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Editorial on the Research Topic
 Multiple sclerosis and related disorders: challenges and approaches to mechanisms, biomarkers, and therapeutic targets




Multiple sclerosis (MS)-related disorders are chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, and neurodegeneration. Common MS-related disorders include MS, neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein-antibody-associated disorders (MOGAD), and other diseases, which have relatively independent clinical features and diagnostic markers. In addition, biomarkers of MS-related disorders are employed in clinical diagnosis, estimation of disease risk or prognosis, assessment of disease staging, and monitoring of disease progression or response to therapy (1). However, at present, there is no cure for MS-related disorders. Disease-modifying therapies (DMTs) represent the mainstay of treatment, and patients are generally required to undergo lifelong treatment. In order to facilitate the dissemination of the latest research findings in this field, we have organized this Research Topic. The Research Topic comprises 10 manuscripts that expand contemporary knowledge and understanding of the mechanisms, biomarkers, and therapeutic targets of MS and related diseases.

MS is a CNS inflammatory demyelinating disease that involves white matter. The pathogenesis of MS is mainly due to auto-reactive lymphocytes (T and B cells), innate immune and microglial cells, which synergistically mediate myelin loss, secondary axonal injury, and astrocyte reactive hyperplasia (2). The disease may be related to genetic, environmental, viral infection, and other factors. Neurofilament light (NfL) has been identified as a marker of axonal damage. Mi et al. conducted a study in which they analyzed NfL levels in the plasma of MS patients in conjunction with clinical and magnetic resonance imaging (MRI) assessments. The level of plasma NfL is correlated with the activity and severity of MS, and is therefore anticipated to become a novel biomarker for the assessment of MS activity and disease status. The protein growth arrest specific 6 (Gas6) and its tyrosine kinase receptors Tyro-3, Axl, Mer (TAMs) have been linked to the remyelination of neurons and the stimulation of oligodendrocyte survival. D'Onghia et al. assessed the soluble levels of Gas6-TAMs in serum and cerebrospinal fluid (CSF), at the time of MS diagnosis, and to evaluate their possible correlations with short-term disease severity. The serum levels of Axl were found to be higher in patients with lower disability at the time of onset, while the serum levels of Gas6 were higher in patients with lower disability over time. These findings suggest that serum Gas6 may be a reliable prognostic biomarker. Zhang X. et al. reported that the nationwide prevalence of CSF-OCB in Chinese MS patients was 76.4%, and demonstrated that their diagnostic approach is effective in differentiating MS from other CNS diseases. The prevalence of CSF-OCB demonstrated an association with high latitude and altitude in Chinese MS patients. Dorsch et al. conducted a study to examine disease progression in patients with MS, defined using an objective, home-based assessment of motor functions, compared to 3-month confirmed disease progression (3-mCDP) as defined by the EDSS. It may be beneficial to reduce the length of observation periods during clinical trials, which would enhance confidence in the ability to identify progression events associated with MS. Zhang L. et al. proposed that lacune may serve as a potential MRI biomarker in MS. In this study, they sought to elucidate the relationship between small vessel disease (CSVD) and MS using lacune as a biomarker. Arisi et al. identified drug-dependent alterations in miRNA profiles in patients with relapsing-remitting MS (RRMS) and proposed a series of candidate miRNAs that they believe may be involved in the corresponding pharmacological mechanisms.

NMOSD is a rare relapsing neuroinflammatory autoimmune disease that primarily affects the optic nerves and spinal cord. Most cases exhibit aquaporin-4-antibody positivity. The pathological mechanism of NMOSD differs from that of MS, primarily involving autoimmune injury of astrocytes, secondary demyelinating changes, and perivascular inflammation, including neutrophil and eosinophilic infiltration (3). The most common associations of MOGAD include central nervous system demyelination, which manifests as acute disseminated encephalomyelitis in children, optic neuritis (ON) and transverse myelitis (TM) in children and adults. Unlike MS, MOGAD does not typically present with radiographic white matter changes (4). Wang et al. demonstrated that an elevated systemic immune-inflammation index (SIRI) may serve as a distinguishing indicator for differentiating MOGAD from AQP4-IgG-positive NMOSD. Additionally, they observed that decreased MLR levels may be associated with an increased probability of MOGAD recurrence. Ma et al. demonstrated that patients with mild disability NMOSD exhibited compensatory increases in local network properties to maintain stability at the system level. Additionally, they observed that alterations in the morphological network nodal properties of NMOSD patients were more relevant for clinical assessments when compared with functional network nodal properties. Furthermore, they found that these alterations exhibited predictive values of worsening in the Expanded Disability Status Scale (EDSS) scores. Asseyer et al. found that lower cervical spinal cord volume was associated with increased pain in patients with AQP4-IgG-positive NMOSD. Furthermore, regional spinal cord MRI measures have been identified as being crucial for monitoring disease-related changes within the spinal cord of individuals diagnosed with AQP4-IgG-positive NMOSD and MOGAD.

Finally, autoimmune encephalitis is defined as a non-infectious, immune-mediated inflammatory process that affects the brain parenchyma. It is characterized by the presence of neural antibodies in a significant proportion of patients (5). Anti-NMDA receptor (NMDAR) encephalitis is a prevalent autoimmune encephalitis, with GluN1 antibodies as a key causal factor. Prompt identification is of critical consequence. Iizuka et al. demonstrated that the severity of the disease in patients and the presence of four key symptoms were associated with higher levels of GluN1-ab antibodies in CSF samples taken at the time the disease was first diagnosed. The results may indicate a potential link between the presence of these antibodies and the subsequent one-year functional status of patients.

In conclusion, the articles in this Research Topic expand current knowledge regarding the mechanisms, biomarkers, and therapeutic targets of MS and related diseases. The findings of these studies offer novel scientific evidence and provide insights into the latest advances in this rapidly developing field.
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Multiple sclerosis (MS) is a condition that affects the veins and small blood vessels. Previous research suggests that individuals with MS have an increased risk of vascular events and higher mortality rates. However, the relationship between MS and cerebral small vessel disease (CSVD) remains uncertain. This study aims to investigate the association between MS and lacunes. A prospective observational study was conducted, including a total of 112 participants, of which 46 had MS and 66 had CSVD. All participants underwent an MRI scan and a battery of neurological functional assessments. The presence of definite lacunes and black holes was determined through the analysis of T2-weighted, T1-weighted, and FLAIR images. The occurrence of lacunes in MS patients was found to be 19.6%. Notably, the duration of MS was identified as the sole risk factor for the development of lacune lesions in MS patients [odds ratio (OR) = 1.3, 95% confidence interval (CI) = 1.1–1.6, p = 0.008]. Comparatively, MS patients with lacunes exhibited a higher frequency of attacks and larger volumes of T2 lesions compared to MS patients without lacunes. Further analysis using receiver operating characteristic (ROC) curves showed that lacune lesions had limited ability to discriminate between MS and CSVD when disease duration exceeded 6 years. The presence of small arterial lesions in the brain of individuals with MS, along with the duration of the disease, contributes to the development of lacunes in MS patients.

KEYWORDS
 multiple sclerosis (MS), cerebral small vessel disease (CSVD), lacune, disease duration, arteriolar damage


Introduction

Black holes in multiple sclerosis (MS) are characterized by T1 hypointense and T2 hyperintense lesions on MRI (1). These lesions can be categorized as either acute black holes, which may either progress to permanent black holes or transform into transient black holes (2). The exact etiology and pathogenesis of black holes remain uncertain. Some studies have proposed that CD8-mediated immune damage may contribute to the formation of black holes (3–5).

While MS primarily affects veins and venules, cerebral small vessel disease (CSVD) primarily affects small arteries. Aging, vascular risk factors (VRFs), and chronic inflammation are known to cause damage to the microvascular system, including the small arteries, resulting in hypoperfusion and tissue hypoxia that can influence the extent and distribution of MS-related pathology (6).

Lacunes, which are residual lesions of lacunar infarction or small hemorrhagic foci, serve as prominent imaging features of CSVD, reflecting intracranial arteriole lesions (7). Therefore, in this study, we focused on monitoring lacunar lesions to explore potential associations between CSVD and MS. We aimed to investigate the incidence of lacunes in an MS cohort and evaluate the related risk factors based on demographic and clinical characteristics, shedding light on the potential clinical significance of lacunes in MS patients.



Materials and methods


Patients

In this ongoing study, we prospectively collected clinical, demographic, and imaging data from patients diagnosed with MS and CSVD. The patients were hospitalized at Tian Tan Hospital of Capital Medical University in Beijing, China, between 2015 and 2017. MS diagnosis was made according to the 2010 McDonald MS standard (8) while CSVD diagnosis followed the 2013 European “Neuroimaging standards for research into small vessel disease” (9). Patients who fell into both categories of MS and CSVD were explicitly excluded from this study. All participants completed a structured questionnaire (10) and underwent physical and neurological assessments during their hospital stay (11).

Criteria for patient selection in our investigation were as follows:

1. Undergoing an MRI examination at least 2 days after the completion of physical and/or neurological examinations during hospitalization.

2. Having a fully documented medical record including information on hypertension, hyperlipidemia, diabetes, atrial fibrillation, current smoking, alcohol use, age at onset, age at baseline, disease duration at baseline, number of attacks, annual recurrence rate (ARR), number of relapses, and the use of any form of disease-modifying therapy (DMT).

3. Undergoing a comprehensive neurological examination, including the Expanded Disability Status Scale (EDSS) and modified Rankin scale (mRS).

Patients were excluded based on the following criteria: (a) MS patients who experienced relapse and receive steroid treatment within 30 days before study entry, (b) Pre-existing medical conditions associated with brain pathologic processes such as cerebrovascular disease or a history of alcohol abuse, (c) Confirmation of ischemic or hemorrhagic infarcts in the brain as observed in MRI, and (d) Pregnancy.



MRI protocol

All patients underwent brain MRI using a 3.0-T scanner (Magnetom Trio Tim; Siemens) equipped with a 32-channel head coil. The imaging protocol included diffusion-weighted imaging (DWI), T2-weighted imaging, fluid-attenuated inversion recovery (FLAIR), and T1-weighted imaging (12).



MR imaging analysis

During the analysis, the MR imaging experts were blinded to the physical and neurological conditions of the subjects. Two experienced neuroimagers, also blinded to MR images obtained through other analytical sequences, assessed lacune lesions on T2-, T1-weighted, and FLAIR images. Lacunes were defined as a round or ovoid subcortical fluid-filled cavity (CSF-like signal) between 3 mm and approximately 15 mm in diameter, consistent with a previous acute small subcortical infarct or haemorrhage in the territory of a perforating arteriole. The diameter of the involved perforating arteriole varies from 40 to 850 μm, and the diameter of the associated infarct ranges from 2 to 3 mm to 15 mm or larger (9). Importantly, we distinguished these lesions from “black holes” (13, 14), which were round or elliptical in shape with neat edges and showed a liquid or near-liquid low signal on the T1 image. In addition, there is rarely a low signal on the FLAIR image due to the presence of myelin regeneration in the lesion. T2-, T1-weighted, and FLAIR images (Figure 1) were used to identify definite lacune lesions and black holes. To determine the volumes of individual white matter hyperintensity (WMH) lesions, manual segmentation was performed using MRIcro software based on the T2 images.1

[image: Figure 1]

FIGURE 1
 Clinical and imaging differences between patients with or without lacune. Example of lacune (red arrow) and black hole lesion (yellow arrow) in this study: Lacunas defined as round or ovoid, subcortical, fluid-filled cavities 3–15 mm in diameter in the territory of 1 perforating arteriole, specifically, lesions were round or elliptical in shape, and edges were neat, showing a liquid or near-liquid low signal on the T1 image. EDSS, expanded disability status scale, ARR, annual relapse rate; inferrential statistical analysis was performed with Mann–Whitney tests.




Reproducibility of lacune assessment

To ensure accuracy in identifying lacune lesions, two raters independently assessed their presence. Both raters were blinded to each other’s evaluations and their own previous assessments. Interclass correlation coefficients were calculated, and the values exceeded 0.8. Where there was discrepancy between the two raters, a third rater’s assessment was used.



Statistical analysis

All statistical analyses were conducted using SPSS 17.0 (SPSS Inc., Chicago, IL). Differences between MS patients with and without lacune lesions were assessed using chi-square and Mann–Whitney tests. We used chi-square tests for gender, hypertension, hyperlipidemia, diabetes, atrial fibrillation, current smoking, and alcohol between MS patients with and without lacune lesions, as well as to compare the frequency of lacune in different groups of patients. Binary logistic regression analysis was performed to adjust for potential confounding factors. The diagnostic value of lacune lesions was determined using receiver operating characteristic (ROC) curves, with stratified evaluation at a time point of 6 years.




Results

We enrolled a total of 46 patients with MS and 66 patients with CSVD through a meticulous selection process. Among the MS patients, the median age was 32 years (range: 25–56 years), and the median disease duration was 5 years (range: 2–7 years). Fifteen (33%) of the MS patients were male (Table 1). Nine out of the 46 MS patients met the imaging threshold for lacune lesions (19.6%) (Supplementary Figure S1). We performed Mann–Whitney tests to examine the clinical and demographic characteristics of patients with and without lacune lesions. No significant differences were observed in age or vascular risk factors between the two groups (Table 1). However, there was a significant difference in disease duration [median (IQR), 4 (1.8–6.0) vs. 10 (4.3–13.5), p = 0.016]. To adjust for age, we conducted binary logistic regression analysis, which revealed a significant association between disease duration (OR = 1.3, 95% CI = 1.1–1.6, p = 0.008) and the presence of lacune lesions. MS patients with lacune lesions exhibited a higher frequency of attacks (6 vs. 3, p = 0.043) and larger T2 lesion volumes (19 vs. 23 mL, p = 0.046) compared to those without lacune lesions (Figure 1). No differences were observed in ARR (0.7 vs. 1.0, p = 0.437), EDSS (3.5 vs. 3.0, p = 0.443) and mRS (1.0 vs. 1.0, p = 0.482).



TABLE 1 Demographic and clinical characteristics of patients.
[image: Table1]

Comparison between the MS and CSVD groups revealed a higher incidence of traditional VRFs among CSVD patients (Table 1). There was a significant difference in the incidence of lacunes between the CSVD and MS groups (65.1% vs. 19.6%, p < 0.001), with an area under the ROC curve (AUC) of 0.73. However, when stratified by disease duration at a time point of 6 years, the AUC values decreased for patients with a disease course of >6 years (AUC = 0.67) (Figure 2), suggesting a diminishing ability to discriminate lacunar lesions with prolonged disease duration. Notably, the frequency of lacune lesions in MS patients with a disease duration over 6 years was comparable to that of CSVD patients (46.7 vs. 65.1%, p = 0.184).

[image: Figure 2]

FIGURE 2
 The sensitivity and specificity of lacune in distinguishing MS from CSVD. ROC curves were used to evaluate the diagnostic value of lacune, and the stratified evaluation was performed at a time point of 6 years. AUC, area under curve.




Discussion

Our study aimed to investigate the frequency and clinical significance of lacune lesions in individuals diagnosed with MS. By comparing the clinical features of MS patients with and without such lesions and analyzing the ROC curve after age stratification, we found that disease duration was the only significant risk factor for the occurrence of lacune lesions in MS patient. Furthermore, these findings suggest that the duration of MS increases the risk of CSVD, highlighting the time sensitivity and the importance of initiating preventive treatments at an appropriate time.

To the best of our knowledge, there are no existing reports exploring the potential relationship between lacune lesions and MS. Classical descriptions of lacunae can include lacune lesions (9), which can be challenging to distinguish from “black holes” in images (13, 14). To overcome this challenge, we further defined the distinguishing characteristics of lacune lesions in the imaging data of our study cohort. Based on our assessment criteria, we determined that the incidence of lacune lesions in the study population was 19.6%. It is important to note that the actual incidence is expected to be higher than the reported value we detected.

Traditional VRFs such as hypertension, diabetes, hyperlipidemia, and smoking were not significant factors in MS patients (with incidence rates of 2.2%, 2.2%, 23.9%, and 2.2% respectively). This could be attributed to the younger age [median (IQR): 31.5 (24.8–36.3)] of the enrolled population in our study compared to the aforementioned study. Several publications have shown an increased rate of ischemic stroke (IS) in MS patients (15, 16). Similarly, CSVD patients also exhibit a higher incidence of IS. Therefore, we were interested in exploring the differences in the development and causal influences of lacunes in MS patients compared to CSVD patients. The level of VRFs was higher in the CSVD cohort compared to the MS cohort, and the overall incidence of lacunes was also higher. When drawing ROC curves using lacune lesions, age-stratified analysis revealed that when the disease duration exceeded 6 years, lacune lesions had limited discriminatory capability between MS and CSVD. This further emphasizes the association between lacune lesions and MS disease duration, suggesting that intervention therapy for CSVD should be initiated at an appropriate time in the MS population.

There are several limitations to our study that should be acknowledged. First, the sample size was relatively small and should be expanded to further support our conclusions. Additionally, the mechanism underlying the increased risk of cerebral small vessel disease in MS patients remains unclear. It is hypothesized that MS disease creates a chronic inflammatory environment that damages small arterioles in the brain (6), but empirical confirmation is needed.
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Background: This study relates to emerging concepts of appropriate trial designs to evaluate effects of intervention on the accumulation of irreversible disability in multiple sclerosis (MS). Major starting points of our study are the known limitations of current definitions of disability progression by rater-based clinical assessment and the high relevance of gait and balance dysfunctions in MS. The study aims to explore a novel definition of disease progression using repeated instrumental assessment of relevant motor functions performed by patients in their home setting.

Methods: The study is a prospective single-center observational cohort study with the primary outcome acquired by participants themselves, a home-based assessment of motor functions based on an RGB-Depth (RGB-D) camera, a camera that provides both depth (D) and color (RGB) data. Participants are instructed to perform and record a set of simple motor tasks twice a day over a one-week period every 6 months. Assessments are complemented by a set of questionnaires. Annual research grade assessments are acquired at dedicated study visits and include clinical ratings as well as structural imaging (MRI and optical coherence tomography). In addition, clinical data from routine visits is provided semiannually by treating neurologists. The observation period is 24 months for the primary endpoint with an additional clinical assessment at 27 month to confirm progression defined by the Expanded Disability Status Scale (EDSS). Secondary analyses aim to explore the time course of changes in motor parameters and performance of the novel definition against different alternative definitions of progression in MS. The study was registered at Deutsches Register für Klinische Studien (DRKS00027042).

Discussion: The study design presented here investigates disease progression defined by marker-less home-based assessment of motor functions against 3-month confirmed disease progression (3 m-CDP) defined by the EDSS. The technical approach was chosen due to previous experience in lab-based settings. The observation time per participant of 24, respectively, 27 months is commonly conceived as the lower limit needed to study disability progression. Defining a valid digital motor outcome for disease progression in MS may help to reduce observation times in clinical trials and add confidence to the detection of progression events in MS.

KEYWORDS
 multiple sclerosis, disease progression, outcome measures, gait, balance, motor performance, Kinect, digital biomarker


1. Introduction

Multiple sclerosis (MS) as a neuroinflammatory disease features a chronic course with recurrent relapses of inflammatory activity as well as chronic disability in the long-term. Accumulation of disability in multiple sclerosis may occur as relapse-associated worsening (RAW) or steady progression independent of relapse activity (PIRA) (1). While a number of MS therapies were approved to reduce the frequency of relapses, capturing disease progression in MS still poses a major challenge and an urgent scientific need. A sufficient ‘gold standard’ of clinical outcome measures in MS research and clinical practice is lacking (2) but highly desirable to assess the effectiveness of novel interventions that target chronic processes rather than relapse in this disorder (3).

A recent review reported on outcomes in phase III clinical trials of secondary progressive multiple sclerosis since 1990 (4). Among the studies reviewed, the Expanded Disability Status Scale (EDSS) (5) was by far the most frequently used outcome measure employed by 16 out of 17 trials. Increase in EDSS ratings confirmed after 3 months was most commonly used to define confirmed disability progression (CDP) events as an endpoint (6). However, there is no clear consensus on this concept and protocols diverge with respect to the time frame used to confirm EDSS progression and the cut-offs used to define increase in EDSS ratings as a function of baseline EDSS score (7, 8). The most important determinant for robust definitions of progression was the length of the confirmation period, as confirmation of the EDSS after 3 or even 6 months provided only imprecise estimates of the long-term disease course (9). Despite its extensive use in MS research, the EDSS as an ordinal scale has several limitations in terms of reliability and sensitivity (10) specifically in the early course of MS (11, 12). Another important source of variability are short-term fluctuations in performance known to occur to a relevant degree in MS (13) as well as in other chronic neurological conditions (14). Furthermore, motor performance may differ between clinical and home-based assessments (15). Thus, some of the limitations of current operational definitions of CDP are related to the fact that they rely on infrequent single-point rater-based assessments in the clinical setting. The concept of ‘No evidence of disease activity’ (NEDA) has been introduced as a potential endpoint for the evaluation of disease-modifying therapies’ (DMTs) effectiveness in relapsing remitting MS (16, 17).

Within this concept events of CDP or lack thereof within a given timeframe, respectively, represent one component. Other components are the absence of clinical relapses and absence of radiological signs of inflammatory disease activity. Recently, predictive value has been shown for total brain volume loss (BVL) on disability progression. Thus, measures of decline in brain volume have been added as a fourth component (NEDA-4) (18). Still, this concept circumvents the challenge to reliably quantify and compare the degrees of disability accumulation between subjects or treatment arms. Further, not all components can be applied in the progressive forms of MS (19).

At a time when chronic disease processes represent the target for future interventions in MS, improving the operational definitions of disability progression remains a key priority of MS research (20). Technical measures to quantify specific functions have been explored in this respect. Walking impairments are reported in up to 75% by people with MS (pwMS) (21) and thus pose a good candidate for quantitative assessment in this disorder. Consequently, the instrumental assessment of gait, mobility or other specific functions has received attention in MS research (15, 22–26). Interestingly, instrumental gait analysis has shown dysfunctional walking patterns despite clinically normal gait function even in early stage disease (27). Technical methods of remote assessment such as commercial activity trackers have a part in recent MS trials protocols (28). However, sources of variance and appropriate definitions of relevant change still need to be established for emerging digital biomarkers (29, 30).

Following this strategy, this investigation aims to devise and evaluate an instrumental definition of CDP in early RRMS by episodic patient self-assessment of motor symptoms at home. Among the various technologies available, we chose a visual-perceptive technology based on commercial RGB-D cameras. As a marker-free method this study applies a consumer-grade RGB-Depth (RGB-D) camera (Microsoft Azure Kinect®) combined with customized software (Motognosis Amsa) for motion capture at home as the primary outcome. As a marker-free method, it has high potential for clinical utility and RGB-D technology has been explored for the purpose of task-based motor assessment in various neurological conditions in research settings (31–34). As a novelty, we here turn the patient into the central operator and home-based application into the primary outcome. This enables data acquisition at higher frequency compared to conventional protocols that rely on in-patient research visits.

Primary endpoint is the accuracy of detection of progression events at 24 month compared to progression events defined as 3-month CDP in EDSS. Relation of such definitions to patients’ reports of function and impairment as well as structural change on MR imaging and optical coherence tomography (OCT) will complement the final analysis.



2. Methods


2.1. Study design

The study is a single-center prospective observational cohort study. Study data combines observations from different sources: patients’ remote self-assessment, data from treating neurologists obtained in routine clinical care—both performed semiannually—and data from annual in-person study visits at an academic clinical research center. The primary outcome consists of home-based recordings of short motor tests (Amsa, Motognosis GmbH, Berlin, Germany) performed twice a day for a period of 1 week every 6 months. Patient-reported outcomes is acquired every 6 months using validated questionnaires on specific functions, impairments and quality of life.

Data requested from treating neurologists comprise the Multiple Sclerosis Functional Composite (MSFC-3) (35), the global assessment of the change since last observation [clinical global impression of change (CGI) (36)] and information on relapse events/relapse therapy including recovery, change of therapy or comorbidity since prior visit.

Annual study visits at the research site comprise clinical and functional assessment including Motognosis Labs as well as imaging of brain (MRI) and retina (OCT) detailed below.

The observation period is 24 months for the primary endpoint with an additional clinical assessment at 27 months to confirm progression defined by EDSS.



2.2. Participants

The study targets a sample size of 150 people with a diagnosis of relapsing–remitting MS according to revised McDonald criteria (37) in their earlier disease course defined as <10 years since diagnosis in order to allow some heterogeneity in disability stage. Inclusion was restricted to those able to walk at least short distances with unilateral assistance at baseline—equivalent to ≤6.0 EDSS—in accordance with the requirements of the primary outcome measure. To enhance generalizability of results, study recruitment aims for at least 20% aged 55 or older and for at least 33% of EDSS ≥ 3.5 (moderately affected).

Inclusion further allows use of any intervention for MS or other morbidity as long as this is not considered to affect compliance with the study protocol. Comorbidities are not excluded as long as not considered to interfere with motor performance.

Prior disease activity or other known predictors of disease progression were implemented as additional inclusion criteria to increase expected CDP observations at 24 months while at the same time trying to maintain generalizability of our findings for the target population of early RRMS.


2.2.1. Inclusion criteria

• Written informed consent to participate in this study.

• Participant’s age is ≥18 years.

• Participant resides within reasonable range from study center to allow supervision of technical set-up at home and provision of technical back-up.

• Diagnosis of relapsing–remitting multiple sclerosis according to 2017 diagnostic criteria (37).

• AND

Disease duration of <10 years since diagnosis.

• AND

• EDSS ≤ 6.0 (ability to perform short walking tests with only unilateral assistance).

• AND

fulfillment of one or more of the following criteria:

• history of recent disease activity: ≥ 1 relapse or ≥ 1 new T2 lesion or ≥ 1 Gd + enhancing lesion on MRI over the past 2 years.

• OR

Findings on routine brain MRI from within 6 months prior to screening: total T2 lesion load of ≥10.

• OR

Findings on routine brain MRI from within 6 months prior to screening: any Gd + enhancing lesion.

• OR

Findings on routine MRI from within 6 months prior to screening: ≥ 1 spinal or brainstem lesion.

• OR

Finding on optical coherence tomography performed at screening: Peripapillary retinal nerve fiber layer (pRNFL) < 92 μm in a non-optic neuritis eye.



2.2.2. Exclusion criteria




• Relapse within 3 months prior to baseline visit.

• Other disease or condition with suspected effect on motor performance.

• Any condition foreseen to prevent compliance with protocol.

• The patient is pregnant at screening.

• Any contra-indications for MRI investigation at screening.




2.3. Data acquisition

An overview of the visit schedule is provided in Table 1.



TABLE 1 Overview study assessments and visit schedule.
[image: Table1]


2.3.1. Primary outcome: self-assessment of motor functions at home (Motognosis Amsa)

Measurements are recorded with a markerless motion analysis system consisting of the measurement software (Amsa V 1.2.0, Motognosis GmbH, Berlin, Germany) running on an All-in-One PC (Optiplex 5,480, Dell GmbH, Frankfurt am Main, Germany) and a single RGB-Depth camera (Azure Kinect, Microsoft Corporation, Redmond, WA, United States).

The device is delivered to the patient’s home and set-up appropriately by qualified staff along with oral instruction of the testing protocol which includes assessment of six specified short motor tasks within the recording space of the camera. All data are stored on the system hardware only.

Participants are instructed to use Motognosis Amsa twice a day—preferably morning and later afternoon/evening—for a period of 7 days for each visit. Participants start by preparing the measuring area (e.g., removal of clutter). When the measurement area is cleared, they can start the software. The software can be controlled with gestures, i.e., lifting of the left or right arm. Assessments start with a positioning phase, where participants will see themselves on the computer screen and will be guided to the correct starting location with visual and auditory cues. Subsequently assessment-specific video instructions are provided. After execution of an assessment a result page is shown. If a measurement error occurred, a notification will be shown with the request to rerecord. Otherwise, the participant can proceed to the next assessment. If a specific task was not recorded, the participant is supposed to enter the reason for the omission in a free text field.

Assessments and their motor outcomes for this study include:

1. Stance with open and closed eyes and closed feet (20s eyes open, 20s eyes closed): angular sway speed 3D (°/s) separately for phases of stance with open and closed eyes.

2. Stepping in place (40 s): knee amplitude (m) and arrhythmicity (%).

3. Short walk in comfortable speed (Movement toward the system, stopped automatically in a certain distance): Short walk in comfortable speed: comfortable walk speed (m/s) and step width (cm).

4. Short walk in maximum speed (Movement toward the system, stopped automatically in a certain distance): maximum walking speed (m/s).

5. Line walk (Movement toward the system, stopped automatically in a certain distance): mean trunk roll deflection (°).

6. Standing up and sitting down from a chair: up time (s) and down time (s).

Performing the whole set of assessments, including in-between system operation, positioning, instructions and conduction takes at maximum 10 min. If particular assessments are deemed too risky for an individual participant by the investigator, the participant may be instructed to record only a subset of the assessments.

On each day of home-based assessment of motor function, participants are asked to answer three simple questions as potential determinants for day-to-day fluctuations: (1) about the severity of pain on a 0–10 numerical analog scale pain (painNAS), (2) about the current health status on a 0–100 visual analog scale (EQ-VAS) (38) and (3) about the current state of fatigue using a 0–10 numerical analog scale devised for that purpose. To cover aspects of patient safety, participants are reminded to report on any incidents occurring during Amsa assessment within the user interface. At the end of each week of home-based assessment, the participant is asked to fill out a questionnaire on usability of the measurement device, the System Usability Scale (SUS) Plus (39–41), translated and modified for the purpose of this project. The SUS was developed to evaluate a wide variety of products and services with a 10-item scale using five response options from “strongly agree” to “strongly disagree” to explore aspects of usability. Furthermore, participants can make suggestions how usability might be improved.



2.3.2. Patient-reported outcomes

PROs listed below were applied in validated translations—except for PGIC, for which own translation was used—and completed directly in eCRF via individualized links.


2.3.2.1. The patient global impression of change

The Patients’ Global Impression of Change (PGIC) scale was first developed in context of patients’ perception of changes after intervention (i.e., “feeling better” or “feeling worse”). It is a 7-point verbal scale, with the options “very much improved,” “much improved,” “minimally improved,” “no change,” “minimally worsened,” “much worsened,” and “very much worsened.” The PGIC is commonly used in clinical trials for treatments of pain, but it has also been applied as a generic measure applicable to a wide variety of conditions and treatments. Worsening of any grade is considered clinically meaningful (42).



2.3.2.2. The multiple sclerosis walking scale-12

The Multiple Sclerosis Walking Scale-12 (MSWS-12) is a patient-rated measure assessing the extent to which a person’s ability to walk is affected by MS., i.e., it is conceived to capture the impairment level. It has been developed from patients’ experience and has undergone psychometric validation and translations (43). The 12 items are rated on a five-point scale (1, “not limited” to 5, “extremely”). Total scores are calculated as sum score (range 12–60) and transformed to a scale of 0–100 to aid interpretation. Higher scores reflect greater impact of MS on walking ability. An increase of >8-point in 0–100 MSWS-12 score is considered clinically meaningful (44).



2.3.2.3. Fatigue scale for motor and cognitive functions

The fatigue scale for motor and cognitive functions (FSMC) is a patient questionnaire to assess MS-related cognitive and motor fatigue (45, 46). A Likert-type 5-point item rating (ranging from 1 “does not apply at all” to 5 “applies completely”) produces a sum score between 20 (no fatigue at all) and 100 (most severe fatigue). Two subscales (cognitive and physical fatigue) can be derived from the FSMC. Items included in the cognitive subscale are 1-4-7-8-11-13-15-17-18-20 and items included in the physical subscale are 2-3-5-6-9-10-12-14-16-19. An increase in FSMC category (sum score: <43: no fatigue; 43–52: mild fatigue; 53–62 moderate fatigue; >63 severe fatigue) is considered clinically meaningful (45).



2.3.2.4. Spasticity using numeric rating scale

The clinical rating of spasticity will be performed using a patient-rated measure of the perceived severity of spasticity, employing a numeric rating scale (47, 48) for several aspects of spasticity, each rated on a scale of 0 to 10. Total rating is the mean of item-level answers, where 0 is no spasticity and 10 is the worst possible spasticity. Appropriate patient training has to be ensured to obtain reliable results. Any increase in 0–10 Numeric rating scale (NRS) for spasticity is considered clinically meaningful (49).



2.3.2.5. Hamburg quality of life questionnaire for multiple sclerosis

The Hamburg Quality of Life Questionnaire for Multiple Sclerosis (HAQUAMS) is a health-related quality of life measure designed for pwMS (50). The HAQUAMS consists of 38 questions, 28 of which address major dimensions of health-related quality of life in MS: Fatigue/thinking (four items), mobility lower limb (five items), mobility upper limb (five items), social function (six items) and mood (eight items). Subscales and total score range from 1 to 5. Higher scores indicate a lower quality of life. Cognitive impairment in MS does not impact psychometric properties. A HAQUAMS total score increase of at least 0.22 is considered clinically meaningful worsening (51).



