steps within the 10-
iteration cross-validation procedure, the final maximum possible
selection frequency of each feature was 3× 100× 10= 3,000.

All the data processing and analyzing were performed using
Python libraries Numpy 1.10.4 (Walt et al., 2011) and Scipy 0.17.0
(Jones et al., 2001) on Python 2.7.11 (Anaconda 4.0.0–64 bit,
http://www.continuum.io/). All the machine learning methods
were performed using the library Scikit-Learn 0.17.1 (Pedregosa
et al., 2011).
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RESULTS

MCI Subtypes Classification
As shown in Table 2, in the classification of aMCI and CN,
compared with using baseline features, using longitudinal
features improved the performance to accuracy of 73%,
sensitivity of 53%, specificity of 80%, and AUC of 0.75; the
results of using longitudinal features were not superior to
that using wave-2 features. Identifying naMCI from CN was
relatively difficult considering the poor sensitivity value and
AUC; the results of using longitudinal and cross-sectional
features were comparable and without significant difference.
In the classification of naMCI vs. aMCI, compared with using
longitudinal features, using baseline features achieved better
performance; the results of using wave-2 features were not
significantly different from using longitudinal features.

Discriminative Features
The discriminative ability of the features used in this study
were assessed by examining the frequency with which they were
selected. We listed the top 10 most frequently selected features
in each MCI subtype classification experiment (see Tables 3–5).
In the comparison of aMCI vs. CN, thickness of right frontal
pole, left superior temporal, volume of right thalamus, and right
hippocampus were more discriminative than the rest of features
(see Table 3). In the classification of naMCI vs. aMCI, thickness
of right rostral middle frontal, right pericalcarine, right frontal
pole, and volume of right rostral anterior cingulate were more
discriminative than the others (see Table 5). Regardless of cross-
sectional (baseline and wave-2) or longitudinal, all the features
mentioned above were listed in the top-10 feature list. In the
naMCI vs. CN comparison, volume of left temporal pole and
right amygdala were also discriminative (see Table 4).

The top-10 selected features were analyzed to identify the
temporal patterns. Several features measured at different time
points showed dynamic discriminative powers. Figures 3–5
shows the selection frequencies of the stable features measured
at each time point. A feature may be identified as stable when this

feature was selected at all the baseline, wave-2, and longitudinally.
The selection frequencies of the stable features for aMCI vs. CN
classification are shown in Figure 3. We observed that thickness
of right frontal pole was a stable biomarker, since its selection
frequencies were close between different time points. The
selection frequencies of several biomarkers changed visibly over
time, including volume of right thalamus, right hippocampus,
and thickness of left superior temporal. In the classification of
naMCI vs. CN (see Figure 4), only a few features were stable.
We observed that the volume of right amygdala provided more
useful information at baseline. Volume of left temporal pole and
right rostral cingulate carried more information at baseline. In
the classification of naMCI vs. aMCI (see Figure 5), volume of
right rostral middle frontal and thickness of right pericalcarine
thickness were selected more often at baseline, while volume
of right frontal pole were more discriminative at wave-2. And
volume of right rostral anterior cingulate provided important
information at all-time points.

Furthermore, some features were selected in the top-10
feature list at either baseline or wave-2, such as the right g-SI
index, sucal width of superior frontal (see Table 3); thickness
of left lateral occipital, WMH volume of right cerebellum (see
Table 4); thickness of right lateral occipital, and WMH volume
of right frontal (see Table 5). On the other hand, some features
were selected only in longitudinal cases, such as sulcal width
of right superior temporal, thickness of left inferior temporal
(see Table 3); volume of right entorhinal and right posterior
cingulate, thickness of left posterior cingulate and temporal
pole (see Table 4); thickness of left precentral, volume of right
entrohinal (see Table 5). Most of these longitudinal features were
the differences (changes value) between the measures of two time
points.

DISCUSSION

Our study examined classification of MCI subtypes in
community-dwelling elderly using cross-sectional and

TABLE 2 | Classification results of MCI subtypes: features measured at baseline, wave-2 and longitudinally are used and compared.

Task No. of minority class No. of majority class Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

aMCI vs. CN aMCI = 42 CN = 115 Baseline 0.64 0.42 0.71 0.68

Wave-2 0.81* 0.68 0.85 0.74

Longitudinal 0.73 0.53 0.80 0.75

naMCI vs. CN naMCI = 27 CN = 115 Baseline 0.67 0.37 0.75 0.57

Wave-2 0.65 0.30 0.74 0.58

Longitudinal 0.70 0.23 0.82 0.60

naMCI vs. aMCI naMCI = 27 aMCI = 42 Baseline 0.77* 0.70* 0.82 0.84*

Wave-2 0.71 0.57 0.82 0.70

Longitudinal 0.61 0.40 0.78 0.71

wave-2, 2-year follow-up; MCI, mild cognitive impairment; CN cognitively normal; aMCI, amnestic MCI; naMCI, non-amnestic MCI; AUC, area under the receiver operating characteristic

curve.

*Significantly different from the method using longitudinal features; results are from t-test (p < 0.05).
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TABLE 3 | Selected features for the classification of aMCI vs. CN.

Task Baseline feature Frequency pa Wave-2 feature Frequency pa Longitudinal feature Frequency pa

aMCI vs. CN Right frontal pole

thickness

2,658 0.001 Right frontal pole

thickness

2,786 <0.001 Right frontal pole

thickness

2,715 <0.001

Right thalamus

volume

2,136 0.006 Right hippocampus

volume

2,105 <0.001 Right thalamus

volume

2,470 0.001

Left superior

temporal thickness

1,620 0.001 Right thalamus

volume

1,775 0.001 Right hippocampus

volume

2,071 0.001

Right hippocampus

volume

1,344 0.005 Left superior temporal

thickness

1,144 0.005 Left superior temporal

thickness

1,212 0.002

Right g-SIc 1,265 0.003 Left sucal width of

superior frontal

1,062 0.002 Right sucal width of

superior temporalb*

1,036 0.027

Right transverse

temporal thicknessc
755 0.013 Right sucal width of

superior frontalc
963 0.001 Right pericalcarine

thickness

876 0.004

Right pericalcarine

thickness

736 0.005 Right amygdala

volumec
963 0.073 Left precentral

thicknessb*

869 0.035

Right rostral anterior

cingulate volumec
693 0.128 Right pericalcarine

thickness

958 0.006 Left inferior temporal

thickness*

827 0.019

Right paracentral

thicknessc
637 0.022 Right accumbens

volumec
660 0.011 Right paracentral

thicknessb*

819 0.012

Left posterior cingulate

volumec
545 0.134 Left medial orbitofrontal

thicknessc
633 0.045 Right sulcal width of

superior frontal

722 0.002

A feature measured at baseline, wave-2 or longitudinally is defined as baseline feature, wave-2 feature or longitudinal feature, respectively. The first 10 most frequently selected features

and their selection frequencies are listed. The maximum possible selection frequency of each feature is 3000. The features with selection frequencies above 1500 are in bold. wave-2,

2-year follow-up; MCI, mild cognitive impairment; CN, cognitively normal; aMCI, amnestic MCI.
aResults for comparisons of positive subjects and negative subjects using t-tests.
bChanges measurements, the rest longitudinal features are means measurements.
cFeatures that were selected at a single time point (either at baseline or wave-2).

*Features that were selected only in longitudinal case.

longitudinal MRI measurements. Our classification framework
implemented a data-resampling step to reduce the effect of
the class-imbalance, and a feature selection step in which
maximally most discriminative feature subsets were identified.
The results suggested that individuals with aMCI could be
differentiated from CN and naMCI with MRI-based biomarkers,
but identifying naMCI from CN was still a challenge. Identifying
aMCI from CN using longitudinal features achieved better
performance than that using baseline features, but the results
were not superior to that using wave-2 features. The best
performance of differentiating aMCI from naMCI was achieved
with baseline features. In addition, we analyzed and identified
the dynamics of the biomarkers.

The subtlety of brain changes in MCI challenges the image-
based classification. Previous studies reported using machine
learning to differentiateMCI from cognitively normal (Wee et al.,
2011, 2012; Zhang et al., 2011, 2017; Cui et al., 2012b; Liu et al.,
2015, 2017). Cui et al. used combined measurements of T1-
weighted and diffusion tensor imaging (DTI) to distinguish aMCI
from CN, achieved a classification accuracy of 71%, sensitivity
52%, specificity 78%, and AUC 0.70 (Cui et al., 2012b). Our
performance (accuracy 81%, sensitivity 68%, specificity 85%,
and AUC 0.74) is better than their study. The approach of
Wee et al. was a kernel combination method that utilized DTI
and resting-state functional magnetic resonance imaging (Wee
et al., 2012). Although their classification accuracy of 96.3% is
higher than ours, the inclusion of multi-modality imaging could

restrict their use in clinical settings, and the small sample size
of fewer than 30 participants may also make their results less
robust. Considering the heterogeneity of MCI, we performed
MCI subtypes classification, and the results demonstrated that
aMCI and naMCI could be accurately separated with MRI
biomarkers. And the results showed that the various groups
demonstrated different patterns of atrophy on MRI. However,
differentiating naMCI from CN was difficult considering the low
sensitivities (see Table 2). The serious imbalance of classes could
result in this poor performance, although we had performed
data-resampling to mitigate the difference of the sample sizes.
Compared with aMCI, naMCI individuals are more likely to
revert to normal cognition (Roberts et al., 2014; Aerts et al.,
2017). The MCI individuals who reverted might have different
underlying mechanisms (Zhang et al., 2012b). In addition, higher
estimates of MCI incidence in clinic-based studies (Petersen,
2004, 2010) than in population-based studies suggested that the
rate of reversion to normal cognition may be lower in the clinic
setting than in population-based studies (Koepsell and Monsell,
2011; Lopez et al., 2012) such as ours.

Longitudinal patterns of atrophy identified in MRI
measurements can be used to elevate the prediction of cognitive
decline (Rusinek et al., 2003; Risacher et al., 2010). McEvoy
et al. investigated whether single-time-point and longitudinal
volumetric MRI measures provided predictive prognostic
information in patients with aMCI. Their results showed that
the information regarding the rate of atrophy progression
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TABLE 4 | Selected features for the classification of naMCI vs. CN.

Task Baseline feature Frequency pa Wave-2 feature Frequency pa Longitudinal feature Frequency pa

naMCI vs. CN Right WMH volume of

cerebellum c

2,240 0.014 Left lateral occipital

thickness c

2,087 0.002 Right entorhinal

volumeb*

2,866 <0.001

Left temporal pole

volume

2,227 0.072 Right rostral middle

frontal thickness

1,670 0.024 Right amygdala

volume

1,852 0.001

Right amygdala volume 2,027 0.002 Left temporal pole

volume

1,636 0.086 Right posterior

cingulate volumeb*

1,608 0.008

Right rostral middle

frontal thickness

1,757 0.008 Right amygdala volume 1,527 0.003 Left lateral occipital

thickness

1,434 0.002

Right rostral anterior

cingulate volume

1,718 0.011 Right sucal width of

superior frontal c
1,259 0.017 Left temporal pole

volume

1,256 0.074

Left middle temporal

thickness c
1,316 0.002 Left pericalcarine volume c 1,218 0.012 Left posterior cingulate

thicknessb*

891 0.022

Right inferior parietal

thickness c
953 0.002 Right rostral anterior

cingulate volume

993 0.026 Left amygadala

volumeb*

746 0.117

Right thalamus volume c 833 0.005 Right putamen volume c 754 0.001 Left temporal pole

thicknessb*

630 0.054

left transverse temporal

volume c
778 0.182 Right supramarginal

volume

602 0.263 Left middle temporal

thickness

613 0.007

Right supramarginal

volume

638 0.108 Left sulcal width of

superior temporal c
515 0.134 Right WMH volume of

cerebellum

578 0.378

A feature measured at baseline, wave-2 or longitudinally is defined as baseline feature, wave-2 feature or longitudinal feature, respectively. The first 10 most frequently selected features

and their selection frequencies are listed. The maximum possible selection frequency of each feature is 3000. The features with selection frequencies above 1,500 are in bold. wave-2,

2-year follow-up; CN, cognitively normal; naMCI, non-amnestic MCI.
aResults for comparisons of positive subjects and negative subjects using t-tests.
bChanges measurements, the rest longitudinal features are means measurements.
cFeatures that were selected at a single time point (either at baseline or wave-2).

*Features that were selected only in longitudinal case.

over a 1-year period improved risk prediction compared with
using single-time-point MRI measurement (McEvoy et al.,
2011). Huang et al. used longitudinal changes over 4 years
of T1-weighted MRI scans to predict AD conversion in MCI
subjects. Their results showed that the model with longitudinal
data consistently outperformed the model with baseline data,
especially achieved 17% higher sensitivity than the model with
baseline data (Huang et al., 2017). In our study, the results
showed that the longitudinal features failed to provide additional
information for identifying aMCI and naMCI compared with
cross-sectional features. In the classification of aMCI vs. CN,
the accuracy with longitudinal features was nearly 10% higher
than the accuracy with baseline features, but was not superior to
the accuracy with wave-2 features (Table 2). The performance
of using longitudinal features was comparable to using cross-
sectional features at baseline and wave-2 for distinguishing
naMCI from CN. In addition, the highest performance of
distinguishing naMCI from aMCI was achieved with baseline
features (see Table 2). This might because the progression of
naMCI showed no coherent pattern of atrophy. The patterns
of atrophy differ among aMCI and naMCI, and subjects with
naMCI showed scattered patterns of gray matter loss without
any particular focus (Whitwell et al., 2007). All the subjects
of our study were community-dwelling. It was likely that the
naMCI subjects had atrophy patterns closer to those of CN
at baseline, but over the time the patterns progressed to more
MCI-like at wave-2. Our results also indicated that features
selected for identifying naMCI were unstable over time, which

might be because clinical classification of naMCI can be based
on impairment individually or in combination across a range
of non-amnestic cognitive domains (language, visuo-spatial,
processing speed, or executive abilities).

Longitudinal research has observed the dynamics of
biomarkers (Trojanowski et al., 2010; Sabuncu et al., 2011;
Eskildsen et al., 2013; Zhou et al., 2013). Some features provided
significant information at all-time points while some other
features were shown to be useful at a specific time point.
Eskildsen et al. demonstrated that prediction accuracies of
conversion from MCI to AD can be improved by learning the
atrophy patterns that were specific to the different stages of
disease progression (Eskildsen et al., 2013). They found that
medial temporal lobe structures were stable biomarkers across
all stages. Hippocampus was not discriminative at 36 months
prior to AD diagnosis, but was included in all prediction cases of
later stages. In addition, biomarkers were mostly selected from
the cingulate gyrus, which is well known to be affected in early
AD (Eskildsen et al., 2013). Histological studies suggest that the
integrity of entorhinal cortex is among the first affected, which
is then only later followed by an atrophy of the hippocampus
(Braak et al., 1993).In our study, we also found that volume of
the right hippocampus was more discriminative at wave-2 (see
Figure 3, Table 3), which would complemented the histological
findings. Furthermore, the thalamic volume was discriminative
and stable over time (see Figure 3, Table 3), which was consistent
with a previous study that the structure and function of thalamus
determined severity of cognitive impairment (Schoonheim
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TABLE 5 | Selected features for the classification of naMCI vs. aMCI.

Task Baseline feature Frequency pa Wave-2 feature Frequency pa Longitudinal feature Frequency pa

naMCI vs. aMCI Right rostral middle

frontal thickness

2,643 <0.001 Right rostral anterior

cingulate volume

2,754 <0.001 Right rostral anterior

cingulate volume

2,598 <0.001

Right rostral anterior

cingulate volume

2,538 <0.001 Right frontal pole

thickness

2,634 <0.001 Right rostral middle

frontal thickness

2,502 <0.001

Right pericalcarine

thickness

2,241 0.001 Right rostral middle

frontal thickness

2,190 <0.001 Right frontal pole

thickness

2,478 <0.001

Right frontal pole

thickness

1,815 <0.001 Right pericalcarine

thickness

1,551 0.005 Right pericalcarine

thickness

1,830 0.002

Right g-sic 1,539 0.004 Left transverse

temporal volumec
1,131 0.028 Right lateral occipital

thickness

1,062 0.001

Right lateral occipital

thicknessc
1,023 <0.001 Right wmh volume of

frontalc
1,071 0.122 Right entorhinal

volumeb*

1,029 0.010

Right transverse

temporal thicknessc
750 0.014 Left rostral middle

frontal volumec
813 0.037 Left transverse

temporal thickness

867 0.009

Left inferior temporal

thicknessc
687 <0.001 Right insula thicknessc 678 0.037 Left inferior temporal

thickness

666 0.001

Right parsorbitalis

thicknessc
666 0.002 Right frontal pole

volumec
573 0.054 Left precentral

thickness*

639 0.001

Right transverse

temporal thicknessc
480 0.011 Right sulcal width of

superior temporalc
552 0.026 Right g-SI 591 0.011

A feature measured at baseline, wave-2 or longitudinally is defined as baseline feature, wave-2 feature or longitudinal feature, respectively.

The first 10 most frequently selected features and their selection frequencies are listed. The maximum possible selection frequency of each feature is 3,000. The features with selection

frequencies above 1500 are in bold. Key: wave-2, 2-year follow-up; aMCI, amnestic MCI; naMCI, non-amnestic MCI.
aResults for comparisons of positive subjects and negative subjects using t-tests.
bChange measurement, the rest longitudinal features are mean measurements.
cFeatures that were selected at a single time point (either at baseline or wave-2).

*Features that were selected only in longitudinal case.

FIGURE 3 | The selection frequencies of the stable features for aMCI vs. CN

classification. The baseline, wave-2 or longitudinal frequency are the selection

frequencies of the feature measured at baseline, wave-2 or longitudinally,

respectively. The selection frequency (between 0 and 3,000) of each feature is

indicative of the discriminative power for classification. Thickness of right

frontal pole is stable across time. Volume of right thalamus and left superior

temporal provides more information in former time point, while the volume of

right hippocampus is more discriminative in later time point. rFP, right frontal

pole thickness; rTH, right thalamus volume; lST, left superior temporal

thickness; rHI, right hippocampus volume; rPE, right pericalcarine thickness.

et al., 2015). Volume of left posterior cingulate and right rostral
anterior cingulate were more discriminative at baseline for
identifying aMCI and naMCI from CN (see Tables 3, 4), while
volume of right rostral anterior cingulate was a stable biomarker
for naMCI vs. aMCI classification over time (see Figure 5,
Table 5). Zhou et al. used the baseline MRI features to predict
MMSE (The Mini–Mental State Examination, Folstein et al.,
1975) and ADAS-Cog (Alzheimer’s Disease Assessment Scale
cognitive subscale, Rosen et al., 1984) scores in the next 4 years
(Zhou et al., 2013). They observed that the average cortical
thickness of left middle temporal, left and right entorhinal, and
volume of left hippocampus were important biomarkers for
predicting ADAS-Cog scores at all-time points. Cortical volume
of left entorhinal provided significant information in later stages
than in the first 6 months. Several biomarkers including volume
of left and right amygdala provided useful information only at
later time points (Zhou et al., 2013). In our study, cross-sectional
(both baseline and wave-2) volume of right entorhinal was not
an important biomarker for the classification of naMCI vs. CN,
but the longitudinal volume change of right entorhinal (see
Table 4) was discriminative. Volume of right amygdala was
discriminative at all-time points for naMCI vs. CN classification
(see Figure 4, Table 4). The dynamics of biomarker could
potentially aid in developing stable imaging biomarkers and in
tracking the progression of cognitive impairment.

The use of same dataset for feature selection and classification
is termed “double-dipping,” which will lead to distorted
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FIGURE 4 | The selection frequencies of the stable features for naMCI vs. CN

classification. The baseline, wave-2 or longitudinal frequency are the selection

frequencies of the feature measured at baseline, wave-2 or longitudinally,

respectively. The selection frequency (between 0 and 3,000) of each feature is

indicative of the discriminative power for classification. Volume of left temporal

pole is a more important biomarker in former time point. When measured

longitudinally, volume of right rostral anterior cingulate and thickness of right

middle frontal are not selected in the first 10 feature list. The right amygdala

volume is stable over time. lTP, left temporal pole volume; rA, right amygdala

volume; rRAC, right rostral anterior cingulate volume; rRMF, right rostral middle

frontal thickness.

descriptive statistics and artificially inflated accuracies
(Kriegeskorte et al., 2009; Pereira et al., 2009; Eskildsen
et al., 2013; Mwangi et al., 2014). Due to the limited samples
in neuroimaging studies, carelessly designed training, testing
and validation schemes, the risk of double-dipping is high.
Eskildsen et al. used cortical regions potentially discriminative
for predicting AD. They found that by inclusion of test subjects
in the feature selection process, the prediction accuracies were
artificially inflated (Eskildsen et al., 2013). In our experiments,
training datasets and test datasets were adequately separated
using cross-validation procedure. The training set in each
cross-validation iteration were used for data-resampling, feature
selection and classifier training, while the test set were only used
for validating classification performance.

The main limitation of the present study was the limited
sample size. Our method required longitudinal data, thus
limiting the subjects with MRI scans at both time points.
Secondly, this study investigated a population-based sample,
consisting of more cognitively normal individuals than MCI.
There was also a difference between the sample sizes of aMCI and
naMCI. The findings need to be replicated in other data sets.

CONCLUSION

In conclusion, the present study investigated MCI subtypes
classification in a sample from community-dwelling elderly
using both cross-sectional and longitudinal MRI features.

