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The blast-induced vibration during excavation by the drilling and blasting method has an important impact on the surrounding buildings/structures and auxiliary equipment. In particular, with the development of tunnel engineering, the impact of blasting vibration on tunnel construction has attracted extensive attention. Based on literature data statistics, this paper first explored the performance of several commonly used empirical equations in predicting the propagation and attenuation characteristics of blasting vibration on adjacent tunnels. Secondly, the relationships between the empirical parameters of the blasting vibration prediction equation and the geological strength index (GSI) of tunnel surrounding rock were discussed, and two new blasting vibration prediction equations based on site rock GSI were established to approximately predict blast-induced vibration on adjacent tunnels. Finally, the application feasibility of the established prediction equation in practical engineering was discussed based on field test data. The research results show that under the condition of multiple groups of data, the prediction performance of various prediction models does not differ significantly. With the increase of the GSI of the surrounding rock mass of the adjacent tunnel, the site coefficients β and k of the blasting vibration prediction equation in predicting PPV (peak particle velocity, resultant velocity) both show a decreasing trend as a whole. The site coefficient k is generally within 3,000. Two new empirical prediction equations of blasting vibration propagation and attenuation on adjacent tunnels under different site conditions were established: Eq. (14) for PPV and Eq. (15) for PPVi (max) (maximum value of the three component velocities; i = x, y, z represent peak component particle velocity). The verification analysis of five sites shows that these two equations have a certain practical application value. Compared with other empirical equations, these two equations do not need regression fitting blasting vibration data, they only used the GSI of the site rock mass, and they are more easy to use in the field when there is a lack of monitoring data.
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1 Introduction

The drilling and blasting method is a widely used method for tunnel construction, resource mining, and other rock engineering aspects since it has the advantages of simple construction, strong adaptability to geological conditions, and low cost (Ocak and Bilgin, 2010; Wang et al., 2022). However, it also brings many negative effects such as blasting vibration, air shock wave, flying rock, noise, and toxic gas and dust (Murmu et al., 2018). Among these negative effects, blasting vibration can very easily cause damage to nearby buildings/structures or related facilities (Zhou and Jenssen, 2009; Li et al., 2013).

PPV/PPVi and frequency are common parameters for evaluating blasting vibration hazards (Lu, 2005; Wu and Hao, 2005). Both of them are necessary to determine the response of neighboring buildings/structures in different geological formations. In particular, when the frequency of blasting vibration is close to the natural vibration frequency of surrounding buildings/structures or related facilities, the blasting vibration may be amplified several times due to resonance, and the harm to surrounding buildings/structures or related facilities will also increase (Sisikind et al., 1980). For this reason, most blasting vibration safety standards take into account the frequency dependence of the vibration damage potential (BS3785-2, 1993; Lu et al., 2012; Yilmaz, 2016).

However, PPV/PPVi is still the basis of many blasting vibration safety standards and is also considered to be the most important parameter for evaluating blasting vibration hazards (Nateghi et al., 2009; Yilmaz, 2016). A large number of monitoring, tests, and theoretical studies show that the PPV is mainly related to the explosive charge, distance between blasting source and monitoring points, and site conditions, and the widely used blasting vibration prediction equation was established (Murmu et al., 2018) as:

 

where k and β are site-specific constants that describe the characteristic of propagating media, blasting design, and geology; scaled distance, SD = R/Qa, is the ratio of distance of monitoring point from the geometric center of the blasting area, R (m), to the maximum charge per delay, Qa (kg); a is the scaled distance relationship constant. Table 1 summarizes the common forms and extended forms of Eq. (1).


Table 1 | Summary of commonly used PPV prediction equations.



Note: R is the distance of monitoring point from the geometric center of the blasting area; Q is the maximum charge per delay; k and β are site-specific constants that describe the characteristic of propagating media, >0; λ represents the inelastic attenuation factor of site, >0; n represents the energy diminishing influenced by rock properties and geological discontinuities (e.g., faults, fractures, joints, fissures, and bedding planes), and is a decay constant,<0.

Generally, the prediction equations shown in Table 1 are often used to predict PPV/PPVi on the ground surface and strata (Zhou and Jenssen, 2009; Jayasinghe et al., 2019; Li et al., 2021). In recent years, with the continuous development of underground tunnel engineering, some equations in Table 1 are also used to predict PPV/PPVi on tunnel structures. For example, based on empirical equations provided by USBM (Devine, 1962) or Ambraseys and Hendron (1968); Singh (2002) and Abolghasemifar et al. (2018) investigated the response and attention characteristics of blasting vibration on the roof, pillar/sidewall, and/or floor of underground coal mines from adjacent open-pit blasting/underground tunneling; Zhao et al. (2016); Sharafat et al. (2019), and Zhang et al. (2021) analyzed the attention characteristics on underground rock tunnel floor from adjacent tunnel blasting; and Zhou et al. (2018); Wang et al. (2019), and Zhu et al. (2021) discussed the attention characteristics on underground rock tunnel sidewall from adjacent tunnel blasting. These studies show that it is feasible to use empirical equation to predict blasting vibration on adjacent tunnel structures. However, there are few literature that explored and compared the prediction performance of different empirical equations shown in Table 1 for predicting PPV/PPVi on adjacent tunnels. In addition, there are few studies on the relationship between the parameters of prediction equations and the geological parameters of tunnel surrounding rock. When there are no blasting vibration data, the application of blasting vibration prediction equation is usually limited.

In this paper, first, based on the collected data of blasting vibration response on the adjacent tunnel structures, the prediction performance of various empirical equations shown in Table 1 in predicting PPV/PPVi was investigated, and some of the empirical equations were recommended to predict PPV/PPVi on the adjacent tunnels. Secondly, the relationships between the empirical parameters of blasting vibration prediction equation and the mechanical properties of tunnel surrounding rock were analyzed. Finally, the application feasibility of the established prediction equation in practical engineering was discussed based on field data. This study has some practical value for the safety control of blast-induced tunnel disasters, especially in the case of lack of on-site blasting vibration data.




2 Performance of different empirical equations in predicting PPV/PPVi on adjacent tunnels



2.1 Data collection

Within the scope of this study, to compare the prediction performance of different empirical equations in predicting PPV/PPVi on adjacent tunnels, the results of the vibration measurements on adjacent tunnels from previous studies were analyzed carefully. A total of 21 sets of data were collected from eight references, as shown in Table 2. Among these data, three sets of data are about PPV, four sets of data are about PPVx, six sets of data are about PPVy, and eight sets of data are about PPVz.


Table 2 | Collected data about blast-induced vibration propagation and attention on adjacent tunnels.



The blasting conditions, geological conditions, and tunnel characteristics of the data acquisition site are different. As far as the sources of blasting vibration are concerned, most of them come from the blasting of adjacent excavated tunnels. The geological conditions of blasting vibration site vary widely, including not only slightly weathered rock mass with high compressive strength, but also strongly weathered, cataclastic rock mass with low compressive strength. The shape and scale of the monitoring tunnel are also different. Generally, the span of the monitoring tunnels are between 10 and 30 m. The relationship between monitoring tunnel and adjacent blasting tunnel mainly includes horizontal parallel, vertical parallel, and intersection. The distance between monitoring tunnel and blasting tunnel is generally between 4 and 50 m. The monitoring points are mainly on the side wall, floor, and roof the adjacent tunnels.

The details of the data sets used in this work including PPV/PPVi, maximum charge per delay, and distances are evaluated by using different empirical equations shown in Table 1. The performance assessment method will be explained in the following section.




2.2 Performance assessment method

Regression analysis technique was used to analyze the relationships between PPV/PPVi and the maximum charge per delay, the distance between blasting source, and monitoring points. In order to establish a relationship among those parameters, simple and multiple linear regression analyses were performed using the data given in Table 2.

If the dependent variable is a linear combination of the one independent variable, it is called simple linear regression. Similarly, if the dependent variable is a linear combination of the several independent variables, it is called multiple linear regression. The basic simple and multiple linear regression models for one and two independent variables are given below:

 

 

where Y is the dependent variable, X1 and X2 are the independent variables, and A, B, and C are the constants.

As shown in Table 1, for equation ID = 1–4, the PPV/PPVi is the dependent variable, SD = R/Qa is the independent variable, and k and β are the constants greater than 0. Therefore, these types of equations are suitable for simple regression analysis. Basic equations are linearized by taking the natural logarithm of both sides, and we get

 

Equation ID = 7 is also a simple regression analysis, as PPV/PPVi is the dependent variable, SD = R/Q1/2 is the independent variable, and n is the constant less than 0. The basic equation for a simple regression analysis is:

 

Equation ID = 5–6 and 8 are suitable for multiple linear regression. In these types of equations, PPV/PPVi is the dependent variable; SD, R, R/Q, and R/Q0.5 are the independent variables; and, k, β, and λ are the constants greater than 0. Basic equations are linearized by taking the natural logarithm of both sides, and we get

 

 

 

Two statistical criteria, namely, determination coefficient (R2) and root-mean-square error (RMSE), were used to evaluate the performance of the empirical equations shown in Table 1 in predicting PPV/PPVi on adjacent tunnels. The expressions of the R2 and RMSE are as follows (Yan et al., 2020a):

 

 

where N is the number of data sets, and yi, yp, and ymean are the measured, predicted, and mean of values, respectively. Theoretically, if R2 approaches 1, and RMSE approaches 0, the predicted equation is optimal.




2.3 Result analysis

Figure 1 shows the performance of different empirical equations in predicting PPV/PPVi on different adjacent tunnel structures (roof, sidewall, or floor). It can be seen from the figure that the prediction performance of various empirical equations in predicting PPV/PPVi at different sites is different. Under different site conditions, various equations may become the best prediction equation; that is, under each site condition, the best prediction equation is uncertain.




Figure 1 | Performance of different empirical equations in predicting (A) PPVx, (B) PPVy, (C) PPVz, and (D) PPV on adjacent tunnels; MPs: measuring points; RSME×10: the value of RSME in the figure should enlarge 10 times.



For some site data, the prediction accuracy of empirical equations is high, R2 can reach more than 0.9, and RMSE is small. However, the prediction accuracy of empirical equations is relatively low in predicting PPV/PPVi in some site data, R2 is lower than 0.4, and the value of RSME is relatively large. This shows that it is feasible to use empirical equation to predict the propagation of blasting vibration in adjacent tunnels, but there is also the risk of insufficient prediction.

For the same set of data of most sites, whether the data are monitored on the tunnel roof, floor, or sidewall, the prediction accuracy of various prediction equations is not very different (the difference of R2 is less than 0.2). However, for the data from mining tunnels (Abolghasemifar et al., 2018), the prediction accuracy of each prediction model varies greatly, and the prediction accuracy is not particularly high. The main reasons may be the complexity of mining tunnel, the obvious effect of various roadway cavity effects (Singh, 2002), and the applicability of most prediction equations is not good.

In order to comprehensively evaluate which empirical equations can be better applied to the prediction of blasting vibration propagation on adjacent tunnels, we analyze the average value of the prediction performance of empirical equations under various site conditions. The average values of R2 and RSME are calculated as follows:

 

where   represents the average value of the R2 or RSME in all the data sets, n represents the number of data sets, and   represents the value of the R2 or RSME in one data set.

Figure 2 shows the comprehensive performance of different empirical equations in predicting PPV/PPVi on adjacent tunnels. It can be seen from the figure that under the condition of multiple groups of data, the prediction difference of various prediction models is not very large. In terms of the data collected in this paper, the maximum differences of R2 and RSME between various prediction equations are 0.071 and 0.091. Therefore, it can be concluded that any equation in Table 1 can be used to predict the propagation and attenuation characteristics of blasting vibration on adjacent tunnels. However, considering the simplicity of application, that is, the fewer the parameters of the equation, the better, it is suggested that the first three equations are used [especially the equation provided by Ambraseys and Hendron (1968) since it has the best prediction performance among the three equations] to predict the propagation and attenuation characteristics of blasting vibration on adjacent tunnels.




Figure 2 | Comprehensive performance of different empirical equations in predicting PPV/PPVi on adjacent tunnels.







3 Relationships between PPV/PPVi prediction equation coefficients and tunnel geology

It is very important to study the relationship between the relevant parameters of empirical equations and tunnel geological characteristics for the prediction of blasting vibration on adjacent tunnels, especially when there is no blasting vibration data. In this section, the relationships between them were studied.

According to Figure 3, the site coefficients k and β (attenuation index, which can be used to represent the attenuation characteristics of blasting vibration on tunnels) are not consistent in different empirical equations for prediction PPV/PPVi in the same site. In this study, the site coefficients k and β in the empirical equation provided by Ambraseys and Hendron (1968) were adopted to analyze the relationships with tunnel geological conditions since it has the best prediction performance of the first three equations.




Figure 3 | Prediction PPV/PPVi using different empirical equations. (A) PPVx; (B) PPVy; (C) PPVz; (D) PPV. Data from Zhu et al. (2021).



Here, the data for studying the relationship between the relevant parameters of empirical Eq. (2) in predicting PPV/PPVi on adjacent tunnels and tunnel geological conditions were still from the literature review. Because the vibration response on adjacent tunnel structures near the blasting source is the largest and is also the vibration response area that is most concerning for engineers, we mainly consider the data of the blasting vibration on the adjacent tunnel structures near the blasting source in the process of literature collection. Moreover, since the analysis of this section is focused on the relationship between the relevant parameters of empirical Eq. (2) and tunnel geological conditions, the influence of tunnel shape and scale on the response of PPV/PPVi was neglected during data summary.

There are many indicators to describe site characteristics, such as rock quality designation (RQD), rock mass rating (RMR), geological strength index (GSI), and Q-system (Q) (Zhang, 2016). Here, the GSI was adopted to describe the site geological information because it is easier to obtain according to the description of the site presented in the literature. GSI, which was introduced by Hoek (1994), is a system of rock mass characterization used to estimate rock mass strength for different geological conditions as identified by field observations. The GSI classification was set up to address the two principal factors considered to have an important influence on the mechanical properties of a rock mass, i.e., the structure (or blockiness) and the condition of the joints. The basic version of the GSI chart, for use with jointed rocks, is reproduced in Figure 4, from Hoek and Marinos (2000).




Figure 4 | Basic GSI chart (Hoek and Marinos, 2000).



Table 3 shows the collected data about surrounding rock mass information of adjacent tunnels and the corresponding site coefficients obtained based on regression analysis using empirical Eq. (2). It can be seen from the table that the site coefficients k and β of empirical Eq. (2) in predicting PPV/PPVi on the adjacent tunnels are different under different site conditions.


Table 3 | Collected data about surrounding rock mass information of adjacent tunnels and the corresponding site coefficients.



Figure 5 shows the relationships between the site coefficient β and rock mass GSI. It can be seen from the figure that with the increase of the GSI of the surrounding rock mass, the site attenuation coefficient β of empirical Eq. (2) in predicting PPV/PPVi on the adjacent tunnels shows a gradual decreasing trend as a whole; that is, the blasting vibration attenuation on adjacent tunnels will decrease as the GSI of the surrounding rock mass increases. By contrast, it was found that the fluctuation of β of empirical Eq. (2) in predicting PPVi (β(PPVi)) is much higher than in predicting PPV (β(PPV)), especially when the GSI of rock mass is lower than 30. In general, the fluctuation center of β(PPVi) is located in the fluctuation center of β(PPV). Based on this law, if the relationship between the site attenuation coefficient β(PPV) and the GSI was obtained, the site attenuation coefficient β of empirical Eq. (2) in predicting PPV/PPVi on the adjacent tunnels under different surrounding rock geological conditions can be evaluated approximately. Through fitting analysis, the following characteristic relationship between β (PPV) and GSI of surrounding rock mass was obtained as:




Figure 5 | Relationship between GSI and site coefficients β.



 

Figure 6 shows the relationship between site coefficient k of empirical Eq. (2) in predicting PPV/PPVi and GSI of tunnel surrounding rock. With the increase in GSI of tunnel surrounding rock, the change law of site coefficient k of empirical Eq. (2) in predicting PPV/PPVi also shows a decreasing trend as a whole. Except for some discrete points (data surrounded by circles), the value of k of most cases is generally within 3,000, whether in predicting PPV (k(PPV)) or PPVi (k(PPVi)). Furthermore, the value of k(PPVi) is generally less than k(PPV) at the same level of GSI.




Figure 6 | Relationship between GSI and site coefficient k.



Through fitting analysis, the following characteristic relationship between k(PPV) and GSI of surrounding rock mass was obtained as:

 

Based on these relationships, the blasting vibration prediction equation on adjacent tunnels can be approximately rewritten as:

 

It is worth noting that the equation is an approximate prediction and is suitable for use without regression analysis of blasting vibration data. The unit of the PPV/PPVi is mm/s. As for PPVi, due to the direct relationship between site coefficient (k and β) and geological structure, it is not suitable to establish a relatively effective equation based on GSI. However, considering that the maximum value of the three component velocities (PPVi (max)) is generally slightly or moderately less than the PPV, the PPVi (max) can be calculated by multiplying a reduction coefficient ζ on the basis of Eq. (14), as:

 

Usually, the range of ζ is 0.7–1 according to the actual investigation and literature review.




4 Engineering applicability analysis

In Section 3, the relationships between parameters k and β of Eq. (2) in predicting the propagation of blasting vibration on the adjacent tunnel and tunnel geology were discussed, and a PPV/PPVi prediction equation considering GSI information is preliminarily formed. In order to explore whether these parameters have engineering practicability, this section carried out checking calculation based on several site vibration data.



4.1 Data from literature

In this section, the field test data from Wang and Liu (2009); Zhao et al. (2016); Zhou et al. (2018), and Peng et al. (2021) were used to verify the validity of the equation. In the research of Wang and Liu (2009), the blasting source is from tunnel excavation and the parallel distance between the excavated tunnel and the monitoring tunnel is 17.5–23 m. The rock mass in the tunnel passing area is hard and the rock mass integrity is good. The surrounding rock mass of the tunnel is mainly slightly weathered, and the GSI of the rock mass is 70–80. The monitoring points is on the floor (corner) of the adjacent tunnel near the blasting sources. The site characteristics of the studies by Zhao et al. (2016); Zhou et al. (2018), and Peng et al. (2021) are shown in Table 2.

Figure 7 shows the comparison of the PPV/PPVi between the field tests and the ones predicted by Eqs. (14) and (15) based on GSI. It can be seen from the figure that the statistical Eq. (14)/(15) can approximately predict the propagation and attenuation of blasting vibration on adjacent tunnels. Of course, the prediction accuracy here may not be the best. In particular, sometimes the prediction accuracy of PPVi (max) is very low, as shown in panel (a) with ζ = 0.7 and panel (b) with ζ = 1. However, the range of PPVi (max) estimated based on Eq. (15) is still acceptable, which is also very helpful for empirical estimation without blasting vibration data.




Figure 7 | Comparison of the PPV/PPVi between the field tests and the approximation predicted by Eqs. (14) and (15). (A) Data from Wang and Liu (2009); (B) data from Zhao et al. (2016); (C) data from Zhou et al. (2018); (D) data from Peng et al. (2021).






4.2 Data from project test

Since the analyzed data in Figure 7 is from literature, this may be the reason for obtaining favorable results. More field data from another site to analyze the feasibility of field use of Eqs. (14) and (15) are needed.

In this section, the analysis is carried out according to the monitoring data of the blasting excavation project of a double line subway tunnel in Guangzhou, China. The clear distance between the two excavated tunnels is 5.5 m, which is a typical small spacing tunnel project. The radius of the tunnel is about 5 m and the buried depth is about 45 m. According to the geological report and field observation, the tunnels pass through the slightly weathered granite and the rock mass is relatively complete, with few fractures. The GSI range is 70–85. Above the slightly weathered granite, there are mainly moderately weathered granite and soil layers. The tunnel section and geological information are summarized in Figure 8.




Figure 8 | Site geological profile and blast-hole layout.



The bench blasting method was utilized during the process of tunnel excavation, and the area of the upper bench is approximately 70% of the tunnel section. Before the field tests, the upper bench of the tunnels has been excavated, and the initial lining support was achieved by a concrete structure (C25) with a thickness of 300 mm. The purpose of our test is to analyze the attenuation characteristics of blasting vibration on the adjacent tunnel side wall (near the excavated tunnel) under the lower bench blasting of the excavated tunnel. The blast-hole layout of the lower bench blasting is shown in Figure 8. A millisecond electric detonator was used for initiation, and the detonator section included one section (MS1), five sections (MS5), and nine sections (MS9). The corresponding delay times of MS1, MS5, and MS9 were 0 ms, 110 ms, and 310 ms, respectively (Wang et al., 2022).

The layout of on-site measuring points (on the adjacent tunnel sidewall) is shown in Figure 9. Li is the horizontal distance between monitoring point M1 and the blasting plane. Two monitoring times were carried out; Li for the first time and the second time tests are 0 m and 5 m. The TC-4850 vibrometer was employed in the monitoring of blasting vibration. The vibration sensor is a three-way vibration velocity sensor that can simultaneously monitor the vibration velocity in horizontal longitudinal (X), horizontal radial (Y), and vertical (Z) directions of the measurement points. The maximum charge per delay of the two tested blasting are 16.8 kg and 21 kg.




Figure 9 | Monitoring points layout.



Figure 10 shows the PPV/PPVi obtained from field tests and approximately predicted by Eqs. (14) and (15). The comparison results further show that Eqs. (14) and (15) can approximately predict the propagation and attenuation law of PPV/PPVi on the adjacent tunnels. However, since Eqs. (14) and (15) cannot 100% accurately predict PPV/PPVi, it is still recommended to monitor blasting vibration anytime and anywhere in practical projects, especially important large-scale projects, so as to effectively control blasting vibration disasters. When there is a lack of effective field test data, Eqs. (14) and (15) are recommended to predict the blasting vibration on adjacent tunnels.




Figure 10 | PPV/PPVi (max) obtained from field monitoring tests and the approximation predicted based on (A) Eq. (14), (B) Eq. (15).







5 Conclusions

Based on literature data statistics, this paper first explored the performance of several commonly used empirical equations in predicting the propagation and attenuation characteristics of blasting vibration on adjacent tunnels. Secondly, the relationships between the empirical parameters of blasting vibration prediction equation provided by Ambraseys and Hendron (1968) and the geological strength index (GSI) of tunnel surrounding rock were discussed, and two new blasting vibration prediction equations based on site rock GSI were established to approximately predict PPV/PPVi (max) on adjacent tunnels. Finally, the application feasibility of the two prediction equations in practical engineering was discussed based on field project tests. Some meaningful conclusions were obtained as follows.

It is feasible to use empirical equation to predict the propagation of blasting vibration on adjacent tunnels, but there is also the risk of insufficient prediction since the empirical equation does not have high prediction ability for all sites. The prediction performance of various empirical equations in predicting PPV/PPVi at different sites is different. Under the condition of multiple groups of data, the prediction difference of various prediction models is not very large. Considering the simplicity of application, that is, the fewer the parameters of the equation, the better, it is suggested that the equations provided by USBM (Devine, 1962), Ambraseys and Hendron (1968), and Bureau of Indian Standards (IS: 6922-1973, 1973) are used [especially the equation provided by Ambraseys and Hendron (1968) since it has the best prediction performance among the three equations] to predict the propagation and attenuation characteristics of blasting vibration on adjacent tunnels.

With the increase in GSI of the surrounding rock mass of the adjacent tunnel, the propagation attenuation rate (site attenuation coefficient β) of blasting vibration on the tunnel structure shows a decreasing trend as a whole. The following characteristic relationship between site attenuation coefficient β of the empirical equation provided by Ambraseys and Hendron (1968) in predicting PPV and GSI was obtained as Eq. (12). With the increase in GSI of tunnel surrounding rock, the site coefficient k of the empirical equation in predicting PPV/PPVi also shows a decreasing trend as a whole and the k generally within 3,000. The relationship between site coefficient k of the empirical equation in predicting PPV and GSI was obtained as Eq. (13) according to statistical analysis.

Two new empirical prediction equations of blasting vibration propagation and attenuation on adjacent tunnels under different site conditions were established to approximately predict PPV/PPVi (max) on adjacent tunnels, e.g., Eq. (14) for PPV and Eq. (15) for PPVi (max). The verification analysis of five sites shows that these two equations have a certain practical application value. Compared with other empirical equations, these two equations do not need regression fitting blasting vibration data, they only used the GSI of the site rock mass, and they are more easy to use in the field when there is a lack of monitoring data.
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Engineering projects are confronted with many problems resulting from overbreak in tunnel blasting, necessitating the optimization of design parameters to minimize overbreak. In this study, an AI-based model for overbreak prediction and optimization is proposed, aiming to mitigate the hazards associated with overbreak. Firstly, the Extreme Gradient Boosting (XGBoost) model is integrated with three distinct metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Sparrow Search Algorithm (SSA), respectively. Consequently, the hyperparameters are optimized, and the performance of predictions is enhanced. Meanwhile, to overcome the limitations of a small dataset and enhance the generalization ability of the three developed models, a 5-fold cross-validation is employed. Then, the performance of the different models with five distinct swarm sizes is evaluated via four metrics, including coefficient of determination ( ), mean square error ( ), mean absolute error ( ), and variance accounted for ( ). Subsequently, by comparing the aforementioned developed models, the optimal prediction model with the highest accuracy can be obtained, which is then used for parameter optimization research. Finally, individual studies are conducted to address the issue of overbreak caused by the adoption of identical blasting parameters due to geological variations, aiming to minimize overbreak in different sections of the tunnel. By comparing the optimization abilities of PSO, WOA, and SSA, the objective of finding the minimum value of overbreak within a short timeframe is achieved. The results indicate that the model developed in this study accurately predicts overbreak, and effectively optimizes blast parameters for different sections of the tunnel.
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1 Introduction

Drilling and blasting methods are widely used in tunnel excavation due to their cost-effectiveness and unique rock-breaking approach (Zare and Bruland, 2006; Mandal et al., 2008; Ak et al., 2009; Wang et al., 2018; Tian et al., 2019). However, a multitude of adverse consequences often occur during the actual process of tunnel blasting (Zhao et al., 2022; Zhao et al., 2023), encompassing the phenomena of overbreak and underbreak. Overbreak is defined as the excavation profile exceeding the design profile, while underbreak refers to the design profile less than the intended excavation profile (Koopialipoor et al., 2019b). In summary, overbreak is mainly influenced by the geological conditions and blasting design factors (Jang and Topal, 2013; Mottahedi et al., 2018). While geological parameters are often measured but cannot be altered (Mohammadi and Azad, 2020; Chai et al., 2023), contrast with design parameters, which can be adjusted as per specific circumstances (Jang and Topal, 2013). Consequently, optimizing blasting design parameters becomes an imperative measure to mitigate overbreak and underbreak. Compared to underbreak, the occurrence frequency of overbreak is often higher in practical engineering projects (Foderà et al., 2020). Overbreak results in resource wastage and compromises the stability of the surrounding rock, thereby posing hazards to tunnel construction and operation (Mohammadi et al., 2015; Tang et al., 2019; Chen et al., 2021). Hence the optimization of tunnel blasting design parameters is necessitated, resulting in the minimization of the extent of overbreak induced by tunnel blasting.

To address the challenge of optimizing blasting design to minimization overbreak, the initial step involves the precise prediction of overbreak induced by various tunnel blasting designs. Extensive research has been conducted, employing various methods to predict overbreak in tunnel construction, including empirical, statistical, and numerical approaches. For instance, Jang et al. (2019) proposed an empirical approach by analyzing the relationship between overbreak and its influencing factors, introducing a resistance factor for predicting overbreak caused by blasting. Dey and Murthy (2012), based on statistical analysis, established the relationship between overbreak and rock parameters, explosive parameters, and blasting design parameters to develop a comprehensive overbreak prediction model, demonstrating an error within 10%. Daraei and Zare (2018) first simulated the excavation damage zone in tunnel excavation using numerical simulation, and then calculated the depth of overbreak using a rock strength factor.

Factors contributing to overbreak typically encompass multiple blasting parameters (Salmi and Sellers, 2021). However, due to the nonlinear relationship between these parameters and the ultimate overbreak, formulating an equation that accurately accounts for all factors is challenging (He et al., 2023). In this context, artificial intelligence (AI) emerges as a burgeoning and highly promising technology, showcasing its advantages in tackling complex nonlinear problems and achieving high predictive performance. Research on utilizing AI for predicting overbreak is increasingly prevalent (Koopialipoor et al., 2019c; He et al., 2023). For example, Koopialipoor et al. (2019c) developed an artificial neural network (ANN) model optimized using a genetic algorithm (GA) to predict overbreak. The performance of the models was evaluated based on  ,  , and   values between the predicted and measured values, leading to the conclusion that the GA-ANN model exhibited superior predictive capability. Five neural network overbreak prediction models were established by Jang et al. (2019), followed by a thorough analysis of the influential factors impacting overbreak to distinguish their contributions to overbreak.

Once overbreak can be accurately predicted, key steps in reducing overbreak can be taken through optimizing blasting design based on the prediction model. In previous studies, the focus was mainly on establishing accurate prediction models and forming overbreak warning and prevention systems. Specifically, for a given engineering project, design parameters were input into the prediction model to obtain the overbreak value associated with those parameters. If the obtained overbreak value exceeded the requirement, design parameters were adjusted accordingly to minimize overbreak. For instance, Jang and Topal (2013) developed a system that accurately predicts overbreak by comparing different prediction models. They demonstrated that this model could serve as an overbreak warning system, providing a basis for adjusting actual blasting parameters. In recent years, the widespread utilization of heuristic algorithms has opened up new directions for optimization design. Within the realm of meeting design criteria, the exploration for blast parameters that minimize overbreak and correspond to the minimal value of overbreak can be pursued. For example, Koopialipoor et al. (2019b) employed the Artificial Bee Colony algorithm to seek the minimum overbreak value for a Rock Mass Rating (RMR) of 36, resulting in a 47% reduction compared to the unoptimized overbreak value.

The aforementioned prediction and optimization models have achieved significant progress, yet some issues still remain. Firstly, as previously analyzed, one significant cause of overbreak is geological factors. Due to the varying formation mechanisms in different sections of the tunnel face, employing the same blasting parameters can lead to severe overbreak (Zhang, 2019). Therefore, it is essential to predict and optimize overbreak for different tunnel sections separately. Secondly, in the construction of existing overbreak prediction models, the selection of hyperparameters may not adhere to standardized methods and may overlook certain more effective hyperparameters (Dimitraki et al., 2019; Li et al., 2021b). Additionally, the absence of cross-validation in previous research studies makes the results less persuasive (Ebrahimi et al., 2016). Finally, most studies have focused solely on overbreak prediction and the comparison of different prediction models, with limited research on actual parameter optimization. Some parameter optimization studies are specific to particular projects, lacking widespread applicability. While utilizing metaheuristic algorithms for overbreak optimization is promising, its accuracy also needs to be validated.

In this study, an AI-based overbreak prediction and optimization model is proposed, which can accurately predict overbreak and optimize parameters to minimize overbreak. In Sect. 2, a database is collected and established for model training. The basic algorithms for model prediction and parameter optimization are introduced in Sect. 3. Sect. 4 focuses on the auxiliary means and initial parameter settings during the model construction process. In Sect. 5, all prediction models are compared using four evaluation metrics, and the best prediction model is selected. Finally, three methods are employed in Sect. 6 to separately optimize blasting parameters for achieving the minimum overbreak.




2 Database establishment

To assess the relationship between various influencing factors and overbreak in tunnel excavation, a comprehensive dataset encompassing different tunnel face sections is essential for the prediction and optimization of overbreak. In this study, 95 groups of blasting overbreak datasets were collected from Zhang (2019) for the purpose of predicting overbreak area and optimizing blasting parameters, which 48 groups were associated with the upper section of the tunnel face spanning from the arch crown to the shoulder (crown to shoulder), while 47 groups were attributed to the lower section encompassing the tunnel shoulder to the haunch (shoulder to haunch).

The dataset consisted of 12 input parameters and one output parameter. The input parameters comprised the uniaxial compressive strength of surrounding rock ( ) (MPa), Surrounding Rock Grade ( ), jointing degree ( ), depth of burial ( ) (m), number of blastholes ( ), spacing between perimeter holes ( ) (cm), spacing between relief holes (SR) (cm), burden of perimeter holes ( ) (cm), total explosive charge ( ) (kg), explosive charge structure of perimeter holes ( ), and maximum charge per single cut hole ( ) (kg), charge concentration of perimeter holes ( ) (kg/m). The output parameter, on the other hand, represented the overbreak area ( ) ( ).

The distribution ranges for each parameter were visualized using violin plots with boxes, as shown in Figure 1. The central bold pentagram denoted the median of each parameter, while the black rectangular box represented the range from the lower quartile to the upper quartile. The black lines indicated 1.5 times the interquartile range ( ). The original dataset was divided, with 80% allocated for training purposes and the remaining 20% withheld for testing the performance of the developed model (Li et al., 2021b).




Figure 1 | The data distribution of all parameters employed in the development of models obtained from Zhang (2019).






3 Algorithmic methods



3.1 Extreme gradient boosting

XGBoost, a highly efficient, flexible, and portable optimized distributed gradient boosting tree, is specifically designed to enhance performance (Chen and Guestrin, 2016). It has been convincingly proven that XGBoost is an immensely effective approach for addressing both regression and classification tasks (Zhou et al., 2016; Xu et al., 2019; Ding et al., 2020; Nguyen et al., 2020).

XGBoost has experienced meticulous optimizations based on the original Gradient Boosting Decision Tree, resulting in enhanced performance and prevention of overfitting. The prediction target in the dataset  , which comprises   samples and   features, is modeled as an additive combination of   base models. This is expressed as (Qiu et al., 2021):

	



where   represents the prediction value for the ith sample;   represents the i-th data sample, and   denotes the the i-th sample experiences a base model transformation;   represents the collection of regression trees, which comprises a set of tree structure parameters denoted by  , and  ;   denotes the weighting of the terminal nodes within the regression trees, whereas   represents the number of leaves.

The XGBoost algorithm employs a second-order Taylor expansion on the objective function, which is composed of two parts i.e. the loss function and the regularization term. The aim is to assess the operational efficiency of the algorithm. The traditional representation of the loss function is as Eq. (3):



While the regularization term can be expressed by Eq. (4):



where   is the i-th instance in the dataset, while   represents the aggregate volume of data utilized in the  -th tree;   and   are utilized to adapt the intricacy of the tree (Qiu et al., 2021).




3.2 Particle swarm optimization algorithm

PSO stands as a prominent metaheuristic algorithm, initially put forth by Kennedy and Eberhart (1995). This algorithm finds its inspiration from the foraging behaviors witnessed among avian flocks and fish schools, showcasing its adaptive and exploratory nature.

During the search process, individual particles are treated as autonomous entities with unique attributes of velocity and position. The velocity attribute corresponds to the speed of particle movement, while the position attribute indicates the direction in which the particle is headed. The assessment of each   is contingent upon the employed problem-solving methodology, while the individual optimum solution refers to the most favorable solution found by a single particle. The global optimal solution is ascertained by selecting the most superior solution among these individual optimal solutions and subsequently contrasting it with the past historical global optimum. Throughout the iterative process, the velocities and positions of the particles experience constant adjustments, ultimately converging towards the globally optimal solution. The update equations for the particle velocity ( ) and position ( ) are presented as follows:

	

where   denotes the  -th particle in the population, while   represents the search dimension; where   denotes the present iteration count,   represents the inertia weight, assumes a critical role in effectively harmonizing the delicate balance between local exploitation and global exploration capabilities within the algorithm (Poli et al., 2007);   and   denote the acceleration coefficients that govern learning behavior of the particle;   and   represent random numbers in the range (0,1);   denotes the best solution found by each particle individually, while   represents the overall best solution found globally.




3.3 Whale optimization algorithm

WOA is an innovative optimization algorithm rooted in the swarm intelligence exhibited by whales in their foraging behavior (Mirjalili and Lewis, 2016). The primary objective of whale foraging behavior is to capture prey. In a collective search for prey, there is always a whale that detects the prey first. Subsequently, other whales swim towards the leading whale to compete for the prey. This predatory behavior serves as a basis for the problem-solving process in WOA, wherein an individual whale represents a solution, and multiple solutions are embodied by multiple whale individuals. Employing WOA to search for problem solutions entails the continuous updating of positions by multiple whale individuals until a satisfactory solution is obtained.

Before applying WOA for problem-solving purposes, it is crucial to formulate mathematical equations that accurately depict the three distinct predatory behaviors of whales: encircling prey, bubble-net attacking, and searching for prey. These equations will serve as the foundation for simulating the problem-solving process using WOA, where individual whales represent potential solutions and their positions are continuously updated until a satisfactory solution is found.

1) In the encircling prey behavior, the global optimal position is considered to be the closest position to the prey. Once an individual whale detects the prey, it will swim towards the location of the global optimum, utilizing it as the target for updating its own position. This process involves gradually reducing the encirclement around the prey. The underlying principle can be summarized as follows:









where   denotes the present iteration count, whereas   denotes the size of the encircling step;  denotes the most optimal solution in the context of the problem being addressed; The coefficient vectors,   and  , are of utmost importance, with   governing the alterations of   throughout the computational process, it progressively diminishes from 2 to 0 in a linear fashion as the parameter   increases;   as a vector constrained to values between 0 and 1, exercises control over the collective update of the swarm. The position of prey has a significant impact on the position and distance of whale. A greater value of   results in a stronger effect on the whale, while a smaller value of   leads to a weaker effect.

2) Two strategies have been developed to simulate the bubble-net attacking behavior observed in humpback whales. The whale moving in a spiral trajectory around the prey, while simultaneously generating bubbles along this path, thereby creating a trap.

a) Shrink encircling: Achieved by reducing the value of   in Eq. (8). By randomly assigning values to the coefficient vector “  “ from the range of −1 to 1, a new position for a search agent can be determined, which lies between the original position of the agent and the position of the current best agent. This process effectively enables encircling predation, enhancing the search capabilities of the algorithm.

b) Spiral updating of positions: As depicted in Figure 2, the distance between the position of the whale, and the position of the prey, is calculated. Subsequently, a spiral equation is formulated to establish a mathematical relationship between these two positions, thereby replicating the distinctive spiral movement exhibited by humpback whales:




Figure 2 | Spiral updating position.







where   represents the parameter that defines the shape of the spiral line, and   is a random variable ranging from −1 to 1.

To emulate the bubble-net attacking behavior, a stochastic approach is employed, assuming a 50% probability for humpback whales to exhibit both the shrinking encircling mechanism and the spiral position updating. The mathematical representations describing these behaviors are as follows:



3) In addition to the bubble-net method, another strategy employed by humpback whales involves the random search for prey. This stage is characterized by global exploration, where the entire whale population engages in the search process. When  , indicating a certain level of exploration, the whale population discontinues updating their positions based on the current best solution. Instead, they select a random whale and update their positions accordingly, with the objective of expanding the search range and exploring optimal solutions to maintain population diversity.





where   represents the position of the randomly selected whale.




3.4 Sparrow search algorithm

Similar to the previous two metaheuristic algorithms, SSA is also inspired by the predatory behavior observed in natural ecosystems (Xue and Shen, 2020). Sparrows are a ubiquitous presence in our environment, and their adept predatory characteristics, have been ingeniously employed in the pursuit of optimal solutions, showcasing remarkable optimization capabilities.

The optimization process is characterized using a population consisting of   sparrows. Throughout the entire process, the sparrows are categorized into two roles: producers and scroungers. The producers are responsible for surveying food resources and providing the regions and directions for food search, while the scroungers rely on the producers to obtain food. The composition of the population is illustrated as follows:



where   denotes the position of all sparrows;   represents the dimension of the variables in a given problem;   represents the total quantity of sparrows; and   denotes the  -th dimension of the  -th sparrow. The fitness values of all sparrows can be expressed as Eq. (16):



where   represents the fitness calculation formula for determining the adaptability value of each sparrow.

In SSA, individuals within the population, endowed with the highest fitness values, are bestowed with the capability to acquire food resources with priority. As producers, they possess a significantly broader range of search, whereas scroungers have comparatively limited search capabilities. During each iteration process, the positions of producers are updated according to the following procedure:



where   represents the current iteration, while   denotes the maximum number of iterations; The random variable   follows a uniform distribution within the range of (0, 1);   is a random variable following a normal distribution;   is a matrix of size  , with all elements equal to 1; the value of   ranges from 0 to 1, while   takes values between 0.5 and 1, representing the threshold values for alert and safety, respectively.

When   is less than  , it signifies the absence of predators in the vicinity, enabling the producers to engage in extensive search operations. When   exceeds or equals the threshold  , it implies that some sparrows have already detected the presence of predators and are issuing warnings to other sparrows. In this scenario, all sparrows are required to swiftly fly to secure locations for foraging.

The producers are constantly being monitored by certain scroungers. When the producers discover better food, the scroungers promptly abandon their current positions and move towards competing for the food. If they succeed in winning the competition, they can immediately obtain the food. The position of scroungers is updated as Eq. (18):



where   represents the optimal position occupied by the current producers, while   denotes the globally worst position;   is a matrix of size 1×d, where each element is randomly assigned a value of 1 or -1;   is defined as  .When   exceeds  , it implies that the  th scrounger with lower fitness has not obtained food and needs to fly to another location for foraging.

In the foraging process, certain sparrows possess the ability to perceive the presence of potential threats in their surroundings. The initial positions of these sparrows are randomly determined. Their strategies for updating their positions as Eq. (19):



where   represents the current global best position;   is a parameter that controls the step size, following a normal distribution with mean 0 and variance 1;   is a random number indicating the direction of sparrow movement, serving as a step size control parameter;   denotes the current individual fitness value, while   and   represent the current global best and worst fitness values, respectively;   is a minimal constant, which utilized to prevent division by zero (Gharehchopogh et al., 2023).





4 Auxiliary methods and techniques



4.1 Experimental evaluation metrics

In order to assess the accuracy of each model, as described in Sect. 2, 80% of the data was utilized for training, while the remaining 20% was employed for testing. The evaluation methods employed were identical for both the training and testing datasets, allowing for the assessment of the fitting and generalization capabilities of models. The square of the correlation between the anticipated and measured values is denoted as  . Prediction performance is described by  , which compares the standard deviation of the fitting error with the standard deviation of the measured value.   and   serve as metrics for evaluating the prediction accuracy of the model, while   can assess the robustness of the model (Tang and Na, 2021; He et al., 2023). In this current study, the performance was evaluated using  ,  ,  , and   as metrics. The equations for these metrics are provided below:









where  ,   and   represent the original, predicted and mean values of the overbreak area, respectively; and   represents the total amount of data.

The value of   ranges from 0 to 1, with higher values indicating a better degree of model fit. The value of   is typically greater than 0, and the closer it is to 0, the better performance of the model,   ranging from 0% to 100%, exhibits better predictive capability as the value increases. When the predicted and measured values of the overbreak are identical,   equals 1,   equals 0 and   equals 100% (Mottahedi et al., 2018; He et al., 2023).




4.2 K-fold cross-validation

To bolster the persuasiveness of the constructed model and mitigate the drawback of limited original data, this study incorporates the practice of cross-validation. The underlying principle involves partitioning a portion of the data as the training set, while the remaining data serves as the validation set. There exist diverse methodologies for conducting cross-validation, with k-fold cross-validation being a prominent choice, where k is commonly set to 5 or 10 (Kohavi, 1995; Rodriguez et al., 2010). Figure 3 illustrates the utilization of 5-fold cross-validation in this study, whereby the training set is divided into five subsets, each of which has the potential to serve as either the training or validation set. The performance of the model on the validation set serves as an indicator of its generalization capability. The final performance of model is determined by averaging the results obtained from five repeated tests (Zhang et al., 2022). The assessment of machine learning model performance is based on its generalization ability, focusing on the ultimate measure of generalization error rather than empirical error. In this study, the introduction of 5-fold cross-validation entails averaging the performance of the model across five distinct validation sets, serving as the final performance metric.




Figure 3 | Schematic representation of 5-fold cross-validation.



Additional benefits can be obtained through cross-validation, including the identification of overfitting or underfitting phenomena. This leads to a more standardized selection of hyperparameters, thereby yielding more reliable outcomes. However, the drawbacks of k-fold cross-validation are evident. Due to its repetitive nature, it necessitates significant computational time, with efficiency largely reliant on the capabilities of the computer system. Furthermore, it is not advisable to employ k-fold cross-validation when the data exhibits repetitive patterns, as this would entail redundant processing of the same dataset.




4.3 Initial setup

In this study, three optimization methods from Sect. 3 are utilized to adjust the hyperparameters of XGBoost, including the learning_rate, max_depth and n_estimators. For crucial parameter details and their corresponding upper and lower bounds, refer to Table 1. The stability of model training is evaluated by computing the fitness value, and stability is deemed to be achieved when the fitness value no longer changes. Typically, an increase in the number of iterations leads to a stabilization of the optimization performance (Li et al., 2021b). The design of the fitness function should be able to reflect the relationship between predicted values and measured values, in order to determine the performance of the model. This discrepancy can include, but is not limited to, metrics such as mean absolute error, root mean square error, correlation coefficient, and others. By selecting an appropriate fitness function, a better understanding of the capabilities and reliability of the predictive model can be attained, thereby offering compelling guidance for further enhancing and optimizing the model. The fitness function employed in this research is defined as Eq. (24):


Table 1 | Information on optimizing critical hyperparameters of XGBoost.





where   and   represent the predicted value and the true value of overbreak, respectively,   denotes the total amount of test samples.

