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Editorial on the Research Topic

Crosstalk between cell death, oxidative stress, and immune regulation
Cell death, a basic physiological process of all organisms, involves a series of core

players capable of destroying the homeostasis of cellular environment. With more

thorough research in recent years, different types of cell death such as apoptosis,

autophagy, necroptosis and ferroptosis have been clarified (1–3). This Research Topic

compiles a range of contributions exploring the intricate relationships among cell death,

oxidative stress, and immune regulation, as well as their pathobiology and therapeutic

implications in immune-mediated diseases.

The review from Liu et al. summarized the pre-clinical and clinical studies of the

pathogenesis of transfusion-related acute lung injury (TRALI). In the presence of stimuli,

neutrophil extracellular traps (NETs) are formed by activated neutrophils and are

established as effector molecules, contributing to the release of ROS that destroys

pulmonary vascular endothelial cells. The authors discussed the mechanism through

which NETs induce TRALI, and highlighted the possible therapeutic targets based on

the modulation of NETosis/NETs, for example, through activation of the glycolytic

pathway, targeting inflammasome, chemokines/cytokines and neutrophil receptors.

Another review from Zhang et al. described the role of cGAS-STING pathway in viral

infection. Apart from its most common function in regulating IFN-a and inflammation,

cGAS-STING also has major impacts on a series of cellular responses, such as endoplasmic

reticulum stress, autophagy and oxidative stress. However, overactivation and inactivation

of the cGAS-STING pathway are both detrimental to the clearance of pathogens. Further

studies on how to modulate the activity of cGAS-STING and promote elimination of virus

by host cells are still required.

This Research Topic also focuses on the therapeutic strategies targeting the “cell death-

oxidative stress-immune regulation” signaling axis. For example, the research article from

Dos Santos et al. reported a repurposed drug deucravacitinib, which is a tyrosine kinase 2

(TYK2) inhibitor, for the prevention and treatment of type 1 diabetes. The result shows that

deucravacitinib could prevent the effects of IFN-a in a dose-dependent manner while not

affecting the function and survival of b-cells. In cells pre-treated with proinflammatory

cytokines, deucravacitinib could partially reduce inflammation and apoptosis. This pre-

clinical data suggests that TYK2 inhibition may be an effective strategy for treating type 1
frontiersin.org014
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diabetes. Another review article from Zhang et al. reported the

research progress of mesenchymal stem cells-derived extracellular

vesicles (MSC-EVs) and exosomes (MSC-Exos), which carry

bioactive molecules e.g. regulatory proteins and miRNA, in the

treatment of oxidative stress-related diseases. The regulatory

activities of MSC-EVs and MSC-Exos, including apoptosis,

necrosis and oxidative stress, on many systemic diseases have

been widely validated by cellular and animal models. However,

the same bioactive molecules in MSC-EVs and MSC-Exos seem to

have different effects in different studies. It is therefore necessary to

formulate a protocol to better control the isolation steps of MSC-

EVs and MSC-Exos, as well as to select study models closer to

human pathology for better clinical usage. The review from

Mackiewicz et al. discussed the role of nuclear factor of activated

T-cells (NFAT), which is a family of main transcription factors

responsible for regulating the expression of genes important for

inflammatory and immune responses, in Alzheimer’s diseases. The

inflammatory mediators produced by NFAT-dependent pathway is

controlled by Ca2+-dependent protein phosphatase calcineurin

(CaN) and aberrant NFAT-CaN signaling may play a deleterious

role in the pathologies of Alzheimer’s diseases, including neuronal

apoptosis. Although targeted inhibition of CaN/NFAT may offer a

promising strategy in the treatment of Alzheimer’s diseases, the

severe adverse effects of many CaN inhibitors and scarce research

on NFAT inhibitors have markedly limited their translational

potential. Another review from Maiese discussed three pathways

of programmed cell death, including SIRT1, AMPK and WISP1,

and suggested that these pathways are potentially important in

maintaining nervous system function and metabolic homeostasis,

which warrant more thoughtful research.

The study of gene regulatory networks is useful to understand

transcriptional dynamics in biological systems. Computational

recognition of regulator genes has been successfully applied to

study the relationship between programmed cell death/oxidative

stress and different diseases. The research article from Xu et al.

explored the patho-physiobiological mechanisms underlying atopic

dermatitis (AD). The authors identified 278 differentially expressed

genes (DEGs) and seven ferroptosis signature genes in four AD-

related cohorts from the GEO database (samples from patients with

AD and healthy controls). Four ferroptosis genes (EGR1, MAP3K1,

FABP4, ALOXE3) were selected to construct a FerrSig predictive

model and was shown to be able to accurately identify patients at

higher risks of AD. Another research conducted by Li et al.

integrated single-cell RNA sequencing and bulk transcriptomic

datasets to elucidate the mechanisms underlying renal ischemia-

reperfusion injury (RIRI). The authors identified five necroptosis-

related DEGs from the pre- and post-reperfusion renal biopsies

using gene expression data, constructed a predictive model for

delayed graft function (DGF) and divided patients into different risk

groups. The model revealed reliable performance in identifying

patients with higher risks of developing DGF. The result was further

validated by mouse models that exhibited up-regulated necroptosis-
Frontiers in Immunology 025
related DEGs after ischemia-reperfusion. The same research group

(Zhang et al.) conducted another study identifying three

endoplasmic reticulum stress-related genes (ATF3, JUN and

PPP1R15A) which were found to be associated with different

kidney injury-related pathways, including apoptosis, pyroptosis,

oxidative stress and inflammatory response. Intriguingly,

compared with the sham group, the expression of the three genes

were significantly higher after RIRI, and were decreased after

treatment with a potential drug for RIRI. Furthermore, a research

article from Yang et al. established three transcriptional co-

expression networks (clusters C1, C2 and C3) with distinct

antioxidative potential in glioblastoma cancer cells. C2, which was

identified as a cluster with a moderate level of ROS, was found to

exhibit a strong correlation with the highly aggressive mesenchymal

subtype of glioblastoma. Among the transcriptional factors in C2,

FOSL1 demonstrates a prognostic value in both overall survival and

overall-free interval.

In summary, therapeutic strategies targeting the pathways of

cell death offer exciting prospects for maintaining homeostasis of

cellular environment that can be compromised in immune-

mediated diseases. Integrating predictive models with other

clinical indicators may also provide a comprehensive assessment

to identify patients with higher risks of disease development/

recurrence and can potentially offer a promising prognostic

application to alleviate disease burden. We hope that this

Research Topic will enrich our understanding of the crosstalk

between cell death, oxidative stress, and immune regulation, and

will open up new avenues for the diagnosis and treatment of

immune-mediated diseases.
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Dongguan, China, 5School of Medical Technology, Guangdong Medical University, Dongguan, China,
6Biomedical Innovation Center, Guangdong Medical University, Dongguan, China, 7Institute of Marine
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There is growing evidence that mesenchymal stem cell-derived extracellular

vesicles and exosomes can significantly improve the curative effect of oxidative

stress-related diseases. Mesenchymal stem cell extracellular vesicles and

exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have

many biological regulatory functions. In this review, we describe how MSC-EVs

andMSC-Exos reduce the relatedmarkers of oxidative stress and inflammation in

various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-

Exos in treating apoptosis and vascular injury induced by oxidative stress. The

results of a large number of experimental studies have shown that both local and

systemic administration can effectively inhibit the oxidative stress response in

diseases and promote the survival and regeneration of damaged parenchymal

cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important

bioactive molecules in disease treatment, which can inhibit the apoptosis,

necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other

cells, and promote their survive and regenerate.

KEYWORDS

mesenchymal stem cells, extracellular vesicles, exosomes, oxidative stress,
inflammation, cell proliferation
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1 Introduction

Mesenchymal stem cells belong to a heterogeneous cell

population of stromal cells. They proliferate and differentiate in

vitro in the form of plastic adherent cells. They can be isolated from

many human tissues and differentiate into mesoderm and

endoderm (1), neuroectodermal cells (2) and other embryonic

lineage cells (3). Mesenchymal stem cells have been proven to

have a variety of biological functions. They can interact with cells in

the immune system for immune regulation, inhibit tumor necrosis

factor (TNF), upregulate IL-10 (4), reduce inflammation, inhibit

respiratory burst and Activate the spontaneous apoptosis of

neutrophils, etc. (5). Although mesenchymal stem cells have

many applications in the field of life sciences, their effectiveness is

restricted by many factors. For example, the phenomenon of

immune rejection of allogeneic mesenchymal stem cells (6), low

persistence of curative effect of limited infusion of mesenchymal

stem cells, deprivation of nutrients and growth factors and

limitation of oxygen transport during mesenchymal stem cell

transplantation (7), Passaged late mesenchymal stem cells trigger

immediate menstrual blood-mediated inflammatory response

(IBMIR) and form blood activation markers, etc. (8). In recent

years, due to the vigorous development of research on exosomes

derived from mesenchymal stem cells (MSC-Exos), it has been

found that exosomes can avoid some of the shortcomings of

mesenchymal stem cells in the treatment of various diseases.

Exosomes are spherical particles with a diameter of about 40 ~

150 nm, which are released after the fusion of vesicles and cell

membrane (9). It has lipid bilayer membrane structure, which is

produced in cell culture or body fluid supernatant, such as blood,

saliva, urine, breast milk, cerebrospinal fluid, bile and lymph, and can

secrete exosomes (10–12). Compared with plasma membrane,

exosomal membrane is harder and more stable in external

environment. Exosomes carry a lot of genetic material similar to

stem cells, including microRNAs (miRNAs) and mRNAs (13). In

addition, exosomes contain a specific family of proteins such as heat

shock protein integrins and tetrathione involved in membrane

transport and fusion (14–16). It is worth noting that exosomes-

based cell origin exosomes also play a unique role in cell

communication (17). MSC-Exos has become the preferred

treatment for many diseases and is a safe and effective stem cell-

free replacement therapy (18). Exosomes are more stable and

modifiable than mesenchymal stem cells and have no risk of tumor

formation Due to the nanometer size and lipid bilayer structure of

exosomes, exosomes can easily cross the biological barrier and enter

the target organs (19). The therapeutic effect of MSC-Exos has been

confirmed in a variety of diseases, including lung injury, myocardial

injury, kidney injury, nerve injury, skin injury and aging (20).

When a living cell is damaged by free radicals or non-free

radicals, it will obtain electrons from its molecules, which will

produce a chain reaction and eventually lead to the damage of cell

structure. Among these molecules, molecules from ROS (reactive

oxygen species) have major biological effects, and the concept of

oxidative stress is derived from this (21). Oxidative stress injury

refers to the condition that oxygen and oxygen-derived free radicals
Frontiers in Immunology 028
exceed the natural antioxidant defense capacity of cells (22). The

aggravation and prolongation of symptoms caused by oxidative

stress is always a major problem in various common clinical

diseases. The antioxidant activity of MSC-Exos and MSC-EVs has

its unique advantages in inhibiting oxidative damage and alleviating

inflammatory reaction MSC-Exos and MSC-EVs can increase

calcium inflow, reduce the concentration of pro-inflammatory

factors and reduce the production of ROS (23). Exosomal therapy

has a looser regulatory approach than cell therapy and is considered

as a “biological drug” with broad development prospects (24). In

recent years, the research on exosomes is very active, and the articles

on exosomes in the treatment of oxidative stress have accumulated a

certain amount. This paper mainly reviews the mechanism,

advantages, disadvantages and prospects of MSC-Exos and MSC-

EVs derived from mesenchymal stem cells in the treatment of

oxidative stress-related diseases in various systems. Based on

previous studies, it details the related mechanisms, looks for the

intersection of research directions, and deeply discusses the future

research directions in this field (Figure 1).
2 Respiratory diseases

Therapies based on MSC-EVs or MSC-Exos have great

application prospect in the treatment of oxidative stress-related

lung injury. For example, acute lung injury (ALI), neonatal

hypoxia-ischemia-reperfusion COVID-19 radiation lung injury, etc.

The main characteristic of ALI progression is oxidative stress

response (25). The accumulation of excess pro-inflammatory

factors can lead to the occurrence of oxidative stress in lung

tissue, which then leads to the occurrence of ALI. At present,

many drugs in the market cannot pass through the lung blood-air

barrier, which leads to low curative effect, which is the main

problem in treating ALI. Studies have shown that MSC-EVs can

cross the blood-air barrier and other biological barriers in the lungs

to enhance the therapeutic effect (26). Hyperoxia-induced lung

injury can lead to the imbalance of oxidative-antioxidant system in

vivo and lead to oxidative stress injury. The negative effects of

ischemia-reperfusion are caused by the induction of inflammation

and oxidative stress and the damage of cell energy metabolism,

which leads to a series of harmful biological events from ion

homeostasis failure to cell death (27). In severe acute respiratory

syndrome (SARS) caused by SARS-associated coronavirus (SARS-

CoV), the immune response to virus infection and cytokine storm

play a key role in the severity of the disease (28). Cytokine storm

will lead to the development of oxidative stress due to ROS

produced by immune cells (29). Complex pathophysiological

mechanisms indicate that severe COVID-19 is more suitable for

multi-effect drug therapy than single target drug (30). Therefore, it

is an innovative method to use MSC-EVs or MSC-Exos combined

with COVID-19 clinical drugs.

Determining the effective therapeutic components carried by

exosomes is the basis for explaining the therapeutic mechanism,

including effective secretory proteins and microRNA (miRNA), etc.

(31) At the same time, it is also important to further understand the
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therapeutic mechanism of exosomes in the lung, including

antioxidant and anti-inflammatory treatment of target cells or

injured tissues. miRNA is a small non-coding RNA molecule with

19-25 nucleotides that play various roles in physiology and disease

progression (32). MSC-EVs have been shown to promote the repair

of lung injury by delivering miR125amiR-181b and miR-126 in the

field of ALI (25). Both inhalation and tail vein injection of MSC-

EVs decreased the levels of pro-inflammatory cytokines IL-1 b
MCP-1IL-1 a TNF a and IL-12 and increased the levels of anti-

inflammatory cytokines IL-10. HE staining showed that MSC-EVs

could improve pulmonary morphological changes such as alveolar

wall thickening, alveolar septum congestion and inflammatory

infiltration after lipopolysaccharide (LPS) stimulation (33). In

addition, NF-kB is a key transcription factor, which has been

proved to be a key signal factor for regulating pro-inflammatory

cytokines in sepsis-induced ALI (25). The increase of pathological

score showed that MSC-EVs treatment reversed the changes related

to inflammatory infiltration. These studies suggest that MSC-EVs

and MSC-Exos can improve the damage and pathological changes

of oxidative stress-related lung diseases in the early stage and are

excellent new therapeutic drugs.
2.1 MSC-EVs and MSC-Exos improve
the related indexes of pulmonary
oxidative stress

The antioxidant effects of MSC-EVs and MSC-Exos are closely

related to their secreted proteins and microRNA. In exosomes-

treated rat alveolar macrophages (NR8383 cells), the activity of

SOD and GSH increased and the content of MDA decreased, and

the effect was more obvious when the exosomes overexpressed miR-
Frontiers in Immunology 039
22-3p However, inhibiting FZD6 in exosomes inhibited SOD and

GSH activities and increased MDA content, which indicated that

miR-22-3p improved the antioxidant activity of cells through FZD6

(32). After adding MSC-EVs to raw 264.7 cells, the expression of

Nrf2HO-1HMGB1 and other oxidative regulators decreased, and

the number of 8-OHdG positive cells decreased. After knocking out

Nrf2 in MSC-EVs and adding MSC-EVs again in raw 264.7 cells

stimulated by LPS, the expression of HO-1IL-6 was up-regulated,

and the expression of Nrf2Keap-1TNF-a did not change. These

results indicate that knockout of Nrf2 in MSC-EVs can weaken the

anti-inflammatory and antioxidant activities of EVs (33)

Transcriptome sequencing of mouse ALI model treated with

MSC-EVs for 4 days showed that many genes related to immune

regulation and oxidative stress were less different than those of ALI

mice (34). In addition, a series of genes such as TLR4,Arg-1 and

HMOX1 have been shown to be involved in immune regulation and

antioxidant activity HO-1 is an antioxidant enzyme that can inhibit

apoptosis, inflammation and cell proliferation to reduce cell death

in ALI animal models by inducing several detoxification enzymes

and antioxidant proteins (25). In summary, MSC-EVs plays an

important therapeutic role in immune regulation and reduction of

oxidative stress in ALI mouse model (33).
2.2 MSC-EVs and MSC-Exos in the
treatment of lung cell injury and
apoptosis induced by oxidative stress

MSC-EVs and MSC-Exos have been proved by many studies to

alleviate lung pathological injury and apoptosis.

In vitro, the cell viability of NR8383 cells decreased and

apoptosis was promoted after LPS treatment, while miR-22-3p
FIGURE 1

Treatment of related systemic diseases caused by oxidative stress with mesenchymal stem cell exosomes and vesicles: Mesenchymal stem cell-
derived exosomes and exosomes can decrease ROS, inhibit inflammation, reduce cell apoptosis, and enhance angiogenesis, thereby treating
respiratory, circulatory, and digestive systems, nervous system, motor system and other system diseases caused by oxidative stress.
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up-regulated MSC-EVs increased cell viability and inhibited cell

apoptosis FZD6 belongs to the “curl” gene family and is highly

expressed in both adult and fetal lung tissues (35). Up-regulation of

miR-22-3p or down-regulation of FZD6 in MSC-Exos can improve

cell viability and inhibit apoptosis (32). In addition, up-regulation

of miR-30b-3p of MSC-Exos in LPS-treated mouse lung epithelial

cells (MLE-12 cells) also showed increased cell proliferation and

inhibition of apoptosis (36).

In vivo experiment, the acute lung injury induced by sepsis in

mice was basically normal after MSCs-EVs treatment, and the blood

barrier of type I alveolar cells and endothelial cells were only slightly

swollen. After exosomes treatment, the edema and bleeding of mice

were alleviated (25). In the survival analysis, Kaplan-Meier survival

curve showed that the survival rate of mice with cecal ligation and

puncture (CLP) treated with MSCs-EVs was significantly higher

(25). MiR-21-5p carried by MSC-Exos is a kind of cancer-

promoting miRNA, which can effectively resist apoptosis. Ji Wei

Li et al. treated mouse bone marrow-derived MSCs with hypoxia or

miR-21-5p antagomir respectively to increase or decrease miR-21-

5p concentration in MSC-Exos. It was found that MSC-Exos

treatment weakened mouse lung ischemia-reperfusion injury in a

miR-21-5p-dependent manner, effectively reduced oxidative stress-

induced apoptosis and partially reduced hypoxia/reoxygenation-

induced pro-inflammatory “M1” polarization of alveolar

macrophages (37).

EVs can release glycosaminoglycan serum hyaluronic acid (HA)

and improve energy metabolism of lung cells exposed to ischemia-

reperfusion. This is particularly important in protecting against

ischemic injury because HA is essential for maintaining the

integrity of lung epithelial cells and inducing tissue healing and

regeneration HA released by mesenchymal stem cells can trap

immune cells in extracellular matrix (38–40) and prevent

leukocytes from adhering to activated endothelial cells (40, 41).

The impaired energy metabolism after ischemia-reperfusion injury

is the main reason for the failure of ion homeostasis, which leads to

cell swelling and apoptosis/autophagy activation. The treatment of

MSC-EVs can restore ATP to baseline level and promote leukocyte

homing in perfusion lung injury (27). These results suggest that

MSC-EVs and MSC-Exos can enhance the inhibition of cell

regeneration and apoptosis in oxidative stress-induced lung

injury, especially miRNA in exosomes.
2.3 MSC-EVs and MSC-Exos in the
treatment of lung inflammatory injury
induced by oxidative stress

MSC-EVs and MSC-Exos play a significant biological role in

anti-inflammation. ROS signal plays an important role in the

occurrence and development of inflammatory injury. Excessive

ROS promotes cell injury and death when the production and

elimination of ROS are unbalanced (42). MSC-EVs and MSC-Exos

can regulate and attenuate the inflammatory injury induced by

oxidative stress in the lungs.

The expression of CD86 in mouse mononuclear macrophages

was increased by LPS stimulation in vitro. After administration of
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MSC-EVs, the expression of CD86 decreased significantly, and the

expression of Arg-1 increased, which indicated that macrophages

polarized towards M2 anti-inflammatory direction (33).

In vivo MSC-EVs significantly reduced the levels of pro-

inflammatory cytokines including TNF-alpha IL-1bIL-6MPO and

significantly increased IL-10 levels and resulted in neutropenia in

alveolar lavage fluid in a sepsis-induced acute lung injury model in

mice. The phosphorylation activation of MAPK pathway is thought

to play an important role in the pathogenesis of ALI and

administration of MSC-EVs significantly inhibits their

phosphorylation. Treatment with MSC-EVs decreased the

phosphorylation level of NF-kB p65 and inhibited the increase of

NF-kB p65 degradation. In addition, TLR4 also plays an important

role in the regulation of inflammation and signal transduction. The

decreased expression of TLR4 and its downstream signals (IL-1 b
IL-6 and NF-kabb-p65) after MSC-EVs treatment also indicates

that MSC-EVs can alleviate inflammation stimulated by LPS (33).

These phenomena suggest that MSC-EVs play an important role in

inhibiting inflammatory markers related to oxidative stress in

the lungs.
2.4 MSC-EVs and MSC-Exos in the
treatment of pulmonary vascular
injury induced by oxidative stress

Vascular endothelial growth factor (VEGF) plays an important

role in promoting angiogenesis and enhancing vascular

permeability. Tracheal transplantation of MSC-EVs in rat lung

tissue can significantly improve hyperoxia-induced angiogenesis

damage and reduce the number of apoptotic cells in lung tissue (43).

Pericytes are cells that surround capillaries and veins

throughout the body. Franco et al. (44) reported that pericytes

can protect vascular endothelial cells from cytotoxicity. Covering

vascular endothelial cells with pericyte prevents EVs from being

phagocysed by vascular endothelial cells. Pericyte-dependent

survival signals are forced by paracrine and autocrine circulation

involving VEGF-A expression. In addition, some studies have

shown that the expression of VEGF in differentiated pericyte

enhances the survival of endothelial cells and the stability of

microvessels (45). In general, these findings suggest that the

improvement of angiogenesis of MSC-EVs is not mediated

directly by phagocytosis of vascular endothelial cells, but

indirectly induced by phagocytosis of pericyte by EVs. These

results indicate that VEGF protein and mRNA carried by EVS are

very important for angiogenesis, and the specific mechanism needs

further study (43).

In conclusion, MSC-EVs or MSC-Exos play a positive role in

various diseases of respiratory system. Firstly, exosomal proteins

and miRNA have powerful functions, which can reach lung injury

tissues through their targeting and homing properties to treat

oxidative stress, inflammation and vascular injury (46). Secondly,

exosomes can be used as carriers to encapsulate drugs across the air-

blood barrier and alveolar epithelial-endothelial barrier to reach

some places that drugs cannot reach. Finally, exosomes also show

potential in disease diagnosis. Exosomes released by infected cells
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carry many pathogen-derived molecules and can be used as

biomarkers of specific infectious factors. In addition to the

frontier research directions such as exosomes and miRNAs,

exosomes and autophagy, we believe that the combination of

exosomes of infected cells and omics techniques to find

biomarkers of various lung diseases may be the future research

direction (47).
3 Diseases of circulatory system

It is well known that cytokines secreted by MSCs can enhance

cardiomyocyte proliferation, reduce cardiomyocyte apoptosis,

improve the microenvironment of damaged sites and repair

damaged tissues (48).
3.1 MSC-EVs and MSC-Exos improve the
related indexes of oxidative stress in
circulatory system

Exosomes extracted from mesenchymal stem cells can improve

myocardial dysfunction after hypoxia and myocardial infarction.

Studies have shown that miR-182-5p carried by MSC-exos can treat

myocardial ischemia-reperfusion (I/R) injury. MiR-199a-3p and

miR-214 are similar to miR-182-5p in the response to I/R in rat

myocardial cells, and both of them can improve the survival rate of

myocardial cells and thus treat myocardial ischemia-reperfusion

injury (49). At the same time, after hypoxia-induced injury, a low

expression level of miR-182-5p was also observed in rat

cardiomyocytes. Exosomal miR-182-5p engrafted NLRP3

inflammasome activation and cellular oxidative stress, thereby

alleviating myocardial ischemia-reperfusion injury NLRP3 plays a

key role in many diseases and can be activated by many types of

agonists or risks. miRNA (miR-223) can bind to the 3 ‘UTR of

NLRP3 to inhibit the inflammatory response caused by NLRP3

(50). On the other hand, overexpression of miR-182-5p

downregulates Toll-like receptor 4 (TLR4), inactivates

proinflammatory cytokines, TNF-a , and IL-6, thereby

ameliorating liver I/R injury. In addition, miR-182-5p can also

down-regulate TLR4 and inhibit ROS production to treat oxidative

stress injury and apoptosis induced by atherosclerosis (51).

O’Brien CG et al. participated in the Seneca trial sponsored by

the National Institutes of Health/National Heart Lung and Blood

Institute. Peripheral blood mononuclear cells were successfully

induced into induced pluripotent stem cells (IPSCs) and then

differentiated into cardiomyocytes (ICMs). Using these AIC

patient-specific MSCs, it was demonstrated that specific MSCs

successfully reactivated iCMs after doxorubicin (DOX) injury.

This effect is due to the active mitochondria carried by MSC-

EVs (51).

Previous studies have shown that the re-expression of lncRNA

alpha-2-macroglobulin antisense RNA 1 (Lnc RNA A2M-AS1) and

Lnc RNA A2M-AS1 in myocardial infarction can significantly

attenuate the hypoxia/resuscitation effect through the expression

of inflammatory factor receptor IL1R2 (52). Oxygen (H/R)-induced
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cardiomyocyte apoptosis suggested that Lnc RNA A2M-AS1 may

be involved in myocardial I/R injury.

AC16 cells were pretreated with exosomes and treated with

ischemia-reperfusion. Cell proliferation was detected by CCK-8

assay, which showed that hMSCs-Exos treatment could reverse

the decline in cell viability caused by ischemia reperfusion (53).

Furthermore, H/R resulted in the apoptotic rate of AC16 cells,

accompanied by downregulation of Bcl-2 protein levels and

upregulation of Bax and Caspase-3 protein levels, which was

attenuated in hMSCs-Exos treatment. hMSCs-Exos treated the

content of LDH and MDA in H/R AC16 cells, but increased the

content of SOD, thereby inhibiting oxidative stress. These results

suggest that exosomes isolated from hMSCs can protect

cardiomyocytes from H/R injury (54). It was further found that

the level of Lnc RNA A2M-AS1-Exos was upregulated in AC16 cells

cultured with hMSCs-Exos, alleviating H/R-induced apoptosis and

oxidative stress in cardiomyocytes (54). Sánchez-Sánchez R et al.

found that miR-4732-3p can induce apoptosis, ROS level and LDH

activity in neonatal rat cardiomyocytes after OGD (glucose and

oxygen deprivation model), prevent fibroblast migration and

myofibroblast differentiation, induce in vitro and in vivo

Angiogenesis. Intramyocardial injection of miR-4732-3p in

exosomes in infarcted nude rats confers cardioprotection through

functional and morphometric studies (55).
3.2 MSC-EVs and MSC-Exos in the
treatment of circulatory vascular
injury induced by oxidative stress

In recent years, a large number of evidences have shown that

exosomes have protective effect in ischemic heart, which can

alleviate myocardial I/R injury, promote cardiac regeneration and

angiogenesis and inhibit fibrosis (56, 57). It has been proved that

MSC-Exos overexpressing miR-486-5p can restore cardiac function

after myocardial infarction in mice and non-human primates (58).

Delivery of MSC-EVs containing miR-1505p in I/R rat model also

alleviates poor myocardial remodeling (59). MSC-EVs-derived

miR-21a5p induces cardiac protection in mice after I/R injury

(60). adenovirus-transmitted miR-148a prevents ventricular

remodeling in pressure overloaded mice (61). In mechanism,

miR-210 was found to enhance myocardial vascularization in

AMI rat model after myocardial transduction by up-regulating

the expression of hepatocyte growth factor (62). Nevertheless,

some miRNA in MSC-EVs may still be harmful to heart function,

and the strategy of eliminating specific packaged miRNA molecules

has been proved to improve the anti-apoptosis and angiogenesis of

EVs (63).

Overexpression of Notch1 intracellular domain (N1ICD) in

MSC-EVs can prevent apoptosis of CMS (cardiomyocytes) and

promote cardiac angiogenesis under oxidative stress and ischemia

injury. Notch plays an important role in cardiac repair after

myocardial injury, Overexpressed MSC-EVs of N1ICD have good

curative effect on angiogenesis of ischemic myocardium,

proliferation of CMS (myocardial cells), improvement of cardiac

function and fibrosis, Notch1 is strong for heart (64).
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3.3 MSC-EVs and MSC-Exos in the
treatment of cardiomyocyte apoptosis
induced by oxidative stress

Mesenchymal stem cells can secrete a large number of soluble

factors to promote myocardial cell proliferation, reduce apoptosis,

improve ischemic microenvironment and mobilize endogenous

cardiac stem cells by paracrine. However, studies have shown that

although exogenous mesenchymal stem cells prefer to homing to

myocardial ischemia sites, their survival rate in infarct areas is low

(65). MSCs-Exos mediates cell-to-cell communication through

horizontal transfer of bioactive RNA molecules and proteins (66).

It is important that exosomes have good stability without the risk of

chromosome loss and poor immune responses are rare (48).

Therefore, MSCs-Exos is considered as an ideal drug delivery

carrier and has great prospects in the treatment of oxidative

stress-induced cardiomyocyte apoptosis.
3.4 MSC-EVs, MSC-Exos and autophagy
of myocardial cells

Autophagy is involved in regulating the metabolic balance

between synthesis, degradation and reuse of cellular substances.

Both autophagy defect and overactivation will cause damage to

homeostasis to some extent (67). Bafecycin A1 (Baf-A1) inhibited

autophagy, and observed the effect of exosomes on autophagy.

Compared with pure H2O2-induced autophagy, the expression of

Beclin-1 and LC3B-II in exosomes + H2O2-treated cells increased

and the expression of P62 decreased, while the protein levels of

LC3B-IIBeclin-1 and P62 in H2O2 + exosomes + Baf-A1-treated

cells were higher than those in H2O2 + exosomes and H2O2-treated

cells. Therefore, autophagy induced by MSCs-Exos may be an

important mechanism of cell protection after H2O2 (48).

Autophagy is known to be associated with many pathways

involving MAPK/mTOR and Akt/mTOR. Enhanced autophagy

after hypoxia or ischemia injury has myocardial protection.

Excessive ROS production in post-ischemia reperfusion stage can

lead to autophagy. Matsui et al. reported that activation of MAPK

pathway can induce autophagy, but activation of Beclin-1 pathway

can induce autophagy, which may lead to cell death during

reperfusion after ischemia (30). Therefore, ROS-induced

autophagy is multifaceted (68).

At present, the research on the application of MSC-EVs and

MSC-Exos in circulatory system diseases mainly focuses on

microRNA. Numerous studies have found which microRNA in

exosomes has a therapeutic effect on circulatory system diseases

through sequencing technology. For example, miR-182-5p of MSC-

Exos can improve myocardial I/R injury through the expression of

GSDMD (51), miR-21a5p derived from MSC-EVs induced

cardioprotection in mice after I/R injury (60), etc. Exosomes are

natural carriers of bioactive molecules, and using them as carriers of

drugs or siRNA to control gene expression and accelerate disease

recovery may be a research hotspot in the future of exosomes in the

circulatory system (69).
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4 Diseases of digestive system

Oxidative stress is the main pathogenic phenomenon peculiar

to liver diseases, which may lead to common liver diseases (70).

Under normal circumstances, hepatocytes can balance the

advantages and disadvantages of oxidative stress, control the level

of oxidative stress within a reasonable range, and have the ability to

regulate the balance of oxidants and antioxidants. However, due to

the damage caused by toxins, there will be an imbalance between

these particles. Oxidative stress is caused by mitochondrial

dysfunction of hepatocytes, which leads to ROS production. This

will not only induce irreversible changes in lipid protein and DNA

content, but also regulate the pathway of controlling normal

biological function (71). Studies have shown that MSCs-Exo can

produce beneficial effects in animal models of various liver diseases,

including liver injury, liver fibrosis, ischemia-reperfusion and so on.
4.1 MSC-EVs and MSC-Exos improve
the related indexes of oxidative stress
in liver injury

MSC-Exos can be used as an antioxidant to oxidative stress in

mice with liver injury. In vitro, Hiroaki Haga et al. evaluated the

effects of MSC-EVs on ROS production and NF-kB activity in

normal mouse stem cells induced by H2O2 ROS activity was

observed after 1 hour of H2O2. This activity was significant after

24 hours pre-incubation with MSC-EVs. The same NF-kB activity

was also detected by MSC-EVs. Therefore, the results show that

MSC-EVs can regulate the response to oxidative stress in liver IRI

(72). GPX1 is an antioxidant that can induce oxidative stress injury

induced by H2O2 to promote cell survival. When GPX1 in hucMSC-

Exos is knocked out, the antioxidant activity of exosomes indicates

that GPX1 is an important factor in hucMSC-Exos-mediated

antioxidant activity and liver protection. Inducing increased

GPX1 activity can induce liver injury and activate mitochondrial

apoptosis pathway in hepatocytes (70). In vivo, hucMSC-Exos

significantly inhibited the activation of oxidative stress products

8-OHdG and SOX9 in CCl4-induced liver tumor model. In CCl4-

induced acute liver injury model, 8-OHdG also had more obvious

antioxidant and liver protection effects than biphenyl ester (DDB)

treatment, and hucMSC-Exos was a more effective antioxidant than

DDB (73).
4.2 MSC-EVs and MSC-Exos in the
treatment of liver inflammatory injury
induced by oxidative stress

Macrophages and Kupffer cells are involved in regulating liver

inflammation and hepatocyte death in liver. Studies have shown

that exosomes can promote disease recovery by expressing

inflammatory factors (72). MSC-EVs can reduce ROS production

and overexpression of inflammatory cytokines such as IL-6 and IL-

1B due to activation of the NF-kB signaling pathway. In addition,
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MSC-EVs can inhibit inflammation in liver through NLRP12,

which is a negative regulator of inflammatory activity in vitro

immune system and others, and plays a role through attenuated

NF-kB (72).
4.3 MSC-EVs and MSC-Exos in the
treatment of hepatocyte apoptosis induced
by oxidative stress

The results of clinical studies show that HUCMSCs

transplantation can improve the blood supply of hepatocyte

extensive necrosis and other clinical symptoms in decompensated

cirrhosis (70). The levels of ALT and AST, the markers of

hepatocyte injury, and the levels of Caspase-3 and Bcl-2, the

activity of Bax and the anti-apoptosis protein increased after

treatment with hucMSC-Exos. These results suggest that

hucMSC-Exos treatment can improve liver I/R injury (74). In

acetaminophen (APAP) and hydrogen peroxide (HP) induced

hepatocyte injury models treated with hucMSC-Exos, cell activity

increased, necrosis and apoptosis decreased, LDH activity decreased

and ROS decreased. In CCl4-induced acute liver injury cells treated

with hucMSC-Exos, Bax and activated caspase 3 expressed TUNEL

positive cells can inhibit hepatocyte degeneration and hepatic

lobules at the same time, and even partially save the life of mice

in acute liver injury model. It is confirmed that hucMSC-Exos can

induce acute extensive liver injury induced by CCl4 (73). ERK1/2

phosphorylation and Bcl-2 expression induced by glutathione

peroxidase 1 (GPX1) hucMSC-Exos in mice. The phosphorylation

of I-Kappa-B Kinase b (IKKb) and NF-kB was inhibited 24 hours

after hucMSC-Exos treatment. The expression of Casp-9 and Casp-

3 was inhibited HucMSC-Exos inhibited the I-Kappa-B Kinase b

(IKKb) NF-kBcaspase 3 pathway and pNF-kB nuclear translocation

in CCl4-injured hepatocytes in a dose-dependent manner and

induced Bcl-2 expression and ERK1/2 phosphorylation to reverse

oxidative stress-induced apoptosis (70).
4.4 MSC-EVs and MSC-Exos regulate iron
death in the treatment of liver injury

Iron death is a regulatory cell death caused by lipid

peroxidation. Iron death is very important for preventing various

liver diseases, including liver fibrosis. HSCs iron prolapse has

become the target of inhibiting liver fibrosis (75). Benzyl chloride

1 (BECN1) is the key regulator of iron sag (76). It was found that

BECN1 enriched down-regulated GPX4 in both MSCs-EVs and

MSC-Exos, which contributed to iron sagging, which was necessary

to activate HSCs (77). An increase in BECN1 was detected after

MSC-Exos treatment, and a decrease in GPX4 and alpha-SMA

(HSCs-activated markers) was also found in fibrotic mouse livers

and collagen deposition. Therefore, MSC-Exos containing BECN1

can induce BECN1/GPX4-mediated iron prolapse and activation of

HSCs in mouse fibrotic liver. When BECN1 was knocked out, ROS

expressed by GPX4 produced mitochondrial membrane potential.

Therefore, BECN1 can induce iron poisoning by down-regulating
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GPX4. BECN1 overexpression can produce ROS and decrease

mitochondrial membrane potential in vivo experiments also

showed the same results (77).

In the current report, MSCs-EVs and MSC-Exos were not only

able to down-regulate inflammatory factors and oxidative stress

indicators in diseases of digestive system, but exosomes were also

found to regulate iron death in liver fibrosis. Iron death, a novel type

of programmed cell death, occurs in a wide range of injured cells,

and there are numerous research points that can be explored, which

deserve to be deeply investigated.
5 Urinary system disease

Combination of MSC-EVs and MSC-Exos transport with renal

artery revascularization can improve renal function and structure

and narrow oxidative stress, apoptosis, fibrosis and microvascular

remodeling (78, 79). Renal artery stenosis (RAS) is very common in

patients with chronic kidney disease. RAS patients are prone to

renovascular hypertension and progress to end-stage renal disease

(80). MSC-EVs have been shown to alleviate renal inflammation

and microvascular damage and improve hemodynamics and

function beyond stenosis in porcine RAS (81, 82). This suggests

that MSC-EVs are effective in preserving stenosis.
5.1 MSC-EVs and MSC-Exos regulate
renal oxidative stress-related diseases
through mitochondria

Mitochondria regulate many functions of renal cells, including

redox state, survival, proliferation and death. The damage of

mitochondrial structure and function is often accompanied by

oxidative stress, which is mainly due to the production of

superoxide (83) and H202 by complex I and III, which damages

several components of mitochondria and forms a vicious circle of

mitochondrial damage and oxidative stress. Mitosis can improve

the revascularization results of experimental (84) and clinical RAS

and protect renal function. Studies have shown that MSC-EVs and

MSC-Exos play an important filamentous protective role in stenotic

kidney, which improves mitochondrial density and mitochondrial

swelling (85).

The important role of mitochondria in mammalian cells is to

produce ATP through OXPHOS (86). Loss of a nuclear-encoded

mitochondrial protein, TFAM, causes mtDNA depletion and

OXPHOS (87, 88). After treatment of HK-2 with H202, the basal

respiration rate, the maximum respiration rate, the ATP production

respiration rate and the standby respiration capacity level all made

MSC-EVs reverse these phenomena. Therefore, MSC-EVs can

function as mitochondria (89).

Faisal A Alzahrani and others found that MSC-Exos

significantly decreased the levels of MDA,HIF-1 a, mRNA and

NADPH oxidase 2 (NOX2) protein and increased the levels of three

antioxidant enzymes and HO-1 mRNA. The changes of oxidative

stress or antioxidant related parameters were more prominent after

ischemia. This indicates that MSC-Exos can play a role by inducing
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antioxidant activity and inhibiting oxidative stress in injured kidney

tissue (90). Pallavi Bhargava et al. (86) used renal I/R injury model

to evaluate the therapeutic effect of MSC-EVs. The results showed

that the rate of renal tubular necrosis, the expression of KIM-1 and

the number of apoptotic cells in I/R mice, And I/R mice showed

higher levels of renal cytokines mRNAs (IL-6,IL-1 b and ICAM1)

and serum cytokines (TNF-a and TWEAK) (91, 92). MSC-EVs

treatment can reverse the levels of these cytokines.
5.2 MSC-EVs and MSC-Exos regulate
related indexes of kidney oxidative stress

It is well known that most of the beneficial effects of MSCs are

mediated by their exosomes containing miRNA, mRNA and

LncRNA. These exosomal RNA are responsible for intercellular

communication through which RNA-based information is

transmitted to recipient cells (93). Interestingly, when exosomes

were pretreated with RNase, the ameliorative effect of exosomes on

renal ischemia-reperfusion injury was eliminated, which means that

exosomal RNA has an ameliorative effect on oxidative stress in renal

injury (94). In addition, Rafael S Lindoso et al. (95) reported that the

ameliorative effect of MSCs-Exos on Renal ischemia-reperfusion

injury and metabolic syndrome is related to the expression of some

miRNA involved in apoptosis and hypoxia, which means that

exosomes can improve their effects by post-transcriptional

targeting of some genes in cells by exosomal miRNA Melatonin

(Mel) preconditioning may induce MSCs to produce exosomes with

higher expression of RNA vectors, which induce renal repair by

inhibiting certain molecules involved in oxidative stress cell

apoptosis and inflammation (90).
5.3 MSC-EVs and MSC-Exos in the
treatment of apoptosis induced by
oxidative stress

Renal ischemia-reperfusion injury may accelerate the

development of chronic kidney (CKD). Renal ischemia-

reperfusion injury releases free radicals and mitochondrial

function induces apoptosis and inflammation (96, 97). The degree

of renal function was evaluated by detecting BUN in plasma and

creatinine in serum BUN and creatinine levels decreased sharply

after 4 weeks of renal ischemia-reperfusion injury, but they were

still higher than normal renal tissue. These elevated levels improved

significantly after MSC-Exos preconditioning and creatinine levels

returned to normal at 4 weeks. Therefore, the renal dysfunction

after renal ischemia-reperfusion injury is relieved after MSC-Exos

treatment, which means that MSC-Exos has broad prospects in the

treatment of CKD (90). Exosomes can improve renal ischemia-

reperfusion injury by interfering with apoptosis of renal cells. This

inhibition of apoptosis can be evaluated by measuring the activity of

caspase-3, the final marker of apoptosis. qPCR results showed that

apoptosis markers Bax,PARP1 and caspase-3 were up-regulated and

anti-apoptosis marker. Bcl2 was down-regulated in renal ischemia-

reperfusion injury rats Bax,PARP1 and caspase-3 mRNA levels, and
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Bcl2 mRNA levels were significantly increased after treatment with

MSC-Exos. These results suggest that the ameliorative effect of

MSC-Exos on renal ischemia-reperfusion injury is related to the

inhibition of apoptosis in damaged kidneys (90). In addition, MSC-

Exos had similar anti-apoptosis effects on ischemia-reperfusion

injury (98, 99) cisplatin-induced acute kidney injury (100, 101)

and glycerol-induced acute kidney injury (102). This anti-apoptosis

effect is also related to enhanced proliferation of renal tubular

epithelial cells and improved renal function and structure (90).
5.4 MSC-EVs and MSC-Exos in the
treatment of vascular injury induced by
oxidative stress

Transcription factor Sox9 plays a key role in renal development,

and its dysfunction can lead to severe renal dysplasia (103). It is

reported that the improvement of AKI by MSC-Exos is mediated by

up-regulating the expression of Sox9 in renal tubular cells (104).

Injection of MSC-Exos in renal ischemia-reperfusion injury rats

induced the expression of various angiogenic factors, resulting in

the improvement of renal function (94, 105), suggesting that these

angiogenic factors may be involved in exosomal-induced renal

repair. Studies reveal the important role of bFGF, HGF and Sox9

in renal tubular regeneration after renal ischemia-reperfusion injury

(106). The expression of these regeneration markers was also

induced after treatment with MSC-Exos (104).

MSC-EVs and MSC-Exos have a dual role including

regeneration and reduction of inflammation and oxidative stress

in urinary tract diseases. It is rich in growth factors that can provide

nutrients. At the same time, in vitro, mesenchymal stem cells can

transfer many cytokines with anti-apoptosis, anti-inflammatory

angiogenesis and immunomodulation properties into conditioned

medium to promote the recovery of model animal diseases

effectively. However, the safety and ethics of this therapy should

be further explored and corrected in order to try to apply it to

clinical practice (107).
6 Diseases of nervous system

Stem cell therapy shows great prospect in nervous system

diseases. However, stem cell therapy is limited by its safety ethics

or national legislation. Many evidences show that MSC-Exos and

MSC-EVs are more effective than their parent cells in the treatment

and recovery of nervous system diseases (108). EVs have many

biological characteristics, including crossing the blood-brain barrier

and the ability to resist freezing and thawing, which is beneficial for

EVs to play a therapeutic role in nervous system defects (109). EV

carries a variety of complex RNA and protein. EV has a good ability

to regulate oxidative stress pathophysiology and immune response

in nervous system diseases. Especially, the ability of miRNA transfer

to target cells mediated by EVs plays a key role in antioxidant

activity (110) and MSCs pretreated with H2O2 have better

antioxidant activity (111). Studies have shown that EVs contain a

series of up-regulated antioxidants miRNA, such as miR-215-5p,
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miR-424-5p,miR-31-3p,miR-193b-3p and miR-200b-3p. This

indicates that exosomal miRNA plays an important role in

antioxidant stress (112).
6.1 MSC-EVs and MSC-Exos improve
the indicators related to oxidative
stress in the nervous system

Seizures have a disproportionate impact on patients with

traumatic brain injury and stroke (113). ROS overproduction

caused by oxidative stress is an important pathophysiological

mechanism in human epilepsy. Oxidative stress in epilepsy-

causing hippocampal neurons can lead to neuronal apoptosis, cell

loss and mitochondrial function. Therefore, targeting the changes in

the pathophysiology of oxidative stress in the hippocampus has a

significant improvement effect on the disease (114) .

Electrophysiological disturbances are often manifested in

neuronal function (115), depolarization responses lead to

spontaneous firing and AP numbers, and input resistance can

lead to impaired excitability of neuronal cells (116), especially

CA1 pyramidal neurons, in Oxidative stress is particularly

vulnerable during epilepsy. Improvement of neuronal membrane

excitability after EVs treatment, suggesting the ability of MSC-EVs

to restore hippocampal electrophysiology in cellular and

animal models.

SAMPs are involved in oxidative responses and cellular

homeostasis, including iNOS, HMGB1, HO-1, and Nrf2 (117).

MSC-EVs treatment resulted in improvement of SAMPs,

suggesting that MSC-EVs have excellent therapeutic effect on

H2O2-induced oxidative neuronal injury. Furthermore, There are

two types of glutamate receptors that control oxidative stress levels

through mediated signal transduction. Glut 1 is also strongly

associated with the proliferation and death of neurons after the cell

is stimulated (117). Reversal of the expression of SAMPs, AMPA, and

Glut1 after EVs treatment indicated that MSC-EVs attenuated

seizure-induced oxidative stress in the mouse hippocampus.

Nrf2 is closely related to antioxidant, and the antioxidant effect

of Nrf2 enables it to play a neuroprotective role in epilepsy and

other neurological diseases through targeted therapy. The function

of NRF2 is closely related to KEAP1, which plays a coordinated role

in the expression of several target genes, such as NADPH quinone

oxidoreductase 1(NQO1) and heme oxygenase 1(HO-1), which

encode antioxidant mediators and have protective effects against

hippocampal neuronal damage caused by seizures (118). MSC-EVs

are rich in antioxidant miRNAs, and knockdown of Nrf2 abolished

the antioxidant capacity of MSC-EVs against epilepsy-induced

hippocampal injury, suggesting that the Nrf2 defense system is

involved in the antioxidant effect of MSC-EVs in epilepsy (112).

Qiang Luo et al. pretreated hippocampal neurons with 10 mg
MSC-EVs, and then with 100 mM H2O2, MSC-EVs pretreated the

activities of FRAP, CAT, SOD and GSH-PX. Furthermore, ROS

production in hippocampal neurons of H2O2 was assessed by flow

cytometry, and a significant rate of ROS production was detected in

the group pretreated with MSC-EVs. Experiments showed that

H2O2 led to increased expression of 8-OHdG (DNA damage
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marker), 4-HNE (lipid peroxidation marker) and DT (protein

oxidation marker), and EVs treatment significantly enhanced the

expression of these markers, and immunofluorescence staining

confirmed that MSC-EVs can process and repair DNA damage.

These results suggest that MSC-EVs have a strong antioxidant

capacity in hippocampal neurons in response to H2O2 (112).

Through miRNA sequencing technology, find and identify

substances that may have antioxidant potential in MSC-EVs.

Comparing the differentially expressed miRNAs between MSC-

EVs and H2O2-derived MSCs-EVs, many miRNAs were found to

be upregulated in H2O2-derived MSCs-EVs, such as miR-215-5p,

miR-424-5p, miR-31-3p, miR- 193b-3p and miR-200b-3p (119).

GO classification showed that exosomal miRNA target genes were

closely related to antioxidant active molecules. miRNA transfection

revealed that miRNA inhibitors reduced oxidative stress-induced 8-

OHdG concentrations in hippocampal neurons. This suggests that

these miRNAs in MSC-EVs exert an antioxidant effect on H2O2 in

hippocampal neurons (112).

Calcium, as an intracellular messenger, is ubiquitous in

oxidative stress (120). mitochondria are important organelles in

the control of calcium homeostasis (121). MSC-EVs can restore

seizure-induced hippocampal neuronal morphological changes and

mitochondrial function. The expression of TOM20, FIS1, and

COXIV after EVs treatment indicated that MSC-EVs could

restore mitochondrial/fusion and respiratory chains, so calcium

and mitochondrial changes are critical for maintaining the stability

of neuronal function (122). These results indicated that MSC-EVs

improved calcium transients and mitochondrial function in

primary cultures in H2O2.

The MWM test, which measures cognitive ability, found that

MSC-EVs-treated seizure mice had shorter escape latencies. These

data suggest that MSC-EVs treatment promotes functional

reconstitution of hippocampal neurons during epileptic chronic

seizures (123). Qiang Luo et al. pretreated hippocampal neurons

with MSC-EVs to induce the uptake of nanoparticles, and then used

H2O2 cells to induce oxidative stress. The results showed that the

activities of various antioxidant enzymes decreased and excessive

ROS production (124). It is evident that MSC-EVs have a significant

antioxidant effect on seizure-induced neuronal damage by reversing

H2O2-induced oxidative stress (112).
6.2 MSC-EVs and MSC-Exos treat
inflammatory injury of nervous
system induced by oxidative stress

Astrocytes play an important role in the formation of blood-

brain barrier. They can produce and express neurotransmitters and

some neurotransmitter receptors In addition, astrocytes can

biotransform exogenous compounds and help regulate ionization

around neurons. Studies have shown that astrocytes can be

activated by inflammation or ROS (125). Sexual astrocyte

activation can enable mitochondrial function (126). There is an

extensive interaction between Nrf2 and NF-kB, which has been

shown to be involved in the regulation of transcriptional, anti-

oxidative, and anti-inflammatory pathways, regulation of NRF2 and
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NF-kB signaling pathway can reduce some inflammatory factors

and improve the function of astrocytes (127).

MSC-Exos has a good therapeutic effect on inflammatory

astrocytes and can improve a series of diseases caused by

inflammatory astrocytes (128). MSC-Exos can enhance the

cytotoxicity of astrocytes induced by LPS; The markers of reactive

astrocyte proliferation, such as GFAP,C3,CD81 and Ki67, increased

significantly after MSC-Exos treatment of inflammatory astrocytes.

TNF a and IL-1 b in culture medium decreased after MSC-Exos

treatment of LPS-induced astrocytes. These results indicate that

MSC-Exos has a good effect on inhibiting LPS-induced decrease of

cytotoxic astrocyte proliferation and inflammatory response (127).

Panpan Xian et al. used calcium imaging to study calcium

changes in primary cultures of astrocytes. The data revealed that

different groups of astrocytes had different fluorescent properties.

MSC-Exos treatment of LPS-induced hippocampal astrocytes

significantly enhanced their Ca2+ influx, and LPS resulted in

faster changes in response rise time and decay time. It is worth

noting that MSC-Exos has a significant therapeutic effect on

astrocyte Ca2+ oscillation rate and mitochondrial dysfunction in

patients with LPS (129).

In conclusion, mesenchymal stem cell exosomes can reduce

inflammation and oxidative stress in nervous system diseases.

Exosomes are closely related to the pathogenesis of central

nervous system diseases, so exosomes have the potential to

become unique biomarkers of nervous system diseases. In

addition, exosomes can cross the blood-brain barrier, making

them a new candidate for drug carriers for nervous system diseases.
7 Skin tissue trauma and repair

With the development of regenerative medicine, autologous

mesenchymal stem cells can be cultured in vitro and then injected

into vivo to promote the regeneration and repair of damaged tissues

(130). More and more evidences show that exosomes have excellent

therapeutic effects in various disease models besides stem cells.

Exogenous skin aging is usually caused by various chronic injuries

such as drinking, smoking and ultraviolet radiation. Cause skin

aging based on the important role of ROS in photoaging. Protect

skin from photoaging by producing ROS or inducing antioxidant

defense (131, 132). MSC-Exos can inhibit oxidative damage of

H2O2 keratinocytes, improve antioxidant activity, reduce

oxidative reactivity and improve abnormal calcium and

mitochondrial changes induced by oxidative stress. Subcutaneous

injection of MSC-Exos can alleviate ultraviolet-induced skin tissue

damage and inflammatory reaction in mice, inhibit cell

proliferation and collagen deposition in skin of mice irradiated by

ultraviolet radiation, alleviate oxidative damage of mice irradiated

by ultraviolet radiation, improve antioxidant activity and alleviate

oxidative reaction in mice. All in all, exosomes can promote wound

healing and recovery through oxidative stress in various ways in the

treatment of skin injury and photoaging (23, 132).
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7.1 MSC-EVs and MSC-Exos in the
treatment of photoaging injury
induced by oxidative stress

It is well known that DNA damage is a marker of oxidative

stress. Skin cells will produce ROS and DNA damage after oxidation

(133). The results showed that MSC-Exos treatment could prevent

ROS formation and DNA damage induced by oxidative stress in

mouse keratinocytes.

R. S. Stern demonstrated that both MSC-EVs and Fb-EVs could

proliferate cells and prevent cell cycle arrest induced by UVB and

intracellular ROS levels induced by UVB radiation. In addition, the

expression of MMP-1, the expression of Col-1, the expression of

MSC-EVs and the enhancement of antioxidant activity of Fb-EVs in

senescent cells after EVs treatment may be related to the up-

regulation of GPX-1 gene expression (134, 135). Oxidative stress

can lead to inflammation and inflammation can also induce

subsequent oxidative damage (136). S. Candel et al. observed that

MSC-Exos injection induced the expression of pro-inflammatory

cytokines (TNF a IL-1 b and IL-6) in mouse skin after ultraviolet

irradiation, which means that MSC-Exos alleviated inflammatory

reaction and oxidative damage in mice exposed to ultraviolet

irradiation (137).

MSC-EVs can transfer MSC-EVs through GPX-1 protein to

achieve antioxidant effect. Higher levels of GPX-1 can be observed

in EVs treated cells (70, 138). To elucidate the mechanism of EVs-

dependent ROS, the expression of antioxidant protein GPX-1 after

EVs treatment, but the expression of SOD1, SOD2 and catalase was

not (139).

Keratinocytes are the main constituent cells of the epidermis

and form an important skin barrier to prevent damage caused by

ultraviolet radiation, water loss, pathogens, fungi and viruses (140).

Studies have shown that Nrf2 is very important in regulating cell

homeostasis, including antioxidant proteins, detoxification

enzymes, drug transporters and many cytoprotective proteins

(141). Regulation of Nrf2 pathway of keratinocytes to external

oxidation is a promising treatment strategy for skin photoaging

injury. The results of M. Schafer et al. showed that the recovery

effect of MSC-Exos after oxidation was related to the down-

regulation of Nrf2. By knocking down Nrf2, we can explore the

detailed mechanism of MSC-Exos activity on oxidative keratinocyte

reactivity (141). The results of Wang T et al. Show that MSC-EXOS

can improve oxidative stress in both in vivo and in vitro

experiments. Exosomes can improve oxidative stress injury of

H2O2 pretreated keratinocytes at cellular level. Exosomes at

animal level can improve DNA damage and mitochondrial

changes of mouse skin after ultraviolet radiation. Exosomal

therapy enhances the antioxidant capacity of skin as shown by

iron ion antioxidant capacity and enhances the activity of

glutathione POD or superoxide dismutase in cell and skin

damage induced by oxidative stress. Therefore, MSC-Exos may be

used as a potential skin nano-therapeutic agent to treat skin diseases

or disorders caused by oxidative stress (23).
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7.2 MSC-EVs and MSC-Exos in the
treatment of chronic wound injury induced
by oxidative stress

MSC-EVs not only has a broad prospect in the study of skin

photoaging, but also has a good therapeutic effect on chronic skin

injury. Diabetic ulcer is a chronic trauma characterized by an

inflammatory state of hypoxia and undernutrition caused by elevated

blood glucose levels followed by an elevated hypoxia of oxidative stress

leading to the death of fibroblasts and other skin cell types (142, 143).

Parvaiz A Shiekh et al. pretreated HDFs with EVs for 6 hours and then

put them in hyperglycemia in order to study the cell survival of HDFs

(fibroblasts) under hyperglycemia (143). All EVs were able to protect

HDFs from cytotoxic hyperglycemia at least 24 hours after treatment

until at least 72 hours after determination. Interestingly, the results are

even better than those of the positive control group-complete medium.

They found that both AT-MSCs and HF-MSCs can oxidative stress

HDFs metabolism and activity under hyperglycemia (144).
7.3 MSC-EVs and MSC-Exos in the
treatment of skin vascular injury induced
by oxidative stress

The biology of angiogenesis includes the proliferation and

migration of endothelial cells and angiogenesis. New blood vessels

can supply oxygen and nutrition to the wound site, so the formation of

new blood vessels can determine the effect of chronic wound healing

(145, 146). Many studies have shown that inflammatory reaction of

oxidative stress tissue leads to stagnation of wound healing. In addition,

limited vascular function and angiogenesis will cause hypoxia in

chronic injuries and lead to prolonged wound healing (147). Xiao X

et al. made wound models and performed healing operations on 8-

week-old and 64-week-old mice. The results showed that the healing

ability of old mice was weaker than that of young mice. Quantitative

measurements showed that MSC-EVs had a high level of

reepithelization and a low level of scar formation. The quantitative

analysis of neovascularization density confirmed the beneficial effect of

MSC-EVs on wound vascular reconstruction (148).

MSC-EVs play an important role in regulating functional

recovery and treating wound healing. MiR-146a and Src play an

important role in promoting angiogenesis and wound healing, thus

dephosphorylating Src (148). Next-generation mRNA sequencing

and proteomics showed that EVs contain many angiogenic genes

and proteins including growth factors, nuclear receptors, adhesion

molecules, protease inhibitors, matrix protein transcription factors

and other factors involved in angiogenesis, suggesting that MSC-

EVs have important angiogenic potential (149).
7.4 MSC-EVs and MSC-Exos for skin aging
induced by oxidative stress

The pursuit of eternal youth to resist aging is the lifelong pursuit

of human beings. Using MSC-EVs to reduce oxidative stress to

achieve anti-aging effects, this research direction has become the
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focus of many scholars, and many research results have been

achieved. H2O2 reduced the expression of skin moisture-related

mRNAs (aquaporin-1 and aquaporin-3) and hyaluronic acid, while

MSC-Exos reversed these effects, and H2O2-induced cellular

senescence was also reproduced in fibroblasts. Matsuoka T et al.

found that over time, the downregulation of SIRT1 leads to the

acetylation expression of p53, thereby inducing the expression of

p21, a downstream molecule of p53, delaying the cell cycle and

leading to cell senescence. MSC-Exos enhanced these transduction

systems, effectively blocking the increase in intracellular b-
galactosidase activity and the accumulation of ROS (150).

The anti-aging effect of MSC-EVs and its mechanism are still

unclear, especially the effect on endothelial cell (EC) senescence.

Xiao X et al. investigated the in vitro effects of MSC-EVs on

oxidative stress-induced aging of human umbilical vein

endothelial cells (HUVEC), as well as the in vivo effects on

natural aging and diabetic mouse wound healing models (151). In

addition, they investigated its molecular mechanism using miRNA

sequencing and phosphokinase antibody arrays. It is suggested that

MSC-EVs can be used as nanotherapeutics through the miR-146/

Src pathway. In senescent HUVECs, MSC-EVs treatment prevented

senescence-induced functions and promoted angiogenesis, cell

migration and proliferation ability, mitochondrial function, and

ROS levels (148).

Src kinase family is inextricably linked with aging. Senescence

can activate the Src kinase family, which leads to oxidative stress,

lipid peroxidation and DNA strand breakage, and finally leads to

fatal damage to cells. Studies have shown that Src family inhibitors

(PP2) can completely block H2O2-induced ECS aging. MSC-Exos

has the same inhibitory effect as PP2. MSC-Exos can prevent

senescence by inhibiting the activation of Src (152).

Studies by Zou et al. have shown that H2O2 can induce

senescence in HUVEC and human aortic myocytes by up-

regulating the alternative splicing body, Oct4A (153). H2O2-

induced EC senescence induces a DNA damage response that

activates p53 and p16, two important cell cycle regulatory

pathways (154). High glucose can induce the senescence of

HUVECs through the expression level of mitochondrial sirtuin

(SIRT3), the expression of SA-gal, and the tube-forming ability of

HUVECs (155). Oxidative stress is involved in the pathogenesis of

diabetic vascular abnormalities, inducing premature senescence

through DNA damage, and streptozotocin (STZ)-induced

diabetes can induce senescence in ECs (156).

The miRNAs carried by MSC-EXOS has a significant effect on

the treatment of cell senescence and the promotion of angiogenesis.

Studies have shown that four miRNAs, miR-146a-5pmiR-34b-

3pmiR-28-3p and miR-412-5p, play a promoting role in the

treatment of aging ECs (157). High expression of miR-146a in

MSC-EVS, when miR-146a inhibitor was used, the effect of MSC-

EVS on aging disappeared. In addition, Xiao X et al. found that

miR-146a can inhibit Src phosphorylation and its downstream

target cavelin-1, thus inhibiting aging (148).

A large body of evidence shows that ROS can induce or accelerate

ECs senescence at multiple subcellular levels. In cultured senescent

HUVECs, MSC-EVs treatment prevented oxidative stress-induced

ROS formation and DNA damage. Mitochondria are not the main
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source of ATP in ECs, but as ROS organelles, play an important role in

the response of cells to pairs (158) andmaintain the homeostasis of ECs

(158). Experiments showed that aging-induced mitochondrial function

of HUVECs could be improved by MSC-EVs treatment. Taken

together, MSC-EVs have a comprehensive rescue effect on aging-

induced endothelial cell function.

MSC-EVs and MSC-Exos have excellent therapeutic effects in

both acute and chronic skin injuries. Exosomes can improve various

functions caused by skin aging by inflammation and oxidative stress

in skin injury. In recent reports, some scholars began to explore the

effects of MSC-EVs and MSC-Exos on iron death and copper death

induced by skin injury, which may be a research hotspot in the

treatment of skin injury with exosomes in the future.
8 Diseases of motor system

ROS is involved in regulating many chondrocyte activities such

as cell proliferation and matrix remodeling (159). Osteoarthritis

(OA) is a joint disease characterized by cartilage degeneration and

low-grade synovitis In damaged joints, chondrocyte homeostasis is

gradually increased with the gradual increase of oxidative stress

(160). MSC-EVs treatment of OA joint cells can down-regulate

inflammatory factors and increase the synthesis of extracellular

matrix of chondrocytes (160). Low levels of ROS play an indelible

role in various physiological processes, but the formation of ROS

can lead to tissue damage. The endogenous mechanism of MSC-

EVs is activated by oxidative stress and can offset the influence of

ROS. Therefore, oxidative stress induces both antioxidant reaction

and autophagy, which leads to excessive production of active

substances and oxidative damage to macromolecules (21).

Bone marrow mesenchymal stem cells are exposed to radiation,

which will affect their survival and differentiation potential and lead to

bone loss (161). Radiation can cause DNA damage on bone marrow

mesenchymal stem cells, chromosome aberration, reactive oxygen

species and cell senescence, which hinder the proliferation ability of

bone marrow mesenchymal cells (162). In addition, radiation has a

great influence on the differentiation of bone marrow mesenchymal

stem cells, which will lead to the first choice of bone marrow

mesenchymal stem cells to differentiate into adipocytes instead of

osteoblasts, and finally lead to fat accumulation (163). Recently,

some scholars have shown that BMSC-Exos can treat the effect of

radiation on the differentiation of bone marrow mesenchymal stem

cells. Liu et al. (164) transplantation of BMSC-Exos to save osteoporotic

phenotype of recipient bonemarrowmesenchymal cells improves bone

through epigenetic regulation. In addition, Liu et al. (165) found that

BMSC-Exos transplantation can prevent femoral head necrosis. The

main preventive mechanism is to promote angiogenesis and prevent

bone loss (166).
8.1 MSC-EVs and MSC-Exos regulate
oxidative stress-related indicators in bone

It is known that 4-hydroxynonenal (HNE), a product of lipid

peroxidation, can form a variety of protein complexes, which affect
Frontiers in Immunology 1218
the activity and physiological function of OA chondrocytes. It is

found that EVs treatment of OA chondrocytes can significantly

form HNE complexes (160). Members of the POD (Prdx) family

participate in the fight against ROS-induced cartilage injury. The

exact mechanism of antioxidant protection of Prdx6 has not been

clarified. Some scholars suggest that it may be directly scavenging

low molecular weight peroxides and phospholipid peroxides. The

protein expressed the activities of POD phospholipase A2 and

lysophosphatidylcholine acyltransferase, which participated in the

repair of cell membrane (167).

Mesenchymal stem cell injury is an important pathological

mechanism of radiation-induced bone loss. Radiation can cause

bone marrow mesenchymal stem cells to produce reactive oxygen

species. Excessive ROS can lead to DNA damage (163, 168).

Therefore, it is extremely important to treat radiation-induced

bone loss and remove reactive oxygen species and DNA damage.

Studies have shown that MSCs-Exos has excellent effects on

oxidative stress and alleviating DNA damage. After irradiation,

the kinds of reactive oxygen species will cause cell damage. DCF

fluorescence in BM-MSCs is significant after exosomal treatment.

The results of Western Blot also showed the expression of

antioxidant proteins after co-incubation with exosomes. These

results indicate that exudate can enhance the antioxidant capacity

of BM-MSC after irradiation (166).

ATF6 is the target gene of miR-31-5P. When miR-31-5P is

elevated, ATF6 does not promote endoplasmic reticulum stress of

endothelial progenitor cells, which leads to apoptosis and

calcification of endothelial progenitor cells. Recently, it has been

reported that oxidative stress induces endoplasmic reticulum stress

of endothelial progenitor cells (169). MSC-Exos down-regulates the

expression of ATF6,CHOP,XBP1 and GRP78, suggesting that MSC-

Exos has protective effect on endothelial endoplasmic reticulum

stress induced by oxidative stress (170).

In the H2O2-induced NP cell injury model, Western blot

showed that the levels of apoptotic proteins such as caspase-9 and

caspase-3 were significant after H2O2 treatment, however, these

were inhibited by exosome pretreatment and positive cells stained

by TUNEL Significantly (17). Daisuke Sakai et al. used a microscope

to observe the status of NP and annulus fibrosus, and a histological

grading system to evaluate disc degeneration (171), and found slight

changes in NP organization after exosome treatment. Using both X-

ray and MRI examinations, exosome-treated disc height decreased

more slowly at 2, 4, and 8 weeks, and IVDD treated with exosomes

showed significantly higher intensity, suggesting that exosomes can

delay Progression of IVDD (17).
8.2 MSC-EVs and MSC-Exos in the
treatment of bone inflammation
induced by oxidative stress

A great deal of evidence shows that inflammatory mediators can

induce oxidative stress, which leads to the decrease of chondrocyte

viability and the change of chondrocyte function (160).

Proinflammatory cytokines produced by different joint cells can

promote cartilage degradation. IL-1b stimulates OA chondrocytes to
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produce inflammatory cytokines. MSCs-EVs, which can exert anti-

inflammatory and anti-catabolic effects. IL-6 and different cytokines

can induce collagenase to produce cartilage degradation (160) and

inhibit the expression of type II collagen (172). EVs can release IL-6.

MSCs-EVs also demonstrated the release of MMP-13, a major

collagenase that degrades type II collagen and promotes the

development of OA chondrocytes into a state of like differentiation

(173). Therefore, EVs can not only produce inflammatory mediators,

but also control the consequences of mediator activation of cells.

NLRP3/IL-1 b plays a key role in inflammation through TXNIP

activation (174). In H2O2-treated NP cells, H2O2 was significantly

associated with inflammatory activation of the genes IL-1 b,TXNIP
and NLRP3, which were inhibited by exosomal preconditioning.

Western Blot and cellular immunity also showed the same results

indicating that exosomes attenuated H2O2-induced activation of

TXNIP-NLRP3 inflammatory corpuscles (17).
8.3 MSC-EVs and MSC-Exos down-
regulate bone oxidative stress injury
through mitochondria

Exosomes have obvious protective effect on the deterioration of

mitochondria, exosomes can down-regulate ROS level and decrease

apoptosis of NP cells, which can be seen from the low expression of

caspase-3 and caspase-9. In addition, exosomes successfully expressed

NLRP3 and TXNIP, thus inhibiting the decomposition of IL-1 b (17).

Although systemic delivery of exosomes is generally considered to be

the simplest, biological distribution indicates accumulation in the liver,

spleen and lungs (175). Particularly when the avascular nature of IVDD

is considered, local delivery of the subplate region is considered to be a

good alternative. Previous evidence in vivo and in vitro indicates that

oxidation products are widely present in IVDD (176). Cardiovascular

calcification induced by oxidative stress products (177) and apoptosis

and calcification of endothelial progenitor cells. These studies suggest

that oxidative stress is a common pathological condition for apoptosis

and calcification, including endothelial progenitor cells (178).

TEM showed that exosomal treatment alleviated mitochondrial

morphological abnormalities and mitochondrial cristae breakage

and disappearance induced by H2O2. Exosomal pretreatment also

inhibited the production of mitochondrial ROS in NP cells induced

by H2O2 (17). Proteomics MSC-Exos showed that 10.7% of

exosomal proteins originated from mitochondria and 14.3% of

exosomal proteins participated in ATP binding. In addition, 3.8%

of exosomal proteins were involved in metabolism. It is important

that MSC-Exos are enriched in different parts of mitochondria,

including mitochondrial inner membrane, envelope, matrix, outer

membrane and nucleoids. All in all, these data suggest that MSC-

Exos may provide NP cells with mitochondrial proteins. Damaged

mitochondria can be recovered by this treatment (17).

The progression of degenerative NP cells is accompanied by matrix

degeneration caused by inflammation (179, 180). In order to study

whetherMSC-Exos can enhancemitochondrial biogenesis, Pengfei Chen

et al. discovered that 10.3% of exosomes were derived frommitochondria

through proteomics. Molecular function showed that 15.4% of exosomal

proteins were involved in ATP binding. The enrichment of GO pathway
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also showed thatmitochondrial fragments includingmitochondrial inner

membrane, envelope, matrix, space outer membrane and nucleoid were

enriched in MSC-Exos (181).

Mitochondrial injury induced by mitochondrial electron

transport chain complex I inhibitor reveals the chondroprotective

mechanism of exosomes and whether it is inhibited by mitochondrial

function. The exosomes restored the normal appearance of

mitochondria in the chondrocytes (182). Chondrocytes treated with

exosomes also showed mitochondrial and mtDNA content. In

addition, rotenone treatment significantly inhibited the production

of mitochondrial ROS in chondrocytes, which was significantly

inhibited by exon treatment. The intracellular ATP level of

exosomes-treated chondrocytes was 21% higher than that of

rotenone-treated chondrocytes in function. These results indicate

that MSC-Exos provide mitochondrial proteins to chondrocytes and

thus restore damaged mitochondria (181).

The targeting and homing ability of exosomes is particularly

important for their treatment in the locomotor system. Exosome

hydrogel scaffolds are able to penetrate deeper into the wound and

connect to the injury sitewhen treating injuries in the locomotor system,

and exosomes are homed to the peri-wound area for a more effective

therapeutic effect. The combination of exosomes and materials and

translation to clinical applications may be a hotspot for future

research (183).

9 Senescence

Aging has been a topic of great concern to human beings. Aging

is accompanied by the accumulation of aging cells, which changes the

communication between cells and damages the homeostasis of tissues

and the regeneration potential of organs (184). Recently, MSC-EVs

have proved to be more effective and challenging than current stem

cell-based treatments. Extracellular vesicles contain cell-specific

proteins, lipids and nucleic acids, which may be released and

absorbed by all types of cells to induce functional changes through

horizontal transfer of their cargo. Non-aging mesenchymal stem cells

cultured in low physiological oxygen tension (3%) to premature aging

mesenchymal stem cells. Extracellular vesicles cultured in high

oxygen (the usual oxygen culture condition is 21%) have many

beneficial characteristics (185). Free radical theory holds that

oxidative stress induced cell damage is one of the main causes of

various senile diseases, which changes the biological structure and

function (186). In particular, the cells treated with H2O2 will produce

a large amount of reactive oxygen species (ROS), and the excessive

accumulation of ROS will damage the macromolecular function and

membrane system of cells, which will irreversibly damage various

senile diseases and senescence (187, 188).
9.1 MSC-EVs and MSC-Exos inhibit
senescence through ROS

Aging induces many cell disorders. The regeneration of

mesenchymal stem cells in old age is a hot spot in regenerative

medicine research in recent years. MSC-EVs have become a new

tool for stem cell regeneration because of their systemic effect and
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safe gene transfer ability (189). In the present study, the role of

aging-related ROS in the function and regeneration of

mesenchymal stem cells in infant EVs was studied. The data

clearly showed that the elderly MSCs showed down-regulation of

SOD1 and SOD3, which led to ROS elevation and down-regulation

of MEK/ERK pathway, which was related to the impaired ability of

MSCs to necrotic area in flap model. In addition, edaravone or co-

overexpression of SOD1 and SOD3 can save ROS increase and cell

senescence of mesenchymal stem cells in old age, thus improving

their function (190). It is worth noting that EVs derived from infant

bone marrow mesenchymal stem cells in type 1 and type 2 diabetic

mice can revitalize elderly bone marrow mesenchymal stem cells by

inhibiting ROS production and accelerating cell aging to promote

proliferation and in vivo function (191).