FIGURE 5 | The selection frequencies of the stable features for naMCI vs.

aMCI classification. The baseline, wave-2 or longitudinal frequency are the

selection frequencies of the feature measured at baseline, wave-2 or

longitudinally, respectively. The selection frequency (between 0 and 3,000) of

each feature is indicative of the discriminative power for classification. Volume

of right rostral middle frontal and thickness of right pericalcarine are more

discriminative in former time point, while volume of right frontal pole is more

discriminative in later time point. And volume of right rostral anterior cingulate

provide important information at all-time points. rRMF, right rostral middle

frontal thickness; rRAC, right rostral anterior cingulate volume; rPE, right

pericalcarine thickness; rFP, right frontal pole volume.

Our experiments suggested that longitudinal features were
not superior to the cross-sectional features for MCI subtypes
classifications. Dynamics of the biomarkers were analyzed and
identified. Future studies with longer follow-up and more
measurement occasions may lead to the better understanding of
the trajectories for cognitive impairment.
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Single photon emission computed tomography (SPECT) and Electroencephalography

(EEG) have become established tools in routine diagnostics of dementia. We aimed

to increase the diagnostic power by combining quantitative markers from SPECT and

EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that

the combination of SPECT with measures of interaction (connectivity) in the EEG yields

higher diagnostic accuracy than the single modalities. We examined 39 patients with

Alzheimer’s dementia (AD), 69 patients with depressive cognitive impairment (DCI), 71

patients with amnestic mild cognitive impairment (aMCI), and 41 patients with amnestic

subjective cognitive complaints (aSCC). We calculated 14 measures of interaction

from a standard clinical EEG-recording and derived graph-theoretic network measures.

From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime

(HMPAO)-SPECT in 46 regions, we calculated relative cerebral perfusion in these

patients. Patient groups were classified pairwise with a linear support vector machine.

Classification was conducted separately for each biomarker, and then again for each

EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers

outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%), aMCI

vs. AD (70%), and AD vs. DCI (100%), while a selection of EEG measures performed

best when classifying aSCC vs. aMCI (82%) and aMCI vs. DCI (90%). Only the contrast

between aSCC and DCI did not result in above-chance classification accuracy (60%).

In general, accuracies were higher when measures of interaction (i.e., connectivity

measures) were applied directly than when graph-theoretical measures were derived. We

suggest that quantitative analysis of EEG and machine-learning techniques can support

differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging

methods such as SPECT. Quantitative analysis of EEG connectivity could become an

integral part for early differential diagnosis of cognitive impairment.

Keywords: SPECT, EEG connectivity, dementia, depression with cognitive impairment, mild cognitive impairment,

subjective cognitive complaints
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1. INTRODUCTION

Mild cognitive impairment (MCI) is common in the elderly
population and can be stable or convert to Alzheimer’s disease
(AD) (Winblad et al., 2004; Gauthier et al., 2006). Estimated
47.5 million people suffer from dementia worldwide, and it is
estimated that this number will triple by 2050 (Wold Health
Organization, 2016). The WHO reports an estimate of US $604
billion of total global costs associated with dementia. Early
differential diagnosis of MCI, subjective cognitive complaints
(SCC), and depressive cognitive impairment (DCI) would pave
the way for new therapeutic programs, possibly reducing the
overall burden of memory disorders and improving quality of
life of these patients (DeKosky and Marek, 2003). Because of
the various aetiologies and pathologic processes that may lead
to memory impairments it is suggested that a combination of
several biomarkers is necessary to provide an early diagnosis of
AD in the various phases and variations of the disease (Scheltens
et al., 1997; DeKosky and Marek, 2003; Wurtman, 2015).

The National Institute of Neurological and Communicative
Diseases and Stroke/Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) has proposed clinical criteria for
the diagnosis of probable AD (McKhann et al., 1984). For an early
detection it is not enough to use neuropsychological tests alone
since SCC are—by definition—not detectable by these diagnostic
procedures, i.e., they are experienced subjectively, only. A patient
may suffer from impairment and notice the change. However, a
neuropsychological test indicates only whether the patient scores
lower than the reference group that was used to standardize the
test. When a patient performs well above average throughout his
life and experiences a loss because of beginning MCI, he might
still perform within the normal range, despite having subjectively
noticed the objective decline. In turn, the diagnosis of MCI is still
a challenge for neuropsychologists (Ladeira et al., 2009; Lopez,
2013; Rentz et al., 2013). In addition, some of the physiological
features that differentiate several types of dementia cannot be
assessed with behavioral tests. In the following, we want to outline
two diagnostic modalities that might complement each other and
thus, are hypothesized to contribute to the differential diagnosis
of disorders with amnestic symptoms.

Single Photon Emission Computer Tomography (SPECT)
is complementary to clinical assessment (Farid et al., 2011).
The measured activity, i.e., the perfusion, can be quantified by
volumetric analysis of activated brain regions either manually,
semi-automatically, or fully automatically, such as with statistical
parametric mapping (SPM) (Friston, 1995; Van Heertum et al.,
2009), specifically for differentiating AD from different types
of dementia (Kemp et al., 2005). By providing functional
information, early stages of cognitive impairment can be
identified and differentiation between MCI, AD, and/or other
types of cognitive dysfunction can be achieved (Bonte et al.,
1990; Talbot et al., 1998; Staffen et al., 2006, 2009; Van Heertum
et al., 2009; Farid et al., 2011). Specifically, 99mTc-hexamethyl-
propylene- aminoxime (HMPAO)-SPECT seems to be sensitive
to cognitive impairment, AD and prodromal stages of AD
(e.g., Goldenberg et al., 1989; Frisoni et al., 2014; Swan et al.,
2015; Valotassiou et al., 2015). Even when contrasting patients

with subjective memory complaints to patients with memory
impairment, HMPAO SPECT can be sensitive to cerebral
hypoperfusion (Banzo et al., 2011). However, not all studies fully
support the usefulness of SPECT for differential diagnosis of
disorders with amnestic symptoms (Barnes et al., 2000; Kaneko
et al., 2004). Therefore, we suggest combination of SPECT with
another physiological modality.

Characteristics from the electroencephalogram (EEG)
distinguish patients with AD from MCI and patients with MCI
from healthy subjects (see Rossini et al., 2007; Dauwels et al.,
2010, for a review). The classical clinical finding is the slow
alpha rhythm, which can be quantified as an increase of slow
activity; Fast Fourier transform shows a relative increase of
activity below 8 Hz and a decrease above this range.The use
of the EEG in the assessment of AD dates back to 1952 (see
Brenner, 1999, for review). Today it is assumed that the shift
toward lower frequencies is possibly caused by perturbations
in synchronization and decreased neural complexity (Cantero
et al., 2009). Synchronization may be increased or decreased in
MCI depending on frequency range, type of analysis, and regions
being assessed (Jelic et al., 2000; Koenig et al., 2005; Stam, 2005;
Babiloni et al., 2006). Interactions between neural signals are at
the forefront of current neuroscientific research, which is also
emphasized by the most recent name for this phenomenon:
connectomics (Sporns, 2015). The assessment of the connectome
has attracted particularly great interest with regard to brain
disorders (Fornito et al., 2015). In MCI, interaction between
EEG-signals (today, mostly known as connectivity, Aertsen and
Preissl, 1991) was found to be a reliable marker for cerebral
reserve capacity (Teipel et al., 2016), response to interventions
(Klados et al., 2016), and to monitor disease progression (see
for recent examples Dimitriadis et al., 2015; Hatz et al., 2015;
Wurtman, 2015; Babiloni et al., 2016; Miraglia et al., 2016;
Vecchio et al., 2016). Among the plethora of measures indicating
interactions between brain regions it is neither clear which
ones are preferable over others for diagnostic purposes, nor
do we know whether the integration of these measures in
to graph-theoretic network characteristics could be a viable
method for feature reduction. Therefore, it is recommendable
to compare different approaches for characterization of EEG
interactions (Lehnertz, 2011). However, because of the low
spatial resolution of the EEG, we suggest that it should be
combined with neuroimaging in order to yield a full picture of
altered brain activity in amnestic disorders.

While it was suggested that the combination of different
modalities would contribute to the diagnostic process (Scheltens
et al., 1997; DeKosky and Marek, 2003; Wurtman, 2015), only
little research was done on the combination of SPECT with
EEG. Some studies tried to associate EEG and cerebral perfusion
values in patients with AD (Gueguen et al., 1991; Frölich
et al., 1992; Sloan et al., 1995). EEG slowing is associated
with reduced blood flow in temporo-parietal regions of AD
patients (Kwa et al., 1993; Sloan et al., 1994). Degrees of
interhemispheric asymmetry of EEG and SPECT are concordant
in patients with AD (Montplaisir et al., 1996). Global decrease
in cerebral blood flow correlates with a posterior shift of the
topographical alpha-centroids (Müller et al., 1997). Power in the
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EEG delta and alpha frequency ranges correlates with perfusion
level in parietal regions and power in the EEG delta range
with hippocampal perfusion level of AD patients (Rodriguez
et al., 1999). In addition to these correlative studies, some
evidence points to a possible complementary use of SPECT
and EEG. There is an interaction between alterations in event
related potentials recorded with EEG and changes of cerebral
blood flow characterized by HMPAO SPECT in AD (Gungor
et al., 2005). Specifically, EEG changes take place at earlier
stages of the condition than the changes in cerebral blood
flow.

No study so far examined the additional value of merging
information from advanced EEG measures of interaction and
cerebral blood flow measured by SPECT in order to differentiate
patients with different types of amnestic syndromes at different
stages of AD. We hypothesize that the combined analysis
of cerebral perfusion as indicated by HMPAO SPECT and
quantitative measures of interaction from the EEG by applying
modern methods of data analysis will increase the diagnostic
accuracy.

In this study, we assessed the significance of combining
EEG measures of interaction or graph-theoretical network
characteristics with SPECT perfusion values for differential
diagnosis of amnestic SCC (aSCC), amnestic MCI (aMCI), AD,
or DCI. Specific expectations about characteristics from the EEG
or SPECT that could be most distinctive are restricted to the
slowing of the EEG networks, which is more prominent at more
advanced stages of cognitive decline, as well as parietal and
hippocampal hypoperfusion. Therefore, we applied a machine-
learning approach that should identify the most distinctive
combination of features from both modalities to pairwise group
classifications.

2. MATERIALS AND METHODS

2.1. Ethics
The study was conducted as a retrospective data analysis.
Several years after the examination of the patients had been
performed, we analyzed routinely recorded EEG, SPECT, and
clinical data. The local Ethics Committee (Ethics Commission
Salzburg/Ethikkommission Land Salzburg) confirmed that there
are no ethical concerns with respect to this study.

2.2. Subjects
We selected 220 consecutive patients from the data repositories
at the Department of Neurology, Paracelsus Medical University
Salzburg, Austria, which were examined in the memory clinic
between June 2007 and March 2011. Diagnosis of aSCC, aMCI,
AD, or DCI was assigned at the time of examinations, based
on multimodal assessment in the memory clinic of our hospital,
including a neurological and neuropsychological examination
[German version of the hospital anxiety and depression scale;
HADS-D (Zigmond and Snaith, 1983; Herrmann-Lingen et al.,
2007), test battery of the Consortium to Establish a Registry
for Alzheimer’s Disease; CERAD (Morris et al., 1989; Welsh
et al., 1994; Thalmann et al., 2000), including a slightly
modified version of the mini-mental state examination MMSE

by Folstein (Folstein et al., 1975), and in addition (known
as the CERAD-Plus tests), the trail making test (Reitan,
1979), and the test for phonematic verbal fluency (Spreen and
Benton, 1977)]. The examination included routine laboratory
investigations, supplemented by determination of thyroid
parameters, internal diagnostics (including electrocardiogram,
ECG), cranial computed tomography (CCT), ultrasonographic
examination of the carotid and vertebrobasilar arteries, and
a cerebral perfusion SPECT scan. The latter was exclusively
employed in the differential diagnosis of AD vs. Lewy body
dementia, frontotemporal dementia, and vascular dementia
based on visually evaluated different patterns of perfusion
disturbance. An EEG was recorded in order to disclose epileptic
activity.

The diagnosis was assigned by the medical doctor according
to the results of the described multimodal examination according
to the criteria of Petersen (Petersen et al., 1999). Specifically, we
conformed to the definition of aMCI and aSCC where amnestic
aMCI equals to level three and patients with aSCC equals to
level two of the global deterioration scale for aging and dementia
(Winblad et al., 2004; Gauthier et al., 2006). Most importantly,
the diagnosis of aMCI and aSCC indicates that the complaints
and/or deficits were detectable only in the memory domain, and
not on other cognitive subscales.

Patients with DCI were treated with antidepressants after
the examinations clarified the diagnosis. However, not all
of them were drug-naive at the time of examination since
antidepressants are commonly prescribed in the elderly by
the general practitioner in order to treat self-reported mood
complaints and sleep disorders.

Please note that the diagnosis did not include quantitative
assessment of SPECT and EEG as done for the present work.
Thus, the original diagnosis of memory impairment was not
based on the quantitative analysis as described in the subsequent
sections.

2.3. SPECT Examination
The SPECT examination was performed under quiet conditions
(relaxed lying in quiet surroundings and dimmed light 10min
before the injection and during the whole time of the
examination), with 99mTc-hexamethyl-propylene- aminoxime
(HMPAO, Ceretec, Amersham, UK) serving as perfusion tracer
at a dose of 740 MBq. Perfusion was measured 20 min after
injection with a three-headed gamma camera (Prism 3000,
Picker International, Imaging Division, Cleveland, OH) over
35133815min (3◦ for 40 steps, i.e., in sum 120◦). Datasets were
corrected for scatter and attenuation, reconstructed using filtered
back projection and displayed as a set of 20 slices using a 128
× 128 matrix. Attenuation correction was applied at the time of
reconstruction using Chang’s first-order approximation of linear
attenuation (µ = 0.09/cm), within an elliptical contour fitted to
every slice of the brain (Chang, 1978).

2.4. SPECT Analysis
For analysis of SPECT data a region of interest (ROI)
regionalization was performed automatically to assess relative
blood flow (cerebellar ratios) of 46 brain regions. Data
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were quantified semiautomatically, using the HERMES BRASS
Software package (Hermes Medical Solutions, Stockholm,
Sweden) which spatially co-registered the image data to an
anatomically standardized, stereotactic template consisting of
scans of 35 healthy volunteers. Data were count-normalized by
the cerebellar count rate and compared to the normal population
voxel-by-voxel, as well as on a regional basis. The region map
used therefore was predefined using a normal T1-weighted MRI
scan co-registered to the normal template.

The regions for which we obtained relative blood flow were
cerebellar cortex, cerebellar white matter, nucleus lentiformis,
nucleus caudatus, thalamus, sensorimotor cortex, occipital
cortex, superior parietal lobule, anterior dorsal frontal region,
posterior dorsal frontal region, anterior orbital frontal region,
posterior orbital cortex, parietotemporal cortex, medial temporal
lobe, lateral temporal lobe, posterior temporal lobe, temporal
pole, insular cortex, anterior cingulate gyrus, posterior cingulate
gyrus, anterior subcortical region, posterior subcortical region,
each of these separately for left and right hemisphere, and in
addition one region including pons and midbrain and one region
including other subcortical regions. Thus, in sum, the SPECT-
feature vector had a length of 46 values.

2.5. EEG Data Registration
EEG was recorded in a quiet room with a clinical standard
electrode montage (10–20 Stellate Harmonie Routine EEG
System by Natus, 21 channels placed in standard 10–20 EEG
system) ground on Fpz, reference on Fcz, with additional earlobe-
electrodes for re-referencing, and a sampling rate of 200Hz.
Impedances were kept below 10 k�. The EEG recording started
with artifact provocation/calibration procedures. Subsequently
standard intermittent light stimulation and hyperventilation
were performed. Afterwards, the patients were asked to relax with
eyes closed.

2.6. EEG data extraction
From a period of wakefulness with eyes closed a trained
neuroscientist (co-author AL) extracted 3 min of EEG that
were free of artifacts, e.g., muscle, eye, movement, etc. Data
analysis was conducted for 17 electrodes: F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. The pre-
selected EEG segments were exported into EDF and imported for
further processing to Matlab R© (release R2016b, The Mathworks,
Massachusetts, USA).

2.7. Feature Extraction
We estimated a set of measures of interaction between all
of the 17 selected electrodes (i.e., channels). The estimation
was performed for each of the participants. The measures
were calculated with the functions mvfreqz.m and mvar.m
from the BioSig toolbox (Schlögl and Brunner, 2008) with
model order 100 (i.e., equaling half of the sampling rate
allowing to model at least one full oscillation beginning from
2 Hz). To estimate the multivariate autoregressive model we
used partial correlation estimation with unbiased covariance
estimates (Marple, 1987), which was found to be the most
accurate estimation method according to Schlögl (2006). The

model was then transformed from the time-domain into the
z-domain and the f -domain, which yielded accordingly two
transfer functions. The multivariate parameters in the frequency
domain that could be derived from these transfer functions were
computed for 1 Hz frequency steps between 2 and 80 Hz. The
following measures were extracted: auto- and cross-spectrum
(S), direct causality (DC), transfer function (h), transfer function
polynomial (Af), real valued coherence (COH), complex
coherence (iCOH), partial coherence (pCOH), partial directed
coherence (PDC), partial directed coherence factor (PDCF),
generalized partial directed coherence (GPDC), directed transfer
function (DTF), direct directed transfer function (dDTF), full
frequency directed transfer function (ffDTF), and Geweke’s
Granger causality (GGC). A description of these measures and
the references can be retrieved in the Supplementary Material
Section.

Before statistically determining and evaluating the network
characteristics, we averaged the network characteristics in
classical frequency ranges delta (2–4Hz), theta (5–7Hz), alpha
(8–13Hz), beta (14–30Hz), and gamma (31–80Hz).

Finally, we derived graph theoretical measures for each of
the listed measures by use of the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Thus, we calculated global network
parameters from the connection matrices in each frequency
range obtained from each of the multivariate parameters:
assortativity, efficiency, clustering coefficient, modularity, and
transitivity. For more details and references of these values we
refer to the Supplementary Material.

2.8. Feature Vectors
Classification and cross-validation was repeated for the following
scenarios, which can be described by their respective feature
vectors including the following:

1. EEG single: each EEG measure individually, that is, feature
vector optimization and classification was repeated for each
EEG measure, where in every case the initial feature vector
was formed as a concatenation of all measures of interaction
for each electrode combination and all frequencies

2. SPECT: SPECT perfusion values of the 46 brain regions
formed the initial feature vector

3. EEG single + SPECT: a combination of each EEG measure
from (1) with the SPECT perfusion values from (2), separately
for each EEG measure

4. EEG merged: a combination of all optimized feature vectors
of the EEG measures from (1) in one feature vector formed
the initial feature vector

5. EEG merged + SPECT: a combination of all optimized
feature vectors of the EEG measures from (1) in one feature
vector as in (4), combined with the optimized feature vector
of SPECT perfusion values from (2) formed the initial feature
vector

6. EEG graph: a combination of all EEG measures from (1)
converted to graph-theoretic measures

7. EEG graph + SPECT: a combination of all EEG measures
from (1) converted to graph-theoretic measures as in (6)
combined with the SPECT perfusion values from (2).
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2.9. Classification analysis
Weperformed pair-wise classification of all four groups, resulting
in 6 group comparisons.

Supervised learning for classification typically includes a
training and a testing step, with disjunctive samples for these
two steps. That is, the data is divided into two subsets, one is
used only for training, and one only for testing according to a
defined strategy of cross-validation. The algorithm learns with
the training data according to the properties of the samples and
their labels, that is, the diagnosis. The result of this learning
step is a model that allows to distinguish the members of the
groups. In the second step, the algorithm is given only the data
of the testing subset, but without the labels. The task is now to
predict the correct labels based on the model that was built in
the learning step and the data. In order to assess the quality of
the classification, the correctness of the predicted labels can be
evaluated.

We decided to use support vector machines for classification,
because they deal with non-linear properties of the data even
when a linear kernel is used. When data are only non-linearly
separable, the data is mapped into a feature space in which
the linear separating hyperplane can be used. We performed a
classification in the sense of supervised learning with a linear
kernel function (dot product) and quadratic programming in
order to find the separating hyperplane, resulting in a 2-norm
soft-margin support vector machine, by using the MATLAB
functions svmtrain and svmclassify from the statistics
and machine learning toolbox.

2.10. Feature Subset Selection
Weperformed a nested cross-validation with 3 layers with feature
vector optimization, that is, feature subset selection, for each
group comparison as illustrated in Figure 1.

Because of the high dimensionality of the data, we
implemented a feature subset selection procedure. This
procedure is used for two purposes. First, it is known that when
the length of the feature vector exceeds the size of the sample,
it can cause artificially high accuracies due to overfitting. Thus,
shortening the feature vector to a length that is smaller than
the training sample prevents us from running into the small
sample size problem. This is easily the case for the EEG feature
vectors, because then the length of the feature vector is up to
17 × 17 × 5. Second, a long feature vector with uninformative
features prevents the machine learning algorithm from finding
a good solution. Therefore, the shortest possible feature vector
should be found in the sense of a feature vector optimization.
Because the maximally available features for SPECT was 46, we
limited the maximally acceptable length of the feature vector to
0.9 · 46 ∼ 41 entries. This is well below the smallest sample when
combining the two smallest groups of AD (N = 39) and aSCC
(N = 41), where the training sample in the outermost cross
validation was 0.9 · 80 = 72.