By employing metaheuristic algorithms, the optimal hyperparameters for XGBoost can be determined. Coupled with five-fold cross-validation, the hyperparameters that minimize Eq. (25) can be identified, indicating the superior predictive performance of the model. However, the performance of these metaheuristic algorithms is influenced by multiple factors, with swarm size and the number of iterations being the two most significant ones (Koopialipoor et al., 2019a; Li et al., 2021a; Yu et al., 2021). In this current study, a careful comparison and selection will be conducted for these two parameters. The remaining parameter configurations are presented in Table 2.


Table 2 | Parameter settings of three optimization algorithms.





In consideration of the limited data and the prominent predictive ability of XGBoost, the selection of the swarm size requires careful consideration. If the particle number is excessively large, it will inevitably result in time wastage and potential overfitting. Furthermore, with a total of 12 input parameters in the model, the dimension of the search space increases significantly, thereby necessitating an adequate number of particles. Therefore, opting for a swarm size between 50 and 90 proves to be a favorable choice. Consequently, a comparison was conducted among swarm sizes of 50, 60, 70, 80, and 90 to identify the optimal swarm size for optimizing XGBoost predictions. From Figures 4–12, it is evident that the swarm size within the range of 60 to 90 exhibits strong predictive performance. Moreover, the optimal predictions are found in the middle range of 50 to 90, rather than at the extremes. This finding provides compelling evidence supporting the correctness of selecting the swarm size within this range. To ensure a fair comparison with equivalent conditions, the number of iterations is typically chosen to match the stable values observed for all models as mentioned in the relevant literature. Based on Figures 4, 7 and 10 around the vicinity of 100 iterations, the change in fitness value starts to diminish, but to guarantee stable training for all models, a choice of 300 iterations is deemed even more favorable. At this stage, the value of the fitness function ceases to experience any further changes, indicating convergence.




Figure 4 | Optimization performance of XGBoost-PSO with different swarm sizes: (A) crown to shoulder and (B) shoulder to haunch.






Figure 5 | Performance and scores of different swarm sizes in the crown to shoulder dataset of XGBoost-PSO: (A) training set and (B) testing set.






Figure 6 | Performance and scores of different swarm sizes in the shoulder to haunch dataset of XGBoost-PSO: (A) training set and (B) testing set.






Figure 7 | Optimization performance of XGBoost-WOA with different swarm sizes: (A) crown to shoulder and (B) shoulder to haunch.






Figure 8 | Performance and scores of different swarm sizes in the crown to shoulder dataset of XGBoost-WOA: (A) training set and (B) testing set.






Figure 9 | Performance and scores of different swarm sizes in the shoulder to haunch dataset of XGBoost-WOA: (A) training set and (B) testing set.






Figure 10 | Optimization performance of XGBoost-SSA with different swarm sizes: (A) crown to shoulder and (B) shoulder to haunch.






Figure 11 | Performance and scores of different swarm sizes in the crown to shoulder dataset of XGBoost-SSA: (A) training set and (B) testing set.






Figure 12 | Performance and scores of different swarm sizes in the shoulder to haunch dataset of XGBoost-SSA: (A) training set and (B) testing set.







5 Discussion

In the pursuit of developing an optimized prediction model for overbreak based on XGBoost, this study integrates three metaheuristic algorithms with XGBoost, yielding prediction models known as XGBoost-PSO, XGBoost-WOA, and XGBoost-SSA. The datasets for tunnel crown to shoulder and shoulder to haunch are individually utilized for prediction, resulting in a total of six models being compared. Throughout the entirety of the construction process for the predictive model, the incorporation of 5-fold cross-validation remains intact. The workflow for the prediction and comparison of all the mentioned models is depicted in Figure 13A. The evaluation of model performance follows the assessment method proposed by Zorlu et al. (2008). Each performance metric is assigned a specific score, wherein higher scores indicate superior performance. Ultimately, all scores are aggregated to determine the best model.




Figure 13 | Specific process: (A) comparison of models and (B) comparison of parameter optimization.





5.1 XGBoost-PSO

Figure 4 illustrates the optimization process of PSO with different swarm sizes, showcasing the diverse optimization performance between the two data sets. It is evident that the variation in swarm sizes does not directly impact the stability of convergence. Merely relying on this optimization process cannot determine the optimal model. For instance, at a swarm size of 90, the convergence appears to be the best in Figure 4A, while in Figure 4B, its convergence behavior closely aligns with the others, and even its convergence value slightly exceeds the rest. All fitness function values remain around 0.0008 with insignificant fluctuations, indicating that the models trained with different swarm sizes have attained stability. This assertion is further supported by the   values presented in Figures 5A, 6A.

Further comparison was conducted on models with different swarm sizes, evaluating them based on four distinct metrics, as illustrated in Figure 5. The fluctuations in   and   exhibit a similar pattern, while the variation patterns of   and VAF exhibit similar tendencies. Figures 5, 6 provide a clearer visualization of the performance of the model, enabling a comprehensive assessment of its performance scores and trends. Both the training and testing sets demonstrate optimal performance with a swarm size of 60. However, it is important to acknowledge exceptional cases. For instance, at a swarm size of 80, the minimum values of   and   are observed in Figures 5B, 6A, respectively. Hence, employing an aggregate score for a comprehensive evaluation of the model performance is a more scientifically robust approach. Table 3 presents the total scores of models corresponding to different swarm sizes for both sets of data, clearly indicating that the model performs optimally with a swarm size of 60, corroborated by Figures 5, 6. This swarm size yields the best performance for both the training and testing sets. The robustness of the model is confirmed at this swarm size. Conversely, when the swarm sizes are 50 and 90, despite its satisfactory performance on the training set, the model demonstrates inferior performance on the testing set, indicating a lack of robustness in generalizing to new data.


Table 3 | Total performance scores for different swarm sizes of the predictive model.



To achieve optimal prediction of tunnel overbreak using PSO optimization, a swarm size of 60 demonstrates the strongest predictive capability. In the arch crown to shoulder section, the  ,  ,  , and  values for the training set are 0.99999, 0.000025724, 0.0033966, and 99.9994%, respectively. For the testing set in the same section, the corresponding values are 0.91805, 0.0045527, 0.026009, and 92.7639%. Remarkably, this swarm size also exhibits impressive predictive performance for the shoulder to haunch section of the tunnel. In the training set for this section, the  ,  ,  , and   values are 0.99999, 0.0000038818, 0.0012167, and 99.9993%, respectively, while in the testing set, the values are 0.99996, 0.0000009, 0.0006593, and 99.9961%. These findings highlight the impressive predictive abilities of the chosen swarm size, effectively estimating tunnel overbreak for both the arch crown to shoulder and shoulder to haunch sections, respectively.




5.2 XGBoost-WOA

Similar to XGBoost-PSO, the optimization process of WOA is showcased initially, as depicted in Figure 7. Merely based on the distinction in swarm size, it remains challenging to differentiate significantly, with similar degrees of convergence during iterations. The convergence during iterations serves as the first step to evaluate the stability and training adequacy of the model. If this step fails to provide distinguishing characteristics, differentiation becomes necessary through the summation of scores. In Figures 8, 9, a comprehensive depiction is presented, illustrating the detailed metric data and corresponding scores for each indicator with different swarm sizes and tunnel sections, in the context of WOA optimization. The optimal swarm size can be identified through Figures 8, 9, but to optimize the expression and address the numerous indicators and lack of direct relationships among them, Table 3 is introduced, which represents the cumulative scores of indicators for the arch crown to shoulder and shoulder to haunch sections, obtained with swarm sizes ranging from 50 to 90. This approach facilitates a more comprehensive assessment by integrating numerical and visual elements, enabling the determination of superiority or inferiority.

Analyzing the data in Table 4, it is evident that in XGBoost-WOA, the swarm size of 60 exhibits the overall highest predictive capability, although its score for the arch crown to shoulder section is lower than that of the swarm size of 90. However, this does not imply that the former has weaker predictive ability compared to the latter. By considering Figure 8, it can be observed that the swarm size of 90 primarily achieves higher scores on the training set, while the predictive performance of testing set does not surpass that of the swarm size of 60. Similarly, the predictive capability of the swarm size of 70 deserves recognition, particularly for the shoulder to haunch section. However, it does not demonstrate such prominence in the other dataset, indicating a need for further verification of its generalization ability. This also implies that the model at this stage should not be adopted, as it may exhibit poor predictions on new data. Furthermore, accurate prediction is an integral part of blasting optimization, necessitating the utilization of a model with strong generalization capability and accurate predictions.


Table 4 | Range of blasting parameter values for different geological conditions.



In summary, the optimal swarm size of 60 is determined for the WOA-optimized XGBoost model used in predicting tunnel overbreak. At this swarm size, the measured and predicted values exhibit a close alignment, Specifically, for the arch crown to shoulder section, the metrics  ,  ,  , and   demonstrate remarkable values in the training set are 0.99999, 0.000022766, 0.0030607, and 99.9994%, respectively. In the testing set, the corresponding values are 0.91342, 0.0043292, 0.023462, and 92.3185%. For the shoulder to haunch section, the  ,  ,  , and   values between the measured and predicted values are noteworthy in the training set are 0.99999, 0.0000045625, 0.0014242, and 99.9993%. In the testing set, the corresponding values are 0.99997, 0.0000006, 0.000621, and 99.9972%.




5.3 XGBoost-SSA

The novel metaheuristic algorithm SSA has demonstrated favorable performance in optimization tasks (Lu et al., 2022; Xu et al., 2023; Zhou et al., 2023). However, its suitability for this particular problem needs to be further evaluated through comparative screening. Analysis of the optimization process of SSA with varying swarm sizes, as depicted in Figure 10, In Figure 10A, it can be observed that the fitness values for swarm sizes of 50 and 60 are relatively higher, indicating poor convergence compared to the other three swarm sizes. The calculation of fitness values, as described by Eq. (24), involves the relationship between the measured and predicted values, indicating its capability to capture the fitting ability to the training set. Consequently, for the optimization process from arch crown to shoulder, these two swarm sizes are directly discarded. For fitness values that show no apparent distinction, a selection process is applied by comparing the scores of four metrics.

After discarding swarm sizes of 50 and 60, the performance of swarm size 70 draws attention from Table 3 and Figures 11, 12, achieving the highest overall score, particularly in the arch crown to shoulder section, exhibiting the most exceptional performance among all. The performance of swarm size 90 should not be overlooked either, as it demonstrates notable capabilities. From the scores in Table 3, it can be inferred that the performance of the swarm size is relatively stable. However, it is premature to draw conclusions solely based on this information. It is imperative to meticulously analyze the data presented in Figures 11, 12, evaluating the actual performance of the swarm size. From Figures 11A, 12A, it can be observed that there is minimal disparity in the performance metrics of all models on the training set, despite the provision of graded ratings. Within the spectrum of SSA-based optimization models, the   values for the training set are close to 1, indicating rapid convergence and steadfast terminal values during model training. Hence, the primary differentiation lies in the predictive performance on the testing set, wherein the swarm size of 70 exhibits superior capabilities compared to the performance scores of different metrics with various swarm sizes, as depicted in Figures 11B, 12B. The scores for swarm sizes of 50 and 60 have also been statistically analyzed in Table 3, confirming their relatively poor predictive abilities, and validating the observed phenomenon of high fitness values in Figure 10A. It is not excluded that when the swarm size is 80, there may be lower fitness values and correspondingly lower scores for evaluation metrics, as the calculation methods for predicted values and measured values in the fitness function, as well as in the evaluation metrics of the model, lack a direct connection or correspondence. In practical model training processes, simpler approaches can be employed to determine the expression of the fitness function. For instance, utilizing a metric like  , which reflects the relationship between predicted values and measured values, researchers have directly employed similar metrics as fitness calculation methods for model training (Urbanek et al., 2015).

In optimizing the prediction of XGBoost using SSA, the selection of a swarm size of 70 is representative in this type of optimization. It can accurately predict the extent of overbreak after tunnel blasting. The  ,  ,  , and   values between the predicted overbreak values and the measured values for the training set from the arch crown to the arch shoulder are 0.99999, 0.00002189, 0.0031407, and 99.9994%, respectively. Similarly, for the testing set within the same section, the values are 0.93666, 0.0035189, 0.02257, and 94.3496%. Exceptional performance is also observed in the dataset from the shoulder to haunch, the training set covering the shoulder to the haunch yields values of 0.99999, 0.0000045749, 0.0013514, and 99.9992%. The testing set in the same section exhibits values of 0.94964, 0.0011121, 0.014919, and 95.9831%.




5.4 Competition of optimization algorithms

PSO, WOA, and SSA were employed to optimize XGBoost with varying swarm sizes. It is noteworthy that the optimal swarm size differs among these optimization algorithms. The optimal swarm sizes corresponding to these three distinct optimization algorithms have been identified in Sects. 5.1, 5.2, and 5.3, respectively. However, the previous categorization was limited to comparisons within each algorithm. to further optimize the parameters, a comparison among the selected models is still necessary to identify the most suitable model for prediction. As discussed in Sect. 5.3, the differences in the training set among the SSA models are minimal. In fact, not only that, based on the metrics of the training set depicted in Figures 5A, 6A, 8A, 9A, it can be observed that all models in the entire research article exhibit exceptional performance on the training set, with minimal variation among them. This indirectly indicates the suitability of XGBoost for this problem. Distinctions and selections should be made regarding the predictive capabilities on the testing set. Figure 14 illustrates the relationship between the predicted values and the measured values for the testing set using PSO, WOA and SSA optimization approaches. The first nine data points in Figure 14 correspond to the prediction of the arch crown to the arch shoulder, while the subsequent eight data points correspond to the prediction of the shoulder to the haunch.




Figure 14 | Comparison between measured and predicted value.



The predicted values and actual measurements in Figure 14, as well as the differences among the predicted values, exhibit minimal discrepancies. The conclusion drawn from these minute differences is that all three algorithm-optimized models can be employed for overbreak prediction. The values of each metric with the optimal swarm size for each optimization algorithm are presented in Figure 15, revealing that each optimization algorithm is suitable for specific data sets. For instance, in the overbreak prediction of the testing set from the arch crown to the arch shoulder, the   and   values obtained through PSO and WOA optimization are lower than those achieved through SSA optimization, while the   and   values are higher compared to SSA optimization. This observation indicates that PSO and WOA demonstrate lower optimization capabilities compared to SSA in this particular dataset. However, in the dataset from the shoulder to the waist section, a completely contrasting outcome emerges, challenging the aforementioned conclusion.




Figure 15 | Performance of four metrics on the testing set with the optimal swarm size.



The generalization ability of a model is a crucial evaluation criterion that must be considered (Jin et al., 2019). The difference in values for each metric between the two datasets in Figure 15, also reflects generalization capability of the model. Based on the observed trends in Figure 15, it is evident that SSA exhibits the highest stability. It consistently yields elevated values for both datasets, indicating its strong robustness. Conversely, PSO and WOA demonstrate drastic fluctuations. In XGBoost optimized using various metaheuristic algorithms, similar to SSA, its advantages are magnified with increasing dataset sizes, leading to a significant reduction in overbreak in practical engineering applications. Hence, the optimal model derived from this study is the XGBoost-SSA model with a swarm size of 70, which will be employed for subsequent parameter optimization research.





6 Blasting parameters optimization and comparison



6.1 Steps for parameter optimization

For the already selected optimal predictive model, mere prediction alone is insufficient to achieve the objective of reducing overbreak. Leveraging the accurate predictive capability of the established model, it is possible to forecast the overbreak values corresponding to all blasting parameters within the design range. Subsequently, by exploiting the characteristics of the PSO, WOA, and SSA algorithms, the minimal overbreak value along with the corresponding blasting parameters can be identified. The specific process is depicted in Figure 13B. The detailed description of the steps is as follows:

	1) A swarm size of 70 particles was set, and the XGBoost model was optimized using the SSA algorithm for a total of 300 iterations. The training process involved separate training of the arch crown to shoulder and arch shoulder to waist datasets. Subsequently, the trained and completed XGBoost-SSA model is outputted, which was ready for use.

	2) The real-time geological information of the tunnel face is determined. The real-time geological information of the tunnel face is determined, and based on this information, a range of blasting parameters is generated. In the context of this study, the geological conditions that need to be determined include  ,  ,   and  . The range of blasting parameters varies according to different sections of the tunnel. In this study, based on the findings of Zhang (2019) and the guidelines provided by the Ministry of Transport of the People’s Republic of China (2020), the ranges of parameters can be obtained as presented in Table 4.

	3) The algorithm generates a swarm of smooth blasting parameter sets based on the geological conditions and Table 4. The overbreak values corresponding to the parameter sets are calculated using the trained optimal model.

	4) By employing three distinct optimization algorithms, i.e. PSO, WOA, and SSA, the minimum overbreak value and the corresponding blasting parameters that minimize the overbreak are identified.

	5) The optimization results, as well as the required optimization time with the same conditions, are compared for each algorithm.






6.2 Assessment of optimization results

Reducing overbreak has always been a challenge (Kim and Moon, 2013), and the objective of this study is to provide a solution that minimizes overbreak control. In the optimization approach described in Sect. 6.1, by calculating the overbreak values corresponding to all blast parameter combinations that meet the rock conditions, we can utilize the optimization algorithm to find the minimum overbreak value and its corresponding blast parameter values. Different optimization algorithms will inevitably yield different results.

In this study, a comparison is made between the final overbreak values and the overall optimization time, to showcase the applicability and advantages of the optimization algorithms. It should be noted that the parameter settings for each optimization algorithm are still based on Table 2. For the sake of convenient comparison, the optimization process continues to employ the previously determined iteration count and swarm size, with a swarm size of 70 and an iteration count of 300. Each set of particles represents a unique combination of blast parameters, resulting in a total of 21,000 possible combinations of particles representing different blasting parameter configurations being considered, aiming to comprehensively identify potential overbreak values while meeting the specified criteria. To minimize errors, the operations are performed on the same computer.

Based on a specific tunnel face data from Zhang (2019), which includes a   of 36.8 kPa,   grade IV,   of 72m, and   of 0.7, optimization of parameters was conducted for two sections, i.e. from the crown to the shoulder and from the shoulder to the haunch. Figure 16 illustrates the final minimum   values and the corresponding time required for the three algorithms. The unit of   is measured in square meters ( ), and the unit of time is measured in seconds ( ). The area of the circular disk in Figure 16 is divided into three segments, with each segment representing the area of the final  , while the radius of each ring represents the time required for the entire optimization process.




Figure 16 | Optimized value for overbreak and the corresponding time: (A) crown to shoulder and (B) shoulder to haunch.



According to Figure 16, it is evident that for the two sections of the tunnel, the SSA algorithm requires significantly less time compared to the other two algorithms, with a difference of approximately 4–5 minutes. This establishes a clear advantage for the SSA algorithm in terms of time efficiency. Observing the minimized   in Figure 16, the WOA algorithm yields a slightly smaller value of 3.9035   for the arch crown to shoulder section, while the other two algorithms produce a value of 3.9063  . The   values are identical for the remaining sections. However, the WOA algorithm takes a much longer time, specifically 306   more than the SSA algorithm, which puts it at a significant weakness. When considering the marginal difference of 0.0028   in the   overbreak area, the time disadvantage becomes more crucial.

In accord with the aforementioned analysis, SSA stands out as the optimal tool for uncovering the minimal overbreak. Within the realm of seeking the minimum  , an exceptional capability is exhibited by the algorithm to achieve this objective, while substantially diminishing the associated time requirements. When dealing with engineering problems such as tunnel blasting, the slight difference in   can be disregarded, considering the time savings that can be achieved. This allows for a more efficient handling of multiple cross-sections, thereby increasing productivity. In the face of large-scale projects involving multiple tunnel sections, the dominance of SSA over the other two optimization algorithms is undeniable.





7 Conclusions

To address the severe issue of overbreak caused by tunnel blasting, an urgent need arises to resolve it through the optimization of blasting parameters. In this study, a model is proposed for overbreak prediction and optimization in different sections of the tunnel, aiming to tackle this problem. To achieve this objective, a combination of XGBoost and three renowned metaheuristic algorithms, namely PSO, WOA, and SSA, is employed, resulting in the formation of XGBoost-PSO, XGBoost-WOA, and XGBoost-SSA for prediction purposes. By integrating with 5-fold cross-validation, the metaheuristic algorithm successfully identifies the optimal hyperparameters. A scoring system based on four metrics is used to evaluate the performance of the model, considering the significant impact of swarm size and iteration count on optimization effectiveness. The results demonstrate that XGBoost-SSA exhibits the best predictive capability and generalization ability, making it the optimal choice for subsequent parameter optimization research.

Based real-time geological conditions, the algorithm generates corresponding blast parameter ranges for different sections of the tunnel. By utilizing the best predictive model, the overbreak values corresponding to all blasting parameters within this range are computed. Subsequently, the best overbreak value is determined through the application of three optimization algorithms i.e. PSO, WOA and SSA. The results indicate that when a sufficiently large swarm size is generated, meaning that there are enough different blasting parameter combinations corresponding to blasting design scenarios, the optimization algorithm consistently identifies nearly identical minimum   values. Even in the presence of disparities, these variations can be completely ignored in tunnel blasting engineering problems. The primary divergence lies in the computational time required for the entirety of the optimization process. According to the parameter optimization results from this study, SSA can achieve the optimal overbreak result in the shortest time. SSA saves 4–5 minutes compared to PSO and WOA while achieving the same outcomes. Expanding the time savings to multiple cross-sections, can yield substantial temporal benefits for the entire project duration.
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Loess is often not suitable for direct use as a roadbed or building foundation due to its collapsibility, and it needs to be improved by adding curing agents. Taking the loess in Xi’an area as the research object, the reinforcement of loess was carried out using waste tire rubber particles and Enzyme Induced Carbonate Precipitation (EICP) technology. The change of shear strength and shear strength index of improved soil with rubber content and rubber particle size under different strengthening conditions was analyzed, and the strengthening mechanism was also expounded. The results show that rubber powder can improve the shear strength of loess to a certain extent, and the combination of EICP technology can increase the strength of improved loess by nearly 50%. In addition, rubber particles have a certain inhibitory effect on EICP, and the shear strength growth rate decreases with the increase of rubber content. When the rubber particle size is 1–2 mm, the shear strength growth rate is the highest. It is suggested that when adding rubber particles or adding rubber particles combined with EICP technology is used to improve loess, the rubber particle size should be selected as 1–2 mm, and the content is about 10%. The test results can provide a scientific basis for the reduction of geologic disasters in loess areas, and at the same time can provide a non-polluting way for the disposal of waste tires.
Keywords: shear mechanical properties, improved loess, rubber particle incorporation, EICP technology, shear strength parameters
1 INTRODUCTION
Loess in China is widely distributed and thick, accounting for 6.6% of China’s land area (Zhao and Huang, 2004). The loess has a loose structure and is prone to shear failure under water and external loads (Derbyshire, 2001). Therefore, untreated loess is highly susceptible to geological disasters such as subsidence, landslides and collapses, and cannot be used directly in engineering practice (Yang and Wen, 2013; Zhang and Yang, 2021; Zhang et al., 2023), and cannot be used directly in engineering practice. Hence, it is necessary to improve the mechanical properties of loess. At present, the improvement means is mainly to improve the mechanical properties of loess by mixing high-strength materials into the soil. For example, lignosulfonate (Xu et al., 2022), permeable polymer materials (Mu et al., 2022), cement materials (Chen et al., 2021), cement and fly ash (Zhang et al., 2019) are added to improve the mechanical properties of loess. However, the high-strength materials are often expensive, and in actual engineering practice, it is generally necessary to improve loess on a large scale, which is not conducive to economic benefits. In addition, some curing agents have certain environmental pollution characteristics, which will decompose and produce harmful substances (Ding et al., 2022). Therefore, it is necessary to study a green and environmentally friendly improvement method with excellent economic benefit.
Due to the rapid development of the automotive industry, the number of used tires has increased dramatically, and the disposal of used tires has become an urgent problem to be solved (Falak et al., 2011). In the natural state, waste tires are difficult to degrade, and if burned, it will produce a lot of harmful gases, affecting human health (Pierce and Blackwell, 2003). Considering that waste tire rubber particles have advantages such as lightweight, high strength, good deformation coordination, and low cost (Moo-Young et al., 2003), it can be widely used in engineering practice. For example, rubber particles have been incorporated into sand as reinforcing walls (Youwai and Bergado, 2004; Hartman et al., 2013), replaced fine aggregate as light concrete (Reza et al., 2023), and incorporated foundation soil layer as structural damping layer (Tsang, 2008), and so on. Therefore, a series of studies on rubberized mixed soil have been carried out. For example,: Lee et al. (1999) studied the stress-strain relationship and strength of rubber sand mixed soil through Triaxial shear test, and found that the peak Shear stress of rubber sand mixed soil is greater than that of pure sand. Ghazavi. (2004) found that the bulk density and rubber content of rubber sand mixed soil with different rubber mass ratios were the main factors affecting the shear strength of the mixed soil. Cetin et al. (2006) found that the shear strength of rubber debris sandy clay mixed soil increased when the rubber content was between 20% and 30%. Anastasiadis et al. (2011) and Anastasiadis et al. (2012) studied the elastic modulus and damping ratio of rubber improved soil under the conditions of different gravel particle size and rubber mix ratio through dynamic Triaxial shear test, and obtained the theoretical formula of elastic modulus and damping ratio of rubber improved soil through function fitting. At present, the researches on rubber improvement of sandy soil are quite sufficient, but the researches on structural loess improvement are few.
Since the strength and stiffness of rubber particles are lower than that of soil particles, when rubber particles replace soil particles, the original skeleton bearing capacity of soil samples is weakened, and the compressive strength of specimens will be reduced. Because the strength and stiffness of rubber particles are lower than that of soil particles, when rubber particles replace soil particles, the skeleton bearing capacity of the original soil sample is weakened, and the compressive strength of the sample will be reduced. Therefore, the effect of simply using rubber particles to improve the structural soil is not ideal. In order to make up for the lack of compressive strength, the sample can be further strengthened by microorganism-induced calcium carbonate precipitation (MICP) technology. This technique utilizes urease to decompose urea to generate ammonium ions and carbonate ions, which combine with calcium ions in the environment to generate calcium carbonate crystals. Calcium carbonate crystals can fill soil pores and bond soil particles, thereby improving soil strength (Liang et al., 2020; Laurynas et al., 2023; Liu et al., 2023). At present, there have been many related researches. For example, Whiffin (2004) studied the pH environment and the effect of culture medium on the urease activity produced by Bacillus subtilis. The experiment showed that bacteria can tolerate high concentrations of urea and calcium ions, and produce urease through reproductive metabolism. Ng et al. (2012) studied the influencing factors of MICP reinforcement through experiments, including bacterial concentration, calcium source selection, cementation fluid concentration, solution acidity and alkalinity, and temperature. Paassen and Andreas. (2009) conducted grouting treatment on sandy soil and found that after 1 day of microbial grouting treatment, the stiffness of the sandy soil was significantly improved.
Considering the complicated extraction steps of microbial urease, in recent years, some scholars have directly used urease extracted from common plants to reinforce soil, that is, Enzyme Induced Carbonate Precipitation (EICP) technology (Dilrukshi and Satoru, 2016). EICP technology eliminates the need for bacterial cultivation, eliminates the process of producing urease, and avoids the impact of external environment on bacterial growth (Wen et al., 2020). Nam et al. (2015) extracted urease from jack beans and found that the urease could be used for crack repair with similar results as biurease, but with lower costs. Cuccurullo et al. (2020) studied that calcium carbonate precipitation induced by soybean urease can improve the permeability resistance of silty clay soil. Neupane et al. (2013) used EICP technology to strengthen sand samples in PVC pipes, and found that the porosity of the samples was reduced and the mechanical performance was improved. Ossai et al. (2020) conducted research on reinforced sand based on EICP technology, and found that the anti-erosion ability of treated sand was enhanced.
The paper presents an exprimental study on the mechanical properties of loess reinforced by rubber particles and urease-induced calcium carbonate precipitation (EICP). Firstly, the approximate range of rubber doping and the optimal concentration of urease and cementing solution are determined by preliminary experiment. Secondly, the change rule of shear strength and shear strength indexes of loess under only rubber particles and rubber particles combined with EICP are analyzed, and its mechanism is explained. Finally, the optimal reinforcement conditions are comprehensively selected according to the test results. This study can provide a reliable scientific basis for soil reinforcement in loess area, and at the same time, it can provide a non-polluting way for the treatment of rubber particles.
2 INTRODUCTION TO THE EXPERIMENT
2.1 Test materials
The loess used in the experiment (Figure 1A) was taken from the loess of a project in Xi’an City, Shaanxi Province, 10 m from the excavation of the foundation pit. The soil sample is yellowish brown. The basic physical properties of the soil have been measured, and the results are shown in Table 1. The particle size grading curve is shown in Figure 2. The selected rubber particles (Figure 1B) are obtained from the shredding and screening of waste tires, with particle sizes of 0–1 mm, 1–2 mm, and 2–3 mm, and a rubber particle density of 1.03 g/cm3. Urease and cementation fluid material (Figure 1C) are provided by Ica Biological Reagents, in which urease is derived from cana bean, the activity is 1 U/mg, and generally stored at 2°C–8 °C; The cementation fluid materials are calcium chloride and urea, which are stored at room temperature and away from light, and urea is ultra-pure urea.
[image: Figure 1]FIGURE 1 | Experimental material: (A) loess; (B) rubber particle; (C) urease and cementation material.
TABLE 1 | Physical parameters of the loess.
[image: Table 1][image: Figure 2]FIGURE 2 | Grain size distribution curve of the loess.
Urease is derived from concanavalin beans with an activity of 1U/mg and is generally stored at 2°C–8 °C. The cementation fluid material is calcium chloride and urea, which are stored at room temperature and protected from light.
2.2 Specimen preparation
The improved loess in this experiment is divided into two categories: rubber particles improved loess and rubber particles combined with EICP improved loess. The rubber particles mixed in the test are determined according to the volume ratio between rubber particles and loess, and the water content of the prepared sample was 15%.
When preparing rubber particle improved soil, the dried loess is first ground and screened by 2 mm. According to the proportion of rubber particles, the corresponding quality of loess and rubber particles are weighed and mixed. Then add an appropriate amount of pure water to the mixed soil and stir it evenly, load the mixed soil into the ring knife sample press, and use a jack to compact the sample. After the standard direct shear sample with a size of 61.8 mm×20 mm is made, it is sealed with plastic wrap, and the prepared sample is placed in a constant temperature curing box for 72 h. The curing temperature is 25°C–30 °C and the curing humidity is 95%. When preparing rubber particles combined with EICP to improve loess, it is only necessary to change the pure water in the above steps to urease solution and cementation fluid, with a ratio of 1:1. The two are added to the mixed soil in sequence and stirred evenly. The cementation fluid is calcium chloride and urea solution, with a volume ratio of 1:1, and the pH of the cementation fluid is adjusted to 7.4. The sample preparation process diagram is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Flow chart of improved soil sample preparation.
2.3 EICP working principle
The main chemicals involved in the EICP process are urease, urea, and calcium chloride. Among them, urease decomposes urea solution to produce carbonate ions, which combine with calcium ions in the solution to form calcium carbonate precipitates. The reaction equations involved are as follows (1)–(5) (Ahenkorah et al., 2021). Calcium carbonate can fill the internal pores of loess, increase the strength of loess skeleton, and then improve the shear strength of the sample. The reinforcement diagram is shown in Figure 4.
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[image: Figure 4]FIGURE 4 | Schematic diagram of the basic principle of soil reinforcement by urease induced calcium carbonate precipitation.
2.4 Testing instrument and testing scheme
The testing instrument used in this paper is a ZJ strain controlled direct shear instrument, as shown in Figure 5. The direct shear rate ranges from 0.8 mm/min to 1.2 mm/min. The test data are automatically recorded by the computer. First, each soil sample is placed on the shear boxes with an impervious stone above and below, and then the sample is pressed into the shear box with a top cap. After applying vertical pressure, the bolt is removed, and the shear rate is adjusted to 0.8 mm/min, then the rapid shear test will be started. When the dial indicator reading no longer moves forward but backward, continue to shear until the shear displacement is 4mm, and read the peak strength as the shear strength of the soil sample. When the dial indicator reading has no peak value, stop the test when the shear displacement is 6 mm, and read the corresponding value when the shear displacement is 4 mm as the Shear strength of the soil sample.
[image: Figure 5]FIGURE 5 | ZJ strain controlled direct shear instrument.
This experiment is divided into two parts: preliminary experiment and shear characteristic experiment. The proportion range of rubber particles added and the optimal concentration of urease and cementation fluid are determined through preliminary experiments. Then, the reinforcement effect of loess improved by only adding rubber particles and loess improved by combining rubber particles with EICP is evaluated through shear characteristic tests, and its reinforcement mechanism is explained accordingly.
A part of the preliminary experiment is to conduct a fast shear test on the improved loess with only rubber particles added. The content of rubber particles is 0%, 5%, 7%, 10%, 13%, 15%, 20%, 25% and 30% respectively, and the optimal mixing range is selected according to the shear strength of the samples. A total of 10 groups are presented in Table 2. The other part is the rapid shear test of the sample containing urease and cementation fluid based on the above test content. The optimal concentration of urease and cementing fluid (mixed liquid with a volume ratio of calcium chloride to urea of 1:1) was determined by orthogonal test results, in which the concentration of urease solution is 100 g/L, 200 g/L, 300 g/L and 400 g/L, and the concentration of cementing fluid was 0.5 mol/L, 1 mol/L and 2 mol/L, respectively, in 12 groups. The test scheme is shown in Table 3.
TABLE 2 | Determination of the optimum content of rubber particles.
[image: Table 2]TABLE 3 | Determination of optimal concentrations of urease and cementation fluid.
[image: Table 3]Based on the preliminary experimental results, the range of rubber particle dosage and the concentration of urease and cementation fluid were determined. A total of 124 sets of direct shear specimens were prepared with rubber particle dosage of 0%, 5%, 7%, 10%, 13%, and 15%, rubber particle sizes of 0–1 mm, 1–2 mm, and 2–3 mm, urease concentration of 200 g/L, and cementation fluid concentration of 1 mol/L. The experimental plan is shown in Table 4.
TABLE 4 | Test scheme for shear characteristics.
[image: Table 4]3 ANALYSIS OF TEST RESULTS
3.1 Analysis of preliminary experimental results

(1) Determination of rubber particle content
As can be seen from Figure 6, with the increase of rubber content under different rubber particle sizes, the variation trend of the specimen shear strength has a certain similarity, all showing a pattern of first increasing and then decreasing. Compared to the test results of soil samples without the addition of rubber particles, the range of rubber content corresponding to the increase in shear strength of improved soil with different particle sizes of rubber is not entirely the same, but the peak shear strength occurs between about 7% and 13% of rubber content. Although the shear strength of the sample is lower than 0% when the rubber content is between 7% and 13% for some particle sizes, considering that EICP technology will continue to improve the shear strength of the sample, a rubber content range of 5%–15% is selected for subsequent shear characteristic tests.
[image: Figure 6]FIGURE 6 | Shear strength-rubber particles content relationship curve of samples with different particle sizes (100 kPa).
Loess itself is a kind of loose material, while rubber particles are a kind of surface roughness and internal dense material. When a small amount of rubber particles is added to loess, the internal pore defects of the sample will be reduced, and the development of cracks in the sample during the shear failure process will be inhibited, so the shear strength of the sample will be increased. However, the strength of rubber particles is lower than that of soil particles. When replacing soil particles with equal volume of rubber particles, the overall strength of the soil is reduced. Moreover, with an increase in rubber content, rubber particles are prone to aggregation and floating during the mixing process with loess. The aggregation of rubber particles actually increases the pores of the sample, creating a weak interface, and the sample is more prone to damage during shear, resulting in a decrease in shear strength. Thus, when the rubber content exceeds the critical value, the shear strength shows a decreasing trend.
(2) Determination of the urease and cementation fluid concentration
From Figure 7, it can be seen that under different concentrations of cementation fluid, the shear strength of the sample shows a unified trend with the variation of urease concentration. As the concentration of urease increases, the shear strength of the sample first increases and then decreases, and the peak shear strength corresponds to a urease concentration of 200 g/L. Under different urease concentrations, the variation of the shear strength of the sample with the concentration of the adhesive solution is approximately consistent, showing a pattern of first increasing and then decreasing. The peak shear strength corresponds to a concentration of 1 mol/L of the adhesive solution. Therefore, through this orthogonal experiment, it can be determined that the urease concentration for subsequent shear characteristic tests is 200 g/L, and the concentration of the cementation fluid is 1 mol/L.
[image: Figure 7]FIGURE 7 | Curve of relationship between shear strength and urease concentration in improved soil in different cementation fluid concentration.
Based on the working principle of EICP, when the concentration of the cementation fluid is fixed and different concentrations of urease solutions are added, the shear strength of the sample is enhanced to varying degrees, and the urease concentration corresponding to the peak shear strength is 200 g/L. The reasons for this phenomenon can be explained as follows. When the concentration of urease is low, the ability of urease to decompose urea is limited, resulting in a smaller amount of calcium carbonate generated and a lower rate of improvement in the shear strength of the sample. When the concentration of urease is high, the amount of cementation fluid is fixed, urease completely decomposes urea, and the yield of calcium carbonate is fixed. However, considering that the distribution of cementation fluid is not completely uniform during the sample production process, during the sample curing process, the cementation fluid has already been decomposed and utilized by urease before completing migration. Therefore, the filling of the sample skeleton is not uniform, resulting in a low growth rate of shear strength. Therefore, there is a critical value for urease concentration. When the concentration of urease is fixed, as the concentration of the cementation fluid increases, the concentration of calcium ions also increases. When the concentration of the cementitious solution is less than the critical value, the calcium carbonate produced by urease decomposing urea binds with calcium ions, resulting in an increase in calcium carbonate production. However, excessive concentration of calcium ions can inhibit urease activity, reduce urea decomposition, and thus reduce the concentration of carbonate ions, resulting in a decrease in calcium carbonate production. Therefore, there is a critical value for the concentration of the cementation fluid.
3.2 Analysis of shear characteristics test results