2.3.2.6. The 9-item patient health questionnaire-9

The 9-item Patient Health Questionnaire-9 (PHQ-9) was devised to screen for depressive disorders in primary care and the setting. It is based on the DSM-IV diagnostic criteria for a major depression episode. The PHQ-9 can be used both as a screening instrument for a depressive episode and can be used to provide information about the severity of a depressive episode. Each question in the scale has four response choices: “not at all,” “several days,” “more than half the days,” and “nearly every day” and classifications of no/possibly relevant depressive disorder are made according to manual (52, 53).



2.3.2.7. Godin leisure-time exercise questionnaire

The Godin leisure-time exercise questionnaire (GLTEQ) is applied here to assess physical activity levels in MS. It contains three core items regarding the frequency of strenuous, moderate, and mild physical activity for bouts of 15 or more minutes during a 7-day period (54). The scores are multiplied by weights and summed into an overall score (i.e., leisure-time physical activity [LTPA] score) that ranges between 0 and 119 metabolic equivalents of task/min of physical activity per week (55).



2.3.2.8. EQ-5D/EQ—visual analog scale

EQ-5D is a generic and widely used measure of health status developed by the EuroQol Group.

Participants are asked to classify and rate their own health according to five dimensions. These dimensions comprise mobility, self-care, usual activities, pain/discomfort and anxiety. Each dimension is divided into five levels, i.e., 1 “no problems,” 2 “slight problems,” 3 “moderate problems,” 4 “severe problems,” and 5 “extreme problems.” (56). While answers on EQ-5D consider variable timeframes, the single-item EQ-VAS provides a global assessment of perceived health at the time of assessment. It consists of a vertical visual analog scale that takes values between 0 (worst imaginable health) and 100 (best imaginable health) (38).



2.3.2.9. Brief pain inventory

Given the high prevalence and clinical relevance of pain, the Brief Pain Inventory (BPI) was developed as a brief instrument with low respondent burden that can be easily administered by large numbers of patients (57). The BPI measures both the intensity of pain (sensory dimension) and impact of pain with patients’ lives (reactive dimension). Pain relief, pain quality, and patient perception of the cause of pain are also addressed (58).




2.3.3. Data acquisition from routine care

Information from routine care is retrieved repeatedly throughout the observation period from treating neurologists. The baseline data set comprises information on diagnosis and comorbidities, most recent relapse including its treatment and clinical outcome and full list of current medication as well as EDSS and MSFC-3, if performed routinely. Follow-up data are requested from any clinical visit throughout the observation period, at least semiannually, and comprise clinician’s global ratings of change, information on relapses since last visit in medication or comorbidities, as well as EDSS and MSFC-3.



2.3.4. Data acquisition at annual study visits


2.3.4.1. Study assessment

Time since diagnosis of multiple sclerosis, prior manifestations of disease, current symptoms, prior and current disease modifying therapy, supportive therapy and relapses in past 24 months as well as comorbidities and changes thereof are acquired by the clinical investigator.

Current therapy will be documented at baseline and changes thereof will be reported at each visit. This also extends to rehabilitative interventions.



2.3.4.2. Expanded disability status scale

The expanded disability status scale (EDSS) is used to quantify disability in MS. The scale was first developed by Kurtzke in 1955 and then expanded in 1983. It is usually referred to as a measure which is scaled on 10 steps from 0 (no disability) to 10 (death from MS). Scoring is based on an examination by a neurologist. EDSS steps 1.0 to 3.5 refer to people with MS who are able to walk without any limitation, while EDSS steps 4.0 and higher are defined by decrease in walking capacity. Assessment of EDSS will follow instructions of Neurostatus for functional systems scores and EDSS step (59) by certified raters. In our study, the 3 m-CDP is defined as a 1.0 step increase from baseline EDSS when baseline EDSS was 0.0 to 5.0 and 0.5 step increase from baseline when baseline EDSS was 5.5 to 6.5, rated at 24 months with change confirmed at month 27.



2.3.4.3. Multiple sclerosis functional composite (MSFC-3 and MSFC-4)

The MSFC was developed by a special Task Force on Clinical Outcomes Assessment as a clinically applicable standardized, quantitative assessment instrument for use in MS trials (35). The MSFC-3 measures three clinical dimensions: leg function/ambulation using the Timed 25-foot Walk test; arm/hand function using the 9 Hole Peg Test (9HPT); and cognitive function using the Paced Auditory Serial Addition Test (PASAT-3 version). Because the PASAT is not popular among patients and given the relevance of visual dysfunction in MS, an expert group (60), convened by the National MS Society, recommended two adaptations to the MSFC: (1) inclusion of the Sloan Low Contrast Letter Acuity test (60) (MSFC-4) and (2) use of the oral version of the Symbol Digit Modalities Test (SDMT) instead of the PASAT-3. In our study, the MSFC-4, will be administered on occasion of the annual visit at study site by a trained rater. In addition, the MSFC-3 will be collected from routine clinical visits semiannually. Both versions will use SDMT for the cognitive component.

The MSFC will be performed and analyzed in accordance with the respective testing manual issued by.

the National Multiple Sclerosis Society. Cut-offs for clinically meaningful change in MSFC and component Z-scores have been defined as >20% worsening (61).1



2.3.4.4. The 6-min walk

The 6-min walk (6 MW) is applied here to measure of walking endurance/ walking capacity in pwMS (62). The test is characterized by good practicability, reproducibility and reliability in MS. Furthermore, ecological validity is supported by strong correlation to patient report of ambulation and physical fatigue (63). A ≥ 20 m decrease in distance covered in the 6-min walking test at comfortable speed is usually considered clinically meaningful (64).



2.3.4.5. Supervised operator-based assessment of motor function (Motognosis Labs PASS-MS)

Our group developed a clinically applicable assessment protocol (PASS-MS) for usage with the Motognosis Labs system (Motognosis GmbH, Berlin, Germany). Motognosis Labs functions similar to Amsa in terms of technology. It differs in camera version used (Microsoft Kinect v2 for Motognosis Labs vs. Azure Kinect for Motognosis Amsa) and test set-up, as Motognosis Labs uses a camera plugged in to a laptop and participants are guided through assessments by a trained operator according to standard instructions.

PASS-MS consists of 10 short motor tasks performed in front of the RGB-D camera and parameters for the description of performance are generated by custom scripts. In operator-based application, this system proved acceptable to patients and was easily applied. Previous validation showed accuracy of derived parameters against gold standard multi-camera motion capture (33) and sufficient reliability and validity to measure balance and gait function in MS (65, 66).

Assessment of PASS-MS includes:

1. Stance with open and closed eyes and closed feet (20s eyes open, 20s eyes closed).

2. Dual Task Stance with open and closed eyes and closed feet.

3. Stepping on place (40s).

4. Short walk in comfortable speed.

5. Short walk in maximum speed.

6. Line walk.

7. Standing up and sitting down from a chair.

8. Pronator drift test.

9. Finger-to-nose-test.

10. Finger tapping.



2.3.4.6. Magnetic resonance imaging

In this study a standardized MR protocol was performed consisting of: a 3D-T1-weighted sequence (MPRAGE), a 3D T2-SPACE, a 3D fluid attenuated inversion recovery (FLAIR), a Diffusion Weighted Imaging sequence (DWI) and a resting state functional MRI (rsfMRI). To define progression, we use operational cut-offs for brain volume loss known to increase with age. Mean BVL per year amounts to by 0.15, 0.30, 0.46, and 0.61% of baseline brain volume at ages 45, 55, 65, and 75 years, respectively (67). The corresponding age-dependent 95th percentiles of BVL per year were 0.52%, 0.77%, 1.05%, and 1.45%. Pathological BVL can be assumed if an individual BVL per year exceeds these thresholds for a given age (67).



2.3.4.7. Optical coherence tomography

Optical coherence tomography (OCT) is a suitable high-resolution imaging method for the assessment of retinal integrity with good reproducibility. Peripapillary retinal nerve fiber layer thickness and macular volume are the most reported indicators to measure retinal atrophy on OCT. It has been shown that pwMS with a pRNFL thickness of less than or equal to 87 μm (88 μm) measured with Spectralis (Cirrus) OCT devices had double the risk of disability worsening in the follow-up (68).

which led us to consider this measure as a component of the inclusion criteria. With respect to progression of structural abnormalities of the retina, an absolute thinning of pRNFL of more than 1.25 μm at 24 months against baseline is considered clinically meaningful. This threshold has been established previously as the upper limit to define stability in multiple sclerosis (69).




2.3.5. Visit schedule

See Table 1.




2.4. Pre-processing of data

All study data will undergo plausibility checks including description of missings prior to further analysis. Definitions of progression events by EDSS or alternative definitions for secondary outcomes are applied as provided in section 2.3.

Data from technical recordings (Amsa, Motognosis Labs, MRI, and OCT) are continuously monitored by trained users to check usability and plausibility according to standard operating procedures for quality control (QC). Specifically, for Amsa and PASS-MS, presentations of all assessments are systematically inspected and evaluated for quality concerns following the QC pipeline developed by Röhling et al. (70).

For RGB-D camera based motion capture, both Amsa and PASS-MS, a list of task-specific kinematic parameters is generated according to custom scripts by the provider. Kinematic parameters include for example gait speed for the short walking tasks. Primary analysis will consider only one parameter per test condition, i.e., seven parameters.



2.5. Data management

Data flow is shown in Figure 1. Study data are stored in an study-specific Electronic Data Capture platform (REDCap) (71). The platform also enables remote data entry of PRO by patients themselves via personalized links. The study team provides the links to each participant at the appropriate timepoints throughout the observation period.

[image: Figure 1]

FIGURE 1
 Data flow.


For the technical assessments performed in this study (Amsa, PASS-MS/Motognosis Labs, MRI, OCT), test results (e.g., gait speed from PASS-MS, number of T2 lesions on MRI, pRNFL thickness in OCT) are only transferred into REDCap system after pre-processing as described in section 2.4 along with results of QC.

All pseudonymized raw data are digitally stored in separate archives on local platforms.

With regard to data imports from home-based repeated Amsa assessments, raw data and metadata are saved on and retrieved with the device after each 1-week assessment period by the provider. The provider, after checking for technical issues and completeness, transfers results of daily self-ratings and pseudonymized metadata and raw data from Amsa recordings to the study site. Data are provided for QC application as well as kinematic parameters for analysis and archiving.

Data from routine care are collected from treating neurologists using structured paper templates.



2.6. Status of the study

Approval of the institutional review board (Charité—Universitätsmedizin Berlin) was obtained on 21 October 2021 (EA1/293/21). The study is active with first patient first visit in June 2022.



2.7. Statistical analysis plan

Based on the study question, the primary hypothesis is to assess the accuracy of detecting disease progression by the repeated short motor assessments at 24 months, compared to progression defined by EDSS at 24 months and confirmed at 27 months.

The sample size is justified via the expected precision of the estimate of the area under the receiver operating characteristic curve (AUC) provided in terms of the 95% confidence interval. We hypothesize that the parameters derived from repeated short motor assessment at home can reliably identify disease progression compared to detection of progression according to EDSS.

If the AUC is 0.9, and the sample size is 150, from which 10% are diagnosed with a progression according to EDSS at 24 months, then the width of the 95% confidence interval will be 0.103. In case of a lower AUC, e.g., 0.8, the 95% confidence interval would be of width 0.138. These calculations were performed using nQuery version 8.7.0.0, procedure AOC6-1. Given these calculations, the expected precision of the estimated quantity seems sufficient to evaluate the exploratory research hypothesis of this study.

Given the baseline definition, the primary endpoint is analyzed as AUC of detection of disease progression according to the repeated short motor assessment at home compared to detection of disease progression according to the EDSS score at 24 months, confirmed at 27 months. The AUC is calculated alongside with the 95% confidence interval. Event of progression at 24 months detected by parameters from repeated short motor assessment at home is defined as observed reliable change in pre-defined direction of worsening in one or more of the parameters derived from this assessment. Threshold for reliable change will be defined based on analysis of baseline data. Secondary endpoint analyses are planned for MSWS-12, HAQUAMS, PGIC, CGI, MSFC, and 6 MW. Respective receiver operating characteristic curves and their AUC will be calculated based on published evidence on minimally important difference for MSFC, 6 MW, MSWS-12, and HAQUAMS while any transition in the direction of worsening will be considered an important change on PGIC and CGI.

Subgroup analysis are planned for stratification by age > 55 years vs. younger and EDSS < 3.5 vs. higher. Further exploratory subgroup analysis may be conducted for all endpoints, if there exist relevant subgroups, using standard statistical methods such as parametric or non-parametric location tests and regression methods.




3. Discussion

This study evaluates the concept of remote multipoint assessment of motor performance to improve definitions of disease progression in MS over current definitions of 3 m-CDP. Being among the first and larger studies to evaluate quantitative motor assessments longitudinally (28, 72–76), it is also the first study to apply RGB-D technology for the remote assessment of motor functions in MS (77). The prospective design and multimodal examination protocol ensures that changes defined by remote assessment can be compared with state-of-the-art clinical and imaging endpoints in MS.

Primary analysis will use 3 m-CDP defined by EDSS as the main comparator, which is most commonly used as an endpoint of disability accumulation in MS clinical trials to date. Still, more general concerns have been raised with respect to disability confirmation by EDSS (78). For example, 3 m-CDP may overestimate the accumulation of disability in the longer term and, thus, longer confirmation periods should be preferred (79) which would extend observation times. We here adhere to an observation period of 24 months as the minimum among previous studies that used CDP as their main endpoint. Within this timeframe, reasonable proportions of progression events can be expected according to previous reports. Nonetheless, proportions were not much higher than 10% in earlier disease stages (80–82). Targeting this group for our study has the risk that progression observed is too subtle to yield numbers that could answer the primary research question. Therefore, the inclusion criteria were set to increase the likelihood of disability progression while at the same time maintaining generalizability for early MS.

The technical approach applied in this study is novel in two aspects: first, assessments of motor function are recorded by patients themselves in their home setting, and second, this approach enables frequent (multi-point) assessment. Both aspects hold potential to overcome the limitations of conventional rater-based assessments in single and infrequent clinical visits. Previous evidence suggests that different features of MS may vary considerably within the same subject, including self-ratings of health status (83). For fatigue, over one-third of the variability can be attributed to moment-dependent fluctuations, 8.2% to day-to-day fluctuations, while 56.6% can be attributed to individual differences (84) and many pwMS report increased fatigue in the afternoon and evening (85). Day-to-day variability has also been shown for maximum walking distance that would equal changes of up to 1.5 EDSS points (86). We therefore expect to observe day-to-day variability of motor performance throughout each week of remote assessment and consider this in definitions of change at follow-up. Further, our study protocol combines repeated self-recording of motor functions with a daily self-report of health status, pain and state fatigue. This will allow us to study possible correlates.

For a quantitative assessment of motor functions in MS, this study follows the technical approach of a task-based assessment. Clinical relevance of instrumentally assessed gait quality has been shown in early-stage multiple sclerosis (87). However, their ecological validity may be limited, depending on task and setting (88).

Shema-Shiratzky et al. found that dual-task walking in the lab better represents walking ability in everyday life, whereas usual walking in the lab is more likely to represent best performance in everyday life (89).

We therefore included additional performance-based and patient-reported outcomes of walking function for contextualization. Another novelty of our study is the integration of data acquired semiannually in the course of routine clinical care by treating neurologists. Analysis will use these, specifically their global ratings of change, as one of the alternative secondary definitions of change. This intends to explore the validity and generalizability of our findings for the setting, in which approved treatments or digital motor applications will ultimately be applied.

We aimed to address potential drawbacks of remote task-based assessment in study design and analysis plan. First, variability in task performance can be expected to be higher in unsupervised settings. We aim to mitigate this point by control of device set-up by a trained operator, standardized instructions and by technical design. Second, we apply a standardized quality control pipeline on recordings to identify relevant protocol deviations. Roehling et al. showed the feasibility but also the necessity for a post hoc quality control using this method of instrumented motion analysis (70). In this study, we extend this QC pipeline exploring its practicality to Amsa measurements. Furthermore, participants’ adherence is surely a concern in this long-term observation. A recent 8-week RCT study investigated participants’ short term adherence in using digital tools in multiple sclerosis. The average overall adherence for all three measurement tools (1. MS patient-reported outcome tool accessible via a smartphone app, 2. Floodlight open, a app-based assessment of hand and gait function, and 3. Fitbit, a smart watch for passive monitoring of sleep duration and quality) was 81% in the intervention group (90). Midaglia et al. analyzed the practicability of remote active testing and passive monitoring using digital tools in pwMS and showed 70% (16.68/24 weeks) adherence to active testing and 79% (18.89/24 weeks) to passive monitoring (74). Rates of attrition in application of remote assessment have not yet been reported over longer time-frames. In order to sustain adherence in our 24 months-study, participants will receive a reminder link about 4 weeks before the upcoming measurement and the Amsa device will be delivered by the study team at the appropriate time.

Our aim is to evaluate subtle changes in motor signs to identify chronic progression in MS independent of relapse by remote task-based assessment. This new approach will be related to the EDSS as well as imaging surrogates (OCT, MRI). Reliable remote assessment of disability would seamlessly fit in the landscape of digital health solutions that are highly important in situations where specialized care is scarce or episodically unavailable, such as in recent pandemic conditions. If utility can be shown for this home-based setting, such assessment may serve as a valuable source of information in patient care. An appropriate re-definition of progression events may substantially reduce total observation times and rater involvement in clinical trials that aim to establish clinical stability or clinical progression in MS as their outcome of interest.
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Footnotes

1   
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Background


Cerebrospinal fluid oligoclonal band (CSF-OCB) is an established biomarker in diagnosing multiple sclerosis (MS), however, there are no nationwide data on CSF-OCB prevalence and its diagnostic performance in Chinese MS patients, especially in the virtue of common standard operation procedure (SOP).







Methods


With a consensus SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients, including neuro-inflammatory diseases (NID, n = 595) and non-inflammatory neurological diseases (NIND, n=285). Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used.







Findings


369 (76.4%) MS patients were OCB-positive, while 109 NID patients (18.3%) and 6 NIND patients (2.1%) were OCB-positive, respectively. Time from symptom onset to diagnosis was significantly shorter in OCB-positive than that in OCB-negative MS patients (13.2 vs 23.7 months, P=0.020). The prevalence of CSF-OCB in Chinese MS patients was significantly higher in high-latitude regions (41°-50°N)(P=0.016), and at high altitudes (>1000m)(P=0.025). The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded a sensitivity of 76%, a specificity of 87%.







Interpretation


The nationwide prevalence of CSF-OCB was 76.4% in Chinese MS patients, and demonstrated a good diagnostic performance in differentiating MS from other CNS diseases. The CSF-OCB prevalence showed a correlation with high latitude and altitude in Chinese MS patients.






Keywords: oligoclonal bands, cerebrospinal fluid, multiple sclerosis, prevalence, diagnostic performance, China








Introduction


Multiple sclerosis (MS) is a typical chronic inflammatory demyelinating disease of the central nervous system (CNS) (1). The clinical manifestations of MS are diverse, and the core diagnostic points are neurological deficits disseminated in time and space. The diagnosis of MS is challenging, and it should be prudent to differentiate it from other diseases with similar clinical manifestations (2, 3), especially in other inflammatory demyelinating diseases, such as neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Therefore, MS-related biomarkers have become the focus of ongoing research. Although in recent years many diagnostic biomarkers have been reported to be related to MS, few of them have clinical applicability and reliability (4, 5). The presence of immunoglobulin G (IgG) oligoclonal band (OCB) in cerebrospinal fluid (CSF) indicates intrathecal synthesis of immunoglobulin in response to chronic inflammation in CNS (6, 7). CSF-OCB was found in MS patients in the 1960s (8). Since then, it was confirmed as an established biomarker in diagnosing MS and is widely used in the diagnosis of MS globally (9–14).


In the 2017 McDonald diagnostic criteria of MS, OCB is included and can be used as a substitution for dissemination in time (15), which promotes the early diagnosis of MS in patients with the clinically isolated syndrome (CIS) (13, 16, 17). However, the expert panel emphasized that this criteria should be used prudently in Asian patients (15), because of the higher prevalence of non-MS demyelinating diseases in Asia and some of these patients also have CSF-OCB but with short segmental spinal lesions and atypical cerebral lesions. Due to the more important role of CSF-OCB in the diagnosis of MS, Chinese scholars recognized the lack of nationwide data on CSF-OCB in Chinese MS patients might lead to under or over-diagnosis of MS. CSF-OCB was reported in over 85% of MS patients in Europe and the United States (14, 18, 19). However, the prevalence of CSF-OCB in Chinese MS patients was reported as about 30~70% by several single centers (17, 20–23), and was lower than that reported in Western countries. In China, MS was defined as a rare disease (24) with an estimated prevalence of 1~5 per 100,000 (25). Nevertheless, due to the large population in China, the total number of MS patients in China is still large. Till now there are no nationwide data on CSF-OCB positivity and its diagnostic performance in Chinese MS patients.


Using different testing methods of CSF-OCB in different regional studies was previously presumed as the difference in reported OCB positivity in Chinese MS patients and the difference from that reported in Western countries. China is a vast country, hence there might be differences in regional CSF-OCB prevalence due to differences in latitude and altitude. There are also different backgrounds in culture and conventions in different regions of China. Therefore, experts in 12 regional referring MS centers in mainland of China formed the Multiple Sclerosis Collaborative Research Group in 2019 and started the project “CNS-OCB, China National Study for Oligo-Clonal Band”in 2020. We first developed a consensus standard operation procedure (SOP) with an isoelectric focusing system and validated the inter-laboratory agreement (26). With this SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients. Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients.







Methods






Patients


All patients included in this study were diagnosed with MS or non-MS diseases in the recruiting centers from May 2020 to May 2022 (ChiCTR2000040363). This study was approved by the Ethics Committee of Shanghai Huashan Hospital and all other participating centers. The study was conducted according to the principles of the Declaration of Helsinki. All patients have signed the informed consent and agreed with sample collection and data publication. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used. The data was collected at all centers with a structured database issued by a cooperation project (“CNS-OCB, China National Study for Oligo-Clonal Band”) from 2019, and acquired from the database of each center according to the inclusion and exclusion criteria.


In this study, the 2010 McDonald criteria (27) was required to be used for MS diagnosis, and a total of 525 MS patients were consecutively recruited and met the below inclusive criteria: (1) Chinese origin; (2) 14 to 65 years old; (3) two experienced neurologists in each center confirmed the diagnosis of MS independently from the collected CRF in reference to the original medical record when needed; (4) data on demography, CSF test, MRI examination, disease duration, numbers of relapse, annualized relapse rate (ARR), Expanded Disability Status Scale (EDSS), concomitant autoantibodies of or clinical diagnosis of other autoimmune diseases were available. 42 cases were excluded for the following reasons: 9 cases due to concurrent malignant tumors, 27 cases due to meeting the 2017 McDonald criteria but not the 2010 McDonald criteria, and 6 repeated-entry cases from different regional referring neurology centers. The remaining 483 patients were analyzed (
Figure 1
). The concomitant connective tissue disease (CTD) or autoimmune thyroid disease (AITD) was diagnosed according to relevant diagnostic criteria by consulting rheumatologists or endocrinologists. The number of attacks during the entire disease duration and the EDSS were recorded at the time of CSF collection.





Figure 1 | 
Case-screening flowchart. MS, multiple sclerosis; NID, neuro-inflammatory diseases; NIND: neurological non-inflammatory diseases.






CSF data of 880 consecutively recruited patients with the final diagnosis of other diseases in the 12 centers were collected during the same period, and used as the control group in the evaluation of the diagnostic performance of CSF-OCB in MS. All included patients were: (1) Chinese origin; (2) age of 14 to 65 years; (3) no MS history and two experienced neurologists excluded the diagnosis of MS when differential diagnosis presented; (4) data on demography and CSF-OCB were available. The 880 patients with non-MS diseases were divided into 2 categories: (1) neuro-inflammatory diseases (NID, n=595), including NMOSD (280 cases), MOGAD (45 cases), acute disseminated encephalomyelitis (ADEM) (15 cases), Guillain-Barré syndrome (127 cases) and autoimmune encephalitis (128 cases); (2)non-inflammatory neurological diseases (NIND, n=285), including primary headaches (56 cases), idiopathic epilepsy (20 cases), cerebrovascular diseases (79 cases), dementia (17 cases), motor neuron disease (23 cases), parkinsonism (6 cases), multiple system atrophy (6 cases), spinal vascular disease (7 cases), central nervous system involvement related to acute leukemia (10 cases), somatization disorder (7 cases), metabolic neuropathy (34 cases), hereditary neuropathy (14 cases), normal pressure hydrocephalus (4 cases) and peripheral vertigo (2 cases).







Evaluation of the blood-CSF barrier and intrathecal IgG synthesis


The concentrations of IgG and albumin in serum and CSF were determined by the turbidimetric scattering method. The BCB permeability was assessed using CSF/serum albumin quotient: QAlb = CSF-Alb [mg/l]/serum-Alb [g/l]. Increased BCB permeability is defined as QAlb>4+ (age/15). The IgG index, calculated as (CSF-IgG/serum-IgG)/(CSF-Alb/serum-Alb), is a measure of intrathecal IgG synthesis. An IgG index below 0.7 is considered normal. Tourtellotte IgG synthesis rate (IgG-SR), calculated as [(CSF IgG- serum IgG/369)- (CSF albumin- serum albumin/230) ×(serum IgG/serum albumin)]× 0.43 × 5, is an approach to determine intrathecal IgG synthesis with adjusting of BCB permeability. An IgG-SR below 3.3 mg/24 hours is considered normal (28, 29).







OCB detection


According to the Isoelectric Focusing Electrophoresis (IEF) SOP for the detection of CSF-OCB (26, 30), the detection was performed with Sebia HYDRASYS 2 Isofocusing system PN1211 (France) according to the manufacturer’s instructions for the evaluation of IgG OCB. Briefly, CSF and serum samples were run in parallel at a concentration of 10-20 mg/L. After electrophoresis, the gel was incubated with peroxidase-labeled anti-IgG antibodies, and the bands were displayed using TTF1/2 chromogenic agents. Two inspectors independently interpreted the electrophoresis results according to the key points of interpretation, including the presence, number, and patterns of bands in the serum and CSF.


The electrophoresis results were classified into 5 main OCB types. Type I: no bands in both serum and CSF; Type II: ≥ 2 bands in CSF and no band in serum; Type III: additional bands in CSF despite of bands in serum; Type IV: identical bands in both serum and CSF; Type V: twin bands with regular and periodic spacing in both serum and CSF. CSF-OCB positivity was defined as either type II or III bands (29).







Statistical analysis


Patient characters were presented as numbers (percentages), mean ± standard deviation (SD), or median (interquartile range, IQR). Pearson χ2 test and Fisher’s exact test, as well as Student’s T test or Mann-Whitney U test, were used for comparison between OCB-positive and OCB-negative groups.


The diagnostic performance of OCB positivity was evaluated as (15):


	
Accuracy: [(TP+TN)/(TP+TN+FP+FN)]


	
Sensitivity: [TP/(TP+FN)]


	
Specificity: [TN/(TN+FP)]


	
Positive Predictive Value (PPV): [TP/(TP+FP)]


	
Negative Predictive Value (NPV): [TN/(TN+FN)]


	
The likelihood ratio for positive test result (PLR): sensitivity/(1-specificity)


	
The likelihood ratio for negative test result (NLR): (1-sensitivity)/specificity





True positive (TP) was defined as MS according to McDonald 2010 criteria and positive OCB, true negative (TN) was defined as non-MS and negative OCB, false positive (FP) was defined as non-MS but positive OCB, and false negative (FN) was defined as MS but negative OCB.


A two-tailed p < 0.05 was considered statistically significant. All statistical analysis was performed using SPSS 26.0 software (IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp).








Results






General characteristics of patients with MS or other CNS diseases


The general characteristics of patients with MS were shown in 
Table 1
. The mean age of 483 MS patients was 33.63 ± 10.58 years old. Females accounted for 63.2% of overall patients (female/male=2:1). 369 (76.4%) MS patients were OCB-positive (344 with type II, and 25 with type III), and 114 (23.6%) MS patients were OCB-negative (112 with type I, and 2 with type IV) (
Table 1
).



Table 1 | 
The clinical characteristics of MS patients with different CSF-OCB.






880 non-MS patients included 595 NID patients and 285 NIND patients. The mean age was 42.10 ± 16.71 years in NID patients and 45.53 ± 18.21 years in NIND patients. The female/male ratio was 1.2:1 in NID patients and 0.8:1 in NIND patients. 109 NID patients (18.3%) were OCB-positive (102 with type II, and 7 with type III), and 6 NIND patients (2.1%) were OCB-positive (5 with type II, and 1 with type III).


The patients with MS had higher prevalence of CSF-OCB than those with non-MS (76.4% vs 13.1%, P<0.001). In comparison with the NIND, NID patients had more percentage of positive CSF-OCB(18.3% vs 2.1%, P<0.001), but had less percentage of positive CSF-OCB when compared with MS (18.3% vs 76.4%, P<0.001).







Diagnostic performance of CSF-OCB for differentiating MS from other CNS diseases


The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded an accuracy of 83%, a sensitivity of 76%, a specificity of 87%, a PPV of 76%, a NPV of 87%, a PLR of 5.85, and a NLR of 0.27. The diagnostic performance in differentiating MS from NID patients showed 79%, 76%, 82%, 77%, 81%, 4.17, and 0.29, respectively. The diagnostic performance in differentiating MS from NIND patients showed 84%, 76%, 98%, 98%, 71%, 36.29, and 0.24, respectively (
Table 2
).



Table 2 | 
Diagnostic value of CSF-OCB between MS and non-MS.






Moreover, considering that in most clinical cases, it is mainly CNS inflammatory demyelinating diseases (CIDD) that needs to be carefully distinguished from MS, we extracted data on the OCB status of the patients with CIDD (including NMOSD, MOGAD, ADEM) and compared it with MS patients, the diagnostic performance in differentiating MS from CIDD patients showed an accuracy of 77%, a sensitivity of 76%, a specificity of 79%, a PPV of 86%, a NPV of 66%, a PLR of 3.64, and a NLR of 0.30 (
Table 2
).







Association between clinical characteristics and CSF-OCB positivity


The included MS patients were from 25 provinces and 4 cities (Beijing, Shanghai, Guangzhou, and Chongqing) (
Figure 2
). Based on the characteristics of the geographical condition and human geography in China, they were divided into 7 regions, including Northeast (Heilongjiang, Jilin, and Liaoning), North (Beijing, Tianjin, Shanxi, Hebei, and Inner Mongolia), East (Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong and Fujian), Central (Henan, Hunan, and Hubei), South (Guangdong and Guangxi), Southwest (Chongqing, Sichuan, Guizhou, and Yunnan), and Northwest (Shanxi, Gansu, Qinghai, Ningxia, and Xinjiang). The prevalence of CSF-OCB was around 60% in MS patients originating in the East and South regions and more than 80% in the other regions. The provinces and cities were also classified into low latitude (20°-30°N), middle latitude (31°-40°N), and high latitude (41°-50°N) regions (
Figure 2
). The prevalence of CSF-OCB in MS patients in these regions was 68.1% (81/119), 77.0% (217/282), and 86.6% (71/82), significantly higher in high-latitude regions (P=0.016) (
Table 3
). They were also classified into low-altitude (<500m) and high-altitude (>1000m) regions (
Figure 2
). The prevalence of CSF-OCB in MS patients at high altitudes (82.63%, 138/167) was significantly higher than those at low altitudes (73.1%, 231/316) (P=0.025) (
Table 3
).





Figure 2 | 
Geographical distribution of participating neurology centers. BD, Peking University First Hospital; BJ, Beijing Hospital; HS, Huashan Hospital affiliated to Fudan University; HX, West China Hospital of Sichuan University; JD, The First Hospital of Jilin University; SY, The First Affiliated Hospital of Soochow University; TZ; Tianjin Medical University General Hospital; XJ, People’s Hospital of Xinjiang Uygur Autonomous Region; XW, Xuanwu Hospital, Capital Medical University; XY, Xiangya Hospital of Central South University; ZD, The First Affiliated Hospital of Zhengzhou University; ZS, The Third Affiliated Hospital of Sun Yat-sen University. All patients were recruited from the 12 neurology centers in China and originated from 25 provinces and Beijing, Shanghai, Guangzhou, Chongqing (except Tibet, Hainan, Hong Kong, Macau, and Taiwan) spanning 20° and 50° North Latitude (20°-50°N). The altitude of China decreases from west to east and is commonly divided into 3 subregions: < 500m (east of green line), 1000-2000m (between green and blue line), and >4000m (southwest of blue line).







Table 3 | 
Geographical distribution of CSF-OCB positivity.






As shown in 
Table 1
, there were no differences about age and gender between OCB positive and negative patients (P=0.129, P=0.184). Time from symptom onset to diagnosis was significantly shorter in OCB-positive patients than that in OCB-negative patients (13.2 months vs. 23.7 months, P=0.020). There were fewer patients with concomitant autoimmune diseases in the OCB-positive patients (4.3%, 16/369) than in the OCB-negative patients (13.2%, 15/114) (P=0.001). No significant differences were observed among OCB status and disease duration, the number of attacks, ARR and EDSS (P=0.499, P=0.824, P=0.907, P=0.382) (
Table 1
).