EVs are a powerful tool that not only inhibits ROS production,

but also restores altered intercellular communication, improves

stem cell function and stem cell quality, and thus delays stem cell

failure in aging. It has been shown that treatment of senescent

MSCs with non-senescent MSC-EVs can induce glycolytic oxidative

phosphorylation of SA-b-galactosidase activity and over-expression
of pluripotent factors (OCT4, SOX2, KLF4 and cMYC or OSKM).

In addition, the cargo of these EVs induces up-regulation of miR-

302b and HIF-1 a levels in target cells. It is concluded that miR-

302b triggers the up-regulation of HIF-1 a and activates different

pathways to delay premature senescence, improve stem and

transform energy metabolism into glycolysis (192).
9.2 MSC-EVs and MSC-Exos cell
proliferation inhibits senescence

miR-302b can proliferate cells and protect cells from oxidant-

induced death of human mesenchymal stem cells (193). Kim, J. Y et al.

studied ROS levels and cell death of human dental pulp stem cells

(hDPSCs) after EVs treatment. It was found that the cells cultured

under physiological hypoxia showed ROS and apoptosis levels

compared with those cultured under 21% oxygen. Interestingly, no

changes in ROS levels were observed after treatment, and cell cycles

parallel to these observations showed no difference in G0/G1 phase, S

phase and G2/M phase after EVs treatment. Cells cultured at 3% O2

showed higher levels in G0/G1 phase, S phase and G2/M phase, which

indicated the overall proliferation of cells (191). Studies have shown

that EVs can promote the function of aged AT-MSCs by inducing

proliferation and up-regulating the expression of damaged cytokines,

thus promoting the necrotic area of aged AT-MSCs in type 1 and type

2 diabetic mice. EVs significantly increased the proliferation of AT-

MSCs in the elderly and increased the number of b-gal positive AT-
MSCs in the elderly. Due to the up-regulation of SOD1 and SOD3

protein expression, the accumulation of ROS in aged AT-MSCs cells

was induced by the addition of EVs. In addition, the addition of EVs

up-regulated the expression of wound healing related cytokines (SDF-

1VEGFAng1 and Flk1) in the elderly AT-MSCs. Transplantation

studies show that the ability of aged AT-MSCs to show obvious

necrotic area of flap mice after adding EVs is similar to that of infant

AT-MSCs (191). Impaired expression of growth factors responsible for

homing (SDF1) and angiogenesis (VEGF, Ang1, bFGF) was observed
Frontiers in Immunology 1420
in elderly AT-MSCs. These growth factors are involved in regulating

the function of EC and endothelial precursor cells (EPC) (191).
10 Immune

Studies have shown that MSC-EVs and MSC-Exos play both

immune activation and immunosuppressive functions in cancer. The

immune activation of exosomes mainly depends on the antigen

presentation of exosomes, and the immunosuppression of exosomes

mainly depends on the ligand protein andmiRNA carried by exosomes

(194). It has been reported that the existence of exosomes can provide

several different mediators for cancer cells to form tumorigenic

microorganisms, which belongs to the immunosuppressive effect of

exosomes in cancer (195, 196). Many scholars have taken this as the

breakthrough point to study cancer treatment. For example, Giovanna

Andreola reported that FasL-positive exosomes released by melanoma

cells can induce apoptosis of FasL-mediated Jurkat T lymphocytes

(197). Phenotypically similar pro-apoptotic exosomes in the plasma of

cancer patients indicate that these exosomes have a potential role in

regulating host immunity and that they may become prognostic

markers (198). Exosomes not only play an immunosuppressive role,

but also play an immune activation role through other mechanisms.

For example, exosomes released by mycobacterium-infected

macrophages contain components that promote activation of

adjacent uninfected macrophages (199) and many other exosomes-

mediated to promote immune responses during infection with different

types of microorganisms (200). In addition, synovial fibroblasts from

patients with rheumatoid arthritis have been shown to release

exosomes containing membrane-bound TNF-alpha that inhibit

activation-induced cell death in CD4 T cells (201). Many of these

studies suggest that exosomes may operate simultaneously in

congenital and adaptive immune activation (202, 203) (Figure 2).
11 Conclusions and future directions

In conclusion, MSC-EVs andMSC-Exos are closely related to the

regulation of oxidative stress injury in many systemic diseases. It has

been fully verified in both cell model (Table 1) and animal model

(Table 2). Oxidative stress can cause inflammatory factors to damage

mitochondrial function, inhibit cell proliferation and enhance cell

apoptosis. Inhibition of oxidative stress injury is of great significance

to the treatment of various systemic diseases (233).

In the study of the mechanism of stem cell exosomes, iron death,

copper death, autophagy and proteomics may be the hot spots in the

future. In the application research of stem cell exosomes, hydrogel,

collagen and other materials combined with exosomes to form

composite scaffolds have been carried out by many scholars in cell

experiments and animal experiments, but its clinical transformation

has not yet been realized. Verifying its human safety and ethical

rationality is the direction that needs to be worked hard now.

Regulatory proteins and miRNA inMSC-EVs and MSC-Exos are

the core of treatment. However, the same protein and miRNA seem

to show different results in different studies (234). At present, no

research has shown the reason for this result. Potential effects of stem
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cell origin, such as the age of stem cell donors, may be related to the

production of oxidative stress and inflammatory mediators, which

may affect their immunomodulatory function (235). It may also be

caused by sex, for example, female MSCs cause greater

immunomodulatory effect than male MSCs (236). For example,

some studies have not clarified the effective proteins in MSC-EVs

and MSC-Exos. Although researchers have used proteomic databases

to show which antioxidant proteins MSC-EVs and MSC-Exos

contain, further work is needed to isolate and accurately identify

these proteins (237). In addition, only one dose was used in some
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studies, and it is necessary to explore the possible dose-dependent

protective effects of MSC-EVs and MSC-Exos (17).

At present, many functions of MSC-EVs and MSC-Exos have

been discovered one after another, but these studies also have some

limitations, MSC-EVs and MSC-Exos may have different inhibitory

effects in different cell species and animal species (16). In addition,

the differences in the isolation and application steps of EVs in

different studies may lead to different effects of the same regulatory

protein and miRNA. In order to ensure the repeatability of the

effects of MSC-EVs and MSC-Exos, it is necessary to explore and
FIGURE 2

Immunosuppression and immune activation of exosomes. This figure describes the immunosuppressive effect of exosomes in cancer and the
activation of immune response in synovial fibroblasts of patients with rheumatoid arthritis. Exosomes can help tumor cells escape killing by using
human immunosuppressive mechanism. Exosomes can also be used as blockers of immune checkpoints to activate the immune response of T cells
to kill tumor cells .
TABLE 1 Cell model: Summary of the mechanism of MSC-EVs and MSC-Exos in the treatment of oxidative stress-related diseases.

Disease Disease Model
Source of
MSC

Excreta Target Cell
Oxidative stress
mechanism

Therapeutic Effect Reference

liver injury
APAP and HP
injury-induced liver cells

BM(rat) Exos HepG2 ROS↓
Necrosis and apoptosis↓
Cell viability↑LDH activity↓

(204)

ALI Erastin-induced ferroptosis
BM
(mice)

Exos Hepatocyte
Nrf2↑Keap1↓ROS↓
GSH↑MDA↓

GPX4↓SLC7A11↓5-LOX↑Fe2+↓
Cell death↓

(205)

liver fibrosis
CCl4 induced
liver fibrosis in mice

HUC
(human)

Exos
human HSCs
line LX-2

BECN1↑xCT↓,GPX4↓ROS↑
p-MLKL↑LC3B↑

Cell death↑a-SMA↓ (77)

liver injury
CCl4/H2O2-Induced
liver cell

HUC
(human)

Exos
L02
Liver cells

ROS↓MDA↓GPX1↑
Mitochondrial membrane
potential↓GST↓

Cell viability↑Cell apoptosis↓
p-ERK1/2↑bcl-2↑p-IKKB↓p-NFkB↓
Casp-9↓Casp-3↓

(70)

Ischemic
cerebrovascular
disease

tMCAO mouse
BM
(mice)

Exos
H/R-injured
ECs

miR-132-3p↑RASA1↓
RAS↑P-PIK3↑
p-Akt/Akt↓ROS↓
peNOS/eNOS↓

Apoptosis↓
Paracellular permeability↓
ZO-1↑
Claudin-5↑

(206)

(Continued)
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TABLE 1 Continued

Disease Disease Model
Source of
MSC

Excreta Target Cell
Oxidative stress
mechanism

Therapeutic Effect Reference

Myocardial
i8509schaemia
reperfusion

H2O2-induced MIRI BM(rat) Exos
H9C2(rat)card-
iomyocytes

ROS↓

Cell viability↑apoptosis ↓
Beclin-1↑LC3B-II↑p62↓
Autophagosomes↑ Autolysosomes↑
p-mTOR/mTOR↓p-Akt/Akt↓
p-AMPK/AMPK↑

(48)

COVID-19
LPS-induced A549 cells
and PBMC

HPP Evs
Alveolar basal
epithelial cell

/ IL-8↓ (28)

ALI LPS-induced ALI
UCB
(human)

Exos NR8383 cell
SOD↑GSH↑
MDA↓

miR-22-3p↑FZD6↓TNF-a↓IL-1b↓
IL-6↓Proliferation activity↑ Apoptosis↓

(32)

Neonatal
hyperoxic lung
injuries

H2O2-induced lung injury
UCB
(human)

Evs
Rat lung
epithelial cell
line L2

/
VEGF↑
Cell survival↑

(43)

Radiation-
induced lung
injury

Radiation-induced injury
HP
(human)

Evs HUVECs
DNA injury↓
g-H2AX↓

Senescent cells↓ATM↓P53↓P21↓
Inflammation-and fibrosis-related genes↓
Senescent fibroblast cells↓miR-214-3p↑

(207)

ALI LPS-induced lung injury
UCB
(human)

Evs RAW 264.7
Nrf2↓HO-1↓
HMGB1↓8-OHDG↓

Promoted the polarization of macrophages from
the M1 to the M2 phenotype
CD86↓Arg1↑TLR4↓TNFa↓IL-1b↓

(208)

OA
IL-1b-induced oxidative
stress

AD
(human)

Evs Chondrocytes
Oxidative stress↓
prdx6↑

LC3B↑IL-6↓MMP-13↓atg5↑P62↑
The number of associated autophagosomes↑

(160)

IDD
H2O2-induced oxidative
stress

VB
(human)

Exos EPCs /
Runx2↓caspase-3↓caspase-7↓
caspase-9↓miR-31-5p↑ATF6↓
ER-stress-related apoptosis and calcification↓

(170)

IDD
H2O2-induced
inflammation

C57BL/6
mice

Exos NP cell
Mitochondrial ROS
production↓

caspase-9↓caspase-3↓iNOS↓IL-6↓
MMP3↓MMP13↓SOX9↑Col2a1↑
IL-1b↓TXNIP,NLRP3↓

(17)

Radiation bone
loss

Irradiation-induced injury BM (rat) Exos BM-MSC
ROS↓
SOD1↑
SOD2↑CAT↑

g-H2AX↑Cell proliferation↑
Rb↓p53↓p21↓p16↓PPARg↓ Ebf1↓
RUNX2↑ OPG↑Calcium deposition↑

(166)

Degeneration of
cartilage

IL-1b-stimulated
chondrocyte model

BM (rat) Exos Chondrocyte Mitochondrial ROS↓

MMP13↓ADAMTS-5↓
COL2A1↑ATP↑
Restored mitochondria exhibiting a normal
appearance
Increased mitochondrial mass and mtDNA
content

(181)

Epilepsy H2O2-induced injury
UCB
(Human)

Evs
Hippocampal
neurons

FRAP↑CAT↑SOD↑
GSH-PX↑ROS↓DT↓
8-OHdG↓4-HNE↓

SAMPs↓iNOS↓HMGB1↓HO-1↓Nrf2↓
Late apoptosis↓Nuclear translocation↓
Amplitude (DF/F) ↑MMP↑
TOM20↓FIS1↓COX IV↓

(112)

Neurological
diseases

LPS-stimulated
hippocampal astrocytes

UCB
(Human)

Exos
Hippocampal
astrocytes

Nrf2,Keap1,HO-1↓

Cell viability↑GFAP↑C3↓CD81↓ki67↓
TNFa↓IL-1b↓MMP↑p-P65/P-65↓
NF-kB↓GFAP↓
Nuclear translocation of Nrf2 and P-65 ↓

(127)

Diabetic ulcers
HDF/H2O2+HDF-induced
Glucose (150mM)
hyperglycemic

HF
(Human)

Evs HDF /

The survival rate of AT-MSC and HF-MSC
treated HDF cells under high glucose condition
was higher than that of the positive control
group.

(144)

Oxidative stress H2O2-induced NHDFs
AD
(Human)

Exos NHDFs Cell viability↑
Aquaporin 1↑Aquaporin 3↑
Hyaluronic acid↑SIRT1↑

(150)

Senescence
H2O2/HG-induced
HUVECs

HUC,
AD,BM
(Human)

Evs HUVECs Mitochondrial ROS↓
SASP↓IL-1a↓IL-6↓IL-8↓
Aging HUVECs↑
miR-146a↑OCR↑

(148)

Photoaging
UVB radiation-induced
dermal fibroblast
photoaging

HUC,DF
(Human)

Evs HDFs
ROS↓
GPX-1↑

MMP-1↓,Col-1↑
SA-b-gal-positive cells↓
EVs increased cell proliferation and prevented
UVB-induced cell cycle arrest

(139)

Fibrosis of the
Kidney

Enicillin+streptomycin/
CO2-induced Human renal
proximal tubule epithelial
cells

HP
(Human)

Evs HK-2
OXPHOS↑
ATPB↑SDHB↑COX IV↑
ROS↓

Restored morphological alterations of
mitochondrial damage.

(209)

Oxidative stress
H2O2-induced
keratinocytes

HUC
(human)

Exos Keratinocytes
DCF↓8-OHdG↓
FRAP↑GSH-PX↑SOD↑

GLUT1↓Calcium influx↑MMP↑
NRF2↓KEAP1↓HO-1↓NQO1↓

(23)

(Continued)
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TABLE 1 Continued

Disease Disease Model
Source of
MSC

Excreta Target Cell
Oxidative stress
mechanism

Therapeutic Effect Reference

Chronic
granulomatous
disease

Chronic granulomatous
disease patients’
neutrophils of their
heparinized blood

AD
(human)

Exos,
Evs

Neutrophils in
heparinized
blood

CGD↑
SOD↑

Average number of yeasts that neutrophils
ingested↑NBT↓

(210)

Pregnancy
inflammation

LPS/AF-MSC-induced
inflammatory trophoblast
cells

AF
(human)

Exos
HTR8/SVneo
HTR8/Svneo

Inhibition of miR-548e-5p
induced oxidative stress and
reduced MMP in HTR8/SVneo
cells.

NF-kB↓TRAF6↓IRAK1↓IL1b↓IL6↓IL8↑
miR-146a-5p↑miR-146a-3p↑
miR-146b-5p↑miR-548e-5p↑
AKT↓JNK↓ERK1/2↓P38↓

(211)

AKI H2O2-induced HK-2

BMSC
(mice\rat
\
human)

Evs HK-2 /
TFAM/TOM20protein,mtDNA↑Mitochondrial
integrity in injured HK-2 cells↑ATP production
respiration rate↑

(89)

Ischemia and
reperfusion

Primary hippocampal cells
and OGD/R

BMSC
(rat)

Exos
Hippocampal
cells

ROS↓
SOD↓

Nrf2↓GPx↓DJ1↑OP A1↑Mfn1↑Mfn-2↑
LRRK2,PINK↓

(212)

AD
AbOs-reduced rat
hippocampal neurons

BMSC
(rat)

Evs
Hippocampal
neurons

H2O2↓O2↓ROS↓
MSCs blocked the reduction in PSD-95 levels
and loss of synapses induced by AbOs

(213)

Injury of
isolated hearts
after cold
storage ex vivo

The H9c2 rat
cardiomyoblast cell line
subjected to cold storage

BMSC
(human),
AD
(human)

Exos
Cardiomyoblast
cell

ROS production↓
Circadian pathways↑Mitochondrial
activity↑Per2↑ Left ventricular
function↓Apoptosis↓MtMP was preserved.

(214)

AMI
H/R induced human
cardiomyocyte AC16 cell
line

BM
(human)

Exos
Heart muscle
cell

LDH,MDA↓
SOD↑

Bcl-2↑
Baxc-caspase 3↓
Lnc A2M-AS1↑

(54)

Acute
Myocardial
Infarction(AMI)

Oxygen/Glucose
Deprivation (OGD)
Procedure-subjected
NRCM

DP
(human)

Evs NRCM ROS,LDH↓
Apoptosis↓
a-SMA↓Collagen protein↓

(55)

AIC
DOX/specific-induced
pluripotent stem cell–
derived iCMs

BM
(human)

Evs iCMs ROS↓

contractility↑ATP↑Mitochondrial
biogenesis↑Cardiomyocyte viability↑iCM
viability↑Attenuated apoptosisapoptosis was
inhibited by MSC-EV.

(215)

MI
Notch1 gene-deleted/
N1ICD-over expressed C-
MSCs

CMSC
(mice)

Evs
CMVECs
HAECs

/ The apoptosis of endothelial cells↓CM↓ (64)

Aging Elderly AT-MSCs AT Evs
Aging AT-
MSCs

ROS↑
ROS↑IL6↑IL8↑CCL5↑CCL3↑
SDF1↓VEGF↓Ang1↓bFGF↓OCT4↓

(191)

Aging Elderly MSCs DP Evs Aging MSC OXPHOS↓
SA-b-galactosidase↓ SOX2↓KLF4↓cMYC↓
OSKM↓miR-302b↑HIF-1a↑Glycolysis↑

(192)

Urinary stone
Oxalate and COM crystals-
induced HK-2 cells

HUC
(human)

Evs HK-2 cell
LDH↓H2O2↓
MDA↓ROS↓

HK-2 cells viability↑
Cytoplasmic and nuclear N-cadherin↓
ZO-1↑

(216)

SS
Myeloid-derived suppressor
cells

OE Exos Suppressor cells
ROS↑CD40↓CD80↓
CD86↓MHCII↓

Proliferation of MDSCs↑CD4+T↓
Arginase activity↑NO↑

(217)

Hypoxia-
Reperfusion
injury

H/R-induced
cardiomyoblasts (H9c2)

BM(rat) Exos H9c2 cells miR149-5p↑let-7c-5p↑
b-catenin↑
Faslg↓

(218)

Ischemia/
reperfusion
injury

Lung I/R model and in
vitro H/R

BM
(mice)

Exos

Primary Lung
Microvascular
Endothelial
Cells

PTEN↓PDCD4↓
Lung wet/dry weight ratio↓
M1 polarization↓
M2 polarization↑

(37)

Diabetic
retinopathy

STZ-established diabetic
retinopathy

HUC
(human)

Evs .
ROS↓MDA↑SOD↑
NRF2↓GPX1↑NQO1↑
HO-1↑

/ (219)

Heart Failure
oxygen–glucose deprivation
(OGD)-induced damages
to HL-1 cells

BM
(mice)

MV,
EV,CM

HL-1 cells

SOD↑GSH-PX↑Bcl2↑
IkBa↓p65↓LDH↓MDA↓
SOD↑GSH-PX↑Bax↓
Cleaved caspase-3↓Bcl2↑
GSHPX↑

/ (220)

Neutrophil
function and
apoptosis

human adipose tissue
MSCs-isolated Exosomes
and CM

AD
(human)

Exos
and
CM

Neutrophil
ROS↑
Apoptosis of neutrophils↓

Phagocytosis percentage↑
Phagocytosis index↑

(221)

(Continued)
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TABLE 1 Continued

Disease Disease Model
Source of
MSC

Excreta Target Cell
Oxidative stress
mechanism

Therapeutic Effect Reference

PD 6-OHDA-induced PD cell
HUC
(human)

Evs
Neuroblastoma
cell line SH-
SY5Y

SOD↑MDA↓
ROS↓miR-181a-2-3p↑

EGR1↓NOX4↑
SH-SY5Y cells↑Apoptosis↓

(222)

SCI
LPS-induced differentiated
PC12 cells

BM (rat) Exos PC12 cells
EXO-TCTN2↑ SOD↑MDA↓
miR-329-3p↑

IL-6↓TNF-a↓Bax↓Bcl-2↑
MEG3-WT↓WT-IGF1R 3’ UTR↓

(223)

Hippocampal
damage due to
diabetes

STZ-induced
Hyperglycemia

BMSC
(rat)

Exos
Primary rat
astrocytes

TNF-a expression↓
miR-146a↑IRAK1↑
TRAF6↑
NF-kB expression↓

Diabetic wound healing ↑ (224)

MI
Trypsin and collagenase II-
induced MI

BM
(human)

Exos NRCMs
MIF↑LVEF↑LVFS↑
The level of ROS↓

Apoptosis of NRCMs ↓
The scar size in MI↓Infarct size↓

(225)
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BM (Bone marrow), HUC (human umbilical cord), OE (Olfactory ecto), DP (dental pulp), HPP (Human postpartum placentas), UCB (human umbilical cord blood), AF (amniotic fluid), AD
(adipose tissue), VB (vertebral body), HP (Human placenta), DF (dermal fibroblast), HF (hair follicle), Acetaminophen (APAP), hydrogen peroxide (HP), Acute liver injury (ALI), Glutathione-
S-transferase(GST), Hypoxia/reoxygenation (H/R), Transient middle cerebral artery occlusion(tMCAO), Myocardial ischemia reperfusion injury (MIRI), Peripheral blood mononuclear cells
(PBMC), Line of rat pulmonary macrophages(NR8383)cell, Osteoarthritis (OA), Intervertebral Disc Degeneration(IDD), Endplate chondrocytes (EPCs), Nucleus pulposus (NP), Mitochondrial
O2 consumption rate(OCR), Acute Kidney Injury(AKI), Oxygen-glucose deprivation/reperfusion (OGD/R), Alzheimer’s disease(AD), Amyloid-b-peptide(AbOs), mitochondrial membrane
potential (MtMP), Acute Myocardial Infarction(AMI), Neonatal rat cardiomyocytes(NRCM), Cardiomyopathy(AIC), Cardiomyocytes(iCMs), Myocardial infarction(MI), Human aortic
endothelial cells (HAECs), Mouse Aortic Endothelial Cell (CMVECs), Sjogren’s syndrome (SS), Streptozotocin(STZ), Parkinson’s disease (PD), 6-hydroxydopamine (6-OHDA), Traumatic
spinal cord injury (SCI), Neonatal mice cardiomyocytes (NRCMs). ↓, decline; ↑, increase. /, this mechanism is not included.
TABLE 2 Animal model: Summary of the mechanism of MSC-EVs and MSC-Exos in the treatment of oxidative stress-related diseases.

Application Model MSC
Source Excreta Effect of MSC

treatment Antioxidant mechanisms Reference

PD
6-OHDA-induced
PD (mouse)

In mouse
brain tissue
SN

Evs
miR-181a-2-3p↑EGR1↓
NOX4↓p-p38↓

Contralateral rotation↓a-syn↑4-HNE↓
Dopaminergic neurons↑TH expression levels↑

(222)

SCI
Contusive SCI
(rat)

BM(rat) Exos TCTN2↑GFAP↓CCL2↓ LPS-stimulated NHAs viability↓ (223)

Hippocampal
damage due to
diabetes

diabetic STZ-
induced
hyperglycemia
(rat)

Endogenous
BM/stromal
cells

Exos
Oxidative stress↓
Synaptic density↑
TNF-a expression↓

Synaptic plasticity in the CA1 region↑ (224)

MI

An acute MI
model was created
by ligation of the
LAD coronary
artery in adult
(rat)

BM(human) Exos
MSC‐exo↑
level of Mfn2↑
level of Fis1↓

Mitochondrial fragmentation↓
ROS generation↓

(225)

DM
STZ-induced DM
(rat)

BM(rat) Evs
Corticosterone↑
TSH↑

Thyroid H2O2 generation↓
NOX2 mRNA levels↓TPO activity↓
The pituitary 5′-deiodinase activity

(226)

AKI AKI model(rat) HUC Evs SOD↑Nrf2↑ARE↑
Apoptosis were mitigated
TUNEL positive cells↓sNGAL levels↑

(227)

Liver injury

Partial
hepatectomy and
ischemic injury/
Carbon
tetrachloride
intoxication-
induced liver
failure(rat)

BM(rat) Exos ROS↓
liver regeneration rate ↑AST↓ALT↓bilirubin↓
Albumin↑PCNA↑cell death↓8-Ohdg↓

(204)

ALI
D-GaIN/LPS-
induced ALI
(mouse)

BM(mouse) Exos ROS↓P62↑
AST↓ALT↓TNF-a↓
IL-6↓MCP-1↓MDA↓GSH↑
Liver weight/body weight ratio↓

(205)

(Continued)
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TABLE 2 Continued

Application Model MSC
Source Excreta Effect of MSC

treatment Antioxidant mechanisms Reference

Liver damage
and iron death

CCL4-induced
liver fibrosis
(mouse)

HUC Exos
BECN1↑xCT↓
GPX4↓ROS↑

a-SMA↓
Collagen deposition↓

(77)

Liver injury
CCL4-induced
Acute Liver Injury
(mouse)

HUC Exos /
Hepatocyte denaturation↓
Hepatic lobule destruction ↓
Survival rate of mice↑

(70)

Cardiac
ischemia-
reperfusion

I/R model was
developed by left
anterior
descending
coronary artery
occlusion (mouse)

BM (mouse) Exos
miR-182-5p↑
GSDMD↓
ROS↓

Alleviated cardiac dysfunction
MI size↓IL-1b↓IL-18↓LDH activity↓
ASC↓caspase-1↓cell pyroptosis↑ arrest↑

(49)

I/R
Focal ischemic
stroke induced by
tMCAO(mouse)

BM(mouse) Exos
miR-132-3p↑
ROS↓

Apoptosis↓BBB function↑
cMVD and CBF in the peri-infarct area↑

(206)

Lung I/R
180-minutes EVLP
(rat)

BM(rat) Evs
Hspa1a↑
Sod2↑

TPVR↓Pulmonary artery pressure↓
NO total metabolites↑Nos 2↑Edn1↓Ppeak↑
Cellular metabolism↑Glucose concentration↓
Lactate concentrations↓ATP↑HA↑Has1 and 2↑
CXCL2/CINC-3↑Cxcl1↑Cxcl2↑Ccl2↑Icam1↑
Ptgs2↑Il1rn↑Il10↑Irak3↑TTP↑Socs3↑Dusp1↑

(27)

Renal I/R
Bilateral renal
arteries clamping
induced RIRI(rat)

BM(rat) Exos
MDA↓HIF1a↓NOX2↓
SOD↑GPX↑CAT↑HO-1↑

Creatinine↓BUN↓Apoptosis↓Caspase-3 activity↓
Bax↓PARP1↓Bcl-2↑MPO/ICAM1/IL1b/NFkB↓
IL10↑bFGF↑HGF↑SOX9↑VEGF↑

(90)

MIR
LAD-induced I/R
injury model

BM (rat) Exos /
LC3B↑Apoptosis↓IS↓
EF↑LVFS↑

(48)

ALI
LPS-induced acute
lung injury

UCB Exos / miR-22-3p↑FZD6↓apoptosis↓p-NF-kB↓ (32)

ALI
Sepsis-induced
ALI model(mouse)

UCB Evs
SOD↑GPx↑CAT↑HO-1↑
Nrf2↑iNOS↓MDA↓

Rate of survival↑Total lung injury scores↓
Wet:dry ratios↓TNFa↓IL-1b↓IL-6↓IL-10↑
MPO↓Neutrophiles in BALF↓p-ERK↓p-JNK↓
p-P38↓p-p65↓IkB-a↓

(25)

Neonatal
hyperoxic lung
injuries

Exposed to
hyperoxia(90%)for
14 days(rat)

UCB Evs /
Mean linear index↓Alveolar volume↓vWF↑
Apoptosis↓IL-1a↓IL-1b↓IL-6↓TNF-a↓
ED-1-positive alveolar macrophages↓

(43)

Radiation-
induced lung
injury

Exposed to
thoracic radiation
with a total dose
of 15 Gy (mouse)

HP Evs MDA↓

P53↓P21↓b-galactosidase↓Vascular leakage↓
The number of infiltrated inflammatory cells↓
Inflammation↓TNFa↓IL-1b↓IL-6↓IL-10↑
Tissue fibrosis level↓COL1a1↓TGF-b↓a-SMA↓
MMP-9↓Anti-fibrotic genes↑TIMP-1↑TIMP-2↑
BMP-7↑miR-214-3p↑

(207)

ALI
LPS induced lung
injury

UCB Evs
Nrf2↑HO-1↑Keap1↓
Nrf2↓Keap1↑

IL-1b↓MCP-1↓IL-1a↓TNFa↓IL-12↓IL-10↑
Pathological scores↓iNOS↓Arg1↑CD86↓CD206↑
TLR4↓NF-kB p65↓

(33)

IVDD IVDD rat model
BM
(human)

Exos /

MRI score↓CEP and NP tissues were better
preserved
CEP was thicker and that the structure was
more intact
histological score
apoptosis↓calcification↓Runx2↓

(170)

IVDD
IVDD model
(rabbit)

BM (mouse) Exos /
DHI improved, MMP13↓Col2a1↑
Histological score improved, Proteoglycan
content↑

(17)

Epilepsy
Pilocarpine-
induced seizures
in wild-type and

UCB Evs
8-OHdG↓4-
HNE↓DT↓AMPA↓
Glut1↓iNOS↓HMGB1↓Nrf2↓

TOM20↓FIS1↓COXIV↓
Neuronal membrane properties and excitability
were improved

(112)

(Continued)
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TABLE 2 Continued

Application Model MSC
Source Excreta Effect of MSC

treatment Antioxidant mechanisms Reference

AAV-injected
(mouse)

HO-1↓
Nuclear translocation of
Nrf2 ↓

Reconstruction of hippocampal neuronal
function

Nerve disease
Pilocarpine-
induced SE
(mouse)

UCB Exos Nrf2↓HO-1↓Keap1↑

Hippocampal reactive
astrogliosis↓C3↓CD81↓ki67↓
GFAP↓TNFa↓IL-1a↓IL-1b↓GFAP↓P-65↓
Learning and memory impairment were reduced

(127)

Renal fibrosis
Renal ischemia
(mouse)

HP Evs

Hypo-EVs inhibits tubular
atrophy in renal fibrosis
Hypo-Evs causes the levels
of blood urea nitrogen↓
Hypo-EVs suppressed the
protein expression levels of
vimentin

Hypo-Evs causes collagen I in the fibrotic kidney
tissue ↓a-SMA ↓
Hypo-Evs makes the fibrotic kidney tissue
CPT1A↑
Hypo-Evs makes ATP in the fibrotic kidney
tissue↑

(209)

Light aging
Knock out NRF2
for modeling
(mouse)

HUC Exos

The epidermal thickness↓
The density of the collagen
fibers↑
Inhibits cell proliferation
and collagen deposition

TNFa↓IL-1b↓IL-
6↓CK14↓Ki67↓P53↓P21↓NRF2↓
Keap1↑HO-1↑NQO1↑MFI positive rate of
NRF2↓

(23)

Inflammation
of pregnancy

LPS+ICR (mouse) AF Exos /
NFkB↑NFkB↓TRAF6↑TNFa↑IL1b↑IL6↑TRAF6↓
TNFa↓IL1b↓IL6↓

(211)

RAS+MetS

MetS plus
surgically induced
RAS (MetS+RAS)
(pig)

Swine MSC Evs

Mitochondrial matrix
density↓
Total LDL cholesterol↓
Triglyceride levels↓

miR196a↑miR-132↑miR-192↓miR-320↓ATP↑ (228)

AKI
Renal I/R injury
(mouse)

BM (mouse)
BM (rat)
BM
(human)

Evs
KIM-1↓Number of apoptotic
cells↓

IL-6↓IL-1b↓ICAM1TNF-a↓TFAM↑PGC-1a↑
NDUFS8↑ATP5a1TFAM expression↑ATP↑
mtDNA copy number↑

(89)

Unilateral
renal vascular
disease with
metabolic
syndrome

A pig model of
unilateral renal
vascular disease
with metabolic
syndrome

Pig
autologous
fatMSC-Evs

Evs

RBF↑GFR↑Cortical
microvascular and
peritubular capillary
density↑
Apoptosis of renal cells↓
Renal tubule injury and
fibrosis↓
Superoxide
nion↓Isoprostaglandin↓

VEGF↑Notch-1↑DLL4↑
Oxidative stress↓

(149)

Injury of
isolated heart
after external
refrigeration

Isolated mouse
heart (mouse)

BM
(human)
AD

Exos /
TNF-a↓IL-1b↓Hspa1a↓caspase-3 levels↓
I-NDUFB8↑II-SDHB↑IV-MTCO1↑
V-ATP5A↑The production of H2O2↓

(214)

AMI LAD(rat)
DP-derived
MSC

Evs

EVs+miR-4732-3p
significantly restored the
systolic function of AMI
reduced the area of fibrous
scar tissue

/ (55)

MI LAD(mouse)
Mouse
Cardiac
MSC

Evs

Reduced infarct size
Promote blood vessel
formation Reduce cell
apoptosis
Stimulate CM proliferation

/ (64)

Liver Injury
Liver tumor
(mouse)

HUC Exos SOX9↓BAX↓bcl↑ 8-OHdG↓aspase 3↓MDA↓TGFb↓ (73)

Hepatic I/R
Injury

Hepatic I/R Injury
(mouse)

BM (mouse) Evs
Caspase 3–positive cells↓
Apoptotic cells↓TNF↓IL1a↓
IL1b↓IL6↓IL12↓IFN↓

NF-jB↓ROS↓NLRP12↑CCL7↓NLRP3↑
Mitogen-activated protein kinase 13↑

(72)

(Continued)
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formulate a protocol to control all the steps of their isolation and

application (160). Therefore, MSC-EVs and MSC-Exos in the

treatment of oxidative stress injury of various systems need to use

models closer to human pathology for better clinical use (235).
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TABLE 2 Continued

Application Model MSC
Source Excreta Effect of MSC

treatment Antioxidant mechanisms Reference

Chemoattractant protein 1↑
F4/80positive cells↑ALT↑

CXCL1↑IFNb1↓IFNc↓l 1b↓IL33↓kappa B↓
IL6I↓L1b↓PTGS2↑

DR
Diabetic model
(rat)

HUC Evs
PETN↓AKT↑NRF2↑
Retinal thick-ness↑
Caspase-3 positive cells↓

NEDD4↓PCNA↑Bcl-2↑Bax↓MDA↓SOD↑NRF2↑
GPX1↑NQO1↑HO-1↑GCLC↑GCLM↑

(219)

Cerebral
infarction

MCAO for
cerebral infarction
model (mouse)

HUC Exos

Recover cell viability↓
Apoptotic cell numbers↓
ROS↓TLR4↓infarcted area↓
Brain water content↓
Neurological grading scores↓
FJC-positive cell numbers↓

Tnf-a and MCP-1 inhibition increased
TNFa↓IL 6↓

(229)

Heart failure
Heart failure
(mouse)

BM (mouse) Exos

CD31↑CD206↑CTGF↓Bax↓
Cleaved caspase-3↑Bax↑
BCL↓IkBa↓p65↓caspase-3↓
Activity of MDA and LDH↓

/ (220)

Hepatic I/R
injury

hepatic I/R injury
(mouse)

human-
induced
pluripotent
stem cell

Exos

TNF-a↓IL-6↓HMGB1↓
Caspase-3↓bax↓ALT↓
AST↓bcl↑Ki67-positive cells
↑

GSH↑GSH- px↑SOD↑MDA↓ (74)

Osteoarthritis
Osteoarthritis
(mouse)

BM Exos
MMP-
13↓SOD↑NO↓MDA↓iNOS↓
COX2↓IL-1↓IL-6↓TNF-a↓

SDC1↓CRP↓ (230)

MI
model of
myocardial
infarction (rat)

HUC Evs
DEF↑ FS↑ DFS↑
LVIDs↑LVEF↑

/ (231)

ED
model of internal
iliac artery injury‐
induced ED (rat)

BM(rat) Exos
ICP/MAP↑CD31↑VEGFA↑
iNOS↓SOD↑8-OHdG↓

/ (232)
f

Parkinson’s disease (PD), Substantia nigra (SN), Spinal cord injury (SCI), Myocardial infarction (MI), Type 1 diabetes mellitus(DM), Acute Kidney Injury(AKI), Acute liver injury (ALI),
Ischemia reperfusion(I/R), Ex vivo lung perfusion (EVLP), Myocardial ischemia reperfusion(MIR), Intervertebral disc degeneration (IVDD), Renal tubular necrosis rate Renal Damage Molecular
1(KIM-1), Diabetic retinopathy (DR), Erectile dysfunction (ED), Alzheimer’s disease (AD). ↓, decline; ↑, increase. /, this mechanism is not included.
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et al. Influence of stem cell therapy on thyroid function and reactive oxygen species
production in diabetic rats. Horm Metab Res (2018) 50:331–9. doi: 10.1055/a-0588-
7944

227. Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, et al. Mesenchymal stromal
cell-derived extracellular vesicles protect against acute kidney injury through anti-
oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res (2016)
41:119–28. doi: 10.1159/000443413

228. Farahani RA, Zhu XY, Tang H, Jordan KL, Lerman A, Lerman LO, et al.
Metabolic syndrome alters the cargo of mitochondria-related microRNAs in swine
mesenchymal stem cell-derived extracellular vesicles, impairing their capacity to repair
the stenotic kidney. Stem Cells Int (2020) 2020:8845635. doi: 10.1155/2020/8845635

229. Cai G, Cai G, Zhou H, Zhuang Z, Liu K, Pei S, et al. Mesenchymal stem cell-
derived exosome miR-542-3p suppresses inflammation and prevents cerebral
infarction. Stem Cell Res Ther (2021) 12:2. doi: 10.1186/s13287-020-02030-w

230. Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow-derived
mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue
Res (2020) 381:99–114. doi: 10.1007/s00441-020-03193-x

231. Firoozi S, Pahlavan S, Ghanian MH, Rabbani S, Barekat M, Nazari A, et al.
Mesenchymal stem cell-derived extracellular vesicles alone or in conjunction with a
SDKP-conjugated self-assembling peptide improve a rat model of myocardial
infarction. Biochem Biophys Res Commun (2020) 524:903–9. doi: 10.1016/
j.bbrc.2020.02.009

232. Liu Y, Zhao S, Luo L, Wang J, Zhu Z, Xiang Q, et al. Mesenchymal stem cell-
derived exosomes ameliorate erection by reducing oxidative stress damage of corpus
cavernosum in a rat model of artery injury. J Cell Mol Med (2019) 23:7462–73. doi:
10.1111/jcmm.14615
frontiersin.org

https://doi.org/10.3390/biom10060957
https://doi.org/10.1038/cddis.2014.344
https://doi.org/10.1038/cddis.2014.344
https://doi.org/10.1016/j.bbcan.2019.04.004
https://doi.org/10.1016/j.bbcan.2019.04.004
https://doi.org/10.4049/jimmunol.0900970
https://doi.org/10.1371/journal.pone.0011469
https://doi.org/10.1371/journal.pone.0011469
https://doi.org/10.1084/jem.20011624
https://doi.org/10.1053/j.gastro.2005.03.045
https://doi.org/10.1074/jbc.M702277200
https://doi.org/10.1172/JCI81132
https://doi.org/10.4049/jimmunol.176.12.7385
https://doi.org/10.1189/jlb.0206094
https://doi.org/10.3389/fimmu.2018.00730
https://doi.org/10.3389/fimmu.2018.00730
https://doi.org/10.1186/s13287-017-0752-6
https://doi.org/10.1155/2022/8287227
https://doi.org/10.1186/s13287-020-01761-0
https://doi.org/10.1186/s13287-020-01761-0
https://doi.org/10.1089/ars.2019.7965
https://doi.org/10.1080/08958378.2019.1597220
https://doi.org/10.1186/s13287-022-02861-9
https://doi.org/10.1016/j.humimm.2020.05.009
https://doi.org/10.1093/molehr/gaz054
https://doi.org/10.5847/wjem.j.1920-8642.2022.015
https://doi.org/10.1074/jbc.M117.807180
https://doi.org/10.1074/jbc.M117.807180
https://doi.org/10.1016/j.yjmcc.2021.11.002
https://doi.org/10.1016/j.jaccao.2021.05.006
https://doi.org/10.1155/2019/6935806
https://doi.org/10.1038/s41423-020-00587-3
https://doi.org/10.1080/10715762.2020.1837793
https://doi.org/10.1186/s13287-022-02983-0
https://doi.org/10.1007/s12012-022-09743-9
https://doi.org/10.1016/j.intimp.2019.105689
https://doi.org/10.1038/s41420-022-00823-x
https://doi.org/10.1007/s12031-021-01914-7
https://doi.org/10.1371/journal.pone.0204252
https://doi.org/10.1371/journal.pone.0204252
https://doi.org/10.1002/jcp.29456
https://doi.org/10.1055/a-0588-7944
https://doi.org/10.1055/a-0588-7944
https://doi.org/10.1159/000443413
https://doi.org/10.1155/2020/8845635
https://doi.org/10.1186/s13287-020-02030-w
https://doi.org/10.1007/s00441-020-03193-x
https://doi.org/10.1016/j.bbrc.2020.02.009
https://doi.org/10.1016/j.bbrc.2020.02.009
https://doi.org/10.1111/jcmm.14615
https://doi.org/10.3389/fimmu.2023.1238789
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1238789
233. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell
(2014) 157:1013–22. doi: 10.1016/j.cell.2014.04.007

234. Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N. Short
overview of ROS as cell function regulators and their implications in therapy concepts.
Cells (2019) 8(8):793. doi: 10.3390/cells8080793

235. Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal stem cell
derived extracellular vesicles in aging.FrontCell Dev Biol (2020) 8:107. doi: 10.3389/fcell.2020.00107
Frontiers in Immunology 2733
236. Mckinnirey F, Herbert B, Vesey G, Mccracken S. Immune modulation via
adipose derived Mesenchymal Stem cells is driven by donor sex in vitro. Sci Rep (2021)
11:12454. doi: 10.1038/s41598-021-91870-4

237. Ran X, Diao JX, Sun XG, Wang M, An H , Huang GQ, et al. Huangzhi oral
liquid prevents arrhythmias by upregulating caspase-3 and apoptosis network proteins
in myocardial ischemia-reperfusion injury in rats. Evid Based Complement Alternat
Med (2015) 2015:518926. doi: 10.1155/2015/518926
frontiersin.org

https://doi.org/10.1016/j.cell.2014.04.007
https://doi.org/10.3390/cells8080793
https://doi.org/10.3389/fcell.2020.00107
https://doi.org/10.1038/s41598-021-91870-4
https://doi.org/10.1155/2015/518926
https://doi.org/10.3389/fimmu.2023.1238789
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chao Yang,
Zhejiang Ocean University, China

REVIEWED BY

Joseph Larkin,
University of Florida, United States
Ceren Ciraci,
Istanbul Technical University, Türkiye
Tina Fløyel,
Steno Diabetes Center Copenhagen
(SDCC), Denmark

*CORRESPONDENCE

Reinaldo S. Dos Santos

r.sousa@umh.es

Laura Marroqui

lmarroqui@umh.es

RECEIVED 20 July 2023
ACCEPTED 19 September 2023

PUBLISHED 03 October 2023

CITATION

Dos Santos RS, Guzman-Llorens D,
Perez-Serna AA, Nadal A and Marroqui L
(2023) Deucravacitinib, a tyrosine kinase 2
pseudokinase inhibitor, protects
human EndoC-bH1 b-cells against
proinflammatory insults.
Front. Immunol. 14:1263926.
doi: 10.3389/fimmu.2023.1263926

COPYRIGHT

© 2023 Dos Santos, Guzman-Llorens,
Perez-Serna, Nadal and Marroqui. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 03 October 2023

DOI 10.3389/fimmu.2023.1263926
Deucravacitinib, a tyrosine
kinase 2 pseudokinase
inhibitor, protects human
EndoC-bH1 b-cells against
proinflammatory insults

Reinaldo S. Dos Santos1,2*, Daniel Guzman-Llorens1,
Atenea A. Perez-Serna1,2, Angel Nadal1,2 and Laura Marroqui1,2*

1Instituto de Investigación, Desarrollo e Innovación en Biotecnologı́a Sanitaria de Elche (IDiBE),
Universidad Miguel Hernández de Elche, Alicante, Spain, 2CIBER de Diabetes y Enfermedades
Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
Introduction: Type 1 diabetes is characterized by pancreatic islet inflammation and

autoimmune-driven pancreatic b-cell destruction. Interferon-a (IFNa) is a key player
in early human type 1 diabetes pathogenesis. IFNa activates the tyrosine kinase 2

(TYK2)-signal transducer and activator of transcription (STAT) pathway, leading to

inflammation, HLA class I overexpression, endoplasmic reticulum (ER) stress, and b-
cell apoptosis (in synergy with IL-1b). As TYK2 inhibition has raised as a potential

therapeutic target for the prevention or treatment of type 1 diabetes, we investigated

whether the selective TYK2 inhibitor deucravacitinib could protect b-cells from the

effects of IFNa and other proinflammatory cytokines (i.e., IFNg and IL-1b).

Methods: All experiments were performed in the human EndoC-bH1 b-cell line.
HLA class I expression, inflammation, and ER stress were evaluated by real-time

PCR, immunoblotting, and/or immunofluorescence. Apoptosis was assessed by

the DNA-binding dyes Hoechst 33342 and propidium iodide or caspase 3/7

activity. The promoter activity was assessed by luciferase assay.

Results: Deucravacitinib prevented IFNa effects, such as STAT1 and STAT2 activation

and MHC class I hyperexpression, in a dose-dependent manner without affecting b-
cell survival and function. A comparison between deucravacitinib and two Janus

kinase inhibitors, ruxolitinib and baricitinib, showed that deucravacitinib blocked

IFNa- but not IFNg-induced signaling pathway. Deucravacitinib protected b-cells
from the effects of two different combinations of cytokines: IFNa + IL-1b and IFNg +
IL-1b. Moreover, this TYK2 inhibitor could partially reduce apoptosis and inflammation

in cells pre-treated with IFNa + IL-1b or IFNg + IL-1b.

Discussion: Our findings suggest that, by protecting b-cells against the

deleterious effects of proinflammatory cytokines without affecting b-cell
function and survival, deucravacitinib could be repurposed for the prevention

or treatment of early type 1 diabetes.

KEYWORDS

apoptosis, deucravacitinib, inflammation, pancreatic b-cells, TYK2, type 1 diabetes,
type I interferons
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1 Introduction

Type 1 diabetes is characterized by pancreatic islet inflammation

and specific destruction of pancreatic b-cells by an autoimmune

assault, which develops in the context of an inadequate “dialogue”

between b-cells and the invading immune cells (1, 2).

A growing body of evidence places type I interferons (IFNs) as

key players in the early stages of human type 1 diabetes

pathogenesis (3). IFNa was found in islets from type 1 diabetes

patients (4–6), and laser-captured islets from living donors with

recent-onset type 1 diabetes showed increased expression of IFN-

stimulated genes (ISGs) (7). In genetically susceptible children, an

IFN signature was temporarily amplified preceding the

development of autoantibodies and throughout the progress of

type 1 diabetes (8, 9). Recently, three type I IFN response

markers, namely human MX Dynamin Like GTPase 1 (MX1),

double-stranded RNA sensor protein kinase R, and HLA class I,

were found to be expressed in a significantly higher percentage of

insulin-containing islets from autoantibody-positive and/or recent-

onset type 1 diabetes donors (10). In human b-cells, IFNa induced

inflammation, endoplasmic reticulum (ER) stress as well as a long-

lasting overexpression of HLA class I via activation of the tyrosine

kinase 2 (TYK2)-signal transducer and activator of transcription

(STAT) pathway. Moreover, IFNa induced apoptosis in the

presence of IL-1b (11–14).

Targeting the type I IFN signaling pathway has been proposed

as a potential adjuvant therapy to treat at-risk individuals or

patients still in the very early stages of the disease (3, 15). Among

some of the strategies that have been suggested, inhibitors of Janus

kinase (JAK) proteins (JAK1-3 and TYK2) show great promise.

Treatment with AZD1480 (a JAK1/JAK2 inhibitor) and ABT 317 (a

JAK1-selective inhibitor) protected non-obese diabetic mice against

autoimmune diabetes and reversed diabetes in newly diagnosed

non-obese diabetic mice (16, 17). In human b-cells, clinically used

JAK inhibitors, namely ruxolitinib, cerdulatinib, and baricitinib,

prevented MHC class I overexpression, ER stress, chemokine

production, and apoptosis (13, 14).

Lately, attention has focused on TYK2, a candidate gene for type

1 diabetes whose genetic variants that decrease TYK2 activity are

associated with protection against the disease (18–20). TYK2 is

crucial for cell development and IFNa-mediated responses in

human b-cells (11, 21, 22). Partial TYK2 knockdown protected

human b-cells against apoptosis and inflammation induced by

polyinosinic-polycitidilic acid, a mimic of double-stranded RNA

produced during viral infection (21). In mature stem cell-islets,

TYK2 knockout or pharmacologic inhibition decreased T-cell-

mediated cytotoxicity by preventing IFNa-induced antigen

processing and presentation, including MHC class I expression

(22). As these findings place TYK2 as a critical regulator of the type

I IFN signaling pathway in b-cells, selective TYK2 inhibition has

emerged as a drug target to treat type 1 diabetes. Recently, two novel

small molecule inhibitors binding to the TYK2 pseudokinase

domain protected human b-cells against the deleterious effects of

IFNa without compromising b-cell function and susceptibility to

potentially diabetogenic viruses (23).
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Deucravacitinib, a small molecule that selectively targets the

TYK2 pseudokinase domain, has shown great therapeutic potential

for immune-mediated diseases, such as lupus nephritis and systemic

lupus erythematosus (24, 25). In fact, deucravacitinib has been

recently approved for treatment of plaque psoriasis (26). However,

no preclinical studies have deeply explored the possible use of

deucravacitinib in the context of type 1 diabetes. Notably, Chandra

et al. recently used deucravacitinib to validate their CRISPR-Cas9-

generated TYK2 knockout in human induced pluripotent stem

cells, but did not provide further characterisation of its effects on

b-cells (22).
In this study, we report the effects of deucravacitinib on the human

insulin-producing EndoC-bH1 cells, including its ability to prevent

IFNa-triggered signaling pathway and damaging effects on b-cells.
2 Materials and methods

2.1 Culture of EndoC-bH1 cells

The human EndoC-bH1 b-cell line [research resource identifier

(RRID): CVCL_L909, Univercell-Biosolutions, France] was

cultured in Matrigel/fibronectin-coated plates as previously

described (27). Cells were cultured in DMEM containing 5.6

mmol/L glucose, 10 mmol/L nicotinamide, 5.5 mg/mL transferrin,

50 mmol/L 2-mercaptoethanol, 6.7 ng/mL selenite, 2% BSA fatty

acid free, 100 U/mL penicillin, and 100 mg/mL streptomycin. We

confirmed that cells were mycoplasma-free using the MycoAlert

Mycoplasma Detection Kit (Lonza, Basel, Switzerland).
2.2 Cell treatments

Proinflammatory cytokine concentrations were selected according

to previously established experiments in human b-cells (11, 28):

recombinant human IFNa (PeproTech Inc., Rocky Hill, NJ) at 1000

U/mL; recombinant human IFNg (PeproTech Inc., Rocky Hill, NJ) at

1000 U/mL; and recombinant human IL-1b (R&D Systems, Abingdon,

UK) at 50 U/mL. Ruxolitinib, baricitinib, or deucravacitinib

(Selleckchem, Planegg, Germany) were prepared in DMSO (used as

vehicle) and cells were treated as indicated in the figures. Ruxolitinib

and baricitinib concentrations were selected based on previous dose-

response experiments (unpublished data). For treatments involving

cytokines, 2% FBS was added to the culture medium.
2.3 Cell viability assessment

The percentage of apoptosis was measured by fluorescence

microscopy upon staining with the DNA-binding dyes Hoechst

33342 and propidium iodide (Sigma-Aldrich, Saint Louis, MO,

USA) as described (29). At least 600 cells were counted for each

experimental condition. Viability was assessed by two independent

researchers, one of whom was unaware of sample identity, with

>90% agreement between results.
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2.4 Caspase 3/7 activity

Caspase 3/7 activity was determined using the Caspase-Glo® 3/

7 assay (Promega, Madison, WI, USA) following the manufacturer’s

instructions. Briefly, upon incubation in 100 µL culture medium,

cells were incubated with 100 µL Caspase-Glo® 3/7 reagent at room

temperature for 1 h before recording luminescence with a

POLASTAR plate reader (BMG Labtech, Ortenberg, Germany).
2.5 C-X-C motif chemokine ligand 10
measurements

The release of C-X-C motif chemokine ligand 10 (CXCL10) to

the culture medium was detected using Human ProcartaPlex

immunoassays (Invitrogen, Vienna, Austria) following the

manufacturer’s recommendations. Reactions were read with a

MagPix system (Luminex, Austin, TX, USA).
2.6 Luciferase reporter assays

Cells were transfected using Lipofectamine 2000 (Invitrogen)

with pRL-CMV encoding Renilla luciferase (Promega) and

luciferase reporter constructs for either gamma-interferon

activation site (GAS) (Panomics, Fremont, CA, USA) or IFN-

stimulated regulatory element (ISRE) (kindly provided by Dr

Izortze Santin, University of the Basque Country, Spain). After

recovery, cells were treated with either IFNa for 2 h or IFNg for 24 h
(30). Luciferase activity was measured in a POLASTAR plate reader

(BMG Labtech) using the Dual-Luciferase Reporter Assay System

(Promega) and corrected for the luciferase activity of the internal

control plasmid, i.e., pRL-CMV.
2.7 Real-time PCR

Poly(A)+ mRNA was extracted using Dynabeads mRNA

DIRECT kit (Invitrogen) and cDNA synthesis was performed using

the High-Capacity cDNA Reverse Transcription Kit (Applied

Biosystems). Real-time PCR was performed on the CFX96 Real

Time System (Bio-Rad) as described (31) and the housekeeping

gene b-actin was used to correct expression values. Of note, b-actin
expression was not altered by the experimental conditions used

herein. All primers used here are listed in Supplementary Table 1.
2.8 Immunoblotting and
immunofluorescence analyses

Western blotting analysis was performed as described (32).

Briefly, cells were washed with cold PBS and lysed in Laemmli

buffer. Immunoblotting was performed using antibodies against

phospho-STAT1 (P-STAT1), phospho-STAT2 (P-STAT2), STAT1,

STAT2 (all at 1:1000 dilution), and a-tubulin (1:5000). Peroxidase-

conjugated antibodies (1:5000) were used as secondary antibodies.
Frontiers in Immunology 0336
SuperSignal West Femto chemiluminescent substrate (Thermo

Scientific, Rockford, IL, USA) and ChemiDoc XRS+ (Bio-Rad

Laboratories, Hercules, CA, USA) were used to detect bands.

Immunofluorescence was carried out as described (21, 33).

First, cells were washed with cold PBS and fixed with 4%

paraformaldehyde. Afterwards, cells were permeabilised and

incubated with the mouse anti-MHC Class I (W6/32) antibody

(1:1000). The Alexa Fluor 568 polyclonal goat anti-mouse IgG was

used as secondary antibody and Hoechst 33342 for counterstaining.

Coverslips were mounted with fluorescent mounting medium

(Dako, Carpintera, CA, USA) and images were taken on a Zeiss

LSM900 microscope with Airyscan 2 (Zeiss-Vision, Munich,

Germany) and a x40 objective. Quantification was performed

using ZEN (version 3.3; Zeiss-Vision) and open-source FIJI

(version 2.0; https://fiji.sc) softwares.

All antibodies used here are listed in Supplementary Table 2.

All the original, uncropped images representing immunoblots

and microscopic photos are provided in the Supplementary Material.
2.9 Glucose-stimulated insulin secretion

After preincubation in modified Krebs-Ringer for 1 h, cells were

sequentially stimulated with low (0 mmol/L) and high glucose (20

mmol/L) for 1 h (each stimulation) as previously described (34).

Insulin secreted and insulin content from lysed cells were measured

using a human insulin ELISA kit (Mercodia, Uppsala, Sweden)

following the manufacturer’s instructions. The amount of secreted

insulin as % of total insulin was calculated as previously described

(35) and data were normalized to insulin secretion at 20 mmol/L

glucose in vehicle-treated cells without IFNa (considered as 100%).

See Supplementary Material for further details.
2.10 Statistical analyses

The GraphPad Prism 7.0 software (GraphPad Software, La Jolla,

CA, USA) was used for statistical analyses. Data are shown as mean

± SEM of independent experiments (i.e. considering EndoC-bH1

cells from different passages as n = 1). The statistical significance of

differences between groups was evaluated using one-way ANOVA

followed by Dunnett’s test or two-way ANOVA followed by Sidak’s

test or Dunnett’s test, as appropriate. Differences were considered

statistically significant when p ≤ 0.05.
3 Results

3.1 Deucravacitinib prevented IFNa effects
without affecting b-cell survival
and function

IFNa-mediated TYK2 activation leads to STAT1 and STAT2

phosphorylation, which will eventually upregulate several ISGs,

including HLA-ABC, CXCL10, and MX1 (Supplementary

Figure 1A). Pre-treatment with deucravacitinib inhibited IFNa-
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induced STAT1 and STAT2 phosphorylation in a dose-dependent

manner, where deucravacitinib showed greater potency against

IFNa-stimulated STAT1 phosphorylation (Figures 1A, B). We

then selected two doses, 10 and 1000 nmol/L, for the follow-up

experiments. Next, we examined how deucravacitinib affects the

kinetics of IFNa-induced STAT activation. IFNa increased P-

STAT1 and P-STAT2 levels, with a maximum effect at 1-4 h

post-treatment and a return to baseline by 24 h (Figures 1C, D;

Supplementary Figure 1B). Although STAT1 and STAT2 protein

levels were already upregulated by 8 h, STAT2 expression reached

peak level at 16 h, while STAT1 expression was still increasing by 24

h (Supplementary Figures 1C, D). Exposure to 1000 nmol/L

deucravacitinib abrogated the IFNa-stimulated STAT1 and

STAT2 phosphorylation and protein expression, whereas 10

nmol/L deucravacitinib had only a minor effect (Figures 1C, D
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and Supplementary Figures 1B–D). Furthermore, IFNa-induced
MHC class I protein overexpression was blocked by 1000 nmol/L

deucravacitinib (Figures 1E, F). Finally, deucravacitinib did not

affect b-cell viability nor changed glucose-stimulated insulin

secretion and insulin content in the absence or presence of IFNa
(Supplementary Figures 1E–G).
3.2 IFNa, but not IFNg signaling pathway
was blocked by deucravacitinib

We compared deucravacitinib with ruxolitinib and baricitinib,

two JAK1/JAK2 inhibitors previously tested in b-cells (13, 14). First,
we measured the levels of P-STAT1 and P-STAT2 upon stimulation

with IFNa or IFNg (Figures 2A–C; Supplementary Figure 2).
B
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E F

A

FIGURE 1

Deucravacitinib inhibits IFNa-mediated STAT phosphorylation and MHC class I overexpression. (A, B): EndoC-bH1 cells were treated with vehicle (V)
or pre-treated with the indicated deucravacitinib concentrations for 1 h. Afterwards, cells were left non-treated or treated with IFNa (1000 U/mL) in
the absence or presence of deucravacitinib for 1 h. Representative immunoblots of P-STAT2, STAT2, P-STAT1, STAT1, and a-tubulin (A), and
quantification of P-STAT1 (black circles) and P-STAT2 (white circles) (B). Values were normalized to a-tubulin, and then to the value of IFNa alone of
each experiment (considered as 100%) (n = 4-6 independent experiments). (C–F): EndoC-bH1 cells were treated with vehicle (V or Veh, black
circles) or pre-treated with deucravacitinib (10 [D10, soft blue circles] and 1000 nmol/L [D1000, dark blue circles]) for 1 h. Afterwards, cells were left
non-treated or treated with IFNa (1000 U/mL) in the absence or presence of deucravacitinib for 1–24 h (C, D) or 24 h (E, F). (C, D): Representative
immunoblots of P-STAT2, STAT2, P-STAT1, STAT1, and a-tubulin (C), and quantification of P-STAT1 (D). The inset in (D) is the area under curve
(AUC) of P-STAT1. Values were normalized to a-tubulin, and then to the highest value of each experiment (considered as 1) (n = 3-7 independent
experiments). (E, F): Immunocytochemistry analysis of MHC class I (red) and Hoechst 33342 (blue) upon exposure to IFNa in the absence (white
bars) or presence of 1000 nmol/L deucravacitinib (dark blue bars) for 24 h. Representative images (E) and quantification (F) of MHC class I are shown
(n = 13-30 images/coverslip from 3 different independent experiments). Data are mean ± SEM. D: **p ≤ 0.01, ***p ≤ 0.001 vs. Vehicle + IFNa (two-
way ANOVA plus Dunnett’s test). F: vs. the respective non-treated (NT) (two-way ANOVA plus Sidak’s test); ###p ≤ 0.001, as indicated by bars (two-
way ANOVA plus Dunnett’s test).
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Ruxolitinib, baricitinib, and deucravacitinib prevented IFNa-
stimulated increase in P-STAT1 and P-STAT2 levels (Figure 2B;

Supplementary Figures 2A, B). Nevertheless, deucravacitinib did

not change IFNg-induced STAT1 phosphorylation, whereas

ruxolitinib and baricitinib blocked it (Figure 2C; Supplementary

Figure 2C). We next assessed ISRE and GAS reporter activities upon

stimulation with IFNa or IFNg (Figures 2D, E). While all three

inhibitors abrogated IFNa-stimulated ISRE reporter activity

(Figure 2D), IFNg-induced GAS activation was barely affected by

deucravacitinib (Figure 2E). As TYK2 is not involved in the IFNg-
triggered signaling pathway, the lack of deucravacitinib effect in

IFNg-treated cells is expected.
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3.3 Deucravacitinib blocked IFNa-induced
upregulation of ISGs, but not ER
stress markers

Assessement of the expression of some ISGs and ER stress

markers showed that all three inhibitors prevented IFNa-induced
upregulation of HLA-ABC, CXCL10, andMX1 in a dose-dependent

manner (Figures 2F–K). Although ruxolitinib and baricitinib

inhibited the mRNA expression of the ER stress markers C/EBP

homologous protein (CHOP) and spliced isoform of XBP1 X-box

binding protein 1 (XBP1s), only 10 nmol/L deucravacitinib

reduced CHOP expression (Figures 2I, J). None of these inhibitors
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FIGURE 2

Deucravacitinib blocks IFNa- but not IFNg-induced pathway. (A): Experimental design of the pre-treatment with deucravacitinib and subsequent
exposure to IFNa or IFNg for 1, 2 or 24 h. EndoC-bH1 cells were treated with vehicle (V, white bars) or pre-treated with ruxolitinib (500 and 5000
nmol/L; R500 and R5000), baricitinib (500 and 5000 nmol/L; B500 and B5000), or deucravacitinib (10 and 1000 nmol/L; D10 and D1000) for 1 h.
(B, C): After the pre-treatment, cells were left non-treated (NT, white circles) or treated with either IFNa (1000 U/mL) (B) or IFNg (1000 U/mL) (C) in
the absence or presence of each inhibitor for 1 h. Representative immunoblots of P-STAT2, STAT2, P-STAT1, STAT1, and a-tubulin (n = 4-6
independent experiments). (D, E): EndoC-bH1 cells were transfected with a pRL-CMV plasmid (used as internal control) plus either ISRE (D) or GAS
(E) promoter reporter constructs. After 48 h of recovery, cells were pre-treated as described in (A) After the pre-treatment, cells were left non-
treated (NT, white circles) or treated with either IFNa (1000 U/mL) for 2 h (D) or IFNg (1000 U/mL) for 24 h (E) in the absence or presence of each
inhibitor. Relative luciferase units (RLU) were measured by a luminescent assay (n = 3-4 independent experiments). (F–K): EndoC-bH1 cells were
pre-treated as described in (A) After the pre-treatment, cells were left non-treated (NT) or treated with IFNa (1000 U/mL) in the absence or
presence of each inhibitor for 24 h. mRNA expression of HLA-ABC (F), MX1 (G), CXCL10 (H), CHOP (I), XBP1s (J), and ATF3 (K) was analyzed by real-
time PCR, normalized to b-actin and then to the value of IFNa alone of each experiment (considered as 1) (n = 3 independent experiments). Data
are mean ± SEM. **p ≤ 0.01, ***p ≤ 0.01 vs. the respective non-treated (NT) (one-way ANOVA plus Dunnett’s test). #p ≤ 0.05, ##p ≤ 0.01, ###p ≤

0.001 vs. IFNa (D, F–K) or IFNg (E) (one-way ANOVA plus Dunnett’s test).
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changed the expression of activating transcription factor 3

(ATF3) (Figure 2K).
3.4 Deucravacitinib prevented cytokine-
induced effects in b-cells

Previous studies showed that a combination of IFNa + IL-1b, two
cytokines that might be present in the islet milieu at early stages of

insulitis, induces b-cell apoptosis, inflammation, and ER stress (11, 14,
Frontiers in Immunology 0639
23). Thus, we investigated whether deucravacitinib protects b-cells after
IFNa + IL-1b exposure (Figure 3A). We observed that deucravacitinib

completely prevented IFNa + IL-1b-induced apoptosis (Figures 3B, C).
Moreover, deucravacitinib-treated cells showed reduced levels of P-

STAT1 and STAT1 (Figure 3D; Supplementary Figures 3A, B) as well

as HLA-ABC, MX1, CHOP, and CXCL10 mRNA expression

(Figures 3E–G, J). MHC class I protein expression and CXCL10

secretion were also decreased by TYK2 inhibition (Figures 3H, I, K).

We next evaluated whether deucravacitinib protects against

cytokines that, as compared with IFNa, probably appear later in
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FIGURE 3

Pre-treatment with deucravacitinib prevents IFNa + IL-1b or IFNg + IL-1b effects. (A): Experimental design of the pre-treatment with deucravacitinib and
subsequent exposure to cytokines for 24 h. EndoC-bH1 cells were treated with vehicle (V, white bars) or pre-treated with deucravacitinib (10 [D10, soft
blue bars] and 1000 nmol/L [D1000, dark blue bars]) for 1 h. Afterwards, cells were left non-treated (NT) or treated with IFNa + IL-1b (1000 U/mL + 50
U/mL, respectively) (B–K) or IFNg + IL-1b (1000 U/mL + 50 U/mL, respectively) (L–R) in the absence or presence of deucravacitinib for 24 h.
(B, L): Apoptosis was evaluated using Hoechst 33342/propidium iodide staining (n = 4 independent experiments). (C, M): Caspase 3/7 activity was
measured by a luminescent assay. Results are expressed as % vehicle-treated cells in the absence of cytokines (NT) (n = 4 independent experiments).
(D, N): Representative immunoblots of P-STAT1, STAT1, and a-tubulin (n = 4 independent experiments). (E–G, J, O-R): mRNA expression of HLA-ABC
(E, O), MX1 (F, P), CHOP (G, Q), and CXCL10 (J, R) was analyzed by real-time PCR, normalized to b-actin and then to the value of Vehicle treated with
IFNa + IL-1b (E–G, J) or IFNg + IL-1b (O-R) (considered as 1) (n = 3-4 independent experiments). (H, I): Immunocytochemistry analysis of MHC class I
(red) and Hoechst 33342 (blue) upon exposure to IFNa + IL-1b in the absence (white bars) or presence of deucravacitinib (dark blue bars) for 24 h.
Representative images (H) and quantification (I) of MHC class I are shown (12–23 images/coverslip from 3 different independent experiments).
(K): CXCL10 secreted to the medium was determined by ELISA (n = 4 independent experiments). Data are mean ± SEM. *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001 vs. the respective non-treated (NT) (two-way ANOVA plus Sidak’s test). #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001, as indicated by bars (two-way
ANOVA plus Dunnett’s test).
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the progression of islet inflammation: IFNg and IL-1b (36). After

treatment for 24 h (Figure 3A), deucravacitinib inhibited IFNg + IL-

1b-induced apoptosis in a dose-dependent manner (60% and 92%

protection at 10 and 1000 nmol/L, respectively) (Figure 3L). These

results were confirmed by the caspase 3/7 activity (Figure 3M).

Deucravacitinib did not affect IFNg + IL-1b-induced STAT1

phosphorylation and protein expression (Figure 3N; Supplementary

Figures 3C, D) or HLA-ABC mRNA expression (Figure 3O); in fact,

1000 nmol/L deucravacitinib increased P-STAT1 levels

(Supplementary Figure 3C). Conversely, deucravacitinib diminished

MX1 and CXCL10 mRNA expression, whereas CHOP was reduced

only at 10 nmol/L deucravacitinib (Figures 3P–R).
3.5 The harmful effects of cytokines were
partially inhibited by deucravacitinib

So far, we investigated whether pre-treatment with

deucravacitinib prevents the effects of different cytokines in b-
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cells. Here, we assessed if deucravacitinib could abrogate these

damaging effects. EndoC-bH1 cells were pre-treated with either

IFNa + IL-1b or IFNg + IL-1b for 24 h. Afterwards, 1000 nmol/L

deucravacitinib was added for an additional 24 h still in the

presence of cytokines (Figure 4A). Deucravacitinib partially

decreased IFNa + IL-1b-induced apoptosis (60% decrease)

(Figure 4B). IFNa + IL-1b-stimulated HLA-ABC mRNA

expression remained unchanged in deucravacitinib-treated cells

(Figure 4D), which agrees with previous data showing an IFNa-
triggered long-lasting expression of HLA-ABC (13). STAT1 protein

levels, CXCL10 secretion, and CHOP mRNA expression were

reduced by 26-42% (Figures 4C, F, H; Supplementary Figure 3E),

while the expression ofMX1 and CXCL10 was completely inhibited

by deucravacitinib (Figures 4E, G).

Similarly to IFNa + IL-1b, deucravacitinib diminished IFNg +
IL-1b-induced apoptosis (64% decrease) but did not modify HLA-

ABCmRNA expression (Figures 4I, K). Protein levels of STAT1 and

CXCL10, however, were not altered by TYK2 inhibition, whereas a

slight, non-significant 30% reduction was seen in CHOP expression
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FIGURE 4

Treatment with deucravacitinib partially blocks IFNa + IL-1b- or IFNg + IL-1b-induced changes. (A): Experimental design of the pre-treatment with
cytokines and subsequent exposure to IFNa + IL-1b or IFNg + IL-1b in the presence of deucravacitinib for 24 h. EndoC-bH1 cells were left non-treated
(NT) or pre-treated with IFNa + IL-1b (1000 U/mL + 50 U/mL, respectively) (B–H) or IFNg + IL-1b (1000 U/mL + 50 U/mL, respectively) (I–O) for 24 h.
Afterwards, cells were treated with vehicle (V, white bars) or 1000 nmol/L deucravacitinib (D1000, dark blue bars) in the absence (NT) or presence of
IFNa + IL-1b or IFNg + IL-1b for 24 h. (B, I): Apoptosis was evaluated using Hoechst 33342/propidium iodide staining (n = 4 independent experiments).
(C, J): Representative immunoblots of STAT1 and a-tubulin (n = 4 independent experiments) (D–G, K–N): mRNA expression of HLA-ABC (D K), MX1
(E, L), CHOP (F M), and CXCL10 (G, N) was analyzed by real-time PCR, normalized to b-actin and then to the value of Vehicle treated with IFNa + IL-1b
(D–G) or IFNg + IL-1b (K–N) (considered as 1) (n = 3-4 independent experiments). (H, O): CXCL10 secreted to the medium was determined by ELISA
(n = 4 independent experiments). Data are mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 vs. the respective non-treated (NT) (two-way ANOVA plus
Sidak’s test). #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001, as indicated by bars (two-way ANOVA plus Dunnett’s test).
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(Figures 4J, M, O; Supplementary Figure 3F). Expression of MX1

and CXCL10 was only partially affected by deucravacitinib under

IFNg + IL-1b conditions (Figures 4L, N).
4 Discussion

Targeting the JAK-STAT pathway has emerged as a promising

therapeutic approach for type 1 diabetes prevention/early treatment

(3, 15). Although this strategy has been approved for treatment of

some autoimmune diseases, including rheumatoid arthritis and

psoriatic arthritis (37), there are no JAK inhibitors approved for

type 1 diabetes. Nonetheless, recent preclinical data suggest that

these inhibitors could be repurposed for this disease (13, 14, 16, 17,

22, 23, 38) and a clinical trial investigating whether baricitinib

prevents the progressive, immune-mediated destruction of b-cells
in type 1 diabetes patients is ongoing (39).