(1) Improvement of loess by mixing rubber granules only
By comparing and analyzing the deformation development law of specimens under different rubber content and rubber particle size during shear failure, the strain characteristics and shear strength of each specimen are obtained. According to the Mohr-Coulomb shear strength criterion, the shear strength of each single specimen under different vertical pressures is linearly fitted, and the variation law of cohesion and internal friction angle with rubber content and rubber particle size can be accordingly obtained.
Figure 8 shows the shear stress-displacement relationship curve of improved soil samples with different rubber content when the rubber particle size is 1–2 mm under the vertical pressure of 50 kPa and 100 kPa respectively. It can be seen from Figure 8 that the change rule of shear stress-displacement curve of samples under different rubber content is similar. When the vertical pressure is 50 kPa, the samples with different rubber content show the strain softening characteristics, that is, after the shear stress reaches the maximum value, the shear stress gradually decreases with the increase of shear displacement. When the vertical pressure is 100 kPa, the specimen shows strain hardening characteristics, that is, after the shear stress reaches the maximum value, the shear stress remains unchanged or continues to increase with the increase of shear displacement.
[image: Figure 8]FIGURE 8 | Shear stress-shear displacement curves of samples under different vertical pressures (Rubber particle size: 1–2 mm): (A) 50 kPa; (B) 100 kPa.
Statistical analysis has been conducted on the strain characteristics and shear strength of the samples mixed only with rubber particles in Table 4. The results of the strain characteristics are shown in Table 5, and the shear strength results are shown in Table 6.
TABLE 5 | Statistical results of strain characteristics of samples under different working conditions (soil samples mixed with rubber particles only).
[image: Table 5]TABLE 6 | Statistical results of the shear strength of the sample under different working conditions (soil sample mixed with rubber particles only).
[image: Table 6]It can be seen from the results in Table 5 that the strain characteristics of the samples under different rubber content and different rubber particle size are similar. The strain characteristics of the samples show a softening rule under lower pressure. When the vertical pressure increases, the strain characteristics change from softening to hardening, and all of them show strain hardening characteristics under high pressure.
According to the shear strength results of the samples mixed only with rubber particles in Table 6, it can be seen that under the same vertical pressure and different rubber particle sizes, the changes in shear strength of the samples are similar with the increase of rubber content, showing a trend of first increasing and then decreasing. And the shear strength of the corresponding samples when the rubber particle size is 1–2 mm is higher than that of the corresponding samples when the rubber particle size is 0–1mm and 2–3 mm. Under different vertical pressures, compared with the control group without the addition of rubber particles, the range of rubber content corresponding to the increase in shear strength of the sample is roughly between 7% and 13%. Under different vertical pressures, the maximum increase in shear strength of the sample is 19.49%, 30.41%, 24.92%, and 28.74%, respectively.
Linear fitting has been performed on the shear strength results of the samples under different vertical pressures shown in Table 6, and the curves of the cohesion and internal friction angle of the samples under different rubber dosages and rubber particle sizes are obtained, as shown in Figure 9. Under different rubber particle sizes, the cohesion and internal friction angle of the sample show a trend of first increasing and then decreasing with the change of rubber content. When the rubber particle size is 1–2mm, the corresponding cohesion and internal friction angle of the sample are the highest. Compared with the control group with 0% rubber content, when the rubber particle size is 1–2 mm and the rubber content is 10%–13%, the cohesion and internal friction angle of the sample increase, with the maximum increase in cohesion being 31.57% and the maximum increase in internal friction angle being 27.89%.
[image: Figure 9]FIGURE 9 | Cohesion and internal friction Angle of improved soil samples under different working conditions (soil sample mixed with rubber particles only): (A) cohesion; (B) internal friction angle.
The shear strength index of soil is composed of cohesion and internal friction angle. According to the results in Table 6 and Figure 9, although the maximum increase of cohesion is higher than the maximum increase of internal friction angle for the improved loess with only rubber particles, the increase range of cohesion is only in the interval when the rubber particle size is 1–2 mm and the content is 10%–13%. The internal friction Angle increases in the rubber particle size of 0∼1mm, the content of 10%–13% and the rubber particle size of 1∼2mm, the content of 7%–15%, and the increase range of internal friction angle is wider. Therefore, the internal friction angle plays a major role in the increase of the shear strength of the improved loess mixed only with rubber particles.
The mechanism analysis of the above phenomenon is as follows. After adding rubber particles to the loess, the contact between the particles changes. When adding a small amount of rubber particles with the same particle size, the mixed soil changes from a single soil-soil contact to soil-soil contact with a small amount of soil-rubber contact and rubber-rubber contact. In this case, rubber particles are covered by loess, and the bonding effect is enhanced, thus increasing the cohesion. Rubber particles have irregular shapes and many angles, which can provide greater friction resistance, so the internal friction Angle increases with the increase of rubber content. However, considering that the density of rubber particles is only 1.03 g/cm3, while the density of loess is 1.72 g/cm3, when replacing soil particles with equal volume of rubber particles, the mass of the two is not equal, which reduces the friction between soil particles and the bonding effect between soil particles. Two factors jointly affect the strength of the improved soil. Therefore, compared to the control group without the addition of rubber particles, the shear strength of the improved soil sample may increase or decrease, which is directly related to the size of rubber particles. As the rubber content continues to increase, the soil-rubber contact and rubber-rubber contact increase, and the degree of “granulation” of the mixed soil increases, so the cohesion of the sample decreases. Considering that the sample is still dominated by the contact of soil particles, the friction between soil particles decreases to a greater extent than the increase of soil-rubber and rubber-rubber friction, so the internal friction Angle of the mixed soil gradually decreases. The overall shear strength of the sample also decreased.
In the case of the same rubber content, when the rubber particle size is small, the number of rubber particles in the same volume is too large, resulting in the reduction of cohesion between soil particles, and although the soil-rubber contact and rubber-rubber contact increase, the internal friction angle is lower than that of the whole rubber particles, so the shear strength of the sample decreases. When the size of rubber particles is large, the number of rubber particles in the same volume is too small, resulting in uneven distribution of rubber particles in the sample. In addition, in the process of sample production, jack is used to compact the sample. Due to the good elasticity of rubber particles, when the jack is unloaded, the large-particle rubber will rebound, resulting in the fracture of soil-soil contact and soil-rubber contact, and then the cohesion and internal friction Angle of the sample are reduced, so the shear strength of the sample is reduced.
(2) Improvement of loess by rubber particles combined with EICP
The deformation development curve of the loess sample improved by rubber particles combined with EICP technology during shear failure is similar to that in Figure 8, and the strain characteristics of each sample are consistent with the results of the loess sample improved by only mixing rubber particles in Figure 8. Detailed analysis will not be made in this section. The test results of the shear strength of loess improved by rubber particles combined with EICP are shown in Table 7. Obviously, under the same confining pressure, the shear strength obtained by the combined improvement method is higher than that obtained by using only rubber particle improvement. The calculation results under different confining pressures are shown in Figure 10.
TABLE 7 | Statistical results of the shear strength of the sample under different working conditions (soil sample mixed with rubber particles combined with EICP).
[image: Table 7][image: Figure 10]FIGURE 10 | Curves of shear strength growth rate with rubber content under different vertical pressures: (A) 50 kPa; (B) 100 kPa; (C) 200kPa; (D) 300 kPa.
In order to compare and analyze the strength changes of loess modified by rubber particles combined with EICP and that modified by rubber particles only, the shear strength growth rate is defined as the percentage increase of the shear strength of loess modified by rubber particles combined with EICP compared with that of rubber particles only under the same conditions. Based on the experimental results in Table 7 and Figure 10, it can be seen that the variation pattern of shear strength of loess samples improved by rubber particles combined with EICP is consistent with that of loess samples improved by only adding rubber particles. After being treated with EICP technology, the shear strength of the samples increased to varying degrees. Under the same vertical pressure and different rubber particle sizes, with the increase of rubber content, the shear strength of the sample shows a trend of first increasing and then decreasing. The growth rate of shear strength of the sample shows a gradually decreasing trend. The shear strength and shear strength growth rate of the corresponding samples with a rubber particle size of 1–2 mm are higher than the results of the corresponding samples with a rubber particle size of 0–1 mm and 2–3 mm.
The results in Figure 10 show that under different vertical pressures, the maximum shear strength growth rates of the specimens obtained by the combined improvement method are 18.16%, 16.75%, 17.4%, and 18.62%, which significantly improves the improvement effect of rubber particles on loess. Comparing this result with the shear strength of the unmodified loess sample, it can be concluded that the maximum increase in shear strength of the sample is 36.41%, 45.5%, 39.5%, and 46.43%, respectively. It can be seen that the combination of rubber particles and EICP technology has a good effect on improving loess.
The shear strength parameters of loess samples improved by rubber particles combined with EICP technology under different working conditions are summarized in Figure 11. By comparing Figure 9, it can be seen that under different reinforcement conditions, the variation patterns of specimen cohesion and internal friction angle are relatively consistent, and the results have increased to varying degrees after EICP technology treatment. Compared with the results of only adding rubber particles, the maximum increases in cohesion and internal friction angle of the sample are 15.19% and 28.56%, respectively. Compared with the 0% dosage control group, the maximum increases in sample cohesion and internal friction angle are 47.87% and 64.42%, respectively. The soil sample with increased cohesion corresponds to a rubber particle size of 0–1 mm with a content of 7% and a rubber particle size of 1–2 mm with a content of 7%–13%. The soil sample with increased internal friction angle corresponds to the rubber particle size of 0–1 mm and 1–2 mm, with a content of 5%–15%; The rubber particle size is 2–3 mm, and the content is 10%–13%. Therefore, under the condition of the joint improvement, when the shear strength of the sample increases, the internal friction angle still plays a major role.
[image: Figure 11]FIGURE 11 | Curves of cohesion and internal friction angle of samples with different dosage and particle size (Rubber particles combined with EICP): (A) cohesion; (B) internal friction angle.
The mechanism analysis of the above results is as follows. Based on the principle of EICP technology, the generated calcium carbonate precipitation is the main factor leading to the increase of the shear strength of the sample. Generally speaking, the more calcium carbonate precipitation is generated in the soil, the more obvious the shear strength of the sample is improved, but the influencing factors are also related to the distribution form of calcium carbonate in the soil. Considering the non-hydrophilic properties of rubber particles, the water content in the sample preparation process is mainly determined by the content of soil particles, while the concentration of urease and cementing fluid is constent. Therefore, when the sample is mixed by mixing method, the amount of urease and cementing fluid in the sample decreases with the increase of the content of rubber particles, so the calcium carbonate precipitation generated in the sample decreases. Therefore, although the test shear strength increases, the growth rate of shear strength decreases with the increase of rubber content.
When the content of rubber added is the same but the particle size is different, for soil samples with smaller rubber particles added, the pore size in the soil is too small, which limits the migration of urease. The uneven distribution of urease and cementation fluid in the soil during sample preparation leads to the accumulation of calcium carbonate precipitates at a certain point or the reduction of calcium carbonate precipitates generated, resulting in poor solidification effect of the sample. When the particle size of rubber particles is large, the deformation of the rubber particles is significant during the compaction process using a jack. After the jack is unloaded, the rubber particles undergo deformation and rebound, leading to an increase in sample pores. However, the size of calcium carbonate crystals generated by EICP technology is about 2-150 um, and the crystal particles are small. The generated calcium carbonate precipitation cannot effectively bond the soil rubber together, resulting in poor solidification effect of the sample. Therefore, when rubber particles with smaller and larger particle sizes are added, although the shear strength increases, the growth rate of shear strength decreases.
In addition, it can be seen from Table 8 and Table 9 that calcium-carbonate solidified soil can increase the cohesion and internal friction angle of the sample, but due to the rubber content and rubber particle size, the amount of calcium carbonate precipitation and distribution of calcium carbonate are inconsistent. Therefore, the growth rate of cohesion and internal friction angle is not obvious.
TABLE 8 | Statistical table of cohesion growth rate.
[image: Table 8]TABLE 9 | Statistical table of internal friction angle growth rate.
[image: Table 9]In summary, under the two reinforcement conditions, when the rubber particle size is 1∼2 mm, the cohesion force and internal friction Angle of the sample reach the maximum value, and considering that the internal friction Angle of the sample is the main factor to improve the shear strength of the sample, and the internal friction Angle of the sample reaches the maximum value when the rubber content is 10%, it is recommended to choose the rubber particle size of 1∼2 mm and the rubber content is about 10%.
4 CONCLUSION
In this paper, the experimental study on t the shear mechanical properties of loess samples improved by only adding rubber particles and rubber particles combined with EICP technology are carried out, and the influence of different reinforcement methods on the mechanical properties of the improved soil samples are analyzed. Then the reinforcement mechanism of different improvement methods is expounded accordingly. The main conclusions are as follows.
(1) When the concentration of urease is 200 g/L, the concentration of cementation fluid is 1 mol/L, and both are added to loess in equal volume, the shear strength of the soil sample increases most significantly, indicating the feasibility of EICP technology.
(2) The strain variation characteristics of the specimen under the two reinforcement conditions are consistent, with the strain softening characteristic when the vertical pressure is at 50 kPa and the strain hardening characteristic when the vertical pressure is greater than or equal to 100 kPa.
(3) The changes in shear strength and shear strength indicators of the sample under two reinforcement conditions are consistent. Under different vertical pressures and rubber particle sizes, as the rubber content increases, they all show an increase and then a decrease. When the rubber particle size is 1–2 mm, the shear strength is the highest, and the main role of the shear strength indicator is the internal friction angle. The shear strength, cohesion and internal friction angle of the soil improved by rubber particle combined with EICP are increased by 46.43%, 47.87% and 64.42% compared with the results of unimproved soil sample.
(4) In the combination of rubber particles and EICP to improve loess samples, rubber particles have an inhibitory effect on EICP technology. Under different vertical pressures and rubber particle sizes, the shear strength growth rate of the sample gradually decreases with the increase of rubber content. Among them, when the rubber particle size is 1–2mm, the shear strength growth rate is the highest.
(5) For the improvement of loess, such as adding rubber particles or adding rubber particles combined with EICP technology, It is advisable to choose a rubber particle size of 1–2 mm and a rubber content of about 10%.
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The mechanical properties of soil rock mixture (S-RM) are complex, especially the strength deterioration after encountering water, which readily leads to engineering instability. A series of large triaxial tests of S-RM with different water contents under various confining pressures were performed, the mechanical properties of S-RM were explored from a macroscopic perspective. The constitutive model of S-RM – an extended Duncan-Chang (DC) model considering water content – was developed. The results show that: (a) the stress-strain curves of S-RM are strain hardening type, the peak strength decreases non-linearly with the increase of water content, the higher the water content of sample, the more significant the bulging phenomenon and the more numerous and extensive the surface cracks; (b) the cohesion c and internal friction angle φ of S-RM both decrease approximately linearly with the increase of water content, and the secant modulus decreases significantly with the increase of water content, the reason of which can be attributed to the porosity and compression characteristics of S-RM; (c) the extended DC model can be used to describe the mechanical behavior of S-RM affected by water under triaxial test conditions. The material constant K, failure ratio Rf, c, and φ are all related to water content ω, while material constant n is independent, only ω, n, maximum principal stress σ1, and minimum principal stress σ3 are needed to determine the tangent modulus of the DC model of S-RM. The results can provide an experimental basis and mechanical understanding applicable to engineering practice in an S-RM formation.




Keywords: soil-rock mixture, water content, large triaxial tests, mechanical behavior, Duncan-Chang model





Introduction

Many geological hazards have been induced in geological materials, which are extremely inhomogeneous and composed of rock blocks with high strength, fine soils, and pores, called “soil-rock mixture” (S-RM) by scholars (Gao et al., 2018; Senthilkumar et al., 2018; Fu et al., 2020; Gao et al., 2021). Due to its very nature, S-RM usually exhibits very complex physical and mechanical behaviors (Xu et al., 2015; Zhang et al., 2015; Zhang Z. L. et al., 2016; Zhao and Liu, 2019).

Many scholars believe that the content of “rock blocks” and their size distribution are the main structural characteristic features of S-RM, which mainly control its mechanical properties (Casagli et al., 2003; Zhang H. Y. et al., 2016; He et al., 2020). In-situ and laboratory tests show that the shear strength of S-RM is akin to that of the rock blocks alone when the proportion of rock blocks is higher than a certain threshold, and is basically that of the fine soils when the proportion of rock blocks is less than a certain threshold, the friction angle of S-RM increases with the increase of proportion of rock blocks (Donaghe and Torrey, 1979; Vallejo and Mawby, 2000; Cen et al., 2017; Gao et al., 2018; Wang et al., 2018; Song et al., 2020; Dong et al., 2021). The size distribution of rock block determines the mesoscopic deformation characteristic and fracture form and is an important factor affecting the mechanical properties of S-RM (Buffington et al., 1992; Wickland et al., 2006; Hamidi et al., 2009; Xu and Zhang, 2022). The complex structural characteristics are the root causes of geological hazards in an S-RM formation. In addition to the complex structural characteristics of S-RM, scholars have explored other reasons for its susceptibility to geological hazards. The geological origin, distribution, and occurrence environment of S-RM have been investigated. The geological origins indicate that S-RM is mostly formed by collapses, landslides, and debris flows (Arikan et al., 2007; Hiruma et al., 2013; Viles, 2013; Leigh et al., 2016; Du et al., 2019; Xiang and Song, 2020), which show S-RM formations are mainly distributed in valleys. Geological hazards such as landslides are frequent in valleys, especially after rainfall and changes in reservoir water level (Casagli et al., 2003; Xu et al., 2016; Li et al., 2020; Pan et al., 2020). It is indicated that water plays an important role in the geological hazards of S-RM formation.

The influence of water on the mechanical properties of S-RM has been studied over the past few years. Xu et al. (2007) conducted in-situ shear tests of natural and saturated S-RM in the Hutiao Gorge reservoir area, found that the cohesion and internal friction of S-RM are sensitive to water. Wang et al. (2019) performed large-scale direct shear tests to study the change in water content on the strength of S-RM under the influence of rainfall, revealing that internal friction is the main controlling factor therein. Zhang et al. (2021) discussed the instability mechanism of S-RM slope under the effect of rainfall, which is mainly due to the expansion of infiltration cracks and weakening of mechanical parameters of S-RM caused by the increase of water content. The same conclusion was reached in the study of the stability of S-RM slope under the fluctuation of reservoir water level by numerical simulation (Fan et al., 2021). In terms of deformation characteristics of S-RM, Xing et al. (2019) found that the S-RM samples exhibit slight strain softening and strain hardening under low and high water contents, respectively. The mechanism of influence of water content on the deformation and strength of S-RM has also been studied, Zhao et al. (2019) studied the fracture mechanism of rock blocks of S-RM with different water contents, and investigated the strength deterioration of S-RM. Wei et al. (2018) conducted a series of large-scale direct shear tests with different water contents. They found that the main reason for the strength deterioration of S-RM is the decreasing strength of the rock block with increasing water content. At present, most of the studies on the mechanical properties of S-RM mainly focus on the content of “rock blocks” and their size distribution. The experimental method mainly adopts the direct shear test, and the shear failure surface is determined, which cannot fully reflect the mechanical properties of materials. Moreover, there are few studies on quantitative analysis of deformation and strength parameters and constitutive modelling of S-RM as affected by water.

This present research focuses on the effect of water content on the mechanical properties of S-RM. The better to understand the influence of water on mechanical behavior of S-RM, a certain rock content in the S-RM was selected in this study, and a series of large triaxial tests of S-RM with different water contents under various confining pressures were performed. The influence of water content on the macroscopic mechanical properties of S-RM was investigated and the stress-strain relationship of S-RM were analyzed. The variation characteristics of shear strength and deformation indices with water content were studied. The extended DC model of S-RM considering water content was established, and the variations of model parameters with water content were revealed. The results can provide an experimental basis and constitutive model for the engineering design and application of S-RM affected by environmental water.





Experimental method




Test device and materials

The tests were performed using TAJ-2000 large multifunctional triaxial experimental system. The size of the specimen for testing was Φ 300 mm × 600 mm; the maximum axial load was 1500 kN; the axial displacement ranged from 0 to 300 mm with a resolution of 0.01 mm; the maximum confining pressure was 10 MPa. The S-RM samples were collected from a colluvium bank slope of Jinsha River in Taoyuan, Yunnan Province, China (Figure 1). The physical indices of S-RM were measured and are listed in Table 1. The particle size distribution of S-RM for test is shown in Figure 2. The results show that the grading of S-RM in Taoyuan is continuous and inhomogeneous.




Figure 1 | Photograph of S-RM in-situ field in Taoyuan.




Table 1 | Physical indices of S-RM in Taoyuan.






Figure 2 | Particle size distribution of S-RM in Taoyuan.







Test procedures

The saturated water content of S-RM was 16% (as measured). Four different water contents of 4%, 8%, 12%, and 16% were designed in these tests, and remolded samples with different water contents were prepared, and the dry densities of S-RM samples were kept constant (1.652 g/cm3).

The test conditions were unconsolidated and undrained. Four different confining pressures of 200 kPa, 300 kPa, 400 kPa, and 600 kPa were applied. The test scheme is shown in Table 2. The sample was compacted and roughened after each of three layers added to the test cylinder. The test loading rate was 0.6 mm/min, and the test was terminated when the axial strain reached 15%.


Table 2 | Test scheme.








Results and discussions




Stress-strain relationship

Figure 3 presents the stress-strain curves of S-RM samples with different water contents (4%, 8%, 12%, and 16%) under various confining pressures. The results show that the stress-strain curves are all of the strain-hardening type with different water contents under various confining pressures during loading, indicating that the S-RM in Taoyuan has porous characteristics similar to loose sand or normally consolidated soil. The stress-strain curves show significant fluctuations throughout the loading process, which is not as smooth as the stress-strain curves of more general, homogeneous soils. The reason for this is described as follows: during the loading process, the occlusion, dislocation and overturning of the coarse particles of S-RM cause unstable changes of the local contact stress, showing the fluctuation of the statistical average stress-strain curve in macroscopic terms.




Figure 3 | Stress-strain curves of S-RM samples with different water contents: (A) ω = 4%; (B) ω = 8%; (C) ω = 12%; (D) ω = 16%.



The stress-strain curves of S-RM samples with different confining pressures (200 kPa, 300 kPa, 400 kPa, and 600 kPa) under various water contents are illustrated in Figure 4, the results indicate that the linear elastic development stages of stress-strain curves are more significant with the decrease of water content. Figure 5 shows the failure modes of S-RM samples with different water contents when σ3 is 200 kPa (the failure modes of samples under different confining pressures are similar), the results show that the S-RM sample is unlikely to maintain its original intact cylindrical shape and collapses into a mass with a water content of 4%, which shows an inclined plane shear failure mode, and the sample can maintain a complete shape and show slight bulging failure mode with surface cracks when the water content is between 8% and 16%, the higher the water content, the more significant the bulging and the more numerous and extensive the surface cracks. The bulging failure mode of the sample also reflects the high porosity and low density of S-RM.




Figure 4 | Stress-strain curves of S-RM samples with different confining pressures: (A) σ3 = 200 kPa; (B) σ3 = 300 kPa; (C) σ3 = 400 kPa; (D) σ3 = 600 kPa.






Figure 5 | Failure modes of S-RM samples with different water contents (σ3 = 200 kPa).



The stress-strain curve of S-RM is of the strain-hardening type, and the axial stress at the end-point of loading (axial stress corresponding to axial strain of 15%) is taken as the peak strength of S-RM. Figure 6 shows that the peak strength of S-RM increases in a quasi-linear manner with increasing confining pressure when the water content is constant, for example, when the confining pressure increases from 200 kPa to 600 kPa, and the peak strength of S-RM linearly increases from 912.91 kPa to 2053.53 kPa with a water content of 4%. Figure 7 illustrates that with the increase of water content of S-RM, the peak strength decreases in a non-linear manner, and the rate of change of peak strength decreases continuously, for example, when the water content of S-RM increases from 4% to 16%, and the peak strength decreases from 912.91 kPa to 327.82 kPa under a confining pressure of 200 kPa.




Figure 6 | The relationship between peak strength and confining pressure.






Figure 7 | The relationship between peak strength and water content.







Shear strength and deformation index

The Mohr’s circles of stress corresponding to the peak strengths of S-RM with different water contents are drawn, as shown in Figure 8. The results indicate that the peak strength of S-RM approximately meets the Mohr-Coulomb criterion within the test range of water content. The cohesion c and internal friction angle φ of S-RM with different water contents were obtained (Table 3). Figure 9 shows that c and φ of S-RM both decrease in a quasi-linear manner with the increase of water content.




Figure 8 | Mohr-Coulomb criterion strength envelope: (A) ω = 4%; (B) ω = 8%; (C) ω = 12%; (D) ω = 16%.




Table 3 | Shear strength indices of S-RM with different water contents.






Figure 9 | Relationships between shear strength indices and water content.



According to the generalized form of Hooke’s law, the elastic modulus is constant and independent of confining pressure, however, the triaxial tests of geological materials show that the stress-strain curve is non-linear, and the tangent or secant slope is related to the physico-mechanical properties of geological materials. Therefore, the selection methods of tangent modulus, secant modulus and average modulus were developed for the deformation modulus of geological materials under triaxial compression (You, 2003). There is no significant linear elastic stage in the stress-strain curve of S-RM, the secant modulus is used as the deformation modulus for analysis herein, and the point where the deviatoric stress is 0 and the point of 50% of peak strength are taken as the starting and ending points respectively. The calculated results are summarized in Table 4.


Table 4 | Secant modulus of S-RM samples under different test conditions.



The relationship between secant modulus and confining pressure is shown in Figure 10. The results show that when the water content is low, secant modulus increases significantly with the increase of confining pressure, for example, when the confining pressure is increased from 200 kPa to 600 kPa, the secant modulus increases from 42.13 MPa to 105.91 MPa with a water content of 4%. When the water content is high (ω > 8%), the secant modulus increases slowly with the increase of confining pressure. The reasons for the change in secant modulus of S-RM affected by confining pressure can be ascertained: in the process of applying confining pressure, the pore gas in the sample is readily compressed, and the pore water is practically incompressible under unconsolidated and undrained conditions, therefore, when the water content is low, the higher the confining pressure, the greater the primary compaction of the pores, the smaller the secondary compaction of the pores during the application of deviatoric stress, and the greater the secant modulus at the macroscopic level; when the water content is high or in a saturated state, the pores are not readily compressed, the confining pressure exerts little influence on the secondary compaction of the pores caused by deviatoric stress, macroscopically, the confining pressure has little influence on the secant modulus.




Figure 10 | The relationship between secant modulus and confining pressure.



The relationship between secant modulus and water content is shown in Figure 11. The results indicate that the secant modulus decreases significantly as the water content increases, for example, when the water content increases from 4% to 16%, the secant modulus decreased from 42.13 MPa to 2.97 MPa under a confining pressure of 200 kPa. The reason for this is explored: the lubrication of the pore water between the particles and the water film outside the particles causes slippage and adjustment of the position of particles. Macroscopically, the higher the water content, the more easily the S-RM sample is compressed, and the smaller the secant modulus.




Figure 11 | The relationship between secant modulus and water content.







Extended DC model for S-RM

The stress-strain curves of S-RM with different water contents have significant strain hardening characteristics. The Duncan-Chang (DC) model is especially suitable for the description of the non-linear hardening type stress-strain relationship. The extended DC model was developed herein, the determination process of the model parameters and the relationship between model parameters and water content were discussed in detail.

Kondner (1963) proposed the hyperbolic function to describe the stress-strain relationship of soils obtained from triaxial tests:



where σ1 represents maximum principal stress; σ3 is minimum principal stress; ε1 denotes maximum principal strain; a and b are model constants.

Duncan and Chang (1970) developed an incremental elasticity model based on Eq. (1):



In the triaxial test, the tangent modulus is expressed as:



where Et is the tangent modulus of soil.

At the origin of coordinates (ε1 = 0), the initial tangent modulus is expressed as



The ultimate deviatoric stress of the fitted hyperbola is written as



where (σ1 − σ3)ult represents the ultimate deviatoric stress.

Much of the shows that the initial tangent modulus is related to the confining pressure, the form can be expressed thus (Janbu, 1963):



where K and n are material constants, reflecting material properties; Pa is the atmospheric pressure.

Since there is no peak strength in the stress-strain curve when using a hyperbolic function to represent it, generally, the stress corresponding to a certain strain value is taken as the strength of soil, and the failure ratio is defined as:



where Rf is the failure ratio; (σ1-σ3)f represents the peak strength of soil.

According to the Mohr-Coulomb criterion, the strength of soil can be expressed as:



The tangent modulus of soil can be obtained from Eqs. (3)~(8):



The expression for the tangent modulus in the DC model includes five material constants: K, n, Rf, c, and φ.

In order to compare the mechanical properties of S-RM in unsaturated and saturated states, the experimental conditions were set as non-consolidated and undrained, resulting in only obtaining the axial stress-strain relationship. Consequently, the measurement of volumetric strain and lateral strain was not possible, thus preventing the determination of the Poisson’s ratio. This study only investigated the tangent modulus of the D-C model, providing a reference for determining the Poisson’s ratio. The determination process of material constants in the expression of the tangent modulus of the DC model is as follows.

	The model constants a and b are determined. The test data of S-RM with different confining pressures under various water contents are processed according to Eq. (1), a and b are obtained by data fitting. The fitting hyperbolic curves of test data are shown in Figure 12, the stress-strain curves of S-RM under triaxial compression test with different water contents are in good agreement with the DC model.

	The initial tangent modulus Ei is calculated using Eq. (4). The ultimate deviatoric stress (σ1 − σ3)ult is determined using Eq. (5).

	The peak strength (σ1 − σ3)f is determined. There are three ways to determine (σ1 − σ3)f, the first is to take the test value as (σ1 − σ3)f (the deviatoric stress corresponding to 15% axial strain); the second is to take the value in the fitting hyperbolic curve; the third is to recalculate (σ1 − σ3)f by Mohr-Coulomb criterion according to the shear strength indices c and φ determined by test. Because the model finally given is based on the fitted curve, the model curves determined using the second method is in better agreement with the experimental results.

	The failure ratio Rf is determined. The ultimate deviatoric stress (σ1 − σ3)ult under each confining pressure determined by step (b) and the peak strength (σ1 − σ3)f under each confining pressure determined by step (c) are substituted into Eq. (7). The failure ratios under various confining pressures can be obtained, and the average value can be used as the failure ratio of S-RM with a certain water content.

	The material constants K and n are determined. The relationship between lg(Ei/Pa) and lg(σ3/Pa) is fitted by a straight line, the material constants K and n are then obtained.






Figure 12 | Fitting curves of the (σ1 − σ3) − ε1 relationship: (A) ω = 4%; (B) ω = 8%; (C) ω = 12%; (D) ω = 16%.



The process parameters determined using steps (a)~(e) are listed in Table 5. Combined with the determined shear strength indices c and φ, all five material constants of S-RM with different water contents to obtain the tangent modulus are determined, as listed in Table 6.


Table 5 | Process parameters of the D-C model of S-RM.





Table 6 | Material constants of the D-C model of S-RM with different water contents.



The relationship between the material constants of S-RM and water content is illustrated in Figure 13. The results indicate that the failure ratio decreases approximately linearly with the increase of water content. As the water content increases from 4% to 16% and the failure ratio decreases from 0.9347 to 0.8509. The explanation may be that the higher the water content, the smaller the modulus of S-RM under the same confining pressure, and the stress develops more slowly with the increasing strain, the stress is far from reaching limiting value when the strain reaches 15%, so the smaller the failure ratio. The material constant K decreases with the increase of water content, which is approximately exponential. The correlation between material constant n and water content is not significant.




Figure 13 | The relationship between material constants and ω: (A) Rf vs. ω; (B) K vs. ω.



The research results indicate that the material constants K and Rf of S-RM in the DC model are the same as the shear strength indices c and φ, which are all related to the water content. The functional relationships are shown in Eqs. (10) to (13). The material constant n is an independent material constant, which has no significant correlation with the water content.









The fitting coefficients of material constants determined according to the triaxial compression test of S-RM are listed in Table 7. The material constant n is taken as the average of the test results under different water contents. Finally, only n, ω, σ1 and σ3 are needed to determine the tangent modulus Et of the DC model of S-RM.


Table 7 | Fitting coefficients of material constants of S-RM.








Conclusions

Large triaxial tests of S-RM with different water contents under various confining pressures were conducted in this study. The stress-strain relationship of S-RM under different conditions was analyzed. The variations in shear strength and deformation indices with water content were studied. The extended DC model of S-RM considering water content was established, the variation law of model parameters with water content was revealed. The main conclusions are drawn as follows:

	Within the range of test water content and confining pressure, the stress-strain curves of S-RM are all of the strain-hardening type, indicating that the S-RM has porous characteristics similar to loose sand or normally consolidated soil. The failure mode of the sample reflects that the higher the water content, the more significant the bulging phenomenon and the more numerous and extensive the surface cracks. The peak strength of S-RM increases in a quasi-linear manner with the increase of confining pressure, and decreases non-linearly with the increase of water content.

	The peak strength of S-RM approximately satisfies the Mohr Coulomb criterion within the range of water contents investigated in the present work, and the cohesion c and internal friction angle φ of this S-RM both decrease in a quasi-linear manner with the increase of water content. The secant modulus is used as the deformation index for analysis, the results show that the secant modulus increases with the increase of confining pressure, and decreases significantly with the increase of water content, the reason for this can be attributed to the porosity and compression characteristics of S-RM.

	The DC model was introduced and its applicability to S-RM was studied, the extended DC model of S-RM considering water content was further established. The results indicate that the stress-strain curves of S-RM under triaxial compression test with different water contents are in good agreement with the DC model which can reflect the strain-hardening characteristics of S-RM. The functional relationships of model parameters with water content were determined as Eqs. (10) to (13), thus, only n, ω, σ1 and σ3 are needed to determine the tangent modulus Et of the DC model of S-RM.



This study focuses on the macroscopic mechanical properties and the mechanical model of S-RM. The conclusions can be applied to engineering of S-RM. The microscopic mechanism of the influence of water condition on the mechanical behavior of S-RM will be further explored in future, and the essential reason of the influence of water condition on its macroscopic mechanical behavior will be revealed.
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Introduction

Soft rock mining roadways are severely deformed and damaged during coal mining. Blindly increasing the support strength not only has little effect but also wastes material resources.





Methods

Maintaining the original support parameters, model experiments were conducted to investigate the mechanism of pressure relief protection of the front soft rock mining roadway by cutting the roof behind the longwall face. The roof-cutting height was 2.5 times the coal thickness, the angle was 10°, and the advance distance is 0. 





Results

The study found that the abutment stress borne by the roof of the original roadway was transferred to the coal seams to be mined. The average stress of the coal seams increased by 10%, while the average stress of the surrounding rock in the front roadway decreased by 12.57%. The roof cutting weakened the influence of the overlying strata in the gob on the rear roadway. The stability of the rear roadway also weakened the traction effect on the front roadway. The vertical convergence of the front roadway decreased by 27.3%, and the deformation of the coal pillars decreased by 15.7%.





Discussion

The roof cutting reduced the stress of the front roadway to the peak failure stress, fundamentally weakening the main factor that induced the deformation of the front roadway. Numerical simulations were performed to research the deformation and stress distribution properties of the surrounding rock after roof cutting, and the model experimental results were validated. Finally, engineering recommendations are presented, which are expected to provide a reference for controlling the roadway stability of soft rock masses.





Keywords: soft rock mining roadway, model experiment, large deformation, failure characteristics, roof cutting and pressure relief, roadway protection




1 Introduction

Increased demand for coal, which accounts for a large proportion of China’s energy production and consumption (Lv et al., 2021), has led to a shift of mining centers to the west of China (Zhang et al., 2021). Some areas of western China host soft rock (e.g., Jurassic rocks), resulting in the weak bearing and poor cementation of surrounding rocks in engineering projects. This is especially true in the mudstone and sandy mudstone strata in the Jurassic System. Under these conditions, there have been many difficulties with the support of roadways, resulting in soaring costs and delays in construction (Arora et al., 2021). Many scholars have analyzed the deformation trends of soft rock roadways (Table 1). Research has shown that roadways within the mining stress advanced range of influence can be severely damaged (Mo et al., 2020). This not only affects mining progress but also poses a safety hazard. As a result, reducing the deformation and weakening the failure of mining roadways in soft rock strata has become an urgent problem to be addressed.


Table 1 | Comparison of research status and technical solutions.



In terms of the failure mechanism of soft rock mining roadways, Xu et al. (2021) studied the bidirectional asymmetric failure mode of soft rock roadways in fully mechanized top coal caving mining and summarized the main reasons for the failure. Zhu et al. (2022a) summarized three typical stages of deformation in typical roadways and studied the characteristics of surrounding rock failure. Yang et al. (2017) studied the failure process of soft rock roadways under different support factors and explored the deformation and crack evolution laws of the surrounding rock. Uneven stress and weak surrounding rock are internal factors of failure, while unreasonable support is an external factor of this effect (Zhan et al., 2020). A summary of the failure factors provides an important reference for control measures in soft rock roadways.

In terms of support techniques for soft rock mining roadways, Shen (2014) studied the invalidation features of soft-strata-mining roadways in longwall panels, optimized the bolt (cable) arrangement and increased the pretightening force. Pan et al. (2017) researched the effect of the water-cement ratio on the grout reinforcement effect of mining roadways. Wang et al. (2021) studied the instability mechanism of typical soft rock strata roadways in the Puhe Coal Mine and optimized the reinforcement scheme of “bolt-cable mesh-shotcrete”. Zhu et al. (2023) studied the characteristics of roadway failure in Jurassic soft rock and proposed countermeasures, such as fiber shotcrete, increasing the length and prestress of the cables. Hao et al. (2021) analyzed the main cause of the deformation of mining roadways and proposed an active–passive coupling support scheme. Tian et al. (2022) created a reinforcement scheme of “bolt-cable-shotcrete + deep and shallow hole grouting” according to the support practice of the Wangjialing Coal Mine. The above studies proposed targeted support schemes for mining roadways under various soft rock conditions and achieved good results. Some new support components and ideas for the yieldable support of soft-rock tunnels were also introduced for roadways (Öge, 2021). However, the improvement measures did not break away from traditional thinking and mainly involved strengthening support (Figure 1A), e.g., grouting, high-strength bolts, energy-absorbing cables, arch frames, combined support, and narrowing spacing (Li et al., 2022a). This means a higher cost and longer construction period, but it still fails to change the current situation of soft-rock roadway deformation and failure.




Figure 1 | Methods for improving the stability of roadways. (A) Adding support. (B) RCPR with GSER. (C) Roof cutting to protect the front roadway.



It has been determined that stress is an important cause of roadway failure (Mishra et al., 2021). If the stress can be mitigated, then the load on the roadway can be substantially reduced. The idea of roof cutting and pressure relief (RCPR) from Professor He’s team has provided a new perspective of roadway stability (Figure 1B). RCPR technology has become a research focus in recent years. Sun et al. (2022) studied the parameters of roof cutting and analyzed the influence of pressure relief technology on hard rock roofs. He et al. (2022) studied the surrounding rock movement pattern of gob-side entry retaining (GSER) with RCPR. Wang et al. (2022a) proposed a roof-cutting energy-absorbing support scheme for the problem of the failure of coal mining roadways. Guo et al. (2021) investigated the roof rupture mechanism of the GSER, proposed a new support scheme, and verified it on site. Lou et al. (2021) found that controlling the roof-cutting distance can diminish roadway deformation. Yang et al. (2019) improved the stress environment of the roadway and controlled the deformation of adjacent roadways by presplitting blasting. Research and practice by the aforementioned scholars have shown that the key to GSER with RCPR is “advance roof cutting + strengthened support” (Table 1). Advanced roof cutting can prevent the integrity of the remaining roadway roof from being damaged by mining stress. At the same time, it also maintains a certain distance between roof-cutting operations and the longwall mining face without affecting the coal mining progress. While advanced roof cutting can prevent mechanical connections between roof rock layers in advance, the roadway after roof cutting must adopt strengthened support to control deformation (Figure 1B).

The engineering context of this paper is typical of soft rock, in which coal pillars are retained for mining. If the technical scheme of GSER is replicated, the support strength and cost will be further increased. To achieve the goal of improving the stability of coal mining roadways at the lowest cost, advanced roof-cutting schemes in soft rock are not recommended. Based on the reality that increasing support has failed to improve the deformation and damage of soft rock roadways, roof cutting technology is applied to the protection of mining roadways. A soft rock roadway retains its original support, and the progress of the roof cutting and the mining advance of the panels are consistent (Figure 1C). To manage the roof collapse of the gob with roof cutting can be difficult; currently, there is limited research on this technique, and the mechanism is poorly understood.

Thus, the fundamental parameters of roof cutting are determined in this work by theoretical calculations for model experiments. For the model experiment, difficulties such as similar roadway support structures, similar gobs, simulated mining and roof cutting devices are overcome. The traditional test process is innovated, and two true triaxial model experiments are carried out. This paper analyzes the influence of the stress and deformation in front of the mining roadway under the action of roof cutting of the roadway. Through two comparative model experiments, the mechanism of RCPR for roadway protection in soft rock is revealed. Finally, we present numerical simulations and optimization measures to validate the model test conclusions. It is expected that this work will provide a reference for roadways under similar geological conditions.




2 Engineering overview

The Xinshanghai No. 1 Coal Mine is situated in Shanghaimiao town, Ordos city, China, and currently produces No. 15 coal from the Yan’an Formation. The average thickness of the No. 15 coal in the 114156 panel is 4.0 m, and the average inclination angle is 6°. The right side of the 114156 panel is a coal pillar and is called the 114152 gob. The roadway is supported by a “bolt-cable mesh-shotcrete + steel belt”. In addition, the floor was resprayed with 300 mm-thick concrete using an inverted arch structure. The roadway uses high-strength prestressed bolts (Figure 2A). The on-site vertical stress of the roadway is 8.5 MPa, and the horizontal stresses are 11.2 MPa and 14.11 MPa.




Figure 2 | Overview of the engineering background. (A) Panel and belt roadway. (B) Formation lithology and physical parameters.



The support was still unable to resist the deformation of the roadway, and the roadway was severely damaged in advance during coal mining. The damage characteristics are roof subsidence, steel belt failure, sidewall bulging and severe floor heaving. To resume production, the damaged roadway had to be repaired and reinforced. After a period of repair, the roadway was still damaged, and the soft rock mining roadway fell into a vicious cycle of “repair–destruction–repair–redestruction”. The roof and floor of the No. 15 coal seam are composed of mudstone and sandy mudstone, respectively. X-ray diffraction analysis was conducted on the mudstone and sandy mudstone (Table 2). The kaolinite and illite in the internal components of the mudstone and sandy mudstone together determine the mechanical properties of the rocks. Therefore, they are soft rocks with poor cementation (Zhou et al., 2014). The mechanical properties of the main rock strata are obtained through rock mechanics experiments (Figure 2B).


Table 2 | Mineral composition analysis.






3 Geomechanical model experiments



3.1 The basic principles of RCPR and model experimental design

To date, the technology of RCPR is relatively mature. To protect the stability of the GSER behind the longwall face, it is necessary to cut the roof a certain distance ahead of the longwall face when adopting RCPR technology. As advanced roof cutting weakens the integrity of the bearing structure of the roadway roof, negative Poisson’s ratio (NPR) cables, high-strength bolts and hydraulic props are often used for high-strength support of the GSER. High-strength supports form a cantilever-beam composite structure in the roof to control the deformation of the surrounding rock, and the remaining roadway can serve the next panel (Bian et al., 2022). The oriented blasting cuts the roof rock layer to a certain height in a directional manner, blocking the stress transfer between the roadway roof and the gob roof. The cracks formed within the roof contribute to the directional collapse of the roof, which not only reduces the value of the advanced abutment stress but also weakens the deformation of the mining roadway. The collapsed gangue supports the overlying strata of the gob, reducing the intensity of the abutment stress. The idea of “GSER for RCPR” is used to protect the stability of soft rock mining roadways.

However, there are significant differences in the rock characteristics, strata thickness, and mining methods of each roadway, making it impossible to replicate existing experience. Especially under soft rock conditions, the parameters of roof cutting are still unclear, and hasty field tests can not only affect the progress of coal mining but also aggravate roadway deformation. Based on the existing results, the basic parameters of roof cutting are calculated (Figure 3A). Analyzing the force and sliding properties of the fracture block and calculating the selection range of the cutting angle suggests (Chen et al., 2019; Zhang et al., 2022):




Figure 3 | Movement and boundary conditions of the gob roof. (A) Movement of rock strata after roof cutting. (B) Boundary conditions of the rock beam.



 

θ is the roof cutting angle, °. φ’ is the residual friction angle of the rock, 22-32°. hm is the thickness of the main roof, 2.6 m. L is the average fracture length of the main roof, 15 m. ω is the subsidence of rock blocks, 0.7 m. Thus, it is calculated that θ≥7.78-17.78°. The roof-cutting angle selected for the model experiment is 10°.

The roof-cutting height should ensure that the collapsed gangue fills the entire gob and provides support for the gob roof. However, the cost of drilling and explosives must not be wasted. The height of the roof cutting is calculated as follows (He et al., 2019):

 

Hp is the roof-cutting height, m; HM is the height of mining, 4.0 m; ΔH1 is the settlement of the gob roof, m; ΔH2 is the gob floor heave, m; K is the rock bulking factor. The thicknesses of the roof mudstone and fine sandstone are calculated by weighting them and taking the average value K=1.4. Without considering the deformation of the gob (△H1=0, △H2=0), the calculated cutting height is 10.0 m.

If the roof rock layer is equivalent to a beam structure, it is called a “rock beam”. Before roof cutting, the “rock beam” is a fixed support structure, while after roof cutting, the “rock beam” is a simple support structure (Figure 3B). Roof cutting can effectively increase the deformation of the “rock beam” in the gob, transform the fixed structure into a rotatable structure, and ensure its smooth collapse (Sun et al., 2022). Under the action of mining stress, the roadway in front of the longwall face is greatly deformed and destroyed. If the roof is presplit, then it accelerates the destruction of the roof of the soft-rock roadway. The progress of coal mining and roof cutting needs to be consistent, and the roof cutting distance in front of the longwall mining face is 0.

Based on the current deformation status of soft rock mining roadways, the deformation patterns of the roadways were studied through a model experiment (Model A) and numerical simulations. To validate the roof-cutting effect, a comparative model experiment (Model B) was planned. The only difference between the two model experiments is that Model B cuts the roadway roof (Figure 4). The roof-cutting angle and depth are 10° and 10 m, respectively. The geometrically similar scale was determined by combining the site conditions, test devices and boundary conditions (Halder and Manna, 2021).




Figure 4 | Research methods and relevance.






3.2 Similar materials and similar principles

The model test needs to abide by the similarity principles, and the ratios of the physical parameters of the physical model and the on-site prototype are similar (Ghabraie et al., 2015). Definition:

 

Ci is the similarity scale of a certain parameter, iP is the prototype parameter, and iM is the model parameter. The model and prototype satisfy the three equations in the theory of mechanics: the balance equation, geometric equation and physical equation (Xue et al., 2022; Zhu et al., 2022c). The boundary conditions should also be similar, and the similar scale of dimensionless physical quantities should be equal to 1 (Jongpradist et al., 2015). The similarity relationships of various physical parameters are calculated through similarity criteria (Table 3).


Table 3 | Similarity ratio and similarity materials of the model experiment.



The simulation range of the model experiment is calculated based on the size and geometrical similarity scale of the model experimental device. The engineering prototype mainly includes four types of rocks (coal, mudstone, sandy mudstone, and fine sandstone). Although each type of rock is in different strata, its lithology is similar. Most rocks have low uniaxial compressive strength and are typically soft rocks, increasing the difficulty of selecting similar materials. By investigating several cases and accounting for the construction method, material cost and safety of the physical model (Castro et al., 2007), the mixed material was finally chosen. The mixed material consists of iron powder, barite powder, quartz sand, gypsum powder and water. Adjusting the ratio of various materials can change the physical parameters and improve the applicability of the materials (Zhu et al., 2022b).

Standard rock mechanics samples were made in groups according to different material proportions and dried naturally. Through indoor experiments, the mechanical properties of each set of samples were tested to find the optimal ratio to simulate different types of rocks (Figure 5). The mechanical properties of similar material tests should comply with the parameters calculated by similar scales. The parameters of four similar materials for typical rock stratum are shown in Table 3. The similarity ratio of geometry size CL was set to 20. Mainly, the similarity of key parameters is ensured. Similar materials contain iron powders, so their unit weight is greater than that of the original rock. The similarity ratio of density Cγwas 0.79. The model similarity relationship and parameters of similar materials of typical rocks are illustrated in Table 1. Mechanical tests were carried out on similar support materials (Zhu et al., 2022a), and support components similar to the “bolt-cable mesh-shotcrete + steel belt” were obtained (Figure 5).




Figure 5 | The selection process of the model experiment materials.






3.3 Model sensor placement

The size of the experiment was 2280 mm × 1000 mm × 2280 mm, length × width × height (Figure 6A). There are three monitoring sections in the similar surrounding rock (sections I-III) and the internal model roadway (section IV-VI). The spaces between the sensor and the similar roadway surface are 0.1H, 0.5H and 1.0H, and H is the height of the roadway (Figure 6B). The microconvergence meter is set to monitor the internal similar roadway convergence (Figure 6C).




Figure 6 | Monitoring sensor locations. (A) Monitoring section position. (B) Monitoring sensors in sections I-III. (C) Monitoring sensors in sections IV-VI.






3.4 Embedded device for the model experiment

The model roadway is made of similar support materials, and the shape is controlled by a special mold (Shimamoto and Yashiro, 2021). A layer of clingfilm was wrapped around the outer side of the special mold for the easy removal of inner fillers at a later stage. A layer of gypsum was evenly applied to the outer side of the clingfilm to simulate secondary shotcrete. After drying the gypsum, the metal mesh, model bolt, and cables were set up. Finally, a second layer of gypsum was applied to the outer side of the metal mesh to simulate the initial shotcrete. The structure is equivalent according to a similar scale (Zhu et al., 2023). The interior of the model roadway is a removable filling structure, and the exterior is a similar composite structure of “bolt-cable mesh-shotcrete + steel belt” (Figure 7A).




Figure 7 | Similar device for the model experiment. (A) Similar “shotcrete + bolt-mesh-cable + steel strips” support. (B) Components of the similar gob. (C) Roof cutting device. (D) Relative position of embedded devices.



The model gob is a three-layer structure of “lower board + support board + upper board” (Figure 7B). The support boards were divided into two types, with a thickness of 20 mm. The main support board was temporarily fixed with a small quantity of glue, the auxiliary support board was located between the two main support boards, and the upper part of the auxiliary support board was provided with circular holes for the iron wires. The preembedded device of similar roof cutting was a combined structure composed of two layers of aluminum plates (thickness of 0.5 mm) sandwiching steel wire (diameter of 2.2 mm), as illustrated in Figure 7C. The length of the roof cutting device is 400 mm, which is consistent with the length of goaf A. The height of the roof cutting device is 500 mm, which represents the actual cutting height of 10 m. After the removal of the steel wire, there was a gap between the two aluminum plates, which is equivalent to roof cutting. The spatial positions of the three embedded devices in the physical model are consistent with the engineering background (Figure 7D). After the removal of goaf A in the physical model, the longwall face is 400 mm away from the front boundary. This ensures that the progress of panel mining and roof cutting is consistent. Due to the limitations of the experimental conditions, in this model, the experiment is performed equivalently. The physical model simulates the coal mining process through prefabrication and demolition and uses a step-by-step loading stress to model the increase in abutment stress under coal mining conditions.




3.5 The process for the model experiment

It is difficult to construct model panels, gobs and roadways by conventional methods. For this reason, we innovated the model construction process initially by prefabrication and then by dismantling. To reduce the friction effect of the boundary, polytetrafluoroethylene (PTFE) plates were set on the surface of the model. After the model stress was stabilized, the next load was applied (Arora et al., 2022). The coal dip is equivalent to a horizontal structure, and the physical model was made layer by layer. The construction process was divided into eight steps. To show the inner construction process of the physical model, the front panel of the test device is not illustrated in steps 2-4.

Step 1: The upper steel beam of the experimental device was removed, and the physical model was constructed layer by layer from the bottom up. The drying time of each layer was 24 h.

Step 2: The grooves were excavated, and the sensors were installed according to the monitoring plan.

