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Editorial on the Research Topic

The future direction toward immunological issues of allo-and
xeno-islet transplantation
The field of transplantation is advancing rapidly, particularly in addressing the

immunological challenges associated with both allogeneic and xenogeneic transplants.

Recent research highlights key developments in T-cell dynamics, innate immune

regulation, and bioengineering innovations. This editorial summarizes these

advancements and discusses strategies to overcome the barriers that continue to hinder

successful graft outcomes.
T cell dynamics and molecular mechanisms in
islet transplantation

The interaction of T cells within transplanted islets is critical for graft survival. Zhou

et al. used single-cell RNA sequencing (scRNA-seq) to explore the molecular mechanisms

behind T-cell dynamics in syngeneic and allogeneic islet transplantation. Their findings

reveal significant heterogeneity among T-cell subpopulations, including CD4+ T cells,

Tregs, and activated CD8+ T cells. The study highlights the differential activation of
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pathways like interferon-alpha and TNF-alpha signaling, which are

crucial for graft outcomes. These insights pave the way for more

targeted immunosuppressive therapies tailored to specific

immune responses.
Immunological challenges in allo-beta
cell transplantation

Allo Beta Cell Transplantation faces significant immunological

challenges, including immune rejection and autoimmunity

recurrence. Caldara et al. focus on the interplay between glucose

regulation, insulin, and immune activation. The study stresses

the importance of standardized immunosuppression protocols,

reliable methods for assessing graft rejection, and validated

biomarkers for beta cell loss. Emerging strategies include

alternative immunosuppressive regimens, targeted autoimmunity

prevention, and innovative technologies like CAR-Tregs and

genetically modified “stem stealth cells,” which are vital for

improving allo-beta cell transplantation outcomes.
Early microbiological identification
in transplantation

The importance of early and accurate pathogen detection in

transplant recipients cannot be overstated, particularly in lung

transplantation where post-operative infections are a leading

cause of morbidity and mortality. Zhang et al. demonstrated that

metagenomic next-generation sequencing (mNGS) significantly

improves pathogen detection rates compared to traditional

microbial culture methods. This early detection capability is

crucial for adjusting antimicrobial strategies promptly and

effectively, thereby improving patient outcomes. The findings

underscore the potential benefits of integrating mNGS into

routine clinical practice for transplant recipients to better manage

and prevent infections.
Innovations in bioengineering and
stem cell approaches

To address the immunological challenges of islet

transplantation, significant advancements have been made in

bioengineering and stem cell technologies. Ho et al. discuss

innovative strategies such as encapsulation technologies and the

development of hypoimmune stem cells. These approaches aim to

create an immunoprotective environment around transplanted

islets, reducing the need for chronic immunosuppression. The

review also explores the potential of human induced pluripotent

stem cells (hiPSCs) as a renewable source for islet cells, highlighting

the role of gene editing in enhancing their compatibility and

function. These bioengineering advancements represent a critical

step towards making islet transplantation a more viable and widely

applicable treatment for type 1 diabetes (T1D).
Frontiers in Immunology 026
Role of mesenchymal stem cells in
enhancing islet transplantation

Mesenchymal stem cells (MSCs) have shown great potential in

improving islet transplantation outcomes. Mou et al. highlight the

immunomodulatory properties of MSCs, focusing on their ability to

reduce immune rejection and support tissue repair. The potential of

MSC-derived extracellular vesicles (EVs) to enhance graft survival is

also discussed. Despite their promise, challenges like MSC

heterogeneity and optimization in therapeutic applications

remain. Advanced techniques, including AI and scRNA-seq, are

proposed as solutions to these challenges, enabling more

personalized treatment strategies.
Pig islet xenotransplantation: current
status and challenges

Pig islet xenotransplantation offers a promising alternative to

human donor pancreases, addressing the growing demand for islet

transplants. Cooper et al. review the progress in this field, focusing on

the development of gene-edited pigs that are more compatible with

human recipients. The transplantation of neonatal pig islets (NICC)

shows several advantages, including lower costs and simpler

isolation processes. However, challenges such as the instant

blood-mediated inflammatory reaction (IBMIR) and the need for

effective immunosuppressive therapy persist. The review concludes

that with continued advancements, pig islet xenotransplantation

holds significant potential for clinical application.
Chronic rejection in lung
transplantation: implications for
islet transplantation

Chronic rejection remains a significant obstacle in lung

transplantation and serves as a relevant model for understanding

similar challenges in islet transplantation. Heigl et al. investigate the

nature of chronic rejection in a murine orthotopic lung transplant

model, revealing that rejection may begin as an arterial response

rather than being airway-centered. These findings challenge

traditional understandings and suggest that a broader perspective,

including vascular and pleural involvement, is necessary for

improving graft outcomes. This research has important

implications for islet transplantation, where chronic rejection

remains a critical challenge.
Advancements in innate
immune regulation

The innate immune response, particularly by macrophages, poses

a significant barrier to graft survival in islet transplantation. Duan

et al. review strategies to regulate this response, including drug
frontiersin.org
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therapies, optimization of islet preparation, and cotransplantation

with MSCs. The study highlights the potential of blocking Toll-like

receptor 4 (TLR4) signaling and inhibiting the NLRP3

inflammasome to reduce macrophage-induced inflammation,

which is crucial for improving islet graft survival.
Optimal conditions for islet culture
in xenotransplantation

Maintaining the viability and functionality of porcine islets during

long-term culture is essential for successful xenotransplantation.

Sakata et al. investigate the effects of different temperatures on the

culture of adult porcine islets, concluding that 37°C is optimal for

preserving islet morphology, promoting cell proliferation, and

restoring endocrine function. This research provides valuable

insights into the culture conditions necessary for maintaining the

quality of porcine islets, which are a promising source

for xenotransplantation.

Advancements in understanding T-cel l dynamics ,

immunomodulatory therapies, and bioengineering are paving the

way for improved outcomes in both allo- and xeno-islet

transplantation. These developments not only enhance graft

survival but also address broader immunological challenges in

transplantation. Continued integration of these strategies will be

key to overcoming barriers and advancing the field.
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Etiologic characteristics
revealed by mNGS-mediated
ultra-early and early
microbiological identification
in airway secretions from
lung transplant recipients

Xiaoqin Zhang1,2†, Xuemei Tang2†, Xiaoli Yi3†, Yu Lei2, Sen Lu2,
Tianlong Li2, Ruiming Yue2, Lingai Pan2, Gang Feng4*,
Xiaobo Huang2*, Yiping Wang2* and Deyun Cheng1*
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Medical School, Sichuan University, Chengdu, China, 2Department of Critical Care Medicine, Sichuan
Provincial People’s Hospital, University of Electronic Science and Technology of China,
Chengdu, China, 3Medical Department, Genoxor Medical Science and Technology Inc.,
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Background: Post-operative etiological studies are critical for infection prevention

in lung transplant recipients within the first year. In this study, mNGS combined

with microbial culture was applied to reveal the etiological characteristics within

one week (ultra-early) and one month (early) in lung transplant recipients, and the

epidemiology of infection occurred within one month.

Methods: In 38 lung transplant recipients, deep airway secretions were collected

through bronchofiberscope within two hours after the operation and were

subjected to microbial identification by mNGS and microbial culture. The

etiologic characteristics of lung transplant recipients were explored. Within

one month, the infection status of recipients was monitored. The microbial

species detected by mNGS were compared with the etiological agents causing

infection within one month.

Results: The detection rate of mNGS in the 38 airway secretions specimens was

significantly higher than that of the microbial culture (P<0.0001). MNGS

identified 143 kinds of pathogenic microorganisms; bacterial pathogens

account for more than half (72.73%), with gram-positive and -negative bacteria

occupying large proportions. Fungi such asCandida are also frequently detected.

5 (50%) microbial species identified by microbial culture had multiple drug

resistance (MDR). Within one month, 26 (68.42%) recipients got infected (with

a median time of 9 days), among which 10 (38.46%) cases were infected within

one week. In the infected recipients, causative agents were detected in advance

by mNGS in 9 (34.62%) cases, and most of them (6, 66.67%) were infected within

one week (ultra-early). In the infection that occurred after one week, the

consistency between mNGS results and the etiological agents was decreased.
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Conclusion: Based on the mNGS-reported pathogens in airway secretions

samples collected within two hours, the initial empirical anti-infection regimes

covering the bacteria and fungi are reasonable. The existence of bacteria with

MDR forecasts the high risk of infection within 48 hours after transplant,

reminding us of the necessity to adjust the antimicrobial strategy. The

predictive role of mNGS performed within two hours in etiological agents is

time-limited, suggesting continuous pathogenic identification is needed after

lung transplant.
KEYWORDS

lung transplant, mNGS, airway secretions, early infection, etiology
Introduction

Although the first human lung transplant was performed in

1963, the operation became a clinical reality for treating end-stage

lung diseases until the mid-1980s, after overcoming most surgical

and pharmacologic challenges (1, 2). Nevertheless, the morbidity

and mortality remain high, and the survival rate in lung transplant

recipients is lower than of other solid organ transplant recipients,

with a 5-year survival rate of 55.6% (3). Rejection- and infection-

related complications are the main factors for overall morbidity and

mortality in lung transplant recipients (4, 5). For lung transplant

recipients, infection is a significant complication. It represents the

most common cause of death within the first year, and pulmonary

infection-related respiratory failure is the leading cause of death

during post-operative admission (<30 days) (6, 7). So far, most of

the post-operative etiological studies in lung transplants mainly

focus on the episodes of infection that occurred within three

months or one year following the operation. In a previous

epidemiological study in which 51 lung transplant recipients were

followed for a mean of 38.2 months, 42% of infectious episodes

occurred within the first three months, and 75% developed within

the first year after transplant (8). However, infections that occur

within one week (ultra-early) and one month (early) after

transplantation are rarely paid attention to, and the associated

etiological study is insufficient.

Traditional etiological diagnosis methods of bronchoscopy

specimens include airway secretions for microbial culture, smear

microscopy, and histopathology (9). In lung transplant recipients,

airway secretions microbial culture is the most frequently adopted

for etiological examination to diagnose pulmonary infection (10,

11). However, the positive rate of microbial culture is low because of

the limitation in microbial cultivating techniques and the impact of

lesions surrounded by fibrous tissue and antibiotic application

history (9). Consequently, molecular diagnostic technologies are

emerging as complementary methodologies for pathogenic

detection (12), including the polymerase chain reaction that

focuses on a specific pathogen (13).

Metagenomic next-generation sequencing (mNGS), an

unbiased and practical approach for pathogen identification with
029
a shorter turn-around time, has been employed to diagnose

infectious diseases (14). In liver transplant recipients, mNGS was

adopted in the diagnosis and treatment guidance of post-operative

infection, showing distinct advantages in detecting mixed, viral, and

parasitic infections over the traditional culture method (15).

Compared with urine culture, mNGS performed more remarkably

in etiological diagnosis for kidney transplant recipients with urinary

tract infections (16). In lung transplant recipients, mNGS is

committed to pathogenic detection in airway secretions samples,

with a shorter turn-around time, providing timely information for

diagnosing pulmonary infections (17). These findings highlight the

great potential of mNGS in detecting pathogenic microorganisms

and identifying infection in lung transplant recipients. Herein, the

secretions samples were absorbed through a bronchofiberscope

from the deep airway within two hours after lung transplant.

Airway secretions were subjected to mNGS test and microbial

culture to reveal the ultra-early microbial characteristics and

analyze the pulmonary infection within one month in recipients.

Our data may offer a critical reference for antimicrobial regimens to

prevent infections developed within one week or month, thereby

reducing the related mortality.
Materials and methods

Lung transplant recipient enrollment

Patients undergoing lung transplantation at Sichuan Provincial

People’s Hospital from October 2018 to June 2022 were included in

this study. The inclusive and exclusive criteria for donor lungs were

described in our previous study (18), and listed as follows.

Donor lungs inclusion criteria: (a) Age < 60 years old, smoking

history < 20 packs/year. (b) No chest injury. (c) Continuous

mechanical ventilation < 1 week. (d) PaO2 > 300 mmHg

(FiO2 = 100%, PEEP = 5cm H2O). (e) X-ray or CT shows that

the lung field is relatively clear. (f) No abscess secretion was found

through bronchoscopy in the lung bronchus.

Donor lungs exclusion criteria: (a) Age > 60 years old, smoking

history > 20 packs/year. (b) Chest trauma and lung contusion. (c)
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Continuous mechanical ventilation > 1 week. (d) PaO2 < 300

mmHg (FiO2 = 100%, PEEP = 5cm H2O). (e) X-ray or CT shows

that the lung field is infected. (f) There are purulent secretions at

bronchoscopy in the donor’s lower airways. (g) The percentage of

white blood cells, neutrophils, C-reactive protein, and procalcitonin

increases gradually compared with the situation at the onset of the

disease. (h) The donor’s body temperature is higher than normal. (i)

Blood culture is positive.
Study design and sample collection

Basic information about the enrolled recipients, including age,

sex, primary indications for a lung transplant, types of lung

transplantation (bilateral or unilateral), and infection status

within one month following the operation, was recorded.

Prognostic information on the enrolled patients’ antimicrobial

use, mechanical ventilation, and ICU hospitalization was recorded

in detail.

In most lung transplant centers in China, t imely

bronchofiberscopy after surgery is a routine examination aiming

to clean the airway secretions through a bronchofiberscope, which

helps to avoid obstructing the small airway and reduce pathogens.

Therefore, airway secretions were absorbed from the deep airway by

bronchofiberscope two hours after the operation and sent for

traditional microbial culture and mNGS for pathogen detection

immediately. In the following days, within one month, airway

secretions or BALFs were collected for microbial culture every

few days, depending on the actual conditions in recipients.

Microbial culture for the above samples was conducted in our

hospital. The yielded pathogen spectrum was analyzed and

compared between these two methods. The incidence of infection

within one month and the occurrence time in these recipients were

determined. The causative agents for infection were compared with

the pathogenic microorganisms reported by mNGS in airway

secretions collected within two hours to evaluate the role of

mNGS in forewarning potential pathogens.
mNGS procedure

The whole process of mNGS was completed by Genoxor

Medical Science and Technology Inc. (Shanghai, China). The

airway secretions samples were stored at 4°C and sent for mNGS

detection within 24h. These steps included pre-treatment, DNA

extraction, library construction, sequencing, bioinformatic analysis,

and interpretation of data (19). A 1.5ml microcentrifuge tube

containing 0.6ml of sample, enzyme, and 1.0g of glass beads

(0.5mm) was attached to a horizontal platform on a vortex mixer

and agitated vigorously at 2,800–3,200 rpm for 30 min. Then DNA

in airway secretions samples was extracted using the TIANamp

Micro DNA Kit (DP316, Tiangen Biotech) according to the

manufacturer’s instructions. After DNA concentration and purity

detection, the libraries were constructed undergoing DNA

fragmentation, end-repair, adapter l igation, and PCR

amplification. DNA library concentration was measured by Qubit
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2.0. An Agilent 2100 test achieved quality control of the DNA

libraries. After being pre-quantified by qRT-PCR, quality-qualified

libraries were sequenced on the NextSeq™ 550DX platform in SE-

75 sequencing type according to the manufacturer’s instructions.
Data analysis and quality control

Bioinformatics analysis of the mNGS data was performed

according to the procedure described in a previous study (20).

Raw data (raw reads) were subjected to a quality control process for

trimming adapter sequences and removing low-quality tails, reads,

and connector sequences using Trimmomatic v0.36 (21). The

obtained high-quality and adequate data are called clean reads.

Reads mapping to the human genome GRCh37 were removed using

the calibration software Bowtie v2.2.6 (22), and the remaining were

called unmapped reads (microbial reads). All the microbial reads

were deposited in the database under the Sequence Read Archive

(SRA) accession number PRJNA932550. Unmapped% refers to the

proportion of microbial reads in the clean reads. Duplicated reads

introduced in the PCR step were deleted using FASTX-Toolkit,

Fulcrum, FastUniq, and CD-HIT-DUP tools (23). Subsequently,

Kraken v2.0.9-beta (24) was adopted for the taxonomic

classification of microbial reads, with a microbial genome

database in NCBI constructed using 51543 genomes of about

27000 species (ftp://ftp.ncbi.nlm.nih.gov/genomes/) (25). The

number of reads in the Kraken classification report was further

estimated by the Bayesian algorithm named Bracken to produce

species-level abundance estimates (26). The estimates of the

percentage relative abundance of each species were computed

using the reads per kilobase of transcript per million mapped

reads (RPKM), a normalization method for mNGS reads, and

RPKM was calculated using the formula: gene reads/[the total

mapped reads (millions) × genome length (KB)] (27).
Criteria for defining positive results
of mNGS

The mNGS assay was employed for detecting microorganisms,

including bacteria, viruses, fungi, and parasites, and a positive result

will be judged if it satisfies any of the following criteria described

previously (17). 1) The relative abundance of bacteria (excludingM.

tuberculosis complex) and fungi was greater than 30% at the genera

level; 2) Virus detection was considered when the stringent map

read number (SMRN) was ≥3. 3) For M. tuberculosis complex, at

least one number of reads should be aligned to the reference

genome at the species or the genus level. However, a positive

mNGS finding did not invariably indicate the presence of

causative pathogens. Microorganisms detected with mNGS were

categorized into colonized, putative , and pathogenic

microorganisms. It would be the clinician’s responsibility to

determine the putative pathogens and pathogenic microorganisms

through comprehensive clinical assessments. In the pathogenic

spectrum analysis, the proportion of the pathogenic species, the

detection frequency, was calculated with a formulation: the number
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of samples in which a particular species was detected/the total

number of samples.
Diagnosis of infection and judgment of
pathogenic agents

Before and after the lung transplant, the infectious risk and

status of the recipients were monitored. The suspicion and

diagnosis of infection were based on several clinical symptoms,

including body temperature, computed tomography, etiological

examination, and immune indicators. In the infected recipients,

the putative pathogens and pathogenic microorganisms were

judged based on a comprehensive analysis of clinical data,

including the number of reads for mNGS, the clinical

presentations, radiologic manifestations, conventional detection

findings, clinical epidemiology, and the treatment effect of the

antibiotic therapy. The putative pathogens or pathogenic

microorganisms could be ascertained if the two clinicians

approved. Further discussion by senior clinicians is needed in

case of a significant disagreement between the first two clinicians.

Then, the targeted antibiotic therapy was formulated to fight against

infection, and a favorable outcome further confirmed the causative

agent. The consistency of mNGS with the causative agents in the

infected recipients was evaluated at the species level.
Statistical analysis

Descriptive statistics were computed for the overall samples and

stratified by the positive pathogen detected by mNGS on airway

secretions samples. Mean ± standard deviation (SD) or median

(interquartile range, IQR) was used for describing the continuous

variables. Chi-squared or Fisher’s Exact test was used to compare

the two groups’ differences. The significance level was set at 0.05. All

statistical analyses were performed using the GraphPad

software 8.0.
Results

General information of study participants

From October 2018 to June 2022, 40 patients received lung

transplant surgery in our hospital, and 38 eligible patients were

included for the final analysis. Two recipients were excluded

because of death quickly without any microbial culture result.

Basic information of these patients was provided in

Supplementary Table 1. Of all 38 lung transplant recipients, the

mean age was 58.13 years (ranges 33-70), including 33 (86.84%)

males. The most common primary disease was COPD (19, 50%),

followed by interstitial lung disease (18, 47.37%), with the addition

of one patient with pneumosilicosis. In terms of the lung transplant

types, 23 (60.53%) underwent bilateral transplantation and 15

(39.47%) unilateral transplantation. In the 38 recipients, new-

onset infection within one month occurred in 26 (68.42%). These
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clinical characteristics were recorded and demonstrated in Table 1.

After lung transplant, the initial antibiotic regimens frequently

include Sulbactam/Cefopcrazone and Piperacillin Sodium/

Tazobactam Sodium. Immunosuppressant regiments comprise

cyclosporin A, tacrolimus, and methylprednisolone.
Pathogenic spectrum generated by mNGS
and traditional microbial culture

38 airway secretions samples from 38 lung transplant recipients

were collected within two hours after surgery and simultaneously

sent for etiological examination by traditional microbial culture and

mNGS. The study design is illustrated in Figure 1. The detecting

results of the two methods in each patient were provided in

Supplementary Table 1. This supplementary material also

included detailed information concerning each sample’s

sequencing number of reads (raw reads, clean reads, clean reads/

raw reads, unmapped reads, and unmapped %), as well as the

putative pathogens in each patient and their relative abundance. It

demonstrates that the raw reads range from 4M to 57M, with an

average of 20M; most ratios of clean reads to raw reads are above

90%. Unmapped% refers to the proportion of microbial reads in the

clean reads, ranging from 0.69% to 79.21%.

143 kinds of pathogenic microorganisms were found in 35

(92.11%, 35/38) airway secretions specimens using mNGS, while

the detection rate by microbial culture was 26.31% (10/38)

(P<0.0001) (Table 2). Statistically, mNGS identified pathogenic

microorganisms at the level of species or genus, which were

further classified into five types, including bacteria (72.73%),

fungi (13.29%), virus (11.89%), mycoplasma (1.4%), and parasites

(0.7%) (Figure 2A). When analyzed at the species level, S.

pneumoniae (28.95%) and H. parainfluenzae (23.68%) were the
TABLE 1 Characteristics of the lung transplant recipients.

Characteristics Values

Lung transplant recipients (n) 38

Median age, y (IQR) 60.5 (52.8-65.3)

Sex (male, %) 33 (86.84%)

Primary indications for lung transplantation, n (%)

COPD 19 (50%)

Interstitial lung disease 18 (47.37%)

Pneumosilicosis 1 (2.63%)

Types of lung transplantation, n (%)

Bilateral lung transplantation 23 (60.53%)

Unilateral lung transplantation 15 (39.47%)

Infection status within one month, n (%)

Infected 26 (68.42%)

Uninfected 12 (31.58%)
COPD, chronic obstructive pulmonary disease.
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TABLE 2 The number of pathogenic microorganisms detected by mNGS and microbial culture in the airway secretions samples collected within two
hours from lung transplant recipients.

Samples mNGS Microbial culture Infection status of patients

Bacteria Fungi Viruses Bacteria Fungi

S1 1 0 0 1 0 Infected

S2 13 0 0 1 0 Infected

S3 25 1 1 0 0 Infected

S4 21 1 1 0 0 Infected

S5 1 0 0 0 0 Infected

S6 3 0 2 0 0 Infected

S7 3 0 0 0 0 Infected

S8 13 1 0 1 0 Infected

S9 0 0 0 0 0 Infected

S10 4 0 0 0 0 Infected

S11 12 1 0 1 0 Infected

S12 11 0 0 1 0 Infected

S13 21 3 1 0 0 Infected

S14 16 0 2 0 0 Infected

S15 2 0 0 1 0 Infected

S16 29 1 2 Infected

S17 6 1 2 0 0 Infected

S18 0 1 0 0 0 Infected

S19 22 1 1 0 0 Infected

S20 2 0 0 0 0 Infected

S21 0 0 0 0 0 Infected

(Continued)
F
rontiers in Immunolo
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FIGURE 1

The flowchart of the study design.
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top two bacteria, fol lowed by S. aureus (21.05%), S.

pseudopneumoniae (21.05%), K. pneumoniae (21.05%), and A.

baumannii complex (21.05%) (Figure 2B). C. albicans (21.05%)

was the most dominant fungi detected with mNGS. Human

betaherpesvirus 5 (18.42%) was the most prevalent virus. Seven

pathogenic microorganisms were detected through the traditional

culture method in 10 airway secretions samples. K. pneumoniae was

detected in three cases (7.89%); S. aureus was detected in two

samples (5.26%) (Figure 2C). The other bacteria include A.

baumannii and A. ursingii, and fungi like C. parapsilosis were

detected in one sample (2.63%).
Time distribution of infection within one
month after transplant and the consistency
between mNGS-reported pathogens and
the causative agents

Figure 3 illustrates the results of etiological identification by

mNGS and traditional culture and the information on causative

agents in recipients infected within one month. Within one month,

26 (68.42%) of the 38 recipients got infected, and the median time of

new-onset infection was 9 days, ranging from 3 to 25 days. Among

the 26 infected recipients, 10 (38.46%) got infected within one week

following the lung transplant operation, and infection in 7 (26.92%)

cases occurred within one to two weeks. The remaining 7 (26.92%)

and 2 (7.69%) got infected within two to three weeks and three to

four weeks, respectively (Table 3). Consequently, infection onset
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within one week was the highest, and more than half (65.38%) of

recipients developed an infection within two weeks. The drug

sensitivity of the pathogens was also examined through microbial

culture and demonstrated in Figure 3. Multiple drug resistance was

observed in S. aureus (case 1), A. baumannii (case 8), S. maltophilia

(case 11), and B. multivorans (case 15).

The consistency of two hours airway secretions-mNGS and

microbial culture results with the causative agents in the infected

recipients was determined at the species level and illustrated in

Figure 3. In 9 (34.62%, 9/26) infected recipients (patient 1, 2, 3, 5, 7,

8, 12, 13, 26), their causative agents were detected by mNGS in

advance (in the airway secretions collected within two hours), who

got an infection at the 3rd, 3rd, 3rd, 5th, 5th, 5th, 8th, 8th, and 25th

day, respectively, after lung transplant (Figure 3). Except for an

infection caused by A. fumigatus on the 25th day, the median time

of infection occurring in the rest 8 recipients was 5 days following

the operation. Namely, most of them (6, 66.67%) were infected

within one week, 2 (22.22%) cases suffered between one to two

weeks, and 1 (11.11%) at three to four weeks (Table 4). A decreased

trend was observed in consistency, along with the prolonged

infection time.
Discussion

Our study retrospectively investigated the ultra-early and early

etiological characteristic in lung transplant recipients, whose results

may provide reference for early antimicrobial strategy in lung
TABLE 2 Continued

Samples mNGS Microbial culture Infection status of patients

Bacteria Fungi Viruses Bacteria Fungi

S22 22 0 0 0 0 Infected

S23 0 1 0 0 0 Infected

S24 18 0 1 0 0 Infected

S25 2 1 0 0 0 Infected

S26 5 1 2 1 0 Infected

S27 2 1 0 0 0 Uninfected

S28 1 0 0 1 0 Uninfected

S29 1 0 0 1 0 Uninfected

S30 1 1 1 0 1 Uninfected

S31 3 0 0 0 0 Uninfected

S32 0 0 0 0 0 Uninfected

S33 4 0 0 0 0 Uninfected

S34 1 0 1 0 0 Uninfected

S35 2 0 0 0 0 Uninfected

S36 16 0 0 0 0 Uninfected

S37 31 1 0 0 0 Uninfected

S38 16 2 1 0 0 Uninfected
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transplant recipients. This study completed pathogen identification

through the mNGS technology and microbial culture. In general,

mNGS performed well in finding diverse microbial species and

might serve as an effective supplementary means to traditional

etiological detection methods.