As described in Figure 1, the classification and feature subset
selection procedure was done in a nested design with 3 layers.
We implemented an outer layer as a division of the data into
10% of the data for testing the resulting model, and 90% for
feature vector optimization and cross validation, i.e., submitted

to the middle layer. The middle layer is a first inner loop,
implemented with 10-fold cross-validation. This loop aims to
estimate the consistency of selected features, since each run yields
a different feature vector. The inner layer is a second, thus,
nested inner loop, again with 10-fold cross-validation in order to
perform adequate feature subset selection. So-called k-fold cross-
validation consist of k repetitions of leaving out N/k samples as
the training set, while the remaining N − (N/k) samples are used
during the training step.

All subsets were drawn in order to maintain the original
proportion of the two groups.

Thus, the whole algorithm can be described as follows:

1. First, 10% of the sample were excluded as the outer-layer
test set for the final validation step in the outer layer, while
the remaining 90% of patients were used as the outer-layer
training set, submitted to the next step

2. The outer-layer training set obtained from the outer loop was
divided into 10 equal sized subsets, each one maintaining
the proportion of group sizes from the original sample. For
each of these 10 sets, the following steps were repeated in
order to yield a greedy stepwise feature selection with forward
search:

a. This set was left out, the other 9 sets were merged to form
the middle-layer training set.

b. A t-test for the middle-layer training-set subjects was
calculated between the two groups.

c. The resulting p-values were sorted in ascending order.
d. The feature vector was initiated by taking the feature with

the smallest p-value, thus, the initial length was one.
e. For this feature vector, the classification accuracy was

calculated with 10-fold cross-validation, thus, the middle-
layer training set was divided into an inner-layer 10-fold
partition with an inner-layer training- and testing set.

f. The next feature from the sorted list was added. For this
feature vector, the inner-layer classificationwith 10-fold out
cross-validation was repeated.

g. The result was compared to the previous result. The
added entry to the feature vector was included only if the
following three criteria were met:

• The resulting classification accuracy was required to
be at least as high as the maximum of the previously
obtained classification accuracies; that is, the second
accuracy had to be larger than the first entry, or
the 6th accuracy had to be larger than the previous
5 classification accuracies.

• If the so far best sensitivity/specificity, or in other words,
accuracy for members of the first group/second group,
respectively, was lower than 0.75, then the obtained
sensitivity had to be at least as large as this maximum.

• If the so far best specificity/sensitivity, was lower than
0.5, then the obtained specificity had to be larger than
this maximum.

h. This way, features were added and tested for their
contribution to the classification accuracy until all available
features were used, or until the feature vector reached a
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FIGURE 1 | Procedure of cross-validation, classification, and feature subset selection.

maximum of 40 entries, or if more than a consecutive
number of 10% of all available features was not added to
the feature vector.

3. The resulting 10 optimized feature sets were concatenated and
the occurrences of the features were counted. A final feature
vector was formed by including only those features which were
selected at least in 3 of the 10 iterations. If this resulted in no
features, all features were included that were selected at least
in 2 out of 10 iterations, and if this still did not yield any
feature, this threshold was lowered to 1 out of 10 iterations.
If the resulting feature vector included more than 41 features,
only the top-most selected 41 features were included (equaling
to approximately 90% of the available SPECT features).

4. The resulting feature vector was used to train a SVM
on the outer-layer training set, and the resulting model
was used to classify the outer-layer test set, which was
then used to calculate the general classification accuracy
and the within-group accuracy for the two subgroups (i.e.,
sensitivity/specificity).

The thresholds of 0.75 and 0.5 were selected as rough estimator
for above-chance classification; a value of 0.75 can be considered
to be clearly above chance, while values below 0.5 are considered

to be clearly below chance and thus, a result of overfitting the
model to one of the two groups.

Feature subset selection and classification was done for each of
the scenarios as described in Section 2.8 and separately for each
of the 6 combinations of groups.

2.11. Statistics
We calculated overall group classification accuracy, but also
accuracies for the single groups, that can be understood in a
sense of sensitivity and specificity. For sensitivity and specificity
we have to define what are the positives and what the negatives,
which is not directly applicable to pairwise group classifications.
Thus, the accuracy of the single groups was

accgroup =
N correct in group

total N of group
(1)

Namely, for each group the proportion of correctly classified
individuals was determined in each of the classification situations
(feature vectors and group combinations).

In order to evaluate the resulting accuracies we calculated the
maximum-chance criterion, that is the proportion of samples
contained in the larger of the two groups of one group
comparison.
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Wilcoxon-tests, t-tests, or Fisher’s exact tests were used
as appropriate for pairwise group-comparisons of numerical
or nominal data characteristics of the samples. We applied
Bonferroni correction to the resulting p-values by interpreting
them at the level 0.05/(16∗6) for the 6 group comparisons and
16 neuropsychological scales and demographic aspects.

3. RESULTS

3.1. Sample Details
The demographic details as well as the results of the
neuropsychological scales of the patients are given group-wise in
Table 1.

The results of the pairwise group comparisons are shown in
Table 2.

3.2. Classification Results
The results of the classification are given in Table 3. We marked
the best classification accuracies in bold font, where the best
accuracy was defined as the highest overall accuracy and also
high within group accuracies.We can see that for all comparisons
involving AD, that is, aSCC-AD, aMCI-AD, and AD-DCI, the
best result was obtained when combining a single EEG measure
with SPECT. For the comparisons of aSCC-aMCI and aMCI-
DCI the best comparison was obtained when merging all EEG
measures, and adding SPECT to this configuration yielded the
same result. For the comparison aSCC-DCI the best result was
found for single EEG measures, but the accuracies were below
the maximum-chance criterion.

Please note that, however, the combination leads to a re-
ordering of the features during the sorting according to p-
values, so that merging of EEG and SPECT does not necessarily
mean that there were actually features from the EEG or SPECT
included in the analysis. For example, the classification accuracy
for aSCC vs. AD was already quite high when using SPECT
alone. When introducing the EEG measure spectrum, none of
the EEG measures was finally used, but the additional features in
the feature vector helped to choose the most informative SPECT
values so that the accuracy was higher.

3.3. Visualization of Group Differences
For clinical interpretability we created heatmaps for all measures.
Since EEG+SPECT yielded most informative measures, we based
this illustration on the features selected from this combination.
The heatmaps represent t-values for the pairwise group
comparisons of the EEG, where all non-used indices were set
to zero. Thus, we highlighted the region-interactions/frequencies
that were selected during feature subset selection. In addition, we
noted which SPECT regions were included into the analysis.

We include here only two measures as examples, while the
others can be retrieved in the Supplementary Material Section.
We include transfer function (h) which is the base on which
the other measures are calculated, and which indeed yields
reasonable accuracies for several comparisons.

From Figure 2 we can see that from the transfer function
polynomial, single channels are selected because of the
information spread from these channels toward others. For

most comparisons, the classifier was based on at least one such
interaction where the strength was higher in the one than in the
other group and at least one such interaction with the opposite
pattern.

In contrast, in Figure 3 we can see for real valued coherence
the typical pattern of information contained in the lower
frequencies, where patients with aSCC showed higher values
than the other groups, followed by DCI and then AD. Single
electrode interactions were chosen, and most information was
contained in the frequency ranges delta, theta and alpha, while
beta contributed only with a single value for AD vs. DCI and the
gamma range was not informative, at all.

The regions typically used from SPECT (Figure 4) are
quite consistent across the EEG measures, especially for the
comparisons with the AD group. Patients with AD have lower
perfusion values in bilateral parietotemporal cortex, medial,
lateral, and posterior temporal-lobe, and the temporal pole. In
addition, differences in the cerebellum (cortex and white matter),
the occipital cortex, and the thalamus were useful sources for
information. However, while all the regions mentioned here were
found to show lower perfusion values in AD than all other
groups, the cerebellar white matter evokes higher values in AD
compared to DCI.

4. DISCUSSION

In this work, we examined the diagnostic accuracy of quantitative
EEG and SPECT alone and in combination with each other in
order to differentiate patients with AD, aMCI, aSCC, and DCI.
SCC are common in the elderly population and can be an early
phase of MCI (Kryscio et al., 2014). Patients with SCC are twice
as likely to develop AD than people without SCC (Mitchell et al.,
2014). Conversion rates of MCI to AD are estimated around 10–
18% per year (Gauthier et al., 2006), 11–33% after 2 years (Ritchie,
2004), and 50–70% after 3–5 years (see review in Rossini et al.,
2007). Depressive symptoms in the elderly affect daily living and
severely reduce quality of life (Stögmann et al., 2016a). Depressive
symptoms correlate with conversion fromMCI to AD (Makizako
et al., 2016; Stögmann et al., 2016b), and can challenge differential
diagnosis (Leyhe et al., 2017). Early differential diagnosis between
these disorders with amnestic symptoms is a prerequisite to
targeted interventions.

We found that for specific comparisons, a combination of EEG
and SPECT yields the best diagnostic accuracy, while for other
group contrasts, the one or the other modality is superior. In the
following, we want to discuss our results in relation to previously
reported classification approaches and we want to emphasize the
novelty of a possible classification of DCI by using EEG and
SPECT in combination.

4.1. EEG—An Underestimated Source of
Information?
Previous research has suggested that biomarkers from the
EEG may be more useful than methods investigating cerebral
perfusion, such as HMPAO SPECT in order to identify patients
suffering from AD at an early stage of the condition (Gungor
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TABLE 1 | Sample overview with means and standard deviations in parentheses for neuropsychological test results.

Sample aSCC aMCI AD DCI

N 41 71 39 69

Median age 68 70 76 69

Mean age 67.54 70.04 74.97 68.81

Age range 52–82 51–87 57–90 50–86

N women 30 38 27 51

HADS

Anxiety (SD) 52.46 (10.30) 50.72 (11.61) 50.91 (11.27) 61.45 (9.21)

Depression (SD) 53.54 (5.66) 53.68 (8.82) 55.15 (8.85) 71.18 (6.60)

CERAD

Semantic verbal fluency z-value (SD) 0.30 (0.90) −0.60 (0.90) −1.73 (0.86) −0.50 (1.15)

Boston naming test z-value (SD) 0.49 (0.80) −0.26 (1.06) −1.09 (1.50) −0.21 (1.35)

MMSE raw (SD) 28.66 (1.06) 26.80 (1.66) 20.23 (4.50) 27.81 (1.62)

Wordlist learning z-value (SD) −0.51 (0.97) −1.67 (0.89) −3.31 (1.28) −1.03 (1.24)

Wordlist recall z-value (SD) −0.37 (0.64) −1.60 (0.91) −2.78 (0.93) −0.77 (0.98)

Wordlist recognition z-value (SD) −0.10 (0.91) −1.46 (1.30) −2.56 (1.41) −0.40 (1.41)

Figures copying z-value (SD) 0.50 (0.94) 0.13 (1.14) −1.29 (1.95) 0.50 (1.18)

Figures recall z-value (SD) 0.55 (1.19) −1.08 (1.33) −2.16 (1.02) 0.32 (1.53)

Figures recognition z-value (SD) 0.36 (1.03) −0.90 (1.21) −1.69 (1.23) 0.03 (1.15)

PLUS-TESTS

Trail making test A z-value (SD) 0.81 (1.06) -0.16 (1.18) −1.73 (1.28) −0.04 (1.54)

Trail making test B z-value (SD) 0.48 (1.27) −0.32 (1.11) −1.25 (0.83) 0.31 (1.21)

Phonematic verbal fluency z-value (SD) 0.44 (0.99) 0.08 (1.07) −0.55 (1.15) −0.05 (1.25)

N, number; aSCC, amnestic subjective cognitive complaints; aMCI, mild cognitive impairment.

AD, Alzheimer’s disease; DCI, depression with cognitive impairment; SD, standard deviation.

z-values of the CERAD scores refer to the relative scores with respect to a normative (cognitively healthy). group and adjusted for age and education.

TABLE 2 | Sample comparisons test-value/p-values.

Comparison aSCC-aMCI aSCC-AD aSCC-DCI aMCI-AD aMCI-DCI AD-DCI

Age (t-test) −1.55/0.12 −4.15/* −0.81/0.42 −2.79/0.006 0.84/0.40 3.56/<0.001

Sex (Fisher) 2.37/0.05 1.21/0.81 0.96/1 0.51/0.16 0.41/0.01 0.79/0.66

HADS

Anxiety (Wilc) 0.78/0.43 0.94/0.35 −4.52/* 0.14/0.89 −5.48/* −4.76/*

Depression (Wilc) 0.26/0.80 −1.02/0.31 −8.39/* −1.11/0.27 −8.80/* −7.19/*

CERAD

Semantic vf (Wilc) 4.35/* 6.98/* 3.54/* 5.36/* −0.66/0.51 −5.33/*

Boston naming test (Wilc) 3.66/* 4.90/* 2.48/0.01 2.92/0.004 −0.50/0.62 −2.97/0.003

MMSE (Wilc) 5.55/* 7.74/* 2.54/.01 8.17/* −3.71/* −8.37/*

Wordlist learning (Wilc) 5.42/* 7.15/* 1.99/.05 6.07/* −3.65/* −6.87/*

Wordlist recall (Wilc) 6.76/* 7.36/* 1.87/.06 5.48/* −5.05/* −7.31/*

Wordlist recognition (Wilc) 5.52/* 6.22/* 1.14/.26 3.91/* −4.50/* −5.89/*

Figures copying (Wilc) 1.73/0.08 4.07/* −0.90/0.37 3.74/* −2.49/0.01 −4.40/*

Figures recall (Wilc) 5.48/* 7.11/* 0.72/0.47 4.35/* −4.94/* −6.80/*

Figures recognition (Wilc) 5.04/* 6.15/* 1.28/.20 3.52/* −4.27/* −6.00/*

PLUS-TESTS

Trail making test A (Wilc) 3.92/* 6.24/* 2.87/.004 5.03/* −0.55/.58 −4.87/*

Trail making test B (Wilc) 2.91/0.004 3.98/* 0.39/0.70 2.66/0.008 −2.74/0.006 −3.65//*

Phonematic vf (Wilc) 1.63/0.10 3.29/<0.001 1.78/0.07 2.34/0.02 0.21/0.83 −2.08/0.04

vf, verbal fluency; Fisher’s test, oddsRatio/p-value; t-test, t-value/p-value; Wilc: Wilcoxon, z-value/p-value;

aSCC, amnestic subjective cognitive complaints; aMCI, mild cognitive impairment; AD, Alzheimer’s disease;

DCI, depression with cognitive impairment; *significant at Bonferroni-corrected level p < 0.00052083.
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TABLE 3 | Sample comparison classification accuracies.

aSCC-aMCI aSCC-AD aSCC-DCI aMCI-AD aMCI-DCI AD-DCI

EEG SINGLE

DC 0.36(0.5/0.29) 0.6(0.6/0.6) 0.6(0.67/0.57) 0.5(0.5/0.5) 0.5(0.4/0.6) 0.6(0/1)

S 0.64(0.75/0.57) 0.8(0.8/0.8) 0.2(0.67/0) 0.5(0.83/0) 0.5(0.4/0.6) 0.8(0.5/1)

h 0.73(0.5/0.86) 0.5(0.6/0.4) 0.6(0.67/0.57) 0.6(0.5/0.75) 0.8(0.8/0.8) 0.7(0.75/0.67)

Af 0.55(0.25/0.71) 0.3(0/0.6) 0.2(0/0.29) 0.6(0.5/0.75) 0.7(0.8/0.6) 0.5(0.75/0.33)

COH 0.55(0.75/0.43) 0.8(0.8/0.8) 0.2(0.67/0) 0.6(0.33/1) 0.6(0.2/1) 0.7(0.25/1)

iCOH 0.36(0.5/0.29) 0.5(0.6/0.4) 0.5(0.33/0.57) 0.5(0.5/0.5) 0.7(0.4/1) 0.5(0.25/0.67)

pCOH 0.55(0.5/0.57) 0.7(0.8/0.6) 0.4(0.67/0.29) 0.5(0.5/0.5) 0.5(0.6/0.4) 0.7(0.5/0.83)

PDC 0.64(0.75/0.57) 0.7(0.6/0.8) 0.5(0.67/0.43) 0.5(0.83/0) 0.5(0.4/0.6) 0.6(0.25/0.83)

PDCF 0.27(0.25/0.29) 0.8(1/0.6) 0.6(0.33/0.71) 0.4(0.33/0.5) 0.6(0.4/0.8) 0.6(0.75/0.5)

GPDC 0.36(0.75/0.14) 0.5(0.8/0.2) 0.6(0.33/0.71) 0.3(0.5/0) 0.5(0.4/0.6) 0.6(0.5/0.67)

DTF 0.18(0.25/0.14) 0.5(0.8/0.2) 0.3(0.67/0.14) 0.5(0.67/0.25) 0.8(0.8/0.8) 0.5(0.5/0.5)

dDTF 0.27(0.25/0.29) 0.5(0.4/0.6) 0.5(0.67/0.43) 0.5(0.83/0) 0.8(1/0.6) 0.5(0.25/0.67)

ffDTF 0.55(0.75/0.43) 0.4(0.4/0.4) 0.4(0.67/0.29) 0.4(0.5/0.25) 0.6(0.2/1) 0.6(0.25/0.83)

GGC 0.36(0.5/0.29) 0.6(0.4/0.8) 0.6(0.33/0.71) 0.4(0.33/0.5) 0.5(0.2/0.8) 0.6(0.25/0.83)

SPECT 0.18(0/0.29) 0.8(1/0.6) 0.4(0.33/0.43) 0.5(0.33/0.75) 0.5(0.6/0.4) 0.7(0.75/0.67)

EEG SINGLE + SPECT

DC + SPECT 0.45(0.25/0.57) 0.9(1/0.8) 0.5(0.33/0.57) 0.6(0.5/0.75) 0.5(0.4/0.6) 0.7(0.75/0.67)

S + SPECT 0.64(0.75/0.57) 0.9(1/0.8) 0.3(0/0.43) 0.5(0.33/0.75) 0.5(0.4/0.6) 0.8(0.75/0.83)

h + SPECT 0.73(0.5/0.86) 0.8(1/0.6) 0.6(0/0.86) 0.7(0.83/0.5) 0.8(0.8/0.8) 1(1/1)

Af + SPECT 0.55(0.25/0.71) 0.8(0.8/0.8) 4(0/0.57) 0.7(0.67/0.75) 0.7(0.8/0.6) 0.7(0.75/0.67)

COH + SPECT 0.55(0.75/0.43) 0.9(1/0.8) 0.6(0.33/0.71) 0.6(0.5/0.75) 0.6(0.2/1) 0.6(0.5/0.67)

iCOH + SPECT 0.55(0.5/0.57) 0.9(1/0.8) 0.5(0/0.71) 0.5(0.5/0.5) 0.8(0.6/1) 0.7(0.5/0.83)

pCOH + SPECT 0.55(0.5/0.57) 0.7(0.8/0.6) 0.5(0.67/0.43) 0.6(0.5/0.75) 0.5(0.6/0.4) 0.9(0.75/1)

PDC + SPECT 0.64(0.75/0.57) 0.7(1/0.4) 0.4(0/0.57) 0.5(0.33/0.75) 0.5(0.4/0.6) 0.7(0.5/0.83)

PDCF + SPECT 0.27(0.25/0.29) 0.9(1/0.8) 0.4(0/0.57) 0.5(0.5/0.5) 0.6(0.4/0.8) 0.7(0.75/0.67)

GPDC + SPECT 0.36(0.75/0.14) 0.9(1/0.8) 0.4(0/0.57) 0.6(0.5/0.75) 0.5(0.4/0.6) 0.7(0.75/0.67)

DTF + SPECT 0.18(0.25/0.14) 0.7(0.8/0.6) 0.4(0.67/0.29) 0.5(0.5/0.5) 0.8(0.8/0.8) 0.8(0.75/0.83)

dDTF + SPECT 0.27(0.25/0.29) 0.6(0.4/0.8) 0.5(0.67/0.43) 0.4(0.33/0.5) 0.8(1/0.6) 0.8(0.5/1)

ffDTF + SPECT 0.55(0.75/0.43) 0.7(0.8/0.6) 0.5(0.33/0.57) 0.5(0.33/0.75) 0.6(0.2/1) 0.6(0.25/0.83)

GGC + SPECT 0.36(0.5/0.29) 0.9(0.8/1) 0.6(0.33/0.71) 0.4(0.33/0.5) 0.5(0.2/0.8) 0.7(0.25/1)

EEG merged 0.82(0.75/0.86) 0.8(0.6/1) 0.6(0.33/0.71) 0.4(0.67/0) 0.9(1/0.8) 0.6(0.25/0.83)

EEG merged + SPECT 0.82(0.75/0.86) 0.7(0.4/1) 0.6(0.33/0.71) 0.5(0.67/0.25) 0.9(1/0.8) 0.6(0.25/0.83)

EEG graph 0.55(0.75/0.43) 0.7(0.4/1) 0.2(0.33/0.14) 0.5(0.67/0.25) 0.4(0.2/0.6) 0.7(0.5/0.83)

EEG graph + SPECT 0.55(0.75/0.43) 0.8(0.8/0.8) 0.4(0.67/0.29) 0.6(0.67/0.5) 0.4(0.2/0.6) 0.8(0.75/0.83)

Chance level 0.63 0.65 0.63 0.65 0.51 0.64

aSCC, amnestic subjective cognitive complaints; aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; DCI, depression with cognitive impairment; bold font, best result; S,

auto- and cross-spectrum; DC, direct causality; h, transfer function; Af, transfer function polynomial; COH, real valued coherence; iCOH, complex coherence; pCOH, partial coherence;

PDC, partial directed coherence; PDCF, partial directed coherence factor; GPDC, generalized partial directed coherence; DTF, directed transfer function; dDTF, direct directed transfer

function; ffDTF, full frequency directed transfer function; GGC, Geweke’s Granger causality; chance level, maximum-chance criterion according to maximum of group proportions.

et al., 2005). Still, the additional contribution of EEG seems to be
underestimated, since EEG alterations such as slow theta-delta
activity are a common feature of dementia and natural aging,
as well (Rossini et al., 2007). In our study, alterations in the
delta, theta, and alpha frequency ranges were prominent when
comparing patients with AD to the other groups in widespread
regions, where the exact localization of the most informative
region depended highly on themeasure of interaction. In patients
with AD, coherence was lower than in patients with SCC, and
than in patients with DCI, while patients with aMCI showed
lower coherence than patients with AD. Previous research

reported that within and between hemisphere alpha coherence
values are reduced in patients with dementia that show abnormal
regional cerebral blood flow (Sloan et al., 1994). We could extend
this finding by showing directly that combination of measures of
interaction, for example partial coherence, with SPECT provides
considerable information gain in a differential diagnostic setting.
However, our results also demonstrate that the clear findings
reported in the literature depend highly on the choice of the
measure.