The association between CSF-OCB and MRI features


The attacks of MS affect various parts of the CNS, in this study T2 weighted MRI lesions in different locations of CNS were compared between OCB-positive and negative patients. More OCB-positive patients have periventricular lesions than OCB-negative patients (93.6% vs 86.5%, P= 0.017) (
Table 4
).



Table 4 | 
The CSF-OCB and MRI lesions of MS patients.











The association between CSF-OCB and CSF parameters


The mean level of CSF protein was lower in OCB-positive patients than that in OCB-negative patients (340.00 mg/L vs 370.00 mg/L, P<0.001). Less OCB-positive MS patients had elevated QAlb in comparison with OCB-negative MS patients (16.0%, 37/231 vs 29.3%, 22/75, P=0.011). The proportions of MS patients with increased IgG index and abnormal IgG-SR were greater in OCB-positive patients than those in OCB-negative patients (69.8%, 215/308 vs 33.7%, 32/95, P<0.001; 69.3%, 212/306 vs 38.5%, 37/96, P<0.001, respectively).








Discussion


In our study, the enrolled MS patients originated from 25 provinces and 4 cities, covering most regions in mainland of China, which depicted a representative nationwide portrait of Chinese MS patients, and provided insight into the clinical and diagnostic value of CSF-OCB in Chinese MS patients. As we know, this is the first report about nationwide data on CSF-OCB positivity and its diagnostic performance in Chinese MS patients, especially in the virtue of common SOP.


We adopted the 2010 McDonald Criteria because it did not need the information of CSF-OCB, and had fairly good sensitivity for diagnosing MS in CIS patients (27). Moreover, the prevalence of CSF-OCB is easily compared with earlier researchers. Importantly, this would avoid bias from the incorporation of OCB in diagnostic studies because the 2017 McDonald criteria and other diagnostic criteria all incorporate OCB as supporting conditions (15).


OCB suggests intrathecally synthesized immunoglobulin in response to B cell activation as a result of CNS inflammation (12). It is not only detected in MS but also in other neurological disease (19). Several previous reports had shown that CSF-OCB had a high specificity for diagnosing MS. In these articles, MS was often compared to healthy individuals or patients with non-neurological inflammatory diseases (12, 30–32). However, A meta-analysis had shown that when patients with neurological inflammatory diseases were used as the control group, the specificity of CSF-OCB for diagnosing MS would reduce from 94% to 61% (32). These suggested that the differences in the control group used in research could greatly affect the evaluation of the specificity of CSF-OCB in diagnosing MS, and was one of the reasons for the significant differences about specificity reported in various studies. In clinical practice, the differential diagnosis between MS and neurological inflammatory diseases is crucial. In this study, 18.3% of patients in the NID were CSF-OCB positive, which is significantly higher than those in the NIND. Therefore, we included NID and NIND patients as the controls, and found that when NIND was used as the control, the specificity of CSF-OCB for diagnosing MS could reach 98%, while when NID was used as the control, the specificity dropped to 77%.


In clinical practice, it is crucial for MS to be distinguished from CIDD. The significant difference in OCB prevalence between MS and CIDD (76.4% vs 21.0%) shown in this study (diagnostic spectivity 79%) suggests that negative CSF-OCB could be a “red flag” for the diagnosis of MS. When some patients with central demyelinating disease have clinical and/or imaging manifestations that are very similar to MS, and may even be diagnosed as MS according to MS diagnostic criteria at a certain time point, their negative OCB results need to be constantly reminded to doctors during long-term follow-up to pay attention to whether changes in the patient’s clinical and imaging manifestations that were inconsistent with MS, so as to timely revise the diagnosis. Moreover, the time from the onset of disease to clinical diagnosis in our cohort was almost one-year earlier in OCB-positive patients than that in OCB-negative patients, supporting that OCB detection also facilitates early MS diagnosis for Chinese patients with MS.


In previous studies, Zheng et al. reported that the OCB positive rate was 62.5% in Zhejiang, a province of East China (17). Lu et al. have revealed that the OCB positive rate was 59.8% in Guangdong Province and Hong Kong SAR, two regions belonging to South China (20). In the survey of MS patients in north China, GU et al. and Chen et al. reported that the positive rates of OCB were 69.3% and 72.7% respectively (33, 34). According to China’s seven commonly used geographical divisions, China’s territory can be divided into North, South, Central, East, Northeast, Northwest, and Southwest. These 7 regions have obvious differences in topography, climate, vegetation types, production modes, habits, customs, and culture. In this study, the overall OCB positivity was 76.4% in Chinese patients with MS, and was about 60% in East and South China which was consistent with the results reported by Zheng et al. and Lu et al (17, 20), and was about 90% in North China, slightly higher than the results reported by GU et al. and Chen et al (33, 34). Thus, the inconsistencies of the previous reports were well explained in the analysis considering the geographical distribution difference of MS patients as the dominant factor.


Our results also showed that the geographical distribution of high OCB prevalence demonstrated a high-latitude feature. Lechner-Scott et al. have prospectively collected and analyzed CSF-OCB data from MSBase, a large international, multi-center database, and found that the frequency of OCB increased with latitude (35). In Lechner-Scott’s paper, the OCB positive rate was 85~100% in the regions located North of 40°N, which is similar to the latitudes in our study. The OCB positive rate was 50~90% in the 30°~40°N regions, and again, this is similar to the latitudes in this study. As to the regions in 20°~30°N, the OCB positive was 35% and 59%, which is lower than the same latitude in our investigation. In another report on the positive OCB and/or increased IgG index and latitude from Japan (36), CSF-OCB prevalence of MS in the northern region(42°-45°N) was higher than that in the southern region (33°-35°N), the average positive rate of the OCB and/or increased IgG index was 58.7%, and was similar to that reported in this study in the eastern coastal region of China (61.5%), which geographical characteristics are similar to those of Japan on the whole. Latitudinally the OCB prevalence in China was comparable to Europe and the United States (18, 35, 37), especially in high-latitudinal regions.


As to the altitude, only a few papers have revealed the relationship between MS morbidity and altitude (38, 39), but no publications had reported the relationship between CSF-OCB positivity and altitude. As shown in 
Table 3
, we noticed that the OCB prevalence of patients observed in this study showed a trend related to altitude, that was, the OCB prevalence of patients in high-altitude areas was higher than that in low-altitude areas. As we know, this is the first report about the relationship between CSF-OCB prevalence and altitude.


People living in high-latitude and high-altitude areas of China, as a whole, tend to have a diet dominated by rice and pasta, with less consumption of vegetables, fruits, and fish, and have lower levels of vitamin D (40, 41). They also have specific human leukocyte antigen (HLA) enabling them to better adapt to high-altitude and high-latitude environments (42, 43).It has been confirmed that the risk of MS was associated with various geographic, environmental, ethnic, and lifestyle factors, especially genetic susceptibility(HLA), diet customs and vitamin D levels, which might promote the occurrence of MS by the influence on the status or function of immune cells, and logically the state of OCB produced by plasma cells in CNS (36, 44–48). However, the relationship between these factors and the productivity of OCB in China still lacks strong validation, and further research is needed to verify.


There were many studies on the correlation between OCB positivity and long-term MS activity and prognosis, but the results were controversial (49). Some studies reported that OCB positivity correlated with disease activity, such as ARR, and EDSS (50, 51), but in some other studies, the opposite conclusion was reported (20, 52). In this study, no significant differences were observed among OCB status and EDSS, ARR, disease course, and the number of relapses. Because this study was only a cross-sectional observation study, the correlation between OCB positivity and long-term MS activity and prognosis in Chinese people needs further study.


Both MRI and CSF-OCB are key indicators in the diagnostic criteria of MS (15). In this study, the lesion locations of MS were summarized as optical nerve, cortical/juxtacortical, periventricular, brain stem, cerebellum, cervical spinal cord, thoracic spinal cord, and lumbar spinal cord. Zhao et al. reported that in comparison with the OCB-negative MS patients, the OCB-positive group had a higher proportion of cerebellar lesions (53); Huttner et al. Suggested that MRI lesions and OCB status were independent of each other (54). However, we found that patients with positive OCB had more periventricular lesions than patients with negative OCB, while there was no significant difference in the proportion of patients with other lesions.


The BCB is an important physiological natural barrier of the CNS and peripheral environment, which can prevent the entry of various proteins and chemicals, including immunoglobulin. The presence of OCB in CSF indicates the existence of chronic persistent inflammation in CNS, suggesting the production of immunoglobulin in CNS, rather than that caused by the peripheral immunoglobulin entering CNS (55). In this study, BCB disruption was only observed in a small proportion (~20%) of MS patients in which most of the patients were OCB negative, and was negatively correlated to OCB positivity, as with previous studies (12, 56, 57).


IgG index and IgG-SR are important parameters of CSF analysis about CNS immune response. Like OCB, they are also designed to evaluate the presence of immunoglobulin synthesis and inflammatory processes in CNS and are widely used in the clinical diagnosis of MS (10, 29). Several studies have reported that an IgG index>0.7 was closely correlated with OCB positivity and was a prognostic marker of early disease activity (58, 59).In agreement with these reports, this study also showed that the proportions of MS patients with increased IgG index and abnormal IgG-SR were greater in OCB-positive patients than those in OCB-negative patients (28, 58–60).


The strength of this study is based on the following: 1. The sample size is large and the SOP adopted in CSF-OCB testing was previously validated. 2. The twelve regional referring MS centers cover the difference in latitude and altitude and represent the typical culture and convention in China. 3. Accurate diagnosis of MS and non-MS demyelinating diseases was guaranteed with the same CRF and we aimed to evaluate the diagnostic performance of CSF-OCB in MS patients, the possibility of misclassification of MS and non-MS demyelinating diseases was tiny based on the consensus from regional and nationwide experts on doubtful patients. 4. Using the 2010 Mcdonald criteria, which is based only with clinical and radiological data, avoiding the inclusion bias by using MS patients diagnosed with criteria that adopt the role of CSF-OCB.


There were some limitations in this study: 1. Only cross-sectional EDSS was collected, and the relapse risk was analyzed with retrospective data. 2. Long-term changes in CSF-OCB status in MS patients and non-MS demyelinating disease patients were not addressed. 3. The association between CSF-OCB status and some radiological features of MS could not be analyzed due to the cross-sectional design and only some retrospective data were acquired by reviewing the case records. Nevertheless, these are not the main focus of this study. We are collecting relevant data in a prospective cohort among all participating centers.


In conclusion, this study reported, for the first time, that the nationwide prevalence of CSF-OCB was 76.4% and conducive to early diagnosis in Chinese patients with MS, and demonstrated a good performance in differentiating MS from other CNS diseases, suggesting that CSF-OCB is a valuable clinical indicator for the diagnosis of MS in Chinese patients. In addition, the CSF-OCB prevalence showed a correlation with high latitude and altitude, reflecting the characteristics of regional distribution of OCB prevalence in Chinese patients with MS.
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Objective: Compare the levels of plasma neurofilament light (NfL) in patients with multiple sclerosis (MS) at acute and remission stages and healthy individuals to explore the role of plasma NfL in monitoring the activity and severity of the disease and predicting disease prognosis.

Methods: Information on healthy individuals and patients with MS who visited the outpatient and inpatient departments of Inner Mongolia Medical University Affiliated Hospital from October 2020 to August 2022 was collected. EDSS assessment and plain scan+enhanced magnetic resonance imaging (MRI). Plasma Nfl levels were measured using Simoa. Moreover, the relationship between the level of Nlf and the disease status of patients with MS was analyzed.

Results: Through the self-comparison of the plasma NfL levels of MS patients in the acute and remission stages, it was noted that the levels in the acute stage are higher than those in the remission stage (p < 0.001). Among the plasma NfL levels of healthy individuals and MS patients in the acute and remission stages, there were statistically significant differences (p < 0.001). Furthermore, the plasma NfL level did not correlate with age or course of disease (p = 0.614 and p = 0.058), whereas it correlated with EDSS score, the number of MRI T2 subtentorial and spinal cord lesions, and the number of MRI enhanced lesions (r = 0.789, p < 0.001; r = 0.846, p < 0.001; r = 0431, p = 0.005, respectively).

Conclusion: Combining the level of plasma NfL with clinical and MRI estimations will be instrumental in monitoring condition changes and optimizing treatments. The level of plasma NfL is related to the activity and severity of MS, and it is expected to become a new biomarker for assessing the activity and disease status of MS.

KEYWORDS
 multiple sclerosis, Neurofilament light, magnetic resonance imaging, activity, biomarkers


1 Introduction

Multiple sclerosis (MS) is a chronic degenerative autoimmune disease of the central nervous system (CNS), with inflammation, demyelination, and axis cylinder loss occurring in the early stage (1). Differential involvements of motor, sensory, visual, and autonomic nervous systems can cause a series of symptoms and signs, such as limb weakness, sensory abnormalities, impaired vision, and dystaxia (2), which are the main etiologies of disability among young people globally, placing a significant burden on the social economy (3). The Global Burden of Disease (GBD) research team of the Institute of Health Metrics and Evaluation of the University of Washington discovered that there were approximately 2.3 million MS cases globally, with an increase of 10.4% in morbidity since 1990. Between 1990 and 2016, the prevalence rates in Chinese Mainland and Taiwan rose by 45.6 and 49.5%, respectively. Approximately three-quarters of the global MS patients are women (4). In 2018, China marked MS as a rare disease. In 2020, MS incidence rates in China were released for the first time: 0.235/100,000 per year, 0.055/100,000 in children, and 0.288/100,000 in adults. The geographical distribution of MS shows an east–west altitude gradient. Residents in high latitude and altitude areas tend to develop MS. The incidence rate in Inner Mongolia is more than 0.4/100,000, ranking first in China (5).

MS has multiple temporal and spatial clinical features. At present, the 2017 McDonald criteria is recommended, and the diagnosis mainly depends on clinical manifestations, cerebrospinal fluid and MRI (6). The abovementioned indicators are also applied in prognostic evaluation. However, assessing the prognoses of patients with MS only based on clinical and imaging evidence is hysteretic. Therefore, clinicians need new highly specific and sensitive biomarkers that can monitor disease activity and severity and indicate a prognosis to comprehensively understand MS, implement precise and personalized management of patients with feasible methods as much as possible, improve prognosis, raise patients’ quality of life, and lighten the economic burden on patients.

Neurofilament (NF) is a specific component of the cytoskeleton, primarily maintaining the elasticity and integrity of nerve fibers and ensuring their functions. NF includes Neurofilament light (NfL), Neurofilament medium (NfM), Neurofilament heavy (NfH), α-endonuclease, and type-III peripherin. When CNS axons are injured, the NF released into the cerebrospinal fluid indicates axonal injury and neuronal death (7). Under normal physiological conditions, low concentrations of NfL are released from axons into the cerebrospinal fluid and enter the bloodstream through the blood–brain barrier (BBB) at low concentrations. The release of NfL gradually increases with age (8). If affect neuronal axonal damage, the release process will be accelerated, which is the basis for using NfL as a marker for axonal damage (9, 10). Williams et al. (11) found a strong correlation between NfL and disease activity. As an ongoing quantitative measurement of axonal injury, the increase in NfL may be conducive to the prognosis of neurological diseases (12).

When the CNS axonal injury occurs, NfL is first released into the cerebrospinal fluid, and a small portion enters the peripheral blood through the BBB. The content of NfL in the peripheral blood is 40 times lower than that in the cerebrospinal fluid. In the past, NfL detection was mainly based on cerebrospinal fluid measurement using the ELISA method. However, the traditional ELISA method usually fails to detect it. The advanced detection method, Simoa, has a sensitivity 1000 times higher than traditional ELISA, making it possible to plasma NfL. Moreover, NfL sampling in the peripheral blood is easy and convenient to store, allowing for testing (13). It has become a trend of replacing cerebrospinal fluid NfL with plasma NfL.

Relapsing remitting multiple sclerosis (RRMS) is a recurrent process. Nerve fiber damage and axonal loss are the main mechanisms causing neurological disability. Therefore, simple and direct multimode methods are required to monitor disease changes and perform follow-up. NfL may play a specific role in monitoring the activity, severity, treatment efficacy, and prognosis of MS as a marker of axonal injury.



2 Experimental materials and methods


2.1 Research subjects

This study included 42 patients with MS who visited the outpatient and inpatient departments of Inner Mongolia Medical University Affiliated Hospital from October 2020 to August 2022, including 25 patients in the acute stage and 17 patients in the remission stage. All patients with MS met the 2017 edition of the McDonald’s criteria and were classified as relapsing–remitting. As healthy controls, 26 healthy individuals were included, aged from 20 to 60 years. All enrolled patients signed an informed consent form, and all research procedures were approved by the Ethics Committee (Inner Mongolia Medical University Affiliated Hospital, NO. WZ2023056).

The enrolled 25 acute patients were treated with steroid pulse or intravenous immunoglobulin therapy and improved. After discharge, 20 patients were followed up within 6 months. The patients without new clinical symptoms or enhanced MRI lesions were classified as in the remission stage and underwent plasma NfL testing. Those who recurred or had enhanced lesions were excluded. For the present study, the acute stage was regarded as the current event with pathological changes in the CNS acute inflammatory demyelination. It was found according to the subjective description of patients or objective examination and lasted more than 24 h and less than 1 month. The remission stage was regarded as no recurrence within 6 months before sampling, no progression in EDSS assessment, and no new lesions found on MRI scans. Five cases dropped out of the study: one who went to study abroad, two who changed their residences, and two who were lost due to the Covid-19 pandemic (Figure 1).

[image: Figure 1]

FIGURE 1
 Flowchart.



2.1.1 Inclusion criteria




1. The seizure type and clinical symptoms of MS complied with the revised McDonald criteria in 2017. After a detailed inquiry of medical history, physical examination, and head MRI examination, the patient was diagnosed with MS;

2. Aged 18–60 years;

3. No recurrence within 6 months before sampling, no progression in EDSS assessment, and no new lesions on MRI scans;

4. Those who were able to complete survey scales and MRI;

5. The patient and their family agreed to participate in this study and signed an informed consent form.



2.1.2 Exclusion criteria




1. Those with clear liver and kidney function damage, hypertension, diabetes, and heart disease;

2. Combined with fever, elevated hemogram, and other infectious symptoms;

3. Concomitant cerebrovascular disease and tumor;

4. Concomitant peripheral neuropathy, motor neuron disease, and Parkinson’s disease;

5. Concomitant diseases that affect information collection, such as dementia and mental illness, and those who were not interested in participating in this study.




2.2 Experimental methods

MS patients were required to complete their basic information, including age, gender, body mass index (BMI), and course of disease, and plasma NfL testing were carried out. Patients who were followed up within 6 months to 1 year also underwent the abovementioned examinations. Healthy individuals improved their basic information and underwent the plasma NfL testing.


2.2.1 EDSS evaluation and imaging examination

On the day of blood collection, two professional neurologists conducted EDSS evaluations on all patients with MS, and scores were given. The scoring criteria were strictly followed to decline errors. All MS patients underwent a plain scan and enhanced 3.0 T MRI on the head, cervical, and thoracic spinal cord. With the assistance of professional neurologists and imaging neurologists, the presence and the number of enhanced lesions were checked, as well as the number of T2 subtentorial and spinal cord lesions (Figure 2).

[image: Figure 2]

FIGURE 2
 Lesions on MRI.




2.2.2 Plasma NfL detection

During blood collection, 5 mL of fasting peripheral blood was extracted from all participants using EDTA tubes. The blood was centrifuged at 1000 rpm for 10 min, and then the upper layer was extracted. The plasma sample was transferred to a 96-well plate, shaking magnetic beads for at least 30 s. The machine was turned on to preheat and entered the NfL detection program. The Simoa platform was used for batch or individual testing. Finally, a report of the results was generated and exported in PDF format for subsequent analysis (Figure 3).

[image: Figure 3]

FIGURE 3
 Correlation between EDSS score and the plasma NfL level.





2.3 Statistical methods

All data were analyzed using SPSS26.0. Normally distributed measurement data were described as mean ± standard deviation. A T-test was used for two groups, and analysis of variance was used for multiple groups. The measurement data of non-normal distribution were represented by median and interquartile intervals, and non-parametric tests were used: K-W test or Wilcoxon test. The enumeration data were expressed as composition ratio, and the X2 test was used for comparison between groups. Spearman correlation analysis was used. The significance level was α = 0.05, with p < 0.05 considered as statistically significant (Figure 4).

[image: Figure 4]

FIGURE 4
 Correlation between the number of infratentorial and spinal cord lesions on MRI and the plasma NfL level.





3 Results


3.1 Basic information

This study screened and incorporated 42 patients with RRMS, aged between 20 and 60 years, with an average age of 40 years. As controls, 26 healthy individuals were included. The basic information on patients with MS and healthy individuals is shown in Table 1. There was no statistically significant difference in age, sex, and BMI between the two groups (p > 0.05). The results were comparable.



TABLE 1 Basic information of patients with MS and healthy individuals.
[image: Table1]

Statistical description and analysis were conducted on the course of the disease, EDSS score, number of infratentorial and spinal cord lesions on MRI, and number of enhanced MRI lesions of the two groups. The results are shown in Table 2. Between the two groups, there was no statistically significant difference in the course of disease (p = 0.523), whereas the EDSS score and number of enhanced lesions on MRI had statistical significance (p < 0.001) and the number of MRI T2 infratentorial and spinal cord lesions also had statistical significance (p = 0.037).



TABLE 2 Comparison of clinical data of patients with MS.
[image: Table2]



3.2 Plasma NfL comparison between MS patients in acute and remission stages and healthy individuals

To further analyze plasma NfL levels of different stages of MS and healthy individuals, the study subjects were divided into three groups for intergroup comparison. The differences in plasma NfL levels were statistically significant (Table 3).



TABLE 3 Comparison of plasma NfL levels between MS acute and remission stages and healthy individuals.
[image: Table3]



3.3 Plasma NfL comparison between MS patients in acute and remission stages

A self-control study was conducted on the changes in the plasma NfL levels of the acute and remission stages of 20 MS patients who were followed up and re-examined after treatment in the acute stage. The results are shown in Table 4. There was statistical significance in plasma NfL levels between the acute and remission stages of patients with MS (p < 0.001).



TABLE 4 Comparison of plasma NfL levels between acute and remission stages in patients with MS.
[image: Table4]



3.4 Correlation analysis of NfL in MS patients

This study analyzed the correlations between the plasma NfL level and age, course of disease, EDSS score, number of infratentorial and spinal cord lesions on MRI T2, and MRI-enhanced lesions. The results are shown in Table 5. The plasma NfL level is not correlated with age and course of disease (p = 0.614 and p = 0.058). However, it had correlations with EDSS score, the number of infratentorial and spinal cord lesions on MRI T2, and the number of MRI enhanced lesions (r = 0.789, p < 0.001; r = 0.846, p < 0.001; r = 0431, p = 0.005, respectively).



TABLE 5 Correlation analysis of NfL in patients with MS.
[image: Table5]




4 Discussion

MS is a complex heterogeneous disease with unpredictable course and prognosis. In the past few decades, the clinical application of biomarkers in neurodegenerative diseases has gradually increased. Scholars have disclosed that plasma NfL is a promising indicator for axonal injury.

Research on NfL began with cerebrospinal fluid specimens. NfL in the cerebrospinal fluid possesses potential prognostic value in clinical isolation syndrome (CIS) and RRMS and can be a disease activity biomarker (14). Gaetani et al. collected cerebrospinal fluid samples from 32 patients with MS within 30 days after the first demyelination event and followed them up for 3.8 ± 2.5 years. The cerebrospinal fluid NfL was measured using ELISA. In the first demyelination event, patients with subsequent disease activities had higher baseline cerebrospinal fluid NfL values than clinically and radiologically stable patients (15). Scholars outside China have recognized a high correlation between blood and the cerebrospinal fluid NfL level, indicating that blood sampling can replace cerebrospinal fluid collection. Repeated measurement of NfL in the peripheral blood to detect axonal damage may become a new approach for monitoring MS (16). This experiment compared the NfL levels of 20 patients with MS. It was found that the NfL levels of patients in the acute stage were significantly higher than those of patients in the remission stage, with significant differences. The plasma NfL levels in both the acute and remission stages of MS were higher than those in healthy individuals, implying a significant increase in NfL during the acute stage of the disease, further demonstrating that NfL, as a marker of neuronal axonal injury, is always associated with inflammatory activity in MS, and has important significance in monitoring disease activity.

In addition to inflammatory activity, another related aspect of MS pathology is the occurrence of neurodegeneration and progressive disability, which can also be objectively measured using NfL. Research has confirmed that patients with progressive MS have higher NfL levels than age and sex-matched recurrent patients (17). Generally, in contrast with RRMS, patients with progressive MS are more severe, with more functional lesions in the neurological system. A study incorporated 41 patients with CIS, 34 patients with MS, 73 patients with neuromyelitis optica spectrum disease as the patients groups; 40 lumbar puncture patients diagnosed with neurosis and migraine as the normal control groups. The clinical and neuroimaging features of the MS group and cerebrospinal fluid samples from the two groups were collected. An enzyme-linked immunosorbent assay was used to measure the NfL level in the cerebrospinal fluid of patients in each group. The NfL levels in the CSF of CIS, MS, and neuromyelitis optica spectrum disease groups were correlated with EDSS score and MRI gadolinium enhancement. The results manifest that the NfL level in the cerebrospinal fluid is conducive to assessing the severity and possible progression of demyelinating diseases (18). In MS patients, there is a correlation between the plasma NfL level and EDSS score, and the EDSS score is strongly correlated with multiple MRI volume parameters (19). Pauwels et al. conducted a prospective cohort study of 115 MS patients and 30 controls, and disease deterioration was defined as an increase in at least one of three measures (EDSS score, timed 25-foot walk, and 9-hole peg test). They found a significant correlation between the plasma NfL level and disability deterioration (20). Scholars from outside of China have detected the NfL levels of MS patients and conducted long-term follow-ups. Patients with high baseline NfL levels have a significantly high risk of developing EDSS.

The results in this study illustrate a positive correlation between the EDSS score and the plasma NfL level, meaning that the higher the EDSS score, the higher the plasma NfL level, possibly due to two aspects. First, there is persistent chronic inflammation in the CNS of patients with MS. Although active lesions or disability progression was not found in most patients through MRI scans and EDSS scores, this chronic injury can cause continuous axonal damage and release NfL into the cerebrospinal fluid and blood. Second, in the later stage of the disease, the compensatory repair effect of patients diminishes, and the axonal regeneration ability weakens. Therefore, the NfL content in the cerebrospinal fluid and blood of MS is significantly high. It suggests that NfL can be used to some extent for assessing MS severity and is an essential indicator of disability progression in patients.

The diagnosis of MS recurrence primarily relies on MRI gadolinium enhancement and clinical recurrence. Some patients do not have typical clinical manifestations of recurrence, and some patients only present discomfort or limb numbness, making it difficult to determine whether there is a recurrence. Moreover, even false seizures exist in some patients. Enhanced MRI is an objective indicator. However, there still may be omissions due to limitations. The role of NfL in monitoring disease activity and severity is extensively recognized. Some reports have shown a strong correlation between the NfL level and the number of active lesions on MRI. The disease activity caused by active inflammation (new T2 and gadolinium-enhanced lesions) is a critical factor in the elevation of NfL. A prospective cohort study included 58 Canadian and Italian MS patients. In this study, patients with active MS were followed up every 3 months or less for 1 year, including clinical evaluation, MRI scanning, and serum extraction. Quantitative analysis was performed using the Simoa platform. NfL with a high baseline was associated with future recurrence, MRI lesions, compound recurrence-related deterioration, and progression independent of recurrent activity (21). After the acute recurrence of MS, NfL is damaged and released into the cerebrospinal fluid and peripheral blood, consistent with MRI recurrence. In a 2018 prospective study involving 259 patients with MS, it was found that for each enhancement lesion in MS patients, the NfL level increased by 17.8%, and for each new or enlarged T2 high signal lesion, the sNfL level increased by 4.9%. However, it was not correlated with the volume of T2 lesions (22). In this study, the number of MRI-enhanced lesions in patients in the acute stage was higher than that in patients in the remission stage, representing that enhanced lesions are essential for seizure determination. The number of MRI-enhanced lesions was positively correlated with the plasma NfL level. The more MRI-enhanced lesions, the higher the plasma NfL level, indicating that enhanced lesions reflect the activity of inflammation and are related to the severity of axonal injuries. Therefore, an increase in the NfL level may imply the recurrence of the disease.

Recent studies have proven that an increase in NfL during the clinical stage of MS may be an ideal prognostic biomarker for predicting disease progression and guiding treatment decisions. As visual evoked potential (VEP) is increasingly used as a quantitative parameter for myelin sheath in clinical trials, scholars evaluate the correlation between VEP latency and retinal neurodegeneration and prognostic potential in RRMS using optical coherence tomography (OCT). P100 latency can indicate disease prognosis and is correlated with NfL at the baseline (23). NfL levels increase 6 years before the clinical onset of MS, representing that MS may have a prodromal stage that lasts for several years, during which axonal damage has already occurred. Therefore, the main pathogenesis of MS may not be inflammation but neurodegeneration. It can lead to irreversible neurological deficits. This transformation is a key factor in long-term prognosis (24). With the approval of efficient disease modifying therapies (DMTs), some of these drugs have verified effects on neurodegeneration. Therefore, there is an urgent need for reliable biomarkers to identify this transitional stage early and actively intervene in high-risk progressive patients.

MRI is irreplaceable in diagnosing MS, monitoring clinical medication, and evaluating suspected recurrence or disability deterioration (25). MRI is the gold standard for diagnosing patients with MS and the most powerful clinical tool (26). The 2021 European Neurology Annual Conference brought many advancements in iconography. The conference expounded that in patients with MS, massive T2 lesions of large volume, the occurrence of gadolinium-enhanced lesions and spinal cord lesions, whole brain atrophy, and gray matter atrophy were observed, all of which predicted poor prognosis (26). To analyze which lesion sites on MRI were most closely associated with the cerebrospinal fluid NfL level, Adams et al. performed a lumbar puncture, collected the cerebrospinal fluid from 139 patients with MS, and followed 25 of them. The cerebrospinal fluid NfL and MRI relationship was evaluated based on the location and number of lesions. Spearman rank correlation was used to assess the correlations between the cerebrospinal fluid NfL and MRI lesion location, as well as baseline and 1-year follow-up lesion count. The results suggest that the correlations between the baseline cerebrospinal fluid NfL and lesion location and subsequent lesion are general, while the correlation between baseline MRI and the cerebrospinal fluid NfL is strong: periventricular, juxtacortical, infratentorial, and spinal cord injuries (27). It can be seen that there is a weak positive correlation between the cerebrospinal fluid NfL and typical periventricular lesions of MS, a moderate positive correlation between juxtacortical lesions and the cerebrospinal fluid NfL, and a strong positive correlation between the cerebrospinal fluid NfL and infratentorial and spinal cord lesions. This study found in clinical work that MS patients with MRI infratentorial and spinal cord lesions usually had poor prognoses. Therefore, the MRI examination of the head, cervical, and thoracic spinal cord was performed on patients with MS, and the number of T2 lesions was counted. According to rank correlation analysis, there is a correlation between the plasma NfL level and the number of MRI T2 infratentorial and spinal cord lesions. In the 2020 EMotion Forum, experts affirmed the role of plasma NfL in diagnosing MS and its potential for evaluating prognosis (28). This study shows a positive correlation between the number of MRI infratentorial and spinal cord lesions and the plasma NfL level, demonstrating that poor prognosis may exist in MS patients with infratentorial and spinal cord injuries. This study suggests that elevated NfL may be one of the indicators for poor prognosis in patients with infratentorial and spinal cord lesions. However, long-term follow-up is required for further verification.

Significant breakthroughs have been achieved in MS treatment in the past 25 years. As more and more DMT drugs enter the Chinese market, the main problems faced by doctors are deciding who should receive treatment, for how long treatment should be given, and whether to choose high-efficient or low to medium-efficient DMT drugs. These decisions are usually based on treatment tolerance and reasonable expectations for long-term efficacy (29). The plasma NfL level can indicate prognosis and help, to some extent, clinical doctors make optimal choices.

MS is a rare disease in China. The sample size of this study is relatively small. Only patients with MS from the Inner Mongolia Autonomous Region were selected, possibly leading to selection bias. Increasing the sample size and expanding the selection range is necessary in future studies. The present study only followed some patients for 6 months to 1 year. Due to time constraints, long-term follow-up was not conducted. So far, there has been increasing research on liquid-phase biomarkers of MS. Existing studies have demonstrated NfL’s sensitivity to disease activity and status assessment as a biological counterpart for CNS axonal injury, manifesting its potential applicability in MS. Therefore, in the future, whether NfL can be used as a routine examination for MS in clinical diagnosis and treatment still needs to be verified through large-scale longitudinal cohort studies of different populations, more standardized detection methods, time point, and critical value, and the combination with MRI, thus assisting clinic-customized medical practices of MS.
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Background and objectives

Multiple sclerosis (MS) is a chronic, progressive neurological disease characterized by early-stage neuroinflammation, neurodegeneration, and demyelination that involves a spectrum of heterogeneous clinical manifestations in terms of disease course and response to therapy. Even though several disease-modifying therapies (DMTs) are available to prevent MS-related brain damage—acting on the peripheral immune system with an indirect effect on MS lesions—individualizing therapy according to disease characteristics and prognostic factors is still an unmet need. Given that deregulated miRNAs have been proposed as diagnostic tools in neurodegenerative/neuroinflammatory diseases such as MS, we aimed to explore miRNA profiles as potential classifiers of the relapsing–remitting MS (RRMS) patients’ prospects to gain a more effective DMT choice and achieve a preferential drug response.