In various infectious diseases, the diagnostic accuracy of mNGS is

frequently compared with that of conventional detection methods

(28). In this study, the traditional culture method served as the

control group versus mNGS, whose positive rate for pathogen

identification was shallow compared to that of mNGS (26.31% vs.

92.11%). Ju et al. also observed a significantly higher positive rate of

mNGS than conventional detection methods (83.4% vs. 55.8%) in

airway secretions specimens, with a higher diversity of pathogens

simultaneously (17). In our 38 airway secretions samples, mNGS

identified 143 kinds of microorganism, ranging from bacteria

(72.73%), fungi (13.29%), virus (11.89%), mycoplasma (1.4%), to

parasites (0.7%) (Figure 2A). The pathogen spectrum revealed that

mNGS reported more total amount of pathogen than microbial

culture (Figures 2B, C). Moreover, mNGS showed absolute

superiority in the detection of virus and parasite. Viral infection
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after lung transplant is common and classified into diseases caused by

cytomegalovirus or by other community-acquired respiratory viruses

(4, 29). It has been reported that viral pathogens are involved in 25 of

71 infectious episodes in a cohort of lung transplant recipients, with

cytomegalovirus-related diseases accounting for 68% of them (8).

Without doubt, the conventional diagnosis of parasitic infections in

lung transplant recipients is complicated, with clinical suspicion

combined with molecular diagnostic methods such as PCR (30).

Therefore, the application of mNGS benefits the etiological diagnosis

of rare pathogens. To sum up, we claimed that mNGS is superior to

the conventional culture in detection rate and in finding more

pathogenic microorganisms with a higher diversity, contributing to

a wider reference of pathogen screening and the later

prophylactic treatment.

Bacterial infections are the most frequent infectious

complications. In a Swiss transplant cohort study, 55% of all lung

transplant recipients developed infections in the first year, and 63%

were bacterial (31). More than half of the pathogens detected in the

current study were bacterial microbes, and S. pneumoniae (28.95%)

andH. parainfluenzae (23.68%) were the top two bacteria, followed by
B

CA

FIGURE 2

Pathogen spectrum detected by mNGS and traditional culture in airway secretions collected within two hours following lung transplant. (A)
Classification of pathogenic microorganisms detected by mNGS; (B) Pathogenic spectrum detected by mNGS; (C) Pathogenic spectrum detected by
conventional microbial culture.
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S. aureus (21.05%), S. pseudopneumoniae (21.05%), K. pneumoniae

(21.05%), and A. baumannii complex (21.05%) (Figure 2B). They are

all the common opportunistic pathogen invading the respiratory tract,

and are more likely to invoking infection following lung transplant

under immunosuppression (32–34). Thereinto, S. pneumoniae andH.

influenzae are among the main vaccine-preventable bacterial

infections in immunocompromised individuals like recipients of

solid organ transplants, resulting in a large proportion of

hospitalization (34). It has been proven that K. pneumoniae is
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commonly isolated after lung transplantation, and carbapenem-

resistant K. pneumoniae acquisition is associated with an increased

risk of bronchial dehiscence and reduced survival among recipients

(33, 35). As reported, fungi are frequently isolated before and after

transplantation from respiratory samples, and fungal infections are

more common in lung transplant recipients than in most other solid

organs (11, 36, 37). In the fungi detected in our samples, Candida

(34.21%) was the most frequently detected, with C. albicans (21.05%)

as the predominant species. It led to one infection event in case 11 at
FIGURE 3

The information of two hours airway secretions mNGS and microbial culture results and the causative agents in recipients infected within one month.
The gridlines stand for different pathogenic microorganism when comparing the results of mNGS and microbial culture with the causative agents.
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8th day after the operation. Candida leads to most fungal

extrapulmonary infections in lung transplant recipients, and

frequently occurs one-month after the transplant (38). It has been

reported that the average period of Aspergillus-related infection is 42

days after lung transplantation (12). Our data demonstrated that

recipients 9, 15, and 26 were infected by Aspergillus on the 6th, 12th,

and 25th days after transplant, respectively. In the pathogenic

microorganisms identified by mNGS, bacterial pathogens account

for more than half (72.73%), with gram-positive and -negative bacteria

occupying large proportions. Fungi such as Candida are also

frequently detected. Therefore, the initial empirical anti-infection

regimes covering the bacteria and fungi are reasonable, and the

broad spectrum antimicrobial drugs can be substituted by the

narrows after the mNGS results produced.

Within one month, 68.42% (26/38) of recipients got infected,

and more than half of the infections happened within two weeks.

According to Table 4, mNGS could predict the causative agents in

early infection, especially for the infection onset within one week.

Notoriously, donor-derived infections generally manifest during the

first few weeks after lung transplant (31). Many deceased donors

were more likely to carry pathogens with multiple drug resistance

(MDR) or suffered from hospital infections because they stay in the

intensive care unit (39, 40). Our Figure 3 indicated that MDR

bacteria were detected in airway secretions samples from 4 cases,

and they were S. aureus (case 1), A. baumannii (case 8), S.

maltophilia (case 11), and B. multivorans (case 15). Bunsow

reported that MDR bacteria were isolated from 4.9% (12/243) of

donors, including Enterobacterales, S. maltophilia, P. aeruginosa,

and S. aureus (41). These MDR bacteria should be highly suspected
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in the cases of infection occurred within 48h or infection worsened

after transplant.

In the present studies concerning post-operative infection after

lung transplant, many researchers focus on a longer duration, such

as three months, one year, even five years (8, 42–44), but early

infection within one month has rarely been highlighted. Our study

revealed that the median time of new-onset infection was nine days,

38.46% of recipients got infected within one week, and even 65.38%

developed infection within two weeks. The high incidence of

infection in lung transplant recipients may be associated with the

destruction of the mucosal barrier, which was improved with the

repair of the mucous membrane (45). Therefore, it is essential to

repair the mucosal barrier by removing the tracheal catheters as

soon as possible (46). In the infections that occurred shortly after

the transplant, the consistency between mNGS results and the

etiological agents was high but decreased with the prolonged time

interval. That is, the predictive role of mNGS in etiological agents is

time-limited, suggesting that continuous pathogenic screening is

indispensable for infection prevention (47). With the deepening of

research on pathogenic microorganisms affecting lung transplant

recipients and advances in pathogen detection technologies, the

infection risks are expected to be perceived earlier and specifically

intervened to prevent infection and improve their survival rate.
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TABLE 3 The time distribution of infection within one month in lung
recipients.

Onset time of
infection

Number of
infected cases

Proportions in the
infected patients

Within one week 10 38.46%

One-two weeks 7 26.92%

Two-three weeks 7 26.92%

Three-four weeks 2 7.69%
TABLE 4 The consistency of mNGS results in two hours of airway
secretions with the causative agents in infected recipients.

Onset
time of
infection

Number of cases in which
mNGS was consistent with
the causative agents

Proportions

Within one
week

6 66.67%

One-two
weeks

2 22.22%

Two-three
weeks

0 0%

Three-four
weeks

1 11.11%
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Optimal temperature for the
long-term culture of adult
porcine islets for
xenotransplantation

Naoaki Sakata1,2*, Gumpei Yoshimatsu1,2, Ryo Kawakami1,2,
Chikao Aoyagi1,2 and Shohta Kodama1,2

1Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University,
Fukuoka, Japan, 2Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
Porcine islet xenotransplantation represents a promising therapy for severe

diabetes mellitus. Long-term culture of porcine islets is a crucial challenge to

permit the on-demand provision of islets. We aimed to identify the optimal

temperature for the long-term culture of adult porcine islets for

xenotransplantation. We evaluated the factors potentially influencing

successful 28-day culture of islets at 24°C and 37°C, and found that culture at

37°C contributed to the stability of the morphology of the islets, the proliferation

of islet cells, and the recovery of endocrine function, indicated by the expression

of genes involved in pancreatic development, hormone production, and

glucose-stimulated insulin secretion. These advantages may be provided by

islet-derived CD146-positive stellate cells. The efficacy of xenotransplantation

using islets cultured for a long time at 37°C was similar to that of overnight-

cultured islets. In conclusion, 37°C might be a suitable temperature for the long-

term culture of porcine islets, but further modifications will be required for

successful xenotransplantation in a clinical setting.

KEYWORDS

islet transplantation, porcine, xenotransplantation, long-term culture, pancreatic
stellate cell
1 Introduction

Pancreatic islet transplantation is a promising therapy for patients with severe diabetes

mellitus (DM) and a lack of glucose control. However, this approach is limited by the size of

the donor pool (1); therefore, alternative sources of islets are being evaluated, and the adult

pig is considered to be an ideal donor. The adult porcine pancreas is similar to the human

pancreas in size and contains a large enough number of islets to treat patients with diabetes.

In addition, pigs can be readily bred to produce animals of an appropriate size and number.
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Porcine-specific carbohydrate antigen (2–6) and the possibility of

zoonosis (7, 8) are regarded as major challenges to the use of

porcine islet xenotransplantation in the clinic. However, recent

progress with gene-editing technology may permit the creation of

porcine-specific antigen and porcine-derived pathogen-free pigs (9,

10). Such technological progress increases the feasibility of porcine

islet xenotransplantation.

For the success of adult porcine islet xenotransplantation, large

numbers of high-quality islets must be obtained. However, porcine

islet isolation is technically difficult, because of the vulnerability of

islets, compared with islet isolation for other species (11, 12). Previous

studies have shown that the expression of collagen is low in the

peripheral regions of porcine islets (13), and the basement

membranes of porcine islets are easily damaged during routine islet

isolation (14). This fragility contributes to the difficulty of obtaining

sufficient high-quality islets and culturing and maintaining them.

The establishment of a porcine islet bank, in which a large

number of porcine high-quality islets can be stockpiled and

accessed on demand, is a pivotal challenge in the establishment of

this therapy. For this purpose, the development of a suitable method

for the long-term culture of porcine islets that can maintain their

viability and function is essential. Long-term culture harbors some

merits in increase of the purity of islets and reduction of

immunogenicity, which might contribute to the engraftment of

porcine islets (15). Previous studies have attempted to characterize

the effects of long-term culture on porcine islets and to determine

the most appropriate conditions (16, 17). However, detailed

knowledge of the effects of long-term culture on porcine islets

and the mechanisms involved is still lacking. Therefore, in the

present study, we aimed to characterize the effects of long-term

culture on porcine islets and identify the optimal temperature for

these subcellular structures, to help establish porcine islet

xenotransplantation as a viable therapy.
Frontiers in Immunology 0220
2 Materials and methods

2.1 Study approval

The care of the animals and the experimental procedures

complied with the principles of laboratory animal care (Guide for

the Care and Use of Laboratory Animals, 8th edition (National

Research Council, 2011)), and the experimental protocol was

approved by the Animal Care and Use Committee of Fukuoka

University (approval number: 2114119).
2.2 Study design

The scheme of this study design is shown in Figure 1. In brief,

porcine islets isolated from each microminipig (P112, P114, P116,

P117, P118, P119, P120; Supplemental Table 1) were cultured for 28

days by different temperature conditions, 24 or 37°C. On Day 1, 7,

14, 21, and 28, some islets were sampled and used for assessment of

morphology and viability of islets. Islet counts for assessing islet

equivalents (IEQs)/islet number and residual rate were also

performed on the days. Sampling for assessment of glucose-

stimulated insulin/glucagon secretion, assessment of insulin/

glucagon content, qPCR, flow cytometry, and RNA sequence was

performed on Day 1 and 28. Islet xenotransplantation using

diabetic nude mice also done on the same days. Medium was

changed per 2 – 3 days.
2.3 Animals

Microminipigs (https://fujimicra.co.jp/eng/product.html#whats;

Fuji Micra Inc., Fujinomiya, Japan ) weighing approximately 25–30
FIGURE 1

Scheme of this study design. Porcine islets isolated from each microminipig (P112, P114, P116, P117, P118, P119, P120; Supplemental Table 1) were
cultured for 28 days by different temperature conditions, 24 or 37°C. On Day 1, 7, 14, 21, and 28, some islets were sampled and used for assessment
of morphology and viability of islets. Islet counts for assessing islet equivalents (IEQs)/islet number and residual rate were also performed on the
days. Sampling for assessment of glucose-stimulated insulin/glucagon secretion, assessment of insulin/glucagon content, qPCR, flow cytometry, and
RNA sequence was performed on Day 1 and 28. Islet xenotransplantation using diabetic nude mice also done on the same days. Medium was
changed per 2 – 3 days.
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kg were used as donor animals. The age of these pigs was 2 – 3 years

at islet isolations. Male BALB/c-nu mice (https://www.clea-

japan.com/products/immunodeficiency/item_a0010; CLEA Japan

Inc., Tokyo, Japan) aged 8–12 weeks were the diabetic recipients.

The information of microminipigs is shown in Supplemental Table 1.

These animals were housed under specific pathogen-free conditions

and had free access to food and water.
2.4 Procurement of pancreata

Total pancreatectomy for organ procurement was performed

under general anesthesia using isoflurane (Cat#095-06573; Fujifilm

Wako Pure Chemical Co., Osaka, Japan). After laparotomy, an

Argyle Salem Sump tube (Covidien Japan Inc., Tokyo, Japan) was

inserted into the aorta, ligated in place, and used for heparinization

by the intravenous injection of heparin sodium (400 IU/kg,

Cat#873334; AY Pharmaceuticals Co. , Tokyo, Japan).

Subsequently, the pigs were exsanguinated by incising the vena

cava in the thoracic cavity, and Belzer UW® Cold Storage Solution

(https://amn.astellas.jp/content/dam/jp/amn/jp/ja/di/pdf/blz/

Belzer_UW_Cold_Storage_Solution.pdf; Preservation Solutions,

Inc. Elkhorn, WI) was infused via the tube while the abdominal

organs were cooled using crushed ice. After the flushing of the

circulation was completed, total pancreatomy was performed. An

18–24-gauge intravenous catheter (size according to the diameter of

the pancreatic duct) was inserted into the pancreatic duct, and cold

preservation solution (Cat#035-13121-2; ET-Kyoto solution;

Otsuka Pharmaceutical Factory, Inc., Naruto, Japan and

ulinastatin; Cat#3999405A2077; Mochida Pharmaceutical Co.,

Tokyo, Japan) was infused at 1 mL/g pancreas mass.
2.5 Porcine islet isolation and purification

A collagenase solution containing liberase MTF (0.5 g per 1 vial)

and thermolysin (15 mg per 1 vial) (Cat#05339880001; Roche

CustomBiotech, Penzberg, Germany) was instilled into the

disinfected pancreas via the catheter placed in the pancreatic duct.

The distended pancreas was cut into several pieces and then placed into

a Ricordi Chamber. The digestion was started by commencing the

gentle shaking of the Ricordi chamber, while warmed collagenase

solution was circulated. When the digestion was stopped, the digested

tissue was diluted in RPMI 1640 solution (Cat#11875085; Gibco™)

containing 10% inactivated plasma (Fetal Bovine Serum, qualified,

United States, Cat#26140079; Gibco™) and ulinastatin and then

collected in Belzer UW® Cold Storage Solution. The purification

process was performed using IBM 2991 (COBE 2991; Terumo BCT,

Tokyo, Japan) by centrifugation with a continuous density gradient

between 1.077 g/cm3 and 1.100 g/cm3 created using Optiprep (Cat#ST-

07820; Veritas Co., Tokyo, Japan). After centrifugation, the gradient

density solutions containing highly-purified islets (≥ 70%) were

collected. The purity was determined using the percentage of the

total number of cell clusters staining positive for dithizone

(Cat#D5130; Sigma-Aldrich, St. Louis, MO, USA).
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2.6 Islet culture conditions

Islets were cultured in CMRL1066 solution (Cat# 99-603-CV;

Corning, Corning, NY, USA) containing 10% fetal bovine serum

(FBS), 1% antibiotics, and 200 units/L rapid insulin agent and a 5%

CO2 atmosphere. Isolated islets were cultured at 24°C overnight and

then at 24 or 37°C with 5% CO2 atmosphere for a further 27 days

(Figure 1A). Information regarding the donor microminipigs and

isolated islets is provided in Supplemental Table 1.
2.7 Assessment of islet number and viability

Islet number was assessed using two methods: counts and IEQs.

Islet number was defined as the number of cultured islets, and IEQ

was defined as the number of 150 µm-diameter islets for the

normalization of islet volume (18).

To assess the viability of islets, isolated islets were stained with

Hoechst® 33342 (Cat#H1399; Invitrogen™) and propidium iodide

(PI) (Cat#P1304MP; Invitrogen™) and the percentages of viable

cells in each islet were calculated using the following formula:

([Hoechst® 33342 stained cells] − [PI stained cells])/[Hoechst®

33342 stained cells] × 100 (%).

Islet number, IEQ, and IEQ/islet number ratio, indicative of the

mean size of the islets, and viability were measured 1, 7, 14, 21, and

28 days after islet isolation. Furthermore, morphology, assessed

using islet quality score, and the residual percentage of the cells in

the cultured islets were also assessed at these time points. The sums

of the scores for islet shape (flat at 0 point, moderate at 1 point, oval

or round at 2 point); surface (rough at 0 point, moderate at 1 point,

smooth at 2 point); damage (fragmented at 0 point, moderate at 1

point, free at 2 point); the number of single cells in the culture

medium (numerous at 0 point, moderate at 1 point, a few at 2

point); and the diameters of the islets (all islets <100 µm at 0 point, a

few islets >200 µm at 1 point, over 10% of islets >200 µm at 2 point)

were used to assess morphology (Supplemental Table 1). The

percentage of residual islets was calculated as the percentage of

cultured IEQs per IEQ 1 day following islet isolation.
2.8 Glucose-stimulated insulin and
glucagon secretion

Glucose-stimulated insulin and glucagon secretion (GSIS and

GSGS) were measured using 300 IEQs. Islets were preincubated

with 3.3 mM glucose for 60 minutes, after which they were

stimulated with glucose at concentrations of 3.3 mM (low

glucose) or 16.5 mM (high glucose) for 60 minutes using cell

culture inserts (Millicell Hanging Cell Culture Insert, PET 8 µm,

24-well; Cat#PTEP24H48; Merck Millipore, Tokyo, Japan). The

porcine insulin and glucagon concentrations in the culture media

were measured using an ELISA (LBIS Porcine Insulin ELISA Kit;

Cat#AKRIN-013T and Glucagon ELISA Kit; Cat# 29280001;

Fujifilm Wako Shibayagi Co., Shibukawa, Japan). The absorbance

at 450 nm (optical density, OD450) was determined using an
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iMark™Microplate Absorbance Reader with Microplate Manager®

Software 6 (Bio-Rad, Hercules, CA, USA).
2.9 Measurement of insulin
and glucagon concentrations

Insulin and glucagon were extracted from 300 IEQs using 1 mL

RIPA buffer (Cat#16488-34; Nacalai Tesque, Kyoto, Japan)

containing ×100 protease and phosphatase inhibitor cocktails

(Cat#07575-51 and Cat#07574-61; Nacalai Tesque). The insulin

and glucagon concentrations were measured using an LBIS Porcine

Insulin ELISA Kit and a Glucagon ELISA Kit (Wako), respectively.
2.10 Differentiation assay for attached cells

The cells that attached during culture at 37°C were detached by

incubation with TrypLE™ Express (Cat#12605010; Gibco™) for 25

minutes, collected, and seeded into wells of a 24-well plate (5×104

cells/well). They were incubated in medium containing b-
glycerophosphate, dexamethasone, and ascorbate for osteoblasts;

or insulin, indomethacin, isobutylmethylxanthine, and

dexamethasone for adipocytes (Cat#BMK-R006, Cat#BMK-R007,

Cat#BMK-R008, Cat#BMK-R008; Bio future Technology, Tokyo,

Japan) for over a week. The extent of differentiation into osteoblasts

or adipocytes was assessed using Alizarin Red S and Oil Red O

staining, respectively.
2.11 ELISA for transforming growth
factor b1

The concentrations of TGF-b1 secreted into the medium by

attached cells were measured using Human/Mouse/Rat/Porcine/

Canine TGF-b1 Quantikine ELISA Kits (Cat#DB100B; R&D

Systems, Inc., Minneapolis, MN, USA), in accordance with the

manufacturer’s instructions.
2.12 ADP/ATP ratio

The ADP and ATP contents of cultured islets 28 days after

isolation were measured using an ADP/ATP Ratio Assay Kit-

Luminescence (Cat#346-09911; Dojindo Laboratories, Mashiki,

Japan), and the ADP/ATP ratio was calculated. The absorbance at

450 nm for both ADP and ATP was measured using Spark™ 10M

multimode microplate reader (Tecan Ltd., Männedorf, Switzerland).
2.13 Real-time reverse transcription
polymerase chain reaction analysis

RNA was extracted from porcine islet samples using TRIzol

Reagent (Cat#15596026; Invitrogen) and purified using a

PureLink® RNA Mini Kit (Cat#12183018A; Thermo Fisher
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Scientific, Waltham, MA, USA), according to the manufacturer’s

instructions. The mRNA concentrations were equalized using a

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,

Inc.). Reverse transcription was performed using a QuantiTect

Reverse Transcription Kit (Cat#205311; Qiagen K.K., Tokyo,

Japan). qRT-PCR analysis was performed using a CFX Connect

Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.,

Hercules, CA, USA) and a Thunderbird SYBR qPCR Mix

(Cat#QPS-101: Toyobo Co., Ltd., Osaka, Japan). The primers

used for real-time RT-PCR are shown in Supplemental Table 2.

These were designed by Fasmac Co., Ltd. (Atsugi, Japan). Relative

quantitation was performed using LightCycler Software Version 4.1

and the results were normalized to the expression of a reference

gene (Actb). The data are presented as a fold difference, calculated

using the 2−DDCt method.
2.14 RNA sequencing

The extraction, purification, and standardization of RNA

extracted from cultured islets (on Days 1 and 28, after culture at

24°C or 37°C) were performed as described above. RNA

sequencing libraries were prepared from 1 mg of RNA using a

TruSeq Stranded mRNA LT Sample Prep Kit (Cat#20020595;

Illumina), as per the manufacturer’s instructions. Cluster

amplification and 151-bp paired-end sequencing were

performed in accordance with the manufacturer’s protocol for

NovaSeq (Illumina).

RNA sequencing was performed in Cell Innovator (Fukuoka,

Japan). Read quality analysis was performed on the raw data using

FastQC v0.11.7 (http://bioinformatics.babraham.ac.uk/projects/

fastqc/). Quality trimming and adapter clipping were performed

using Trimmomatic version 0.38 (19): trailing bases were trimmed

if below the mean quality of 15, to a minimum length of 36 bases,

and to remove the Illumina adapters. Trimmed reads were mapped

to transcripts in the reference data for the Sus scrofa (pig) genome

Sscrofa11.1 using the Bowtie2 aligner within RNA-Seq by

Expectation-Maximization (RSEM) (20). The abundance of both

genes and isoforms was estimated using RSEM in transcripts per

million (TPM) counts.

Differentially expressed genes (DEGs) were identified using the

edgeR program (21). Normalized counts per million (CPM) values,

log fold-changes (logFC), and p-values were obtained from the

gene-level TPM counts. The criteria for DEGs were p ≤ 0.05 and

ratios ≥2 fold for upregulated genes.
2.15 Flow cytometry analysis

Porcine islets were dispersed to generate single islet cells using

accutase (Cat#12679-54: Nacalai Tesque). These were washed in

Hanks’ buffer solution containing 10% bovine serum albumin,

incubated with a blocking solution, and then incubated with a

primary antibody (rabbit anti-insulin (Cat#ab46716, RRID:

AB_881326; 1:50; Abcam), mouse anti a-Gal Epitope (Gal

alpha1–3 Gal beta1–4 GlcNAc-R) (Cat#ALX-801-090-1, RRID :
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AB_2111596; 1:5; Enzo Life Sciences, Inc., Lausen, Switzerland),

mouse anti-pig SLA Class I (Cat#MCA2261GA, RRID :

AB_324753; 1:10; Bio-Rad Laboratories, Inc.), mouse anti-pig

SLA Class II DQ (Cat#MCA1335GA, RRID : AB_322326; 1:10;

Bio-Rad Laboratories, Inc.), rabbit anti-CD146 antibody

(Cat#ab75769, RRID : AB_2143375; 1:50; Abcam), mouse anti-

smooth muscle actin (Cat#ATGA0358; 1:50; NKMAX, Seongnam,

Gyeonggi, Republic of Korea), mouse anti-Ki-67 (Cat#F078801,

RRID : AB_578672; 1:50; Dako (Agilent), Santa Clara, CA, USA),

purified mouse IgM, k Isotype Ctrl (Cat#401601; RRID :

AB_2935847; 1:50; BioLegend, San Diego, CA, USA), purified

mouse IgG1, k Isotype Ctrl (Cat#401402, RRID : AB_2801451;

1:5; BioLegend), or purified rabbit polyclonal Isotype Ctrl

(Cat#910801, RRID : AB_2722735; 1:43; BioLegend)). Donkey

anti-mouse IgG A647 (Cat#ab150107, RRID : AB_2890037;

1:1,000; Abcam) and donkey anti-rabbit IgG A488 (Cat#ab98488,

RRID : AB_10676096; 1:1,000; Abcam) secondary antibodies were

used. Fixation/Permeabilization Solution Kit (Cat#554714; BD,

Franklin Lakes, NJ, USA) was used for intracellular flow

cytometry. Flow cytometry was performed using a BD Accuri™

C6 Plus flow cytometer (BD).
2.16 Induction of diabetes in recipient mice

Diabetes was induced in recipient mice by the intravenous

injection of streptozotocin (220 mg/kg body mass; Cat#S0130;

Sigma-Aldrich). Mice with blood glucose concentrations

exceeding 400 mg/dL were used as diabetic recipients.
2.17 Islet transplantation

Recipient mice were anesthetized using isoflurane, then a

dorsal incision was made through the muscle and peritoneum

and the left kidney was mobilized outside the abdomen. The renal

capsule was peeled off from the parenchyma to prepare the renal

subcapsular space for the transplantation of islets. Overnight or

28-day-cultured porcine islets were placed into the space using

Gastight Syringes 1002 RN (Hamilton Company Inc., Reno, NV,

USA) and Intramedic polyethylene tubing 0.58 mm

(Cat#BD427410; Becton Dickinson, Franklin Lakes, NJ, USA).