We want to mention that we performed a rather simple
feature merging algorithm, and also the feature subset selection
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FIGURE 2 | Heatmaps of the t-values of group differences of all electrode ×

electrode interactions for transfer function, sorted by groups comparisons in

columns and frequency ranges in rows. Colors indicate values from −4.11

(dark blue) over zero (green) to +5.24 (yellow). All values that were not

included for classification were set to zero. If the first group of the group

comparison (e.g., aSCC in aSCC-aMCI) has higher values than the second

group, this results in a positive t-value, i.e., yellow colors. Electrodes start from

top to bottom and from left to right following the order: F3, F4, C3, C4, P3, P4,

O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. AD, Alzheimer’s disease; DCI,

depression with cognitive impairment; aMCI, mild cognitive impairment with

amnestic symptoms; aSCC, subjective cognitive complaints with amnestic

symptoms.

technique presented here is not able to fully explore the
information in the data. In order to reduce computational
complexity, the feature vectors were sorted by p-values.
Processing the features in a different order might have yielded
different results, which is also emphasized by the case when
adding SPECT to EEG spectrum changes the results, even when
the information from SPECTmight not have been used (as found
for spectrum). With more sophisticated feature subset selection
techniques and feature merging algorithms we might achieve
even higher accuracies.

The largest difference between information content in EEG
and SPECT is seen for aSCC vs. DCI, where the best result
is obtained with EEG-measures, only. However, the resulting
accuracies are at chance, so that it is likely that none of the two
modalities is able to accurately differentiate these two disorders.
In contrast, the comparison of aSCC vs. aMCI and aMCI vs. DCI
was highest when the best features from all EEG measures were
merged, where this result did not change when including SPECT
to the feature vector. The evidence for SPECT being useful
to identify SCC or aSCC is scarce (Banzo et al., 2011; Frisoni
et al., 2014). The differential diagnosis of aSCC is a challenge.
In our study, we included patients with minimal deviations on
the neuropsychological scales for memory, but who did not yet
fulfill the clinical criteria for aMCI. Nevertheless, whether aSCC
is a state of normal aging, where the patients become aware
of the natural decay of memory capacities, or whether this is
the first sign of a beginning dementia cannot be determined by
neuropsychological scales, unless one has longitudinal data at his

FIGURE 3 | Heatmaps of the t-values of group differences of all electrode ×

electrode interactions for real valued coherence, sorted by groups

comparisons in columns and frequency ranges in rows. Colors indicate values

from −4.11 (dark blue) over zero (green) to +5.24 (yellow). All values that were

not included for classification were set to zero. If the first group of the group

comparison (e.g., aSCC in aSCC-aMCI) has higher values than the second

group, this results in a positive t-value, i.e., yellow colors. Electrodes start from

top to bottom and from left to right following the order: F3, F4, C3, C4, P3, P4,

O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. AD, Alzheimer’s disease; DCI,

depression with cognitive impairment; aMCI, mild cognitive impairment with

amnestic symptoms; aSCC, subjective cognitive complaints with amnestic

symptoms.

disposal. The group in our study may be very heterogeneous, for
these reasons. On this background it is remarkable that we were
able to report above-chance classification accuracies of the EEG
biomarkers.

EEG also successfully differentiated DCI from aMCI, best
when merging all EEG measures, and from AD, combination
with SPECT, yielding reasonable classification accuracies. Only
the comparison of aSCC vs. DCI was not above chance with none
of the applied feature vectors. A similar classification experiment
of DCI vs. AD, aMCI and aSCC was—to our best knowledge—
never done before with EEG, so that this result points to a
new field of application. Especially in aMCI or AD depression
is not rare and the differential diagnosis is often based on the
trend of the symptoms when treating the depression adequately.
Cognitive improvement after antidepressive therapy suggests
that the depression, not a neurodegenerative disorder, causes the
symptoms. As a conclusion the diagnosis of DCI can be made.
However, since dementia and depressive symptoms coexist in
some cases it could be difficult to assess whether depression is
the cause or the effect of the cognitive impairment and vice
versa. This is especially true when considering that depression
is suspected to play a role in the progression of aMCI to AD
(Van der Mussele et al., 2014; Chung et al., 2016).

Using robust invariant features from unprocessed EEGs, it
may even be possible to reach higher classification accuracies
than in the present manuscript (Buscema et al., 2015; Dimitriadis
et al., 2015). However, in our study we used strict nested
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FIGURE 4 | Maps of the t-values of group differences of all regions of interest assessed by SPECT perfusion, sorted by groups comparisons, colored according to

use for classification in combination with EEG measures. Colors indicate values from −4.95 (dark blue) over zero (green) to +6.07 (yellow). All values that were not

included for classification were set to zero. If the first group of the group comparison (e.g., aSCC in aSCC-aMCI) has higher values than the second group, this results

in a positive t-value, i.e., yellow colors. For each measure (columns of subplots) only those regions (rows of subplots) were colored according to the t-values that were

used for classification. AD, Alzheimer’s disease; DCI, depression with cognitive impairment; aMCI, mild cognitive impairment with amnestic symptoms; aSCC,

subjective cognitive complaints with amnestic symptoms.

cross-validation, which is the state of the art in order to avoid
overfitting during parameter selection, and could rely on our
sample with a sufficient size without need for data augmentation
techniques as implemented in other studies (Dimitriadis et al.,
2015). Moreover, the intention of this study was not to reach
maximum classification accuracy of one particular method, but
rather to show how EEG and SPECT could complement each
other, while trying to render the comparison between individual
and combined methods as fair as possible. However, our results
are comparable with previous publications (Buscema et al., 2015;
Gallego-Jutgla et al., 2015; Hatz et al., 2015). Other studies
using entropy measures instead of measures of interaction
report results with accuracies of 91.7–93.8% when discriminating
MCI, AD and normal controls (McBride et al., 2015). After
all, there was no healthy control group in our study, and the
comparison to healthy controls is more straightforward and
clinically not of interest, because differential diagnosis between
AD and healthy or even aSCI can be accomplished reliably with
classical paper and pencil tests. In contrast, we examined also the
more challenging and interesting discrimination of DCI vs. AD
or vs. aMCI yielding excellent classification accuracies.

4.2. Information Gain or Information Loss
through Graph-Theory
It was suggested that graph-theoretical approaches could help
to make measures of interaction more useful for the prediction

of MCI progression from the EEG (Vecchio et al., 2014, 2015;
Miraglia et al., 2016; Rossini et al., 2016; Vecchio et al., 2016).
In our study, using the measures of interaction directly yielded
higher accuracies than the use of the derived graph-theoretic
indices. Only for aSCC vs. AD and for AD vs. DCI above-chance
classification (0.8) was obtained with graph-theoretical measures.
Thismeans that the way the information is integrated with graph-
theoretical measures may not be advantageous in every scenario
and needs to be examined from case to case.

4.3. HMPAO-SPECT
A systematic review found sensitivity and specificity of HMPAO-
SPECT to distinguish AD from healthy controls to be 76.1 and
85.4%, respectively, and the distinction of vascular dementia
and dementia with Lewy Bodies from AD yielded even lower
diagnostic values (Yeo et al., 2013). We want to emphasize that
when contrasting HMPAO-SPECT of AD and healthy controls,
sensitivities and specificities are high: 81 and 96% (Fleming et al.,
2002), or 91 and 86% (Johnson et al., 1993). However, when cases
with diagnostic uncertainty are examined, only very low values
with a sensitivity of 71–77% and a specificity of 38–44% can be
achieved (Doran et al., 2005). It is also hard to identify AD among
unselected patients in amemory clinic, resulting in a sensitivity of
75% and a specificity of 52% (Masterman et al., 1997). Indeed, a
systematic review found that the diagnostic accuracy of HMPAO-
SPECT to discriminate between AD and other forms of dementia
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was characterized by a sensitivity of 71.3% and a specificity
of 75.9% (Dougall et al., 2004a). This is also reflected by our
results, where the highest accuracy values when using the SPECT-
feature vector, only, were found for aSCC vs. AD. In clinical
terms, this is the most obvious differentiation, followed by the
more challenging contrasts of AD vs. DCI and then by AD vs.
aMCI. There is a statistically significant difference in perfusion in
specific brain areas between AD and aMCI (Fröhlich et al., 1989;
Staffen et al., 2006, 2009; Tranfaglia et al., 2009; Van Heertum
et al., 2009; Farid et al., 2011), but according to our results, it is not
enough for creating amodel with high distinctiveness when being
used without further information, such as the EEG. It is worth
to stress once again that our results were based on a quantitative
evaluation, while many of the diagnostic characteristics of SPECT
are based on expert ratings. The sensitivity of these ratings
was found to be negatively correlated with the importance the
expert attributed to regional hypoperfusion in the parietal lobes
(Dougall et al., 2004b).

The contribution of HMPAO SPECT to the differentiation of
DCI and other forms of cognitive impairment is well in line with
the finding, that depression and specifically treatment-resistant
depression shows significant alterations in circumscribed brain
regions such as the hippocampus and the amygdala (Bonne et al.,
1996; Mozley et al., 1996; Hornig et al., 1997; Kowatch et al.,
1999; Cho et al., 2002). In patients with AD and depression, a
selective hypoperfusion in the anterior and posterior cingulate
gyrus and in the precuneus was reported (Liao et al., 2003). A
direct comparison between patients with AD and DCI showed
differences in perfusion in the left parieto-occipital lobe (Stoppe
et al., 1995). Thus, it is likely that the contribution of SPECT
to EEG can be explained by complementary information about
regional abnormalities in DCI that differ from those of AD.
Indeed, the regions that differ between aMCI and AD are also
most informative when differentiating AD from DCI. Future
work should have a closer look at the distinctive characteristics of
DCI, where only a narrow range of publications have identified
promising biomarkers.

4.4. Limitations
Firstly, this retrospective study cannot indicate which markers
are important for prognostic questions. Nevertheless, prognosis
is the most important question in this patient population.
Therefore, future studies with longitudinal, prospective design
are needed to clarify the role of EEG and SPECT in these respects.

Secondly, the ground truth of our sample is based on
multimodal clinical assessment. That is, we have no post-mortem
determination of definitive AD. This implies that the ground
truth is somewhat unclear and that the diagnoses that were
used for classification are not all correct. In addition, this
means that SPECT and sometimes also EEG were part of the
basis on which the clinician defined the diagnosis, which is
in turn, our ground truth. This is the typical scenario in the
clinics, but still, a drawback of retrospective studies. However, as
described in Section 2.2, the EEG examination was not used to
define one of the examined diagnoses, but to disclose epilepsy
or other disorders that could cause the amnestic symptoms.
Similarly, SPECT was only included in the diagnostic process

for differential diagnosis of disorders that were not included in
the presented analysis. Moreover, the examination of EEG and
SPECT at the time of diagnosis was performed only qualitatively,
while the present work was based on quantitative analysis, only.
In sum, we estimate the bias in our ground truth to be very small.

Third, the present study emphasizes that the EEG can be
useful at the stage of aSCC. However, our study did not provide
data from a healthy control group, mainly because it is difficult
to obtain SPECT from healthy controls. Future studies using
EEG will more easily recruit healthy controls and provide
longitudinal data. The latter is important in order to demonstrate
the predictive value of the identified biomarkers.

Fourth, we could not report the medication history of the
patients but we assume that only a minority of them were drug-
naive at the time of examination. Specifically antidepressants are
commonly prescribed in the elderly and it is possible that they are
prescribed more likely in the group of DCI, since these patients
might have consulted the general practitioner before visiting the
memory clinic.

Finally, there are other diagnostic modalities such as structural
MRI which show a very high diagnostic accuracy and increasing
relevance in amnestic populations (Teipel et al., 2013). However,
the purpose of this study was not to show the best method in
order to contribute to the diagnosis, but to show whether the
combination of EEG and SPECT is a valid approach. Especially
EEG is a cheap and one of the most easily available diagnostic
methods that could be integrated into the routine process of
memory clinics.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

HMPAO SPECT alone cannot reliably identify AD and related
disorders with memory problems, but its additive value in
combination with other modalities is well acknowledged. Also
the examination of the EEG has identified several useful
biomarkers that could be considered for use in differential
diagnosis of cognitive impairment in the elderly population.

Our data show that EEG outperforms SPECT in several
differential diagnoses. We suggest that direct combination of
these twomodalities is very helpful since they are complementary
to each other. Both EEG and SPECT are not the gold standard for
the diagnosis of AD and aMCI; however, they are widely used and
cost effective. Furthermore, EEG is a non-invasive investigation
technique which can be administered many times during the
course of the disease. It proved to be more discriminative even
at the stage of aSCC. Combining SPECT with EEG should also be
subject of further investigations, in order to technically optimize
the diagnostic accuracy.
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Visualizing Hyperactivation in
Neurodegeneration Based on
Prefrontal Oxygenation: A
Comparative Study of Mild
Alzheimer’s Disease, Mild Cognitive
Impairment, and Healthy Controls
Kah Hui Yap 1†, Wei Chun Ung 2†, Esther G. M. Ebenezer 1, Nadira Nordin 2, Pui See Chin 1,

Sandheep Sugathan 3, Sook Ching Chan 3, Hung Loong Yip 3, Masashi Kiguchi 4 and

Tong Boon Tang 2*

1Medicine Based Department, Royal College of Medicine Perak, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia, 2Centre

for Intelligent Signal and Imaging Research, Universiti Teknologi Petronas, Seri Iskandar, Malaysia, 3Community Based

Department, Royal College of Medicine Perak, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia, 4 Research & Development

Group, Hitachi Ltd., Tokyo, Japan

Background: Cognitive performance is relatively well preserved during early cognitive

impairment owing to compensatory mechanisms.

Methods: We explored functional near-infrared spectroscopy (fNIRS) alongside a

semantic verbal fluency task (SVFT) to investigate any compensation exhibited by the

prefrontal cortex (PFC) in Mild Cognitive Impairment (MCI) and mild Alzheimer’s disease

(AD). In addition, a group of healthy controls (HC) was studied. A total of 61 volunteers

(31 HC, 12 patients with MCI and 18 patients with mild AD) took part in the present study.

Results: Although not statistically significant, MCI exhibited a greater mean activation of

both the right and left PFC, followed by HC and mild AD. Analysis showed that in the left

PFC, the time taken for HC to achieve the activation level was shorter than MCI and mild

AD (p = 0.0047 and 0.0498, respectively); in the right PFC, mild AD took a longer time

to achieve the activation level than HC and MCI (p = 0.0469 and 0.0335, respectively);

in the right PFC, HC, and MCI demonstrated a steeper slope compared to mild AD

(p = 0.0432 and 0. 0107, respectively). The results were, however, not significant when

corrected by the Bonferroni-Holm method. There was also found to be a moderately

positive correlation (R = 0.5886) between the oxygenation levels in the left PFC and a

clinical measure [Mini-Mental State Examination (MMSE) score] in MCI subjects uniquely.

Discussion: The hyperactivation in MCI coupled with a better SVFT performance

may suggest neural compensation, although it is not known to what degree

hyperactivation manifests as a potential indicator of compensatory mechanisms.

However, hypoactivation plus a poorer SVFT performance in mild AD might

indicate an inability to compensate due to the degree of structural impairment.
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Conclusion: Consistent with the scaffolding theory of aging and cognition, the

task-elicited hyperactivation in MCI might reflect the presence of compensatory

mechanisms and hypoactivation in mild AD could reflect an inability to compensate.

Future studies will investigate the fNIRS parameters with a larger sample size, and their

validity as prognostic biomarkers of neurodegeneration.

Keywords: mild Alzheimer’s disease, mild cognitive impairment, functional near-infrared spectroscopy, semantic

verbal fluency task, prefrontal hemoglobin oxygenation

INTRODUCTION

The multiple dementia subtypes are associated with unique
symptom patterns and brain abnormalities. Alzheimer’s disease
(AD) is a chronic progressive neurodegenerative brain disease
that can occur in middle or old age. It represents the most
common cause of dementia, accounting for 60–80% of cases
(Alzheimer’s Association, 2016). It causes increasing impairment
in a range of cognitive functions that include memory,
mood, reasoning, language, self-management, and behavior
(Karantzoulis and Galvin, 2014). Mild cognitive impairment
(MCI) is an intermediate state of clinical impairment, where the
individuals affected have cognitive symptoms of a mild nature
that are disproportionate to their age and education, while not
meeting the criteria for dementia or AD (Petersen, 2009). Patients
with MCI tend to progress toward developing AD at a rate of
∼15% per year (Gauthier et al., 2006).

Magnetic resonance imaging (MRI) studies have
demonstrated that deficits found in patients with AD are
associated with volumetric changes in the prefrontal cortex
(PFC) (Salat et al., 2001; McNab and Klingberg, 2008; Zanto
et al., 2011). It has been suggested that the cognitive decline
related to normal aging is attributable to a reduction in white
matter rather than gray matter (Marner et al., 2003). In contrast,
significant loss of gray matter, which is composed of cortical
neurons and glia has been seen in AD, and leads to a reduced
neuronal activation in the PFC of AD when compared with
HC (Yankner et al., 2008). MCI is positioned between mild AD
and normal cognitive aging (Sperling, 2007). While age-related
regional volume loss is apparent and widespread in normal
cognitive aging, a unique pattern of structural vulnerability,
reflected in differential volume loss in specific regions, has
been identified in patients with MCI (Driscoll et al., 2009).
Also, patients with AD perform more poorly in semantic tasks
associated with compromised activation in the left PFC when
assessed using functional MRI (fMRI) (Johnson et al., 2000). The

Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic mild cognitive
impairment; Aβ, amyloid β-protein; CDR, clinical dementia rating; deoxy-
Hb, deoxygenated-hemoglobin; fMRI, functional magnetic resonance imaging;
fNIRS, functional near-infrared spectroscopy; HC, healthy controls; MCI, Mild
cognitive impairment; MMSE, mini-mental state examination; MRI, magnetic
resonance imaging; naMCI, Non-amnesic mild cognitive impairment; oxy-
Hb, oxygenated-hemoglobin; PFC, prefrontal cortex; SVFT, semantic verbal
fluency task; Nleft PFC/right PFC : the number of activated measurement channels;
1oxy−Hbleft PFC/right PFC : the change in oxy-Hb concentration during the
activation period; tleft PFC/right PFC : the time taken to achieve activation level;
mleft PFC/right PFC : the slope in the first 5 s after task onset.

hippocampus is among the first non-cortical regions affected
by AD-related neurodegeneration; hippocampal atrophy has
been associated with early memory decline in MCI and AD
(Barnes et al., 2007; Shi et al., 2009; Nho et al., 2012). Several
previous studies of MCI patients and healthy older adults
reported reduced activation in the hippocampus and PFC of the
former (Johnson et al., 2006; Dannhauser et al., 2008; Mandzia
et al., 2009). These results suggest that AD may be characterized
by reduced brain activation due to the pathological changes
associated with it.

One key element influencing these early changes is neural
compensation. The capacity for neural compensation is inversely
proportional to the severity of neurodegeneration (Price and
Friston, 2002). As neural damage worsens, both cognitive
processing efficiency and capacity become impeded. This affects
neuronal recruitment capacity, reduces compensation capacities,
and ultimately results in poorer performance (Scarmeas et al.,
2003). As an example, transcranial magnetic stimulation has
been shown to induce compensatory activation associated with
information retrieval when applied to either the right or left
PFC of patients with severe cognitive impairment. However,
similar activation was only observed when applied to the
left PFC of healthy individuals. These data suggest that right
PFC recruitment acts as one of the functional compensatory
mechanisms in cognitively impaired individuals (Cotelli et al.,
2008). In addition, neural compensation prolonged the period
of MCI and delayed progression to AD (Baazaoui et al., 2017),
implying that such compensatory mechanisms may play a more
crucial role in MCI than in AD. In the present study, the
aim was to investigate the difference between MCI and AD
using functional near-infrared spectroscopy (fNIRS) to identify
hyperactivation as a potential indicator of the occurrence of
compensation.

fNIRS is an emerging technology in neuroimaging that has
been increasingly employed in the past 20 years (Ferrari and
Quaresima, 2012). It uses an optical window where the head
scalp is almost transparent to near infrared light at wavelengths
of 700–900 nm, and the fact that oxygenated- and deoxygenated-
hemoglobin (oxy-Hb and deoxy-Hb) are strong absorbers of light
(Heinzel et al., 2013). Based on the concept of neurovascular
coupling, neuronal activities are measured by fNIRS as changes
in oxy-Hb and deoxy-Hb concentrations using the Modified
Beer-Lambert Law. fNIRS has, so far, been applied to many
psychiatric disorders, for example, to differentiate depression,
bipolar disorder, and schizophrenia (Fallgatter et al., 1997; Arai
et al., 2006; Takizawa et al., 2014). The technique has a good
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temporal resolution (∼1 ms) and a reasonable spatial resolution
(∼1 cm). In addition, it has several advantages over the more
widely-used fMRI, including lower costs, portability, and low
levels of subject constraint (Ehlis et al., 2014). It has been
demonstrated that fNIRS readings are highly correlated with
fMRI with respect to measuring cognitive tasks (Cui et al., 2011).
More specifically, multiple fNIRS-fMRI studies have consistently
shown increases in oxy-Hb in the left PFC during semantic
verbal fluency tasks (SVFT) (Fallgatter et al., 1997; Heinzel et al.,
2013; Wagner et al., 2014; Gutierrez-Sigut et al., 2015). So,
fNIRS represents a potential alternative technique to fMRI for
the investigation of the differences in neuronal activities between
individuals with differing cognitive impairments.

fNIRS has been used in previous studies into AD and MCI.
Patients with AD were identified to have lower activation of
the PFC compared to healthy controls (HC) during both letter
and SVFT, while HC performed better in the tasks. Differences
in hemodynamic responses were predominantly found in the
left hemisphere, supporting the idea that good performances in
verbal fluency tasks are associated with higher left hemisphere
activation, predominantly (Fallgatter et al., 1997; Arai et al., 2006;
Herrmann et al., 2008). This poorer performance in patients with
AD has been attributed to the loss of hemispheric asymmetry
rather than to the level of PFC activation alone (Fallgatter et al.,
1997). The effect of hemispheric asymmetry or lateralization
plays a more crucial role in MCI. The rightward shift of frontal
activations in the MCI group might reflect the presence of
cortical reorganization; the recruitment of the right PFC has
been suggested to compensate the loss in the left PFC (Yeung
et al., 2016). Another study has shown that compared to HC,
patients with AD demonstrated lower activation of the frontal
and bilateral parietal areas, while patients with MCI have lower
right parietal activation (Arai et al., 2006). These results suggest
that more detailed studies into neural compensatory mechanisms
are warranted.