Step 3: The coal pillar and panels in the model were made, and gob A, gob B and the model roadway were preembedded. After the model was constructed for the location where the roadway was to be installed, grooves were made according to the shape of the roadway floor. During the installation of similar bolts, the drill holes were cleaned, and adhesive was injected into the holes. The remaining model cables and bolts were buried in similar materials in the surrounding rock using artificial construction methods. Roof cutting device at the upper left position of the model roadway along the coal mining direction, with a length of 40 cm (Figure 8A).




Figure 8 | The procedure of the model experiment. (A) The preburial process of the model roadway and gob. (B) Installation of the reaction beam. (C) Installation of the microconvergence meter and cameras.



Step 4: A similar roof cutting device was aligned with the model roadway prefabricated crack, which was preembedded into the surrounding rock during the layer-by-layer construction process. The model was continually manufactured to the design height.

Step 5: After the model was completely dry, the top force transmitter and reaction beam were installed, and the front panel was removed (Figure 8B).

Step 6: The support boards and the upper and lower boards of similar gob A and gob B were removed. The fillers of the model belt roadway were removed, and the interior space of the roadway was restored. The wire was pulled out to form a similar roof cut.

Step 7: Microconvergence meter instruments and cameras were installed in the model roadway, and a flexible light-emitting-diode strip was used for lighting (Figure 8C).

Step 8: A PTFE plate was placed on the front of the physical model, and the front panel was reinstalled. Various monitoring instruments and acquisition equipment were connected.

A 3D numerical model was constructed, and the stress within the model was set to the same value based on the measured in situ stress conditions. The numerical model simulates the mining process, and the range of simulations within the model (45.6 m × 45.6 m × 20 m) was chosen based on CL. Based on Cσ, the stresses in different zones of the simulation range were calculated and reduced to the loading applied to the surface of the physical model (2.28 m × 2.28 m × 1.00 m). The stress of the different paths on the physical model surface was controlled step by step according to the minimum accuracy of the servo loading system, and each load level was maintained for 4 h. After 18 steps (72 h), the model stress conditions were reached (Figure 9). The overload was then continued proportionally, and the failure characteristics of the roadway were simulated under increased mining stress (Tian et al., 2021; Zheng et al., 2021).




Figure 9 | Physical model boundary stress application process.







4 Results and analysis for the model experiment

The boundary stress was applied step by step according to the abovementioned ratio (Fang et al., 2023; Zhu et al., 2023). The experimental results are quantitatively described in terms of the top boundary stress of the physical model. The absolute values of deformation indicate the magnitude, which is positive toward the center of the roadway. Negative values of the abutment stress of the surrounding rock indicate compression. Based on the deformation rate, this compression includes the initial stage, the rapid rising stage and the slow rising stage, corresponding to stages ⓐ, ⓑ and ⓒ, respectively.



4.1 Deformation pattern of the surrounding rock

Section I is in the gob. In stage ⓐ, the floor deformation is larger than that of the roof (Figure 10). The deformation of the right coal pillar is relatively small. In stage ⓐ, the roof and the right sidewall are consistent and increase linearly. The line of demarcation of stages ⓐ and ⓑ is about 1.2 MPa. In stage ⓑ, the increments of deformation of the roof, floor, and right sidewall are 48.4 mm, 21.02 mm, and 15.14 mm, respectively. The damage to the roadway in stage ⓑ is obvious, and the increments of the three parts account for 77.14%, 83.68% and 56.14% of the total. In stage ⓒ, the average increment of deformation is only 4.85 mm. The deformation of the right sidewall is relatively large, and the vertical convergence is extremely small. The deformation patterns at different depths of the floor and sidewalls are similar. The deformation of the roof at the 0.5H and 1.0H positions is relatively small compared with that at the 0.1H position.




Figure 10 | Deformation of section I.



Section II is near the roof cut. The separatrix between the roof and floor deformation is 1.25 MPa and 1.50 MPa. In stage ⓐ, the vertical convergence exceeds 12 mm, with the roof deforming more than the floor (Figure 11). The deformation of the roof at the 0.1H position increases linearly. In stage ⓑ, the deformation of the roof increases by 25.87 mm, and the deformation of the floor increases by 14.51 mm. The deformation pattern at 0.5H position of roof is consistent with that at the 0.1H position. In stage ⓐ, the deformation of the sidewall increases linearly. Above 1.25 MPa, the deformation increases rapidly. In stage ⓑ, the increment of deformation of the left sidewall is 17.75 mm, which is 1.98 times larger than that of the right sidewall. In stage ⓒ, the average increase in sidewall deformation is 3.76 mm. The deformation pattern at the 0.5H and 1.0H positions of the left sidewall is consistent with the 0.1H position, and the left sidewall is the most severely damaged.




Figure 11 | Deformation of section II.



The pressure relief effect of the surrounding rock diminishes as it moves away from the roof cut. The roadway roof and floor consist of two stages, with boundary stresses of approximately 1.50 MPa and 1.69 MPa at the separatrix (Figure 12). In stage ⓐ, both the roof and floor deformations demonstrate an increased concave shape. In stage ⓑ, the vertical deformation increases linearly. The average growth rate of stage ⓑ is 4.44 times that of stage ⓐ. The sidewall deformation of section III can be divided into three stages, with stresses of 1.25 MPa and 1.75 MPa at the separatrix. The deformation of the left sidewall is 1.48 multiples that of the right, and the average deformation rates of stages ⓑ and ⓒ are 5.01 multiples and 1.62 multiples that of stage ⓐ, respectively.




Figure 12 | Deformation of section III.






4.2 Evolutionary pattern of abutment stress

The abutment stress in each section of the roadway does not always increase. To describe the characteristics of abutment stress, according to the rate of change at the 0.5H position, the stress process can be divided into the growth stage (stage ⓓ), the release stage (stage ⓔ) and the adjustment stage (stage ⓕ). The abutment stress in stage ⓔ reaches its peak value, and the average boundary stress is 1.15 MPa.

In section I, the roof abutment stress is relatively small. The maximum abutment stress at the 0.1H position of the roof is only 0.2 MPa. With the increase in deformation, the roof stress is continuously loosened until it drops to zero. The maximum roof abutment stress in the 0.5H position is 0.6 MPa, which is reduced by 0.2 MPa in stage ⓔ. The roof abutment stress at the 1.0H position has no significant release stage, with a maximum value of approximately 0.95 MPa (Figure 13). The pattern of the right sidewall is the same as that of the roadway roof. The abutment stress at the 0.1H position can also be divided into three stages. The roof cutting reduces the load of the coal pillars, but the right coal pillar still bears the stress of the roadway roof and the overlying strata. The coal pillar abutment stress is small in the shallower part of the right sidewall and relatively large at the 1.0H position. The floor support strength is higher than that of the roadway roof, so the abutment stress of the floor at the same depth is greater than that of the roof. With a further increase in the floor deformation, the floor stress is released. The amplitude of the drop at 0.5H position of floor is approximately 0.2 MPa.




Figure 13 | Abutment stress of section I.



The roof deformation at the rear of the longwall face pulls the roof stratum in front to move downward, resulting in a continuous increase in the abutment stress of the section II roof. In stage ⓓ, the maximum abutment stress at the 0.1H position of the roof is 0.32 MPa (Figure 14). In stage ⓔ, the maximum reduction in stress at the 0.1H position of the roof is 84.4%. The roof abutment stress at the 1.0H position increases continuously and reaches a peak value of 2.4 MPa. The abutment stress at the 0.1H position of the sidewall shows a three-stage pattern of change, but stage ⓔ of the left sidewall is relatively short. As the deformation continues to increase, the abutment stress of the left sidewall does not decrease significantly but continuously adjusts. In stage ⓕ, the abutment stress at 1.0H position of the right sidewall increases continuously and reaches a peak value of 2.47 MPa. The pattern of the floor abutment stress at the 0.1H position is similar to that of section I. In stage ⓔ, the floor stress is obviously diminished, with a maximum decrease of 0.49 MPa. In stage ⓕ, the abutment stress of the floor increases slowly.




Figure 14 | Abutment stress of section II.



The roof abutment stress at 0.5H position has no significant release stage, and it still increases gradually in stage ⓕ (Figure 15). The maximum roof abutment stress at the 1.0H position reaches 3.42 MPa, which is 1.6 multiples the upper boundary stress. The abutment stress at the same position of floor is similar to that of roadway roof. In stage ⓔ, there is no obvious stress release stage for the abutment stress at the 0.1H and 0.5H positions of two sidewalls. In stage ⓕ, the average abutment stress of the sidewalls is 1.04 MPa, and there is no obvious difference between the two sidewalls. As the loading stress increases, the roadway at the 0.1H position of the sidewall is destroyed, and its abutment stress drops to 0. The abutment stress in the 1.0H position of the right sidewall increases linearly with the boundary stress.




Figure 15 | Abutment stress of section III.






4.3 The convergence features of the mining roadway

The mining roadway converges inward and squeezes the composite support structure. Damage to the interior of the roadway primarily consists of shotcrete cracking, spalling and metal mesh bending (Figure 16A). With 0.51 MPa as the dividing line, roadway convergence is divided into a slow stage and a rapid stage according to the vertical rate of change (Figure 16B). The average convergence rate of change in the slow stage is 11.16 mm/MPa and that in the rapid stage is 34.93 mm/MPa. The left of section IV is the model gob, where the roof of the roadway is presplit and the vertical convergence deformation is the largest. Section V is in front of section IV and near the longwall face. Section VI is the farthest from the mining face, and the vertical convergence is relatively small. At a boundary stress of 1.69 MPa, the convergence values are 59.33 mm, 46.23 mm, and 36.22 mm for sections IV-VI, respectively.




Figure 16 | Deformation characteristics of roadway. (A) Failure mode. (B) Roadway convergence.







5 Numerical simulation research



5.1 Numerical model construction

A 3D numerical model was constructed using FLAC3D based on the belt roadway at the Xinshanghai No. 1 Coal Mine. The numerical model includes coal pillars and two gobs, and the inclination angle of the coal formation is 6° (Figure 17A). To improve the calculation accuracy, the grid near the roadway is densified (Li et al., 2022b). The constitutive model is the Mohr–Coulomb model (Li et al., 2022c; Najm and Daraei, 2023). The boundaries around the model and the bottom are constrained, and the top is free. Coal mining and roof cutting use null elements (Zhang et al., 2023). In this section, the same three sections as those in the model test and section D behind the longwall face are chosen for analysis (Figure 17B).




Figure 17 | Numerical simulation model. (A) Numerical simulation model. (B) Section location.






5.2 Vertical deformation of the surrounding rock

The vertical convergence of the roadway increases continuously from section III to section D (Figure 18). The vertical deformation of section III is approximately 147 mm, which is 29.32% less than that of section II. When the roadway is located at the gob, there is no coal seam support on the left side of the roadway, and the vertical deformation of the gob converges suddenly. The vertical deformation of section I is approximately 341 mm. Approximate amounts of roof and floor deformation in section III are reduced by 27.4% compared to the roadway without roof cutting. The floor of the gob and roadway in section D is severely heaved, and the vertical deformation of the roadway is more than 500 mm.




Figure 18 | Characteristics of the roadway vertical deformation.






5.3 Abutment stress of the surrounding rock

There is a significant stress concentration area in the left sidewall of section III, with a peak stress of 22.5 MPa, and the minimum spacing between the stress concentration zone and the roadway is about 4 m (Figure 19). The abutment stress of the right coal pillar is smaller than that of the left sidewall, i.e., approximately 20.0 MPa, and the roof abutment stress is much greater than that of the roadway floor. The roadway roof stress of section III is reduced by 9.77% compared to that of the roadway without roof cutting, and the stress on the right coal pillar is reduced by 15.38%.




Figure 19 | Distribution pattern of abutment stress in the roadway.



A maximum value of the left coal seam of section II is 27.5 MPa. Compared to the roadway without roof cutting, the stress on the left side of section II is increased by 10%, and the stress on the right coal pillar is decreased by 11.1%. Coal mining leads to a sudden drop in the stress of the roof and floor of the gob and then affects the distribution of the roof stress of sections I and D. The roof abutment stress of the roadway in section I is transferred to the right coal pillar, forming a stress concentration area within 4.5 m of the right sidewall, with a peak stress of 26.9 MPa. The roof and floor strata of the gob in section D have a large-scale tensile zone. The roof cutting of the rear roadway results in stress transfer to the front panel roof, and the abutment stress within 0.5H of the roadway is less than 20.0 MPa. The reduction in stress is beneficial for the stability of mining roadways.




5.4 Plastic zone

The plastic area increases continuously from section III to section I (Figure 20). The plastic area in the left sidewall of section III extends approximately 4.7 m, which is larger than that of the right sidewall. The plastic area of the floor is approximately 3.6 m larger than that of the roof. The plastic areas of the roof and the right sidewall of section II vary less, and the depth of damage to the floor increases. The left side of section II is severely squeezed and damaged by the action of high abutment stress. The maximum depth of the plastic area on the roof of section I is approximately 10 m upward, and the average depth on the floor and the right sidewall is 5 m. The plastic zone at the roof and floor level of the gob is significantly expanded to more than 10.5 m. Significant tensile–shear composite failure occurs in the roadway near the roof cutting.




Figure 20 | Characteristics of the distribution of the plastic zone.







6 Discussion



6.1 Comparison of the two model experiments

After the model experiment is complete, the physical model’s surrounding rock and roadway are excavated. Section I is in the gob and is the most deformed part of the two experiments (Figure 21). Roof cutting in the roadway caused the roof of the gob to collapse more fully. In monitoring section I of the roadway, the deformation of model B was greater than that of model A, suggesting that roof cutting accelerated the deformation of the surrounding rock behind the longwall mining face. However, the deformation of section III of the Model B (about 50 mm) roadway was smaller than that of Model A (about 61 mm), and the vertical size of Model B roadway increased by 7.91%. This can intuitively reflect the beneficial effect of roadway roof cutting. Through comparative experiments, it has been demonstrated that roof cutting without increasing the support structure can significantly reduce the deformation of the roadway in front of the longwall face and maintain the stability of the surrounding rock.




Figure 21 | Failure characteristics of the two model experiments.






6.2 Mechanism of soft-rock roadway protection by roof cutting

Four sections (1-1, 2-2, 3-3, and 4-4) are selected to analyze the mechanism of soft-rock roadway protection by roof cutting (Figure 22A). The mechanism and stress transfer process of roadway protection in soft-rock roadways are described as follows.




Figure 22 | Characteristics of rock strata failure. (A) Four typical sections. (B) Section 1-1. (C) Section 2-2. (D) Section 3-3. (E) Section 4-4.



(1) Cut off the transverse connection to the stratum behind the longwall face and transfer the stress to the front coal seam.

The transverse connection between the roof of the gob and the roadway behind the longwall face within the range of the cut is removed, and the movements of the surrounding rock of the two roofs are independent of each other (Figure 22B). The pressure from the overlying strata in the gob is transferred to the fully mechanized mining support and the front coal seam. The cut decreases the extension size of the rear roadway roof, reduces the additional force on the roadway roof caused by the rotary subsidence of the gob roof, and reduces the abutment stress of the coal pillar (Yang et al., 2021). The stress transfer results in an increase of 10% in the roof stress of the coal in front of the gob (Figure 22C). The average stress in the roof of the rear roadway is reduced by 33%, and the average stress in the front roadway is reduced by 12.57%, except for the left sidewall.

(2) Weaken the longitudinal connection of the roof and reduce the deformation of the front roadway.

The gob roof deforms and collapses because of coal mining (Figure 22D). The collapse of the roof in the gob also causes part of the gangue to invade the abandoned roadway. As the gangue continues to compress and compact, it also plays a supporting role in the overlying strata. Different from the gob, hydraulic supports and original support structures are present in the roadway. The rock of the roadway is still mechanically connected in the longitudinal direction (mining direction). Since the movement of the surrounding rocks in the gob no longer affects the roof of the rear roadway, the roadway is also deformed by the overlying strata (Figure 22E). In the mining direction, the deformation of the rear roadway is much larger than that of the front roadway. Due to the longitudinal connection between the rock formation and the supporting structure, the rear roadway also drags the front roadway as it deforms. The cut reduces the overall deformation of the rear roadway, weakens the traction effect, and reduces the front roadway deformation. The vertical convergence of the front roadway is reduced by 27.3%, and the coal pillar deformation is diminished by 15.7%.

(3) The stress distribution of the roadway is changed, and the average stress of the front roadway is reduced within the failure threshold.

The cut changes the stress distribution of the roadway. Except for the sidewall of the roadway, the average stress reduction of the surrounding rock is 16.7%. The average stress threshold at the transition between stage ⓓ and stage ⓔ is 1.29 MPa. If the stress exceeds 1.29 MPa, then the roadway is rapidly deformed, the stress is released rapidly, and the damage is irreversible. When the physical experiment results are converted on a similar scale, the corresponding stress threshold on site is 20.3 MPa. The numerical experiments show that the vertical stress in the main bearing area of the rock surrounding (within the range of 0.5H) the front roadway is less than 20.0 MPa. According to the Mohr–Coulomb criterion, the maximum principal stress in front of the roadway is reduced, and the diameter of the stress circle shrinks to the strength envelope (Wang et al., 2022b), which can ensure the safety of the roadway, thereby reconciling the contradiction between the high stress and low carrying capacity of soft rocks (Zhan et al., 2022). The roof cutting reduces the average stress within the failure threshold, so the safety of the roadway can still be guaranteed without increasing the support.




6.3 Engineering recommendations

The following should be noted during the field implementation.

	(1) The metal mesh at the sidewall of the roadway can use sliding laps to increase the coordination of deformation.

	(2) The initial supporting force of the fully mechanized mining support should be improved, and the guard board should be used to prevent the coal from spalling in the longwall face.

	(3) The cable behind the longwall face should be unloaded in time to weaken the effect of the longitudinal connection of the roadway support.







7 Conclusions

Two 3D physical experiments were conducted to study the mechanism of roof cutting and pressure relief for roadway protection. The abutment stress, roadway convergence, and plastic area were investigated by numerical simulations. On the premise of not increasing the support strength of the roadway, roof cutting significantly improves the stability and safety of the soft-rock roadway. The following conclusions can be drawn.

	(1) Under mining influence, the soft-rock roadway is severely damaged, and the damage is closely related to the deformation of convergence. The roof cutting of the rear roadway effectively reduces the deformation of the front roadway. Specifically, the vertical deformation of the front roadway is reduced by 27.4%, and the coal pillar deformation is reduced by 15.7%.

	(2) The pattern of stress change at the 0.5H position of a coal mining roadway includes the growth stage, release stage and adjustment stage. The stress of the roadway near the roof cutting is significantly reduced. The stress on the roof in front of the longwall face is transferred to the panel to be mined, and the stress of the panel increases by 10%. The surrounding rock near the roof cutting exhibits obvious tensile–shear composite failure, and the plastic zone expands to the high position of the roof of the gob, which is more conducive to the deformation and collapse of the gob.

	(3) Roof cutting reduces the stress of the front roadway within the critical failure threshold, which fundamentally weakens the factors inducing roadway deformation and failure. On the premise of not increasing the support strength of the roadway, roof cutting significantly improves the stability and safety of the soft-rock roadway. This study can provide a reference for controlling the deformation of coal mining roadways.
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The pile-anchor supporting structure is widely used in foundation pit engineering, it is particularly necessary for calculating lateral displacement of the pile-anchor supporting structure. The soil stress state is transformed by the additional stress caused by the prestress, thus the lateral displacement can be decreased own to pile-anchor supporting structure bearing active earth pressure had changed. Prestress as a concentrated force is decomposed into the horizontal component and vertical component, calculating the additional stress caused by the prestress and getting the formula of active earth pressure of considering the additional stress, setting up calculation model of the pile-anchor supporting structure. For typical examples of foundation pit engineering, the parameters are substituted into a program written based on derived formulas, and the elastic deformation superposition method is used to calculate the horizontal displacement of the pile anchor support structure. The comparison and verification is carried out by Finite element analysis. The influence of cohesion and friction angle on pile displacement, bending moment, and shear force has been studied. This study found that cohesion and friction angle have a significant impact on the displacement of pile anchor support structures.
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1 Introduction

Pile anchor support is an important support measure for deep foundation pits, which is combined with the anti-slip pile support method and the anchor rod support method. Its support principle combines the support principles of anti-slip piles and anchor cables, that is, the anti-slip force that prevents the slope from sliding in the foundation pit mainly comes from the anchoring force provided by the anchor rod and the anti-slip force provided by the anti-slip piles (Kung et al., 2007; Gao et al., 2020; Han et al., 2021; Zheng et al., 2021; Sun and Li, 2022a).

To study the bearing characteristics of pile anchor support structures in foundation pit support, slope support and other engineering projects, scholars have conducted a lot of work through numerical simulation(Lin et al., 2022; Sun and Li, 2022b; Yin and Fu, 2023) and experimental research (Fu and Hong, 2011; Li et al., 2020). Liu and Xu (2011) used the ADINA to simulate the deep foundation excavation and pile-anchor supports process, and analysis the support results of pile-anchor supports in ShenYang City. Through the field test of foundation pit engineering, Fu and Hong (2011) studied and analyzed the distribution and change law of reinforcement stress and pile moment during deep foundation pit excavation. Zhu and Wang (2013) combined field test and numerical analysis, taking pile-anchor support structure as an example, and proposed an analysis scheme combining monitoring of pile internal force and deformation with numerical analysis. Peng et al. (2014) analyzed the relationship between the pile-anchor support system and the nearby subway structure, and studied how to control the deformation of the nearby subway structure through the design of the pile-anchor support system. Saleem (2015) evaluated the main influencing factors of pile and anchor system collapse in five-star hotels under construction. In order to maintain the pile and backfill, earth anchors were installed during the excavation of the foundation pit. It is found that with the increase of grouting and ungrouting, 4 bolts are used for each bolt in the first row, and 5 bolts are used for the other three rows. On the basis of deformation coordination theory, Yin et al. (2016) deduced the solving model of working stress and prestress of PARBSS anchor rod. The results show that the calculation model is correct and the improved support system can be applied widely. Kung et al. (2007) used the finite element program analysis to analyze the main factors affecting the deformation of the retaining wall, and proposed a semi empirical calculation formula for the maximum deformation. According to the principle of survival of the fittest based on genetic algorithm, Wang (2021) designed the optimal design system of pile and anchor support structure for deep foundation pit. Combined with practical engineering examples, the research provides an important reference for the application of genetic algorithm in the field of foundation pit engineering. Recently, Liu et al. (2021) adopted monitoring techniques such as anchor rod axial force and deep horizontal displacement monitoring to study the mechanism of pile soil interaction in deep foundation pits. Taking a deep foundation pit in Xi’an as an example, Zheng et al. (2021) analyzed the redistribution of soil pressure and the variation of stress in the anchor pile support structure under local pile cutting conditions. To achieve a balance between structural capacity and cost-effectiveness, Chen et al. (2021) conducted research on different designs under pile anchor support. However, the above research lacks a calculation method for horizontal displacement of support piles considering prestress.

In this work, it is necessary to propose a simplified engineering algorithm that can quickly and accurately calculate the horizontal displacement of pile anchor support structure along the depth, taking into account the influence of anchor pre-stress in pile anchor support structure. This article calculates the horizontal displacement of the pile anchor support structure in the form of additional stress using the prestressed anchor rod, and uses the elastic deformation superposition method to calculate the horizontal displacement of the support structure. It is compared and verified with the current general design software and finite element analysis software for foundation pit support.




2 Additional stress calculation



2.1 Establishment of calculation model

The calculation diagram of the pile anchor support structure is shown in Figure 1. The axis coordinates corresponding to anchor rod 1 are y1, y2····,yn and the prestressing force applied to anchor rod 1-n is T1, T2, ·····,Tn EI represents the bending stiffness of the support pile and the edge load of the foundation pit is Qi; Applying prestressing force Tn on the anchor rod causes additional stress to be generated in the soil on the side of the support pile along the anchor rod position. The prestressed anchor rod is divided into a free section and an anchoring section. The free section passes through the potential sliding surface, and the soil behind the potential sliding surface can be regarded as a stable zone. The soil in the sliding area on the front side of the potential sliding surface is subjected to prestressing Tn.




Figure 1 | The Calculation diagram of pile-anchor supporting structure.






2.2 Calculation of additional stress

The prestressed Tn of the anchor rod in Figure 1 can be decomposed into two directions: vertical and horizontal, assuming the angle between Tn and the horizontal direction is α. The vertical component of the prestressed anchor rod is mainly transmitted to the soil at the bottom of the pile through the support pile. In practical engineering, the horizontal inclination angle α of the prestressed anchor rod is generally less than 15°, and the horizontal component is much greater than the vertical component. In terms of the deformation resistance of the support structure, the contribution of the horizontal component is much greater than the vertical component, so the role of the vertical component is temporarily ignored.

In this model, the anchor rod is actually arranged between two supporting piles, and after applying pre-stress to the anchor rod, additional stress is required at any point in the soil. This article draws inspiration from Sun Youlan’s (Poulos and Davis, 1974) “Elastic Solution of Rock and Soil Mechanics” to find the solution for additional stress at any point in the spatial semi infinite body under concentrated force. As shown in Figure 2, the additional stress at any point on the sliding surface of the horizontal component of pre-stress is:




Figure 2 | Normal force on the boundary of semi-infinite body.



 

 

where σx and τxy are normal and shear stresses respectively. In the calculation process, when the boundary of a semi infinite body is subjected to a normal concentrated force, and additional stress σv will also be generated, which plays a positive role in resisting deformation of the support structure. However, considering the influence of the top boundary condition of the supporting structure, σv has a large error between the calculated value and the actual value, so the influence of this stress is temporarily ignored in this paper.





3 Calculation of horizontal displacement of prestressed pile anchor support structure



3.1 Soil pressure calculation model

After the prestressed anchor rod of the pile anchor support structure is applied, additional stress will be generated in the soil on the pile side. The calculation diagram is shown in Figure 3, and the soil pressure on both sides of the support pile will also change accordingly. The calculation of the active soil pressure on the pile side needs to consider the influence of the additional stress generated by the prestressed anchor rod. In Figure 2, the combined force of the additional stress in the x-axis direction is  , and the combined force of the additional stress in the y-axis direction is zero. When calculating the active earth pressure on the side of the retaining pile, the non-limiting active earth pressure calculation method of clay proposed by Xu et al. (2020) is adopted, and the influence of additional stress in the soil is considered.




Figure 3 | Calculation diagram of displacement.






3.2 Calculation of principal passive soil pressure considering additional stress



3.2.1 Calculation of active soil pressure considering additional stress





 

 

where cm is the value of cohesive force development; φm is the limit value of internal friction angle; θ is the angle between the potential sliding surface of the wall bottom and the vertical direction; μ is the additional stress reduction coefficient, and the value of MM ranges from 0.2 to 0.5; c1 is the initial earth pressure; Sa is the failure ratio, ranging from 0.75 to 1.0; c1 is the weighted average value of cohesion; Sa is the displacement value required to reach the active state, and S(z) is the horizontal displacement value of the wall; γ1 is the weighted average of the soil mass density in the active zone; The axial coordinates of prestressed anchor rods T1, T2, and TN are y1, y2, and yn, respectively.




3.2.2 Calculation of passive earth pressure

 

 

 

where α is the corner stress coefficient, which is related to the length, width, and depth h of the foundation pit; m is a constant, with an average value of 0.64.





3.3 Calculation of horizontal displacement of supporting piles considering additional stress



3.3.1 Calculation of horizontal displacement of support pile at y1

The vertical direction is the y-axis, and the prestress at y=y1 is T1, at y=y2 is T2, and at ····· y=yn is Tn; Assuming a unit horizontal force is applied at y=y1, the bending moment at the corresponding position of the support pile is:

 

The shear force of the support pile under active soil pressure is:



The bending moment generated by the support pile is:

 

The horizontal displacement of the support pile under active soil pressure at y=y1 is:



Similarly, the horizontal displacement under passive earth pressure is:

 





Obtain the final horizontal displacement of y=y1 using the elastic superposition method:

 




3.3.2 Calculation of horizontal displacement of support piles at yn

Similarly, the horizontal displacement of the support pile at y=yn under active soil pressure



The horizontal displacement under passive earth pressure is:

 

The final horizontal displacement at y=yn is:

 

Similarly, the horizontal displacement of the pile anchor support structure at the bottom h of the foundation pit is calculated as:

 

By using the superposition method, the horizontal displacement curves of the support pile calculated by equations (17), (20), and (21) are superimposed to obtain the final horizontal displacement curve of the support pile considering anchor prestress. Compared to the current calculation rules of foundation pit design software, this article considers the influence of anchor pre-stress on the horizontal displacement of the support structure when calculating the horizontal displacement of the support pile. The additional stress generated by anchor pre-stress in the soil is used to calculate the horizontal displacement of the pile anchor support structure, which is more practical in engineering.






4 Numerical analysis



4.1 Verification examples

In this section, the finite element method was used to verify the correctness of the calculation method in this paper. A certain pile anchor support foundation pit project is used, and the excavation depth of the foundation pit is 19.8m. The design adopts pile anchor support structure, soil nail walls plus pile anchor support structure, and soil nail wall support structure support in areas with large local space. The foundation pit is classified as Level 1, with an overall stability coefficient of 1.3 and a partial load coefficient of 1.25. The parameters of the soil are shown in the Table 1.


Table 1 | Soil parameters.



Figure 4 shows the mesh deformation diagram. Figure 5 shows a comparison between the finite element results and the calculation methods presented in this article. From the comparison in Figure 5, it can be observed that there are slight differences in the results obtained by the two calculation methods, but the overall trend is consistent. This indicates that the theoretical calculation method proposed in this article can be used to analyze the horizontal deformation of pile anchor support structures.




Figure 4 | Mesh deformation diagram.






Figure 5 | Comparison results between the calculation method in this article and the finite element method.






4.2 Parameter analysis

Figures 6–11 show the effects of soil cohesion and friction angle on the horizontal deformation, pile bending moment, and pile shear force of the support pile. The cohesive forces of the soil are selected as 10kPa, 20kPa, 30kPa, and 40kPa respectively; The internal friction angles are selected as 20°, 24°, 27°, and 30°.




Figure 6 | Effect of soil cohesion on pile displacement.






Figure 7 | Effect of friction angle on pile displacement.



The influence of cohesion and friction angle on pile displacement is shown in Figures 6, 7. As shown in Figure 6, with the increase of soil cohesion c, the horizontal elastic resistance of the soil changes. The most direct impact on the support structure is that the horizontal displacement of the pile decreases accordingly. The horizontal displacement decreases most significantly at around -11.5m of the pile body, and the variation trend of the four curves shows a state of large in the middle and small at both ends, which better reflects the basic law of horizontal deformation of the support structure. At the same time, it is not difficult to see from the figure that at the top of the pile, the displacement of the pile body varies around -3.41mm under four different parameters. The overall trend of the entire curve is as follows: as the soil cohesion c value increases, the overall displacement of the pile body decreases. When the soil cohesion is taken as 10kPa, 20kPa, 30kPa, and 40kPa, the maximum horizontal displacement of the support pile is -10.74mm, -9.67mm, -7.36mm, and -6.82mm, respectively. Compared to the soil cohesion c taken as 10kPa, it decreases by 9.96%, 31.47%, and 36.50%, respectively. That is to say, when the soil cohesion c is taken as 20kPa and 30kPa, the corresponding displacement of the support pile decreases more significantly. From Figures 6, 7, it was found that as the cohesion and friction coefficient increase, the deformation decreases. This is because the increase in soil cohesion increases the strength of the soil, increases the bearing capacity of the pile anchor support structure, and reduces deformation.

From Figure 7, it can be seen that, while other parameters remain unchanged, only changing the internal friction angle of the soil itself results in a basically consistent trend in the displacement curve of the pile body. The trend also shows a small change at both ends and a large change in the middle, meeting the basic law of horizontal deformation of the support structure. When the friction angle increases, the horizontal displacement of the pile body significantly decreases. At the same time, it is not difficult to see from the figure that the displacement of the pile body at the top of the pile varies slightly under four different parameters, approximately -3.12mm. This is because the upper soil nail wall structure has completed support at this time, and the lower support pile is in a static state without any movement. When the internal friction angle is 20°, 24°, 27°, and 30°, the maximum distribution of horizontal displacement of the pile body is -15.12mm, -13.47mm, -12.22mm, and -9.38mm. Compared to the friction angle of 20°, it decreases by 10.91%, 19.17%, and 37.96%, respectively.

From Figures 8, 9, it can be seen that under different burial depths, the soil cohesion c value gradually increases with the increase of burial depth, and the bending moment of the pile body within the range of 10m gradually increases. As the excavation depth increases, the bending moment and shear force of the pile body significantly change, and as the c value increases, the absolute values of the maximum bending moment and maximum shear force of the pile body gradually decrease. At the same time, it is not difficult to see from the figure that the absolute values of the maximum bending moment and maximum shear force corresponding to the excavation depth of 10m are the maximum values, and when the cohesion is taken as 10kPa, 20kPa, 30kPa, and 40kPa, the corresponding maximum bending moment values are 190.76kN · m, 172.16kN · m, 136.27kN · m, 130.77kN · m, respectively, with a difference of 9.75%, 20.58%, and 4.04%. The maximum shear force values are 158.79kN, 155.38kN, 140.02kN, and 137.51kN, respectively, the difference between the two is 2.15%, 9.88%, and 1.80%, respectively. When c is taken as 20kPa and 30kPa, the corresponding maximum bending moment and shear value decrease significantly, which is consistent with the results shown in the comparison diagram of pile displacement when the soil cohesion changes. Through Figure 8, it is found that as the cohesion increases, the bending moment decreases. Through Figure 9, it is found that with the increase of Cohesion, the change in shear force is not significant.




Figure 8 | Effect of cohesion on pile bending moment.






Figure 9 | Effect of cohesion on pile shear force.



From Figures 10, 11, it can be seen that under different values of the internal friction angle of the soil, as the excavation depth of the foundation pit increases, there are significant changes in the bending moment and shear force of the pile body. Moreover, as the internal friction angle of the soil increases, the absolute values of the maximum bending moment and maximum shear force of the pile body show a gradually decreasing trend. At the same time, it is not difficult to see from the table that the absolute values of the maximum bending moment and maximum shear force corresponding to the excavation depth of 10m are the maximum values of the entire construction process, and when the friction angles are taken as 20°, 24°, 27°, and 30°, the corresponding maximum bending moment values are 256.31kN · m, 206.52kN · m, 190.22kN · m, 167.41kN · m, respectively, with differences of 19.43%, 7.89%, and 11.99%, and the maximum shear force values are 225.71kN, 189.83kN, respectively 183.94kN and 163.66kN, with a difference of 15.90%, 3.11%, and 11.03% respectively, and the absolute values of the maximum bending moment and maximum shear force of the pile body when the internal friction angle of the soil changes are generally greater than the corresponding results when the soil cohesion changes. From Figures 10, 11, it was found that as the friction angle increase, the bending moment shear force decreases.




Figure 10 | Effect of friction angle on pile bending moment.






Figure 11 | Effect of friction angle on pile shear force.







5 Conclusions

In this paper, a computational model is presented to quickly and accurately calculate the horizontal displacement of pile anchor support structure along the depth, taking into account the influence of anchor pre-stress in pile anchor support structure. Based on the proposed model, the main findings as follows:

	The displacement increases with the increase of cohesion and friction angle.

	As the cohesion and friction angle increase, the bending moment decreases. As the friction force increases, the change in bending moment is not significant.

	As the cohesion and friction angle increase, the shear force decreases.
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The study conducted a pure rotation test of 720° for saturated remolded Q2 loess under principal stress axis (PSA) rotation when deviatoric stress and the intermediate principal stress ratio are different, also paying attention to examining the changes of strain accumulation and pore pressure of such loess. According to the test, as the PSA rotates continuously, the pore water pressure exhibited by saturated remolded loess presents a normal cyclic accumulation elevation, and under the same deviatoric stress conditions, the pore water pressure accumulation trend of different principal stress ratios is the same; however, the magnitude is different. The increment of pore water pressure becomes smaller as the number of cycles increases. When the deviatoric stress level is low, the material hardening is in a cyclic stable state, the strain component remains stable with the continuous rotation of the PSA, and the strain path area is reduced, together with a stable final size. In case of higher deviatoric stress, the material strength cycle becomes weaker and the strain component accumulates slowly as the PSA (the spiral line of the strain path) continuously rotates in the γzθ−(ϵz−ϵθ) plane, and gradually expands until failure. The increased intermediate principal stress is accompanied by accelerated strain development speed and advanced failure.
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1 Introduction

With China’s western development and “the Belt and Road initiative” strategy, the transportation network construction in the western region has been developing vigorously, in order to meet the needs of the western economy’s prosperity and development and to strengthen the need for exchanges and cooperation between East and West. In Western China, especially in Northwest China, the coverage area of structural loess is more than 60 × 104 km2, which spans Gansu, Ningxia, Shaanxi, Shanxi, Qinghai, Inner Mongolia, Henan, and other provinces. The loess distribution area is rich in energy and mineral resources, undertakes the strategic task of transporting resources to the East, and has built many important transportation roads.

In subgrade engineering, most of the loads appear in the form of cyclic dynamic loads, especially traffic loads. Therefore, the properties of the sample under cyclic torsional shear load are closer to the actual engineering conditions. Cyclic rotation tests regarding the main stress axis have been conducted (Miura et al., 1986; Brown, 1996; Chazallon et al., 2006; Kumruzzaman and Yin, 2010; Ishikawa et al., 2011; Cai et al., 2016; Guo et al., 2016; Qian et al., 2016; Wang et al., 2016; Shen et al., 2017) and obtained useful test results. Grabe (2009) carried out three kinds of principal stress direction change path tests in principal stress space, namely, axial rotation, circular rotation, and directional shear of principal stress, and investigated the long-term dynamic characteristics exhibited by saturated soft clay under traffic load. By virtue of the hollow torsional shear system, Yang et al. (2007) carried out the rotation test regarding the pure principal stress axis (PSA) in case of unchanged intermediate principal stress coefficient. According to the test, in the face of unchanged generalized shear stress, pure PSA rotation will result in pore pressure accumulation and strain development and even lead to the generation of liquefaction. Tong et al. (2010) carried out a test similar to Yang’s and studied the evolution of the sample strain component and volumetric strain when the number of cycles changes under PSA rotation. Zhou et al. (2014) analyzed the law, internal mechanism, and influencing factors of plastic strain increment direction of clay under the condition of PSA rotation. However, scholars such as Ishikawa et al. (2011) and Cai et al. (2015) found that the rotation of the principal stress involved in the stress path of traffic load will accelerate the accumulation of transverse strain and weaken the vertical rebound modulus. Uthayakumar and Vaid (1998) carried out a series of monotonic shear tests with different principal stress direction angles on different sands by using a hollow torsional shear instrument. According to the test, the direction angle of principal stress remarkably impacts sand strength and deformation, and the softening and hardening degrees of sands are different. Symes et al. (1984) conducted the torsional shear test of the hollow cylinder test under undrained conditions on the remolded ham river sand, finding the obviously different pore pressure characteristics when the PSA rotates positively and reversely, in the case of constant shear stress. Ishihara and Towhata (1983) used Toyoura sand from Japan to conduct the cyclic rotation test of the PSA with the constant shear stress value under undrained conditions. The results also show that compared with the triaxial cyclic shear test, the generation rate of pore water pressure under the rotation of the PSA is significantly faster. As found by Wong and Arthur (1986), the cyclic PSA rotation strengthens the production of pore pressure, thereby lowering the soil resilience modulus.

It can be seen from the above research that many scholars have carried out extensive experimental research on the principal stress rotation of soil. The experimental research with regard to the continuous PSA rotation mainly pays attention to sandy soil and soft clay, and there is basically no research that examines the principal stress of loess, let alone the non-coaxial properties exhibited by loess under the continuous PSA rotation. Geotechnical materials with directional PSA shear and pure rotation PSA present a strong non-coaxiality, which is caused by anisotropy as it can weaken the soil strength. In addition, existing experimental research on the continuous PSA rotation of sand or soft clay only focuses on small rotation and seldom pay attention to the soil non-coaxial and strain accumulation characteristics with large PSA rotation. Hence, our study employs the hollow cylinder torsional shear instrument for conducting the undrained test on saturated loess under the complicated stress path of cyclic rotation PSA under different intermediate principal stress ratios (IPSRs) and generalized shear stress. Compared with the cyclic triaxial test, the cumulative pore pressure and deformation caused by the rotation of the PSA are analyzed. In addition, the anisotropy and non-coaxiality of stiffness weakening under this cyclic stress path are analyzed. It provides a direct experimental basis for establishing the non-coaxial constitutive model of clay and simulating the deformation characteristics of saturated soft clay under traffic load.




2 Stress path of continuous PSA rotation and test scheme



2.1 Stress path

Figure 1 demonstrates the stress path of pure PSA rotation. The pure rotation test falls into consolidation and rotation, with the former falling into isotropic consolidation and anisotropic consolidation. O and OA of Figure 1 display the isotropic and anisotropic consolidation, respectively. The purpose of anisotropic consolidation is to ensure that p remains unchanged and increases to the required q value by adjusting internal and external confining pressures or axial forces, after consolidation rotating from point A and counterclockwise along A-B-C-D-A; the rotation angle in stress space is 2α. Hence, 180° is taken as a cycle (Figure 1).




Figure 1 | The stress path of the pure rotation tests.



In the process of testing, the internal and external confining pressures were controlled; axial stress and torsional shear stress were also controlled to make the average stress p, deviatoric stress q, and the ratio of intermediate principal stress b constant. The rotation rate of principal stress is controlled by controlling the cycle of the above four loading components. In this paper, the rotation rate is controlled by 0.2°/min.

Figure 2 displays the stress state of the hollow cylindrical sample and soil element. Notably, the PSA rotation is the rotation in the plane that includes the angle α between the PSA in the sample’s vertical plane and circumferential plane. The unit body is composed of four independent stress components (torsional shear stress τzθ, radial stress σr, circumferential stress σθ, axial stress σz), which have three main directions. In the vertical, circumferential, and radial planes, they are the first, the third, and the second principal stresses. The four stress components are generated by torque M, internal and external confining pressures (pi,po), and axial force W.




Figure 2 | Soil element in a hollow cylinder apparatus.






2.2 Sample preparation and test scheme



2.2.1 Preparation of remolded samples

The soil is crushed, sieved according to the standard, dried, weighed, and prepared into wet soil with moisture content of 16.4%, and then sealed and stored in plastic bags for more than 2 days to make the soil fully uniform. According to the sample size, the dry density is controlled to 1.69 g/cm3, the weight of the required wet soil is calculated, and the wet soil pressed uniformly in 10 layers (Figure 3).




Figure 3 | Preparation of remolded sample (Wang et al., 2019).






2.2.2 Test scheme

The pure rotation test in this paper mainly studies the pure rotation test of saturated remolded loess under different deviatoric stresses and different intermediate principal stress ratios (IPSRs). The consolidation pressure is uniformly selected as 200 kPa. The consolidation is divided into equal consolidation and pressure bias consolidation, and the rotation rate is 0.2°/min. The pure rotation tests involved six samples, setting the deviatoric stress at 50 kPa and 75 kPa and the IPSR b at 0, 0.5, and 1, respectively. The sample is undrained in the testing process, and Table 1 lists the specific test scheme.


Table 1 | Test program.








3 Test results and analysis



3.1 Test load and stress

The pure rotation test regarding the PSA is a relatively complicated stress path in the current geotechnical test. Due to the constant equivalence of p, q, and b during the test and only changing the direction of the principal stress, it is necessary to better control the loading mode of four external force inputs. In the pure rotation test of the PSA, the application of internal and external confining pressures, axial force, and torque adopts sine wave input, and the cycle is the same; also the same as that of the PSA rotation, the specific scheme shall be set before the test and realized by the operation program of GCTS.

Taking q = 50 kPa as an example, Figure 4 shows the loading mode of axial force and torque components with increasing of the cycle under different IPSRs. According to the figure, for achieving the above stress path, axial force and torque under different IPSRs have consistent loading waveform laws, but the amplitude differs, each input stress component can be controlled independently, and the control result is relatively stable; therefore, the above path can be realized.




Figure 4 | Actual loading waveforms of external axial load and torque.



Figure 5 shows the actual loading waveforms of internal and external confining pressure with the number of cycles under different IPSRs. For realizing the above stress path, axial force and torque under different IPSRs have different loading waveforms, and their amplitudes also differ. It is allowed to independently control the internal and external confining pressures. The control results are relatively stable, and the peripheral pressure deviates slightly on the control path; however, the above path can be realized within the error range.




Figure 5 | The actual loading waveforms of the inner and outer pressures.



Figure 6 displays the principal stress variation as cycle changes under different IPSRs. Relying on the above loading method regarding axial force and torque under internal and external pressures, the principal stress is relatively stabilized under different IPSRs.




Figure 6 | The variations of the principal stress (q = 50 kPa).



Figure 7 shows the stress paths in the deviatoric plane under different principal stress ratios, which are consistent with the ideal stress path in Figure 1.




Figure 7 | The actual stress path of the pure rotation tests (q = 50 kPa).