After transplantation, the kidney was replaced into the abdomen

and the incision was sutured.
2.18 Assessment of the function of
transplanted islets

The function of the transplanted islets was assessed by

monitoring the blood glucose and plasma porcine C-peptide

concentrations. Normoglycemia was defined as a blood glucose

concentration of <200 mg/dL. The plasma porcine C-peptide

concentrations were measured using a Porcine C-peptide ELISA

(Cat#10-1256-01; Mercodia, Winston Salem, NC, USA).
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2.19 Histological assessment

The left kidneys of the recipient mice were dissected following

euthanasia and the transplanted islets were evaluated. Cultured

islets were embedded in agarose gel for the evaluation of any

changes that had occurred during long-term culture. Three-

micrometer-thick sections were either stained with hematoxylin

and eosin (HE) or subjected to immunohistochemistry (for insulin

to identify islets, for von Willebrand factor (vWF) to identify

vessels, for porcine C-peptide to identify porcine islets, for mouse

C-peptide to identify mouse islets, for Ki67 to evaluate cellular

proliferation, for collagen I or fibronectin to identify ECM in the

cultured islets, for integrin b1 or E-cadherin (adhesion factors), for

CD146 or a smooth muscle actin (SMA) to identify PSCs, for PDX-

1 (a marker of b cells or pancreatic progenitors), or a-Gal (a
carbohydrate antigen)). The primary antibodies used were guinea

pig anti-insulin (Cat#A056401-2, RRID : AB_2617169; 1:100;

Agilent, Dako, Tokyo, Japan), rabbit anti-insulin (Cat#ab181547,

RRID : AB_2716761; 1:1,000; Abcam, Cambridge, UK), sheep anti-

glucagon (Cat#ab36232, RRID : AB_732575; 1:100; Abcam), rabbit

anti-somatostatin (Cat#ab103790, RRID : AB_10711731; 1:500;

Abcam), mouse anti-pig C-peptide (Cat#MAA447Po21; 1:200;

Cloud-Clone Corp. MAA447Po21, Katy, TX, USA), mouse anti-

mouse C-peptide (Cat#NBP1-05433, RRID : AB_1556271; 1:500;

Novus Biologicals NBP1-05433, Centennial, CO, USA), rabbit anti-

vWF antibody (Cat#ab179451, RRID : AB_2890242; 1:100; Abcam),

rabbit anti-Ki67 antibody (Cat#ab66155, RRID : AB_1140752;

1:200; Abcam), rabbit anti-collagen I antibody (Cat#ab138492,

RRID : AB_2861258; 1:500; Abcam), rabbit anti-fibronectin

(Cat#ab2413, RRID : AB_2262874; 1:100; Abcam), rabbit anti-

integrin b1 (Cat#ab179471, RRID : AB_2773020; 1:1,000;

Abcam), rabbit anti-E cadherin (Cat#ab40772, RRID :

AB_731493; 1:500; Abcam), rabbit anti-CD146 (1:200; Abcam),

rabbit anti-aSMA (Cat#ab15734, RRID : AB_443242; 1:200;

Abcam), mouse anti-PDX1 (Cat#sc-390792, RRID : AB_2938928;

1:100; SantaCruz), and mouse anti-a-Gal (1:5; Enzo Life Sciences,

Farmingdale, NY, USA). After incubation with a primary antibody,

donkey anti-mouse IgG (H+L) Alexa488 (Cat#715-547-003, RRID :

AB_2340851; 1:100; Jackson ImmunoResearch Laboratories, Inc.,

West Grove, PA, USA), Alexa 488-conjugated donkey anti-guinea

pig (Cat#715-547-003, RRID : AB_2340472; 1:100; Jackson

ImmunoResearch Laboratories, Inc.), Alexa Fluor® 488 AffiniPure

goat anti-rat IgG (H+L) (Cat#112-545-003, RRID : AB_2338351;

1:100; Jackson ImmunoResearch Laboratories, Inc.), Alexa Fluor®

647 AffiniPure goat anti-rabbit IgG (H+L) (Cat#111-605-144, RRID

: AB_2338078; 1:100; Jackson ImmunoResearch Laboratories, Inc.),

Cy3-conjugated goat anti-rabbit (Cat#111-165-144, AB_2338006;

1:100; Jackson ImmunoResearch Laboratories, Inc.), Alexa 488 anti-

goat, Alexa 647 anti-goat, Alexa 647 anti-mouse, and Cy3 anti-goat

were used as secondary antibodies. Nuclear staining was performed

using 4′,6-diamidino-2-phenylindole (DAPI: Cat#340-07971;

Dojindo). Histological images were obtained using a BZ-X700

microscope (Keyence, Itasca, IL, USA) and immunostaining was

quantified using ImageJ® software (https://imagej.nih.gov/ij/

index.html; National Institutes of Health, Bethesda, MD, USA).
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2.20 TUNEL assay

TdT-mediated dUTP nick end labeling (TUNEL) assay was

performed to long-term cultured islets using TACS2 TdT in situ

Apoptosis Detection Kit-Fluorescein (Cat# 4812-30-K; R&D

Systems), to detect apoptotic islet cells. Double staining for

insulin, glucagon or somatostatin was done to the same specimen

for detecting apoptotic cells in b, a, d cells, respectively.
2.21 Statistical analysis

The blood glucose and plasma C-peptide concentrations and the

changes in blood glucose concentration during glucose tolerance

testing were compared using two-way repeated measures analysis of

variance, followed by Dunnett’s test, as appropriate. Data are presented

as the mean ± standard error of the mean. p < 0.05 was used to define

statistical significance. All tests were two-sided. Statistical analyses were

conducted using JMP®12.0.0 (SAS Institute Inc., Cary, NC, USA).
3 Results

3.1 Culture at 37°C stabilizes the
morphology and promotes the
cellular proliferation of long-term
cultured porcine islets

First, we aimed to characterize long-term (28-day) cultured

islets. Figure 2 shows the morphological changes of the islets during

the long-term culture. On Day 0 (i.e. at preculture), the porcine

islets in this assay accompanied with round shape (islet shape: 2

point) and smooth surface (surface: 2 point). There were no

damaged islets (damage: 2 point) with few dispersed single cells

(the number of single cells: 2 point). On the other hand, a few over

200 µm-sized islets were seen (the diameters of the islets: 1 point).

The islet quality score of these islets was 9 points (Figures 2A, B).

On Day 1, the islet quality score was declined to 7 points because the

shape of islets became flat and fragmented islets were moderately

shown (Figures 2A, B, C, E). After that, the surface of the cultured

islets became smooth over time, especially those cultured at 37°C.

Most of the islets cultured at 37°C became solid, with a smooth

surface, between days 7 and 14 (Figure 2A). The islet quality score

was 10 points during the span (Figure 2B). On the other hand, most

islets cultured at 24°C had a rough and frayed surface at these time

points (Figure 2A). The islet quality score was lower comparing

with islets cultured at 37°C during the observation span (Figure 2B).

Final islet quality score on Day 28 was 9 points at 37°C and 8 point

at 24°C. Score in islet shape, surface, damage and the diameter of

the islets was exceeded in 37°C, while there were no change in the

number of single cells (Figures 2C–G).

In this morphological assessment, aggregation of the islets was

noticeable after 21 days of culture at 37°C (Figure 2A). We

considered that these morphological changes might be the result

of higher expression of extracellular matrix (ECM) proteins and

adhesion factors that strengthen cell-to-cell junctions. As
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representative ECM proteins, the expression of collagen I and

fibronectin in long-cultured islets was evaluated by qPCR and

immunofluorescence staining. The expressions of Col1A1, which

encodes collagen I, tended to be high in long-term cultured islets,

and especially in those cultured at 37°C, while there were no

significant differences among the three culture conditions

(Figure 3A; Supplemental Figure 1A). Collagen I was mainly

expressed on the surfaces of the endocrine cells, but the level of

expression was very weak (Figure 3B; Supplemental Figure 1B). The

collagen I-positive area of the long-term cultured islets was

significantly larger in those cultured at 37°C than in those

cultured at 24°C (p = 0.005; Figure 3C). In contrast, the

expression of Fn1, which encodes fibronectin, was significantly

lower, as was the area of the islets that was immunopositive for

fibronectin (Supplemental Figures 2A–C).

Integrin b1 and E-cadherin are the major adhesion factors that

contribute to cell-to-cell junctions. The former is a receptor for

various ECMs, including collagen and fibronectin, and forms focal

adhesions, multi-protein complexes that mediate contact between

cells and the ECM. Integrin b1 is expressed on the surfaces of

endocrine cells in mouse islets (22), and E-cadherin is expressed on

cell membranes, where it interacts with similar molecules on other

cells, to form cell-cell adherens junctions (23). In the present study,

we found that the expression of Intgb1, which encodes integrin b1,
in islets cultured at 37°C for 28 days was significantly higher than in

islets cultured overnight and at 24°C for 28 days, in each isolation

(#1 - #3 islet isolation) (37°C Day 28 vs. Day 1: p = 0.013, p = 0.001,

p = 0.049; 37°C Day 28 vs. 24°C Day 28: p = 0.016, p = 0.040, p >

0.05; Supplemental Figure 1C; Figure 3D). Furthermore, the

expression of integrin b1 was high in cell-to-cell junctions after

culture at 37°C, and lower after culture at 24°C (p < 0.001;

Figures 3E, F). The expression of Cdh1, which encodes E-

cadherin, was higher after long-term culture, especially at 24°C

(Supplemental Figure 2D), but the expression of E-cadherin protein

was relatively low at both 24°C and 37°C (Supplemental Figures 2E,

F). Thus, the expression of collagen I and integrin b1 following

long-term culture at 37°C is consistent with an enhancement of cell-

ECM junctions, which might contribute to the stability of the islets.

We also found that long-term culture was associated with an

increase in islet size. The IEQ/islet number ratio, an index of the

mean size of an islet, increased during long-term culture, and was

higher after culture at 37°C than at 24°C (Figures 2A, 4A). We

considered that the larger islet size after culture at 37°C might

reflect greater cellular proliferation. To elucidate the mechanism

underlying this difference, we assessed the expression of Ki67, a

marker of cellular proliferation, in the islets, and found few Ki67-

positive cells, especially at 37°C (ratio of Ki67-positive cells: p =

0.02; Figures 4B, C). We next quantified the population of insulin/

Ki67 double-positive cells in the long-term cultured islets using flow

cytometry, and found that long-term culture increased the numbers

of Ki67-positive cells in islets cultured at 24°C, and especially at 37°

C, indicating a promotion of cellular proliferation (Insulin−/Ki67+:

0.00503% on Day 1, 0.11% at 24°C on Day 28, 1.06% at 37°C on Day

28; Insulin+/Ki67+: 0.00902% on Day 1, 0% at 24°C on Day 28,

0.87% at 37°C on Day 28 for #1 islet isolation; Insulin+/Ki67+: 0.22%

at 24°C on Day 28, 4.57% at 37°C on Day 28 for #2 islet isolation;
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FIGURE 2

Morphological change of long-term cultured porcine islets. (A) Dithizone-stained islets isolated from one pig cultured at 24°C (blue) and 37°C
(orange) on Days 0, 1, 7, 14, 21, and 28. Most of the islets cultured at 37°C became solid with a smooth surface throughout the observation span. On
the other hand, most islets cultured at 24°C had a rough and frayed surface. Scale bar: 100 µm. (B) Change of the islet quality score. This score is
composed of he sums of the scores for islet shape (flat at 0 point, moderate at 1 point, oval or round at 2 point); surface (rough at 0 point, moderate
at 1 point, smooth at 2 point); damage (fragmented at 0 point, moderate at 1 point, free at 2 point); the number of single cells (numerous at 0 point,
moderate at 1 point, a few at 2 point); and the diameters of the islets (all islets <100 µm at 0 point, a few islets >200 µm at 1 point, over 10% of islets
>200 µm at 2 point). (C-G). Change of the parameters for calculating islet quality scores including islet shape (C), surface (D), damage (E), the
number of single cells (F), and the diameter of the islets (G).
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Figure 4D). These data indicate that the proliferation of islet cells,

and especially b cells, is more highly upregulated after long-term

culture at 37°C than at 24°C.

Immunofluorescence staining for Ki67 and PDX1, which is a

marker of endocrine differentiation that is expressed by pancreatic
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progenitors and adult b cells, showed Ki67-positive and PDX-

negative cells in long-term cultured islets, especially islets at 37°C

(Figure 4E). We speculate that these cells might be not only non-b
cells, but also extra-endocrine cellular components that contribute

to the increase in islet size.
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FIGURE 3

Expression of extracellular matrix proteins and adhesion factors in long-term cultured porcine islets. (A, D). Expression of Col1a1 (A) and Itgb1
(D) in cultured porcine islets. Col1a1 and Itgb1 encode collagen I and integrin b1, respectively. The ratios of the expression between Day 1 and other
culture conditions (24°C Day 28 and 37°C Day 28), quantified using the 2−DDCt method. n = 3 islet isolations. (B, E). Histology of isolated islets which
were cultured at 24°C (upper) and 37°C (lower). Sections are immunostained with anti-insulin (green), anti-collagen I red in (B), and anti-integrin b1
red in (E) antibodies. (C, F). Collagen I (C) and integrin b1 (F)-positive areas per islet area. DAPI (blue) counterstaining for nuclei was used. ** p < 0.01,
*** p < 0.001. Scale bar: 50 µm.
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FIGURE 4

Cellular proliferation of long-term cultured porcine islets. (A) Change in the IEQ/islet number of long-term cultured porcine islets isolated from a pig
at 24°C (blue) and 37°C (orange). IEQ/islet number indicates the average size of islets. (B) Histology of isolated islets which were cultured at 37°C,
immunostained for insulin (green) and Ki67 (red). (C) Ratio of Ki67-positive islet cells per total islet cells in the islets cultured at 24°C (pale blue) or
37°C (pale orange) for 28 days. (D) Results of the flow cytometry analysis of Ki67-positive cells, Ki67-positive and insulin-negative cells, and insulin/
Ki67 double-positive cells in islets on Day 1, after culture at 24°C on Day 28, and after culture at 37°C on Day 28. #1 and #2 means the number of
islet isolations, respectively (i.e. islet isolation number 1 and 2). We had two islet isolations for these flow cytometry analyses. (E) Histology of long-
term cultured islets at 37°C (left) and 24°C (right) on Day 28. They were immunostained for Ki67 (green) and PDX1 (red), and counterstained using
DAPI (blue). * p < 0.05. Scale bar: 50 µm.
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3.2 Long-term culture does not reduce the
viability of porcine islets

Figure 5 shows the viability of long-term cultured porcine islets.

Regarding the percentage of residual islets (residual islet

equivalents, compared to Day 1), the percentage of residual islets

similarly decreased after culture at either 24°C or 37°C (Figure 5A).

On the other hand, over 95% of the viability of the islet cells was

retained during long-term culture at either temperature, with no

significant difference between the two (Figures 5B, C). Furthermore,

there was no significant difference in the ADP/ATP ratio, indicative

of damage to mitochondria, between the two conditions after 28

days of culture (Figure 5D). We also assessed the apoptosis of long-

term cultured islets, and could not detect any apoptotic cells in b, a
and d cells of the islets at both 24°C and 37°C (Figures 5E-G).
3.3 Long-term culture of porcine islets at
37°C is associated with partial recovery of
endocrine function, associated with
increases in the expression of genes
involved in pancreatic differentiation

Figures 6A–E and Supplemental Figures 3A-E show the

expression of genes involved in pancreatic differentiation (Pdx1

and Neurog3) and encoding hormones (Ins, Gcg, Sst). Long-term

culture at 37°C increased the expression of all of these genes. GSIS

and the insulin content of the islets were markedly reduced by 28

days of culture at either 24°C or 37°C (Figure 6F); however, the

secretion of insulin in response to a high glucose concentration and

the insulin content tended to be higher in islets cultured at 37°C

than in those cultured at 24°C (Figures 6F, G; Supplemental

Figures 3F, G). These data imply that long-term culture at 37°C is

associated with the partial recovery of the endocrine function of

porcine islets. The GSGS and glucagon content of the islets was

attenuated by long-term culture (Supplemental Figures 4A, B).
3.4 Porcine islets contain multipotent stem
cells that might mediate cellular
proliferation and the recovery of endocrine
function when cultured long-term at 37°C

As shown in Figure 5A, the percentage of residual islets

similarly decreased after culture at either 24°C or 37°C. Cells

derived from islets attached to and proliferated on the bottom of

culture flasks at 37°C, but not at 24°C. This phenomenon trapped

many islets and contributed to the reduction in percentage of

residual islets (Figure 7A).

Although the attachment of cells caused a loss of long-term

cultured islets, we hypothesized that this might provide some

benefits to the islets with respect to cellular proliferation and

endocrine function. Therefore, the characteristics of the islet cells

that attached to the culture vessel during long-term culture at 37°C

were assessed. We first evaluated the multipotency of these attached
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cells using a Mesenchymal Stem Cell (MSC) Identification Kit.

Some of the cells were capable of differentiating into osteoblasts and

inducing calcification (Figure 7B), or into adipocytes containing

lipid droplets (Figure 7C). Furthermore, the attached cells produced

transforming growth factor beta 1 (TGF-b1) (Figure 7D). Thus, the
attached cells include MSCs that are multipotent and secrete

substances with paracrine effects. We speculate that these cells

might be pancreatic stellate cells (PSCs), which are pancreas-

resident stem cells.

PSCs play a critical role in pancreatic fibrosis in chronic

pancreatitis and pancreatic cancer (24) and act as multipotent

stem cells, generating pancreatic b cells (25). There are several

specific markers of PSCs, and we used two in the present study:

CD146 and a-smooth muscle actin (SMA). CD146 is also known as

melanoma cell adhesion molecule (26) and is a marker of early

MSCs (27–29). CD146-positive MSCs have a high level of

multipotency, and can give rise to endothelial cells, osteoblasts,

chondrocytes, and adipocytes (30, 31). aSMA is also a marker of

activated PSCs (32). Flow cytometry analysis of the attached cells

derived from porcine islets revealed that they included CD146-

positive and aSMA-positive cells, and the numbers of each were

higher comparing with those in islets cultured at either 24°C or 37°

C (Figure 7E). The immunofluorescence staining of sections of

porcine pancreas revealed a few CD146-positive cells in both intra-

and extra-islet tissues (Figure 7F), and also in long-term cultured

islets, especially if they were cultured at 37°C (p = 0.04; Figure 7G,

H). Some of the CD146-positive cells were also immunopositive for

aSMA (data not shown). We also assessed the characteristics of the

CD146-positive cells in the islets as the potential progenitors of

pancreatic cells. Immunofluorescence staining of long-term

cultured islets for CD146/PDX1 revealed the presence of double-

positive cells, which might represent pancreatic progenitors that can

differentiate into endocrine cells (Figures 7I, J).
3.5 The expression of a-Gal is not high in
porcine islets

We next aimed to determine whether long-term culture reduces

the immunogenicity of cultured islets because this would increase

the chances of successful xenotransplantation (33). Supplemental

Figure 5A, B shows the expression of Ggta1p and Cmah. Long-term

culture reduced the expression of Cmah in islets cultured at 24°C (p

= 0.0008; Supplemental Figure 5B). The expression of Ggta1p was

reduced by long-term culture at 37°C (p = 0.0016), but the

expression level was significantly higher after culture at 24°C than

after culture at 37°C (p = 0.0028; Supplemental Figure 5A).

Next, we performed a flow cytometry analysis of long-term

cultured porcine islets isolated from three pigs (#1 - #3 islet

isolation) to further characterize the expression of a-Gal.
Interestingly, no a-Gal-positive islet cells were obtained from #1

or #3 islet isolation (Supplemental Figure 5C), but they were

identified in the islets obtained from #2 islet isolation, and there

were more in the islets cultured at 37°C than at 24°C (Supplemental

Figure 5C). Immunofluorescence staining for a-Gal did not show
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any a-Gal positive cells in islets cultured at either 24 or 37°C

(Supplemental Figure 5D), but the endothelium of the abdominal

artery showed strong immunostaining (Supplemental Figure 5E).

Thus, we could not find evidence of a-Gal expression in porcine

islets. The a-Gal-positivity obtained using flow cytometry might

have been a pseudo-positive finding because of the high level of

background staining (Supplemental Figure 5C).
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As a further assessment of immunogenicity, we performed

flow cytometry to identify cultured islet cells that expressed SLA

class I or SLA class II DQ. Swine leukocyte antigens (SLAs) are

porcine major histocompatibility (MHC) antigens, which are

mediators of humoral rejection following transplantation (34).

Both SLA classes I and II can cause the rejection of

xenotransplants because they can be targeted by human
A

B

D

E F G

C

FIGURE 5

Viability of long-term cultured porcine islets. (A) Change of percentage of residual islets isolated from a pig during long-term culture (24°C: blue, 37°C:
orange). (B) Cultured islets at 24°C (left) and 37°C (right), stained with Hoechst 33342 (blue) and propidium iodide (red) on Days 1 and 28. (C) Viability of
the porcine islets during the culture. Viability was assessed by the formula ([Hoechst® 33342 stained cells] − [PI stained cells])/[Hoechst® 33342 stained
cells] × 100 (%). (D) ADP/ATP concentration ratio, indicating mitochondrial damage, for the cultured islets on Day 28.(Prior to (D)) Scale bar: 100 µm. (E -
G) TUNEL staining (green) for long-term cultured islets. Double staining with insulin (E; red), glucagon (F; red) and somatostatin (G; red). DAPI (blue) was
used for counter staining. Scale bar: 50 µm.
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leukocyte antigen-specific antibodies (35). We found that SLA

class I was expressed by overnight-cultured porcine islets (Day 1)

(Supplemental Figure 5F), and SLA class II DQ was expressed in

islets from #1 islet isolation, but not in those from #3 islet isolation
Frontiers in Immunology 1230
(Supplemental Figure 5F). Although the number of SLA class I-

positive cells did not change, the number of SLA class II DQ-

positive cells increased during long-term culture, contrary to our

expectation that the expression would decrease.
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FIGURE 6

Pancreatic differentiation and endocrine function of long-term cultured porcine islets. (A–E). Expression of genes involved in pancreatic differentiation
(A): Pdx1, (B): Neurog3) and encoding hormones (C): Ins, D: Gcg, E: Sst) in cultured porcine islets. Day 1: blue, 24°C Day 28: pale blue, and 37°C Day 28:
pale orange. The ratios of the expression after 1 day and 28 days (both temperatures) are shown as 2−DDCt values. (F) Glucose-stimulated insulin
secretion by cultured islets in response to low and high glucose stimulations. (G) Insulin content per islet. n = 3 islet isolations. * p < 0.05, ** p < 0.01.
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FIGURE 7

Characteristics of CD146-positive cells in long-term cultured porcine islets. (A) Porcine islets cultured at 24°C (left) or 37°C (center) for 4 days. Spindle
cells derived from the islets attached to the bottom of the culture flask and proliferated (center and right). (B) Differentiation of the attached cells into
osteoblasts. Alizarin Red S staining to demonstrate differentiated osteoblasts. (C) Differentiation of the attached cells into adipocytes. Oil red O staining to
demonstrate differentiated adipocytes. (D) Concentration of TGF-b1 secreted by attached cells. (E) Results of flow cytometry analysis of the attached
cells (pale green) and islets cultured at 24°C (pale blue) or 37°C (pale orange) for the detection of CD146 (right) or aSMA (left)-positive cells. (F) CD146-
positive cells in the porcine pancreas immunostained for insulin (green) and CD146 (red). (G) Histology of islets cultured at 37°C, immunostained for
insulin (green) and CD146 (red). (H) Ratio of CD146-positive cells in islets cultured at 24°C (pale blue) or 37°C (pale orange) for 28 days. (I) Histology of
islets cultured at 37°C, immunostained for CD146 (green) and PDX1 (red). DAPI (blue) was used for counterstaining. (J) Ratio of CD146/PDX1-positive
cells in islets cultured at 24°C (pale blue) or 37°C (pale orange) for 28 days. * p < 0.05. Scale bar: 50 µm.
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3.6 RNA sequencing revealed that islets
cultured long-term at 37°C demonstrate
higher levels of insulin secretion, focal
adhesion, and cellular proliferation

Sequencing of RNA extracted from porcine islets and cultured

overnight, or at 24°C or 37°C for 28 days, followed by data analysis

using the Database for Annotation, Visualization and Integrated

Discovery (DAVID: https://david.ncifcrf.gov) was next performed

to further characterize the effects of long-term culture. We found

that the expression of genes involved in ion transport (Kcnip1,

Calb1) , cel l differentiation (Ush2a , Th , Fev) , and the

downregulation of apoptosis (Scg2) was higher in islets cultured

for 28 days at 37°C (Table 1) than in those cultured at 24°C. We

then used the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway classification to interrogate the functions of the

upregulated genes. A comparison with 24°C-cultured cells on Day

28 showed that “Metabolic pathway”, “Protein processing in

endoplasmic reticulum”, and “Insulin secretion” were upregulated

in the 37°C-cultured cells (Table 2). Specifically, genes involved in

insulin secretion, ion transport, including the calcium signaling

pathway, and the cAMP signaling pathway were upregulated at 37°

C. We hypothesized that these differences might have been induced

by a thermosensitive system that included transient receptor

potential (TRP) channels, and therefore measured the expression

of genes encoding these channels. Of these, Trpm5 (log-fold

difference 5.09, p = 1.45E−44) was found to be upregulated in

cells cultured for 28 days at 37°C.