In the present study, fNIRS was used with a wide coverage
of the PFC to investigate hyper/ hypoactivation in MCI, mild
AD, and HC. The PFC was selected as the region of interest
as the PFC is not only involved in semantic memory, but is
also accessible by fNIRS, which can penetrate brain tissue up
to a depth of 5 cm in the cortical region (Ranger et al., 2011).
SVFT was selected as the cognitive activation task based on
previous studies of semantic memory (Fallgatter et al., 1997;
Thompson-Schill et al., 1997; Perry et al., 2000; Grossman
et al., 2002; Heinzel et al., 2013; Wagner et al., 2014; Gutierrez-
Sigut et al., 2015; Yeung et al., 2016). In accordance with the
compensation theory (Yankner et al., 2008), it was expected that
neural compensation would be observed in MCI, but not in
AD during the tasks. Patients with MCI suffer from a relatively
small degree of neurodegeneration compared to patients with
AD, therefore, it was predicted that MCI patients would be
able to activate neural compensation, as manifested by brain
hyperactivation, in order to maintain task performance. As
patients with AD suffer from more severe neuronal damage,
to the extent that their neural compensation abilities might
be compromised, it was thought that hypoactivation would
be observed instead. We aimed to investigate to what degree

hyperactivation, as a potential indicator for compensation,
manifests in MCI and to what degree it is compromised
in AD. Our first hypothesis was that during SVFT, subjects
with normal cognitive aging (the HC group) would perform
better, followed by MCI and AD. Secondly, we expected
hyperactivation and hypoactivation in the PFC of MCI and AD,
respectively, when subjects were tested with a semantic memory
task.

METHODS

Participants
We recruited participants, who were right-handed and able
to converse in English, through a local dementia day-care
center as well as from the local community where English
was the common medium of instruction in the past. Patients
with MCI and patients with mild AD were recruited through
purposive sampling with group-specific inclusion criteria. This
was followed by the recruitment of HC who were age
(± 2 years), gender- and education-matched. We assessed the
participants, ruling out anyone with a psychiatric disorder.
Additionally, neurological disorders, including other forms of
dementia were excluded. Assessments were performed by a
psychiatrist using an evaluation of medical history, including
careful examination of the course of progression, the relative
salience of cognitive, behavioral and physical symptoms and
signs, and patterns of cognitive impairment. Additionally, mental
state was examined using a Mini-Mental State Examination
(MMSE), which is a 30-point questionnaire providing a
quantitative measure of cognitive status or cognitive impairment
(Folstein et al., 1975). Other exclusion criteria were other
medical diagnoses affecting cognitive functioning, including
kidney failure, stroke, known lesions, and any history of
significant trauma. The study protocol was approved by the
Medical Research Ethics Committee of the University of
Kuala Lumpur (Approval no.: 2015/032). All participants were
briefed about the nature of the experimental procedures prior
to providing demographic information and written informed
consent in accordance with the Declaration of Helsinki. All
tests and experiments were completed on the same day, with
a short break between the test and the experiment. Both
healthy participants and patients were remunerated for their
participation.

Clinical Measures
We used the Clinical Dementia Rating (CDR), an observer rating
scale designed to rate the severity of dementia (Morris, 1993), for
the diagnosis of dementia and group allocation. CDR scores of 0,
0.5, and 1 were assigned to HC, MCI, and mild AD, respectively;
participants with CDR scores of 2 (moderate) and 3 (severe)
were excluded, as this study focused on MCI and mild AD. In
addition, we assessed and assigned each participant an MMSE
score. CDR has a moderate to high inter-rater reliability of 0.62
(Rockwood et al., 2000). MMSE has high inter-rater reliability,
ranging between 0.82 and 0.91 (Magni et al., 1996). We matched
the HC to those of the combined sample of patients according to
age, sex, and education.
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fNIRS Technology
Throughout this study, a multichannel OT-R40 fNIRS
topography system (Hitachi Medical Corporation, Japan)
was employed to measure the brain activity at a sampling
rate of 10 Hz. Changes in oxy-Hb and deoxy-Hb signals were
measured in units of mM·mm. fNIRS has been reported to be
more sensitive to gray matter when a larger source-detector
separation (up to ∼4.5 cm) is used, albeit at the expense of both
spatial resolution and partial pathlength factors (Strangman
et al., 2013). Taking everything into consideration, the source-
detector distance was fixed at 3 cm, within the suggested
optimal range for adult heads (3–3.5 cm) (Li et al., 2011).
The midpoint between pairs of sources and the detector was
defined as a measurement channel. The probes were arranged
into a 3 × 11 layout (see Figure 1A) to form a total of 52
measurement channels that were sufficient to measure the
entire PFC and part of the temporal cortex (see Figure 1B;
Ishii-Takahashi et al., 2014; Takizawa et al., 2014). According to
the international 10–20 system (Klem et al., 1999), source no.
23 and 28 were positioned directly at T4 and T3, respectively.
The probes were attached to a flexible head cap, which was
relatively easy, fast and convenient to wear. All channels
were checked to ensure that the probes were in contact
with the scalp. The entire set-up process took an average of
<10min.

Task Paradigm
Participants were seated comfortably in a working chair and
were instructed to avoid movement and to place their hands
on the armrests during the experiment. Standardized verbal
instructions and explanations regarding the tasks were given
in English. Prior to any new measurement, practice was given,
allowing the participants to familiarize themselves with the
experimental procedures. SVFT was selected as the cognitive
activation task in this study. During fNIRS measurements,
participants were instructed to provide as many words verbally as
possible from a particular category (Fruits, Food, and Animals).
The experimental session was preceded by 20 s of pre-task rest
period. Each category lasted 60 s and was followed by 20 s of rest.
Participants were told to avoid repeating the same word and they
were asked to keep their eyes on the LCD screen for the entire
task period, which lasted for a total of 260 s (see Figure 2).

Data Analysis
fNIRS Data

Oxy-Hb was selected as the focus of measurements due to its
sensitivity to task-associated changes (Sato et al., 2006; Cui,
2011). Probes that were not in good contact with the scalp may
have resulted in rapid large changes (such as high amplitude
spikes) in oxy-Hb signals. An fNIRS channel was considered to
be “noisy” if there were very large spikes (changes in oxy-Hb

FIGURE 1 | A system consisting of 52 measurement channels was used. (A) The probes were arranged to 3 × 11 layout. The source-detector distance was fixed at

3 cm and the space between pairs of source and detector was defined as a measurement channel. (B) One of the participants wearing the flexible head cap which

housed the probes. Source no. 23 and 28 were positioned directly at T4 and T3 accordingly to the international 10–20 system. Consent was obtained from the

individual for the publication of this image.
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FIGURE 2 | Schematic diagram of the measurement sequence: SVFT = semantic verbal fluency test. It started with a 20 s rest. Each category of SVFT was 60 s long

and was followed by 20 s of rest.

larger than 0.5 mM·mm in amplitude) and all noisy channels
were excluded from subsequent analyses. All data analyses were
performed using a software Platform for Optical Topography
Analysis Tools (Sutoko et al., 2016). A Butterworth bandpass
filter with cut-off frequencies of 0.01–0.8 Hz was applied to
remove instrumental or physiological noise (Luu and Chau,
2009).

Three categories of SVFT were represented by three 100-s
blocks of data for analysis. As discussed in the task paradigm,
each block consisted of a 20-s pre-task rest period, a 60-s task
period followed by a 20-s post-task period (see to Figure 3). A
moving average filter with a window size of 50 data points (5 s)
was applied to remove high frequency noise from the measured
oxy-Hb signals (Ishii-Takahashi et al., 2014). With respect to
the start of each block, the oxy-Hb signals were then baseline-
corrected to a zero baseline. Blocks with a large spike noise in
the oxy-Hb signal (changes in oxy-Hb larger than 0.5 mM·mm in
amplitude) were excluded from further analyses. Subsequently,
fNIRS signals from each channel were meaned over all the
remaining blocks so that each subject should have had only
one average fNIRS signal per channel. Subsequent analyses were
performed using these average fNIRS signals. Previous fNIRS
studies have suggested that earliest activation starts from 5 s after
task onset (Sato et al., 2006) and sharp increases in activation are
often observed at around 5–10 s after onset (Maki et al., 1995).
Therefore, the level of activation at each channel was determined
for each individual using the percentage signal change, which was
calculated using the following formula:

percent signal change

=
oxy−Hbt = 5:65 (avg) − oxy−Hbt = −10:0 (avg)

∣

∣oxy−Hbt = −10:0 (avg)

∣

∣

× 100%

(1)

where oxy − Hbt = 5:65 (avg) is the average oxy-Hb signal during
the task period, after accounting for hemodynamic delay, and
oxy − Hbt = −10:0 (avg) is the average oxy-Hb signal during the
rest period (−10–0 s of the pre-task rest period; see Figure 3).
Channels located in the PFC that showed a percentage signal
change of larger than 50% were empirically considered to be
activated and were further divided into left and right PFC. Hence,
it was possible for each subject to have a different number of

activated channels, but they were all within the regions of interest
(the left and right PFC).

Due to hemodynamic delay, the period between 5 and
25 s after task onset was defined as the activation period (see
Figure 3). The activation signal was defined as the difference
between the average oxy-Hb signal during the activation period
and during the rest period. For each participant, the mean
activation signal in the left and right PFC was calculated
by averaging the signals obtained in activated measurement
channels located in the left and right PFC, respectively. Based
on the mean activation signals, for both the left and right PFC,
the time taken to achieve the activation level was determined and
the slope in the first 5 s after task onset was calculated using the
following formula:

slope =
oxy−Hbt=5

left PFC/right PFC
− oxy−Hbt=0

left PFC/right PFC

5

×
mM ·mm

s
(2)

where oxy − Hbt=0
left PFC/right PFC

and oxy − Hbt=5
left PFC/right PFC

denote the mean activation signals in the left or right PFC at the
onset of the task and 5 s after the onset of the task, respectively.

The number of activated measurement channels, the mean
activation signals in both the left and right PFC, and the time
taken to achieve the activation level and the slope in the first 5 s
after task onset were then statistically assessed.

Statistics

Differences between all three groups in MMSE scores were first
tested using the multiple non-parametric Mann–Whitney U
tests without multiple testing correction, followed by Mann–
Whitney U tests with Bonferroni-Holm correction. Both tests
were repeated to assess whether there were any within-category
group differences in the number of words generated in the three
categories of SVFT. The Bonferroni-Holm correction would
test each individual hypothesis in a sequential rejective manner at
α/

[

n− rank number of the pair
(

by degree of significance
)

+ 1
]

,
where α is the desired significance level (0.05) and n is the
number of comparisons. fNIRS data that were statistically
assessed included the number of activated measurement
channels, the mean activation signals in both the left and right
PFC, the time taken to achieve the activation level and the
slope in the first 5 s after task onset. For each of these four

Frontiers in Aging Neuroscience | www.frontiersin.org September 2017 | Volume 9 | Article 287140

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Yap et al. Prefrontal Hyperactivation in Neurodegeneration

FIGURE 3 | Schematic diagram of a block to facilitate analysis. Each block consisted of 20-s pre-task rest period, 60-s task period and 20-s post-task period. Three

categories of SVFT can be represented as three 100-s blocks.

fNIRS parameters, statistical significance was estimated using
multiple comparisons between the three different groups at
each category level, with two sets of independent two-sample
t-tests—one without multiple testing correction and one with
similar Bonferroni-Holm correction. Finally, to investigate
the relationship between the MMSE score and various fNIRS
parameters, correlation and simple linear regression analyses
were performed using the MMSE score as a continuous
independent variable.

RESULTS

Sample Characteristics
We excluded the data collected from one patient with moderate
AD (CDR Score = 2) as well as two left-handed participants
(one each from HC and MCI, as we were focusing only on right-
handed participants). The final group of participants consisted of
31 HC and 30 patients (MCI: 12; mild AD: 18) matched for age,
sex, education, and handedness. Demographic information about
age, gender and education level was collected (see Table 1).

Behavioral Data
The behavioral results (MMSE scores and the number of words
generated in the three categories of SVFT) are summarized in
Table 1 and illustrated in Figure 4. The number of comparisons
for MMSE scores is three (for the three groups) and for SVFT is
nine (3 groups× 3 categories). There was a significant difference
in MMSE score between the groups (see Table 1 and Figure 4A;
p: HC vs. MCI= 0.0033, HC vs. mild AD < 0.0001, MCI vs. mild
AD = 0.0012). HC had the highest MMSE scores, followed by
MCI, then mild AD. Referring to Figure 4B, significant group
differences in the number of words given in the “Fruits” category
(p: HC vs. MCI= 0.0081, HC vs. mild AD< 0.0001, MCI vs. mild
AD= 0.0084) and the “Food” category (p: HC vs. MCI= 0.0094,
HC vs. mild AD < 0.0001, MCI vs. mild AD = 0.0079) were
found. For the “Animals” category, the number of words given
by HC was significantly higher than for mild AD (p < 0.0001).
In comparison to MCI, HC produced more words, but it was not

statistically significant (p = 0.0217). The number of words given
by MCI was also higher than mild AD, but the difference was not
statistically significant (p= 0.1669).

fNIRS Data
To characterize the fNIRS responses, we derived the following
parameters, as shown in Figure 5:

(i) the number of activated measurement channels,
Nleft PFC/right PFC

(ii) the change in oxy-Hb concentration during the activation
period, 1oxy−Hbleft PFC/right PFC

(iii) the time taken to achieve the activation level,
tleft PFC/right PFC

(iv) the slope in the first 5 s after task onset,mleft PFC/right PFC

As illustrated in Figure 5A, Nleft PFC was found to be higher
(but not significantly so) than Nright PFC in both HC and MCI.
However, mild AD showed a higher Nright PFC, compared to
the Nleft PFC. The oxy-Hb signals measured in these activated
measurement channels were then averaged across each group of
participants to obtain an overall signal for the left and right PFC
(see Figure 6).

Figure 5B shows the 1oxy−Hbleft PFC/right PFC for all groups.
The highest 1oxy−Hbleft PFC was observed in MCI followed
by HC, while mild AD showed the lowest 1oxy−Hbleft PFC. A
similar trend was also observed in the right PFC. However, in
both the left and right PFC there were no significant differences
between all three groups with respect to the level of activation.
Nevertheless, all three groups demonstrated a similar trend,
with higher 1oxy−Hbright PFC compared to 1oxy−Hbleft PFC,
although differences were not statistically significant.

The tleft PFC/right PFC was calculated and is illustrated in
Figure 5C. When no multiple testing correction was used, the
tleft PFC by HC was shorter than MCI (p = 0.0047) and mild AD
(p = 0.0498). On the other hand, mild AD took a longer time
than HC (p = 0.0469) and MCI (p = 0.0335) in the right PFC.
The mleft PFC/right PFC was also determined (see Figure 5D). Both
HC and MCI showed steeper mright PFC when compared to mild
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TABLE 1 | Participants’ demographic information and the pairwise Mann-Whitney U-test results.

HC (n = 31) MCI (n = 12) mild AD (n = 18) Mann–Whitney U-test

p-value (r)

Characteristic Mean (SD) Mean (SD) Mean (SD) HC vs. MCI HC vs. mild AD MCI vs. mild AD

Age, years 72.6 (8.5) 73.1 (8.2) 74.7 (10.0)

Gender, M/F 19/12 8/4 12/6

Education level, P/S/T 3/18/10 1/7/4 3/12/3

CDR rating 0 0.5 1

MMSE score 28.7 (1.5) 26.0 (3.1) 21.2 (3.6) 0.0033** (0.4485) <0.0001** (0.7957) 0.0012** (0.5896)

SVFT, words

Fruits 13.6 (4.9) 9.0 (3.7) 5.7 (2.2) 0.0081** (0.4036) <0.0001** (0.6934) 0.0084** (0.4809)

Food 14.6 (4.9) 10.2 (3.9) 6.3 (2.7) 0.0094** (0.3961) <0.0001** (0.7459) 0.0079** (0.4851)

Animals 15.2 (3.7) 10.8 (5.7) 7.8 (3.0) 0.0217** (0.3500) <0.0001** (0.7304) 0.1669 (0.2524)

**p < 0.05 with Bonferroni-Holm correction.

HC, healthy control; MCI, mild cognitive impairment; mild AD, mild Alzheimer’s disease; r, effect size; SD, standard deviation; M, male; F, female; P, primary; S, secondary; T, tertiary.

AD (p= 0.0432 and 0.0107, respectively). In summary, HC used a
shorter tleft PFC thanMCI andmild AD, andmild AD took longer
tright PFC than HC and MCI, while HC and MCI demonstrated a
steeper mright PFC than mild AD. However, the results described
above were not significant when a Bonferroni-Holm correction
was applied (number of comparisons is 3 groups × 4 fNIRS
parameters= 12).

We also investigated, using simple linear regression,
if there was any correlation between fNIRS parameters,
i.e., Nleft PFC/right PFC, Nleft PFC/right PFC, tleft PFC/right PFC and
mleft PFC/right PFC, with behavioral data (MMSE scores).
Interestingly, there was a moderate positive correlation (R
≥ 0.5) between one of the fNIRS parameters and the MMSE
score in MCI, but not in the case of HC or mild AD. More
specifically, in the left PFC, 1oxy−Hbleft PFC was moderately
correlated to the MMSE score (R = 0.5886), as illustrated in
Figure 7; Table 2 summarizes the results.

Finally, we noticed a large degree of inter-subject variation
in fNIRS parameters, as shown in Figure 5. Such high variance
not only makes the small group differences hard to distinguish
statistically, but also results in a large overlap between the data
from all three groups.

DISCUSSION

Behavioral Data
This study was designed to investigate the differences in
prefrontal oxygenation between normal cognitive aging, MCI
and mild AD using fNIRS. On a behavioral level, HC performed
better than MCI, followed by mild AD in all three categories
of SVFT, except for with the “Animals” category between HC
and MCI; here, no significant difference was found between MCI
and mild AD. We also observed that participants, regardless
of study group, were relatively faster in providing responses
during the “Animals” category compared to the “Food” and
“Fruits” categories. This finding might be due to all three groups
being more familiar with the names of animals. This has been

reported in previous studies, which have shown that naming
is influenced by item frequency and familiarity (Patterson and
Hodges, 1992; Lambon Ralph et al., 1998). It is possible that
this difference between categories may be related to the varying
degree of distinctive features among category members (Moss
et al., 2002). This will not be elaborated upon further here, as it
is not the main focus of the present study. Overall, these results
were consistent with past studies that have utilized SVFT in
various neuroimaging modalities (Fallgatter et al., 1997; Heinzel
et al., 2013; Wagner et al., 2014; Yeung et al., 2016). This suggests
that the SVFT is a reliable cortical activation task to be used in
conjunction with fNIRS measurements. Here, it was observed
that patients diagnosed with a greater degree of dementia, i.e.,
with higher CDR scores, gave repeated words more frequently.
They had a tendency to forget which words they had already
given, an attribute of a deteriorated right PFC where the working
memory is for monitoring, or keeping immediate information
on-line during tasks (Hayama and Rugg, 2009). The number of
repetitions in SVFT and such attributes will not be discussed
further here.

fNIRS Data
tleft PFC/right PFC and mleft PFC/right PFC

The results suggested that there were two fNIRS parameters that
were significantly different between groups when the subjects
were engaged in SVFT, only when no multiple testing correction
was used. The first parameter is the tleft PFC/right PFC. In the
left PFC, HC took a shorter time in achieving the targeted
activation level, compared to patients with MCI and mild AD.
However, contrasting with the belief that MCI would have a
faster activation than mild AD, patients with mild AD actually
took a shorter time. Conversely, with respect to the right PFC,
MCI demonstrated the shortest time taken, followed by HC and
mild AD. This is suggestive of the faster hemodynamic response
in the right PFC of the MCI possibly being a compensatory
response for the loss of the left PFC (Yeung et al., 2016).
Taken separately, the poorer performance in SVFT and smaller

Frontiers in Aging Neuroscience | www.frontiersin.org September 2017 | Volume 9 | Article 287142

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Yap et al. Prefrontal Hyperactivation in Neurodegeneration

FIGURE 4 | The behavioral results. Statistical analysis was performed used two-sample t-test. **p < 0.05 with Bonferroni-Holm correction. The error bars represent

the standard deviations. (A) The MMSE score of HC was significantly higher than MCI and mild AD. MCI also achieved significant higher MMSE score as compared to

mild AD. (B) In the SVFT, the performance was measured by the number of words given. Significant group differences between all three groups were found in the

number of words given in “Fruits” and “Food” categories. For “Animals” category, the number of words given by HC was significantly higher than mild AD. In

comparison to MCI, HC produced more words but it was not statistically significant. The number of words given by MCI was also higher than mild AD but the

difference was not significant.

activation in conjunction with the shorter time taken for left
PFC activation in patients with mild AD might suggest that
the compensatory mechanism is compromised. The second
parameter examined was the mleft PFC/right PFC. Experimental
results showed that the mright PFC was significantly greater in
MCI compared to mild AD, further suggesting its importance
to describing compensatory mechanisms. While the Bonferroni-
Holm correction demonstrated that there were no significant
differences, it is worthwhile explaining here the underlying
mechanisms for these results.