3.2 The development of pore pressure

Figure 8 demonstrates the pore water pressure cumulative law with rotation number under different IPSRs and deviatoric stresses. As the PSA rotates continuously, the pore water pressure presents a normal cyclic cumulative growth. When the deviatoric stress is the same, pore water pressure presents a similar cumulative law regardless of IPSRs, but the size differs. IPSR increase leads to increased final stable pore water pressure when b = 0. The development of the principal shrinkage stress is similar to that of the material with the principal shrinkage stress of 0.5; therefore, the development of the principal shrinkage stress is smaller than that of the material with the principal shrinkage stress of 0.5 in the process of deposition. Accordingly, increment of pore water pressure becomes smaller as the number of cycles increases, and the cumulative pore water pressure takes up the largest proportion of the total following the first cycle. According to Figures 8, B, greater deviatoric stress reports rapid pore water pressure accumulation and larger stable pore water pressure. Also, when deviatoric stress is the same, larger intermediate principal stress denotes less rotation failure, revealing the smaller strength.




Figure 8 | Excess pore pressures generated during pure principal stress rotation.



The ratio of pore water pressure to effective stress is the pore water pressure ratio (PWPR = uw/p’). The variation of PWPR with the rotation angle of principal stress for different cycles under different deviatoric stresses and IPSRs is shown in Figure 9. In the case of q = 50 kPa, the PWPR under different IPSRs changes in the same way. In the first cycle, the PWPR grows slowly with the rotation angle. After the second cycle, the PWPR presents an increasing-to-decreasing trend as the rotation angle increases; however, on the whole, the PWPR increases from accumulation after each cycle, i.e., faster pore pressure accumulation rate at the initial rotation stage. The pore pressure accumulates more slowly due to increased rotation cycles. If the sample is not damaged, the pore pressure will develop toward a gradually stable direction.




Figure 9 | Variation of normalized excess pore pressure ratio with ασ (q = 50 kPa).



Clearly, the relationship between the principal stress direction angle and the included angle between the principal stress direction and the transverse axis in the deviatoric plane is twice (Figure 1). Hence, the direction angle of 180° denotes a cycle in the deviatoric plane and the development of pore water pressure is one cycle when the direction angle range is 0–180° (uσ=0°=uσ=180°); the pore water pressure presents a continuous change trend as the principal stress direction angle increases. Considering the massive data points, Figure 9 is the pore water pressure development diagram for selecting some points in the test process, and the midpoint fluctuates in the diagram because of the measurement error of the test instrument.

When the deviatoric stress increases to q = 75 kPa, the pore pressure accumulation rate accelerates and the sample will be in an unstable state. Figure 10 displays how the pore pressure ratio changes with the principal stress rotation angle. b = 0, the pore pressure ratio increases gradually in the first and second cycles, decreases first and then increases in the third and fourth cycles, and finally accumulates; b = 0.5, the pore pressure ratio grows in the first and second cycles and presents an increasing-to-decreasing trend in the third and fourth cycles till the damage of the sample but eventually accumulates, as shown in Figure 10B. The pore pressure ratio development is associated with the pore pressure development law, because pore pressure increases and decreases suddenly, as shown in Figure 10B. In the case of b = 1, the same damage occurs in the first cycle, the pore pressure ratio grows with the principal stress rotation angle, and the pore pressure accumulation is small.




Figure 10 | Variation of normalized excess pore pressure ratio with as (q = 75 kPa).






3.3 The development of strain

Figures 11, 12 demonstrate the strain component variation under various stress paths when the principal stress rotation number changes. In the case of q = 50 kPa and b = 0 (Figure 11A), the axial strain ϵz and radial strain ϵr with the increase of the number of cycles first accumulate a small amount and then remains stable. The other strain components do not change as the cycle increases. The main reason is that at the beginning, with the application of stress, the soil is compressed and deformed, causing partial strain, followed by elastic strain, i.e., soil hardening. When b = 0.5, as shown in Figure 11B, the radial strain ϵr with the increase of cycles first accumulates a small amount and then remains stable. The other component has stable strains with cycle increase, and the strains are within the range of elastic deformation, and the soil is hardened. When b = 1, as shown in Figure 11C, the circumferential strain ϵθ and radial strain ϵr gradually increase and accumulate with the increase of cycles and then remains stable. Other components have stable strains regardless of the cycle change. In the pure rotation test regarding principal stress, upon the same deviatoric stress, IPSR greatly impacts the strain component development.




Figure 11 | Variation of strain components during pure principal stress rotation (q = 50 kPa).






Figure 12 | Variation of strain components during pure principal stress rotation (q = 75 kPa).



When q = 75 kPa, as shown in Figure 12, the strain component undergoes a gradual accumulation as rotation cycles increase. The accumulation degree changes with IPSR and increases slowly with IPSR before the occurrence of a large strain accumulation. Figures 12B, C show the sample failure. Due to the large deviation stress q, there is a large plastic strain accumulation and then the sample is damaged. The strain component shows different developments and degrees under different IPSRs. When the conditions are same, the IPSR remarkably impacts the strain component development.

Figures 13, 14 demonstrate the strain path developments in the γzθ−(ϵz−ϵθ) plane. When q = 50 kPa, the strain development is small and within the elastic range. As the principal stress rotates cyclically, the strain path area is reduced, the final size becomes stable, and the strain surface area is along the (ϵz−ϵθ) plane. When b = 0 and b = 0.5, it moves to the left; when b = 1, it moves to the right and is finally in a stable state. Therefore, when q = 50 kPa, the failure stress is not reached and the material hardening is in a cyclic stable state.




Figure 13 | Strain paths in deviatoric strain space (q = 50 kPa).






Figure 14 | Strain paths in deviatoric strain space (q = 75 kPa).



With the deviatoric stress reaching q = 75 kPa, (Figure 14), the spiral line of the strain path gradually expands in the plane until failure, indicating the expansion and failure of the plastic strain accumulation cycle, impacted by the deviatoric stress. Strain exhibits a similar development trend under different IPSRs; nevertheless, intermediate principal stress increase leads to accelerated strain development speed and advanced failure time.

In order to further illustrate the cyclic strengthening or weakening properties of the above saturated remolded loess under the pure rotation of the PSA with different deviatoric stresses, according to the definition of reference (Desrues and Chambon, 2002), we take the secant modulus of the ith cycle as the shear stiffness Gi of the remolded loess and the cycle-based Gi/G1 variation as the shear stiffness evolution in the process of PSA rotation. In the case of q = 50 kPa, the stiffness ratio >1 and the stiffness ratio elevates slowly with the cycles; the process is called stiffness strengthening (Figure 15). In the case of q = 75 kPa, the stiffness ratio <1 and the stiffness ratio presents a downtrend as the number of cycles increases, showing the phenomenon of stiffness weakening. In both cases, the IPSR and stiffness ratio change more slightly and there is a negative relation between the two ratios. In conclusion, for the remolded loess in this paper, its stiffness ratio has both strengthening and weakening with the increase of cycles, which is related to the magnitude of deviatoric stress, whereas for sandy soil (Yang et al., 2007), there is cyclic weakening, which is independent of the magnitude of deviatoric stress, which is an important difference from sandy soil.




Figure 15 | Variation of stiffness ratio for different b values.







4 Conclusion

The continuous pure rotation tests of PSA are carried out on the saturated sample of Q2 remolded loess by a GCTS hollow cylinder instrument. After studying the pore pressure variation, strain accumulation, and stress-strain evolution regarding remolded loess, the main conclusions are as follows:

	(1) As the PSA continuously rotates, the cumulative pore pressure following the first cycle occupies the largest proportion of the total. Greater deviator stress reports rapid pore pressure accumulation and larger stable pore pressure value.

	(2) The pore water pressure of saturated remolded loess shows a regular cyclic accumulation increase, and under the same deviatoric stress conditions, different IPSRs exhibit the same pore water pressure accumulation law, whereas the degree differs. The increment of pore water pressure becomes smaller as the number of cycles increases.

	(3) The strain component presents different developments and degrees upon different IPSRs. The IPSR can remarkably affect strain component development when conditions are the same. Intermediate principal stress increase is accompanied by accelerated strain development speed and advanced failure.

	(4) When the deviatoric stress level is low, the material hardening is in a cyclic stable state, the strain component remains stable with the rotation of the PSA, and the strain path area is reduced, together with a stable final size. When the deviatoric stress level is high, the material strength cycle weakens, the strain component gradually accumulates with the rotation of the PSA, and the strain path is a spiral line in the γzθ−(ϵz−ϵθ) plane and gradually expands until it is damaged.
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The mesostructure of brittle rocks, such as granite, plays a vital role in determining their mechanical properties and failure mode. Understanding the influence of rock mesostructure on mechanical behavior requires a realistic representation of grain size distribution, grain shape, and average grain size. In this study, we developed a breakable polygonal discrete element model that incorporates mineralogical composition, grain size distributions, and grain shape to simulate the rock mesostructure. Numerical specimens with varying mesostructures were created to represent different grain size, shape, and distribution characteristics. Quasi-static uniaxial compressive loading tests were conducted on these specimens to analyze their peak strength and macroscopic failure modes. The results revealed a strong linear relationship between the quasi-static compressive strength of the rock and mesostructure parameters, including average grain size, grain size coefficient, and grain roundness. Additionally, the simulation results demonstrated that the rock mesostructure significantly influenced the quasi-static compression failure mode. The proposed breakable polygonal discrete element model has the potential to predict the macroscopic behavior of brittle rocks accurately. It provides a reliable method for studying the effect of mesostructure on the quasi-static compressive mechanical behavior of rocks.
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1 Introduction

Rocks, composed of one or more minerals, are inherently heterogeneous due to their diverse composition, type, size, shape, and spatial distribution. Previous research has indicated that the mechanical characteristics and deformation behavior of rocks are primarily controlled by their internal mesostructures, especially crystalline rocks (Wang et al., 2022). Granite, a typical crystalline rock, is a common host rock for a variety of engineering and geologic applications due to its widespread occurrence and desirable mechanical properties (e.g., durability and high strength). Hence, a comprehensive analysis of the influence of mesostructure characteristics, including grain size, distribution, shape, and mineral composition, on the mechanical response of granite is crucial.

In recent decades, numerous laboratory experiments have been conducted to explore the impact of mesostructure on the macroscopic mechanical behavior of rocks (Fredrich et al., 1990; Eberhardt et al., 1999; Keikha and Keykha, 2013; Li et al., 2020). The findings indicate that the mechanical characteristics of granite are generally a function of mineralogical parameters. For instance, Fredrich et al. (1990) carried out triaxial compression experiments on rock with various grain sizes and observed an inverse relationship between the confining pressure needed for the rock to transform from brittle to plastic and the grain size. Eberhardt et al. (1999) conducted an analysis of the impact of grain size on crack initiation and propagation in Lac du Bonnet granite. Their findings revealed a decrease in rock strength as grain size increases. Keikha and Keykha (2013) conducted a study on two types of granites and observed a correlation between the mechanical characteristics of the rocks and their petrological parameters. Recently, Cowie and Walton (2018) analyzed the mechanical properties and mineralogical parameters of 58 different granite types from 12 countries to gain a complete understanding of their interrelationships. The study demonstrated that incorporating both grain size parameters and mica modal percentage led to improved predictions of critical mechanical properties in granitic rock. Furthermore, they also identified that previous correlations proposed in the literature may be spurious due to the presence of unknown additional variables that are correlated with both the dependent and independent variables used in establishing those correlations. As we know, the randomness of rock formation processes, including mineral crystallization and subsequent deformation events, leads to inherent variability in the mesostructure of rocks. Even within the same rock type, variations in mineral grain sizes, their spatial distribution, and the overall mineral content can be significant. This natural variability poses difficulties in conducting laboratory experiments that precisely replicate the exact mesostructure parameters of rocks. Furthermore, Laboratory experiments typically involve a limited number of samples, and the variations in mesostructure among these samples can introduce uncertainties and hinder the establishment of robust correlations.

To overcome these challenges, numerical simulations have become an effective method to study the influence of rock mesostructure due to their high repeatability and low cost. In order to accurately model the interactions at the grain-scale level, grain-based models (GBMs) have been proposed and employed in combination with various numerical methods, including the finite difference method (FDM) (Xiao et al., 2022), finite-discrete element method (FDEM) (Abdelaziz et al., 2018; Fukuda et al., 2020; Zhou et al., 2020), discrete element method (DEM) (Zhang et al., 2020; Pan et al., 2021a; Kong et al., 2022). Among them, the DEM method can explicitly simulate crack initiation and propagation, making it an ideal method for modeling the mechanical characteristics and failure process of rocks (Wang and Yan, 2022). The current mainstream grain-based discrete element models mainly include the particle flow code grain-based model (PFC-GBM) (Zhang et al., 2020; Quan et al., 2023) and the universal distinct element code grain-based model (UDEC-GBM) (Gao et al., 2016; Wang et al., 2021; Huang et al., 2023). Some researchers have used PFC-GBM to examine the effect of grain size on the strength of granite and found that rock strength increases with the increase of grain size (Han et al., 2021; Peng et al., 2021). Gui et al. (2016a) employed the UDEC model with unbreakable grains and also observed that rock strength increases with grain size. However, conflicting results regarding the influence of grain size on granite strength have been observed in existing numerical simulations. For instance, Wang et al. (2021) employed the breakable UDEC-GBM model and reported a decrease in the strength of granite with increasing grain size. Moreover, previous investigations have primarily focused on grain size and distribution, overlooking the potential effect of mineral spatial distribution and grain shape on the mechanical properties of granite. These factors remain largely unexplored and warrant further investigation to comprehensively understand their impact on the mechanical behavior of granite.

According to Gao et al. (2016), the PFC-GBM approach has been identified to have a drawback of high inherent porosity resulting from the spherical shape of its particles. This characteristic poses challenges in accurately modeling low porosity rocks such as granite using this method. Conversely, UDEC-GBM has a tightly interlocked block structure and does not have a porosity issue. Therefore, the UDEC-GBM is considered more suitable for modeling rocks with low porosity. Furthermore, it is widely recognized that the microscopic cracking process in rocks involves both intergranular and transgranular failure mechanisms (Gulizzi et al., 2018; Ghasemi et al., 2020; Li et al., 2023). In this study, the breakable UDEC-GBM model will be utilized to analyze the influence of mesostructure characteristics on the quasi-static compression behavior of granite. This model takes into account the breakability of grains and allows for a more accurate representation of the mechanical response of granite under compression. By considering the specific mesostructure parameters of the rock, such as grain size, shape, and distribution, the model can provide insights into how these factors affect the overall behavior of granite under compression.




2 Numerical methodology



2.1 Breakable grain-based model in UDEC

The grain-based model is a technique that utilizes a polygonal structure to represent grain topology. By analyzing optical microscopy images of granite (Figure 1A), two-dimensional grain structures can be described by polygonal boundaries (Ghasemi et al., 2020). In the UDEC-GBM approach, the behavior of polygonal grains can be classified into different categories: deformable or rigid, and breakable or unbreakable. It is important to note that unbreakable grains, whether they are deformable or rigid, limit the development of intra-granular cracks. This is because there are no potential pathways within the grains to accommodate the propagation of such cracks. As a result, only intergranular cracks along the grain interfaces are allowed to propagate in the simulation. Previous research has demonstrated that rocks subjected to external loads generate both intergranular and transgranular fractures, as depicted in Figure 1B (Ghasemi et al., 2020).




Figure 1 | Micrograph image of granite (A) Fresh sample, (B) Crack initiation sample (Ghasemi et al., 2020).



The breakable UDEC-GBM method proposes subdividing each grain into multiple small triangular or polygonal sub-grains to achieve grain breaking. Previous research has shown that the heterogeneity in shape and size of polygonal blocks, resembling natural mineral grains, can induce axial splitting, while triangular blocks with greater kinematic freedom tend to exhibit shear failure mechanisms (Mayer and Stead, 2017). As crystalline rocks are more prone to experiencing tensile failure under uniaxial loading, this study utilizes a dual-layer discretization method with sub-polygonal blocks to model intra-granular and inter-granular fractures. As depicted in Figure 2, the breakable GBM generation process using UDEC can be described as follows: (a) Generating polycrystals as Voronoi tessellations in square domains using Neper, as shown in Figure 2A. Indeed, Neper is a widely used open-source software package for generating and meshing polycrystals (Quey et al., 2011; Quey and Renversade, 2018). It allows for the generation of grain sizes and grain shape distributions that can mimic real cell morphology properties or random distributions, such as lognormal, normal, or Weibull. (b) Further dividing the primary grains (first discrete layer) produced by Neper into multiple sub-grains to form a multiscale Voronoi tessellation. Neper’s multiscale tessellation scheme makes it possible to consider intergranular and transgranular fractures, as illustrated in Figure 2B. (c) Exporting the multiscale Voronoi diagram from Neper and converting the multiscale Voronoi tessellation file (comprising geometric data such as points, edges, and polygons) into a data format recognizable by UDEC using C++. The mesoscopic structure in Figure 2B was imported into UDEC via the embedded FISH language as the basis for establishing a breakable GBM (Figure 2C). (d) Discretizing the sub-grains into finite-difference triangular elements to account for block deformability. Then, assign mesoscopic parameters for mineral grains and contacts. Ultimately, a completely breakable UDEC-GBM model is formed (Figure 2D).




Figure 2 | Procedure of generating the breakable UDEC-GBM model (A) Polygonal grains generated by Voronoi tessellation in Neper, (B) Sub-grains generated by dual-scale tessellation in Neper, (C) Exporting the geometry of grains and sub-grains from Neper to UDEC, (D) Breakable UDEC-GBM generation.






2.2 Contact models used in GBM

In this paper, the polygonal blocks are assumed to behave linear elastically, indicating that the failure governed by the contact constitutive law. Experimental results demonstrate that the fracture behavior of brittle materials is a gradual phenomenon, namely crack surface separation that takes place at the propagating crack tip, hindered by cohesive forces (Fathipour-Azar et al., 2020). To capture the nonlinear fracture behavior at the crack tip, Dugdale (1960) and Barenblatt (1962) proposed the cohesive zone model. Recently, various cohesive zone models have found successful applications in studying the mechanical behavior of rocks under static (Kazerani, 2013; Gui et al., 2015; Saadat and Taheri, 2020; Pan et al., 2021b) and dynamic loading conditions (Wu et al., 2015; Gui et al., 2016b).

The cohesive zone contact model encompasses three essential components: the traction-separation criterion, the initial damage criterion, and the damage evolution law. Various mathematical expressions can be employed to describe the traction-separation relationship, such as the bilinear, polynomial, trapezoidal, or exponential forms (Elices et al., 2002). In the realm of simulating brittle fracture, Alfano (2006) have demonstrated that the specific mathematical form of the traction-separation function holds relatively less significance compared to the fracture energy and cohesive strength. Thus, this investigation adopts the bilinear form of the cohesive contact model, as illustrated in Figure 3, due to its simplicity without compromising the accuracy of the simulation. The detailed description and mathematical formulation of this constitutive model can be found in our previous work (Pan et al., 2021b).




Figure 3 | Cohesive contact model (A) Shear model, (B) Tensile model, (C) Mixed model (Pan et al., 2021b).






2.3 Parameter calibration

Barre granite, as a representative brittle rock, has undergone extensive laboratory testing to investigate its mesostructure and mechanical properties. According to reports, Barre granite approximately consists of 3% muscovite, 8% biotite, 18% K-feldspar, 32% quartz, and 36% plagioclase (Morgan et al., 2013). The granite samples exhibit a grain size distribution spanning from 0.87 to 2.54 mm, with an average grain size of 1.7 mm (Pan et al., 2021a). For the purpose of configuring the UDEC-GBM model and calibrating the mesoscopic parameters, the test data of Barre granite were specifically selected in this investigation. By implementing the UDEC-GBM generation approach described in section 2.1, a breakable GBM model was generated with dimensions of 50 mm (height) and 25 mm (width), as depicted in Figure 4A. This model contains 507 blocks and 1521 sub-blocks. The average block size is 1.5 mm, which is close to the average grain size of Barre granite. During the model generation process, it is important to note that muscovite was categorized as biotite due to its small proportion. Therefore, the model only includes four minerals: quartz, plagioclase, K-feldspar, and biotite. Furthermore, the mineral proportions in the model are determined by the block area ratio. Figure 4B provides a comparative analysis of the mineral contents between the real granite and the UDEC-GBM model. The figure clearly demonstrates the similarity in mineral contents between the two.




Figure 4 | UDEC-GBM model of Barre granite (A) UDEC-GBM model, (B) Comparison of mineral content of UDEC-GBM model with real rock.



Accurate simulation of the macroscopic mechanical behavior of rock requires the calibration of mesoscopic parameters associated with mineral blocks and interfaces. In UDEC, there is no one-to-one correspondence between rock macroscopic and mesoscopic parameters. Therefore, the calibration of mesoscopic parameters is typically achieved through a trial-and-error approach. This involves comparing the simulation results with the actual experimental data and making iterative adjustments to the mesoscopic parameters until a satisfactory match is obtained. However, the traditional trial-and-error method for parameter calibration faces challenges such as non-uniqueness of GBM model parameters and time-consuming processes. To address these issues, this study adopts the model parameter calibration procedure proposed by Pan et al. (2021b), which offers an efficient approach to correct the mesoscopic parameters. The parameter calibration procedure involves several steps. Firstly, the Plackett-Burman test design is utilized to assess the sensitivity of the mesomechanical parameters to the macroscopic response. This analysis identifies the influential mesoscopic parameters that significantly affect each macroscopic response value. Next, the response surface method is employed to investigate the interaction between the mesoscopic parameters and macroscopic responses. This methodology enables the establishment of a nonlinear relationship that captures the interaction between the significant mesoscopic parameters and macroscopic response values. Lastly, through the particle swarm optimization algorithm, the parameters of the GBM model can be effectively optimized. This optimization process aims to attain optimal parameter values that yield the highest level of agreement between the model predictions and the observed macroscopic mechanical behavior.

Using the above calibration procedure, mesoscopic parameters were determined through uniaxial compression and direct tensile tests conducted on the numerical specimens. In the numerical models, the loading conditions for the specimens were simulated by fixing the lower boundary of the model and applying vertical velocities to the upper boundary. For the uniaxial compression model, a loading velocity of 0.03 m/s, directed downward, was employed. In the case of the direct tensile model, a loading velocity of 0.01 m/s, directed upward, was used. Although these values are large compared to typical loading rates in laboratory tests, since the time steps in UDEC are very small, about 10−6 mm/step, this means that a large number of computational steps are required to move the upper boundary 1mm. Therefore, the speed selected in this study is sufficient to simulate quasi-static loading conditions. During the calculation process, the axial strain of the sample is determined by calculating the ratio of the average displacement in the y-direction at multiple monitoring points to the height of the sample. Figure 5 shows the locations of these monitoring points. Axial stress was determined by computing the average stress of the top monitoring elements using the Fish language. Tables 1, 2 present the mineral and mineral boundary parameters of the calibrated Barre granite. It is noteworthy that in Table 2, the entries P-P, Q-Q, K-K, and B-B correspond to contacts between Plagioclase-Plagioclase, Quartz-Quartz, K-feldspar-K-feldspar, and Biotite-Biotite, respectively. These parameters were determined through the aforementioned calibration procedure. On the other hand, the entries P-Q, P-K, P-B, Q-K, Q-B, and K-B denote contacts between Plagioclase-Quartz, Plagioclase-K-feldspar, Plagioclase-Biotite, Quartz-K-feldspar, Quartz-Biotite, and K-feldspar-Biotite, respectively. These parameters are defined as the averages of the properties of adjacent mineral grains. The stress-strain curves resulting from uniaxial compression and tension simulations are depicted in Figures 6A, B. Table 3 presents a summary of the comparison between simulated and experimental values for Poisson’s ratio, elastic modulus, direct tensile strength, and uniaxial compressive strength. The high degree of agreement observed between the simulated and experimental values (Dehghan Banadaki and Mohanty, 2012; Pan et al., 2021a) further validates the accuracy and reliability of the calibrated GBM model in accurately capturing the macroscopic mechanical responses of the material.




Figure 5 | Numerical model setup (A) Uniaxial compression test, (B) Direct tensile test.




Table 1 | Calibrated properties of Granite minerals.




Table 2 | Calibrated properties of the contacts between mineral grains.






Figure 6 | Numerical simulation stress-strain curves (A) Uniaxial compression test, (B) Direct tensile test.




Table 3 | Comparison between numerical and experimental results (Dehghan Banadaki and Mohanty, 2012) for the calibration example.







3 Factors affecting the rock strength and failure mode

The previous section presented the methodology employed for generating the breakable grain-based discrete element model. In this section, we apply this method to generate samples exhibiting various grain sizes, distributions, and shapes. The objective is to study the impact of mesostructure on the quasi-static compressive strength and failure mode of granite.



3.1 Grain size distribution

This study assumes a logarithmic normal distribution for the grain size of minerals within the rock. To generate samples with varying grain size distributions, the standard deviation of the mean grain size is modified, allowing for the desired adjustments in the overall distribution characteristics. A larger standard deviation results in a wider distribution, indicating a greater variation in grain sizes within the sample. Conversely, a smaller standard deviation leads to a narrower distribution, indicating a more uniform grain size distribution. The grain size coefficient So, which quantifies the impact of grain size distribution on rock homogeneity, is defined as follows (Nicksiar and Martin, 2014):

 

where Q75% and Q25% represent the grain diameters on the grain size cumulative frequency plot at which 75% and 25% of the grains, respectively, have diameters larger than the corresponding values. The grain size coefficient is commonly greater than 1, and a value approaching 1 indicates a more uniform distribution of grain sizes within the rock.

This section focuses on the investigation and analysis of the effect of grain size distribution on the quasi-static compressive strength and failure mode of rocks. To accomplish this, four groups of models were generated with grain size coefficients 1.07, 1.14, 1.22, and 1.30, respectively. Considering the differences in the spatial distribution of blocks caused by different numbers of random seeds, three samples were generated for each group of models simultaneously. In total, 12 models were generated for analysis, and all models had dimensions of 25 mm (width) × 50 mm (height). It is worth noting that the average grain size, grain circularity, and mineral content were maintained constant for all four groups of models. Specifically, the average grain diameter was fixed at 1.5 mm, while the grain circularity (Ro) was set to 0.9. Figure 7 presents the generated representative grain models.




Figure 7 | UDEC-GBM models with different grain size coefficients (A) So = 1.07, (B) So = 1.14, (C) So = 1.22, (D) So = 1.30.



Figure 8A illustrates the stress-strain curves under quasi-static uniaxial compression for samples with varying grain size distributions. It can be observed that these curves exhibit similar characteristics, all going through three stages of elasticity, yield, and fracture. However, it should be noted that the simulated stress-strain curves do not include an initial compaction stage. This limitation arises from the inherent characteristics of the Voronoi block model, which does not account for the existence of initial cracks or pores. Furthermore, Figure 8 demonstrates the significant influence of the value of So on the quasi-static uniaxial compressive strength of granite. Through data fitting, it is found that the quasi-static peak strength decreases linearly with the increase of So (Figure 8B). Specifically, for the tested rock samples, the uniaxial compression strength decreased from 165.7 MPa to 143.7 MPa (mean value) with an increase in the value of So from 1.07 to 1.30. This observed trend can be attributed to the enhanced inhomogeneity of the grain size distribution, leading to amplified local stress concentrations within the samples. These stress concentration areas contribute to the failure of heterogeneous samples at lower stress levels, consequently reducing the overall peak strength of the rock.




Figure 8 | Uniaxial compression strength of numerical rock specimens with varying grain size coefficient (A) Stress-strain curves, (B) Fitting relationship between UCS and So.



Figure 9 presents the failure modes of samples with varying grain size distributions under quasi-static uniaxial compression. The results indicate a close relationship between the crack propagation path and the rock mesostructure. In cases where the rock structure exhibits relative homogeneity (e.g., So = 1.07), cracks tend to propagate along the axial direction, parallel to the direction of maximum compressive stress, ultimately forming one or more vertical macro-fracture planes (as depicted in Figure 9A). This corresponds to a typical splitting failure mode. As the grain size distribution coefficient increases (e.g., So = 1.30), the likelihood of forming inclined macroscopic cracks in the sample becomes more prominent (as shown in Figure 9D). This can be attributed to the widening distribution range of grains within the sample as rock heterogeneity increases. Under axial loading, minerals with larger grain sizes not only experience stress concentration but also possess longer mineral boundaries that serve as preferential paths for crack propagation. Furthermore, Figure 9 reveals a notable “wrapping around the core” phenomenon during the process of crack expansion. Specifically, cracks preferentially propagate along mineral boundaries, and this phenomenon becomes more pronounced with increasing rock heterogeneity.




Figure 9 | Quasi-static uniaxial compression failure modes of different grain size distribution models (A) So = 1.07, (B) So = 1.14, (C) So = 1.22, (D) So = 1.30.






3.2 Average grain size

Granite typically has a crystalline structure of 1-5 mm interlocking mineral grains. To examine the impact of average grain size on failure modes and quasi-static compressive strength of granite, this research employed four numerical models featuring distinct average grain sizes: 4.5 mm, 3.5 mm, 2.5 mm, and 1.5 mm. To account for the spatial distribution variations caused by different random seed numbers, three samples were generated for each grain size model simultaneously. The size of the model was maintained at 25 mm × 50 mm. It is important to emphasize that the grain size coefficient, grain circularity, and mineral content were kept constant across all models. In this particular study, the values of So and Ro were set to 1.07, and 0.9, respectively. The typical numerical models generated for each average grain size are depicted in Figure 10.




Figure 10 | UDEC-GBM models with different average grain sizes (A) D = 1.5 mm, (B) D = 2.5 mm, (C) D = 3.5 mm, (D) D = 4.5 mm.



Figure 11A depicts the stress-strain curves of representative models with varying average grain sizes. The findings reveal a notable reduction in the peak strain as the average grain size increases. Specifically, when the average grain size is 1.5 mm, the peak strain reaches approximately 0.36%. In contrast, with an average grain size of 4.5 mm, the peak strain decreases to 0.19%. This phenomenon can be attributed to the increased contact surfaces between grains in rocks with smaller grain sizes compared to those with larger grain sizes, assuming the sample size remains constant. With more contact surfaces, the deformation modulus of the rock sample during loading is lower, resulting in higher strain values. Furthermore, Figure 11B illustrates the correlation between the average grain size and peak strength. The findings reveal a decline in compressive strength as the average grain size increases. Moreover, a good linear fitting relationship between the two variables is identified, indicating a predictable correlation between average grain size and compressive strength. This finding aligns with the results of experimental tests conducted by other researchers (Tuğrul and Zarif, 1999; Sajid et al., 2016). The observed phenomenon can be attributed to the elongation of grain boundaries that occurs with larger grain sizes. Rock samples with larger average grain sizes exhibit a higher susceptibility to fracture due to the presence of longer grain boundaries, which provide a more continuous path for the growth and propagation of fractures.




Figure 11 | Uniaxial compression strength of numerical rock specimens with varying average grain size (A) Stress-strain curves of different average grain size models, (B) Fitting relationship between UCS and D.



Figure 12 illustrates the macroscopic fracture modes under quasi-static uniaxial compression for four different average grain size models. It can be seen from the figure that numerical specimens exhibit two distinct fracture modes as the average grain size changes. When the grain average diameter is 1.5 mm, the rock specimen displays some tensile fractures oriented parallel to the loading direction, accompanied by shear plane failure across the specimen. However, When the average grain size reaches 3.5 mm, the shear band becomes almost imperceptible, and the primary failure mechanism shifts to a significant number of tensile fractures parallel to the axial loading direction. Consequently, as the average grain size increases, the dominant failure mode transitions from shear and axial splitting to primarily axial splitting. Furthermore, it is observable that as the average grain size increases from 1.5 mm to 4.5 mm, the length or width of the tensile fractures also increases.




Figure 12 | Quasi-static uniaxial compression failure modes of different average grain size models (A) D = 1.5 mm, (B) D = 2.5 mm, (C) D = 3.5 mm, (D) D = 4.5 mm.






3.3 Grain shape

For two-dimensional models, Neper uses circularity to describe particle shape, defined as the ratio of the circumference of a circle of equal area to the circumference of the grain. According to Contreras et al. (2021), the roundness of granite grains typically falls within the range of 0.55 to 0.96, with an average roundness of 0.83. Therefore, four groups of numerical samples with different grain roundness (Ro), namely 0.9, 0.85, 0.8, and 0.75, were generated in this research. It is worth mentioning that throughout the models, the average grain size, grain size coefficient, and mineral content were kept constant. Here, the grain size coefficient (So) was set to 1.07, and the average grain size was fixed at 1.5 mm. Considering the differences in block spatial distribution caused by different numbers of random seeds, three samples were generated for each group of models at the same time for calculation. Figure 13 illustrates the typical numerical models of different grain roundness. All of these samples have dimensions of 25 mm × 50 mm.




Figure 13 | UDEC-GBM models with different grain roundness (A) Ro = 0.75, (B) Ro = 0.80, (C) Ro = 0.85, (D) Ro = 0.90.



Figure 14A presents the stress-strain curves obtained from samples with varying grain roundness under quasi-static uniaxial compression. The results reveal the considerable influence of grain roundness on both peak strength and peak strain. As depicted in the figure, an increase in grain roundness corresponds to higher values of uniaxial compressive strength (UCS) and peak strain. As an example, when the grain roundness is 0.75, the peak strength is measured at 119.2 MPa, and the corresponding peak strain is 0.29%. However, when the grain roundness increases to 0.9, the peak strength significantly rises to 168.2 MPa, accompanied by a corresponding peak strain of 0.36%. The reason for this phenomenon is related to the level of interlocking within the grain structure. The observed trend in Figure 13 indicates that as the roundness of the grains decreases, the shape of the grains becomes more triangular. However, studies by Mayer and Stead (2017) indicate that triangular particles tend to favor interparticle shear failure. Compared with triangular grains, polygonal grains tend to provide a high degree of interlocking within the grain, which will facilitate interparticle tensile failure and lead to higher peak strength. Furthermore, Figure 14B presents the fitted relationship between grain roundness and the average value of UCS. The fitting results exhibit a strong linear relationship when the grain distribution coefficient, average grain size, and mineral content are kept constant. The fitting correlation coefficient (R2) reaches 0.99.




Figure 14 | Uniaxial compression strength of numerical rock specimens with varying grain roundness (A) Stress-strain curves of different grain roundness models, (B) Fitting relationship between grain roundness and uniaxial compressive strength.



Figure 15 illustrates the distinctive failure modes observed in quasi-static uniaxial compression for various grain roundness models. It is evident that the failure mode of the rock is intricately linked to the roundness characteristics of the grains. As mentioned earlier, when the roundness of the grains decreases, their shape tends to be closer to triangular (e.g., Ro = 0.75). In such cases, the model is more prone to shear failure, resulting in the development of oblique macroscopic cracks, as depicted in Figure 15D. On the other hand, the GBM model with high roundness (e.g., Ro = 0.9) has a high degree of interlocking, and tensile failure between particles is easy to occur, so that macroscopic axial splitting damage is more likely to occur, as shown in Figure 15A.




Figure 15 | Quasi-static uniaxial compression failure modes of different grain roundness models (A) Ro = 0.75, (B) Ro = 0.80, (C) Ro = 0.85, (D) Ro = 0.90.







4 Conclusions

This study presents a developed breakable grain-based model to examine the impacts of grain size coefficient (1.07 to 1.3), average grain size (1.5 mm to 4.5 mm), and grain roundness (0.75 to 0.9) on the quasi-static uniaxial compressive strength and failure modes of rocks. Based on the numerical simulation results, the following conclusions can be drawn:

	The successful replication of granite behavior using the breakable polygonal grain-based discrete element model demonstrates its applicability for studying the mechanical response and failure mechanisms of rock materials. In addition, with the help of multi-scale Voronoi tessellation technology, the model can effectively capture both inter-granular and trans-granular cracks that occur during the compression process.

	The quasi-static compressive strength of the rock exhibits a good linear relationship with the average grain size (D), grain size coefficient (So), and grain roundness (Ro). Specifically, the compressive strength of the rock exhibits a negative correlation with both the D and So, indicating that as rock heterogeneity and the average grain size increases, the compressive strength tends to decrease. Conversely, the compressive strength shows a positive correlation with the Ro (degree of interlocking) of the grains. This implies that there is a tendency for the compressive strength to rise as the degree of interlocking among the grains increases.

	The mesostructure of rock significantly influences the observed failure modes in compression tests. The degree of heterogeneity within the rock model has a pronounced impact on the resulting failure mode. In relatively homogeneous models, the dominant failure mode is splitting. As the heterogeneity of the rock model increases, the failure mode transitions to shear failure. The grain size of the rock also influences the failure mode. Fine-grained rocks tend to fracture in single shear bands, while coarse-grained rocks tend to fracture axially. The shape of the grains, characterized by roundness, also affects the failure mode. Rocks with lower roundness values are more prone to shear failure, while rocks with higher roundness values tend to exhibit axial splitting.



In this paper, the breakable UDEC-GBM model is employed to investigate the macroscopic compressive mechanical behavior of rocks. However, the model exhibits certain limitations, such as the absence of consideration for internal microcracks within the rock during modeling. Consequently, this model is suitable for hard and dense rocks, while for soft or microcrack-laden rocks, more nuanced meso features should be taken into account. Subsequent research will further address the influence of pore and crack defect structures, leading to the development of more refined numerical models.
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Introduction

The technology of gob-side entry retaining without coal pillars in close (distance) coal seams is still immature, and the roof control and support technology in this case is not perfect.





Methods

In this paper, the coupled support technology of a composite rock beam roof under close coal seams is systematically studied by using theoretical analysis, numerical simulation and field test.





Results

Both the floor slip calculation results and numerical simulations indicate that the vertical failure depth in the plastic zone of the #8 coal seam has not penetrated the roof of the #9 coal seam after mining, which is consistent with the field electronic imaging results. A theoretical formula for a composite rock beam model anchored by high-prestressed anchor cables was derived, and a formula for the optimal spacing of anchor cables under noncompressive shear failure of the roof was obtained. Identification of the internal stress hazard region of the rock beam provides a basis for determining the locations of vertical support. Through numerical simulation of different support schemes, including roof cutting, arrangement of high-prestressed anchor cables, and setting up of vertical supports, roof cutting was found to effectively reduce the stress of supporting structure and roof pressure. Setting up of vertical supports can reduce the roof convergence by 25.2%, and coupling with anchor cables can reduce the convergence by more than 49.1%. The feasibility of this support scheme was verified through field tests, with a maximum convergence of 99 mm between the roof and floor.





Discussion

This two-way verification approach, in which the damage degree of the roof of a close coal seam is analyzed through multiple means, targeted support plans are proposed, the support mechanisms are explored, and feedback is conducted through field tests, plays a certain guiding role in solving roof control of the gob-side entry retaining under similar geological conditions.





Keywords: close coal seam roadway, characteristics of roof failure, surrounding rock control, coupled support design, numerical simulation




1 Introduction

Coal seams with a small interlayer spacing in which the collapse zone caused by mining of the lower coal seam and the damage zone of the floor of the upper coal seam are connected are called close (distance) coal seams (Cheng et al., 2020). This type of coal seam is widely found in many major coal mining countries, such as China, Russia, and the United States (Peng et al., 2019). The difficulty of close coal seam mining lies in the more severe roof control conditions of the roadway (Tian et al., 2020). The mining of coal seams can lead to significant changes in the stress (Suchowerska et al., 2013; Liu et al., 2016) and bearing capacity of the surrounding rock (Qin et al., 2021; Shang et al., 2023) of subsequent coal seams. Especially in terms of the integrity of the surrounding rock, the destruction of the floor of the mined-out area of the coal seam first directly mined leads to a decrease in the integrity of the roof of the coal later mined (Zhang et al., 2013; Ning et al., 2020). Due to the difficulty of mining and extreme uncertainty in support design, the mining of close coal seams is often abandoned. With the continuous development of the “green mining of coal” concept, abandoning the recovery of close coal seams has become inconsistent with the requirements of the times.

Therefore, many scholars have conducted research on the failure mechanism and support control of the surrounding rock of close coal seams. Zhao et al, 2020; Zhao et al, 2021 found that the principal stress of a close coal roadway undergoes a certain angular deflection, and the plastic zone of the surrounding rock develops diagonally. Shang et al. (2019) concluded that a close coal seam roadway should not be located under a coal pillar; otherwise, it will be affected by stress concentration. Liu et al. (2022a) analyzed the rock failure process between two coal seams based on the “block dispersion” structural model. Li et al. (2022a) proposed four stress stages of the roof under repeated mining conditions in close coal seams based on similarity model experiments. Wang et al. (2023) used a fractal dimension to divide the development of close-distance coal seam roof fractures into zones. The research of Cheng et al. (2021a) showed that the gangue area after mining the upper coal seam has a stress weakening effect on the lower coal seam.

The research results of the damage mechanism effectively guide the design of the support scheme. To control the instability and deformation of the surrounding rock of a close coal seam, scholars have proposed many strategies for surrounding rock control. For example, the integrity of the surrounding rock can be improved by grouting the roof to harden it, and the surrounding rock can be controlled by using water jet cutting to release pressure on the roof (He et al., 2021; Li et al., 2022c). Some scholars have also conducted zonal support design for roadways from the perspective of surrounding rock stress control (Chen et al., 2022) to explore reasonable support parameters (Yan et al., 2015). In addition, some scholars have studied roof leakage (Kong et al., 2021; Li et al., 2022b), deduced the roof instability mechanism, and proposed targeted solutions. Additionally, to deal with support environments similar to close coal seams, efforts are being made to improve the performance of support tools (Wang et al., 2022).

In summary, research on close (distance) coal seam support technology has made significant progress (Table 1), and the relevant plans have greatly inspired us. To improve the recovery rate and avoid waste of coal resources, coal pillar-free mining technology is widely used. The application of this technology to close coal seams is also the only way to achieve “green mining”. However, there are few cases of gob-side entry retaining in close coal seams, and roadway support design under these conditions is a completely new challenge. Since the promotion of the new Austrian tunneling method (NATM), the concept of the surrounding rock as a load-bearing structure has been recognized by engineers (Tan et al., 2019; Zhang et al., 2019; Wang and Wang, 2019). If the self-bearing capacity of the surrounding rock can be fully utilized and supplemented by roof cutting to reduce pressure (Tao et al., 2018; Hu et al., 2023; Li et al., 2023), then the support cost can be significantly reduced, and the safety can be improved.


Table 1 | Overview of the support schemes for a close coal seam roadway.



In this paper, taking the Xinchazhuang coal mine as the background, we judge the damage degree of the roof of the lower coal seam (#9 coal seam) through a comprehensive study of the upper coal seam (#8 coal seam) mining and propose a targeted roof control and support scheme for the roof of the lower coal seam retained roadway. Then, we verify the feasibility and effect of the support via numerical simulation. Finally, we conduct field tests and field monitoring to complete final verification of the scheme. This research method and the corresponding results are expected to provide a reference for the same type of gob-side entry retaining.




2 Study on the failure characteristics of rock between close coal seams



2.1 Engineering background

The Xinchazhuang coal mine is in Shiheng town, Feicheng city, Shandong Province, China (Figure 1A), and the main coal seams being mined at this stage are the #8 and #9 coal seams. The belt roadway of the 91010 panel is to be retained, which represents the first retained roadway of the initial mining panel for the #9 seam coal. Given its proximity to the upper coal seam, the support design becomes more intricate compared to that for single coal seams. The average distance from the return #8 coal seam to the 91010 panel is 7.3 m. Figure 1B shows the relative positions of the two mined coal seams. The burial depth of the 91010 panel is 498-551 m. The mining length for the panel is 394 m. The length of the panel is 105 m (Figure 1C). The mechanical parameters are shown in the Table 2.




Figure 1 | Overview of engineering conditions. (A) Location of the Xinchazhuang coal mine. (B) Relative position of coal seams. (C) Lithology and three-dimensional layout of the panel.




Table 2 | Mechanical parameters of the surrounding rock.






2.2 Calculation of the depth of rock failure development

After #8 coal recovery, the collapsed roof material acts on the floor of the mining area and affects the rock body within a certain depth. When the pressure of the collapsed rock to which the rock body of the floor is subjected is greater than the critical pressure, the rock body within this range will form a plastic deformation zone. When plastic deformation continues to develop into plastic damage, the floor deformation peaks, and a continuous slip surface is formed within the floor (Cheng et al., 2021b). According to the theoretical analysis of the floor slip field (Zhang et al., 2012; Sun et al., 2021; Zhang et al., 2021; Qi et al., 2022), the maximum depth of impact on the floor after mining of the upper coal seam can be calculated by the following equation:

 

where Ms is the mining height of the #8 coal seam, m; ks is the stress concentration factor; γ is the average unit weight of the overlying rock layer on the stope, kN/m3; Hs is the burial depth of the #8 coal seam, m; C is the cohesion of coal; φ is the friction angle of coal; φf is the friction angle of the floor rock; ξ is the triaxial stress coefficient; and f is the friction coefficient of the coal seam and floor contact surface.

Substituting the actual parameters of the studied site into eq 1, the maximum damage depth of the floor of the #8 coal mining area is calculated to be 5.44 m. The average distance between the two coal seams is 7.3 m, and the damage depth completely passes through the #9 coal roof. The theoretical calculation shows that there is still a layer of fairly intact roof in the #9 coal roof.




2.3 Verification of failure characteristics by numerical simulation

To further verify the failure characteristic of the #9 coal roof, a simulation study was conducted on close coal seam mining. The simulated test uses the same downward mining sequence as on field. The #8 coal model mining height is designed to be 2.1 m. According to the filling gangue crushing and expansion coefficient, the #8 coal collapse filling zone height is 7.35 m. After the #8 coal seam mining is completed, the range of the collapse zone in the extraction area is filled with gangue to simulate the rock collapse in the collapse zone after recompaction. The #8 coal collapse filling zone parameters were obtained through several simulation inversions, and the filling compaction gangue mechanical parameters are shown in Table 3.