Figure 8 shows a heat map (Figure 8A) and volcano plot

(Figures 8B–D), which display the up- and downregulated genes

for comparisons of the Day 1, 24°C Day 28, and 37°C Day 28

groups. Islets cultured for 28 days at 37°C showed differences in the

expression of genes involved in the repression of immunity (Tcim),

temperature-dependent insulin secretion (Trpv4), cell cycle

promotion (Gadd45b, Gadd45g, Ccnb2, and Ccnb3), adhesion and

the ECM (Tnr, Itgb8, Itgb6, Itga4, and Lama1), and endocrine

function and pancreatic differentiation (Glp1r, Rapgef4, Gpr119,

Pdx1, and Gcg).
3.7 The effects of the transplantation
of islets cultured long-term at 37°C
were not inferior to those of
overnight-cultured islets

Finally, we performed islet xenotransplantation into diabetic

nude mice using long-term cultured porcine islets. The number of

transplanted islets was 2,000 and 4,000 IEQs (purity: over 90%,

tissue volume: less than 100 µL per 2,000 IEQs). Two thousand

IEQs is considered as the minimum number which enables to

improve blood glucose. The blood glucose concentrations of the

mice were not normalized when they were transplanted with islets
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TABLE 1 The 20 most upregulated genes in islets cultured for a long
period at 37°C, compared with 24°C.

log fold-
changes,
p-value

Gene symbol and name
Accession
number

7.16
4.76E-30

SLIT1
(Slit guidance ligand 1)

XM_021072814

7.12
1.92E-29

CAPS
(Calcyphosine)

NM_001244975

6.89
5.46E-144

SCG2
(Secretogranin II)

NM_001012299

6.76
1.98E-24

ST8SIA2
(ST8 alpha-N-acetyl-neuraminide alpha-
2,8-sialyltransferase 2)

NM_001315676

6.44
1.14E-20

USH2A
(Usherin)

XM_021064292

6.33
2.10E-73

MOXD1
(Monooxygenase DBH like 1)

XM_001926931

6.29
9.83E-121

HEPACAM2
(HEPACAM family member 2)

XM_003357438

6.05
1.40E-71

KCNIP1
(Potassium voltage-gated channel
interacting protein 1)

NM_001031777

5.86
4.81E-23

PRODH2
(Proline dehydrogenase 2)

XM_021097109

5.84
2.32E-114

TH
(Tyrosine hydroxylase)

XM_021085452

5.84
2.77E-48

DPEP2
(Dipeptidase 2)

XM_003355779

5.59
3.69E-60

GRIK1
(Glutamate ionotropic receptor kainate
type subunit 1)

XM_003358905

5.59
1.17E-12

FEV
(FEV transcription factor, ETS family
member)

XM_021075453

5.55
2.33E-72

DGKB
(Diacylglycerol kinase beta)

XM_021102437

5.54
3.66E-82

CALB1
(Calbindin 1)

NM_001130226

5.45
1.92E-36

GALNTL6
(Polypeptide N-
acetylgalactosaminyltransferase like 6)

XM_021072439

5.37
5.91E-44

LDHD
(Lactate dehydrogenase D)

XM_021093784

5.20
1.96E-20

CLVS2
(Clavesin 2)

XM_013992600

5.10
2.27E-72

SSTR3
(Somatostatin receptor 3)

NM_001167628

5.09
1.45E-44

TRPM5
(Transient receptor potential cation
channel subfamily M member 5)

XM_021082616
A total of 9,511 genes were identified.
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cultured for 1 day or 28 days at 24°C (Supplemental Figures 6A, B),

but their plasma porcine C-peptide concentrations gradually

increased with time and the transplanted islets were found to

have successfully engrafted in both groups (Supplemental

Figures 6C–F). The plasma concentrations of porcine C-peptide

in the 24°C Day 28 group were significantly lower than those in the

Day 1 group (Supplemental Figures 6C, D). However, the

transplantation efficacy of islets cultured long-term at 37°C was

similar to that of overnight-cultured islets. The blood glucose

concentrations were similar in the Day 1 and 37°C Day 28 groups

(Figure 9A) and their plasma porcine C-peptide concentrations

increased after transplantation to similar levels (9.44 ± 1.28 pmol/L

at transplantation vs. 55.50 ± 21.13 pmol/L 84 days later, p = 0.04;

Figure 9B). Nevertheless, four of the five mice in the 37°C Day 28

group failed to return to normoglycemia (Figure 9C). The one

mouse that became normoglycemic did not show an increase in

blood glucose concentration following graftectomy (Figure 9E). In

contrast, an increase in plasma porcine C-peptide concentration

occurred in all the mice (Figure 9D), and this decreased in four out

of five of the mice in the 37°C Day 28 group following graftectomy

(55.50 ± 21.13 pmol/L before graftectomy vs. 7.79 ± 1.41 pmol/L

after graftectomy, p = 0.04; Figure 9E). The transplanted islets

cultured for 28 days at 37°C remained engrafted 3 months after

xenotransplantation (Figure 9F). Thus, 37°C is a more effective

culture temperature than 24°C for the long-term culture of porcine

islets to be used in xenotransplantation. Thus, the transplantation

efficacy of long-term cultured islets at 37°C was not inferior to that

of overnight-cultured islets.
4 Discussion

The xenotransplantation of porcine organs, including porcine

islets, may be a feasible therapeutic approach in the future. For the

promotion of porcine islet xenotransplantation, further innovation is

needed to prolong the lifetime of grafts. The identification of the

optimal long-term culture temperature for porcine islets represents a

substantial challenge to successful porcine islet xenotransplantation

because high-quality porcine islets are required. Extensive research

has been carried out on the long-term culture of porcine islets, but the

characteristics and function of the islets and the optimal temperature

for such culture remain a subject for discussion. For example,

Brandhorst and colleagues found that 37°C was the optimal

temperature for the maintenance of insulin secretion, but it was

not suitable for the preservation of cell number (16). Krickhahn and

colleagues showed that porcine islets were significantly attenuated in
TABLE 2 KEGG pathway functional classification of the upregulated
genes in islets cultured for a long period of time at 37°C, compared to
24°C Top 20 in terms of p-valueTop 20 in terms of gene expression.

Pathway Count p-value

Metabolic pathway 231 2.10E-16

Protein processing in endoplasmic reticulum 45 5.20E-11

Insulin secretion 25 3.30E-07

Retrograde endocannabinoid signaling 33 3.30E-06

Cardiac muscle contraction 23 7.50E-06

Dopaminergic synapse 29 1.30E-05

Adrenergic signaling in cardiomyocytes 31 1.50E-05

GABAergic synapse 23 1.60E-05

Maturity onset diabetes of the young 11 5.20E-05

Morphine addiction 22 6.30E-05

Dilated cardiomyopathy 22 1.00E-04

Arrhythmogenic right ventricular cardiomyopathy 19 1.30E-04

Serotonergic synapse 25 1.40E-04

Various types of N-glycan biosynthesis 13 1.60E-04

Glutamatergic synapse 24 1.90E-04

Amphetamine addiction 17 2.70E-04

Hypertrophic cardiomyopathy 20 4.10E-04

N-Glycan biosynthesis 14 4.10E-04

Cholinergic synapse 23 4.90E-04

Circadian entrainment 21 5.30E-04

Pathway Count p-value

Metabolic pathway 231 2.10E-16

Pathways of neurodegeneration - multiple diseases 64 1.80E-02

Neuroactive ligand-receptor interaction 49 5.40E-03

Alzheimer disease 48 2.20E-02

Protein processing in endoplasmic reticulum 45 5.20E-11

Parkinson disease 37 1.20E-02

Thermogenesis 35 3.70E-07

cAMP signaling pathway 34 3.20E-03

Retrograde endocannabinoid signaling 33 3.30E-06

Diabetic cardiomyopathy 33 1.80E-03

Calcium signaling pathway 33 2.30E-02

Adrenergic signaling in cardiomyocytes 31 1.50E-05

Dopaminergic synapse 29 1.30E-05

Oxytocin signaling pathway 27 8.20E-04

Cell adhesion molecules 27 1.50E-03

Axon guidance 26 2.50E-02

Insulin secretion 25 3.30E-07

(Continued)
TABLE 2 Continued

Pathway Count p-value

Serotonergic synapse 25 1.40E-04

cGMP-PKG signaling pathway 25 1.70E-02

Glutamatergic synapse 24 1.90E-04
fro
Top 20 in terms of gene expression.
A total of 9,511 genes were identified. The genes in bold were in the top 20 for both p-value
and abundance.
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function after 11 days of culture at 24°C (36). However,

Rijkelijkhuizen and colleagues achieved a 5-month period of

survival of grafts in diabetic rats that were derived from porcine

islets cultured at 37°C for 1.5–3 weeks (37).

In the present study, we have assessed the effects of long-term

(28-day) culture on porcine islets at either 24°C or 37°C. The long-

term culture did not affect the viability of the islets. Furthermore, we
Frontiers in Immunology 1634
made three findings relevant to the establishment of the optimal

long-term culture conditions. Firstly, long-term culture at 37°C

promoted the morphological stability of the islets. In general,

porcine islets are fragile and are considered not to be suitable for

long-term culture. We found that most of the islets cultured at 37°C

became solid and compact, with a smooth surface, between days 7

and 14, whereas most of them cultured at 24°C had rough, frayed
A
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FIGURE 8

Results of the RNA sequencing of long-term cultured islets. (A) Heat map showing the upregulated and downregulated genes involved in the response
to temperature stimulus, cell cycle, focal adhesion, and insulin secretion for Day 1, 24°C Day 28, and 37°C Day 28 islets. (B–D). Volcano plots of the
gene expression of porcine islets to compare Day 1 and 24°C Day 28 (B), Day 1 and 37°C Day 28 (C), and 24°C Day 28 and 37°C Day 28 (D).
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surfaces. We hypothesized that this stabilization was provided by a

strengthening of cell-to-cell junctions, secondary to the

proliferation of ECM and adhesion factors, and we found that the

expression of collagen I and integrin b1 in the cell membranes of
Frontiers in Immunology 1735
porcine islets is significantly increased by long-term culture at 37°C.

RNA sequencing of islets cultured long-term at 37°C also showed

the upregulation of genes involved in ECM and adhesion. These

increases in expression might be responsible for the strengthened
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FIGURE 9

Effects of the xenotransplantation of long-term cultured islets into diabetic nude mice. (A, B) Blood glucose (A) and plasma porcine C-peptide
(B) concentrations in diabetic nude mice after the xenotransplantation of porcine islets cultured for 1 day (Day 1 group, blue) or 28 days (37°C Day
28 group, pale orange) (2,000 IEQs) at 37°C. C and (D) Individual data for mice transplanted with 37°C Day 28 islets. Blood glucose (C) and plasma
porcine C-peptide (D) concentrations. (E) Blood glucose (left) and plasma porcine C-peptide (right) concentrations before and after graftectomy.
(F) Transplanted porcine islets cultured for 28 days at 37°C and examined 84 days after transplantation, immunostained for porcine C-peptide
(green, left) or mouse C-peptide (green, right) and von Willebrand factor (red), and counterstained with DAPI (blue). Scale bar: 100 µm. * p < 0.05.
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cell-ECM junctions, and therefore contribute to the stability of the

islets. This strengthening might also be responsible for the

improvement in insulin production and secretion in long-term

cultured porcine islets (38).

Second, long-term culture at 37°C promoted the proliferation of

cells within the cultured porcine islets, which caused an increase in

islet size. Ki67-positive islet cells, including both b and non-b cells,

were significantly more numerous in the islets following long-term

culture at 37°C. Furthermore, RNA sequencing revealed that this

culture temperature promoted cel l cycle progression

(downregulation of Gadd45b and Gadd45g, upregulation of Ccnb2

and Ccnb3) (39). These data indicate that long-term culture at 37°C

promotes the proliferation of endocrine cells by activating the cell

cycle. We also consider that the increase in islet size was the result

not only of cellular proliferation but also of endocrine

differentiation from pancreatic progenitors. The long-term

cultured islets were found to contain CD146-positive cells, which

are considered to be PSCs, and some of the CD146-positive cells

were also found to express PDX-1.

Third, long-term culture at 37°C led to a recovery of the

endocrine function of long-term cultured islets. Although long-

term culture attenuated the endocrine function of porcine islets,

assessed using GSIS and insulin content, this change was mitigated

by culture at 37°C. Furthermore, the expression of genes involved in

pancreatic regeneration and encoding hormones was higher when

long-term culture was performed at 37°C. RNA sequencing analysis

also revealed that the expression of the genes involved in insulin

secretion, positive regulation of the cAMP signaling pathway, and

calcium homeostasis was upregulated when the islets were cultured

at 37°C, which may increase insulin secretion. This might be

explained by activation of the thermosensitive system controlled

by TRP channels, and the expression of TRPM5 was found to be

upregulated after culture at 37°C. This encodes a Ca2+-activated

cation channel that is activated at 15–35°C (40). Previous studies

have shown that TRPM5 is expressed in islets, where it regulates the

frequency of Ca2+ oscillations and contributes to insulin secretion

(41–43).

We consider that PSCs, which are CD146-positive cells, were

the principal contributors to the morphological change, cellular

proliferation, and recovery of endocrine function during long-term

culture at 37°C. PSCs are minor cellular components of the

periacinar, perivascular, and periductal spaces in the pancreas (44,

45), and previous studies have revealed the roles of PSCs in the

synthesis of various ECM proteins, such as procollagen III, collagen

I, laminin, and fibronectin (46), which maintain the periinsular

basement membrane (47). PSCs are also a key player in the fibrosis

that occurs in chronic pancreatitis and pancreatic cancer (48, 49).

PSCs also contribute to cellular proliferation through paracrine

effects (50, 51). Furthermore, PSCs are multipotent cells that can

differentiate into insulin-producing cells (25). Recently, Paul and

colleagues assessed whether co-culture with PSCs improves the

viability and function of porcine islets. They found that islets co-

cultured with PSCs at 37°C showed less fragmentation and

disaggregation, higher viability, greater insulin and glucagon

production, higher PDX-1 expression, and superior GSIS (52). In

the present study, we found that long-term culture at 37°C
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promoted the proliferation of spindle-like cells derived from islets

that attached to the culture vessels. Although this caused the

trapping of the islets, the attached cells included multipotent stem

cells, which are considered to be CD146-positive PSCs. CD146-

positive cells were significantly more abundant in islets cultured at

37°C and might contribute to the superior stability, cellular

proliferation, and endocrine function of the islets via paracrine

effects and pancreatic differentiation.

Regulation of immunity is also essential for success of

xenotransplantation, as same as allogeneic transplantation.

However, further knowledges about mechanism of rejection

against xenograft are necessary for the success (53). Three

predominant carbohydrate antigens, a-Gal, New5Gc and SDa, are

the targets for rejection of xenograft. Human naturally harbor

antibodies against the antigens in serum. In hyperacute rejection,

the antibodies induce complement activation via classical pathway

at porcine xenotransplantation. The activated complements injure

xenogeneic endothelial cells (54). Binding of the antibodies also

induce activation of xenogeneic endothelial cells, which might cause

intravascular thrombosis (55). In antibody-mediated rejection,

activated B cells and CD4+ T cells via presentation of

xenoantigens by antigen-presenting cells (APCs) attack xenograft

by production of xenoantigen-specific antibodies (56, 57). And in

cellular rejection, the rejection is induced by activated CD4+T cells

and CD8+T cells through xenoantigen presented by donor APCs via

SLA and recipient APCs via human leukocyte antigen (9, 58, 59). In

this study, we attempted to elucidate the immunogenicity of porcine

islet under long-term culturing. Interestingly, immunofluorescence

and flow cytometry provided no evidence of a-Gal expression in the

porcine islets. The a-Gal epitope is a porcine-specific carbohydrate
that is a mediator of hyperacute rejection in pig-to-human

xenotransplantation (60). Indeed, 70%–90% of human antibodies

target the a-Gal epitope (61). Therefore, the regulation of a-Gal is
essential for successful heart and kidney xenotransplantation (62,

63). Bottino and colleagues revealed that over 8 months of graft

survival could be achieved using islets from pigs with disruptions to

their a1,3-galactosyltransferase genes (GTKO pig) with anti-CD154

antibody (64). However, we consider that manipulating a-Gal
might not be necessary for successful islet xenotransplantation, in

contrast to the requirement for successful organ transplantation.

Other molecules might have a larger role in the success of the islet

xenotransplantation, but further studies are recommended.

We selected 2 – 3 years-old adult pigs as donors for islets in this

study. On the other hand, some groups showed superiorities of

neonatal porcine islets in easiness of islet isolation and reverse of

diabetes in transplantation (65, 66). Indeed, age is an important

factor in deciding suitable donor. Regarding procedure of islet

isolation, the procedure for neonatal pigs is easy and inexpensive

similar to rodent islet isolation. In a study by Korbutt et al., pancreas

acquired from 1 - 3 day-old neonatal pigs with 1.5 ~ 2.0 kg body

weight are minced to 1 ~ 2 mm3 size. They were transferred to a

collagenase solution and gently shaken in a water bath at 37°C for

16 ~ 18 minutes. After filtrating in a 500 um pore-size mesh filter

and washing with a buffer solution, the digestion was cultured in

Petri dishes. A purification process before a culture is not necessary.

Approximately 50,000 islet equivalents (IEQs) can be obtained by
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this method (67). Unfortunately, neonatal islets harbor some

disadvantages in islet yield and immaturity. Published islet yield

from fetal and neonatal pancreases were ~ 8,000 IEQs and 20,000 ~

50,000 IEQs, respectively (68–71). It might be difficult to improve

patients with diabetes with that number. Regarding the immaturity

of the islets, the therapeutic effect of transplantation to diabetic

nude mice was delayed in neonatal islets (6 ~ 10 weeks) (72).

Furthermore, the expression of a-Gal in fetal and neonatal islets is

stronger than in adult islets (73). In contrast, adult pigs have a larger

number of mature islets (68, 69, 71, 74). The isolation procedure is

difficult and expensive, although the concept is the same as neonatal

islet isolation. The adult porcine pancreas is larger than a neonatal

porcine pancreas. More expensive materials are needed, including

collagenase, washing buffer, density gradient solution, cold

preservation solution for procurement and culture medium, and

perfusion, digestion, and purification equipment are required for

adult porcine islet isolation. And as previously mentioned, the
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fragility of adult porcine islets adds to the difficulty (75).

Particularly, young adult porcine islets are more fragile than older

porcine islets (75). According to Buhler and colleagues, islet

capsules could not be found in young porcine islets (76). Meyer

and colleagues found that the expressions of collagen I, III, and IV

in peri-islet are higher in older pigs than in younger pigs (77).

In this study, we focused on the influence of culture

temperature for long-term culture of porcine islets. However,

many issues should be considered for establishment of the

optimal condition of long-term culture, including oxygenation,

composition of culture medium, 2D or 3D culture. Among them,

size of islets might be critical for the success of long-term culture. It

is obvious for the success of islet transplantation to transplant high

volume of islets, i.e. high IEQs. IEQs are influenced by the number

of larger islets. However, there are no correlations between size and

function of islets. For example, large islets are sensitive to hypoxia.

Necrosis is frequently seen at the center of large islets by hypoxia
FIGURE 10

The estimated therapeutic effects of long-term culture on porcine islets. Culture at 37°C contributed to the stability of the morphology of the islets,
the proliferation of islet cells, and the recovery of endocrine function, indicated by the expression of genes involved in pancreatic development,
hormone production, and glucose-stimulated insulin secretion. These advantages may be provided by islet-derived CD146-positive stellate cells.
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during the culture (78). Furthermore, there are differences in

endocrine cell composition among the size of islets. While small

islets harbor a lot of b cells, the population of a and d cells is

increased in large islets, especially human islets (79). Therefore,

reconstruction of islets in uniform size might be considerable issue

for long-term culture of porcine islets.

The present study had two principal limitations. The first was the

sample size. The main reason for the small sample size was the

difficulty of guaranteeing the quality of the porcine islets, owing to the

technical difficulty of islet isolation. The second was a failure of the

recipient mice to achieve normoglycemia following transplantation.

Porcine islets are fragile, and therefore it might be difficult to prepare

recipient animals appropriately for transplantation. In addition, the

difference in pig and mouse insulin might have influenced the

transplantation efficacy. However, we have shown that 37°C is

superior for the successful long-term culture of porcine islets and

the mechanism involved. The loss of islets and functional impairment

vs. fresh islets are the key challenges to the successful use of long-term

culture. Alternative culture methods, including perfusion culture and

large-scale three-dimensional culture, should be evaluated in the

future for clinical use.

In conclusion, we have assessed the optimal temperature for the

long-term culture of porcine islets, and found that a temperature of

37°C provides some benefits in better stability, cellular proliferation,

and the recovery of insulin secretion in culture (Figure 10).

Therefore, 37°C might be a suitable temperature for the long-

term culture of porcine islets, but further modifications will be

required for successful xenotransplantation in a clinical setting.
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Allo Beta Cell transplantation:
specific features,
unanswered questions, and
immunological challenge

Rossana Caldara1†, Valentina Tomajer2†, Paolo Monti3†,
Valeria Sordi3†, Antonio Citro3†, Raniero Chimienti3,4,
Chiara Gremizzi1, Davide Catarinella1, Stefano Tentori1,
Vera Paloschi1, Raffella Melzi3, Alessia Mercalli 3, Rita Nano3,
Paola Magistretti3, Stefano Partelli2,4 and Lorenzo Piemonti1,3,4*

1Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele,
Milan, Italy, 2Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale
San Raffaele, Milan, Italy, 3Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy,
4Università Vita-Salute San Raffaele, Milan, Italy
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding

innovative strategies for sustained glycemic control and enhanced patient

well-being. Beta cells are specialized cells in the pancreas that produce insulin,

a hormone that regulates blood sugar levels. When beta cells are damaged or

destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell

Transplantation has emerged as a promising therapeutic avenue, with the goal

of reinstating glucose regulation and insulin production in T1D patients.

However, the path to success in this approach is fraught with complex

immunological hurdles that demand rigorous exploration and resolution for

enduring therapeutic efficacy. This exploration focuses on the distinct

immunological characteristics inherent to Allo Beta Cell Transplantation. An

understanding of these unique challenges is pivotal for the development of

effective therapeutic interventions. The critical role of glucose regulation and

insulin in immune activation is emphasized, with an emphasis on the intricate

interplay between beta cells and immune cells. The transplantation site,

particularly the liver, is examined in depth, highlighting its relevance in the

context of complex immunological issues. Scrutiny extends to recipient and

donor matching, including the utilization of multiple islet donors, while also

considering the potential risk of autoimmune recurrence. Moreover, unanswered

questions and persistent gaps in knowledge within the field are identified. These

include the absence of robust evidence supporting immunosuppression

treatments, the need for reliable methods to assess rejection and treatment

protocols, the lack of validated biomarkers for monitoring beta cell loss, and the

imperative need for improved beta cell imaging techniques. In addition, attention

is drawn to emerging directions and transformative strategies in the field. This

encompasses alternative immunosuppressive regimens and calcineurin-free

immunoprotocols, as well as a reevaluation of induction therapy and recipient

preconditioning methods. Innovative approaches targeting autoimmune

recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the

potential of stem stealth cells, tissue engineering, and encapsulation to
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overcome the risk of graft rejection. In summary, this review provides a

comprehensive overview of the inherent immunological obstacles associated

with Allo Beta Cell Transplantation. It offers valuable insights into emerging

strategies and directions that hold great promise for advancing the field and

ultimately improving outcomes for individuals living with diabetes.
KEYWORDS

islet transplant, immunosuppression, type 1 diabetes, autoimmunity, beta cell
replacement, immunomodulation
1 Introduction: “Beta is better.”

1.1 Despite the availability of insulin
therapy, T1D patients face challenges
in achieving optimal blood sugar
control, chronic complications, and
mental health burden

In 2022, around 8.75 million people with T1D were living with

the condition, with 1.52 million under 20 (IDF Diabetes Atlas 10th

edition, https://diabetesatlas.org/). In the early 20th century, T1D

was often fatal, with children dying within a short time after

diagnosis (1). The discovery of insulin by Banting, Best, Collip,

and Macleod in 1921 revolutionized diabetes care, offering hope to

countless individuals (2). Leonard Thompson became the first T1D

patient to receive insulin, marking the beginning of a century of

innovations in diabetes treatment. Over time, the treatment goal for

T1D has shifted from merely keeping patients alive to achieving

nearly normal blood sugar levels. While insulin was once seen as a

highly effective treatment, it is now recognized as insufficient, as it

transforms a fatal condition into a chronic and degenerative disease

(3). Healthy individuals maintain blood glucose levels close to 99

mg/dL on average, with minimal variability (4). Even with advanced

technologies like closed-loop systems (5) and adjunctive therapies

(i.e., SGLT-2 inhibitor, low-carb diet), T1D patients struggle to

achieve these levels (6–8). Current consensus guidelines define a

target range of 70-180 mg/dL (9, 10), which still falls far from

healthy norms (11). Maintaining blood sugar levels as close to

normal as possible is essential (12–19). Lowering blood sugar levels

is associated with reduced risks of complications and mortality in

T1D (20–22). A 1% reduction in HbA1c has been linked to

decreased risks of myocardial infarction, stroke, microvascular

complications, and more (23). Despite the availability of advanced

treatments, a substantial proportion of T1D patients fail to meet

glycemic targets (24). Registries and clinics report that many

children, adolescents, and adults do not achieve HbA1c goals

(25–28). Even with the use of technology (5), blood sugar control

remains elusive (6–8). Patients with T1D face acute complications

related to insulin therapy, including hypoglycemia (29–33).