Methods

A total of 25 adult patients with RRMS were enrolled in a cohort study, according to the latest McDonald criteria before (pre-cladribine, pre-CLA; pre-ocrelizumab, pre-OCRE, time T0) and after high-efficacy DMTs, time T1, 6 months post-CLA (n = 10, 7 F and 3 M, age 39.0 ± 7.5) or post-OCRE (n = 15, 10 F and 5 M, age 40.5 ± 10.4) treatment. A total of 15 age- and sex-matched healthy control subjects (9 F and 6 M, age 36.3 ± 3.0) were also selected. By using Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells (PBMC). miRNA–target networks were obtained by miRTargetLink, and Pearson’s correlation served to estimate the association between miRNAs and outcome clinical features.





Results

First, the miRNA profiles of pre-CLA or pre-OCRE RRMS patients compared to healthy controls identified modulated miRNA patterns (40 and seven miRNAs, respectively). A direct comparison of the two pre-treatment groups at T0 and T1 revealed more pro-inflammatory patterns in the pre-CLA miRNA profiles. Moreover, both DMTs emerged as being capable of reverting some dysregulated miRNAs toward a protective phenotype. Both drug-dependent miRNA profiles and specific miRNAs, such as miR-199a-3p, miR-29b-3p, and miR-151a-3p, emerged as potentially involved in these drug-induced mechanisms. This enabled the selection of miRNAs correlated to clinical features and the related miRNA–mRNA network.





Discussion

These data support the hypothesis of specific deregulated miRNAs as putative biomarkers in RRMS patients’ stratification and DMT drug response.





Keywords: multiple sclerosis, cladribine, ocrelizumab, DMT, biomarker, miRNA, PBMC





Introduction

Multiple sclerosis (MS) is a chronic and progressive autoimmune demyelinating disease that affects the central nervous system (CNS). MS is characterized by a heterogeneous disease course and response to therapy (1–3). It is classified into three main phenotypes depending on the clinical disease course: relapsing–remitting (RRMS), displaying relapses and remission phases, and primary progressive MS characterized by gradual disability progression without acute relapses. Lastly, about 85% of patients initially diagnosed with RRMS shift toward a progressive stage called secondary progressive MS (SPMS) (4). People affected by MS accumulate progressive disability due to chronic inflammation and neurodegeneration which develop early in the disease process and are major drivers of progressive disability. It is generally felt that existing classifications of MS clinical course need improvements as they do not reflect the clinical and biological heterogeneity of the disease (5, 6).

Many disease-modifying therapies (DMTs) are now available to prevent the MS-related CNS damage (7, 8). Based on their efficacy, DMTs are identified as moderately (interferon-β dimethyl fumarate, etc.) and highly effective (ocrelizumab, OCRE; cladribine, CLA; etc.). Two high-efficacy DMTs were selected for the current study: CLA and OCRE. CLA is a synthetic purine analogue that induces apoptosis of B and T lymphocytes by the accumulation of intracellular chloro-deoxyadenosine triphosphate. In addition, it mediates immunomodulation in different immune cell populations. CLA tablets are administered in two short courses 1 year apart and reduce rapidly peripheral lymphocyte levels in patients with MS. Nadir is usually reached at week 9, and after that the lymphocyte counts gradually increase but remain lower than at baseline. OCRE (7, 9) is a humanized anti-CD20 monoclonal antibody which is administered intravenously every 6 months. It depletes CD20+ B cells in the blood to negligible levels after 14 days with a median time to B cell repletion of 72 weeks. Repopulation in CLA-treated patients is faster, with 91% of patients having at least 3% of B lymphocyte in the blood after 24 weeks compared to OCRE-treated patients (with 2% of patients having at least 3% of B lymphocyte after 23 weeks) (10–12). OCRE and CLA may act through mechanisms of action that, although different, could be both more “upstream” in the pathogenetic cascade with respect to others (e.g., they have a preponderant action on B cells, which may harbor an EBV infection which may have an etiologic relevance).

There is a high interindividual heterogeneity in the response patterns to DMTs. Identifying biological markers predictive of treatment response might allow the recognition of non-responders versus responders to drugs (13), enhancing the individualization of this therapeutic approach, respecting the individual patient’s needs, and optimizing healthcare costs. In this context, different miRNAs have been proposed as potential biomarkers of treatment response in neurodegenerative/neuroinflammatory diseases, such as MS (14–16). miRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level, affecting several cellular processes, including inflammation, neurodegeneration, and remyelination by regulating different cellular processes (14). A large part of miRNAs are primate-specific, requiring human rather than murine studies (15). Many miRNAs are dysregulated in MS (16, 17). Specifically, studies have suggested that miRNAs are central in the functioning of T lymphocyte subtypes in MS and that their dysregulation may lead to a variation in the subtype balance (17, 18). Moreover, miRNAs play a regulatory role in maintaining proper B cell selection and activation (19).

Nowadays, the selection of specific DMTs is based on either the patient’s related factors such as disease-specific prognostic factors, comorbidities, risk tolerance, and pregnancy planning or drug-specific features such as efficacy and safety profile, route of administration, and treatment costs (20). Such criteria still need to be refined. The current study aimed to explore the use of miRNA profiles to improve patients’ stratification and potentially aid in treatment selection and efficacy.

Here we first compared two high-efficacy DMTs’ (CLA and OCRE) miRNA profiling in PBMCs from patients with RRMS. Initially, we compared the RRMS patients' miRNA levels to those of a healthy population as control (CTRs). Remarkable differences were highlighted in the miRNA profiles between the two subgroups previously selected for either treatment. The characterization of miRNA profiles before and after treatment, their correlation to clinical features (Frailty Index, FI; Expanded Disability Status Scale, EDSS) and the constitution of a specific miRNA–mRNA-related network allowed us to underpin differences in miRNA profiles under CLA or OCRE treatment and unveil specific miRNAs as potential biomarkers.





Methods




Patients’ selection and clinical evaluation for enrollment

A total of 25 adult patients with RRMS according to the latest McDonald revised criteria at the time of diagnosis (21) and followed at the Center for Multiple Sclerosis (Department of Human Neurosciences, Policlinico Umberto I—Sapienza University of Rome) were enrolled in a cohort study between 2021 and 2022. Furthermore, 15 healthy control subjects (age- and sex-matched) were selected. Furthermore, 10 RRMS patients received the first cycle of CLA tablets (1.75 mg/kg dose given in two treatment weeks of 5 days separated by 1 month), and 15 received the first course of OCRE (two 300-mg infusions at 2 weeks apart). DMTs have been chosen as clinically indicated (22). The patients were clinically tested before treatment initiation (pre-CLA/pre-OCRE – time 0 = T0) and 6 months after treatment (time 1 = T1). Sex, age at disease onset, FI, urinary symptoms, and EDSS were collected after the neurologist’s evaluation (Table 1). FI was calculated as the proportion of patient’s deficits based on a list of 42 binary items (23). To protect sensitive data, anonymous codes were assigned to each participant and preserved for the study duration. All subjects gave written informed consent to participate in the study. The research was conducted following the Helsinki Declaration and approved by the Ethics of Sapienza University—Policlinico Umberto I (Rif. 6361, protocol number 0635/2021). To minimize potential bias factors, all clinical data were collected in the same clinical center following the same guidelines.


Table 1 | Demographic and clinical features in enrolled relapsing–remitting multiple sclerosis patients treated with cladribine (CLA) or ocrelizumab (OCRE).







Blood sample and PBMC collection

The patients’ peripheral blood was collected by venipuncture at T0 and T1 for miRNAs’ profiling and other laboratory tests. The blood samples for both patients and healthy subjects were collected in Vacutainer tubes containing EDTA. Then, 15 ml of phosphate-buffered saline (PBS; without Ca2+, Mg2+) was added to 10 ml of each samples’ blood; after mixing, the diluted blood samples were carefully layered onto 7.5 ml of Ficoll for 30 min of centrifugation (18–20°C) at 1,800 rpm. The tubes exhibited four different layers containing plasma, lymphocytes, and monocytes, Ficoll, granulocytes, and erythrocytes, respectively, from top to bottom. The lymphocytes/monocytes layer was accurately collected in clean tubes; the cells were then pelleted (1,400 rpm for 10 min at 18–20°C) and washed with PBS. The dry pellet was finally stored at -80°C.





RNA extraction and quality control

RNA extraction was performed according to the miRNeasy Tissue/Cells Advanced Mini Kit (QIAGEN©) instructions: the cells were suspended in 500 μL of RTL buffer + β mercaptoethanol, incubated at 37°C for 10 min, and homogenized. The samples were passed through two different spin columns: the gDNA Eliminator spin column to remove all DNA and the Rneasy spin column to select RNA molecules. The miRNeasy Tissue/Cells Advanced Kits enabled efficient RNA enrichment down to approximately 18 nucleotides in size. All RNA samples were again stored at -80°C. RNA purity and concentration quality control included the evaluation of absorbance at 260 nm by NanoDrop ND-1000 (Labtech International, Ringmer, UK). To assess the RNA integrity, samples were tested in the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) via the Eukaryote Total RNA 6000 Nano kit (Agilent Technologies, Santa Clara, CA, USA) and the Small RNA kit (Agilent Technologies, Santa Clara, CA, USA). The bioanalyzer assessed each sample’s RNA integrity number (RIN). Samples displaying an under-threshold RIN value <8.0 were excluded.





miRNA profiles

miRNA profiles were performed according to the standard “Agilent miRNA Microarray System, miRNA Complete Labelling, and Hyb Kit” protocol (Agilent Technologies, Version 3.1.1, 2015). After a phosphatase treatment and a denaturation process via DMSO, 100 ng of RNA, extracted from each sample, was labeled with 3-pCp cyanine. The samples were then dried through a vacuum concentrator, and a 45-µl hybridization solution was added to each one. Then, the samples were hybridized to the Agilent Human miRNA Microarrays chip 8x60K (Agilent PN G4870-60530, grid ID = 070156) containing 2,549 human miRNAs. The glasses were incubated in the Agilent Hybridization Oven at 55°C, 10 RPM, for 20 h, washed according to the protocol, and scanned using the Agilent DNA Microarray Scanner (G2539C).





Statistical analysis

miRNAs’ profiling was assessed by using Agilent Platform (Agilent Technologies, Milan, Italy). The samples were processed according to Agilent’s standard experimental procedure. Data analysis was performed using R-Bioconductor (Seattle, WA, USA). The samples were log2-transformed and normalized by the median alignment method; differentially expressed (DE) miRNAs were selected by the R-limma tool with threshold false discovery rate <0.05 and linear |fold change| >1.5 (24). Possible confounding factors such as sex (M/F) and previous therapy (yes/no) were included in limma linear models as covariates. Only miRNAs with expression values >0.0 in every sample were included in the analysis. Pearson’s correlation coefficient was used to estimate the association between miRNA profiles and clinical measures. Interaction miRNA–target networks were obtained using miRTargetLink 2.0, selecting only validated connections and miRNAs with >4 targets, and further processed through using Cytoscape. Clinical information was compared using either Mann–Whitney or Fisher’s exact test according to data type.

The manuscript preparation followed the STROBE cohort reporting guidelines (25).
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Results




Multiple sclerosis miRNAs’ profiling

A total of 25 adult patients with RRMS were enrolled in a cohort study according to the latest McDonald criteria (21) before (pre-CLA; pre-OCRE, time T0) and after high-efficacy DMTs, time T1, 6 months post-CLA (n = 10, 7 F and 3 M, age 39.0 ± 7.5) and post-OCRE (n = 15, 10 F and 5 M, age 40.5 ± 10.4) treatments. The demographic and clinical features of the CLA- or OCRE-treated RRMS patients are reported in Table 1 and the statistical comparisons in Supplementary Table S5.

A total of fifteen healthy control subjects who were age- and sex-matched (9 F and 6 M, age 36.3 ± 3.0) were selected. All 25 RRMS patients had completed follow-up 6 months after specific treatment. miRNAs’ profiling was performed by microarray analysis on PBMCs from whole blood. To identify specific modulated miRNAs, the following comparisons were analyzed: pre-CLA vs. CTRs, pre-OCRE vs. CTRs, pre-CLA vs. pre-OCRE, CLA post-treatment (T1) vs. pre-CLA (T0), and OCRE post-treatment (T1) vs. pre-OCRE (T0).





Comparison between pre-treatment patients and controls

We identified a final list of 200 miRNAs expressed in every sample. The patients’ miRNA profiling preceding CLA (pre-CLA) and OCRE treatment (pre-OCRE), compared to CTRs, was analyzed and reported in Figures 1A, B. A total of 40 miRNAs resulted to be deregulated, of which 17 were upregulated (among which were miR-181b-5p, miR-186-5p, miR-486-5p, and miR-29b-3p) and 23 were downregulated (including miR-151a-3p, miR-151a-5p, miR-23b-3p, miR-27b-3p, and miR-199a-3p) when comparing pre-CLA-treated patients to CTRs (Figure 1B). Conversely, seven miRNAs were downregulated (miR-155-5p, miR-199a-5p, miR-26a-5p, miR-30b-5p, miR-30c-5p, miR-30e-5p, and miR-374-5p) in the pre-OCRE vs. CTRs comparison (Figure 1A). These results highlight how the RRMS patients displayed deregulated miRNA profiles compared to healthy controls.




Figure 1 | Relapsing–remitting multiple sclerosis patients, clinically selected for cladribine (CLA) or ocrelizumab (OCRE) treatment, display different miRNA profiles. (A) Pre-OCRE (n = 15) vs. CTRs (n = 15) comparison. (B) Pre-CLA (n = 10) vs. CTRs (n = 15) comparison. Log2 median normalized values of differentially expressed miRNAs were selected using the following thresholds: R limma test false discovery rate <0.05 + linear |fold change| >1.5. The boxes correspond to median ± interquartile range, and the black dots are outliers.







MS patients’ stratification and response to specific DMTs (CLA or OCRE) according to the miRNA profiles

The miRNA profiles were compared between the two groups of patients before (pre-CLA T0 vs. pre-OCRE T0) and 6 months after treatment (CLA T1 vs. OCRE T1) to explore differences between baseline and treatment-specific response. The volcano plot resulting from the pre-CLA vs. the pre-OCRE miRNAs’ comparison exhibited (Figure 2B) 28 DE miRNAs: 22 upregulated miRNAs (out of which the most upregulated were miR-1260a, miR-1260b, miR-186-5p, miR-6085, miR-142-3p, miR-29b-3p, miR-29c-3p, and miR-155-5p) and six downregulated ones (miR-638, miR-130a-3p, miR-151a-5p, miR-126-3p, miR-151a-3p, and miR-199a-3p) (15 + 13 in the Venn diagram, Figure 2A), whose main functions are described in Supplementary Table S1, according to the cited literature.




Figure 2 | Direct comparison of pre-cladribine (CLA) and pre-ocrelizumab (OCRE) miRNA profiles. (A) Venn diagram for the differentially expressed (DE) miRNAs between groups of patients preceding either CLA (pre-CLA) or OCRE (pre-OCRE) treatment or CLA at T1 vs. OCRE at T1. (B) Volcano plot of the pre-CLA (n = 10) vs. the pre-OCRE (n = 15) miRNAs. DE miRNAs (green: downregulated; red: upregulated) are shown. (C) Levels of DE miRNAs in pre-CLA vs. pre-OCRE. Log2 median normalized values of DE miRNAs are shown; miRNAs were selected using R limma test false discovery rate <0.05 + linear |fold change| >1.5 thresholds. The boxes correspond to median ± interquartile range, and the black dots are outliers.



The Venn diagram shows the DE miRNAs shared between patients preceding CLA (pre-CLA) or OCRE (pre-OCRE) treatment (Figure 2A) and between the same subjects analyzed 6 months post-treatment: (CLA T1 vs. OCRE T1) (Supplementary Figure S1). The log2 median expression values of the DE miRNAs in the pre-CLA vs. the pre-OCRE comparison are shown in Figure 2C. Furthermore, the data indicated 25 DE miRNAs in the CLA T1 vs. OCRE T1 comparison, with five downregulated and 20 upregulated (Supplementary Figure S1).

Literature annotation is reported in Supplementary Table S2. The differential miRNAs’ profiling underlined a higher expression of inflammation-related miRNAs in patients selected for CLA treatment (pre-CLA) compared to patients selected for OCRE treatment (pre-OCRE). These dysregulated miRNAs are known to be involved in inflammatory and immune pathways (Supplementary Table S1), including miR-155-5p, which is highly pro-inflammatory, and the upregulated miR-186-5p, over-expressed in MS while downregulated in other neurodegenerative diseases and aging.

The multidimensional scaling plot of miRNA profiles in Figure 3B displayed how most of the patients had similar miRNA responses to CLA treatment, as suggested by the largely parallel direction of the T0 to T1 trajectories, while the response to OCRE (Supplementary Figure S2) was more heterogeneous. To unveil the impact of the selected DMT on the enrolled RRMS patients, we compared the miRNA profiles 6 months after CLA or OCRE treatment to the pre-treatment levels. A total of 22 miRNAs resulted to be modulated by CLA (Figures 3A, B) (14 upregulated: miR-151a-3p, miR-151a-5p, miR-130a-3p, miR-126-3p, miR-151b, miR-326, miR-584-5p, miR-1991a-3p, miR-199a-5p, miR-23b-3p, miR-221-3p, miR-27b-3p, miR-486-5p, and miR-148b-3p and eight downregulated: miR-150-5p, miR-197-5p, miR-29c-3p, miR-4299, miR-4443, miR-4505, miR-4507, and miR-8069), while only one was modulated by OCRE treatment (Supplementary Figure S2). Concerning the differential CLA profiling, most DE miRNAs were involved in MS, as described in the literature mentioned in Supplementary Table S3. Specifically, some of the DE responding miRNAs (miR-199a-3p, miR-199a-5p, miR-29b-3p, and miR-23b-3p), whose levels were modulated by the CLA treatment, are known to be dysregulated and of clinical interest in MS. In comparison, the OCRE treatment modulated only miR-3653-3p (Supplementary Figure S2), which resulted to be downregulated and is known to be involved in carcinogenesis and glioma progression and other carcinoma diffusions.




Figure 3 | The impact of cladribine (CLA) treatment on miRNA profiles. (A) Volcano plot of the CLA T1 (n = 10) vs. pre-CLA (n = 10) miRNAs. (B) Multidimensional scaling of CLA samples based on the miRNA profiles. Each arrow corresponds to a different patient treated with CLA and connects the miRNA profile at T0 (light purple dot) to the profile at T1 (dark purple dot). (C) Levels of differentially expressed (DE) miRNAs in CLA T1 vs. pre-CLA. Log2 median normalized values of DE miRNA are shown. The CLA T1 samples correspond to subjects with relapsing–remitting multiple sclerosis, whose miRNA levels were analyzed 6 months after CLA treatment initiation. miRNAs were selected using R limma test false discovery rate <0.05 + linear |fold change| >1.5 thresholds. The boxes correspond to median ± interquartile range, and the black dots are outliers.







Associations between clinical measures and DE miRNAs

The Pearson’s analysis between DE miRNAs and clinical data in the pre- and post-CLA treatment groups showed miRNAs which were significantly correlated to the FI (miR-186-5p), disease duration (miR-23b-3p and miR-27b-3p), or urinary symptoms (miR-186-5p, miR-29b-3p, miR-151a-5p, miR-199a-3p, and miR-151-3p), as reported in Figures 4A–C. Other analyses are reported in Supplementary Figures S3–S5. We then compared the dysregulated miRNAs associated with MS, according to the human miRNA Disease Database and the miR2 Disease Database (26), to the clinical features. A total of 10 miRNAs were selected for further analysis (miR-126-3p, miR-186-5p, miR-29b-3p, miR-23b-3p, miR-27b-3p, miR-199a-3p, miR-199a-5p, miR-151a-3p, miR-151a-5p, and miR-584-5p). Eight out of 10 were significantly upregulated in the CLA T1 vs. pre-CLA comparison while downregulated in the pre-CLA vs. CTRs comparison (Figure 4A). The miRNAs also presented a few opposite clinical correlation profiles when comparing pre-CLA to post-CLA treatment. In particular, specific miRNAs shifted from being directly correlated to a significant inverse correlation to urinary symptoms (Figures 4B, C).




Figure 4 | Pearson correlations between miRNA levels and clinical data. (A) Pearson’s correlation index between differentially expressed miRNAs (cladribine (CLA) T1 vs. pre-CLA) and selected statistically significant clinical variables. T1 = 6 months after the treatment’s first administration/infusion. Analyzed clinical variables: urinary symptoms (yes/no, binary); EDSS score (integer discrete); FI score; disease duration in months. (B) Table of significant correlations. (C) Scatter plot of expression levels vs. clinical variable for selected correlations with miRNA in the pre-CLA and CLA T1 groups; the regression line is drawn.







miRNA target network

We analyzed the mRNA–miRNA network to assess the effect of the 10 selected miRNAs whose expression levels were reverted by the specific DMT (CLA) and were also correlated to clinical features (Figure 5). The network comprises 335 validated edges between the nine miRNAs (miR-126-3p, miR-186-5p, miR-29b-3p, miR-23b-3p, miR-27b-3p, miR-199a-3p, miR-199a-5p, miR-151a-3p, and miR-151a-5p, with miR-584-5p excluded as presenting no strong interactions to targets) and mRNA targets. Out of the 335 validated edges, 272 were single connections, 26 genes are targets shared by two miRNAs, MET and SIRT1 are targets shared by three miRNAs (miR-199a-3p, miR-27b-3p, and miR-23b-3p as well as miR-126-3p, miR-199a-5p, and miR-23b-3p, respectively), and lastly VEGF-α is a predicted target for 5 miRNAs (miR-29b-3p, miR-126-3p, miR-186-5p and 199a-3p and miR-199a-5p). To better outline the cellular functions involved in the produced network (Figure 5), a pathway enrichment analysis was generated (Figure 6). Most of the specific genes in the network are involved in pathways including processes concerning interleukins 4 and 13 signaling, PIK3T/AKT second messengers, collagen, extra-nuclear estrogen signaling and signaling by PDGF, inflammation, angiogenesis, and blood–brain barrier integrity; others appeared to present a neuroprotective role as shown in the pathway dendrogram (Figure 6).




Figure 5 | Selected miRNA–target network in the cladribine (CLA) T1 vs. pre-CLA T0 comparison. miRNA–target network of selected miRNAs in the CLA T1 vs. pre-CLA T0 comparison obtained by the miRTargetLink 2.0 tool, selecting only validated mRNA targets and miRNAs with >4 targets, and further processed through Cytoscape.






Figure 6 | Pathway enrichment analysis of miRNA gene targets. The dendrogram is a hierarchical clustering of enriched Reactome pathways, using the gene lists overlap as distance metric. The pathways are further clustered into broader functional categories. The dot size is proportional to the gene list size, while the dot color corresponds to the false discovery rate adjusted p-value of enriched terms. The analyzed gene list was selected by the mirTargetLink predictor, using only strong validated targets. The plot was obtained by the clusterProfiler R package.








Discussion

The present cohort study investigated miRNA profiles in PBMCs collected from RRMS patients before and after treatment with CLA or OCRE. Since miRNAs are increasingly considered as biomarkers in multiple neurodegenerative/neuroinflammatory diseases, we first compared the miRNA profiles of patients who were clinically selected for either CLA or OCRE treatment to healthy controls (pre-CLA vs. CTRs or pre-OCRE vs. CTRs). The analysis identified some dysregulated miRNAs possibly involved in MS pathogenesis and specifically characterized each group. Among the 40 DE miRNAs (pre-CLA vs. CTRs), several are notably involved in inflammatory and immune pathways, such as miR-23b-3p (27), the downregulated miR-151-5p (28, 29) and miR-151-3p (26), miR-27b (30), and miR-29b, contributing to the regulation of Th1 and Th17 differentiation (31). In line with part of the current literature (32), we found a downregulation of miR-126-3p which, however, has also been reported as increased in RRMS patients (33). Furthermore, miR-126-3p, expressed in the CNS endothelium, displays a possible contribution to the regulation of leukocyte adhesion to human brain endothelium (34), a critical step in triggering the blood–brain barrier’s (BBB) damage process. Thus, we suggest that these miRNAs may influence the inflammatory process and play a role in the MS patients’ BBB disruption.

The pre-OCRE miRNAs’ profiling (vs CTRs) is characterized by a significant downregulation of miR-155-5p (Figure 1), known as inflamma-miR, which influences myeloid cell polarization, leading to a pro-inflammatory phenotype (35). miR-155-5p also disrupts the BBB via key junctional proteins under inflammatory conditions. It drives demyelination processes by contributing to microglial activation, the polarization of astrocytes, and the downregulation of CD47 protein and affecting crucial transcription factors.

miR-155-5p has been reported as downregulated exclusively in SPMS patients (36). Since OCRE is used in patients with highly active MS and due to the current lack of prognostic factors for long-term disability (i.e., at a higher risk for neurodegenerative mechanisms), our data regarding the downregulation of miR-155-5p in OCRE groups propose miRNA profiles as possible prognostic factors in the disease progression.

The only DE miRNA, shared by both pre-CLA and pre-OCRE populations when compared with CTRs, is the downregulated miR-199a-5p, which negatively correlates with EDSS in MS (18). Together with other miRNAs, miR-199a-5p may participate in the control of the balance between innate and adaptive immunity, avoid chronic inflammation, and prevent neuroinflammation. The imbalance between pro- and anti-inflammatory processes may modify the immune activities at the glia level, leading to neuronal damage and altering BBB’s integrity (37).

In addition to analyzing differences in the pre-treatment profiles, we directly compared the two miRNA profiles (pre-CLA vs. pre-OCRE). This comparison confirmed that the modulated miRNAs were involved in inflammatory and immune pathways (Supplementary Table S1), including relevant upregulated genes such as miR-155-5p and miR-186-5p, which are downregulated in elderly people and those with a neurodegenerative disease (26, 38). The upregulation of miR-30c, previously implicated in MS (39) and characterized in response to pharmacological treatments (19, 40), together with the downregulation of miR-199a in the MS relapsing phase is correlated with more frequent Th17 cell differentiation and the severity of the disease (41). These data suggest a more inflammatory profiling of the patients selected for CLA compared to the pre-OCRE ones, supporting the possible use of miRNAs for a personalized DMT choice.

When we compared the expression profiles in samples obtained during the two treatment courses, we found that CLA produced a higher impact on DE miRNAs than OCRE, i.e., CLA modulated a higher number of miRNAs (22 vs. one miRNA), mainly involving immune and inflammatory targets. This is also suggested by the clinical trajectories (from T0 to T1) in multidimensional scaling plots: CLA trajectories (Figure 3) are largely parallel, with T0 and T1 sets clearly separated, while under OCRE treatment (Supplementary S2) the T0 and T1 sets are widely overlapping. The homogeneous response in the multidimensional scaling plot of CLA patients compared to the heterogeneous one of OCRE patients can be related to the different mechanism of action of the DMTs or to the different kinetic of cell depletion and reconstitution. It may also reflect an immunomodulatory effect of CLA on the immune system. However, further studies of miRNA profiles in different lymphocyte subsets should be performed.

Anyway, no statistically significant differences were found between the two groups regarding EDSS, duration of disease, number of relapses, presence of new lesions, or presence of gadolinium-enhancing lesions on magnetic resonance imaging (MRI) at T0 and the number of relapses in the last 6 months (Supplementary Table S5). A wider number of patients and a longer follow-up might be necessary to identify clinical changes.

Notably, miR-3653-3p is involved in carcinogenesis and glioma progression and other carcinoma diffusions. Correspondingly, the OCRE effect may be related to its direct long-term depletion of memory B cells (42) or through the T cell activity blockade (43). Furthermore, most CLA-treated patients maintained B cell levels of at least 1% of total lymphocyte count and recovered to at least 10–20 circulating CD19 B cells/μL at 24 weeks after treatment, contrasting with prolonged B cell depletion detected after OCRE (11). Importantly, nevertheless, both DMTs successfully reverted some dysregulated miRNA profiles toward a protective phenotype. Our analysis exhibited baseline DE values of specific miRNAs (miR-199a-3p, miR-199a-5p, miR-29b-3p, and miR-23b-3p) whose expression is reversed by CLA. As discussed above, miR-199a-3p and 199-5p upregulation, together with the dysregulation of miR-23b-3p, miR-151a-5p, and miR-151a-3p, are directed toward an anti-inflammatory and neuroprotective phenotype. Pearson’s correlations allowed the identification of miRNAs that better correlate to some clinical features, such as urinary symptoms, FI, or EDSS. Additionally, it has been estimated that 80%−90% of patients living with MS suffer from some form of lower urinary tract symptoms over the course of the disease, representing an important challenge for both patients and caregivers (44). Correspondingly, some miRNAs present opposite clinical correlation profiles when comparing the pre-CLA and post-CLA treatments. Thus, both miR-23b-3p and miR-199a-3p, which correlated to urinary symptoms, have been reported as downregulated in MS inflammatory lesions, which was compatible to our findings in the pre-CLA profiling, and were then reverted by the CLA treatment. Interestingly, specific miRNAs whose levels correlated to urinary symptoms shifted from direct to a significantly inverse correlation (Figures 4A, B). It would be interesting to monitor these clinical features over time to reveal whether these correlations, which shift from direct to inverse, correspond to symptom improvement and better prognosis.

To better outline the different pathways involved in the mRNAs–miRNA–target network (Figure 5), a pathway enrichment analysis was generated (Figure 6) and revealed potential mechanisms linking neuroinflammation and neurodegeneration to CLA treatment. Briefly, interleukins 4 and 13 signaling, PIK3T/AKT second messengers, collagen, extra-nuclear estrogen signaling, and signaling by PDGF emerged as functionally involved in CLA-modulated miRNA pathways. Both the closely related interleukin (IL)-13, T cell-derived cytokine, and Il-4 routes play powerful anti-inflammatory roles in MS (45). Concerning the extracellular matrix (ECM) members in MS, such as collagen, we propose that these miRNAs control the inflammatory response and treatment  induces repair since the crosstalk between the ECM and immune responses (IL-4 and Il-13) is known to modulate lesions for recovery or worsening (46). Furthermore, the link with estrogen nuclear signaling in MS might mediate anti-inflammatory cytokine production and Treg cell expansion (47).

We also evinced that platelet-derived growth factor (PDGF) signaling is involved in the network modulated by miR-29b-3p (which is downregulated by the CLA treatment). PDGF plays a substantial role in long-term potentiation (LTP) and brain reserve in MS patients, as this molecule is associated with more pronounced LTP in RRMS patients and with the compensation of new brain lesions in RRMS (48). The brain plasticity reserve, in the form of LTP, is crucial to contrast clinical deterioration in MS. Enhancing PDGF signaling might represent a valuable treatment option to slow disease progression by maintaining brain reserve and reducing neuronal damage (49).

The tightly connected genes in the abovementioned network (Figure 5) further include the vascular endothelial growth factor alpha (VEGF-α), known to be involved in inflammation, angiogenesis (50), and BBB integrity with a crucial role in MS development and progression. VEGF-α plays a major role in the development of neurodegenerative diseases through inflammation, first acting as a pro-inflammatory initiator but later leading to lower responsivity of angiogenic molecules. On one hand, significant correlations were reported between VEGF-α levels and BBB disruption in MS plaques. On the other hand, decreased levels of VEGF-α have been reported in MS patients’ CSF (51, 52). Other network genes include Sirtuin1 (SIRT1) and hepatocyte growth factor receptor (MET). SIRT1 was found to be elevated in MS brain lesions and in cells from both acute and chronic active MS lesions (53). However, altered SIRT1 expression and activity have also been linked to inflammatory diseases. MET activation is involved in angiogenesis, wound healing, cell scattering, proliferation, and cancer invasion (54) and might exert neuroprotective and immunomodulatory effects in the experimental allergic encephalomyelitis model (EAE) of MS.

Between the miRNAs reverted by the CLA treatment, we discussed relevant candidates including miR-199a, miR-151a-5p, and miR-29b-3p. miR-199a, which is downregulated in the pre-CLA vs. the CTRs and upregulated by CLA, is involved in Treg differentiation (41). miR-151a-5p, the most widely modulated miRNA by CLA treatment, is not yet characterized in MS pathophysiology and needs to be further explored, and miR-29b-3p, the only downregulated miRNA after CLA treatment, is strongly connected to the PDGF pathway as discussed above.

In conclusion, we identified drug-dependent changes in miRNA profiles and identified potential candidate miRNAs that we propose to be involved in the corresponding pharmacological mechanisms.