Table 3 | Mechanical parameters of the filled and compacted gangue.



Based on the double-yield model (Yan et al., 2019), the collapsed and backfilled rock showed strain-hardening characteristics and was able to bear pressure again. The simulated plasticity diagram of the upper coal seam after collapse and recompaction is shown in Figure 2, and the results confirm the existence of intact rock in the #9 coal roof.




Figure 2 | Plasticity distribution of the upper coal seam after compaction.






2.4 Field measurement of the failure characteristics of rock formations

Based on the theoretical calculation and numerical simulation results, lithology verification of the roof is carried out in the field via drill hole observation. The fracture distribution of the roof is shown in Figure 3.




Figure 3 | Cracks of the roof.



Within the drill hole depth of 1-2 m, a fairly intact rock formation is observed. There are very few cracks in the formation, and the drill hole wall is smooth. The rock layers at the 2-5m position are subject to varying degrees of damage There are small cracks in this section, and as the hole depth increases, the crack depth also increases. Approximately 6-7 m of the rock layer is relatively broken. There is clear debris slag in the drill hole, the rock is broken on a large scale, and the cracks are well developed. This suggests that the site is heavily influenced by upper coal reclamation.

After comprehensive research including a site survey, it is found that there is 1-2 m of intact rock in the roof of the retained roadway, which indicates that later roof control and support and gob-side entry retaining may be possible.





3 Roof mechanics analysis



3.1 Roof mechanics model

The presence of intact rock in the #9 coal roof provided a basis for the practice of anchoring the rock with high-prestressed anchor cables and thus achieving rock beam modification. Before the start of mining, high-prestressed anchor cable support was applied to the roof of coal roadway #9, and the rock affected by the mining of the upper coal seam was reextruded and merged with the more intact rock to establish a new composite rock beam model (Figure 4).




Figure 4 | Mechanical model of the composite rock beam on the roof.



To facilitate the calculations, reasonable assumptions were made about the model:

	(1) The anchor cable anchoring force is large enough to closely anchor the rock strata affected by #8 coal mining as a whole with the more intact rock strata, which is treated as a plane strain problem, and the axial width of the retained roadway is 1.

	(2) The model is established in the dynamic pressure stage of the roof, which is the most affected stage. To simplify the calculation, one end of the composite rock beam of the roof is a solid coal gangue solid support boundary. Due to the special working conditions, the roof of the goaf collapses rapidly and can support the cantilever end, so one end is a simply supported boundary of gangue single support. The support load provided by the collapsed gangue at the roof cutting end is a uniformly distributed load.

	(3) The overlying load on the roof is a uniform static load with a dynamic pressure coefficient of n.



Then, the #9 coal support-modified rock layer is subjected to the load to determine the roles of the uniform load of the overlying rock layer on the composite rock beam nq1, the load of the collapsed gangue on the roof q2, the roadway anchor cable support uniform load q3, and the single-support concentration forces F1, F2, and F3 in the roadway. In addition, in Figure 4, p1 and p2 are the horizontal and vertical combined force components at the cutting side under an external load, N; RA is the support reaction force acting at the solid support end, N; M is the support reaction moment acting on the solid support end, N·m; s1, s2 and s3 are the horizontal distances from F1, F2 and F3 to the solid support end, respectively, m; sm is the horizontal distance from the equivalent load q3 to the solid support end, m; β is the angle between the cutting side and the vertical direction; ρ is the average weight of the composite rock beam, N/m3; l is the width of the roadway, m; and H is the height of the composite rock beam, m.




3.2 Reasonable calculation of composite rock beam roof support under the coupled support scheme

The main form of damage occurring in the composite rock beam is compression–shear damage, so the maximum shear stress is used to measure the stability of the roof. For the convenience of calculation, the method of stress superposition is used to calculate the reasonableness of the support.



3.2.1 Stress components of the composite rock beam under a roof load

The stress distribution at each point inside the rock beam after cutting the roof is in the form of:

 

When the overlying load acts on the roof, the forces on the cutting side are:

 

Substituting eq 3 into eq 2 yields the internal stress components of the rock beam under the overlying load: σx1, σy1 and τxy1.




3.2.2 Stress components of the roof with gangue support

The gangue support force diagram is shown in Figure 5. The larger the load of the gangue on the roof q2 and gangue sinking amount S, the larger the gangue support force is; to simplify the calculation, the support coefficient of the gangue after collapse is set to k, so:




Figure 5 | Gangue support force diagram.



 

Then, the compression of gangue at any point x on the roof is:

 

S0 is the overall sinkage at the fracture of the roof; θ is the rotation angle of the roof.

The amount of gangue compression on the central axis of the roof rock beam is the average compression:

 

The vertical combined force of the roof at the intersection of the central axis and the fracture plane is expressed as:

 

Assuming that the gangue does not transfer vertical shear stress in the compression process and is in ultimate equilibrium, the horizontal combined force can be expressed as follows:

 

Eqs 7 and 8 can be substituted into eq 2 to obtain the rock beam internal stress components at each point in the gangue support: σx2, σy2 and τxy2.




3.2.3 Stress components of the roof under the action of a single hydraulic prop

The single hydraulic prop strut provides concentrated support resistance at the lower surface of the rock beam, and the stress components of the rock beam under the action of the vertical support resistance Fn are:

 

Since the origin of the coordinate system in this model is different from the above equation, a coordinate transformation is needed, and the equation is:

 

The support resistance F of the single hydraulic prop is subjected to the support reaction forces RA and RB, and the support reaction forces RA and RB of the solid coal sidewall and goaf side are obtained by solving the mechanical model as follows:

 

Eqs 9-11 are joined to obtain the stress components of the rock beam under the action of the single hydraulic prop: σx3, σy3 and τxy3.




3.2.4 Stress components of the roof under the action of the anchor cable

The rock beam on the roof is subjected to the distributed force of the anchor cable, which can be regarded as a very short length d  at the distance   from the boundary [-a, a] range to the coordinate origin O. The force dF = q3dδdF in this range is regarded as a very low but concentrated force. Then, the stress components at each point inside the rock beam under the action of the anchor cable distribution force are:

 

Since the origin of the coordinate system in this model is different from the above equation, a coordinate transformation is needed, and the equation is:

 

The mechanical model solution is used to obtain the solid coal sidewall and side of the gob support reaction force RAm and RBm as follows:

 

Then, eqs 12-14 are solved together to obtain the stress components of the rock beam under the action of the anchor cable: σx4, σy4 and τxy4.

According to the anchor cable strength formula and the internal stress of the rock beam (σxn, σyn and τxyn), to ensure that no compressive damage occurs in the rock beam, the optimal reasonable interrow spacings A1 and A2 of the anchor cable should be:

 

where Fm is the anchor cable anchorage force and Jn is the intermediate variable.





3.3 Proposal of support plan

Through the theoretical calculation of floor sliding, numerical simulation and field observation verification, it was determined that there is an intact roof in the #9 coal roof. Using the intact roof of coal #9 as the base, high-prestressed anchor cables were arranged to modify the roof into a composite rock beam. Eq 15 was used to verify the optimal interrow spacing of anchor cables, and rockbolt were used for reinforcement support. The main unknowns are extracted from the composite rock girder internal stress equation to make a three-dimensional map of the distribution of the internal stress components of the rock girder (Figure 6). The most hazard region of the rock beam is located at the bottom of the cutting end. It is proposed to use the form of “one beam and two columns” with higher bearing capacity and better stability to arrange the single hydraulic prop for vertical support. The coupled support scheme of roof cutting + high-prestressed anchor cables + vertical support is finally formed.




Figure 6 | Three-dimensional distribution of stress components. (A) X-direction stress. (B) Y-direction stress. (C) Tangential stress.







4 Simulation study of the rock movement pattern of the roof in close coal mining



4.1 Simulation scheme and model building

To verify the effect of the support scheme and the mechanism of the support action, a simulation test of the support scheme was conducted using FLAC3D simulation software. The scheme design is shown in Table 4.


Table 4 | Simulation scheme.



The numerical model was built based on FLAC3D software (Jia et al., 2022; Liu et al., 2022b; Sun et al., 2022; Zhu et al., 2023). The model was divided into a total of 574860 units and 620309 nodes. The boundary conditions were set as follows (Figure 7): the displacement of the bottom boundary of the model is restricted in any direction, the horizontal displacement of the four sides is restricted, and the vertical load is applied on the top boundary.




Figure 7 | Numerical simulation model diagram.



The mining void area of the #8 coal seam was backfilled using the intrinsic double-yield model to simulate the impact on the roof of the #9 coal seam after collapse of the mining void area (An et al., 2021; Li et al., 2021; Lv et al., 2022; Yu et al., 2022). The numerical model as a whole, except for the mining void of the #8 coal seam, was assigned as the Mohr–Coulomb intrinsic model. Table 5 illustrates the parameters of the support model.


Table 5 | Parameters of the support models.






4.2 Support effect test

The simulated support was carried out with option a: roof cutting + high-prestressed anchor cables + vertical support. Simulation was performed for mining for a total of 100 m, with a fixed location for monitoring at the 15 m section, collecting the roof and floor displacement data of the roadway at 15 m, 25 m, 35 m, 45 m and 55 m after the return face frame. The simulation results are shown in Figure 8.




Figure 8 | Displacement and stress simulation results. (A) Displacement monitoring results (B) Support stress monitoring results. (C) Stress monitoring results.



The displacement monitoring data in Figure 8A show that the convergence rate of the roof and floor of the roadway gradually decreases and tends to be balanced as the panel is continuously mined. After mining to 70 m, the maximum sinkage of the roof is 27.2 mm, the floor rises 15.8 mm, and the surrounding rock deformation is well controlled. The support stress diagram (Figure 8B) shows that the axial stress of the anchor cables in the gangue is low and that the roof anchor cables and vertical supports play the main supporting role. The maximum stress of the roof anchor cables is 261 MPa, and the stress is concentrated in the middle and lower parts of the anchor cables. From the overall stress monitoring results (Figure 8C), we found that roof cutting effectively blocks the connection between the roadway and the mining area so that the stress on the roof of the roadway is much lower than the stress on the roof of the mining area, and the joint action with the support effectively controls the sinking of the roof.




4.3 Support comparison test

To confirm the effectiveness and principle of field support, a comparative test was conducted. The test process involved alternating mining and backfilling (Figure 9). The test contents included simulating both the retained roadway option a (Figure 10 L1-L2), the option without retained roadway support b (Figure 10 L3-L4), and the unsupported option c (Figure 10 L5-L6).




Figure 9 | Mining and backfilling steps.






Figure 10 | Comparison of simulation test results.



In the comparison simulation test, the design was excavated for a total of 80 m. To avoid boundary effects, the model started mining from a position 10 m from the boundary. The vertical displacements at 15 m, 55 m and 90 m from the boundary were monitored in real time. Data were collected at the cutting line (Figure 10 M1, M3, M5) and centerline (Figure 10 M2, M4, M6) of each monitoring section.

According to the simulated data plotted in Figure 10, the following summary can been made:

	(1) In the simulated support, the deformation on the cutting side of the roof was always higher than the deformation at the centerline of the roof, and the cutting side was the key area for support.

	(2) The changes in roof displacement during the entire mining and backfilling were recorded at the 15 m monitoring section. The results showed that the support scheme with vertical support started to stabilize when the mining reached 55 m, and the maximum sinkage was only 28.5 mm, which was a reduction in the maximum deformation of the roof by 25.2% compared with the support scheme with only anchor cables and 49.1% compared with the unsupported roadway. With continuous mining of the panel, the deformation of the roof with only anchor cable support and the unsupported roadway significantly increased.

	(3) Comparing the results of the 55 m monitoring section, when the panel is pushed past the monitoring position, the changes in the roof and floor for options a-c were as follows: c. no support > b. anchor cable support > a. anchor cable + vertical support. The deformation rate of the roof of the roadway with vertical support was significantly smaller than that of the other two support solutions.

	(4) The variation in the roof displacement at the 90 m monitoring section was recorded near the end of mining. The observed data indicated that the presence or absence of vertical support had little influence on the impact range of advanced mining, and in both cases, the deformation rate began to accelerate when the longwall face was 27 m away. The option c deformation speed when the longwall face was 27 m away was faster. Options a and b reached the same speed only at an 8 m distance from the support. This phenomenon also occurred for the 55 m monitoring results.

	(5) Combined with the support stress diagram (Figure 8B), under the same vertical support conditions, the maximum stress of the cable of the roadway after roof cutting was 261 MPa, and the maximum stress of the anchor cable of the roadway without roof cutting was 302 MPa; the stress of the cable after roof cutting was reduced by 13.6%.







5 Field support effect



5.1 Field support design

With the theoretical derivation and numerical simulation results, the design of field roof control and support was carried out for the close coal seam roadway of the Xinchazhuang coal mine. The roof load could be shared by the intact rock layer, and the load borne by the support structure was reduced. To improve the flexibility of the scheme, the adopted scheme used the combined support method of roof cutting + high-prestressed anchor cable + single hydraulic prop in coordination with an articulated roof beam. The design structure of the gob-side entry retaining support is shown in Figure 11.




Figure 11 | Support structure diagram (unit: mm).






5.2 Field monitoring results



5.2.1 Field monitoring scheme

To verify the theoretical calculations and simulation results, a field test was conducted. A KJ-24 wireless mine pressure monitoring system was used in the field for monitoring (Lou et al., 2021). The monitoring location diagram is shown in Figure 12. To better summarize the pressure changes of the retained roadway along the goaf roof, pressure gauges were installed on different single hydraulic props in the same cross-section. Real-time monitoring of the convergence of the roof and floor was conducted.




Figure 12 | Roadway monitoring locations (unit: mm).






5.2.2 Force analysis of a single hydraulic prop

According to the vertical resistance monitoring data (Figure 13), the maximum value of the force of the three groups of single hydraulic props was stable at 126 kN, within the safety range, indicating that the support strength was sufficient. The force of the single hydraulic prop near the cutting line was always greater than that of the single hydraulic prop far from the cutting line, which verified the theoretical calculation result that the deflection of the cutting line side changes the most. The roof at D4 was more broken compared with other monitoring locations, and the single hydraulic prop pressure was the largest there.




Figure 13 | Histogram of the force of single hydraulic prop.






5.2.3 Analysis of the roof and floor displacement

According to the data of the roof and floor displacement gauges (Figure 14), the convergence speed of the roof and floor started to accelerate approximately 20 m ahead of the panel. However, at this time, the amounts of roof and floor convergence were small. After the panel was pushed 25 m past the monitoring location, the convergence of the roof and floor reached the peak. Among them, due to the relatively poor condition of the roof at the J1 monitoring location, the roof and floor moved the most, reaching 99 mm: 50 mm and 55 mm were measured at J2 and J3, respectively, and the differences were 7 mm and 12 mm compared with the simulation results, which were within the safety range. In summary, the support strength was sufficient, and the surrounding rocks of the retained roadway were stable.




Figure 14 | Roof and floor displacement.






5.2.4 Field situation analysis

Figure 15 shows the internal situation of the roadway roof after the mining panel had passed. Through a borehole camera, the roof of the K1-K3 section can be found to be still relatively intact, and there is no obvious increase in cracks on the roof. These results are consistent with the roof and floor displacement monitoring results, and the stability of the retained roadway roof is relatively high.




Figure 15 | Internal conditions of the surrounding rock.



Through observation of the field situation, at 24-27 m from the beginning of the gob-side entry retaining, steel belt zigzagging and anchor net breaking occurred. This location was relatively close to the upper coal seam, resulting in a more broken roof and poor integrity. Compared to that of other areas, the deformation of the broken roof was greater, and the monitoring data also confirm this. Figure 16 shows the overall effect of the supported lane in the Xinchazhuang coal mine. Most of the roof of the roadway did not significantly deform, and the vertical support provided by the three rows of props effectively reduced the sinking amount of the roof.




Figure 16 | Field support situation.








6 Discussion

For the problem of roof control and support in the close coal seam retained roadway of the Xinchazhuang coal mine, a two-way verification method was adopted to solve the problem, as shown in Figure 17.




Figure 17 | Two-way verification of roof control and support design ideas.





6.1 Two-way verification of roof failure characteristics

Various methods were used to study the failure characteristics of the rock between the close coal seams. Based on floor sliding theory, a preliminary calculation of the depth of rock failure development of the floor of the #8 coal seam was carried out, and it was concluded that the depth of floor sliding damage caused by #8 coal mining did not exceed the thickness of the rock between the two coal seams. The calculation results were further verified by a numerical simulation test, and the conclusion of the simulation test that an intact roof exists in the retained roadway was obtained. Finally, the actual field measurement of rock fragmentation characteristics verified the correctness of the previous research conclusions, and the field test conclusion of the existence of an intact rock layer in the roof of the gob-side entry retaining was obtained.




6.2 Two-way verification of roof control and support design

Based on the existence of an intact rock layer in the roof of the retained roadway, the preliminary roof control coupled support scheme of roof cutting + high-prestressed anchor cables + vertical support is formed. High-prestressed anchor cables anchor the roof and thus form a composite rock beam. The internal force solution of the corresponding composite rock beam calculation model was carried out to obtain the reasonable interrow spacing of anchor cables under the coupling factor support, and vertical support points were set for the hazard region. Numerical simulation tests were used to verify the effect of the coupled support scheme by comparison and validation. Finally, a field test was carried out in the Xinchazhuang coal mine to verify that the effect of the retained roadway was basically consistent with the research conclusion.

In addition, the author calculated the correlation between numerical simulation and field monitoring data through Pearson correlation coefficient (Edelmann et al., 2021). The results showed that there was a strong correlation between the two, indicating that the two can be verified each other.




6.3 Limitations

The solution still has shortcomings. The simulation program did not consider the weaker roof condition and the weakening effect of roof cutting on the roof. Part of the roof in the early stage of the roadway was weakened by roof cutting, resulting in a large amount of sinking of the roof. In addition, the single hydraulic prop needs to be carried manually, and the individual support force is relatively small, which may be insufficient if the roof condition further deteriorates. Upgrading to a unit bracket may be considered at a later stage.





7 Conclusion

A comprehensive approach combining theoretical deduction, numerical simulation, and field test was used to systematically study roof control methods for close coal seam roadways. Theoretical deduction of the damage degree and internal stress distribution of the roof of the retaining roadway was conducted and verified through numerical simulation and field test. A targeted roof control scheme for close coal seam roadways was proposed.

	(1) The roof of #9 coal seam still had intact rock layers under the influence of #8 coal seam mining. A computational model for the composite rock beam formed by using intact rock strata as the load-bearing structure and high-prestressed anchor cables to anchor the roof was established. Based on this calculation model, a formula for calculating the optimal spacing of anchor cables and the optimal arrangement points of vertical supports was derived.

	(2) The numerical simulation results showed that roof cutting effectively reduced the stress of supporting structure and roof pressure, and the maximum stress of the anchor cable was reduced by 41 MPa after roof cutting. Through coupling support of high-prestressed anchor cables and vertical supports, the roof convergence was reduced by more than 49.1%.

	(3) The field support plan of “roof cutting + high-prestressed anchor cables + single hydraulic props” was proposed. After implementation in the field, the maximum convergence of the roof was 99 mm, and the support forces were within the normal range. This study can provide reference for gob-side entry retaining in close distance coal seams without coal pillars under similar conditions.
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Appendix A

Some intermediate variables omitted in Section 3.2 are listed in this section to satisfy the requirement of solving for the optimal interrow spacing of anchor cables.

The internal stress components of the composite rock beam under a uniform load and simply supported conditions are:

 

Under gangue support, the internal stress components of the composite rock beam are:

 

The internal stress components of the composite rock beam supported by a single hydraulic prop strut are:

 

Under the action of the high-prestressed anchor cable, the internal stress components of the composite rock beam are:

 

where J1, J2, J3, σx4, σy4 and τxy4 are:

 

 