In the current study, we tested whether the TYK2 inhibitor

deucravacitinib could protect human b-cells against the deleterious

effects of IFNa and other cytokines. We focused on this TYK2

inhibitor for two reasons: first, due to TYK2 importance for type 1

diabetes pathogenesis. For instance, TYK2 regulates IFNa-mediated

pro-apoptotic and proinflammatory pathways in b-cells (21, 22).

Second, exploring a drug recently approved by the U.S. Food and

Drug Administration to treat another autoimmune disease, namely

plaque psoriasis (26), increases its repositioning potential for type 1

diabetes and facilitates the bench-to-bedside transition.

Deucravacitinib is a small-molecule ligand that binds to and

stabilizes the TYK2 pseudokinase domain, leading to highly potent

and selective allosteric TYK2 inhibition (24, 40). Inhibition of IFNa-
induced STAT phosphorylation by deucravacitinib has been shown

in several cell types, such as CD3+ T cells, CD19+ B cells, and CD14+

monocytes (24). Here we showed that deucravacitinib also prevents

IFNa-stimulated STAT1 and STAT2 phosphorylation in human

EndoC-bH1 cell line. Furthermore, in agreement with previous

findings (24), deucravacitinib also showed higher potency against

TYK2-mediated phosphorylation of STAT1 compared with STAT2

phosphorylation in our experimental model. Notably, at the

concentrations used in our study, deucravacitinib did not affect b-
cell function and viability, which is a desired feature for a drug with

therapeutic potential.

Compared with ruxolitinib and baricitinib, two clinically

available JAK1/JAK2 inhibitors, deucravacitinib was more potent

against IFNa-stimulated STAT phosphorylation, ISRE activity, and

mRNA expression of HLA-ABC, MX1, and CXCL10. However,

unlike ruxolitinib and baricitinib, deucravacitinib did not affect

the IFNa-mediated upregulation of the ER stress markers CHOP

and XBP1s. Our results partially agree with a previous publication

reporting that two TYK2 inhibitors failed to prevent IFNa-induced
CHOP expression in EndoC-bH1 cells (23). Prior studies have

shown that other JAK/TYK2 inhibitors could prevent the

detrimental effects of IFNa + IL-1b, such as apoptosis and

inflammation (14, 23). Therefore, we investigated whether

deucravacitinib could protect b-cells against the harmful effects of

two different combinations of cytokines: IFNa + IL-1b (early

insulitis) and IFNg + IL-1b (late insulitis). In both scenarios, pre-
Frontiers in Immunology 0841
treatment with deucravacitinib protected against cytokine-induced

apoptosis and CXCL10 mRNA expression. Additionally, in cells

treated with IFNa + IL-1b, pre-treatment with deucravacitinib

blocked the overexpression of MHC class I at the cell surface and

CXCL10 secretion to the medium. Interestingly, while the IFNa +

IL-1b-induced upregulation of HLA-ABC, MX1, and CHOP was

inhibited by the pre-treatment with deucravacitinib, this inhibitor

did not change the expression of HLA-ABC stimulated by IFNg +
IL-1b. Moreover, MX1 and CHOP mRNA expression was only

partially reduced by the pre-treatment with deucravacitinib in IFNg
+ IL-1b-treated cells. Importantly, the addition of deucravacitinib

when cytokine exposure was already ongoing could reduce the

deleterious effects of these cytokines. Although it seems clear that

deucravacitinib confers protection against IFNa + IL-1b by directly

inhibiting the TYK2-mediated pathway, it remains to be answered

how deucravacitinib protects against IFNg + IL-1b-induced effects.

Indeed, our present data suggest that deucravacitinib does not

interfere with the IFNg-mediated signaling pathway. One

possibility might be the following: in b-cells, either IFNg alone or

in combination with IL-1b induce the expression of members of the

interferon regulatory factor (IRF) family, such as IRF3 and IRF7

(41, 42). As IRF3 and IRF7 are potent activators of IFNa and IFNb
gene expression (43, 44), it is conceivable that IFNg + IL-1b-
induced IRF3 and IRF7 could lead to type I IFN expression and

secretion. Then, secreted IFNa and/or IFNb could stimulate the

type I IFN receptor-TYK2 pathway in an autocrine fashion. In this

context, deucravacitinib could inhibit this positive-feedback loop

stimulated by IFNg + IL-1b-induced IRF3 and IRF7 expression.

Based on our findings, it will be interesting to test whether novel

small molecule TYK2 pseudokinase ligands (45) could also protect b-
cells from IFNa deleterious effects. Nevertheless, we must bear in

mind that completely inhibiting TYK2 may be counterproductive, as

it might lead to susceptibility to microorganisms (e.g., mycobacteria

and virus) and immunodeficiency (46). Thus, regardless of the TYK2

inhibitor chosen, we should focus on doses that induce a partial

inhibition, as seen in individuals with a protective single nucleotide

polymorphism in the TYK2 gene (18), as it could offer maximal

efficacy with reduced risk of developing secondary infections.

Moreover, our data suggest that partial TYK2 inhibition obtained

with low doses of deucravacitinib was enough to prevent most IFNa-
induced harmful effects in b-cells, such as upregulation of the pro-

apoptotic CHOP, MHC class I overexpression, and apoptosis (in the

presence of IL-1b). One potential limitation of our study is its purely

in vitro nature, which may limit our conclusions regarding the use of

deucravacitinib to treat a disease as complex as type 1 diabetes.

Conversely, our findings, along with others (22, 23), provide further

preclinical evidence that TYK2 inhibitors could be considered a

strategy for an early therapy for type 1 diabetes. The next logical

step would be to investigate whether our in vitro findings could be

translated to animal models of type 1 diabetes (e.g., NOD and RIP-

B7.1 mice).

In conclusion, we provided evidence that deucravacitinib

protects b-cells against the deleterious effects of proinflammatory

cytokines, such as IFNa, IFNg and IL-1b, without affecting b-cell
function and survival. Our present findings add to the existing

evidence that TYK2 inhibition may be an efficient treatment
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strategy for type 1 diabetes. Moreover, these preclinical findings

suggest that deucravacitinib could be repurposed to treat pre-

symptomatic type 1 diabetes subjects (i.e., positive for 2–3

autoantibodies but still normoglycemic) or be introduced in the

early stages of type 1 diabetes onset.
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Background: Oxidative stress is the primary cause of ischemia-reperfusion injury

(IRI) in kidney transplantation, leading to delayed graft function (DGF) and

implications on patient health. Necroptosis is believed to play a role in renal IRI.

This research presents a comprehensive analysis of necroptosis-related genes and

their functional implications in the context of IRI in renal transplantation.

Methods: The necroptosis-related differentially expressed genes (NR-DEGs)

were identified using gene expression data from pre- and post-reperfusion

renal biopsies, and consensus clustering analysis was performed to distinguish

necroptosis-related clusters. A predictive model for DGF was developed based

on the NR-DEGs and patients were divided into high- and low-risk groups. We

investigated the differences in functional enrichment and immune infiltration

between different clusters and risk groups and further validated them in single-

cell RNA-sequencing (scRNA-seq) data. Finally, we verified the expression

changes of NR-DEGs in an IRI mouse model.

Results: Five NR-DEGs were identified and were involved in various biological

processes. The renal samples were further stratified into two necroptosis-related

clusters (C1 and C2) showing different occurrences of DGF. The predictive model

had a reliable performance in identifying patients at higher risk of DGF with the

area under the curve as 0.798. Additionally, immune infiltration analysis indicated

more abundant proinflammatory cells in the high-risk group, which was also

found in C2 cluster with more DGF patients. Validation of NR-DEG in scRNA-seq

data further supported their involvement in immune cells. Lastly, the mouse

model validated the up-regulation of NR-DEGs after IR and indicated the

correlations with kidney function markers.

Conclusions: Our research provides valuable insights into the identification and

functional characterization of NR-DEGs in the context of renal transplantation

and sheds light on their involvement in immune responses and the progression

of IRI and DGF.
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1 Introduction

Kidney transplantation (KT) is the optimal renal replacement

treatment for end-stage renal disease, associated with lower

mortality and enhanced quality of life in comparison to chronic

dialysis treatment (1). Recently, the survival rates for patients and

grafts have exceeded 96% and 91% correspondingly in their first

year (2). However, the incidence of renal insufficiency and

comorbidities after KT remains high, leading to potential loss of

transplanted kidney function. Delayed graft function (DGF) is

among the most frequent postoperative complications, with

prevalence varying between 2% to 50% in different types of

kidney grafts, which may be related to the use of expanded

criteria donors and deceased cardiac dead (DCD) donors (3). At

present, the standardized definition of DGF is controversial and

cannot provide early warning signs (4, 5). Therefore, there is still a

clinical demand for a non-invasive, robust, and more reliable

diagnostics method to detect DGF.

Ischemia-reperfusion injury (IRI) induced by oxidative stress, is

the primary cause of DGF, acute rejection, and chronic rejection (6),

and is inevitable during KT (7). The imbalance between oxygen

supply and demand could cause oxidative metabolic disorders,

resulting in the death of tubular epithelial cells (TECs) and

impairment of kidney function (8). During both the ischemic

phase and subsequent reperfusion, cellular damage takes place

and causes the loss of cellular polarity, impaired brush border,

decreased intercellular adhesion, and cell death (3, 8). Necrosis,

traditionally considered as a non-programmed cell death, is the

main form of tubular cell death of renal IRI and acute kidney injury

(AKI) (8–10). However, emerging evidence suggests the existence of

highly regulated forms of non-apoptotic cell death with necrotic

characteristics, known as regulated necrosis (RN) (6). RN can take

various forms, including necroptosis, ferroptosis, necrosis driven by

mitochondrial permeability transition (MPT), pyroptosis, and

parthanatos. Among these, necroptosis and ferroptosis are the

most extensively studied forms in the context of renal IRI.

Necroptosis is characterized by its dependency on the kinase

domain of receptor-interacting protein kinase (RIPK)-3 and the

phosphorylation of mixed lineage kinase domain-like protein

(MLKL) (9). It has been reported to contribute to several models

of renal injury, including IRI (6), cisplatin-induced AKI (11), and

contrast-induced nephropathy (12). Although numerous studies

have explored potential protective therapies for renal IRI (13), their

practical value remains controversial, and none of them has been

translated to clinical application. Given the development of massive

sequencing and genetic diagnosis techniques, it is essential to

investigate the role of necroptosis in gene-based diagnostic and

therapeutic strategies for DGF. It has been reported that

necroptosis-related genes (NRGs) are upregulated early in the

renal allograft and serve as risk factors for subsequent DGF (14).

However, the association between NRGs and specific cell types or

their role in the induction of specific immune responses during the

process of renal IRI remains ambiguous.
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In this study, we aimed to identify potential target genes by

intersecting necroptosis-related genes and differentially expressed

genes (DEGs) obtained from two gene expression omnibus (GEO)

databases of KT. Based on the expression levels of necroptosis-

related DEGs (NR-DEGs), we stratified the samples into two

clusters with distinct molecular and clinical features.

Subsequently, we developed a diagnostic model for predicting the

occurrence of DGF based on the targeted NR-DEGs and categorized

the samples into high- and low-risk groups. Furthermore, we

conducted functional enrichment and immune-infiltration

analyses to explore the potential mechanisms involved. Single-cell

RNA-sequencing (scRNA-seq) data and cell-cell communication

analyses were further utilized to investigate the relationship between

necroptosis, NR-DEGs, and immune cells. Finally, we validated our

findings using a mice kidney IRI model. In brief, our study provides

novel necroptosis-related biomarkers for the early diagnosis of DGF

after KT and enables the discrimination of patients at different

risk levels.
2 Materials and methods

2.1 The gathering and analysis of bulk
RNA-Seq data

The RNA-seq datasets utilized in this study were acquired from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Specifically, we accessed the GSE43974 dataset, comprising 188

renal biopsies before retrieval and 203 biopsies after reperfusion

obtained from brain-dead (BD) kidney donors, DCD donors, and

living donors. This dataset was used for the identification of hub

genes and the development of the predictive model. Additionally,

we utilized the GSE126805 dataset, which included protocol

biopsies collected at different time points from 42 kidney

transplant recipients, for validation purposes. The microarray

datasets based on Illumina platforms were subjected to log2

transformation and normalized by R package “limma”. The

demographic characteristics are detailed in Table S1.
2.2 Identification of the necroptosis-
related genes

From the GeneCards database (https://auth.lifemapsc.com/), a

collection of 114 genes associated with necroptosis was acquired

with a relevance score > 1 (Table S2). IRI-related DEGs between

pre- and post-reperfusion from three different types of donor types

(BD, DCD, and living donors) in the GSE43974 dataset were

screened by “limma” R package with adj. p < 0.05 and |logFC| ≥

0.5, respectively. To screen out the NR-DEGs, a Venn analysis was
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undertaken to identify the intersected genes of the above three

different analyses and necroptosis-related genes.
2.3 Analysis of functional enrichment and
immune infiltration

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses of the common IRI-

related DEGs among three donor types were performed by

“clusterProfiler” R package (15–17). The evaluation of the

abundance of 22 different immune cells was conducted using

CIBERSORT (http://cibersort.stanford.edu/) (18).
2.4 Necroptosis-based consensus
clustering analysis

To determine the molecular patterns associated with necroptosis

in samples of IRI, consensus clustering analysis was performed based

on the above NR-DEGs using the “ConsensusClusterPlus” R package

(19). To ensure classification stability, 80% item resampling and a

maximum evaluated k of 9 were used. The principal component

analysis (PCA) was performed to validate cluster results.
2.5 Establishment of the predictive model

The machine learning algorithm was performed in the

GSE43974 dataset to screen out necroptosis-related hub genes

and construct a predictive model. The least absolute shrinkage

and selection operator (LASSO) regression analysis, a variable

selection method for regression models, was utilized to eliminate

less informative features (20). The regression coefficients of each

gene were estimated by the least squares method based on

parameters obtained from the cross-validation. We conducted the

LASSO regression analysis with 10-fold cross-validation (utilizing

“glmnet” R package). The area under the receiver operator

characteristic curve (AUROC) of the predictive model was

evaluated through the “ROCR” R package.

Based on the necroptosis-related score derived from the risk

prediction model, the samples of IRI were stratified into high- and

low-risk groups, respectively.
2.6 Obtaining and analyzing
scRNA-seq data

The scRNA-seq dataset GSE171639 consisting of two mice

kidney samples following ischemic reperfusion or sham surgery

was obtained from the GEO database (21). The kidneys were

subjected to bilateral clamping of the renal pedicle for a duration

of 30 minutes, after which reperfusion was allowed for 6-7 hours.

For further verification, additional scRNA-seq data of samples from

mice kidneys after 27min ischemia or without any surgery were
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used (GSE193649) (22). The additional details of these datasets can

be found in Table S1.

To preprocess the data, we utilized the “Seurat” R package.

Several quality control measures were applied, including calculating

the percentage of gene numbers, cell counts, and mitochondria

sequencing counts. Cells exceeding a mitochondrial content of 50%,

having fewer than 200 genes, and falling within the lower 10% and

top 5% percentiles of unique gene distribution were removed for

GSE171639 dataset (Figures S1A, B). Afterward, the cells were

no rma l i z ed fo r s equenc ing dep th by u t i l i z ing the

“NormalizeData” function with the default method of

“LogNormalize”. Using the “FindVariableFeatures” function, we

detected the top 2,000 highly variable genes and then scaled them

through the “ScaleData” function. Next, PCA was performed to

identify significant principal components, and “harmony” R

package was employed to integrate the data from each biological

individual. Subsequently, the cells were clustered using the

“FindNeighbors” and “FindClusters” functions (with a resolution

of 0.65 for GSE171639 dataset) and visualized with uniform

manifold approximation and projection (UMAP). To identify

marker genes for each main cell cluster, the “FindAllMarker”

function (|logFC| > 0.3, Minpct = 0.25) was employed.

Subsequently, the prominent cell categories were identified

according to the markers acquired from the CellMarker2.0

database (23) and previous studies (24–26). The top 3 markers

for each cell type were selected and plotted on a heatmap.
2.7 Cell-cell communication analysis

The cell-cell communication networks were quantitatively

inferred and visualized based on the CellChatDB of ligand-

receptor pairs in humans and mice using the scRNA-seq data

(GSE171639) and the “CellChat” R package (27). We compared

the intercellular communication before and after ischemia-

reperfusion (IR), and the minimum threshold of cells required in

different cells was set to 10.
2.8 Analysis of gene set variation
and enrichment

The gene set enrichment analysis for scRNA-seq was performed

through GSVA implemented in the “GSVA” package (28). Gene

sets were exported using the “GSEABase” R package. The

enrichment score of each pathway in the significant cell types was

calculated using t-values, and the differences between the sham and

IRI groups were compared using the “limma” package. In addition,

we visualized the distribution of necroptosis-related pathways with

the UMAP function.
2.9 Mice and renal IRI model

C57BL/6N mice (8-10 weeks old, male) were obtained from

Weitonglihua (Beijing, China) and were kept in a controlled
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environment free from pathogens. The animal experiment was

reviewed and approved by the Ethics Committee of Beijing Chao-

Yang Hospital (2021-54). Before the operation, a minimum of one

week was given for the mice to adapt to these conditions. Mice

underwent IRI (n = 8) as described previously (29). For the

procedure, the mice were anesthetized with pentobarbital (60 mg/

kg) through an intraperitoneal injection and placed on a

thermoregulated heating pad to maintain body temperature at 34

to 36 °C. The right kidney was removed and used as self-control,

while the left renal pedicle was clamped for 30 minutes to induce

renal ischemia. Subsequently, the clamp was released, allowing

tissue reperfusion. Mice were euthanized 24 hours after renal IRI,

and both serum and kidney tissues were collected.
2.10 Evaluation of kidney damage and
renal function

The assessment of kidney injury was conducted based on the

levels of blood urea nitrogen (BUN) and serum creatinine (SCr).

Serum samples were isolated from the clotted whole blood samples

through centrifugation at a speed of 3,000 revolutions per minute

for 10 minutes and further subjected to BUN and SCr testing by an

automated chemistry analyzer (Chemray 800).
2.11 Quantitative real-time PCR

As per the manufacturer’s instructions, total RNA was extracted

from the kidney samples using the FastPure Cell/Tissue Total RNA

Isolation Kit V2 (Vazyme, RC112-01). The extracted RNA was then

reverse transcribed to cDNA by HiScript III RT SuperMix for qPCR

kit (Vazyme, R323-01). Subsequently, quantitative PCR (qPCR) was

performed on an Applied Biosystems 7500 Fast Real-Time PCR

System using the HiScript Q RT SuperMix for qPCR (Vazyme,

R122-01). Gapdh was used as an internal reference gene for

normalization during qPCR analysis. The primer sequences of the

hub genes in this study can be found in Table S3.
2.12 Statistical analysis

The statistical analysis for this study was conducted using R

software (version 4.1.3). To compare the variations in immune cell

infiltration and gene expression levels among different groups, either a

Student’s t-test or Mann-Whitney U test was employed. A two-sided p

value less than 0.05 was considered statistically significant.
3 Results

3.1 Identification of NR-DEGs and
functional enrichment analysis

Differential expression analyses were performed in GSE43974

dataset. As a result, we identified 119, 173, and 90 DEGs from the
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BD, DCD, and living donor samples, respectively (Figures 1A–C).

Among these, 78 DEGs were significantly differentially expressed in

all three types of donors (Figure 1D). To gain insights into the

biological function of these common IRI-related DEGs, we

conducted functional enrichment analysis based on the GO and

KEGG databases. GO analysis encompassed biological process (BP),

cellular component (CC), and molecular function (MF). The top

five enriched terms of each category are depicted in Figure 1I,

Notably, the representative enriched terms including regulation of

transcription from RNA polymerase II promoter in response to

stress (GO: 0043618), RNA polymerase II transcription regulator

complex (GO: 0090575), and DNA-binding transcription activator

activity (GO: 0001216). Additionally, the KEGG pathway analysis

(Figure 1H) revealed significant involvement of the IRI-related

DEGs in MAPK signaling pathway (hsa: 04010), TNF signaling

pathway (hsa: 04668), and IL-17 signaling pathway (hsa: 04657).

Next, we investigated the intersection of the 78 IRI-related

DEGs from three types with the 114 NRGs and revealed 5 NR-

DEGs (NFKBIA, TNFAIP3, MYC, JUN, SERTAD1, Figure 1E). We

further visualized the expression of the NR-DEGs through a

heatmap (Figure 1F) and validated these findings in an

independent transplantation cohort (GSE126805) as well

(Figure 1G), indicating that all the identified hub genes were

significantly upregulated after IR.
3.2 Stratification of IRI samples based
on NR-DEGs

We performed unsupervised consistent clustering and stratify

the renal samples after IR based on the expression levels of the five

NR-DEGs. The cumulative distribution curve appeared most

horizontal in the middle section at k = 2, and the heatmap of

clustering suggested a clear distinction between cluster 1 (C1) and

cluster 2 (C2, Figures 2A, B). PCA further demonstrated a

significant separation of the expression levels of the NR-DEGs

between the two clusters (Figure 2C). Specifically, the five hub genes

expressed at higher levels in C1 group, as evident from the heatmap

(Figure 2D) and boxplot (Figure 2E). As for clinical characteristics,

the C1 group had a lower proportion of patients who experienced

DGF (35.2% compared to 52.1% in C2, Figure 2F). Moreover, the

C1 group comprised a significantly lower number of kidney

transplant recipients from DCD donors (16.4% compared to

42.7% in C2, Figure 2G).
3.3 Analysis of immune infiltration of
necroptosis-related clusters

To explore the functional differences among the two necroptosis-

related clusters, we conducted the GSVA utilizing hallmarks gene set

(c2.cp.kegg.v2022.1.Hs.symbols.gmt) and visualized the results using

a heatmap (Figure 2H). C1 group was positively associated with

several pathways, including P53 signaling, MAPK signaling, T cell

receptor signaling, chemokine signaling pathways, and apoptosis

pathway. In contrast, C2 group showed enrichment in metabolic-
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related pathways, including steroid hormone biosynthesis,

cytochrome P450-mediated drug metabolism, and the pathway of

retinol and linoleic acid metabolism.

Furthermore, we investigated the differential relative

proportion of immune infiltrating cells between the two
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clusters. The results revealed that the C1 group exhibited

higher abundance of naïve B cells, M1 macrophages, and

memory resting CD4 T cells. In contrast, the C2 group had

higher infiltration of memory B cells, gamma delta T cells, and

naïve CD4 T cells (Figure 2I).
B C

D E

F

G
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A

FIGURE 1

Identification of NR-DEGs and functional enrichment analysis of IRI-related DEGs. (A–C) Volcano plots of DEGs between samples before and after
reperfusion in brain death (A), cardiac death (B), and healthy living donors (C), respectively. (D) The Venn diagram showing the intersection of IRI-
related DEGs among three kinds of donors. (E) The Veen diagram showing the intersection of DEGs from IR samples and necroptosis-related genes.
(F) Heatmap of the expression of the 5 NR-DEGs in pre- and post-reperfusion samples in GSE43974. (G) Box plots showing the expression levels of
the 5 NR-DEGs among pre- and post-reperfusion samples in GSE126805. (H, I) Chord plots presenting the distribution of the common IRI-related
DEGs in KEGG and GO pathway analysis. NR-DEGs, necroptosis-related differentially expression genes; IRI, ischemia-reperfusion injury; BD, brain
death; DCD, deceased cardiac dead; BP, biological process; CC, cellular component; MF, molecular function. *** P value < 0.001.
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3.4 Construction and validation of the DGF
predictive model

DGF is a common manifestat ion seen after renal

transplantation and always occurs after severe IRI (30). Therefore,

we aimed to develop a predictive model for DGF based on the NR-

DEGs from the GSE43974 dataset. We randomly divided these IRI
Frontiers in Immunology 0649
samples into a discovery cohort and an internal validation cohort

with a ratio of 7: 3. In the discovery cohort, we used 10-fold cross-

validation for LASSO regression to minimize the prediction error

and determine the contribution of each gene in the optimal model.

The optimal value of log lambda (l) was indicated by the left dashed
vertical line in Figure 3A. In this case, all five NR-DEGs (TNFAIP3,

JUN, MYC, SERTAD1, and NFKBIA) were included in the final
B C

D

E F G

H I

A

FIGURE 2

Classification of IR samples into two clusters by consensus clustering analysis. (A) Heatmap of consensus clustering analysis based on NR-DEGs. (B)
Cumulative distribution function curves with k = 2-9. (C) PCA analysis of NR-DEGs between two clusters. (D) Heatmap showing the association between the
expression levels of NR-DEGs and the clinical characteristics of two clusters. (E) Box plots showing the expression levels of the 5 NR-DEGs among two
clusters in GSE43974. (F, G) Histograms comparing the occurrence of DGF and donor types between two clusters. (H, I) The GSVA enrichment analysis (H)
and immune cell infiltration analysis (I) among the two clusters. IR, ischemia-reperfusion; NR-DEGs, necroptosis-related differentially expression genes; PCA,
principal component analysis; DGF, delayed graft function; GSVA, gene set variation analysis; BD, brain death; DCD, deceased cardiac dead. *P value < 0.05;
**P value < 0.01; ****P value < 0.0001.
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predictive model (Figures 3B, C). The area under the curve (AUC)

of the prediction model in the discovery, internal validation, and

whole cohorts were 0.798, 0.694, and 0.749 respectively, suggesting

that the model was reliable in assessing the risk of DGF after renal

transplantation (Figures 3D–F).

To further validate the performance of the prediction model, we

categorized IRI samples into high- and low-risk groups based on the

median risk score derived from the model. Figure 3H illustrates the

results of immune infiltration analysis. The high-risk group

exhibited a higher abundance of immune-related cells, including

memory B cells, naïve CD4 T cells, and gamma delta T cells.

Conversely, the low-risk group samples tended to have more

activated dendritic cells, plasma cells, and memory resting CD4 T

cells. These findings were consistent with the comparison between

the necroptosis-related clusters, suggesting that the high-risk group

samples had a greater accumulation of proinflammatory cell

phenotypes. In addition, we utilized a Sankey diagram

(Figure 3G) to visualize the relationships among various
Frontiers in Immunology 0750
characteristics, including the type of donors, the occurrence of

DGF, the necroptosis-related cluster, and the DGF risk.
3.5 Validation of the expression of NR-
DEGs in scRNA-seq data

As for scRNA-seq data analysis, a total of 19,274 genes and

12,965 cells were included from the GSE171639 dataset after quality

filtering and batch effects removal. Among these, 6,697 cells (51.7%)

originated from IRI group and 6,268 cells (48.3%) were derived

from sham surgery group. By applying PCA and UMAP algorithms,

we divided the 12,965 cells into 23 clusters.

To identify cell types, we combined the CellMarker database

and previous studies for mice kidneys (Figure 4A). The clusters

were annotated as follows: cluster 0, 1, 2, 4, 6, 10, 11, and 13 were

annotated as proximal tubule (7,732 cells); cluster 3 as neutrophil

cell (1,328 cells); cluster 5 as loop of Henle (874 cells); cluster 7 and
B C

D E F

G H

A

FIGURE 3

Establishment and validation of the prediction model for DGF. (A) Cross-validation plot according to the log of lambda in LASSO regression. (B) The
coefficients of each NR-DEG over different values of the penalty parameter. (C) The final coefficients in the optimal predictive model. (D-F) The AUC
of the prediction model based on LASSO regression in the discovery (D), validation (E), and whole cohorts (F), respectively. (G) Alluvial diagram of
donor types, the occurrence of DGF, NRG clusters, and risk groups. (H) The immune cell infiltration analysis between two risk groups divided with
the risk scores. DGF, delayed graft function; NR-DEGs, necroptosis-related differentially expression genes; AUC, area under the receiver operator
characteristic curve; NRG, necroptosis-related gene. *P value < 0.05; **P value < 0.01; ***P value < 0.001.
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8 as distal convoluted tubule (1,133 cells); cluster 9, 12, 17, and 21 as

collecting duct cell (910 cells); cluster 14 as T cell (254 cells); cluster

15 as endothelial cell (239 cells); cluster 16 as macrophage cell (173

cells); cluster 18 as intermediate tubule (102 cells); cluster 19 as

myofibroblast cell (81 cells); cluster 20 and 23 as dendritic cell (98

cells); and cluster 22 as B cell (41 cells).

The top three marker genes in each cell subpopulation are

presented in Figure 4B, and the proportion of different groups in

each cell type is shown in Figure 4C. It is worth mentioning that T

cells, neutrophils, macrophages, dendritic cells, and B cells were

predominantly derived from the IRI group, which aligns with the

immune infiltration analysis mentioned earlier. We then examined

the expression of the five NR-DEGs in each cell type and observed

that NFKBIA, TNFAIP3, MYC, and SERTAD1 were mainly

expressed in the IRI group (Figures 4D–G, Figures S2C–F).
Frontiers in Immunology 0851
Specifically, NFKBIA exhibited high expression in macrophages,

dendritic cells, T cells, and neutrophils; TNFAIP3 was highly

expressed in T cells and neutrophils; MYC was predominantly

expressed in myofibroblast cells and intermediate tubules;

SERTAD1 was identified as being primarily expressed in

myofibroblast cells, macrophages, neutrophils, and endothelial

cells. Conversely, JUN was predominantly expressed in proximal

tubules, intermediate tubules, and endothelial cells (Figures S2A, B).

Additionally, the identified cell types of single-cell samples from

the GSE193649 dataset were presented in Figure S3A. Notably, the

expression levels of the five NR-DEGs in GSE193649 dataset were also

higher in immune cells of IRI group, such as neutrophils, macrophages,

NK cells, and T cells (Figures S3C–F, Figures S4A–F). These findings

suggested that the NR-DEGs are mainly highly expressed in immune

cells, which are essential players in the process of IRI.
B C

D E

F G

A

FIGURE 4

Validation of the NR-DEGs based on scRNA-seq analysis (GSE171639). (A) scRNA-seq identified clusters of cells in the sham and IRI kidneys. (B) Heatmap
showing the top 3 differentially expressed markers in each cluster. (C) The proportion of each cell in different groups. (D-G) The expression levels of NFKBIA
(D, F) and TNFAIP3 (E, G) in different cells among pre- and post-IRI groups. NR-DEGs, necroptosis-related differentially expression genes; IRI, ischemia-
reperfusion injury.
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3.6 GSVA and cell-cell
communication networks

Following IRI, there was a notable increase in immune cell

infiltration and higher relative expression of the NR-DEGs in

kidneys. To understand the biological behaviors of these immune

subtypes between IRI and sham groups, we performed gene set

variation analysis in GSE171639 dataset. The histograms revealed

significant enrichment of pathways associated with immune and

inflammatory responses, including IL2-STAT5 signaling, TNFA

signaling via NF-kB, TGF-b signaling, IL6-JAK-STAT3 signaling,

IFN-a/g response, and PI3K-AKT-mTOR signaling in the IRI group

(Figures 5A–D, Figure S2G). Moreover, the processes of allograft

rejection and apoptosis were also more active in the IRI group.

Additionally, we compared the enrichment of necroptosis-related
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pathways using the Molecular Signatures Database (MSigDB, C2, CP:

Reactome) with UMAP visualization (Figures 5G, H). The regulated

necrosis and RIRK1-mediated regulated necrosis pathways were

more enriched in immune cells in IRI groups, including neutrophil

cells, dendritic cells, macrophage cells, B cells, and T cells. Similar

enrichment analysis results of the necroptosis-related pathways were

obtained in GSE193649 dataset (Figures S3G, H).

To investigate the aggregated cell–cell communication network in

the presence or absence of IRI based on the scRNA-seq data, we

examined the number and strength of interactions between different

cell types. Circle plots (Figures 5E, F, Figures S2H, I) demonstrated that

ligand–receptor interactions were mainly sent from the neutrophil

cells, distal convoluted tubules, and myofibroblast cells in the sham

group. However, in the IRI group, the communications between the

other immune cells, such as B cells, T cells, and dendritic cells, with
B C

D E F

G H

A

FIGURE 5

Functional enrichment and cell-cell communication analysis based on scRNA-seq data (GSE171639). (A–D) Differences in pathway activities scored
in neutrophil cell (A), B cell (B), T cell (C), and dendritic cell (D) by GSVA compared with sham and IRI groups. (E, F) The number of interactions
among different cells in sham (E) and IRI groups (F). (G, H) UMAP plots showing the necroptotic pathways enrichment scores in sham and IRI
groups. GSVA, gene set variation analysis; IRI, ischemia-reperfusion injury.
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epithelial and endothelial cells, were significantly increased. Together,

these findings further support the notion of a more active necroptosis

process and heightened immune responses after IRI, which may play

critical roles in the pathogenesis of renal ischemia-reperfusion injury.
3.7 Validation of NR-DEGs in IRI model

To further investigate the important role of the 5 NR-DEGs in the

context of kidney IRI, we conducted a model using male C57BL/6N

mice. To accurately assess changes in gene expression before and after

IR, we removed the right kidney and subjected the left kidney to

ischemia-reperfusion treatment. The right kidney served as self-

control, minimizing individual differences and potential errors. The

PCR results of the same individual’s kidneys, with and without IR,

indicated that MYC, NFKBIA, SERTAD1, and TNFAIP3 were

upregulated after IR. However, in contrast to the findings from

public databases, JUN was significantly downregulated after IR.

This discrepancy might be attributed to the differential expression

of JUN among various cell populations (Figures 6A–E). Additionally,

we measured the levels of SCr and BUN in mice 24 hours after IR.

The results showed consistent correlations with TNFAIP3 and

NFKBIA, which had significant contributions to the model

established in this study, along with MYC (Figure 6F).
4 Discussion

Despite the improvement of patient and graft survival rates with

scientific advances and increasing potency of immunosuppressants,

DGF following renal IRI remains an intricate complication after kidney
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transplantation, resulting in increased morbidity and resource

utilization, including longer hospital stays, post-acute care, and higher

costs (4, 31). Existing biomarkers like neutrophil gelatinase-associated

lipocalin (NGAL) and cystatin C are still not widely applied in clinical

settings (32), and proposed models for DGF after deceased-donor

transplantation may overestimate its incidence (33). Necroptosis, a

caspase-independent form of RN, has been proven to be associated with

variousmodels of renal injury, including the oxidative stress-derived IRI

(6). Our previous research has demonstrated the role of ferroptosis,

another well-studied RN pathway, in acute cell-mediated rejection of

KT (34). In the present study, we developed a novel predictive model

for DGF occurrence based on necroptosis-related DEGs and revealed

the interplay between necroptosis, the hub genes, and immune cells in

the process of IRI induced by oxidative stress.

There is growing evidence indicating that necroptosis represents

a pivotal component of cell death in renal IRI (35). Markers of

necroptosis, including RIPK1, RIPK3, and MLKL, have been shown

to be elevated in vitro during renal hypoxia/reoxygenation (H/R)

injury and in vivo during renal IRI studies (36–38). An alleviated

renal damage and preserved renal function were detected in the use of

small molecule inhibitors like RIPK1 inhibitor Necrostatin-1 (Nec-1)

or KO mice (38, 39). To identify potential genetic markers of DGF

induced by renal IRI, we intersected DEGs between pre- and post-

reperfusion samples with NEGs, resulting in five target NR-DEGs

(NFKBIA, TNFAIP3,MYC, JUN, SERTAD1). All five NR-DEGs were

significantly upregulated in post-reperfusion group. Among these,

NFKBIA (NF-kB inhibitor-a) serves as a direct upstream

transcription factor of NF-kB, binding to NF-kB in the cytoplasm

and inhibiting its translocation into the nucleus (40, 41). Yatim et al.

proposed that NF-kB plays an important role in the activation of

RIPK3-induced necroptosis (42).Moreover, it has been demonstrated
B C

D E F

A

FIGURE 6

Experimental verification with the mice renal IRI model. (A–E) The relative mRNA expression of the NR-DEGs confirmed by qPCR (n = 8). (F) The
correlation between the expression of NR-DEGs and indexes of renal function (BUN and SCr). IRI, ischemia-reperfusion injury; NR-DEGs,
necroptosis-related differentially expression genes; SCr, serum creatinine; BUN, blood urea nitrogen.
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that NFKBIA is upregulated in T- and B-cells during chronic

antibody-mediated rejection in KT patients (43). TNFAIP3 (tumor

necrosis factor a-induced protein 3), an ubiquitin-editing enzyme,

plays a role in inhibiting the activation of NF-kB and preventing the

synthesis of other pro-inflammatory factors, thereby contributing to

the regulation of necroptosis (44, 45). Polymorphisms of TNFAIP3 in

humans have been associated with autoimmune diseases and

multiple cancers (46). MYC, a potent oncogene, is an oncoprotein

that regulates various cellular processes (47). It functions as an

antinecroptotic regulator by inhibiting the formation of RIPK3-

RIPK1 complex (48). In addition, JUN is an important component

of activating protein-1 (AP-1), which has been proven to regulate cell

death and survival (49). C-Jun, the most intensively studied member

of the JUN family, is associated with the necroptotic pathway,

specifically the RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2

Interacting Protein 3) axis (50). SERTAD1, also known as SERTA

domain-containing protein 1, belongs to the Sertad family (51) and

functions as an oncoprotein that significantly contributes to

oncogenesis and programmed cell death (PCD), including

necroptosis (52). Additionally, SERTAD1 has been implicated in

promoting cell survival in response to the induction of reactive

oxygen species by facilitating the ubiquitination of apoptosis signal-

regulating kinase1 (ASK1) (53).

To elucidate distinct patterns of necroptosis modification, we

conducted the unsupervised consistent clustering analysis based on

the NR-DEGs. The renal samples were categorized into C1 and C2

clusters, where all five NR-DEGs exhibited higher expression in the C1

cluster. Notably, the C1 cluster showed a lower incidence of DGF and

a higher proportion of recipients receiving kidneys from BD donors.

These findings suggest that although the NR-DEGs are upregulated

after IRI, they may confer a protective effect against renal damage and

contribute to reduced complications, as we mentioned above.

The analysis of functional enrichment revealed that the IRI-related

DEGs exhibited significant enrichment in the regulation of RNA

polymerase II transcription and MAPK signaling, IL-17 signaling, and

TNF signaling pathways. Similarly, the GSVA analysis between the

two necroptosis-related clusters suggested a strong association of the

C1 group with multiple immune-related pathways, including MAPK

signaling, T cell receptor signaling, Toll-like receptor (TLR) signaling

pathways, and apoptosis pathway. TNFa is a well-studied trigger of

necroptosis cell death (6). Upon TNF binding to its receptor, TNF

receptor 1 (TNFR1), various downstream molecules are recruited to

form complex I, providing a platform to determine cell survival,

apoptosis, or necroptosis (54). In vitro studies have demonstrated that

a combination of TNFa, interferon (IFN)-g, and the weak inducer of

TNF signaling (TWEAK) can induce necroptosis in TECs (55). TLRs

are constitutively expressed in various renal cells. Activation of TLRs

induces the interaction between downstream molecules and complex

IIb (composed of RIPK1 and RIPK3), leading to MLKL-dependent

necroptosis (56). These findings suggest that the proinflammatory

pathways associated with necroptosis may be significantly inhibited in

C1 cluster.

Since IRI is inevitable in surgical procedures of KT and is the

primary cause of DGF, it is of utmost clinical importance to identify

patients at higher risk of DGF early and accurately. In the present

study, we developed an early predictive model based on the five NR-
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DEGs through LASSO regression analysis. The performance of this

predictive model was robust and satisfactory in both the discovery

cohort (AUROC = 0.798) and the whole cohort (AUROC = 0.749).

To explore the underlying mechanism, we stratified the renal samples

into low- and high-risk groups and examined the immune cell

infiltration. High-risk samples exhibited higher infiltration of

memory B cells, naïve CD4 T cells, and gamma delta T cells, which

were also prevalent in samples of C2 cluster characterized by a higher

incidence of DGF. This suggests that specific immune cells potentially

served as a bridging link function between necroptosis and the

progression of DGF. Therefore, we conducted single-cell data

analysis to further corroborate the validity of our model genes.

To substantiate our findings, we utilized two published single-cell

datasets of mouse renal samples obtained with or without IR. In the IRI

group, immune cells such as T cells, B cells, dendritic cells, and

neutrophils were more abundant, concomitant with higher expression

levels of the NR-DEGs, particularly in neutrophils and macrophages.

During renal IRI, damaged cells release damage-associated molecular

patterns and proinflammatory cytokines such as TNFa and IL-1a,
which can bind to cell surface receptors like TLRs, resulting in dendritic

cell migration and activation of T cells and macrophages as observed in

our intercellular communication (6, 57). Previous research has proved

that B-cell and T-cell deficient mice are protected from renal IRI (58).

While, necroptosis, as an immunity-related programmed cell death,

regulates the proliferation of lymphocytes and is crucial for their

survival (59). RIP1 is essential for B cell development and is more

highly expressed in immature B cells and peripheral mature B cells (60).

Zhang et al. indicated that the proliferation response of RIP-/- B cells

induced by TLR and lipopolysaccharide (LPS) was reduced compared

to RIP+/+ B cells (61). Besides, caspase-8 is the key molecule of T cell

homeostasis, and the impaired T cell proliferation in caspase 8-deficient

mice can be rescued by blocking RIP1 with Nec-1 or through gene

knockout, indicating that the necroptotic signaling in T cells is regulated

by caspase-8 (59, 62, 63). Recent studies demonstrated that the RIRK1-

dependent necroptosis is reduced during macrophage cell

differentiation (64), while TNFa derived from macrophages induces

necroptosis (65). Additionally, it has been suggested that IR-induced

AKI depends on the migration of neutrophils into kidneys (66).

Necroptosis in neutrophils can be induced by activating TLRs, IFN-a
receptors, TNF receptors, and other factors (67, 68). Early research

reported that inhibiting XIAP (X-linked inhibitor of apoptosis family of

protein) resulted in increased ubiquitylation of neutrophil RIPK1 (69),

restricted RIPK3-dependent cell death in dendritic cells (70), and

limited macrophages necroptosis (71).

We further analyzed the functional differences between

immune cells before and after IR. It is worth noting that the

necroptosis-related pathways, including TNFa signaling and IFN

response, were enriched in these immune cells after IR (6, 54),

supporting the biological plausibility of our findings. MYC, one of

the NR-DEGs, known as a negative regulator of necroptosis (47),

showed increased activity in the IRI group in our study, possibly

due to the proteasomal degradation of MYC stimulated by RIPK3.

In addition, previous studies have also linked necroptosis to an

immune response in various diseases, encompassing IL6-JAK-

STAT3 and IL2-STAT5 signaling pathways (72, 73). Activation of

TAK1 (TGF-b activated kinase 1) can induce RIPK3-dependent
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necroptosis (74). RIPK1 facilitates the reciprocal stimulations

between TAK1 and RIPK3, in turn mediates TAK1-RIPK1-RIPK3

binding, which decides whether the necroptosis occurs or not (75).

Meanwhile, the enrichment of “regulated necrosis” and “RIPK1

mediated regulated necrosis” was observed in the IRI group,

especially in proinflammatory cells. Together, these findings are

consistent with prior studies and highlight the important

contributions of immune cells in the regulation of necroptosis

after renal IR. The results not only support the validity of the

prediction models but also provide potential targets for addressing

necroptosis-related renal oxidative stress damage.

Our findings were experimentally validated using the mouse renal

IRI model. We observed that all the identified NR-DEGs were

upregulated after IR, except for JUN. This confirmed the role of

necroptotic progress. Furthermore, the negative correlations between

TNFAIP3 and MYC with kidney function markers also indicated a

potential protective action of these genes in necroptosis (45, 48).

While, the NFKBIA was associated with higher BUN and SCr, likely

due to its role in suppressing cell survival induced by NF-kB (76).

The primary strengths of this study lie in the construction of a

predictive model for DGF based on the concept of necroptosis. The

study successfully demonstrated the correlation between NR-DEGs,

oxidative stress, and immune cells, providing valuable insights into

the role of necroptotic cell death in renal IRI. Nevertheless, a

portion of dead cells were filtered out to improve the accuracy of

cell identification among scRNA-seq analysis, which may lead to the

loss of information related to necroptosis. Additionally, to ensure

the reliability and applicability of the prediction model, further

validation using data frommulticenter and KT patients is necessary.

Furthermore, considering the potential of NR-DEGs as targets for

preventing DGF, it is imperative to conduct an experimental

investigation to understand the cellular and molecular mechanism

through which these genes influence renal IRI. Such investigations

could pave the way for potential therapeutic interventions to

improve outcomes in kidney transplantation.
5 Conclusions

To summarize, our study has identified five NR-DEGs and

confirmed their expression levels by utilizing scRNA-seq data and a

mouse IRI model. We developed a novel diagnostic model based on

the five genes, enabling us to predict the occurrence of DGF more

accurately. Furthermore, we observed distinct differences in

necroptotic immune cell profiles and proinflammatory responses

between the low- and high-risk groups, highlighting the clinical

relevance of our findings. By offering insights into the underlying

mechanisms and potential predictive markers, our study may aid

clinicians in decision-making and provide potential therapeutic

strategies for the prevention of IRI and DGF in kidney transplantation.
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necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos.
Redox Biol (2019) 26:101239. doi: 10.1016/j.redox.2019.101239

65. Hsu S-K, Chang W-T, Lin IL, Chen Y-F, Padalwar NB, Cheng K-C, et al. The
role of necroptosis in ROS-mediated cancer therapies and its promising applications.
Cancers (Basel) (2020) 12(8):2185. doi: 10.3390/cancers12082185

66. Li Z, Ludwig N, Thomas K, Mersmann S, Lehmann M, Vestweber D, et al. The
pathogenesis of ischemia-reperfusion induced acute kidney injury depends on renal
neutrophil recruitment whereas sepsis-induced AKI does not. Front Immunol (2022)
13:843782. doi: 10.3389/fimmu.2022.843782

67. Zhu C-L, Wang Y, Liu Q, Li H-R, Yu C-M, Li P, et al. Dysregulation of
neutrophil death in sepsis. Front Immunol (2022) 13:963955. doi: 10.3389/
fimmu.2022.963955

68. Wang X, Yousefi S, Simon H-U. Necroptosis and neutrophil-associated
disorders. Cell Death Dis (2018) 9:111. doi: 10.1038/s41419-017-0058-8

69. Wicki S, Gurzeler U, Wei-Lynn Wong W, Jost PJ, Bachmann D, Kaufmann T.
Loss of XIAP facilitates switch to TNFa-induced necroptosis in mouse neutrophils. Cell
Death Dis (2016) 7:e2422. doi: 10.1038/cddis.2016.311

70. Yabal M, Müller N, Adler H, Knies N, Groß CJ, Damgaard RB, et al. XIAP
restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep
(2014) 7:1796–808. doi: 10.1016/j.celrep.2014.05.008

71. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D'Cruz AA, et al.
RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of
MLKL. Nat Commun (2015) 6:6282. doi: 10.1038/ncomms7282

72. Miao Y, Liu J, Liu X, Yuan Q, Li H, Zhang Y, et al. Machine learning
identification of cuproptosis and necroptosis-associated molecular subtypes to aid in
prognosis assessment and immunotherapy response prediction in low-grade glioma.
Front Genet (2022) 13:951239. doi: 10.3389/fgene.2022.951239

73. Zhou Z, Wu J, Ma W, Dong F, Wang J. Pan-Cancer analyses of Necroptosis-
Related genes as a potential target to predict immunotherapeutic outcome. J Cell Mol
Med (2023) 27:204–21. doi: 10.1111/jcmm.17634

74. Mihaly SR, Ninomiya-Tsuji J, Morioka S. TAK1 control of cell death. Cell Death
Differ (2014) 21:1667–76. doi: 10.1038/cdd.2014.123

75. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al.
Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol (2011)
13:1437–42. doi: 10.1038/ncb2362

76. Grivennikov S, Karin E, Terzic J, Mucida D, Yu G-Y, Vallabhapurapu S, et al. IL-
6 and Stat3 are required for survival of intestinal epithelial cells and development of
colitis-associated cancer. Cancer Cell (2009) 15:103–13. doi: 10.1016/j.ccr.2009.01.001
frontiersin.org

https://doi.org/10.1016/j.pneurobio.2006.03.006
https://doi.org/10.1016/j.pneurobio.2006.03.006
https://doi.org/10.1016/j.bbamcr.2023.119534
https://doi.org/10.1016/j.gene.2006.10.008
https://doi.org/10.1016/j.gene.2006.10.008
https://doi.org/10.18632/oncotarget.5072
https://doi.org/10.4161/cbt.12.5.15972
https://doi.org/10.1016/j.abb.2020.108433
https://doi.org/10.1126/science.1172308
https://doi.org/10.3389/fphar.2021.701564
https://doi.org/10.3389/fphar.2021.701564
https://doi.org/10.1097/TP.0b013e3182126eeb
https://doi.org/10.1111/j.1600-6143.2005.00815.x
https://doi.org/10.1016/j.semcdb.2014.07.003
https://doi.org/10.1084/jem.20011470
https://doi.org/10.1007/s12026-011-8249-3
https://doi.org/10.1073/pnas.0808043105
https://doi.org/10.1038/cdd.2012.133
https://doi.org/10.1038/cdd.2012.133
https://doi.org/10.1016/j.redox.2019.101239
https://doi.org/10.3390/cancers12082185
https://doi.org/10.3389/fimmu.2022.843782
https://doi.org/10.3389/fimmu.2022.963955
https://doi.org/10.3389/fimmu.2022.963955
https://doi.org/10.1038/s41419-017-0058-8
https://doi.org/10.1038/cddis.2016.311
https://doi.org/10.1016/j.celrep.2014.05.008
https://doi.org/10.1038/ncomms7282
https://doi.org/10.3389/fgene.2022.951239
https://doi.org/10.1111/jcmm.17634
https://doi.org/10.1038/cdd.2014.123
https://doi.org/10.1038/ncb2362
https://doi.org/10.1016/j.ccr.2009.01.001
https://doi.org/10.3389/fimmu.2023.1279603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chung Nga Ko,
C-MER International Eye Research Center,
China

REVIEWED BY

Adriana Sumoza-Toledo,
Universidad Veracruzana, Mexico
Andras Perl,
Upstate Medical University, United States
Kuo-Hui Su,
The University of Toledo, United States

*CORRESPONDENCE

Kenneth Maiese

wntin75@yahoo.com

RECEIVED 06 August 2023

ACCEPTED 23 October 2023
PUBLISHED 08 November 2023

CITATION

Maiese K (2023) The impact of aging
and oxidative stress in metabolic and
nervous system disorders: programmed
cell death and molecular signal
transduction crosstalk.
Front. Immunol. 14:1273570.
doi: 10.3389/fimmu.2023.1273570

COPYRIGHT

© 2023 Maiese. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 08 November 2023

DOI 10.3389/fimmu.2023.1273570
The impact of aging and
oxidative stress in metabolic
and nervous system disorders:
programmed cell death
and molecular signal
transduction crosstalk

Kenneth Maiese*

Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
Life expectancy is increasing throughout the world and coincides with a rise in

non-communicable diseases (NCDs), especially for metabolic disease that

includes diabetes mellitus (DM) and neurodegenerative disorders. The

debilitating effects of metabolic disorders influence the entire body and

significantly affect the nervous system impacting greater than one billion people

with disability in the peripheral nervous system as well as with cognitive loss, now

the seventh leading cause of death worldwide. Metabolic disorders, such as DM,

and neurologic disease remain a significant challenge for the treatment and care of

individuals since present therapies may limit symptoms but do not halt overall

disease progression. These clinical challenges to address the interplay between

metabolic and neurodegenerative disorders warrant innovative strategies that can

focus upon the underlying mechanisms of aging-related disorders, oxidative

stress, cell senescence, and cell death. Programmed cell death pathways that

involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in

metabolic and neurodegenerative disorders and oversee processes that include

insulin resistance, b-cell function, mitochondrial integrity, reactive oxygen species

release, and inflammatory cell activation. The silent mating type information

regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated

protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1)

are novel targets that can oversee programmed cell death pathways tied to b-
nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE),

severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus

disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The

pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting

prospects for maintaining metabolic homeostasis and nervous system function

that can be compromised during aging-related disorders and lead to cognitive

impairment, but these pathways have dual roles in determining the ultimate fate of

cells and organ systems that warrant thoughtful insight into complex

autofeedback mechanisms.
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1 Introduction

Disorders such as diabetes mellitus (DM) and cellular metabolic

disease are increasing in prevalence throughout the world. Over a

thirty-five year course from the year 1980, the number of

individuals with DM increased from one hundred eight million to

over four hundred twenty-two million individuals (1, 2). By the year

2045, seven hundred million individuals may have DM (3, 4). From

the years 2013 to 2016, the prevalence of DM has risen from over

nine percent (5). DM is a chronic disorder that affects all organs of

the body leading to cardiac disease, retinal disease, hepatic injury,

cerebral ischemia, limb amputation, and renal failure (5–18).

Almost one half billion individuals have DM and at least half of

the four million deaths that occur per year with DM impact

individuals less than seventy years of age (1, 7, 19–22). Ten

percent of the population in the United States (US) are currently

reported to suffer from DM (23, 24). However, it is believed that

many additional individuals have disorders of metabolism or have

elevated risk to develop DM, but remain undiagnosed at present (3,

16, 21, 25–37). It is estimated that in individuals greater than

eighteen years old, seven million may not be correctly diagnosed

as having DM and more than thirty-five percent of US adults may

have prediabetes due to elevations in their fasting glucose and

hemoglobin A1c (HbA1c) parameters (7, 38). Globally, four

hundred million individuals are estimated to have metabolic

disease or be at risk for developing DM (3, 39–41).

Metabolic disease affects low and middle income countries

more than high income developed countries with approximately

eighty percent of people residing in low-income nations (3, 42).

This may be a result of the prevalence of DM being affected by a

number of parameters that include socioeconomic status,

comorbidities such as infection with the severe acute respiratory

syndrome coronavirus (SARS-CoV-2), and level of education (43–

54). In regard to education level, those individuals with less than a

high school education represent thirteen percent of DM patients,

individuals with a high school education equal ten percent of DM

patients, and those individuals with more than a high school

education represent approximately seven percent of DM patients

(2). Other factors that can contribute to the development and

progression of DM include l imited exercise , tobacco

consumption, high serum cholesterol, hypertension, and obesity

(8, 13, 48, 55–57). Obesity alters a number of pathways in the body

and can impact oxidative stress cell injury, stem cell survival,

inflammation, aging processes, and the maintenance of

mitochondrial function (21, 33, 40, 51, 56, 58–73). As a result, the

additional body weight fosters insulin insensitivity and glucose

intolerance that progresses to DM (19, 24, 28, 36, 74–80) (Table 1).

Additional challenges for the care of individuals with DM

involve financial expenditures. At least twenty thousand United

States Dollars (USD) on an annual basis is necessary for the basic

care of people with DM that can involve the maintenance of glucose

homeostasis, wound care, and nutritional education (6, 9, 19, 20, 28,

41, 74, 81–87). Yet, the required resources for DM care is growing

and is greater than seven hundred sixty billion USD with an

additional seventy billion USD necessary for those with severe

disability and loss of function (3). Greater than seventeen percent
Frontiers in Immunology 0259
of the Gross Domestic Product in the US is consumed for the care of

people with DM (88).

The debilitating nature of DM affects the entire body and leads

to the degeneration of all organ systems (6, 7, 12, 16, 19, 21, 24, 27,

31, 34, 36, 46, 60, 85, 89–94). In particular, the metabolic disorders

affect the nervous system and can lead to cognitive impairment,

peripheral neuropathies, demyelinating disorders, and risk for

developing infection as well as memory loss (Figure 1). An

additional risk that includes metabolic disease for the

development of neurodegenerative disorders is the observed rise

in lifespan (95–100). Life expectancy is increasing especially in

developed nations (101) and over the past fifty years the number of

people greater than the age of sixty-five has increased greater than

one hundred percent (4, 68, 96, 97, 102–113). Neurodegenerative

disorders comprise a portion of non-communicable diseases

(NCDs) and over seventy to seventy-five percent of the deaths

that occur each year are due to NCDs (8, 22, 56, 60, 114–116). The

increase in lifespan coincides with the rise of NCDs (91, 111, 117–

129). As a result, the increase in lifespan for the world’s population

has resulted in an increased prevalence for diseases of the nervous

system (117, 130–133). Nervous system disorders comprise greater

than six hundred disease entities, lead to the death of over seven

million people annually, and can impact greater than one billion

people (111, 117, 134–146). In relation to financial exposure, more

than eight hundred billion USD in the US is required annually to
TABLE 1 Highlights The Impact of Aging and Oxidative Stress in
Metabolic and Nervous System Disorders: Programmed Cell Death and
Molecular Signal Transduction Crosstalk.

•With the increase in global lifespan and non-communicable diseases, metabolic
disease affects low and middle income countries more than high income
developed countries and by the year 2045, it is estimated that over seven
hundred million individuals will have diabetes mellitus (DM).

•Metabolic disorders are intimately tied to the development and progression of
neurodegenerative disorders that comprise over six hundred disease entities,
impact greater than one billion people, and can lead to dementia as the 7th

leading cause of death.

•Aging processes, oxidative stress, dysfunction in telomere processing, and cell
senescence are underlying mechanisms for the progression of metabolic disorders
and neurodegenerative disease.

•Programmed cell death pathways of autophagy, apoptosis, ferroptosis, and
pyroptosis can oversee a number of critical cellular functions that include
reactive oxygen species (ROS) generation, the proliferation and size of pancreatic
b-cells, insulin resistance, mitochondrial integrity, b-amyloid (Ab) and tau brain
deposition, and inflammatory cell activation.

•The silent mating type information regulation 2 homolog 1 (Saccharomyces
cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible
signaling pathway protein 1 (WISP1) are novel targets that can oversee
programmed cell death pathways tied to b-nicotinamide adenine dinucleotide
(NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory
syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19),
and trophic factors, such as erythropoietin (EPO) that can oversee these
pathways such as with SIRT1 and AMPK.

•The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer
exciting insights for maintaining metabolic homeostasis and neurovascular cell
integrity that can be compromised during aging-related processes that can lead
to cognitive loss, but these pathways have dual roles in determining the ultimate
fate of cells and organ function that can have complex autofeedback
mechanisms.
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care for multiple neurological disorders that include stroke, trauma,

epilepsy, back pain, Parkinson’s disease (PD), Huntington’s disease

(HD), amyotrophic lateral sclerosis (ALS), and dementia (116).

Cognitive loss can be the most significant burden to the financial

system and these cost considerations do not include the expenses

required for companion care, social health programs, and senior

daily care with the additional greater than seventy million clinicians

and social workers needed to fill these unmet needs (22, 116, 147).

These additional services will reach 2 trillion USD annually in the

US and more than four million people will need over four billion

USD for treatment each year. The market for dementia could

exceed eleven billion USD (34, 141, 148). Furthermore, additional

significant costs involve other neurological disorders, such as PD

with greater than fifty-five billion USD necessary for care in the US

annually. In the year 2030, the number of those affected with PD is

predicted to double. Present expenses are currently at a large annual

cost per individual of approximately twenty-five thousand USD per

year (5, 97, 137, 144, 146, 149–165).
2 The intimate relationship
among metabolic disease,
oxidative stress, aging, and
neurodegenerative disorders

Metabolic disorders, such as DM, increase the risk for the onset

and progression of neurodegenerative disorders through multiple

pathways. DM is a primary mechanism for the onset of

cardiovascular disease that can ultimately lead to disorders of the

nervous system (8, 53, 166–170). When compared to people that do

not have DM, individuals with DM can have two times the risk of
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developing cardiac disability or cerebral ischemia (40, 43, 91, 108,

111). DM results in insulin resistance (9, 19, 24, 60, 80, 90, 171–

174), vascular injury (16, 19, 26, 27, 29, 30, 32, 33, 61, 74, 86, 87, 170,

175–182), alterations in cerebral blood flow (2, 7, 9, 53, 91, 176,

183), endothelial dysfunction (19, 27, 40, 83, 94, 184),

mitochondrial injury (13, 28, 53, 60, 115, 172, 178, 185, 186),

retinal disease (30, 66, 94, 187–189), stem cell loss (35, 38, 54, 66,

72, 77, 84, 111, 190), susceptibility to infections (34, 46, 48–51, 54,

92, 191, 192), and immune system dysfunction (30, 54, 64, 68, 84,

173, 178, 193–199).

DM and cellular metabolism also play a significant role in the

processes of oxidative stress and aging (7, 16, 47, 64, 75, 89–91, 108,

178, 196, 200). DM can lead to changes in transcriptional networks,

loss of mitochondrial homeostasis, inflammation, production of

reactive oxygen species (ROS), and cell senescence (7, 16, 20, 21, 30,

32, 66, 78, 79, 90, 91, 108, 174, 178, 193, 194, 201–203). ROS that are

generated during oxidative stress include hydrogen peroxide,

superoxide free radicals, nitric oxide, singlet oxygen, and

peroxynitrite (36, 37, 65, 90, 96, 113, 120, 137, 154, 180, 186,

204–218). During conditions that oversee the detrimental effects of

ROS, antioxidant systems are in play that involve glutathione

peroxidase, catalase, superoxide dismutase, and the nutrient

vitamins B, K, E, D, and C (20, 34, 42, 47, 53, 100, 132, 186, 202,

217, 219–225). If these systems are overwhelmed or unable to limit

excessive ROS production, mitochondrial injury, loss of DNA

integrity, and shortened lifespan can occur (8, 34, 69, 78, 96, 104,

120, 122, 162, 207, 209, 218, 226–229). Oxidative stress can result in

vascular endothelial cell injury (9, 40, 83, 230–234), neuronal cell

compromise (24, 66, 122, 123, 152, 156, 162, 233, 235–245),

alterations in neurotransmitters (69, 246, 247), myelin

degradation (79, 224, 248–252), cell senescence (8, 33, 55, 112,

253–255), loss of stem cell proliferation (34, 66, 168, 228, 241, 251,
FIGURE 1

The Clinical Implications of Metabolic Dysfunction and Neurodegenerative Disease. Loss of metabolic homeostasis can lead to multiple disorders.
Metabolic disorders affect both the peripheral and central nervous systems and can be affected by several risk factors. These disorders include
diabetes mellitus that affects all systems of the body, cognitive impairment, Alzheimer’s disease, Multiple Sclerosis, and peripheral neuropathies.
Additional entities such as the apolipoprotein E (APOE-e4) gene, severe acute respiratory syndrome coronavirus (SARS-CoV-2), and coronavirus
disease 2019 (COVID-19) can lead to memory loss, cognitive failure, and cortical vascular disease.
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256–259), and cognitive impairment (7, 10, 120, 121, 200, 223, 243,

245, 260–266).

In regard to aging and cellular metabolism, the shortening of

telomeres (TLs), complexes of deoxyribonucleic acid (DNA), can

lead to the increased risk for the development of DM (8, 267) and

greater cell senescence with the loss metabolic homeostasis (16, 33,

178, 190, 268). Changes in TL length can promote aging processes,

cellular senescence, and neurodegeneration as well (70, 112, 113,

118, 154, 255, 269–275). TLs are positioned on chromosome ends

and oversee replication of cells, preservation of the genomic DNA,

and cell survival (8, 16, 274, 276–279). More than two thousand

repetitions of double-stranded non-coding DNA with the

‘TTAGGG” sequence that is finalized with guanine rich single-

stranded DNA compose TLs (8, 70, 139, 265, 279). Complexes of

proteins that include CTC1-STN1-TEN1 (CST), shelterin, and

telosome are part of the TL family (7, 139, 252). To oversee the

division of cells, these proteins control function and stability of TLs

that can lose twenty-five to over two hundred base pairs during the

process of dividing cells. Telomerase protein can prevent the loss of

base pairs in TLs by providing tandem repeat ribonucleic acid

(RNA) templates (274, 276, 280). However, cell senescence

ultimately ensues when TLs become very short with less than five

hundred base pairs and telomerase function is impaired (33, 95,

102, 118, 134, 154, 221, 253, 255, 269, 272, 275, 281). At this point,

tissues and organs cannot undergo repair, the immune system is less

viable, and age-related disorders can progress (7, 73, 139, 164, 282–

286). These events with the shortening of TLs and cellular

senescence also promote oxidative stress and the release of ROS

that impairs cell organelles, such as mitochondria and cellular

energy homeostasis (7, 32, 104, 121, 122, 196, 282, 287, 288).
3 The clinical onset of metabolic
mediated neurodegenerative disease

Given the ability of DM to lead to aging processes tied to

oxidative stress, neuronal and vascular injury, mitochondrial

dysfunction, stem cell loss, and immune system disorders, it

becomes evident that loss of metabolic homeostasis with DM can

result in multiple neurodegenerative disorders. Metabolic disorders

can affect both the peripheral and central nervous systems

(Figure 1). In the peripheral nervous system in the presence of

DM, autonomic dysfunction (289–291) and neuropathies can be

common and affect more than seventy-five percent of individuals

(5, 38, 78, 79, 83, 290, 292).

In the central nervous system, cognitive loss with DM is a

significant co-morbidity. DM results in memory impairment (7, 10,

55, 115, 200, 263, 293–296) and can lead to the onset and

progression of Alzheimer’s disease (AD) (2, 6, 28, 44, 89, 153,

201, 266, 297–302) (Figure 1). Dementia is present in all nations

throughout the world and is now considered to be the seventh

primary reason for death (109, 116, 131, 141, 144, 161, 164, 223,

252, 266, 303–308). At least five percent of the world’s population

has dementia and by the year 2050 it is believed that over one

hundred fifty-five million people will have cognitive loss (2, 73, 97,

115, 126, 205, 226, 275, 309, 310). Of those individuals with
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dementia, approximately sixty percent of people have the

sporadic form of AD and greater than ten percent are over the

age of sixty-five (5, 110, 139, 148, 277, 311–313). Diagnosis for

dementia can fall significantly behind the onset of the disorder and

may not be recognized until twelve to twenty-four months after the

initial clinical presentation (38, 252, 314). Currently, more than six

million people in the US have the sporadic form of AD (5, 309, 315–

318), but this is expected to increase to thirty million people during

the next two decades (6, 7, 110, 205, 226, 245, 282, 319, 320). In

contrast, familial AD (FAD) is present in about two hundred

families in the world (6, 73, 110, 121, 134, 282, 311). FAD

represents an autosomal dominant version of amyloid precursor

protein (APP) gene that is mutated, occurs in variable single-gene

mutations on chromosomes 1, 14, and 21, and is usually clinical

present prior to fifty-five years of age (115, 321, 322).

Risk factors also exist for dementia that can have a metabolic

basis as well. In experimental models, insulin signaling can be

associated with AD pathology (71). Late-onset AD can result in the

presence of the ϵ4 allele of the apolipoprotein E (APOE-e4) gene (5,
7, 148, 161, 252, 323–325) (Figure 1). The risk for developing AD is

more than twenty times greater in those individuals with two

APOE-ϵ4 alleles. APOE is produced in liver cells and is vital for

metabolic cellular function to oversee the homeostasis of lipids

through the transport of triglycerides, phospholipids, and

cholesterol (7, 127, 161, 325–328). In the brain, astrocytes

produce APOE to modulate the transfer of cholesterol to neurons

through APOE receptors (7, 127, 252, 326, 328, 329). Interestingly,

b-amyloid (Ab) can be removed and destroyed by APOE through

apoptosis and the exposure of phosphatidylserine (PS) membranes

that are a part of the apoptotic cell death process (330, 331). Other

forms of APOE that do not involve APOE-e4 may inhibit Ab
aggregation during PS membrane exposure (332). However, Ab
aggregation is not believed to be blocked by APOE-ϵ4 which can

therefore allow amyloid deposition to proceed and potentially foster

the development of AD (44, 161, 323, 332–334). APOE-ϵ4 also may

assist with the infection of viral antigens and lead to cerebral

microhemorrhages during severe acute respiratory syndrome

(SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-

19) (326) (Figure 1). SARS-CoV-2, a b-coronavirus family virion,

has resulted in a global pandemic (34, 46, 49, 50, 335, 336) and can

attach to nasal epithelial cells (337) and neurovascular cells in the

brain (54). These processes subsequently result in hyperactivation

of the immune system (335, 336, 338–340). Following SARS-CoV-2

infection, memory loss and cognitive failure can develop and lead to

long-COVID, also termed long-haul COVID, chronic COVID-19,

or post-acute COVID (34, 49, 50, 325, 336, 341–345). The

combination of APOE-ϵ4 and SARS-CoV-2 infection can lead to

cognitive loss and cortical vascular disease (57, 97, 181, 226, 326,

346–350).

Mult iple sc lerosis (MS), an addit ional s ignificant

neurodegenerative disorder, also may develop as a result of

metabolic disease, pathways of APOE-ϵ4, and Ab deposition (125,

252, 350–359) (Figure 1). MS impacts large portions of the global

population, affects greater than two and one-half million people,

and is a primary disease of myelin and myelin producing cells that is

immune system mediated (159, 351, 358, 360–364). MS appears to
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lead to disease in more women than men (357) and can markedly

impair cognitive function (252, 365, 366). The memory loss can be

progressive in nature and affect both women and men (367). At

least sixty-five percent of patients with MS have difficulty with

memory recall and executive ability (252). Cognitive loss in MS

patients may be tied to metabolic pathways and APOE-ϵ4 since

individuals with MS can demonstrate lower cognitive function and

delayed responses to stimuli (368). APOE serum levels are elevated

in individuals with demyelinating optic neuritis and the genotype of

APOE ϵ3/ϵ3 may lead to the male onset of optic neuritis (327). In

the setting of APOE risk factors and metabolic dysfunction similar

to AD that can increase susceptibility to viral infections, MS

patients may experience higher rates of death during SARS-CoV-

2 with COVID-19 (369). Treatment with metformin, commonly

used during DM, can reduce the degree of functional impairment in

obese individuals or those with DM during COVID-19 (52, 370).

MS also may have common pathways with AD and Ab (140, 252,

371). Tau seeding, also present in AD (7, 123, 311, 372–376), has

been reported in the brains of MS patients (140) and this tau

deposition may produce demyelination through injury to

oligodendrocytes (128). Alterations in Ab deposition similar to

those observed in AD may also indicate early memory impairment

in people with MS (371).
4 Addressing unmet clinical
avenues for metabolic and
neurodegenerative disorders

Multiple factors can impact the role of metabolic disorders that

can lead to the onset and progression of neurodegenerative disease.

If one focuses upon metabolic disease and DM, therapies that

improve nutritional intake that can be complemented by

pharmaceutical agents to assist with serum glucose homeostasis

and insulin resistance may limit periods of hyperglycemia and the

complications of hypoglycemia (6, 8, 16, 19–21, 25, 27–29, 49, 167,

175, 176, 370, 377–379). Yet, progression of DM even at a less

marked pace will ensue and can be affected by off-target treatment

effects that result in cellular injury, neuronal and vascular cell loss,

and the atrophy of organs (33, 87, 172, 380). In the nervous system,

a number of diverse pathways that involve inflammation, infection,

circadian rhythm, excitotoxicity, metabotropic receptors, tau, Ab,
mitochondrial injury, acetylcholine loss, heavy metal toxicity, and

oxidative stress can lead to cognitive loss (24, 33, 34, 42, 50, 63, 65,

66, 96, 106, 119, 121, 131, 165, 168, 175, 205, 223, 226, 261, 282, 286,

303, 330, 338, 346, 381–398). Current therapies for AD that employ

cholinesterase inhibitors may limit memory loss but these

treatments do not stop the progression of disease (115, 164, 299,

399, 400). Recent developments for AD to use immunotherapy to

decrease Ab load in the brain also may reduce memory loss, but

these therapies are currently limited to a small group of patients that

are not at risk for cerebral microhemorrhages and also such

treatments do not prevent overall disease progression (119, 126,

401). In regard to MS, disease modifying therapies (DMTs) can

reduce the frequency of relapses in relapsing–remitting MS, but
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disease progression can continue (252, 362, 371). For example,

despite the reduction in brain volume loss with DMTs, cognitive

impairment can continue unabated (402). These treatment

considerations that rest on the side of metabolic disorders as well

as neurodegenerative disease warrant new avenues of inquiry for the

development of innovative therapeutic strategies that may address

the onset and progression of these disorders. Novel pathways that

may offer new insights into these disorders involve programmed cell

death regulation, the silent mating type information regulation 2

homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated

protein kinase (AMPK), and Wnt1 inducible signaling pathway

protein 1 (WISP1) (Figure 2).
5 Programmed cell death in metabolic
and nervous system diseases

Programmed cell death that involves autophagy, apoptosis,

ferroptosis, and pyroptosis has a vital role in the determination of

both metabolic and neurodegenerative disorders (Figure 2). Recent

studies on exome sequence analysis indicate that metabolic cellular

dysfunction directly affects neuronal cell death through DNA and

apoptosis (403). In metabolic disorders, programmed cell death can

affect neuronal survival (24, 122, 310, 404–411), vascular integrity

(8, 40, 61, 87, 182, 188, 412–414), mitochondrial function (42, 61,

172, 186), and inflammation (36, 50, 87, 186, 415–418). In a similar

manner, programmed cell death in the nervous system can lead to

neuronal and non-neuronal cell injury (65, 121, 132–134, 143, 148,

155, 224, 240, 262, 376, 405, 419–428), cerebral ischemia (91, 122,

182, 405, 423, 427, 429–433), microglial cell loss (120, 125, 133, 152,

356, 421, 430, 434, 435), and dysfunction of pathways for cognitive

function (100, 120, 121, 141, 143, 148, 260–262, 275, 301, 421,

436–440).