The strength of this study is the identification of DE miRNAs as potential biomarkers in RRMS patients’ stratification and of CLA or OCRE drug response. The limitations of the study include the limited number of participants, duration of the follow-up, and the fact that not all patients are naïve to DMTs. Thus, further studies on a wider population and independent cohorts monitored for longer time periods are needed. Moreover, small RNA-Seq analysis could extend our findings, allowing the identification of other short non-coding RNAs potentially involved in MS pathogenesis, monitoring, and therapeutic response.
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Objective

To identify reliable immune-inflammation indicators for distinguishing myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) from anti–aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSD). To assess these indicators’ predictive significance in MOGAD recurrence.





Methods

This study included 25 MOGAD patients, 60 AQP4-IgG-positive NMOSD patients, and 60 healthy controls (HCs). Age and gender were matched among these three groups. Participant clinical and imaging findings, expanded disability status scale (EDSS) scores, cerebrospinal fluid (CSF) information, and blood cell counts were documented. Subsequently, immune-inflammation indicators were calculated and compared among the MOGAD, AQP4-IgG-positive NMOSD, and HC groups. Furthermore, we employed ROC curve analysis to assess the predictive performance of each indicator and binary logistic regression analysis to assess potential risk factors.





Results

In MOGAD patients, systemic inflammation response index (SIRI), CSF white cell count (WCC), and CSF immunoglobulin A (IgA) levels were significantly higher than in AQP4-IgG-positive NMOSD patients (p = 0.038, p = 0.039, p = 0.021, respectively). The ROC curves showed that SIRI had a sensitivity of 0.68 and a specificity of 0.7 for distinguishing MOGAD from AQP4-IgG-positive NMOSD, with an AUC of 0.692 (95% CI: 0.567-0.818, p = 0.0054). Additionally, compared to HCs, both MOGAD and AQP4-IgG-positive NMOSD patients had higher neutrophils, neutrophil-to-lymphocyte ratio (NLR), SIRI, and systemic immune-inflammation index (SII). Eight (32%) of the 25 MOGAD patients had recurrence within 12 months. We found that the monocyte-to-lymphocyte ratio (MLR, AUC = 0.805, 95% CI = 0.616–0.994, cut-off value = 0.200, sensitivity = 0.750, specificity = 0.882) was an effective predictor of MOGAD recurrence. Binary logistic regression analysis showed that MLR below 0.200 at first admission was the only risk factor for recurrence (p = 0.005, odds ratio =22.5, 95% CI: 2.552–198.376).





Conclusion

Elevated SIRI aids in distinguishing MOGAD from AQP4-IgG-positive NMOSD; lower MLR levels may be linked to the risk of MOGAD recurrence.





Keywords: myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), neuromyelitis optica spectrum disorders (NMOSD), systemic inflammation response index (SIRI), monocyte-to-lymphocyte ratio (MLR), cerebrospinal fluid (CSF)




1 Introduction

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) can occur in individuals across all age groups, with an incidence rate of 1.6-3.4 per million and a prevalence of 20 per million (1, 2). The application of cell-based assays (CBA) has clarified MOGAD diagnoses for patients who were previously categorized as anti–aquaporin-4 immunoglobulin G (AQP4-IgG)-negative neuromyelitis optica spectrum disorders (NMOSD) (3). These patients often present with optic neuritis, longitudinally extensive transverse myelitis, or related conditions. Despite its rarity, research on MOGAD remains in its nascent stages. The clinical and radiological features of both MOGAD and AQP4-IgG-positive NMOSD exhibit some overlap, creating challenges for early diagnosis. A UK study with a median follow-up of 15.5 months found that 27% of MOGAD patients experienced recurrence, and 47% suffered lasting neurological deficits (4). Thus, it is crucial to identify indicators that can early distinguish MOGAD from AQP4-IgG-positive NMOSD and predict recurrence in MOGAD.

Systemic inflammation response index (SIRI), a marker of systemic inflammation calculated as the product of monocyte and neutrophil-to-lymphocyte ratio (NLR), has demonstrated its predictive power in various conditions like ischemic stroke, aneurysmal subarachnoid hemorrhage, glioma, and rheumatoid arthritis (5–8). However, its role in predicting MOGAD has not been explored.

Previous investigations have emphasized monocytes as significant contributors in demyelination (9–11). In AQP4-IgG-positive NMOSD mice, promoting neutrophil apoptosis showed potential for reducing brain damage (12). Early-stage inhibition of peripheral blood platelet elevation was linked to halting disease progression (13). Furthermore, AQP4-IgG-positive NMOSD patients exhibited significantly elevated neutrophils, NLR, platelet-to-lymphocyte ratio (PLR), and platelet × NLR (systemic immune-inflammation index, SII) compared to both multiple sclerosis (MS) patients and healthy individuals (14). Additionally, the monocyte-to-lymphocyte ratio (MLR) was effective in predicting NMOSD recurrence (14). Moreover, the expression of MOG protein is generally limited to the nervous system (15), unlike AQP4, which is widely distributed throughout the human body (16). This implies differences in CSF white cell count (WCC) and immunoglobulin between MOGAD and AQP4-IgG-positive NMOSD. Building upon these findings, we propose that these immune-inflammatory indicators could potentially assist in the early differentiation of MOGAD from AQP4-IgG-positive NMOSD and recurrence prediction of MOGAD.




2 Method



2.1 Study population

This study included 25 patients diagnosed with MOGAD and 60 patients with age- and sex-matched AQP4-IgG-positive NMOSD at Qilu Hospital, Cheeloo College of Medicine, Shandong University, from January 2018 to August 2022. Inclusion criteria were as follows: (1) Serum MOG antibody positivity detected through CBA and meeting the 2023 International MOGAD Panel proposed criteria (17); (2) AQP4-IgG-positive NMOSD diagnosis according to the 2015 International Panel for NMO Diagnosis (IPND) criteria (18); (3) All MOGAD and AQP4-IgG-positive NMOSD patients admitted to our hospital within 2 weeks of symptom onset; (4) No symptoms of systemic infection (like respiratory, urinary, skin, or soft tissue infections) or recent corticosteroid/immunosuppressive therapy within 14 days before blood collection; (5) Comprehensive clinical evaluations and laboratory assessments (including anti-double-stranded DNA antibodies, anti-SS-A and anti-SS-B antibodies, etc.) revealed no coexistence with hematological disorders or other autoimmune diseases; (6) Ages 14 and older. Exclusion criteria included: (1) Loss of follow-up, which referred to patients no longer returning for outpatient visits and couldn’t be reached by phone; (2) Inability to comply with neurologist-prescribed ongoing treatment. We also included 60 healthy individuals matched for gender and age with MOGAD patients as a control group; all were recruited from the Health Examination Center of Qilu Hospital, Shandong University.




2.2 Data collection

Upon admission, fasting blood samples were collected to evaluate neutrophils, monocytes, lymphocytes, and platelets. And then, calculations were calculated for NLR, MLR, PLR, SIRI, and SII. In addition to this, we gathered data on CSF, including WCC, proteins, and the levels of immunoglobulins A (IgA), G (IgG), and M (IgM). Neurologists determined Extended Disability Status Scale (EDSS) scores in MOGAD and AQP4-IgG-positive NMOSD patients to assess disability. For each MOGAD patient, we conducted follow-ups at three and twelve months after their discharge to assess recurrence. Clinical recurrence refers to the emergence of new neurological deficits more than one month after the initial attack (17).




2.3 MOG-IgG and AQP4-IgG assay

MOG-IgG and AQP4-IgG were detected by means of commercial CBA (Euroimmun, Lübeck, Germany) according to the manufacturer’s recommendations. CBA using HEK-293 cells stably transfected with human full-length MOG and human AQP4, and then MOG-IgG and AQP4-IgG were detected using anti-human IgG (Fc) secondary antibodies and subsequently visualized by microscopy.




2.4 Data analysis

Statistical analysis utilized SPSS 26.0 and GraphPad Prism 8.0. The normality of continuous variables was determined using the Shapiro-Wilk test. For non-normally distributed continuous data, we presented the results as the median with the interquartile range (IQR). Comparisons between two-group variables were conducted by the Mann–Whitney U test, and the Kruskal-Wallis H test was used in three-group comparisons, with post hoc tests conducted using the Bonferroni method. We used the Chi-square test for categorical variables and conducted post hoc Chi-square tests for multiple comparisons. Receiver operating characteristic (ROC) curves evaluated the predictive ability of each index. The optimal cut-off value was calculated using the Youden test. Binary logistic regression analysis was used to determine risk factors.





3 Results



3.1 Baseline characteristics

The analysis included 25 MOGAD patients with a median age of 27 (15, 35), of whom 40% were female. The median EDSS score before treatment was 3.0 (2.0, 4.5) (Table 1). The major symptoms were cerebral monofocal or polyfocal deficits, accounting for 44% (n = 11). In addition, cerebral cortical encephalitis, often with seizures, was detected in 28% of cases (n = 7). Brainstem deficits were found in 6 cases (24%). Optic neuritis (ON) occurred in 4 cases, making up 16% of all cases. Acute disseminated encephalomyelitis was observed in 3 cases (12%), and cerebellar deficits were presented in 2 cases (8%). Among 60 AQP4-IgG-positive NMOSD patients, the most common was acute transverse myelitis, found in 35 cases (58.3%), followed by cerebral syndrome in 15 cases (25.0%). Additionally, area postrema syndrome occurred in 18 cases (30%), while ON was present in 13 cases (21.7%). Diencephalic syndrome was observed in 4 cases (6.7%). Within 12 months after discharge, 32% (n = 8) of MOGAD patients experienced recurrence, with a median time to recurrence of 3 (2, 9.75) months and a median EDSS score of 3.5 (2.0, 4.5) at recurrence. The most common recurrent symptoms were cerebral monofocal or polyfocal deficits, seen in 5 cases (62.5%). ON and brainstem deficits each occurred in 2 cases (25%), while myelitis was observed in 1 case (12.5%).


Table 1 | Comparison of immune-inflammation indicators among the three groups.






3.2 Differences in immune-inflammation indicators among three groups

In comparison to AQP4-IgG-positive NMOSD, MOGAD exhibited greater levels of SIRI, CSF WCC, and CSF IgA. (Table 1). SIRI was identified as a risk factor in the univariate analysis (Table 2). After excluding collinearity factors and after adjusting for other factors, multivariate analysis showed that SIRI was an independent factor to distinguish MOGAD from NMOSD (Table 2). It exhibited a high sensitivity and specificity at the cut-off value, and its elevated positive predictive value (PPV), positive likelihood ratio (PLR+), and diagnostic odds ratio (dOR) also indicated its diagnostic value (cut-off value = 1.565, sensitivity =0.68, specificity =0.70, PPV = 0.49, PLR+ =2.27, dOR = 5.04) (Table 3, Figure 1A). The ROC curve analysis indicated that CSF WCC had the highest specificity, PPV, PLR+, and dOR at the cut-off value (cut-off value = 17.5, specificity = 0.818, PPV = 0.58, PLR+ = 3.36, dOR = 7.00) (Table 3, Figure 1A). However, the univariate analysis showed that CSF WCC were not a risk factor (Table 2). We then analyzed the association between SIRI and other indicators in MOGAD patients and NMOSD patients, respectively. Spearman’s correlation analysis showed that SIRI was positively correlated with CSF WCC in MOGAD patients (p = 0.002, r = 0.667) and negatively correlated with CSF proteins and CSF IgG levels in NMOSD patients (p = 0.025, rs = -0.331; p = 0.011, rs = -0.379). When compared to HC, both MOGAD and AQP4-IgG-positive NMOSD presented significantly elevated neutrophils, NLR, SIRI, and SII (Table 1, Figure 2). ROC curve analysis indicated that all four of these indicators had excellent diagnostic performance for separating MOGAD from HC (Figure 1B).


Table 2 | Indicators for distinguishing MOGAD from AQP4-IgG-positive NMOSD .




Table 3 | The ROC curve’s capacity to discriminate between MOGAD and AQP4-IgG-positive NMOSD.






Figure 1 | (A) The ROC curve depicting the discriminative prowess of SIRI, CSF WCC, and CSF IgA in differentially diagnosing between MOGAD and AQP4-IgG-positive NMOSD; (B) The ROC curve analysis delineating MOGAD from HC; (C) The ROC curve illustrating the predictive potential of MLR for MOGAD recurrence.






Figure 2 | Box plots (with a median line at the center, a box representing the interquartile range, and whiskers extending from maximum to minimum) are used to elucidate the distributions of NEU (A), NLR (B), SIRI (C), and SII (D) among MOGAD, AQP4-IgG-positive NMOSD, and HC.






3.3 Factors predicting recurrence in patients with MOGAD

In the exploration of recurrent factors in MOGAD patients, we compared admission indicators between the 8 recurrent patients and the remaining 17 (Table 4). ROC curve analysis of the admission test results indicated MLR (AUC=0.805, 95% CI=0.616–0.994, cut-off value=0.200, sensitivity=0.750, specificity=0.882) was the only predictor for recurrence (Figure 1C). The other indicators were not statistically significant. In binary logistic regression analysis, MLR levels below 0.200 (odds ratio =22.5, 95% CI: 2.552–198.376, p = 0.005) were independently associated with recurrence. The PPV, negative predictive value (NPV), PLR+, negative likelihood ratio (NLR-), and dOR were 0.75, 0.88, 6.36, 0.28, and 22.71, respectively.


Table 4 | Comparison of indicators of MOGAD patients with and without recurrence.







4 Discussion

Our findings show that MOGAD and AQP4-IgG-positive NMOSD are different illnesses, as evidenced by imaging, blood, and CSF data. MOGAD primarily affected the cerebrum and cerebral cortex, while the medulla, cervical spinal cord, and thoracic spinal cord were more likely to be observed in AQP4-IgG-positive NMOSD. Significant differences were also observed in SIRI, CSF WCC, and CSF IgA levels between MOGAD and AQP4-IgG-positive NMOSD.

SIRI is a useful indicator for predicting the prognosis of a number of inflammatory diseases. According to Topkan et al., a low SIRI score is associated with prolonged progression-free survival and overall survival in patients with glioblastoma multiforme of the brain (19). Yun et al. found that SIRI is an independent risk factor for poor outcomes in patients with aneurysmal subarachnoid hemorrhage (8). Zhang et al. discovered that SIRI is closely linked to stroke mortality and severity, as well as the risk of sepsis. The worse the stroke prognosis, the higher the SIRI value (5). In our study, we found that the MOGAD group had greater SIRI levels than the AQP4-IgG-positive NMOSD and HC groups. We identified a key SIRI threshold of 1.565 for distinguishing MOGAD from AQP4-IgG-positive NMOSD. Although clinical evidence on SIRI in demyelinating diseases is limited, further investigation is recommended for its potential clinical utility in MOGAD.

SIRI reflects complex interactions among neutrophils, monocytes, and lymphocytes. It’s worth mentioning that SIRI integrates monocytes, whereas SII incorporates platelets. Our study demonstrated that MOGAD patients had higher platelets and SII levels compared to AQP4-IgG-positive NMOSD patients, though without statistical significance. This implies that monocytes could contribute to the distinct SIRI disparity between MOGAD and AQP4-IgG-positive NMOSD. In experimental autoimmune encephalomyelitis (EAE), monocytes played a decisive role in disease onset and demyelination (9–11). Monocytes infiltrating the central nervous system (CNS), particularly Ly6ChiCCR2+ inflammatory monocytes, promoted EAE progression by crossing the blood-brain barrier in a CCR2-dependent manner (9, 20). Once inside the CNS, these cells released inflammatory mediators that accelerated disease development (20–22). Cost-effective and easily obtainable from blood samples, SIRI emerges as a novel inflammatory indicator for distinguishing MOGAD from AQP4-IgG-positive NMOSD.

MOGAD had considerably greater CSF WCC and CSF IgA levels than AQP4-IgG-positive NMOSD. Liu et al. found that C3 levels in the blood plasma were positively correlated with CSF WCC (23). In the MOGAD group, C3 consumption was lower, while CSF WCC were higher (23). This indirectly supports the earlier idea that the majority of MOG-IgG detected in the CSF is synthesized intrathecally by plasmablasts inside the CSF, whereas most of the AQP4-IgG in the CSF originated from extrathecal sources and passively entered the CSF through the blood-brain barrier (24).

MLR emerges as a predictor of MOGAD recurrence, implying that MOGAD patients with low MLR may require intensified treatment strategies. Previous research has shown that high MLR is correlated with poor prognosis in stroke patients and increased susceptibility to recurrence in AQP4-IgG-positive NMOSD patients (14, 25), in contrast to our findings of an association between lower MLR and MOGAD recurrence. These discrepancies potentially arise from functional disparities between neutrophils, monocytes, and lymphocytes across distinct diseases. Increasing evidence points to the detrimental role of neutrophils in CNS inflammation (26–29). Neutrophils have been detected in active lesions of both AQP4-IgG-induced NMO animal models and early-stage NMOSD patients (26, 30). Furthermore, damaged neutrophils in MOGAD and AQP4-IgG-positive NMOSD had distinct mechanisms of demise (28). Although neutrophils may have differences in the pathological aspects of these two diseases, no difference was found in the blood examinations of our patients.

Several limitations of our study deserve acknowledgment. Firstly, as a single-center investigation with only Han Chinese participants, it may introduce selection bias. The small sample size is another constraint of our study, which could limit our capacity to establish the potential significance of particular indicators. Additionally, the 12-month follow-up period might not fully capture disease dynamics in this demyelinating disorder. Future research should explore larger samples with a longer follow-up duration for more comprehensive insights. With more and more antibodies identified, some of the AQP4-IgG-negative NMOSD may be rectified as a new entity; hence, only AQP4-IgG-positive NMOSD patients were included in our study.




5 Conclusion

Our research found that increased SIRI may serve as indicators for distinguishing MOGAD from AQP4-IgG-positive NMOSD. Decreased MLR levels may be associated with the probability of MOGAD recurrence.
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Regional spinal cord volumes and pain profiles in AQP4-IgG + NMOSD and MOGAD
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Objective: Aquaporin-4-antibody-seropositive (AQP4-IgG+) Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorder (MOGAD) are relapsing neuroinflammatory diseases, frequently leading to chronic pain. In both diseases, the spinal cord (SC) is often affected by myelitis attacks. We hypothesized that regional SC volumes differ between AQP4-IgG + NMOSD and MOGAD and that pain intensity is associated with lower SC volumes. To evaluate changes in the SC white matter (WM), gray matter (GM), and pain intensity in patients with recent relapses (myelitis or optic neuritis), we further profiled phenotypes in a case series with longitudinal imaging and clinical data.

Methods: Cross-sectional data from 36 participants were analyzed in this retrospective study, including 20 AQP4-IgG + NMOSD and 16 MOGAD patients. Pain assessment was performed in all patients by the Brief Pain Inventory and painDETECT questionnaires. Segmentation of SC WM, GM, cervical cord volumes (combined volume of WM + GM) was performed at the C2/C3 cervical level. WM% and GM% were calculated using the cervical cord volume as a whole per patient. The presence of pain, pain severity, and clinical disability was evaluated and tested for associations with SC segmentations. Additionally, longitudinal data were deeply profiled in a case series of four patients with attacks between two MRI visits within one year.

Results: In AQP4-IgG + NMOSD, cervical cord volume was associated with mean pain severity within 24 h (β = −0.62, p = 0.009) and with daily life pain interference (β = −0.56, p = 0.010). Cross-sectional analysis showed no statistically significant SC volume differences between AQP4-IgG + NMOSD and MOGAD. However, in AQP4-IgG + NMOSD, SC WM% tended to be lower with increasing time from the last attack (β = −0.41, p = 0.096). This tendency was not observed in MOGAD. Our case series including two AQP4-IgG + NMOSD patients revealed SC GM% increased by roughly 2% with either a myelitis or optic neuritis attack between visits. Meanwhile, GM% decreased by 1–2% in two MOGAD patients with a myelitis attack between MRI visits.

Conclusion: In AQP4-IgG + NMOSD, lower cervical cord volume was associated with increased pain. Furthermore, cord GM changes were detected between MRI visits in patients with disease-related attacks in both groups. Regional SC MRI measures are pertinent for monitoring disease-related cord pathology in AQP4-IgG + NMOSD and MOGAD.
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1 Introduction

Neuromyelitis optica spectrum disorders (NMOSD) are severe and relapsing inflammatory diseases of the central nervous system (CNS). Attacks occur mainly in the spinal cord (SC) and optic nerves and lead to persistent damage; however, diencephalon and cerebral attacks are also well described (1, 2). Pathogenic serum IgG antibodies against aquaporin-4 (AQP4-IgG) can be detected in ~70% of NMOSD patients (3).

Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disorder (MOGAD) is a different disease entity that also affects the CNS with symptoms of optic neuritis, myelitis, and/or encephalomyelitis (4).

MOGAD and AQP4-IgG-seropositive (AQP4-IgG+) NMOSD have distinct pathogenesis. While AQP4-IgG + NMOSD causes complement activation resulting in astrocytic death, pathological specimens from MOGAD are more similar to demyelination in MS, with T-cells and macrophages found around blood vessels and with relative preservation of oligodendrocytes (5, 6).

Spinal cord affection by myelitis, in the form of longitudinally extensive transverse myelitis (LETM) or shorter lesions, occurs in both diseases (5). Chronic LETM/myelon lesions can cause SC atrophy and have been found to be significantly more prevalent in AQP4-IgG + NMOSD than in MOGAD (7). Meanwhile, multiple locations (≥2) of SC and SC gray matter (GM) hyperintense lesions (H-sign) are presented more often in MOGAD patients (8). AQP4-IgG + NMOSD patients have been shown to have reduced GM cord volumes localized to lesion regions, whereas MOGAD patients had reduced GM cord volumes only when lesions were not resolved (9).

Clinically, patients with LETM typically present with paresis, sensory deficits, bowel, and bladder disturbances, and intense neuropathic pain (10–13). However, myelitis is only one of many triggers causing pain in NMOSD and MOGAD. Pain syndromes in NMOSD and MOGAD comprise headache, neuropathic pain, and musculoskeletal pain, including spasticity, painful tonic spasms, and back pain (14). Especially, in AQP4-IgG + NMOSD, pain is frequently chronic over the disease course and is one of the most disabling symptoms in over 80% of the patients (13, 15). Chronic pain is less prevalent in MOGAD (14), which may be linked to better recovery of acute lesions. Currently, it is unclear if non-myelitis attacks affect the SC or if myelitis attacks affect other CNS regions (16, 17), and also if subclinical affection relates to the pain experienced by patients.

This study aims to investigate the relationship between cervical SC volumes as well as white matter (WM) percentages and pain intensity in AQP4-IgG+NMOSD and MOGAD.

We hypothesized that different SC regional measures, in particular, WM percentages, between MOGAD and AQP4-IgG + NMOSD, will be observed.

We further aimed to profile in detail, SC magnetic resonance imaging (MRI), pain, and clinical data collected from subjects with relapses in between two consecutive visits as a case series in the two disease groups.



2 Methods


2.1 Participants

Cross-sectional data from 51 participants from an ongoing observational study in NMOSD and MOGAD (Experimental and Clinical Research Center, Charite—Universitätsmedizin Berlin) were screened for inclusion. Inclusion criteria were a minimum age of 18 years and seropositivity for antibodies against AQP4 in a fixed cell-based assay or MOG in a live cell-based assay at any time during the disease, along with the availability of SC MRI. Patients who were seronegative for AQP4-IgG and MOG-IgG or did not receive SC MRI were excluded. A total of 39 patients fulfilled the inclusion criteria. Twenty-three patients had a diagnosis of AQP4-IgG + NMOSD according to the international consensus diagnostic criteria for NMOSD 2015 (18). Due to MRI quality issues (motion artifacts), four AQP4-IgG + NMOSD participants were removed from the cohort. Fifteen subjects had a diagnosis of MOGAD according to the new MOGAD criteria (4). One subject with low-positive MOG-IgG titer (AQP4-IgG negative) and recurrent ON did not fulfill the MOGAD criteria by Banwell et al. but was included in the study as part of the MOGAD group. In our cross-sectional analysis, 20 AQP4-IgG + NMOSD and 16 MOGAD patients with previous disease-related attacks were included. Previous attacks consisted of myelitis, optic neuritis, brainstem attacks, and cerebral syndrome. Disease duration was calculated from the first clinical symptom to the MRI visit date.

Longitudinal data were available from four patients with additional attacks between two MRI visits, performed within one year. Phenotypes were described in detail to evaluate changes in the SC GM and WM percentages and pain in subjects with recent relapses, outside the acute stage. For this study, the “baseline” visit of each patient refers to the date when the first SC MRI was available.



2.2 Standard protocol approvals, registrations, and patient consent

The study was approved by the local ethics committee (EA1/131/09) and was conducted in accordance with the Declaration of Helsinki in its currently applicable version and specific German laws. All participants provided written informed consent.



2.3 Pain and disability assessment

A central characteristic of pain is that pain is identified from the first-person perspective. This is reflected in the current definition of pain by the International Association for the Study of Pain (IASP) as a sensory and emotional experience, giving epistemic authority to the person who qualifies their experience as pain.1

The Brief Pain Inventory (BPI) and the painDETECT Questionnaire (PDQ) were used to assess pain in general (BPI) and neuropathic pain (PDQ) (19–21). The BPI assesses the presence of pain, other than everyday kinds of pain such as minor headaches. It does not provide information on the type or origin of pain. It rates the average pain intensity experienced in the last 24 h as a mean of four subscales with an assessment of worst, least, average, and current by using numeric scales from 0 (“no pain”) to 10 (“pain as bad as you can imagine”). Furthermore, the BPI assesses seven domains of pain-related interference with daily life, including general activity, mood, walking ability, working ability, relations with other people, sleep, and enjoyment of life by using numeric scales from 0 to 10. A pain interference score is built as a mean of the seven subscales. Higher scores indicate worse health. The BPI reflects the current burden of pain on a person’s life.

The PDQ is designed to differentiate between nociceptive and neuropathic pain. PDQ scores ranging from 0 to 12 indicate nociceptive pain, scores from 13 to 18 indicate possible neuropathic pain, and scores from 19 to 35 indicate definite neuropathic pain. The PDQ allows for rating of average pain intensity in the last 4 weeks prior to the clinical visit by using a single numeric scale of 0–10.

Clinical disability was evaluated using the expanded disability status scale (EDSS) (22, 23), and we included sensory and pyramidal functional system scores as separate indicators for possible SC-related disability. The timed 25-foot walk (T25FW) and 9-hole peg tests (9HPT) performance scores (22, 24) were calculated by averaging the results from each repeat run. For T25FW, both forward and return runs were averaged, while for 9HPT, all runs—two per hand—were summed together and averaged.



2.4 MRI acquisition

Magnetic resonance imaging scans were performed on two 3-Tesla (Siemens MAGNETOM Trio Tim and Prisma, Erlangen, Germany) scanner models. The Trio MRI (Scanner 1) protocol included (1) a T1-weighted 3D magnetization prepared rapid gradient echo (MPRAGE) cerebral MRI [1 mm isotropic resolution, repetition time (TR) = 1,900 ms, time to echo (TE) = 3.03 ms], including the upper cervical cord; (2) a 2D-sagittal T2-weighted SC sequence (slice thickness = 2 mm, TR = 3,500 ms, TE = 101 ms, in-plane resolution = 0.91 mm × 0.91 mm) at the cervicothoracic and lumbar levels of the SC; and (3) a 2D phase-sensitive inversion recovery (PSIR) sequence (slice thickness = 5 mm, TR = 930 ms, TE = 3.22 ms, TI = 400 ms, in-plane resolution = 0.78mm × 0.78 mm) at the cervical C2-C3 intervertebral space level. The Prisma MRI (Scanner 2) protocol included (1) a T1-weighted 3D MPRAGE cerebral MRI (0.8 mm isotropic resolution, TR = 2,500 ms, TE = 2.22 ms, TI = 1,000 ms), including the upper cervical cord; (2) a 2D-sagittal short T1 inversion recovery (STIR) SC sequence (slice thickness = 3 mm, TR = 3,700 ms, TE = 36 ms, TI = 220 ms, in-plane resolution = 0.81 mm × 0.81 mm) at the cervicothoracic and lumbar levels; and (3) a 2D PSIR sequence with same parameters as with the Trio. No patients were imaged in the acute disease/myelitis phase or were treated with steroids less than 2 months prior to MRI scanning.



2.5 Spinal cord lesion analysis

SC T2-hyperintense lesion location and length (measured as vertebral segments spanned, where half segments were rounded up to the next full length) were analyzed using SC MRIs as detailed in Chien et al. (7), using 2D T2-weighted or 2D STIR SC scans. All images were reviewed and evaluated by CC (who had 8 years of experience in SC MRI reading and research). Of note, each level of cord lesion was only counted once.



2.6 Spinal cord gray matter and white matter segmentation

The PSIR sequence has been previously shown to allow for robust segmentation of SC GM using both semi-and fully automated algorithms (25). Thus, for the evaluation of regional SC measures, PSIR sequences at the C2/C3 intervertebral level were collected. Fifty PSIR scans from AQP4-IgG + NMOSD, MOGAD, multiple sclerosis patients, and healthy participants were converted to NIFTI format, and WM and GM were manually segmented in the phase-sensitive image, with reference to the magnitude image when lesions in the cord occurred in the image slice using ITK-SNAP2 (26). These WM and GM binary masks were used to train (n = 35 for training, n = 15 for validation) a deep learning, convolutional neural network (CNN) algorithm to automatically segment the phase-sensitive images of the PSIR scans with default training hyperparameters (27) to create a final model for use in our cohort PSIR scans. Segmented WM and GM and cervical cord (WM + GM) masks were then extracted for their volumes using fslstats,3 and WM and GM volumes were converted to percentages by dividing by the cervical cord volume and multiplying by 100. In this study, “cervical cord volume” is defined as the combined WM and GM volume extracted from the PSIR scans. As mentioned above, four patients from the AQP4-IgG + NMOSD sub-group were removed from the cohort due to MRI quality issues (motion artifacts and/or poor image quality causing erroneous segmentation). Figure 1 shows representative automatic segmentations of PSIR scans from AQP4-IgG + NMOSD (Figures 1A–C) and MOGAD (Figures 1D–F) patients.

[image: Figure 1]

FIGURE 1
 Representative segmentations of PSIR phase scans from an (A–C) AQP4-IgG + NMOSD and (D–F) a MOGAD patient using a trained CNN to automatically detect cervical cord GM (B,E) and WM (C,F). AQP4-IgG + NMOSD, Aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders; WM, White matter; GM, Gray matter; MOGAD, Myelin oligodendrocyte associated disease.




2.7 Mean upper cervical cord area analysis

All mean upper cervical cord area (MUCCA) (28) measurements were performed on 3D cerebral MPRAGE scans and blinded to patient antibody serostatus, as detailed in Chien et al. (29). Briefly, five consecutive slices, using the C2-C3 intervertebral space as a middle landmark, were segmented using JIM software (Version 7.0, http://www.xinapse.com/) and then averaged to obtain one mean cross-sectional area for each subject using an in-house python script. MUCCA was calculated in this cohort as a representative (gold-standard) total SC atrophy measure, as shown previously to be robust in AQP4-IgG + NMOSD patients (15).



2.8 Statistical analysis

Demographic values were compared between AQP4-IgG + NMOSD and MOGAD patients using appropriate parametric and non-parametric statistical tests as described in Table 1. Chi-squared tests were used to compare SC lesion load between patient groups. Multivariable linear regression models were applied to test associations of SC WM% and cervical cord volumes with clinical disability and pain measures, controlling for age, sex, and disease duration in each group. We chose to only perform all multivariable linear regression analyses using only the cervical cord volume and SC WM% metrics, since the SC GM% is relative to the WM%.



TABLE 1 Demographics of the study cohort.
[image: Table1]

Cervical cord volume extracted from PSIR scans was compared with MUCCA (gold standard) using a Pearson’s correlation test as an evaluation for the robustness of the automated SC segmentation in this cohort. Pearson’s correlation test was used to analyze the association between GM and WM volumes, as well as GM% and WM% with cervical cord volume in both patient groups.

Comparison within and between group SC WM%, GM%, and cervical cord volume were performed using Welch two-sample t-tests and effect sizes were evaluated using Cohen’s d, which were also applied to compare these SC metrics in patients with and without pain.

Multivariable linear regression modeling in each patient group to investigate associations between time since the last clinical attack with SC WM% and cervical cord volumes included age and sex as covariates.

In all tests, a value of p of <0.05 was considered statistically significant. All data were analyzed and graphs were created using R.4 The longitudinal case series data were presented without statistical analysis due to the small sample size (n = 4).




3 Results


3.1 Cohort demographics

Demographics of AQP4-IgG + NMOSD and MOGAD patients in this cohort are shown in Table 1.

Fourteen subjects with AQP4-IgG + NMOSD and 10 subjects with MOGAD experienced pain, other than everyday kinds of minor pain at the time of assessment. Eight subjects with AQP4-IgG + NMOSD and two subjects with MOGAD fulfilled the criteria for neuropathic pain. Pain courses comprised persistent pain with slight fluctuations (n = 3), persistent pain with pain attacks (n = 4), and pain attacks without pain between them (n = 3). The pain was located on one or several parts of the body, including legs (n = 10), trunk (n = 9), feet (n = 4), hip/bottom (n = 3), hands (n = 2), arms (n = 1), and head (n = 1). The pain was described to be electric-like (n = 9), tingling (n = 9), burning (n = 6), associated with mechanical (n = 8) and thermal (n = 8) allodynia, and/or in an area of numbness (n = 9).