The anchor cable support strength formula is:
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Deep-hole bench blasting is the primary method for aggregate extraction in mines. However, factors such as complex geological conditions and suboptimal blasting parameters often result in uneven rock fragmentation and high fines content. This not only increases the cost and energy consumption of subsequent aggregate processing but also has adverse environmental implications. In this study, based on the Changjiu Shenshan limestone aggregate mining project in China, large-scale blasting experiments were conducted to investigate the influence of rock properties and blasting parameters on the size distribution of post-blast fragments and fines content. The results of the blasting experiments indicate that by controlling the size of the crushing zone and adjusting explosive performance, it is possible to significantly reduce fines content while improving mining efficiency. Recommended values for drilling and blasting parameters have been proposed based on geological conditions to more effectively control the generation of fines. The results highlight the importance of optimizing blasting parameters and charge structure for large-scale mining operations to achieve uniform rock fragmentation and low fines content. By adopting explosive performance adjustment methods based on reasonable control of the crushing zone, improving explosive performance can improve the economic benefits of mining operations, reduce energy consumption, and contribute to environmental protection.
Keywords: deep-hole bench blasting, aggregate extraction, fragmentation size distribution, fines content, explosive performance
1 INTRODUCTION
Deep-hole bench blasting is currently the primary method for aggregate extraction in mines. However, during the process of aggregate extraction, issues such as uneven rock fragmentation and high fines content often arise due to the complex geological conditions and suboptimal blasting process parameters (Roy et al., 2016). The elevated fines content not only increases the energy consumption and costs for subsequent processing of the aggregate but also results in significant ore wastage, which is detrimental to environmental preservation (Bhandari, 2012). Consequently, improving the distribution of rock fragmentation and controlling fines content has become a pressing concern in the field of mining aggregate extraction.
In recent decades, numerous scholars have conducted extensive research on the causes, influencing factors, and control measures of fines generation during mining blasting processes (Esen et al., 2003; Onederra et al., 2004; Park and Kim, 2020). From a mechanistic perspective, the generation of fines is inevitable. This is because the peak pressure of the shockwave produced by explosives after detonation far exceeds the compressive strength of the rock, leading to extreme fragmentation of the surrounding rock and the formation of fines. Although fines generation is an unavoidable consequence, it can be minimized to a significant extent by optimizing blasting parameters and process control, thus achieving the goals of uniform rock fragmentation and low fines content. To achieve this objective, researchers have explored the effects of blasting parameters on blast fragmentation size distribution through experimental and simulation studies. For instance, Yi et al. (2017) utilized the finite element software LS-DYNA to investigate the influence of delay time and initiation location on blast fragmentation, with results indicating that longer delay times contribute to improved rock fragmentation. Liu et al. (2015) studied the distribution characteristics of blast energy for different initiation locations, revealing that central initiation is favorable for reducing the occurrence of large boulders. Chi et al. (2022) investigated the effects of decoupling coefficients, free faces, and boundary conditions on blast fragmentation distribution through small-scale blasting experiments on rock cylinders. Zhang et al. (2021) examined the impact of stemming conditions on rock fragmentation results, suggesting that complete stemming leads to superior fragmentation compared to partial stemming. Singh et al. (2016), in the context of an Indian coal mine, studied the influence of 91 sets of different blasting design parameters and charge structures on rock fragmentation. Their findings indicated that rock fragmentation size increases with an increasing burden, decreases with a lower stemming-to-burden ratio, and shows an inverse relationship with hole spacing ratio. A moderate increase in specific explosive consumption can reduce rock fragmentation size. Leng et al. (2020) concluded that reducing the burden and increasing the spacing between blast holes enhance the tensile action of the stress wave within the rock mass, leading to the propagation of inherent cracks until they intersect with the free face, thus achieving a more uniform distribution of rock fragmentation and improved blasting performance.
The aforementioned studies indicate that, when designing blasting schemes, achieving the desired fragmentation size distribution can be attained by selecting appropriate blasting parameters, thereby reducing fines content. For instance, the adjustment of explosive quantity, spacing to burden ratio, and stemming column length can influence the degree of rock fragmentation and the size distribution of fragments. Alternatively, optimizing the charge structure and initiation sequence, as well as modifying the propagation path and energy release of the shockwave, can be used to control the fragmentation size distribution. It is essential to note that controlling fragmentation size distribution is a complex issue influenced by multiple factors. Factors such as the physical properties of rocks and geological structures can all impact fragmentation size distribution (Tao et al., 2020; Azizi and Moomivand, 2021; Njock et al., 2021; Sanchidrián et al., 2022). Therefore, in practical applications, it is essential to consider these factors comprehensively and determine the optimal blasting parameters and construction measures through experimental research to achieve effective control over the fragmentation size distribution and fines content.
Although there is a relative abundance of research on the fragmentation size distribution in blasting, it has predominantly focused on numerical simulations and small-scale field experiments. However, in large-scale mining operations, the control of blast-induced fragmentation size distribution and fines content holds significant importance for economic efficiency and environmental preservation. Therefore, for mining aggregate production, it is imperative to propose large-scale, applicable, and feasible control measures from various perspectives, such as explosive performance and construction measures, based on geological and lithological conditions. This research, based on the Changjiu Shenshan limestone aggregate mining project in China, conducted four sets of blasting experiments in two different lithological zones. It investigated the factors affecting the fragmentation size distribution and fines content of artificial aggregate mining, unveiled the mechanism of fines generation in limestone mines, and proposed methods for adjusting explosive performance based on rational control of the crushing zone to control fines content.
2 BLASTING TESTS
2.1 Experimental site details
The Changjiu Shenshan Limestone Mine is located in Chizhou City, Anhui Province, and is currently the largest limestone mine in China. The mine utilizes open-pit blasting for excavation, with an annual production capacity of up to 70 million tons. The mining operation is designed to produce ore with a block size not exceeding 1,000 mm. The mining site represents an isolated ore body with significant relative elevation differences, typically featuring slope angles ranging from 15° to 34°. The predominant rock type in the mining area is limestone, with minor interbedded shale. Structural features are limited, although localized karst phenomena are well-developed. The rock mass exhibits good integrity, with a Platts coefficient of 8–12, a density of 2.68 g/cm3, and compressive strength values ranging from 36.3 to 93.4 MPa, with an average of 64.9 MPa. With the exception of the Permian Longtan Formation shales, the stability of the rock mass is generally favorable. The geological structure in the mining area is complex, characterized by the presence of prominent folds and faults. Folding predominantly forms anticlines, while the dominant faults include northwesterly-oriented (F1, F2, F3) faults, followed by nearly east-westerly-oriented (F4, F5) faults. These faults can influence the integrity and stability of the slope. Localized deep-seated karst features are observed in the mining area, primarily characterized by small caves, though a few large caverns are present as well. In sections with developed karst features, the load-bearing capacity of the rock layers may decrease, potentially leading to the collapse or detachment of overlying rock layers.
Based on the development of rock joints, the Changjiu Shenshan limestone mine is divided into two mining areas: 1# and 2#. In the 1# mining area, the dominant rock type comprises thin-bedded limestone, with some areas containing extremely thin-bedded limestone layers, influenced significantly by geological structures. On the other hand, the 2# mining area consists mainly of thin-bedded limestone, with some areas featuring medium-thickness limestone layers. It experiences less influence from geological structures, and the rock type is relatively intact. The typical rock mass structures in the field are illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Typical rock mass structure at the test site (A) 1# mining area, (B) 2# mining area.
Considering the geological conditions and rock characteristics of the Changjiu Shenshan limestone mining area, a total of four sets of blasting tests were conducted in the 1# and 2# mining areas. Specifically, three sets of blasting tests were carried out in the 1# mining area, while one set of blasting test was conducted in the 2# mining area. The location of each test set is illustrated in Figure 2.
[image: Figure 2]FIGURE 2 | Blasting test location distribution map.
2.2 Blasting test parameters
The distribution of rock fragmentation and fines content in blasting is significantly influenced by geological conditions and blasting parameters. In order to investigate the effects of rock properties and blasting parameters, including hole spacing, burden, explosive quantity, and stemming length, on the post-blasting fragmentation and fines content of ore, a series of blasting experiments were conducted. For these experiments, we utilized on-site mixed porous prilled ammonium nitrate explosive with a density of 850 kg/m3 and a detonation velocity of 2,900 m/s. In each test, we arranged a total of 12 blastholes in three rows on the bench near the free face. The blasthole layout followed a pattern resembling a “plum blossom,” with hole angles not less than 85°. As depicted in Figure 3, every test consisted of two comparative test areas, resulting in a total of four sets of tests encompassing eight different blasting scenarios. The specific blasting parameters are shown in Table 1. It is noteworthy that in the fourth set of tests, we introduced a 1.0-m air deck segment below the 3.2-m stemming column, whereas conventional stemming methods were employed in the other tests.
[image: Figure 3]FIGURE 3 | Layout of blasting test holes.
TABLE 1 | Blasting test parameters of Changjiu Shenshan limestone mine.
[image: Table 1]3 ANALYSIS OF DATA
3.1 Block size distribution analysis
In bench blasting, the distribution of fragmentation plays a crucial role in assessing the efficiency of explosive energy utilization, optimizing blasting parameters, and controlling the fines content. Typical fragmentation distributions after blasting are presented in Figure 4. The evaluation of fragmentation distributions in blasting experiments is performed using on-site sieving techniques. Specifically, following each blasting test, samples are collected from six locations: the upper, middle, and lower parts in front of the blastholes and the upper, middle, and lower parts between two adjacent blastholes on the same row. During sampling, the surface layer of blast debris, typically 2–3 m thick, is removed to access the interior rock samples. The collected raw materials are subjected to initial sieving using a mobile screening machine on a flat surface to obtain coarse stones (>120 mm), medium stones (60–120 mm), and small stones (<60 mm), as illustrated in Figure 5. Subsequently, a portion of the medium and small stone samples is further refined through laboratory sieving, enabling the determination of the overall fragmentation distribution and fines content of the raw materials.
[image: Figure 4]FIGURE 4 | Typical blast fragmentation size distribution diagram from the blasting experiments (A) Blasting condition 1#, (B) Blasting condition 2#, (C) Blasting condition 3#, (D) Blasting condition 4#, (E) Blasting condition 5#, (F) Blasting condition 6#, (G) Blasting condition 7#, (H) Blasting condition 8#.
[image: Figure 5]FIGURE 5 | Blasting fragmentation sieving test (A) Preliminary screening of limestone, (B) Fine screening of limestone.
Based on the on-site sieving experiments, fragmentation distribution curves are obtained after each blasting test, as shown in Figure 6. From the graph, it can be observed that in the same area and for the same group of tests, curves with higher specific explosive consumption are positioned higher, indicating that with the same block size conditions, a higher specific explosive consumption results in a lower distribution of large rock fragments in the muckpile. Therefore, during the blasting process, reducing the specific explosive consumption in the blast design can increase the proportion of large rock fragments in the muckpile. Furthermore, Figure 6 also illustrates that as the burden-to-spacing ratio decreases and specific consumption increases, the gradation curves of the tests become steeper. This suggests that reducing the burden-to-spacing ratio contributes to increased rock fragmentation during the blasting process, making the size distribution of rock fragments in the muckpile more uniform.
[image: Figure 6]FIGURE 6 | Blasting test fragmentation size distribution curve.
3.2 Fines content analysis
Based on previous research (Bohloli, 1997) and the sieving results after each experiment, a threshold of 4.75 mm diameter was used, considering rock fragments with a diameter less than 4.75 mm as fine materials. Figure 7 presents the rock powder content for each blasting test. Given that geological conditions vary between each blasting test, two tests were selected for comparison within the same group. For example, in the case of blasting tests 5# and 6#, with the burden-to-spacing ratio held constant, test 6# exhibited a slightly higher rock powder content than test 5#, with an increase of approximately 10%. This suggests that higher specific explosive consumption leads to increased rock powder content. Comparing tests 1# and 5#, with other parameters held constant, as borehole depth increased, the post-blast powder content significantly increased from 0.69% to 3.19%. This indicates that the post-blast rock powder content is significantly affected by the amount of explosives per borehole. In comparison to the second group and the fourth group of blasting tests, although tests 3# and 7# had higher specific explosive consumption compared to tests 4# and 8#, the former exhibited more uniform gradation of muckpile materials with fewer large chunks and fine particles, resulting in a notable reduction in rock powder content. Comparing tests 5# and 8#, for the same borehole spacing, air-decked blasting resulted in significantly lower rock powder content, approximately 40% less than the coupled-charging method. The field test results demonstrate that in engineering applications, it is possible to effectively control rock powder content by appropriately reducing the specific consumption, employing a wider borehole spacing with a shorter burden-to-spacing ratio, and utilizing air-decked charging structures.
[image: Figure 7]FIGURE 7 | Rock fines content in each blasting test.
4 LIMESTONE BLASTING FINES CONTENT CONTROL TECHNOLOGY
4.1 Explosive matching principle
When explosives interact with rock mass, transmission and reflection will occur at the interface due to different wave impedances. The selection of an appropriate explosive type based on rock properties significantly influences the effective control of the crushing zone and the optimal utilization of explosive energy. Assuming the wave impedances of the explosive and the rock are [image: image] and [image: image], respectively, the optimal matching condition between explosives and rocks is defined as follows (Miao et al., 2021):
[image: image]
where, [image: image] represents the density of the explosive, [image: image] stands for the detonation velocity of the explosive, while [image: image] denotes the density of the rock, and [image: image] represents the longitudinal wave velocity in the rock.
However, in practical blasting operations, explosives typically have a density ranging from 0.8 to 1.3 g/cm3 and detonation velocities between 2,000 and 5,000 m/s. Rocks generally have densities ranging from 2.3 to 2.8 g/cm3, and longitudinal wave velocities typically fall within the range of 2,500–5,500 m/s. It is evident that achieving equal wave impedance between explosives and rocks is quite challenging under normal circumstances, with the wave impedance of explosives often being around 50% of that of rocks.
Observations in the field and laboratory experiments have demonstrated the presence of a crushing zone around blast holes (Esen et al., 2003; Yilmaz and Unlu, 2013; Liu et al., 2022; Pan et al., 2022). The formation of the crushing zone consumes a significant amount of energy, hindering the further diffusion of explosive gases into cracks and affecting the “gas wedge” effect. Additionally, particles with a high surface area within the crushing zone absorb a substantial amount of thermal energy generated by the explosion, reducing the effective utilization of explosive energy. According to the principle of energy conservation, the energy Ec expended on the crushing zone can be divided into fracture surface energy [image: image], deformation energy [image: image] of the crushing zone rock, kinetic energy of the moving rock, and other forms of energy (Ouchterlony et al., 2004; Sanchidrián et al., 2007). Due to the confining effect of the surrounding rock at the blast hole, fine particles in the crushing zone do not generate splashing and their kinetic energy ultimately transforms into surface energy and deformation energy of the rock. The proportion of other forms of energy is relatively small and can be disregarded in calculations. Thus, the energy expended in the crushing zone can be expressed in the following form:
[image: image]
According to Leng et al. (2014), the quantities [image: image] and Ep can be calculated according to Eqs 3, 4:
[image: image]
[image: image]
where, [image: image] represents the area of the original structural surface, [image: image] is the specific surface energy of the rock, denoting the critical energy release rate, [image: image] and [image: image] denote the maximum and minimum particle sizes within the crushing zone, [image: image] stands for the total volume of rock broken by a single borehole, [image: image] is the compressive strength value of the rock mass, v is the Poisson’s ratio of the rock mass, K is the shear modulus, E is the elastic modulus, [image: image] and [image: image] are the crushing zone and blast hole radius respectively.
Then the energy consumed in the crushing zone can be calculated using Eq. 5:
[image: image]
In Eq. 5, it can be observed that reducing the size of the crushing zone decreases the energy expended for breaking the rock near the blast hole, thereby optimizing the distribution of explosive energy. According to relevant engineering experience, the energy consumed in the crushing zone should not exceed 5% of the total energy. Otherwise, excessive energy consumption in the crushing zone will inevitably reduce the energy available for fracturing rock outside the crushing zone, thereby affecting the fragmentation efficiency. Therefore, the rock-explosive energy matching method based on the reasonable control of the crushing zone can both achieve efficient fragmentation and control the fines content effectively.
4.2 Reasonable control range of crushing zone
Based on the analysis in Section 4.1, it can be concluded that the size of the crushing zone impacts the efficiency of energy utilization. If the crushing zone is too large, it will consume a significant amount of explosive energy, which is not conducive to fracturing the rock mass outside the crushing zone. Additionally, the fracturing characteristics of the rock within the crushing zone determine whether it can serve as a primary source of fine particles. Therefore, it is necessary to comprehensively consider engineering requirements and actual geological conditions to determine the reasonable distribution range of the crushing zone. Taking into account that the rock is hard limestone in the Changjiu Shenshan project, it is essential to minimize the production of rock fines in the engineering blasting. Thus, the primary goal in this project is to control the size of the crushing zone to ensure that the fracturing area meets the requirements for rock crushing. Specifically, the following conditions need to be met: a. It is essential to ensure that the size of the crushing zone is appropriate, which means [image: image]; b. Simultaneously, the crack area should be sufficiently large and match the spacing between blastholes, that is, [image: image]. Here, [image: image] represents the upper limit of the crushing zone size, determined by the energy consumption of the crushing zone. [image: image] is the upper limit of the crushing zone range determined by the requirement for fine particle content, and m is a proportionality factor.
The upper limit of the crushing zone range ζ1 is determined by Eq. 5:
[image: image]
In the Eq. 6, the value of rock-specific surface energy Gf is determined by the rock’s elastic modulus and dynamic fracture toughness. It is calculated using Eq. 7:
[image: image]
where, KID is the dynamic fracture toughness of rock, Pa·m1/2; E is the elastic modulus of rock mass, Pa. The dynamic fracture toughness of the rock, KID, is typically calculated based on its static fracture toughness, KIC, and an amplification factor λ. In this work, the amplification factor λ is taken as 1.5. The relationship between static fracture toughness, KIC, and the rock’s compressive strength, [image: image], is closely associated with mode I fractures and can be expressed as follows (Li et al., 2009):
[image: image]
Table 2 lists the unit surface energy Gf of rocks under different conditions, and further the upper limit of the crushing zone range [image: image] can be obtained.
TABLE 2 | Calculated values of rock unit surface energy and related parameters.
[image: Table 2]The upper limit of the crushing zone range determined by the fine particle size material content requirements [image: image] (Leng et al., 2014):
[image: image]
where, KS represents the ratio of blasthole spacing to the burden, typically ranging from 1.2 to 1.5. For this specific engineering project, a value of 1.5 has been adopted based on the actual drilling and blasting parameters. KB denotes the ratio of the burden to blasthole diameter, usually falling within the range of 25–35. ηC represents the contribution rate of fine particles generated in the crushing zone to the total amount of fine particles, which depends on the rock type and blastability and is generally around 10%. ηB signifies the percentage of fine particles with a particle size smaller than [image: image] in the total mass of blasted rock blocks, according to the engineering requirements. For the Changjiu Shenshan limestone mine project, there are specific requirements for the degree of fragmentation in the blasted materials, with the optimal control range not exceeding 3%. In this study, the values of ηB range from 0% to 3% for comparative analysis. The upper limit of the crushing zone range [image: image] is shown in Table 3.
TABLE 3 | Calculated values of rock unit surface energy and related parameters.
[image: Table 3]By comparing Table 2 and Table 3, it can be observed that the energy-based crushing zone limit [image: image] is typically significantly larger than the crushing zone limit [image: image] determined based on the requirement for fine particle content. However, the Changjiu Shenshan mine project places a high demand on post-blast fragmentation rates. An excessively large crushing zone is often associated with increased rock dust content. Therefore, in establishing the criteria for the crushing zone, a comprehensive consideration of engineering goals to reduce the degree of pulverization is necessary. Thus, we have chosen [image: image] from Table 3 as the control standard for the crushing zone.
4.3 Explosive performance adjustment based on reasonable control of crushing zone
From the analysis in Section 4.2, it can be seen that based on the existing on-site drilling and blasting parameters, combined with the requirements for pulverization rate control in the project, a reasonable distribution range of the crushing zone can be determined. In addition to altering drilling and blasting parameters to control the blasting effect on-site, adjusting explosive performance using the explosive self-loading vehicle can also achieve control crushing rates. The key parameters that signify explosive performance are explosive density and detonation velocity. These two factors directly determine the peak value of the blasting load. Previous studies (Esen et al., 2003; Far and Wang, 2016) have shown that the intensity of the blast load directly affects the size of the crushing zone. Consequently, the adjustment of explosive performance parameters provides a means to control the range of the crushing zone.
In engineering practice, the performance of explosives is enhanced mainly by adjusting the proportion of explosive components, increasing the density of explosives, and increasing the detonation velocity of explosives. Extensive experiments have shown that within a certain range, detonation velocity is linearly related to explosive density. Here, D represents the actual detonation velocity at an in-situ explosive loading density of [image: image], and D0 represents the design detonation velocity at the explosive density [image: image] produced by the bulk loading explosive vehicle. The relationship between D and D0 can be expressed as follows (Leng et al., 2014):
[image: image]
where, M is a coefficient related to explosive performance, representing the increase in detonation velocity for every 1.0 g/cm3 increase in loading density. M can be determined through experimental measurements, and its typical value ranges from 3,000 to 4,300 (m∙s⁻1)/(g∙cm⁻3). For this study, we use a value of 3,000 (m∙s⁻1)/(g∙cm⁻3).
Based on the recommended values for the controlled range of the crushing zone under different geological conditions in the project, controlling the crushing zone within the suggested range can theoretically achieve control over the fines content by adjusting the explosive performance. To achieve this objective, the calculation of the destructive range of the crushing zone under different explosive performances was conducted using Eqs 6–10. Subsequently, recommended values for the drilling and blasting parameters and explosive matching parameters suitable for this project’s geological conditions were proposed, and these values are listed in Table 4.
TABLE 4 | Explosive matching theoretical parameters for reasonable control in the crushing zone.
[image: Table 4]The calculations from Table 4 demonstrate that the explosive parameters for rock matching vary based on different geological conditions and fines content control requirements. For the ore zone with rock fragmentation, the corresponding explosive detonation velocity is 2,890 m/s when controlling for a 1% fines content. When controlling for a 2% fines content, the corresponding explosive detonation velocity is 2,970 m/s, and for controlling a 3% fines content, the corresponding explosive detonation velocity is 3,120 m/s. Therefore, if the properties of the rock remain consistent, we can optimize the spacing between blast holes and utilize higher-performance explosives with larger spacing parameters, all while maintaining control over fines generation rates. This approach can enhance mining efficiency.
5 CONCLUSION
This study conducted a large-scale blasting experiment at the Changjiu Shenshan limestone mine in China to deeply explore the impact of geological conditions and blasting parameters on the control of fragment size distribution and fine particle content in aggregate mining, and the following main conclusions were drawn:
(1) The blasting experiments conducted in the limestone mine demonstrate that reducing the specific consumption of explosives can effectively decrease the production of fines. Simultaneously, adopting a blasting method with wider hole spacing and smaller burden contributes to a more uniform distribution of fragment sizes, playing a noticeable role in controlling the generation of fines.
(2) Effective reduction of fines content in aggregate extraction can be achieved by appropriately controlling the size of the crushing zone and adjusting explosive performance. Following the principles of rational crushing zone control, performance parameters for explosives matching the geological conditions and various fines requirements are calculated. The use of explosives with suitable characteristics allows for control over the fines content in the rock.
(3) The explosive performance adjustment method based on reasonable control of the crushing zone can provide practical operation guidance for large-scale mining of aggregates. By controlling the size distribution of fragments and the content of fine particles, economic benefits can be improved, resource waste reduced, and environmental protection requirements met.
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As coal resources are gradually being extracted at depth, the overlying strata movement behavior and stress environment become complex and violent, leading to the frequent triggering of strong dynamic hazards. To promote the productivity and effectiveness of mining activities, this paper investigated the evolution characteristics of overburden structure and stress in deep mining by using theoretical analysis, on-site monitoring, and numerical simulation. Based on key strata theory, key layers were determined, and how their movement states have a controlling effect on surface subsidence was analyzed. The evolution process of the overburden spatial structure in deep mining was revealed, which was consistent with the “O-X” type structure. The surrounding rock stress at the working face has gone through three stages, violent change, slow increase, and fluctuant increase, and strong strata behaviors appear because of the fracture and collapse of key layers. The goaf will have a significant effect on the structure, stress, and deformation of the overlying rock, which results in a larger deformation of the surrounding rock within the vicinity. The narrow coal pillar fails to maintain the stability of the overburden structure when the stress exceeds the bearing capacity. The deformation law of the surrounding rock at the roadway was studied, concluding that the existence of the goaf leads to a further increase in deformation.
Keywords: overburden structure, surrounding rock stress, key layers, “O-X” type structure, surface subsidence
1 INTRODUCTION
The extraction conditions and geological environment of deep mines have become increasingly complex as the mining of coal resources is gradually proceeding to the deep zone. Mine tremors, rock bursts, large deformation roadways, and other dynamic hazards are frequently triggered because the deep rock mass is characterized by a high temperature, high in situ stress, and high gas pressure (Xie and Gao, 2019; Xia and Yao, 2021; Xie and Li, 2021). It is essential to reveal the evolution characteristics of overburden structure and stress in deep mines to protect the productivity and effectiveness of mining activities.
The dynamic process of deep mining is essentially the coupling action of the surrounding rock stress, overlying strata movement, and gradual compaction of the collapsed rock blocks. The mining stress field, the stress distribution state after the repartitioning of overburden stress as a result of the excavation of the working face, breaks the equilibrium of the initial stress field in rock (Guo and Yuvan, 2012; Dou and He, 2014; Ma and Westman, 2020; Zhou and Zhu, 2022; Wu and Zou, 2023; Zhang and Zou, 2023). The stress and deformation of rock mass show a significant dynamic evolution in the temporal and spatial dimensions influenced by mining stress and crustal stress. Scholars have investigated the structural and stress evolution characteristics of overlying rock strata under strong mining using theoretical analysis, field monitoring, numerical simulation, and model testing (Hatherly, 2013; He and Dou, 2015; Jian, 2017; Wang and Ma, 2018; Kuang and Li, 2019; Jiao and Wu, 2021). Based on key strata theory, thick and hard rock strata (THRS) play an important role in controlling overlying rock strata movement (Wu et al., 1997; Qian et al., 2000; Lu and Gong, 2019). Xu and Fu, (2019) analyzed the stress, energy, and size characteristics of dynamic hard strata failure and concluded that it has an obvious effect on dynamic hazards. Using numerical simulation, the effect of the fracture and movement of THRS on the pressure of coal-rock mass was studied by Yu and Zuo, (2022). The stress and fracture evolution laws of the ultra-thick hard roof have been summarized by Ju and Xiao, (2018) and are regarded as the brittle fracture for roof failure.
The strata behaviors in the stope are closely connected with the deformation and fracture characteristics of the THRS and the stability of the overburden structure in extraction (Guo and Yuvan, 2012; Ju and Xu, 2013; Mu and Liu, 2019; Mondal and Roy, 2020). THRS results in the increasing length of the hanging roof in the goaf with the advancement of the panel. When the mining distance reaches the limit equilibrium length of the THRS, the roof will break and collapse because of the combined effect of gravity and the overlying rock load (Yang and Liu, 2019; Guo and Yang, 2021; Sun and Zuo, 2021; Wang and Zhu, 2021). Meanwhile, the research indicates that the mining thickness and overburden key layer structure have a significant effect on the height of the caving zone and fracture zone (Palchik, 2015; Ju and Wang, 2019). Mine tremors are frequently induced by the failure of the THRS and the migration of the overburden structure under strong mining. To prevent or avoid tremors and other dynamic hazards, the lows of overburden structure evolution and stress field change are investigated, and effective control techniques are proposed, e.g., deep-hole blasting (Wang and Tu, 2013; Xu and Fu, 2019; Zhang and Hu, 2021a; Zou and Wu, 2022), hydraulic fracturing (He and Dou, 2012; Zou and Jiao, 2021), and material filling in the goaf (Xue et al., 2020).
In this paper, the position and thickness of key layers are identified using key strata theory. In situ monitoring technology and the finite element method are used to simulate the overlying strata movement during coal mining. The evolution characteristics of overburden structure and stress in deep mining are revealed based on surface subsidence monitoring and numerical simulation. We verify the variation law of stress and deformation in the surrounding roadway rock and analyze the stress distribution characteristics of the coal pillar. The research results could provide theoretical guidance for the prevention and control of mining-induced dynamic hazards in deep coal mines.
2 ENGINEERING BACKGROUND
The coal seam of the Dongtan Coal Mine is very thick and has a deep burial, which is typical of a deep mine. The No.6 mining area is located in the south of the Dongtan mine field (see Figure 1). All mining activities are presently carried out at the first level (−660 m). The main mining seam is the 3upper coal with a thickness of 0.50–5.40 m. The 3.5 m narrow coal pillars are set between panels. The panels 03/63, 04/63, and 05/63 in the No.6 mining area have completed extraction, and the sequence is 04/63⇢ 05/63⇢ 03/63. Up to 27 March 2021, panel 06/63 has been mined for 630.05 m.
[image: Figure 1]FIGURE 1 | Arrangement of panels in the No.6 mining area.
The tectonic of the No.6 mining area is relatively simple: developing sublevel wide and gentle folds, with anticline and syncline distribution among them. Few faults have developed in the mine area. Therefore, the influence of the fault could be ignored in the activity of overlying rock during coal mining. The maximum horizontal principal stress in this area is 24.96–27.12 MPa with the direction of SE 30.00°–31.07°, which is 1.44–1.72 times larger than the vertical stress. We drilled holes from the ground and obtained rock samples of different rock strata. Through the experimental tests, the mechanical parameters of the different rock strata were obtained, as shown in Table 1. The immediate roof above the 3upper coal seam is dark-gray siltstone with an average thickness of 4.54 m and a tensile strength of 7.57 MPa. The main roof is gray-white medium sandstone, the thickness and tensile strength of which are 30.87 m and 8.61 MPa, respectively. Multiple extremely thick and hard sandstone strata are formed above the coal seam and play a dominant role in controlling the evolution of overburden structure.
TABLE 1 | Main physical and mechanical parameters of the rock.
[image: Table 1]3 EVOLUTION CHARACTERISTICS OF THE OVERBURDEN STRUCTURE
3.1 Mechanical model of the overburden structure
With the mining of coal seam, the weak direct roof stratum collapses. The hard rock stratum above it deforms, forming a suspended structure. When the initial fracture of the thick and hard rock stratum occurs, the overburden structure changes from the fixed-end beam model to the cantilever beam model (Liu and Li, 2017; Page and Li, 2019; He and Xie, 2021). The overlying strata failure and horizontal stress transfer processes will be repeated during subsequent mining.
(1) Mechanical model of the fixed-end beam
In the initial extraction stage of the coal seam, the mechanical model of the overlying rock fixed-end beam is shown in Figure 2. The maximum tensile stress in the cross-section of the fixed-end beam is located at the position where the section bending moment is the largest and away from the neutral axis of the section. When the tensile stress in the section exceeds the allowable tensile strength of the rock, tensile damage occurs in the overlying rock strata.
(2) Mechanical model of the cantilever beam
[image: Figure 2]FIGURE 2 | Mechanical model of the fixed-end beam.
The overburden structure forms the mechanical model of the cantilever beam after the initial fracture occurs (see Figure 3). The cantilever beam breaks and collapses, and the periodic pressure phenomenon appears at the working face when the excavation length achieves the periodic collapse step.
[image: Figure 3]FIGURE 3 | Mechanical model of the cantilever beam.
The overlying load is transferred to the unbroken rock when the initial fracture happens at the main roof. Most energy is accumulated in the key layer as the dominant support stratum, which releases a large amount of elastic energy to induce the rock burst or mine tremor (Jiang and Qu, 2013; Yu and Zuo, 2022). Based on key strata theory, the overlying rock strata above the 3upper coal seam are divided into three key layers: key layer 1, a medium sandstone layer with a thickness of 30.9 m, which is 9.2 m above the coal seam; key layer 2: a fine sandstone layer with a thickness of 51.3 m, which is 83.7 m above the coal seam; and key layer 3, a fine sandstone layer with a thickness of 219.2 m, which is 135.0 m above the coal seam.
Because of the low tensile strength of the rock, cracks are generated and expanded at the end of the fixed-end beam under tensile stress and eventually fracture and break through the entire main roof. The initial fracturing span L of key layers is calculated by the following (Wang and Zhang, 2016; Yang and Liu, 2019):
[image: image]
[image: image]
Where q is the overlying load of the rock stratum, Rt is the tensile strength of the rock, and E, H, and γ are the elastic modulus, thickness, and volumetric weight of the rock strata, respectively.
The results show that the initial fracturing spans of key layers 1, 2, and 3 were 95.3, 167.9, and 403.8 m, respectively. According to microseismic monitoring, the first large-energy mine tremor was triggered and located in key layer 1 when panel 06/63 advanced 93.7 5 m. The mine seismic activity occurred in key layer 2 when the panel advanced 150.75 m. The calculation result of the initial fracturing span of the key layer above the coal seam is basically consistent with the actual situation.
3.2 Evolution law of the overburden structure
The overburden structure is gradually developed from the preliminary vertical “O-X” type to the “O” type with continuous mining through the previous investigation of the evolution law of the overburden spatial structure (Dou and He, 2012; Guo and Cao, 2021; Ma and Yuvan, 2021). The formation of stress concentration in front of the working face is likely to cause a rock burst as the overlying load is transferred to the coal mass (Li and Wang, 2016; Yang and Liu, 2019). As shown in Figure 4, strong mine earthquakes occur frequently within the first square of the single goaf in each working face, forming the “O” overburden spatial structure. The SOS microseismic monitoring system is used in this paper to monitor and locate the mine earthquake events. It could realize long-distance (maximum 10 km), real-time, dynamic, and automatic monitoring of mine earthquake signals, including rock bursts, and provides the complete waveform of mine earthquake signals. The system monitors the vibration energy of more than 100 J and the frequency of 0.1–600 Hz vibration. The system has high positioning accuracy by correcting the propagation speed of vibration in the rock stratum.
[image: Figure 4]FIGURE 4 | Distribution characteristics of strong mine tremors ([image: FX 1]: E >104 J; [image: FX 2]: E >105 J; [image: FX 3]: E >106 J; [image: FX 4]: E >107 J). (A) Strong mine tremor events at panel 04/63. (B) Strong mine tremor events at panel 05/63. (C) Strong mine tremor events at panel 03/63. (D) Strong mine tremor events at panel 06/63.
The goaf below the sandstone strata is filled with fractured rock blocks during the mining of the 3upper coal seam. It causes a little accumulated settlement on the surface without sufficient movement since the movement space is small (Ma and Li, 2008; Xue et al., 2020). The large thickness and high level of the key layer lead to a small opening angle resulting from the break and fracture. In the early stage of mining, the structure of the overlying rock strata fracture in panel 04/63 is the vertical “O-X” type, forming an “O” type overburden structure in the first square of the single goaf. With the increase of the advance length, the overburden structure is gradually converted into the transverse “O-X” type (Dou and He, 2012; Yang and Liu, 2019). It is difficult to isolate the connection between goafs by narrow coal pillars (Yu and Zhang, 2016; Wang and Zhu, 2021; Song and Lu, 2022), which form the transverse “O-X” structure within the first square of the double goafs. The overlying rock strata are periodically fractured by subsequent extraction, which is in a half “O-X” break shape. The transverse “O-X” overburden structure is created in the first square of the three goafs when panel 03/63 is mined.
In Figure 5, the width of the panels is significantly larger than the coal pillar. The overlying load is delivered to the coal pillar and coal body with the length of retrieval, which will result in compression and deformation of the coal pillar. Under the increasing length of the overhanging roof, the narrow coal pillar could hardly support the overlying load, leading to failure and instability and subsequent rock burst events. The coal pillar is reserved between panels of deep mines, which is used to isolate the goaf and maintain the stability of the surrounding roadway rock (Yu and Zhang, 2016; Wu and Bai, 2019; Xia and Yao, 2021).
[image: Figure 5]FIGURE 5 | Evolution law of the overburden spatial structure. (A) Vertical“O-X”type structure. (B) Transverse“O-X”type structure in the single goaf. (C) Transverse“O-X”type structure in the double goafs. (D) Transverse“O-X”type structure in the three goafs.
4 EVOLUTION LAWS OF OVERBURDEN STRESS AND DEFORMATION
4.1 Numerical modeling
FEM was applied to establish the three-dimensional numerical simulation model of the No.6 mining area in the Dongtan Coal Mine. The extraction process was analyzed to reveal the evolution laws of overburden stress and deformation from deep mining. As shown in Figure 6, the geometry size of the model was 2,000 m (length) × 1,680 m (width) × 286 m (height). The horizontal displacement and degree of freedom constraints were set on the periphery, and vertical displacement and degree of freedom constraints were applied to the bottom.
[image: Figure 6]FIGURE 6 | The three dimensions of the simulation model.
To reveal the overburden stress and deformation law of deep mining, the mining process of panel 06/63 was studied. The excavated coal body was removed using the model change function. Application of gravity stress and initial geo-stress to achieve ground stress balance in situ stress field balance. Combined with the laboratory tests, the physical and mechanical parameters of the rock are shown in Table 1.
4.2 Evolution laws of overburden stress and deformation
Figures 7, 8 show the distribution of the maximum principal stress at the advance of 550.20 m on panel 06/63. The maximum principal stress is first concentrated in the hard interlayer between the coal seam and key layer 1. The elastic modulus of the 9.2 m thick interlayer is as high as 51 GPa, which is higher than thick and hard sandstone strata. Under the effect of mining bearing pressure, the coal body in front of the working face will be deformed to a certain extent. At the same time, the distribution of existing goafs will inevitably have a significant impact on the spatial distribution of stress, displacement, and energy accumulation in the panel (Wang and Duan, 2017; Zhang and Hu, 2021).
[image: Figure 7]FIGURE 7 | Distribution of the maximum principal stress at the advance of 550.20 m on panel 06/63.
[image: Figure 8]FIGURE 8 | Vertical section distribution of the maximum principal stress.
As of 9 April 2021, the surface settlement of panel 06/63 is monitored and the maximum cumulative surface settlement is 1,803.7 mm (see Figure 9). The offset of the cumulative settlement maximum point in the direction of mining increases gradually with the continuous advancement of the panel. This indicates that the continuous advance of the panel has caused the distribution range of the “Three Zones” of the overburden rock to extend and shift in the upper layer. The movement of the overlying key layer significantly controls surface subsidence, increasing with layer-by-layer upward fracture migration and surface subsidence activity (Jiang and Wu, 2019; Liu and Li, 2019; Wang and Jiang, 2019). Surface subsidence enters the peak state until the key layer stops rotating in the forward direction and starts rotating in the reverse direction.
[image: Figure 9]FIGURE 9 | The surface subsidence curve of panel 06/63 (monitoring stations: W1–W49).
The surface subsidence is minor at the early stage of mining, and then large subsidence occurs near the location of the open-off cut. The surface subsidence reaches the maximum at the position of approximately 1/5 mining length from the open-off cut. The end of the active period of surface subsidence depends on the stabilization of the most upward key layer movement. The final shape of surface subsidence is directly controlled by the movement state of key layers (Chen and Chen, 2019; Jiang and Wu, 2019; Xue and Xu, 2020).
As shown in Figure 10, the deformation displacement near the direction of the 05/63 goaf is the largest, leaving the direction of the goaf displacement gradually decreasing. During the mining process of panel 06/63, the roof of the back goaf collapses and forms an overburden spatial structure together with one side of the goaf. It is one of the major reasons for the asymmetric deformation of the panel surrounding rock. In addition, it will cause an increase in advancing abutment pressure on the working face causing strong strata behaviors.
[image: Figure 10]FIGURE 10 | Cloud diagram of the surrounding rock deformation distribution at panel 06/63.
4.3 Evolution law of coal pillar stress
Combined with the cloud diagram of coal pillar deformation, the coal pillar at the auxiliary transport gateway has generated the corresponding deformation and the deformation degree is large on the side near the goaf before panel 06/63 advances. With the breaking and collapse of the overlying rock strata in the goaf, the stress concentration zone is formed in the narrow coal pillar within the goaf under the action of the overlying load. As shown in Figure 11, the position of stress concentration has a relatively high degree of deformation. Because of the expanding range of the goaf, the coal pillar deformation zone develops forward but the volume of deformation decreases.
[image: Figure 11]FIGURE 11 | Prediction of coal pillar deformation on the side of the auxiliary transport gateway at panel 06/63.
The stress in the coal pillar is greatly concentrated under the self-weight stress, tectonic stress, roadway excavation, and pressure relief transfer stress. When the concentration stress exceeds the bearing capacity of the coal pillar, impact instability occurs in the middle elastic core of the coal pillar (Zhu and Chen, 2019; Zhang and Zhao, 2022). The calculation results show that the stress of the coal pillar after excavation has exceeded its bearing capacity, which has lost the role of maintaining the stability of the roadway surrounding rock. The plane distribution of mine tremors verifies the above idea that there are seismic mine events in the 05/63 goaf during the mining process of panel 06/63.
5 EVOLUTION LAWS OF SURROUNDING ROCK STRESS AND DEFORMATION
5.1 Evolution law of surrounding rock stress at the working face
The dynamic evolution of surrounding rock stress at the working face during the advancement of panel 06/63 is shown in Figure 12. During the first caving and weighting, the YHY60(B) type support resistance recorder is used to monitor the changes in mining pressure at the working face. Monitoring shows that the initial in situ stress of overburden is approximately 30 MPa. In the range of 60–120 m from the open-off cut, the overlying rock strata instantly break and collapse, showing a significant decrease and increase in the surrounding rock stress of the working face. When the panel advances to 300 m, the overlying load re-acts at the monitoring point with the overburden strata fracture, collapse, and compaction at 120–300 m from the open-off cut. The stress of overburden in the working face gradually returns to the initial stress. The surrounding rock stress fluctuates and appears to be weakly increasing, basically staying at approximately 30 MPa in the subsequent range.
[image: Figure 12]FIGURE 12 | The relationship between mining pressure and the extraction distance of the working face.
Breaking and collapsing of the overlying rock strata is a dynamic motion process. The caving zone of the overburden expands and moves forward with the mining of the panel. The evolution process of surrounding rock stress in the working face is divided into slow-increase and fluctuant-increase stages. The instantaneous fracture of the rock strata leads to the abrupt release of accumulated energy, which induces a rapid decrease in overburden stress at the stage of violent change. At the same time, the falling rock is in the shape of giant blocks, and the phenomenon of strata behaviors is obvious (Wang and Bian, 2019; Zou and Hu, 2022). At the slow-increase stage, the main roof fractures and falls again, and the collapsed rock blocks act on the hydraulic support based on the previously formed gangue, causing the surrounding rock stress to rise slowly. At the fluctuant-increase stage, the surrounding rock stress is continuously redistributed under the coal seam excavation, which experiences strong fluctuations and weak increases.
5.2 Evolution law of the surrounding rock deformation
To investigate the deformation of the surrounding rock of the roadway in panel 06/63, monitoring points were arranged in the conveyor gateway and auxiliary transport gateway to monitor the deformation of the sidewall and roof of the roadway. As shown in Figures 13, 14, the monitoring results indicate that the evolution process of the surrounding rock deformation in the sidewall and roof of the conveyor gateway and auxiliary transport gateway is basically the same.
[image: Figure 13]FIGURE 13 | The deformation of the sidewall and roof of the auxiliary transport gateway.
[image: Figure 14]FIGURE 14 | The deformation of the sidewall and roof of the conveyor gateway.
The overall trend of roof deformation is increasing at first and then decreasing, and the maximum deformation is almost at the center of the roof. The sidewall deformations of the auxiliary transport gateway and conveyor gateway are maintained at approximately 500 mm and 600 mm, respectively. The difference in the sidewall deformation of roadways is that the auxiliary transport gateway is close to the 05/63 goaf. Both sides of the conveyor gateway are coal bodies causing local stress concentration and energy accumulation, which results in larger displacements for energy dissipation and stress release.
6 CONCLUSION
This paper investigated the evolution of overburden structure and stress in the mining of the deep mine based on field monitoring and numerical simulation. The three-dimensional numerical model was established by the finite element method and the evolution law of surrounding rock stress and coal pillar stress was investigated. The main conclusions are as follows.
(1) The movement of the overburden strata conforms to the fixed-end beam model at the initial stage of excavation and is converted to the cantilever-beam model after the initial fracture. According to the characteristics of mine earthquakes, the overburden structure shows the “O-X” type spatial structure evolution and the connection between adjacent goafs is not isolated.
(2) Based on key strata theory, three key layers are determined, which play the dominant role in controlling overlying strata migration. The initial fracturing spans of key layers based on theoretical calculations are 95.3 m, 167.9 m, and 403.8 m, respectively. The final shape of surface subsidence in deep mining is significantly correlated with the movement state of key layers.
(3) The overlying rock stress concentration occurs mainly in the immediate roof and key layers. The narrow coal pillar makes it difficult to isolate the connection between the goaf and the panel. The numerical simulation revealed that the coal pillar has lost its role in maintaining the stability of the overlying strata. The adjacent goaf inevitably has a great impact on the spatial distribution of stress, deformation, and energy accumulation in the overburden.
(4) The evolution process of surrounding rock stress at the working face is categorized into three stages: violent change, slow increase, and fluctuant increase. Strong strata movement behaviors are caused by the fracture and collapse of key layers in the early mining stage of the panel. The deformation law of surrounding rock mass in the sidewall and roof of the conveyor gateway and auxiliary transport gateway is basically the same.
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The construction of expressway tunnels in karst areas faces many challenges under complex geological conditions. It is of great scientific and engineering significance to study the deformation and failure laws of tunnels and surfaces. Taking the Qilinguan tunnel of the Hubei Expressway as an example, the deformation and failure laws of the tunnel are analyzed when the tunnel passes through the complex karst area. The composition of karst water and surrounding rock was analyzed by inductively coupled plasma mass spectrometry and XRD, and the compression-shear failure model of tunnels in karst areas was proposed according to the regional hydrological and geological conditions. It was found that the thickness of the protective layer and the water pressure were the main factors affecting the deformation and failure of the surrounding rock in this area, and the treatment scheme of this project was put forward accordingly. The geological characteristics of karst areas were explored by advanced geological prediction and advanced geological drilling. The primary support is provided by a steel arch and advanced small pipe grouting. The composite lining is composed of shotcrete as the primary support and molded concrete as the secondary lining. The primary support structure of the flexible support system is adopted in the design to give full play to the bearing capacity of the surrounding rock. After the support measures were adopted, the trend of settlement change gradually slowed down, indicating that the support measures were effective.
Keywords: karst area, deformation and failure characteristics, karst water, compression-shear failure model, surface subsidence
1 INTRODUCTION
More than half of China’s completed tunnels are located in karst areas (Hui et al., 2018; Xu et al., 2021). The karst area poses a huge geologic hazard to highway tunnel construction and remains a potential risk for normal operations (Tian et al., 2018; Li et al., 2019). In the mountainous areas of Southwest China, the engineering, geological, and hydrogeological conditions are complex, and the karst development is changeable (Li and Li, 2014; Li and Wu, 2019). It is difficult to deal with the geological disasters in karst areas in all aspects during construction. Under the condition of a rainstorm, the surrounding rock fissure water is abundant, which forms great pressure on the tunnel face and lining, and the tunnel lining is prone to deformation and failure (Alija et al., 2013; Liu et al., 2019; Huang et al., 2022). Therefore, it is of great significance to study the deformation and failure laws of tunnel lining and surface in karst areas under complex geological conditions.
In order to study the deformation and failure characteristics of tunnels in karst areas, a series of effective studies have been carried out at home and abroad (Chen et al., 2020; Gang-jian et al., 2022; Liu et al., 2022). The representative studies are discussed in this paragraph. Jin (2020) studied the disaster-causing conditions of local high-water-depth buried tunnels and proposed that the disaster-causing conditions of deep, local pressure-bearing tunnels are mainly the vertical development of karst. Fan et al. (2022) carried out the mechanical response model test of a water-rich pipeline karst tunnel and studied the internal force characteristics of the lining structure under the influence of different cavity positions and different water head heights. It is found that when there is a pipeline-type cavity around the tunnel, the inner side of the lining in contact with the cavity bears a large positive bending moment, which is the most unfavorable stress position of the lining structure. Jia-qi et al. (2018) used the critical water pressure formula to establish a criterion for the instability and water inrush of the intermittent joint outburst prevention layer of the karst tunnel face based on the minimum safe thickness and then analyzed the karst water pressure in front of the tunnel face. At the same time, the study examined the effects of the intermittent main cracks, the spacing of intermittent cracks, and the angle between cracks and the maximum principal stress on the thickness of the minimum safety outburst prevention layer. In summary, a series of studies have been carried out on the deformation and failure characteristics of tunnels in karst areas. However, in the current research, the composition of surrounding rock and karst water is rarely analyzed, and the in-depth analysis of its deformation and failure mechanisms is lacking (Luo et al., 2022). Therefore, for karst areas with complex geological conditions, the development process of lining and surface deformation and failure in tunnels need further study.
In this paper, the Qilinguan extra-long tunnel of the Hubei Expressway was taken as an example, the characteristics of lining and surface deformation and failure in the cave are expounded. By analyzing the composition of the weak interlayer in the surrounding rock, the compression-shear failure model of the tunnel in this area was put forward. It was found that the thickness of the surrounding rock protection layer and fissure water pressure are the main factors affecting the deformation and failure of the surrounding rock in this area, and the treatment scheme was put forward accordingly. Based on advanced geological prediction and drilling, the construction treatment scheme in karst areas is put forward. The deformation monitoring of the surface and the hole shows that the treatment has achieved good results. The research results can provide theoretical and engineering support for the study of the deformation and failure of expressway tunnels in karst areas.
2 PROJECT PROFILE
The Yidu end of the Qilinguan extra-long tunnel is located in Dagou Village, Wangjiafan Township, Yidu City, Hubei Province, and the Hunan end is located in Qilinguan Village, Yuyangguan Town, Wufeng Tujia Autonomous County, Hubei Province. It is a four-lane highway tunnel with up-and-down separation. The starting and ending stake number of the left line is ZK7 + 914∼ZK16 + 129, with a length of 8,215 m. The pile number of the right hole is YK7 + 931∼YK16 + 156, and the length is 8,225 m. The Yidu end of the left and right lines is located on the straight line. The Hunan end is on the left circular curve with R = 4,950 and R = 5,600, respectively. The spacing between the left and right lines of the Yidu end of the tunnel is 29.1 m, the maximum spacing of the tunnel body is approximately 40.0 m, and the spacing of the Hunan end is gradually changed to 25.1 m.
The tunnel area belongs to the low mountain landform and platform terrain of structural denudation and erosion. The tunnel crosses the east–west mountains of Renheping and is located on the north bank of the Nanhe River. The ground elevation of the crossing area is generally approximately 420 m–930 m, and the surface topography of the mountain top is undulating. The entrance of the tunnel is a sudden mountain mouth where two ditches meet. The slope is steep, and there is still high-level land above. The Yidu section is sandy shale, and the rock mass joints are developed. The slope block is loose, and the top is a kaolin mining area. The slope angle is 40°, and the inclination is approximately 30°. The south river at the Hunan end of the tunnel is a deep valley formed by deep karst dissolution. The bank slopes on both sides are steep. The portal is a concave bank slope, with a slope angle of 45° and a tendency of 180°. The surface and groundwater above the tunnel are developed, and the groundwater in the tunnel area is mainly karst water. Groundwater recharge mainly occurs through atmospheric rainfall. Discharge methods mainly include groundwater discharge, surface runoff, and evaporation.
When the right working face of the tunnel was constructed to YK15 + 667, the cavity collapsed, and the excavation of the working face was suspended. The design elevation of the tunnel working face here is 531.8 m, the surface elevation is approximately 625.3 m, and the buried depth is approximately 93 m. At this time, the working face of the left hole was constructed to ZK15 + 479, and the secondary lining was constructed to ZK15 + 588. Due to the large-scale karst cavity, the tunnel lining is deformed and damaged, the water seepage in the tunnel is serious, and the ground fissures appear on the surface.
3 DEFORMATION AND FAILURE CHARACTERISTICS
3.1 Deformation and failure characteristics of tunnels
The Qilinguan tunnel was excavated from the large pile number to the small pile number. On 6 March 2022, when the right hole was excavated to YK15 + 690, cracks appeared on the upper right side of the tunnel face, and water flowed out. During the construction, the drainage pipe was pre-buried at this fissure. From the time of burial to the present day, there has been an outflow of water. There was no mud at the outlet, and the water flow was clear.
On 12 March 2022, when the working face of the right tunnel reached YK15 + 667, a cavity collapse occurred on the upper left side of the working face. The collapse was yellow mud with stones. After the collapse, the initial support steel frame was intact, and there was no crack on the surface of the initial support shotcrete. There has been soil and rock falling in the collapse cavity, which cannot be observed, and the situation in the cavity is unknown. According to the monitoring results, the initial settlement and convergence of the right hole still exceed the warning value after the anti-pressure measures are taken in the tunnel working face. The surface of the collapse section is a sinkhole, where the buried depth is approximately 93 m. After the collapse occurs, the working face of the roadway immediately backfills approximately 500 cubic meters of waste rock, and the top of the back pressure area is approximately 7 m from the excavation working face. The photographs of the site under study are shown in Figure 1.
[image: Figure 1]FIGURE 1 | Deformation and failure characteristics of the tunnel. (A) Water outlet. (B) Collapse of the tunnel face. (C) Collapse material: yellow mud mixed with stones. (D) Backfilling of the tunnel face.
The analysis shows that there are two main reasons for the collapse. First, there are deposits with a large area, large range, and high height on the left side of the entry direction, which can easily lead to stress concentration and local instability. Second, the recent rainy weather is concentrated, and the rainwater enters the accumulation body through the cavity, which increases the water content of the cave top and the accumulation body. Due to these reasons, the self-stability of the accumulation body becomes worse and the sliding pressure is generated, which leads to the instability and deformation of the left arch of the vault under earth pressure.
3.2 Deformation and failure characteristics of surfaces
The surface of the cave top is situated in a mountainous area with higher terrain surrounding it and lower terrain in the middle, and no one lives within 600 m. It is a deep sinkhole. After the face of the tunnel collapsed, the top of the cave was immediately examined. It was found that there were irregular annular cracks on the surface of the top of the cave, with an area of approximately 750 m2. The photographs of the surface cracks are shown in Figure 2. The surface cracks are mainly distributed between the left and right sides of the tunnel and the top of the right side of the tunnel, with an irregular ring. After cracking, the widest crack width was observed for the first time in the middle of the left and right amplitudes, with a width of approximately 20 cm.
[image: Figure 2]FIGURE 2 | Surface cracks. (A) Right crack. (B) Left crack.
The supporting structure of the tunnel adopts the composite lining by applying the principle of the new Austrian method. The construction unit must carry out on-site monitoring during the construction process and timely grasp the mechanical characteristics of the surrounding rock and supporting structure during the excavation process. Based on this, the stability of the surrounding rock and supporting structure is evaluated to provide comprehensive information for tunnel construction so as to adjust the supporting parameters in time. Through data analysis, the stable state of surrounding rock support is predicted, and corresponding construction measures are formulated. According to the actual situation of the site, the monitoring is divided into two categories: the hole and the ground. Each type of monitoring project includes the required and selected test items. The specific monitoring scheme is shown in Figure 3. In order to distinguish, Figure 3A describes the surface deformation area, and Figure 3B describes the distribution of surface monitoring points.
[image: Figure 3]FIGURE 3 | Surface crack area and monitoring points. (A) Surface crack area. (B) Monitoring points.
The main object of ground monitoring and measurement is the surface condition, and there are two necessary items: (1) Surface observation: daily observation of surface geology and hydrology and observation of surface anomalies are noted. (2) Surface subsidence: according to the surface subsidence, the influence of excavation on the surface is judged, and the tunnel support structure is determined.
After the blasting of the YK15 + 667 right hole working face of the Qilinguan tunnel, the surface settlement at the top of the hole increased. The deformation law of settlement observation is shown in Figure 4. The monitoring results show that after the collapse of the karst area, the surface-affected area generally has obvious settlement, the maximum settlement value reaches 343 mm, and the settlement value of other areas is generally between 150 and 300 mm. After the roadway is supported, the settlement trend gradually slows down, indicating that the support measures are effective.
[image: Figure 4]FIGURE 4 | Surface subsidence tendency.
4 ANALYSIS OF FAILURE MECHANISMS
4.1 Analysis of karst water and surrounding rock
According to the tunnel engineering and hydrogeological characteristics, the cracks in this area are very developed, and the groundwater is sufficient. In order to study the failure mechanism of tunnel lining in this area, the weak interlayer of surrounding rock was sampled and analyzed by XRD. The results are shown in Figure 5. The analysis results show that the weak interlayer in this area contains a large number of clay minerals, carbonates, and sulfates, which are prone to seepage failure under high water heads. Based on this, it is considered that the failure mode of the lining and surrounding rock in this area is of hydraulic fracturing type. Under the high head pressure, the fissure water expands in the gap and induces a new fracture network. The fracture network gradually develops and finally induces the instability and failure of the lining and surrounding rock.
[image: Figure 5]FIGURE 5 | XRD analysis results of the weak interlayer.
In order to study the mechanical properties of the surrounding rock, samples were collected from typical areas, and uniaxial compression tests were carried out. The test results are shown in Table 1. According to the experimental results, it can be found that the surrounding rock in the karst area is mainly muddy siltstone. The compressive strength of the surrounding rock is concentrated at 10–20 MPa, and the internal friction angle ranges from 29° to 32°. The composition of the surrounding rock shows that its strength and stability are significantly affected by karst water and mineral content. Therefore, it is necessary to analyze the composition of karst water.
TABLE 1 | Rock mass parameters.
[image: Table 1]The composition and chemical properties of karst water have an important influence on the stability of the lining structure and surrounding rock. The karst water is analyzed by inductively coupled plasma mass spectrometry and other methods. The results are shown in Table 2. The results show that the chemical composition of karst water in this area is low, and the corrosion is weak. Therefore, when analyzing the stability of the surrounding rock in the karst area, we do not need to consider the chemical weakening effect of karst water on the surrounding rock; however, we mainly need to analyze the deformation and failure mechanisms of the surrounding rock from a mechanical point of view.
TABLE 2 | Chemical composition of karst water.
[image: Table 2]4.2 Compression-shear model of the surrounding rock
Based on this, a compression-shear model of surrounding rock deformation and failure is established, as shown in Figure 6.
[image: Figure 6]FIGURE 6 | Compression-shear calculation model.
From this model, the normal stress and shear stress on the unit body can be known, as shown in Formula 1.
[image: image]
For this model, the distribution of the fracture discontinuous stress field is given as follows:
[image: image]
Here, K1 is the stress intensity parameter at the crack tip, and its expression is as follows:
[image: image]
The fracture will be closed under pressure, and the closed fracture can withstand pressure and shear stress. Based on the theory of fracture mechanics, the critical head pressure at which hydraulic fracturing occurs can be deduced, as shown in Eq. 4.
[image: image]
The tunnel lining is subjected to external water and mountain loads, and the lining thickness should be able to withstand its pressure without damage. In order to select a reasonable support type and carry out support design, it is necessary to analyze the lining thickness. Assuming that the lateral load is a trapezoidal distribution, the maximum bending moment of the lining is calculated as follows:
[image: image]
where p and p’ are water pressure at the tunnel roof and floor and H is the height of the tunnel.
At the same time, the maximum shear force of the lining is
[image: image]
The minimum thickness of the lining is calculated using bending strength and shear strength, respectively, as follows:
[image: image]
[image: image]
where ρ is the density of karst water, g is the acceleration of gravity, σt is the tensile strength of the lining, and τ is the shear strength of the lining.
In karst areas, there are often broken stones and other objects in the outer cavity of the tunnel lining. Considering this factor, the aforementioned critical lining thickness is corrected to the following expression:
[image: image]
[image: image]
where λ is the lateral pressure coefficient and γ is the bulk density of fillings in the karst cavity.
It can be found that the thickness of the protective layer of the surrounding rock and the fissure water pressure are the main factors affecting the deformation and failure of the surrounding rock in this area. Based on this, the treatment measures in the karst area of the tunnel can be put forward.
5 TREATMENT METHODS
The YK15 + 850∼YK15 + 560 right hole of the Qilinguan tunnel is explored as moderately weathered, thick-layered limestone. Although the strength of the rock mass is high, there are deep collapse holes on the top surface of the section, and the holes contain continuous karst caves. There may be a large number of karst caves with silty clay fillings above the design elevation. At the same time, due to the action of compression-torsion faults, the rock mass is relatively broken, and it is possible to cut into the karst water channel. Instantaneous water inrush and mud gushing may occur during excavation and rainy season construction, and the water inflow is large. The groundwater system is mainly connected with karst water, surfaces, and large karst caves. Local cracks or karst development sites are prone to extensive, sudden outflows of water and mud gushing during construction excavation and the rainy season. Therefore, it is necessary to predict the support in advance, take waterproof measures, and adopt effective measures to control karst water and karst caves. There are a large number of silty clay and limestone fragments at the top of the tunnel, so it is necessary to prevent them from falling or collapsing. The construction period of the tunnel is short, the blasting is weak, and the support needs to be strengthened during treatment.
5.1 Advanced geological prediction
According to the advanced geological prediction results of the YK15 + 667∼YK15 + 637 section of the Qilinguan Tunnel Project of the HBSG-2 Bid of the Hubei Expressway, the mileage of the tunnel face is YK15 + 667 in this prediction, and the predicted mileage range is YK15 + 667∼YK15 + 637 (i.e., 30 m in front of the tunnel face). The detection results are shown in Figure 7.
[image: Figure 7]FIGURE 7 | Detection results of geology radar.
The advanced prediction range is 30 m in front of the working face of the roadway. The exposed surrounding rock state of the tunnel working face is moderately weathered argillaceous siltstone and limestone. A mud cave cavity is exposed on the left side, with moderate water seepage and a lot of mud. The tunnel rock mass is broken, the stability of the surrounding rock is general, and the integrity is poor. From the radar detection results, it can be seen that the radar signal response of the YK15 + 667∼YK15 + 653 section in front of the working face of the roadway is obvious, and the radar wave phase is discontinuous in many places. According to this, it is speculated that the surrounding rock of this section is relatively broken, the interlayer bonding of rock mass is poor, and the surrounding rock in the middle of the roadway working face is slightly worse than that on both sides. In the YK15 + 659 mileage section, the radar reflection signal is abnormal, and the in-phase axis is discontinuous. It is speculated that this is the overlapping surface of the rock mass medium, and the joints and fissures of the interlayer rock mass are developed. Unfavorable geological phenomena such as seepage and formation of mud or small cavities are the common challenges that may be encountered during tunnel construction. In the range of YK15 + 653∼YK15 + 637, the radar signal reflection signal is weak, the energy group is unevenly distributed, and there is no obvious bad reflection wave. It is speculated that the overall situation of the surrounding rock in this section is roughly consistent with the current tunnel face. Through the observation and analysis of the surrounding rock of the tunnel face, the grade of the tunnel face is V grade.
5.2 Advanced drilling
In order to find out the geological conditions in front of the tunnel face, advanced drilling was carried out on the tunnel face, and a 150-m-long drilling rig was used for advanced drilling. The mileage pile number of the drilling hole is YK15 + 674, and the backfill slag accumulation section is 7 m away from the tunnel face. The details are shown in Figure 8.
[image: Figure 8]FIGURE 8 | Advance drilling and rock core. (A) Advance drilling-1. (B) Advance drilling-2. (C) On-site drilling. (D) Rock core.
In this advanced drilling, the mileage of the working face is YK15 + 667, and the drilling mileage range is YK15 + 667∼YK15 + 629 (38 m in front of the working face). The preliminary analysis results are shown in Table 3.
TABLE 3 | Drilling results.
[image: Table 3]5.3 Disposal process