Hypoglycemia rates remain significant, impacting patients’

cognitive function (34–38), cardiovascular health (39–42), and
0242
quality (43, 44) and quantity of life. Chronic complications

continue to develop, despite advances in insulin and devices,

affecting kidney function, retinopathy, and more. Insulin therapy

can also have a significant negative impact on mental health,

contributing to diabetes distress (45). Approximately 20-30% of

T1D individuals experience this burden, which persists even with

new technologies (46, 47). While there has been a decline in T1D-

related mortality (48, 49), it still presents a significant risk. Patients

with T1D face a relative risk of mortality 3.1 to 5.8 times higher than

those without diabetes (North America (50, 51), Europe (52–54)

and Australia (55)). This results in an estimated loss of 10 to 13

years of life (54–57). In conclusion, insulin therapy has undeniably

been a life-saving treatment for individuals with T1D. However, it

falls short of providing a normal and healthy life. Achieving optimal

blood sugar control remains a significant challenge, and chronic

complications continue to be a concern. Moreover, the

psychological toll of managing T1D cannot be overlooked.
1.2 Pancreas and islet transplantation are
effective treatments for T1D, improving
glycemic control and life expectancy

As we commemorate a century of insulin discovery two years

ago, it is imperative to renew our commitment to finding more

effective treatments and ultimately striving for a world where

individuals with T1D can live without the constraints of insulin

therapy (3). Over the past three decades, clinical trials have

demonstrated that restoring beta-cell function through islet or

pancreas transplantation can lead to more physiologic regulation

of blood sugar levels compared to exogenous insulin in diabetes

patients (58). Clinical trials are essential for evaluating the safety

and efficacy of new treatments, and they have played a vital role in

the development of islet transplantation for T1D. Four successful

large-scale Phase 3 clinical trials in islet transplantation have been

published recently: CIT-07 (multicenter, single-arm) (59), CIT06

(pivotal trial) (60), TRIMECO (multicenter, open-label,

randomized) (61) and REP0211 (multicenter, Double blind,

randomized) (62). All these studies have provided compelling

evidence that the transplantation of human islets into patients

with T1D who experience impaired awareness of hypoglycemia
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and severe hypoglycemic events is not only safe but also highly

effective in maintaining optimal glycemic control (3). Attaining

freedom from the need for insulin can be realized by transplanting a

sufficient quantity of islets (63). Following islet transplantation, the

likelihood of sustaining insulin independence for up to five years

may reach as high as 50%. Furthermore, a substantial proportion of

patients, approximately one in four, may continue to be insulin

independent, maintaining HbA1c levels at or below 6.5%, for a

period spanning at least a decade. This favorable outcome can be

achieved through either islet transplantation as a standalone

procedure or in conjunction with a kidney transplant (64, 65).

The glucose control achieved with excellent islet graft function

closely resembles glucose values observed in healthy adults, with

median glucose levels at 103 mg/dl, a standard deviation around the

mean value of 14, and no time spent above 180 mg/dl or below 54

mg/dl. HbA1c levels typically fall within the range of 5.6 to 5.8 (66).

Moreover, standardized psychometric instruments and

psychologist-conducted interviews have confirmed a significant

improvement in the quality of life following islet transplantation

(67–75). Additionally, there is evidence of positive effects on the

microvascular complications of T1D, including the stabilization or

slower progression of retinopathy (76–79) and neuropathy (77, 80–

82), as well as improvements in micro- and macroangiopathy (74,

76, 83–91). Pancreatic transplantation, in conjunction with islet

transplantation, stands as the other effective treatment option for

reinstating normal glycemic control in individuals with T1D (92).

Simultaneous pancreas-kidney (SPK) transplantation is the most

commonly performed type of pancreas transplantation (93),

primarily T1D patients with end-stage renal failure. After more

than five decades of worldwide experience and over 80,000 reported

cases to the International Pancreas Transplant Registry, there is

substantial evidence demonstrating that SPK transplantation

enhances life expectancy (94–96) and mitigates the progression of

diabetic complications (97–99). Similarly, sequential pancreas after

kidney (PAK) transplantation, whether following a living or

deceased donor kidney transplant, has shown improvements in

long-term patient and kidney graft survival rates (100). Pancreas

transplantation alone (PTA) is also considered a rational therapy

for appropriately selected T1D patients experiencing life-

threatening metabolic complications (101–104).
1.3 Clinical trials using stem cell-derived
islet cells for the treatment of T1D are
ongoing, with promising preliminary results

The field of cellular therapies for the treatment of T1D is rapidly

evolving and a new exciting era has already begun. Human

pluripotent stem cells, including both embryonic stem (ES) and

induced pluripotent stem (iPS) cells, are considered the most

promising candidates for generating b cells due to their capacity

for unlimited growth and differentiation. Multiple laboratories have

developed effective protocols for differentiating these pluripotent

cells into b cells, focusing on producing cellular products that are

consistently potent and safe for clinical use (105–113). Currently,

there are nine clinical trials registered in ClinicalTrial.gov utilizing
Frontiers in Immunology 0343
human pluripotent stem cells for the treatment of T1D

(NCT04678557, NCT02939118, NCT03162926 NCT02239354,

NCT03163511 NCT05210530, NCT05565248, NCT04786262,

NCT05791201). Three of these trials are active and recruiting

patients, two have been completed, one was terminated, and three

are active but not recruiting. Seven trial are using pancreatic

precursor cells (PEC-01) derived from pluripotent stem cells

(genetically modified in two trials, PEC211) in combination with

durable, removable, close or perforated devices (114). These cells

are a mixed population of pancreatic precursor cells (73%–80%

NKX6.1+/PDX1+ pancreatic precursor) fully committed to further

differentiating into mature endocrine pancreatic cells (115) once

implanted within an encapsulation device in a subcutaneous space.

Interim results from some of these clinical trials, reported in

December 2021, were promising but not yet clinically meaningful.

Over a follow-up period of up to 1 year, patients experienced a 20%

reduction in insulin requirements, spent 13% more time within the

target blood glucose range, maintained stable average HbA1c levels

below 7.0%, and improved hypoglycemic awareness. Additionally,

C-peptide levels, a marker of insulin production, were detected at

approximately 1/100th of normal levels within explanted grafts,

which included various types of pancreatic cells, including cells with

a mature b cell phenotype. The immunosuppressive treatment

appeared effective in preventing graft rejection, and the cell

product demonstrated safety and tolerability, with no teratoma

formation observed (116, 117). In 2021, VX-880, an investigational

cell therapy for T1D, was approved as a second cell product. VX-

880 comprises fully differentiated insulin-producing pancreatic islet

cells derived from pluripotent stem cells. A Phase 1/2 clinical trial

was approved for patients with T1D who have impaired

hypoglycemic awareness and severe hypoglycemia. VX-880 is

administered through infusion into the portal vein, and

concomitant immunosuppressive therapy is necessary to protect

the islet cells from immune rejection. Preliminary results suggest

that b cells derived from stem cells and transplanted into the liver

can engraft and begin secreting insulin shortly after infusion and

provide insulin independence in patients with T1D (118). In

addition to the ongoing clinical efforts, several commercial and

academic organizations have announced their plans to conduct

clinical trials using functional stem cell-derived islets.
1.4 Allo Beta Cell transplantation offers
hope for a cure for T1D, but further
research is needed to address the
challenges of long-term
immunosuppression and graft rejection

Allo Beta Cell transplantation is a promising cure for T1D, but

it is not yet a widely available option because it requires patients to

take lifelong immunosuppressive drugs. These drugs have serious

side effects, including an increased risk of infection and cancer.

Therefore, it is important to carefully weigh the risks and benefits of

Allo Beta Cell transplantation for each individual patient. Factors to

consider include the severity of T1D, the risk of complications from

chronic immunosuppression, the patient’s willingness to comply
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with treatment, and their life expectancy. Allo Beta Cell

transplantation may be a good option for people with severe T1D

or a high risk of complications, or for people who have tried other

treatments without success. Researchers are working on ways to

protect transplanted beta cells from immune rejection without the

need for chronic immunosuppression. This would make Allo Beta

Cell transplantation a more viable option for a wider range of

people with T1D. One promising approach is to use encapsulation

devices. Encapsulation devices protect transplanted beta cells from

the immune system by enclosing them in a semipermeable

membrane. This allows the beta cells to secrete insulin into the

bloodstream, but it prevents the immune system from attacking

them. Another promising approach is to use gene editing to modify

the beta cells before transplantation. This could make them less

susceptible to attack by the immune system. Researchers are also

working to develop new immunosuppressive drugs that are more

effective and have fewer side effects. These advances could make

Allo Beta Cell transplantation a safe and effective cure for T1D in

the near future.
2 Immunological specific hallmark in
Allo Beta Cell transplantation

Allo Beta Cell Transplantation presents distinct immunological

hurdles when compared to the transplantation of other organs or

tissues. These challenges are primarily associated with the unique

functions and biology of beta cells, the site of infusion, and the

individual characteristics of the recipient.
2.1 The importance of glucose regulation
and insulin in immune activation

The regulation of glucose levels and the presence of insulin are

pivotal factors in immune activation (119). A significant association

between post-transplant glycemic control and the development of

subsequent rejection was reported for solid organ transplantation

(120–122). In contrast to other transplanted organs, beta cells are

responsible for producing insulin andmaintaining glucose equilibrium.

Consequently, in Allo Beta Cell Transplantation, the effectiveness of the

graft is also crucial for the immunological response.

2.1.1 Insulin and immunity
Insulin, a key hormone in glucose metabolism, also has

immunomodulatory effects, promoting both pro- and anti-

inflammatory responses in a variety of immune cells (122, 123).

In macrophages and neutrophils, insulin activates insulin receptors

(InsR) and insulin-like growth factor 1 receptors (IGF1R), which

triggers signaling pathways that lead to the production of pro-

inflammatory cytokines, chemokines, and adhesion molecules (123,

124). Insulin increases the production of reactive oxygen species

(ROS), which can activate pro-inflammatory signaling pathways
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and produce pro-inflammatory mediators (125, 126). Insulin also

promotes the activation and survival of eosinophils (127), the

maturation and scavenger receptor expression of dendritic cells

(128), and the activation, cytokine production, and differentiation

of natural killer (NK) cells and innate lymphoid cells (ILCs) (129).

In adaptive immunity, insulin predominantly assumes a pro-

inflammatory role by optimizing T cell activation, enhancing their

responsiveness to key cytokines, and facilitating migration to sites

of infection or inflammation (130–134). T cells without InsR have

metabolic and functional problems, resulting in less production of

important immune molecules, such as IFNg, and impaired

expansion in response to specific antigens (135). In addition, InsR

signaling seems to affect the balance of regulatory T cells (Tregs) in

the immune system, which could have implications for conditions

where insulin signaling weakens the suppressive function of Tregs

(136). T cells also express the IGF1R, which plays a role in

regulating the differentiation of T helper 17 (Th17) cells and

Tregs (137). The precise influence of IGF1R signaling on these

processes depends on contextual factors, such as the differentiation

stage of the T cells and the presence of specific ligands. In B cells,

while the exact role of InsR signaling remains less clear, it is known

that B cells express InsR (138). Elevated local and systemic insulin

levels are common in patients who have received islet transplants,

due to the production of insulin by the transplanted islets and the

need for supplemental insulin therapy. Elevated insulin levels may

contribute to the risk of inflammation and rejection, as shown in

one study that found a higher risk of islet graft dysfunction in

patients with higher insulin levels (139) and further sustained by

our recent study reporting that progression to Stages 2 and 3 of T1D

increases with HOMA-IR and decreases with the Matsuda

Index (140).
2.1.2 Glucose and immunity
Glucose metabolism plays a central role in supporting the

functions of innate immune cells (141). High glucose levels can

induce the production of ROS (142), which can serve as potent

weapons against invading pathogens but can also lead to oxidative

stress and inflammation (143). Additionally, high glucose levels can

upregulate inflammatory cytokines and chemokines, activate NF-

kB, PKC, and p38 MAPK pathways, and alter T-cell activation,

differentiation, and functions (144, 145). While existing evidence

suggests that persistent high blood glucose levels can induce notable

molecular and functional alterations in T cells, resulting from shifts

in their proteomic and metabolic profiles (146), it’s worth noting

that short term elevated blood glucose levels may actually enhance

immune responses (147). Additionally, hyperglycemia prompts

CD4 T cells to adopt an activated immunophenotype (148). In

line with these findings, high blood glucose levels during and after

kidney and liver transplantation are associated with higher rates of

organ rejection (119). In a study of mice, the timing of islet allograft

loss was dependent on the degree of hyperglycemia in the recipient

(149). Hyperglycemia is common in islet transplant patients for s

reasons, including the underlying diabetic condition, difficulty
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controlling blood sugar levels before transplantation, and

medications and infections that can occur after transplantation.

Hyperglycemia can increase the risk of rejection, so it is important

to carefully manage blood glucose levels in these patients.
2.2 The importance of beta cell in the
interaction with immune cells

In recent years, significant advancements have emerged in our

ability to comprehensively study the interaction between beta cells

and immune cells (150). Notably, recent research has reshaped our

understanding, highlighting that pancreatic beta cells play an active

role rather than remaining passive during the progression of

immune recognition (151). It was previously believed that T1D

resulted in the complete depletion of beta cells. However, recent

studies have uncovered a distinct subset of beta cells that manage to

survive, although their functionality is limited (152–154). This

revelation suggests that not all beta cells are equally susceptible to

immune responses, potentially due to inherent protective

mechanisms. As scientific inquiries have revealed a wide

spectrum of variations among beta cells (155–158), encompassing

genetic expression, physical characteristics, functionality, and

communication with neighboring cells, this diversity implies that

the unique traits of beta cells themselves could influence their

capacity to withstand immune attacks (159). Another intriguing

development gaining recent attention proposes that specific stress

events affecting beta cells can trigger immune cell activation (160).

These pathways include inflammatory stress originating from both

innate and adaptive immune responses, as well as endoplasmic

reticulum (ER) stress that persists due to the demands of insulin

production and intensifies as beta cell mass declines (161, 162).

Both pathways are significantly represented in all allogenic beta cell

transplantation strategies. The downstream consequences of

intrinsic (e.g., ER stress) and extrinsic stressors (e.g., cytokine

exposure) on beta cells encompass broad changes in their

transcriptomes and proteomes, which can affect the interaction

between beta cells and immune cells in a number of ways, including

altered expression of surface proteins, secretion of cytokines and

chemokines, and changes in metabolic pathways. These changes

can alter how they engage with and are perceived by immune cells.

For example, a stressed microenvironment plays a crucial role in

triggering the overexpression of HLA class I molecules on insulin-

producing beta cells (163) and in producing new epitopes (164)

formed through various processes, including transpeptidation,

disulfide bond formation, deamidation, and citrullination

formation of epitopes such as hybrid insulin peptides, alternative

splicing, splice variant peptides, and defective ribosomal insulin

products (165, 166). Immune recognition of these neoepitopes may

be enhanced compared to their native counterparts due to altered

HLA binding or increased TCR recognition (167). Adding further

complexity to the story, it is now evident that certain gene variants

modulate beta cell stress responses, increasing the interindividual

variability in how they respond (168–172). Collectively, this

evidence suggest that beta cell can be presented to the immune

system in a highly individualized and heterogeneous manner,
Frontiers in Immunology 0545
making it difficult to predict and manage the recipient’s immune

response to the transplanted beta cells.
2.3 The influence of liver site and its
significance in the context of
immunological challenges

Currently, the liver is the preferred location for clinical Allo

Beta Cell Transplantation, despite recent suggestions of alternative

implantation sites that might be more advantageous for graft

survival (173–181). The intrahepatic site offers benefits: it is a

well-established procedure accepted by regulatory agencies and

associated with minimal morbidity and a negligible risk of

adverse events, such as bleeding and portal thrombosis.

Moreover, it allows for the infusion of a substantial tissue volume,

up to 20 ml. This site scatters the cells throughout hepatic sinusoids,

preventing the formation of clusters that can impede the initial

diffusion of oxygen and nutrients. Additionally, it appears to have

some immunoprivileged characteristics compared to other sites like

the bone marrow and kidney capsule (177, 182, 183). Since the liver

is the primary target organ for insulin, intrahepatic islets can mimic

physiological pancreatic insulin secretion rather than causing

systemic insulin release (184, 185) although there have been

suggestions of potential dysfunctional alpha cell function (186).

However, the liver presents specific immunological challenges.

Monitoring through imaging techniques is not feasible, and

routine biopsies are impossible to obtain (187), making it

impossible to diagnose rejection promptly. Being an intravascular

transplantation, it is prone to the instant blood-mediated

inflammatory reaction (IBMIR), an innate immune response that

occurs when pancreatic cells encounter ABO-compatible blood.

This reaction leads to the release of tissue factor, which activates the

coagulation and complement cascades, resulting in leukocyte and

macrophage-mediated islet cell death (188–191). Moreover,

compared to the native tissue oxygen tension of islets (40 mmHg)

and the parenchymal oxygen tension (30 mmHg), the liver provides

significantly lower tensions, less than 10 mmHg for both (192)

inducing beta cell stress. Amyloid formation (193), associated with

type 2 diabetes, has been observed in intraportal islet grafts, and

glucolipotoxicity from surrounding hepatocytes has been shown to

harm transplanted beta cell (194). Lastly, the liver’s endogenous

immune system, including Kupffer cells, Liver sinusoidal

endothelial cells, Hepatic stellate cells, Resident liver lymphocytes

NK, NKT, and CD8+ T cells, and to a lesser extent, CD4+ T cells),

and liver dendritic cells, has also been shown to potentially harm

allograft survival at this site (195). As an alternative to liver

transplantation, subcutaneous transplantation has emerged as an

attractive option for Allo Beta Cell Transplantation. This approach

offers advantages, including a straightforward surgical procedure,

minimal surgical risks, ease of monitoring, and the potential for

graft retrieval. However, its efficacy is hampered by the limited

blood supply in the subcutaneous space, which leads to insufficient

oxygen and nutrient availability. To overcome these challenges and

achieve successful subcutaneous transplantation, a comprehensive

approach is essential. This approach involves the integration of
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bioengineering devices, specialized biomaterials, drug delivery

systems, and strategies aimed at promoting early angiogenesis.

These components play a crucial role not only in facilitating the

incorporation of transplanted insulin-producing cells but also in

attaining normoglycemia in recipients. A pivotal aspect of the

subcutaneous transplantation’s success lies in the development of

biomaterials, including hydrogels derived from both natural

polymers (such as collagen, fibrin, and alginate) and synthetic

polymers (such as polyethylene glycol and polyvinyl alcohol).

These biomaterials can be precisely tailored to possess specific

mechanical, biological, and biochemical properties. Importantly,

they should exhibit pro-angiogenic properties, fostering the

formation of blood vessels within the subcutaneous tissue. These

biomaterials can be employed in many ways, serving as coatings for

islets or forming the basis for implantable bulk scaffolds. Despite

promising advancements in subcutaneous transplantation,

challenges persist, particularly when using macro and micro

devices for Allo Beta Cell encapsulation. Immune and fibrotic

responses can encapsulate these devices, limiting the supply of

oxygen and nutrients to the transplanted tissue. Clinical studies

employing such strategies have not definitively demonstrated

superior long-term outcomes compared to intraportal

transplantation. The subcutaneous immune response can often

lead to fibrotic overgrowth, adversely affecting islet function.

Furthermore, immune-protective devices that physically separate

islets from immune cells may underestimate the impact of diffusible

immune factors on islet functionality (196). When considering

other potential transplantation sites, it is worth noting that the

testis, thymus, and the anterior chamber of the eye are regarded as

immunoprivileged sites and have been explored as locations for

allografts or xenografts. However, they typically cannot

accommodate a sufficient number of islets to achieve

euglycemia (197).
2.4 Recipient and donor matching
and their significance in the context
of immunological challenges: multiple
islet donor preparations and recurrence
of autoimmunity

The transplantation of allogeneic beta cells presents specific

challenges in adaptive immunology that differ from those

encountered in other types of organ or tissue transplants (198). In

addition to the innate immune response and issues related to

engraftment, transplanted allogeneic beta cells face recognition

and rejection by the recipient’s immune system, which is further

complicated by the recurrent autoimmune responses in individuals

with T1D due to preexisting adaptive immune memory. It is

challenging to separate and assess the individual impact of these

two phenomena (199). One way to gauge the significance of

allorecognition is by evaluating the effect of HLA matching on

graft outcomes, as the degree of HLA mismatches correlates with

the strength of the immune system’s response. However, the impact

of HLA matching on pancreas transplant outcomes remains a topic

of debate (200–205). Allogenic immune recognition may be more
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relevant in the context of islet transplantation, which presents a

unique paradigm in organ transplantation due to its requirement

for multiple donors to achieve complete insulin independence.

Consequently, HLA matching for islets is often minimal, except

for the avoidance of preformed anti-HLA antibodies. Some

evidence suggests that HLA-A, -B, and -DR matching (excluding

HLA-DR3 and -DR4 matching) is associated with improved islet

allograft survival (206–208). Regrettably, due to the more stringent

donor selection criteria in islet transplantation relative to other

transplant procedures and the substantial risk of manufacturing

failures, achieving HLA matching is scarcely feasible in clinical

practice. The recurrence of T1D in pancreas transplant recipients

was initially reported by Dr David Sutherland in cases where

patients received living-related pancreas grafts from twins or

HLA-identical siblings and, due to HLA identity, received little to

no immunosuppression (209). Observations of relapse of

autoimmunity as assessed by autoantibodies and occasionally T

cells have also been reported following allogeneic pancreas

transplant under immune suppression (210–216).

Although the cases of islet transplants are far fewer than

pancreas transplants, there is good evidence to indicate that

transplantation of isolated allogeneic islets can cause relapse of

autoimmunity in a small but significant portion of patients (199,

217–221). Occasional patients had dramatic rises in islet

autoantibodies from around day 5 after transplant that occurred

wi thou t any s ign o f a l l o - immuni t y (222) . Weake r

immunosuppression regimes such as MMF plus 1,25 (OH)2 Vit

D3 were more frequently associated with a sharp immediate risk in

autoantibodies with and without allo-reactivity. Others showed that

T cell responses to islet autoantigens are often increased after islet

transplants (223, 224). Although associations with reduced graft

function have been reported (221), it is not fully proven that the

relapsing autoimmune response post islet transplantation equals

autoimmune mediated destruction of islet grafts. It’s worth

mentioning that during immunosuppression and the use of

immunodepleting agents, lymphopenia can significantly

contribute to the expansion of memory autoreactive T cells (225).

This expansion is primarily driven by homeostatic proliferation,

which is strongly influenced by the IL-7/IL-7 receptor axis (226).

The existence of homeostatic proliferation among effector T cells,

including clones of autoreactive T cells, in individuals undergoing

islet transplantation (227). Furthermore, it has been demonstrated

in various cases, such as the transfer of T1D between siblings after

bone marrow transplantation (228) and the development of T1D

following islet auto transplantation within the first year after

pancreatectomy (229, 230), that autoimmune reactions alone can

lead to the destruction of newly transplanted beta cells. With the

advent of innovative techniques for producing b cells from readily

available pluripotent stem cell sources, concerns pertaining to

allorecognition, and HLA matching can be effectively addressed.

One approach involves the establishment of master cell banks

comprising stem cell-derived b cells that match the major

histocompatibility complex (MHC) class I and II alleles

commonly found in individuals with T1D. Alternatively, thanks

to the capabilities offered by CRISPR-Cas9 gene editing, it becomes

feasible to create “stealth” b cells that can evade immune
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recognition by disabling endogenous HLA molecules. Additionally,

in preparation for the potential resurgence of autoimmune

responses, an effective strategy may require the prior reduction of

autoreactive memory, along with the conditioning of repopulating

lymphocytes to promote enduring immune tolerance. These

forthcoming opportunities will be discussed in more detail above.
3 Unanswered questions and
persistent knowledge gaps in the
immunological challenge of Allo Beta
Cell transplantation

Several aspects of the immunological challenge associated with

Allo Beta Cell Transplantation continue to elude our complete

understanding. These gaps in knowledge raise important questions

about the precise mechanisms and factors influencing the success

and longevity of beta cell replacement therapies. Addressing these

gaps is crucial for advancing our comprehension of the immune

response to transplanted beta cells and devising more effective

strategies to ensure the sustained function and survival of these

cells in individuals with conditions like T1D.
3.1 Lack of evidence on
immunosuppression treatment

In contrast tomost solid organ transplantations, there is currently

no available guidance or formal consensus on the optimal or standard

immunosuppressive strategy for Allo Beta Cell Transplantation. This

critical gap has led to a significant evolution in immunosuppression

approaches over the years, all without the benefit of evidence-based

practices (as illustrated in Figure 1). Numerous studies, often

conducted on limited patient cohorts, have proposed a variety of

immunosuppressive agent combinations (59, 231–233). These

encompass agents that deplete T and B cells (such as alemtuzumab,

teplizumab, antithymocyte/lymphocyte globulin, rituximab),

inhibitors of T-cell activation (like IL2R antagonists daclizumab

and basiliximab), replication inhibitors (including azathioprine and

mycophenolatemofetil/mycophenolic acid), mTor inhibitors (such as

sirolimus and everolimus), lymphocyte tracking inhibitors (like EFA),

desensitizing agents (such as intravenous immunoglobulin), co-

stimulation inhibitors (including monoclonal antiCD28 belatacept/

abatacept), CNIs (cyclosporine and tacrolimus), and anti-

inflammatory agents (including corticosteroids, IL1 receptor

antagonist, and TNF-alpha inhibitors). It is crucial to emphasize

that most of these studies have been observational, consisting of

retrospective or prospective single-center single-arm studies.

Remarkably, there is only one recently reported randomized

controlled trial study that has emerged as an exception, focusing on

CXCR1/2 inhibitors (62). Many immunosuppressive drugs used in

Allo Beta Cell Transplantation are designed to inhibit specific

pathways of alloantigen specific T cell activation, but they ignore

the memory autoimmune response, and they were quite ineffective in

controlling the IL-7 mediated homeostatic proliferation.
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3.2 Lack of reliable method to assess
rejection and treatment protocol

Unlike most solid organ transplantations, there is currently no

consensus on how to diagnose Allo Beta Cell Transplantation

rejection (234). This challenge arises because the traditional gold

standard for diagnosing rejection involves tissue biopsy (235).