During autophagy, organelles in the cytoplasm as well as other

subunits in the cell are recycled for future remodeling of tissues (5,

121, 376, 408, 409, 428, 441, 442). Of the different forms of

autophagy, macroautophagy is the prominent type of autophagy

that is usually described and consists of sequestering proteins and

organelles in the cytoplasm of cells into autophagosomes that will

be merged into lysosomes that can be degraded and recycled (117,

136, 141, 275, 443). During microautophagy, components of the

cytoplasm are sequestered for eventual digestion through

invagination of lysosomal membranes (97). In chaperone-

mediated autophagy, protein “chaperones” are created in the

cytoplasm to carry components of the cytoplasm over the

membranes of lysosomes (134, 136, 444, 445).

Autophagy can foster beneficial outcomes during metabolic and

neurodegenerative disorders. Activation of autophagy can be

necessary for fatty acid metabolism during obesity (62) and for

the oversight of muscle tissue generation (441). Autophagy can

oversee the proliferation and size of pancreatic b-cells (446), may

limit insulin resistance during inflammation with high serum lipids

in obesity models of autophagy Atg7 gene deletion (447), may

prevent diabetic nephropathy with maintenance of Atg7, Atg5, and

LC3 autophagy proteins (448), and can prevent DM progression
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through promoting b-cell function and eliminating misfolded

proteins and dysfunctional mitochondria (449). Increased

physical activity in murine models helps control glucose serum

regulation through autophagy pathways (450) that are tied to

greater insulin efficacy (451) and improved function of microglial

cells (416). In the brain, loss of autophagy activation can lead to

memory impairment in AD with the progression of DM (44). The

pathways that lead to the activation of autophagy may require

inhibition of the mechanistic target of rapamycin (mTOR) with

agents such as rapamycin or metformin (7, 49, 121, 284, 335, 359,

376, 393, 442, 452–457). In addition, activation of mTOR can

inhibit autophagy induction through the phosphorylation of the

autophagic related gene (Atg) protein Atg13 and UNC-51 like

kinases (ULKs) such as UNC-51 like kinase 1 (ULK1) to prevent

formation of the ULK-Atg13-FIP200 complex (97, 458). During

mTOR inhibition and autophagy activation, reduction in ROS

release occurs (459), dopamine cell survival is increased (460),

neuronal demise is blocked through pathways of glutamine (461),

and mitochondrial integrity is preserved (462). Autophagy

activation can limit tau deposition (463) and reduce Aß

accumulation with improved memory function and metabolic

homeostasis (464). Control of blood mononuclear cells in MS
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during inflammation can be mediated by autophagy activation

(465), induction of autophagy can improve the clinical outcome

of relapsing-remitt ing and experimental autoimmune

encephalomyelitis (466) and reduce retinal MS-induced

degeneration (189), cytokine release and microglial activation is

limited during autophagy activation in experimental autoimmune

encephalomyelitis (358), and the risk for developing MS may be

lessened during mTOR blockade and autophagy induction (359).

Autophagy activity with metformin treatment also may lead to

myelin repair with oligodendrocytes (356) and assist with the

reduction of viral susceptibility during DM in over-weight

individuals exposed to COVID-19 (52, 370).

However, there exists another side to autophagy that suggests

careful modulation of activity is required for clinical disease.

Cardiomyopathy (467), atherosclerosis (468), and endoplasmic

reticulum stress (469) can ensue with advanced glycation end

products (AGEs), elevated glucose exposure, and autophagy

activation. Induction of autophagy can lead to the reduction in

cardiac and liver tissue mass during treatments to improve glucose

regulation (380), promote neuronal cell death under some

conditions (470–472), prevent cerebral interneuron progenitor

cell growth (473), result in mitochondrial injury (61, 145, 172,
FIGURE 2

Innovative Avenues to Address Metabolic and Neurodegenerative Disease. Current therapies for metabolic and neurodegenerative disorders are
unable to prevent the onset and progression of these disorders. The clinical course of these disorders is closely tied to intracellular process that are
linked to aging-related disorders, telomere dysfunction, cellular senescence, and oxidative stress. Novel and innovative therapeutic strategies are
needed to address metabolic and neurodegenerative diseases. Pathways that may offer new insights into these disorders involve the silent mating
type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling
pathway protein 1 (WISP1). These pathways are closely interconnected, can form complexes, and involve ß-nicotinamide adenine dinucleotide
(NAD+), nicotinamide (NIC), and trophic factors such as erythropoietin (EPO). Ultimately these pathways serve to provide oversight of programmed
cell death mechanisms that involve autophagy, apoptosis, pyroptosis, and ferroptosis as well as mechanisms that can lead to mitochondrial stress
such as with nicotinamide adenine dinucleotide phosphate (NADPH) depletion.
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216, 306, 379, 474–479), reduce numbers of progenitor endothelial

cells (480), limit angiogenesis in the presence of elevated glucose

(480), and lead to cognitive loss (141, 148, 275, 361, 393, 437). In

addition, growth factor cell protection, such as with the trophic

factor erythropoietin (EPO) (114, 304, 385, 481–484), requires

decreases in autophagy activation in conjunction with modulation

of mTOR, protein kinase B (Akt), the proline rich Akt substrate 40

kDa (PRAS40), and mammalian forkhead transcription factors to

promote neuronal and vascular survival (145, 485–489).

Apoptotic cell injury can be initiated through pathways of

oxidative stress (40, 68, 96, 120, 201, 216, 244, 245, 256, 260, 261,

303, 490–495) and inflammation (7, 36, 120, 143, 169, 212, 225, 256,

260, 275, 303, 310, 425, 430, 496–501) as part of metabolic and

neurodegenerative disorders. Apoptotic cell death has early and late

components that can occur in this process (97, 122, 408, 409, 426).

The loss of PS membrane asymmetry is the early phase of apoptotic

cell death (502–506). Once cells become injured, the PS residues

become externalized on the cell membrane that attracts

inflammatory microglia to recognize these injured cells and

remove them from the central and peripheral nervous systems

(502, 507–510). However, injured cells may recover if they are not

engulfed by microglia. Treatments directed to restore PS membrane

asymmetry for injured cells can then prevent microglial attraction

and preserve the function of these necessary cells in the nervous

system (66, 511–513). In contrast, the later phase of apoptotic cell

death that consists of the destruction of nuclear deoxyribonucleic

acid (DNA) (18, 96, 113, 229, 483, 514–518) and a cascade of

caspase activation (65, 96, 130, 143, 347, 348, 405, 425, 483, 519) is

not reversible.

Reductions in apoptosis activation can prevent cell injury

during glial cell excessive activity and oxidative stress (120), limit

dopaminergic cell demise during inflammatory cell activation (152),

protect retinal cells during ischemia exposure (516), and increase

neuronal cell survival during Aß toxicity (320, 520–522).

Controlling apoptotic cell death also reduces inflammatory cell

pathways (50, 186, 212, 225, 256, 260, 261, 418, 496, 497, 499, 500,

523–525) and can limit memory loss (7, 100, 143, 262, 421, 439).

These pathways are significantly tied to microglial activity.

Microglia account for about fifteen percent of the cells in the

central nervous system and as noted can remove injured cells

during apoptosis (97, 120, 133, 134, 152, 155, 425, 430, 502, 503).

These inflammatory cells can release ROS to generate oxidative

stress (7, 18, 62, 121, 282, 526–528) through pathways that involve

Wnt signaling (2, 6, 97, 122, 181, 529–531), mammalian forkhead

transcription factors (17, 67, 68, 117, 426, 519, 532), and growth

factors with EPO (6, 145, 159, 482, 533–536). During cognitive

dysfunction, microglial activity may lead to increased risk for the

development of AD (141, 537) as well as endothelial

dysfunction (119).

Ferroptosis is a process in the programmed cell death pathway

that leads to the storage of iron in the cell that results in the inability

to maintain glutathione homeostasis (225, 538, 539). Once oxidative

defenses that require glutathione are lost, lipid peroxidation can

ensue to result in the demise of cells (224, 229, 540). Ferroptosis can

lead to cell death in multiple systems such as the musculoskeletal
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system (225), cardiovascular system (8, 540), and breast tissue

(229). In the nervous system, ferroptosis may lead to cognitive

impairment (7, 224, 274) and produce pathogenic T lymphocytes

that lead to dysfunction in neuronal and glial cells (252, 538).

Given the associations of autophagy, apoptosis, and ferroptosis

with inflammatory cell pathways, it is of interest to note that

pyroptosis is part of the programmed cell death pathway that can

specifically modulate inflammatory cell activity (5, 178, 410, 500,

541). The inflammasome, also known as the pyroptosome, is a

supramolecular entity that initiates the pyroptotic cell death

process. The inflammasome family of nucleotide-binding

oligomerization domain and leucine-rich repeat-containing

receptors (NLRs) has the members NLRP1, NLRP3, NLRP6, and

NLRC4. Pattern recognition receptors responding to damage

associated molecular pattern (DAMP) in host cells and pathogen-

associated molecular pattern (PAMP) in families of microbes lead to

the activation of inflammasomes and caspase 4, caspase 1, and

caspase 5 (7, 303, 358, 515, 541–545). DAMP molecules with DNA

and adenosine triphosphate (ATP) traverse through open cell

membranes and lead to NLRP3 canonical inflammasome activation

while caspase 5 and caspase 4 can result in noncanonical

inflammasome activation with lipopolysaccharide proteins in

infections with Gram-negative bacteria. For membranes to open,

pores are formed through the degradation of N-terminal domain

with the C-terminal domains as part of gasdermin proteins.

Cytokines such as interleukin-1 family members are released to

generate inflammatory reactions and require gasdermin since these

cytokines cannot alone result in pore formation (2, 212, 515).

Pyroptosis can result in cell injury as a result of cytokine release

(410, 411) and lead to neuronal and vascular cell dysfunction that

results in loss of memory and executive function (11, 60, 252, 263,

275, 298, 301, 344, 546). In addition, elevated cytokine release during

pyroptosis can affect immune cell activity in the body (358) and lead

to failed clinical outcomes, such as in MS patients, with elevated

inflammasome levels (541).
6 SIRT1 regulation of cellular
metabolism and neurodegeneration

The silent mating type information regulation 2 homolog 1

(Saccharomyces cerevisiae) (SIRT1) controls both cellular

metabolism (11, 60, 111, 263, 275, 294, 298, 344, 400, 546–549)

and neurodegeneration (98, 102, 117, 156, 210, 232, 240, 400, 438,

550–555). There exist mammalian homologues of Sir2 that are

SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7 (6, 12, 13,

97, 134, 255, 333, 556). SIRT1 exists in the brain, liver, heart, skeletal

muscle, pancreas, adipose tissue, and spleen (16, 179, 210, 223, 440,

550, 557). SIRT1 is a histone deacetylase that controls transcription

of DNA that involves acetyl group transfer from ϵ-N-acetyl lysine
amino acids to DNA histones (6, 17, 70, 78, 106, 117, 223, 259, 309,

335, 558, 559) (Figure 2). Histone deacetylases oversee multiple

cellular processes such as aging, wound healing, neuronal function,

oxidative stress, transcription factor activity, cardiovascular

function, and cancer (8, 78, 98, 175, 550, 560–563). One substrate
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for SIRT1 is the coenzyme ß-nicotinamide adenine dinucleotide

(NAD+) (24, 42, 65, 70, 78, 96, 98, 111, 196, 330, 475, 550, 564).

SIRT1 regulation of cellular metabolic homeostasis can be

critical to the onset and progression of disorders in the nervous

system (13, 16, 17, 38, 98, 223, 259, 333, 544, 549, 565, 566). SIRT1

is dependent upon NAD+ and nicotinamide (24, 98, 210, 255, 417,

475, 514, 550). As a precursor for NAD+, nicotinamide is the amide

form of vitamin B3 (niacin) (8, 34, 42, 330, 378, 567–570).

Nicotinamide can be produced through SIRT1 transferring of the

acetyl residue of the histone acetyllysine residue to the ADP-ribose

moiety of NAD+. As part of a feedback pathway, nicotinamide can

limit the activity of SIRT1 through the interception of an ADP-

ribosyl-enzyme-acetyl peptide intermediate with the regeneration

of NAD+ (571). As a result, nicotinamide can bind to sirtuins

through NAD+ in the C pocket of sirtuins (572) and can

noncompetitively inhibit SIRT1 (560) and prevent anti-

inflammatory gene expression (573). In addition, SIRT1

activation through nicotinamide phosphoribosyltransferase

(NAMPT) can occur with periods of glucose restriction. This

leads to increases in NAD+ and reduction in nicotinamide levels

that become ineffective to block SIRT1 (574). Replenishment of

NAD+ can assist with cardiovascular health (53) with SIRT1

activation limiting inflammation, metabolic dysfunction, and cell

injury (111, 113, 203). As an example during hyperglycemia, SIRT1

can increase vascular cell survival (575).

SIRT1 can oversee insulin sensitivity (8, 61, 78, 417, 576–578)

and mitochondrial function (13, 34, 70, 240, 475, 558). SIRT1

expression is reduced in the liver and pancreas during high fat

diets that can lead to insulin resistance (579). Elevated SIRT1

activity can modulate glucose and hepatic lipid processing to

prevent metabolic syndrome dysfunction (580). SIRT1 controls

insulin sensitivity via protein tyrosine phosphatase (PTP) (335,

581). SIRT1 also is a positive feedback system for insulin signaling

through Akt and can lead to the activity of Akt through

phosphotidylinositide 3-kinase (PI 3-K) (532, 581).

In the nervous system, SIRT1 activity can lead to neurite

outgrowth and enhance neuronal survival in environments that

limit nutrients (582). SIRT1 can foster survival for photoreceptor

cells (583), prevent the senescence of endothelial cells (584), and

enhance the function of mitochondria in embryonic stem cells

during oxidative stress (585). The absence of SIRT1 activity may

lead to dysregulation in the immune system such as during MS

(406). SIRT1 activity may be required for limiting the toxicity of

oxidative stress and preserving memory (262), fostering Ab
degradation (586), increase lifespan in higher level organisms

(587), and protecting neuronal and vascular cells against oxidative

stress (98, 134, 232, 240, 438, 502, 510, 550, 551, 554, 555, 588).

SIRT1 also functions through trophic factor regulation in

metabolic and neurological disorders that is linked to NAD+

activity (34, 145, 203, 499, 533–535, 589). The trophic factor EPO

employs SIRT1 to block depolarization of mitochondrial, release of

cytochrome c, induction of BCL2 associated agonist of cell death

(Bad) activation, and caspase cleavage (510). EPO through SIRT1

can protect neurons (590) that may be responsible for SIRT1

synaptic memory improvement (223). As a result of SIRT1

activity, EPO prevents mitochondrial injury (483, 521, 536, 591–
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593), increases microglial survival (594), blocks caspase activity

(520), protects human cardiomyocytes (592), and oversees cellular

metabolism (304, 482, 595, 596).
7 Oversight of metabolic and nervous
system disorders through AMPK

AMP-activated protein kinase (AMPK) is an important

component of the mTOR pathway, is intimately associated with

SIRT1, and is a significant target for metabolic and

neurodegenerative disorders (2, 30, 38, 112, 113, 118, 218, 229,

452, 558, 559, 597–600) (Figure 2). AMPK can lead to the

generation of adenosine triphosphate (ATP), improve insulin

sensitivity, oversee the oxidation of fatty acids, and reduce levels

of oxidative stress (30, 34, 229, 230, 234, 288, 309). Increased AMPK

activity is present in diets high in fish oil that can prevent

endothelial cell injury (601) and improve insulin sensitivity (451).

In the nervous system, AMPK can limit stroke damage in animal

models of DM (602), reduce tau deposition (463), regulate

neuroinflammation (134, 226, 603), reduce Aß brain

accumulation (604), block Aß toxicity (605), oversee mitophagy

with ULK1 (606, 607) and improve cognition in experimental

models with DM and AD (608). Pain sensation that can become

problematic with peripheral neuropathies in DM can be attenuated

in experimental models with AMPK (292).

A number of agents that are involved in metabolic homeostasis

also rely upon AMPK. Nicotinamide can protect mitochondria with

the activation of AMPK (288). In addition, metformin and

biguanides control autophagy through AMPK. DM cardiac cell

injury through the activation of autophagy with AMPK is reduced

during treatment with metformin (609). As previously noted,

activation of autophagy under some circumstances can reduce

toxicity from oxidative stress (33, 121, 145, 189, 216, 226, 306,

309, 540) and may shift to beneficial oxidative metabolism (610). In

addition, other pathways such as Wnt family members may require

AMPK activity to reduce neuronal brain injury (611). AMPK

signaling is necessary with inhibition of mTOR pathways for the

maintenance of electrical activity of the brain for control of behavior

(597), for the acceleration of myelin brain recovery during

treatment with metformin (356), and for mitochondrial

preservation during ferroptotic cell death (229). Without AMPK

activity, cell death, cell senescence, and mitochondrial loss can

result (16, 113).

Bidirectional pathways of modulation of activity also exist for

SIRT1 and AMPK. SIRT1 expression leads to deacetylation of

serine-threonine liver kinase B1 (LKB1) that may be through

indirect or direct means and can result in AMPK activation (612).

Although AMPK does not directly activate SIRT1, SIRT1 activity

can increase with AMPK either by elevating the cellular NAD+/

NADH ratio that leads to deacetylation and downstream SIRT1

target activity changes to involve peroxisome proliferator-activated

receptor-gamma coactivator-1a (PGC-1a) and forkhead

transcription factors (613) or through increasing NAMPT to raise

NAD+ and lower SIRT1 inhibitors such as nicotinamide (574).

Resveratrol, an activator of SIRT1, can elevate AMPK activity
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1273570
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Maiese 10.3389/fimmu.2023.1273570
through SIRT1 dependent or independent pathways (613, 614).

Through combined pathways, AMPK and SIRT1 block

mitochondrial loss (61) and limit endothelial cell death during

elevated glucose exposure (575).
8 WISP1 in metabolic homeostasis and
nervous system function

Closely coordinated with the pathways AMPK in metabolic and

neurodegenerative disease is the Wnt1 inducible signaling pathway

protein 1 (WISP1) (6, 75, 529, 615–618). WISP1 is a downstream

target of the wingless pathway of Wnt proteins. Wnt proteins are

cysteine-rich glycosylated proteins that can control cellular

metabolism, stem cell proliferation, new vascular cell growth,

musculoskeletal disease, nervous system sensation, and neuronal

cell development (57, 83, 122, 181, 203, 346, 349, 350, 530, 531, 619,

620). Wnt signaling that includes Wnt1 can control autophagy

(621–624), prevent endothelial cell death in experimental models of

DM (412), limit dopaminergic neuron cell loss in PD (625), oversee

repair of wounds during DM (626), assist with human b-cell
proliferation (627), foster growth in the musculoskeletal system

(57, 497, 628), and inhibit cognitive loss with DM and aging (629).

WISP1 is a CCN family member that consists of six secreted

extracellular matrix associated proteins that are termed by the first

three members of the family that include Cysteine-rich protein 61,

Connective tissue growth factor, and Nephroblastoma over-

expressed gene (130, 630) (Figure 2). WISP1 can be influenced by

increased weight in humans, becomes elevated with insulin

resistance in children and adolescents (616, 631), and is elevated

during gestational DM (632). WISP1 may be vital for glucose

homeostasis since it is over-expressed during regeneration of the

pancreas (633), controls b-cell proliferation (75), and can control

cellular senescence (634). WISP1 can stabilize atherosclerotic

plaques (347) that can ultimately lead to cerebrovascular disease,

can limit lipopolysaccharide-induced cell injury through pathways

of Akt (348), can attenuate blood-brain barrier disruption (635),

and decrease toxicity of oxidative stress and Aß exposure (97, 520,

522). However, it should be noted that WISP1, a trophic agent, also

can promote tumorigenesis (281, 529, 636–642).

WISP1 is dependent upon the pathways of AMPK for glucose

homeostasis and the ability to affect neuronal survival. WISP1 can

oversee AMPK post-translational phosphorylation during cellular

metabolism (6, 33, 455, 643–645). WISP1 controls the activation of

AMPK activation by differentially decreasing phosphorylation of

tuberous sclerosis 2 (TSC2) at serine1387, an AMPK target, and

increasing phosphorylation of TSC2 at threonine1462, an Akt target

(522). This process allows WISP1 to provide a minimal level of

TSC2 and AMPK activity to offer a proper biological balance for

optimum metabolic homeostasis and survival of cells. This balance

in AMPK activation and levels is critical. Although AMPK

activation can limit insulin resistance and oxidative stress (451)
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and assist with differentiation of adipocytes during lipid

accumulation in obesity (646), under other conditions AMPK

through autophagy may lead to cell injury. A fine balance of

AMPK activity is necessary to increase basal autophagy activity

and maintain neuronal and endothelial cell survival during periods

of metabolic homeostasis loss (230, 234, 575, 584). AMPK can

modulate apoptosis and autophagy during coronary artery disease

(647) and ROS release (234, 648). This is also seen with the growth

factor EPO. EPO controls AMPK during oxidative stress (522),

inflammation (114, 385, 649), angiogenesis (650, 651), and

modulation of endothelial nitric oxide synthase (652). The

concentration of EPO and duration of treatment can influence a

specific level of AMPK activity, as well as the activity of mTOR (114,

653–655). If this activity is not balanced, elevated EPO and AMK

activity can lead to cell injury (656).
9 Discussion

With the increase in lifespan and NCDs, disorders of cellular

metabolism that include DM and neurodegenerative disorders are

increasing in prevalence throughout the world. These disorders may

be significantly under diagnosed with estimates of at least thirty-five

percent of individuals in developed countries not receiving

appropriate care to slow the progression of metabolic and

neurodegenerative disease. Metabolic and neurodegenerative

disorders also impose a significant financial challenge for the

treatment and care of individuals. It is expected that additional

care costs for current unmet clinical and staffing needs will exceed

over two trillion USD per year.

The clinical onset and progression of metabolic and

neurodegenerative disorders is closely tied to aging, dysfunction

in telomere processing, and the processes of cellular senescence and

oxidative stress (Table 1). These underlying processes not only lead

to neuronal and vascular death, mitochondrial loss, stem cell injury,

and immune system dysfunction, but also result in significant co-

morbidities in the nervous system leading autonomic dysfunction

and peripheral neuropathies as well as cognitive loss. In fact,

cognitive loss is now the seventh cause throughout the world for

death and it is estimated that close to two hundred million

individuals may have dementia by the year 2050. Although

dementia may present in multiple neurological disorders, AD

encompasses almost sixty percent of individuals with cognitive

loss and it is estimated that more than sixty-five percent of

people with MS have cognitive impairment. The cognitive loss in

neurological disorders has an important metabolic basis and

involves risk factors with APOE that can lead to the cognitive loss

present in AD and MS as well as increase susceptibility to viral

infections, such as during SARS-CoV-2 with COVID-19.

Metabolic disorders, such as DM, and neurologic disease

remain a significant challenge for the treatment and care of

individuals. Although strategies that address nutritional intake
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and the use of pharmaceutical agents to control glucose homeostasis

can slow disease progression of DM, clinical off-target effects can

lead to progressive neuronal and vascular cell loss and the atrophy

of organs in the body. To a similar degree, present therapies for AD

assist with symptoms of memory loss, but do not halt disease

progression. In addition, recently approved therapies and DMTs for

AD andMS that involve immunotherapies may be suited for a small

subset of people, such as with AD, and can achieve some decrease in

disease progression but the overall course of cognitive loss in these

disorders will continue unabated. These clinical challenges to

address the interplay between metabolic and neurodegenerative

disorders require innovative strategies that can focus upon the

underlying mechanisms of aging, oxidative stress, cell senescence,

and cell death.

Programmed cell death pathways that involve autophagy,

apoptosis, ferroptosis, and pyroptosis can play an important role in

DM and neurodegenerative disorders. Autophagy can regulate the

proliferation and size of pancreatic b-cells, reduce insulin resistance,

prevent diabetic nephropathy, and limit progression of DM through

promoting b-cell function and eliminating misfolded proteins and

dysfunctional mitochondria. Autophagy activation in conjunction with

mTOR inhibition can reduce ROS release, protect dopamine cells,

preserve mitochondrial integrity, reduce inflammatory processes that

may lead to clinical relapses, limit Aß and tau brain deposition, reduce

cytokine release and microglial activity, and repair myelin in the

nervous system. In regard to apoptotic cell death, strategies that can

limit apoptosis activation can prevent cell injury during excessive glial

activity during oxidative stress, limit ischemic toxicity to retinal cells,

preserve dopaminergic cells during inflammation, and block cell

demise during Aß exposure. Similar to apoptotic cell injury but

involving iron accumulation in the cell with the loss of glutathione

homeostasis, ferroptosis leads to cognitive impairment, immune

dysfunction in T lymphocytes that can injure neuronal and glial

cells, and cell death in the musculoskeletal system, cardiovascular

system, and breast tissue. Pyroptosis cell death involves

inflammasome activation that yields cytokine release, cell injury,

inflammatory cell dysfunction, and neurovascular injury with

cognitive loss.

Given that pathways of programmed cell death play a dual role in

determining the fate of cellular survival and organ systems, it is

important to recognize that a balance among these pathways is

essential to optimize clinical outcome. For example, activation of

autophagy can lead to cardiac disease, atherosclerosis, block

interneuron progenitor cell growth, foster neuronal death, lead to

memory impairment, and prevent neurovascular protection with

growth factors. As a result, the basal activity of autophagy should be

considered since changes in the autophagic flux have been shown to

limit the induction of cell senescence. With apoptosis, it can be equally

as crucial to control early apoptotic pathways that involve PS

membrane asymmetry in an effort to block the later phase

progression of the apoptotic cascade and prevent nuclear DNA
Frontiers in Immunology 1067
degradation that leads to cell death. In addition, apoptotic pathways

are tightly linked to inflammatory cell activity. Although increased glial

cell activity may contribute to oxidative stress and apoptosis, microglial

cells can be beneficial at times with autophagy induction to maintain

cholesterol homeostasis (133), provide protection during amyotrophic

lateral sclerosis (657), and for the clearance of amyloid in the brain

(598). Triggering receptor expressed on myeloid cells 2 (TREM2) that

can foster microglial survival can prevent inflammation during AD

through forkhead transcription factors (FoxOs), Wnt signaling, and

microglial activation (323, 658).

Pathways with SIRT1, AMPK, and WISP1 also provide us with

clues for maintaining a proper environmental homeostasis for cells

especially during aging processes that can lead to cognitive loss.

SIRT1 is dependent upon NAD+ and nicotinamide and can control

insulin sensitivity, prevent cell senescence, modulate immune

system activity, promote Ab degradation, and increase lifespan in

higher organisms. In addition, mitochondrial oxidative stress can be

dependent upon nicotinamide adenine dinucleotide phosphate

(NADPH) depletion and increase of aldose reductase. These

pathways are important in the pentose phosphate pathway that

involves transaldolase, which is encoded by the TALDO1 gene (659)

and has been linked to Parkinson ’s disease (660). Such

mitochondrial dysfunction can be mediated through mTOR

pathways that lead to antiphospholipid antibodies (661). Yet,

feedback pathways are required at times through nicotinamide

and Akt for replenishment of NAD+ and effective modulation of

cellular pathways, such as those involving insulin signaling and

inflammation. AMPK activation can improve insulin sensitivity,

reduce oxidative stress toxicity, limit tau and Aß cell injury, and

lead to cognitive improvement in conjunction with autophagy

activation. Yet, during periods when autophagy activation can be

detrimental, AMPK may require modulation to limit its activity.

This loss of AMPK activity to alter autophagy pathways may

negatively impact other pathways such as with SIRT1. There exist

conditions when SIRT1 in conjunction with AMPK is required to

prevent mitochondrial loss and vascular cell death. WISP1 also

requires AMPK pathways to offer glucose homeostasis and

protection of neuronal and vascular cells. The ability for WISP1

to effectively promote metabolic stability and cell survival is

dependent upon WISP1 providing a proper biological balance of

AMPK activity to foster cell survival, control inflammatory

pathways, assist with growth factor protection, and prevent cell

injury that can occur through autophagic and apoptotic

mechanisms. The pathways of programmed cell death, SIRT1,

AMPK, and WISP1 offer vital insights and are extremely

attractive for identifying processes that can contribute to the

onset and progression of metabolic and neurodegenerative

diseases that can be linked to multiple entities such as APOE,

SARS-CoV-2, NAD+, nicotinamide, and trophic factors, such as

EPO, but will require further insight into the elaborate relationship

of these pathways for effective clinical translation.
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Targeting CaN/NFAT in
Alzheimer’s brain degeneration

Joanna Mackiewicz, Malwina Lisek and Tomasz Boczek*

Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a

progressive loss of cognitive functions. While the exact causes of this debilitating

disorder remain elusive, numerous investigations have characterized its two core

pathologies: the presence of b-amyloid plaques and tau tangles. Additionally,

multiple studies of postmortem brain tissue, as well as results from AD

preclinical models, have consistently demonstrated the presence of a sustained

inflammatory response. As the persistent immune response is associated with

neurodegeneration, it became clear that it may also exacerbate other AD

pathologies, providing a link between the initial deposition of b-amyloid plaques

and the later development of neurofibrillary tangles. Initially discovered in T cells,

the nuclear factor of activated T-cells (NFAT) is one of the main transcription

factors driving the expression of inflammatory genes and thus regulating immune

responses. NFAT-dependent production of inflammatory mediators is controlled

by Ca2+-dependent protein phosphatase calcineurin (CaN), which

dephosphorylates NFAT and promotes its transcriptional activity. A substantial

body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to

several pathologies observed in AD, including neuronal apoptosis, synaptic deficits,

and glia activation. In view of this, the role of NFAT isoforms in AD has been linked

to disease progression at different stages, some of which are paralleled to

diminished cognitive status. The use of classical inhibitors of CaN/NFAT

signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to

specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of

AD by diminishing b-amyloid neurotoxicity and neuroinflammation. In this article,

we discuss the recent findings related to the contribution of CaN/NFAT signaling to

the progression of AD and highlight the possible benefits of targeting this pathway

in AD treatment.

KEYWORDS

calcineurin, NFAT, Alzheimer’s disease, calcium, inflammation
Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by a

progressive decline in cognitive and executive functions (1). Intensive research performed

over the decades has revealed the complex mechanistic underpinnings of AD, involving a

combination of age-dependent brain changes along with genetic predisposition, lifestyle,
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and environmental factors (1). Despite relatively wide knowledge

about its etiology, the cellular determinants of AD susceptibility or

resilience and the key molecular changes driving disease

progression are less understood.

Neuropathologically, AD-associated degeneration is linked to the

deposition of amyloid-b (Ab) fibrillary aggregates, occurring as

neuritic plaques or vascular deposits, and hyperphosphorylated

microtubule-associated protein tau. The latter is a major

component of neurofibrillary tangles, neuropil threads, and neuritic

plaque corona (2). However, the list of detected abnormalities is much

longer and involves gliosis, neuroinflammation, oxidative stress,

changes in neuronal plasticity, altered expression of glutamate and

cholinergic receptors, Ca2+ homeostasis imbalance, and many others.

The accumulation of these changes across the lifespan leads

to impaired cognition and a higher risk of AD development. It is

now well-accepted that many of these pathologies are a consequence

of Ca2+ signaling deregulation, which is central to amyloid-evoked

degeneration (3). Indeed, numerous independent biochemical,

behavioral, electrophysiological, and molecular studies, which have

been the subject of excellent reviews (1, 4, 5), have confirmed a link

between Ca2+ deregulation and age-related memory deficits and

worsening cognitive performance. Nonetheless, it is becoming

apparent that Ca2+ imbalance is not restricted to neurons but also

underlies the altered function of other non-neuronal cells, especially

astrocytes. The relationship between astrocytic Ca2+ deregulation as a

function of neurodegenerative diseases has been thoroughly discussed

in comprehensive reviews (6–8). Several laboratories have provided

strong evidence to imply that Ca2+-dependent protein phosphatase

calcineurin (CaN) links dysfunctional Ca2+ signaling to Ab
accumulation, neuroinflammation, and synaptotoxicity (3, 9–11).

The activity of CaN is controlled by spatially and temporarily

restricted intracellular Ca2+ elevations, which activate specific Ca2+

signal decoding proteins (12). CaN is required for both long-term

potentiation and long-term depression, synaptic processes underlying

learning and memory, and its activity positively correlated with

cognitive loss in AD brains (13, 14). Perhaps, one of the most

important downstream effectors linking Ca2+/CaN signaling to the

gene regulatory machinery is the nuclear factor of activated T-cells

(NFAT). Mounting evidence, as will be discussed in the following

sections, shows that CaN/NFAT drives or exacerbates the core

symptoms of AD neuropathology. It is therefore critical to

understand the upstream and downstream signals leading to the

pathological activation of CaN/NFAT pathway to identify new

therapeutic targets and develop new treatment strategies for AD. In

this review, we summarize the emerging evidence that deficient CaN/

NFAT could contribute to brain degeneration in AD.
Calcineurin

In healthy adults, CaN is widely expressed throughout the brain,

with its highest concentration detected in neurons and low in glial

cells (15–18). Structurally, the holoenzyme of CaN comprises two

main subunits: a ~ 60 kDa catalytic subunit (CNA) and a ~19 kDa

regulatory subunit (CNB) containing four Ca2+-binding EF-hand

motifs (12) (Figure 1).
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Binding of calmodulin (CaM) to the regulatory domain of the

catalytic subunit increases CaN phosphatase activity, decoding the

upstream Ca2+ s igna ls and trans la t ing them into a

dephosphorylation pattern of cellular proteins. CaM itself is a

small, evolutionary conserved protein expressed in all mammalian

cells. It serves as a versatile Ca2+ sensor capable of responding to a

wide range of Ca2+ concentrations (10-12 M - 10-16 M) due to the

presence of four canonical Ca2+ binding EF hands possessing

different affinities for Ca2+ (19). Upon binding Ca2+, CaM

undergoes a conformational change exposing the hydrophobic

surface region for Ca2+-dependent interaction with CaM-binding

proteins (20). The Ca2+/CaM complex interacts with targets that

mediate crucial cellular processes such as inflammation,

metabolism, apoptosis, short-term and long-term memory and

the immune response (21–25). Continued research indicates that

CaM binds to and affects many proteins involved in the onset and

progression of AD and other neurodegenerative diseases (26–28).

This involvement in neurodegeneration underscores the

significance of CaM in the understanding the molecular

mechanisms behind these diseases.

Among many Ca2+-dependent protein phosphatases, CaN is the

only one directly activated by Ca2+/CaM and is one of the most

sensitive enzymes responding to Ca2+ elevations. The cooperative

interaction between Ca2+, CaNB, and Ca2+/CaM allows CaN to

uniquely respond to discrete Ca2+ fluctuations (29). These features

make CaN particularly vulnerable to alterations in Ca2+

homeostasis observed in AD. A growing body of evidence

suggests that upregulation of CaN activity is directly linked to

multiple neurodegenerative insults observed in Parkinson’s disease

(30), Alzheimer’s disease (31), and Huntington’s disease (32), all

marked by impaired synaptic function, neuroinflammation, and

neuronal loss. Moreover, abnormal activation of CaN has been

observed in numerous cellular events traditionally linked to AD,

including astrocyte activation, Ab generation, neuronal apoptosis,

synaptic toxicity, and behavioral deficits (14). The involvement of

CaN is also supported by several studies showing altered CaN

signaling in the brains of animals used to model the pathogenesis of

neurodegenerative disorders (33–36).

Strong evidence for the contribution of CaN to the

pathophysiology of AD in humans comes from the Taglialatela

group (37). The results of a retrospective analysis of kidney

transplant patients demonstrated that the administration of CaN

inhbitors to prevent transplant rejection decreased the incidence of

dementia and AD in this group compared to national data from the

general population. The initially encouraging results were

potentially limited by the small sample size. These findings have

been recently replicated in a large cohort by Silva and colleagues

(38), demonstrating that FK506, CsA, and sirolimus can reduce the

risk of dementia compared to general population-like control.

However, among the three immunosuppressive drugs, those that

are capable of crossing the blood-brain barrier, like FK506, have a

greater probability of reducing dementia. Since inflammatory

mediators are strongly correlated with the accumulation of Ab
and induction of neuronal apoptosis, the potential role of CaN

inhibitors in reducing the prevalence of dementia is not surprising.

However, the study performed by Silva and colleagues delineates a
frontiersin.org
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new therapeutic avenue based on brain-penetrant CaN inhibitors.

In addition, it has been shown that CaN is heavily involved in the

regulation of gene expression (39). For upstream and downstream

regulatory mechanisms of CaN, we refer to the excellent reviews

published recently (12, 40–42).
NFAT – structure, function
and regulation

Proteins belonging to the NFAT family were originally

described more than three decades ago as the transcriptional

activators of interleukin-2 (IL-2) in T cells (43). It is now

apparent that NFAT proteins play a key role not only during T-

cell activation and differentiation but also in regulating the function

of several types of immune cells, including B cells, mast cells,

basophils, and natural killer cells (44). NFAT family members are

involved in the induction and/or coordination of the immune

response by modulating the expression of a large number of

immunologically important genes. These genes include cytokines

such as IL-2, IL-3, IL-4, IL-5, IL-8, IL-13, granulocyte-macrophage

colony-stimulating factor (GM-CSF), and tumor necrosis factor-

alpha (TNF-a), as well as cell-surface receptors CD40L and CTLA-

4, and the apoptotic factor FasL (45).

NFAT family members are widely distributed throughout

tissues, including the brain, and can regulate distinct

developmental processes (46–49). The strong correlation between

NFAT expression and vertebrate development was derived from

mouse genetic experiments. For instance, deletion of NFATc1

caused dramatic defects in cardiac morphogenesis (50), NFATc2
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null mice displayed abnormalities in chondrogenesis (51),

disruption of NFATc3 resulted in dysregulation of myogenesis

(52), whereas NFATc4 deficient mice were healthy and

developmentally normal. Suchting et al. (53) have discussed the

developmental relationship between nerve cells and vessels,

pointing out several anatomical and functional parallels. In

support of this, concurrent deletion of NFATc3 and NFATc4

produced significant impairments in vascular development but

also massive defects in sensory axon projection (49). NFAT

signaling is recognized as an essential pathway both in the adult

and developing nervous system. In the brain, NFAT-dependent

gene regulation has been shown to play a critical role in neuronal

survival, proliferation, and differentiation (54–56), as well as

synaptogenesis, corticogenesis, and neurotransmission (57–59).

In human, the NFAT family encompasses five different

members: NFAT1 [also called NFATc2 or NFATp), NFAT2 (also

called NFATc1 or NFATc), NFAT3 (also called NFATc4), NFAT4

(also called NFATc3 or NFATx) and NFAT5 (also called tonicity

enhancer binding protein (TonEBP) or osmotic response element-

binding protein (OREBP)] that are encoded by separate genes.

Moreover, the alternative splicing of each of these family members

results in a different number of variants. There are eight possible

variants of NFATc2 and NFATc1 in mammalian cells. The splicing

of NFATc3 generates six isoforms, and up to twenty-four in the case

of NFATc4 (60). On the other hand, sixteen various transcripts of

NFAT5 have been identified so far (61) (Table 1). Specific NFAT

isoforms appear to exhibit preferential associations with different

types of neuronal cells (3, 10, 62, 63). For instance, NFATc3 is

prominently expressed in astrocytes and pericytes, with

comparatively lower expression in neurons. This isoform is also
A

B

FIGURE 1

The structure of calcineurin (A) CNA- calcineurin subunit A containing binding sites for calcineurin subunit B (CNB binding), calmodulin binding
domain (CaM) and autoinhibitory domain (AI). (B) CNB – calcineurin subunit B containing four Ca2+-binding EF hand domains.
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significantly upregulated in activated astrocytes (3). In contrast,

NFATc4 has a broader distribution within neurons compared to

NFATc3. NFATc1 and NFATc2, in particular, display a stronger

preference for glial cells.

Despite having different C- and N-terminal sequences, all

family members contain a highly conserved DNA-binding

domain (DBD), similar to the one in the NFkB/Rel family, and

are activated, with the exception of NFAT5, by CaN (47). NFAT5

lacks an essential CaN binding site, and its activity is regulated by

changes in tonicity (64). Structurally, NFAT1-4 exist as monomers

and possess two tandem domains: a regulatory domain located

in the N-terminus, which is known as the NFAT homology

region (NHR), and a Rel homology domain (RHR), where the

DBD is located (65). The NHR contains two CaN binding motifs:

a Ca2+-independent PXIXIT (where X denotes any amino acid)

motif in the N-terminus, and a Ca2+-dependent LXVP motif in the

C-terminal portion of the NHR (65). Furthermore, the NHR

possesses the nuclear localization signal (NLS) responsible for

CaN-dependent nuclear translocation, extended serine-rich

regions (SRR1, SRR2), and three serine-proline motifs (SP1, SP2,

SP3) (65) (Figure 2). NFAT dephosphorylation is believed to expose

the NLS sequence, 265-KRK-267, which is located upstream of the

SP3 motif. A second potential NLS site, 682-KRK-684 is situated

near the C-terminus of NFATc1 (66). It is well-documented that

phosphorylation status of the regulatory domain governs DNA-
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binding affinity and NLS exposure. However, the mechanism of

NLS activation has not been elucidated at a structural level. The

most plausible hypothesis suggests that dephosphorylation initiates

global changes in NFAT conformation, facilitating its transition

from an inactive to an active state (67). This transition may involve

alterations in interactions within NFAT itself or with binding

protein partners (68–70).

The NHR domain is moderately conserved and shares 22-32%

sequence homology among the distinct NFAT members, whereas

the Rel-homology region, consisting of approximately 270 amino

acids, shares 64-72% sequence identity between various NFAT

members (65, 71). In contrast, NFAT5 exists as a homodimer and

possesses only a Rel DNA-binding domain structurally homologous

to the Ca2+-dependent members, while the remaining 600 amino

acids are entirely different (59).

Under resting conditions, the NHR domain is hyperphosphorylated

within the SRR region and SP repeats, keeping the NFAT proteins in an

inactive state and predominantly located in the cytoplasm (72). In

response to elevated intracellular Ca2+, CaN becomes activated and

dephosphorylates NFAT, leading to its rapid import into the nucleus

(72). Once in the nucleus, NFATs can couple intracellular changes in

Ca2+ concentration to the activation/repression of gene transcription,

either acting alone or more frequently in cooperation with other

transcription factors (73). Many of the NFAT transcriptional partners

have not been characterized yet, but biochemical reconstructions have
FIGURE 2

The general structure of NFAT proteins. TAD, transactivation domain; SRR, serine-rich region; SP, serine/proline motif; NLS, nuclear localization
sequence; NES, nuclear exclusion sequence; AED, auxiliary export domain.
TABLE 1 General features of NFAT family members and their distribution in the brain.

NFAT
member

Alternative name(s)
Number

of
variants

Regulated by CNS distribution

NFAT1 NFATc2 and NFATp 8 Ca2+/Calcineurin oflactory bulb, neuronal cell line

NFAT2 NFATc1 and NFATc 8 Ca2+/Calcineurin hypothalamus, hippocampus, cerebellum, olfactory bulb, and frontal cortex

NFAT3 NFATc4 24 Ca2+/Calcineurin olfactory bulb, cerebellum, and certain regions of the cortex

NFAT4 NFATc3 and NFATx 6 Ca2+/Calcineurin hippocampus, retinal ganglion cells

NFAT5 TonEBP and OREBP 16 Osmotic stress
cerebral cortex, hippocampus, hypothalamus, substantia nigra, cerebellum,

medulla oblongata
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revealed several of them, including the cell life and death regulator

activator protein 1 (AP1) and oncogenic regulators such as GATA

binding protein 4 (GATA4) or myocyte enhancer factor 2 (MEF2) (46,

74). The nuclear accumulation of NFAT is counteracted by the

synergistic actions of a set of protein kinases, including casein kinase 1

(CK1), glycogen synthase kinase 3 (GSK-3), and dual-specificity

tyrosine-regulated kinases (DYRK) (55, 68, 75). These kinases can act

in the cytosol to cause NFAT phosphorylation or in the nucleus to

promote its rephosphorylation, facilitating nuclear export and

transcription termination. CK1 functions as a maintenance and export

kinase for NFATc2 (47). GSK-3 is classified as an export-type kinase,

which phosphorylates the SP2 motif of NFATc2 and both, SP2 and SP3

motifs, of NFATc1 (47). In addition, phosphorylation of NFATc2 by

GSK-3 requires previous phosphorylation by priming kinases including

PKA or DYRK. Furthermore, DYRK1 functions as an export kinase

which phosphorylates conserved SP3 motif in NFATc1 and NFATc2. In

turn, DYRK2 can operate as a maintenance kinase, and phosphorylate

the SP3 motif of NFATc1 and NFATc2 (47). Additionally,

phosphorylation of SSR1 of NFATc1 by the c-Jun N-terminal kinase

(JNK) or SSR1 of NFATc2 by the p38 mitogen-activated protein kinase

(MAPK) has been shown to enhance cytosolic NFAT retention (69, 76,

77). However, it is not entirely clear whether kinases that phosphorylate

NFAT under basal conditions also mediate its rephosphorylation in the

nucleus and subsequent export back to the cytoplasm. Furthermore,

NFAT transcriptional activity can be affected by different post-

translational modifications, including acetylation or sumoylation, as

well as phosphorylation events different from those regulating Ca2

+-dependent translocation (78–80). It has been demonstrated that

sumoylation plays a privileged role in extensive cellular processes and

appears to be an important mediator of neuronal and synaptic function

(81). In rat primary hippocampal neurons, sumoylation effectively

suppressed the transcriptional activity of NFATc1, NFATc2, and

NFATc3 isoforms, while in cortical neurons, only the transcriptional

activity of NFATc1 and NFATc2 was affected by sumoylation (82).

These findings indicate that the regulation of particular NFAT isoforms

may be cell type-specific.

Regulationof subcellular localizationandactivityofCa2+-dependent

NFAT members is related to ligand binding to distinct cell-surface

receptors (45, 46, 65, 83, 84). These receptors share a common feature:

their ability to activate phosphatidylinositol-specific phospholipase C

(PLC), thereby inducing Ca2+ entry through the plasma membrane.

ActivationofPLCtriggers a cascadeof events, including thehydrolysis of

phosphatidylinositol 4,5-bisphosphate (PIP2) and the release of inositol

1,4,5-triphosphate (IP3), which in turn mobilizes intracellular Ca2+

through IP3 receptors located in the membrane of the endoplasmic

reticulum (ER) (85). The increase in Ca2+ concentration leads to

CaN activation by binding to its CaN-B regulatory subunit

or by coupling Ca2+-dependent calmodulin to CaN. Efficient CaN-

dependent dephosphorylation requires a docking interaction between

NFAT and CaN. The PxIxIT sequence, located at the N-terminus of the

NHRdomain, serves as a primary docking site forCaN.DifferentNFAT

members have unique PxIxIT sequences with a low affinity for

calcineurin (Kd = 10–30 mM), which is essential to maintain

sensitivity to environmental cues and restrict constitutive activation of
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NFAT (86). Aramburu and colleagues replaced the PxIxIT sequence of

NFATc2 with VIVIT, a higher-affinity inhibitor identified through

peptide selection. This peptide binds CaN with high affinity and

efficiently competes with NFAT for CaN binding, thereby inhibiting

NFAT nuclear accumulation (87). In vivo studies with transgenic mice

carrying a mutation in the PxIxIT sequence of NFATc2 demonstrated

enhanced cytokine production by differentiated T cells and exhibited

deficiencies in embryonic and hematopoietic cell maturation (86). CaN

dephosphorylates 13 out of 14 serines in NFATc2, which are conserved

residues in all calcineurin-dependent NFAT members (67). It has been

demonstrated that dephosphorylation of all 13 serine residues in

NFATc2 is required to promote its nuclear localization (67).

Furthermore, mutations of twelve serines to alanine, which imitate a

nearly fully dephosphorylated state of NFATc2, lead to remarkable

nuclear accumulation in both, resting and CsA-treated cells.

I t i s no t fu l l y under s tood whether s i t e - spec ific

dephosphorylation is an organized mechanism and what the

consequences are for downstream signaling in specific cell types.

However, the experiments using mass spectrometric analysis

indicate that the SRR1 region, which is closely adjacent to the

main CaN docking site, is preferentially dephosphorylated at low

CaN activity (67). NFATmutants with restricted deletions or S→A

mutations in the SRR1 motif are more susceptible to

dephosphorylation in the SP repeats by CaN compared to wild-

type NFATs (87, 88). CaN-regulated NFAT activation is

particularly important in resting conditions when the rise in Ca2+

due to its release from intracellular stores is not sufficient for direct

NFAT activation (89).

The parameters for Ca2+/CaN/NFAT activation can be

regulated in various ways (Figure 3).

In neurons, NFAT activation occurs as a result of stimulation of

tyrosine kinase receptors (Trk) coupled to PLCg (90).

Neurotrophins and netrins are upstream components of this

signaling pathway. For example, it has been observed that

overexpression of the TrkA receptor in cortical neurons supports

NFAT transcriptional activation upon nerve growth factor (NGF)

treatment (91). Additionally, Groth et al. (92) demonstrated that

treatment of cultured spinal neurons with NGF enhanced NFAT-

dependent transcription. Brain-derived neurotrophic factor

(BDNF) has also been found to increase NFAT transcriptional

activity in cultured cortical neurons, and this activation was

abolished by co-treatment with CaN inhibitors such as CsA or

FK506 (91). To illustrate the neurotrophic significance in the NFAT

signaling pathway, Graef and colleagues (91) utilized an EGFP-

NFATc4 hybrid to visualize NFATc4 subcellular localization in

responsive cortical neurons. The data showed that NFATc4 was

imported into the nucleus, and its transcriptional activity was

enhanced in response to BDNF stimulation. Moreover, cultured

hippocampal pyramidal neurons treated with BDNF also exhibited

increased endogenous transcriptional activity of NFATc4 (92). It is

worth mentioning that inhibition of PLC activity or depletion of

intracellular Ca2+ stores attenuated the ability of BDNF to activate

endogenous NFAT in hippocampal neurons (92, 93). These results

collectively demonstrate that NFAT transcriptional complexes
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appear to be downstream of neurotrophin signaling, and their

activity in neuronal development is regulated through PLC-

dependent mechanisms.

A growing body of evidence indicates that NFAT transcription

factors can also play a pivotal role in integrating signaling pathways

involved in neuronal growth driven by guidance cues during

synaptogenesis. In this process, molecules such as netrins are

crucial for axon guidance and control during the development of

neuronal circuits (94). Supporting this, failure in the elongation of

commissural axons caused by triple deletion of NFAT (c2/c3/c4)

was seen in mice bearing mutation in netrin-1 or netrin DCC

receptor (95, 96). Additionally, it has been demonstrated that

netrin-dependent axon extension in E13 rat dorsal spinal cord

explants required CaN/NFAT signaling, and stimulation with

netrin-1 promoted NFAT transcriptional activity via the DCC

receptor (91).

The emptying of ER Ca2+ stores is a known trigger that initiates

the process of capacitative Ca2+ influx across the plasma membrane,

referred to as store-operated Ca2+ entry. In neurons, Ca2+ influx

may also occur via voltage- or ligand-gated Ca2+ channels, each of

which is regulated in a precisely coordinated manner. It is well

recognized that neuronal L-type voltage-gated Ca2+ channels

(LTCC) play a crucial role in various synaptic processes

underlying learning and spatial memory formation in the

hippocampus and other brain areas (97, 98). The activation of

LTCC by high extracellular K+ triggers the nuclear localization of

NFAT in cultured hippocampal and DRG neurons (93, 99, 100). It

has also been demonstrated that N-methyl-D-aspartate receptor

stimulation leads to enhanced nuclear import of NFATc3 and
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NFATc4 in cortical neurons (101).NFAT activity can also be

affected by intracellular inhibitors of CaN. Among the numerous

endogenous proteins that have a pivotal role in regulating CaN

activity is A-kinase anchoring protein 79 (AKAP79), which binds

CaN and blocks its access to the substrates (102). It is worth

mentioning that AKAP79 also binds protein kinase A (PKA),

which is an NFAT kinase that prevents its nuclear import (103).

Other regulators, such as CAIN/CABIN-1, can potentially inhibit

CaN activity in a phosphorylation-dependent manner (104) and

exert a similar effect on NFAT dephosphorylation and

translocation, like the regulators of calcineurin (RCANs) or

modulatory calcineurin-interacting proteins (MCIPs; MCIP1–3)

(59). Studies have shown that RCANs may either positively or

negatively affect the activation of CaN/NFAT signaling. Although

the mechanistic explanation of how these proteins modulate CaN

activity is still questionable, RCANs were found to participate in

CaN biosynthesis or recycling, playing a role as chaperones (59).

Pharmacological inhibitors of
CaN/NFAT with potential use
in AD treatment

Relatively insensitive to classical inhibitors of phosphatases,

CaN activity can be corroborated by two widely used

immunosuppressive drugs: cyclosporine A (CsA) and FK506

(tacrolimus) (105, 106). CaN/NFAT signaling may also be

inhibited by other molecules that differ in chemical properties

and the mechanism of action (Table 2).
FIGURE 3

Schematic view of CaN/NFAT activation cycle. NFAT is activated in response to cell-surface receptors coupled to intracellular Ca2+ mobilization.
Activated phospholipase C (PLC) generates inositol-1,4,5-triphosphate (IP3), which binds IP3 receptors located in the endoplasmic reticulum (ER).
Stimulation of IP3 receptors produces a brief spike in Ca2+ by depleting the ER stores. Ca2+ increases promote activation of calmodulin-dependent
enzymes including calcineurin (CaN). CaN dephosphorylates multiple serines in NFAT protein leading to its nuclear import and activation of NFAT-
dependent transcription of genes involved in immune response. NFAT rephosphorylation by multiple kinases triggers its nuclear export and cytosolic
retention. CaN activity can be modulated by immunosuppressive drugs – cyclosporine A (CsA) and tacrolimus (FK506) or CaN-interacting proteins –
AKAP79 (A-kinase anchoring protein 79), MCIPs (modulatory calcineurin-interacting proteins) or CAIN/CABIN-1 (endogenous inhibitor of CaN
activity). In neurons, NFAT can be selectively activated by Ca2+ influx through L-type Ca2+ channels.
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Cyclosporine A

CsA has been employed in the treatment of organ transplant

rejection since 1976 when Borel and colleagues demonstrated its

immunosuppressive properties (107). The mechanism of action of

CsA depends the formation of a complex with cytosolic proteins

known as cyclophilins, particularly the 17 kDA cyclophilin A, which

is highly abundant in T cells (108, 109). Cyclophilins, classified as

immunophilins, possess peptidyl-proline-cis-trans isomerase

(PPIase) activity that plays a role in ensuring proper protein

folding (110). It has been established that CsA inhibits PPIase,

although this effect is not associated with the mechanism of

immunosuppression. The formation of a ternary complex

involving CsA, cyclophilin A and CaNA inhibits calcineurin

phosphatase activity and blocks the transcription of cytokine

genes, including IL-2 and IL-4 (111). In addition to its impact on

the CaN/NFAT pathway, CsA affects the activity of NF-kB and AP-

1, transcription factors essential for the regulation of IL-2 gene

expression (112, 113). CsA has been demonstrated to inhibit

JNK and p38 MAPK signaling, as well as an antigen-specific Ca2

+-independent response (114, 115). Several early reports have

indicated both pro-apoptotic and neuroprotective effects of CsA

in neuronal and neuronal-glia mixed cultures (116–121). The

pharmacological normalization of CaN activity can offer a certain

degree of neuroprotection (122, 123), improve synaptic function

(124), and reduce glial activation (125, 126) in experimental models

of brain degeneration. However, despite the undeniable benefits of

CsA, its use as an immunosuppressant is limited by potential

side effects, including nephrotoxicity, neurotoxicity, and

hepatotoxicity (127).
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FK506 (tacrolimus)

Structurally, FK506 is a macrolide antibiotic with

immunosuppressive properties. It forms a complex with

immunophilin FK506 binding protein (FKBP12), and the FK506-

FKB12 complex suppresses CaN-dependent NFAT signaling.

Despite significant differences in structure and mechanism of

action, CsA and FK506 surprisingly share similar biological effects

(128, 129). However, FK506-induced immunosuppression is not

solely due to the inhibition of the CaN/NFAT pathway but also

involves other T-cell activation pathways (130). Unlike CsA, FK506

inhibits IL-2 induced IL-5 production by human CD4+ T cells and

T-cell proliferation stimulated by IL-2 and IL-7 (130). Moreover,

FK506, but not CsA, decreases the expression of human-affinity IL-

7 receptor and is more effective in controlling IL-2 production by T

cells in patients receiving kidney transplantation. These data suggest

that at least some of FK506’s effects are mediated by CsA-insensitive

signaling pathways (131). Regarding the immunosuppressive

effects, it is evident that FK506 hinders processes further

downstream in the T-cell activation cascade, beyond CaN

activation. This is supported by the observed capacity of FK506

monotherapy to effectively manage steroid-resistant allograft

rejection episodes, which is a critical distinction from CsA, as

CsA lacks efficacy in the treatment of allograph rejection (132).
VIVIT and LxVP peptides

The VIVIT is a 16-mer oligopeptide (MAGPHPVIVITGPHEE)

developed through an affinity- driven selection of peptides encoding
TABLE 2 Physicochemical characteristics of CaN/NFAT inhibitors.

Inhibitor

Characteristic profile

Composition Mode of action
Binding
partner

IC50/Kd* Side effects

CsA
A cyclic peptide of 11

amino acids
Complex blocks substrate access to the active

centre of CaN
Cyclophilin 7 nM

Nephrotoxicity, hypertension,
neurotoxicity

FK506
23-membered

polyketide macrolide
Complex blocks substrate access to the active

centre of CaN
FK506 binding

protein (FKBP-12)
0.4 nM Nephrotoxicity

VIVIT
peptide

A 16 member linear
L-peptide

Blocks CaN-NFATc interaction No
0.5 µM* <
1 µM

Not observed

LxVP peptide
15 - mer peptide from

NFATc1
Blocks CaN-NFATc interaction and regulates

enzymatic activity of CaN
No ~ 0.3 µM Not observed

Dipyridamole
Pyramidopyri-midine

compound
Disrupts CaN-NFATc binding No ~ 10 µM

Cytotoxicity, excitotoxicity under
injurious conditions

INCA-6
Small organic
molecule

Disrupts CaN-NFATc complex formation by
covalent binding to CaN

No ~ 0.8 µM* Cytotoxicity

A-28522
Small organic
molecule

Inhibits NFAT activity No N/A N/A

Q-134R
Hydroxyquinoline

derivative
Partially inhbits NFAT activity No ~ 400 nM Not observed
N/A, not available.
*Kd.
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mutated versions of the wild NFAT protein sequence (SPRIEIT),

which is characterized by a low affinity toward the PxIxIT

consensus motif (87, 133). VIVIT exhibits a remarkable 25-fold

higher potency in inhibiting NFATc dephosphorylation compared

to the original SPRIEIT peptide. While 10 mM CsA/cyclophilin can

completely inhibit CaN activity, it remained unaffected even at a

concentration of up to 100 mM VIVIT. However, the presence of

100 mM VIVIT is sufficient to disrupt the interaction between CaN

and NFAT, thus preventing NFAT dephosphorylation (87).

Furthermore, VIVIT demonstrates superior selectivity in

inhibiting NFAT compared to CsA and FK506. VIVIT has been

demonstrated to inhibit the dephosphorylation of NFATc1,

NFATc2 and NFATc3, as well as the nuclear import of NFATc2.

Additionally, GFP-VIVIT suppresses NFAT-mediated expression

of IL-2, IL-3, IL-13, TNF-a, macrophage inflammation protein 1

(MIP-1 a), and granulocyte-macrophage colony-stimulating factor

(GM-CSF) in Jurkat T cells while not affecting CsA-regulated genes

such as TNF-b and lymphotoxin-b (87). To date, there have been

no reported toxic side effects associated with VIVIT. Its outstanding

specificity in disrupting NFAT signaling without CaN activity in a

general sense, makes VIVIT highly promising for reduced toxicity

compared to CsA or FK506. Similarly, its cell-permeable analog, 11-

R VIVIT, has demonstrated a lack of toxicity at doses up to 10 mg/

kg (134). In this analog, VIVIT was fused to the C-terminal of a

poly-arginine-based protein transduction domain (11R-VIVIT,

RRRRRRRRRRR-GGG-MAGPHPVIVITGPHEE).

LxVP peptides are derived from CaN-docking NFATc sequence

LxVP, and they compete for binding with activated CaN (135, 136).

Notably, CaN exhibits a strong affinity for the LxVP motif of

NFATc1, NFATc3 and NFATc4, while its binding affinity is

considerably weaker for NFATc2, the predominant isoform in

activated CD4+ T cells (137). For instance, the GST-LxVPc1

peptide, consisting of 15 amino acids from human NFATc1,

shows more efficient binding to CaN compared to any of the

PxIxIT motifs found in NFATc1-c4. In contrast, the GST-LxVPc2

fusion peptide from NFATc2 does not bind to CaN under the same

conditions. The LxVP effectively inhibits CaN activity when

assessed with a phosphopeptide derived from the PKA regulatory

subunit II, containing phosphoSer-95, and it increases phosphatase

activity when evaluated using a nitrophenyl phosphate assay (135,

136). Therefore, similar to CsA and FK506, LxVPc1 can modify

CaN’s activity through an interaction with a site distinct from the

active site. When GFP-LxVPc1 fusion protein is overexpressed in

HeLa cells, it effectively inhibits NFATc2 dephosphorylation and

nuclear translocation upon ionophore treatment. Similarly, in

Jurkat T cells, it inhibits NFATc2 dephosphorylation and the

expression of luciferase under the control of the IL-2 upon PMA/

ionophore stimulation (135, 136).
Small molecular inhibitors acting
on CaN molecule

Dipyridamole is a medication that serves as an inhibitor of

nucleoside transport and a PDE3 (phosphodiesterase 3) inhibitor.

When administered chronically, it effectively prevents the
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formation of blood clots, and when given in high doses over a

short period, it induces the dilation of blood vessels. When

combined with aspirin, it is an FDA-approved treatment for

secondary prevention of stroke (138). In a screening of the

Prestwick Chemical Library, which contains 880 biologically

active molecules, Mulero and colleagues identified dipyridamole

as a compound that competes with CaNA for binding to the

RCAN1 peptide (139). Functional assessments of its inhibitory

effect on CaN activity revealed that dipyridamole does not

interferes with phosphatase activity. Its mechanism of action

appears to involve a specific interaction with NFAT substrates. In

line with this, dipyridamole inhibits NFAT nuclear translocation,

NFAT activity and the expression of NFAT-dependent cytokine

genes in human T cells (139). It has been suggested that, beyond its

antiplatelet activity, this drug may also have an immunomodulatory

effect in vivo (140, 141).
INCA

The Inhibitors of NFAT-Calcineurin Association (INCAs) have

been selected based on their ability to compete with the VIVIT peptide

for binding to CaN. Among these, three compounds, namely INCA-1,

INCA-2 and INCA-6 are capable of completely displacing VIVIT

from CaN, and they achieve this at low micromolar concentrations by

inducing an allosteric change in the NFAT-binding site (142). It is

important to note, that the binding site of INCA1,2 and 6 is centered

on Cys-266 of CaNA and does not involve PxIxIT core motif.

Interestingly, particular INCAs differ in their mechanisms of action.

For instance, INCA-6 is known to act on NFAT activity whereas the

physiological effects of INCA2 are associated with a general inhibition

of CaN activity (142). However, concentration-dependent cytotoxicity

has been reported for all INCAs, suggesting potential limitation in

their use in biological systems (142, 143).
Small molecular inhibitors not acting
directly on CaN

A-285222, a member of bis-trifluoromethyl-pyrazole class, falls

within the category of immunosuppressive agents known for their

ability to inhibit NFAT activity in both human and non-human

primate cells through a calcineurin-independent mechanism (144).

When applied to intact T cells, A-285222 maintains NFAT in a

phosphorylated state within the cytosol, preventing its nuclear

accumulation, all while leaving AP-1 or NF-kB activation

unaffected. Consequently, this drug effectively blocks NFAT-

dependent cytokine gene transcription. It is important to note

that while the drug shows potential as an immunosuppressive

agent, it is associated with severe side effects, particularly

neurotoxicity. Nevertheless, various cell-specific effects have been

demonstrated (145–147).

Q134R is a hydroxyquinoline derivative known for its ability to

penetrate the brain and inhibit both the induction of NFAT

transcriptional activity and caspase-3 activity (148). Importantly,

this drug does not have any impact on CaN itself, which means it
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avoids the immunosuppressive adverse effects associated with other

agents. Preclinical studies have showed its safety, good stability, and

acceptable oral bioavailability. Phase I/A trials have been

successfully completed, and the drug is currently progressing into

phase II trials.
Contribution of NFAT isoforms to
neuronal death in AD

Accumulating evidence suggests that NFAT activity is involved

in several neuropathologies (59). In nervous tissue, abnormalities in

CaN/NFAT signaling are increasingly related to a variety of

pathological features associated with Alzheimer’s disease (AD),

including synaptic dysfunction, glial activation, and cell death

(11) The prevalence of studies, as will be discussed in subsequent

sections, indicates a causative relationship between NFAT and AD,

and some of the first evidence has been provided by Abdul and

colleagues who demonstrated a relationship between amyloid

toxicity and NFAT signaling (10).

A postmortem study of human hippocampal tissue revealed

increased nuclear translocation of individual NFAT members at

different stages of AD, which correlated with the severity of

cognitive decline (11). NFATc2 activation is especially critical in

the early stages of AD, while selective NFATc4 activation occurs

later when the control of neuronal Ca2+ homeostasis and reactive

oxidative species production is lost, leading to further

neurodegeneration, neuronal death, and ultimately, dementia

(11). Moreover, levels of several cytokines increase as NFATc2

accumulates in the nucleus (11), which is consistent with its role in

neuroinflammation occurring during the early stage of AD.

Excessive activation of NFATc2/c4 at different stages of AD

progression may contribute to synaptic dysfunction and

cognitive decline.

In agreement with this hypothesis, inhibition of CaN/NFAT

signaling pathway at each stage of AD progression should prevent

degeneration of neuronal processes and slow down cognitive

decline. Numerous studies on animal models of AD have

demonstrated that CaN inhibitors, such as tacrolimus, showed

neuroprotective and/or cognitive enhancing properties and

extended lifespan (123, 149–151). In addition, Abdul et al.

suggested that Ab-induced neurodegeneration is associated with

selective changes in NFAT signaling (10). In line with that, over-

activation of CaN, enhancing nuclear localization of NFATc2 and

NFATc4, correlated with increased dementia severity in the human

hippocampus, while the subcellular localization of NFATc1 was

cytoplasmic (10). Increased NFATc2 activation was revealed in AD

patients with mild cognitive impairments, whereas NFATc4 showed

a high nuclear accumulation in patients with severe dementia and

AD (10).

While these results indicate the differential contribution of

NFAT isoforms to AD pathology, other reports suggest that

NFAT may be an essential component of signaling pathways

pharmacologically targeted in AD treatment. Lithium has been

proposed as a treatment for AD and other neurodegenerative

disorders (152). However, its clinical use is limited due to a high
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rate of associated adverse side effects, and the mechanisms

underlying those effects are not fully understood. It has been

demonstrated that lithium can act as a repressor of GSK-3, with

Ki values for GSK-3a (~3.5 mM) and GSK-3b (~2.0 mM) that

exceed therapeutic lithium serum concentrations in humans (0.5–

1.2 mM) (153–155). However, lithium, like other small molecule

inhibitors, is unable to selectively suppress the activity of GSK-3

isoforms, and its impact on cognitive function is lost in aged AD

transgenic mice (156). For these reasons, genetic approaches have

been employed to assess whether there are isoform-specific effects of

GSK-3. While the majority of these studies focuses on the

contribution of GSK-3b, a growing body of evidence indicates a

distinct role for both isoforms in Ab pathology (157–160). For

instance, in vitro and in vivo studies have revealed that

hyperphosphorylation of tau promoted by GSK-3b leads to the

formation of neurofibrillary tangles, which eventually trigger

neurodegenerative conditions (161–167). It has also been reported

that cleavage of the amyloid precursor protein (APP) into beta-

amyloid peptide is meditated by GSK-3 b (166). In addition to APP,

presenilin-1 (PS1) is involved in the aggregation of the pathogenic

Ab peptide and is regulated by GSK-3b (168, 169). This is

supported by the study of Ly and colleagues, which showed that

specific suppression of GSK-3b, but not GSK-3a, reduced Ab
formation via NF-aB-dependent transcriptional control of b-
secretase 1 (170). In contrast, Hurtado et al. (171), using AAV-

delivered shRNAs and GSK-3a conditional knockout mice,

suggested that GSK-3a plays a predominant role in AD

pathology. However, this study was limited by the use of newborn

AD model mice and putative compensatory changes in the other

GSK isoform. Given that overactivated GSK-3 is hypothesized to

play a central role in the pathogenesis of AD (159), the beneficial

effect of lithium would stem from the normalization of GSK-3

activity and the prevention of progressive Ab production as well as

local microglial-mediated inflammatory responses.

Transgenic mice with conditional expression of dominant-

negative GSK-3b showed increased neuronal apoptosis and

impaired motor coordination, a phenotype that can be reversed

by the expression of a dominant-negative GSK-3b form (172). It has

also been hypothesized that treatment with therapeutic levels of

lithium can promote neuronal loss through GSK-3b inhibition

(152). These observations strongly indicate that GSK-3 activity is

critical for the viability of adult neurons, and any manipulations

beyond physiological GSK-3 levels may pose a potential risk of

neurological toxicity. A similar effect was observed in different cell

types, including Jurkat cells, differentiated immortalized

hippocampal neurons (173), HL-60 promyeoloblast cells (174),

human lung carcinoma A549 cells (175), human choroidal

melanoma cells (176), human leukemia NB4 cells (177), K562

human erythroleukemia cells (178), human cardiomyocytes (179)

and multiple myeloma (180). On the other hand, an expanding

body of literature has provided substantial evidence that lithium can

confer neuroprotection against various insults [for a comprehensive

review, refer to (181)].

Interestingly, lithium-induced apoptosis and motor deficits

were associated with elevated nuclear accumulation of NFATc4

and NFATc3, leading to increased Fas ligand (FasL) expression and
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its activation (152). The opposite effect was observed in mice

lacking the Fas-receptor (lpr mice) or following CsA treatment. In

addition, activation of the CaN/NFAT/FasL death signaling has

been suggested in methamphetamine-induced neuronal apoptosis

(182). The link between FasL regulation by NFAT is interesting as

Fas and FasL are associated with neuronal degeneration in the AD

brain and participate in Ab-mediated cell death (183). In vivo

treatment with CaN or NFAT inhibitors abolished NFAT-

mediated FasL expression and attenuated neuronal apoptosis (184).

Experimental evidence suggests a possible role of NFATs in

mediating the survival response. It has been demonstrated that in

the presence of growth factors and neuronal activity mimicked by

high extracellular KCl concentrations, both endogenous NFATc4

and exogenously expressed NFATc4 were localized to the nucleus of

granule neurons (54). On the contrary, serum/K+ deprivation led to

NFATc4 nuclear export, which was strongly associated with the

induction of neuronal apoptosis. Treatment with the GSK-3

inhibitor lithium chloride blocked the nuclear export of NFATc4

and cell death, suggesting a correlation between NFAT localization

and neuronal survival. In line with that, NFATc4 knockdown

resulted in enhanced apoptosis, observed even in a rich culture

medium and high K+. The expression of a constitutively active form

of NFAT prevented neuronal cells from apoptosis induced by low

K+ or growth factor deprivation (54).
CaN/NFAT signaling and
Ab neuropathology

CaN/NFAT signaling has been recognized as a target for Ab
pathology in numerous studies [for review, see (3, 11)], highlighting

the importance of Ab-mediated Ca2+ homeostasis deregulation,

which creates a favorable environment for CaN/NFAT activation. A

report by Wu and colleagues showed that short exposure of primary

cortical neurons to Ab oligomers led to the dynamic progression of

CaN activation and resulted in morphological changes in spines and

postsynaptic proteins, while longer exposure led to NFAT

accumulation in the nucleus and significant spine loss (35).

Similarly, the loss of spines and dendritic branching simplification

evoked by Ab treatment in primary neurons were mimicked by

constitutively active NFAT (185). Transfection with VIVIT-GFP

before Ab exposure greatly improved neuronal morphology despite

the persistence of Ab in the culture medium. Spine atrophy and

neuronal abnormalities seen in the vicinity of amyloid plaques in

APP/PS1 mice were prevented when AAV2-VIVIT was delivered

by stereotactic intracortical injections (185). This suggests that

selective disruption of CaN-NFAT interaction may be protective

against Ab synaptotoxicity. These findings also illuminate a possible

mechanism underlying the lack of cognitive improvement by GSK-

3 inhibitors in an AD clinical trial (186). Notably, Ab-activated
GSK-3 potentiates further Ab production, creating a positive

feedback loop. Activated GSK-3 phosphorylates NFAT, inhibiting

CAN/NFAT apoptotic pathway, and consequently, GSK-3

inhibitors release this inhibitory brake, promoting NFAT-

mediated neurodegeneration (186). Similarly, Ab treatment of

murine hippocampal neurons caused dysregulation in
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intracellular Ca2+ and impaired dendritic and axonal transport of

BDNF (187). Exposure of mixed neuron/astrocyte culture to Ab
stimulated CaN/NFAT activity and triggered CaN proteolytic

cleavage, resulting in an overall increase in intracellular CaN

activity (188). The accumulation of both CaN and NFATc4 (but

not NFATc2) in the nucleus of hippocampal tissue positively

correlated with a higher level of soluble Ab, which steadily

increased as the severity of dementia progressed (10).