Two possible explanations have been proposed for the
underlying mechanism. The first explanation was consistent
with that of the scaffolding theory of aging and cognition, in
which additional circuitry is recruited to support declining brain
function that has become inefficient (Park and Bischof, 2013).

This is commonly manifested in older adults that show increased
contralateral right PFC recruitment for both working memory
and episodic encoding (Reuter-Lorenz et al., 2000; Cabeza
et al., 2002), which is consistent with our results. Such bilateral
activation may be a form of interhemispheric interaction that
has been claimed to be vital in neural compensatory mechanisms
(Banich, 1998; Cabeza, 2002). Additionally, the results presented
here imply that compensation and neuroplasticity might be
present in the PFC of MCI, but not in mild AD. It has
also been suggested that such compensatory ability might be
reduced or lost in the progression of MCI toward AD, as
neurodegeneration suffered by AD patients is severe enough
to halt natural compensation (Clement et al., 2013). This is
supportive of the results presented here, where patients with mild
AD tended to forget which words they had already given added to
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FIGURE 5 | Visual representation of fNIRS data. Statistical analysis was

performed used two-sample t-test. *p < 0.05 without multiple testing

correction. The error bars represent the standard deviations. (A) The number

of activated measurement channels: Nleft PFC/right PFC; there were no

significant differences between groups in both the left and right PFC.

(B) oxy-Hb concentration change during the activation period:

1oxy − Hbleft PFC/right PFC; Higher activation was observed in MCI followed

by HC while mild AD showed the least in both the left and right PFC. The

right PFC was more activated than the left PFC in all groups. For both the

left and right PFC, there were no significant group differences. (C) Time

taken to achieve activation level: tleft PFC/right PFC; HC’s tleft PFC was

significantly shorter than MCI. (D) Slope in the first 5 s after task onset:

mleft PFC/right PFC; in comparison to mild AD, MCI showed significantly

steeper mright PFC.

the lack of activation of their right PFC, which is responsible for
monitoring the immediate information during a task (Hayama
and Rugg, 2009). This is further supported as the right PFC
is specifically involved in semantic aspects of lexico-semantic
processing (Joanette and Goulet, 1986).

We propose further, that the additional right PFC involvement
and poorer memory performance can be explained using the
inhibitory hypothesis. According to the inhibitory hypothesis, the
non-dominant right PFC is normally suppressed by its dominant
contra-lateral counterpart (Cox et al., 2015). Such transcallosal
inhibition might be impaired with left PFC or anterior corpus
callosum atrophy, which might result in extra recruitment of
the right PFC. It has been found that additional non-dominant
right PFC activity might reflect age-related changes in the
brain and has been reported to be negatively correlated with
memory performance (de Chastelaine et al., 2011). However, it
has also been suggested that such disinhibition could reflect an
attempted compensatory process, which is insufficient to fully
compensate for age-related neurodegeneration. Our results point
more toward the first explanation as we found that MCI, with
right PFC activation relatively higher than both HC andmild AD,
actually performed better than the latter in the SVFT. Hence, we
suggest that the identification of a compensatory role for the right
PFC might offer a potential target area for neurorehabilitation
(Cotelli et al., 2008). It is expected that in the future the residual
plasticity in the right PFC of cognitively impaired patients,
particularly those with MCI, might be effectively harnessed by
neurorehabilitation and other interventional techniques. At this
juncture, it is necessary to examine other parameters to identify
differences in task-related activities across different populations.

Nleft PFC/right PFC

Considering the number of activated fNIRS channels, there were
no significant differences between both the right and left PFC for
all three groups. The left PFC, which is responsible for semantic
memory, was activated in the SVFT, as expected (Grossman
et al., 2002). The activation of the right PFC, however, may be
suggestive of participants being engaged in object imagery prior
to recalling names during the task. In addition, it might also
indicate ongoing monitoring of semantic information (Hayama
and Rugg, 2009); the episodic memory located in the right PFC
was engaged to ensure that participants did not repeat names
during the task. As compared with HC, a smaller region of right
PFC activation was found in the other two groups (MCI andmild
AD). This could indicate the lack of a monitoring process, thus
partially explaining poorer performance in SVFT in these groups
compared to HC. However, this cannot explain the differences in
SVFT performances between MCI and mild AD.

1oxy −Hbleft PFC/right PFC

MCI demonstrated the greatest oxygenation levels of PFC
activation, in both the left and right hemispheres, during SVFT,
followed by HC, and mild AD. Despite not being statistically
significant, this result might be of clinical significance. The
result is in agreement with previous studies, utilizing various
neuroimaging modalities, which have demonstrated similar
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FIGURE 6 | The overall oxy- and deoxy-Hb signals in the left and right PFC for all three groups.

FIGURE 7 | Change in oxygenation level in the left (A) and right (B) PFC for all three groups against clinical measure, i.e., MMSE score.
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TABLE 2 | Pairwise correlation and simple linear regression results between fNIRS

parameters, and MMSE score.

Left PFC Right PFC

m R m R

NUMBER OF ACTIVATED MEASUREMENT CHANNELS,

Nleft PFC/right PFC vs. MMSE SCORE

HC 0.1919 0.0540 0.3868 0.1393

MCI −0.1154 −0.0634 0.1731 0.1032

Mild AD 0.2517 0.2914 0.0412 0.0429

oxy-Hb CONCENTRATION CHANGE DURING THE ACTIVATION PERIOD,

1oxy − Hbleft PFC/right PFC vs. MMSE SCORE

HC 0.0010 0.0478 0.0035 0.1467

MCI 0.0152 0.5886 0.0086 0.4144

Mild AD −0.0006 −0.0732 −0.0019 −0.2258

TIME TAKEN TO ACHIEVE 25% OF PEAK ACTIVATION LEVEL,

tleft PFC/right PFC vs. MMSE Score

HC −0.8478 −0.3394 −0.8567 −0.3713

MCI −0.4644 −0.3340 0.4153 0.3143

Mild AD 0.0961 0.0729 −0.3606 −0.2733

SLOPE IN THE FIRST 5 S AFTER TASK ONSET,

mleft PFC/right PFC vs. MMSE SCORE

HC 0.0008 0.2040 0.0020 0.2926

MCI 0.0007 0.2028 −0.0001 −0.0394

Mild AD 0.0000 −0.0026 0.0004 0.2663

m, slope of the linear regression; R, correlation coefficient between the two parameters;

HC, healthy control; MCI, mild cognitive impairment; mild AD, mild Alzheimer’s disease.

findings (Johnson et al., 2000; Arai et al., 2006; Sperling,
2007; Driscoll et al., 2009; Woodard et al., 2009). As the
dorsolateral PFC has been suggested to be associated with
compensatory mechanisms (Erickson et al., 2007), the brain
region-specific hyperactivation and hypoactivation observed in
MCI and mild AD, respectively, might indicate the presence
of neural compensation in the former, and the inability to
compensate in the latter (Prvulovic et al., 2005; Clement and
Belleville, 2012). The differences in the level of activation across
groups might also explain the differences in performance in
SVFT, particularly in the left hemisphere (Fallgatter et al., 1997;
Arai et al., 2006; Herrmann et al., 2008). However, contrary to
current opinion, in the present study activation in the right PFC
was greater compared to the left PFC, and was consistent between
all the groups. This might be for the following reasons: (a) the
activation of right PFC in monitoring cognitive processes during
SVFT might implicate a greater role compared to the left PFC;
(b) the difference might be due to methodological differences,
including the differences in recruitment strategies, brain region
investigated and variations in research design and measurements
used to describe the outcome. More specifically, the variations
in research design refer to different assessment tools, inclusion
and exclusion criteria (Fallgatter et al., 1997; Yeung et al., 2016),
the numbers of groups (e.g., between normal aging and AD;
Herrmann et al., 2008) or between normal aging andMCI (Yeung
et al., 2016), and the focus on a brain region (e.g., frontal and
parietal lobe). Similarly, differences in the outcomes measured

might exert a significant impact on the results, such as separate
analyses of oxy-Hb and deoxy-Hb (Herrmann et al., 2008) and
different baseline-corrected values (Fallgatter et al., 1997). The
high variance observed here might be due to placement of
the probes i.e., the position of the optodes relative to the skin
(Strangman et al., 2003). Inter-subject anatomical variability,
such as the thicknesses of the skull and the cerebrospinal fluid
layers could have also caused the large variation in the fNIRS
measurements (Okada and Delpy, 2003).

Moderate Positive Correlation

between1oxy −Hbleft PFC and MMSE Score in MCI

Finally, we propose an explanation for the moderately positive
(R= 0.5886) linear relationship between the oxygenation level in
the left PFC and the MMSE score, which was found only in MCI
subjects, but not in HC and mild AD. This result reflects the fact
that increasing activation actually contributed to the cognitive
status in MCI, while both HC and mild AD did not show a
similar trend. We suggest that in HC, the behavioral ceiling
effect might have been achieved, as represented by the maximum
score in MMSE (30) and this does not necessarily imply the
presence of a parallel ceiling in brain activation (continuous
increases in left PFC activation) (Hagenbeek et al., 2007). This
might also indicate that the neural network is intact in HC. In
addition, MMSE might be a relatively easy task for HC and the
maximum score of 30 points may, therefore, not be a sensitive
measure of cognitive status. MMSE is not designed to measure
the cognitive ability of a healthy person. However, cognitive
status in MCI is well below the ceiling. The pathogenesis of
AD is characterized pathologically by brain accumulation of
amyloid β-protein (Aβ) in the early stages (Jack et al., 2013)
and Aβ is thought to be the cause of neuronal dysfunction in
AD (Palop and Mucke, 2010), which necessitates neural activity.
Previous studies have reported that, relative to younger people
or older people without Aβ, both cognitively normal older
people with Aβ deposition (Mormino et al., 2012) and MCI
patients (Dickerson et al., 2004) exhibit higher neuronal activity
during cognitive task performance. This phenomenon might be
evidence of functional compensation keeping older people with
Aβ and MCI patients cognitively stable. In agreement with these
results, the increase in oxygenation levels might represent an
attempted compensatory response, and hence it is proportionate
to the improvement in cognitive status in MCI. However, it
is not possible to draw any conclusions with respect to the
interpretation due to the small MCI sample size here. Meanwhile,
for mild AD, no linear relationship was found between the
oxygenation levels in the left PFC and the MMSE score. The
degree of Aβ deposition in the brain might reduce neural
efficiency, which eventually causes progression to a more severe
stage of AD (Landau et al., 2012). In such a situation, it is possible
that patients eventually decline cognitively as any compensatory
ability has been compromised (O’Brien et al., 2010). So, when
patients progress into mild AD, their neural compensation
ability might have been weakened or the neural networks might
have been compromised to the point where higher oxygenation
levels coupled with compensatory mechanisms are no longer
enough to maintain cognitive status, unlike with MCI. Although
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the explanations above might fit with the observations, it
is important to note that various non-neural factors might
confound such interpretations; disrupted neurovascular coupling
that is associated with pathological conditions e.g., aging and
disease (Buckner et al., 2000; D’Esposito et al., 2003) is one of
the many factors. Other factors include alterations in perfusion
and metabolism (El Fakhri et al., 2003), and vascular physiology
(Mueggler et al., 2002). It has also been reported that employing
different verbal memory strategies led to different patterns of
cortical activation (Logan et al., 2002). A final factor that
might have influenced PFC activation is the administration of
medication e.g., cholinergic stimulation (Rombouts et al., 2002)
and donepezil (McGeown et al., 2010).

Limitation
Subtypes of MCI need to be considered: a clinical presentation
with memory impairment is characterized as amnestic MCI
(aMCI), whereas the absence of memory impairment with the
presence of impairment in one or more non-memory cognitive
domains is characterized as non-amnestic MCI (naMCI).
Furthermore, these subtypes can be further narrowed down into
single and multi-domain impairments. It has been suggested
that aMCI has a higher likelihood of progressing into AD, while
naMCI is prone to developing into non-AD dementia (Petersen
et al., 2009). Since the present study accessed a relatively small
number of MCI patients, no attempt was made to exclude
patients on the basis of other comorbidities. To substantiate the
findings, research with a larger sample size might help ensure
that participants with secondary comorbidities can be excluded.
In addition, such a study could ensure that participants with
different subtypes of MCI are assessed separately.

CONCLUSION

It was found that HC took a shorter time to achieve the targeted
activation level in the left PFC compared to MCI and mild AD,
while mild AD took a longer time than HC and MCI in the

right PFC. In addition, a steeper slope of activation was found
in the right PFC of patients with MCI compared to HC and mild
AD. The right PFC was particularly recruited in compensatory
activity, which could be explained by the scaffolding theory
of aging and cognition, and the inhibitory theory. Our
results demonstrated, by using fNIRS, that compensation and
neuroplasticity in the form of hyperactivation might be present
in the PFC of MCI, but not in mild AD. Compensatory
mechanisms might, therefore, have been compromised in mild
AD. Time taken and the slope of activation were identified as
key parameters of neuronal compensatorymechanisms, although
the results presented here were not statistically significant after
Bonferroni-Holm corrections. Future studies should look at
these parameters individually. A moderately positive correlation
between the oxygenation level in the left PFC and MMSE
score was also found uniquely in MCI subjects. Longitudinal
studies would be helpful in confirming whether task-elicited
hyperactivation in MCI and hypoactivation in mild AD do
indeed reflect the presence of compensatory mechanisms and the
inability to compensate, respectively. If they do, future studies
with a larger sample size could be directed toward investigating
these fNIRS parameters as potential prognostic biomarkers of
MCI and mild AD progression.
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Background: Late Onset Bipolar Disorder (LOBD) is the development of Bipolar

Disorder (BD) at an age above 50 years old. It is often difficult to differentiate from other

aging dementias, such as Alzheimer’s Disease (AD), because they share cognitive and

behavioral impairment symptoms.

Objectives: We look for WM tract voxel clusters showing significant differences when

comparing of AD vs. LOBD, and its correlations with systemic blood plasma biomarkers

(inflammatory, neurotrophic factors, and oxidative stress).

Materials: A sample of healthy controls (HC) (n = 19), AD patients (n = 35), and

LOBD patients (n = 24) was recruited at the Alava University Hospital. Blood plasma

samples were obtained at recruitment time and analyzed to extract the inflammatory,

oxidative stress, and neurotrophic factors. Several modalities of MRI were acquired for

each subject,

Methods: Fractional anisotropy (FA) coefficients are obtained from diffusion weighted

imaging (DWI). Tract based spatial statistics (TBSS) finds FA skeleton clusters of WM

tract voxels showing significant differences for all possible contrasts between HC, AD,

and LOBD. An ANOVA F-test over all contrasts is carried out. Results of F-test are used

to mask TBSS detected clusters for the AD > LOBD and LOBD > AD contrast to select

the image clusters used for correlation analysis. Finally, Pearson’s correlation coefficients

between FA values at cluster sites and systemic blood plasma biomarker values are

computed.

Results: The TBSS contrasts with by ANOVA F-test has identified strongly significant

clusters in the forceps minor, inferior longitudinal fasciculus, inferior fronto-occipital

fasciculus, and cingulum gyrus. The correlation analysis of these tract clusters found

strong negative correlation of AD with the nerve growth factor (NGF) and brain derived
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neurotrophic factor (BDNF) blood biomarkers. Negative correlation of AD and positive

correlation of LOBD with inflammation biomarker IL6 was also found.

Conclusion: TBSS voxel clusters tract atlas localizations are consistent with greater

behavioral impairment and mood disorders in LOBD than in AD. Correlation analysis

confirms that neurotrophic factors (i.e., NGF, BDNF) play a great role in AD while are

absent in LOBD pathophysiology. Also, correlation results of IL1 and IL6 suggest stronger

inflammatory effects in LOBD than in AD.

Keywords: late onset bipolar disorder, tract based spatial statistics, Alzheimer disease, inflammatory biomarkers,

multimodal brain data analysis, nerve growth factors

INTRODUCTION

Bipolar disorder (BD) is a chronic mood disorder characterized
by maniac and depressive alternating episodes, interspersed
by euthymic periods. Age of onset may be determined by
environmental and genetic conditions (Bauer M. et al., 2014;
Martinez-Cengotitabengoa et al., 2014; Bauer et al., 2015a,b).
Commonly, BD onset happens during youth years, leading to
cognitive, affective, and functional impairment (Forcada et al.,
2015). When the onset age is above 50 years, it is considered a
late onset BD (LOBD) (Depp and Jeste, 2004; Zanetti et al., 2007;
Prabhakar and Balon, 2010; Besga et al., 2011; Carlino et al., 2013;
Chou et al., 2015), which may be difficult to differentiate from
Alzheimer’s disease (AD), because of overlapping symptoms
(Zahodne et al., 2015). Another example of the fuzzy boundaries
between brain pathologies is the discovery of an AD biomarker
signature that also identifies Parkinson’s Disease patients with
dementia (PDD) (Berlyand et al., 2016) opening the door for
crossover treatment of PDD with AD therapies. This trend is
appreciated in recent studies comparing BD and AD patients
(Berridge, 2013). Specifically, inflammation and oxidative stress
biomarkers have been identified for AD (Akiyama et al., 2000;
Kamer et al., 2008; Sardi et al., 2011), LOBD (Goldstein et al.,
2009; Konradi et al., 2012; Leboyer et al., 2012; Lee et al., 2013;
Bauer I. E. et al., 2014; Hope et al., 2015), depression, and mania
(Brydon et al., 2009; Dickerson et al., 2013; Castanon et al., 2014;
Singhal et al., 2014). Common traits between LOBD and AD are
described in Besga et al. (2015). Common psychiatric symptoms
in AD which are shared with the profile observed in LOBD
patients are: agitation, euphoria, disinhibition, over-activity
without agitation, aggression, affective liability, dysphoria,
apathy, impaired self-regulation, and psychosis (Albert and
Blacker, 2006; Zahodne et al., 2015).

This paper contains a new contribution to a comparative study
of AD vs. LOBD patients that has been carried out for some
time. In this study, demographic and other data gathered from
the patients at recruitment, such as psychological tests and MRI
data, has been described in Besga et al. (2012), Graña et al.
(2011), and Besga et al. (2015, 2016), therefore description of
materials can not be duplicated here without breaking imposed
journal self-plagiarism rules. Consequently we refer the reader
to these publications, while here we provide a summary account
of the study and results achieved and reported in previous
publications. Over one hundred subjects older than 64 years were

recruited, including healthy controls (HC), and AD and LOBD
patients. These subjects were treated to neuropsychological tests,
blood extraction for plasma biomarkers measurement, and the
acquisition of several modalities of magnetic resonance imaging
(MRI). Specifically, Diffusion-Weighted Imaging (DWI) was
acquired in order to study significant differences in the white
matter (WM) structure. Reasons for eligibility and discarding of
patients and full account of the materials are given in Besga et al.
(2012), Graña et al. (2011), and Besga et al. (2015, 2016), and
we dare not reproduced them here. Previously reported results of
this study have been the following ones:

1. We demonstrate good discrimination between AD and LOBD
populations using whole brain fractional anisotropy (FA)
coefficients extracted from the DWI data (Graña et al., 2011;
Besga et al., 2012), using multivariate machine learning for
computer aided diagnosis (CAD) system design (Sigut et al.,
2007; Salas-Gonzalez et al., 2009; Ramirez et al., 2010; Savio
et al., 2011; Westman et al., 2011; Termenon et al., 2013).
Though the classification performance results were good, the
localization of effects in brain regions was not as satisfactory
due to the feature extraction process.

2. We achieved encouraging classification results based on
the clinical, neuropsychological test, and blood plasma
biomarkers (a subset of the ones used in the this paper
Besga et al., 2015) using machine learning techniques. We
found that clinical variables have the greatest discriminant
power. Blood plasma biomarkers alone have little discriminant
power but help improve the clinical variables. Besides, we had
no anatomical correspondences of the findings because no
imaging data was involved.

3. Looking for inferences about the anatomical correlations of
blood biomarkers we applied canonical correlation between
them and whole brain FA data (Besga et al., 2016) using
eigenanatomy tools that decompose the FA volume into
eigenvolumes maximally correlated with plasma biomarkers
(Avants et al., 2012, 2014) for feature extraction and ensuing
AD vs. LOBD classification by machine learning. We found
positive correlations of the oxido-nitrosative stress biomarker
malondialdehyde (MDA) (Besga et al., 2016) with voxel
clusters in the superior corona radiata, internal capsule,
and superior longitudinal fasciculus. However, confirmation
by classification performance was moderate, accuracy was
below 80%.
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Besides the commented limitations of previous works motivating
further research, measurements of two new inflammation
biomarkers were made available for new computational
explorations.