While a whole organ pancreas transplant biopsy can yield

valuable insights, particularly for potentially reversible causes of

dysfunction, technical challenges limit its routine application. Given

that isolated islet transplantation is accomplished by infusing

pancreatic islets into the portal circulation, where they disperse

throughout the liver, accessing the islet graft for regular biopsies or

surveillance becomes unfeasible. Hence, there is a pressing need for

standardized clinical diagnostic criteria that can effectively identify

ongoing islet allograft rejection. Moreover, there are currently no

established treatment protocols in place for Allo Beta Cell

Transplantation rejection, which may be related to a paucity of

data on diagnostic criteria (236–238). While high-dose steroid

therapy is a potential avenue for halting ongoing cellular rejection

(234), it’s crucial to note that this therapy itself is associated with a

possible decline in the functional performance of islet grafts.

Furthermore, there have been suggestions for addressing humoral

rejection through the utilization of rituximab and IV

immunoglobulin therapy, though these recommendations are

primarily based on single case reports (237).
3.3 Lack of studies to assess the efficacy of
immunologic and metabolic testing to
detect early graft dysfunction after Allo
Beta Cell transplantation

Undoubtedly, the field of Allo Beta Cell Transplantation faces a

conspicuous absence of sensitive, non-invasive serial assays for the

early detection of rejection or autoimmune recurrence and the

ongoing loss of beta-cell functional mass (239). While a consensus

has recently been established for defining clinically successful graft

functional outcomes in beta-cell replacement therapies (240), there

is still a notable absence of standardized and systematic

immunologic and metabolic monitoring protocols following Allo

Beta Cell Transplantation. Parameters such as body weight, fasting

glucose levels, fasting and random C-peptide concentrations, fasting

insulin levels, HbA1c measurements, oral glucose tolerance tests

(OGTT), mixed meal tolerance tests (MMTT), insulin clamp

studies, continuous glucose monitoring (CGM), assessments for

anti-donor human leukocyte antigen antibodies (specifically donor-

specific antibodies, DSA), and the monitoring of autoantibodies

have been commonly employed by experienced programs

worldwide, albeit with varying time schedules and indications

(either protocol-driven or initiated “for cause”). However, their

effectiveness in detecting early graft dysfunction, particularly at a

stage when timely clinical intervention can forestall further

deterioration and preserve allograft function, remains unproven

(239). Additionally, there remains an ongoing debate regarding the
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predictive role of certain immunological parameters in graft failure.

In the broader context of solid organ transplantation, donor-

specific antibodies (DSA) are recognized as the primary culprits

behind graft failure. Preexisting DSA serves as a relative

contraindication to transplantation, and the emergence of de novo

DSA plays a pivotal role in antibody-mediated rejection, leading to

microvascular inflammation and associated with unfavorable

outcomes. In the context of islet transplantation, there have been

descriptions of the potential adverse effects of de novo DSA (199,
Frontiers in Immunology 0848
241, 242), although not all studies have confirmed this association

(243–245). Furthermore, while DSA and assays for islet autoantigen

antibodies are well-established and reproducible worldwide, the

consistency of other assays and biomarkers remains variable.

Emerging assays and platforms designed to assess cellular

responses to auto/alloantigens and those focused on donor-

derived cell-free deoxyribonucleic acid (dd-cfDNA) are examples

of these less established tools that have not yet achieved universal

consistency and acceptance.
FIGURE 1

Induction and maintenance immunosuppression in islet transplantation by era. Immunosuppression regimen of 1,108 individuals with T1D who
received Islet Transplant Alone (n = 992) or Islet after kidney (n = 186) between 1999 and 2022 and were followed by the CITR. Data source:
Collaborative Islet Transplant Registry Coordinating Centre: Eleventh allograft report 2022. TCD, T cell depleting agents; Inh, inhibitor; CNI,
calcineurin Inhibitor; IMPDH, Inosine-5′-monophosphate dehydrogenase; IL1RA, IL1 receptor antagonist. Reproduced from “Caldara R, Tomajer V,
Piemonti L. Enhancing Beta Cell Replacement Therapies: Exploring Calcineurin Inhibitor-Sparing Immunosuppressive Regimens. Transpl Int. 2023
Jun 8;36:11565” with permission from the authors.
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3.4 Lack of validate biomarker for
beta cell death

The current absence of real-time biomarkers for monitoring beta

cell death presents a significant challenge in Allo Beta Cell

Transplantation. Detecting the loss of islet beta cells after

transplantation relies on assessing glycemic control, the need for

external insulin supplementation, and measuring insulin secretion,

often by evaluating C-peptide levels. The introduction of more

sensitive indicators has the potential to facilitate interventions that

can prevent clinically significant islet graft loss. Such indicators could

be particularly valuable for guiding immune monitoring of humoral

and cellular alloimmune and autoimmune markers or for

interpreting the potential significance of newly detected alloantigen

or autoantigen reactivity in a transplanted islet beta cell graft before

any functional deterioration becomes apparent. Various methods

have been employed to identify impaired islets in the bloodstream

shortly after intraportal infusion, as up to 25% of the transplanted

islet mass may be lost. These methods encompass the examination of

insulin mRNA (246, 247), glutamic acid decarboxylase-65 (GAD65)

(248), miRNA375 (249, 250), and unmethylated insulin DNA (251,

252). These markers have been observed to elevate within 24 hours

after islet transplantation, with some being associated with worse islet

graft functional outcomes and modulation by anti-inflammatory

therapy during the first week post-transplantation. This suggests

their potential utility for both predicting early engraftment and

assessing interventions aimed at enhancing islet survival during the

engraftment period. However, more sensitive, and reproducible

assays are needed to detect subtler episodes of cell death that may

provide insights into graft rejection or recurrent diabetes.
3.5 Lack of beta cell imaging

Over the past two decades, research in the field of non-invasive

beta-cell imaging and beta-cell mass evaluation has witnessed

progress (253, 254). This includes the identification of target

molecules for imaging probes, the development of chemically

modified probes labelled with suitable radioisotopes, and the

establishment of analytical methods for signal interpretation

through single-photon emission computed tomography and

positron emission tomography. Notably, derivatives of exendin-4

designed for imaging show promise as candidates for non-invasive

beta-cell mass assessments. However, the non-invasive evaluation of

beta-cell mass remains elusive, and practical in vivo and clinical

techniques for b-cell-specific imaging are yet to be established (253).
4 Emerging directions and game-
changing strategies in addressing the
immunological challenge of Allo Beta
Cell transplantation

The field of Allo Beta Cell Transplantation is witnessing a

transformative shift with the emergence of innovative strategies
Frontiers in Immunology 0949
aimed at overcoming the immunological challenges inherent to the

procedure. These groundbreaking approaches have the potential to

revolutionize the field and significantly enhance the success and

sustainability of beta cell replacement therapies.
4.1 Exploring alternatives to conventional
immunosuppressive regimens

Allo Beta Cell Transplantation holds great promise as a

therapeutic avenue for individuals grappling with T1D, as it offers

the potential for achieving insulin independence and markedly

improved glycemic control. Nevertheless, the success of this

approach is inextricably linked to the adept management of

immune responses, a vital factor for thwarting graft rejection and

addressing the autoimmune components of the condition. In recent

times, the field has witnessed the ascent of various novel approaches

within immunosuppression strategies, all geared towards elevating

the overall success and accessibility.

4.1.1 Exploring calcineurin inhibitor and depleting
agent sparing immunosuppression

Traditional immunosuppressive protocols, while effective in

preventing rejection of transplanted organs, often carry the burden

of long-term side effects and may not offer comprehensive protection

against both alloimmune and autoimmune responses. These

customary treatment regimens typically encompass medications

like Calcineurin Inhibitors (CNIs), such as cyclosporine and

tacrolimus, among others. While these drugs effectively suppress

the immune system, achieving their intended objectives, they are not

devoid of drawbacks. Prolonged use of CNIs can give rise to

complications and their known beta cell (255) and renal toxicities

(256) limit their efficacy for pancreas and islet transplantation. These

adverse effects can impact a patient’s overall well-being and quality of

life. Furthermore, CNIs’ involvement in the nuclear factor of

activated T cells (NFAT) signaling pathway, which is pivotal for

the differentiation, maintenance, and suppressive capabilities of

Tregs, can have significant repercussions (257). This involvement

may hinder the establishment of immune tolerance and impede the

effectiveness of potential adoptive therapies employing tolerogenic

donor specific Tregs (as discussed below). Additionally, it’s important

to note that CNIs have no impact on T cell expansion during

homeostatic proliferation since they effectively block the IL-2

pathway but are comparatively ineffective in regulating IL-7-

mediated homeostatic proliferation (225). Given these

considerations, there is a pressing need for research to investigate

the safety and feasibility of immunosuppressive regimens that reduce

the reliance on CNIs. Equally troublesome is the use of depleting

agents like ATG and alemtuzumab (anti-CD52) for induction. These

agents can significantly influence the severity of lymphocyte

depletion and potentially affect the rate of cell cycling during

reconstitution. Lymphocyte depletion therapies with alemtuzumab

or ATG can lead to the expansion of alloreactive and autoreactive T

cells, in some cases exceeding pretransplant levels (258, 259).

Alemtuzumab treatment has been demonstrated to preferentially

expand effector-memory T cells in renal transplant recipients, while
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induction with ATG expands both effector-memory and central-

memory T cell subsets. Furthermore, these agents can pose challenges

for the development of adoptive therapy with tolerogenic T

regulatory cells, which could be equally recognized and depleted,

like conventional T cells. Notably, even non-depleting anti-CD25

monoclonal antibodies could present issues in terms of homeostatic

proliferation, as they were specifically designed to prevent the

formation of the high-affinity IL-2R complex and block IL-2

signaling. The limited availability of the common gamma chain

shared by IL-2 and IL-7 receptors represents a constraint on

cytokine signaling. When the formation of the IL-2 receptor is

inhibited by non-depleting anti-CD25 monoclonal antibodies, more

common gamma chain becomes available for complexing with IL-7R

alpha, resulting in increased T cell sensitivity to IL-7 and favoring

homeostatic proliferation (260). Considering these considerations,

conducting research on immunosuppressive regimens that minimize

the use of CNIs and avoid induction with depleting agents will

significantly advance beta cell replacement therapies. Some prior

small-scale clinical experiences have already demonstrated the value

and feasibility of these approaches. Feasibility, safety, and efficacy of

CNIs-free and anti-IL-2Ra-free treatments for islet transplantation,

which also exclude anti-thymocyte globulin induction during second

or third infusions, have been successfully demonstrated (261). More

recently, reports have surfaced of 40% insulin independence at 10

years following a single islet infusion with CNI-sparing

immunosuppressive regimens, including either belatacept (BELA)

or efalizumab (EFA). These regimens have showcased remarkable

cases of operational tolerance and substantial expansions of Tregs

following islet transplantation (262). Furthermore, the identification

of biological and pharmacological controllers of the IL-7/IL-7R axis,

which hold promise for potential clinical applications, could be

pertinent to the development of advanced immunosuppressive

protocols for Allo Beta Cell Transplantation (226).

4.1.2 Rethinking induction therapy and exploring
recipient preconditioning

Induction therapy has proven to be an effective strategy for

achieving low rates of acute rejection in most allograft situations

(263). he necessity for induction immunosuppression arises from

the heightened immunogenicity of the allograft during the

immediate post-transplant period. Specifically, this vulnerability is

attributed to the combined factors of a high frequency of donor-

specific T-cell precursors present in most recipients and the

activation of the innate immune system during organ

transplantation (264). This established approach was developed in

a clinical context where organ availability is unpredictable, and the

time between organ donation and transplantation falls within a

matter of hours. This limitation made it impractical to consider

recipient pretreatment longer than 1-2 days or any donor-specific

preconditioning strategies. As a result, induction therapy primarily

aimed at achieving short-term profound immunosuppression

without a focus on long-term sustainability. However, this

paradigm could be revolutionized in the realm of Allo Beta Cell

Transplantation. The availability of insulin-producing cells derived
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from replenishable sources like stem cells introduces the possibility

of scheduled transplants with known and defined timeframes, along

with prior characterization of the donor’s MHC profile. This

scenario opens new avenues in induction immunosuppression,

encompassing approaches such as costimulation-based therapy,

mixed chimerism, and adoptive cellular transfer. These innovative

strategies aim to restore immunological balance in the context of

organ transplantation rather than relying on non-specific

immunosuppress ion . Some exper iences have al ready

demonstrated the value and feasibility of these approaches. Some

experiences have already demonstrated the value and feasibility of

these approaches. For instance, administering apoptotic donor

leukocytes around the time of transplant, in conjunction with

short-term immunotherapy involving antagonistic anti-CD40

antibody 2C10R4, rapamycin, soluble tumor necrosis factor

receptor, and anti-interleukin 6 receptor antibody, has been

shown to induce long-term (≥1 year) tolerance to islet allografts

in rhesus macaques (265). Similarly, recipient preconditioning with

GLP-1 agonists or rapamycin has been proposed as an effective

strategy for enhancing graft function in both preclinical and clinical

models (266–268). Indeed, this shift in perspective toward

induction and recipient preconditioning invites us to reconsider

conventional approaches and fosters the exploration of innovative

strategies to enhance the field of Allo Beta Cell Transplantation.

4.1.3 Targeting autoimmunity recurrence and
beta cell survival

The diabetes community has long anticipated the use of

immunosuppressive treatments in individuals with recent-onset

T1D and those at risk of developing the disease (269). Currently,

aside from the FDA-approved anti-CD3 antibody teplizumab (270),

no such treatment is in clinical use. However, recent publications

suggest promising strategies in this regard. For instance, low-dose

ATG has demonstrated its effectiveness in maintaining C-peptide

levels compared to a placebo (271). Teplizumab, in trials involving

individuals at high risk of T1D, doubled the time to disease onset

compared to a placebo (270). On the other hand, anti-CD3

Otelixizumab failed in its phase III trial. Alefacept, which targets

CD2 primarily expressed on CD4+ and CD8+ effector memory T

cells, has been tested in recent-onset T1D and displayed C-peptide

preservation along with reduced use of exogenous insulin compared to

a placebo group (272, 273). Other trials have explored various

approaches to combat islet autoimmunity. These include CTLA-4Ig

(abatacept) (274), anti-CD20 therapy (rituximab) (275), anti-TNF-a
therapies (recombinant TNF-a receptor-IgG fusion protein etanercept

and IgG1-kmonoclonal anti-TNF-a antibody golimumab) (276, 277),

anti-CD40 therapy (Iscalimab) (278), low-dose IL-2 (279), IL-1

blocker (Anakirna) (280), combination immunomodulatory and

beta-cell therapy like anti-IL-21 antibody and liraglutide (281), and

Tyrosine Kinase Inhibitors (Imatinib mesylate) (282). While these

immunosuppressive regimens have been evaluated to varying degrees

of success in recent-onset T1D, exploring these candidates, or future

ones, for their ability to attenuate autoimmune responses in beta-cell

graft recipients offers new avenues for immune suppression.
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4.2 CAR T reg and TCR T reg

The donor beta cells express allogeneic major and minor

histocompatibility antigens, traditionally targeted by the host

immune response in the setting of organ transplantation.

Moreover, the donor beta cells also express a full complement of

antigens associated with islet autoimmunity. Of these, glutamic acid

decarboxylase 65 (GAD65), insulinoma-associated protein 2, zinc

transporter 8 (ZnT8) and (pro)insulin appear to be highly antigenic

in humans both for T cells and B cells (166). Beta-cell replacement

into a subject with pre-existing autoimmunity is essentially an

immunological challenge where conceptually similar immune

responses—transplant rejection and tissue-specific autoimmunity

—coexist, but with the potential for reactivation of autoreactive

memory T and B cells posing an additional set of therapeutic

obstacles. Adoptive cell therapy using CD4+CD25+FOXP3+

Tregs, a naturally suppressive immune subset, is a promising

approach to achieving localized and specific immune suppression

in the site of transplant (283). However, clinical trials testing

administration of polyclonal Tregs in recent-onset T1D have

observed limited efficacy despite an excellent safety profile (284,

285). Similarly, administration of autologous Tregs together with

intraportal allogeneic islet transplantation yielded no severe

negative effects (286). These clinical trials have been fundamental

to identify barriers to an effective Treg therapy. First, the use of

polyclonal Treg for adoptive cell therapy relies on the assumption

on the natural existence of rare, disease relevant TCRs in the

adoptively transferred Treg population. However, different studies

in NOD mice reported that therapy using antigen specific Tregs is

far more effective than the one using polyclonal Treg. Notably, one

study found that transfer of 2 million antigen-specific (BDC2.5 TCR

transgenic) Tregs controlled the rejection of a syngeneic islet

transplant in NOD mice, whereas 5 million polyclonal Tregs

displayed no effect (287). The recent emergence of advanced gene

editing techniques has opened new avenues to engineer Tregs with

selected antigen specificity (288). These include the generation of

Treg bearing a chimeric antigen receptor (CAR-Treg) as well as T

cells bearing a transgenic T cell receptor (TCRtg-Treg) with a

selected antigen specificity. CAR are composed by an extracellular

antigen-binding domain, usually a single-chain variable fragment

(scFv) derived from the variable regions of an antibody linked via

hinge and transmembrane domains to an intracellular signaling

domain (289). CAR do not need to be MHC-restricted, allowing the

use of the same CAR on virtually all subjects independently from

their HLAs. Moreover, modern CAR are designed as modular

systems in which the signaling pathway activated by antigen

recognition can be adapted to the desired effect (290). A notable

disadvantage of CARs is the requirement for cell-surface bound

target antigen whose expression ideally must be confined to beta-

cells. The difficulties in finding a good target antigen on beta-cells

has considerably limited the used of CAR-Treg to control

autoimmunity in type I diabetes. However, transplanted allogenic

beta-cells express mismatched HLA molecules that can be easily

targeted by CAR. Human CAR Tregs that target the commonly

mismatched HLA-A2 molecules are currently being tested clinically

in kidney (NCT04817774) and l iver transplantat ion
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(NCT052334190). TCRtg-Treg are easier to develop in the

context of beta-cell autoimmunity. Indeed, a number of TCRs

specific for epitopes of GAD65, preproinsulin, IGRP as well as

neo-epitopes have already been identified from patients with type I

diabetes (291, 292). While MHC restriction can represent a

limitation, the use of target peptides associated to commonly

expressed HLAs, such as HLA-A2 or T1D risk associated class II

haplotypes, potentially allows to treat a significant proportion of

subjects with relatively few different TCRtg-Treg. TCRtg-Treg also

requires additional gene editing to be fully functional. Suppression

of the endogenous TCR is needed to improve expression of the

transgenic TCR but also to avoid mispairing of the endogenous and

transgenic TCR alpha and beta chains, potentially impairing beta-

cell antigen-specificity and increasing the risk of off-target antigen

recognition (293). It has also to be determined whether peptide/

HLA class I restricted TCR can efficiently recognize the antigen

when transduced into CD4+ Treg and whether transgenic

expression of CD8 can improve antigen recognition. With several

important issues yet to be determined, Abata Therapeutics have

recently announced the development of a beta-cell specific TCRtg-

Treg product (ABA-201) that will be clinically tested in 2025. A

second important limitation of adoptive Treg therapy is the survival

and persistence of Treg transferred in patients that may impact the

therapeutic effect. Bluestone et al. (NTC01210664) observed a rapid

decline in the number of circulating Treg following adoptive

transfer into patients with T1D. Specifically, once infused into

patients, the ex vivo expanded Treg population exhibits a biphasic

exponential decay kinetic, characterized by a short-lived subset (75-

90%) with a half-life of a few days to weeks, and a long-lived subset

(10-25%) detectable up to one year post-infusion (284). Notably,

although the expanded Treg initially display a CCR7+CD45RO

+CD45RA- central-memory phenotype, the subset that survives

longer in patients exhibits a CCR7+CD45RA+CD45RO-/+

phenotype, resembling that of conventional naïve or memory

stem T cells. Addressing the issue of Treg survival, a second trial

involving adoptive transfer of polyclonal Treg cells along with

exogenous administration of low doses of recombinant human

IL-2 was conducted (279) (NCT02772679). Addition of IL-2 did

not improve the survival of adoptively transferred Treg but was

associated with increase endogenous Treg numbers and expansion

of inflammatory NK and CD8+GMZB+ T cells. Several other

strategies to promote Treg survival in patients are under intensive

studies. Notably, synthetic orthogonal receptor-ligand pair has been

generated. In this approach T cells are transduced with an

orthogonal IL-2 receptor that can only be activated by an

exogenously administered synthetic ligand (294). An alternative

approach is to transduce Treg with a membrane-bound form of IL-

2, in which IL-2 is tethered to the membrane by a short linker that

only allows cis-interactions between IL-2 and its receptors on the

same cell (295). As Treg need to be expanded in vitro to achieve a

number sufficient to display therapeutic effectiveness, modification

to the expansion protocols to improve T cell survival are under

consideration. Tregs are traditionally expanded using anti CD3/

CD38 microbeads in combination with high doses of interleukin 2

(IL-2) (296). Despite low expression of the IL-7Ralpha (CD127)

human naïve Treg have been shown to respond to and proliferate in
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response to IL-7 in vitro (297). Furthermore, in conditions of Treg

depletion, IL-7 contributes to Treg compartment reconstitution in

patients treated with the anti-CD25monoclonal antibody

basiliximab (226). A novel protocol of expansion of Treg using a

combination of IL-2 and IL-7 was shown to improve the survival of

Treg in the NSG mouse model (298). As transplanted beta-cells can

be targeted by allo-reactive and auto-reactive T cells, adoptive Treg

therapy represent an opportunity to keep T cell responses in check.

While the clinical testing, especially in T1D, has provided clear

results in terms of safety but also highlighted several critical issues

that need to be addressed, and effective Treg therapy can be

available in the coming years. Specifically in the transplantation

setting an additional effort is required to determine T cell survival,

persistence, and therapeutic effectiveness when Treg therapy is

administered in combination with immune-suppressive drugs.
4.3 Stem stealth cells

Stem cell technology has ushered in a new era in b cell

generation for transplantation. “Stem stealth cells” represent a

novel concept where stem cells are genetically modified to evade

immune recognition. The first and one of the most successful

strategies to reduce immunogenicity is the abrogation of the Beta-

2 microglobulin (B2M) gene, which encodes a common subunit of

HLA class I molecules. Knocking out B2M results in HLA class I-

negative iPSCs, which can function as universal donors for the

transplantation of cells that do not express HLA class I (299).

Several methods have been developed to disrupt the B2M gene in

ESCs and iPSCs. For example, one study used Cre-recombinase to

ablate two adeno-associated virus (AAV)-inserted cassettes into

exon one of the B2M gene. This method successfully silenced B2M

expression and resulted in reduced allogeneic responses of T cells

(299). A second study employed CRISPR/Cas9 technology to target

exons 2 and 3 of the B2M gene, replacing them with other genetic

cassettes (300). These cells were resistant to interferon-g stimulation

and alloreactive CD8+ T cells, indicating that they do not express

cell surface human leukocyte antigen (HLA) molecules.

Additionally, these B2M-/- hESCs do not have any off-target

integration or cleavage events, lack stable B2M mRNA, have a

normal karyotype, and maintain their self-renewal capacity,

genomic stability, and pluripotency. To validate the potential of

these strategies, preclinical studies have demonstrated the feasibility

of B2M-knockout iPSCs in various transplantation models. B2M-

null iPSC-derived cells, such as neurons, cardiomyocytes, and

retinal pigment epithelial cells, have been successfully

transplanted into animal models, with extended survival and

functional integration compared to their HLA-mismatched

counterparts (301–303). These promising findings highlight the

potential of B2M-knockout cells as universal donors for cell-based

therapies. The limit of this approach is that the B2M-null cells are

protected from CD8+ T cell responses but become more susceptible

to NK cell-mediated destruction (300). To address this issue, new

strategies were developed to express specific ligands on the cell

surface that interact with inhibitory receptors on NK cells,
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rendering them less cytotoxic. One such ligand is human

leukocyte antigen-E (HLA-E), which interacts with inhibitory

receptors such as NKG2A/CD94 on NK cells, leading to their

inhibition (304, 305). Expressing HLA-E on the surface of iPSC-

derived cells has been shown to protect them from NK cell-

mediated lysis (301, 306). In addition to HLA-E, HLA-G, another

member of the HLA family with immunosuppressive properties

(307) has also been explored (308, 309). Recently, innovative

approaches which involve editing iPSC to remove NK-activating

ligands, such as CD155 and B7-H3, have been proposed. These

ligands, when expressed on the cell surface, can trigger NK cell

cytotoxicity (310). By eliminating these ligands, iPSC-derived cells

resulted more resistant to NK cell-mediated killing (311). This work

also proved that the capacity to differentiate into b cells was not

impaired in gene edited iPSC and that iPSC-derived pancreatic cells

were able to survive in vivo after transplantation in mice, while

unedited cells were eliminated by NK cells.

Another component of the immune system involved in

rejection is CD4+ T cell, which helps to coordinate the immune

response by stimulating other immune cells, such as macrophages,

B lymphocytes, and CD8 T lymphocytes. HLA II defected hESC

were generated via deleting CIITA, a master regulator of

constitutive and IFN-g inducible expression of HLA II genes.

CIITA-/- ESC can differentiate into tissue cells with non-HLA II

expression and escape the attack of receptors’ CD4+ T cells (302,

312). These strategies and the possibility to combine them hold

great promise in enhancing the immune evasion capabilities of

transplanted cells.

In addition to approaches that directly aim to escape cytotoxic

cell recognition, the induction of tolerogenic genes within

transplanted cel ls to create a more immune-tolerant

microenvironment was explored. Several genes have been

investigated for their potential to suppress immune responses and

promote graft acceptance:
• PD-L1 (Programmed Death-Ligand 1): PD-L1 is an

immune checkpoint protein that interacts with the PD-1

receptor on T cells, leading to T cell exhaustion and

immune tolerance (313). Studies have shown that

overexpressing PD-L1 in iPSC-derived cells can mitigate

T cell responses and enhance graft survival (314).