Table 2 provides a summary of the SC lesion count and spinal cord levels affected in each patient group.



TABLE 2 Patients with T2-hyperintense spinal cord lesions counts and levels of injury.
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3.2 Cervical cord volume and WM percentage associations with pain and disability measurements

In AQP4-IgG + NMOSD, the cervical cord volume was associated with mean pain severity within 24 h. The lower the cervical cord volume, the higher the pain intensity (Table 3).



TABLE 3 SC cervical cord volume and WM percentage associations with pain severity and interference within the previous 24 h of assessment.
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Neither WM% or GM% differed in AQP4-IgG + NMOSD patients with and without pain (WM%: t = −0.18, p = 0.862, Cohen’s d = −0.09, GM%: t = 0.16, p = 0.873, Cohen’s d = 0.08). In MOGAD, both cervical cord volume and WM% did not differ between patients with and without pain (cervical cord volume: t = −0.55, p = 0.605, Cohen’s d = −0.37; WM%: t = −0.42, p = 0.680, Cohen’s d = −0.21; GM%: t = 0.43, p = 0.677, Cohen’s d = 0.21). There was a difference in cervical cord volumes between AQP4-IgG + NMOSD patients with pain vs. those without (t = −2.3, p = 0.042, Cohen’s d = −1.2), where patients with pain had on average lower cervical cord volumes than those without pain.

Figure 2 illustrates the associations found between BPI pain severity and intensity vs. cervical cord volume in AQP4-IgG + NMOSD patients.

[image: Figure 2]

FIGURE 2
 The association of the (A) BPI mean pain severity score; and (B) BPI mean interference score in the previous 24 h with cervical cord volume (mL) in AQP4-IgG + NMOSD. AQP4-IgG + NMOSD, Aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders; BPI, Brief pain inventory.


No significant associations were found between cervical cord volume and SC WM percentage with pain metrics, EDSS, or the sensory and pyramidal functional systems scores (Table 4).



TABLE 4 Cervical cord volume and SC WM percentage associations with clinical disability.
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No associations were found between cervical cord volume or SC WM% and 9HPT test times or T25FW speed (shown in Supplementary Table 1).



3.3 Cervical cord volume in relation to MUCCA and WM, GM volumes, and percentages

To check the segmentation of SC regions using the CNN algorithm, we tested the cervical cord volume against MUCCA, the gold standard in SC atrophy measures (28), in the whole cohort. To evaluate the contributions of GM and WM volumes and percentages from each group at the C2/C3 level to the cervical cord volume, we similarly conducted Pearson’s correction tests (Supplementary Figure 1).

The cervical cord volume and MUCCA were strongly associated (R = 0.51, p = 0.0015). Interestingly, the cord GM volume was highly associated with cervical cord volume in MOGAD, while there was slightly less contribution of the GM volume to the PSIR cervical cord volume in AQP4-IgG + NMOSD patients (R = 0.69, p = 0.0033 and R = 0.53, p = 0.015, respectively; Supplementary Figure 1B). Cord WM volume was highly associated with cervical cord volume in both cohorts (AQP4-IgG + NMOSD: R = 0.98, p = 2e−13 and MOGAD: R = 0.99, p = 3.9e−12; Supplementary Figure 1C). Our analysis revealed similar non-significant trends with AQP4-IgG + NMOSD and MOGAD GM% decreasing, with larger cervical cord volumes. The opposite trend was also seen in the WM% vs. cervical cord volume in both disease groups (Supplementary Figures 1D,E).



3.4 Cervical cord volume, GM, and WM percentage comparisons between patient groups

No significant differences in cervical cord volume or WM% were found between AQP4-IgG + NMOSD or MOGAD at the C2/C3 level of the cord (t = −1.84, p = 0.076, Cohen’s d = −0.626; t = −0.503, p = 0.618, Cohen’s d = −0.165; respectively). There was also no difference found between group SC GM% (t = 0.47, p = 0.644, Cohen’s d = −0.621). However, it was observed that both patient groups with a history of myelitis attacks showed a general (but not significant) decrease in both cervical cord volume and SC WM percentage compared to patients without myelitis attacks within each group (Figure 3). As a consequence of GM% being complementary to the WM%, in both groups, there was a slight, non-significant increase in SC GM% in patients with a history of myelitis attacks (data not shown). From Figure 3, it can be seen that 71% (12 of 17) of AQP4-IgG + NMOSD and 88% (7 of 8) of MOGAD patients with a history of myelitis attacks reported current pain. Meanwhile, 47% (8 of 17) of AQP4-IgG + NMOSD and only 13% (1 of 8) of MOGAD patients with previous myelitis reported neuropathic pain. Thus, we did not test associations of neuropathic pain with SC measures further in the MOGAD patients.

[image: Figure 3]

FIGURE 3
 Comparison of panels (A,B) cervical cord volume; and (C,D) WM percent in AQP4-IgG + NMOSD and MOGAD patients. The presence of pain and presence of NP in AQP4-IgG + NMOSD and MOGAD patients are shown in panels (E–H). The red dots and numbers indicate the mean values of each metric per group. AQP4-IgG + NMOSD, Aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders; MOGAD, Myelin oligodendrocyte associated disease; WM, White matter; and NP, Neuropathic pain.




3.5 Time since last attack, SC cervical volume, and WM percentage

No associations were found when evaluating cervical cord volume (AQP4-IgG + NMOSD: β = 0.20, p = 0.419; MOGAD: β = −0.23, p = 0.438), and time passed since the last clinical symptom of any type. In AQP4-IgG + NMOSD, we observed some SC WM% decreased over time after an attack (β = −0.41, p = 0.096). In MOGAD, this trend was not observed (β = −0.16, p = 0.570).



3.6 Longitudinal case series of patients with additional attacks between follow-up visits

Out of the 35 patients included in this study, four patients with longitudinal clinical and MRI data were found to have an additional attack between visits. Supplementary Table 2 shows an in-depth qualitative assessment of these patients in relation to their attack history, prevalence of pain, and SC MRI findings.

Subject 1 (AQP4-IgG + NMOSD) experienced an optic neuritis attack 1 month prior to the second SC scan (two optic neuritis attacks in total between visits). This patient showed an increased GM% in the cord of approximately 2% (from 0.079 to 0.091 mL) at follow-up, with an increase in cervical cord volume (from 0.38 to 0.40 mL) and relatively stable WM volume (0.302–0.308 mL). Interestingly, although pain intensity was stable in this patient, the pain location expanded from the feet to the legs and additionally to the head/neck during the second visit.

Subject 2 was also diagnosed with AQP4-IgG + NMOSD and experienced a myelitis attack 5 months prior to the follow-up visit. Again, GM% was increased by roughly 3% (from 0.070 to 0.079 mL), but with an associated 3% decrease in WM% (from 0.347 to 0.317 mL) and a decrease in cervical cord volume (from 0.42 to 0.40 mL). In this patient, the neuropathic pain score increased from baseline to follow-up.

Two MOGAD patients (Subjects 3 and 4) had a visit more than 6 months after a myelitis attack. Both subjects showed a GM% decrease of ~1–2% between the two visits, along with a decrease in the cervical cord volume. In both MOGAD patients, pain decreased over time.




4 Discussion

Spinal cord affection is a central issue in AQP4-IgG + NMOSD and MOGAD. Our study highlights regional SC affection in these diseases and its relation to pain intensity:

1. Higher mean pain severity and pain interference with daily-life activities in AQP4-IgG + NMOSD patients were significantly associated with decreased cervical cord volume at the C2-C3 cord level.

2. GM volume at the C2-C3 intervertebral level tended to contribute more to cervical cord volume in MOGAD than in AQP4-IgG + NMOSD patients.

3. WM percentage in AQP4-IgG + NMOSD patients tended to decrease after a myelitis attack (non-significant).

4. Two AQP4-IgG + NMOSD patients with clinical attacks between longitudinal follow-up visits showed an increase in GM% (2–3%), while two MOGAD patients showed a decrease in GM% (1–2%).


4.1 Association of pain intensity and cervical cord volume

Pain is one of the most disabling symptoms of AQP4-IgG + NMOSD patients and has a severe impact on the quality of life (13). Pain syndromes have various origins, comprising among others myelitis-mediated neuropathic pain, ON-related headaches, musculoskeletal pain, and spasticity-related pain (13). The origin of pain is often complex and difficult to determine and it is important to note that pain is always an individual experience, comprising sensory and emotional aspects. Unfortunately, structural pain assessment is frequently lacking in clinical practice and the investigation of associations between pain and structural disease markers is scarce. In our cohort, the examination of the interrelation between cervical cord volume on the cervical level and measurements of pain revealed a negative association with the mean pain severity and pain interference with daily-life activities in AQP4-IgG + NMOSD patients. These findings add to our previous study, showing an inverse correlation of the thalamic VPN volume with pain intensity in AQP4-IgG + NMOSD (30). An association between lower cervical cord volume and higher pain intensity through both damage of decussating fibers of the spinothalamic tract as previously described in MS (31) and through myelitis-related GM damage is conceivable (32, 33). Further exploration is needed to detect if attack-independent tissue damage (34) may contribute to SC atrophy (16, 17), and thus aggravate pain over time. Moreover, longitudinal pain assessment from disease onset is necessary to analyze pathogenic interrelations between the origin of pain and structural pathology. Consequently, pain assessment is necessary to rate disease-related disability beyond the EDSS (35) and to gain further insights into the disease mechanisms of AQP4-IgG + NMOSD.

No associations occurred between WM percentages and clinical pain measurements in AQP4-IgG + NMOSD patients and between SC cervical volume or WM percentage and clinical pain measurements in MOGAD patients. Our findings are consistent with the literature showing that MOGAD has a lower clinical myelitis incidence with a smaller chronic lesion burden (7) and a lower impact of chronic pain syndromes than AQP4-IgG + NMOSD (14). Larger study samples are needed to detect a potential association between pain and spinal cord affection in MOGAD.

In line with previous studies, overall clinical disability, as measured by EDSS, was higher in AQP4-IgG + NMOSD than in MOGAD patients (7, 9). However, this difference in general disability was not reflected in cross-sectional cervical cord volume and/or WM percentage in the cervical cord measured using PSIR scans. Furthermore, cervical cord volume and SC WM percentages were not associated with the EDSS, 9HPT, and T25FW in either patient group. Although our AQP4-IgG + NMOSD cohort had a higher EDSS at baseline compared to that of the MOGAD cohort, the effect of SC injury may not be well reflected in EDSS scores ≤4 (36).



4.2 Cervical GM and WM profiles in AQP4-IgG + NMOSD and MOGAD

MUCCA has previously been shown to reflect total cord volumes in AQP4-IgG + NMOSD (28). Our findings that the cervical cord volumes are highly correlated with MUCCA in the entire cohort indicate that our method is reliable for evaluation of SC changes in these diseases. When investigating WM and GM regional contributions to the cervical cord volume, we found that in both diseases, GM volume increased with increasing cervical cord volume. However, the AQP4-IgG + NMOSD patient cervical cord volumes were generally lower and this correlation analysis showed less contribution of the GM volume to the cervical cord volume than in MOGAD. The range of SC GM% measured in our entire cohort is similar to the 15–20% GM proportion found in a post-mortem study in healthy donor spines (37). Interestingly, the mean SC GM% of AQP4-IgG+ patients was higher than in MOGAD, although not statistically significant. Assuming that both diseases are associated with a reduced SC volume, these findings could indicate that WM pathology contributes to pain increase in NMOSD. Due to the small sample size, this theory remains speculative and should be investigated in a larger cohort.



4.3 Associations of SC metrics with clinical attacks

Generally, we observed that AQP4-IgG + NMOSD patients had lower cervical cord volumes than MOGAD, both without and with myelitis. When assessing how the last clinical attack(s) influences the SC, we observed that AQP4-IgG + NMOSD patients tended toward cord WM% decrease after any type of disease-related attack. These observations were cross-sectional and did not include MRIs close to an attack. Our observation could indicate continued SC WM degeneration after AQP4-IgG + NMOSD-related attacks (33), although this decrease in WM could be due to an increase in the GM% when the primary lesional site is located purely in the GM (38). SC GM has also been found to be about twice as stiff as SC WM, such that mechanical compression of the WM is much easier, especially in the axial plane (to which our PSIR sequence was oriented) (39). It stands to reason that GM inflammation, edema, or astrogliosis could cause this region to expand and effectively compress the WM in the SC. Thus, it may well be important to evaluate both GM and WM in relation to time since an acute attack for dynamic changes in the SC.

We did not restrict our analysis to only myelitis attacks as it is unclear how non-attack-related regions are affected by either disease. In one study, it has been found that SC and retinal measures are associated with multiple sclerosis, suggesting a whole CNS pathology may occur during the disease course (40). Furthermore, we have previously shown that combinations of attacks are associated with damage outside of the attack location (34). Thus, we included PSIR SC analysis in this study from patients who did not only have a myelitis attack, although myelitis does increase SC atrophy in these patients (7), which was also evident in our current findings.



4.4 Longitudinal case series

In one AQP4-IgG + NMOSD patient, SC GM% increase was evident after an optic neuritis attack with stable WM% and cervical cord volume, as well as stable pain intensity.

Meanwhile, in another AQP4-IgG + NMOSD patient, there was an emergence of neuropathic pain after a myelitis attack five months prior to the follow-up visit. This characteristic is conceivably linked to the SC GM% increase with WM% decrease and myelitis attack.

Since AQP4 is expressed on astrocytes, and AQP4-IgG has been shown to cause a complement-mediated injury of astrocytes and neurons, this injury could lead to astrogliosis and cellular hypertrophy in the GM (41). As a consequence, secondary WM damage could occur nearby (42). Thus, our observation of increased GM% in the SC in two AQP4-IgG + NMOSD patients indicates that systemic inflammatory mechanisms (43) may be at play in this disease, even when an attack occurs elsewhere in the CNS, e.g., in the optic nerves.

In both MOGAD patients, cervical cord volume and GM% were decreased with additional myelitis attacks, however pain was decreased. These observations are in line with a previous study, where GM volume was found to be decreased in MOGAD patients who had resolved SC lesions compared to MOGAD patients without any lesions/myelitis attacks (9).



4.5 Limitations

The main limitation of our study is that our sample sizes are generally small and differ between AQP4-IgG + NMOSD and MOGAD patients. This limitation did not allow us to evaluate our data with true statistical equivalency and might have concealed significant findings in the trends we observed. Furthermore, the sample size restricted us from performing an extensive sub-analysis of subjects with myelitis as well as with respect to different pain syndromes. Future studies will benefit from including detailed pain information beyond questionnaire-based assessment. Still, we found a negative association between pain intensity and SC cervical cord volume in AQP4-IgG + NMOSD. Of note, our data do not give any information about the origin of pain and the pain duration. We therefore cannot show a causal relationship between the origin of pain and the SC volume.

Another limitation is the cross-sectional and non-acute design of this study, which did not allow for measurements of SC WM/GM changes over time. Furthermore, our longitudinal case series does not allow for definite pathogenic conclusions. However, we were able to detail qualitative and quantitative phenotypes of clinical and imaging metrics from four subjects with clinical attacks within one year. Future studies with MRI scans acute to a disease-related attack, larger sample sizes, and longitudinal follow-ups are required to investigate our hypotheses further.

Furthermore, our study lacks a SC imaging dataset from healthy controls. Our findings that the cervical cord volumes extracted from our PSIR sequence are highly associated with MUCCA, the gold standard in evaluating SC atrophy in NMOSD (28), however indicate that the regional SC metrics we extracted are reliable. Moreover, it has previously been shown that MUCCA is decreased in NMOSD, but not in MOGAD compared to healthy controls (7). Similarly, our study provides indications of generally lower cervical cord volumes in AQP4-IgG + NMOSD patients with and without myelitis compared with MOGAD. Future inclusion of healthy participant PSIR-extracted WM and GM SC volumes would benefit evaluations of attack-related damage to different SC regions in these two rare diseases and the collection of this MRI sequence is warranted.




5 Conclusion

Our study shows that in AQP4-IgG + NMOSD, lower SC volume was associated with increased pain intensity. This finding highlights the relevance of thorough pain workup and MRI monitoring during the disease course. Clinically feasible 2D PSIR MRIs at the C2/C3 intervertebral SC level can be reliably segmented using an automated CNN algorithm, even in a longitudinal setting. Interestingly, our MRI results indicate a different affection of GM volumes relative to SC volume between the two disease entities based both on the cross-sectional data and longitudinal data. Larger studies in both diseases with longitudinal and acute monitoring to evaluate if patients show true atrophy and pain symptom evolution, even without additional myelitis attacks are required.
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SUPPLEMENTARY FIGURE 1 | Association of MUCCA with (A) total cord volume. Associations of cervical cord volume with (B) cord GM volume, (C) cord WM volume, (D) cord GM percent, and (E) cord WM percent extracted from segmented PSIR images at the C2/C3 level. AQP4-IgG+NMOSD, Aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders; MOGAD, Myelin oligodendrocyte associated disease; MUCCA, Mean upper cervical cord area.




Footnotes

1   
https://www.iasp-pain.org/


2   
www.itksnap.org


3   
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils


4   
https://www.r-project.org/
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Objective

To assess the alteration of individual brain morphological and functional network topological properties and their clinical significance in patients with neuromyelitis optica spectrum disorder (NMOSD).





Materials and methods

Eighteen patients with NMOSD and twenty-two healthy controls (HCs) were included. The clinical assessment of NMOSD patients involved evaluations of disability status, cognitive function, and fatigue impact. For each participant, brain images, including high-resolution T1-weighted images for individual morphological brain networks (MBNs) and resting-state functional MR images for functional brain networks (FBNs) were obtained. Topological properties were calculated and compared for both MBNs and FBNs. Then, partial correlation analysis was performed to investigate the relationships between the altered network properties and clinical variables. Finally, the altered network topological properties were used to classify NMOSD patients from HCs and to analyses time- to-progression of the patients.





Results

The average Expanded Disability Status Scale score of NMOSD patients was 1.05 (range from 0 to 2), indicating mild disability. Compared to HCs, NMOSD patients exhibited a higher normalized characteristic path length (λ) in their MBNs (P = 0.0118, FDR corrected) but showed no significant differences in the global properties of FBNs (p: 0.405-0.488). Network-based statistical analysis revealed that MBNs had more significantly altered connections (P< 0.01, NBS corrected) than FBNs. Altered nodal properties of MBNs were correlated with disease duration or fatigue scores (P< 0.05/6 with Bonferroni correction). Using the altered nodal properties of MBNs, the accuracy of classification of NMOSD patients versus HCs was 96.4%, with a sensitivity of 93.3% and a specificity of 100%. This accuracy was better than that achieved using the altered nodal properties of FBNs. Nodal properties of MBN significantly predicted Expanded Disability Status Scale worsening in patients with NMOSD.





Conclusion

The results indicated that patients with mild disability NMOSD exhibited compensatory increases in local network properties to maintain overall stability. Furthermore, the alterations in the morphological network nodal properties of NMOSD patients not only had better relevance for clinical assessments compared with functional network nodal properties, but also exhibited predictive values of EDSS worsening.





Keywords: brain connectomics, neuromyelitis optica spectrum disorder, individual morphological brain network, functional brain networks, topological properties





Highlights

	Disrupted global topological properties of mildly disabled NMOSD patients were found only in MBNs.

	In NMOSD patients, disrupted nodal properties were found in both MBNs and FBNs.

	Network-based statistical analysis revealed that MBNs had more significantly altered morphological connections than FBNs.

	Compared to FBNs, MBNs showed better correlations with clinical variables, and better classification efficacy.

	Nodal properties of MBN were predictive of Expanded Disability Status Scale worsening in NMOSD.






1 Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is a relatively rare central nervous system autoimmune disease. It is more prevalent in young adults of Asian descent, with a higher incidence among females (1). Clinically, it is characterized by severe optic neuritis (ON) and longitudinally extensive transverse myelitis (LETM). Common lesion sites include the bottom of the fourth ventricle, periependymal gray matter (GM), hypothalamus, walls of the third ventricle, and periventricular regions (1, 2). Patients often experience a prolonged and relapsing course, with the possibility of severe neurological symptoms and even residual neurological impairments (3).

Magnetic resonance imaging (MRI) plays a crucial role in the early identification of NMOSD, guiding aquaporin-4 (AQP4) antibody testing, and aiding in acute-phase treatment decisions. It is also a powerful tool for studying the underlying pathological mechanisms of NMOSD when combined with others novel neuroimaging approaches. For instance, some studies have found that NMOSD patients exhibit increased morphological connectivity in the primary motor modules and motor-sensory related areas of the cerebellum (4), while white matter fiber bundles such as the thalamic radiation, corticospinal tracts, and dorsal and ventral longitudinal fasciculi are damaged (5), leading to decreased local connectivity efficiency (6). However, the alterations in brain structure and function, as well as the mechanisms of plasticity in NMOSD patients, are not fully understood. There are contradictory reports regarding functional connectivity changes, with increased functional connections observed in the default mode network, dorsal attention network, and thalamic network (7), while disease-specific functional connections, such as those in the cerebellar motor modules, show a decrease (4). Additionally, there are conflicting reports of significant functional connectivity increases (8) and decreases in the primary and secondary visual networks (4, 7, 9). Despite local functional connectivity changes, the overall topological properties of the brain tend to remain relatively stable, which is considered a compensatory plasticity mechanism to cope with functional disabilities (10).

The brain is a vast, intricate, and highly efficient operating system composed of billions of neurons. As mentioned earlier, the connectomics, as a tool for studying macroscopic brain white matter structure and functional networks, has been used in NMOSD research (4, 6). However, Pang et al. (11) has demonstrated that the geometry of the brain plays a crucial role in brain function, rather than the connectome eigenmodes. The geometric shape of the brain and its cortical morphological brain networks may provide better insights into the clinical symptoms of NMOSD patients. Indeed, studies on NMOSD patients have found brain cortical atrophy associated with disease progression (12). However, the specific associations between cortical changes and clinical symptoms in NMOSD patients have not been clearly established yet. Individual-based graph cortical morphological brain network analysis is a novel and advanced method that can provide mesoscopic-scale cortical structural information and elucidate its biological significance.

This study hypothesized that cortical geometric changes caused by pathological factors, such as inflammatory lesions, in NMOSD patients can lead to individual cortical morphological brain network (MBN) alterations, which may explain the clinical symptoms of these patients. To explore this hypothesis, this study computed single-subject MBNs based on region similarity methods and applied graph theoretical analysis to investigate the topological properties of constructed networks in NMOSD patients. The resting-state functional brain network (FBN) was also used as a reference for comparison. Correlation analysis was then employed to observe the relationships between network topological properties and clinical variables. Finally, the altered network matrices of topological properties were used to classify NMOSD patients from healthy controls (HCs) and to predictive of disability progression of the patients.




2 Materials and methods



2.1 Participants

In this study, 21 NMOSD patients and 23 HCs were consecutively recruited at the First Affiliated Hospital of Nanchang University from April 2018 to July 2022. The patients’ inclusion criteria were as follows: (1) met the 2015 international consensus diagnostic criteria of NMOSD; (2) were right-handed and were 18–60 years of age; (3) were AQP4 antibody-positive in serology and/or cerebrospinal fluid status; (4) had not taken drugs such as high-dose steroids for at least 2 weeks before MRI scanning. The exclusion criteria were as follows: (1) a history of other neurological or psychiatric diseases; (2) had contraindications for MRI scans and, (3) image artifacts or incomplete clinical information. In this study, all the NMOSD patients had mild disabilities with EDSS scores of no more than 2 (13, 14).

All of the healthy controls (HCs) were screened using the Clinical Diagnostic Interview Nonpatient Version without significant cognitive disorders, head trauma, or MRI contraindications.

The study was approved by the local human research Ethics Committee and the institutional review board.




2.2 Clinical assessment

Each NMOSD patient underwent a comprehensive clinical interview and physical examination, which included the following assessments: (1) the Expanded Disability Status Scale (EDSS) to determine the severity of disability on a scale of 0 to 10. The EDSS has been used to assess the neurological disability of multiple sclerosis, as well as the severity of relapses in patients with NMOSD (14–16), it has validated in NMOSD (16). (2) The Paced Auditory Serial Addition Test (PASAT) to evaluate cognitive function, including auditory information processing speed, flexibility, and calculation ability. (3) The Modified Fatigue Impact Scale (MFIS) to assess the impact of fatigue on daily living.




2.3 MRI protocol

The brain images were acquired on a 3.0 Tesla MRI system (Trio, Siemens Healthcare, Erlangen, Germany) with a standard 8‐channel head coil. First, 3-D T1-weighted images were acquired on a magnetization-prepared rapid gradient-echo (MP-RAGE) sequence with the following parameters: repetition time = 1,900 ms, echo time = 2.26 ms, matrix size = 256 × 256, field of view = 240×240 mm, flip angle = 9°, and 176 sagittal slices with thickness = 1.0 mm. Second, resting-state functional MRI (fMRI) were acquired on an echo-planar imaging sequence with the following parameters: repetition time = 2000 ms, echo time = 30 ms, field of view = 200 × 200 mm, flip angle = 90°, 30 axial slices, and interleaved scan with 240 time points. Third, a conventional MRI protocol that included diffusion-weighted imaging (DWI), T2-weighted imaging, and T2-fluid attenuated inversion recovery images was also performed for patient diagnosis and lesion detection. The participants were asked to close their eyes, remain motionless, and avoid systematic thinking and falling asleep during the MRI scan.




2.4 Morphological data preprocessing and lesion volume measurement

After manually checking the apparent artifacts, the 3-D T1‐weighted data were preprocessed using the Computational Anatomy Toolbox (CAT12; www.neuro.uni-jena.de/cat/) and run through Statistical Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Each individual T1‐weighted image was segmented into GM, white matter, and cerebrospinal fluid. Brain parenchymal fraction (BPF) was defined as the ratio between the brain parenchymal (GM + white matter) volume and the total volume. Then, GM images were normalized into Montreal Neurological Institute (MNI) 152 space using the Diffeomorphic Anatomical Registration Through Exponential Lie Algebra (DARTEL) modulation approach. Finally, GM images were resliced to a 2 mm isotropic voxel size and spatially smoothed using a Gaussian kernel of 6 mm full-width at half maximum (FWHM).

T2WI lesion volumes were automatically obtained using the Lesion Segmentation Tool (LST) (17) and SPM12 software. Then, the lesion masks in patients were used to fill 3D T1-weighted MR images by the Lesion-Filling Tool (LFT), thereby eliminating the impact of these lesions on brain network construction.




2.5 Functional data preprocessing

Resting-state fMRI data were preprocessed using Data Processing & Analysis of Brain Imaging (DPABI, v4.2, http://www.rfmri.org/dpabi) based on SPM12. The standard processing steps (18) included discarding the first 10 time points; slice timing; realignment and correcting (230 remaining time points); coregistering to individual 3-D T1-weighted images; normalization to MNI space; reslicing the functional images (3 × 3 × 3 mm3); spatially smoothing with a 6 mm-FWHM Gaussian kernel; detrending and temporal filtering (0.01–0.1 Hz); and nuisance regression (Friston 24-parameter model motion parameters, mean framewise displacement, white matter, cerebrospinal fluid, and global signals).




2.6 Network construction

Morphological and functional networks were constructed according to the previous approach (19). First, the nodes of network were defined according to the automated anatomical atlas (AAL) template including 90 cortical and subcortical regions (20).

The edges of network were defined as the interregional similarity based on Kullback–Leibler divergence-based similarity (KLS) measurements for morphological networks (19, 21) and based on interregional linear Pearson correlations for functional networks (22).




2.7 Network topological properties analysis

Individual network topological properties were processed using the graph-theoretical network analysis (GRETNA; http://www.nitrc.org/projects/gretna/) toolbox based on 90 × 90 weighted matrices at each sparsity threshold (22). According to previous studies (19, 23), we selected a wide range of sparsity (S) thresholds (0.05–0.4) and calculated the area under the curve (AUC) over the S thresholds with an interval step of 0.01 for global and nodal topological properties of the MBNs, to avoid potential bias of any arbitrary single threshold selection (21, 24). The global topological properties include the small‐worldness (sigma, σ), clustering coefficient (Cp) and normalized clustering coefficient (gamma, γ), characteristic path length (Lp) and normalized characteristic path length (lambda, λ), network global efficiency ( ) and local efficiency (Eloc). For global measures, low values of Lp, λ, and high   reflect distributed network integration and the ability for information communication; while high values of  , γ, and Eloc reflect network segregation, i.e., strong ability of information transfer of interconnected regions. The nodal topological properties included nodal degree, nodal betweenness centrality and nodal efficiency, reflect the topological importance of nodes in the network.




2.8 Statistical analysis

The demographic and clinical variables of NMOSD and HC groups were compared using the Statistical Package for the Social Sciences (SPSS) software (version 21.0; IBM Corp., Armonk, New York, USA). Each AUC of the global and nodal topological metrics were compared using nonparametric permutation test (10,000 permutations) for between‐group differences (24, 25), and the Benjamini-Hochberg false discovery rate (FDR q value< 0.05) correction was used for multiple comparisons (24).

Internodal connections with between-group differences in nodal characteristics were compared by a network-based statistical approach (24, 25) (NBS; http://www.nitrc.org/projects/nbs/; corrected at P< 0.01).

Partial correlation analysis was performed to examine the relationships between the significantly altered global and/or nodal network properties and clinical variables, controlling for age and sex as confounding variables (Bonferroni correction< 0.05; IBM SPSS Statistics V21.0).

We performed mediation analysis using the SPSS online (https://spssau.com/en/index.html) to further elucidate the relationship among morphological metrics, functional network metrics, and clinical characteristics. In the mediation analysis, total effect of X on Y(c) = indirect effect of X on Y through M (a×b) + direct effect of X on Y(c'), only variables that showed a significant correlation with others were considered as independent (morphological metrics), dependent (clinical characteristics), or mediating (functional network metrics) variables. The significance analysis was based on 10,000 bootstrap realizations, and age, sex as nuisance variables.

We performed SVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) to determine the efficacy of detecting individual NMOSD using the altered network matrices of topological properties (26). 70% of the data were used as the training set to train and the remaining as the test set. The accuracy, sensitivity and specificity of SVM models were calculated. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to evaluate the performance of the models.

Finally, one-way Cox Regression was used for feature screening in order to avoid overfitting. Cox proportional hazards model and Kaplan-Meier survival analysis were used to analyses time-to-progression data.





3 Results



3.1 Participant demographic and clinical characteristics

Two patients with NMOSD and one HC were excluded due to excessive head motion, and one patient with NMOSD was excluded due to significant data artifacts. Finally, 18 NMOSD patients and 22 healthy participants were included in the comparative study. In the NMOSD patients, the median disease duration was 13 months (2 to 114 months), the median number of relapses was 1 (1 to 4). Four patients had solely spinal lesions, 12 patients had brain lesions (median:1.252 ml; range: 0.016-8.773 ml), including 10 patients with periventricular white matter involvement, 8 patients with centrum semiovale involvement, 6 patients with brain stem or medulla oblongata involvement, 4 patients with area postrema involvement, 2 patients with cerebellum involvement, 1 patient with diencephalon involvement. Seven patients had both spinal cord and brain lesions. The lesion involved the optic nerve alone in 2 patients, and the lesion involved the optic nerve, spinal cord and brain in only 1 patient. There was no significant difference in BPF between patients and controls (P = 0.929) (Table 1).


Table 1 | Demographic and clinical characteristics of NMOSD patients and HCs.






3.2 Global properties of MBNs and FBNs

Based on the predetermined connection density, both the NMOSD patient group and the HC group showed small-world properties in MBNs and FBNs (γ > 1, λ ≈ 1, γ/λ > 1). There were no significant differences in the global properties of FBNs between NMOSD patients and HCs (P > 0.05). In contrast, compared with HCs, NMOSD patients showed a significant decrease in λ of MBNs (P = 0.0118, FDR corrected, effect size: 0.354) but not in other global properties of MBNs (Table 2).


Table 2 | Group comparisons of AUC values of global properties of MBNs and FBNs between NMOSD patients and HCs.






3.3 Nodal properties of MBNs and FBNs

For node centrality measures of MBNs and FBNs, significant differences are shown in Figure 1 (Supplementary Tables S1, S2) between patients with NMOSD and HCs (P< 0.05, FDR corrected). In NMOSD patients, except for the left olfactory cortex, both MBN and FBN showed a decrease in nodal betweenness (Nb), but there was no overlap in other nodal properties that decreased in brain regions. Among the brain regions where nodal properties were increased in NMOSD patients, the MBN exhibited more compensatory increases in brain areas associated with motor, visual, and emotional functions, such as the motor network (MON), visual I network (VisI), frontoparietal network (FPN), and medial frontal network (MFN), than the FBN.




Figure 1 | Regions with significant alterations in the nodal properties of MBNs and FBNs between NMOSD patients and healthy subjects (P< 0.05, FDR corrected). All the brain regions were defined by AAL-90; see Supplementary Tables S1, S2 for the full names of the nodes in the figure.