Mounting evidence indicates that activation of CaN/NFAT

signaling may be linked to enhanced generation of Ab peptides

(3, 36). To support this, Hong and colleagues (189) showed that

FK506 administered to 8-month-old APP/PS1 double transgenic

mice reduced Ab accumulation in the cortex and hippocampus

while increasing matrix metalloproteinase-9 (MMP-9) expression,

which is known to degrade Ab (190). Moreover, increased MMP-9

colocalized with astrocytic marker GFAP (glial fibrillary acidic

protein) in FK506-treated mice indicating that drug-dependent

MMP-9 up-regulation originates from activated astrocytes. In line

with that, no correlation between MMP-9 immunoreactivity and

the neuronal marker NeuN was observed, though FK506 increased

the level of PSD-95 and synaptophysin, proteins involved in

postsynaptic density formation and vesicular neurotransmitter

release, respectively. Similarly, intrahippocampal injections of

AAV2-VIVIT under the astrocyte-specific promoter reduced Ab
pathology, normalized spontaneous synaptic activity, prevented

dendritic degeneration, and improved cognition in the 5xFAD

mouse model of AD (36). Furthermore, AAV2-mediated NFAT

inhibition increased glutamate transporter-1 expression in

hippocampal astrocytes and reduced the number of glutamate-

evoked transients (36), suggesting CaN/NFAT-dependent loss of

glutamate regulatory properties underlying hyperexcitability in AD.

Another study pointed out astrocytic CaN/NFATc4 signaling

activated in response to Ca2+ overload as one of the key

pathological mechanisms driving Ab generation by inducing b-
secretase 1 (BACE1) transcription (191) (Figure 4).

BACE1 protein and activity were found to be elevated in the AD

brain, suggesting that BCAE1 up-regulation may be a phenomenon

occurring early in AD or accelerating AD progression (192).

Importantly, BACE1-/- mice are devoid of Ab amyloidosis,

electrophysiological dysfunctions, and cognitive deficits (192),

implying targeted BACE1 inhibition to improve Ab-mediated loss

of cognitive function in humans with AD. Although not verified in

ADmodels, Mei and coworkers demonstrated that NFATc4 directly

binds the BACE1 gene promoter and regulates its expression (191).

It is worth noting that the development of potent BACE1 inhibitors

presents numerous challenges. One of the major hurdles is the

structural similarity of BACE1 to other aspartyl proteases, a family

that includes several enzymes widely expressed through the human

body, such as BACE2, pepsin, renin, cathepsin D, and cathepsin E

(193). Thus, it is imperative to develop effective BACE1 inhibitors

without affecting other proteases and to exclude off‐target side

effects (194, 195). Furthermore, another aspect of discovering

successful BACE1 inhibitors is the relativity large size of the

BACE1 active site (195). Moreover, another limiting factor is

related to the ability of these molecules to pass through the

blood-brain barrier (196). To date, despite tremendous efforts,
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none of the BACE1 inhibitors has succeeded in demonstrating

clinical value.
CaN/NFAT in AD-associated
inflammatory signaling

Many stud ies now point to the contr ibut ion of

neuroinflammation to the progression of neuropathological

changes observed in AD. One of the signs that emerges early in the

course of AD is astrocyte activation, which becomes more prominent

during later stages when the amyloid and tau pathology is extensive

(197). It is hypothesized that CaN/NFAT signaling serves as a critical

mechanism triggering astrocyte phenotype switching and plays a

pivotal role in astrogliosis and brain neuroinflammation. In

astrocytes and microglia, CaN/NFAT is activated in response to a

variety of neuroinflammatory mediators, including pro-

inflammatory cytokines, glutamate, ATP, S100 protein, thrombin,

vascular-injury factors, and Ab. Once activated, CaN/NFAT may

further potentiate the inflammatory response by driving the

expression of numerous inflammatory factors, many of which are

elevated in AD [reviewed in (198)]. It is well-accepted that Ca2+

homeostatic imbalance may aggravate AD through the pathological

activation of neuronal networks but, in contrast to neurons, little is

known about Ca2+ signaling specifically linked to glial CaN/NFAT

activation. L-type voltage-dependent Ca2+ channels are likely to play

a role, but the contribution of other plasma membrane transporters

as well as those located in the ER cannot be ruled out (199).

Furthermore, CaN-dependent signaling may be a nodal

point linking Ca2+ dyshomeostasis, Ab accumulation, and

neuroinflammation. In primary neurons, Ab treatment stimulated
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a Ca2+-dependent protease calpain, which cleaves C-terminal

autoinhibitory domain, producing a constitutively active

truncated version of CaN (DCaN, 48 kDa CN-Aa) insensitive to

Ca2+/CaM regulation (200) (Figure 5).

High levels of DCaN were detected in areas surrounding

amyloid plaques in mouse and human brains (201, 202).

Moreover, the levels of DCaN and active calpain correlated with

one another in human hippocampal tissues of individuals with mild

cognitive impairments when compared to age-matched controls

(188). These changes were further linked to increased proteolysis of

the NMDA receptor subunit 2B, which is necessary for long-term

potentiation and memory formation (203, 204). This provides a

mechanism by which oligomeric Ab may contribute to brain

degeneration through calpain-mediated CaN proteolysis and

further overactivation of CaN/NFAT signaling. However, the

molecular phenotype of DCaN-expressing astrocytes and their

role in AD pathology have not been thoroughly studied. In

primary neuronal cultures, heterologous expression of DCaN
activated the transcription of several genes involved in immune

response and morphogenesis (205). As many of these transcripts

encode releasable cytokines and chemokines, CaN/NFAT signaling

in activated astrocytes may contribute to cerebral vascular damage,

reducing micronutrient delivery and compromising neuronal-glia

interaction. The hypothesis of impaired microcirculation

underlying AD development was postulated nearly 30 years ago

(206) and has been widely discussed in multiple studies (207, 208).

The plausible role of CaN/NFAT in AD-related vascular

pathologies is further supported by recent work showing the

upregulation of DCaN and NFAT signaling in astrocytes nearby

regions of small vessel damage (209). Further evidence of aberrant

astrocytic Ca2+/CaN/NFAT signaling contributing to vascular
FIGURE 4

Regulation of astrocytic Ab metabolism by CaN/NFAT signaling. (Left) In steady-state conditions, BACE expression is maintained at low level. (Right)
Activation of astrocytes by upstream inflammatory mediators stimulates NFAT and NF-kB nuclear translocation and BACE1 upregulation. Increased
BACE1 activity is associated with abnormal production of Ab, which subsequently form amyloid plaques.
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pathology associated with cognitive decline and dementia comes

from the latest study of Sompol and colleagues (210). Using a diet-

based model of hyperhomocysteinemia (HHcy), which recapitulates

numerous features of AD, they demonstrated that VIVIT-mediated

NFAT inhibition ameliorated astrocytic reactivity and improved

blood flow in arterioles and capillaries. Moreover, the suppression

of NFAT signaling preserved CA1 synaptic function and improved

the cognitive performance of HHcy diet mice.

In addition to CaN overactivation studies, inhibition with either

pharmacological drugs or targeted peptides revealed a similar

relationship between CaN/NFAT and neuroinflammation.

Targeting AAV2-VIVIT peptide to hippocampal astrocytes in

APP/PS1 mice reduced glial activation, lowered Ab levels, and

improved cognitive and synaptic function (211). These findings

align with previous reports showing high levels of CaN in activated

astrocytes and its role in phenotype switching via NFAT signaling

(46, 84, 205). Although the upstream signals leading to pathological

activation of CaN in astrocytes are not well-characterized,

heterologous expression of a constitutively active form of CaN

upregulated genes linked to the activated phenotype, as well as

numerous inflammatory-related genes (3). Astrocytic CaN/NFAT

signaling has also been demonstrated to mediate the neurotoxic

effects of several factors implicated in AD pathogenesis, including

TNFa, CCL2, Cox2, GM-CSF, IL-6, IL-1b, and other cytokines (62,

202, 212–214). For instance, IL-1b promoted CaN/NFAT activation

in primary astrocytes through IL-1 receptors and L-type Ca2+

channels without affecting CaN or NFAT expression levels (212).

Interestingly, activated CaN/NFAT caused robust activation of

CaN/NFAT in adjacent astrocytes via paracrine signaling. This

observation places CaN/NFAT in the center of a positive feedback

loop controlling local production of neuroinflammatory mediators.
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An interesting approach based on reprogramming

macrophages to become anti-inflammatory was proposed in a

study conducted by Escolano and coworkers (215). By

introducing the LxVP peptide that interferes with CaN-NFAT

binding (for exact mechanism of action see Pharmacological

inhibitors of CaN/NFAT with potential use in AD treatment

section) they demonstrated that systemic or local peptide delivery

via adenoviral gene transfer attenuated the inflammatory response

in vivo. Mechanistically, LxVP-mediated CaN inhibition reduces

the activity of MKP-1, a dual specificity protein phosphatase,

releasing p38 MAPK kinase from MKP-1 repression. In murine

mouse models, p38 MAPK kinase was associated with the activation

of macrophage reprogramming (216). It has been reported that high

dose of FK506, 500 times higher than necessary to suppress CaN,

induces short-term p38 MAP kinase activation, reaching its peak at

30 min and subsequently decreasing (215). Furthermore, the

application of pharmacological, non-toxic doses of CsA or FK506

effectively inhibits CaN activity, but does not trigger p38 MAPK

kinase activation (215). These results strongly suggest that the anti-

inflammatory phenotype of macrophages induced by LxVP requires

the involvement of p38 MAP kinase. Additionally, the VIVIT

peptide also failed to induce p38 activation (215). This unique

feature of LxVP distinguishes its action from the properties of other

CaN/NFAT inhibitors, such as CsA or FK506. However, before

testing this therapy in patients, it would be particularly interesting

to unravel the relationship between anti-inflammatory M2

macrophages and macrophages induced by LxVP peptide. Other

strategies controlling immune cell function, such as NFAT’s O-

linked b-N-acetyl glucosamine modification (217), genetic deletion

of soluble epoxide hydrolase (218), or oxygen-ozone therapy that

activates immune function and suppresses inflammatory responses
FIGURE 5

Contribution of hyperactive CaN/NFAT to pro-inflammatory cytokine production. Dysregulation of Ca2+ homeostasis leads to the production of
truncated CaN fragment (DCaN), which is constitutively active. Hyperactivated CaN/NFAT sustains prolonged astrocytic activation and chronic
neuroinflammation through a continuous stimulation of pro-inflammatory cytokine genes. Normalization of CaN/NFAT activity may be provided by
commercial immunosuppressants such as cyclosporine A and tacrolimus (FK506), or the VIVIT peptide.
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through up-regulation of NF-kB, NFAT, and AP-1 signaling (219),

should also be given special consideration.

Targeted inhibition of CaN/NFAT signaling, either by naturally

occurring compounds or synthetic drugs, may effectively reduce

neuroinflammation, thus offering a promising strategy in the

treatment of AD (220, 221). However, the translational potential

of many CaN inhibitors is markedly limited due to severe adverse

effects, including neuro-muscular and renal dysfunction or

progressive lymphopenia (222, 223). Despite many advantages

over peptide/protein-based drugs, small chemical inhibitors of

NFAT have not been widely described. Dipyridamoles can reduce

inflammation and cytotoxicity and exert a neuroprotective effect

under certain conditions (141, 224). However, their use is not

without side effects (225). Another class of small organic

molecules, known as INCAs, was initially promising due to their

ability to displace VIVIT at low micromolar concentrations, but it

turned out to be cytotoxic for certain cell lines when tested.

Nonetheless, when administered at non-toxic low micromolar

concentrations, INCA-2 and INCA-6 prevented the induction of

mRNAs encoding TNFa , interferon-g , and macrophage

inflammatory proteins MIP-1a and MIP-1b (142), as well as

some pro-inflammatory cytokines and chemokines (226). Other

NFAT inhibitors, such as A-285222, have shown to reduce

inflammation, but the experimental data on their use in neuronal

or glial cells are very limited (227). Recently, a new

hydroxyquinoline derivative, Q134R, has been demonstrated to

reduce glial reactivity markers and improve synaptic function,

without affecting Ab load (148). Moreover, Q134R improved

cognitive performance and showed no signs of lymphopenia,

suggesting its efficacy comparable to CaN inhibitors but with

fewer side effects.
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AD-involved receptors signaling
through CaN/NFAT

The role of NFAT signaling in AD pathogenesis has been

demonstrated in numerous studies, but the upstream signaling

leading to CaN/NFAT deregulation remains largely unresolved.

Therefore, in this section we discuss how the function of receptors

associated with AD affects CaN/NFAT signaling (Figure 6).
Transient receptor potential ankyrin 1

As previously discussed, Ab-induced Ca2+ overload plays a

pivotal role in cytokine secretion by activating CaN and its

downstream targets, including NFAT and NF-kB (198). However,

the intracellular proteins that regulate Ab-mediated Ca2+ influx and

drive the inflammatory response are still largely unresolved. One of

the strong candidates is the transient receptor potential ankyrin 1

(TRPA1), which is a Ca2+-permeable nonselective channel

belonging to the TRP channel superfamily. It is widely expressed

in the sensory neurons of the dorsal root ganglia, trigeminal ganglia,

and nodose ganglia, as well as in hair cells and non-neuronal cells

(228). TRPA1 responds to a variety of exogenous irritants and

endogenous agonists to mediate inflammation and transmit pain

(229–232). Due to these properties, TRPA1 is considered a

promising target for novel analgesic and anti-inflammatory drugs.

Furthermore, it is involved in temperature sensing and may play a

role in the detection of infrared radiation and the avoidance of

nociceptive heat (233–238).

Lee and colleagues demonstrated that TRPA1 is upregulated in

the hippocampus of APP/PS1 mice (239). In this mouse model, Ab
FIGURE 6

Receptors signaling through CaN/NFAT and their effect on NFAT activation. In most cases, the signaling pathways upstream NFAT but downstream
the receptor is unknown and this is expressed as dotted line in the figure. The effect on NFAT activity has been measured either by changes in
cytokine expression or release, or the activity of NFAT reporter.
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triggers TRPA1-mediated Ca2+ accumulation and hyperexcitability

of CA1 hippocampal neurons, suggesting that TRPA1 may function

during the early onset of AD (240). Ab-induced TRPA1-Ca2+

signaling has been shown to be a critical event in the activation of

CaN/NFAT, leading to cytokine production and inflammation in

astrocytes (239, 241). Consistent with this, genetic ablation of

TRPA1 channel function in APP/PS1 mouse reduces Ab-induced
activation of CaN, decreases NFAT’s DNA-binding activity in

astrocytes, and lowers the levels of pro-inflammatory cytokines

IL-1b, IL-6, and IL-4 in the brain. Furthermore, loss of TRPA1

function ameliorates AD progression and improves behavioral

performance (239), highlighting the importance of astrocytic

TRPA1-Ca2+-CaN-NFAT signaling in the inflammatory process

and AD progression.
Sigma receptor

Another channel implicated in AD pathology is the sigma

receptor, a Ca2+-sensitive chaperone located at the mitochondria-

associated endoplasmic reticulum (242). Upon ligand binding, the

sigma receptor translocates to the plasma membrane and interacts

with various ion channels and G protein-coupled receptors (243).

In terms of its mechanism, it operates as more of a signaling

modulator than a conventional receptor, and its function

encompass the regulation of lipid metabolism, control of both

voltage- and non-voltage ion channels, maintenance of

intracellular Ca2+ homeostasis, modulation of electrical activity,

and potentially several other roles (244). Early studies have

demonstrated the loss of sigma receptor in the CA1 area of the

anterior hippocampus in AD patients, which correlates with

damage to CA1 cells (245). The depletion of sigma receptor in

the brain is thought to manifest early in the progression of AD,

primarily impacting the frontal, temporal, and occipital brain

regions (246). The development of preclinical models of AD has

allowed researchers to determine the correlation between

receptor level and the severity of AD, as well as uncover the

neuroprotective properties of sigma receptor agonists (247, 248).

For instance, BD-7373 and CB-184, agonists of the sigma-2

receptor subtype, exhibit a potent inhibitory effect on NFAT

and NF-kB transcription, leading to decreased expression of

TNFa, IL-2, and COX-2 genes, potentially reducing brain

inflammation (249). Activation of the sigma-1 receptor, on the

other hand, may inhibit g-secretase activity and reduce Ab
production (250). However, Ab accumulation and subsequent

activation of CaN/NFAT have been shown to induce sigma

receptor degradation through NFAT-dependent induction of

BIP protein expression, promoting E3 ligase recruitment (251).
Triggering receptor expressed
on myeloid cells 2

TREM2 was initially identified and characterized in human

dendritic cells derived from blood monocytes and cultured in vitro
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with the granulocyte macrophage colony stimulating factor and IL-

4 (252). It belongs to the immunoglobulin-lectin-like receptor

superfamily and plays a role in the development of the AD

phenotype (253). TREM2 is predominantly expressed in tissue

macrophages, where it can be found both on cell surface and

within intracellular compartments. Macrophages expressing

TREM2 are located in various sites, including microglia in the

central nervous system, specific macrophage subset in the liver, and

osteoclast in bone (253). Research has shown that alterations in

TREM2 expression affect multiple functions of microglia (254).

Increasing TREM2 results in elevated level of chemokine receptors,

enhanced cell migration, and improved phagocytosis. Conversely,

decreased TREM2 expression inhibits the engulfing of apoptotic

cells while increasing the expression of pro-inflammatory

cytokines (254).

Characterization of the microglial transcriptome in TREM2-

deficient mice has demonstrated the essential role of TREM2 in

microglial response during Ab accumulation (255). TREM2 can be

directly modulated by Ab and other components of Ab plaques

(253). Several studies have reported that TREM2 activation

increases intracellular Ca2+ level and activates the NFAT reporter

system, suggesting that NFAT may transmit signals downstream of

TREM2 (252, 256, 257). The precise mechanism of TREM2-

dependent NFAT activation in AD is not entirely clear, but a

recent study by Zhao et al. revealed that Ab42 oligomers promote

TREM2-DAP12 interaction and SYK kinase phosphorylation,

which plays an important role in NFAT signaling (258).

Involvement of SYK kinase activating the PLCg-CaN-NFAT

pathway was also suggested by Lessard and colleagues (259).

These authors demonstrated that the loss-of-function TREM2

mutation variant R47H, which has been associated with a higher

incidence of AD (260), reduced Ab internalization and NFAT

signaling, establishing a direct link between Ab aggregates,

TREM2, and NFAT transcriptional activity. Modulation of NFAT

transcriptional activity may also underlie TREM2’s ability to sustain

microglial response to Ab accumulation and influence the

production of inflammatory cytokines in vivo. This hypothesis is

supported by the fact that apoptotic cells transduce the NFAT signal

via TREM2, consistent with its function as a sensor of anionic and

zwitterionic lipids presented on the surface of neurons exposed to

Ab (261, 262). The accumulation of phosphatidylserine (PS) and

phosphatidylethanolamine (PE) on the neuronal cell membrane in

the AD mouse brain (263) suggests that PC and PE may transduce

signals via TREM2-NFAT (261, 264), potentially enhancing

TREM2 activity and promoting a protective phenotype in

microglia. Although it remains unclear which TREM2-regulated

target genes may be responsible for the increased risk of AD, recent

work with engineered TREM2 agonistic antibodies suggests that

many of these genes may contain an NFAT response element (265).

Activation of TREM2 by dedicated antibodies has been shown to

enhance microglia-dependent clearance of Ab plaques in 5XFAD

mice, indicating their potential clinical use in AD treatment. The

rationale for strategies aimed at normalizing TREM2 expression/

activity in AD treatment is further supported by the latest finding of

increased Trem2 expression in 5XFAD mice (266).
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Imidazoline 2 receptors

Imidazoline 2 receptors (I2 receptors) represent a highly

heterogenous group of non-adrenergic binding sites characterized

by their high-affinity binding to [3H]-idazoxan (267). Cellular

distribution studies have indicated their presence on the outer

mitochondrial membrane, and they have been suggested to

potentially serve as novel allosteric binding sites for monoamine

oxidase (MAO). Interestingly, another unrelated binding site is

brain creatine kinase (268). Numerous biochemical and preclinical

investigations, conducted using animal models of brain injury (269–

272), suggest that ligands targeting I2 receptors exhibit

neuroprotective activity, in part by lowering body temperature –

an effect known to be beneficial in cerebral ischemia (273). There is

also evidence to suggest that I2 receptors ligands may mitigate

neurodegenerative processes, including cognitive decline,

neuroinflammation, and oxidative stress (274).

Indeed, postmortem analysis of brain samples derived from AD

patients revealed a higher density of imidazoline 2 receptors (I2-

IRs), and several pharmacological modulators of I2-IRs activity have

been successfully tested to reduce AD hallmarks (275–277). The

mechanisms underlying the beneficial effects of I2-IRs modulation

are complex and, so far, largely unknown. Recent reports suggest

that neuroprotective mechanisms may be ligand-specific. For

instance, LSL6010 alone decreased Ab plaque formation, tau

hyperphosphorylation, and the expression of microglia markers in

the 5XFAD mouse model. When administered in combination with

donepezil, LSL6010 additionally reduced GFAP reactivity (276). In

the same AD murine model, LSL60101 (garsevil) reduced the

markers of oxidative stress and decreased the expression of the

pro-apoptotic FADD protein in the hippocampus (275). Using

the senescence-accelerated mouse prone 8 (SAMP8) model, which

is considered a late-onset AD mouse model characterized by tau

hyperphosphorylation and altered APP processing (278),

Vassilopoulos and colleagues demonstrated that a newly

synthesized I2-IRs ligand, named B06, reduced the expression of

pro-inflammatory cytokines by inhibiting CaN/NFATc1 signaling

(274). Therefore, new-generation I2-IRs ligands that affect NFAT-

dependent transcription hold great neuroprotective potential

in AD.
Low-density lipoprotein receptor-related
protein 6

LRP6 belongs to the extended low-density lipoprotein receptor

family and serves as a co-receptor in the canonical Wnt signaling.

LRP6 is expressed in a widespread manner across human tissues,

exhibiting both weak and strong expression patterns in different

tissue types (279). Because of its function in Wnt/b-catenin
pathway, it is required in the regulation of cell proliferation,

specification, migration during development, and it is highly

expressed in different types of cancer (280). Furthermore, clinical

studies and genomic analysis have confirmed that LRP6 is

associated with neurodegenerative diseases including AD (281).

Conditional knockout of LRP6 in mice resulted in synaptic
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dysfunctions, accompanied by cognitive impairments and

exacerbated memory deficits in the APP/PSEN1 AD model (282).

Interestingly, downregulation of LRP6 expression and LRP6-

mediated Wnt signaling were observed in the human brain

affected by AD compared to age-matched controls (283). Several

possible mechanisms have been proposed to explain how impaired

LRP6 downstream signaling may worsen AD pathology. Firstly,

LRP6 directly interacts with APP, and its deficiency may promote

the amyloidogenic processing of APP, leading to increased

endogenous Ab levels (283). Secondly, LRP6 loss has been shown

to increase the number of hippocampal astrocytes and microglia,

promoting neuroinflammation through extensive production of

pro-inflammatory cytokines (283). LRP6 may also contribute to

AD pathology by regulating lipid metabolism, particularly ApoE-

containing lipoproteins (284, 285). However, the role of glial and

astrocytic LRP6 in the context of AD has not been widely studied.

Recent research by Chow and colleagues revealed that LRP6 cell

surface retention serves as a bimodal switch for astrocytic fuel

metabolism (286). In the absence of LRP6, Wnt signaling activates

the non-canonical Ca2+‐PKC‐NFAT axis, favoring the utilization of

glutamate-derived glutamine and branched chain amino acids over

glucose. Increased levels of both NFATc2 and NFATc4 were

observed in Wnt‐exposed GFAP‐Lrp6–/– astrocytes, but NFATc2

appears to be the isoform that regulates mitochondrial glutamine

metabolism and the acquisition of a reactive phenotype. Depletion

of these amino acids from the astrocyte microenvironment may

impact synaptic functions and contribute to cognitive and memory

deficits. Remodeling of the metabolic framework in astrocytes is an

early change associated with late-onset AD (287). In the latest study,

non-canonical Wnt5a/CaMKII/NFAT signaling has been shown to

participate in the release of inflammatory factors and modulate the

activation of microglia (288).
N-methyl-D-aspartate receptor

Physiologically, NMDARs are central to development of

nervous system are involved in a numerous forms of synaptic

transmission underlying learning and memory formation (289,

290). In AD, abnormal activation of NMDARs by a glutamate

highly released from glial cells stimulates a massive Ca2+ influx and

aberrant processing of Ca2+/CaN signaling, promoting oxidative

stress, neuroinflammation and cell death (291–293). Accumulating

evidence indicates that function of NMDAR is dysregulated by Ab
and the disruption in Ca2+ homeostasis and glutamatergic synaptic

transmission may be related to early cognitive deficits observed in

AD (294–296). There are multiply potential way by which NMDAR

contributes to Ab pathology: first, Ab are able to bind NMDAR

extracellularly suggesting direct or indirect modulation of the

receptor by amyloid b oligomers (297); second, Ab facilitates

NMDAR activation, which controls Ab production and secretion

(298, 299); third, NMDAR may be important mediator in Ab-
induced neurotoxicity (300) and fourth, due to the synaptic and

extrasynaptic location, NMDAR may function as a downstream

target in Ab-induced synaptic depression (301). The interaction

between Ab and NMDAR rationalizes the clinical use of
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memantine, a non-competitive NMDAR antagonist, in

combination with acetylcholine inhibitor donepezil, to improve

cognitive performance and life quality of patients with moderate

to severe AD (302). The beneficial effects of memantine

administration may involve reduction in neuroinflammation and

overall improvement of brain function although the mechanisms of

drug action are not completely understood. The participation of

CaN/NFAT cannot be unequivocally excluded as other NMDAR

antagonists such as MK-801 are known to abolish NMDAR-

dependent NFAT activation (303, 304). Nonetheless, memantine/

donepezil did not improve excessive agitation (305) and

hippocampal atrophy (306) and the effectiveness of this therapy

has been questioned in patients in advanced AD stages (307).

Recently, Turcu et al. developed an optimized, non-cytotoxic,

memantine-like NMDAR antagonist, UB-ALT-EV, with high

metabolic stability, low micromolar activity and excellent

electrophysiological profile as NMDAR blocker (308). The drug

rescued defective locomotion and reversed the disrupted

chemotaxis behavior in C. elegans, which constitutively express

human Ab, suggesting the protection against Ab toxicity in a

manner similar to memantine. Importantly, UB-ALT-EV also

enhanced short- and long-term working memory in 5XFAD mice

(308). Strikingly, both UB-ALT-EV and memantine normalized

CaN protein level, but only UB-ALT-EV, increased NFATc1

phosphorylation, thereby preventing its nuclear translocation

(266). Further evaluation of UB-ALT-EV-exerted neuroprotection

demonstrated a reduction in the production of several pro-

inflammatory cytokines regulated by CaN/NFAT signaling, as

well as a decrease in oxidative stress due to enhanced expression

of anti-inflammatory mediators in the 5XFAD model (266).

These results collectively indicate that UB-ALT-EV’s capacity to

reduce gliosis arises from its modulatory effect on NMDAR-

dependent Ca2+ entry and CaN/NFATc1 downstream signaling.

In mature hippocampal neurons expressing both NMDAR2A

and 2B subunits, Ab-induced hippocampal dysfunctions and ER

stress were largely reversed by ifenprodil, an antagonist of

NMDAR2B subunits (297). Additionally, ifenprodil prevented the

depletion of ER Ca2+ content, superoxide generation, and cell death,

demonstrating the involvement of NMDAR2B in Ab neurotoxicity.

Considering that NMDAR-dependent NFAT activation and NFAT-

mediated transcription are disrupted in primary neurons in the

presence of ifenprodil (101), its anti-inflammatory action may

involve the normalization of NFAT signaling.
Other Ca2+-permeable receptors

In the Drosophila AD model, overexpression of human amyloid

precursor protein (APP) induced synaptic hyperexcitability and

concurrent upregulation of Ca2+-related signaling genes, including

Dmca1D (L-type Ca2+ channel), CaN, and the inositol 1,4,5-

triphosphate receptor (IP3R) (309). Mechanistically, exaggerated

Dmca1D expression promoted APP-dependent Ca2+ overload,

leading to increased CaN activity. This, in turn, triggered NFAT-

dependent transcription of IP3R. IP3R is a large-conductance cation

channel located in the ER membrane, responsible for cytoplasmic
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Ca2+ increases that control cytoplasmic and mitochondrial processes,

thereby regulating cell survival (310, 311). Aberrant Ca2+ signaling

resulting from IP3R dysregulation has been implicated in several

neurodegenerative diseases, including AD, and ER stress-related

neuronal injury (312). For instance, IP3R has been previously

shown to interact with presenilin mutants causing the familiar

form of AD (FAD), leading to its gain-of-function enhancement in

an Ab-independent manner (313, 314). This gain-of-function has

been suggested as a key factor behind altered IP3R-mediated Ca2+

release in sub-saturating IP3 concentrations, serving as a highly

predictive diagnostic feature of AD (315). In light of this, the

normalization of IP3R-dependent signaling has been found to

restore normal cell function and improve memory in FAD-causing

presenilin knock-in mice (316), as well as in triple-transgenic mouse

models of FAD (317, 318). Furthermore, Shao et al. demonstrated

that NFAT-mediated IP3R upregulation significantly contributes to

synaptic downscaling machinery. The restoration of IP3R expression

blocked synaptic excitability and miniature excitatory postsynaptic

current (mEPSC) frequency (309). Therefore, substantial evidence

supports the role of IP3R in contributing to the deregulation of Ca2+

homeostasis observed in AD. IP3R dysfunction may drive a series of

pathological events leading to disease progression.

IP3R-mediated depletion of ER stores triggers the activation of

SOCE (store-operated Ca2+ entry) from the extracellular milieu

across the plasma membrane, resulting in a subsequent increase in

cytosolic Ca2+. Altered SOCE-mediated ER store refill is one of the

hallmarks of AD, as reduced SOCE has been implicated in synaptic

loss and cognitive decline in genetic mouse models as well as in

human AD brain samples (319). However, the molecular

mechanisms by which IP3R modulates SOCE in AD are not

completely understood. A recent study by Sampieri et al. (320)

demonstrated that ER depletion induced by G-protein coupled

receptor and phospholipase C (PLC) activation stimulates the

recruitment of IP3R to the STIM1 protein, which acts as the sensor

for ER calcium load. The gradual decrease in STIM1 expression in the

medial frontal gyrus of pathologically confirmed AD patients has

been linked with disease progression and neurodegeneration

mediated by the L-type voltage-dependent Ca2+ channel (321, 322).

Interestingly, STIM1 expression is sensitive to inflammation (323,

324), suggesting that changes in Ca2+ influx through SOCE channels

may occur during the early stages of AD development. Using a

lipopolysaccharide (LPS)-induced model of AD neuroinflammation,

Sun and coworkers (325) demonstrated that SOCE-mediated

activation of the PLC/CaN/NFAT pathway up-regulated NADPH

oxidase and NOD-like receptor family protein 1 (NLRP1)

inflammasome, both playing a pivotal role in oxidative stress and

neuronal inflammation. These studies collectively indicate that NFAT

activation by pathological Ca2+ signals of different origins mediates

neurotoxic Ab effects and contributes to neuronal damage.
RCAN1 protein- an endogenous
control for CaN/NFAT activity

An open question remains regarding the control mechanisms of

endogenous CaN/NFAT activity. One of the candidates is the
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regulator of calcineurin 1 (RCAN1), a small evolutionarily

conserved protein that can directly bind to and inhibit CaN

activity. RCAN1 has been implicated in various forms of brain

degeneration, and its increased expression has been demonstrated

in the cortex of patients with AD as well as during normal brain

aging (326–329). A conclusive mechanistic explanation for the role

of RCAN1 in neuronal death observed in AD has not yet been

presented, although several hypotheses have been proposed.

Overexpression of RCAN1 is known to induce the caspase-3

mediated apoptotic pathway, which can be blocked by the

antioxidant lycopene, suggesting the involvement of oxidative

stress (330). In line with this, Sun and coworkers proposed an

isoform-specific regulation of RCAN1 by calcium overload,

activating CaN/NFAT signaling and exacerbating caspase-3

mediated death (331). According to the study by Jing and

colleagues, RCAN1 overexpression disrupts mitochondrial

function and promotes apoptosis through the stabilization of

adenine nucleotide translocator (ANT1) mRNA and Ca2+‐

dependent induction of mitochondrial permeability transition

pore opening (332). This is supported by the latest study, which

shows the inhibition of NFAT and NF-kB transcriptional activity by

the RCAN1 RNA aptamer R1SR13, resulting in the attenuation of

apoptosis in neurons (333). RCAN1 may also contribute to AD

pathology by enhancing N-glycosylation in the ER, thus

significantly increasing Ab production (334). The amyloid

proteins and RCAN1 appear to be mutually regulated, as Ab
enhances RCAN1 expression, and RCAN1 reciprocally induces

Ab formation and potentiates its neurotoxicity (334–337). The

transcription of RCAN1 can also be activated by NF-kB, a key

mediator of brain inflammation in AD (338, 339), and repressed by

its own protein in a negative loop. In this regulation, the activation

of CaN/NFAT signaling attenuates NF- kB activity, whereas

activated NF-kB potentiates NFAT-dependent transcription.

The function of RCAN has been demonstrated to be critical

during development and in healthy synapses [reviewed in (340)].

Mice deficient in rcan1/2 displayed neurological symptoms similar

to CaNAb-null mice, including enhanced locomotor activity and

deficits in working memory (341). Rcan1/2 loss-of-function

impaired NFAT activation, suggesting that RCAN may also allow

or facilitate CaN-NFAT coupling under certain conditions. This is

further supported by a study of Liu and colleagues, which

demonstrates that the phosphorylation of RCAN1 at Ser94 and

Ser136 by TAK1 (Transforming growth factor beta-activated

kinase 1) acts as a switch between inhibitory and permissive

RCAN1 functions, thereby enhancing CaN signaling and

facilitating NFATc1 nuclear translocation (342). This switch

requires the formation of a multimolecular complex involving

TAB2 (TGFb activated kinase 1 binding protein 2) and RCAN1,

followed by the recruitment of TAK1, TAB1 and CaN. This

mechanism is not observed in rcan1/2-deficient mice. As TAK1

and its binding partner TAB1 can be activated by a variety of

cytokines, including IL-1b or TNFa (343), RCAN1-dependent

modulation of CaN activity may have profound consequences for

glial response to pro-inflammatory stimuli. Other studies also

confirmed that altering RCAN1 levels either by overexpression or
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knock-out approaches resulted in memory deficits and impaired

synaptic plasticity, both of which are frequently observed in AD

patients (344, 345).

Recently, RCAN1 knockdown or overexpression has been

linked to age-related deficits in rest-activity and circadian

rhythms, characteristic for AD and Down syndrome (346). In the

latter, perturbed CaN/NFAT signaling was associated with a higher

risk of developing amyloid pathology (347). RCAN1 has also been

shown to interact with Dyrk1A, which is considered a candidate

protein responsible for AD in the early stages of this disease (348).

This interaction allows Dyrk1A-mediated RCAN1 phosphorylation

and subsequent CaN inhibition, leading to reduced NFAT activity

and enhanced Tau phosphorylation (349). Besides controlling

RCAN1, Dyrk1 functions upstream of the GSK-3b kinase,

inhibiting NFAT (349), and may directly phosphorylate the

NFAT regulatory domain, counterbalancing the effects of CaN-

mediated dephosphorylation (75). These observations suggest a

direct link between Dyrk1 and RCAN1 in CaN/NFAT signaling,

supporting the notion that altered RCAN1/Dyrk1 expression in AD

may destabi l ize the NFAT circuit and contribute to

neuropathogenic processes. In line with that, Dyrk1 inhibition by

a novel drug, KVN93, reduced neuroinflammation, improved

cognitive performance, and decreased Ab plaque deposition in

5xFAD mice (350). A promising effect toward the amelioration of

phenotypic defects observed in AD was also seen with CX-4945

(silmitasertib), which has already undergone clinical trials.

Originally developed as a Dyrk1-targeting drug (351), CX-4945

turned out to be a dual Dyrk-1/GSK-3b inhibitor (352) with a

strong modulatory effect on AD-related CaN/NFAT signaling and

Tau phosphorylation in the mouse hippocampus.
Concluding remarks

The transcription factors of the NFAT family were originally

characterized for their important role in the transcription of

cytokine genes and other genes critical for the immune response.

The role of NFAT in the neuroinflammatory response in AD is

unquestionable. Yet, the reports emerging in recent years suggest

that aberrant CaN/NFAT signaling may also play a central

deleterious role in brain degeneration, linking amyloid pathology,

Ca2+ dysregulation, and synapse deterioration. The molecular and

phenotypic changes fueled by hyperactive CaN, and cell-specific

maladaptive transcriptional programs, may arise early in AD and

progress with cognitive decline. These deleterious changes in

transcriptional control are observed both in neurons and

astrocytes and likely involve the NFAT component. The

numerous studies in transgenic animal AD models showing

beneficial effects of CaN and/or NFAT inhibitors are consistent

with this hypothesis. Further work is needed to better characterize

the upstream signals leading to CaN/NFAT overactivation in AD

and dissect the actions of this pathway on different transcriptional

regulatory mechanisms. Moreover, it would be desirable to unravel

how these changes drive synaptic malfunction and how targeted

molecular interventions may help slow down cognitive decline.
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CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a therapeutic target in alzheimer's
disease-comprehensive review and recent developments. Int J Mol Sci (2022) 23(21).
doi: 10.3390/ijms232113630

10. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, et al.
Cognitive decline in Alzheimer's disease is associated with selective changes in
calcineurin/NFAT signaling. J Neurosci (2009) 29(41):12957–69. doi: 10.1523/
JNEUROSCI.1064-09.2009

11. Abdul HM, Furman JL, Sama MA, Mathis DM, Norris CM. NFATs and
alzheimer's disease. Mol Cell Pharmacol (2010) 2(1):7–14.

12. Creamer TP. Calcineurin. Cell Commun Signal (2020) 18(1):137. doi: 10.1186/
s12964-020-00636-4

13. Lian Q, Ladner CJ, Magnuson D, Lee JM. Selective changes of calcineurin
(protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol
(2001) 167(1):158–65. doi: 10.1006/exnr.2000.7534

14. Reese LC, Taglialatela G. A role for calcineurin in Alzheimer's disease. Curr
Neuropharmacol (2011) 9(4):685–92. doi: 10.2174/157015911798376316

15. Goto S, Matsukado Y, Mihara Y, Inoue N, Miyamoto E. Calcineurin in human
brain and its relation to extrapyramidal system. Immunohistochemical study on
postmortem human brains. Acta Neuropathol (1986) 72(2):150–6. doi: 10.1007/
BF00685977

16. Goto S, Matsukado Y, Mihara Y, Inoue N, Miyamoto E. The distribution of
calcineurin in rat brain by light and electron microscopic immunohistochemistry and
enzyme-immunoassay. Brain Res (1986) 397(1):161–72. doi: 10.1016/0006-8993(86)
91381-8

17. Polli JW, Billingsley ML, Kincaid RL. Expression of the calmodulin-dependent
protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of
nigrostriatal innervation. Brain Res Dev Brain Res (1991) 63(1-2):105–19. doi: 10.1016/
0165-3806(91)90071-p
18. Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N, et al. Distinct cellular
expression of calcineurin A alpha and A beta in rat brain. J Neurochem (1992) 58
(5):1643–51. doi: 10.1111/j.1471-4159.1992.tb10036.x

19. Chin D, Means AR. Calmodulin: a prototypical calcium sensor," (in eng). Trends
Cell Biol (2000) 10(8):322–8. doi: 10.1016/s0962-8924(00)01800-6

20. Zhang M, Abrams C, Wang L, Gizzi A, He L, Lin R, et al. "Structural basis for
calmodulin as a dynamic calcium sensor. Structure (2012) 20(5):911–23. doi: 10.1016/
j.str.2012.03.019

21. Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in
lymphocytes: STIM and ORAI. Annu Rev Immunol (2010) 28:491–533. doi: 10.1146/
annurev.immunol.021908.132550

22. Oh-hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol
(2008) 20(3):250–8. doi: 10.1016/j.coi.2008.04.004

23. Colbran RJ, Brown AM. Calcium/calmodulin-dependent protein kinase II and
synaptic plasticity. Curr Opin Neurobiol (2004) 14(3):318–27. doi: 10.1016/
j.conb.2004.05.008

24. Mulkey RM, Endo S, Shenolikar S, Malenka RC. Involvement of a calcineurin/
inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature (1994)
369(6480):486–8. doi: 10.1038/369486a0

25. Hussey JW, Limpitikul WB, Dick IE. Calmodulin mutations in human disease.
Channels (Austin) (2023) 17(1):2165278. doi: 10.1080/19336950.2023.2165278

26. O'Day DH, Eshak K, Myre MA. Calmodulin binding proteins and alzheimer's
disease. J Alzheimers Dis (2015) 46(3):553–69. doi: 10.3233/JAD-142772

27. Berrocal M, Sepulveda MR, Vazquez-Hernandez M, Mata AM. Calmodulin
antagonizes amyloid-b peptides-mediated inhibition of brain plasma membrane Ca(2
+)-ATPase. Biochim Biophys Acta (2012) 1822(6):961–9. doi: 10.1016/
j.bbadis.2012.02.013

28. O'Day DH. Calmodulin binding domains in critical risk proteins involved in
neurodegeneration. Curr Issues Mol Biol (2022) 44(11):5802–14. doi: 10.3390/
cimb44110394

29. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev (2000) 80
(4):1483–521. doi: 10.1152/physrev.2000.80.4.1483

30. Caraveo G, Auluck PK, Whitesell L, Chung CY, Baru V, Mosharov EV, et al.
Calcineurin determines toxic versus beneficial responses to a-synuclein. Proc Natl Acad
Sci USA (2014) 111(34):E3544–52. doi: 10.1073/pnas.1413201111

31. Qian W, Yin X, Hu W, Shi J, Gu J, Grundke-Iqbal I, et al. Activation of protein
phosphatase 2B and hyperphosphorylation of Tau in Alzheimer's disease. J Alzheimers
Dis (2011) 23(4):617–27. doi: 10.3233/JAD-2010-100987

32. Pineda JR, Pardo R, Zala D, Yu H, Humbert S, Saudou F. Genetic and
pharmacological inhibition of calcineurin corrects the BDNF transport defect in
Huntington's disease. Mol Brain (2009) 2(33). doi: 10.1186/1756-6606-2-33

33. Overk CR, Rockenstein E, Florio J, Cheng Q, Masliah E. Differential calcium
alterations in animal models of neurodegenerative disease: Reversal by FK506.
Neuroscience (2015) 310:549–60. doi: 10.1016/j.neuroscience.2015.08.068

34. Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D, Green K, Taglialatela
G, Soto C. Calcineurin inhibition at the clinical phase of prion disease reduces
neurodegeneration, improves behavioral alterations and increases animal survival.
PloS Pathog (2010) 6(10):e1001138. doi: 10.1371/journal.ppat.1001138
frontiersin.org

https://doi.org/10.1016/j.jalz.2016.03.001
https://doi.org/10.1016/j.brainresbull.2016.08.018
https://doi.org/10.3389/fnagi.2018.00199
https://doi.org/10.3389/fnagi.2018.00199
https://doi.org/10.1016/j.jalz.2016.12.006
https://doi.org/10.1016/j.jalz.2016.12.006
https://doi.org/10.1016/j.ceca.2017.06.008
https://doi.org/10.3390/ijms18020358
https://doi.org/10.1152/physrev.00042.2016
https://doi.org/10.3389/fncel.2022.889939
https://doi.org/10.3390/ijms232113630
https://doi.org/10.1523/JNEUROSCI.1064-09.2009
https://doi.org/10.1523/JNEUROSCI.1064-09.2009
https://doi.org/10.1186/s12964-020-00636-4
https://doi.org/10.1186/s12964-020-00636-4
https://doi.org/10.1006/exnr.2000.7534
https://doi.org/10.2174/157015911798376316
https://doi.org/10.1007/BF00685977
https://doi.org/10.1007/BF00685977
https://doi.org/10.1016/0006-8993(86)91381-8
https://doi.org/10.1016/0006-8993(86)91381-8
https://doi.org/10.1016/0165-3806(91)90071-p
https://doi.org/10.1016/0165-3806(91)90071-p
https://doi.org/10.1111/j.1471-4159.1992.tb10036.x
https://doi.org/10.1016/s0962-8924(00)01800-6
https://doi.org/10.1016/j.str.2012.03.019
https://doi.org/10.1016/j.str.2012.03.019
https://doi.org/10.1146/annurev.immunol.021908.132550
https://doi.org/10.1146/annurev.immunol.021908.132550
https://doi.org/10.1016/j.coi.2008.04.004
https://doi.org/10.1016/j.conb.2004.05.008
https://doi.org/10.1016/j.conb.2004.05.008
https://doi.org/10.1038/369486a0
https://doi.org/10.1080/19336950.2023.2165278
https://doi.org/10.3233/JAD-142772
https://doi.org/10.1016/j.bbadis.2012.02.013
https://doi.org/10.1016/j.bbadis.2012.02.013
https://doi.org/10.3390/cimb44110394
https://doi.org/10.3390/cimb44110394
https://doi.org/10.1152/physrev.2000.80.4.1483
https://doi.org/10.1073/pnas.1413201111
https://doi.org/10.3233/JAD-2010-100987
https://doi.org/10.1186/1756-6606-2-33
https://doi.org/10.1016/j.neuroscience.2015.08.068
https://doi.org/10.1371/journal.ppat.1001138
https://doi.org/10.3389/fimmu.2023.1281882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mackiewicz et al. 10.3389/fimmu.2023.1281882
35. Wu HY, Hudry E, Hashimoto T, Uemura K, Fan ZY, Berezovska O, et al.
Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to
amyloid-b revealed by a novel fluorescence resonance energy transfer assay. J Neurosci
(2012) 32(15):5298–309. doi: 10.1523/JNEUROSCI.0227-12.2012

36. Sompol P, Furman JL, Pleiss MM, Kraner SD, Artiushin IA, Batten SR, et al.
Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in
Ab-bearing mice. J Neurosci (2017) 37(25):6132–48. doi: 10.1523/JNEUROSCI.0877-
17.2017

37. Taglialatela G, Rastellini C, Cicalese L. Reduced incidence of dementia in solid
organ transplant patients treated with calcineurin inhibitors. J Alzheimers Dis (2015) 47
(2):329–33. doi: 10.3233/JAD-150065

38. Silva JD, Taglialatela G, Jupiter DC. Reduced prevalence of dementia in patients
prescribed tacrolimus, sirolimus, or cyclosporine. J Alzheimers Dis (2023) 95(2):585–
97. doi: 10.3233/JAD-230526

39. Im SH, Rao A. Activation and deactivation of gene expression by Ca2
+/calcineurin-NFAT-mediated signaling. Mol Cells (2004) 18(1):1–9.

40. Alothaid H, Aldughaim MSK, Alamri SS, Alrahimi JSM, Al-Jadani SH. Role of
calcineurin biosignaling in cell secretion and the possible regulatory mechanisms. Saudi
J Biol Sci (2021) 28(1):116–24. doi: 10.1016/j.sjbs.2020.08.042

41. Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. Biochim
Biophys Acta Mol Cell Res (2023) 1870(1):119366. doi: 10.1016/j.bbamcr.2022.119366

42. Thiel G, Schmidt T, Rössler OG. Ca. Cells (2021) 10(4). doi: 10.3390/
cells10040875

43. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of
a putative regulator of early T cell activation genes. Science (1988) 241(4862):202–5.
doi: 10.1126/science.3260404

44. Kuklina EM, Shirshev SV. Role of transcription factor NFAT in the immune
response. Biochem (Mosc) (2001) 66(5):467–75. doi: 10.1023/a:1010238931555

45. Kiani A, Rao A, Aramburu J. Manipulating immune responses with
immunosuppressive agents that target NFAT. Immunity (2000) 12(4):359–72.
doi: 10.1016/s1074-7613(00)80188-0

46. Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells.
Cell (2002) 109Suppl:S67–79. doi: 10.1016/s0092-8674(02)00699-2

47. Macian F. NFAT proteins: key regulators of T-cell development and function.
Nat Rev Immunol (2005) 5(6):472–84. doi: 10.1038/nri1632

48. Schulz RA, Yutzey KE. Calcineurin signaling and NFAT activation in
cardiovascular and skeletal muscle development. Dev Biol (2004) 266(1):1–16.
doi: 10.1016/j.ydbio.2003.10.008

49. Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by Ca(2+)/
calcineurin and NFATc3/c4 pattern the developing vasculature. Cell (2001) 105
(7):863–75. doi: 10.1016/s0092-8674(01)00396-8

50. Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, Hoey T,
et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature
(1998) 392(6672):186–90. doi: 10.1038/32426

51. Ranger AM, Gerstenfeld LC, Wang J, Kon T, Bae H, Gravallese EM, et al. The
nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a
repressor of chondrogenesis. J Exp Med (2000) 191(1):9–22. doi: 10.1084/jem.191.1.9

52. Oukka M, Ho IC, de la Brousse FC, Hoey T, Grusby MJ, Glimcher LH. The
transcription factor NFAT4 is involved in the generation and survival of T cells.
Immunity (1998) 9(3):295–304. doi: 10.1016/s1074-7613(00)80612-3

53. Suchting S, Bicknell R, Eichmann A. Neuronal clues to vascular guidance. Exp
Cell Res (2006) 312(5):668–75. doi: 10.1016/j.yexcr.2005.11.009

54. Benedito AB, Lehtinen M, Massol R, Lopes UG, Kirchhausen T, Rao A, et al. The
transcription factor NFAT3 mediates neuronal survival. J Biol Chem (2005) 280
(4):2818–25. doi: 10.1074/jbc.M408741200

55. Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, et al. NFAT
dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature
(2006) 441(7093):595–600. doi: 10.1038/nature04678

56. Schwartz N, Schohl A, Ruthazer ES. Neural activity regulates synaptic properties
and dendritic structure in vivo through calcineurin/NFAT signaling. Neuron (2009) 62
(5):655–69. doi: 10.1016/j.neuron.2009.05.007

57. de la Fuente V, Freudenthal R, Romano A. Reconsolidation or extinction:
transcription factor switch in the determination of memory course after retrieval. J
Neurosci (2011) 31(15):5562–73. doi: 10.1523/JNEUROSCI.6066-10.2011

58. Quadrato G, Benevento M, Alber S, Jacob C, Floriddia EM, Nguyen T, et al.
Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival
of adult-born neurons and spatial memory formation in the hippocampus. Proc Natl
Acad Sci USA (2012) 109(23):E1499–508. doi: 10.1073/pnas.1202068109

59. Kipanyula MJ, Kimaro WH, Seke Etet PF. The emerging roles of the calcineurin-
nuclear factor of activated T-lymphocytes pathway in nervous system functions and
diseases. J Aging Res vol (2016) 2016, 5081021. doi: 10.1155/2016/5081021

60. Vihma H, Pruunsild P, Timmusk T. Alternative splicing and expression of human
and mouse NFAT genes. Genomics (2008) 92(5):279–91. doi: 10.1016/j.ygeno.2008.06.011

61. Lee N, Kim D, KimWU. Role of NFAT5 in the immune system and pathogenesis of
autoimmune diseases. Front Immunol (2019) 10, 270:270. doi: 10.3389/fimmu.2019.00270
Frontiers in Immunology 19101
62. Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2
modulates microglial activation in the AbPP/PS1 mouse model of alzheimer's disease. J
Alzheimers Dis (2017) 58(3):775–87. doi: 10.3233/JAD-151203

63. Furman JL, Sompol P, Kraner SD, Pleiss MM, Putman EJ, Dunkerson J, et al.
Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal
synaptic function and plasticity in a rat model of traumatic brain injury. J Neurosci
(2016) 36(5):1502–15. doi: 10.1523/JNEUROSCI.1930-15.2016
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Crosstalk between neutrophil
extracellular traps and immune
regulation: insights into
pathobiology and therapeutic
implications of transfusion-
related acute lung injury

Yi Liu1†, Rong Wang2†, Congkuan Song1†, Song Ding1,
Yifan Zuo1, Ke Yi1, Ning Li1*, Bo Wang1* and Qing Geng1*

1Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China, 2Institute of
Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-

associated death, occurring during or within 6 hours after transfusion. Reports

indicate that TRALI can be categorized as having or lacking acute respiratory

distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its

pathogenesis: antibody-mediated and non-antibody-mediated. The key

initiation steps involve the priming and activation of neutrophils, with

neutrophil extracellular traps (NETs) being established as effector molecules

formed by activated neutrophils in response to various stimuli. These NETs

contribute to the production and release of reactive oxygen species (ROS) and

participate in the destruction of pulmonary vascular endothelial cells. The

significant role of NETs in TRALI is well recognized, offering a potential

pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial

cells, and complements have been identified as promoters of NET formation.

Concurrently, studies have demonstrated that the storage of platelets and

concentrated red blood cells (RBC) can induce TRALI through bioactive lipids.

In this article, recent clinical and pre-clinical studies on the pathophysiology and

pathogenesis of TRALI are reviewed to further illuminate themechanism through

which NETs induce TRALI. This review aims to propose new therapeutic

strategies for TRALI, with the hope of effectively improving its poor prognosis.

KEYWORDS

neutrophil extracellular traps, immune regulation, transfusion-related acute lung injury,
neutrophil, therapy
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1 Introduction
Transfusion-related acute lung injury (TRALI) is a severe

condition characterized by acute non-cardiogenic pulmonary

edema that occurs within 6 hours of transfusion. The latest

definition has categorized TRAI into two types: type I (without

ARDS risk factor) and type II (with ARDS risk factor or mild

existing ARDS) (1). This complication remains a leading cause of

transfusion-related fatalities, despite various preventive strategies.

Histopathological features of TRALI include endothelial barrier

disruption and neutrophil aggregation in the pulmonary

vasculature. It is widely assumed that neutrophil respiratory burst

releases reactive oxygen species (ROS), resulting in lung endothelial

cell injury (2). However, the specific molecular events through

which neutrophils are recruited and activated by lung endothelial

cells, as well as how neutrophils activate and damage endothelial

cells, remain poorly understood. Several models have been

proposed to explain the pathophysiology of TRALI. The

antibody-mediated hypothesis posits that leukocyte antibodies in

transfused blood activate neutrophils, leading to lung endothelial

cell damage and subsequent blood penetration into the alveoli, thus

triggering TRALI (3). Generally, antibodies causing TRALI include

human leukocyte antigen (HLA), human neutrophil antigen

(HNA), and corresponding antibodies against the recipient

antigen from the donor which, after infusion, initiate neutrophil

activation. Controlled clinical studies have identified donor

antibody infusion as a recognized cause of TRALI, with blood

plasma leukocyte antibodies from female donors posing a particular

risk (4). The incidence and mortality of TRALI have been observed

to decrease in countries where male donors predominate, though

massive transfusion remains an important factor in TRALI whether

the blood is from a male or female donor (5). The “two-hit” model

suggests that the patient’s underlying clinical condition primes the

lung endothelium by increasing the surface expression of adhesion

molecules, thereby facilitating the attraction of neutrophils to the

lung compartment. Subsequent blood transfusion then acts as the

second hit, activating neutrophils via multiple components of the

transfused blood products, either directly or indirectly (6). For

instance, stored blood often contains higher levels of bioactive

lipids, which have been implicated in the two-hit model based on

animal models (7, 8). However, conflicting findings have emerged

from randomized controlled trials and prospective human studies,

indicating that transfusion of stored blood in the presence of

endotoxemia does not consistently induce transfusion-related

lung injury (9, 10). Furthermore, cases of TRALI have been

reported in otherwise healthy individuals, prompting the proposal

of a threshold model. This model attributes TRALI development to

a combination of patient susceptibility and the number of risk

factors present in the blood products. When the mass transfusion of

blood products contains a high concentration of antibodies

matching the recipient’s antigen, the threshold for neutrophil

activation may be surpassed, leading to severe TRALI. This model

also highlights specific patient populations as being particularly

susceptible to TRALI (11) (Figure 1). Despite being described

separately, these hypotheses all share the common pathway of
Frontiers in Immunology 02109
neutrophil activation in TRALI. Clarifying the mechanisms

underlying neutrophil recruitment and activation, as well as the

molecular events governing neutrophil-mediated endothelial cell

damage, is critical for advancing our understanding and improving

outcomes in TRALI.

Neutrophils are the largest subpopulation of leukocytes in the

human body, serving as vital immune defenders through various

mechanisms including respiratory burst, phagocytosis, secretion of

antimicrobial substances, and the formation of neutrophil

extracellular traps (NETs) in response to infectious conditions

(12). However, under sterile conditions, extracellular activation of

neutrophils may cause damage to normal tissues, such as in the case

of TRALI. Although the role of massive ROS in endothelial damage

has been described, the ability of neutrophils to form NETs in

TRALI is a new piece of knowledge of TRALI pathophysiology.

Initially, NETs were viewed as a programmed cell death process,

involving the decondensation of nuclear chromatin DNA from

activated neutrophils and its fusion with neutrophil granule

contents to form a network released into the extracellular space.

This network subsequent ly captures and e l iminates

microorganisms. However, in the last two decades, our

understanding of the formation of NETs has evolved to

encompass not only nuclear DNA but also mitochondrial DNA,

as well as forms of NETs formation that do not involve cell death.

Furthermore, it has been observed that NETs can also form in

sterile inflammation, contributing to the progression of pathology

(13). As a result, there has been extensive interest in investigating

NETs, particularly in the context of sterile inflammation in TRALI.

It is crucial to note that the processes governing the formation and

function of NETs are subject to both intrinsic and extrinsic immune

modulations of neutrophils in order to maintain tissue homeostasis.

This delicate balance is essential in mediating between immune

defense and tissue damage. Therefore, understanding the interplay

between neutrophil extracellular traps and immune regulation may

offer valuable insights for potential interventions in the treatment of

TRALI resulting from neutrophil activation. Unfortunately, there

are very few studies on NETs in TRALI. We therefore tried to

summarize the inherent mechanisms of NETs related immune

regulation from existing studies, and combined these with the

existing evidence and characteristics of TRALI to illustrate the

pathobiology and therapeutic implications of NETs in TRALI in

order to provide a reference for future studies. In this review, we

first provide an overview of the classical pathways and recent

insights into NET formation and role of NETs in TRALI,

emphasizing the importance of NETs in the development of

TRALI. Moreover, we summarize NETs and their key pathways

and important mediators of immune regulation, combined with the

characteristics of TRALI to discuss the potential role of these

immune regulations in the pathophysiological process of TRALI.

Finally, we also discuss the translational significance of NET-related

immune modulation in TRALI treatment.

Neutrophil activation is central to the development of TRALI.

In the two-hit model (below), the first hit, such as the patient’s

clinical condition, activates endothelial cells and promotes the

expression of intercellular adhesion molecule 1 (ICAM-1) and the

secretion of chemokines and cytokines for the recruitment and
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initiation of neutrophils. Antibodies or other bioactive lipids in the

transfusion components represent a second hit, which activates

neutrophils, leading to lung endothelial injury and pulmonary

edema. In addition, neutrophils infiltrating into the tissues will

cooperate with other immune effector cells to amplify inflammation

(upper right). Antibody-mediated neutrophil activation resembles

the pattern of the second hit. The patient’s predisposition and titer

of antibody in transfusion work together to determine whether the

threshold for developing TRALI is reached (upper left), and TRALI

occurs when these interactions overcome specific thresholds.
2 Neutrophil extracellular
trap formation

Accumulating evidence now challenges the traditional view of

neutrophils as a homogeneous group of responders in the innate

immune system. Rather, it suggests that neutrophils consist of more

complex subpopulations with distinct functions during infection

and inflammation. One subset of activated neutrophils, for instance,

is involved in expelling their nuclear contents to clear pathogens, a

process known as neutrophil extracellular trap formation. Initially
Frontiers in Immunology 03110
documented by Brinkmann and colleagues, this phenomenon was

observed when neutrophils were stimulated with phorbol myristate

acetate (PMA), resulting in the release of a network composed of

coated histones, neutrophil elastase(NE), myeloperoxidase (MPO),

and cathepsin G. Although this process was initially labeled as

NETosis, the concept of it being a form of cell death is being

challenged by accumulating evidence. Vital NETs, for example, are

formed by neutrophils under processes that do not involve

cell death.

NETosis is a clearance mechanism employed by neutrophils in

response to excessive or large pathogens and is dependent on the

involvement of ROS, MPO, NE, and histone citrullination

(Figure 2). The formation of NETs occurs through multiple

pathways, with optimal ones including the production of ROS by

NADPH oxidase, which stimulates MPO to release NE from

granules to the cytoplasm, causing degradation of the actin

cytoskeleton, impeding neutrophil movement and phagocytosis

(14). Subsequently, NE enters the nucleus, where it cleaves

histones, unwinds chromatin, and releases DNA. Furthermore,

ROS is involved in the activation of protein arginine deaminase 4

(PAD 4), and the spike of cytoplasmic calcium participates in this

process. Notably, extracellular ion concentration changes can exert

significant effects on NETosis. For instance, elevated sodium ions in
FIGURE 1

Overview of mechanisms of TRALI development.
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the extracellular environment can trigger calcium influx in

neutrophils, thereby promoting the formation of NETs in the

kidney medulla (15). It is thus imperative to comprehend the

regulatory mechanisms associated with ion alterations in specific

environments and their impact on neutrophil activation and NET

release. The emergence of ion indicators has facilitated the

characterization of ion dynamics, offering insights into the

regulation of molecular biological processes in distinct

physiological settings (16). PAD 4 triggers histone citrullination

to promote chromatin decondensation in the neutrophil nuclei

(17). The release of NETs into the extracellular space remains

inconclusive; however, it has been suggested that cytoplasmic

membrane rupture is the dominant view, with gasdermin D

(GSDMD), a factor mediating cellular pyroptosis, possibly being

involved in the release of the lytic form of NETs. However,

subsequent observations question this involvement, as the initial

experiment showed this process occurring 3-4 hours after the

induction of NETs, whereas subsequent observations suggest that

neutrophils can also release NETs within a very short period of time

(5-60 minutes) without involving cell death, in a process known as

vital NETosis where the plasma membrane is not disrupted and the

release of NETs involves nuclear envelope blebbing and cell

budding (18, 19). Additionally, in some experiments, NETs

consisted of mitochondrial DNA, but not nuclear DNA (20, 21),

suggesting that the underlying mechanism could be related to the

mitochondria having an independent genome and being an

important source of ROS outside of the NADPH oxidase.

However, how this form of NETosis releases NETs to the

extracellular environment remains unknown. These findings

collectively suggest that NETs form through multiple overlapping
Frontiers in Immunology 04111
mechanisms and that the components of DNA networks released

into the extracellular space are heterogeneous in different scenarios.

NETs in the extracellular space contain several cytotoxic

components, such as DNA, histones, proteases, and highly

inflammatory compounds such as myeloperoxidase (MPO),

lactotransferrin, LL-37, calprotectin, bactericidal/permeability

increasing proteins, and pentraxin 3 (13, 22–26). When released,

these components cause indiscriminate damage to both pathogens

and bystander cells, thereby potentially contributing to host tissue

damage, particularly in the vascular endothelium. Neutrophils

release NETs during sterile inflammation, which occurs in

response to inflammatory mediators shared with the immune

system under sterile inflammatory conditions. This phenomenon

is evident in highly vascularized organs such as the lung, where the

microvascular endothelium serves as a platform for neutrophil

activation and NET release. Furthermore, NETs attacking

endothelial cells play a crucial role in the development of

pulmonary edema in TRALI. Additionally, DAMPs released from

dying neutrophils further activate the innate immune system and

amplify the inflammatory response in TRALI. Numerous studies

have shown that unregulated NETs play a role in the pathogenesis

of various non-infectious diseases, including cancer (27),

cardiovascular disease (28), systemic lupus erythematosus (29),

rheumatoid arthritis (30), and digestive tract diseases (31), as well

as TRALI. However, despite findings indicating the beneficial effects

of removing NETs in various diseases, one study reported that

NETs promote the resolution of neutrophil inflammation by

aggregating and degrading cytokines and chemokines via serine

proteases (32). This suggests that NETs may have a dual effect in

sterile inflammation. Moreover, in sterile diseases involving
A B

FIGURE 2

NETs formation and its intrinsic immune regulation of NETs formation. (A) NETs formation and the inflammatory pathway intrinsic to neutrophils.
NADPH or mitochondrial ROS stimulates the sequential activation of neutrophil MPO and NE, followed by NE entering intranucleus to cleave
histones, combined with histone citrullination of PAD 4 promoting chromatin decondensation. Subsequently, under the pore-forming action of
GSDMD, the DNA network within the nucleus binds a variety of proteins to release into the extracellular cell. This process is usually affected by the
cGAS, NLRP 3 signaling pathway. (B) The glucose metabolism in neutrophils. In the resting state, glycolysis is the primary way neutrophils acquire
energy, where activated glycolysis is enhanced and a larger fraction of glucose enters the pentose phosphate pathway to support the ROS required
to produce respiratory burst and NETs.
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neutrophil activation, NETs are not the sole factor causing

bystander cell damage, as the activation of ROS and other

immune cells by neutrophil respiratory burst also contributes to

the process. Consequently, simply targeting NETs may not be the

optimal solution for disease treatment. Understanding the

interaction between neutrophils and the body, particularly

immune regulation, will deepen our understanding of the

upstream and downstream effects of NETs and foster the

development of improved disease treatments.
3 Role of NETs in TRALI

TRALI is characterized by lung endothelial damage and

capillary endothelial penetration by activated neutrophils.

Neutrophils are the primary component of the lung’s innate

immune system and, due to their size compared to lung

capillaries, necessitate deformation to overcome the space

constraints of the vascular bed. This results in a non-integrin-

dependent close contact between neutrophils and vascular

endothelium, permitting rapid recruitment and activation of

neutrophils under pro-inflammatory conditions, thereby

facilitating the rapid onset of TRALI. While it was previously

believed that large amounts of ROS released by activated

neutrophils were the major factor in endothelial damage, recent

studies suggest that NETs also play a significant role in TRALI

development. NET structures contain concentrated histones and

granule proteins, and high concentrations of locally formed NETs

in the pulmonary circulation may enhance the toxicity of neutrophil

respiratory burst to endothelial cells (33, 34). The use of DNase1 to

degrade NETs has been shown to reduce multiple vascular

inflammations, including TRALI, but is not entirely effective in

removing all NETs and their cytotoxic substances, such as histones.

Circulation of these cytotoxic substances throughout the body post-

degradation in the blood may not reach sufficient local

concentrations to damage the endothelium. Additionally,

extensive interaction between NETs and platelets, in combination

with DNA scaffolds, may lead to the formation of thrombi and

subsequently cause local ischemic injury in the lung (35, 36).

Caudrillier and colleagues (33) first demonstrated NETs’

involvement in endothelial damage in TRALI based on their

human specimen-based study, showing that neutrophils in the

lung’s microvascular region were undergoing NETosis without

forming NETs, despite detecting neutrophils in the alveoli.

Another study in humans and mice revealed a substantial

accumulation of NETs in the alveoli after anti H-2Kd mAb

infusion, but only a small amount in the pulmonary

microcirculation, significantly alleviating alveolar aggregation of

NETs and decreasing blood oxygen saturation (37). A subsequent

study also confirmed that NETs were formed in the alveoli (36).

This difference may be attributed to the abundant presence of

DNase1 in plasma, which can digest the DNA network of NETs,

thereby affording maximum protection to the alveoli from NETs.

Furthermore, under TRALI conditions, monocytes/macrophages in

the alveoli produce significant amounts of inflammatory mediators,
Frontiers in Immunology 05112
providing strong local stimulation to neutrophils for

NET formation.

The induction of NETs can be attributed to various components

present in the bloodstream. Studies have demonstrated that the

infusion of red blood cells (RBC) can enhance neutrophil adhesion,

thereby creating favorable conditions for neutrophil-mediated

vascular endothelial injury (38). Furthermore, in long-stored

blood, RBC hemolysis can result in hemin accumulation, which

has been found to rapidly induce NET formation in vitro within 15

minutes, a notably shorter timeframe compared to the 3 hours

required for the induction of NETs by PMA (39). Additionally, it

has been reported that heme, featuring a porphyrin ring, activates

neutrophils to release ROS, thereby potentially triggering

subsequent NETosis (40). It can be speculated that the blood

components that cause neutrophil activation may also lead to

NETosis, but an elusive problem is that there are many factors of

neutrophil activation in TRALI, and if NETs are only the product of

neutrophil respiratory burst, then the elimination of NETs may not

be enough to compensate for the impact of ROS on vascular

endothelium and alveolar epithelium damage. Consequently, one

may speculate that the blood components responsible for

neutrophil activation may also lead to the formation of NETs.

However, an unresolved issue pertains to the multitude of factors

implicated in neutrophil activation in TRALI, underscoring the

importance of resolving this issue for the advancement of

therapeutic strategies.
4 Interactions of NETosis and immune
regulation within neutrophils

4.1 Inflammasome signaling pathway

Macrophages and monocytes have widely characterized the

lineage and signaling mechanism of the inflammasome. The

inflammasome, which acts as a platform for caspase recruitment

and activation, triggers the cleavage of the intracellular GSDMD

precursor to produce N-terminal fragments (GSDMD-N). These

mature N-terminal fragments then bind to the cell membrane in the

form of polymers, forming large GSDMD pores that lead to plasma

membrane permeabilization and pyroptosis. In contrast, there is a

limited understanding of the inflammasome in neutrophils.

Although neutrophils express components of the inflammasome

and can undergo pyroptosis (41), they are generally resistant to

pyroptosis triggered by multiple inducers (42–44). Interestingly,

there is a significant interplay between the signaling pathways of

inflammasome activation and NETosis, with GSDMD appearing to

be the point of interaction between the two pathways. The widely

accepted view is that the inflammasome activates GSDMD, leading

to the formation of pores in the cell and nuclear membranes that

facilitate the release of NETs into the extracellular space (45, 46).

Additionally, PAD 4 increases posttranscriptional levels of NLRP3

and ASC, thereby promoting NLRP3 inflammasome/ASC puncta

assembly and the production of downstream Caspase-1 and

GSDMD-N (46). Furthermore, recent reports have shown that the
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assembly of ASC puncta occurs at the early stage of NETosis and

that the cleavage of the cytoskeleton and nuclear membrane by early

formed Caspase-1 likely facilitates the release of NETs (47).

However, subsequent studies have indicated that Caspase-11,

rather than Caspase-1, is the primary executor of GSDMD

cleavage in neutrophils, possibly due to the low expression levels

of ASC and Caspase-1 in these cells (48). On the other hand, the

PAD 4 enzyme is activated by spiking cytoplasmic calcium and

triggers histone citrul l inat ion to promote chromatin

decondensation, and PAD 4 is activated during caspase-11-driven

NETosis, likely due to increased calcium influx through the

GSDMD pore (48). However, it has also been proposed that

GSDMD cleavage and activation in neutrophils is not

independent of caspases but rather dependent on elastase released

in granules in neutrophils (49), though neutrophil elastase cleaves

several amino acids of GSDMD upstream of the canonical caspase

cleavage site, this does not impair the ability of the GSDMD N-

terminal inserted membrane to neutralize lysed cells (50). Another

study showed that the NE released from the granule cleaves

GSDMD, and the cleaved GSDMD forms pores on the granule,

promoting further release of NE, which constitutes a feed-forward

loop upstream of NETosis (51). Moreover, the pore-forming effect

of GSDMD on mitochondria leads to endogenous mtDNA release

and further activation of the cGAS-STING signaling pathway, thus

promoting the release of NETs and aggravating lung ischemia-

reperfusion injury (52). The cGAS also promotes the transcriptional

activation of PAD 4 through STING signaling, thereby controlling

the formation of NETs (53).

The controversial role of GSDMD in promoting neutrophil

NETosis has been the subject of debate, particularly in light of

reports indicating its dispensability in PMA-induced NETosis (54).

Subsequent studies have reinforced this perspective by

demonstrating that GSDMD knockdown in mouse neutrophils

still resulted in the formation of NETs with the same kinetics and

intensity as those formed by wild-type mouse neutrophils when

triggered by classical NETosis inducers such as cytokines and

complement factor (55). Therefore, it can be inferred that

classical or non-classical stimuli of the inflammasome may not be

essential for activating downstream processes of the inflammasome

pathway, suggesting a potential disconnect between the

requirement for GSDMD and inflammasome-mediated NET

formation. Despite previous studies establishing the significance

of GSDMD in NETosis, it is important to recognize the involvement

of different types of cell-specific signals in NETosis. Consequently,

investigating the signaling and regulatory role of GSDMD

activation in NETosis will yield critical insights for disease

interventions involving neutrophil activation, specifically in

conditions such as TRALI. In addition, the release of NETs is also

influenced by inflammatory factors from activated neutrophils or

other immune cells, a topic we will delve into further. However,

within the context of TRALI, the precise immune cell initiators of

the immune cascade and the specific role of NETs within this

cascade remain open questions.
Frontiers in Immunology 06113
4.2 Immunometabolism of neutrophils

Neutrophils are terminally differentiated leukocytes with the

shortest lifespan in the body. They are released from the bone

marrow into the blood, function in tissues, and are eventually

cleared by other immune cells or returned to the bone marrow as

senescent cells. This high degree of transcriptional activity in

neutrophils is supported by continuous changes in energy

metabolism. Mature neutrophils have minimal mitochondria,

with respiratory chain complex inhibitors suggesting little

contribution to ATP production (56). Instead, glycolysis is the

main pathway by which neutrophils gain energy (57). Glucose

enters neutrophils via glucose transporters and is catalyzed into

glucose-6-phosphate (G6P) by hexokinase, subsequently entering

the glycolytic pathway. When neutrophils were exposed to PMA in

a glucose-free medium for 3 hours in previous studies, they lost

their characteristic polymorphic nucleus, yet they did not release

NETs. However, upon glucose addition, NETs were released within

minutes, indicating that the chromatin decondensation phase of

NET formation is independent of exogenous glucose, while its

release is strictly dependent on glucose metabolism (58).