• CTLA4-Ig: Cytotoxic T lymphocyte-associated protein 4-

immunoglobulin (CTLA4-Ig) is a fusion protein that binds

to CD80 and CD86 on antigen-presenting cells, preventing

their interaction with CD28 on T cells. This blockade

inhibits T cell activation and promotes immune tolerance

(315). Incorporating CTLA4-Ig expression into

transplanted cells has demonstrated success in prolonging

graft survival (314).

• CD47: CD47 is a cell surface protein that acts as a “don’t eat

me” signal by binding to the signal-regulatory protein alpha

(SIRPa) on phagocytic cells, inhibiting their engulfment of

the CD47-expressing cell (316). Enhancing CD47 expression

on iPSC-derived cells has been shown to reduce their

susceptibility to phagocytic clearance (317, 318).
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• IDO (Indoleamine 2,3-Dioxygenase): IDO is an enzyme

that plays a role in immunosuppression by degrading

tryptophan, an essential amino acid for T cell

proliferation (319). By overexpressing IDO in islet cells,

researchers have aimed to create a tolerogenic

microenvironment that inhibits T cell responses and

promotes graft survival (320).
These gene-based strategies aim to create a microenvironment

within transplanted cells that is conducive to immune tolerance,

thereby improving the long-term survival of grafts. These approaches

collectively represent a growing toolbox of strategies to improve the

success of islet transplantation without the need for extensive

immunosuppressive regimens. To demonstrate this, very recently,

gene editing techniques that combine targeting of HLA class I and II

and the immunomodulatory gene CD47 were tested in human donor

islets, modifying them to become hypoimmune (HIP). It was

demonstrated that these human HIP islets could survive, engraft,

and improve diabetes in allogeneic, diabetic humanized mice.

Furthermore, the HIP islet cells exhibited the ability to evade

autoimmune destruction in autologous, diabetic humanized

autoimmune mice (318). The same approach of HLA class I and II

depletion and CD47 overexpression (B2M-/-CIITA-/-CD47+) was

used in rhesus macaque HIP stem cells, which were transplanted into

four allogeneic rhesus macaques. The HIP cells demonstrated

unrestricted survival for 16 weeks in fully immunocompetent

allogeneic recipients and differentiated into various lineages,

whereas allogeneic wild-type cells were strongly rejected.

Additionally, human HIP cells were differentiated into pancreatic

islets and shown to survive in immunocompetent, allogeneic diabetic

humanized mice for 4 weeks, effectively ameliorating diabetes. Edited

primary rhesus macaque islets with HIP modifications were able to

survive for 40 weeks in an allogeneic rhesus macaque recipient

without the need for immunosuppression, whereas unedited islets

were rapidly rejected (321).

This last evidence supports the strategy to use gene engineering

to make stem cell-derived and isolated islet transplants less visible to

the host immune system, thereby increasing the likelihood of

successful transplantation and reducing the dependence on long-

term immunosuppressive therapy. From the abrogation of the B2M

and CIITA genes to the modulation of NK ligands, these innovative

ways could protect transplanted cells from immune responses

(311). Moreover, the induction of tolerogenic genes like PDL-1

and CD47 and the engineering of immune-evasive islets have

shown promise in creating a more immunologically tolerant

microenvironment within the transplanted cells (322).

Despite these remarkable advancements, challenges remain on

the path to clinical implementation. The long-term safety of these

immune-evasive strategies need to be rigorously evaluated. In fact,

hypoimmunogenic cells may raise potential safety concerns

associated with long-term immune surveillance and malignancy

risk: a hypoimmunogenic transplant may evade immediate immune

responses, but the long-term ability of the recipient’s immune

system to recognize and respond to potential threats, such as
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malignancies or chronic infections, may be compromised.

Besides, a suppressed immune system may be less effective in

preventing the growth and spread of tumor cells. One possible

strategy to increase the safety of hypoimmunogenic cell would be to

equip the cell with a safety switch, able to induce cell suicide in case

of abnormal cell proliferation and tumorigenesis (323, 324).

Finally, the safety of genetic manipulation must be considered,

and safety improvements achieved by the thoughtful design of

nucleases and repair templates, the analysis of off-target editing,

and the careful utilization of viral vectors (325–327). The

development of new generations of gene editing tools will

hopefully bring to improved targeting of specific sequences while

minimizing the risk of unintended outcomes.

In conclusion, if combination of gene editing immunological

targets will prove effective and safety requirements will be satisfied,

stem stealth cells have the chance of serving as a replenishable and

customizable source of bcells for transplantation, mitigating the

risks associated with immune rejection.
4.4 Tissue engineering and encapsulation

Tissue engineering and encapsulation technologies have made

remarkable progress in creating protective microenvironments for

transplanted beta cells, reshaping the landscape of diabetes

treatment (328, 329). Micro and macro-encapsulation devices

function as essential shields, safeguarding cells from immune

attacks while facilitating the crucial exchange of oxygen and

nutrients. In this scenario, a valuable lesson has been gleaned

from the clinical experience of Viacyte, emphasizing the need for

a swift transition from a closed to an open device to facilitate

vascular scaffold connection (117). This underscores the

importance of considering the mandatory requirements of beta

cells in terms of nutrient supply and vascular integration in tissue

engineering for beta cell replacement. Concurrently, ongoing

initiatives in tissue engineering are focused on the development of

bioengineered scaffolds that closely mimic the natural pancreatic

microenvironment, thereby enhancing the survival and function of

transplanted cells (329). These innovative strategies not only shield

beta cells from immune threats but also facilitate seamless

integration and sustained functionality within the host

environment (328). These technologies, ranging from organ

engineering (330) to cutting-edge 3D-bioprinting (331), play a

pivotal role in modulating the endocrine niche before

transplantation. This modulation is achieved by intricately

integrating various cell components within an extracellular matrix

(ECM) framework. Dedicated bioreactors enable the repopulation

of these constructs with different target cells, matured to acquire

new scaffold functions. For example, the repurposing of organ

strategies has transformed decellularized rat lungs into structures

repopulated with pancreatic islet and endothelial cells, generating a

vascularized endocrine pancreas (332, 333). These new devices

exhibit matured vascularized endocrine structures, resembling the

pancreatic endocrine niche prior the implantation, displaying both
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ex vivo and in vivo functionality. This versatility in cell selection

may allow, in the future, for the design of immunomodulation

strategies during the engineering process, reducing device

immunogenicity and enabling the delivery of immune-

modulatory compounds.

In the first scenario, a viable solution involves selecting

autologous endocrine niche cells to create an open vascularized

device, significantly reducing immunogenicity from a

transplantation perspective. While autologous cells sourced from

stem cells are prone to autoimmune responses, recent gene editing

advancements have generated cell sources from stem cells or even

human islet or pig donors, evading both auto and allo or xeno-

immune responses (318, 334, 335). This progress empowers the

assembly of innovative open devices, ensuring complete structural

integration and genetically engineered immune protection.

Although these strategies look promising, they are still evaluated

in advanced preclinical stage and further tests will be required to

move in clinical arena. In the second scenario, immunomodulatory

compounds are delivered within the device and locally released at

the transplant site, minimizing compound toxicity, and enhancing

local drug efficacy. In this context hydrogels are widely used as cell

encapsulation technology, as their mechanical properties, along

with the high hydration degree, mimic soft tissues. They can be

synthesized in the micro and macro scale, which typically imposes a

volume increase that prevents intrahepatic infusion. They have been

largely tested within beta cells and have been demonstrated to safely

integrate with the recipient allowing vascularization in vivo (336,

337). Multiple engineered scaffolds have been developed to deliver

immunomodulatory compounds or apoptosis modulators in

hydrogel form, dampening or halting the immune-mediated graft

response (338, 339). These attempts reported, in preclinical setting

promising result in protecting beta cells from recipient immune

attack. Additional experimental are on-going to observe long term

function of this devices and their efficacy in protecting the graft

based on local immunomodulatory compounds with pancreatic

islet or stem cell derived beta-cells form immune recognition (340).

Alternatively, advanced macro-engineering devices are pre-

implanted to foster vascular integration. Subsequently, these

devices can be loaded with pancreatic islets and immune-

suppressant drugs, shielding engrafted pancreatic islets from

inflammatory and immunological reactions. Recent data, in both

rodent and human primate model, have demonstrated the

effectiveness of this technology in protecting engrafted cells and

constraining the immune reaction against the graft in the presence

of a reduced early engraftment due to the time of connection of the

seeded islet within the new generated vascular network.

In the evolution of tissue engineering approaches for beta cell

replacement, a critical role has also the selection of the implantation

site that can affect, from oxygen, nutrient supply and

immunological activity, the outcome, and the translatability of the

results. Despite the agreement that an extrahepatic site for islet

transplantation is needed, non a common consensus have been

released on the best alternative site for device implantation. The

most used is the subcutaneous space considering its exposure and
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flexibility in case of device retrieval. In this direction a recent study

has introduced a cutting-edge computational platform. This

platform aims to explore the therapeutic potential of

programmable bioartificial pancreas devices (341). The study

employed sophisticated software that considered factors such as

cell load and site-specific oxygen levels. This analysis allowed for

precise adjustments in terms of cell loading and oxygen supply

within the device, marking a significant stride in the field of tissue

engineering for diabetes treatment. Looking ahead, artificial

intelligence (AI) tools are poised to play a pivotal role in

advancing beta cell replacement technology (342). By leveraging

AI, researchers can amalgamate intricate details such as scaffold

designs, transplantation site characteristics (including

vascularization and immunoreactivity), and the specific cell types

being used (343). These AI-driven tools are anticipated to

revolutionize device design, guiding the creation of an ideal

technology tailored to individual patient needs. This integration

of advanced computational techniques and artificial intelligence

heralds a new era in tissue engineering, promising more effective

and personalized solutions in the realm of beta cel l

replacement therapies.
5 Conclusion

In closing, Allo Beta Cell Transplantation represents a beacon of

hope in the quest to transform the lives of individuals living with

T1D. As we navigate the immunological intricacies that come with

this therapeutic approach, innovation, collaboration, and a deep

understanding of the interplay between the immune system and

beta cells are the keys to success. With each unanswered question,

we inch closer to effective solutions, and with each emerging

strategy, we gain ground in the battle against T1D. As we move

forward, we do so with a shared commitment to improving the lives

of those who face the daily challenges of T1D, fuelled by the promise

of Allo Beta Cell Transplantation and the resolve to conquer its

immunological hurdles.
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Techmańska I, Juścińska J, et al. Administration of Cd4+ Cd25highcd127–
regulatory T cells preserves B-cell function in type 1 diabetes in children. Diabetes
Care (2012) 35(9):1817–20. doi: 10.2337/dc12-0038

286. Bergström M, Yao M, Müller M, Korsgren O, von Zur-Mühlen B, Lundgren T.
Autologous regulatory T cells in clinical intraportal allogenic pancreatic islet
transplantation. Transplant Int (2021) 34(12):2816–23. doi: 10.1111/tri.14163

287. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, et al. In vitro–expanded
antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med (2004)
199(11):1455–65. doi: 10.1084/jem.20040139

288. Bettini M, Bettini ML. Function, failure, and the future potential of tregs in type
1 diabetes. Diabetes (2021) 70(6):1211–9. doi: 10.2337/dbi18-0058

289. Rosado-Sanchez I, Levings MK. Building a car-treg: going from the basic to the
luxury model. Cell Immunol (2020) 358:104220. doi: 10.1016/j.cellimm.2020.104220

290. Roybal KT, Lim WA. Synthetic immunology: hacking immune cells to expand
their therapeutic capabilities. Annu Rev Immunol (2017) 35:229–53. doi: 10.1146/
annurev-immunol-051116-052302

291. Nakayama M, Michels AW. Using the T cell receptor as a biomarker in type 1
diabetes. Front Immunol (2021) 12:777788. doi: 10.3389/fimmu.2021.777788

292. Nguyen H, Arribas-Layton D, Chow I, Speake C, Kwok WW, Hessner MJ, et al.
Characterizing T cell responses to enzymatically modified beta cell neo-epitopes. Front
Immunol (2023) 13:1015855. doi: 10.3389/fimmu.2022.1015855

293. Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, et al. Tcr
redirected T cells for cancer treatment: achievements, hurdles, and goals. Front
Immunol (2020) 11:1689. doi: 10.3389/fimmu.2020.01689

294. Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL, Le AC, et al. Selective
targeting of engineered T cells using orthogonal Il-2 cytokine-receptor complexes.
Science (2018) 359(6379):1037–42. doi: 10.1126/science.aar3246

295. Kremer J, Henschel P, Simon D, Riet T, Falk C, Hardtke-Wolenski M, et al.
Membrane-bound Il-2 improves the expansion, survival, and phenotype of car tregs
and confers resistance to calcineurin inhibitors. Front Immunol (2022) 13:1005582.
doi: 10.3389/fimmu.2022.1005582

296. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale
in vitro expansion of polyclonal human Cd4+ Cd25high regulatory T cells. Blood
(2004) 104(3):895–903. doi: 10.1182/blood-2004-01-0086

297. Heninger A-K, Theil A, Wilhelm C, Petzold C, Huebel N, Kretschmer K, et al.
Il-7 abrogates suppressive activity of human Cd4+ Cd25+ Foxp3+ Regulatory T cells
and allows expansion of alloreactive and autoreactive T cells. J Immunol (2012) 189
(12):5649–58. doi: 10.4049/jimmunol.1201286

298. Cosorich I, Filoni J, Di Dedda C, Ferrari A, Jofra T, Cesarano S, et al.
Interleukin-7 improves the fitness of regulatory T cells for adoptive transfer.
Immunology (2023) 170(4):540–52. doi: 10.1111/imm.13690

299. Riolobos L, Hirata RK, Turtle CJ, Wang P-R, Gornalusse GG, Zavajlevski M,
et al. Hla engineering of human pluripotent stem cells.Mol Ther (2013) 21(6):1232–41.
doi: 10.1038/mt.2013.59

300. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA. Targeted disruption of the B
2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells.
Stem Cells Trans Med (2015) 4(10):1234–45. doi: 10.5966/sctm.2015-0049

301. Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, et al.
Hla-E-expressing pluripotent stem cells escape allogeneic responses and lysis by Nk
cells. Nat Biotechnol (2017) 35(8):765–72. doi: 10.1038/nbt.3860

302. Han X, Wang M, Duan S, Franco PJ, Kenty JH-R, Hedrick P, et al. Generation
of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci (2019) 116
(21):10441–6. doi: 10.1073/pnas.1902566116

303. Chen Y, Zhou Y, Zhou Z, Fang Y, Ma L, Zhang X, et al. Hypoimmunogenic
human pluripotent stem cells are valid cell sources for cell therapeutics with normal
self-renewal and multilineage differentiation capacity. Stem Cell Res Ther (2023) 14
(1):11. doi: 10.1186/s13287-022-03233-z

304. Lee N, LlanoM, Carretero M, Ishitani A, Navarro F, López-Botet M, et al. Hla-E
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Advancements in innate immune
regulation strategies in
islet transplantation
Kehang Duan1, Jiao Liu2, Jian Zhang1, Tongjia Chu1, Huan Liu1,
Fengxiang Lou1, Ziyu Liu1, Bing Gao1, Shixiong Wei1

and Feng Wei1*

1Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of
Jilin University, Changchun, Jilin, China, 2Department of Cardiology, The Second Hospital of Jilin
University, Changchun, Jilin, China
As a newly emerging organ transplantation technique, islet transplantation has

shown the advantages of minimal trauma and high safety since it was first carried

out. The proposal of the Edmonton protocol, which has been widely applied, was

a breakthrough in this method. However, direct contact between islets and portal

vein blood will cause a robust innate immune response leading to massive

apoptosis of the graft, and macrophages play an essential role in the innate

immune response. Therefore, therapeutic strategies targeting macrophages in

the innate immune response have become a popular research topic in recent

years. This paper will summarize and analyze recent research on strategies for

regulating innate immunity, primarily focusing on macrophages, in the field of

islet transplantation, including drug therapy, optimization of islet preparation

process, islet engineering and Mesenchymal stem cells cotransplantation. We

also expounded the heterogeneity, plasticity and activation mechanism of

macrophages in islet transplantation, providing a theoretical basis for

further research.
KEYWORDS

i s l e t t ransp lanta t ion , innate immune response , immunoregu la t ion ,
macrophage, diabetes
Abbreviations: IBMIR, Immediate blood-mediated inflammatory response; ECM, Extracellular matrix; TNF-

a, Tumor necrosis factor a; IFN-g, Interferon-g; STAT1, Signal transducers and activators of transcription 1;

KCs, Kupffer cells; IL, Interleukin; VEGF-A, Vascular endothelial growth factor A; LPS, Lipopolysaccharide;

ROS, Reactive oxygen species; TLRs, Toll-like receptors; IL-1Ra, Interleukin-1 receptor antagonist; hAAT,

Human alpha1-antitrypsin; EPO, Erythropoietin; KO, Knockout; MSCs, Mesenchymal stem cells; ASCs,

Adipose-derived mesenchymal stem cells; hIAPP, Human intestinal amyloid precursor protein; ATF3,

Activation transcription factor 3; Del-1, Developmental endothelial locus-1; HO-1, Heme oxygenase-1;

sTNF-aR, Soluble TNF-a type I receptor; Dex, Dexamethasone; IDO, Indoleamine 2,3-dioxygenase; TA,

Tannic acid; BAT, Brown adipose tissue.
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1 Introduction

Since the Edmonton protocol was proposed in 2000, islet

transplantation has developed rapidly as a new technology. This

protocol proposed a glucocorticoid-free immunosuppressive

regimen consisting of sirolimus, tacrolimus, and daclizumab and

a scheme of sequential transplantation of islets from at least two

donor pancreases. During the follow-up period (with a median

follow-up time of 1 year), all seven patients who received this

protocol achieved insulin independence (1). Subsequent clinical

trials verified the protocol’s effectiveness and noted the necessity of

minimizing the interval between 2 islet infusions (2). The outcomes

of islet transplantation over the past two decades were assessed in a

large cohort study conducted by the Edmonton group. Among 255

patients, the 5-year insulin independence rate after operation was

32%, and 8% still had insulin independence 20 years later (3). Islet

transplantation has the advantages of minimal trauma, high safety,

a short hospital stay, less patient suffering, and repeatability. It is

especially suitable for “brittle diabetes” type I diabetes patients, type

II diabetes patients with pancreatic islet dysfunction, diabetes

patients after liver and kidney transplantation, and patients with

nonmalignant pancreatic resection for the prevention of

postoperative diabetes. Compared with traditional drug and

insulin therapy, animal experiments have proven that islet

transplantation can increase the body and muscle weight of

diabetic rats, more effectively reduce proteinuria, significantly

improve the conduction velocity of the tail nerve, restore thermal

and ameliorate mechanical nociceptive thresholds, and improve the

residual b-cell state in the recipient pancreas (4). In a clinical

control experiment, islet transplantation slowed the progression

of diabetic microvascular complications, such as a declining renal

glomerular filtration rate and retinal changes (5); compared with no

transplantation, islet transplantation resulted in near-normal

platelet activation and prothrombotic factor levels, cerebral

metabolism and function, and neuropsychological test results (6).

The most common and ideal transplantation route is through

the transhepatic portal vein (7). Nevertheless, islet cells implanted

in the portal vein are often lost within three days due to hypoxia,

nutritional deficiency, the mechanical pressure of the portal vein,

and the immediate blood-mediated inflammatory response

(IBMIR). The early loss of implanted islets is an essential factor

in the failure to achieve insulin independence in single transplant

patients. The IBMIR was first proposed by the W Bennet team in

1999 and was validated in in vivo and in vitro experiments. The

reaction is defined as a rapid, strong, and nonspecific immune

inflammatory response induced by tissue factors exposed on the

surfaces of islets, with characteristics such as platelet activation,

aggregation, coagulation, and complement system activation, as

well as an infiltration of neutrophils, monocytes and macrophages

and release of inflammatory factors. Usually, within 15 minutes

after transplantation, the islets are encircled by a thrombus; after 1

hour, the islets undergo massive apoptosis due to the infiltration of

white blood cells (8). This reaction also leads to early apoptosis of

autologous islets in patients who undergo total pancreatectomy and

autologous islet transplantation (9). At present, the standard clinical
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therapy relies on anticoagulants such as heparin, soluble

complement receptor 1, and protease inhibitors such as

ulinastatin. However, the IBMIR is a complex reaction involving

multiple factors, and 50-70% of transplanted islets still undergo

early apoptosis due to the IBMIR in existing therapeutic schemes.

Therefore, the inhibition of the IBMIR to avoid early apoptosis of

transplanted islets is an urgent issue in clinical work (10).

Because macrophages are essential in the IBMIR and

subsequent adaptive immunity and are plastic and heterogeneous

in inflammatory reactions (11, 12), This article reviews the strategy

of innate immune regulation with macrophages as the primary

target in recent years in islet transplantation to provide references

for subsequent basic research and improve the survival rate of islets

in clinical islet transplantation (Tables 1, 2).
2 Activation and role of macrophages
in the IBMIR

Clinical islet transplantation requires four steps: perfusion of

the donor pancreas, digestion of the pancreas to separate the islets

from exocrine glands, purification of the islets, and transplantation

into recipients through the portal vein (7). When the prepared islets

are infused into patients via the portal vein, it will trigger IBMIR.

IBMIR is initiated by a strong activation of the coagulation

cascade. After contact with blood in the portal vein, islet tissue

factor expression induces the extrinsic coagulation pathway. The

negative charge on the islet surface triggers the intrinsic coagulation

pathway. At the same time, islets secrete inflammatory factors such

as IL-8 and MCP-1, which have chemotactic and proinflammatory

effects on macrophages and neutrophils (46, 47).

Activated platelets may attach through binding to extracellular

matrix (ECM) and collagen on the surface of the islet. Meanwhile,

owing to the fast and transient expression of p-selectin on the

membrane of activated platelet alpha granules and vascular

endothelial Weibel-Palade bodies, the p-selectin lectin-like

domain binds to sialyl Lewis x and the p-selectin glycoprotein

ligand 1 in the neutrophils and mononuclear cells, thus mediating

the rolling of neutrophils and mononuclear cells on the endothelial

cell surface and the adhesion of neutrophils and mononuclear cells

to platelets (48, 49). On the other hand, vascular endothelial cells

secrete IL-6 and IL-8 to promote the aggregation of neutrophils and

macrophages (46).

Complement activation is triggered by the natural

immunoglobulins IgG and IgM. When isolated islets are exposed

to blood, the complement system is quickly activated, leading to the

lysis of islet cells. At the same time, the production of the allergic

toxins C3a and C5a further induces the aggregation of macrophages

and neutrophils and promotes mononuclear cells to release

cytokines such as IL-1, IL-6, IL-8, and TNF-a (50).

Granulocytes appear 8 hours after islet transplantation and

extensively infiltrate the transplants after 12 hours. Neutrophils are

predominant members of the granulocyte family and the first line of

defense of innate immunity. They contain many cytokines, which

are released when activated and have destructive effects on islets;
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neutrophils make significant contributions to the activation and

recruitment of macrophages in acute inflammation sites. After

activation, they produce various chemokines to attract

mononuclear cells and macrophages; in addition, the infiltration
Frontiers in Immunology 0365
of neutrophils leads to the release of cytokines from T cells and

macrophages, such as tumor necrosis factor a (TNF-a) and

macrophage inflammatory protein 1a. The mobilization of this

immune effector could not only expand IBMIR but also induce
TABLE 1 In vivo and in vitro experiments for all therapeutic strategy.

Therapeutic strategy vitro studies
vivo studies
in mammals

Donor Receptor Transplantation type

PTD (13) + + mice mice Allotransplantation

CO (14) + + mice mice Allotransplantation

NOX-A12 (15) – + mice mice Isotransplantation

mNOX-E36 (15) – + mice mice Isotransplantation

MCC950 (16) + + mice mice Isotransplantation

hAAT (17) (18) + +

mice mice Allotransplantation

mice mice Allotransplantation

human mice Xenotransplantation

1,25(OH)2D3 (19–21) + + rat rat Isotransplantation

DHMEQ (22) + + mice mice Isotransplantation

ARA290 (23) + + mice mice Isotransplantation

liraglutide (24) (25) + + rat rat Isotransplantation

teduglutide (26) + – N/A N/A N/A

captopril (27) + + pig mice Xenotransplantation

Diannexin (28) + + mice mice Isotransplantation

CP-ASCs (29) + +
mice mice Isotransplantation

human mice Xenotransplantation

autologous MSCs (30) + + human human Allotransplantation

MSCs-derived exosomes (31) + + rat mice Xenotransplantation

OptiPrep (32) + + human mice Xenotransplantation

APT070 (33) + + human mice Xenotransplantation

anakinra (34) + – N/A N/A N/A

ATF3 KO (35) + + mice mice Isotransplantation

overexpress Del-1 (36) + + mice mice Isotransplantation

Overexpress
sTNF-aR-Fc/HO-1 (37)

+ + pig mice Xenotransplantation

MHC I and II KO
and overexpress CD47 (38)

+ +

human mice Xenotransplantation

mice mice Allotransplantation

mice mice Isotransplantation

thermoplastic polyurethane-based nanofiber capsules (39)
+ + mice mice Isotransplantation

+ + mice mice Allotransplantation

Dexa (40) + + pig mice Xenotransplantation

bilirubin (41) + + mice mice Isotransplantation

IDO (42) + + rat mice Xenotransplantation

TA (43–45) + + mice mice Allotransplantation
PTD, protein transduction domain proteins; 1,25(OH)2D3, 1,25-Dihydroxy vitamin D3; DHMEQ, Dehydroxymethylepoxyquinomicin.
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TABLE 2 Mechanisms and limitations of all therapeutic strategy.