3.4 Alterations in the connection of MBNs and FBNs

Compared with HCs, both MBNs and FBNs in NMOSD patients had increased and decreased network connectivity (P< 0.01, NBS corrected) (Figure 2). For MBNs, significantly increased connections involving 54 nodes and 74 edges, as well as decreased connections involving 23 nodes and 23 edges, were observed in patients compared with HCs. For FBNs, there were fewer significant alterations in the connections in patients compared to MBNs, with significantly increased connections involving 16 nodes and 18 edges and decreased connections involving 16 nodes and 13 edges, respectively, compared with HCs.




Figure 2 | NMOSD-related alterations in the network connections in MBNs and FBNs (P< 0.01, NBS corrected). Each node denotes a brain region of AAL-90. Significantly decreased connections in patients with NMOSD compared with HCs are presented in blue, and increased connections are presented in red. Heatmaps show the P values between the nodes and the edges with significant alterations (binary matrix). LH, left hemisphere; RH, right hemisphere.






3.5 Relationships between global network properties and clinical variables

The relationships between the global network properties of patients with NMOSD and clinical variables were shown in Figure 3 and Supplementary Tables S3, S4: (1) disease duration was correlated with the gamma (γ) AUC (P = 0.036, without correction), the sigma (σ) AUC (P = 0.049, without correction) of MBNs; and (2) the lambda (λ) AUC of MBNs was correlated with PASAT scores (P = 0.049, without correction). There was no significant correlation between global properties of functional networks and clinical variables.




Figure 3 | Associations between global properties and clinical variables in patients with NMOSD. Scatter plots of global properties of MBNs and clinical variables.






3.6 Significant relations between nodal properties and clinical variables

Figure 4 showed a correlation between the nodal properties of MBNs or FBNs and clinical variables in patients with NMOSD (P< 0.05; see Supplementary Tables S5, S6 for details). After Bonferroni correction, the disease duration was significantly correlated with the Nb AUC of right middle occipital gyrus (MOG) of MBNs (P = 0.006< 0.05/5); and the Nb AUC of left olfactory cortex of MBNs was significantly correlated with the MFIS scores (P = 0.003< 0.05/5).




Figure 4 | Associations between nodal properties and clinical variables in patients with NMOSD. (A) Scatter plots of disease duration and the altered FBN (A1), MBN (A2) nodal properties. (B) Scatter plots of the altered MBN nodal properties and others clinical variables. Blue points represent attributes that decreased nodal properties in the patient group compared to the control group, while red points represent attributes that increased nodal properties in NMOSD patients. # Bonferroni correction P< 0.05/6. FBN, functional brain network; MBN, morphological brain network; Nd, nodal degree; Nb, nodal betweenness; Ne, nodal efficiency.






3.7 Mediation analysis and single‐subject classification

In NMOSD patients, mediation analysis did not find any mediating effect between morphological network topological properties, functional network topological properties, and clinical parameters.

Using the altered nodal properties of MBNs, the accuracy of classifying NMOSD patients versus HCs was 96.4%, with a sensitivity of 93.3% and a specificity of 100%. Using FBNs, the accuracy was 85.7%, with a sensitivity of 73.3% and specificity 100% (Figure 5; Supplementary Table S7). The relevant nodal properties contributing to the SVM classification are shown in Supplementary Table S7. However, when using the altered global properties of MBNs (λ), the discrimination of NMOSD patients from HCs at the single-subject level was insufficient. The accuracy was only 64.3%, with a sensitivity of 53.3% and a specificity of 76.9%.




Figure 5 | Sensitivity and specificity of the altered brain network topological properties in differentiating the patients with NMOSD from HCs. Lower left is the altered brain regions for the classification analysis. AUC, area under the curve; FBN, functional brain network; MBN, morphological brain network; ROC, receiver operating characteristic curves; Nb, nodal betweenness; Nd, nodal degree; Ne, nodal efficiency.



Kaplan-Meier survival analysis indicated that nodal properties of MBN were predictive of progression in NMOSD patients (Figure 6A). After feature screening by univariate Cox Regression, there were two significant features remaining among the 28 features (Figure 6B), namely Nd AUC of left SMA (P = 0.022) and Nd AUC of right pallidum (P = 0.020). In a univariable model, Nd AUC of left SMA of MBN (HR=1.56 (95% CI 0.947 to 2.56) p=0.081) and Nd AUC of right pallidum (HR=2.50 (95% CI 0.859 to 7.26) p=0.093) were trend associated with EDSS worsening in patients with NMOSD. Cox proportional hazards model to evaluate their prognostic values. Based on the model, a nomogram was established to predict the time-to-progression (Figure 6C).




Figure 6 | Kaplan–Meier survival curve of nodal properties of MBN predicting disability progression in patients with NMOSD (A), the results of the multivariate Cox regression (B), and nomogram (C) which were constructed by the significant features.







4 Discussion

In this study, we first investigated the alterations in MBNs in NMOSD patients and their correlations with clinical variables. (1) The MBNs showed a decrease in lambda that was associated with PASAT scores, indicating a reduced overall efficiency of interregional information integration in NMOSD patients with mild disability. However, the FBNs did not reveal such changes. (2) Compensatory increases in nodal properties, including visual-related networks, MONs, and medial frontal networks (MFNs), contributed to maintaining the stability of global properties in the MBNs of NMOSD patients. (3) Nodal properties of the VisI and the visual association network (VA) were correlated with disease duration, while nodal properties of MFN, FPN, and DMN were correlated with clinical symptom assessment. (4) Nodal properties of MBN were predictive of EDSS worsening in patients with NMOSD, suggesting its additional clinical value as a non-invasive biomarker for mild disability patients with NMOSD. This study provides a new perspective that the properties of local nodes, such as the visual network of MBNs, rather than FBNs, may play a key role in patients with NMOSD.



4.1 Altered global properties of brain networks in NMOSD patients

We found that NMOSD patients exhibited a decrease in the global efficiency of interregional information integration in MBNs, which was significantly correlated with PASAT scores. However, such alterations were not observed in FBNs. NMOSD patients often experience fatigue, poor sleep quality, and cognitive impairments characterized by decreased processing speed, executive function, and memory, with processing speed decline being particularly prominent (27). Studies on brain white matter structural networks in NMOSD patients have also shown disruptions in white matter fiber connections, which are associated with declines in cognitive functions related to attention, working memory, processing speed, and visuospatial processing (28). The characteristic path length reflects the global feature of a network, and a smaller value indicates faster information transfer within the network. In our study, we observed a mild decrease in lambda in NMOSD patients, which was negatively correlated with the decline in PASAT scores, suggesting that compensatory mechanisms in certain NMOSD patients may help slow the decline in processing speed. This finding may be related to the fact that NMOSD patients in our study had mild disability and mild cognitive impairment.




4.2 Altered nodal properties of brain networks in NMOSD patients

First, nodal property decreases are straightforward, as they are related to inflammatory white matter lesions (5, 29) and network disconnection (28, 30), resulting in corresponding clinical functional impairments (31). The NMOSD patients in our study experienced fatigue, mild disability, and mild cognitive impairment, which are common clinical symptoms of NMOSD (1, 27, 32). However, the global network properties of patients remained relatively stable, which is related to the observed local increases. In our study, the areas with increased nodal properties were mainly found in the following regions: (1) the MFN. This network is highly implicated in the modulation of internal emotional stimuli and automatic emotional responses. Nodes right medial superior frontal cortex (AAL24) and left rectus gyrus (AAL27) of MFN were correlated with cognitive (PASAT) and fatigue (MFIS) assessments. With the exacerbation of symptoms, NMOSD patients showed increased degree and betweenness centrality, indicating the presence of pseudoadaptive compensation. Similar findings have also been reported in studies of multiple sclerosis (33); (2) the MON and VA. These regions are related to motor and visual functions. Node right middle occipital gyrus (AAL52) of the VA and disease duration were correlated, and in combination with the correlation between decreased nodal properties (VisI) and disease duration, it indicates that compensatory mechanisms for visual processing in response to the functional decline in the visual I region of NMOSD patients gradually increase. Whether this compensation can effectively improve the clinical symptoms of patients requires further research in the future; (3) the default mode network (DMN). DMN does not directly affect the MON or directly correlate with fatigue but is related to motor preparation. The dynamic interaction between the default network and MON may affect motor task execution abilities (34). Highly active nodes of the default network consume excessive energy, leading to a state of “idleness” fatigue. Similar phenomena have also been found in studies of multiple sclerosis, where a highly active DMN was correlated with fatigue (35). In our study, the efficiency of DMN nodes increased and was negatively correlated with disability level (EDSS scores) and fatigue (MFIS scores), indicating that the default network nodes (AAL26) of NMOSD indirectly contributed to the aforementioned functional changes; and (4) the frontoparietal network (FPN). FPN rapidly accomplishes new tasks through flexible interactions with other control and processing networks. This may be the reason no correlation was found between these brain areas and clinical data in this study. Last, compensatory mechanisms are not uncommon in NMOSD. For example, a study on cerebellar connectivity in NMOSD patients found that increased connectivity in the primary motor module of the cerebellum can reflect specific cortical injury and serve as compensation for patients’ motor and sensory functions (4).

In the SVM analysis, we achieved a higher (96.4%) classification accuracy using altered nodal properties of MBNs, compared to the classification accuracy (85.7%) of using FBNs, showing that altered nodal properties of MBN were more sensitive in identifying NMOSD from HCs. Our findings support the emerging view that cortical morphological networks, which are crucial in brain function (36),are powerful tools for examining the structural reorganization due to inflammatory and demyelinating damage (33). The morphological network biomarkers have the potential to improve the diagnosis of neurological diseases. Moreover, the altered nodal properties of MBN were directly related to clinical variables, and this relationship was not mediated by functional nodal properties. This underscores the greater sensitivity and clinical significance of topological properties of MBNs compared to functional parameters in NMOSD. These findings bolster the concept that nodal properties of morphological network might serve as a neuroimaging biomarker to assist the clinical diagnosis of mildly disabled NMOSD in the future (12, 33, 36, 37).

Furthermore, in the MBN, increased Nd of left SMA and decreased Nd of right pallidum was predictive of EDSS worsening in NMOSD, which is in line with the idea that brain connectional morphological feature is a composite marker of ageing and a disease-related brain (38). The increased node degree of left SMA side predicts the EDSS worsening, further indicating the presence of pseudoadaptive compensation of supplementary motor area, which is consistent with the hypothesis of the increase of node attributes discussed above. In a recent study of deep learning-derived brain age gap base on morphological MRI, the authors reported brain age gap (5.4 (95% CI 4.3 to 6.5) years) significantly predicted EDSS worsening in patients with NMOSD in the 6 tertiary neurological centers of China cohort (39). Future studies are required to determine the possible causative EDSS worsening factors in individual-scale parameters.




4.3 Limitations

This study had several limitations. First, there was no distinction between patients in the acute phase and the remission phase, and different disease stages or phenotypes may have an impact on brain network topological properties. However, all NMOSD patients in this study had mild disability and mild cognitive impairment. This may explain why the global network properties of the patients remained relatively normal. In future research, it will be important to consider the influence of different disease stages or phenotypes on brain network topological properties. Second, different segmentation templates or network nodes may affect the calculation and comparison of patients’ network topological properties. Previous studies have found high consistency between the Harvard-Oxford atlas templates and AAL templates (40). This study also compared different segmentation templates and node correlation methods, and similar results were obtained. Moreover, previous methodological studies have demonstrated their good reproducibility (21, 41).





5 Conclusions

This study suggested that NMOSD patients in a mildly disabled state exhibited compensatory increases in local topological properties to maintain the overall stability of the brain network. Compared to functional networks, the nodal properties of MBNs not only revealed more alterations in NMOSD patients but also showed better correlations with clinical assessments and predicted EDSS worsening.
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Introduction

The protein growth arrest-specific 6 (Gas6) and its tyrosine kinase receptors Tyro-3, Axl, and Mer (TAM) are ubiquitous proteins involved in regulating inflammation and apoptotic body clearance. Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system leading to progressive and irreversible disability if not diagnosed and treated promptly. Gas6 and TAM receptors have been associated with neuronal remyelination and stimulation of oligodendrocyte survival. However, few data are available regarding clinical correlation in MS patients. We aimed to evaluate soluble levels of these molecules in the cerebrospinal fluid (CSF) and serum at MS diagnosis and correlate them with short-term disease severity.





Methods

In a prospective cohort study, we enrolled 64 patients with a diagnosis of clinical isolated syndrome (CIS), radiological isolated syndrome (RIS) and relapsing–remitting (RR) MS according to the McDonald 2017 Criteria. Before any treatment initiation, we sampled the serum and CSF, and collected clinical data: disease course, presence of gadolinium-enhancing lesions, and expanded disability status score (EDSS). At the last clinical follow-up, we assessed EDSS and calculated MS severity score (MSSS) and age-related MS severity (ARMSS). Gas6 and TAM receptors were determined using an ELISA kit (R&D Systems) and compared to neurofilament (NFLs) levels evaluated with SimplePlex™ fluorescence-based immunoassay.





Results

At diagnosis, serum sAxl was higher in patients receiving none or low-efficacy disease-modifying treatments (DMTs) versus patients with high-efficacy DMTs (p = 0.04). Higher CSF Gas6 and serum sAXL were associated with an EDSS <3 at diagnosis (p = 0.04; p = 0.037). Serum Gas6 correlates to a lower MSSS (r2 = −0.32, p = 0.01). Serum and CSF NFLs were confirmed as disability biomarkers in our cohort according to EDSS (p = 0.005; p = 0.002) and MSSS (r2 = 0.27, p = 0.03; r2 = 0.39, p = 0.001). Results were corroborated using multivariate analysis.





Conclusions

Our data suggest a protective role of Gas6 and its receptors in patients with MS and suitable severity disease biomarkers.





Keywords: Gas6, TAM receptors, multiple sclerosis, inflammation, biomarker





Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) characterized by progressive and irreversible disability with a high impact on patients’ quality of life (1). Both inflammatory and neurodegenerative aspects contribute to the disease (2). Inflammation contributes to myelin destruction in the CNS, to damaging of oligodendrocytes (ODs), and activation of astrocytes with neuronal damage (3). It has also been observed that ODs undergo cell death in newly formed lesions, which preludes the appearance of extensive regions of demyelination (4). Growth arrest-specific 6 (Gas6) and its receptors have been shown to play a critical role in innate immune system homeostasis by regulating apoptosis and inflammation (5). Gas6 is a soluble glycoprotein of 75 kDa that belongs to the vitamin K-dependent protein family (6). To exert its biological functions, Gas6 must interact with a specific family of tyrosine kinase receptors, called TAM, consisting of three different receptors: Tyro-3, Axl, and Mer (7). TAM receptors play important roles in cell survival, growth, aggregation and migration, angiogenesis, and control of inflammatory responses, apoptotic cell and membrane engulfment, and phagocytic elimination (8). TAM receptors can be cleaved into their soluble forms (sTyro-3, sAxl, and sMer) by specific proteases, ADAM 10 and 17 (9). These soluble receptors can still bind Gas6 protein retaining their functions in the modulation of inflammation (7). TAM receptors are widely expressed in the nervous system, including ODs, and Gas6/TAMs have been associated with stimulation of OD survival and neuronal remyelination (10). Axl has the highest affinity for Gas6 (11), and the experimental evidence supports a direct role in neuronal myelinization (12). However, few data are available regarding the clinical correlation in MS patients. We aimed to assess the soluble levels of these molecules in the cerebrospinal fluid (CSF) and serum, at the time of MS diagnosis, and evaluate their possible correlations with short-term disease severity.





Materials and methods




Patients

In this observational prospective cohort study, we recruited, between October 2017 and February 2022, 64 patients (43 females) in “Maggiore della Carità” Hospital in Novara, Italy. All patients had a follow-up visit at least 1 year after their diagnosis, between July 2021 and December 2022. The clinical data were acquired twice, both at the diagnosis and at the last follow-up visit. CSF and serum samples were obtained at diagnosis while the patients underwent MS diagnostic work-up. The study’s inclusion criteria were the diagnosis of clinical isolated syndrome (CIS), radiological isolated syndrome (RIS), or relapsing–remitting (RR), according to McDonald 2017 (13) at the end of the follow-up.





Ethical committee

All the participants signed an informed consent form. The study protocol was approved by the local Ethical Committee (CE 262/2022) and was conducted in accordance with the Declaration of Helsinki.





Clinical evaluation

Demographic and clinical variables collected at diagnosis were sex, age at onset, clinical course, the presence of gadolinium-enhancing (Gad+) lesions, and disability according to the expanded disability status score (EDSS) (14). Brain and spinal imaging were performed within 3 months from the diagnosis on a 1.5-Tesla MRI with a single dose of Gad. EDSS was used to assess disability and monitor changes over time. This score has been corrected by time-measure using the MS severity score (MSSS) (15) and by the age using the age-related MS severity (ARMSS) (16).





Sample collection and biomarker determinations

Cerebrospinal fluid (CSF) was collected through lumbar puncture at diagnosis. CSF was centrifuged at 1,300 rpm for 10 min and stored at −80°C until the analysis. At the time of CSF collection, all patients were treatment naïve (including disease-modifying treatments or DMTs and steroids). Serum was immediately collected by centrifugation at 3,500 rpm for 15 min and stored at −80°C until the analysis time. CSF and serum NFLs were measured with the Simple PlexTM fluorescence-based immunoassay by Bio-Techne with the Ella SimplePlex™ Platform (Bio-Techne s.r.l., Milan, Italy). NFLs were measured using the Human NFL SimplePlex™ Cartridge Kit (Lot no. 21519). All kit components (cartridge, sample diluent SD13, and Wash Buffer A) were provided ready to use, and they were allowed to reach room temperature before use. CSF and serum levels of Gas6 were determined with ELISA technique using a commercial kit (R&D Systems Duo Set Elisa DY6488, McKinley, MN, USA) and following the manufacturer’s instructions. Samples were diluted 1:50 in a sample diluent. The optical density at 450 nm was fitted versus a calibration curve prepared with a standard (0–1 ng/ml range), as suggested by the manufacturer. CSF and serum levels of sTyro-3 were determined with the commercially available T ELISA kit (R&D Systems Duo Set Elisa DY6488, McKinley, MN, USA) following the manufacturer’s instructions. Samples were diluted 1:5 in a sample diluent. The optical density at 450 nm was fitted versus a calibration curve prepared with a standard (0–4 ng/ml range), as suggested by the manufacturer. The ELISA technique determined CSF and serum levels of sAxl by using a commercial kit (R&D Systems Duo Set Elisa DY6488, McKinley, MN, USA) and following the manufacturer’s instructions. Samples were diluted 1:25 in a sample diluent. The optical density at 450 nm was fitted versus a calibration curve prepared with a standard (0–4 ng/ml range), as suggested by the manufacturer. The ELISA technique determined CSF and serum levels of sMer using a commercial kit (R&D Systems Duo Set Elisa DY6488, McKinley, MN, USA) and following the manufacturer’s instructions. Samples were diluted 1:2 in a sample diluent. The optical density at 450 nm was fitted versus a calibration curve prepared with a standard (0–10 ng/ml range), as suggested by the manufacturer. Absorbance was recorded using a Victor X4 microplate reader (Perkin Elmer, Waltham, MA, USA).





Statistical analysis

For continuous variables, the measures of centrality and dispersion were medians and interquartile ranges [IQR], and comparisons between groups regarding these variables were performed using the Mann–Whitney U-test and the Kruskal–Wallis test. The Pearson χ2 was used to analyze the association between categorical variables shown as frequencies (%). Correlations were performed with Spearman’s rank correlation coefficient and linear regression for significant predictors in the univariate model. Multivariable regressions were built to identify the variables independently associated with the severity score. The threshold for statistical significance was 0.05 (two tailed). Statistical analyses were performed with Stata statistical software version 17.0 (Stata Corp, 4905 Lakeway Drive College Station, TX, USA), while graphs were created using GraphPad Prism version 9.4.0 (GraphPad Software, La Jolla, CA, USA).






Results

The main features of our 64 patients are reported in Table 1.


Table 1 | General features of the study population and their clinical parameters.



Initially, we investigated serum and CSF levels of Gas6 and its receptor. All molecules were detectable except for CSF sMer. Gas6, sAxl, and sMer concentrations resulted moderately higher in the serum than in the CSF, thus showing an opposite trend to NFLs levels that are more elevated in the CSF as largely reported (17). Our data show no statistically significant correlation between serum and CSF concentrations of Gas6, whereas serum and CSF levels of sTyro-3 (p = 0.05), sAxl (p = 0.02), and NFLs (p = 0.0001) were significantly related between the two fluids (sMer was not analyzed since it was undetectable in the CSF) (Figure 1).




Figure 1 | Distribution of Gas6 and TAM receptor concentrations in serum (A) and CSF (B). Results are shown as medians [IQR]. Spearman’s rank correlation between serum and CSF levels of Gas6 (C), sTyro-3 (D), sAxl ((E), and NFLs (F) concentrations. r2, coefficient of correlation; p, p-value.



We compared the RIS–CIS population to those patients with RRMS and found higher sMer and sTyro-3 serum levels at the diagnosis in the RIS-CIS subgroup (Supplementary Figure 1). No statistically significant results were found in the CSF.




MS treatments and disability

At the end of the follow-up, 7 (11%) patients were receiving no treatment; 37 (58%), a low-efficacy; and 20 (31%), high-efficacy DMTs. Six (9%) patients switched to high-efficacy therapy during the follow up. Instead, 3 (5%) patients stopped/changed the first DMTs for side effects (not for inefficacy). As shown in Figure 2, serum sAxl was higher in those patients who underwent no treatment or on low-efficacy DMTs.




Figure 2 | Association between Gas6 concentration in the serum (A) and CSF (B), sTyro3 concentration in the serum (C) and CSF (D), sAxl concentration in the serum (E) and CSF (F), sMer concentration in the serum (G), NFLs concentration in the serum (H) and CSF (I) and the type of therapy at follow-up visit. Results are shown as medians [IQR]. *p = 0.04, ns, not significant.



To evaluate disability measures, we divided our patients according to EDSS scores < 3 or ≥ 3 at first and follow-up visit. As shown in Figure 3, we found a higher serum sAxl and CSF Gas6 levels in those patients with EDSS < 3 at diagnosis. As expected, higher NFL levels in the CSF and serum were associated with higher EDSS scores at diagnosis. No significant result associations were observed with the EDSS at follow-up visit (data not shown). Subsequently, we considered disability according to MSSS and ARMSS at the last follow-up. As shown in Figure 4, an inverse correlation was found only for serum Gas6 and MSSS. On the other hand, as expected, NFL levels in the serum and CSF directly correlated with MSSS. No other significant correlations were found with ARMSS (Supplementary Figure 2).




Figure 3 | Associations between Gas6 levels in the serum and CSF (ng/ml) and < 3 or ≥ 3 EDSS clinical scores on the first visit. *p = 0.04 (A, B). sAxl levels in the serum and CSF (ng/ml) in patients with < 3 or ≥ 3 EDSS clinical scores on the first visit. *p = 0.037 (C, D). Associations between NFLs levels in the serum and CSF (pg/mL) and < 3 or ≥ 3 EDSS clinical scores on the first visit. **p = 0.005, **p = 0.002 (E, F). Results are shown as medians [IQR]. ns, not significant.






Figure 4 | Spearman’s correlation between MSSS and Gas6 levels in the serum and CSF (A, B), TAM receptors levels in the serum and CSF (C–G), and NFLs levels in the serum and CSF (H, I). r2 = coefficient of correlation, p = p-value.



We did not find any difference in Gas6 and TAM receptors according to the number of brain, spinal, and gadolinium-enhancing lesions (Supplementary Table 2).





Multivariate analysis

We finally performed multivariate regression models to predict MS disability according to EDSS at diagnosis (Table 2) and MSSS at last follow-up (Table 3). The included independent variables were gender, age, number of lesions, and the other serum biomarkers. We did not find statistically significative predictors in the multivariate analyses for different types of MS and in the type of therapy at follow- up visit (Supplementary Tables 8, 9).


Table 2 | Multivariate regression model of EDSS < 3 at diagnosis including demographic and severity variables.




Table 3 | Multivariate regression model of MSSS at last follow-up including demographic and severity variables.








Discussion

In our prospective cohort study, first, we evaluated the CSF and serum Gas6 and TAM receptor levels in MS patients at diagnosis. All biomarkers were detectable, except for sMer that was absent in the CSF, as also previously reported and discussed by our group (18). The absence of sMer could be related to a lower expression in the brain compared to sAxl and sTyro-3 (19). Moreover, in the present study, we first compared Gas6 and TAM receptors to NFLs: Gas6, sAxl, and sMer levels resulted higher in the serum than in the CSF, thus showing an opposite trend to that of NFLs (17). A possible role of TAM receptors in MS is related to the clearance of myelin debris for the remyelination process, which can be reduced by ineffective phagocytosis (20), as could happen in the dysregulation of TAM signaling (21). Among the TAM receptors, Tyro-3 could be the main actor in mediating the promyelinating effects of Gas6 during developmental myelination (10). Consequently, loss of Tyro-3 causes a delay in myelinization and a reduction in myelin thickness both in vitro and in vivo (22, 23). Looking at Mer and Axl, they regulate microglial functions (24, 25) and normally drive phagocytosis of apoptotic cells generated during adult neurogenesis (26, 27).

Second, we searched for any association with clinical features at disease diagnosis. Looking at disability at diagnosis, those patients with EDSS score < 3 showed higher levels of CSF Gas6 and serum sAxl levels, whereas, as expected, there was a statistically significant correlation between higher levels of CSF and serum NFLs and EDSS ≥ 3 (28). Our data suggested a role of sAxl to identify those cases with low disability at onset and then treated with low-efficacy DMTs. A possible pathogenic hypothesis is related to the Gas6 and TAM receptors expression in several cell types in the nervous system, including ODs (29). Activation of the Axl receptor by Gas6 induces an intracellular response that promotes oligodendrocyte survival and stimulates the myelination process (30). Nonetheless, hyperactivation of the immune system also contributes to impaired remyelination, as demonstrated in experimental autoimmune encephalomyelitis. In this mouse model, loss of Axl increases central nervous system inflammation delaying the removal of myelin debris (12). Furthermore, several studies in Gas6 and Axl-knockout mice showed remyelination abnormalities due to increased microglia activation confirming specific contributions of Gas6/Axl signaling in the remyelination processes. Exposure to toxic cuprizone resulted in axon damage in mutant mice, which is associated with an abnormal inflammatory response due to reduced SOCS expression, suggesting that Gas6/Axl signaling may be important in reducing CNS inflammation and maintaining axon integrity after demyelinating/proinflammatory stimuli (12, 31–35).

Third, a prognostic role over time emerged only for serum Gas6 since lower levels of this biomarker is related to higher MSSS. This result suggests a protective role in MS. As expected, on the contrary, higher CSF and serum NFLs levels are related to higher MSSS score. Gas6 is involved in different cellular processes with anti-inflammatory, neuroprotective, promyelinating properties, and a biomarker for acute disease course. On the other side, our group measured CSF and plasma Gas6 protein during relapses in relation to the clinical features (symptoms) and severity scores as the Kurtzke Functional System (FS) showing the usefulness of Gas6 as a biomarker of an acute disease course (36–39).

Moreover, the Gas6 TAM pathway is involved in viral response, including thus EBV infection (2, 40–42), increasing during a viral infection (7). Gas6 may act as a modulator of inflammation, regulating the immune response and limiting the inflammation and tissue damage associated with viral infection (43). Furthermore, activation of TAM receptors by Gas6 may influence the response of immune cells, including macrophages and dendritic cells, by promoting phagocytosis of infected cells and antigen presentation (44, 45). Viral infection can also influence TAM receptors expression and Gas6 production (46). For instance, during EBV infection, it has been observed that Axl expression can increase in infected cells (47). However, the direct link between Gas6 and EBV still needs several studies to be proven.

With the present work, we focused our attention on prognosis and disability using different clinical scores that better indicate a disease course, such as the MSSS and the ARMSS. Although our study is a pilot analysis with some limitations, like the number of patients involved and the monocentric nature of the recruitment, results are promising and could be extended by the Gas6/TAM levels follow-up during the entire evolution of the pathology.

In conclusion, the Gas6-TAM axis showed a trend to identify those patients that could be considered more “benign.” In fact, serum sAxl was higher in those patients with lower disability at onset, and serum Gas6 was higher in patients with lower disability over time.

Our study suggests serum Gas6 as a reliable prognostic biomarker; however, prospective further investigation about the protective role of the Gas6/TAM system role is needed.
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Introduction

Anti-NMDA receptor encephalitis is an autoimmune disorder caused by autoantibodies (abs) against the conformational epitope on GluN1 subunits. GluN1-abs have been determined with cell-based assay (CBA) co-expressing GluN1/GluN2 subunits. However, commercial fixed CBA expressing only GluN1 subunit has increasingly been used in clinical practice. The ab titers can be determined with serial dilutions, but its clinical significance remains unclear. We aimed to develop an H-intensity scale (HIS) score to estimate GluN1-ab titers in cerebrospinal fluid (CSF) with one-time immunostaining using both commercial CBA and immunohistochemistry and report its usefulness. “H” is the initial of a patient with high CSF GluN1-ab titers (1:2,048).





Methods

We first determined the reliability of CBA in 370 patients with suspected autoimmune encephalitis by comparing the results between commercial CBA and established assay in Dalmau’s Lab. Then, we made positive control panels using the patient H’s CSF diluted in a fourfold serial dilution method (1:2, 1:8, 1:32, 1:128, 1:512, and 1:2,048). Based on the panels, we scored the intensity of ab reactivity of 79 GluN1-ab-positive patients’ CSF (diluted at 1:2) on a scale from 0 to 6 (with ≥1 considered positive). To assess inter-assay reliability, we performed immunostaining twice in 21 patients’ CSF. We investigated an association between the score of CSF obtained at diagnosis and the clinical/paraclinical features.





Results

The sensitivity and specificity of CBA were 93.7% (95% CI: 86.0–97.3) and 98.6% (95% CI: 96.5–99.5), respectively. Linear regression analysis showed a good agreement between the scores of the first and second assays. Patients with a typical spectrum, need for mechanical ventilation support, autonomic symptoms/central hypoventilation, dyskinesias, speech dysfunction, decreased level of consciousness, preceding headache, ovarian teratoma, and CSF leukocyte count >20 cells/µL had a higher median HIS score than those without, but HIS score was not associated with sex, age at onset, or seizure. HIS score at diagnosis had a significant effect on 1-year functional status.





Discussion

The severity of disease and four of the six core symptoms were associated with higher GluN1-ab titers in CSF at diagnosis, which may play a role in poor 1-year functional status. An incomplete phenotype can be attributed to low CSF GluN1-ab titers.





Keywords: NMDA receptor encephalitis, immunohistochemistry, autoantibodies, cell-based assay, tissue-based assay




1 Introduction

Autoimmune encephalitis (AE) is defined as a form of encephalitis that occurs as a result of a brain-specific immune response, and it usually associates with autoantibodies (abs) against a neuronal or glial cell surface antigen (1). Anti-NMDA receptor (NMDAR) encephalitis is one of the most common AE characterized by viral prodrome followed by memory or psychobehavioral alterations, seizures, decreased level of consciousness, dyskinesias, speech dysfunction, autonomic symptoms, and central hypoventilation or a combination of these symptoms (2–4). Anti-NMDAR encephalitis is caused by abs against the conformational epitope on the extracellular amino terminal domain of the GluN1 subunit (GluN1-abs) (5). A definite diagnosis requires confirmation of the presence of GluN1-abs in cerebrospinal fluid (CSF) with appropriate assay (6).

The GluN1-abs have been determined with live or fixed cell-based assay (CBA) co-expressing GluN1/GluN2 subunits of the NMDAR in the research laboratory (1–4). However, in clinical practice, commercial fixed CBA expressing only GluN1 subunit has increasingly been used. Ab titers can be determined with ELISA (7) or serial dilutions in the commercial laboratory for a fee, but serial dilutions result in an increase in the cost, making it difficult to determine ab titers in many patients in clinical practice. Previous studies (7–10) reported an association between CSF GluN1-ab titers at diagnosis and some of the clinical features, but its clinical significance remains unclear.

To resolve these issues, we aimed to develop an intensity-based scale score to estimate CSF ab titers without serial dilutions and assessed whether the score of CSF obtained at diagnosis is associated with certain clinical and paraclinical features of this disorder. We named the score as “H-intensity scale (HIS) score”, in which the “H” is the initial of a patient whose CSF containing high ab titers (1:2,048) was used to make positive control panels to score the intensity of ab reactivity. We used the name “HIS score” after consent from the patient H who had achieved full recovery.




2 Materials and methods



2.1 Patient selection and antibody measurement

First, we retrospectively reviewed the clinical information of 710 patients with suspected AE or related disorder who underwent testing for neuronal surface (NS)-abs between January 1, 2007 and September 30, 2023. Among those, 470 (66.2%) patients’ CSF/sera were referred from other 163 hospitals to Kitasato University to examine NS-abs. The detailed clinical information was provided from each physician to TI (a principal investigator). The inclusion criteria of this cohort are as follows: AE or related neurological disorder is highly suspected based on clinical assessment; detailed clinical information is available for review by TI, including the mode of onset of symptoms, past history, family history, regular medications, neurologic examination, neuropsychological assessment, laboratory test results (blood, CSF, electro-encephalography, brain or spinal MRIs, and body CT), and subsequent clinical course and outcome when available; and written informed consent is obtained from the patients or their proxies.