Upregulation of regulatory enzymes in glycolysis, such as 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3)

and pyruvate kinase M2, is involved in regulating NET formation

(59, 60), as neutrophils need to upregulate glycolysis to meet the

increased bioenergy requirements for NET formation. In the

physiological state, glucose-6-phosphate (G6P) can enter the

pentose phosphate pathway (PPP) by the action of glucose-6-

phosphate dehydrogenase (G6PD). In this pathway, G6P serves as

a substrate for the production of NADPH, which functions as a

cofactor and electron donor for NOX. Neutrophils, upon activation,

shift their glucose metabolism from the glycolytic pathway to the

pentose phosphate pathway, resulting in the subsequent production

of NADPH. The NADPH produced acts as a precursor for the

generation of superoxide and oxygen radicals under the mediation

of NOX. These radicals, in turn, give rise to an abundance of ROS,

thereby instigating the respiratory burst of neutrophils and

triggering the formation of NETs (57, 61). This assertion finds

support in a recent study wherein the inhibition of G6PD curbed

the respiratory burst in neutrophils (62). Interestingly, to meet the

elevated NADPH demand for neutrophil respiratory burst and the

subsequent release of NETs, ribose-5-phosphate, produced through

the pentose phosphate pathway, is further metabolized to fructose-

6-phosphate (F6P), which is isomerized from G6P by glucose-6-

phosphate isomerase (GPI). This process allows for the

replenishment of G6P, which can then re-enter the pentose

phosphate pathway and yield more NADPH. Flux analysis reveals

that during intense oxidative events, neutrophils predominantly

utilize the pentose cycle to generate NADPH (63). In contrast,

activation of phosphofructokinase 1 to increase glycolytic flux

inhibited NET release (64). These findings collectively imply that

neutrophils possess a distinctive metabolic adaptability to produce

NADPH as needed to facilitate their activation. In contrast, the
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downregulation of respiratory bursts along with increased NET

formation was observed in ARDS induced by COVID-19 (65, 66),

suggesting that the pentose phosphate pathway-mediated

respiratory burst may not be a conserved mechanism for

NETosis. Given the limited glucose availability in lung tissue and

local inflammatory regions, the ability of neutrophils to regulate

glycogen storage further enhances tissue damage in TRALI, and

activation of hypoxia pathways led to increased neutrophil glucose

storage and glycolytic capacity, further aggravating the acute lung

injury associated with neutrophil activation (67). Moreover, NETs

can induce the release of neutrophil granules, producing ROS and

subsequent NETosis via NOX2, further aggravating tissue damage

(68). Although mitochondria do not appear to be important in

neutrophil energy metabolism in neutrophils, their electron

transport chain, especially complex III, also leads to mtROS

production in a non-NADPH-dependent NETosis. mtROS has

been shown to be required for spontaneous NETosis in patients

with systemic lupus erythematosus (SLE) (21, 69). The

mitochondria-related metabolic changes and mechanisms during

neutrophil activation remain an open question, and an

understanding of this process will deepen our understanding of

NETosis and TRALI. In conclusion, the metabolic status of

neutrophils has profound effects on NETosis, and in the context

of TRALI, they will further mediate the initiation and progression of

tissue damage.

Therefore, in their quiescent and activated states, neutrophils

exhibit a high degree of metabolic flexibility that enables them to

adapt to phenotypic changes. Although several classical examples of

metabolic remodeling associated with respiratory burst and

NETosis are recognized, they do not provide a comprehensive

metabolic profile of neutrophils. When using inhibitors to target

key enzymes in glucose metabolism, it is important to consider the

off-target effects of inhibitors and the additional functions of these

enzymes beyond classical metabolism. Failing to consider these

issues may result in erroneous conclusions. For example, the

inhibition of the neutral glycolytic enzyme glyceraldehyde

phosphate dehydrogenase (GAPDH) results in the formation of

NETs, which is not related to changes in the glycolytic pathway and

PPP but is attributed to increased NE activity (Figure 2) (70).
5 Neutrophil exogenous immune
regulator of NETosis

5.1 Macrophages

5.1.1 Inflammation boosting
Studies have demonstrated the involvement of lung

macrophages in the pathological process of ALI/ARDS resulting

from various causes. In inflammatory lesions, macrophage and

NETs could provide inflammatory signals such as IL-1b that fuel

each other. A study on atherosclerosis has supported this

hypothesis, revealing that co-treatment of NETs with cholesterol

induces macrophages to produce large amounts of IL-1 b,
compared with only a small amount of IL-1 b release using
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cholesterol alone, implying an important role for NETs in

initiating inflammasome activation within macrophages (71).

Moreover, in TRALI, the extensive macrophage pyroptosis leads

to increased release of IL-1 b, further promoting the release of

NETs. Indeed, NETs interact with macrophages through various

pathways, supporting positive feedback regulation. NETs can

promote the transcription of NLRP 3 through the TLR 4/TLR 9/

NFkB signaling pathway (72, 73), and also promote NLRP 3

activation through the ROS/thioredoxin-interacting protein

(TXNIP) signaling pathway (72). Additionally, NETs promote the

release of other inflammatory factors in macrophages. In renal

fibrosis, it has been observed that neutrophil-specific knockdown of

GSDMD or Cas-11 reversed the nuclear translocation of p65 in

macrophages caused by NETs, and subsequent TGF-1 b release

(74). Furthermore, NETs can mediate the activation of NLRP 3

through the TLR 7/TLR 9 signaling pathway (75). The components

of NETs contain High-mobility group box 1 (HMGB1), a highly

conserved nuclear protein. Studies have shown that NETs initiate

the receptor for advanced glycation end products (RAGE) dynamin

signaling in macrophages via HMGB1, leading to macrophage

pyroptosis (76), suggesting NETs induce macrophage pyroptosis

through mutually redundant pathways that amplify local

inflammation. NETs also upregulate the activity of the

macrophage epidermal growth factor receptor (EGFR), enhance

the phosphorylation of Beclin-1 by EGFR, and inhibit

autophagosome formation in macrophages, mediating further

inflammasome activation (77). As a positive feedback for

inflammatory amplification, released IL-1b from macrophages

activates the inflammasome in neutrophils, thereby initiating a

broader range of NETosis (78). This crosstalk amplifies the local

inflammatory response, which, though contributing to a more

intense antimicrobial effect in infectious diseases, exacerbates

tissue injury in sterile inflammation. Furthermore, NETs cause a

significant increase in ROS, promoting the deubiquitination of

NLRP3 in alveolar macrophages and, in turn, mediating cell

pyroptosis in septic lung injury (79).

The cGAS-STING signaling pathway in macrophages is also

involved in recognizing NETs and promoting the NETosis-

mediated inflammatory response by releasing type I IFN.

Activation of STING by NETs has been observed to promote the

pro-inflammatory phenotype transition in macrophages,

contributing to stress-induced cardiac remodeling (80) and

neuroinflammation (81). Interestingly, when taken up by

macrophages via phagocytosis, NETs can escape from the

lysosomes and activate the cytoplasmic cGAS, a process that

requires the involvement of NE (82).

Based on the evidence described above, manipulating this

inflammatory circuit becomes a potential treatment for NET-

related diseases, particularly in TRALI, because as a sterile

inflammation, sustained activation of neutrophils depends on the

involvement of inflammatory factors. It should be noted that the

extensive literature on NETs gives the impression that almost all

pro-inflammatory molecules induce NETs. However, caution

should be exercised in interpreting these results, as the

recruitment and activation of neutrophils do not invariably lead

to the release of NETs. Moreover, the presence of extracellular DNA
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in neutrophil activation-associated inflammation cannot be solely

attributed to NETs, since pro-inflammatory signaling-induced

pyroptosis, necrosis, and apoptosis all result in the release of

DNA outside the cell. Additionally, it is worth noting that under

certain conditions, blocking inflammatory factors can improve

disease progression and reduce NETosis; however, it is important

to recognize that the observed positive effects on the disease may be

a consequence of the overall reduction in inflammation.

5.1.2 NETs removal
Defects in the regulatory mechanisms responsible for the

clearance of NETs may lead to persistent inflammation and

deterioration of tissue damage. Physiological concentrations of

DNase I in plasma are not sufficient to clear NETs, and, as

adjuncts, phagocytes, especially macrophages, are important

players in the clearance of NETs. It was previously suggested that

NETs internalized by macrophages are degraded in the lysosomal

region compartment (83). However, subsequent research revealed

that NETs can also be degraded by DNase III outside lysosomes,

indicating different nuclease subtypes involved in the degradation

process. Notably, while macrophages can degrade NETs, the

presence of NETs alone is not adequate to provoke inflammation

in macrophages. Conversely, the combined stimulation of NETs

may exacerbate LPS-induced inflammation in macrophages,

suggesting that damage-associated molecular patterns (DAMPs)

or other cytokines may be necessary in the local inflammatory

cascade triggered by NETs (84). All types of polarized macrophages

possess the capability to clear NETs through the endocytosis of

NETs with secreted DNase 1 L3. The clearance of NETs by

macrophages may be influenced by increased macrophage

pinocytosis following proinflammatory stimulation and altered

distribution of DNase by macrophage filopodia production (85).

Although a large number of macrophages in the lung tissue are

involved in the clearance of NETs during inflammation,

proinflammatory macrophages exhibit enhanced NET clearance

capacity (85). However, studies based on ARDS patients showed

that alveolar macrophages from ARDS patients have a reduced

ability to clear NETs, and this process can be reversed by

metformin, an activator of AMPK (86), implying that the

metabolic reprogramming of proinflammatory cells in a specific

tissue context affects the clearance of NETs by macrophages.

Additionally, both M1 and M2 polarized macrophages can

directly reduce neutrophil NET formation through secreted

factors, possibly involving the inhibition of neutrophil ROS (87).

Exosomes derived from M2 macrophages can upregulate the

endogenous inflammatory “stop signal” lipoprotein A4 (LXA 4)

in neutrophils and downregulate the expression of CXCR 2 and

ROS in neutrophils, thereby reducing neutrophil migration and

NETosis (88). While the specific mechanisms through which

macrophages regulate NETosis or NET removal remain unclear,

it is evident that the interaction between macrophages and

neutrophils is intricate. In some scenarios, they collaborate to

establish inflammatory circuits for pathogen clearance or tissue

damage, while in other instances, macrophages have an inherent

capacity to clear NETs and inhibit neutrophil NETosis.
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Investigating the interplay between inflammatory progression and

resolution involving macrophages and neutrophils is an intriguing

area for further study, as it promises to deepen our comprehension

of inflammatory diseases, including TRALI.
5.2 Dendritic cells and T cells

Plasmacytoid dendritic cells (pDC) express high levels of TLR 7

and TLR 9 that specifically recognize exogenous single-stranded

nucleotides in the case of pathogen infection, producing large

amounts of type I interferons (89). While pDCs typically do not

react to their own DNA, modifications of extracellular DNA can

alter this property. For instance, the antimicrobial peptide LL 37 has

the capacity to convert inert endogenous DNA into a potent trigger

for interferon production in pDCs by binding to DNA and forming

aggregated and concentrated structures (90). Furthermore, DNA

structures crosslinking multiple proteins within NETs have been

demonstrated to carry multiple antimicrobial peptides, forming

immunogenic complexes that activate innate pDCs via TLR 9, as

evidenced in the autoimmune disease SLE (91). This activation

leads to the generation of high levels of interferon-a through TLR 9

ligation, initiating the immune cascade (92–94). Subsequently, these

cytokines enable neutrophils to undergo further NETosis, thereby

fueling an inflammatory circuit and creating a positive feedback

amplification of NETs. Additionally, dendritic cells (DCs) play a

role in the clearance of NETs by releasing DNase1-like 3

(DNase1L3) to degrade NETs in the cell supernatants in vitro

(84). The activation of pDC by NETs seems to bridge innate and

adaptive immunity, with NETs initiating the release of

inflammatory factors from macrophages, which will further

activate helper T cells 17 (TH 17), and subsequently derived IL-

17 will drive the chemokines CXCL 1 and CXCL 2 to promote

neutrophil recruitment during inflammation (71). In a cigarette

smoke-induced emphysema model, it was observed that NETs

trigger pDC maturation, subsequently leading to the

differentiation of naïve CD4+ T cells into TH17 (95, 96).

Although these results imply the involvement of NETs in

activating dendritic cells and T cells and promoting innate

immunity, the interaction of NETs with adaptive immunity plays

an important role in TRALI in the context of acute onset of TRALI.

The involvement of NETs in activating dendritic cells and T

cells, as well as promoting innate immunity, has been well-

documented in the context of chronic disease. However, it is

essential to investigate whether this mechanism is conserved

under acute and chronic inflammation, especially in the context

of rapid-onset diseases. Therefore, it remains to be elucidated

whether the interaction of NETs with adaptive immunity plays a

significant role in the acute onset of TRALI.
5.3 Complement system

The complement system is a protein reaction system with a

precise regulatory mechanism, comprising serine protein cascade
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enzyme reactions involving continuous cleavage and activation of

complement proteins, ultimately leading to target cell lysis through

the formation of a membrane attack complex (MAC). In addition,

the complement system is involved in the process of opsonization

and acts as a danger signal to activate immune cells to initiate

immune responses as well as to clear immune complexes (97). The

complement system contributes to the induction of NETosis, the

ability of S. aureus to induce neutrophil NETosis, and the blockade

of complement receptor 1 (CR1) significantly reduces S. aureus-

induced release of NETs (98). The process by which C5b-7 is

deposited on endothelial cells that physically make contact with

neutrophils forms an MAC that transfers to neutrophils and

initiates NETosis (99). Pulmonary endothelial activation has been

considered to be necessary for the TRALI secondary hit model. In

fact, endothelial cell activation may play an important role in

complement fixation and activation as recent studies show that

ant ibod ie s to b lood produc t s ta rge t ing HLA/major

histocompatibility complex (MHC) protein in TRALI are

endothelial cells, which subsequently initiate endothelial cells to

complement fixation, and depletion of complement reduces

antibody-mediated lung injury and NETs (100). In TRALI, a deep

exploration of the interactions between the endothelium,

complement, and neutrophils will deepen our understanding of

this disease. C5aR 1 signaling drives neutrophil NETosis in patients

with COVID-19 and drives lung immunopathology in an NET-

dependent manner (101). In the mouse TRALI model, C5a acts as a

chemoattractant to recruit peripheral neutrophils to the lungs,

triggering the formation of NETs in the lung tissue (102). Indeed,

as an anaphylaxigin in the complement system, C5a not only

recruits neutrophils and initiates upregulation of immune

receptors such as TLRs and complement receptors, but also

initiates strong NET responses through more profound

mechanisms, such as triggering neutrophil NETosis by promoting

mitochondrial ROS (103). Furthermore, NETs provide a scaffold for

complement activation. Initially, NETs were shown to activate the

classical complement pathway by binding complement C1q, and

the presence of C1q prevents NETs from being degraded by DNase

(104). Subsequent studies showed that NETs also structurally

deposited components of the complement alternative activation

pathway and that they could activate the complement cascade in

vitro and in plasma (105, 106). Indeed, neutrophils contain multiple

intrinsic components that have been shown to be involved in the

activation of the complement system, such as MPO direct binding

to acrolein and further induction of C3 activation and interaction of

different components of neutrophil granules with properdin (107).

When these intrinsic components bind to NETs at NETosis, it can

be speculated that they play an important role in the activation of

the complement system by NETs. These results imply that the

interaction of NETs with the complement system warns the innate

immune system to form a pro-inflammatory cycle, and although an

attractive model, we still lack enough knowledge to construct this

interaction model in TRALI (Figure 3).

Neutrophil recruitment and formation of NETs are promoted

by activated complement. Concurrently, NETs serve as a platform

for complement activation. Additionally, macrophages play a

crucial role in providing inflammatory signals, such as IL-1b, to
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stimulate the formation of NETs. Subsequently, the formation of

NETs further triggers macrophages to transition to a

proinflammatory phenotype, effectively establishing an

inflammatory feedback loop. Furthermore, macrophages are

involved in the resolution of NETs through phagocytosis or the

secretion of DNAase. In a similar inflammatory context, dendritic

cells and neutrophils are capable of reciprocally providing

inflammatory signals, such as IFN-a, resulting in the formation

of inflammatory circuits. Moreover, dendritic cells activated by

NETs can release IL-6, facilitating the maturation of TH17 cells, and

thereby linking the innate and adaptive immune responses.
6 Therapeutic implications

Given the role of excessive generation or impaired clearance of

NETs in tumors, digestive diseases, cardiovascular diseases, the

nervous system, and respiratory diseases, several pharmacological

pathways have emerged to inhibit NETosis/NETs, including

targeted inhibition of NETosis-related PAD 4, NADPH oxidase

and ROS generation, and the degradation of DNA in NETs by

DNase, which has been well summarized in several excellent other

recent reviews (108–110), However, these treatments have some

inherent drawbacks, because NETs are only one of the players in

inflammation in the complex process of disease progression, and

simply targeting NETosis/NETs may not be sufficient to prevent

other steps in the immune cascade and tissue damage, such as a

strategy using DNase 1 that can only degrade the DNA skeleton of

NETs and not alleviate histone-induced damage (111). Here, we will

discuss possible therapeutic targets based on immune modulation

of NETosis/NETs to attempt to expand the current therapeutic

options for TRALI (Table 1; Figure 4).

Targeting the immunomodulation associated with NETs is a

potential therapeutic tool for TRALI. Activation of the glycolytic

pathway reduces the glucose into the PPP, further inhibiting the

NETs associated with neutrophil respiratory burst. Therapeutic

strategies targeting GSDMD may inhibit both macrophages and

neutrophils, which would not only avoid their independent forms of

death in the inflammatory state, respectively, but also avoid their

mutual regulation after activation. Neutrophil activity is regulated

by multiple cytokines/chemokines, and clearance of these cytokines

is a potential therapeutic strategy for targeting NETs.
6.1 Targeting glycolytic pathway

Given that neutrophil activation and NET release depend on

glycolysis as well as the pentose phosphate pathway, targeting

upstream of glycolysis is a promising direction for intervention in

TRALI. As mentioned above, the main pathological features of

TRALI are neutrophil recruitment activation and endothelial

barrier disruption, and inhibition of endothelial activation also

prevents barrier system disruption and subsequent infiltration of

neutrophil recruitment. It is worth noting that activation of the

glycolytic pathway appears to be required for endothelial cell

activation (122–124). In lung-related disease, endothelial-specific
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deletion of the glycolysis regulator PFKFB3 relieves sepsis-related

acute lung injury and pulmonary hypertension (125, 126), and

underlying mechanisms include inhibition of the glycolytic

pathway, inhibiting NF- kB signaling and subsequent reduction

of expression of surface adhesion molecules on endothelial cells,

and thereby inhibiting neutrophil recruitment (126). Consistently,

upregulation of PFKFB increased intracellular lactate levels,

followed by activation of NF- k B, resulting in increased

endothelial permeability (127). Furthermore, inhibition of the

glycolytic pathway also directly abolished histamine-induced

vascular endothelial actin contraction, focal adhesion molecule

junction formation, and endothelial barrier disruption (128).

From this perspective, targeting glycolysis in TRALI seems to

represent a dual benefit, as it not only inhibits endothelial

activation-dependent neutrophil recruitment but also suppresses

NET formation. It must be noted, however, that the energy biology

of endothelial cells at the resting state depends on aerobic glycolysis,

and another glycolytic PKM 2 in silent mouse lung endothelial cells

depletes ATP required for the normal VE cadherin cycle of

endothelial cells (129), leading to basal pulmonary microvascular

permeability and pulmonary edema (130). One reason for these

observed differences may be the different degrees of glycolysis

inhibition. When ATP production is below the lowest amount

required to maintain barrier homeostasis, the inhibition of

neutrophil activation and NETosis may not be sufficient to

counteract the additional lung damage from barrier homeostasis.

Thus, the potential of inhibiting glycolysis as a treatment for TRALI

needs to be balanced against the risk that it could also trigger

TRALI. Furthermore, inhibiting glycolysis downstream may shift
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metabolic substrates to the pentose phosphate pathway, leading to

increased NADPH production, which supports respiratory bursts

and NET release. This paradox suggests that while glycolysis is

involved in neutrophil activation, targeting the pentose phosphate

pathway may be more effective in diseases induced by NETs,

including TRALI. Recent studies have explored small molecule

inhibitors that target key enzymes in the pentose phosphate

pathway, such as G6PDi (62), to inhibit neutrophil respiratory

bursts. Moreover, the small molecule NA-11 has been reported to

reprogram metabolic flux from the pentose phosphate pathway

back to the glycolytic pathway, thus inhibiting NOX2-dependent

oxidative bursts in neutrophils (64). Therefore, targeting the

pentose phosphate pathway represents a more suitable approach

for addressing diseases induced by NETs, including TRALI.

In conclusion, the regulation of glucose metabolism has a

profound impact on neutrophil respiratory burst and NETosis.

However, the role of glycolysis inhibition in blocking NETosis is

still under investigation. Currently, there is no research on TRALI,

so a better understanding of the roles of glycolysis and the pentose

phosphate pathway in experimental and clinical TRALI models

could support the potential role of glucose metabolism as a

therapeutic factor for TRALI.
6.2 Targeting inflammasome

Alveolar macrophages are key to initiating and resolving lung

inflammation, and lung proinflammatory-activated macrophages

normally recruit and activate a broader population of immune cells
FIGURE 3

Extrinsic immunomodulation of neutrophils in NETs.
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to drive inflammatory diseases, including TRALI (131, 132).

Activation of inflammasomes has been shown to be involved in

most of the molecular biological processes of proinflammatory

macrophage activation and drives multiple pathologic processes

of acute lung injury (133–135), thus targeted regulation of the

macrophage inflammasome seems a promising direction in the

treatment of TRALI. As discussed earlier, inflammasome activation

in macrophages promotes the recruitment of neutrophils as well as

NET release, meanwhile, activated GSDMD downstream of the

neutrophil inflammasome pathway on the nuclear and plasma

membranes is critical for NET release, and targeted inhibition of

the inflammasome or GSDMD may have unexpected effects in the

treatment of TRALI. Sollberger et al. (51) have identified a small

molecule LDC7559 that specifically suppresses GSDMD, which

hinders membrane localization of GSDMD not only in NETosis

in neutrophils but also IL-1 b release in monocytes/macrophages.

Disulfiram, a drug approved by the FDA to treat alcohol addiction,

has been shown to inhibit GSDMD-mediated inflammasome

activation (136). A recent study suggests that pharmacological

inhibition of GSDMD by disulfiram reduces the release of NETs

from neutrophils and sepsis-mediated multiorgan damage (112).

Disulfiram treatment also attenuated the formation of NETs as well

as lung immunopathology in a mouse model of severe acute

respiratory syndrome coronavirus type 2 infection (113), and also

relieved the damage to the endothelium (137). Disulfiram also

alleviated the diabetic foot injury mediated by NETs (45).

Notably, recent data from animal models suggest that disulfiram

can block NET formation and mitigate the pathological phenotype

of TRALI (114). This finding highlights the potential for disulfiram

as a therapeutic agent in treating TRALI and emphasizes the need

for further investigation into the underlying mechanisms of its

action in this context. The antiparasitic drug small molecule
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compound ivermectin was also shown to inhibit GSDMD

oligomerization, alleviating the release of NETs and inhibiting in

situmelanoma metastasis to the lung (138). The favorable effects of

other GSDMD inhibitors such as necrosulfonamide (139) and

exogenous dimethyl fumarate (115) have been evaluated in

macrophages, and the following study seems to re-evaluate the

contribution of these compounds in suppressing neutrophil NETs

during inflammation. Moreover, targeted regulation upstream of

GSDMD can also reduce NET-dependent organ damage.

Necrostatin-1 has been shown to reduce inflammation in asthma

by inhibiting NET formation (116), and subsequent studies showed

that this inhibitory effect is achieved by inhibiting NE activation and

subsequent expression of N-GSDMD (117). Thus, the necessity to

reevaluate and adjust the use of these drugs is evident in the context

of the simultaneous activation of both macrophages and

neutrophils in TRALI.

In light of the established safety and efficacy of GSDMD

inhibitors in clinical and animal models, it is imperative to

reassess and modify the application of these drugs in the context

of concurrent activation of macrophages and neutrophils in TRALI.

The comprehensive understanding of neutrophil NETosis in TRALI

is still incomplete, necessitating clarification on whether NETs in

TRALI are released in a GSDMD-dependent manner. This

clarification is pivotal before the consideration of GSDMD

inhibitors for use.
6.3 Targeting chemokines/cytokines and
neutrophil receptors

Dysregulation of chemokine/cytokine network has a significant

effect on TRALI, characterized by the accumulation of activated
TABLE 1 Representative drugs targeting immune regulation in neutrophils.

Principle Classification Intervention/
Drugs

Mechanisms References

Targeting the glucose
metabolism pathway.

Glycolytic agonist NA-11 Activates the enzyme PFKL and redirects the metabolic flux from the pentose
phosphate pathway back to the glycolytic pathway, consequently inhibiting
the NOX 2-dependent oxidative burst in neutrophils.

(64)

PPP inhibitor G6PDi Suppresses G6PD, thus blocking the PPP and respiratory burst (62)

Targeting
inflammasome

GSDMD inhibitor Disulfiram Inhibits GSDMD-mediated inflammasome activation (112, 113)

ivermectin inhibits GSDMD oligomerization (114)

NE inhibitor Necrostatin-1 Inhibition of NE activation and the subsequent activation of GSDMD by NE (115, 116)

Targeting
chemokines/cytokines
and
neutrophil receptors

Human monoclonal
antibody against
IL-8

HuMab 10F8 Blocks IL-8 to inhibit neutrophil migration (117)

Inhibitor of CXCR1
and
CXCR2 receptors

Repertaxin blocks CXCL 1/2 signaling in neutrophils (118)

IL-1
receptor inhibitor

IL-1 Ra Blocks the signaling of IL-1 b in neutrophils (119, 120)

Human antibody
against N-terminal
domain of MK

anti-N-MK Prevents neutrophil migration (121)
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neutrophils in pulmonary microvascular regions, and re-regulation

of this network contributes to the control of TRALI. In addition to

controlling the massive release of the inflammatory cytokines

resulting from the activation of inflammatory cells including

macrophages and dendritic cells, blocking the ligand-receptor of

inflammatory cells is a candidate strategy for targeting inhibiting

neutrophil activation and release of NETs. HuMab 10F8 is a full

human monoclonal antibody against IL-8, and it effectively

neutralizes IL-8-dependent activation of human neutrophils and

migration in mid-palmoplantar pustulosis phase (140). Subsequent

studies showed that this antibody-based approach of blocking IL-8

to inhibit neutrophil migration similarly inhibited the formation of

NETs (141). CXCR 1 and CXCR 2, the receptors blocking IL-8,

exerted the same effect, and blocking CXCR 1/2 signaling in

neutrophils using the small molecule inhibitor repertaxin

protected from organ reperfusion injury (118), and subsequent

studies supported that blockade of CXCR 1/2 signaling by
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repertaxin and pertussis toxin inhibited the release of neutrophil

NETs (121). Furthermore, the neutrophil-expressed cytokine

midkine mediates neutrophil trafficking and extravasation during

acute inflammation, and the antibody anti-N-MK that specifically

blocks the N-terminal domain of MK prevents neutrophil

migration into the myocardium, thereby alleviating NETosis-

driven myocardial inflammation (119). Consistent with this, IL-1

signaling triggered increased expression of leukocyte adhesion

molecules on endothelial cells, with reduced neutrophils recruited

on the endothelium following administration of the IL-1 a receptor

inhibitor IL-1 Ra (120), while blockade of IL-1 b signaling reduced

the formation of NETs in breast cancer (142). Blockade of

complement signaling represents another strategy to target NETs,

and currently, the monoclonal antibody eculizumab targeting the

human complement component C5 and the inhibitor avacopan of

the C5a receptor have been applied to atypical HUS and ANCA-

Associated Vasculitis, respectively (143, 144). Although these drugs
FIGURE 4

Therapeutic implications.
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have not been evaluated in the clearance of complement activation-

associated NETs, based on the extensive interactions between the

complement system and neutrophils and NETs, we speculate that

these drugs may be potential candidates for TRALI therapy in

the future.

It is important to recognize the need for a balanced evaluation

of the application of HuMab 10F8, anti-N-MK, eculizumab, and

avacopan in the context of TRALI, given the relevance of

immunoglobulin-associated TRALI. A recent retrospective study

in France highlighted seven cases of TRALI resulting from

immunoglobulin infusion, indicating the potential for triggering

TRALI through the exogenous infusion of therapeutic antibodies

(145). Therefore, before targeting the therapeutic potential of

chemokines/cytokines and neutrophil receptors, it is essential to

rigorously define the risk of their potential triggering of antibody-

mediated TRALI.
7 Concluding remarks

It is evident that NETosis does not act independently in

inflammatory diseases such as TRALI; rather, it interacts closely

with multiple immunomodulatory mechanisms in the human body.

Therefore, a comprehensive understanding of these interactions is

essential for unraveling the complex processes involved in TRALI

initiation, progression, and recovery. Abnormally increased NETs

in TRALI exacerbate damage to the endothelium and alveolar

epithelium, and also influence other immune cells to produce

proinflammatory mediators. This results in the coordination of

various immune cells to sustain a detrimental inflammatory cycle.

Several dysfunctions associated with TRALI pathophysiological

processes create a favorable microenvironment for the formation

and release of NETs, such as the feedforward activation of

endothelial cells, and the oxygen-rich and glucose-deficient lung

environment. Consequently, there is a clear need to explore the

multifaceted biological processes of neutrophils and broader

immune interactions, with a specific focus on NET formation and

further regulation in the context of TRALI.
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Appendix

The proteins/genes described in this review.

Proteins/targets Abbreviations Gene symbols

Human leukocyte antigen HLA HLA

Major histocompatibility complex MHC

Intercellular adhesion molecule 1 ICAM-1 ICAM1

Cathepsin G / CTSD

Neutrophil elastase NE ELANE

Myeloperoxidase MPO MPO

Lactotransferrin / LTF

LL-37 / CAMP

Calprotectin / S100A8,
S100A9

Pentraxin 3 / PTX3

NOD-like receptor thermal protein domain
associated protein 3

NLRP3 NLRP3

Apoptosis-associated speck-like protein
containing a CARD

ASC PYCARD

Cysteinyl aspartate specific proteinase-1 Caspase- 1 CASP1

Cysteinyl aspartate specific proteinase-11 Caspase- 11 CASP11

Cyclic guanosine monophosphate-
adenosine monophosphate synthase

cGAS CGAS

Stimulator of interferon response cGAMP
interactor 1

STING1 STING1

6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase

PFKFB3 PFKFB3

Pyruvate kinase M2 PKM2 PKM

Glucose-6-phosphate dehydrogenase G6PD G6PD

Glucose-6-phosphate isomerase GPI GPI

Phosphofructokinase 1 PFK-1 PFKM/
PFKL/PFKP

glyceraldehyde phosphate dehydrogenase GAPDH GAPDH

Interleukin- 1b IL- 1b IL1B

Interleukin- 8 IL-8 IL8

Interferon IFN IFN

Transforming growth factor-b TGF-b TGFB1

Toll-like receptor 4 TLR 4 TLR 4

Toll-like receptor 7 TLR 7 TLR 7

Toll-like receptor 9 TLR 9 TLR 9

Nuclear factor kappa-B NF-kB NFKB1

Thioredoxin-interacting protein TXNIP TXNIP

Beclin-1 / BECN1

(Continued)
F
rontiers in Immunology
 17124
Continued

High-mobility group box 1 HMGB1 HMGB1

Receptor for advanced glycation
end products

RAGE AGER

Epidermal growth factor receptor EGFR EGFR

Adenosine 5’-monophosphate (AMP)-
activated protein kinase

AMPK PRKAA,
PRKAB,
PRKAG

CXC chemokine receptor 1/2 CXCR1/2 CXCR1/2

Deoxyribonuclease 1 like 3 DNase1L3 DNASE1L3

complement C3b/C4b receptor 1 CR1 CR1

VE cadherin / CDH5
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The cGAS-STING pathway in viral
infections: a promising link
between inflammation, oxidative
stress and autophagy
Kunli Zhang1†, Qiuyan Huang2,3†, Xinming Li2, Ziqiao Zhao1,
Chun Hong2, Zeyi Sun1, Bo Deng4, Chunling Li1,
Jianfeng Zhang1,5* and Sutian Wang2,5*

1State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong
Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong
Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic
Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China,
2State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal
Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences,
Guangzhou, China, 3College of Animal Science and Technology, Guangxi University, Nanning, China,
4Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 5Maoming Branch, Guangdong Laboratory for Lingnan Modern
Agriculture, Maoming, China
The host defence responses play vital roles in viral infection and are regulated by

complex interactive networks. The host immune system recognizes viral

pathogens through the interaction of pattern-recognition receptors (PRRs)

with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the

cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and

subsequently activates stimulator of interferon genes (STING) to trigger a series

of intracellular signalling cascades to defend against invading pathogenic

microorganisms. Integrated omic and functional analyses identify the cGAS-

STING pathway regulating various host cellular responses and controlling viral

infections. Aside from its most common function in regulating inflammation and

type I interferon, a growing body of evidence suggests that the cGAS-STING

signalling axis is closely associated with a series of cellular responses, such as

oxidative stress, autophagy, and endoplasmic reticulum stress, which have major

impacts on physiological homeostasis. Interestingly, these host cellular

responses play dual roles in the regulation of the cGAS-STING signalling axis

and the clearance of viruses. Here, we outline recent insights into cGAS-STING in

regulating type I interferon, inflammation, oxidative stress, autophagy and

endoplasmic reticulum stress and discuss their interactions with viral

infections. A detailed understanding of the cGAS-STING-mediated potential

antiviral effects contributes to revealing the pathogenesis of certain viruses and

sheds light on effective solutions for antiviral therapy.
KEYWORDS

cGAS-STING, viral infection, innate immune, autophagy, inflammation, oxidative stress,
virus-host interaction
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1 Introduction

The innate immune system is the first line of defence against

viral infections. The initiation of this early immune response

depends on the recognition of certain viral structures known as

pathogen-associated molecular patterns (PAMPs). Hosts’ pattern

recognition receptors (PRRs) recognize viral PAMPs, activating

intracellular signalling pathways and inducing the expression of

pro-inflammatory cytokines and antiviral genes that play antiviral

effects. Through decades of research, six major classes of PRRs have

been identified, including toll-like receptors (TLRs), retinoic acid-

inducible gene (RIG)-I-like receptors (RLRs), NOD-like receptors

(NLRs), C-type lectin receptors (CLRs), nucleic acid recognition

receptors, and other innate immune receptors (such as scavenger

receptors, complement receptors) (1, 2). These PRRs are mainly

distributed on the cell surface, cytoplasm or lysosomes and induce

innate immune responses and inflammatory responses through

specific signal transduction pathways to promote virus clearance.

In addition, the biological functions of PRRs have also included the

activation of cells and complement, induction of cytophagy and cell

death. Although the study of PRRs has been a hot area in

immunology research, the role of these receptors in host defence

and viral infection still needs to be further explored.

Interferon (IFN)-induced signalling pathway is the most

important antiviral approach for the host and is activated by

downstream signals of many PRRs (3, 4). Generally, binding of

IFN to its receptor activates the downstream JAK-STAT pathway,

resulting in increased transcription of IFN-stimulated genes (ISGs)

(5). The ISG transcription proteins, such as myxovirus resistance

(Mx), cholesterol 25-hydroxylase (CH25H) and oligoadenylate

synthetase (OAS), play key roles in antiviral defences (6–8). In

the early stages of viral infection, however, PRRs-mediated

inflammatory response is also of great importance during

antiviral processes. Interleukin-1 (IL-1) and tumour necrosis

factor (TNF) can activate nuclear factor-kB (NF-kB) and induce

IFN production, which further helps to remove viruses (9, 10). In

addition, viral infection always affects cellular physiological states

and metabolic processes, including oxidative stress, autophagy, and

endoplasmic reticulum (ER) stress (11–13). Many studies have

found that viral infections generally lead to a redox imbalance in

the cellular environment (11). Oxidative stress is initially recognized

as a means of combating viruses and protecting the host,

contributing to apoptosis (14). However, with the development of

research, more and more researchers found that oxidative stress

promoted viral replication, which was a common mechanism used

by some specific viruses (15). It is important to investigate the key

molecular mechanisms used by viruses to interact with

mitochondria and induce oxidative stress. As viruses need to use

host cells to synthesize viral proteins, ER stress is always activated

during viral infections. Understanding the complex mechanism of

ER stress in viral infection is an important step in developing

effective antiviral strategies. As an intracellular basic metabolic

process (also known as type II programmed cell death),

autophagy protects cells from toxic protein accumulation,

organelle dysfunction, and viral infection by decomposing and

recycling superfluous or potentially dangerous cytosolic entities.
Frontiers in Immunology 02126
However, autophagy is a double-edged sword during viral infection.

Studies have shown that some viruses have acquired the ability to

hijack and subvert autophagy for their benefit (13). To sum up, all

these factors affect the antiviral ability of the host.

As a newly identified PRR, cyclic GMP-AMP synthase (cGAS)

recognizes viral, endogenous mitochondrial and genomic DNA in the

cytoplasm and plays an important role in innate antiviral immunity

(16). The conformation of cGAS changes upon binding to DNA,

producing cGAMP, which is detected by the stimulator of interferon

genes (STING) at the endoplasmic reticulum (17). Ishikawa and

Barber have identified STING as an endoplasmic reticulum protein

that has IFN-induced function in response to viral and intracellular

DNA stimulation (18). The activated STING translocates to the Golgi

apparatus, where it recruits TANK-binding kinase 1 (TBK1) and

interferon regulatory factor 3 (IRF3) to form a complex (19). TBK1

then induces phosphorylation and oligomerization of IRF3. As a

result, the activated IRF3 translocates into the nucleus, where it

triggers the transcription of type I IFNs and ISGs that perform

antiviral functions. Moreover, the cGAS-STING pathway is also

involved in regulating the NF-kB-driven inflammatory immune

response in vertebrate cells (20, 21). In addition, it has also been

suggested that the cGAS-STING signalling axis is closely associated

with oxidative stress, autophagy, and ER stress which affect the

antiviral capability of the host (22–24). The inactivated STING is

located in the endoplasmic reticulum, and the migration of activated

STING is always accompanied by ER stress (25). Furthermore, ER

stress can induce reactive oxygen species (ROS), which in turn,

initiates the apoptotic process via constant oxidative stress (26).

Additionally, the latest evidence suggests that the induction of

autophagy is a highly conserved function of the cGAS-STING

signalling axis (24). These researches suggest that these host cellular

responses play significant roles in cGAS-STING-mediated viral

infection. In this review, to further understand the regulatory

mechanism among the cGAS-STING pathway, inflammation, IFN,

oxidative stress, ER stress, and autophagy during viral infection, we

discuss their interactions, which would facilitate revealing the

pathogenesis of certain viruses and shed light on effective solutions

for antiviral therapy.
2 Integrated omic and functional
analyses identify the cGAS-STING
pathway controlling viral infections
and regulating various host
defence responses

More and more multi-omics studies have confirmed the

important role of cGAS-STING in the course of viral infections.

Transcriptome analysis revealed that the expressions of IFNs

(IFNA2, IFNA4, IFNA1, IFNA13, IFNB1, IFNL2 and IFNL3),

ISGs (IFIT2, BST2, IRF7, OASL, MX1, IFITM1, IFIT2, IFI35,

IFIH1, ISG15, CXCL10 and CXCL9) and pro-inflammatory

cytokines (TNF, IL6, IL1B and IL1A) in skin from COVID-19

patients are significantly different from those of healthy donors

(27). Further study found the activation of the cGAS-STING signal
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was the main cause of this large amount of type I IFNs and pro-

inflammatory cytokines. In addition, cell death induced by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection

was also attributed to cGAS-STING activity. A proteomic study

revealed that many vital PRRs, including TLR2, RIG-I, MDA5

(melanoma differentiation-associated gene 5) and cGAS, were

upregulated in Japanese encephalitis virus (JEV)-infected

fibroblasts (28). Similar results are also reported in SARS-COV-2,

Zika virus (ZIKV), and dengue virus (DENV) infection (29–31). By

analysing the mass spectrometry-based proteomic characterization

of post-translational modifications, many novel sites of cGAS were

identified, which affected cGAS activity and signal transduction

(32–34). Recently, an interesting study showed that the gut

microbiota can mediate peripheral cGAS-STING activation,

which promotes host resistance to systemic viral infections (35).

This evidence shows that cGAS-STING plays a key role in host

resistance to viral infection. Further functional studies revealed that

the activated cGAS phosphorylates its downstream effector protein

STING at the Ser365 position upon viral infection and subsequently

promotes type I IFN production and ISGs expression via TBK1-

IRF3 and JAK-STAT pathways. These factors and signals are

generally considered the most effective antiviral approaches (16,

36). Depletion of cGAS and STING enhanced virus replication and

spread, which further confirmed their antiviral roles (28, 37).

Although cGAS and STING play pivotal roles in the recognition

of viral DNA, more and more evidence indicates they also play

crucial functions in the host’s innate immune response against

specific RNA viruses lacking DNA intermediates (38). Mice with a

cGAS deficiency displayed heightened susceptibility to West Nile

virus (WNV), a positive sense single-stranded RNA virus (36). The

absence of cGAS likely results in a reduction of basal transcript

levels of specific antiviral genes, making cells more susceptible to

WNV infection. Simultaneously, mice lacking STING exhibit

heightened susceptibility to RNA viral infections, and STING-

deficient cells manifest an impaired ability to mount innate

immune responses against RNA viruses, including vesicular

stomatitis virus (VSV) and Sendai virus (SeV) (39). During RNA

viral infection, it was observed that the cGAS-STING pathway is

activated via indirect mechanisms, including the induction of

mitochondrial stress and chromatin/nuclear membrane damage.

This ultimately culminates in the liberation of intracellular double-

stranded DNA into the cytoplasm, subsequently recognized by

cGAS or alternative DNA sensors. RNA virus-induced cell

membrane fusion has emerged as a pivotal process linking viral

entry to the activation of STING. The comprehension of RNA

viruses-cGAS-STING signalling interactions has markedly

advanced, yet the precise mechanisms of activation of this

pathway after RNA virus infections remain uncertain.
3 cGAS-STING-mediated IFN response
is the crucial step in antiviral infection

cGAS is a cytosolic DNA sensor identified by Chen’s group in

2013 (16). It has been demonstrated that dsDNA activates cGAS in

a length-dependent but sequence-independent manner (40). The
Frontiers in Immunology 03127
dsDNA from various sources such as DNA viruses, retroviruses,

bacteria, phagocytosed dead cells, and self-DNA leaked from

damaged mitochondria could interact with cGAS. cGAS senses

dsDNA and catalyses the production of cGAMP to bind the C-

terminal domain (CTD) domain of STING and then changes the

conformation of STING to oligomerize. The oligomerization of

STING migrates away from the ER and activates TBK1 by

phosphorylation at serine 365. The activated TBK1 then

phosphorylates the CTT pLxIS motif (Ser366) of STING to

recruit IRF3. TBK1 phosphorylates IRF3 and induces the IRF3

dimer to enter the nucleus, promoting type I IFN production.

Activated IFN can lead to the up-regulation of several hundreds

of ISGs, which in turn promotes the secretion of pro-

inflammatory cytokines.
3.1 DNA/RNA viruses sensing by the cGAS-
STING pathway

There have been sufficient reports on the recognition of DNA

viruses by cGAS-STING signal. It has been demonstrated that

cGAS-STING induces type I IFN production and further inhibits

cytomegalovirus (CMV) replication in primary human endothelial

cells (41). In the central nervous system, the activation of the cGAS-

STING pathway suppresses herpes simplex virus 1 (HSV-1)

replication in mice microglial cells (42). Moreover, the replication

of hepatitis B virus (HBV) is inhibited due to activation of the

cGAS-STING pathway in both human liver cell lines and in vivo

mouse models (43). Another study also found that high-level

expression of STING restricts susceptibility to HBV by mediating

type III IFN induction (44). African swine fever virus (ASFV) is a

complex, cytoplasmic double-stranded DNA (dsDNA) virus

currently expanding worldwide. The cGAS-STING pathway is

efficiently activated during NH/P68 attenuated strain infection,

producing large amounts of IFN-b to inhibit ASFV replication. In

contrast, the virulent Armenia/07 virus blocks the synthesis of IFN-

b by impairing STING activation during infection (45). However,

with further research, cGAS-STING has also been confirmed to play

an important role in the response to RNA virus infection. In 2013,

Schoggins et al. used an ectopic expression system to verify that

cGAS also widely inhibits several RNA viral infections (36). During

the human immunodeficiency virus (HIV) infection, cGAS senses

its RNA-DNA hybrid and dsDNA, inducing IFN production to

inhibit virus replication via the cGAS-STING pathway (46). During

the SARS-CoV-2 infection, virus spike (S) protein induced cell

fusion and then damaged nuclei to form micronuclei. The

micronuclei are sensed by cGAS and lead to the activation of

STING, which further induces type I IFN production (37).
3.2 Viruses inhibit cGAS-STING-mediated
IFN production and antiviral function

As induction of type I IFN mediated by the cGAS-STING axis is

crucial for host antiviral responses, viruses have evolved various

strategies to antagonize this signalling pathway for immune evasion
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(Table 1). Numerous evasion mechanisms and immunomodulators

have been identified in DNA viruses that target cGAS-STING

signalling. It has been found that herpesviruses employed

multiple strategies to antagonize the cGAS-STING pathway for

immune evasion. The herpesvirus family includes HSV, CMV,

varicella zoster virus (VZV), human herpesvirus (HHV), and

Epstein Barr Virus (EBV), which are all DNA viruses. Human

CMV (HCMV) tegument protein UL82 was reported to impair the

translocation of STING from the ER to perinuclear microsomes and

inhibit the recruitment of TBK1 and IRF3 to STING (58).

Moreover, HCMV US9 was confirmed to disrupt STING

oligomerization and STING-TBK1 association and block IRF3

nuclear translocation (59). The HSV-1 protein ICP27 interacts

with the STING-TBK1 complex to inhibit IRF3 phosphorylation

(53). The tegument proteins UL41 and UL46 of HSV-1 directly

degrade cGAS mRNA or inhibit TBK1 activation, respectively (54,

55). Similarly, the murine CMV (MCMV) protein m152 was able to

prevent the trafficking of STING from the ER to the endoplasmic

reticulum-Golgi intermediate compartment (ERGIC), therefore

inhibiting the interaction between STING and TBK1 (56).

Pseudorabies virus (PRV) belongs to the alphaherpesvirus

subfamily, which is also known as suid herpesvirus 1 or

Aujeszky’s disease virus and infects a broad range of vertebrates.

A recent study showed that PRV tegument protein UL13 functions

as a suppressor of STING-mediated signalling to inhibit IFN

production and antiviral response via recruitment of E3 ligase
Frontiers in Immunology 04128
RING-finger protein 5 (RNF5) to induce K27-/K29-linked

ubiquitination and degradation of STING (57). ASFV also uses

different viral proteins to target the cGAS-STING pathway,

inhibiting IFN production and escaping the innate immunity of

the host. So far, it has been found that MGF360-15R (pA276R),

pDP96R, pE120R, pI215L, pMGF505-7R and L83L protein encoded

by ASFV target different adaptor proteins of the cGAS-STING

pathway to inhibit type I IFN production (49, 60). In conclusion,

maintaining high levels of IFN by ensuring the cGAS-STING

activity is critical for host resistance to viral infection. Although

cGAS-STING is considered the most potent signalling pathway to

induce IFN, Kiran et al. found that JEV-induced type I IFN is cGAS-

STING-independent (28). Most researchers believe that TLR and

RLR are the main factors that induce IFN production. Interestingly,

increased viral load was observed in a cGAS-depleted environment

when IFN-b levels were still high. It suggested that the abundance of

IFN-b transcripts was not sufficient alone to restrict viral

replication. Therefore, there might be additional antiviral

approaches regulated by the cGAS-STING signal. With the

deepening of research, multiple functional roles and specific

mechanisms of cGAS-STING during viral infections were

identified, especially its effects on inflammation, oxidative stress

and cell death.
4 Function of cGAS-STING in
regulating inflammation during
viral infection

The host inflammatory response responds to harmful stimuli

and is tightly regulated. After the PRRs recognize the invading virus,

hosts initiate inflammatory signal transduction and trigger

inflammatory responses, which play essential roles in early

antiviral processes. The inflammatory response regulatory

network plays a key role in the host antiviral process to maintain

the body’s balance.
4.1 NF-kB is the key signal for cGAS-
STING-induced inflammatory responses in
viral infections

Recognition of viruses by PRRs causes the interaction of many

adaptor molecules, which in turn initiate inflammatory signalling,

including the NF-kB pathway, the JAK-STAT pathway, and the

inflammasome pathway. The NF-kB pathway is thought to be the

regulatory centre of the inflammatory response process. The NF-kB
signalling pathway is involved in a variety of stress responses during

viral infection, which in turn mediates various transcriptional

processes and ultimately induces pro-inflammatory cytokine

production. The SARS-CoV-2 infection causes varying degrees of

respiratory symptoms and results in lung damage or even death in a

significant number of cases. These severe cases are associated with

high levels of pro-inflammatory cytokines and low antiviral

responses (61). A recent study reported that in SARS-CoV-2
TABLE 1 The interaction between virus and cGAS-STING pathway on
type I IFN production.

Viruses Target Function Reference

HIV cGAS Sensing RNA-DNA hybrid and
dsDNA to induce IFN

(46)

SARS-
CoV-2

cGAS Sensing micronuclei to induce IFN (37)

CMV cGAS-
STING-
IRF3

The IFN-I response is dependent
on cGAS-STING-IRF3 signalling

(41)

HBV cGAS/
STING

Activating the cGAS-STING axis
to induce ISG56

(47, 48)

ASFV cGAS/
STING
/TBK1/
IRF3

Virulent factors target adaptor
proteins of the cGAS-STING
pathway to inhibit type I IFN.

(45, 49–52)

HSV-1 cGAS/
STING/
TBK1;

ICP27 interacts with STING-TBK1
complex to inhibit IRF3

phosphorylation; UL41 and UL46
degrade cGAS mRNA or inhibit

TBK1 activity

(53–55)

MCMV STING M152 prevents the trafficking of
STING from the ER to the ERGIC
to inhibit the interaction between

STING and TBK1

(56)

PRV STING UL13 recruits E3 ligase RNF5 to
induce K27-/K29-linked

ubiquitination, and STING
degradation inhibit IFN

(57)
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infected cells, the TBK1 and IRF3 pathways are blocked by several

viral proteins. The SARS-CoV-2 infection causes mitochondrial

stress/damage, DNA damage, cell death and leakage of

mitochondrial DNA. These DNA activate the cGAS-STING axis

and induce NF-kB activation to drive inflammatory immune

response (21). cGAS-STING is recognized as a potential target for

the treatment of SARS-CoV-2. And several STING-targeting drugs

can attenuate the inflammatory response. The HIV/SIV (Simian

immunodeficiency virus) research study showed that its Vpx

proteins efficiently inhibit cGAS–STING-induced NF-kB
signalling but not IRF3 activation, which further induces the

production of several pro-inflammatory cytokines (62). In

addition. ASFV protein pD345L has been found to suppress

cGAS/STING-induced NF-kB activation (63). It is well known

that NF-kB is the predominant regulator of inflammation and

cGAS-STING can drive NF-kB activity during viral infections

(21). Therefore, the role of cGAS-STING signalling in mediating

inflammatory responses deserves more attention.
4.2 The cGAS-STING pathway interacts
with the inflammasome complex in
viral infections

NLRs also have powerful effects on inflammation induction. It

has been proved that several NLRs, including NLRP1b, NLRP3,

NLRC4, NLRP6 and NLRP12, are involved in the formation of

inflammasome and regulate innate antiviral immunity. When

viruses invade cells, NLRs recognize viral nucleic acids or

endogenous molecules released from damaged or dying cells. Then,

NLRs oligomerize and recruit pro-caspase-1 with or without ASC to

form inflammasomes. In the inflammasome complex, caspase-1 can

activate self-cleavage, and the activated caspase-1 cleaves pro-IL-1

and pro-IL-18 for their maturation and release. These mature pro-

inflammatory cytokines then exert their antiviral function. IFN and

pro-inflammatory cytokines are produced and function

simultaneously during the host antiviral responses. Importantly,

balance type I IFN production and inflammasome activation

pathways are essential for immune homeostasis. Upon infection

with HSV-1 or cytosolic DNA stimulation, STING engages with

NLRP3, facilitating inflammasome activation via dual mechanisms

(64). On one hand, STING recruits NLRP3 and promotes the

localization of NLRP3 in the endoplasmic reticulum, thus

promoting the formation of an inflammasome. On the other hand,

STING interacts with NLRP3 to attenuate NLRP3 polyubiquitination

associated with K48 and k63, thereby promoting inflammasome

activation. It is widely known that the assembly of the NLRP3

inflammasome leads to the activation of caspase-1, which further

results in the production of several pro-inflammatory cytokines.

Caspase is the important link between inflammasome and

inflammatory cytokines. Wang et al. found that caspase-1

interacted with cGAS to inhibit IFN production in DNA virus

infection (65). This study also demonstrated that deficiency in

inflammasome signalling enhanced host resistance to DNA viruses

in vitro and in vivo. Moreover, this regulatory role also extended to

other inflammatory caspases, including Caspase-4, 5, and 11 (65).
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These Caspases cut cGAS in conditions of non-canonical

inflammasome activation. ZIKV, an RNA virus, has been reported

to promote NLRP3 inflammasome activation to benefit its infection

by stabilizing caspase-1 to suppress cGAS-mediated type I IFN

signalling (31). The detailed mechanism is that the non-structural

protein NS1 of ZIKV recruits the host deubiquitinase USP8 to cleave

K11-linked poly-ubiquitin chains from caspase-1 at Lys134 to inhibit

the proteasomal degradation of caspase-1. The enhanced stabilization

of caspase-1 by NS1 promotes the cleavage of cGAS to inhibit the

recognition of releasing mitochondrial DNA and then suppress type I

IFN signalling. In addition, the activation of human caspase-3, an

apoptotic caspase, has been demonstrated to cleave cGAS at D319,

IRF3 at D121/125 and MAVS at D429/490, thus making apoptotic

cells immunologically silent and negatively regulating DNA or RNA

virus-induced cytokine production (66). Currently, there are few

studies on the interaction between cGAS-STING and inflammasome

signalling in viral infection, but the available evidence already

suggests that the interplay between the cGAS-STING pathway and

inflammasome complex affects IFN, inflammation and cell death.

Therefore, this aspect deserves more attention.
5 The crosstalk between cGAS-STING
signal and oxidative stress in
viral infections

5.1 Oxidative stress is a double-edged
sword in viral infections

Oxidative stress is an important pathological factor causing

tissue damage, aging, tumours, and cardiovascular diseases. Under

normal circumstances, oxidation and antioxidation are maintained

in a balanced state. The oxidative and antioxidant systems in the

body are disordered when harmful substances stimulate the

organism. Excessive production of highly reactive molecules such

as ROS and reactive nitrogen species (RNS) leads to the inhibition

of antioxidant capacity, which tilts the equilibrium toward

oxidation, resulting in oxidative stress. Oxidative stress is always

associated with viral infections. Viral infection-induced ROS

generation triggers oxidative stress in the organism and mediates

apoptosis, which in turn mediates ROS and causes extensive

damage, aggravating the disease process (67). For example,

oxidative stress is a major characteristic of asthma and chronic

obstructive pulmonary disease (COPD), and rhinovirus infection

can make their condition worse. Oxidative stress attenuated the

antiviral capacity of bronchial epithelial cells in asthma and COPD

patients. Furthermore, oxidative stressor H2O2 could down-regulate

the expression of epithelial cellular PRR TLR3 and antioxidants

(SOD1 and SOD2), which suggested that ROS might have reduced

the host’s antiviral capacity and promoted viral infection (68). But

in some other studies, to a certain degree, oxidative stress activates

the antioxidant defence system and autophagy in the tissues and

organs, which help to scavenge some of the ROS and induce stress

defence (69). Oxidative stress-induced ROS can also activate

autophagy and apoptosis through various specific mechanisms,
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which induce cell death and inhibit virus replication. Moreover,

H2O2 has been confirmed to regulate autophagy by inhibiting the

autophagy-related gene (ATG) 4, which affects the lipidation of

light chain 3 (LC3) and the degradation of pathogens (70). In

addition, Latent Membrane Protein 1, a major EBV protein,

facilitates ROS production, causes DNA damage and induces

autophagy initiation (71). These studies suggest oxidative stress

affects viral infection by directly regulating viral survival or

indirectly affecting virus infection via apoptosis and autophagy.
5.2 cGAS-STING is a potential target that
links oxidative stress and viral infection

It is widely known that the invading DNA virus will activate the

cGAS-STING pathway, inducing type I IFN production and causing

a range of innate immune responses. In recent studies, it has been

found that STING is an upstream regulator of cellular oxidative

stress. It is possible to regulate the level of lipid peroxidation and

ROS by activating the cGAS-STING downstream signal ISG15.

ISG15 is a member of the ISG family that induces IFN expression,

contributes to “protein ISGylation”, and interferes with ubiquitin

modifications. STING can negatively regulate the ubiquitin-

proteasome system through ISG15, resulting in increased

interferon-mediated ROS (72, 73). Indeed, IFN-mediated protein

ISGylation regulates the ubiquitin-proteasome system to increase

cellular ROS. Furthermore, glutathione peroxidase (GPX), an

antioxidant molecule, attenuates oxidative stress by reducing

H2O2 to water, which is also inhibited by ISG15. STING

knockdown elevates glutathione peroxidase (GPX) activity via

inhibition of ISG15. Recently, Hayman et al. also found the

knockdown of STING down-regulated expression of ISG15 and

ROS-related genes, including HECT domain and RCC1-Like

Domain-Containing Protein 5 (HERC5), kruppel-like factor 4

(KLF4), and dual oxidase 2 (DUOX2) (73–76). These results

suggest that STING is an upstream regulator of the intracellular

oxidation processes. However, it is worth noting that some other

studies believe that oxidative stress is an important inducement of

cGAS-STING activation. During HSV-1 infection, GPX4 is

indispensable for cGAS-STING activation. Actually, GPX4

inactivation leads to cellular lipid peroxidation, which decreases

host innate antiviral immune responses and promotes virus

replication via inhibition of the cGAS-STING signalling axis (22).

Mechanistically, GPX4 inactivation did not affect the binding of

viral DNA to cGAS but suppressed the trafficking of STING to the

Golgi apparatus by facilitating STING carbonylation at C88.

Another interesting study showed ROS promoted the replication

of murine gammaherpesvirus-68 (MHV68), a close genetic relative

of KSHV and EBV. ROS suppressed the production of IFN in a

STING-dependent manner (77). ROS inhibits STING dimerization

by oxidizing Cysteine 147 on murine STING during MHV68

infection. Redox modification of STING is an important

regulatory mechanism of STING activity during viral infection. It

is generally known that viral infection usually leads to oxidative

stress in host cells, including SARS-COV-2, influenza virus and

Hepatitis C virus (HCV) (15, 78–80). Oxidative stress is closely
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related to mitochondrial dysfunction, which triggers mitochondrial

DNA (mtDNA) damage and DNA leakage, activating the cGAS-

STING pathway (Figure 1) (81). It remains uncertain whether

oxidative stress is the cause or the consequence of cGAS-STING

signalling activation during viral infection. And whether oxidative

stress induces STING activity or inhibits STING activation is also

controversial. Meanwhile, there are few reports about the direct

interaction between the cGAS-STING signal and oxidative

intermediates. Therefore, more research is needed to explore their

relationship. However, it must be admitted that the alteration of the

levels of oxidative stress affects the cGAS-STING pathway and host

antiviral immunity.
6 Function of cGAS-STING regulates
autophagy during viral infection

6.1 Autophagy in antiviral host defences

To accommodate the diverse needs of metabolism, intracellular

substances are constantly synthesized and degraded to maintain

homeostasis. Autophagy is an evolutionarily conserved metabolic

process of eukaryotic cells that degrades or recycles intracellular

proteins and organelles and plays a key role in activating and

regulating early immune responses during viral infection (82). PRR

signals interact with autophagy adaptor proteins to regulate a series

of immune responses, which effectively eliminates pathogenic

microorganisms. For example, activation of the TLR-MYD88/

TRIF pathway can disrupt the interaction between B cell

lymphoma-2 (BCL-2) and Beclin-1, which induces autophagy

(83). The recognition of VSV and SeV by TLR7 requires the

transport of cytosolic viral replication intermediates into the

lysosome. ATG5 deletion would reduce TLR7-mediated IFN

production (84). Many studies have suggested that autophagy can

degrade viral components, particles, and host factors, which

functions as an effective innate antiviral mechanism. HCV non-

structural 5A (NS5A) protein, which is crucial for HCV replication,

can be degraded in autophagosomes. Autophagy helps to remove

HCV in the presence of ER protein Scotin (85). Autophagy

facilitates selectively degrading the HIV-1 transactivator Tat,

inhibiting viral transcription and virion production in CD4+ T

cells (86). There are also many other viruses, such as hepatitis B

virus, porcine epidemic diarrhoea virus, and ZIKV, that are

restricted by autophagy (87–89). On balance, viral infection is

detected by multiple signalling pathways, and further triggers the

activation of immune defences via autophagy.
6.2 Autophagy induction is an
evolutionarily conserved function of the
cGAS-STING signal

Earlier studies have mainly focused on the mechanism of IFN

induction by the cGAS-STING pathway. This signalling pathway

plays antiviral effects by regulating antiviral gene transcription. Of
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interest, a growing number of researchers find cGAS-STING

signalling axis regulates virus clearance more immediately

through autophagy. Of which, the main function of STING in

combatting HSV-1 infection seems to be attributed to autophagy

activation rather than type I IFN production (90). A study found a

mouse model harbouring a serine 365-to-alanine (S365A) mutation

in STING remained resistant to HSV-1, despite the loss of STING-

induced IFN activity. It seems that the activation of autophagy,

triggered by STING, is contingent upon CTT and TBK1, yet

remains uninfluenced by IRF3. Therefore, understanding the

molecular mechanism of autophagy regulation by the cGAS-

STING pathway is crucial. Saitoh et al. first found that the

dsDNA of pathogenic microorganisms could induce co-

localization of STING, ATG9a and LC3, which are important

autophagy proteins (91). Subsequently, STING was identified as

an essential factor that triggered autophagy under the stimulation of

microbial DNA, which could degrade pathogens by delivering them

to autophagosomes (92). Furthermore, a study showed that cGAS

could directly bind to the coiled-coil domain of Beclin-1, which is a

pivotal protein for autophagy initiation (93). As a result, this
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interaction inhibits the synthesis of cGAMP and IFN and

promotes autophagy-mediated cytosolic DNA degradation by

releasing Rubicon from the Beclin-1 complex. Notably, Gui et al.

explained the mechanism of STING-mediated autophagy without

TBK1 activation and IFN induction (24). When pathogenic

microorganisms infect cells, cGAS recognizes cytosolic DNA and

synthesizes cGAMP, which further binds to STING. As a result,

STING translocates to the ERGIC by interaction with SEC24C.

Then, ERGIC acts as a membrane source for LC3 lipidation,

promoting autophagosome formation that degrades the DNA

virus. In many invertebrates, such as drosophila and sea anemone

Nematostella vectensis, their STING only participates in autophagy

induction but not IFN response (24, 94). These research suggest that

autophagy induction is an evolutionarily conserved function of the

cGAS-STING signalling axis which predates the emergence of the

IFN signalling. Additionally, the structural analysis showed that

STING had a conserved LIR domain which was exposed to the

cytoplasm by conformational changes upon activation (95).

Consequently, the exposed LIR domain could directly interact

with LC3 to activate autophagy, leading to the degradation of
FIGURE 1

Schematic representation of the interaction between the cGAS-STING pathway and oxidative stress. The virus DNA and mtDNA can both be
recognized by cGAS-STING signalling, inducing pro-inflammatory cytokines and IFN production via the TBK1-IRF3/NF-kB pathway. In addition, viral
infection also triggers lipid peroxidation and oxidative stress, which lead to STING inactivation by facilitating STING carbonylation at C88. It is worth
noting that GPX4 is a crucial nod connecting the cGAS-STING axis and oxidative stress. On the one hand, GPX4 activation inhibits oxidative stress,
which ensures that the activated STING can be successfully transferred to the Golgi apparatus for further action. On the other hand, activation of the
cGAS-STING-IFN axis promotes oxidative and inhibits GPX4 activity via ISG15 expression. In addition, ROS inhibits STING dimerization by oxidizing
Cysteine 147 on STING. Redox modification of STING is an important regulatory mechanism of STING activity during viral infection.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1352479
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1352479
STING itself and p-TBK1. This finding also showed STING could

directly link immune activation to autophagy. So quite a few

researchers believe that autophagy induction via STING

trafficking is a primordial function of the cGAS pathway, which

has long been thought that its primary function is to induce type I

IFN production. Further studies show that STING orchestrates

endoplasmic reticulum stress and the unfolded protein response via

a novel UPR motif within the cyclic-dinucleotide-binding (CBD)

domain. This motif exerts a negative regulatory effect on the Akt/

tuberous sclerosis complex (TSC)/mammalian target of the

rapamycin (mTOR) pathway, thereby amplifying canonical

autophagy (25, 96). Several other studies also revealed the

mechanisms of STING-mediated noncanonical autophagy (97,

98). Activated STING translocates from the endoplasmic

reticulum to the ER-Golgi intermediate compartment and Golgi

apparatus, contingent upon the coat protein II (COP II) complex

and Arf GTPases. The ERGIC serves as a membrane reservoir for

LC3 lipidation and the genesis of autophagosomes. Different from

canonical autophagy, STING-elicited noncanonical autophagy

operates independently of upstream autophagy modulators,

including unc-51-like kinase 1 (ULK1), Beclin-1, and ATG9a, yet

relies on downstream autophagy regulators such as ATG5 and

ATG16L1 (24).
6.3 Viruses evade host immune defence by
inducing autophagic degradation of
cGAS/STING

Viruses have also evolved unique mechanisms to ensure their

survival by influencing autophagy processes and cGAS-STING

signalling. ASFV MGF505-7R, MGF505-11R and L83L proteins

promote autophagy-lysosomal degradation of STING, thereby

blocking the phosphorylation of the downstream signalling

molecules TBK1 and IRF3 and impairing type I IFN production

(51, 60, 99). PCV2 infection can induce cGAS degradation via the

autophagy-lysosome pathway (100). Mechanically, PCV2 infection

triggers the phosphorylation of cGAS at S278 through the PI3K/Akt

pathway. This phosphorylation of cGAS promotes the K48-linked

poly-ubiquitination of cGAS which interacts with autophagy

receptor p62 for autophagic degradation in autolysosome. As a

result, the autophagic degradation of cGAS inhibits cGAMP and

IFN-b production, which further impair hosts’ innate antiviral

responses. Similarly, HBV X protein also can inhibit type I IFN

production by boosting ubiquitination and autophagic degradation

of cGAS (101). Except for cGAS, another autophagy receptor

Coiled-coil domain containing 50 (CCDC50) associates with and

targets STING for autophagic degradation (102). The MIU motifs

of CCDC50 can recognize K63-polyubiquitinated STING and

facilitate the conveyance TBof K63-polyubiquitinated STING to

LC3B-marked autophagosomes, subsequently initiating autophagic

degradation in a p62-independent way. During HSV-1 infection,

the absence of CCDC50 promotes IFN and pro-inflammatory

cytokines production and inhibits HSV-1 replication. These
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results suggest the autophagic degradation of cGAS-STING

signalling during infections has a significant impact on type I IFN

production and viral replication (Figure 2).
6.4 cGAS-STING-induced autophagy not
only exerts direct antiviral effects but also
influences host antiviral responses by
affecting IFN signalling

Although many studies have been conducted on viral evasion of

STING-induced IFN-mediated antiviral function, investigations

about viral evasion of STING-induced autophagy-mediated

antiviral function remain notably limited. Recently, an interesting

study found that the bat STING can only induce autophagy and

antiviral activity but not IFN induction (103). SARS-CoV-2 ORF3a

constitutes a distinctive viral protein capable of interacting with

STING, consequently disrupting the STING-LC3 association and

impeding cGAS-STING-mediated autophagy, whilst preserving

IRF3-Type I IFN induction. This novel functionality of ORF3a,

different from targeting autophagosome-lysosome fusion, is a

selective impediment of STING-mediated autophagy, thereby

promoting viral proliferation. In addition, the interaction between

the TBK1-IRF3-IFN pathway downstream of cGAS-STING and

autophagy in viral infections is very complex. During infection,

excessive accumulation of STING will trigger a strong inflammatory

reaction, leading to deleterious effects on the host (93, 104). When

the cGAS-STING pathway is activated, TBK1-IRF3 signalling

downstream of STING will phosphorylate p62 at S403, which has

a remarkably high affinity for ubiquitinated STING. As a result, the

ubiquitinated STING is degraded in autophagosomes in an IRF3‐

dependent manner (105). Moreover, another research group also

found that TBK1 could phosphorylate selective autophagy receptors

optineurin (OPTN), NDP52, and TAX1BP1 linking ubiquitinated

cargo to autophagic membranes (106). As is known to us all, type I

IFN participates in activating JAK/STAT and PI3K/Akt pathways,

which are always involved in autophagy induction (107). Type I IFN

does not induce autophagy in STAT-deficient cells (108). PI3K/Akt

signalling axis inhibits autophagy by activating mTORC1 and

inhibiting the expression of forkhead box O (FOXO) and

autophagy-related genes. At later time points, negative regulators

of the PI3K/AKT/mTOR pathway are induced, inhibiting mTORC1

activity and inducing autophagy (107). Therefore, the TBK1‐IRF3-

IFN axis plays a crucial role in activating and regulating the host’s

immune and autophagy. At present, there are still some problems

plaguing us. Some researchers believe cGAS-STING-mediated

autophagy plays an antiviral role (90, 103, 109). But other

research groups suggest that cGAS-STING-mediated autophagy

contributes to inhibiting the antiviral function of the host by

degrading cGAS/STING directly or by degrading key proteins

downstream of the cGAS-STING pathway (Table 2) (51, 100, 117,

118). As a result, this process inhibits IFN production. The next

question that needs to be solved is how to control the target of

autophagic degradation in viral infection.
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7 Interactions between the cGAS-
STING axis and ER stress during
viral infection

7.1 The ER stress responses have important
influences on viral survival

There is adequate evidence that the state of the endoplasmic

reticulum also influences a variety of selective autophagy, including

mitophagy and ER-phagy (119, 120). To further expand our

understanding of the effects of cGAS-STING on autophagy and

oxidative stress, we focus on the endoplasmic reticulum. The

endoplasmic reticulum is a continuous membrane system widely

distributed in the cytoplasm. It mainly performs the functions of

intracellular material transport, glucose and lipid metabolism, and

protein processing. In addition, ER also provides a membrane

structure for the formation of autophagosomes and peroxisomes.

Many viruses use the ER as a replication site, where they synthesize

proteins, replicate genomes, and assemble virion (121). ER stress is

usually triggered by calcium homeostasis disequilibrium, unfolded

protein (UPR) accumulation and lipid dysregulation (122). ER

stress is also considered to be a potential cause of mitophagy and

ER-phagy (123, 124). Accumulation of viral proteins in ER can also
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induce ER stress (125). ER stress initiates UPR-mediated protein

degradation pathways, apoptosis and autophagy in host cells,

inhibiting or degrading the accumulation of viral proteins to

maintain cellular homeostasis. Generally, different viruses

selectively activate the PERK (proline-rich extensin-like receptor

kinase)-eIF2a (eukaryotic translation initiation factor 2) pathway,

IRE1a (inositol-requiring enzyme 1a)-XBP1 (X-box binding

protein-1) pathway or ATF6 (activating transcription factor 6)

pathway, leading to ER stress. Transmissible gastroenteritis virus

(TGEV) can activate the PERK-eIF2a signalling pathway and

subsequently diminish the synthesis of viral proteins by

decreasing protein translation efficiency (126). The HCV

negatively regulates ER stress via the IRE1a-XBP1 pathway,

increasing the synthesis of viral proteins and facilitating viral

infection (127). Influenza A virus promotes viral replication by

inhibiting ER stress response factor XBP1 and limiting host protein

production to alleviate ER stress (128). However, the UPR remains

to be a double-edged sword during viral infection. Some viruses

regulate UPR to promote survival by activating other cellular

responses. For example, duck enteritis virus (DEV) can activate

ER stress and autophagy in a PERK-eIF2a/IRE1a-XBP1 dependent
manner. Inhibiting the expression of PERK and IRE1 helps to

suppress autophagy and DEV replication (129).
FIGURE 2

A schematic illustration depicting the interplay between cGAS-STING signal and autophagy in viral infection. Upon activation by cGAMP, STING
undergoes translocation from the endoplasmic reticulum to the ERGIC. Within the ERGIC, STING has been implicated in the initiation of autophagy.
The STING-containing ERGIC functions as a membrane source of LC3 lipidation, thereby triggering the formation of the autophagosome. Ultimately,
the autophagosome fuses with the lysosome, effectuating the degradation of its contents. During different viral infections, the cGAS and STING can
be degraded in autolysosome, inhibiting host antiviral responses.
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7.2 Endoplasmic reticulum localization of
STING underlies its interaction with
endoplasmic reticulum stress signalling

During viral infection, the viral DNA can be recognized by the

cGAS and activates the cGAS-STING pathway, triggering a series of

immune and cellular responses to protect the body, including ER

stress (23). Notably, the inactivated STING is located on the outer

membrane of the ER, and the migration of the activated STING and

the activation of the STING-TBK1-IRF3 signal always occur

simultaneously with ER stress. Several recent studies have shown

a partial overlap between ER stress signals and the cGAS-STING

signalling axis. During pathogenic microbial infection,

phosphorylation of PERK was significantly impaired in STING-
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deficient macrophages. STING gain-of-function mutant N154S

induces chronic ER stress by disrupting Ca2+ homeostasis. A

newly identified STING CTD motif is involved in mediating ER

stress in an IFN-independent manner (96). Similarly, deletion of the

Ca2+ sensor STIM1 leads to spontaneous activation of the STING-

TBK1-IRF3 pathway, which results in type I IFN-mediated ER

stress (130). Moreover, higher levels of PERK phosphorylation were

induced at times of the expression of STING (25). Furthermore, co-

immunoprecipitation assay suggests that STING and PERK can

interact directly and promote the removal of pathogenic

microorganisms. Additionally, down-regulating the expression of

PERK or IRE-1 inhibits STING activity (131). These research imply

a link between ER stress and cGAS-STING signal. The

interrelationship between downstream signalling molecules of

cGAS-STING and ER stress was also illustrated in several reports.