Contributions of This Paper
The process carried out in this paper has two phases: first,
cluster selection in FA volumes, and, second, a correlation
analysis between image clusters and blood biomarkers. For
cluster selection, we apply Tract-Based Spatial Statistics (TBSS)
(Smith et al., 2006; Bach et al., 2014) to find significant WM
tract differences between AD and LOBD patients. We expect
TBSS to provide tract specific effects, improving the anatomical
finding reported by our previous approaches (Graña et al., 2011;
Besga et al., 2012, 2016). TBSS identifies WM tract voxel clusters
with significant difference in FA between AD and LOBD on the
mean FA skeleton. To enhance localization power we carry out
an ANOVA F-test. The correlation analysis is carried out by
computing Pearson’s correlation coffiencients of the FA values
at voxel sites and blood biomarker values across all subjects.
Machine learning is not used because of the small sample size that
makes cross-validation results very unstable and not significant.

METHODS

Ethics Statement
The ethics committee of the Alava University Hospital, Spain,
approved this study. All patients gave their written consent to
participate in the study, which was conducted according to the
provisions of the Helsinki declaration. After written informed
consent was obtained, venous blood samples (10 mL) were
collected from the volunteers, after which all the mood scales and
cognitive tests were performed. The study has been registered as
an observation trial1 in the ISRCTN registry.

Blood Plasma Biomarkers
The blood plasma biomarkers selected for analysis include:

• Neurotrophins: nerve growth factor (NGF) and brain-derived
neurotrophic factor (BDNF).

• Inflammation biomarkers (Akiyama et al., 2000; Kamer et al.,
2008; Goldstein et al., 2009; Sardi et al., 2011; Lee et al.,
2013; Garcia-Bueno and et al., 2014): Cytokines Interleukins
1 and 6 (IL-1β , IL-6) and Tumor Necrosis Factor (TNFα),
and the Cyclooxygenases (COX-1 and COX-2) by-products
Prostaglandin E2 (PGE2) and 15d-Prostaglandin J2 (PGJ2).

• Oxidative stress biomarkers: nitrites (NO2) and
malondialdehyde (MDA).

Their measurements are described in Besga et al. (2015),
except for PGE2 and PGJ2 which were measured by enzyme
immunoassay (EIA) using reagents in kit form (Prostaglandin
E2 EIA Kit-Monoclonal; Cayman Chemical Europe, Tallinn,
Estonia and 15-deoxy-112,14- Prostaglandin J2 ELISA Kit
DRG Diagnostics, Marburg, Germany). Samples were measured
following manufacturer’s instructions.

1http://www.controlled-trials.com/search?q=HS%2FPI2010001

Diffusion Weighted Imaging
Diffusion-Weighted Imaging (DWI) uses MRI acquisition
sequences computing signal differences along several gradient
directions in order to obtain a signal that measures water
diffusion. Diffusion Tensor Imaging (DTI) is a compact
representation by means of 3 × 3 matrix of water diffusion in
each spatial direction at each voxel (Basser et al., 1994; Pierpaoli
et al., 1996). Specifically, in this paper we will work on FA values,
which are computed as follows:

FA
(

j
)

=

√

√

√

√

3
∑3

i= 1

(

λi − λ
)2

2
∑3

i= 1 λ2i

, (1)

where {λ1, λ2, λ3} are the diffusion tensor eigenvalues at the
voxel site j. The specific parameters of the data capture on a 1.5
Tesla scanner (Magnetom Avanto, Siemens), data preprocessing,
computing FA, and registration have been given in Besga et al.
(2016). We use the FSL software suite (http://www.fmrib.ox.
ac.uk/fsl/) to carry out DWI preprocessing, DTI estimation
(Behrens et al., 2003), image registration (Andersson et al.,
2007a,b), and TBSS described below. We did not perform spatial
smoothing. The pre-processing consists in the removal of non-
brain voxels using the brain extraction tool (BET) from FSL, the
correction of eddy currents artifacts, and the rigid registration
of the gradient images to cope with motion of the subject. On
the spatially aligned DWI we estimate the diffusion tensor at
each voxel, and the FA values. The FA volumes are then spatially
normalized by non-linear registration to the FMRIB58_FA
template provided with FSL standards. We have not computed
a template from the actual FA dataset because the population is
small and very heterogenous so the resulting mean FA template is
quite noisy and blurry. Besides we need to register the data to the
MNI152 space in order to report atlas based localizations, which
is already done in the template provided by FSL. We do not carry
out any intensity normalization on the FA images.

TBSS
We apply TBSS (Smith et al., 2006; Bach et al., 2014), a module
of FSL (Smith et al., 2004)2 to detect differences in white matter
tracts between HC, AD, and LOBD subjects. The specific TBSS
procedure applied is as follows: (1) We warp the FA volumes
according to the registration carried out before, so we have all
aligned in the common space. (2) We compute the mean FA
image and extract the common skeleton from it bymorphological
image processing. This skeleton is assumed to represent the
centerline of the WM tracts in all the FA volumes. Each subject’s
aligned FA data is then projected onto this skeleton. This
projection is achieved by assigning the closest local maximum
of FA value in the orthogonal direction to the skeleton. (3) For
each possible contrast (i.e., HC > AD, AD > LOBD, HC >

LOBD, AD > HC, LOBD > AD, LOBD > HC, and ANOVA F-
test over all pairwise contrasts) we compute a permutation test
applying the randomize tool of FSLwith 50,000 permutations and
threshold free cluster enhancement (TFCE)(Smith and Nichols,

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
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2009) skeleton cluster selection over the contrast statistics. The
advantage of TFCE over other methods is that it combines the
spatial and statistics value optimally achieving high significance,
and its parameters are already optimized by an automated
procedure.

Biomarker Correlation Analysis
The correlation analysis is applied to the clusters selected by
each binary contrast masked by the F-test cluster detection. The
resulting clusters are much smaller than the binary contrast
detection but more specific. Considering independently each
voxel site j of the selected clusters, we build a vector vj composed
of the FA intensities at the j-th voxel site across all the subjects.
We compute Pearson’s correlation coefficient between this vector
and the value of the blood biomarker for this subject, denoted yi
in the following, obtaining the correlation values at each voxel
site. Pearson’s correlation (Pearson, 1895; Kendall and Stuart,
1973) at the j-th voxel site is computed as follows:

rvj ,y =
n

∑

i vijyi −
∑

i vij
∑

i yi
√

n
∑

i v
2
ij − (

∑

i vij)
2
√

n
∑

i y
2
i − (

∑

i yi)
2
, (2)

where vij is the value of FA at the j-th voxel site in thei-th
subject, and yi is the blood plasma biomarker value of that i-th
subject. We compute correlation values for each subpopulation
(i.e., AD and LOBD) independently (following a reviewer
recommendation), retaining voxels significantly correlated (p <

0.01) for examination.

Atlas Based Effect Localization
Locations reported by atlasquery tool from FSL using the JHU
White-Matter Tractography Atlas are collected for each contrast
after the permutation test, and each correlation analysis between
detected FA skeleton clusters and blood biomarkers. The report
produced by the atlasquery tool are the probability of a cluster
voxel to belong to a tract, therefore the size of the cluster falling
in a tract is computed as product of atlasquery probabilities and
the total detection volume.

RESULTS

Figure 1 plots the size (logarithmic scale) of the skeleton clusters
found by the permutation test for each of the contrasts including
the F-test for each tract that can be identified in the JHU
White-Matter Tractography Atlas, i.e., Right (R) and left (L)
hemispheres of anterior thalamic radiation (ATR), corticospinal
tract (CT), cingulum (cingulate gyrus) (C_CG), Cingulum
(hippocampus) (CH), forceps minor (FMi), forceps major (FMa),
inferior fronto-occipital fasciculus (IFOF), inferior longitudinal
fasciculus (ILF), superior longitudinal fasciculus (SFL), uncinate
fasciculus (UF), temporal part of SLF (SLFT). Before masking
with F-test results, pairwise contrasts greatest effects are located
in the CT, ATR, FMa, and Fmi. However big, CT clusters are of
similar size for all contrast, and disappear after F-test masking.
Similarly, ATR clusters are reduced while ILF clusters relative
importance increase after F-test masking. Clusters where HC or

LOBD have greater FA signal than AD (HC > AD, LOBD > AD)
are much bigger (note log scale in the plot) across all the tracts
than the converse (AD>HC, AD> LOBD). Also, clusters of HC
> LOBD are much bigger than LOBD>HC. These differences in
effect size are strongly significant (p < 0.00001, pairwise t-tests)
The F-test selection involves mostly the C_CG, Fmi, IFOF, and
ILF tracts. F-test detections in other tract is marginal, though we
have included them in the correlation analysis.

Figure 2 illustrates the clusters detected by the AD > LOBD
and LOBD > AD contrasts after masking with the F-test clusters.
Figure 2A presents the mean FA volume and its skeleton (green).
Figure 2B presents the F-test statistics (red). Figure 2C presents
the significant clusters of the AD > LOBD contrast (blue).
Figure 2D presents significant clusters of the LOBD > AD
contrast.

Figure 3 shows in graphical form the correlation analysis
results for each contrast of interest (AD > LOBD, LOBD > AD)
and population (AD, LOBD). Nodes in the graph are either blood
biomarkers (blue ellipsoids) or white matter tracts (rectangles),
red arrows denote negative correlation, green arrows denote
positive correlation. Table 1 gives the sizes of the clusters
of positive and negative correlations. Notice that the AD >

LOBD contrast effects are very small according to Figure 1. The
strongest effects correspond to neurotrophic factors BDNF, and
NGF, and inflammation marker IL6. The NGF accounts for 70%
of all the correlation effects. BDNF appears positively correlated
to LOBD and negatively correlated to AD.

DISCUSSION

We study differential effects in the WM tracts and their
correlation to plasma biomarkers looking for new insights into
the pathophysiological processes underlying AD and LOBD
(Lebert et al., 2008; Carlino et al., 2013; Grande et al., 2014).
We know that cognitive degradation in LOBD is a key factor in
differential diagnosis between LOBD and AD. Besides cognitive
performance, behavioral disorders are also closely related to the
overall functionality of the patients. Agitation, euphoria and
disinhibition are the non-cognitive neuropsychological variables
having the greatest discrimination power in the classification
of patients into AD or LOBD (Besga et al., 2015), while
memory cognitive domain performance is essential in clinical
practice for the detection and diagnosis of AD (Weintraub
et al., 2012). Besides, recent studies have revealed that significant
cognitive impairment in BD compared to controls may allow
to discriminate type I and II BD patients (Aprahamian et al.,
2014; Sparding et al., 2015), and may affect its prognosis, as
it happens in patients with dementia (Kawas et al., 2003).
Previously, some authors suggested that BD diagnosis is a
significant predictor of long-term cognitive dysfunction increase
(Lewandowski et al., 2011; Torrent et al., 2012). Although there
are limited data on the cognitive profile of LOBD (Carlino et al.,
2013; Grande et al., 2014), cognitive deficits affecting memory,
attention and executive function have been reported for BD
patients (Robinson et al., 2006; Osher et al., 2011; Aprahamian
et al., 2014).
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FIGURE 1 | Size of FA skeleton clusters found by each contrast (HC > AD, AD > LOBD, HC > LOBD, AD > HC, LOBD > AD,LOBD > HC, F-test) of the permutation

test followed by TFCE cluster inference for each tract identified by the JHU White-Matter Tractography Atlas. R, Right; L, left; ATR, hemispheres of anterior thalamic

radiation; CT, corticospinal tract; C_CG, cingulum (cingulate gyrus); CH, Cingulum (hippocampus); FMi, forceps minor; FMa, forceps major; IFOF, inferior

fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SFL, superior longitudinal fasciculus; UF, uncinate fasciculus; SLFT, temporal part of SLF .

TBSS Localizations
We focus the discussion on the tracts where the F-test finds
the greatest clusters for the LOBD > AD contrast, which has
quantitatively greater effects than the AD > LOBD contrast. The
size of cluster localizations suggest greater axonal degradation in
AD than in LOBD in pathways that serve to integrate cognitive
and social structures, including tracts that mediate connectivity
to frontal and temporal lobes.

In particular, significant difference s found in ILF indicate
degradation of the fronto-temporal-occipital circuit which is
very important for social and emotional processing, leading
to behavioral deterioration, which has been assessed as the
main discriminant between AD and LOBD (Besga et al., 2015).
The ILF tract connects the occipital cortex and temporal lobes
including the superior, middle and anterior lobes, mediating
the connectivity between three regions: the superior temporal
sulcus, the fusiform face area, and the amygdala. Therefore, ILF
degradation has impact on the processes of detecting biological
motion and eye gaze (Pelphrey and Carter, 2008), as well as
facial information processing with social significance, i.e., face
identification and facial expression interpretation (Adolphs et al.,
1999). We found also significant differences in the cingulate
gyrus C_CG, which is part of the cingulate cortex lying above
the corpus callosum, and part of the limbic system in charge
of processing emotional contents. Together with the previously
described impairments of ILF pathway, disruption of C_CG
impedes the structural connectivity of an extended circuit that
involves frontal, temporal and occipital regions. This circuit
controls socio-emotional processing, so its degradation leads
to greater behavioral an d emotional impairments of AD than
LOBD.

The IFOF connects the occipital, posterior temporal, and the
orbito-frontal areas (Ashtari, 2012). Simultaneously degraded
axonal integrity of left UF, IFOF, and ATR has significant impact
on the semantic processing (Han et al., 2013) during specific
cognitive tasks related to object recognition. This concurrent
effect can explain the increased cognitive impairment of the
AD relative to LOBD (Besga et al., 2015), though we have
not carried out correlation study of image data with cognitive
neuropsychological tests results. The FMi collects most of the
clusters detected, so its relative degradation in AD compared
to LOBD is a salient biomarker. The FMi connects the lateral
and medial surfaces of the frontal lobes crossing the midline via
the genu of the corpus callosum. Damage of the FMi detected
by decreasing FA in DTI imaging has been associated with
fatigue and depression in multiple sclerosis (Gobbi et al., 2014).
Degradation of FMiin mild cognitive impairment (MCI) and
AD relative to HC was found in a cohort study using multiple
diffussion measures (Alves et al., 2013).

Correlation Analysis
Peripheral biomarkers of inflammation,oxidative stress, and
neurotrophins have been related to clinical symptoms, cognitive
decline and illness severity in BD (Barbosa et al., 2012;
Martinez-Cengotitabengoa et al., 2014) as well as in AD
(Berridge, 2013). It has been suggested that inflammation and
oxidative stress do not cause AD or LOBD by themselves,
but that they reinforce interactions among factors related to
these complex neuropsychiatric disorders during brain aging
(Forcada et al., 2015), leading to a misbalance between protective
and degenerative factors, which predisposes the brain to
neurodegenerative diseases (Lewandowski et al., 2011). On the
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FIGURE 2 | Visualization TBSS detection results masked by the F-test overlaid on the mean of registered FA volumes. (A) Mean skeleton (green). (B) F statistics

(red-yelow) over the mean skeleton (green). (C) Clusters detected from contrast AD > LOBD masked by F-test clusters (blue) overlaying the mean skeleton (green).

(D) Clusters detected from contrast LOBD > AD masked by F-test clusters (red) overlaying the mean skeleton (green).
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FIGURE 3 | Significant correlation (p < 0.01) between blood plasma biomarkers (ellipses up) and FA values at the TBSS clusters for AD > LOBD (up) and LOBD > AD

contrasts, masked by the F-test, identified by the atlasquery tool (rectangles below). We report separate values for AD and LOBD populations (requested by

reviewer). Red lines correspond to negative correlations, green lines correspond to positive correlations. Line width is proportional to the magnitude of correlation. R,

Right; L, left; ATR, hemispheres of anterior thalamic radiation; C_CG, cingulum (cingulate gyrus); FMi, forceps minor; FMa, forceps major; IFOF, inferior fronto-occipital

fasciculus; ILF, inferior longitudinal fasciculus; SFL, superior longitudinal fasciculus; and UF, uncinate fasciculus.

other hand, negative correlation of inflammation biomarkers, i.e.,
TNFα, with FA in the body and isthmus of the corpus callosum
has been also found in healthy aging subjects by a TBSS analysis
(Arfanakis et al., 2013), showing that systemic inflammation is
not necessarily associated with cognitive decline. There are also
reports of a significant decrease in BDNF and IL-6 in BD patients
at a later stage compared to its early stage, while, inversely,
TNFα has a significant increase at the later stage of BD (Kauer-
Sant’Anna M, 2009; Grande et al., 2014), suggesting that the
inflammation lies in the pathogenesis of BD.

Brain injuries promote the up-regulation of proinflamatory
prostaglandins PGE2 (Ahmad et al., 2006), hence blocking
the corresponding receptor has been proposed as a target
of treatment for stroke and other traumatic brain injuries.
Cyclopentenone Prostaglandin PGJ2 is a recently discovered
prostaglandin, which has anti-inflammatory functions (Scher and
Pillinger, 2005; Zhao et al., 2006), such as the inhibition of a
gene in T cells, therefore positive correlation with FA voxels
is consistently related to axonal integrity in this area. TNFα is
a cytokine involved in systemic inflammation and acute phase
reaction, whose role is the regulation of immune cells, inducing
inflammation and other effects, such as apoptotic cell death.

The role of NGF as a therapeutic tool for AD has received
a lot of attention in the last years (Xu et al., 2016), with strong
consideration of the impairment of NGF pathway as cause of AD
via the accumulation of amyloid plaques. Clinical trials have been

TABLE 1 | Size (#voxels) of the correlation clusters.

AD > LOBD LOBD > AD

AD LOBD AD LOBD

+ − + − + − + −

BDNF 2 3 20

GLU 1 1 5

IL1β 5 9

IL6 6 1 44 3

MDA 8

NGF 1 276 1

NO2 2 2

PGE2 4 3 2

PGJ2

TNFα 1

Rows: blood biomarkers. Columns: for each contrast (AD > LOBD, LOBD > AD) and

population (AD,LOBD), positive (+) and negative (−) correlation.

carried out3,4 studying the effect of NGF gene therapy (Tuszynski
et al., 2005). Postmortem analysis showed that theNGF treatment
induced response in degenerating neurons exhibited trophic

3https://clinicaltrials.gov/ct2/show/NCT00017940
4https://clinicaltrials.gov/ct2/show/NCT01163825
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response without adverse pathological effects (Tuszynski et al.,
2015).

In our study, regarding inflammation biomarkers in Table 1,
we find no effect of the protective PGJ2, and almost no effect
of TNFα, while there PGE2 has both positive and negative
correlation with LOBD image data, so no conclusion can be given
from them. However, though sparsely distributed in different
clusters, we find positive correlation of IL1β and IL6 with LOBD
and negative with AD, hence these blood biomarkers are a clear
indication of greater inflammation in LOBD pathogenesis.

Regarding oxidative stress biomarkers, we found no
differential effect of NO2, because both populations showed
the same sizes of negative correlation clusters, but MDA shows
positive correlation with LOBD hinting to an added pathogenesis
factor. This result is also in agreement with our previous findings
using eigenanatomy (Besga et al., 2016). Notice in Figure 3 that
IL1β , IL6, and MAD affects mostly the IFOF as a cause for
behavior impairment.

Regarding neurotrophic factors, we found a big effect of NGF
which correlates negatively with AD imaging data, i.e., with the
degradation of synaptic integrity in the located tract. We had
also a small positive correlation with LOBD that reinforces the
value of NGF as a differential diagnostic biomarker between AD
and LOBD. This result is in complete agreement with recent AD
therapeutic research lines (Tuszynski et al., 2005, 2015; Xu et al.,
2016). Notice from Figure 3 that most of the correlation effects
of NGF are located in FMi, suggesting a role in cognitive decline.

CONCLUSIONS

TBSS analysis found widespread white matter disruption
in LOBD relative to AD that might be related to axonal
integrity degradation measured by decreasing FA in several
important tracts. Main effects are located on white matter tracts

that integrate a distributed fronto-temporal-occipital circuit.
Disruption of this circuit may be producing the behavioral and
cognitive impairments that differentiate LOBD from AD in the
clinical and neuropsychological tests. Also, inter-hemispherical
tracts FMihas greater axonal integrity degradation in AD than in
LOBD, which is a pathophysiological cause for c ognitive decline
of AD relative to LOBD. Finally, the correlation analysis suggests
that neurotropic fact ors, i.e., NGF and BDNF, considered
together with FA imaging may help to differentiate LOBD
from AD. Also, there are indications of greater inflammation
(IL1β ,IL6) and oxidative stress (MDA) factors in LOBD than
in AD.
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Objective: The absence of markers for ante-mortem diagnosis of idiopathic Parkinson’s

disease (IPD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP)

results in these disorders being commonly mistaken for each other, particularly in the

initial stages. We aimed to investigate annualized whole-brain atrophy rates (a-WBAR) in

these disorders to aid in the diagnosis between IPD vs. PSP and MSA.

Methods: Ten healthy controls, 20 IPD, 39 PSP, and 41 MSA patients were studied

using Structural Imaging Evaluation with Normalization of Atrophy (SIENA). SIENA is

an MRI-based algorithm that quantifies brain tissue volume and does not require

radiotracers. SIENA has been shown to have a low estimation error for atrophy rate over

the whole brain (0.5%).