(1) The 108 × 6 mm hot-rolled seamless steel pipe with 40 cm circumferential spacing is used for advanced support, and the supporting length of the advanced steel pipe should not be less than 10 m per cycle. It can be divided into multiple cycles, and the construction site determines the advance support length according to the advance geological forecast. In order to ensure that there is still enough advance support length at the distal end of the steel pipe after excavation, the longitudinal lap length of the steel pipe is not less than 3 m, and the extension into the stable stratum is not less than 3 m. When the surrounding rock is broken and it is difficult to form a hole, the pipe drilling process can be used.
(2) I20 b is adopted for the initial support steel frame, the longitudinal spacing is 50 cm, and the connection between the steel frames is welded at 100 × 80 × 10. The temporary support pad at the locking foot of the arch section adopts I20 steel or 25 mm steel plate, and the adjacent arches are welded together by steel or steel plate. The bottom of the arch foot is a weak layer. Two φ108 × 6 mm steel pipes are added to the arch foot of the steel frame and welded firmly with the steel frame as the support of the steel frame using φ10 steel mesh (10 × 10 cm) and a 40-cm-thick C25 shotcrete.
(3) According to the monitoring data of the tunnel, the temporary stable state of the surrounding rock can be used to deal with the slag while cleaning the slag. The excavation section can be appropriately increased, and the spray anchor support can be used to reinforce the uncollapsed strata as soon as possible. After being relatively stable and safe, the grid arch + sprayed C25 concrete is used to strengthen the support along the outer contour of the inner primary support, and the support is divided into multiple layers. After the settlement deformation data of the inner and outer initial support monitoring and measurement are stable, the secondary lining is applied.
(4) The filling section of cohesive soil at the bottom of the inverted arch adopts φ108 × 6 mm grouting steel pipe, with L = 8 m. The longitudinal circumferential spacing is 50 (longitudinal) × 100 (ring), and the plum-shaped arrangement is reinforced.
(5) The secondary lining adopts 60-cm-thick C35 waterproof reinforced concrete (waterproof grade is not less than P10).
(6) According to advanced geological prediction and monitoring measurement, the excavation of the tunnel body is carried out using ring excavation with reserved core soil, central diaphragm (CD), and cross-central diaphragm (CDR) methods, and the long bench method is not suitable. According to the monitoring measurement, the support parameters and construction methods can be optimized and adjusted. In construction, site safety management should be strengthened to ensure construction safety.
6 CONCLUSION
The right hole of the Qilinguan tunnel is located in the complex area of engineering geology and hydrogeology. When it was constructed to YK15 + 667, a large-scale cavity collapse occurred. Through field monitoring, mechanical experiments, chemical analysis, and theoretical research, the deformation and failure mechanisms of the karst failure area are obtained, and treatment measures are put forward. The main conclusions are as follows:
(1) After the deformation and failure of the tunnel in the karst area, the collapse form is yellow mud with stones, and there are cracks on the upper right of the tunnel working face, accompanied by moderate seepage. A soil fall has occurred in the cave, and the situation in the cave is unknown. After the back pressure measures are taken in the roadway working face, the initial settlement and convergence of the right hole are within the warning range. There are irregular annular cracks on the top surface of the cave, and the crack area is approximately 750 m2. The surface cracks are mainly distributed between the left and right sides of the roadway and the top of the right side of the roadway, showing an irregular ring. The maximum settlement value is 343 mm, and the settlement value in other areas is generally between 150 and 300 mm.
(2) The composition of the weak interlayer of the surrounding rock was analyzed by XRD, the mechanical properties of the surrounding rock were measured using uniaxial compression tests, and the karst water was analyzed by inductively coupled plasma mass spectrometry. According to the analysis results, the compression-shear failure model of the tunnel in the karst area was proposed. It was found that the surrounding rock in the karst area is mainly muddy siltstone, the chemical composition of the karst water in this area is low, and the corrosion is weak. The thickness of the protective layer of the surrounding rock and the pressure of fissure water were the main factors affecting the deformation and failure of the surrounding rock in this area.
(3) Through advanced geological prediction and advanced geological drilling, the development of the karst area in front of the tunnel face is proved. The ring excavation reserved core soil method, middle partition method (CD method), and cross-middle partition method (CDR method) are selected for construction. The support parameters and construction methods are optimized and adjusted according to monitoring and measurement. In the design, the initial support structure of the flexible support system is adopted to give full play to the bearing capacity of the surrounding rock. Through on-site monitoring, it was found that the disposal method had a good effect.
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In the process of grading and dynamically optimizing the design and construction parameters of the surrounding rock mass of a rock tunnel face, efficiently and accurately acquiring the geometrical parameters of the rock discontinuities is an important basic task. To address the problems of time consuming, low accuracy, and high danger associated with traditional methods of obtaining the structural information of rock mass, this paper proposes a method for three-dimensional reconstruction and intelligent information extraction of tunnel face based on binocular stereo vision (BSV). First, the parallel binocular device with a single camera was improved, calibrated using the checkerboard calibration method. By integrating with the semi-global matching algorithm, the BSV based method for the three-dimensional reconstruction of the rock mass of the tunnel face was optimized. Furthermore, based on the results from on-site engineering applications, this study leveraged two parameters, point cloud density and algorithm runtime, to determine the optimal values for the disparity range and window size parameters within the semi-global stereo matching algorithm. This enhancement improved the performance of the 3D reconstruction method based on binocular stereo vision. Finally, efficient and refined intelligent methods for extracting structural parameters of the rock mass were proposed based on k-nearest neighbor search and kernel density estimation. The research results can provide reliable technical support for the intelligent and efficient acquisition of rock mass structural information in rock tunnel engineering faces.
Keywords: tunnel engineering, binocular stereo vision, rock mass discontinuity, three-dimensional reconstruction, intelligent extraction, discontinuities orientation
1 INTRODUCTION
In rock masses, numerous randomly developed joints, fissures, and discontinuities of varying scales exist. The geometric distribution and orientation analysis of these discontinuities are fundamental and necessary processes for the classification, stability assessment, and design and construction of rock tunnels in geotechnical engineering (Li et al., 2017; Wang et al., 2021). However, due to factors such as limitations in engineering exploration techniques, tunnel depth, topography, construction duration, and costs, it is challenging to achieve detailed coverage of the entire tunnel alignment during the early stages of engineering construction (Yu et al., 2023). Therefore, as tunnel excavation progresses, there is a need to monitor in real-time the changes in information regarding newly exposed rock joints on the tunnel face. This enables the swift completion of geological sketches, facilitating timely dynamic adjustments to optimize tunnel design and construction parameters.
However, in the context of collecting information about rock joints on tunnel faces, traditional manual geological sketching typically relies on contact measurements using tools such as compasses and calipers. This method is characterized by time-consuming processes, high subjectivity, and elevated safety risks (Ge et al., 2017; Wang et al., 2021). Hence, there is an urgent need for a systematic approach for the identification and parameter extraction of rock joints on tunnel faces that is both high-precision and efficient.
In recent years, non-contact measurement methods have found widespread application in the acquisition of discontinuities information in tunnels and underground engineering rock masses (Xu et al., 2021a; Battulwar et al., 2021; Xu et al., 2021b; Xu et al., 2022; Xu et al., 2023). Non-contact measurements primarily involve two methods: la-ser scanning and close-range photogrammetry. Three-dimensional laser scanning technology can rapidly acquire high-precision point cloud data of rock joints (Xu et al., 2017; Zhou et al., 2021). However, the cost of three-dimensional laser scanning equipment suitable for on-site engineering applications is substantial, limiting the method’s scalability and widespread use in pro-jects (Wei et al., 2015). Close-range photogrammetry, with its advantages of low cost, portability, and ease of operation, is capable of obtaining millimeter-level high-precision point clouds as well (Sturzenegger and Stead, 2009). Currently, the use of Structure from Motion (SfM) algorithms can effectively reconstruct entire rock specimens using photographic data (Zhang et al., 2022). However, for large-scale tunnel face rock masses, the use of SfM technology requires capturing dozens or even hundreds of images from different angles to reconstruct the entire rock surface (García-Luna et al., 2019; Chen et al., 2021), which is operationally complex and not conducive to rapid construction in engineering projects. García-Luna et al. (2019) conducted photogrammetric reconstructions of the surfaces of two tunnels, capturing 169 and 206 images, respectively. The reconstruction times for these datasets were 22 and 25 h, respectively. Even when using only 13 images for reconstruction, the average processing time remained approximately 14 min.
In comparison to SfM technology, stereo vision technology with binocular vision can achieve three-dimensional reconstruction using only two tunnel face images. This not only offers higher efficiency but also meets the accuracy requirements for extracting discontinuities information (Zhang et al., 2016). Li et al. (2017) applied stereo vision to construct a quantitative characterization system for tunnel face rock masses, utilizing the Australian photogrammetric system ([image: image]). While this system is mature, it comes at a high cost. Zhu et al. (2016) implemented image reconstruction technology based on binocular photogrammetry equipment and software in a highway tunnel in Guizhou, China, for measuring rock mass discontinuities. Chen et al. (2017), based on monocular stereo three-dimensional reconstruction technology, proposed a standardized shooting process and automated method for extracting spacing and roughness parameters between rock masses on tunnel faces. In this process, the three-dimensional point cloud reconstruction also utilized the computer vision toolkit provided by a German company, [image: image]. However, previous studies in monocular stereo reconstruction often employed foreign commercial software. When applied to the complex and variable geological environment of tunnels and underground engineering, their performance needs further improvement. Additionally, with the development of stereo vision technology, traditional three-dimensional reconstruction algorithms require optimization in terms of accuracy and efficiency. Currently, there is limited research on the application of stereo vision algorithms that balance speed and accuracy in tunnel engineering field settings.
This paper is grounded in the context of intelligent design and construction in tunnel engineering, with a specific focus on the Yulin Diversion Tunnel Project (Tunnel #7) in China. It optimizes the process of three-dimensional reconstruction of tunnel faces based on binocular stereovision technology. It explores the impact of parameters such as disparity range and window size on the speed and quality of three-dimensional reconstruction. Furthermore, it proposes an intelligent extraction method for the discontinuity orientation information of tunnel face rock masses based on k nearest neighbor search and kernel density estimation. This approach furnishes a dependable application method for the digital geological sketching of rock mass tunnel faces.
2 THREE-DIMENSIONAL RECONSTRUCTION OF TUNNEL FACE ROCK MASS
2.1 3D reconstruction process based on binocular stereo vision
Figure 1 illustrates a comprehensive binocular stereo vision photogrammetric process, encompassing the determination of the shooting device parameters, camera calibration, image acquisition, image preprocessing, stereo matching, three-dimensional reconstruction, and post-processing of point clouds (Hartley and Zisserman, 2003). The specific workflow is outlined as follows.
(1) Estimate the shooting range based on the contour map inside the tunnel to determine suitable device parameters (focal length, shooting distance, and baseline length) (Kim et al., 2016).
(2) Conduct camera calibration indoors using the selected device parameters, significantly reducing on-site shooting time. The calibration yields intrinsic parameters (focal length, principal point coordinates, axis skew parameters) and extrinsic parameters (rotation matrix and translation matrix).
(3) Capture two images of the tunnel face from the left and right positions inside the tunnel. Perform epipolar rectification to obtain the reprojection matrix (Bradski and Kaehler, 2008). Subsequently, apply grayscale transformation to the images and employ the semi-global stereo matching algorithm ([image: image]) (Hirschmuller, 2005). This algorithm generates a disparity map, which, combined with the reprojection matrix, facilitates three-dimensional reconstruction, resulting in a three-dimensional point cloud.
(4) Conduct post-processing on the three-dimensional point cloud, involving tasks such as region of interest segmentation, smoothing, denoising, and coordinate transformation (Gigli and Casagli, 2011). This post-processing mitigates potential noise or missing data in the three-dimensional point cloud, ensuring the acquisition of a high-quality three-dimensional point cloud for accurate estimation of structural parameters.
[image: Figure 1]FIGURE 1 | Parallel binocular stereo vision reconstruction process of tunnel face.
In the aforementioned process, the stereo matching step plays a decisive role in determining the quality of the reconstructed three-dimensional point cloud. Section 2.2 below will elaborate on the fundamental principles of the semi-global stereo matching algorithm and analyze the impact of algorithm parameters on the quality and speed of point cloud reconstruction.
2.2 Principle of semi-global stereo matching algorithm
An exemplary stereo matching algorithm must concurrently consider precision and efficiency while maintaining high robustness. The Semi-Global Matching Algorithm (SGM) fulfills these requirements (Ernst and Hirschmüller, 2008; Spangenberg et al., 2013). Binocular stereovision technology based on Semi-Global Matching Algorithm (SGM) exhibits high performance in applications requiring real-time geological information retrieval (Kim et al., 2016). The algorithm primarily encompasses four steps: cost computation, cost aggregation, disparity calculation, and disparity optimization (Xie et al., 2014). The fundamental concept involves selecting a disparity range and calculating the cost value between each pixel in one image and its corresponding pixel in another image for each disparity value within the chosen range. After cost aggregation, the minimum cost value within this disparity range corresponds to the optimal disparity for the best match. Following epipolar rectification, as depicted in Figure 2, a target point ([image: image]) in the tunnel face, with its projection points [image: image] and [image: image] on the left and right pixel planes, respectively, is situated on a epipolar line ([image: image]) parallel to the baseline. In the matching process, as shown in Figure 3, due to the inability to directly determine the coordinates of [image: image], the stereo matching algorithm is employed to ascertain the position of corresponding point ([image: image]) and compute the disparity value ([image: image]) in pixels, serving as a prerequisite for subsequent three-dimensional reconstruction. Hence, achieving a more accurate and rapid determination of the position of corresponding points holds significant importance for practical applications in three-dimensional point cloud reconstruction. Within the cost computation process, the disparity range and window size emerge as two critical parameters determining the position of corresponding points (Lai, 2010; Mattoccia, 2011).
[image: Figure 2]FIGURE 2 | Polar geometry for parallel views.
[image: Figure 3]FIGURE 3 | Stereo matching determines the corresponding point, [image: image] is the maximum disparity value (Xie et al., 2014).
Various shooting scenarios encompass distinct disparity ranges; hence, it is imperative to select an effective disparity range for cost computation. A smaller disparity range can mitigate computational complexity but might overlook genuine differences. Conversely, a larger disparity range allows for more disparacies but could increase computation time. Therefore, judicious estimation of the disparity range is paramount in stereo matching. This paper will delve into methods for determining the disparity range in tunnel engineering scenes and examine the impact of this parameter on the quality of the disparity map and point cloud in Section 4.
After determining the disparity range, the algorithm relies on the Census Transform (Zabih and Woodfill, 1994) for matching cost computation (Figure 4). The transform compares the grayscale value of the central pixel ([image: image]) with the values of pixels in the neighborhood window (window size [image: image], where [image: image] is an odd number, in pixels). The obtained bit string values serve as the census transform value ([image: image]) for the central pixel:
[image: image]
[image: image]
[image: Figure 4]FIGURE 4 | Calculation of the matching cost.
Where, [image: image] represents the gray value of the center pixel [image: image], [image: image] represents the gray values of the pixels in the neighborhood window, [image: image] is the largest integer not exceeding half of [image: image], and [image: image] denotes the bitwise concatenation operation. Once the bitstrings of two images are obtained, the Hamming distance between these two transform values is computed. The Hamming distance represents the number of differing bits in the corresponding positions of the two bitstrings, as shown in Eq. 3. The resulting Hamming distance serves as the cost value [image: image]:
[image: image]
It is not difficult to understand that the computed cost value represents the degree of matching between two pixels. According to the aforementioned principles, it is evident that the size of the neighborhood window determines the size of the matched image blocks. A smaller window size can capture more details of the tunnel face and lead to faster computation. However, it might be more susceptible to the influence of noise and texture blurring. Conversely, a larger window size can provide greater noise robustness and occlusion resistance but may result in a blurry or excessively smoothed disparity map, potentially missing finer details and edges. Therefore, it is necessary to select appropriate parameters to strike a balance between spatial resolution and noise robustness.
In summary, the optimal disparity range and window size depend on the specific characteristics of the shooting scene. In practical tunnel engineering applications, shooting sites often exhibit strong noise, high complexity, and intricate variations in tunnel face textures. Hence, for achieving high-quality and efficient three-dimensional reconstruction of tunnel faces, it is essential to choose suitable parameters to balance accuracy, robustness, and processing speed. Section 4.2.2 and Section 3.2.3 of this paper respectively discuss and optimize the disparity range and window size parameters.
3 INTELLIGENT EXTRACTION METHOD OF STRUCTURAL PLANE PARAMETERS
The orientation of discontinuities is one of the parameters recommended by the International Society for Rock Mechanics for description. Riquelme et al. (2014) presented a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. Zhang et al. (2018) proposed a method to automatically extract rock discontinuities from point clouds for rock slopes along highways. Li et al. (2019) proposed an automatic characterization method for rock mass discontinuities using 3D point clouds applied to drill-and -blast rock tunnels. Singh et al. (2022) proposed a new automated algorithm that used the spatial distribution of points on discontinuities to capture unique signatures in the form of sinusoidal waves. The discontinuities are then effectively characterized by clustering the amplitude and phase profiles of the sinusoidal waves. Building upon prior research findings, this method utilizes the acquired three-dimensional point cloud. It employs a developed algorithm for intelligent extraction of discontinuity orientation, implemented in Matlab. The accuracy of this algorithm was validated through manual measurements of surface orientation.
3.1 Point cloud normal vector computation
The computation of point cloud normals involves selecting target points from the processed point cloud of the tunnel face rock surface. To determine the normals at these target points, information from neighboring points is utilized for local searching (Terrell and Scott, 1992). Subsequently, a covariance matrix of the neighboring points is constructed, and the normals are computed by solving for the eigenvalues and eigenvectors of this matrix. In this study, the point cloud normal computation is implemented using the [image: image] function (Friedman et al., 1977), with the number of selected neighboring points set to 10.
3.2 The determination of advantageous structural orientation
The solved normals can be reoriented by mapping them to the horizontal projection grid. Considering the coordinate system where the positive Y-axis is oriented to the north (N), the positive X-axis is oriented to the east (E), and the positive Z-axis is oriented upwards; Eq. 4 and Eq. 5 are employed with the unit normal vector [image: image] at the midpoint to calculate the dip direction ([image: image]) and dip angle ([image: image]) for each point in the point cloud, resulting in [image: image].
[image: image]
[image: image]
Mapping the orientation of each point to the red-flat projection grid results in [image: image] coordinates ([image: image]) in a two-dimensional coordinate system, where [image: image], and [image: image]. The calculation for [image: image] is as follows:
[image: image]
The kernel density estimation algorithm (Riquelme et al., 2014) is a method for estimating the probability density function of data, which can be utilized to determine regions of data point clustering, thus extracting and visualizing dominant discontinuity orientations. The coordinates of the data point with the highest density are determined for the obtained [image: image] using the kernel density estimation algorithm: [image: image]. According to Eq. 6, the corresponding dominant structural orientation [image: image] is inversely calculated.
3.3 Point cloud grouping based on allowable error angles
Due to varying degrees of convexity in the rock mass discontinuities, it is necessary to predefine a permissible error angle ([image: image]). This error angle serves two purposes: firstly, it is employed to distinguish between different discontinuities. As detailed in Section 3.2, the algorithm traverses the point cloud, calculating the dip angles of each point relative to the dominant dip direction. When the angle between the normal vectors of two dominant dip planes exceeds [image: image], it is defined as non-coplanar, indicating they do not belong to the same discontinuity. Secondly, [image: image] is utilized to filter out orientations within the stereographic projection network where dips are close to each other in local maxima sets. For this algorithm, the permissible error angle is set to 20°.
3.4 Cluster algorithms are used to determine subgroups for each group of point clouds
This study employs the K-means clustering algorithm (Hartigan and Wong, 1979), which operates on the principle of partitioning the sample point cloud into [image: image] subsets, forming [image: image] clusters. Each of the [image: image] samples is assigned to one of these clusters, with the goal of minimizing the distance between each sample and the centroid of its assigned cluster. In practical application, the first step involves determining the subgroup of each dominant discontinuity within the measurement window. Subsequently, according to Eq. 7, the dip and dip direction of the dominant discontinuity are transformed into the normal vector of each sub-discontinuity:
[image: image]
E, F, and G are respectively the normal vector [image: image] of the sub-discontinuity in the X, Y, and Z coordinate systems. Then, the individually subgrouped point clouds are mapped onto plane [image: image], and the dataset’s outline is determined based on the mapping results, as shown in Eq. 8. Utilizing the outer contour data obtained through Eq. 8, cluster grouping is performed to visualize different discontinuities.
[image: image]
4 ENGINEERING APPLICATION
4.1 Engineering background
The Yulin Diversion Tunnel No. 7 has a total length of 4188 m, making it an exceptionally long diversion tunnel. The maximum depth of its tunnel floor is 430 m, and it has a horseshoe-shaped cross-sectional design. The tunnel is situated in a region with steep terrain and significant topographical variations. The geological structure in this area is highly developed, presenting complex engineering geological conditions. Under the long-term regional stress in the north-south direction, the dominant basement structures have developed, primarily characterized by east-west trending folds and faults. The exposed geological formations within the survey area primarily consist of Neogene Quaternary strata, Upper Tertiary strata, and Lower Paleozoic Qinling Group Guozhuang Formation, as well as intrusive rocks. The predominant lithology is characterized by dark schistose diorite gneiss and hornblende schistose diorite gneiss. Moreover, the rock and soil formations in the area are significantly influenced by tectonic factors such as folding, faulting (layers), and jointing, resulting in a relatively fractured rock mass with high groundwater content.
4.2 The 3D reconstruction of rock mass structure
4.2.1 On-site operation process

(1) The shooting range was estimated based on the tunnel site conditions, with a determined shooting distance of approximately 6 m, a camera focal length of 18mm, and a baseline length of 67 cm. Under these conditions, the achievable precision for discernible objects is 2 mm. Calibration was performed indoors using an A2 sized chessboard calibration board to obtain the camera’s intrinsic and extrinsic parameters (Friedman et al., 1977) (Figure 5A). The calibration board used in the experiment had checkers with a size of 20 mm and was arranged in a grid of 17 rows and 26 columns. The average reprojection error for the left camera calibration was 0.21 pixels, while the right camera calibration exhibited an average reprojection error of 0.22 pixels.
(2) The selected on-site shooting range for the tunnel’s face was approximately 16 m2. Six ground control points (GCPs) and a target board were positioned on the rock surface, with each GCP having a side length of 80 mm. The target board featured four markers with equidistant spacing of 120 mm between them, and their three-dimensional coordinates at the center point were measured using a total station (Figure 5B). Additionally, two 800 W LED floodlights were set up to ensure adequate illumination inside the tunnel, preventing shadows on the rock surface that could lead to gaps in the point cloud.
(3) After placing the GCPs and target board, the discontinuity orientation of five typical discontinuities was measured on-site using a mechanical geological compass as a reference group (Figure 5C).
(4) A modified single-camera parallel stereo photography device was employed to obtain the stereoscopic information of the tunnel face (Figure 5D). This setup consisted of a digital camera, gimbal, tripod, support rod, slider, pantilt head, slider fixed clamp, and laser rangefinder. Detailed camera parameters are provided in Table 1. The slider was upgraded for this study, featuring a scale and slider fixed clamps. During use, the positions of the two slider fixed clamps could be adjusted based on the scale, allowing for the selection of baseline lengths to meet the requirements of different shooting ranges.
(5) The collected two photos were processed following the procedures outlined in Section 2.1, focusing on the region of interest (Zhou et al., 2021), which was approximately 12 m2 (Figure 6A). The parameters for the [image: image] algorithm included the default disparity range ([image: image]) of [0 64] and the default window size parameter ([image: image]) of 15 (15 × 15). This resulted in the generation of a disparity map (Figure 6B) and subsequently the reconstruction of the tunnel face’s three-dimensional point cloud (Figure 6C).
[image: Figure 5]FIGURE 5 | On-site collection of rock mass images on the face of the tunnel. Camera calibration (A). Setting up the shooting site (B). Measuring discontinuity orientations with a geological compass (C). Single-camera parallel binocular shooting device (D).
TABLE 1 | Camera parameters.
[image: Table 1][image: Figure 6]FIGURE 6 | 3D reconstruction of tunnel face rock mass. Region of interest (ROI) delineation (A). The disparity map under default parameters (B). The point cloud image under default parameters (C).
From Figures 6B,C, it is evident that, under default parameters, the disparity map is excessively chaotic, leading to a very sparse and scattered point cloud. Consequently, applying the [image: image] algorithm directly to the tunnel engineering site proved to be challenging. Through the parameter optimization discussed in Section 4.3.1 and Section 4.3.2, this study successfully constructed a high-quality three-dimensional point cloud of the tunnel face.
4.2.2 Selection of disparity range
The disparity range should be selected based on the minimum and maximum horizontal displacements between corresponding pixels in the rectified image pairs. Figure 7 illustrates the horizontal displacement values for some pixels in the tunnel face image pairs. From Figure 7, it can be observed that the disparity range within the region of interest is approximately [112, 144] (disparity range values are multiples of 16). When setting the disparity range, it is common to set the minimum value to 0 (Zhang et al., 1995). Therefore, in this study, the disparity range was set to [0 112], [0 128], [0 144], [0 160], [0 176], [0 192], [0 208], [0 224], [0 240], and [0 256], with a window size of 5 × 5 pixels. The optimal disparity range was determined by comparing the point cloud results under different range settings (see Figure 8).
[image: Figure 7]FIGURE 7 | Select disparity range.
[image: Figure 8]FIGURE 8 | Point cloud images of the tunnel face under different disparity ranges.
The accuracy of discontinuity features extracted from a point cloud model is often a focal point of research attention. Point cloud density is one of the most intuitive factors affecting this accuracy (Chen et al., 2021). Furthermore, to investigate the rationality of parameter selection, this study compared the time consumption of the 3D reconstruction process under different parameter settings.
As observed in Figure 8, it is evident that when the maximum disparity value ( [image: image]) is less than 112, the disparity range is too small to identify a sufficient number of corresponding points. Consequently, it is unable to generate a complete point cloud, aligning with the principles of stereo matching outlined in Section 2.2. However, with [image: image] set to a value exceeding the horizontal offset of the majority of pixels in the region of interest, a relatively complete point cloud can be generated, as demonstrated in Figure 9. Notably, when [image: image] is set to 144, the point cloud density is 39621 points/m2, and the recognition accuracy reaches the highest level.
[image: Figure 9]FIGURE 9 | Point cloud density and running time under different parallax ranges.
Additionally, with a further increase in [image: image], there is a diminishing trend in the point cloud density in the point cloud. However, the reduction rate is less than 0.2%, and the quality of the point cloud remains largely unchanged, with no significant presence of noise or erroneous matches. Simultaneously, the processing time increases with the augmentation of [image: image]. Thus, to balance point cloud quality and computational efficiency, this study sets the optimal disparity range to [0 144], resulting in a processing time of 34.94 s. It’s noteworthy that the computational setup utilized in this study consists of a 12th Gen Intel(R) Core (TM) i7-12700 2.10 GHz processor with 16.0 GB of RAM. The reported processing time corresponds to the duration required to generate a point cloud for a rock surface of 16 square meters, the point cloud density is 134375 points/m2.
4.2.3 Selection of window size
In accordance with the optimal disparity range [0 144] derived in Section 4.2.3, this study investigates the influence of window size (5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21, and 23 × 23) on point cloud quality, point cloud density, and 3D reconstruction time under this parameter setting.
Figure 10 visually illustrates the quality of tunnel face point cloud reconstruction under different window sizes. It is evident that when the window size is between 5 × 5 and 11 × 11 pixels, a smaller window size results in a more fragmented point cloud within the red dashed line. This fragmentation is attributed to the presence of complex textures and shadows. When the window size is 15 × 15 pixels, the point cloud density reaches the maximum, which is 40357 points/m2, and the recognition accuracy reaches the highest level. However, as the window size increases from 19 × 19 to 23 × 23 pixels within the red dashed line, the point cloud becomes more fragmented, possibly due to over-smoothing. In terms of processing time, as observed in Figure 11, there is an overall decreasing trend in computation speed with the increase in window size, and the relationship with window size appears to be nonlinear. This phenomenon may be attributed to variations in memory consumption during different computation time intervals, leading to the irregularity in processing time. However, when the window size exceeds 21 × 21 pixels, there is a sudden decrease in processing time, contrary to expectations. This could be a result of the increased window size leading to higher smoothness, causing the loss of details in certain areas of the point cloud and, consequently, a reduction in the point cloud density in the point cloud (refer to Figure 10).
[image: Figure 10]FIGURE 10 | Point cloud images of the tunnel surface under different window sizes.
[image: Figure 11]FIGURE 11 | Point cloud density and running time under different window seizes.
Through experimental validation, it has been determined that the combination of a disparity range of [0 144] and a window size of 15 × 15 pixels represents the optimal parameter setting for the 3D reconstruction of tunnel face in this project. This holds significant importance for the automated collection of tunnel face information and can be directly applied to the intelligent data collection process of tunnel face information in similar scenarios. However, it should be noted that the selection of these parameters is influenced by other factors such as device parameters, lighting conditions, and size effects. Therefore, the optimal disparity range and window size may not be unique and could vary depending on different conditions. In conclusion, the parameter values optimized in this study are specific to the collection of tunnel face information in this project.
4.2.4 3D reconstruction verification
How to verify the accuracy of discontinuity extraction from 3D point cloud based on binocular stereo vision reconstruction is an extremely important issue. This study compares the tunnel face point cloud reconstructed by the SGM algorithm with the three-dimensional point cloud reconstructed by [image: image] software using the SFM algorithm, as shown in Figure 12, and Table 2 compares the difference between the two dimensions in terms of accuracy and time. The SfM reconstruction method in this study was inspired by the recommendations in the García-Luna et al. (2019) literature regarding the number of tunnel images. Thirteen images of the tunnel face were employed for the 3D reconstruction, and the camera model matched the one listed in Table 1.
[image: Figure 12]FIGURE 12 | Point cloud quality comparison. Point cloud based on SFM reconstruction (A). Point cloud based on SGM reconstruction (B).
TABLE 2 | Point cloud accuracy and core step time-consuming comparison.
[image: Table 2]Comparison from Figure 12 reveals that both algorithms exhibit varying degrees of point cloud loss due to the limited number of reconstructed images. Within the red solid line, Algorithm SFM shows noticeable gaps in the point cloud, while within the green solid line, it appears more complete. Conversely, Algorithm SGM demonstrates the opposite trend. This phenomenon can be attributed to the primary factor of missing data in the image collection from different angles. Analyzing the point cloud density in Table 2 and the region within the blue solid line in Figure 12, Algorithm SFM captures more point cloud information, providing better reconstruction along the edges of the rock surface. However, it comes at the cost of increased noise points. Algorithm SGM, on the other hand, demonstrates an advantage in smoothness and exhibits overall better reconstruction quality.
Regarding the time consumed for structural face recognition, the data collection process for tunnel rock surface information involved three graduate students and one on-site measurement personnel. The surveying instrument measurements of GCPs were conducted simultaneously with the binocular imaging. The total collection time for both methods depended on the measurement time of the surveying instrument, which is time-consuming. In terms of the time taken for three-dimensional point cloud reconstruction, Algorithm SGM required approximately 35 s for a single reconstruction (refer to Figure 9; Figure 11). Achieving high-precision point cloud quality took a total of 3 min and 52 s. This represents a 57.6% reduction in reconstruction time compared to Algorithm SFM, significantly enhancing the efficiency of the reconstruction process for practical engineering applications. It is important to note that the outlined procedures were carried out by experienced operators. With improved proficiency, there is potential for further reduction in application time for this technology.
4.3 Intelligent extraction of discontinuities orientations

(1) Firstly, a local coordinate system is established using the three-dimensional coordinates of the GCPs within the region of interest (as depicted in Figure 13A). In the coordinate transformation, only the coordinates of three GCPs are necessary for the conversion (Li et al., 2017). Considering the uncertainty in point cloud reconstruction, this study measured the coordinates of five GCPs with respect to a target board.
(2) Subsequently, the three-dimensional point cloud of the tunnel rock surface under the optimal parameter combination is fixed to the local coordinate system, resulting in the corrected three-dimensional point cloud.
(3) Following this, the discontinuity orientation intelligent extraction algorithm is applied to the corrected point cloud for intelligent recognition of discontinuities. This involves solving for the point cloud normals (refer to Figure 13B), yielding the clustered three-dimensional point cloud (refer to Figure 13C) and four sets of dominant structural planes (detailed orientations are presented in Figure 13C; Table 3). The algorithm required 3 min and 42 s to execute. Due to challenging on-site measurement conditions, the orientations of four representative discontinuities within the region of interest were manually measured, as illustrated in Figure 13A. To assess the applicability of the discontinuity orientation intelligent extraction algorithm, a comparison was made with the parameters of these four sets of discontinuities, as detailed in Table 3.
[image: Figure 13]FIGURE 13 | Discontinuities orientation extraction and grouping. The grouping of structural surfaces (A). The calculation of point cloud normal (B). Point cloud clustering (C).
TABLE 3 | Comparison of discontinuities orientation.
[image: Table 3]In this study, the mechanical geological compass was employed to measure the dip and dip angle of discontinuities, serving as a benchmark for validating the intelligent recognition of discontinuity orientations. The measured dip and dip angle were used as the control group, while the discontinuity parameters extracted from the three-dimensional point cloud served as the experimental group. A comparative analysis was conducted to assess their accuracy. The results indicate that the algorithm exhibits a high degree of precision in dip angle identification, with an error range within ± 2°. However, in dip identification, the maximum error occurred in Group I, reaching up to 10°, and there was no apparent pattern in the errors among different groups. Two main factors contribute to these results: firstly, the application of binocular stereovision technology in the three-dimensional reconstruction process, where calibration errors, device parameter errors, and stereo matching errors can affect the accuracy of the point cloud (Hartley and Zisserman, 2003); secondly, inaccuracies in the magnetic needle readings during manual measurements contributed to the errors, with the latter being the dominant factor.
5 CONCLUSION
This study is anchored in the Yulin Diversion Tunnel Project (Tunnel #7), and it focuses on the non-contact acquisition of geological structural information of the tunnel face using binocular stereovision technology. Additionally, the three-dimensional reconstruction technique of the tunnel face rock mass point cloud was enhanced through the optimization of a semi-global stereo matching algorithm. Furthermore, an intelligent and efficient method for extracting structural information has been proposed. The main conclusions are as follows.
(1) Using binocular stereo vision technology, this study improved the single-camera parallel binocular setup by upgrading the sliding rail to achieve adjustable baseline length, adapting to different shooting ranges/rock sizes. Combining the semi-global stereo matching algorithm, it outlined the process of three-dimensional reconstruction of the rock face: device parameter selection, camera calibration, image acquisition, image preprocessing, stereo matching, and three-dimensional point cloud model generation. This allows the rock face information acquisition time to be controlled within 15 min, with a single three-dimensional reconstruction taking only 40 s. The discernible object accuracy is 2 mm, demonstrating the advantages of rapid acquisition and fine reconstruction. Therefore, it holds broad applicability for practical use.
(2) Based on the semi-global stereo matching principle, this study delved into the mechanisms affecting the disparity range and window size. The quality of the three-dimensional point cloud is significantly influenced by the disparity range and window size. The optimal reconstruction result is achieved when the disparity range is set to [0 144] and the window size is 15 × 15 pixels. Furthermore, the algorithm’s running speed is relatively unaffected by different disparity range and window size values. Different disparity ranges and window sizes have an impact on running speed of no more than 1s. Results from actual field applications show that using the optimized stereo matching algorithm for three-dimensional reconstruction yields excellent performance.
(3) On the foundation of the three-dimensional fine point cloud model, an intelligent extraction algorithm for discontinuity orientation based on k-nearest neighbor search and kernel density estimation is proposed. The obtained dip and dip angle values closely align with those measured by geological compass, validating the accuracy of the binocular three-dimensional reconstruction algorithm and the intelligent extraction algorithm for rock mass discontinuity orientation. This enables the systematic identification of rock mass structural information on tunnel rock faces.
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The probability integral method is one of the most widely used methods for predicting surface subsidence induced by underground mining in China. In its parameter calculation, the least square algorithm is commonly employed for fitting parameters. However, in the process of fitting parameters, the results are easily affected by ill-conditioned normal matrices and the interference of outliers, resulting in divergent problems. To solve these problems, the principle of robust ridge estimation was introduced in this paper, and a parameter calculation model for the probability integral method based on this principle (hereafter referred to as the established model) was established. Besides, a parameter calculation experiment with manual intervention was conducted in combination with engineering examples. The results demonstrate that the parameter calculation method based on robust ridge estimation can suppress the interference of outliers, overcome the problem of ill-conditioned matrix, and ensure the effectiveness and reliability of parameter estimation results. Compared with the conventional least squares method, the robust ridge estimation method demonstrates greater accuracy in predicting surface subsidence parameters, which validates its rationality and accuracy in underground mining engineering. The research findings provide technical support for obtaining similar parameters for surface subsidence in mining areas and hold significant engineering application value.
Keywords: robust ridge estimation, probability integral method, parameter determination, illconditioned normal matrix, outliers
1 INTRODUCTION
China is the world’s largest coal producer. Extensive underground coal mining is prone to causing large-scale surface subsidence, leading to problems such as vegetation damage, soil degradation, and lowered underground water level in the coal mine subsidence areas, which has brought considerable damage to the living environment in these areas. To address these issues, it is necessary to predict the extent and scope of surface damage caused by underground mining in advance, and then adopt targeted mining technology with low ecological damage. The work of predicting surface damage in advance is known as mining-induced subsidence prediction (MSP).
At present, scholars at home and abroad have conducted extensive research on MSP and have put forward numerous MSP models. In 1954, Litwiniszyn (Litwiniszy, 1956) introduced the stochastic medium theory which considered rock mass displacement as the stochastic movement of countless small unit particles. The theory laid the foundation for modern MSP methods. In 1993, Shu and Bhattacharyya (Shu and Bhattacharyya, 1993) established an empirical prediction model by investigating the relationship between underground strata and surface subsidence movements. The model is presented in the form of graphs and tables, which can be used to estimate the maximum subsidence, tilting, and horizontal deformation of the surface. In 1995, by analyzing the surface subsidence induced by the mining of shallow thick coal seams in Raniganj coalfields in India, Singh and Yadav (Prediction of subsidence due to, 1996) proposed a viscoelastic model for surface MSP and validated the feasibility of this model through the mining conditions at two other local coal mines. In 2003, Ambrožič et al. (Ambrožič and Turk, 2003) employed artificial neural networks for MSP. This method is based on a substantial number of observation data and uses variables to represent the data of surface subsidence in the process of prediction. In 2014, Ren et al. (Ren et al., 2014) first proposed the generalized influence function method that utilizes computer simulation. The method can not only be applied to more complex engineering geological conditions but also effectively express its stress-strain relationship during mining. In 1959, Liu and Liu (China University of Mining and Technology, 1981) first translated and introduced the stochastic medium theory into China, bringing advanced technology and mature experience to MSP in the country. In 1963, Zhou and Yu (Zhang, 2010) established the negative exponential profile function of the subsidence basin based on the analysis of numerous measured data. In 1965, the probability integral method was first proposed, and later Chinese scholars, including Baoshen Liu and Guohua Liao, made indelible contributions by introducing the method to the domestic context, thus laying a solid theoretical foundation for the quantitative calculation of MSP in China.
MSP models can be broadly categorized into three types, i.e., curve prediction methods, influence function methods, and profile function methods (He et al., 1991; Guo, 2019). Among them, the probability integral method, which is most widely applied in China, is a typical influence function method. The probability integral method, based on the stochastic medium theory, gets its name from the inclusion of the probability integral in the prediction formula of movement and deformation. It is currently an important method used in China for predicting surface movement and deformation of mining-induced subsidence and is one of the methods for MSP as specified in the reference (State Administration of Work Safety, 2017). The accuracy of MSP methods primarily depends on the selection of prediction parameters. The least square fitting algorithm that boasts simple calculation is usually used for calculating the prediction parameters, and the accuracy of the calculated parameters can basically meet the engineering requirements. The least squares estimation possesses desirable properties in parameter estimation, and when the error follows the normal distribution, it is unbiased, consistent, and effective among all unbiased estimation classes. However, it has two problems: first, in the presence of many independent variables, including approximately linear related variables, the parameter value it estimated deviates notably from the true value; second, when the observed value is contrary to the normal distribution assumption and outliers are present in the data, the least squares estimation can be interfered, and the deviation of a single observed value may have a significant impact on the parameters (Sui, 1994; Wu, 2009; Wang et al., 2012).
Regarding the first problem, Shu and Bhattacharyya (Wang et al., 2012) proposed ridge estimation, which is a kind of biased estimation of compressibility designed to reduce the mean square error. It can improve the ill-condition of the normal matrix and stabilize the parameter solution. As for the second problem, Ambrožič et al. and Ren et al. (Wu, 2009; Dong-Sheng et al., 2023) introduced robust estimation, which, by selecting the appropriate equivalent right, helps overcome the difficulty of parameter calculation posed by model bias and the presence of outliers. However, these two methods can only address one problem, not both simultaneously. By combining the advantages of ridge estimation and robust estimation, the principle of robust ridge estimation proposed in this paper can resist both the influence of ill-conditioned normal matrices on the parameter calculation results, and the impact of outliers or gross errors on them, ensuring the validity and reliability of the results. It can provide technical support for obtaining estimated parameters of surface subsidence in similar mining areas.
2 ROBUST RIDGE ESTIMATION
2.1 Principle of robust ridge estimation
The introduction of robust ridge estimation is in response to the fact that, when outliers are present in the observed values, and the coefficient matrix A of the equation shows an ill-conditioned tendency, neither LS estimation nor LS ridge estimation can deal with this ill-conditioned result (Sui, 1994; Zhou et al., 2020). Thus, it is necessary to mitigate the ill-condition of the normal matrix through ridge estimation. The fundamental idea of ridge estimation is to exchange an appropriate increase in bias for a significant reduction in variance, thereby reducing the error and improving the calculation accuracy of the sample. The basic calculation method of robust ridge estimation is as follows:
Let the observation equation be:
[image: image]
where L is the n-dimensional observation vector; A is the [image: image] order coefficient matrix; X is the t-dimensional parameter vector; and [image: image] is the n-dimensional error vector, [image: image].
The corresponding error equation is:
[image: image]
The robust ridge estimation solution of the parameter, obtained from the principle of robust ridge estimation (Zhou et al., 2020; Lian et al., 2021), is defined as:
[image: image]
where K is the ridge parameter; and [image: image] is the equivalent weight matrix.
From Eq. 3, it is evident that the determination of the ridge parameter and the equivalent weight matrix are necessary conditions for obtaining the solution of robust ridge estimation. Thus, the key to robust ridge estimation lies in selecting appropriate ridge parameters and equivalent weight matrices.
2.2 Determination of ridge parameters
Comparative study on the determination methods of ridge parameters is one of the current hot topics. Several methods are widely used for the determination of ridge parameters, including the ridge trace method, the generalized cross-validation (GCV) method, the double-h formular method, the L-curve method, among others (Wang et al., 2012). Despite its remarkable applicability, the ridge trace method is too arbitrary and has no strict theoretical basis. The GCV method is theoretically capable of selecting the optimal ridge parameter, but sometimes the change of the GCV function is too smooth or even divergent, so it is difficult to determine its minimum value. Although the double-h formular method is simple in calculation and flexible in application when determining the ridge parameters, its effect is not obvious when the coefficient matrix of the normal equation is severely ill-conditioned. In contrast, the L-curve method, an extremely rigorous method to study ridge parameters in theory, is characterized by accurate determination and good applicability (Aerospace Research, 2018; Cwiakala et al., 2020; Jiang et al., 2020; Lian et al., 2021). Considering its superiority, the L-curve method is selected to determine the ridge parameters in this paper.
According to the regularization theory, the robust ridge estimation criterion of Eq. 1 is as follows:
[image: image]
where [image: image] and [image: image] are functions of the ridge parameter k; [image: image] is the Euclidean 2-norm; and [image: image] is the stability functional.
With [image: image] as the abscissa [image: image] and [image: image] as the ordinate [image: image], choosing different values of K will get many various ([image: image], [image: image]) points. These different points are fitted to a curve, and the ridge parameter corresponding to the point of maximum curvature of this curve is the desired one.
Let [image: image] and take logarithm to obtain [image: image], then the L curve is fitted by many ([image: image]) points. The curvature [image: image] of the L curve is:
[image: image]
The maximum curvature can be obtained by calculating the maximum value of the above equation, and the corresponding maximum point is the desired one. Then, the robust ridge parameter k corresponding to the point can be calculated.
2.3 Determination of equivalent weight function
The robust effect of robust ridge estimation mainly depends on the equivalent weight function. Different equivalent weight functions lead to different robust estimation models and consequently different robust effects (Lawrence and Marsh, 1984; Wu, 2009; Li S. et al., 2017; Dong-Sheng et al., 2023). The IGG robust scheme proposed by Professor Zhou is to modify the weight matrix of the least squares parameter estimation solution, that is, to replace the prior weight with the equivalent weight, so that we can use the equivalent weight to reconstruct the robust estimation solution and the unit weight mean error (Zhou et al., 2020). In this paper, the IGG robust scheme was adopted. The form of the equivalent weight is defined as:
[image: image]
where [image: image] is the quantile, generally taken as 1.5; and [image: image] is the elimination point, generally taken as 2.5.
However, the probability that the absolute value of an error is greater than the mean square error, double of the mean square error, and three times of the mean square error is 31.7%, 4.5%, and 0.3% respectively, and most measurement specifications in China stipulate that double of the mean square error is the limit error. Considering the above fact, we take [image: image] =1.0 and [image: image] =2.0.
3 METHODS
3.1 Traditional parameter calculation models
The probability integral method mainly involves five predication parameters, namely, surface subsidence coefficient q, horizontal movement coefficient b, tangent of major influence angle tanβ, major influence propagation angle θ, and deviation of inflection point (including the offset of strike inflection point S1, the offset of dip inflection point S2, the offset of uphill inflection point S3, and the offset of downhill inflection point S4). When conducting robust ridge estimation for parameter determination, q, tanβ, θ, S1, S2, S3, and S4 should be obtained firstly by using the measured observed values of surface subsidence. Subsequently, the horizontal movement parameter b can be obtained by iterative fitting of the seven obtained parameters, along with the observed values of horizontal movement of the surface points.
According to the reference (Shuaiying et al., 2021), it can be found that the movement and deformation prediction model of the strike main section is given by:
[image: image]
where [image: image] is the maximum subsidence value (mm); [image: image] is the main influence radius (m); [image: image] is the advance distance of the working face (m); [image: image] is the surface subsidence (mm); [image: image] is the horizontal movement value of surface along the strike main section (mm); [image: image] is the horizontal movement coefficient; [image: image] is the surface subsidence coefficient; [image: image] is the mining thickness (mm); [image: image] is the dip angle of coal seam (°); and [image: image] is the error function.
The prediction model for the movement and deformation of the inclined main section is as follows:
[image: image]
where [image: image] and [image: image] are the main influence radii of uphill and downhill in the dip direction respectively (m); [image: image] is the surface subsidence (mm); [image: image] is the horizontal movement value of the surface along the dip main section (mm); [image: image] and [image: image] are the horizontal movement coefficients of uphill and downhill respectively; [image: image] is the propagation angle of extraction (°); and [image: image] is the mining width in the dip direction (m).
The essence of the traditional curve fitting method is an estimation method, which takes the least squares principle as the criterion to calculate parameters according to the measured subsidence values and horizontal movement values on the main section. The basic principle is that the target variable [image: image] such as subsidence value or horizontal movement value is regarded as a function of the independent variable [image: image] and the parameter [image: image] to be determined, as expressed by Eq. 9:
[image: image]
With n pairs of observed values ([image: image]), the optimal parameter B can be calculated using Eq. 10:
[image: image]
In other words, a set of parameters B is selected to minimize the sum of squares of deviations between the fitting curve and the measured results.
3.2 Parameter calculation model based on robust ridge estimation
The prediction parameters of the probability integral method can be obtained from the measured data of surface movement and deformation at any points along any direction. When the arranged observation stations are conventional, the least squares curve fitting method is used; when they are non-conventional, that is, when they include a series of scattered points, the least squares surface fitting method is employed. However, when the normal matrix of the least squares is ill-conditioned or outliers are present in the observed data, distorted parameter results are likely to occur. The least squares surface fitting method based on robust ridge estimation can not only effectively resist the interference of outliers and ill-conditioned normal matrix, but also apply to the parameter calculation of arbitrarily-shaped or incomplete observation station data (Wang et al., 2012).
According to the probability integral method’s model for surface movement and deformation at any point, the subsidence value W at any point can be expressed as a function of the measuring point coordinates and the estimated parameters, namely,
[image: image]
Select initial parameter values “q0, tanβ0, θ0, S10, S20, S30, and S40,” and linearize them as follows:
[image: image]
Then, the general form of the error equation is given as:
[image: image]
where [image: image].
The matrix form of Eq. 10 is:
[image: image]
By determining the ridge parameter k from Eq. 5 and the equivalent right from Eq. 6, the robust ridge estimation solution of the corrections of the seven parameters can be obtained, as shown in Eq. 15:
[image: image]
After the results are obtained, the results of the previous calculation are used as the initial values for the next iteration, and the iterative calculation is carried out until the difference of the parameter estimates of the last two calculations meets the iterative convergence accuracy. At this point, the robust ridge estimation solution for parameter estimates can be obtained.
4 RESULT AND DISCUSSION
Engineering examples in this paper are based on the data of a surface movement observation station in references (Chen, 2010; Li Shuaixin et al., 2017). The observation station is located above the auxiliary 271 working face. Since the observation station records data during both single-seam mining and multi-seam mining, and more detailed data in both strike and dip directions are provided during the former, this paper uses the data of the observation station during single-seam mining. The mining details of the working face corresponding to the observation station are listed in Table 1.
TABLE 1 | Information regarding the auxiliary 271 working face.
[image: Table 1]To test the effectiveness of the established robust ridge estimation model, firstly, the least squares method and the robust ridge estimation algorithm were used to fit the parameters respectively. Subsequently, a random error with a standard deviation of 10 mm was generated and added to the observed values using the “random” command in MATLAB software. Afterwards, the least squares method and the robust ridge estimation algorithm were used again to fit the parameters respectively. Finally, a comparative study on the two results of parameter calculation was conducted in both vertical and horizontal directions.
1) The results of fitting the parameters using the original measured data are shown in Table 2.
2) The results of parameter calculation from data fitting after manual intervention are given in Table 3
A comparative analysis on Tables 2–4 reveals the following:
1) When no manual intervention is involved in the observed values, the results of parameter calculation from the robust ridge estimation theory and the traditional least squares estimation theory are essentially the same.
2) When some outliers and random errors are artificially added to the observed values, the parameters obtained using the traditional least squares estimation theory show significant deviations, while the parameters obtained using the robust ridge estimation theory differ insignificantly from those obtained without manual intervention (Table 4).
TABLE 2 | Results of parameter calculation from data fitting before manual intervention.
[image: Table 2]TABLE 3 | Results of parameter calculation from data fitting after manual intervention.
[image: Table 3]TABLE 4 | Absolute value of the difference between data fitting and parameter calculation results before and after manual intervention.
[image: Table 4]5 CONCLUSION

1) Traditional observation data are prone to problems such as outliers and ill-conditioned matrices, which tend to occur when using the least squares method to fit the parameters. In other words, when the conventional probability integral method is utilized to obtain the surface deformation parameters, the parameters are prone to considerable errors, resulting in distorted results.
2) Applying the robust ridge estimation theory to the process of obtaining parameters using the probability integral method can automatically eliminate the interference of ill-conditioned normal matrices and outliers.
3) The parameter calculation experiment with manual intervention demonstrates that the established parameter calculation model for the probability integration method based on the robust ridge estimation theory, in comparison with the conventional least squares method, has smaller errors in predicting surface subsidence parameters before and after manual intervention. By adopting the theory for parameter calculation, the predication parameters obtained through the probability integral method boast better effectiveness and reliability.
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