The activation of IRF3 by STING is initiated by ER stress (132). The

signal that triggers the phosphorylation of IRF3 is derived from the

ER. ER stress triggered the phosphorylation of IRF3 at S386 in an

XBP1-independent manner, promoting IRF3 nuclear translocation

(133). Moreover, ER stress can mobilize the ER-resident STING and

facilitate the co-localization of STING and TBK1. Another research

found that XBP1 splicing and IRF3 phosphorylation depend on the

presence of STING (132). There is also evidence suggesting that

several genes, including tyrosine kinase 2 (TYK2), STAT2 and IRF9,

take part in IFN-induced ER stress, but the specific mechanism is

still unclear (134). As yet, studies on the interaction between ER

stress and the cGAS-STING pathway are mainly focused on

metabolic and autoimmune diseases. More research is needed to

further understand their role in viral infections.
8 Summary and perspectives

Viral infection and its serious consequences constantly threaten

people’s health and safety. Therefore, understanding the molecular

basis of host antiviral immunity is beneficial for eliminating viruses

and attenuating physiological impairments. Recent research on the

cGAS-STING pathway has increased our understanding of the

recognition and removal of viruses. Although we have outlined

recent insights of cGAS-STING in regulating IFN, inflammation,

oxidative stress, autophagy and endoplasmic reticulum stress upon

virus infections, this signalling axis is also involved in some other

early host antiviral processes, such as different types of cell death

and metabolism (Figure 3). Stimulation with a high concentration

of HSV-I triggers cGAS-STING-dependent apoptosis, which affects

local immune responses (135). Mechanistically, the activated cGAS-

STING promotes the accumulation of phosphorylation of IRF3,

which relieves the inhibitory effect of Bcl-xL on mitochondrial outer

membrane permeability and further induces apoptosis. In addition,

MHV68 leads to STING-dependent necroptosis in primary

macrophages (136). Type I IFN works in coordination with TNF

to induce necroptosis through STING activation. Moreover,

mtDNA stress can activate the cGAS-STING-mediated DNA

sensing pathway, inducing autophagy-dependent ferroptosis via

lipid peroxidation (137). Also, several studies have shown that the
TABLE 2 cGAS-STING-mediated autophagy plays a dual role during
viral infection.

Viruses Target Function References

HSV-1 STING An S365A mutation in STING is
resistant to HSV-1 by activating

autophagy, despite lacking
IFN responses

(90, 110)

HSV-1 cGAS-
Beclin-1

The direct interaction between
cGAS and Beclin-1 enhances
autophagy-mediated pathogen

DNA degradation

(93, 111)

HSV-1 GBP1-
STING

GBP1 combines with STING and
promotes autophagy, inhibiting
HSV -1 infection in an IFN-

independent manner

(112)

ZIKV NF-
kB-

STING

In invertebrates, ZIKV-
dependent NF-kB activation

induces antiviral autophagy via
activation of STING

(87, 113, 114)

HRV STING The STING-mediated antiviral
activity required the induction of
ATG5-dependent autophagy

(115)

PPRV STING STING regulates PPRV
replication by activating the
ATF6 pathway of UPRs to

induce autophagy

(116)

ASFV STING ASFV MGF505-7R/11R
interacted with STING and

degrades STING expression by
autophagy pathways, facilitating

virus proliferation

(51, 99)

ASFV cGAS-
STING-
TBK1

ASFV pA137R negatively
regulates the cGAS-STING-

mediated IFN via the autophagy-
mediated TBK1 degradation

(117)

ASFV TBK1-
IRF7

ASFV MGF360-11L interacted
with TBK1 and IRF7, degrading

TBK1 and IRF7 via
autophagy pathways.

(118)

PCV2 cGAS PCV2 induces the cGAS
ubiquitination degradation by

autophagy, promoting
virus infection

(100)
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activation of STING contributes to pyroptosis via the TBK1-IRF3

signal (138, 139). We speculate that inflammasomes and lysosomes

may be the key links among different types of cell death downstream

of cGAS-STING pathways during viral infection.

Notably, three different research groups have found that mtDNA

released from mitochondria could activate the cGAS‐STING

signalling axis (81, 140, 141). That is, the cytoplasmic cGAS-

STING can recognize both the invading pathogenic DNA and

endogenous DNA. mtDNA is a double-stranded, circular molecule,

which can be recognized by TLR9, AIM2 and cGAS, inducing

immune responses (142–145). West et al. found mitochondrial

transcription factor A (TFAM, a key regulatory factor in mtDNA

transcription and replication) deficiency and mitochondrial stress

would cause the leakage of mtDNA into the cytoplasm, activating the

cGAS-STING axis and initiating type I IFN response (81). HSV-1 and

VSV infection can induce TFAM depletion and mitochondrial stress,

facilitating mtDNA release into the cytoplasm and triggering cGAS-

STING-mediated antiviral immune responses (146). Mitochondrial

dysfunction is not only the result of oxidative stress and

inflammatory responses but also a trigger for selective autophagy

(mitophagy). Moreover, mitochondrial dysfunction-mediated

mtDNA cytosolic leakage can trigger antiviral innate immune

response by activating the cGAS-STING pathway. Therefore, we

believe that the mitochondrial dysfunction events in viral infections

are key to linking cGAS-STING signalling, inflammation, oxidative

stress, and autophagy.
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Interestingly, RNA viruses, such as SARS-CoV-2, HIV and

DENV, also activate the cGAS-STING axis, despite cGAS being a

DNA PRR (36, 46, 147). Mechanistically, the activation of the

cGAS-STING by retroviruses depends on their reverse transcription

to produce DNA. cGAS-STING activity induced by other RNA

viruses is partly due to mitochondrial damage caused by a viral

infection, which in turn leads to the accumulation of mtDNA in the

cytoplasm (30). Therefore, during virus invasion, we should not

only consider the activation effect of the virus itself on the cGAS-

STING signal but also pay attention to the influence of cellular

physiological changes on it.

Although the advent of omic technologies greatly expands the

objectives of our study, each omics analysis still has some

limitations for different samples. Meanwhile, the occurrence and

development of viral diseases is a complex network, and many

factors, such as gene mutation, abnormal transcription and

epigenetic changes, affect the host’s physiological status.

Combined multi-omics analysis can analyse multiple consecutive

events of disease occurrence and identify the antiviral targets more

precisely. Moreover, with the rapid development of gene-editing

technology, using genome-wide CRISPR screening to identify host

factors of the virus-infected cells is a current research hotspot.

Integrating genome-wide CRISPR screening with multi-omic data

seems to be a promising approach to understanding the virus-host

interactive network. A research group have used this strategy to

identify some novel and effective antiviral factors (148). This
FIGURE 3

Regulatory mechanisms and functions of the cGAS-STING axis during viral infection. The cGAS-STING signalling axis widely participates in various
immune and cellular responses, including inflammation, IFN, oxidative stress, endoplasmic reticulum stress, and different types of cell death during
viral infection. All these responses affect the host’s ability to fight off invading viruses. Based on relevant studies, we summarize the crucial signalling
nodes or proteins involved in these processes.
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method may help develop new strategies for improving host disease

resistance and antiviral therapy.

Indeed, the cGAS-STING pathway plays a dual role in early

antiviral immunity and cellular responses. On the one hand,

intracellular DNA induces various cellular responses and the

expression of type I IFN and pro-inflammatory cytokines to fight

against invading viruses via the cGAS-STING-TBK1-IRF3/NF-kB
axis. On the other hand, the invoked cell death and intracellular

stress responses can regulate the upstream regulators and

downstream effectors of cGAS-STING, affecting immune

responses and pathogen clearance. For example, cGAS-STING-

activated autophagy, in turn, degrades STING and suppresses the

immune response (105). Some viruses have evolved various

strategies to antagonize the cGAS-STING pathway for immune

evasion. Under different infectious conditions, the activations of

cGAS-STING signalling are not the same. The inactivation and

overactivation of the cGAS-STING signal are both detrimental to

pathogen clearance by the host. Inhibition of the cGAS-STING axis

suppresses host antiviral responses. And overactivation of cGAS-

STING would trigger a strong inflammatory reaction and drive

immunopathology. Of great concern, cGAS/STING has become an

effective drug target. Researchers are working on designing or

screening small molecule drugs that can regulate cGAS/STING

activity. Presently, great progress has been made in the research of

cGAS inhibitors. Some drugs can directly interfere with DNA

binding to cGAS or competitively bind cGAS, thereby inhibiting

the initial activation of cGAS (149). However, the agonists targeting

cGAS are relatively rare and need further study. Although research

on cGAS-STING has become increasingly mature, how to

accurately regulate the cGAS-STING activity and promote virus

elimination by host cells still needs further exploration.
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Background: Renal ischemia-reperfusion injury (RIRI) is an inevitable

complication in the process of kidney transplantation and lacks specific

therapy. The study aims to determine the underlying mechanisms of RIRI to

uncover a promising target for efficient renoprotection.

Method: Four bulk RNA-seq datasets including 495 renal samples of pre- and

post-reperfusion were collected from the GEO database. The machine learning

algorithms were utilized to ascertain pivotal endoplasmic reticulum stress genes.

Then, we incorporated correlation analysis and determined the interaction

pathways of these key genes. Considering the heterogeneous nature of bulk-

RNA analysis, the single-cell RNA-seq analysis was performed to investigate the

mechanisms of key genes at the single-cell level. Besides, 4-PBA was applied to

inhibit endoplasmic reticulum stress and hence validate the pathological role of

these key genes in RIRI. Finally, three clinical datasets with transcriptomic profiles

were used to assess the prognostic role of these key genes in renal allograft

outcomes after RIRI.

Results: In the bulk-RNA analysis, endoplasmic reticulum stress was identified as

the top enriched pathway and three endoplasmic reticulum stress-related genes

(PPP1R15A, JUN, and ATF3) were ranked as top performers in both LASSO and

Boruta analyses. The three genes were found to significantly interact with kidney

injury-related pathways, including apoptosis, inflammatory response, oxidative

stress, and pyroptosis. For oxidative stress, these genes were more strongly

related to oxidative markers compared with antioxidant markers. In single-cell

transcriptome, the three genes were primarily upregulated in endothelium, distal

convoluted tubule cells, and collecting duct principal cells among 12 cell types of

renal tissues in RIRI. Furthermore, distal convoluted tubule cells and collecting

duct principal cells exhibited pro-inflammatory status and the highest pyroptosis

levels, suggesting their potential as main effectors of three key genes for

mediating RIRI-associated injuries. Importantly, inhibition of these key genes

using 4-phenyl butyric acid alleviated functional and histological damage in a

mouse RIRI model. Finally, the three genes demonstrated highly prognostic value

in predicting graft survival outcomes.
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Conclusion: The study identified three key endoplasmic reticulum stress-related

genes and demonstrated their prognostic value for graft survival, providing

references for individualized clinical prevention and treatment of postoperative

complications after renal transplantation.
KEYWORDS

renal ischemia-reperfusion injury, endoplasmic reticulum stress, renal transplantation,
single-cell gene expression analysis, bioinformatics
1 Introduction

Renal ischemia-reperfusion injury (RIRI) refers to the

pathological changes in the process of tissue re-oxygenation

following ischemia (1). In renal transplantation, allograft kidneys

inevitably undergo RIRI, causing delayed recovery of allograft

function, acute rejection and even loss of allograft (2, 3). Many

potential mechanisms of RIRI have been determined, including

inflammatory responses, oxidative damage and endothelial

dysfunction (4, 5). In detail, the oxidative and inflammatory

status induced by ischemia is further exacerbated by the explosive

production and dramatic accumulation of reactive oxygen species

(ROS) after reperfusion (2, 3). Several techniques and drugs were

developed to prevent or alleviate RIRI, including reduction of renal

ischemic time, elimination of ROS, inflammation, and ischemic

preconditioning (3, 6–8). Although these methods have been

applied in clinical practice, the treatment outcomes for RIRI

remain limited. Thus, future studies that explored potential

mechanisms underlying RIRI are in unmet need for the

development of novel strategies to efficiently prevent or

mitigate RIRI.

Endoplasmic reticulum (ER) is a vital organelle for maintaining

cellular homeostasis and acting a crucial role in protein synthesis,

folding and structural maturation (9). Many factors, including

hypoxia, oxidative stress, metabolic abnormalities, iron imbalance,

calcium ion leakage, and viral infection, impair the ER protein-

folding ability, causing the accumulation of unfolded and misfolded

proteins. This resulting disorder of ER homeostasis refers to ER

stress (ERS) (10–12). ERS has been reported to be involved in

various renal diseases, including genetic mutations, acute kidney

injury, diabetic nephropathy, and proteinuria (13). However, the

underlying mechanisms of ERS in RIRI remain ambiguous. Several

studies have identified ER molecular chaperones (BiP/GRP78 and

GRP94) and found that unfolded protein response inducers could

induce BiP/GRP78 and alleviate RIRI, suggesting the protective role

of ERS in RIRI (14–17). On the contrary, intermedin was reported

to protect against RIRI by repressing ERS and ERS-related

apoptosis, indicating the pathogenic role of ERS in RIRI (18).

Although this apparent discrepancy remains undefined, these

experimental results are in accordance with the “double-edged

sword” hypothesis of ERS. Specifically, the mild-moderate and
02141
severe ERS-induced cytoprotective unfolded protein response and

pathological apoptotic pathways, respectively. Owing to the

contradictory findings of ERS in RIRI, it is crucial to describe in

detail the role of ERS in RIRI and identify key ERS-related genes

based on large human and mouse datasets, which might serve as

therapeutic targets.

In this research, we integrated bulk transcriptomic and single-

cell RNA-seq datasets to elucidate the detailed mechanisms

underlying ERS in RIRI. In bulk transcriptomic levels, the

inducers and downstream targets of ERS were top upregulated in

the renal tissue after reperfusion. Then, we enrolled the ERS-related

gene sets and identified three key ERS-related genes, which were

consistently upregulated among human and mouse datasets during

RIRI. The three key ERS-related genes were strongly correlated with

pathological pathways participating in RIRI, including NF-kappa B,

inflammatory pathways, apoptosis, oxidative stress and pyroptosis.

At the single-cell level, altered expressions of three key ERS-related

genes before and after reperfusion were primarily observed in

endothelium, DCT and CD-PC. Among these three cell types,

DCT and CD-PC exhibited the pro-inflammatory status and the

highest pyroptosis levels. In addition, the three genes were

demonstrated as risk factors for allograft survival, deteriorated

graft function and allograft loss. Overall, our results highlighted

the crucial role of the three key ERS-related genes in RIRI and

provided evidence for potential RIRI treatments targeting these

three genes.
2 Materials and methods

2.1 Bulk RNA data collection
and processing

We enrolled three human bulk RNA-seq datasets (GSE43974,

GSE90861 and GSE126805) (19–21) comprising a total of 495 renal

samples of pre- and post-reperfusion. The mouse bulk RNA-seq

dataset (GSE98622) (22) included various post-reperfusion time

points and was used for cross-species validation. In addition, three

datasets (GSE21374, GSE52694, and GSE58601) (23–25) containing

transcriptomic data of renal allografts and graft outcomes were

collected for clinical analysis. All datasets were downloaded from
frontiersin.org
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the publicly available GEO database, and data acquisition and

application were accorded to GEO publication guidelines and

data access policies.

The DESeq2 R package and limma R package were utilized for

normalization and differential expressed gene (DEG) analysis of

bulk RNA-seq data and bulk RNA array data, respectively (26, 27).

For enrichment analysis, the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) pathway analysis were

conducted using the DAVID online enrichment tool (https://

david.ncifcrf.gov). The single-sample gene set enrichment analysis

(ssGSEA) by the gsva R package was implemented with gene sets as

the reference, including hallmarks obtained from the Molecular

Signatures Database (MSigDB) and cell-death-related gene

signatures (28). The protein-protein interaction (PPI) networks

were acquired from the STING online database and visualized by

the Cytoscape software. The glmnet R package was used to apply the

least absolute shrinkage and selection operator (LASSO) regression

analysis to select candidate genes for further study. The relevance

scores obtained from GeneCards presented the correlations

between key genes and oxidative stress markers. The interactions

with a relevance score ≥ 5 were applied by the Cytoscape software to

construct networks of key genes and oxidative stress markers. The

CIBERSORT algorithm (29) was utilized to infer the 22 immune cell

populations of renal allografts. For the construction of miRNA- and

transcription factors (TFs)-gene regulatory networks, miRNet

(https://www.mirnet.ca/) and NetworkAnalyst (https://

www.networkanalyst.ca/) were accessed to obtain miRNA and

upstream TFs of selected genes, respectively (30, 31).

Additionally, the Kaplan–Meier survival curve was used for

assessing the prognostic value of key genes using the survival

(https://github.com/therneau/survival) and survminer (https://

github.com/kassambara/survminer) R packages.
2.2 Collection and analysis of single-cell
transcriptome data

The mouse single-cell dataset (GSE161201) (32) contained one

normal renal sample and two RIRI samples (samples from 6 hours

and 24 hours post-reperfusion). The single-cell transcriptome data

was processed and integrated using the Seurat R (33) and Harmony

R (34) packages, respectively. The single-cell data matrices were

filtered by custom criterion (cells expressing 500~3000 and with

proportions of mitochondrial genes < 50% and ribosomal genes

< 10% were retained). Marker genes for clusters were selected by the

Seurat FindAllMarkers function (genes at least detected in 25% of

cells in target population cells, log2FC > 0.25). Odds ratios (OR) of

each cell cluster were calculated and characterized the tissue or

sample distribution of meta-clusters (35). Cell–cell interaction

ana lys i s was conducted by the Cel lChat R package

(www.cellchat.org). For enrichment analysis of target cell types,

the Seurat FindMarkers function was implemented to calculate the

log fold change of genes among different groups, applying for the

gene set enrichment analysis (GSEA) with hallmarks as reference.

The irGSEA R package (https://github.com/chuiqin/irGSEA/) was

utilized to calculate the singscore of specific gene sets for single cells.
Frontiers in Immunology 03142
Supplementary Table 1 summarizes detailed information on the

above data sets used in this study.
2.3 Experimental mouse RIRI model and
estimation of renal damage

In animal experiments, twenty-four C57BL/6 mice (8 weeks old,

male) were purchased fromWeitonglihua (Beijing, China) and housed

under a 12-hour light dark cycle with free access to food and water. All

mice were kept in a pathogen-free environment and given a week to

adapt to the conditions. The 4-phenyl butyric acid (4-PBA) (100mg/kg,

intraperitoneally injected 1 h prior renal ischemia, MCE), an ERS

inhibitor, was dissolved in phosphate buffered saline (PBS) and sodium

hydroxide was applied to adjust pH to 7.4. Mice were categorized into

four groups, including the sham group with PBS (sham + PBS group,

n=6), IRI group with PBS (IRI + PBS group, n=6), IRI group with 4-

PBA (IRI + 4-PBA group, n=6) and sham group with 4-PBA (sham +

4-PBA group, n=6). RIRI models were conducted with the following

procedures: after anesthetized with intraperitoneal injection of

pentobarbital, the right kidney was cut, and the left renal pedicle was

clamped for thirty minutes in a heating pad (34°C - 36°C), followed by

blood reperfusion for 24h. Mice in sham + PBS and sham + 4-PBA

groups experienced the same processes without clamping of the left

renal pedicle. All mice were euthanized 24 hours after corresponding

operation and blood samples and left kidneys were then collected. The

renal samples isolated from mice were fixed in 4% paraformaldehyde,

embedded in paraffin and stained with Hematoxylin and eosin (H&E),

periodic acid-Schiff staining (PAS) and terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) to assess renal

histological injury in general. The blood samples were centrifugated

at a speed of 3000 revolutions per minute for 10 minutes to get serum

samples for blood urea nitrogen (BUN) and creatinine (Cre)

measurements by an automated chemistry analyzer (Chemray 800).
2.4 qRT-PCR analysis

Total RNA was isolated from the kidneys using TRIzol reagent

and then reverse transcribed to cDNA by a cDNA synthesis kit. The

mRNA expression levels were normalized to the Ct values of the

internal control gene (GAPDH), and fold changes were calculated

compared with the control samples. Each sample was performed in

triplicate in independent experiments. The primer sequences of

three key ERS-related genes were listed in Supplementary Table 5.
2.5 Statistical analysis

The normality of the variable distribution was assessed using the

D’Agostino and Pearson omnibus normality tests. Parameters with

normal distribution were conducted contrasts by a two-tailed unpaired

t-test and the Pearson correlation analysis. For variables that did not

follow a normal distribution, the Mann-Whitney U test and Spearman

correlation were employed. A significance level of less than 0.05 was

considered statistically significant. We performed R software (version
frontiersin.org
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4.0.5; http://www.r-project.org/) for statistical analysis and

graphical representations.
3 Results

3.1 Biological processes and pathways
activated during RIRI

The DEG analysis for GSE43974 was performed and identified 219

DEGs (177 up-regulated genes and 42 down-regulated genes)

(Supplementary Table 2) based on the criterion (|logFC| > 0.5 and

FDR < 0.05) (Figure 1A). The significantly enriched GO terms based on

DEGs referred to “response to unfolded protein”, “response to heat”,

“unfolded protein binding” and “protein binding involved in protein

folding” (Figure 1B; Supplementary Table 3). The functionally KEGG

pathway analysis displayed that the significantly top pathways involved

in RIRI were the MAPK signaling pathway, protein processing in ER

and NF−kappa B signaling pathway (Figure 1C; Supplementary

Table 3). Overall, biological GO and KEGG pathway analyses

indicated a response of renal tissues to unfolded proteins in the ER

during post-reperfusion. Co-activation of the ERS, MAPK pathway

and apoptosis as evidenced by significantly upregulated c-Jun N-

terminal kinase (JNK) and CHOP (36) during RIRI pointed to

interactions between ERS, JNK/p38 MAPK signaling and apoptosis

(Figure 1D). Additionally, nuclear factor-kB (NF-kappa B) was

demonstrated to be the target of ERS (37). In brief, ERS inducers
Frontiers in Immunology 04143
and downstream targets were activated in the renal tissue

after reperfusion.
3.2 Identification and verification of key
ERS-related genes during RIRI

ERS-related genes (n=258) from two ERS-related gene sets

(including GO RESPONSE TO ENDOPLASMICRETICULUM

STRESS and GO REGULATION OF RESPONSE TO

ENDOPLASMIC RETICULUM STRESS) were obtained from

Molecular Signature Database v7.0 (MSigDB). Then, eight genes

(ATF3, PPP1R15A, CEBPB, PMAIP1, HSPA1A, ERN1, DDIT3, and

JUN) were selected through an intersection analysis between ERS-

related genes and DEGs (Figure 2A). The PPI network showed that

these eight genes were all strongly linked (Figure 2B). Three key genes

(PPP1R15A, JUN and ATF3) were identified from these eight genes

using the LASSO algorithm (Figures 2C, D), which ranked the top

three by Boruta analysis (Figure 2E). Then, we found that these three

key genes were also significantly elevated in two additional datasets

(GSE90861 and GSE126805) during RIRI (Figure 2F). The mouse

dataset (GSE98622) included transcriptomic data of sham control

kidneys and post-reperfusion renal tissues at various post-reperfusion

time points (2h, 4h, 24h, 2d, 3d, 7d, 14d, 28d, 6m and 12m). The time

course analysis of three key genes using the GSE98622 dataset revealed

that gene expression levels were significantly elevated during early

reperfusion (2h, 4h and 24h) (Figure 2G). In addition, we also found
B C

D

A

FIGURE 1

Enrichment analysis of renal tissues during RIRI. (A) Volcano plot shows DEGs between post-reperfusion and pre-reperfusion samples. Blue and red
dots represent significantly downregulated genes and upregulated genes, respectively. (B, C) Bar plots showing top 5 Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for significantly differentially expressed genes during RIRI. Bar length and color
represent log10-transformation with q-value of their corresponding pathways. (D) Top disturbed pathway during reperfusion of ischemically injured
kidneys, namely Protein processing in ER (modified from KEGG pathway hsa04141). Significantly differentially expressed genes are indicated in red.
RIRI, renal ischemia-reperfusion injury; DEG, differential expressed gene; ER, endoplasmic reticulum.
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that these three gene levels 6 months after RIRI were higher compared

to pre-reperfusion samples (Figure 2G), suggesting that these three

gene levels might serve as an indicator for the long-term prognosis of

patients with renal transplantation.
3.3 Three key ERS-related genes exhibited
closely related to inflammatory pathways,
apoptosis, oxidative stress and pyroptosis
during RIRI

In three independent RIRI datasets, the levels of apoptosis,

hypoxia, inflammatory response and TNFa signaling via NF-

kappa B were significantly higher than in pre-reperfusion

samples (Supplementary Figures S1A–D). The correlation

results showed that three key genes positively correlated with

these kidney injury-related pathways across three human RIRI

datasets (Figure 3A). Furthermore, inflammatory genes (CCL2,

CCL20, CCL8 and CXCL2) were demonstrated to positively

correlate with all three genes. The chemokine genes (CCL2,
Frontiers in Immunology 05144
CCL20, CCL8 and CXCL2) displayed chemotactic activity for

monocytes, basophils, lymphocytes and eosinophils (Figure 3B).

However, analysis of immune cell abundances based on the bulk

RNA dataset indicated that only eosinophils abundances showed

significantly increased after reperfusion (Supplementary Figures

S2A–D). Moreover, eosinophils infiltrating abundances were

positively correlated with three key ERS-related gene expression

levels (sure S2E). The GeneCard database was applied for

correlation analysis between oxidative stress markers and the

three genes, revealing that these genes were more strongly

related to oxidative markers than antioxidant markers

(Figure 3C). The networks of the three genes revealed that the

oxidative markers, including total oxidant status (TOS), ROS and

oxidized glutathione (GSSG) were strongly correlated with both

JUN and ATF3 (Figure 3D). In addition, among 11 PCD-related

gene sets (28), pyroptosis was strongly and positively correlated

with key ERS-gene expression levels across three human datasets

(Figure 3E). The pyroptosis scores after RIRI exhibited

significantly higher than those of pre-reperfusion in the three

human datasets (Figure 3F).
B C

D E

F G

A

FIGURE 2

Identification and verification of key ERS-related genes during RIRI. (A) Veen plot shows the intersection of differentially significantly expressed genes
(DEGs) and ERS-related genes. (B) The protein-protein interaction (PPI) network displaying eight tightly intersected genes. (C) The coefficient profiles
of the LASSO regression model. (D) Cross-validation for tuning parameter screening in the LASSO regression model. (E) Boruta plot showing the
importance (y-axis) of eight intersected genes. (F) Box plots showing the expression of three key ERS-gene after reperfusion in GSE43974,
GSE90861 and GSE126805. (G) Line plots show changes in expression levels of three key ERS-related genes controls and RIRI samples at various
post-reperfusion stages, including eleven different time points as illustrated on the bottom-right side. ERS, endoplasmic reticulum stress; LASSO,
least absolute shrinkage and selection operator. ****p<0.0001.
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3.4 Prediction of miRNA and TFs for three
key ERS-related genes

ThemiRNA- and TF-mRNA interaction networks were comprised

of 137 miRNAs and 174 TFs, respectively. For miRNA-mRNA

regulatory interactions, 31 miRNAs, 113 miRNAs and 31 miRNAs

target PPP1R15A, JUN and ATF3, respectively (Supplementary Figure

S3A). Among them, ten miRNAs (hsa-mir-1-3p, hsa-mir-10b-5p, hsa-

mir-16-5p, hsa-mir-17-5p, hsa-mir-21-3p, hsa-mir-24-3p, hsa-mir-

30a-5p, hsa-mir-34a-5p, hsa-mir-124-3p and hsa-mir-191-5p) could

regulate all three key ERS-related genes (Supplementary Figure S3A).

For TF-mRNA regulatory interactions, PPP1R15A, JUN and ATF3
Frontiers in Immunology 06145
could be regulated by 120 TFs, 73 TFs and 39 TFs, respectively

(Supplementary Figure S3B). Eight TFs, including ZFP37, SMAD5,

REST, RAD21, KLF16, FOXJ2, ELF1, and BCL11B, could regulate all

three key ERS-related genes (Supplementary Figure S3B).
3.5 Altered expressions of key ERS-related
genes during RIRI injury were primarily in
the endothelium, DCT and CD-PC

The single-cell RNA-seq dataset (GSE161201) included 22,310

cells, comprising 5,246 cells from the sham control sample, 10,393
B

C D

E F

A

FIGURE 3

Key ERS-related genes show a crucial role for inflammatory pathways, apoptosis, oxidative stress and pyroptosis during RIRI. (A) Bubble chart
displaying correlation analysis between key ERS-related gene expression levels and RIRI-related pathway scores. Bubble size and color are
represented with p-values and coefficients of correlation analysis in GSE43974, GSE90861 and GSE126805. (B) Bubble plot showing correlation
analysis between three key gene expression values and inflammatory gene expression levels. The p-values and coefficients of correlation analysis are
indicated in bubble size and color. (C) Bubble plot of the relevance scores of key ERS-related gene expression levels and oxidative stress. Red text
represents oxidative markers, and blue text represents antioxidant markers. (D) The networks of key ERS-genes with oxidative markers. Oxidative
biomarkers and antioxidant biomarkers are indicated in red and blue. (E) Bubble plot of the relevance scores of key ERS-related gene expression
levels and 11 programmed cell death levels. (F) Box plots showing pyroptosis scores between pre-and post-reperfusion in GSE43974, GSE90861 and
GSE126805. *p < 0.05, **p<0.01, ***p<0.001.
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cells from the RIRI-6h sample and 6,671 cells from the RIRI-24h

sample (Supplementary Figure S4A). After filtration, 16,658 cells

were obtained, including 4,282 cells from the sham control sample,

6,515 cells from the RIRI-6h sample, and 5,861 cells from the RIRI-

24h sample. Next, a total of 22 clusters within the integrated dataset

were identified and visualized by the t-SNE algorithm

(Supplementary Figure S4B). The anatomical mapping of various

cell types to specific nephron segments were presented due to the

complexity of kidney tissue (Figure 4A). The clusters were combined

and assigned to 12 known cell types based on the marker genes from

the previous studies (38–40) and CellMarker database (http://

xteam.xbio.top/CellMarker/) (Figures 4B, C; Supplementary

Table 4). The OR of each cell type was calculated and visualized by

the heatmap to characterize the distribution of the 12 known cell

lineages among the three groups. The ORs of cell types showed that

renal tissues of 24h post-reperfusion exhibited higher levels

offibroblasts, neutrophil cells and macrophages than renal tissues of

the control and 6h post-reperfusion (Figure 4D). Cell-cell interaction

analysis showed that the number of interactions and interaction

strengths between neutrophils and other cell types were elevated after

reperfusion (Supplementary Figures S4C, D). The gene expression

density maps were analyzed to explore cell-specific changes in key

ERS-related gene expression levels for each sample. The key ERS-

related genes were mainly upregulated in endothelium, CD-PC and

DCT of RIRI-6h or RIRI-24h samples compared with the sham

control sample (Figures 5A–F). These results supported weak

connections between the key ERS-gene levels and most immune
Frontiers in Immunology 07146
cell abundances by bulk RNA-seq analysis, suggesting the vital role of

ERS on non-immune cells (endothelium, CD-PC and DCT) during

RIRI damage.
3.6 DCT and CD-PC presented with pro-
inflammatory status and high
pyroptosis scores

Functional enrichment analysis of the endothelium, CD-PC and

DCT in RIRI-6h or RIRI-24h samples compared with the control

sample showed a consistently significant enrichment of TNFa
signaling via NF-kappa B (Figure 6A). Apart from the

endothelium, DCT and CD-PC exhibited enrichment of pro-

inflammatory pathways (complement, inflammatory response, IL-

2/STAT5 signaling and IL-6/JAK/STAT3 signaling pathways) and

apoptosis (Figure 6A). Based on these results, we speculated that DCT

and CD-PC with pro-inflammatory and apoptotic status served as

main senders or targets of ERS for mediating RIRI injury. In addition,

density maps were applied to estimate the relevance scores of

pyroptosis for each cell type and showed that DCT and CD-PC

exhibited the highest pyroptosis scores among all cell types examined

(Figure 6B). In both DCT and CD-PC, the relative levels of pyroptosis

were significantly increased in the RIRI-6h or RIRI-24h samples

compared with the sham control sample (Figure 6C). In brief,

pyroptosis responses were mainly in DCT and CD-PC among

other renal cells and were significantly elevated during RIRI.
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FIGURE 4

Single-cell characterization of mouse IRI kidneys. (A) Main cell types of mouse human kidney (CD-IC, collecting duct intercalated cells; CD-PC,
collecting duct principal cells; DCT, distal convoluted tubule; EC, endothelium; Fibro, fibroblasts; Macro, macrophages; Neu, neutrophils; Podo,
podocytes; PT, proximal tubule). (B) tSNE plot showing 16,658 cells from the sham control, IRI-6h and IRI-24h samples, colored by 12 major cell
types. (C) Dotplot displaying the percent expressed cells and average expression levels of marker genes of 12 cell lineages. (D) Heatmap of relative
abundances for each cell types among the sham control, IRI-6h and IRI-24h groups. The OR levels represent the cell abundances and range from 0
(blue) to 4 (yellow). tSNE, t-distributed stochastic neighbor embedding; OR, odds ratios.
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3.7 Inhibition of ERS alleviated RIRI and
suppressed three key ERS-related genes
in mice

Amouse RIRI model with or without 4-PBA was constructed to

further unveil the role of ERS in RIRI (Figure 7A). The results

showed that BUN and Cre were significantly elevated after

reperfusion and renal impairment induced by RIRI was greatly

ameliorated by 4-PBA application, manifested as the amelioration

of functional damage (Figures 7B, C) and histological injuries

(Figure 7D). Thus, we concluded that inhibition of ERS improved

renal ischemia/reperfusion-associated injuries. The expression

levels of three key ERS-related genes were further verified by

qRT-PCR analysis. Compared with the sham group, the

expression levels of these genes after RIRI were significantly

higher than those in sham samples and greatly decreased in the

group treated with 4-PBA (Figures 7E–G).
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3.8 Prognostic value evaluation of key
ERS-related genes

The 282 kidney recipients in the GSE21374 dataset were divided

into high and low gene-expression groups dichotomized at the

corresponding median of each key ERS-related gene level. Kaplan-

Meier survival curves showed a trend toward worse prognosis for

recipients with high expression of PPP1R15A, JUN and ATF3

compared to those with low expression (Figures 8A, C, E). The

area under the curve (AUC) of predictions for 1, 2, and 3 years was

depicted in Figures 8B, D, F. The highest AUC values of PPP1R15A,

JUN and ATF3 were 0.668, 0.762, and 0.723, respectively. Besides,

all three key ERS-related genes were significant risk factors for renal

allograft survival (Figure 8G). The GSE52694 dataset included RNA

profiles of 13 renal graft samples from patients with the diagnosis of

borderline changes early (≤2 months). These samples were

categorized into stable (STA, n=6) and deteriorated graft function
B
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FIGURE 5

Characteristics of key ERS-gene expression levels during renal IRI. tSNE plots showing the expression of PPP1R15A (A), JUN (C) and ATF3 (E) for 12
cell types. Intensities of color reveal normalized gene expression. Violine plots depicting significantly upregulation of PPP1R15A (B), JUN (D) and
ATF3 (F) in 6h and 24h post-reperfusion samples compared with sham control sample. *p<0.05, ****p<0.0001.
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(DGF, n=7) groups during 2 years after renal transplantation. All

key ERS-related genes exhibited an increasing trend in the DGF

group and JUN and ATF3 were significantly enhanced in the DGF

group (Figure 8H). The receiver operating characteristic (ROC)

curves indicated that all three key ERS-related genes with a high

degree of reliability in accurately predicting allograft outcomes

(PPP1R15A: AUC = 0.714; JUN: AUC = 0.952; ATF3: AUC =

0.881) (Figures 8I–K). In addition, a total of 28 renal biopsy samples

(STA, n=20; graft loss, n=8) were applied for gene expression

profiling and it was found that all three genes showed higher

levels in the graft loss group than those in the STA group

(Figure 8L). The AUCs of three key genes in predicting renal

graft outcomes were greater than 0.7, which was considered as an

acceptable predictive accuracy (Figures 8M–O). Overall, the three

key ERS-related genes have prognostic values in predicting graft

survival outcomes and assessing the risk of DGF and graft loss and

the primary mechanisms by which the three genes affect RIRI are

depicted schematically in Figure 9.
4 Discussion

RIRI, a common tissue after renal transplantation, causes

delayed graft function, increases the risk of renal allograft

rejection and even contributes to graft loss (2, 3). However, the

underlying mechanisms of RIRI are complicated and there is no

FDA-approved drugs for the treatment of RIRI in clinics (41). To
Frontiers in Immunology 09148
fully determine the mechanisms of RIRI and identify potential new

targets, we collected all available RIRI datasets with a large sample

size and performed bulk RNA-seq analysis on these samples.

Results showed that ERS was the top enriched pathway in RIRI.

Among ERS-related genes, three key genes (PPP1R15A, JUN and

ATF3) ranked top based on machine learning algorithms and were

found to positively correlate with kidney injury-related pathways,

including apoptosis, inflammatory response, oxidative stress, and

pyroptosis. Our single-cell RNA-seq analysis suggested that DCT

and CD-PC with pro-inflammatory status and the highest

pyroptosis levels in RIRI were the main effectors of the three key

genes. Furthermore, inhibition of the three key genes alleviated the

functional and histological damage of RIRI. Importantly, renal

allograft recipients with high levels of the three genes exhibited

poor prognosis in long-term outcome and graft survival. The study

is the first analysis to integrate multi-omics and clinical data for

determining the crucial roles of three key ERS-related genes in RIRI,

providing new ideas for clinical treatment.

Previous reports have shown that ERS is closely related to

kidney diseases, including acute kidney injury, diabetic

nephropathy and renal fibrosis (13). Hypoxia and ischemia as ER

stressors caused the accumulation of misfolded proteins and

eventually resulted in ERS (42). Several studies have found that

RIRI can induce ERS in renal cells (43, 44). Some studies focusing

on ER molecular chaperones identified the protective role of ERS in

RIRI, while others on intermedin suggested the pathogenic role of

ERS. However, the exact cause of the discrepancy and mechanisms
B C

A

FIGURE 6

Functional profile of endothelium, CD-PC and DCT during renal IRI. (A) Dotplot showing the enriched hallmarks of endothelium, CD-PC and DCT
between IRI 6h versus control versus e or IRI 24h versus control. Dot color and size present normalized enrichment scores (NES) and p-values
obtained from GSEA analysis. The apoptosis, inflammatory pathways and TNFa signaling via NF-kappa B are labelled with blue, red and yellow
colors. (B) tSNE plot revealing pyroptosis densities of 12 cell types. DCT and CD-PC cells circled in red exhibit the top density of pyroptosis.
(C) Violine plot displaying significantly elevated pyroptosis levels in IRI 6h and IRI 24h samples compared with control sample in DCT and CD-PC.
CD-PC, collecting duct principal cells; DCT, distal convoluted tubule; GSEA, gene set enrichment analysis. **p<0.01, ****p<0.0001.
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underlying ERS in RIRI are still unclear. Currently, there is a lack of

focus on measuring determinants of ERS or key ERS-related genes

based on renal tissues of patients with RIRI. Our results showed that

ERS was the top enriched pathway during RIRI across 336 samples,

manifested as upregulation of ERS inducers and downstream

targets, such as IRE1, CHOP, and JNK. For ERS-related genes,

three key genes (PPP1R15A, JUN and ATF3) ranked top using

machine learning algorithms and were significantly up-regulated in

all three bulk-RNA datasets (including 495 samples). Importantly,

these independent datasets were obtained from different centers and

hence have high clinical heterogeneity. All the aforementioned

results indicated the crucial role of ERS and identified three new

ERS-related genes for further mechanistic studies of RIRI.

Previous studies have indicated that the three genes are involved

in the process of ischemia-reperfusion injury or ischemia. The
Frontiers in Immunology 10149
PERK and IRE pathways were activated in sustained ERS during

neonatal hypoxia-ischemia, leading to a transient phosphorylation

of eIF2a and an increased induction of PPP1R15A (45). JUN is a

member of the AP-1 (Activator Protein-1) transcription factor

family and is an important transcription factor downstream of

ERK 1/2 and JNK in the signaling cascade, which were activated in

response to ERS induced by coronary microembolization,

ultimately leading to cardiomyocyte apoptosis (46–48). ATF3 is a

gene that encodes a transcription factor, which is upregulated in

ischemia-reperfusion injury including brain (49), liver (50), and

cardiac microvascular (51). Studies have shown that the

heterodimer of ATF3 can induce heat shock protein 27, which

activates the Akt pathway and inhibits MEKK1-JNK, thereby

inhibiting neuronal apoptosis (49). In addition to brain, liver and

cardiac IRI, limited studies have been conducted on elucidating the
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FIGURE 7

ERS in RIRI mouse model. (A) Pharmacotherapy of RIRI mouse model. The 4-phenyl butyric acid (4-PBA) is administered intraperitoneally to the
mice 1 hour before ischemia. (B, C) Serum BUN and blood urea nitrogen (BUN) and creatinine (Cre) levels in mice. (D) Representative images of HE,
PAS and TUNEL staining (×200 magnification) of renal tissues. mRNA levels of key ERS-related genes [PPP1R15A (E), JUN (F) and ATF3 (G)] in RIRI
mouse model. *P < 0.05, **P < 0.01, ****P < 0.0001, HE: hematoxylin and eosin staining, PAS, periodic acid-Schiff staining, TUNEL, terminal
deoxynucleotidyl transferase dUTP nick end labeling staining.
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molecular roles of the three genes in RIRI. Thus, we incorporated

correlation analysis to explore significantly enriched pathways

associated with the three genes in RIRI. Results revealed that the

three genes were correlated with inflammatory response, oxidative

stress, NF-kappa B pathway, apoptosis and pyroptosis. ERS can

directly initiate the inflammatory pathway, and the activation of the

inflammatory pathway releases a large number of inflammatory

factors, which in turn triggers ERS. This induces a pro-

inflammatory positive feedback loop that further amplifies the

inflammatory response (52, 53). In addition to inflammatory

responses, ROS have been shown to act a crucial part in the
Frontiers in Immunology 11150
pathology of IRI (54). Oxidative stress produced at the

reperfusion stage might induce injury to the insulted tissues. This

process is part of the term “oxygen paradox”, in which re-

oxygenation of ischemic tissues generates injuries that largely

exceed the injuries caused by ischemia alone (55). In recent years,

studies showed that ROS destroyed ER functions and initiated

unfold protein response and ERS in vivo and in vitro (56, 57). For

NF-kappa B pathway, several studies have shown that ERS can

activate the NF-kappa B pathway through facilitating TNF-a
expressions and phosphorylation of p38 MAPK/NFkB signaling

proteins (58–60). Apart from the NF-kappa B pathway, apoptotic
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FIGURE 8

Prognostic value evaluation of key ERS-related genes. Kaplan-Meier and receiver operating characteristic (ROC) curves assessing prognostic values
of PPP1R15A (A, B), JUN (C, D) and ATF3 (E, F) expression levels for kidney recipients. (G) Forest plot based on univariable Cox regression analysis
showing that key ERS-related genes are significantly risk factors for renal allograft survivals. (H) Boxplot comparing key ERS-related gene expression
levels between kidney recipients with stable renal function (STA) and deteriorated graft function (DGF). (I–K) ROC curves showing that key ERS-
related genes were able to accurately predict renal function after renal transplantation. (L) Boxplot comparing key ERS-related gene expression
levels between kidney recipients with STA and allograft loss. (M–O) ROC curves revealing that three key genes exhibited acceptable predictive
performance in renal allograft outcomes. *p<0.05, **p<0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1340997
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1340997
pathways induced by ERS are an important type of apoptosis (61).

The activation of the unfolded protein response initiated apoptotic

cell death via up-regulation of CHOP, a pivotal marker of ERS (61).

Besides, p38 can activate the transcription of CHOP through ATF6

and inhibition of p38 by SB203580 also restrained the expression of

ERS markers, supporting the role of MAPK pathway in response to

ERS-induced apoptosis. The first study on pyroptosis and RIRI can

be traced back to 2014 and demonstrated that RIRI can induce

pyroptosis in renal tubule epithelial cells by the CHOP-caspase-11

pathway (62). Furthermore, several subsequent studies indicated

that GSDMD as the protein effector of pyroptosis acted as an

executor and contributor to renal I/R injury (63–66). Overall, our

results suggested that the three genes were involved in multiple

pathological pathways of RIRI rather than a single process,

emphasizing their importance. However, the specific mechanisms

and the potential upstream and downstream relationships between

the three genes and these interrelated pathways still need to be

further studied.

Owing to the vulnerability of the renal proximal tubules, most

studies have explored the potential mechanisms underlying RIRI

using human renal proximal tubule epithelial cell line (HK2) rather

than distal tubule cells. Surprisingly, the single-cell RNA-seq

analysis indicated that endothelium, DCT and CD-PC exhibited

significantly elevated expression levels of the three genes after renal

reperfusion. Yoshio et al. also determined that oxygen-regulated

protein (ORP150), a key chaperone for ERS in response to RIRI,

was principally expressed in distal tubules (67). Besides, we

leveraged scRNA-seq of RIRI to show that DCT and CD-PC

exhibited pro-inflammatory status and the highest pyroptosis

density among all cell types examined. While previous studies

have provided a general understanding of the role of pyroptosis

in the renal tubular epithelium, few studies have specifically

addressed which segment of the tubular is affected (68, 69). We

innovatively revealed that DCT and CD-PCmay also be vital targets

of pyroptosis in RIRI, providing new insights into the mechanism of

RIRI. In addition to non-immune cells, innate and adaptive

immune cells are also involved in IRI. IRI is a type of sterile
Frontiers in Immunology 12151
inflammatory response but has similarities with the inflammation

by pathogens (70). Infiltration of neutrophils occurs as early as 30

minutes after reperfusion, causing interstitial edema activation of

the endothelium in peritubular capillaries (71). The neutrophils

exacerbate kidney injury through secreting ROS (72) and

inflammatory cytokines. Depleting neutrophils by anti ICAM-1

antibody can protect against RIRI (73, 74), demonstrating the

determinants of neutrophils in acute kidney injury in mice.

However, the pathological role of neutrophils is still not fully

validated, and ICAM-1 blocking exhibits no beneficial effect on

DGF after RIRI (75). Consistent with these human studies, our

study found that the infiltrating neutrophils showed no significant

differences between pre- and post-reperfusion in three cohorts. In

contrast with bulk RNA-seq analysis, results of single-cell analysis

revealed that the numbers of interactions and interaction strengths

between neutrophils and other cell types were elevated after

reperfusion, suggesting that cell-cell interaction between

neutrophils and other cells may be more crucial than the levels of

infiltrating neutrophils in RIRI.

The mice model of RIRI successfully validated the pathological

role of three key ERS-related genes on acute kidney injury. In detail,

compared with the RIRI group with PBS, the RIRI group treated

with 4-PBA exhibited lower levels of the three genes and acute renal

damage after reperfusion. In addition to acute kidney injury after

RIRI, the patients recovered from RIRI may suffer from chronic

kidney disease later (76–78). The maladaptive repair is determined

to be a vital mechanism for renal fibrosis, inducing RIRI to chronic

kidney disease (79). The ERS-induced apoptosis displayed a role in

the progression of kidney fibrosis in the rat model (80). Thus, we

collected three datasets with long-term follow-ups and found that

the three genes exhibited highly prognostic values in renal allograft

outcomes. Taken together, the three genes have clinical value for

both acute injury and late graft outcomes. The 4-PBA has notable

safety profiles in vivo, which is approved by the U.S. Food and Drug

Administration for clinical use in urea-cycle disorders (81–83),

suggesting its potential in RIRI treatment. However, the 4-PBA

inhibited a panel of ERS-related genes beyond just the three genes,
FIGURE 9

Overview of three key ERS-related genes in RIRI. RIRI induced the accumulation of unfold proteins and thus mediating the activation of ERS. The
three genes (PPP1R15A, JUN, and ATF3) were determined as crucial ERS genes involved in RIRI. The three genes were biologically related to kidney-
injury pathways (including inflammation, oxidative stress, and pyroptosis) and had clinical value in both acute injury and late graft outcomes.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1340997
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1340997
and the impact of 4-PBA on the late development of renal fibrosis

still needed to be evaluated. Although important roles for ERS were

recognized by multi-omics analysis, only a small portion of ERS-

relate genes were differentially expressed during RIRI. Compared

with 4-PBA, new drugs targeting these three genes may result in

better efficacy and minimal off-target effects.

The molecules identified in gene-miRNA and gene-TF regulatory

networks may offer some clues to better understand the mechanisms

of RIRI and can be potential drug targets. MiRNAs as small RNAs (18-

24 nt in size) regulate the post-transcription of mRNAs and hence are

involved in multiple biological processes, such as cell survival and

stress response. Results showed that ten miRNAs (including hsa-mir-

34a-5p, hsa-mir-30a-5p, hsa-mir-24-3p, hsa-mir-21-3p, hsa-mir-191-

5p, hsa-mir-17-5p, hsa-mir-16-5p, hsa-mir-1-3p, hsa-mir-124-3p and

hsa-mir-10b-5p) interacted with all three key ERS-related genes.

Unsurprisingly, nine miRNAs of these ten miRNAs have been

demonstrated to independently predict the occurrence of RIRI or

prevent the development of RIRI in previous studies (84–91). The

miRNAs, including miR-10b-5p, miR-16-5p, miR-24-3p, miR-34a-5p,

and miR-191-5p, have been identified to aggravate RIRI through

various mechanisms, such as downregulation of PIK3CA expression,

regulation of autophagy and promotion of apoptosis. Conversely,

miR-21-3p, miR-17-5p, miR-30a-5p, and miR-124-3p have been

shown to alleviate IRI by targeting different pathways including

caspase signaling pathway, death receptor 6, Beclin 1/ATG16

pathway, and TNFa/RIP1/RIP3 pathway. These findings provide

important insights into the role of miRNAs in RIRI and could serve

as potential therapeutic targets for future clinical interventions. In

addition, eight upstream TFs (including ZFP37, SMAD5, REST,

RAD21, KLF16, FOXJ2, ELF1 and BCL11B) could regulate all three

key ERS-related genes in RIRI. Among these eight TFs, only REST has

been confirmed to involve the process of RIRI. The previous study

found that REST was a crucial inducer of ferroptosis in RIRI and

inhibiting REST can alleviate the progression of chronic kidney disease

from RIRI (92). The results of these studies suggest a great potential

for these regulatory miRNAs and TFs as a class of therapeutic targets.

The development of drugs may achieve better for controlling better

through incorporating these regulatory molecules and ERS-related

genes rather than focusing solely on ERS-related genes.

Our study still had some limitations. First, the living donor (LD)

to deceased donor (DD) ratio of bulk-RNA datasets (GSE43974,

GSE90861 and GSE126805) selected in the current research are

different and the biological differences will inevitably produce an

impact on our findings. Second, the RIRI mouse model has inherent

limitations in recapitulating RIRI in human kidney transplantation

(93, 94). Apart from their species heterogeneity, transplant process-

related factors including organ retrieval, preservation, transport,

and implantation can introduce additional variables and potential

sources of injuries that are not present in the controlled laboratory

environment of a mouse study (95, 96). Despite these limitations,

the use of mouse models provides valuable mechanistic insights and

serves as an initial screening platform for studying RIRI. Previous

studies have demonstrated that there is a significant overlap

between gene sets associated with IRI in both mouse models and
Frontiers in Immunology 13152
published microarray data from deceased donor transplants of

human kidneys (19, 22). Finally, additional clinical sample data

needs to be established for further verifying the expression levels of

the three genes and their correlations with clinical parameters.
5 Conclusion

In summary, we performed a multi-omics analysis to identify

three key ERS-related genes in RIRI and identified their related

biological processes involved in kidney injuries. The three genes

have clinical value in both acute injury and late graft outcomes. The

4-PBA inhibiting the three genes alleviated acute kidney injury after

RIRI, and its therapeutic impact on long-term outcomes is needed

to be explored. In addition, there is an urgent need for new drugs

specifically targeting the three genes, which may result in better

efficacy and minimal off-target effects.
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Opazo G, et al. Induction of ER stress in response to oxygen-glucose deprivation of
cortical cultures involves the activation of the PERK and IRE-1 pathways and of
caspase-12. Cell Death Dis. (2011) 2:e149. doi: 10.1038/cddis.2011.31

46. Schonthaler HB, Guinea-Viniegra J, Wagner EF. Targeting inflammation by
modulating the Jun/AP-1 pathway. Ann Rheum Dis. (2011) 70 Suppl 1:i109–112.
doi: 10.1136/ard.2010.140533

47. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony
among siblings. J Cell Sci. (2004) 117:5965–73. doi: 10.1242/jcs.01589

48. Liu T, Zhou Y, Liu Y-C, Wang J-Y, Su Q, Tang Z-L, et al. Coronary
microembolization induces cardiomyocyte apoptosis through the LOX-1-dependent
endoplasmic reticulum stress pathway involving JNK/P38 MAPK. Can J Cardiol.
(2015) 31:1272–81. doi: 10.1016/j.cjca.2015.01.013

49. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H. Expression of the
activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal
death by promoting heat shock protein 27 expression and Akt activation. J Neurosci.
(2003) 23:5187–96. doi: 10.1523/JNEUROSCI.23-12-05187.2003

50. Haber BA, Mohn KL, Diamond RH, Taub R. Induction patterns of 70 genes
during nine days after hepatectomy define the temporal course of liver regeneration. J
Clin Invest. (1993) 91:1319–26. doi: 10.1172/JCI116332

51. Liu Y, Hu Y, Xiong J, Zeng X. Overexpression of activating transcription factor 3
alleviates cardiac microvascular ischemia/reperfusion injury in rats. Front Pharmacol.
(2021) 12:598959. doi: 10.3389/fphar.2021.598959

52. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic
reticulum stress activates cleavage of CREBH to induce a systemic inflammatory
response. Cell. (2006) 124:587–99. doi: 10.1016/j.cell.2005.11.040

53. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response
in immunity and inflammation. Nat Rev Immunol. (2016) 16:469–84. doi: 10.1038/
nri.2016.62

54. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J
Med. (1985) 312:159–63. doi: 10.1056/NEJM198501173120305

55. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. (2007)
357:1121–35. doi: 10.1056/NEJMra071667

56. Qu K, Shen N, Xu X, Su H, Wei J, Tai M, et al. Emodin induces human T cell
apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial
dysfunction. Acta Pharmacol Sin. (2013) 34:1217–28. doi: 10.1038/aps.2013.58

57. Liu Z-W, Zhu H-T, Chen K-L, Dong X, Wei J, Qiu C, et al. Protein kinase RNA-
like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in
reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced
apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol. (2013) 12:158.
doi: 10.1186/1475-2840-12-158

58. Akhter N, Wilson A, Arefanian H, Thomas R, Kochumon S, Al-Rashed F, et al.
Endoplasmic reticulum stress promotes the expression of TNF-a in THP-1 cells by
mechanisms involving ROS/CHOP/HIF-1a and MAPK/NF-kB pathways. Int J Mol
Sci. (2023) 24:15186. doi: 10.3390/ijms242015186

59. Pahl HL, Baeuerle PA. The ER-overload response: activation of NF-kappa B.
Trends Biochem Sci. (1997) 22:63–7. doi: 10.1016/s0968-0004(96)10073-6

60. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis
factor alpha links endoplasmic reticulum stress to the membrane death receptor
pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of
Frontiers in Immunology 15154
TRAF2 expression. Mol Cell Biol. (2006) 26:3071–84. doi: 10.1128/MCB.26.8.3071-
3084.2006

61. Hu H, Tian M, Ding C, Yu S. The C/EBP homologous protein (CHOP)
transcription factor functions in endoplasmic reticulum stress-induced apoptosis and
microbial infection. Front Immunol. (2018) 9:3083. doi: 10.3389/fimmu.2018.03083

62. Yang J-R, Yao F-H, Zhang J-G, Ji Z-Y, Li K-L, Zhan J, et al. Ischemia-reperfusion
induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal
Physiol. (2014) 306:F75–84. doi: 10.1152/ajprenal.00117.2013

63. Liu H, Chen Z, Weng X, Chen H, Du Y, Diao C, et al. Enhancer of zeste homolog
2 modulates oxidative stress-mediated pyroptosis in vitro and in a mouse kidney
ischemia-reperfusion injury model. FASEB J. (2020) 34:835–52. doi: 10.1096/
fj.201901816R

64. Tajima T, Yoshifuji A, Matsui A, Itoh T, Uchiyama K, Kanda T, et al. b-
hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-
pyroptotic effects. Kidney Int. (2019) 95:1120–37. doi: 10.1016/j.kint.2018.11.034

65. Diao C, Chen Z, Qiu T, Liu H, Yang Y, Liu X, et al. Inhibition of PRMT5
attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal
pathway in a mouse model of renal ischemia-reperfusion injury. Oxid Med Cell Longev.
(2019) 2019:2345658. doi: 10.1155/2019/2345658

66. Pang Y, Zhang P-C, Lu R-R, Li H-L, Li J-C, Fu H-X, et al. Andrade-Oliveira
Salvianolic acid B modulates caspase-1-mediated pyroptosis in renal ischemia-
reperfusion injury via Nrf2 pathway. Front Pharmacol. (2020) 11:541426.
doi: 10.3389/fphar.2020.541426

67. Bando Y, Tsukamoto Y, Katayama T, Ozawa K, Kitao Y, Hori O, et al. ORP150/
HSP12A protects renal tubular epithelium from ischemia-induced cell death. FASEB J.
(2004) 18:1401–3. doi: 10.1096/fj.03-1161fje

68. Fu Z-J, Wang Z-Y, Xu L, Chen X-H, Li X-X, Liao W-T, et al. HIF-1a-BNIP3-
mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury.
Redox Biol. (2020) 36:101671. doi: 10.1016/j.redox.2020.101671

69. Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal
transplantation: 3 key signaling pathways in tubular epithelial cells. Kidney Int. (2019)
95:50–6. doi: 10.1016/j.kint.2018.10.009

70. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat
Rev Immunol. (2010) 10:826–37. doi: 10.1038/nri2873

71. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc
Nephrol. (2006) 17:1503–20. doi: 10.1681/ASN.2006010017

72. Awad AS, Rouse M, Huang L, Vergis AL, Reutershan J, Cathro HP, et al.
Compartmentalization of neutrophils in the kidney and lung following acute ischemic
kidney injury. Kidney Int. (2009) 75:689–98. doi: 10.1038/ki.2008.648

73. Kelly KJ, Williams WW, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos
JC, et al. Intercellular adhesion molecule-1-deficient mice are protected against
ischemic renal injury. J Clin Invest. (1996) 97:1056–63. doi: 10.1172/JCI118498

74. Kelly KJ, Williams WW, Colvin RB, Bonventre JV. Antibody to intercellular
adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci
USA. (1994) 91:812–6. doi: 10.1073/pnas.91.2.812

75. Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, et al. A
randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab)
for the prevention of acute rejection and delayed onset of graft function in cadaveric
renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study
Group. Transplantation. (1999) 67:729–36. doi: 10.1097/00007890-199903150-00015

76. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, et al. AKI on CKD: heightened injury,
suppressed repair, and the underlying mechanisms. Kidney Int. (2017) 92:1071–83.
doi: 10.1016/j.kint.2017.06.030

77. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery,
AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. (2015)
26:1765–76. doi: 10.1681/ASN.2015010006

78. Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, et al.
Progression after AKI: understanding maladaptive repair processes to predict and
identify therapeutic treatments. J Am Soc Nephrol. (2016) 27:687–97. doi: 10.1681/
ASN.2015030309

79. YanM, Shu S, Guo C, Tang C, Dong Z. Endoplasmic reticulum stress in ischemic
and nephrotoxic acute kidney injury. Ann Med. (2018) 50:381–90. doi: 10.1080/
07853890.2018.1489142

80. Chiang C-K, Hsu S-P, Wu C-T, Huang J-W, Cheng H-T, Chang Y-W, et al.
Endoplasmic reticulum stress implicated in the development of renal fibrosis.Mol Med.
(2011) 17:1295–305. doi: 10.2119/molmed.2011.00131

81. Maestri NE, Brusilow SW, Clissold DB, Bassett SS. Long-term treatment of girls
with ornithine transcarbamylase deficiency. N Engl J Med. (1996) 335:855–9.
doi: 10.1056/NEJM199609193351204

82. Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow SW, Dover GJ.
Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial.
Blood. (1995) 85:43–9. doi: 10.1182/blood.V85.1.43.bloodjournal85143

83. Chen WY, Bailey EC, McCune SL, Dong JY, Townes TM. Reactivation of
silenced, virally transduced genes by inhibitors of histone deacetylase. Proc Natl Acad
Sci USA. (1997) 94:5798–803. doi: 10.1073/pnas.94.11.5798

84. Xu D, Li W, Zhang T, Wang G. miR-10a overexpression aggravates renal
ischemia-reperfusion injury associated with decreased PIK3CA expression. BMC
Nephrol. (2020) 21:248. doi: 10.1186/s12882-020-01898-3
frontiersin.org

https://doi.org/10.1038/sj.embor.7400779
https://doi.org/10.1038/sj.embor.7400779
https://doi.org/10.1038/nature07203
https://doi.org/10.1038/s41467-022-33110-5
https://doi.org/10.1038/s41467-022-33110-5
https://doi.org/10.1038/s41419-022-05138-4
https://doi.org/10.1038/s41419-022-05138-4
https://doi.org/10.1681/ASN.2020010052
https://doi.org/10.3390/jcm9010253
https://doi.org/10.1016/j.coph.2009.11.006
https://doi.org/10.1038/cddis.2011.26
https://doi.org/10.3389/fphar.2020.00039
https://doi.org/10.1038/cddis.2011.31
https://doi.org/10.1136/ard.2010.140533
https://doi.org/10.1242/jcs.01589
https://doi.org/10.1016/j.cjca.2015.01.013
https://doi.org/10.1523/JNEUROSCI.23-12-05187.2003
https://doi.org/10.1172/JCI116332
https://doi.org/10.3389/fphar.2021.598959
https://doi.org/10.1016/j.cell.2005.11.040
https://doi.org/10.1038/nri.2016.62
https://doi.org/10.1038/nri.2016.62
https://doi.org/10.1056/NEJM198501173120305
https://doi.org/10.1056/NEJMra071667
https://doi.org/10.1038/aps.2013.58
https://doi.org/10.1186/1475-2840-12-158
https://doi.org/10.3390/ijms242015186
https://doi.org/10.1016/s0968-0004(96)10073-6
https://doi.org/10.1128/MCB.26.8.3071-3084.2006
https://doi.org/10.1128/MCB.26.8.3071-3084.2006
https://doi.org/10.3389/fimmu.2018.03083
https://doi.org/10.1152/ajprenal.00117.2013
https://doi.org/10.1096/fj.201901816R
https://doi.org/10.1096/fj.201901816R
https://doi.org/10.1016/j.kint.2018.11.034
https://doi.org/10.1155/2019/2345658
https://doi.org/10.3389/fphar.2020.541426
https://doi.org/10.1096/fj.03-1161fje
https://doi.org/10.1016/j.redox.2020.101671
https://doi.org/10.1016/j.kint.2018.10.009
https://doi.org/10.1038/nri2873
https://doi.org/10.1681/ASN.2006010017
https://doi.org/10.1038/ki.2008.648
https://doi.org/10.1172/JCI118498
https://doi.org/10.1073/pnas.91.2.812
https://doi.org/10.1097/00007890-199903150-00015
https://doi.org/10.1016/j.kint.2017.06.030
https://doi.org/10.1681/ASN.2015010006
https://doi.org/10.1681/ASN.2015030309
https://doi.org/10.1681/ASN.2015030309
https://doi.org/10.1080/07853890.2018.1489142
https://doi.org/10.1080/07853890.2018.1489142
https://doi.org/10.2119/molmed.2011.00131
https://doi.org/10.1056/NEJM199609193351204
https://doi.org/10.1182/blood.V85.1.43.bloodjournal85143
https://doi.org/10.1073/pnas.94.11.5798
https://doi.org/10.1186/s12882-020-01898-3
https://doi.org/10.3389/fimmu.2024.1340997
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1340997
85. Hao J, Wei Q, Mei S, Li L, Su Y, Mei C, et al. Induction of microRNA-17-5p by
p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6.
Kidney Int. (2017) 91:106–18. doi: 10.1016/j.kint.2016.07.017

86. Hu H, Jiang W, Xi X, Zou C, Ye Z. MicroRNA-21 attenuates renal ischemia
reperfusion injury via targeting caspase signaling in mice. Am J Nephrol. (2014) 40:215–
23. doi: 10.1159/000368202

87. Liu X-J, Hong Q, Wang Z, Yu Y-Y, Zou X, Xu L-H. MicroRNA-34a suppresses
autophagy in tubular epithelial cells in acute kidney injury. Am J Nephrol. (2015)
42:168–75. doi: 10.1159/000439185

88. Ke J, Zhao F, Luo Y, Deng F, Wu X. MiR-124 negatively regulated PARP1 to
alleviate renal ischemia-reperfusion injury by inhibiting TNFa/RIP1/RIP3 pathway. Int
J Biol Sci. (2021) 17:2099–111. doi: 10.7150/ijbs.58163

89. Chen H-H, Lan Y-F, Li H-F, Cheng C-F, Lai P-F, Li W-H, et al. Urinary miR-16
transactivated by C/EBPb reduces kidney function after ischemia/reperfusion-induced
injury. Sci Rep. (2016) 6:27945. doi: 10.1038/srep27945

90. Lorenzen JM, Kaucsar T, Schauerte C, Schmitt R, Rong S, Hübner A, et al.
MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc
Nephrol. (2014) 25:2717–29. doi: 10.1681/ASN.2013121329
Frontiers in Immunology 16155
91. Wu X-Q, Tian X-Y, Wang Z-W,Wu X, Wang J-P, Yan T-Z. miR-191 secreted by
platelet-derived microvesicles induced apoptosis of renal tubular epithelial cells and
participated in renal ischemia-reperfusion injury via inhibiting CBS. Cell Cycle. (2019)
18:119–29. doi: 10.1080/15384101.2018.1542900

92. Gong S, Zhang A, Yao M, Xin W, Guan X, Qin S, et al. REST contributes to AKI-
to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI
Insight. (2023) 8:e166001. doi: 10.1172/jci.insight.166001

93. Doncheva NT, Palasca O, Yarani R, Litman T, Anthon C, Groenen MAM, et al.
Human pathways in animal models: possibilities and limitations. Nucleic Acids Res.
(2021) 49:1859–71. doi: 10.1093/nar/gkab012

94. Bagul A, Frost JH, Drage M. Stem cells and their role in renal ischaemia
reperfusion injury. Am J Nephrol. (2013) 37:16–29. doi: 10.1159/000345731

95. Simona M-S, Alessandra V, Emanuela C, Elena T, Michela M, Fulvia G, et al.
Evaluation of oxidative stress and metabolic profile in a preclinical kidney
transplantation model according to different preservation modalities. Int J Mol Sci.
(2023) 24:1029. doi: 10.3390/ijms24021029

96. Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes
and tricks. Am J Physiol Renal Physiol. (2012) 303:F1487–1494. doi: 10.1152/
ajprenal.00352.2012
frontiersin.org

https://doi.org/10.1016/j.kint.2016.07.017
https://doi.org/10.1159/000368202
https://doi.org/10.1159/000439185
https://doi.org/10.7150/ijbs.58163
https://doi.org/10.1038/srep27945
https://doi.org/10.1681/ASN.2013121329
https://doi.org/10.1080/15384101.2018.1542900
https://doi.org/10.1172/jci.insight.166001
https://doi.org/10.1093/nar/gkab012
https://doi.org/10.1159/000345731
https://doi.org/10.3390/ijms24021029
https://doi.org/10.1152/ajprenal.00352.2012
https://doi.org/10.1152/ajprenal.00352.2012
https://doi.org/10.3389/fimmu.2024.1340997
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chao Yang,
Zhejiang Ocean University, China

REVIEWED BY

Monisankar Ghosh,
Stony Brook University, United States
Björn Koos,
University Hospital Bochum GmbH, Germany

*CORRESPONDENCE

Patrizia Agostinis

patrizia.agostinis@kuleuven.be

Steven De Vleeschouwer

steven.devleeschouwer@uzleuven.be

†These authors have contributed equally to
this work

RECEIVED 22 November 2023

ACCEPTED 03 April 2024
PUBLISHED 18 April 2024

CITATION

Yang Y, More S, De Smet F,
De Vleeschouwer S and Agostinis P (2024)
Antioxidant network-based signatures cluster
glioblastoma into distinct redox-resistant
phenotypes.
Front. Immunol. 15:1342977.
doi: 10.3389/fimmu.2024.1342977

COPYRIGHT

© 2024 Yang, More, De Smet,
De Vleeschouwer and Agostinis. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 18 April 2024

DOI 10.3389/fimmu.2024.1342977
Antioxidant network-based
signatures cluster glioblastoma
into distinct redox-
resistant phenotypes
Yihan Yang1,2,3†, Sanket More2,3†, Frederik De Smet4,5,
Steven De Vleeschouwer1,6,7* and Patrizia Agostinis2,3*

1Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU
Leuven, Leuven, Belgium, 2Laboratory of Cell Death Research & Therapy, Department of Cellular and
Molecular Medicine, KU Leuven, Leuven, Belgium, 3Vlaams Instituut voor Biotechnologie (VIB) Center
for Cancer Biology Research, Leuven, Belgium, 4Department of Imaging and Pathology, KU Leuven,
Leuven, Belgium, 5Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium, 6Department of
Neurosurgery, University Hospitals Leuven, Leuven, Belgium, 7Leuven Brain Institute (LBI), KU Leuven,
Leuven, Belgium
Introduction: Aberrant reactive oxygen species (ROS) production is one of the

hallmarks of cancer. During their growth and dissemination, cancer cells control

redox signaling to support protumorigenic pathways. As a consequence, cancer

cells become reliant on major antioxidant systems to maintain a balanced redox

tone, while avoiding excessive oxidative stress and cell death. This concept

appears especially relevant in the context of glioblastoma multiforme (GBM), the

most aggressive form of brain tumor characterized by significant heterogeneity,

which contributes to treatment resistance and tumor recurrence. From this

viewpoint, this study aims to investigate whether gene regulatory networks can

effectively capture the diverse redox states associated with the primary

phenotypes of GBM.

Methods: In this study, we utilized publicly available GBM datasets along with

proprietary bulk sequencing data. Employing computational analysis and

bioinformatics tools, we stratified GBM based on their antioxidant capacities

and evaluated the distinctive functionalities and prognostic values of distinct

transcriptional networks in silico.

Results: We established three distinct transcriptional co-expression networks

and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential

in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits

strong antioxidant properties, C2 is marked with a discrepant inflammatory trait

and C3 was identified as the cluster with the weakest antioxidant capacity.

Intriguingly, C2 exhibited a strong correlation with the highly aggressive

mesenchymal subtype of GBM. Furthermore, this cluster holds substantial

prognostic importance: patients with higher gene set variation analysis (GSVA)
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scores of the C2 signature exhibited adverse outcomes in overall and

progression-free survival.

Conclusion: In summary, we provide a set of transcriptional signatures that unveil

the antioxidant potential of GBM, offering a promising prognostic application and

a guide for therapeutic strategies in GBM therapy.
KEYWORDS

oxidative stress, GBM, bioinformatics, antioxidant phenotype, signatures, canonical
GBM classification, transcription factors, prognosis
Introduction

Reactive oxygen species (ROS) are the by-products of multiple

cellular and metabolic processes. It is widely acknowledged that low

levels of ROS promote cell growth and differentiation (1), whereas

higher levels of ROS can impart fatal damage to cellular

components and trigger cell death (2). Cancer cells display basally

high levels of ROS as compared to their normal counterparts.