Results: In controls, the a-WBAR was 0.37% ± 0.28 (CI 95% 0.17–0.57), while in IPD

a-WBAR was 0.54% ± 0.38 (CI 95% 0.32–0.68). The IPD patients did not differ from

the controls. In PSP, the a-WBAR was 1.93% ± 1.1 (CI 95% 1.5–2.2). In MSA a-WBAR

was 1.65% ± 0.9 (CI 95%1.37–1.93). MSA did not differ from PSP. The a-WBAR in PSP

and MSA were significantly higher than in IPD (p < 0.001). a-WBAR 0.6% differentiated

patients with IPD from those with PSA and MSA with 91% sensitivity and 80% specificity.

Conclusions: a-WBAR within the normal range is unlikely to be observed in PSP or

MSA. a-WBAR may add a potential retrospective application to improve the diagnostic

accuracy of MSA and PSP vs. IPD during the first year of clinical assessment.

Keywords: whole brain atrophy rate, multiple system atrophy, progressive supranuclear palsy, idiopathic

Parkinson’s disease

INTRODUCTION

Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP)—sometimes designated
as “Parkinson plus syndromes”—are debilitating neurodegenerative disorders with heterogeneous
presentation, inexorable progression, and a median survival of between 5 and 10 years.
There is a need to improve the differentiation between idiopathic Parkinson’s disease
(IPD) and MSA vs. PSP. PSP and MSA can be misdiagnosed as IPD (and vice versa),
especially in early stages, as these disorders share some common clinical features, such
as bradykinesia and rigidity and even initial response to levodopa treatment, making
the diagnosis, which is initially based on clinical presentation only, rather uncertain.
Indeed, in 2004 Adler et al. reported that only 26% of IPD cases with signs and
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symptoms present for <5 years had neuropathologic
confirmation (Adler et al., 2014). Although a number of
neuroimaging techniques allow for partial distinction among
these diseases (Politis, 2014), no neuroimaging modalities are
specifically recommended for routine use in clinical practice for
the differential diagnosis between IPD vs. MSA and PSP.

Whole brain atrophy rates (WBAR) from magnetic resonance
imaging (MRI) data may be an informative way to quantify
disease progression in an unbiased fashion. This approach
reduces inter- individual variability in brain size andmorphology
when baseline scans are used as reference point so that the subject
acts as his or her own control. This avenue has been extensively
explored in Alzheimer disease, (Fox and Freeborough, 1997;
Schott et al., 2005; Ridha et al., 2008; Sluimer et al., 2008a,b)
and also in other degenerative dementias such as frontotemporal
dementia (Chan et al., 2001; Gordon et al., 2010) and Huntington
disease (Hobbs et al., 2010). For normal aging, the annualized-
WBAR (a-WBAR) has been estimated to be below 0.6% (Josephs
et al., 2006; Whitwell et al., 2007; Sluimer et al., 2008a). To date
few studies have used such techniques in PSP and MSA with
small numbers of patients. In six autopsy-confirmed PSP cases
(Josephs et al., 2006), the a-WBAR [measured using the boundary
shift integral (BSI; Freeborough et al., 1997), a (semi-) automated
technique] was 1.3%. In another five proven PSP cases, this figure
was 1% (Josephs et al., 2006; Whitwell et al., 2007); in another
study, also using BSI, a-WBAR estimates were approximately 1%
for both PSP and MSA based on 17 PSP cases and 9 cases with
MSA-P (Paviour et al., 2006).

An alternative method is provided by structural image
evaluation, using normalization, of atrophy (SIENA; Smith et al.,
2001, 2002; http://www.fmrib.ox.ac.uk/analysis/research/siena).
The suitability of SIENA for longitudinal studies is based on:
(a) it is direct, based on a registration of two scans taken at
different time points, without the confounding effects of choice
of a “template” to which to register, (b) all the stages are fully
automated; (c) it has been shown to be robust to changes
in acquisition parameters including pulse sequence and slice
thickness (Smith et al., 2001), which is an important advantage
in clinical trials which are usually multi-center. SIENA has been
shown to have a low estimation error for atrophy rate over the
whole brain (0.5%; Smith et al., 2001, 2002).

In this study, we used SIENA to estimate a-WBAR in IPD, PSP,
andMSA.We aimed to explore the retrospective application of a-
WBAR to differentiate IPD fromMSA and PSP, after 1 year from
the baseline assessment and before 5 years of the disease course.

MATERIALS AND METHODS

Subjects and Clinical Assessment
One hundred and ten participants (10 healthy controls, 20 IPD
without dementia, 39 PSP, and 41 MSA patients) were recruited
from the Movement Disorders Clinic at the Hospital San Juan
de Dios, Santiago, Chile. Internationally established operational
criteria were used to assess the diagnoses of MSA, PSP, and IPD
(Wenning et al., 1997; Hughes et al., 2001; Litvan et al., 2003).
Controls were independently functioning community dwellers,
did not have active neurologic or psychiatric conditions, did

not have cognitive complaints, and had a normal neurological
examination. Fourteen IPD patients had the tremor dominant
phenotype and six had the postural instability gait disorder
phenotype. Of the 39 PSP patients, 30 had the typical
features of classic PSP (Richardson’s syndrome). Nine patients
were clinically classified as having atypical profiles: four with
tremor and moderate L-dopa responsiveness (PSP-Parkinsonism
variant), three PSP with corticobasal syndrome (PSP-CBS)
and two PSP with progressive nofluent aphasia (PSP-PNFA;
Respondek et al., 2014). Thirty-five probable MSA patients were
categorized as MSA-P (predominant Parkinsonian features) and
six as MSA-C (predominant cerebellar features). All participants
were assessed on their usual dopaminergic medication and the
IPD patients were evaluated in the “on state.” The patients’
demographics and clinical variables are presented in Table 1.

Clinical parameters were explored using the 18-item
Movement Disorder Society-sponsored revision of the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) motor
symptoms (UPDRS III; Goetz et al., 2007) and the Hoehn and
Yahr Scale (H&Y; Hoehn and Yahr, 1967), and executive function
was assessed using the Frontal Assessment Battery (FAB; Dubois
et al., 2000).

MRI Acquisition
Between 2012 and 2015, patients underwent an MRI brain scan.
MRI images were acquired on a 3.0 T Philips Medical System.
Axial T1-weighted images of the whole brain were obtained using
a 3D inversion recovery prepared spoiled gradient echo (IR-
SPGR) sequence. The following parameters were used: repetition
time of 8.1 ms; echo time of 3.7 ms; inversion time of 450 ms;
voxel size of 0.699 × 0.699 × 1 mm; excitation flip angle of 8◦;
matrix size of 248 × 226; field of view of 24 cm; and 198 axial
slice of 1 mm. An experienced neuroradiologist (GG) assessed
the MRI scans of every patient to rule out gross anatomical
abnormalities. Patients underwent a second MRI brain scan at
the time of the last study visit (12 months after the baseline
scan). Subjects were included in the study if they had two MRI
scans of adequate quality and the brain extraction step in SIENA
functioned correctly. None of the MRI images included in this
study showed any structural abnormalities other than atrophy-
related changes. These inclusion criteria were assessed by a visual
inspection of the raw and processed data for each patient scan.
For both the baseline and follow-up assessments, the clinical data
and MRI scans were acquired within 1 week of each other. The
mean scan interval was 1.04± 0.07 years.

Data Analysis
All of the images were converted in NIFTI format using
MRIcron software (http://people.cas.sc.edu/rorden/mricron/
dcm2nii.html) in preparation for processing using SIENA.
Before further processing, all of the data were anonymized by
removing any reference to the patients’ names from the image
headers and ensuring that the file names were based on a unique
ID rather than any of the patients’ personal details, including
their clinical group. The SIENA processing algorithm has been
validated and described in detail elsewhere (Smith et al., 2002).
Briefly, the processing stages are as follows: (1) Brain extraction
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TABLE 1 | Baseline demographics, clinical features, and a-WBAR.

Controls

N = 10

IPD

N = 20

PSP

N = 39

MSA

N = 41

Group comparisons Significant pair-wise

comparison

Age (years)a 64.6 ± 9.9 62.2 ± 11.5 68.2 ± 6.3 60.4 ± 7.7 F = 6.18 PSP vs. MSA < 0.001

Mean ±SD df = 3

p = 0.01

Gender (M:F)b 3:7 8:12 21:18 32:9 χ2 = 13

df = 3

p = 0.005

Disease durationa (years) N/A 3.1 ± 3.3 3.0 ± 1.7 4.3 ± 2.3 F = 3.4 PSP vs. MSA = 0.04

Mean ± SD df = 2

p = 0.03

a-WBARa 0.37% ± 0.28 0.54% ± 0.38 1.93% ± 1.1 1.65% ± 0.9 F = 16 IPD vs. MSA < 0.001

(Mean ±SD plus 95% confident interval) (0.17–0.57) (0.32–0.68) (1.5–2.2) (1.3–1.9) df = 3 IPD vs. PSP < 0.001

p < 0.001

Baseline UPDRS IIIc 23.2 ± 12 31 ± 13 36.1 ± 18 χ2 = 7 IPD vs. MSA = 0.01

(median score plus range) (3–46) (6–62) (10–67) df = 2

p = 0.03

Annualized UPDRS change 1.18 ± 12.7 5.6 ± 9.5* 6.1 ± 6.9*

(Mean ± SD plus range) (−4.7–7.1) (2.5–8.7) (3.9- 8.6)

H &Yc 1.9 ± 0.6 3.0 ± 0.8 3.0 ± 0.9 χ2 = 27 IPD vs. MSA < 0.001

(Mean ±SD score plus range) (1.0–3.0) (2.0–5.0) (1.0–5.0) df = 2 IPD vs. PSP < 0.001

p < 0.001

Annualized H &Y change 0.1 ± 0.6 0.45 ± 0.55* 0.4 ± 0.4*

(Mean ± SD plus range) (−0.15–0.4) (0.27–0.63) (0.28–0.6)

FABc 14.6 ± 3.5 8.9 ± 4.2 14.0 ± 3.3 χ2 = 19 IPD vs. PSP < 0.001

(5–18) (0–16) (4–18) df = 2 MSA vs. PSP < 0.001

p = 0.016

Annualized FAB change

(Mean ±SD plus range)

−0.1 ± 1.9

(−1.0–0.8)

−0.46 ± 3.6 *

(−1.8–0.9)

−0.6 ± 2.08*

(−1–0.17)

aANOVA test.
bChi square test.
cKruskal-Wallis test and post hoc procedure with MannWhitney test p = 0.05/3 = 0.016.

* Difference between baseline and repeat score with a p < 0.05 (Wilcoxon ’s signed rank test).

UPDRS III, Unified Parkinson’s Disease Rating Scale Part III; H&Y, Hoehn &Yahr Scale; FAB, Frontal Assessment Battery; a-WBAR, annual whole-brain atrophy rate.

(BET): segmentation of the brain from non-brain tissue for
each scan, followed by skull extraction. (2) Registration: the
segmented brain from the second (follow-up) scan is registered
to that of the first (baseline) using a linear transformation.
The two skull images are used as normalizing factors to
constrain the scale and skew. (3) Tissue type segmentation:
white matter and gray matter tissues are treated as one tissue
and the cerebrospinal fluid as another. (4) Change analysis:
detection of the brain edges on both registered brain images
and then estimation of the motion of the brain surface edges.
The direction of movement from the first image to second
image indicates whether atrophy or growth has occurred.
Finally, the percentage of global brain volume change is
obtained for each subject from the mean of all of the edge point
motions.

Statistical Analyses
Statistical analyses of the clinical data and clinical-imaging
correlations were performed using the Statistical Package for

Social Sciences (SPSS, Inc., Chicago, IL, USA, version 22).
The results are presented as the mean ± SD. In all cases,
a two-sided p < 0.05 was considered significant. Visual
inspection of the data using histograms and QQ-plots was
performed to test for violations of the assumption of a
normal distribution. Levene’s test of equal variances was used
to verify the assumption of the homogeneity of variances.
Because of these verifications, parametric and non-parametric
statistical tests were used. One-way analysis of variance was
performed for normally distributed data (age at examination,
disease duration, a-WBAR). The Tukey test was used to
control for multiple testing. Because disease severity and
neuropsychological measures were non-normally distributed,
between group differences were compared using Kruskal-Wallis
tests, and when necessary, a post hoc procedure with Bonferroni
correction for multiple tests (p = 0.05 was divided by 3)
was used to compare the four disease groups. A χ2-test for
homogeneity was used to compare the distribution of males
and females across groups. The a-WBAR was calculated by
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dividing the WBAR values by the interscan interval in years.
Clinical scores were also annualized by dividing the unit change
between the assessments by years. Difference between baseline
and repeat score were assessed using the Wilcoxon’s signed rank
test.

A-WBAR cut-off points for the differentiation between groups
were determined by the Receiver Operating Characteristic curve
(ROC) to define maximal sum of sensitivity and specificity.

Standard Protocol Approval, Registrations,
and Patient Consent
Prior to inclusion, patients gave their informed written
consent to participate in the study. The study was conducted
according to International Standards of Good Clinical
Practice (ICH guidelines and the Declaration of Helsinki).
The project was approved by the local Research Ethics
Committees of San Juan de Dios Hospital, Santiago,
Chile.

RESULTS

Demographics, Clinical Variables, and
A-WBAR (Table 1)
There were no significant differences in age [IPD: 62.2 ± 11.5
(years ±SD); PSP 68.2 ± 6.3; MSA 60.4 ± 7.7], gende,r and
disease duration between the IPD patients and both the MSA
and PSP patients, although PSP patients were significantly older
than MSA patients (p < 0.001). Disease duration was <5 years
for all groups. The MSA patients had a longer disease duration
with a mean of 4.3 years [PSP 3.0 (p = 0.04)]. The PSP and MSA
patients showed greater impairment on the H&Y scale than the
IPD patients. The PSP patients showed greater impairment on
the cognitive measures than the IPD and MSA patients.

MSA and PSP, but not IPD, showed significant mean
deterioration over the follow-up period on a range of clinical
measures.

In controls, the a-WBAR was 0.37% ± 0.28 (CI 95% 0.17–
0.57), while in IPD patients a-WBAR was 0.54% ± 0.38 (CI 95%
0.32–0.68). The IPD patients did not differ from the controls. In
PSP patients, the a-WBAR was 1.93% ± 1.1 (CI 95% 1.5–2.2).
In MSA patients, a-WBAR was 1.65% ± 0.9 (CI 95%1.37–1.93).
The MSA group did not differ from the PSP group. a-WBAR in
the PSP and MSA groups was significantly higher than in the
IPD group (p < 0.001; Figure 1). a-WBAR 0.6% differentiated
patients with IPD from those with PSA and MSA with 91%
sensitivity and 80% specificity (Figure 2); for IPD vs.MSA groups
this value shows 85% sensitivity and 80% specificity, and for IPD
vs. PSP groups 97% sensitivity and 75% specificity.

DISCUSSION

Diagnosis of Parkinsonian syndromes remains a difficult task
that is based mainly on the clinical evaluation of neurologists,
as no biological markers are currently available (Adler et al.,
2014). Misdiagnosis not only means that patients may suffer from
prognostic uncertainty but also means that clinical investigations

FIGURE 1 | Error bars showing 95% confident intervals (bars) of

a-WBAR means for each group. 7, 15, 29, 19, and 106 = outliers. STRATA

= group.

FIGURE 2 | Receiver Operating Characteristic curve (ROC) to define

maximal sum of sensitivity and specificity. a-WBAR at 0.6% is the cut-off

point and differentiated patients with IPD from those with PSP and MSA with

91% sensitivity and 80% specificity.

are hampered by false positive cases. The inaccuracy in diagnosis
is explained by the unknown tempo of widespread cellular
destruction and the variable sites within the nigro-striatal
dopaminergic system and/or cortices where neurodegeneration
commences. A recent clinicopathologic study indicated that the
clinical diagnostic capabilities for IPD have not advanced over
the last 23 years (Rajput et al., 1991; Hughes et al., 1993; Adler
et al., 2014), with only 26% accuracy for the clinical diagnosis of
untreated or not clearly responsive patients, and 53% accuracy in
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patients who respond early to medications with disease duration
<5 years (Adler et al., 2014). An early longitudinal diagnostic
biomarker to help to differentiate IPD vs. MSA and PSP is still
a needed and was the main aim of this study.

In this study IPD patients did not show abnormal a-WBAR
as was previously reported for IPD without dementia [0.6%
(Paviour et al., 2006), 0.28% (Burton et al., 2005)]. We found
an a-WBAR of 1.93% for PSP and 1.65% for MSA, which are
higher than those in previous reports: approximately 1% for both
PSP and MSA using BSI (Josephs et al., 2006; Paviour et al.,
2006; Whitwell et al., 2007). Consistent with those reports, in
the current study no significant difference was observed between
a-WBAR in PSP and MSA (Paviour et al., 2006).

The a-WBAR reported in MSA and PSP are somewhat closer
to those reported for Alzheimer disease using both BSI [2.1%
(Schott et al., 2005), 2.37% (Chan et al., 2001), 2.78% (Fox and
Freeborough, 1997)] and SIENA [1.9% (Sluimer et al., 2008b)].
It is plausible that cortical structures are the main contributors
to whole brain atrophy in PSP and MSA. In PSP, neuronal loss
is recognized in frontal, temporal, and limbic cortices and much
less in parietal and occipital cortices (Verny et al., 1996). Such a
neuronal loss is not considered to be typical in MSA. However,
Papp and Lantos described high densities of glial cytoplasmic
inclusions in the supplementary and primary motor cortical
areas and subjacent white matter and moderate densities of glial
cytoplasmic inclusions in the premotor area, cingulate motor
area, and corpus callosum in MSA (Papp and Lantos, 1994).
In a review of 203 proven MSA cases, some degree of cortical
atrophy was observed in 21% of cases (Wenning et al., 1997),
and post mortem examinations showed severe frontal atrophy
(Inoue et al., 1997;Wakabayashi et al., 1998). In vivo data inMSA
showed hypometabolism in motor, premotor and prefrontal
cortices and parietal lobes (Kawai et al., 2008).A proton magnetic
resonance spectroscopy study showed a significant reduction of
N-acetylaspartate/creatine in the frontal cortex (Abe et al., 2000).
Voxel-basedmorphometry studies have suggested that atrophy in
the motor and prefrontal cortices are common findings in MSA
(Brenneis et al., 2003).

By contrast, in levodopa-responsive IPD patients, evidence
supports the idea that motor deficits are primarily related to
the localized loss of selective dopaminergic neurons in the
substantia nigra, with cortical and subcortical gray and white
matter structures more preserved in comparison with those with
PSP and MSA.

From a clinical perspective, an a-WBAR cutoff point of 0.6%
may provide a potential retrospective application for a-WBAR to
improve diagnostic accuracy (91% sensitivity and 80% specificity)
for IPD vs. PSP and MSA, particularly in the initial stages when
the clinical “plus syndrome” has not yet manifested and the
response to levodopa treatment is being assessed.

With the current limited knowledge about the biology of
MSA and PSP, interpretations and designs of MRI studies are
mainly based on the information provided by proven cases
(region of interest based studies). Sensitivity and specificity
have been reported for many neuroimaging techniques based
on region of interests for the differential diagnosis of IPD
vs. MSA and PSP. Metabolic imaging using positron emission

tomography (PET) studies of glucose metabolism were reported
to have 86% sensitivity and 91% specificity to correctly categorize
IPD from MSA and PSP (Hellwig et al., 2012). Dopamine
transport (DAT) imaging using single photon emission CT
(DAT-SPECT) is not efficient for the differentiation of IPD
from PSP and MSA (Lokkegaard et al., 2002). Both molecular
techniques PET andDAT-SPECT are expensive and not routinely
available. A diffusion weighted imaging (DWI) study reported
90% sensitivity for differentiating PSP from IPD; however, in
this study DWI was evaluated in only 10 PSP and 13 IPD
patients (Seppi et al., 2003). Transcranial sonography has been
reported to have 40% sensitivity and 61% specificity for the
diagnosis of IPD (Bouwmans et al., 2013). Considering these
data, a review concludes that no techniques are specifically
recommended for routine use in clinical practice (Politis,
2014).

For disease-modifying treatments, the current challenge is
to find biomarkers to accurately differentiate IPD from the
aggressive MSA and PSP, early in the disease course. Ideally,
MRI studies should also be based, as much as possible, on
information obtained during the natural course of these diseases.
The clinical and pathological aggressiveness of MSA and PSP
may be due to global brain atrophy rather than degeneration
of specific brain pathways and/or gray matter structures. a-
WBAR within a normal range is unlikely to be observed in
PSP or MSA but is likely to be observed in IPD patients. We
propose a complementary use of clinical features (bradykinesia,
rigidity, resting tremor, and response to dopaminergic drugs)
and a-WBAR as a reasonable approach for the most accurate
clinical diagnosis in these disorders early in the disease
course.

A problem with using brain volume as a disease outcome
is that it may not reflect physiologic or synaptic health.
Furthermore, loss of brain volume might be influenced by
causes that are common in people with chronic brain disorders,
but only indirectly related to the disease itself, such as
mild traumatic brain injury (MacKenzie et al., 2002), chronic
alcohol abuse (Bartsch et al., 2007), nutritional deficiency, or
hydration/dehydration (Kempton et al., 2009). However, these
sources of variation are certainly less than that due to the disease
itself.

As the current state of the art technique in neuroimaging,
SIENA may be among the simplest MRI tools, but complex
methodologies do not necessarily lead to robust and coherent
results (Smith et al., 2004).

Overall, this study supports a complementary use of clinical
tools and global rates of brain atrophy as an aid to clinical
diagnosis between IPD vs. PSP and MSA.
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