In all patients, NS-abs were measured at the laboratory of Josep Dalmau (Dalmau’s Lab at University of Pennsylvania, Philadelphia, or IDIBAPS Hospital Clinic, Barcelona) because of it being one of the most advanced research laboratories, where many of the novel NS-abs have been identified since the first discovery of NMDAR-abs in 2007 (2). NS-abs were determined with previously established assays, such as rat brain immunohistochemistry (IHC) adapted to NS antigens and CBA (2, 11–18). Live neurons were also added when needed to determine the presence of NS-abs. The NS antigens examined included the NMDAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), γ-aminobutyric acid A receptor (GABAaR), γ-aminobutyric acid B receptor (GABAbR), glutamate kainate receptor subunit 2 (GluK2), metabotropic glutamate receptor 5 (mGluR5), metabotropic glutamate receptor 1 (mGluR1), dipeptidyl peptidase-like protein 6 (DPPX), contactin-associated protein-like 2 (Caspr2), leucine-rich glioma-inactivated 1 (LGI1), neurexin 3, or glycine receptor (GlyR). These antigens were examined based on the clinical phenotypes and/or immunoreactivity pattern on in-house IHC. Abs against myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP4), or glial fibrillary acidic proteins (GFAP) were also examined in CSF and/or serum with established CBA (19), when being clinically or radiologically suspected, or based on immunoreactivity pattern on in-house or commercial IHC.

We also retrospectively examined NS-abs in the archived CSF at Kitasato University in appropriately half of the patients with commercial fixed CBA for NMDAR or others, commercial rat brain IHC, and/or in-house IHC adapted to NS antigens, as previously reported elsewhere (20).




2.2 Part I (reliability of commercial fixed CBA expressing only GluN1 subunit)

In part I, we included 370 patients whose residual archived samples of the CSF identical to one examined at Dalmau’s Lab were available for this study (Figure 1). GluN1-abs were examined with a commercial kit (EUROIMMUN AG, product no.: FA 111m-3, Lübeck, Germany) at Kitasato University to evaluate the reliability of the commercial CBA. The kit consists of four biochips per field, containing the NMDAR (only GluN1 subunits)-transfected cells, control-transfected cells, hippocampus, and cerebellum, as previously reported (20).




Figure 1 | Flowchart. This figure shows a diagram of the study conducted. In part I, the reliability of a commercial fixed cell-based assay (CBA) expressing only GluN1 subunits was investigated, while in part II, the clinical significance of an H-intensity scale (HIS) score was evaluated in three overlapping groups. The number of patients is shown in parentheses. AE, autoimmune encephalitis; ab, antibodies; E-symptom, encephalitis symptom (see Text); NS, neuronal surface; post-HSE, autoimmune post-herpes simplex encephalitis.



In this study, we evaluated the intensity of ab reactivity of the CSF diluted at 1:2 instead of non-diluted CSF because we usually use CSF diluted at 1:2 for screening of NS-abs (20) on in-house IHC or to determine estimated CSF ab titers; otherwise, we followed the instruction of the company with indirect immunofluorescence assay (IIFA). The ab reactivity on CBA and IHC was evaluated with an Olympus BX53 fluorescence microscope equipped with a DP80 digital camera, CellSence Dimension1.8 imaging Software (Olympus, Japan). Green fluorescence was detected using a fluorescein-isothiocyanate filter (excitation: 470–495 nm, emission: 510–505 nm, and dichroic: 505 nm; U-FBNA, Olympus, Japan).

Ab reactivity to commercial fixed CBA was initially evaluated by three authors (NN, NK, and TI) independently and was finally determined by agreement of the authors. GluN1-ab-positivity or negativity was determined based on the results performed at Dalmau’s Lab, and the sensitivity and the specificity of the commercial CBA were calculated.




2.3 Part II (evaluation of HIS score)



2.3.1 Development of positive control panels

To make positive control panels, we first selected patient H who presented with a typical spectrum of anti-NMDAR encephalitis, whose CSF ab titers were thought to be highest among patients who had been examined with the commercial CBA.

Patient H’s CSF was diluted in a fourfold serial dilution method (1:2, 1:8, 1:32, 1:128, 1:512, and 1:2,048) to make the positive control panels, in which we started with CSF diluted at 1:2. The patient’s CSF ab titers were determined by fourfold serial dilutions; the ab reactivity remained positive at 1:2,048 under ×10 or ×20 objective lens (Figure 2A) but was negative at 1:8,192. Accordingly, the CSF ab titers were determined to be 1:2,048 as the greatest dilution at which a detectable positive result is still obtained with the fourfold serial dilution method.




Figure 2 | Positive control panels for CBA and IHC. This figure shows a pair of positive control panels. Each panel was made using the cerebrospinal fluid (CSF) of a “patient H” having ab titers of 1:2,048, which was diluted in a fourfold serial dilution method, ranging from 1:2, 1:8, 1:32, 1:128, and 1:512 to 1: 2,048 to score the individual patient’s CSF. (A) Positive control panel for CBA and (B) positive control panel for IHC (upper: hippocampus, lower: cerebellum). A series of photographs was taken in several settings by adjusting the ISO/Exposure. In (A), the photographs were taken under the two settings of ISO/Exposure (1,600/500 and 800/500 ms) when viewing the slide under ×4, ×10, and ×20 objective lens. In (B), the photographs were taken under the three settings of ISO/Exposure adjusted for each magnification of the objective lens as follows: 1,600/500 ms for ×4, 800/500 ms for ×10, and 400/500 ms for ×20, respectively (see text). CBA, cell-based assay; HIS, H-intensity scale; IHC, immunohistochemistry.



We made a pair of positive control panels to score the intensity of ab reactivity (Figures 2A, B for CBA and IHC, respectively). A series of photographs was taken with the Olympus BX53 fluorescence microscope in several settings by adjusting the ISO/Exposure as follows: in panel A, the photographs were taken under the two settings of ISO/Exposure (1,600/500 ms and 800/500 ms) when viewing the slide under ×4, ×10, and ×20 objective lens. In panel B, the photographs were taken under the three settings of ISO/Exposure adjusted for each magnification of the objective lens as follows: 1,600/500 ms for ×4, 800/500 ms for ×10, and 400/500 ms for ×20, respectively. We used these several ISO/Exposure settings because it is difficult to score based on a single setting due to concomitant halation caused by the reactivity of antinuclear antibodies when present.




2.3.2 Scoring of the intensity of antibody reactivity

We scored the intensity of ab reactivity of the individual patients’ CSF diluted at 1:2 on a scale from 0 to 6 (with ≥1 considered positive) visually based on the positive control panels. Through this scoring strategy, CSF ab titers can be estimated as follows: when the intensity of a patient’s CSF diluted at 1:2 is nearly identical to the score 6 (intensity of patient H’s CSF diluted at 1:2), the CSF ab titers can be estimated to be approximately 1:2,048 because patient H’s CSF ab titers are 1:2,048. In other words, “the intensity identical to the score 6” means that the patient’s CSF would be positive when the CSF is diluted five times in a fourfold serial dilution method (at 1: 2,048) but would be negative when being diluted six times (at 1:8,192). When the intensity of a patient’s CSF diluted at 1:2 is scored 3, it means that the patient’s CSF would still be positive when being diluted two times in a fourfold serial dilution method (at 1:32) but would be negative when being diluted three times (at 1:128), indicating that the estimated titers are 1:32. The intensity of ab reactivity that appeared higher than the score 6 was also scored 6 in this study. Accordingly, it can be considered as follows: the scores 6, 5, 4, 3, 2, and 1 correspond to estimated titers of 1:2,048 or more, 1:512, 1:128, 1:32, 1:8, and 1:2, respectively when CSF diluted at 1:2 is used. When no apparent reactivity was seen even when viewing under a ×20 objective lens, the score was considered to be 0.

HIS score was first determined by four authors (MI, NN, NK, and TI) independently and was finally determined by agreement of the authors on a scale from 0 to 6; however, when considered to be appropriate, a score of 0.5, 1.5, 2.5, 3.5, or 4.5 was given, but no sample scored 5.5 was seen in our cohort.




2.3.3 Inter-assay reliability

We performed immunostaining twice in 21 patients’ CSF samples, which were selected from 79 GluN1-ab-positive patients in order to see an agreement of the score on each assay at different score levels (range, 0–6). The agreement between the scores of the first and second assay was evaluated using linear regression analysis.




2.3.4 Evaluation of clinical features and HIS score of CSF obtained at diagnosis

In this study, we defined “pretreatment CSF” as CSF obtained before initiation of immunotherapy, while “posttreatment CSF” was defined as CSF after initiation of immunotherapy. We scored the intensity of CSF obtained from 79 patients (54 female, 68.3%), median age at onset 31 years (range, 12–74 years), whose CSF tested positive for GluN1-abs at Dalmau Lab. After reasonable exclusion of 11 patients (Figure 1), we assessed the score in the following three groups: group I was the primary group (n = 42), in which pretreatment CSF obtained within 4 weeks of encephalitis symptom (E-symptom) onset was available. The time from E-symptom onset to CSF collection was median 7 days (range, -1 to 28 days). We also assessed in the other two groups: group II (n = 50, with CSF obtained within 4 weeks of E-symptom onset regardless of pretreatment or posttreatment CSF) and group III (n = 51, with pretreatment CSF obtained within 3 months of E-symptom onset) (Figure 1). The subjects in group I were also included in groups II and III. The time from E-symptom onset to CSF collection in groups II and III was median 9 days (range, -1 to 28 days) and median 10 days (range, -1 to 90 days), respectively.

In general, it is ideal to evaluate pretreatment CSF to exclude a potential effect of immunotherapy on CSF ab titers at diagnosis. In a clinical setting, however, the pretreatment CSF is not always available. Furthermore, CSF ab titers may not immediately decline after initiation of immunotherapy due to sustained high disease activity. Therefore, we investigated the score in group II, including posttreatment CSF obtained during the acute stage. We also investigated the score in group III to include a small group of patients whose symptoms gradually developed beyond 4 weeks of E-symptom onset.

Immunotherapy included first-line therapy [intravenous high-dose methylprednisolone (IVMP), immunoglobulins, and plasma exchanges], second-line therapy (intravenous cyclophosphamide and rituximab), or other immunosuppressive drugs. E-symptoms were defined as those directly attributed to encephalitis, such as [1] abnormal (psychiatric) behavior or cognitive dysfunction (memory or psychobehavioral alterations), [2] speech dysfunction, [3] seizures, [4] movement disorder, dyskinesias, or rigidity/abnormal postures, [5] decreased level of consciousness, or [6] autonomic symptoms/central hypoventilation, which are listed as six core symptoms in the diagnostic criteria for anti-NMDAR encephalitis (6). Headache or fever that developed before E-symptom onset was not included in E-symptoms but was regarded as a preceding symptom. The clinical phenotype was evaluated by the sum of the number of the six core symptoms; a typical spectrum was defined as a manifestation with four or more core symptoms, while an incomplete phenotype was defined as a manifestation with three or fewer core symptoms, in which “isolated psychosis” is included.

We evaluated an association between the HIS score and a variety of clinical and paraclinical features, including sex, age at onset, the presence of tumor, preceding headache or fever, core symptoms, CSF total leukocyte count, CSF leukocyte count >5 cells/µL or >20 cells/µL, detection of oligoclonal bands (OCBs), elevated IgG index (≥0.74), brain MRI features suggestive of encephalitis, need for mechanical ventilation support, anti-NMDAR encephalitis one-year functional status (NEOS) score (21), worst functional status within 3 months of E-symptom onset, and 1-year functional status. The 1-year functional status was measured by modified Rankin Scale (mRS), in which good status was defined as mRS 0–2, while poor status was defined as mRS 3–6. Worst functional status was also measured by mRS. We defined brain MRI features suggestive of encephalitis as increased T2/FLAIR signal highly restricted to one or both medial temporal lobes or in multifocal areas involving gray matter, white matter, or both compatible with demyelination or inflammation, as defined in the possible AE diagnostic criteria (6).





2.4 Standard protocol approvals, registrations, and patient consents

The study was approved by the Institutional Review Board of Kitasato University (B20-280). Written informed consent was obtained from the patients or their proxies.




2.5 Statistical analysis

Statistical analyses were performed using JMP, version 17.0.0 (SAS Institute Inc.). Fisher exact test was performed for a comparison of categorical variables, and Wilcoxon test was used for continuous variables. Wilcoxon test with Bonferroni correction was used to compare worst mRS and NEOS score within each group. Spearman’s rank correlation was used to examine the relationship between continuous variables, but the inter-score agreement between the first and second assay was evaluated using linear regression analysis. Nominal logistic regression models were used to determine an association between HIS score at diagnosis and 1-year functional status or need for mechanical ventilation support. The statistical significance was set at p < 0.05. The sensitivity and the specificity of the commercial IHC were also determined with two-way contingency table analysis using JMP.





3 Results



3.1 Part I. Sensitivity and specificity of commercial fixed CBA

False-negative and false-positive results were seen in five of 79 ab-positive patients (6.3%) and four of 291 ab-negative patients (1.4%), respectively (Table 1). Although CSF ab titers were not determined at Dalmau’s Lab, according to the report, none of the five false-negative patients had high CSF ab titers: weakly positive in three (#1, 2, and 3), mildly positive in one (#4), and extremely very low in one (#5). These patients’ clinical phenotypes were also different from a typical spectrum of anti-NMDAR encephalitis: multifocal demyelinating syndrome (#1, later diagnosed with multiple sclerosis based on the subsequent course of the disease and the absence of GluN1-abs in the follow-up CSF), isolated seizures (#2), autoimmune post-herpes simplex encephalitis (#3), new-onset nonconvulsive status epilepticus (#4), and GlyR-ab-positive progressive encephalomyelitis with rigidity and myoclonus (#5).


Table 1 | Results of GluN1 antibody testing.



In the four false-positive patients, HIS score was low (range, 1–1.5; estimated titers, 1:2–1:4), and their clinical features were inconsistent with anti-NMDAR encephalitis. Their final diagnosis included leptomeningeal metastasis of embryonal carcinoma (n = 1), overlapping NS-ab-negative encephalitis and MOG-ab-negative demyelinating syndrome (n = 1), GFAP-ab-positive encephalitis (n = 1), and probable neurodegenerative dementia with titin- and AchR-ab-positive myasthenia gravis (n = 1).

The sensitivity and the specificity of the commercial CBA were 93.7% (95% CI: 86.0–97.3) and 98.6% (95% CI: 96.5–99.5), respectively. The positive predictive value and negative predictive value were 94.9% (95% CI: 87.5–98.0) and 98.3% (95% CI: 96.1–99.3), respectively.




3.2 Part II. Clinical features, HIS score, inter-assay reliability, and clinical significance



3.2.1 Clinical and paraclinical features in each group

The clinical and paraclinical features are summarized in Table 2. These features overlapped among the three groups because of the overlapping subjects. Female patients account for 73%–74% with a median age at onset of approximately 30 years. Preceding headache and fever were seen in 53%–56% and 47%–52% of patients, respectively. A typical spectrum was seen in 68%–69%. Among the six core symptoms, memory or psychobehavioral alterations were most frequently seen, followed by seizures, decreased level of consciousness, dyskinesias or associated movement disorders, speech dysfunction, and autonomic symptoms/central hypoventilation (Table 2). Mechanical ventilation support was needed in 51%–58%. Brain MRI features suggestive of encephalitis was seen in 39%–46%, CSF pleocytosis (>5 cells/µL) in 86%–94%, CSF pleocytosis (>20 cells/µL) in 61%–69%, OCBs in 62%–73%, and elevated IgG index in 30%–33%. Tumors were seen in 45%–50%; among those, ovarian teratoma (OT) was most frequent (49%–60% of female patients). High NEOS score (4 to 5) was seen in 20%–21%, while worst functional status (mRS 5 to 6) was observed in 80%–82%. Poor 1-year functional outcome was found in 21%–29%. First-line and second-line immunotherapy were used in 96%–98% and 47%–52%, respectively. Approximately 55% of patients did not show a clinical improvement within 4 weeks after initiation of immunotherapy or tumor removal. The HIS score in each group is also shown.


Table 2 | Clinical and paraclinical features in each group.






3.2.2 HIS score at diagnosis in each group

HIS score at diagnosis is shown in Figure 3. In 79 ab-positive patients (Figure 3A), the HIS score was median 3.5 (interquartile range, IQR: 2.5–4.5; range, 0–6); five patients (6.3%) who scored 0 are false-negative (Table 1), but these samples are considered to have low or extremely low titers (see “Result”). Two of the five false-negative patients (#2 and 4) were also included in all three groups (Figures 3B–D). The median HIS score was 4 in each group, indicating that median CSF ab titers were estimated to be approximately 1:128.




Figure 3 | Distribution of H-intensity scale (HIS) score. (A–D) The HIS score in the 79-ab-positive patients, groups I, II and III was median 3.5 (IQR 2.5–4.5, range 0–6), 4 (IQR 3–6, range 0–6), 4 (IQR 3–5.3, range 0–6), and 4 (IQR 3–5, range 0–6), respectively. Note that the HIS score was determined using pretreatment cerebrospinal fluid (CSF) obtained within 4 weeks of E-symptom onset in group I (B), CSF obtained within 4 weeks of E-symptom onset regardless of pretreatment or posttreatment CSF in group II (C), and pretreatment CSF obtained within 3 months of E-symptom onset in group III (D). Patients included in group I are shown with a diagonal stripe pattern in dark color. In the panels, patients who scored 4.5, 3.5, 2.5, and 1.5 were included in the histogram scored 4, 3, 2, and 1, respectively. abs, antibodies; E-symptom, encephalitis symptom; IQR, interquartile range.






3.2.3 Inter-assay reliability of HIS score

There was a good agreement between the scores of the first and second assays (β = 0.9657, 95% CI = 0.9120–1.0195, p <.0001, α = 0.1044, 95% CI = -0.0876–0.2965, p = 0.2692, R2 = 0.9867; Supplementary Figure S1).




3.2.4 Clinical significance of HIS score at diagnosis

In group I, the median HIS score was not associated with sex, age at onset (Figure 4A), or CSF total leukocyte count (Figure 4B), but it was higher in patients with a typical spectrum than in those with an incomplete phenotype (p <.0001) (Table 3). The median HIS score was also higher in patients with a need for mechanical ventilation support (p <.0001), autonomic symptoms/central hypoventilation (p = 0.0002), dyskinesias (p = 0.0004), speech dysfunction (p = 0.0010), decreased level of consciousness (p = 0.0012), preceding headache (p = 0.0161), OT (p = 0.0211), and CSF leukocyte count > 20 cells/µL (p = 0.0278) than in those without, but there was no difference between patients with and without memory or psychobehavioral alterations, seizure, tumors, preceding fever, MRI features suggestive of encephalitis, CSF leukocyte count >5 cells/µL, OCB-detection, or elevated IgG index.




Figure 4 | H-intensity scale (HIS) score and clinical/paraclinical features in group I. This figure shows an association between HIS score and clinical/paraclinical data, including age at onset (A), CSF leukocyte count (B), worst functional status within 3 months of E-symptom onset (C), NEOS score (D), use of second-line immunotherapy in patients with and without clinical improvement within 4 weeks after starting treatment (E), 1-year functional status (F, G), and need for mechanical ventilation support (H) in group I. Note that HIS score was higher in patients with worst functional status (mRS 5) (C) or high NEOS score (4 to 5) (D) than in those without, while HIS score had a significant effect on both 1-year functional status and need for mechanical ventilation support. In (A, B), the red line represents the regression line, and the light red area represents the 95% CI of the line. In (C, D), boxplots depict median and interquartile range with whiskers extending to minimum and maximum values. E-symptom, encephalitis symptom.




Table 3 | Median HIS score (IQR, range) in each group.



The median HIS score was higher in patients with mRS of 5 than in those with mRS of 4 (p = 0.0120) or mRS of 3 (p = 0.0181) (Figure 4C). The median HIS score was also higher in patients with a high NEOS score (4 to 5) than in those with a low NEOS score (0 to 1) (p = 0.0012) or NEOS score 2 (p = 0.0008) (Figure 4D) and was higher in patients with need for ICU admission than in those without (p <.0001) and in patients who received second-line immunotherapy than in those who did not (p = 0.0500). The median HIS score was also higher in patients without clinical improvement within 4 weeks after initiation of treatment than in those with clinical improvement (p = 0.0016, Table 3). Such patients, who did not show clinical improvement within 4 weeks after initiation of treatment, more frequently received second-line immunotherapy than those who did (p = 0.0005, Figure 4E). Patients with a high NEOS score (4 to 5) had more frequently poor 1-year functional status than those with low NEOS score 2 (p = 0.0010) or score of 0 to 1 (p = 0.0023) (Figure 4F).

A logistic regression analysis revealed that HIS score at diagnosis had a mild but significant effect on 1-year functional status (p = 0.0231) (Figure 4G). However, there was no difference in 1-year functional status between patients with second-line immunotherapy and those without [13/21 (61.9%) vs. 16/18 (88.9%), p = 0.0740, not shown]. It was also shown that HIS score at diagnosis had also a significant effect on need for mechanical ventilation support (p = 0.0029), with a probability of 17% of mechanical ventilation support on score 3, 59% on score 4, and 91% on score 5, respectively (Figure 4H); a similar effect was seen in groups II and III (Supplementary Figures S2F, S3F).

Among the three groups, most of the results were similar, but there were a few differences (Table 3). In group II, the median HIS score was higher in patients with OCB-detection than in those without (p = 0.0477), while HIS score had a significant effect on 1-year functional outcome (p = 0.0126, Supplementary Figure S2E), as did in group I. In group III, the median HIS score was higher not only in patients with OCB-detection (p = 0.0069) but also in patients with elevated IgG index (p = 0.0432) than in those without (Table 3). In group III, HIS score did not have a significant effect on 1-year functional outcome (p = 0.0582, Supplementary Figure S3E). There was no association between the use of second-line immunotherapy and 1-year functional status in either group II (p = 0.0786) or III (p = 0.5136) (data not shown).






4 Discussion

This study demonstrates the following findings: (1) the commercial fixed CBA is a reliable assay with high sensitivity and high specificity, even when CSF diluted at 1:2 is used; (2) a good inter-assay agreement was seen; (3) HIS score at diagnosis was higher in patients with a typical spectrum of anti-NMDAR encephalitis, dyskinesias or associated movement disorders, decreased level of consciousness, autonomic symptoms/central hypoventilation, speech dysfunction, preceding headache, need for mechanical ventilation support, worst functional status (mRS 5 to 6), high NEOS score (4 to 5), OT, or CSF leukocyte count >20 cells/µL than those without, (4) the HIS score at diagnosis may be used to predict a probability of need for mechanical ventilation support, (5) higher GluN1-ab titers in CSF obtained at diagnosis may play a role in poor 1-year functional status, and (6) an incomplete phenotype can be attributed to low CSF ab titers.

We have developed this score to estimate CSF ab titers with one-time immunostaining and conducted this study to clarify whether (1) the score of the CSF obtained at diagnosis is associated with clinical/paraclinical features and (2) the HIS score can be used as a marker to predict the subsequent course of disease. The HIS score does not provide CSF ab titers directly measured by ELISA or using serial dilutions, but this strategy provides estimated CSF ab titers as an HIS score, ranging from 1:2 (score 1), 1:8 (score 2), 1:32 (score 3), 1:128 (score 4), and 1:512 (score 5) to 1:2,048 or more (score 6). The estimated CSF ab titers are close to those measured in a fourfold serial dilution method. The HIS score can be used as a marker not only of a disease activity but also of 1-year functional status, but individual laboratories have to make their own positive control panels. The ideal positive control patient’s CSF ab titers are unclear, but we used patient H’s CSF having ab titers of 1:2,048 and developed the visually distinguishable six-grade positive control panels.

After starting this study, however, we received another patient’s CSF, which revealed intense reactivity far beyond that of patient H’s CSF. The CSF ab titers were determined to be 1:32,768 in a fourfold serial dilution method. If we revised the positive control panels using this exceptionally high ab titer CSF, we could have developed a pair of eight-grade positive control panels (estimated CSF ab titers, 1:2–1:32,768). However, we did not revise the panels because it is likely to be difficult to recognize visually subtle difference in intensity between the scores 6 and 7 as well as 7 and 8, and we did not find out a clinical value that it is better to distinguish patients with extremely high CSF ab titers (>1:2,048) from those with CSF ab titers of 1:2,048. On the other hand, it is still possible to estimate CSF ab titers using these positive control panels even when a patient’s CSF ab titers are >1:2,048 through additional one-time immunostaining using the patient’s CSF diluted at 1:8,192. When the patient’s CSF diluted at 1:8,192 is scored 2, the CSF ab titers can be estimated to be approximately 1:32,768 because “the score 2” means that the patient’s diluted CSF would still be positive when being diluted one time in a fourfold serial dilution (diluted at 1:32,768) but would be negative when being diluted twice (diluted at 1:131,072), indicating that the CSF ab titers are estimated to be approximately 1:32,768.

Among the six core symptoms, HIS score was not associated with memory or psychobehavioral alterations or seizures. In our cohort, 96%–98% of patients presented with memory or psychobehavioral alterations. Accordingly, it was statistically difficult to compare the HIS score between those with and without memory or psychobehavioral alterations because of the too small sample size in one arm, whereas seizures were seen in 80%–82% of patients but less frequently than memory or psychobehavioral alterations. We did not find a significant difference in HIS score between patients with and without seizures. On bedside examination, it is often difficult to distinguish epileptic seizure from non-epileptic seizure or seizure from paroxysmal movement disorders, particularly in unresponsive patients with anti-NMDAR encephalitis. In most of them, these symptoms occur concurrently or one after another and are often indiscernible (3). Seizure was more frequently reported by referring physicians than dyskinesias or associated movement disorders (80%–82% vs. 59%–64%). Given the presence of a significant association between movement disorders and HIS score in all groups, high CSF ab titers play an important role in “dyskinesias or associated movement disorders” than in “seizure”. The ambiguity of the term “seizures” and its indiscernibility from paroxysmal movement disorders may lead to a lack of significant relationship between HIS score and seizures.

Memory or psychobehavioral alterations were not associated with HIS score; however, it is important to note that prominent psychobehavioral alterations are almost always seen in the early stage, and HIS score was significantly lower in patients with an incomplete phenotype than in those with a typical spectrum, indicating that “isolated psychosis” can be attributed to low CSF ab titers. It is also extremely important in such low-ab-positive patients with an incomplete phenotype to perform IHC adapted to NS antigens or live neurons to exclude false positive results and prevent unnecessary repeated immunotherapies in patients with a primary psychiatric disorder or non-immune-mediated epilepsy (22).

Regarding an association with a tumor, approximately half of the patients were found to have tumors (mostly OT); OT was found in approximately 50%–60% of female patients (Table 2). We found that the median HIS score was higher in patients with OT than in those without in all three groups, but it was not significantly higher in patients with tumors (when cancers were included; Table 2) than in those without in any group. The results of this study support the previous observation (8) that CSF ab titers were higher in patients with teratoma than in those without teratoma. It is suggested that teratoma plays an important role in ab production though NMDAR expressed in the nervous tissue contained in the teratoma, which are taken up by antigen-presenting cells and are presented to the immune system (23) or through ectopic germinal center formation in the teratoma (24).

We also investigated a possible association between HIS score and paraclinical findings. The HIS score was not associated with either OCB-detection or elevated IgG index in group I, but OCB-detection in groups II and III, and elevated IgG index in group III. In our cohort, OCBs were detected in two-thirds of the patients and elevated IgG index in one-third (Table 2). In group II, posttreatment CSF obtained after initiation of IVMP are included in 16% of patients; despite this, the HIS score was higher in patients with OCB-detection than those without. As intrathecal ab synthesis has been demonstrated in anti-NMDAR encephalitis (25), it is reasonable to think that high CSF ab titers are, in part, attributed to intrathecal ab synthesis, but elevated IgG index might be less sensitive than OCB-detection in terms of a biomarker of intrathecal ab synthesis. We also investigated an association between the HIS score and CSF leukocyte count in three variables: CSF total leukocyte count and CSF leukocyte count >5 cells/µL or >20 cells/µL. Among those, only CSF leukocyte count >20 cells/µL, which is an independent predictor for outcome in NEOS score (21), showed a significant association in all three groups. Brain MRI features suggestive of encephalitis was seen in 39%–46% of the patients, but the HIS score was not associated with MRI abnormalities, suggesting that factors other than high CSF ab titers, such as concurrent abs against MOG, AQP4, GFAP (19, 26), or other surface antigens not identified, or T-cell-mediated injury may contribute to MRI abnormalities. These glial surface antibodies were concurrently detected in some of the patients, including those with abnormal MRI findings but were not examined in all patients in our cohort. Extreme delta blush pattern was seen in some of the patients, but we did not investigate an association between the HIS score and EEG abnormalities because the EEG recorded during the course of the disease is not fully available for review.

The HIS score at diagnosis was higher in patients with high NEOS score (4 to 5), worst functional status (mRS 5 to 6), and need for mechanical ventilation support than those without in all three groups, and it had a significant effect on 1-year functional status in groups I and II, but not in group III. These data suggest that high CSF ab titers, particularly in the CSF obtained within 4 weeks of E-symptom onset, determine a disease severity and play an important role in the subsequent course of disease. These results are not inconsistent with the previous observations that high NEOS score (4 to 5) is associated with poor 1-year functional status (21), and high CSF ab titers are associated with poor functional outcome (7, 8). Accordingly, higher CSF ab titers at diagnosis are considered to play an important role in poor 1-year functional status but may not be a sole factor contributing to poor outcome. In most of the cases, CSF ab titers usually decline with time after initiation of immunotherapy, and functional recovery is associated with a reduction in CSF ab titers (7, 8); however, approximately 20% of cases are refractory to immunotherapy. In such refractory cases, sustained high CSF ab titers have been reported (8). Therefore, sustained high ab titers are likely to be a more important factor contributing to poor long-term functional status than the initial high ab titers.

In our cohort, we did not find a positive effect of the use of second-line immunotherapy on 1-year functional status in any group. However, patients who were treated with second-line immunotherapy exhibited a more frequently poor response to initial treatment than those who were not treated. Furthermore, the median CSF ab titers at diagnosis were higher in patients who were treated with second-line immunotherapy than in those who were not treated. Accordingly, the lack of positive effect on 1-year functional status does not exclude the efficacy of second-line immunotherapy.

This study has limitations because of it being a retrospective study, having a small sample size, and having analysis based on estimated CSF ab titers without serial dilutions. EEG findings are not included in this study. GFAP, MOG, and AQP4 abs were examined in some but not in all patients. Chronological changes in the HIS score are not included in the analysis. Despite these limitations, we showed an association between estimated CSF ab titers at diagnosis through the HIS score and some of the clinical/paraclinical features, disease severity, and 1-year functional status. A nominal logistic model may also help to predict a probability of need for mechanical ventilation support (Figure 4H, Supplementary Figures S2F, S3F). This strategy is relatively easy to determine CSF ab titers with only one-time immunostaining without serial dilutions at a low cost, can be used in clinical practice at any laboratory when minimum equipment for IIFA is available, and provides clinicians with important clues regarding this devastating but potentially reversible AE.
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Supplementary Figure 1 | Inter-assay reliability. H-intensity scale score was determined twice in 21 patients’ cerebrospinal fluid samples with different GluN1 antibody titers that scored from 0 to 6. This figure reveals a good agreement between the scores of the first and second assays.

Supplementary Figure 2 | H-intensity scale (HIS) score and clinical/paraclinical features in group II. HIS score was higher in patients with worst functional status within 3 months of E-symptom onset (A) and a high NEOS score (4 to 5) (B) than in those without. Second-line immunotherapy was more frequently used in patients who did not show clinical improvement within 4 weeks after starting treatment than in those who did (C). Patients with a high NEOS score (4 to 5) more frequently had a poor 1-year functional status (D). HIS score at diagnosis (E) had a significant effect on both 1-year functional status and need for mechanical ventilation support (F) (see Table 2). In (A, B), boxplots depict median and interquartile range with whiskers extending to minimum and maximum values. E-symptom, encephalitis symptom.

Supplementary Figure 3 | H-intensity scale (HIS) score and clinical/paraclinical features in group III. HIS score was higher in patients with worst functional status within 3 months of E-symptom onset (A) and a high NEOS score (4 to 5) (B) than in those without. Second-line immunotherapy was more frequently used in patients who did not show clinical improvement within 4 weeks after starting treatment than in those who did (C). Patients with a high NEOS score (4 to 5) more frequently had a poor 1-year functional status compared with those without (D). HIS score at diagnosis (E) did not have a significant effect on 1-year functional status in group III, but it had on need for mechanical ventilation support (F) (see Table 2). In (A, B), boxplots depict median and interquartile range with whiskers extending to minimum and maximum values. E-symptom, encephalitis symptom.
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