Several intrinsic genetic and metabolic alterations driving the

malignant state, including oncogene expression and rewiring of

major metabolic pathways, cause an imbalance in the cellular redox

tone shifting the balance in favor of a pro-oxidant state, a condition

known as “oxidative stress”. To withstand oxidative stress and avoid

irreparable damage to vital entities, malignant cells increase their

capacity to detoxify the excessive production of ROS. As a

consequence, failure to maintain a functional cellular antioxidant

defense system causes inevitably ROS-driven cellular damage that

results in cell demise which can occur through different regulated

cell death (RCD) modalities (3–7). Efforts to maintain redox

homeostasis in cancer cells can be challenged by the local tumor

microenvironment, upon invasion of malignant cells in the

bloodstream, which is notoriously more oxidizing, or colonization

to a secondary site (8). Emerging data indicate that non-genetic

mechanisms that contribute to tumor cell heterogeneity and drug

resistance, involve transcriptional reprogramming of antioxidant

response networks, which endorse cancer cells with an increased

ability to cope with intrinsic and extrinsic oxidative stress (9–11).

However, given the double-edged function of ROS, it remains

unclear which changes in the intracellular redox tone are

associated with various stages of malignancy, and when and how

they contribute to the maintenance of cancer cell’s plasticity.

This concept seems particularly applicable to glioblastoma

multiforme (GBM), the most aggressive brain neoplasm

hallmarked by high heterogeneity, which drives treatment

resistance and tumor recurrence (12). The high metabolic rate of

GBM leads to the generation of excessive amounts of ROS and

metabolic adaptation in these cells plays an essential role in resistance

to oxidative stress-induced cell death. Congruently, in response to

chemo (temozolomide - TMZ) or radio-therapy GBM activates
02157
redox-sensitive transcription factors, including nuclear factor-kB
(NF-kB), nuclear factor erythroid 2 p45-related factor 2 (NRF2), or

HIF-1 that cooperate to support cancer cell survival and progression

through cell-intrinsic and -extrinsic mechanisms (13, 14). Hence,

how GBM strives to maintain redox pathways promoting

tumorigenesis and resistance to anticancer therapies, while avoiding

oxidative stress-induced killing remains an outstanding question.

In this perspective, it would be valuable to explore whether gene

regulatory networks can capture different redox states are associated

with the main GBM phenotypes. If so, this could help in

understanding how glioma cell plasticity and redox signaling are co-

regulated. Furthermore, given that several clinically available

anticancer treatments kill cancer cells by directly or indirectly

inducing lethal levels of ROS (14), an ‘a priori’ knowledge of the

cancer cell’s antioxidant capacity based on the co-expression of redox-

regulating genes, may provide an indicator of the propensity of a ROS-

inducing drug/treatment to be effective and be therefore clinically

informative. Identifying such a gene signature redox-based classifier

could provide an additional tool to predict GBM patient responses to

therapies. Here we perform an in silico analysis to define a redox-gene

expression signature that could provide useful insights into the

propensity of a particular GBM state to undergo lethal oxidative stress.
Materials and methods

Software, signature of interest, datasets
and workflow

Unless stated otherwise, R 4.2.2 and RStudio were used to

perform our analysis based on the signature of redox controlling

transcription factor network reported in a recent paper (15). Cancer

cell line encyclopedia (CCLE) database, The Cancer Genome Atlas

Program (TCGA) database and The Genotype-Tissue Expression

(GTEx) portal were used. All the original data was transformed and

parsed with the R package tidyverse. We used GBM cell lines (n =

59) from the CCLE database and downloaded raw data from

weblink: https://sites.broadinstitute.org/ccle/. The background of

each cell line was screened manually to confirm the pathological
frontiersin.org
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diagnosis of GBM. Related information was extracted to build the

clinical profile of the cohort. We utilized the in-house RNA-seq data

of patient-derived GBM cell lines, which were isolated and

maintained primarily from clinical GBM samples (n = 41;

generated under study number S59804 and S61081), and the

GBM TCGA database (n = 168) as the validation cohorts for our

newly defined classifier and performed prognosis analysis with the

TCGA cohort. Expression of normal tissue from GTEx was used to

compensate for the lack of normal tissue data in the TCGA project.

The workflow of the study can be found in Figure 1.
Consensus clustering and expression
heatmap of the signature

We used CCLE GBM cohort for consensus clustering analysis. The

expression of genes from the signature of redox controlling transcription

factor network (15) was extracted as input matrix for clustering. With R

package ConsensusClusterPlus, consensus matrix was built and stability

assessment was performed to seek the optimal k value. We also

confirmed the optimal k value with the function embedded in the

package. In the end, k value of 3 was selected based on the stability of the

clusters (Figure 2A; Supplementary Figures 1B–J). We, thereafter, found

the three distinct groups of cell lines as the major clusters defined in our

classification system. R package ComplexHeatmap was used to derive

the heatmap for hierarchical clustering.
Functional annotation

Gene set variation analysis (GSVA) was first used to gain the score

of antioxidant pathways described in our input signature. The score
Frontiers in Immunology 03158
was calculated with the R package GSVA. Then, all the databases in the

R package msigdbr were extracted for GSVA scoring to validate the

consistency of the results. The results from the database included

Hallmark, Gene Ontology (GO), Reactome, WikiPathways, BioCarta,

the Pathway Interaction Database (PID), and Cancer Module (CM),

which showed significant readout, were reported here. We built the

heatmap with above mentioned R package to assign the function to

each cluster. Next, we performed differential expression gene (DEG)

analysis with R package DESeq2 on counts data to find the up-

regulated and down-regulated genes in each cluster. Log2 fold-

change of 0.5 and adjusted p value, derived from Benjamin-

Hochberg correction, of 0.05 were set as the thresholds. R package

EnhanceVolcano was used to generate the Volcano plot presenting

differentially expressed genes. Gene set enrichment analysis (GSEA)

was performed to assign the functions to the clusters. We used the

function in R package clusterProfiler to obtain the result for this step.
Weighted gene co-expression network
analysis and protein-protein interaction
network construction

WGCNA was performed on the top 5000 expressed genes with R

package WGCNA. This is to maintain the performance of the

algorithm, in the meantime, to acquire the correlated modules with

higher accuracy. Soft power was calculated, and we selected 5 as the

optimal soft power to emphasize strong correlations and reduce the

weaker (Supplementary Figure 3D). A signed network type was used to

detect the co-expression gene modules. We took the three clusters as

one set of traits, bringing along with clinical features and canonical

GBM classification. A trait-module correlation was then produced. We

gathered the genes from the, either positively or negatively, significantly

correlated with each grouping as another bundle of gene lists to

distinguish the three newly defined clusters. Next, we extracted the

overlapped genes in the lists obtained from DEG analysis and the lists

from WGCNA analysis to elucidate the signatures of the antioxidant

GBM classification. STRING (https://string-db.org) was used as the

tool for PPI analysis. To maximize the findings, we have utilized the

default setting of active interaction sources from the webtool. These

sources of interactions include textmining, experiments, databases, co-

expression, neighborhood, gene fusion and co−occurrence. Results

were imported into Cytoscape for network presentation. Plug-ins,

cytoHubba and ClueGO of Cytoscape were used to search for the

hub genes and annotate the functions.
Survival analysis

Overall survival (OS) and progression-free interval (PFI) data of

GBM samples from the TCGA cohort was used as input for Kaplan-

Meier survival analysis with R package survival and survminer.

Categorically, we compared the samples with the different clusters

C1-C3. Quantitatively, we calculated the GSVA scores of each

signature in the whole cohort, and compared the prognostic values

between the high and the low scores. For the single gene analysis,

transcription factors in each signature were spotted by the
FIGURE 1

Workflow of the study. In general, we divided our analysis into three
parts: 1) set up of the classification using redox homeostasis
controlling transcription factor network; 2) function annotation and
signature establishment; 3) validation by in-house RNA-seq and
TCGA-GBM project, and prognosis analysis with TCGA GBM cohort.
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transcription factor database: http://humantfs.ccbr.utoronto.ca/

index.php and http://bioinfo.life.hust.edu.cn/AnimalTFDB4/#/.

Expression status was illustrated by violin plots derived from R

package ggplot2. Again, related R packages were used to examine

the prognostic values. Finally, the hazard ratio was evaluated with the

function from the same R packages.
Results and discussion

Establishment of a GBM classification
based on distinct antioxidant gene
network phenotypes

The canonical GBM classification system based on

transcriptomic differences fails to provide the fundamental

biological characteristics that can guide the therapeutic propensity

of the cellular states. Recently, in a study using an in silico pathway-

based classifier, GBM was clustered into four main biological

subtypes, characterized by divergent metabolic states (e.g.

mitochondrial, glycolytic, lipid) and neurodevelopmental axis

(16). Interestingly, the mitochondrial GBM phenotype, relying on

oxidative phosphorylation and associated with higher levels of

intracellular ROS, exhibited higher responses to radiation, a

clinically relevant, ROS-inducing therapy in GBM. These studies

further portrayed that GBM metabolic heterogeneity, possibly

linked to a differential redox-tone, is linked to clinical outcomes.

To define a classification system for GBM, based on the intrinsic

ability of cells to detoxify ROS and maintain redox homeostasis, we

initially explored the RNAseq dataset from the CCLE database. We

performed consensus clustering using the signature consisting of

genes regulated by members of the antioxidant transcription factor

network (15) (see Materials and Methods, and Supplementary

Figure 1A). GBM cell lines could be segregated into three main

clusters labeled C1, C2, and C3 (Figure 2A). Significant definers of

each cluster included members of the activator protein-1 (AP-1)

family of transcription factors, and genes involved in heme or iron

metabolism and the detoxification of xenobiotics (15). Analysis of

the expression of these genes across the GBM cell lines showed they

were expressed prevalently in the C1 cluster, whereas their

expression was low to very low in the C2 and C3 clusters,

respectively (Figure 2A; Supplementary Figure 1A). This suggests

that the C1 GBM cluster express a transcriptional network endowed

with more robust antioxidant ability, compared with C2 and C3

(Figure 2B). Hierarchical clustering analysis resulted in a similar

segregation of cell lines (Supplementary Figure 1). The clinical

background of the individual sample can be visualized in Figure 2B.

To gain further insight into the molecular signature of each cluster,

we performed GSVA utilizing different databases. We started the

analysis using the Hallmark 50 database, and identified the term

ROS pathway together with the terms Wnt/b-catenin signaling, and

xenobiotic metabolism differentiating the three clusters, thus validating

the signature (Figure 2C). Further GSVA analysis using literature-

driven annotation of genes (genes used in the signature) revealed that

all the terms related to antioxidant functions (e.g. scavenge ROS,

provide reduced thioredoxin (TXN), synthesis of glutathione (GSH),
Frontiers in Immunology 04159
generate NADPH,metabolize heme/iron and detoxify xenobiotics) and

transcription factors (TF) regulating and antioxidant response were

highly enriched in C1 followed by C2 while poorly coexpressed in C3

(Figure 2D). To gain further insights into the molecular pathways

potentially contributing to the difference in redox signature across the

three clusters, we performed GSVA using gene ontology (GO) and

pathway analysis. The GO analysis identified terms, such as the

regulation of PERK-mediated UPR, glutamate homeostasis, and

response to fatty acids, enriched in C1 (Figure 2E; Supplementary

Figures 2A, B). Pathway analysis using different databases (Reactome,

WikiPathways, BioCarta, PID, and CM) identified PERK, NRF2,

ferroptosis, iron homeostasis, and cytokine pathways driving

inflammation, as dominant pathways differentiating the three clusters

(Figure 2F; Supplementary Figures 2C–F).

The co-existence of the PERK branch of UPR and NRF2 in C1 is

congruent with the relevant role of this ER stress sensor in the

resistance to oxidative stress in cancer cells (17). In line, PERK

mediates the phosphorylation of NRF2 on Thr-80, which unleashes

NRF2 from its inhibitory association with KEAP1 thereby favoring

NRF2 nuclear translocation and boosting the transcription of the anti-

oxidant response genes (18). These genes include heme-oxygenase-1

(HO-1), which generates the antioxidant bilirubin and glutamate-

cysteine ligase-catalytic subunit (GCLC), which is essential for the

synthesis of the major intracellular anti-oxidant glutathione (GSH)

(18). Furthermore, the PERK-eIF2a-ATF4 axis of the UPR also

contributes to the mitigation of oxidative stress in cancer cells by the

ATF4-mediated increase in amino acid transport and metabolism (19–

21). Among other targets of this pathway, the expression of the

glutamate transporter SLC7A11, which exchanges glutamate for the

import of cystine, increases the intracellular concentration of GSH. In

line with this, multiple studies have indicated that attenuation of

glutamate homeostasis leads to the accumulation of ROS (22). In

conjunction, the terms glutamate homeostasis, iron/heme homeostasis,

and ferroptosis are also enriched in C1. In line with this, recent studies

linked the PERK-NRF2-HO-1 axis of the ER stress pathway to the

modulation of ferroptosis (23). Additionally, the increased presence of

terms related to NADP activity within the molecular function (MF)

ontology and the pentose phosphate pathway (PPP) in C1 may also be

correlated with the increased activation of NRF2 (15). Several NADP-

related terms were highly enriched in C1 followed by C2 at the level of

MF in the GO analysis (Supplementary Figure 2A). Active NRF2 is

associated with increased glucose uptake, which is preferentially

metabolized through PPP resulting in increased reducing equivalent

capacity, via the production of NADPH (24). NADPH is required for

and consumed during fatty acid synthesis and the scavenging of ROS.

Of note, despite exhibiting a dominant antioxidant transcriptional

network, theGBMC1 cluster also showed an enrichment of several terms

related to the productionof protumorigenic/angiogenic cytokines, such as

IL-6, IL-7, IL-9 (25) and vascular endothelial growth factor (VEGF) (26)

(SupplementaryFigure2D).This couldbe linked toachronic activationof

the UPR, coupling the upregulation of the PERK-NRF2 antioxidant

response pathway, with the stimulation of NF-kB mediated

proinflammatory cytokines (27, 28), an interesting conjecture to be

explored in future functional studies. In GBM, b-catenin and

components of the Wnt pathway are commonly found to be

overexpressed, contributing to cancer initiation, proliferation and
frontiersin.org

http://humantfs.ccbr.utoronto.ca/index.php
http://humantfs.ccbr.utoronto.ca/index.php
http://bioinfo.life.hust.edu.cn/AnimalTFDB4/#/
https://doi.org/10.3389/fimmu.2024.1342977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1342977
invasion (29). It’s worth noting that ROS, acting as signaling molecules,

also exert control over the Wnt–b-catenin signaling pathway (30).

Together, this suggests that the GBM C1 cluster deploys the ability to

detoxify potentially harmful ROS while maintaining a redox-tone

supporting protumorigenic cell intrinsic and extrinsic signaling pathways.

Taken together, this analysis portrays that compared with the

other two clusters, the C1 identifies a GBM entity hallmarked by a

heightened antioxidant and protumorigenic potential.
Frontiers in Immunology 05160
Identification of transcriptional networks
governing differentiated
antioxidant potentials

With the aim of identifying transcriptional networks with hub

genes regulating the signature of each cluster, we integrated DEG

analysis with the WGCNA method. DEG analysis identified 173,

356 and 220 genes upregulated, while 410, 684 and 174 genes
B

C D E F

A

FIGURE 2

Consensus clustering of GBM CCLE cohort and function exploration. (A) Consensus matrix showing three distinct GBM clusters; (B) Major diversly
expressed genes in the input signature; (C) Significant pathways evaluated by GSVA scoring in Hallmark database; (D) GSVA scores of each
antioxidative pathways in the redox homeostasis transcription factor network; (E) Significant pathways evaluated by GSVA scoring in GO BP
database; (F) Significant pathways evaluated by GSVA scoring in Reactome database.
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downregulated in C1, C2 and C3, respectively (Figures 3A–C;

Supplementary Table 1). The results of GSEA on the upregulated

gene set across each cluster were in line with GSVA, identifying

genes involved in the NRF2 pathway, fatty acid metabolism and

suppressors of ferroptosis (Supplementary Figure 3B) as highly

expressed in C1 (Figure 3A; Supplementary Figure 3A). In

contrast, C2 clustered genes of several inflammatory pathways

such as response to LPS, cytokine active and IFN-a/g response
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(Figure 3B; Supplementary 3C). Interestingly C3, which exhibits a

limited ability to scavenge ROS, showed an enrichment for

apoptosis pathway (Figure 3C).

Next, we used WGCNA to build gene modules of significantly

correlating genes (Supplementary Figures 3E, F), and then

evaluated how these modules relate to the clustering pattern by

calculating Pearson correlations between each module and cluster

(Supplementary Figure 3G, Supplementary Table 2). We integrated
B C

D

E

F

A

FIGURE 3

DEG analysis, GSEA and redox-based signatures. (A–C) Volcano plots showing DEG among the clusters and the key GSEA results in each cluster;
(D) Feature panel of C1: positive and negative signatures, hub genes and function enriched; (E) Feature panel of C2: positive and negative signatures,
hub genes and function enriched; (F) Feature panel of C3: positive and negative signatures, hub genes and function enriched.
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the genes from modules correlating closely with each cluster and

their DEGs (Figures 3D–F). The integrated gene lists were used as

the input for STRING analysis to gain the protein-protein

interaction network (PPI network) of each cluster. The PPI

networks were incorporated into the Cytoscape software to

characterize the hub genes regulating this network. The top ten

hub genes were identified for each cluster, except C3, using the

cytoHubba plug-in in Cytoscape (Figures 3D, E). The low number

of input genes for C3 hindered this analysis (Figure 3F). We defined

the coexisting genes in both positively correlated genes from

WGCNA and up-regulated genes from DEG analysis as the

signatures of the three clusters (Supplementary Table 3). Further,

to identify the transcription factors in each signature, we utilized the

database as described in the method section (Supplementary

Figure 3H). We identified one [NFIX (31, 32)], six [ZBTB38 (33),

ARNTL2 (34), E2F7 (35), PBX3 (36), FOSL1 (37, 38), and DRAP1),

and one (LHX9 (39)] transcription factors in cluster C1, C2 and C3,

respectively, potentially regulating the cluster (Supplementary

Figure 3I). All these transcription factors are known to have a

role in the development and progression of GBM. Moreover, they

are either linked directly or indirectly in regulating ROS-mediated

signaling pathways. To characterize the functionality of these

integrated genesets, we used ClueGo which incorporates different

databases to identify pathways these genes are enriched in

(Figures 3D, E). The results of ClueGo were in line with GVSA

and GSEA analysis, further validating our observation that C1 has

the hallmark of an antioxidant phenotype, C2 is associated with an

inflammatory phenotype, while C3 is characterized by a propensity

to undergo ROS-mediated apoptosis.

We then tested whether the derived C1, C2 and C3 signatures

correlated with the canonical classification of classical,

mesenchymal and proneural GBM (40) (Supplementary Figure 4).

Of note, the classical subtype was distributed mainly across C1, C2

and C3, suggesting that classical GBM are heterogenous in their

redox homeostasis, likely depending on factors, such as the stage of

the disease, mutational status, etc. Remarkably, the mesenchymal

GBM subtype showed a major distribution in C2 (Supplementary

Figure 4A). This observation was further validated statistically using

a GSVA-based model of correlation (Supplementary Figure 4B). It

has been previously shown that mesenchymal cells are associated

with a high ROS index, which can lead to chronic inflammation

eventually promoting cell growth (41). The proneural subtypes

showed the highest distribution in C3 suggesting that proneural

cell types have the weakest ROS-defending potential and could be

targeted by ROS-inducing therapies. However the proneural

phenotype is known to switch to the mesenchymal phenotype as

an adaptive response in the presence of excess ROS (41, 42).

Next, we validated our signature with an in-house bulk RNAseq

dataset derived from GBM patient-derived cell lines (PDCLs).

Using the derived antioxidant network signatures, we could

cluster these PDCLs into three distinct groups (Supplementary

Figure 3J). Of note, analyzing the expression of the transcription

factors associated with clusters C1, C2, and C3, we could

demonstrate similar trends, with an expression of ZBTB38,

ARNTL2, E2F7, FOSL1, and DRAP1 high in C2 and LHX9 high

in C3 (Supplementary Figure 3K). Moreover, analyzing the
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correlation of C1, C2 and C3 signatures with the canonical

subtype showed similar trend with PDCLs in mesenchymal

subtypes showing major distribution in C2 (Supplementary

Figures 4C, D).

Hence, the transcription factors identified for each gene

network across different clusters may be predictive of GBM types

that can benefit from particular ROS-induced therapeutic

approaches. However, these observations require thorough

functional investigations both in vitro and in vivo settings to

confirm this assumption. The intriguing correlation between C2

with mesenchymal suggests that genomic-based classification of

GBM can be associated with a differential redox homeostasis and

antioxidant potential. This connection can be harnessed for targeted

therapeutic approaches.
Prognostic significance of the redox-based
classifier and the transcription
factors associated

We utilized the TCGA-GBM dataset to examine whether our

antioxidant transcription factor network-based classification system

has any prognostic value. First, based on the signatures, GSVA scores of

C1-C3 were calculated for each sample of TCGA-GBM study. Using

these scores, we could divide the patients into three different sub-

cohorts (Supplementary Figure 5A). Next, we characterized the

prognostic value of each cluster both at the levels of overall survival

(OS) (Figures 4A, C) and progression-free interval (PFI) (Figures 4B,

D). Interestingly, C2 showed significantly worse prognosis both at the

level of OS and PFI in both categorical and quantitative fashions

(Figures 4A, B). According to the multivariate analysis, C2 showed a

comparatively worse OS in GBM patients with a hazard ratio (HR) of

2.22 and a p-value of 0.010 (Figure 4C). Also, at the level of the PFI, C2

under-performed the other two phenotypes with an HR of 2.35 and a

p-value of 0.013 based on multivariate survival analysis (Figure 4D).

We then focused on the transcription factors in the signature

and wondered if they would provide more insights regarding GBM

prognosis. We analyzed their expression in the TCGA-GBM cohort

(Figures 4E–H; Supplementary Figure 5B–E). We found that all the

transcription factors herein are differentially expressed compared

with normal tissue. Except for ZBTB38 (Supplementary Figure 5B),

all the other transcription factors are up-regulated in GBM,

pointing to the re-design of redox-related mechanisms either due

to the intrinsic ability of cancer cells or driven by the tumor

microenvironment. We then checked the expression of each gene

among the three clusters, and their prognostic value at the single

gene level was underpinned (Figures 4I-N; Supplementary

Figures 5B–E). We found that FOSL1 is a potent predictor of

both OS and PFI prognosis (Figure 4K). Lower expression of

FOSL1 indicates a better prognosis in GBM patients. Our finding

shows that the patients stratifying in the C2 phenotype may have a

preferable OS and PFI, and FOLS1 can serve as a single gene

biomarker predicting the survival of GBM patients.

In summary, we report the prognostic value of the classification

of the redox homeostasis controlling network (Figure 5).

Interestingly, C2 defined by the new classifier is adequate to
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predict poor OS. Moreover, patients, who are classified as C2

phenotype, showed worsened PFI. Considering the function

discovered in the enrichment analysis, C1 is marked as a cluster

with a higher antioxidant potential compared with C2 and C3. In
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C2, a moderate level of ROS may function as a signaling molecule

promoting GBM progression. The C3 phenotype has the weakest

antioxidant potential and GBM clustered in this group may

succumb to ROS-induced cell death. Among the transcription
FIGURE 5

Figurative summary. GBM can be clustered into three groups, termed C1, C2 and C3, depending on the intrinsic antioxidative capacities. C1 is
characterized by the strongest antioxidative potential. C2 has be discovered with the inflammatory phenotype and a correlation with mesenchymal
GBM subtype. The antioxidation is dampened in C3, which, hypothetically, contributes to the vulnerability to ROS-triggered cell death in this cluster.
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FIGURE 4

Survival analysis of the classification in TCGA GBM cohort and analysis of transcription factor in the signature of each cluster. (A) K-M curves of OS;
(B) K-M curves of PFI; (C) Table of hazard ratio on OS; (D) Table of hazard ratio on PFI; (E) NFIX expression status and (F) its prognostic value; (G)
ARNTL2 expression status and (H) its prognostic value; (I) FOSL1 expression status and (J) its prognostic value; (K) LHX9 expression status and (L) its
prognostic value; (M) Table of hazard ratio on OS; (N) Table of hazard ratio on PFI. **** indicates a p-value < 0.0001.
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factors in the C2 signature, FOSL1 demonstrates a prognostic value

in both OS and PFI. This suggests that FOSL1 under-expression is

an independent factor linked to longer OS and delayed tumor

progression. Interestingly, FOSL1 has been shown to boost the

transition of proneural-to-mesenchymal via NF-kB signaling (37).

In pancreatic cancer, metastasis can be overcome by the

suppression of FOSL1 expression by SMAD4 (43). Of note,

FOSL1 expression has been functionally related to cancer

angiogenesis and vascularization, suggesting that reprogramming

of the redox tone in this GBM cluster may be associated with its

heightened neovascularization potential.

In conclusion, our analysis shows that the C2 cluster is closely

correlated with mesenchymal GBM. Due to the pervasive

angiogenic phenotype of the mesenchymal subtype of GBM,

FOSL1 could be an interesting target for future studies assessing

the biological and therapeutic function of this transcription factor

in GBM.
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SUPPLEMENTARY FIGURE 1

(A) Multiple clustering algorithms underscore the robustness of antioxidative
network-based classification. Expression heatmap and hierarchical clustering

of antioxidative signature; (B–J) Consensus clustering with multiple k values.

SUPPLEMENTARY FIGURE 2

Heatmap of GSVA scoring biological function database. (A) GSVA score

heatmap of GO MF database; (B) GSVA score heatmap of GO CC database;

(C) GSVA score heatmap of WikiPathways database; (D) GSVA score heatmap
of BioCarta database; (E) GSVA score heatmap of PID database; (F) GSVA

score heatmap of CM database.

SUPPLEMENTARY FIGURE 3

(A) GSEA of C1; (B)Overlapping of ferroptosis signature with C1 signature; (C)
GSEA of C2; (D) Soft power selection in WGCNA; (E, F) WGCNA modules

presentation; (G) Module-trait correlations; (H) Transcription factors in each
cluster signature and (I) their expression status in CCLE cohort; (J) redox
clusters assignment of in-house GBM RNA-seq; (K) Expression of featured
transcription factors in in-house cohort. SIG: signature.

SUPPLEMENTARY FIGURE 4

Bridging antioxidative clusters with GBM canonical classification. (A) Alluvial plot
showing the cluster-subtype connection in CCLE cohort; (B) Correlation analysis
of GSVA scores of signatures of antioxidative cluster and GBM canonical subtypes

in CCLE cohort. (C) Alluvial plot showing the cluster-subtype connection in in-
house cohort; (D) Correlation analysis of GSVA scores of signatures of redox

cluster and GBM canonical subtypes in in-house cohort.

SUPPLEMENTARY FIGURE 4

(A) Subtype assignment in GBM samples from TCGA project; (B) ZBTB38
expression status and its prognostic value; (C) PBX3 expression status and its

prognostic value; (D) E2F7 expression status and its prognostic value; (E)
DRAP1 expression status and its prognostic value.

SUPPLEMENTARY FIGURE 5

(A) Subtype assignment in GBM samples from TCGA project; (B) ZBTB38

expression status and its prognostic value; (C) PBX3 expression status and its
prognostic value; (D) E2F7 expression status and its prognostic value; (E)

DRAP1 expression status and its prognostic value.
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Computational recognition of
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for ferroptosis with implications
on immunological properties and
clinical management of
atopic dermatitis
Lei Xu1,2, Wenjuan Guo1, Huirong Hao1, Jinping Yuan1

and Bingxue Bai1*

1Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key
Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China
Background: Atopic dermatitis (AD) is a common chronic dermatitis of

autoimmune origin that considerably affects the quality of life of patients.

Ferroptosis, a newly regulated form of cell death, is essential for inflammation-

related damage-associated molecular patterns (DAMPs). In this study, we aimed

to identify ferroptosis regulators relevant to AD pathogenesis and reveal the

mechanisms by which ferroptosis regulates the pathogenesis of AD.

Methods: We analyzed the GEO AD cohorts (GSE16161, GSE32924, GSE107361,

and GSE120721), identifying AD-related differentially expressed genes (DEGs)

using edgeR. Co-expression and STRING database analyses were used to

elucidate the interactions between DEGs and ferroptosis markers. Through

functional enrichment analysis, we defined potential biological functions within

the protein-protein interaction (PPI) network and developed FerrSig using LASSO

regression. The utility of FerrSig in guiding the clinical management of AD was

evaluated using the GSE32473 cohort. Subsequently, our in silico findings were

confirmed, and mechanistic insights were expanded through both in vitro and in

vivo studies, validating the relevance of FerrSig.

Results: In the GEO AD cohort, 278 DEGs were identified, including seven

ferroptosis signature genes. Co-expression analysis and STRING database

review revealed a 63-node PPI network linked to cell cycle and pro-

inflammatory pathways. Four ferroptosis genes (ALOXE3, FABP4, MAP3K14, and

EGR1) were selected to create FerrSig, which was significantly downregulated in

samples collected from patients with AD. In addition, immune-related signaling

pathways were significantly differentially enriched between the stratifications of

samples collected from patients with AD with high and low ferritin levels,

whereas in the GSE32473 cohort, FerrSig was significantly increased in cohorts

effectively treated with pimecrolimus or betamethasone. Finally, in vitro and in

vivomodels showed a notable FerrSig decrease in patients with AD versus healthy

control. Treatment with betamethasone and tacrolimus restored FerrSig, and the

magnitude of the increase in FerrSig was higher in samples collected from
frontiersin.org01166

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412382/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412382/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412382/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412382/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412382/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1412382/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1412382&domain=pdf&date_stamp=2024-09-06
mailto:baibingxue@hrbmu.edu.cn
https://doi.org/10.3389/fimmu.2024.1412382
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1412382
https://www.frontiersin.org/journals/immunology


Xu et al. 10.3389/fimmu.2024.1412382

Frontiers in Immunology
patients with AD with better efficacy assessments. In addition, FerrSig was

significantly positively correlated with the ferroptosis inhibitors GPX4 and

SLC7A11 and negatively correlated with reactive oxygen species (ROS) levels

and p-STAT3/STAT3. This implies that the FerrSig signature genes may regulate

ferroptosis through the JAK/STAT3 signaling pathway.

Conclusion: Our study further explored the pathogenesis of AD, and FerrSig

could serve as a potential biomarker for identifying AD morbidity risks and

determining treatment efficacy.
KEYWORDS

ferroptosis, atopic dermatitis, immunoregulation, drug therapy, tissue-specific genes
GRAPHICAL ABSTRACT

The overview of the study design
1 Introduction

Atopic dermatitis (AD) is the most common inflammatory skin

disease. Its main clinical manifestations include lesions, rashes, and

crusts on the extremities, head, and face, accompanied by intense

itching and discomfort (1, 2). Some patients experience intractable

itching, which seriously affects their quality of life (3). Epidemiological

reports indicate that the combined prevalence of AD in the community

is approximately 11%–13% (4, 5). Its prevalence is higher in children

than in adults, with a combined prevalence of approximately 24% in

children aged 0–5 (6). Therefore, the high prevalence of AD imposes a

severe burden on public healthcare systems. In addition, several

challenges remain in the clinical management of AD, including the

absence of objective diagnostic tests, unavailability of publicly

recognized specific biomarkers, and vulnerability to relapse (5, 7).

Therefore, a more comprehensive understanding of its pathogenesis

can help overcome these challenges and improve the early and accurate

diagnosis and treatment of patients with AD.

Ferroptosis was first detected by Dixon et al. and is a form of cell

death induced by ferrous ions and cell membrane lipid peroxidation
02167
(8). Recently, ferroptosis has been suggested to be involved in the

pathophysiology of several immune-mediated diseases (9, 10).

Evidence suggests that ferroptosis and the inflammatory response

are mutually reinforcing. Ferroptosis triggers the intrinsic immune

system by releasing inflammation-related damage-associated

molecules, and immune cells stimulate an inflammatory response

by recognizing the mechanisms of different patterns of cell death

(11). For example, neutrophils can release extracellular traps through

the ferroptosis pathway, activate toll-like receptors (TLR), and

upregulate ROS levels (12). Excessive production of ROS promotes

the release of pro-inflammatory cytokines and polarization of

cytotoxic T cells, leading to AD morbidity and progression (13).

Additionally, in psoriasis, which has a pathogenesis similar to that of

AD, ROS-dependent ferroptosis is closely associated with the

accumulation of inflammatory cytokines. Intervention strategies

targeting ferroptosis can substantially reduce the intensity of

inflammation and inhibit pathophysiological evolution (14, 15).

Therefore, we speculate that ferroptosis may play an essential role

in the pathophysiological development of AD. However, the

mechanisms underlying ferroptosis regulation in AD have yet to
frontiersin.org
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be explored, and a notable knowledge gap still exists in this field.

Therefore, this study attempted to reveal the critical regulators of

ferroptosis in AD and their potential regulatory mechanisms, and to

construct ADmorbidity models for guiding its clinical management.

In this study, we identified 278 differentially expressed genes

(DEGs) and seven ferroptosis signature genes in multiple GEO

cohorts. Furthermore, we constructed protein-protein interaction

(PPI) networks and performed functional enrichment analysis.

Ferroptosis signature genes and associated DEGs were highly

enriched in signaling pathways involved in immune regulation,

cell cycle checkpoints, and extracellular matrix reorganization. In

addition, the constructed FerrSig model could accurately identify

the risk of developing AD and was suggestive of a response to

glucocorticoid and immunosuppressant therapies. Finally, in both

in vitro cellular and mouse models, we observed elevated levels of

ferroptosis in AD and validated the correlation between FerrSig

expression and AD morbidity and treatment response. Overall, our

study revealed that ferroptosis is involved in the pathophysiological

evolution of AD. In addition, FerrSig may serve as a novel

biomarker with clinical applicability, and its corresponding hub

genes may be potential targets for clinical interventions in AD.
2 Materials and methods

2.1 Collection and pre-processing of data

Six AD-related cohorts were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). Only samples of skin tissue

origin were retained in all GEO cohorts. After excluding samples

from the same patient source, samples from 64 patients with AD

and 34 healthy controls were included in the GSE16161, GSE32924,

GSE107361, and GSE120721 cohorts. They were used to identify the

DEGs and construct an AD morbidity model. The GSE60709

cohort was used as an independent external dataset to validate

the accuracy and stability of the AD morbidity model. The

GSE32473 cohort contained information on patients with AD

treated with pimecrolimus or betamethasone. This cohort was

used for the analysis of therapeutic benefits. A list of ferroptosis

regulators was obtained from the “FerrDb V2” database (http://

www.zhounan.org/ferrdb/) (16). The “normalizeBetweenArrays”

function in the “limma” package was used to normalize

expression profiles from different GEO cohorts to avoid biased

results due to variations in sequencing background.
2.2 Identification of DEGs

To ensure accuracy, we used the Robust Rank Aggregation

method to identify DEGs in samples from healthy controls and

patients with AD (17). First, based on the “edgeR” algorithm, we

separately evaluated the differences in expression profiles between

samples from healthy controls and AD samples in GSE16161,

GSE32924, GSE107361, and GSE120721 cohorts. The list of

candidate DEGs was determined according to the thresholds

FDR<0.05 and |logFC|>1. Furthermore, based on the
Frontiers in Immunology 03168
“RobustRankAggreg” package, we comprehensively analyzed the

LogFC and FDR values distribution of the candidate DEGs and

constructed a comprehensive ranking list. Only DEGs with

consistent expression patterns in at least three cohorts were

selected and considered differentially expressed between samples

from healthy controls and patients with AD.
2.3 Co-expression analysis and
construction of the PPI network

First, the co-expression relationships between ferroptosis

signature genes and DEGs were identified using the Spearman

correlation analysis. All co-expression relationships were retained

at p<0.05. Furthermore, in the STRING database, we searched for

all nodes in the co-expression network (https://cn.string-db.org/)

(18). With Cor>0.4 as the threshold, 63 PPI were retained.

Reconstruction of PPI networks was performed using the

Cytoscape software (Version 3.9.2).
2.4 Functional enrichment analysis

The “clusterProfiler” package was served for Gene Ontology

(GO) and the Kyoto Protocol Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analysis (19). Signaling pathways

and biological functions that met the qvalue < 0.05 were considered

significant. The “org.Hs.eg.db” package was used to translate gene

symbols into ensemble IDs, which enabled the gene list to be read

by the “enrichGO” or “enrichKEGG” algorithm.

In addition, the gene set enrichment analysis (GSEA) can

identify variations in the enrichment levels of specific signaling

pathways in different sample stratifications. This strategy was

applied to identify the differences in the activity of immune

regulatory signaling pathways between the high- and low-FerrSig

subgroups. Gene sets for characterizing the immune regulatory

signaling pathways were obtained from the GSEA database (https://

www.gsea-msigdb.org/gsea/).
2.5 Identification of the AD morbidity
model with LASSO regression

Least absolute shrinkage and selection operator (LASSO)

regression were performed to identify the FerrSig AD morbidity

model. Firstly, with the “createDataPartition” function in the

“caret” package, we randomly and equally divided the integrated

GEO cohort (including GSE16161, GSE32924, GSE107361, and

GSE120721) into the train and test sets. The LASSO regression

was implemented based on the “glmnet” package. After 1000

iterations and validated by the 10-fold cross-validation, the

optimal penalty coefficient was log(l) = −4.35. Four ferroptosis

signature genes (ALOXE3, FABP4,MAP3K14, and EGR1) had non-

zero weight coefficient (Coef) values under these conditions. These

are the principal components of ferroptosis signature genes in AD

and are recognized as hub genes for ferroptosis in AD. FerrSig was
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constructed using the following formula:

FerrSig =on
i=1Coef (Hub  Genesi)   ∗   Expression(Hub  Genesi)
2.6 Immune cell infiltration and ssGSEA

ssGSEA and its derivative algorithms were used to evaluate

the enrichment levels of the immune signatures for each sample.

Of these, 24 gene sets were obtained from the study by Bindea

et al. (20), 17 from the ImmPort database (21), and 29 from the

R&D system (RndSys, https://www.rndsystems.com/). The

signatures of these gene sets were evaluated by the ssGSEA

method based on the “GSEA” package. In addition, 22 immune

cell signatures were calculated using the CIBERSORT algorithm, a

derivative of ssGSEA, and used to evaluate immune cell infiltration

patterns in AD (22).
2.7 Statistical methods and software

The Mann-Whitney U test was used to compare the differential

distribution of relevant variables between the two subtypes or

subgroups. Otherwise, we used the Kruskal–Wallis test for

variance analysis. Correlations between the variables were verified

using Spearman’s correlation analysis. The accuracy of the

morbidity model was determined with Receiver Operating

Characteristic (ROC) curves and the areas under the curves (AUC).

This study was conducted using R version 4.1.1. The

“pheatmap” package was used for plotting heatmaps. “ggplot2,”

“ggpubr,” “ggExtra,” “plyr,” and “reshape2” packages could be used

for plotting multiple figures, such as box plots and scatter diagrams.

The Venn diagram was developed with the “Venn” package. The

ROC curves were plotted by the “pROC” package. In addition, Perl

scripts were used to preprocess the data (Strawberry-Perl-5.32.1.1).
2.8 Molecular biology
experimental validation

2.8.1 In vitro cell assay
Human immortalized skin keratinocytes (HaCaT cells) were

purchased from Kunming Cell Bank of Type Culture Collection,

Chinese Academy of Science (Kunming, China) and cultured in

Dulbecco ’s modified Eagle ’s medium (DMEM, Gibco)

supplemented with 10% fetal bovine serum (FBS; Procell) and 1%

penicillin-streptomycin (v/v, Gibco) at 37°C under a humidified

atmosphere of 5% CO2. The medium was changed every 2–3 d.

HaCaT cells were cultured with 10 ng/mL of interferon-g (IFN-g; 10
ng/mL) and tumor necrosis factor-a (TNF-a; 10 ng/mL) for 24 h to

induce the in-vitro AD model.

2.8.2 ROS detection
HaCaT cells were seeded at a density of 2 × 104 cells per well in

24-well plates. After 24 h of stimulation with 10 ng/mL of TNF-a/
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IFN-g, intracellular ROS levels were assessed using a ROS detection

kit (S0033S, Beyotime Biotechnology, China). Subsequently, the

cells were incubated with 10 mM 2’,7’-dichlorodihydrofluorescein

diacetate (DCFH-DA) in the dark at 37°C for 20 min. Subsequently,

the cells were washed thrice with serum-free medium. Fluorescence

was captured using a fluorescence microscope (Leica,

Wetzlar, Germany).

2.8.3 Animals
Female BALB/c mice (6 weeks of age, body weight: 18–22 g)

provided by the Animal Laboratory Center of the Second Affiliated

Hospital of Harbin Medical University were used to construct an in

vivo AD model. They were maintained under standard conditions

(temperature 21 ± 2°C; 12-h light/dark cycle) and an unlimited

supply of a standard extruded pellet diet and water was provided.

They were allowed a minimum of 1 week to acclimate to the colony

room upon arrival. This study was conducted in accordance with

the guidelines of the Declaration of Helsinki. All procedures

complied with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals. All relevant experimental

protocols were approved by the Institutional Animal Care and Use

Committee of Harbin Medical University (ethical approval number:

YJSDW2022-122).

Mice were divided into four groups: Control (ethanol), MC903

group (calcipotriol, Sigma-Aldrich, St. Louis, MO, USA), MC903+

tacrolimus group (0.1% TAC ointment, Protopic® from Astellas

Pharma Inc. Tokyo, Japan), and the MC903+ glucocorticoid group

(GLU ointment: 0.05% clobetasol propionate cream, Tianyao Ltd.,

Alocal Pharmacy Store, Tianjin, China). Two nmol MC903 was

applied topically to each ear of the mice once daily for 7 d to induce

AD-like skin lesions. After fully inducing dermatitis, 1 nmol MC903

was administered daily for 7 d to sustain skin inflammation. The

treatment group received topical 0.1% TAC ointment and 0.05%

GLU once daily for seven consecutive days. Ear thickness and

scratching frequency were measured at the indicated time (Days

0,3.5.7,10, and 15). After the indicated time (Days 0,3.5.7,10, and

15) treatment, the mice were euthanized for the following

experiments. The portion of the intervention area of the auricular

skin of mice was fixed with 4% paraformaldehyde for

histopathological Analysis, and other remaining tissues were

stored at −80 °C for mRNA and protein extraction.

2.8.4 Histopathological analysis
After euthanizing and decapitating the mice, the whole ear

tissues were fixed in 4% paraformaldehyde. The tissues were then

dehydrated using increasing concentrations of alcohol and

embedded in paraffin blocks. Finally, 5 mm sections were stained

with hematoxylin and eosin (H&E) for evaluation of the epidermal

thickness and inflammation. Images were taken using a light

microscope (CX21; Olympus, Tokyo, Japan) to assess the

histopathological changes in the mouse ears.

2.8.5 RT-PCR
Tissues with a diameter of 5 mm and HaCaT cells were lysed in

1 ml TRIzol reagent (Invitrogen) to extract total RNA. An all-in-one
frontiersin.org
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First Strand cDNA Synthesis Kit (SM131; Sevenbio, Beijing, China)

was used to reverse-transcribe RNA into cDNA. The thermal

cycling apparatus was obtained from Thermo Fisher Scientific.

RNA expression was determined using a real-time PCR detection

system (CFX96, Bio-Rad) with SYBR Green Master Mix (SM143,

Sevenbio, Beijing, China). The thermal cycling procedure was: 95°C

(30s), 95°C (10s), 60°C (20s), and 72°C (25s). Results were

standardized using GAPDH. And the mRNA expression levels

were determined using the 2−DDCT method. Primers were

provided by RuiBiotech (Beijing, China), and the corresponding

sequences are displayed in Table 1.

2.8.6 Western blot
Protein samples were extracted from the isolated mouse tissues

with RIPA lysis buffer (P0013, Beyotime Biotechnology). Twenty-

five micrograms of total protein of different molecular weights were

separated on a 12.5% SDS-PAGE gel, which was maintained at 80 V

for 30 min and 120 V for 90 min, and then transferred to PVDF

membranes (3010040001; Roche Applied Science, Mannheim,

Germany). The blocking of membranes were performed with

TBST-5% BSA for 1 h at room temperature, and then incubated

with primary antibodies GPX4 (ab125066, abcam, UK; 1:10000),

XCT (ab175186, abcam, UK; 1:5000), Phospho-STAT3(Tyr705)

(#9145, Cell Signaling Technology, USA; 1:2000), STAT3(10253-

2-AP, Proteintech, Wuhan, Hubei, China; 1:2000), b-actin (TA-09,

Zhongshanjinqiao, Inc., Beijing, China; 1:2000) overnight at 4°C.

After incubation for 1 h at room temperature with secondary

antibodies, ECL solution (Affinity, China) was used for image

acquisition on a luminescent imaging workstation (Model 6600;

Tanon, Shanghai, China). In addition, ImageJ (Version: 1.54 g,

USA) was used to measure the epidermal thickness and calculate

the gray values of the Western Blot strips.

2.8.7 Statistical and software
All data are presented as the mean ± standard deviation (SD)

and were performed with the GraphPad Prism 5.0 software

(GraphPad Software, CA, USA). One-way ANOVA followed by

Turkey’s multiple comparisons test and Student’s t-test were used to
Frontiers in Immunology 05170
measure the differences between multiple groups and two groups.

Each dependent experiment was repeated at least three times, and a

p-value < 0.05 was considered statistically significant.
3 Results

3.1 Identification of ferroptosis signature
genes in AD

First, the expression profiles of the GSE16161, GSE32924,

GSE107361, and GSE120721 cohorts were normalized to ensure

that the background expression values corresponding to each

sample were consistent (Supplementary Figure 1). Using the

thresholds of |logFC|>1 and FDR<0.05, we separately identified

3470, 1100, 1758, and 2180 DEGs between normal and AD samples

in the GSE16161, GSE32924, GSE107361, and GSE120721 cohorts,

respectively (Figures 1A–D). Next, using the Robust Rank

Aggregation method, we created a comprehensive ranking list of

DEGs. Figure 1E presented the top 15 upregulated and down-

regulated DEGs. A total of 278 DEGs with consistent expression

patterns in at least three cohorts were considered differentially

expressed between the samples from healthy controls and patients

with AD. Finally, 7/483 ferroptosis regulators simultaneously

belonged to these 278 DEGs (Figure 1F). These are considered to

be ferroptosis signature genes in AD. ALOXE3, FABP4, and AQP5

were highly expressed in samples from healthy controls, whereas

KIF20A, MAP3K14, EGR1, and HELLS were highly expressed in

samples from patients with AD (Figure 1G). Evidence suggests that

ALOXE3 can increase cellular resistance to ferroptosis and FABP4

can protect cells from oxidative stress (23, 24). Similarly, EGR1 is

related to GPX4 axis activity and promotes ferroptosis (25). In

addition, CHAC1 and PTGS2 were significantly highly expressed in

samples collected from patients with AD, whereas the expression of

GPX4 and SLC7A11 was relatively low (Figure 1H). PTGS2

regulates the biosynthesis of COX-2, which promotes

inflammation and oxidative stress. CHAC1 catalyzes glutathione

catabolism, and GPX4 and SLC7A11 are protective factors in cells
TABLE 1 Primer sequences for RT-PCR.

Genes Forward Revers

hMAP3K14 GAGGAAAGAGCCCATCCACC TCAGACCTCCCACTTGCTGT

mMAP3K14 GGGGTCCTGCTTACTGAGAAAC TTCATTCTGTGGACCTCGCC

hFABP4 AACCTTAGATGGGGGTGTCCT ACGCATTCCACCACCAGTTT

mFABP4 CGACAGGAAGGTGAAGAGCAT AACACATTCCACCACCAGCTT

hALOXE3 TGTTTGCCGGCGCTGTATT TGTTTGCTTGCCTCTGACACA

mALOXE3 CTGGTTCCTACCTGAAGGCTG AGCGCAACAGCAAGATCTCA

hEGR1 GTTACCCCAGCCAAACCACT GTGGGTTGGTCATGCTCACT

mEGR1 AGCCTTCGCTCACTCCACTA AGCTGGGATTGGTAGGTGGT

hGAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

mGAPDH GGTTGTCTCCTGCGACTTCA TGGTCCAGGGTTCTTACTCC
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1412382
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1412382
under oxidative stress (11). Therefore, the ferroptosis process in AD

might be activated. In summary, heterogeneity in the expression

patterns of ferroptosis regulators exists between samples from

patients with AD and healthy controls, and activation of

ferroptosis is related to the pathogenesis of AD.
3.2 Construction of the PPI network and
functional annotation

To further reveal the mechanisms by which these seven

ferroptosis signature genes are involved in AD pathogenesis, we

determined their co-expression relationships with the DEGs. After

validation using the STRING database, 63 PPI relationships were

retained (Figure 2A). Next, GO and KEGG functional enrichment

analyses were performed on all nodes of the PPI network. These

genes were highly enriched in multiple signaling pathways and

molecular functions, including cell cycle regulation, immune cell

chemotaxis and migration, cytokine activity, and extracellular

matrix reorganization (Figures 2B, C). Alterations in cell-cycle

regulation may be associated with ferroptosis activation (26). In

addition, these ferroptosis signature genes can regulate multiple

proinflammatory signaling pathways, and AD is known to be

closely related to chronic inflammatory alterations. Therefore,
Frontiers in Immunology 06171
these signature genes may regulate multiple biological pathways

and have non-negligible value in AD pathogenesis.
3.3 Construction of the ferroptosis-related
AD morbidity model

To quantify the risk of AD morbidity, we developed a genetic

model with LASSO regression. After 10-fold cross-validation, the

optimal penalty coefficient was log(l) = −4.35 (Figure 3A). Under

these conditions, four ferroptosis signature genes (ALOXE3, FABP4,

MAP3K14, and EGR1) had nonzero weight coefficient (Coef) values

(Figure 3B). Therefore, they were considered hub genes with the

most significant effect on AD morbidity and were used in the

construction of FerrSig. MAP3K14 and EGR1 were highly

expressed in the AD subgroup, whereas ALOXE3 and FABP4

were highly expressed in samples from healthy controls

(Figure 3C). As shown in Supplementary Table 1, The Coef

values for ALOXE3 and FABP4 were positive, whereas those for

MAP3K14 and EGR1 were negative. Therefore, FerrSig expression

was downregulated in the AD subgroup (Figure 3D). For the ROC

curves, the AUC values corresponding to FerrSig were 0.998 and

0.994 for the training and test sets, respectively (Figures 3E, F).

Furthermore, a separate GEO cohort was used to verify the accuracy
FIGURE 1

The Heatmap displayed the distribution of differentially expressed genes (DEGs) between normal and AD samples in GSE107361 (A), GSE120721 (B),
GSE16161 (C), and GSE32924 (D). The robust rank aggregate heatmap presented the top 15 up-regulated and down-regulated DEGs in the ranking
list (E). Venn diagram presented the intersection between DEGs and ferroptosis regulators. These seven intersected genes were recognized as
ferroptosis signature genes in AD (F). Differential expression of ferroptosis signature genes (G) and ferroptosis biomarkers (H) between normal and
AD samples. p<0.05 was indicated by "*”, p<0.01 was indicated by "**", p<0.001 was indicated by "***”.
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of FerrSig. In the GSE60709 cohort, FerrSig showed an AUC of

0.838 (Figure 3G). Therefore, the predictive capability of FerrSig

was stable and its accuracy was relatively reliable across sample

cohorts from different sources and origins. Furthermore, FerrSig

was significantly negatively correlated with CHAC1 and PTGS2,

further supporting a more activated ferroptotic process in AD

(Figures 3H, I). In summary, FerrSig may serve as a potential

quantitative marker of ferroptosis. In addition, FerrSig may be a

reliable biomarker for the risk of AD morbidity.
3.4 The immune landscape analysis

Ferroptosis is an important mechanism in oxidative stress-

related cell death. In addition, the inflammatory response was

positively correlated with oxidative stress levels. In addition, the

identified ferroptosis signature genes were highly enriched in

multiple immune-related signaling pathways (Figures 2B, C). To

clarify the mechanism by which ferroptosis participates in the

pathogenesis of AD, we attempted to depict the immune

landscape of AD and reveal the immunological significance

of FerrSig.

First, we depicted the differences in immune cell infiltration

patterns between normal and AD subgroups. As shown in

Figures 4A–D, pro-inflammatory cells, including activated CD4/

CD8 cells, Tfh cells, activated dendritic cells, natural killer cells, and

B cells, were highly infiltrated in the AD subgroup. In contrast, the

proportion of immunomodulatory cells, such as regulatory T cells

(Tregs) and multiple resting immune cells, was significantly higher

in the samples from healthy controls. In addition, the levels of

various costimulatory factors, cytokines, chemokines, interleukins,
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and inflammation-promoting receptor signatures were significantly

higher in the AD subgroup (Figure 4C). These results suggest that

AD is characterized by a distinctive abnormal activation of

inflammatory activities. Furthermore, we evaluated the correlation

between FerrSig expression and the immune signatures. The

enrichment levels of macrophages, DCs, activated CD4 + T cells,

inflammatory activity, major histocompatibility complex class I

cells, and Th2 cells were negatively correlated with FerrSig

(Figure 4E). However, the activities of transforming growth

factor-b, and Tregs were positively correlated with FerrSig

(Figure 4E). Therefore, FerrSig may be negatively correlated with

inflammatory activity. In addition, we noted that JAK/STAT, NF-

kB, p53, NOD-receptor, and TLR signaling pathways were highly

enriched in the low FerrSig subgroup (Figures 4F–H). However, in

the high-ferritin subgroup, only signaling pathways related to

normal cell metabolism and skin development were highly

enriched. This indicated that low ferritin levels were closer to the

pathological state of AD, further supporting the accuracy of our AD

morbidity model. In summary, FerrSig could serve as a biomarker

of the immune status in AD. This might be attributed to the

possibility that ferroptosis and immune regulation share

signaling pathways.
3.5 Therapeutic benefit of FerrSig

Finally, we evaluated the relationship between FerrSig and the

therapeutic response in AD. Currently, the conventional

therapeut i c agent s for AD are g lucocor t i co ids and

immunosuppressants. Therefore, we further explored this issue in

the GSE32473 cohort, which received pimecrolimus or
FIGURE 2

Protein-protein interaction (PPI) relationships between DEGs and ferroptosis signature genes (A). Results of Gene Ontology (GO) (B) and the Kyoto
Protocol Encyclopedia of Genes and Genomes (KEGG) (C) functional enrichment analysis of nodes in the PPI network. In this figure, the correlation
analysis was performed with the “Spearman” correlation test. PPI with p<0.05 and Cor>0.4 in the String database could be included.
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betamethasone. After 22 d of treatment, the FerrSig levels were

significantly elevated under improved conditions (Figure 5A). In

addition, we noted that the expression of ALOXE3 and FABP4

sequentially increased in the baseline, pimecrolimus, and

betamethasone subgroups, whereas the expression of MAP3K14

and EGR1 sequentially decreased (Figures 5B–E). Compared to

Figure 3C, the expression profile of ferroptosis signature genes in

the treated subgroups tended toward samples from healthy controls

compared to samples at baseline. In addition, the expression of

CHAC1 and PTGS2 significantly decreased in the treated

subgroups, whereas GPX4 expression was upregulated

(Figure 5F). These results indicate that conventional AD therapy

may inhibit ferroptosis. In addition, FerrSig may serve as a

biomarker of treatment response, and its elevation signified that

these patients responded well to clinical management.
3.6 Validation by in vivo and in
vitro experiments

The FerrSig model was validated using HaCaT cells. As shown

in Figure 6A, after 24 h of stimulation with 10 ng/mL of TNF-a/
IFN-g, the ROS level was significantly increased. We noted that

MAP3K14 and EGR1 expression levels were about 8- and 7-fold

higher in the TNF-a/IFN-g subgroup, whereas the expression of

ALOXE3 and FABP4 was around 1/4 and 1/10 of that of the control

(Figures 6B–E). These results are consistent with those shown in
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Figure 3C, further supporting the reliability of the FerrSig model in

predicting AD morbidity.

Second, an in vivo AD morbidity model was constructed using

Female BALB/c mice. First, we detected changes in the expression of

ferroptosis signature genes at four time points: days 0, 3, 5, and 7.

ALOXE3 and FABP4 were downregulated with increasing

stimulation duration, and MAP3K14 and EGR1 expression was

upregulated, which was consistent with the results in the cellular

model (Figures 6F–I). Second, with the prolongation of stimulation,

the ear thickness of the mice also gradually and significantly

increased, as did the frequency of scratching (Figures 6J–M,

Supplementary Figures S2, S3). In addition, compared to the

control, the auricular skin of AD mice presented significant

edema, dryness, and erythema in the auricular skin (Figure 6K,

Supplementary Figure S3). These lesion characteristics became

progressively more pronounced with increasing stimulation

duration. These results further validate FerrSig as a reliable

biomarker for predicting the pathogenesis and severity of AD.

Next, when the in vivo AD model was successfully constructed

(day 7), two groups of AD mice were treated with tacrolimus or

betamethasone. We similarly examined the differences in the

expression of ferroptosis signature genes, auricular thickness, and

number of scratches on days 10 and 15. The results showed that the

symptoms of AD in the betamethasone- and tamoxifen-treated groups

improved significantly by day 10, as evidenced by a reduction in skin

lesions and frequency of scratching (Figures 7G, H). These changes

were more pronounced as treatment progressed to day 15. Notably,
FIGURE 3

The relationship between lambda values and Binominal likelihood deviance (A) or variable coefficients (B) in the calculation of FerrSig by the least
absolute shrinkage and selection operator (LASSO) regression. Differential expression of four LASSO hub genes between normal and AD samples (C).
Differential distribution in FerrSig between normal and AD samples (D). ROC curves of FerrSig in the train set (E), test set (F), or the GSE60709 cohort
(G). Correlations between FerrSig and the expression of CHAC1 (H) and PTGS2 (I). In this figure, the correlation analysis was performed with the
“Spearman” correlation test. In the box plots, p<0.01 was indicated by "**", p<0.001 was indicated by "***”, and the statistical analysis was performed
by the Mann-Whitney U test.
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the tacrolimus subgroup showed better improvement in appearance

than the betamethasone subgroup (Figure 7I, Supplementary Figures

S4A–C). Hematoxylin and eosin (H&E) staining revealed significant

epidermal thickening, parakeratotic hyperkeratosis, epidermal

hyperplasia, lymphocyte cytosis, and spongiogenesis in the skin of

AD mice. Similarly, compared with betamethasone, tacrolimus-

treated AD mice had epidermal thickness closer to that of healthy

controls and showed a more pronounced improvement in epidermal
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thickening, parakeratotic hyperkeratosis, epidermal hyperplasia,

lymphocyte cytosis, and spongiogenesis (Figure 7J, Supplementary

Figures S4D–F). Therefore, we conclude that clinical regression was

better in tacrolimus-treated AD mice than in mice treated with

betamethasone. Furthermore, ALOXE3 and FABP4 were

upregulated over time in both the betamethasone- and tacrolimus-

treated subgroups, and the expression of MAP3K14 and EGR1

exhibited a progressive decrease (Figures 7A–D). Notably,
FIGURE 4

Differences in the enrichment levels of immune signatures of CIBERSORT (A), works of Bindea et al. (B), ImmPort database (C), and the RndSys (D)
between normal and AD samples. Correlations of FerrSig with immune signatures whose Cor was larger than 0.4 (E). Top 10 highly enriched KEGG
signaling pathways in the low FerrSig subgroups (F). Top 10 highly enriched GO signaling pathways in the low FerrSig subgroups (G) and high FerrSig
subgroups (H). In this figure, the correlation analysis was performed with the “Spearman” correlation test. In the box plots, p<0.05 was indicated by
"*”, p<0.01 was indicated by "**", p<0.001 was indicated by "***”, and the statistical analysis was performed by the Mann-Whitney U test.
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tacrolimus-treated ADmice had significantly higher FerSig levels than

untreated AD mice, second only to normal controls. Relatively poorly

regressed betamethasone-treated mice showed a lower increase in

FerrSig, but it was also significantly higher than that in AD mice

(Figure 7F). In summary, FerrSig mice responded well to

AD treatment.

Finally, we validated signaling pathways potentially relevant to

FerrSig. Based on Figure 4F, we noted that the JAK/STAT3

signaling pathway changed most significantly in the low-ferritin

subgroup. We noted that p-STAT3/STAT3 was significantly

elevated in AD mice, implying that STAT3 phosphorylation was

significantly activated, and the activity of the JAK/STAT3 signaling

pathway was markedly upregulated (Figures 7K, M). SLC7A11 and

GPX4 were significantly downregulated in AD mice, suggesting the

activation of ferroptosis (Figures 7K, L, N). In addition, in both

betamethasone- and tacrolimus-treated AD mice, we observed a

rebound in GPX4 and SLC7A11 as well as a decrease in p-STAT3/

STAT3 (Figures 7K–N). The magnitude of change in these metrics

was greater in tacrolimus-treated AD mice with higher ferritin

levels and better clinical regression (Figures 7E, F). Therefore, the

FerrSig signature gene may regulate ferroptosis by participating in

the JAK/STAT3 signaling pathway and regulating STAT3

phosphorylation, which makes FerrSig clinically significant for

predicting AD pathogenesis and treatment regression.
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4 Discussion

We thoroughly analyzed 278 DEGs in the samples collected

from healthy controls and patients with AD. After extensive

investigations, we identified seven signature genes directly linked

to ferroptosis. Functional enrichment analysis revealed that these

seven genes were significantly enriched in cell cycle checkpoints and

immune regulation-related signaling pathways, which are crucial

for ferroptosis and the development and progression of AD. To

provide accurate results regarding the risk of AD, evolution of

immunological characteristics, and response to traditional AD

therapy, we developed a FerrSig model. The accuracy of this

model was validated using a test set and independent GEO

cohort. Finally, ferritin levels were significantly decreased in the

AD subgroup in both in vitro cell and mouse models. In addition, in

mice that responded better to betamethasone and tacrolimus

therapy, we observed a significant increase in FerrSig and a

corresponding significant decrease in ferroptosis. In summary,

our study reveals the mechanism by which ferroptosis regulates

the pathophysiological development of AD. Furthermore, FerrSig

has the potential to be utilized as a new biomarker with clinical

relevance, and the related hub genes may have important biological

implications in the pathophysiological changes of AD and could be

promising targets for clinical intervention.
FIGURE 5

Differences in FerrSig (A) and expression of ALOXE3 (B), FABP4 (C), MAP3K14 (D), EGR1 (E), and ferroptosis biomarkers (F) between the baseline,
pimecrolimus, and betamethasone subgroups. In the box plots, p<0.05 was indicated by "*”, p<0.01 was indicated by "**", and the statistical analysis
was performed by the Kruskal-Willis test.
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Ferroptosis is an emerging form of immunogenic cell death

(ICD) that is characterized by iron-dependent lipid peroxidation (4,

27). Inflammation-related DAMPs should be closely associated with

the activation and outbreak of inflammation in pathological states

(28, 29). For example, the pattern recognition receptor (PRR) TLR4

can recognize or mediate ferroptosis-related cell death to induce

myocardial tissue fibrosis and ischemia-reperfusion injury through
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biological signaling such as Trif or TRIM44 (30, 31). Also,

ferroptosis is widespread in the pathogenesis of auto-

immunogenic diseases (10, 32, 33). Of these, RA and psoriasis

have similar pathogenic causative factors as AD and are essentially

chronic sterile inflammatory diseases induced by abnormal

oxidative stress states (2, 34–36). Notably, ROS in RA is closely

associated with lipid peroxidation and abnormal mitochondrial
FIGURE 6

ROS fluorescent staining (A). Differential expression of ALOXE3 (B), MAP3K14 (C), FABP4 (D), and EGR1 (E) between CON and TNF-a/IFN-g
subgroups (MC903) in the cellular model. Differential expression of ALOXE3 (F), MAP3K14 (G), FABP4 (H), and EGR1 (I) betweenthe CON and MC903
in the time points of 0 days, 3 days, 5 days, and 7 days of the mice model. Photograph of a large view of the intervention area of the mouse auricle
in the time points of 0 days, 3 days, 5 days, and 7 days (J). Photograph of H&E staining of mouse auricular intervention area tissue in the time points
of 0 days, 3 days, 5 days, and 7 days (K). Differences in scratching frequency (L) and auricular thickness (M) between CON and MC903 subgroups in
the time points of 0 days, 3 days, 5 days, and 7 days. In this figure, p<0.05 was indicated by "*”, p<0.01 was indicated by "**", p<0.001 was indicated
by "***”.
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function and can increment inflammation by inducing the

generation of TNF-a, interleukin-6 (IL-6), and IL-1b (37).

Similarly, the upregulation of PTGS2 and TFRC expression and

decreased FTL, GPX4, and FTH1 mRNA levels were observed in

psoriasis samples (15). Blocking lipid peroxidation could

remarkably inhibit ferroptosis and reduce cytokine production,
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including TNF-a, IL-6, IL-1a, IL-1b, IL-17, IL-22, IL-23, and
IL25, as well as related products like MDA and 4-HNE (15, 38)..

Similarly, PRR and cytokines play essential roles in the pathogenesis

of AD. For example, TLR2 can induce p38 kinase phosphorylation,

which drives monocytes to express high-affinity IgE receptors and

exacerbates AD symptoms (39, 40). Cytokines such as IL-25 and IL-
FIGURE 7

Differential expression of ALOXE3 (A), EGR1 (B), FABP4 (C), and MAP3K14 (D) between the CON, MC903, MC903+TAC, and MC903+GLU subgroups
between the CON, MC903, MC903+TAC, and MC903+GLU subgroups in the time points of 7 days, 10 days, and 15 days. Differences in FerrSig
between the CON and MC903 subgroups in the time points of 0 days, 3 days, 5 days, and 7 days of the mice model (E). Differences in FerrSig
between the CON, MC903, MC903+TAC, and MC903+GLU subgroups in the time points of 7 days, 10 days, and 15 days of the mice model (F).
Differences in scratching frequency (G) and ear thickness (H) between the CON, MC903, MC903+TAC, and MC903+GLU subgroups in the time
points of 7 days, 10 days, and 15 days. Photograph of a large view of the intervention area of the mouse auricle in the time points of 7 days, 10 days,
and 15 days (I). Photograph of H&E staining of mouse auricular intervention area tissue in the time points of 7 days, 10 days, and 15 days (J).
Differences in p-STAT3, STAT3, SLC7A11, GPX4, and b-actin protein expression between the CON, MC903, MC903+TAC, and MC903+GLU
subgroups in the mice model (K). Relative expression of GPX4 (L), p-STAT3/STAT3 (M), and SLC7A11 (N) between the CON, MC903, MC903+TAC,
and MC903+GLU subgroups in the mice model.In this figure, p<0.05 was indicated by "*”, p<0.01 was indicated by "**", p<0.001 was indicated
by "***”.
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33 can stimulate Langerhans cell activation and Th2 cell

polarization, thereby mediating innate immune responses in AD

pathogenesis (41, 42). Th2 cells and related pathways are important

factors that induce ICD (43). Therefore, we speculated that

ferroptosis might be activated in patients with AD with a

background similar to that of autoimmune dysregulation. In our

study, significant hyper-expression of CHAC1 and decreased

expression of GPX4 and SLC7A11 were observed in samples from

patients with AD. In addition, ROS levels were markedly increased

in AD cells and tissues. These results support our hypotheses. In

addition, the seven identified AD signature genes were highly

enriched in cell cycle checkpoints and multiple immunoregulatory

signaling pathways. The cell cycle checkpoint is related to the

activity of the p53 signaling pathway and is one of the signals

that induce ferroptosis (26). From the results of KEGG enrichment

analysis, we noted that seven AD signature genes were also highly

enriched in the p53 signaling pathway. In summary, ferroptosis may

be closely associated with abnormal immune regulation in patients

with AD. This may be involved in the pathophysiology of

AD pathophysiology.

Based on the machine learning approach of LASSO regression,

we identified four hub genes (ALOXE3, FABP4, MAP3K14, and

EGR1) to construct the FerrSig model. ALOXE3 and FABP4 are key

enzymes that transport the proteins associated with lipid

metabolism. Previous studies have indicated that the pathogenesis

of AD is accompanied by the inhibition of lipid metabolism (44, 45).

In our study, FABP4 and ALOXE3 were also significantly

hypoexpressed in samples from patients with AD. Subsequently,

EGR1 and MAP3K14 are regulators of the NF-kB signaling

pathway, and their high expression promotes the ferroptosis

process (46). Additionally, EGR1, a critical transcription factor,

has been repeatedly is highly expressed in AD tissues. EGR1 can

regulate the inflammatory response in the pathogenesis of AD by

modulating the IL4, MAPK, and TSLP signaling pathways (47–49).

In our study, MAP3K14 and EGR1 were negatively correlated,

whereas ALOXE3 and FABP4 were positively correlated with

FerrSig. The overall manifestation was a significant decrease in

the FerrSig levels in patients with AD. Thus, FerrSig reliably

predicted the risk of AD Morbidity. Furthermore, we found that

the JAK/STAT, NF-kB, NOD-receptor, and TLR signaling

pathways were highly enriched in the low FerrSig subgroup.

These inflammatory signaling pathways are closely associated

with ferroptosis. For example, IFN-g signaling can inhibit

SLC7A11 expression via the JAK/STAT signaling pathway, which

induces ferroptosis cell death (50). Our study also observed the

activation of IFN-g signaling and downregulation of SLC7A11

expression in AD. The activity of the NF-kB signaling pathway is

closely related to the generation of cytokines such as IL-6 and IL-1b,
as well as the infiltration levels of Th22 cells. It also influences the

GPX4 axis and induce ferroptosis (51). In our study, essential

proteins of these signaling pathways were highly expressed in AD

tissues, suggesting that these pathways are highly activated during

AD pathogenesis. Thus, these shared signaling pathways may be

important mechanisms by which ferroptosis regulates the pathology

of AD.
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Finally, we investigated the correlation between FerrSig levels

and sensitivity to conventional AD treatments. The results showed a

significant increase in FerrSig levels in the treatment subgroup.

These results were validated using a mouse model. In addition, the

expression of CHAC1 and PTGS2 significantly decreased in the

treated subgroups, whereas GPX4 expression was upregulated.

Therefore, glucocorticoids and immunosuppressants may have

inhibited the ferroptosis in AD. This may be related to the

mechanisms underlying the effects of these two types of agents.

Both cortisol and immunosuppressants can significantly suppress

inflammatory responses and oxidative stress (52, 53). Furthermore,

these agents have significant inhibitory effects on inflammatory

signaling pathways, including JAK/STAT, NF-kB, and TLR (54–

57). In the treatment subgroup, we also detected the

downregulation of JAK/STAT signaling pathway activity. These

molecular mechanisms may underlie the therapeutic predictive

capabilities of FerrSig. In addition, upregulated FerrSig-related

hub genes have the potential to serve as clinical intervention

targets. MAP3K14 is the upstream kinase of NF-kB (58). EGR1

mainly acts on the GPX4 axis, and its overexpression can

downregulate GPX4, thereby inducing ferroptosis (25). Strategies

targeting EGR1 have been validated for selected diseases. Ai et al.

postponed the progression of renal fibrosis by suppressing the

expression of EGR1 (59). Whether these targets can be used as

new clinical intervention paradigms for AD requires

further investigation.

In this study, the FerrSig model identified ferroptosis-related

genes combined with DEGs and PPI networks, reflecting genetic

changes in onset of AD. FerrSig can serve as an early diagnostic

biomarker by detecting gene expression to identify high-risk

individuals, especially those with a family history or

environmental risk factors, allowing early diagnosis or

intervention to reduce incidence. The study showed that the

FerrSig scores significantly increased after treatment with

tacrolimus or betamethasone, indicating their potential for

monitoring treatment efficacy and guiding personalized treatment

plans. FerrSig scores can help evaluate patient responses to various

treatments, optimize therapeutic strategies, and minimize adverse

effects. Future integration with other clinical indicators, such as skin

lesion scores and serum IgE levels, can provide a comprehensive

assessment to predict prognosis and relapse risk, identify patients at

high risk of chronicity or recurrence, and enable early intervention

and management to reduce recurrence and disease burden.

This study has some limitations. First, our study was conducted

on normal and AD sample cohorts and focused on the mechanisms

related to ferroptosis in the pathogenesis of AD. However, due to

the limited sample size available in the GEO database, we could not

perform further stratification and subtype identification of the AD

samples. Therefore, the biological functions of the ferroptosis

marker genes identified during AD progression need to be further

explored. In the future, we hope to further validate the prognostic

predictive capability by collecting clinical samples, performing

RNA-seq, and counting their prognostic and therapeutic

information. Next, we aimed to individually interfere with the

FerrSig Hub genes in both in vitro and in vivo models to further
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refine their mechanisms of AD pathogenesis, prognosis, and

therapy. In addition, heterogeneity and complexity between

samples are non-negligible factors, and relevant studies have

confirmed that heterogeneity could affect reactions to treatment

(60). However, our study provides new insights into the

pathophysiology and treatment of AD, with important implications.
5 Conclusion

Our study complements the exploration of the pathophysiological

mechanisms underlying AD. We explored the potential interactions

between ferroptosis and AD immunomodulation by revealing the

changes in the activity of signaling pathways. These findings have led

to a more comprehensive and precise understanding of the

pathogenesis of AD. In addition, FerrSig may be a valid biomarker

for recognizing the morbidity risk of AD and its response to

conventional therapies. Further clarification and refinement of the

biological function of ferroptosis in AD progression are needed.

Through prospective studies, we can better understand

pathophysiological changes and provide clinical benefits to patients

with AD.
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