Therapeutic
strategy

mechanism limitations

PTD (13) Block TLR4 signaling Risk of affecting islet
vascularization;

neglect the impact
of

clinical
immunosuppression

schemes

CO (14) Block TLR4 signaling

NOX-A12 (15)
Bind and antagonize CCL2/

MCP-1
neglect the impact

of
clinical

immunosuppression
schemes

mNOX-E36 (15)
Bind and antagonize CXCL12/

SDF-1

MCC950 (16)
Inhibit the activation of
NLRP3 inflammasome

Risk of affecting islet
vascularization;

neglect the impact
of

clinical
immunosuppression

schemes

hAAT (17) (18)

Increase IL-1Ra expression and
secretion

Inhibit IFN-g-induced STAT1
phosphorylation;

Inhibit iNOS production

neglect the impact
of

clinical
immunosuppression

schemes

1,25(OH)2D3
(19–21)

Reduce TNF-a/NF-kB pathway
activation;

Reduce macrophage recruitment;
Promote the polarization of M1

macrophages into M2
macrophages

via the VDR-PPARg pathway

neglect the impact
of

clinical
immunosuppression

schemes;
Risk of graft fibrosis

DHMEQ (22)

Inhibit NF-kB activation at the
nuclear translocation level
of macrophage-based

immune cells

neglect the impact
of

clinical
immunosuppression

schemes

ARA290 (23)
Inhibit NF-kB pathway

by activating EPOR-bcR/PI3K-
Akt signaling pathway

neglect the impact
of

clinical
immunosuppression

schemes

liraglutide
(24) (25)

Inhibit the expression of
proinflammatory cytokines;

Inhibit macrophage recruitment;
modulate macrophages M2

polarization
via the cAMP-PKA-STAT3

signaling pathway

Risk of affecting islet
vascularization;

neglect the impact
of

clinical
immunosuppression

schemes
teduglutide (26)

Inhibit M1 macrophages
polarization

by mediating the crosstalk
between endocrine cells

and macrophages

captopril (27)
Protect ECM by inhibiting

gelatinase activity
to reduce macrophage infiltration

Risk of affecting
islet vascularization

Diannexin (28)
Inhibit leukocyte and platelet

aggregation attachment
by binding externalized

Risk of affecting
islet vascularization

(Continued)
F
rontiers in Immuno
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TABLE 2 Continued

Therapeutic
strategy

mechanism limitations

phosphatidylserine residues
on the surface of early

apoptotic cells

CP-ASCs (29)

Mediate the expression of
TNF receptor superfamily

member 11b
through paracrine IGF-1;
Reduce the infiltration of
macrophages into the graft

Risk of induced
thrombosis in the

liver;
difficult to ensure
the close contact
between MSCs

and islets

MSCs-derived
exosomes (31)

Regulate macrophages by
regulating NF-kB
signaling pathway

The total amount of
drugs carried

by microcapsules
is limited

OptiPrep (32)
Reduce the production of
cytokines/chemokines
during islet preparation.

Compared with
Ficoll-based
purification,

Islet yields decreased
slightly
(have no
statistical
differences)

APT070 (33)
Reduce iC3b production in islets;

Reduce C4d and C5b-9
deposition in islets

Unable to target
graft administration
posttransplantation

anakinra (34) Reduce the formation of hIAPP

Risk of
subcutaneous

amyloidosis caused
by long-term
subcutaneous
injection

ATF3 KO (35)
Inhibit the expression of

proinflammatory cytokines and
chemokines in islets

Potential
cytotoxicity

and tumorigenicity

overexpress Del-
1 (36)

Inhibit platelet-monocyte
aggregate formation

by blocking the interaction
between

monocyte Mac-1-integrin and
platelet GPIb

overexpress
sTNF-aR-Fc/HO-

1 (37)

Inhibit the expression of
proinflammatory cytokines and

chemokines in islets;
Inhibit macrophage recruitment

MHC I and II KO
and overexpress

CD47 (38)

Inhibit innate and
adaptive immunity

thermoplastic
polyurethane-

based
nanofiber

capsules (39)

Block macrophages activation
Potential

cytotoxicity
and tumorigenicity

Dexa (40)
Reduce macrophage-dominant
inflammatory cell infiltration
and pericapsular fibrosis

The total amount of
drugs carried

by microcapsules
is limitedbilirubin (41)

Activate the Nrf2 pathway
to polarize macrophages to the

(Continued)
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subsequent adaptive immunity, inducing and enhancing cellular

rejection responses (50, 51) (Figure 1).

The gathered macrophages continue to secrete cytokines such

as IL-6 and IL-8 to maintain the inflammatory response and release

proinflammatory factors such as IL-1b, IFN-g, and TNF-a. The IL-
1b secreted by macrophages and neutrophils binds to the IL-1b
Frontiers in Immunology 0567
receptor on the surface of islet cells, activating the IL-1 receptor-

associated kinase to activate TNF receptor-associated factor 6,

which leads to the phosphorylation and degradation of IkB,
releasing NF-kB from the inhibitory IkB, and entering the

nucleus of cells to regulate the transcription of various genes,

including IL-1, IL-6, TNF-a and iNOS. The TNF-a produced by

macrophages and islet cells binds to the TNF receptor, activating

the NF-kB and MAPK pathways and inducing cell apoptosis.

Apoptosis is activated by the activation of caspase-3, mediated by

the MAPK pathway, or by activating effector caspases, including

caspase-3, which FADD mediates. The interferon-g (IFN-g)
produced by macrophages binds to IFN-g receptors on the

surface of the islets, activating JAK1 and JAK2. Activated JAK2

activates signal transducers and activators of transcription 1

(STAT1). Then, STAT1 is transferred to the nucleus for gene

regulation, eventually leading to islet apoptosis. The apoptosis-

promoting effect of STAT1 may be partially mediated by the

activation of caspase-2, caspase-3 and caspase-7 (52). Under the

combined effects of the cytokines IL-1b, TNF-a, and IFN-g,
overexpression of iNOS in b cells and macrophages leads to

excessive NO synthesis. Subsequently, NO loses an electron to

combine with superoxide free radicals, forming a highly active

free radical peroxynitrite (ONOO-). The cytotoxicity of ONOO-

then induces apoptosis in islet cells. On the other hand,
TABLE 2 Continued

Therapeutic
strategy

mechanism limitations

M2 phenotype;
Inhibit the NF-kB pathway to

inhibit M1 polarization

IDO (42)

Induce tryptophan deficiency;
Reduce the proinflammatory

activity and viability of
macrophages;

Reduce the infiltration of
macrophages in the graft

TA (43–45)

Regulate macrophages
polarization

by reducing the production
of ROS
PTD, protein transduction domain proteins; 1,25(OH)2D3, 1,25-Dihydroxy vitamin D3;
DHMEQ, Dehydroxymethylepoxyquinomicin.
FIGURE 1

The interaction of islets, macrophages, monocytes, neutrophils, platelets, complement and endothelial cells in the IBMIR. In the early stage of
transplantation, islets secrete proinflammatory factors and activate the complement system, promoting the recruitment of platelets, neutrophils, and
mononuclear macrophages to the graft. Vascular endothelial cells secrete cytokines while releasing P-selectin, facilitating adhesion between
monocytes/neutrophils and platelets. The accumulated mononuclear macrophages and neutrophils further contribute to macrophage recruitment
and cytokine secretion. The green arrows represent the process by which complement promotes monocytes to secrete cytokines, the red arrows
depict the process by which neutrophils promote macrophages to secrete cytokines, and the purple arrows illustrate the procedure in which
P-selectin facilitates adherence of monocytes and neutrophils to platelets.
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macrophages play an antigen-presenting role, promoting the

activation of T cells into CD8+ T cells and CD4+ T cells.

Activated T cells produce cytokines such as IFN-g, TNF-a, and
lymphotoxin, thereby inducing b-cell apoptosis. T cells also express

Fas receptor-associated ligands and TNF-related apoptosis-

inducing ligands, activating effector caspases to cause cellular

apoptosis. In addition, CD8+ T cells directly contact and promote

the release of granzyme B into the cytoplasm of target cells through

perforin, thereby activating nucleases and caspases to kill target cells

(11, 50, 53).
3 Macrophage origins in
islet transplantation

Macrophages play crucial roles in the IBMIR after islet

transplantation. Generally, they aggregate around the islets at 8

hours and infiltrate them at 12 hours posttransplantation. By 24

hours posttransplantation, the transplanted islets are entirely

infiltrated (51). In islet transplantation, macrophages usually

come from three sources: Kupffer cells (KCs) in the recipient’s

liver, mononuclear macrophages from the recipient’s bone marrow,

and macrophages resident in the donor’s islets.

For donor-derived macrophages, on the one hand, islet-resident

macrophages mediate the production of islet interleukin (IL)-1b and

impair the function of beta cells induced by islet amyloid-like

polypeptides (54). On the other hand, some studies have shown

that during islet compensation in the early stage of diabetes, islet-

resident macrophages contribute to angiogenesis by supporting islet

vascular endothelial growth factor A (VEGF-A) secretion during islet

remodeling, suggesting their critical role in supporting islet

compensation during diabetes (55). Further animal experiments

confirmed that in a mouse autoimmune diabetes model, islet

resident macrophages showed different phenotypes, such as

maturation, self-replication, proinflammation, and immune

tolerance, throughout the disease course, demonstrating

heterogeneity in the inflammatory process (56). Although the

number of donor-derived macrophages is usually small, their

diverse functions in islet cells during the diabetes stage prove their

importance. However, relevant research on donor-derived

macrophages in islet transplantation is still lacking.

KCs are resident macrophages in the liver. KCs in the sinusoids

can phagocytose pathogens from the arterial and venous systems,

playing an essential role in innate immunity. Single-cell RNA

sequencing analysis of freshly isolated human liver demonstrates

the presence of two distinct intrahepatic CD68+ macrophage

subsets in the steady state: one is an inflammatory macrophage

subset enriched in the expression of LYZ, CSTA, and CD74; the

other is a tolerogenic macrophage subset distinguished by high

expression of CD5L, MARCO, and VSIG4. Two distinct cell

populations under the same lipopolysaccharide (LPS)/IFN-g
stimulation conditions showed that the tolerogenic function

subset secreted less TNF-a (57). In another study, F4/80+ KCs in

the mouse liver were divided into CD68+ subsets with phagocytic

activity and CD11b+ subsets with cytokine generation capability

(58). KCs preferentially induce tolerogenic immunity under
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noninflammatory conditions and perceive the condition of liver

tissue, and their response to environmental changes plays an

essential role in the pathogenesis of liver diseases (59). In the

development of alcohol-related liver disease, KCs induce oxidative

stress and inflammation in the liver and promote the progression of

alcohol-related liver disease by participating in reactive oxygen

species (ROS) production and activating pathways leading to

cytokine and chemokine production. The liver stellate cells

activated by KCs contribute to the progression of liver fibrosis. In

islet transplantation, implanted islet cells, acinar cells, and secreted

soluble factors activate KCs to secrete proinflammatory cytokines,

such as IL-1b and TNF-a. The inhibition of KCs may extend the

survival of implanted islets (60, 61). In summary, KCs exhibit

significant heterogeneity and strong plasticity under physiological

and inflammatory conditions.

Monocytes are generally thought to be derived from myeloid

progenitors derived from pluripotent hematopoietic stem cells in the

bone marrow. Monocytes further differentiate into dendritic cells,

macrophages, and osteoclasts. In humans, monocytes can be divided

into the CD14hiCD16- classic subtype, which is mainly responsible

for innate perception, immune response, migration, and

differentiation into macrophages at the injury site, and

CD14loCD16+ nonclassic monocytes, which are mainly

responsible for vessel system monitoring and tissue repair. The

two subtypes are analogous to the CX3CR1intCCR2+CD62L

+CD43loLy6Chi inflammatory subtype and CX3CR1hiCCR2-

CD62L-CD43hiLy6Clo patrolling monocytes found in mouse

tissues. In addition, a small number of CD14+CD16+

“intermediate” subtype monocytes are mainly responsible for

antigen presentation and cytokine secretion during the immune

response and play an essential role in the inflammatory cascade, also

known as transitional inflammatory monocytes (62–64). Under

inflammatory conditions, such as islet transplantation within the

portal vein, islets and endothelial cells release inflammatory factors

such as CCR2, recruiting “classic” monocytes out of the bone

marrow to the inflammatory sites and differentiating into dendritic

cells and inflammatory macrophages, producing TNF, iNOS and

ROS to trigger and expand the inflammatory response; “nonclassic”

monocytes usually differentiate into M2 immunomodulatory

phenotype macrophages while suppressing inflammation, thus

promoting the vascularization of the transplanted islets and

allowing the graft to colonize the hepatic sinuses and survive for a

long time to perform islet functions (41). As essential participants in

the innate immune response, monocyte-derived macrophages are

also highly plastic and show “cross-differentiation” under the

influence of different environments, which has been confirmed in

the inflammatory environment of different diseases (62). In islet

transplantation, depleting dendritic cells derived from recipient

monocytes can enhance the early graft function (65). Another

study demonstrated that bone marrow-derived mononuclear cells

can be cultured into spheroids, with CXCR4+CD31+ myeloid cells

being the main cell components. In the islet transplantation model

under the renal capsule of syngeneic mice, cotransplantation of bone

marrow–derived spheroids improves the blood supply

reconstruction and graft function (66). Although research on

macrophages from different sources in innate immune response in
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the field of islet transplantation remains limited, existing studies have

provided initial insights into the influence of monocytes with

different functions on islet transplantation.
4 Advances in macrophage studies in
islet transplantation

Due to the importance of macrophages in the immune response

to islet transplants, research on macrophages has always been a

popular topic in the field of islet transplantation, and considerable

progress and achievements have been made. Most of them focus on

traditional drug therapy, interstitial cell coculture or

cotransplantation, the optimization of islet isolation and culture

methods, islet modification and engineering before transplantation,

etc. The most common and effective strategy is to directly regulate

the innate immune response of the recipient using traditional drugs

to reduce damage to the graft caused by immune cells,

including macrophages.
4.1 Drug therapies targeting macrophages
in the innate immune response

Toll-like receptors (TLRs) are important sensors for innate

immunity and bridges between innate and adaptive immunity

(67). Mammalian TLRs that occupy the plasma membrane

include those that detect microbial cell surface components, such

as TLR4 (LPS), TLR5 (flagellin), and TLRs 1, 2 and 6 (bacterial

lipoproteins). TLRs found in endosomes detect nucleic acids, such

as TLR3 (double stranded (ds) RNA), TLR7 and 8 (single stranded

(ss) RNA), and TLR9 (unmethylated CpG containing ssDNA) (68).

TLR4 is a highly representative TLR, and its expression in islets is

controversial. Studies have shown that TLR4 is not expressed in

mouse islet b cells and that islet resident macrophages are its major

source and mediate the TLR4 pathway to induce proinflammatory

factor secretion in the islets (69). Other related studies suggest that

TLR4 and its related molecules, myeloid differentiation protein-2

and the endotoxin receptor CD14, are expressed in islet b cells (70,

71). Regardless of the source of TLR4, the islet isolation and

transplantation process can lead to the upregulation of TLR4

expression in the islets, the activation of the TLR4/MyD88

pathway, and the production of chemokines that recruit

mononuclear cells and macrophages to the islets. By blocking

TLR4 activation with carbon monoxide, protein transduction

domain proteins, etc., inflammation and macrophage infiltration

during transplantation can be suppressed (13, 14). Inhibiting the

functions of the chemokines produced by islet cells can effectively

reduce macrophage infiltration of the graft.

L-selectin, also known as Spiegelmers, is a new class of

oligonucleotide drug. Two specific L-selectins, mNOX-E36 and

NOX-A12, bind and antagonize CCL2/MCP-1 and CXCL12/SDF-

1, respectively. In a syngeneic intraportal transplant mouse model,

mNOX-E36 and NOX-A12 decreased the hepatic recruitment of

inflammatory monocytes, CD11b+/Ly6Chi/CCR2+ cells and

CD11b+/Ly6Chi/CXCR4+ cells; prevented inflammation-
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mediated islet destruction; and significantly improved islet

function after transplantation (15).

In the islet isolation process, detrimental factors such as

damage-associated molecular patterns, ROS, oxidative stress, and

mitochondrial dysfunction can activate the NLRP3 inflammasome

within islet cells, and the activated inflammasome cleaves caspase-1

and activates pro-IL-1b to IL-1b. IL-1b can induce macrophage

recruitment to the transplant, upregulate the Fas receptor, activate

the NF-kB pathway, and cause b-cell apoptosis and functional

impairment. MCC950 is a specific inhibitor of the NLRP3

inflammasome that can inhibit IL-1b expression in transplant

islets, the infiltration of macrophages around the islets, and

fluctuations in blood glucose in the recipient (16).

Another strategy to target the proinflammatory effects of IL-1b
is to block the activation of its corresponding receptor. Interleukin-

1 receptor antagonist (IL-1Ra) is an endogenous IL-1 inhibitor that

can bind to IL-1R1, prevent IL-1R accessory protein recruitment,

and inhibit the activation of IL-1R. Human alpha1-antitrypsin

(hAAT) is a serine protease inhibitor with tissue protection, anti-

inflammatory, and immunoregulation activities. hAAT increased

IL-1Ra expression and secretion both in primary islet and

macrophages. In a mouse model of renal subcapsular islet

allotransplantation, hAAT pretreatment significantly increased

insulin transcription levels, while the transcription levels of IL-1b,
TNF-a, and other inflammatory factors in islet grafts significantly

decreased (17). Moreover, hAAT partially inhibits M1-type

macrophage activation by inhibiting IFN-g-induced STAT1

phosphorylation and iNOS production (18).

1,25-Dihydroxy vitamin D3, also known as calcitriol, is

commonly converted from vitamin D3 in the human body. Its

effects on the innate and adaptive immune systems are manifested

as the induction of immunological tolerance and the activation of

anti-inflammatory pathways. Its main functions are as follows: 1. to

inhibit the synthesis of proinflammatory cytokines by monocytes

and macrophages; 2. To reduce the expression of major

histocompatibility complex-II class molecules on the surface of

macrophages, thereby reducing the antigen presentation and T-cell

stimulation ability of macrophages; and 3. to promote the

polarization of macrophages from the M1 phenotype to the M2

phenotype via the VDR-PPARg pathway. Calcitriol may prolong

the survival of homologous islet grafts by reducing TNF-a/NF-kB
pathway activation and macrophage recruitment in the grafts in

syngeneic rat intraportal islet transplantation models (19–21).

The NF-kB signaling pathway downstream of TNFR, IL-1R,

and TLR4 plays an important role in the innate immune response.

Macrophages are activated through the NF-kB pathway and release

proinflammatory cytokines such as TNF-a, IL-1, IL-6, and IL-12.

The NF-kB signaling pathway is regulated by TNFR1, IL-1R, TLR,

and other receptors, so the regulation of the NF-kB signaling

pathway is the focus of research on immune tolerance after islet

transplantation. Dehydroxymethylepoxyquinomicin acts as an

inhibitor of NF-kB to inhibit NF-kB activation at the nuclear

translocation level. It can inhibit the activation of TNF-a, IL-6,
and serum high mobility complex-1 on macrophage-based immune

cells through the NF-kB pathway and protect islet grafts from the

injury caused by transplantation via the portal vein (22, 72).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1341314
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duan et al. 10.3389/fimmu.2023.1341314
ARA290, a pyroglutamate helix B surface peptide composed of

11 amino acids particular to EPOR-bcR without the side effects of

erythropoietin (EPO), promotes endothelial cell activation and

platelet reactivity. Through the activation of the EPOR-bcR/PI3K-
Akt signaling pathway, ARA290 can inhibit the transcription of

proinflammatory factors driven by the NF-kB pathway and the

activation of macrophages; reduce the transcription levels of IL-6,

MCP-1, MIP-1b, TNF-a and IL-1b in the graft; and thus prohibit

the damage of proinflammatory factors on islets and the

proapoptotic effect, thereby improving blood glucose levels and

islet graft function (23). Similarly, the application of liraglutide, an

analog of GLP-1, and teduglutide, a glucagon-like peptide-2

receptor agonist, can inhibit the expression of proinflammatory
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cytokines, macrophage recruitment, and M1 phenotype

polarization during and after transplantation and can thus

improve graft function. Its ability to polarize macrophages may

be mediated by the cAMP-PKA-STAT3 signaling pathway (24–

26) (Figure 2).

Currently, significant progress has been made in drug trials for

macrophages. However, most experiments often use experimental

drugs individually, neglecting the potential impact of current

clinical immunosuppression schemes on macrophages. After years

of development, the immunomodulation protocol improved by the

Edmonton protocol, which includes tacrolimus and mycophenolate

mofetil combined with dalizumab or baliximab, has been widely

applied to islet transplantation in most transplant centers around
FIGURE 2

The drug treatment strategies targeting islets and macrophages. CO and protein transduction domain proteins (PTD) blocked the signal pathway of
TLR4; Spiegelmers binds to and antagonizes chemokines; MCC950 inhibits the secretion of IL-1b by inhibiting NLRP3 inflammasome. hAAT inhibits
the effect of IL-1b by increasing the expression and secretion of IL-1Ra in primary islets and macrophages. Calcitriol inhibited the secretion of
proinflammatory factors and M1 polarization of macrophages; Dehydroxymethylepoxyquinomicin (DHMEQ) inhibited the nuclear translocation of
NF-kB; ARA290 blocked NF-kB pathway by activating EPOR-bcR/PI3K-Akt signal pathway; Liraglutide and teduglutide inhibit the expression of
proinflammatory factors and M1 polarization in macrophages. The black arrows indicate promotion and the red inhibitors indicate inhibition.
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the world (73). As a calcineurin inhibitor, Tacrolimus can inhibit T

cell activation and cytokine production. It has been found that

tacrolimus inhibits the activation of the JAK2/STAT3 signal by

targeting JAK2, thereby inhibiting the polarization of M2

macrophages and exerting its anti-fibrosis function (74). After

human islets were transplanted into NSG mice, tacrolimus

activates islet resident macrophages by inhibiting the NFAT

pathway and stimulates them to produce IL-1b by increasing

amyloid deposition in transplanted islets, thus inhibiting b cell

function. The application of Exendin-4 reduces this effect (75). In

recent years, the potential effects of mycophenolate mofetil on

monocytes have also been discovered, including the inhibition of

proinflammatory factor secretion and adhesion molecule

expression. Baliximab can upregulate the percentage of CD14

+CD163+ monocytes (76). At present, there are few studies on

the influence of existing immunomodulation schemes for islet

transplantation on macrophages. Ignoring this potential influence

may pose risks in clinical trials and lead to inconsistencies between

therapeutic effects and animal experiments. Therefore, fully

integrating drug research on macrophage immunomodulation

into clinical practice is imperative.
4.2 Regulation of macrophages in islet
transplantation by ECM and interstitial cells

Islet transplantation, unlike liver, kidney, and pancreas

transplantat ion, fa l ls more into the category of cel l

transplantation. Therefore, in addition to regulating the

recipient’s immune system, research on islets has also become a

focus of immune regulation.

4.2.1 The role of ECM in immune regulation
The islet mass typically accounts for 2% of the total pancreatic

mass, and a boundary composed mainly of the ECM usually exists

between the endocrine islet cells and the exocrine acinus. During

the islet isolation process, the digestion of enzymes can disrupt the

ECM, thus destroying the structure and function of the islet. In

addition, the concept of the “capsule” of the islet, which describes

the stromal structures surrounding the islets, has recently arisen.

There is a population of resident macrophages enriched in the peri-

islet capsular area that play a barrier role in preventing the

infiltration of other immune cells in the disease state, so

maintaining the integrity of the interstitial structure around the

islets is vital for maintaining the therapeutic efficacy of islet

transplants (77).

Type IV and VI collagen proteins and laminin are essential

components of the islet ECM. Matrix metalloproteases are a family

of zinc-dependent endopeptidases involved in ECM turnover under

several conditions. MMP-2 (gelatinase A) and MMP-9 (gelatinase

B) interact with elastin and types I, III, and IV gelatins when

activated, facilitating their degradation within connective tissue

matrices. In islet transplantation, macrophages and neutrophils

can secrete gelatinases, such as MMP-9, which can degrade ECM.

The knockdown of MMP-9 and application of the MMP inhibitor
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captopril can significantly reduce macrophage infiltration into the

islets, thus protecting the function of the graft and prolonging its

survival time (27). However, another study showed that after mouse

islets were transplanted into recipient muscle tissue, VEGF-A,

expressed at high levels, could recruit CD11b+/Gr-1+/CXCR4hi

neutrophils and induce this neutrophil subset to secrete a large

amount of the effector protein MMP-9. However, islet

revascularization was impaired in MMP-9-deficient mice. Thus,

MMP-9 is essential for vascular reconstruction and functional

integration following islet transplantation (78). Although

therapeutic strategies targeting MMP-9 can reduce the

degradation of ECM and the infiltration of inflammatory cells,

mainly macrophages in the early stage, MMP-9 knockdown or

inhibitors affect the vascularization of graft islets in the late stage.

Therefore, the application of MMP-9 knockout (KO) or inhibition

is highly controversial. The protection of ECM integrity and

reduction of inflammatory cell infiltration without affecting the

process of islet vasculogenesis remain challenging.

In addition to maintaining ECM integrity, the inhibition of the

attachment of leukocyte and platelet aggregates to islets after ECM

destruction is also a promising research direction. Diannexin is a

recombinant homodimer of the endogenous anticoagulant

molecule annexin V, which binds externalized phosphatidylserine

residues on the surface of early apoptotic cells, thereby suppressing

the attachment of leukocytes and platelet aggregates. In the

syngeneic mouse renal subepithelial transplantation model,

diannexin application reduced the recruitment of macrophages

and T cells to the islet periphery, significantly reduced the mRNA

expression level of the apoptotic marker Bid, reduced islet cell

apoptosis, and improved the early function of islet transplants (28).

Although diannexin has already undergone phase II clinical trials in

kidney transplantation and achieved outstanding results in the early

stage of posttransplantation, further exploration is needed to

determine its efficacy after portal vein transplantation due to the

graft in the portal vein comes into direct contact with a large

amount of blood.

Additionally, this study did not demonstrate any advantage in

using diannexin during the late stage of posttransplantation. Is this

due to a reduction in macrophage recruitment during the early

stage, which may potentially damage the vascularization process of

the graft? The validation of this issue necessitates further

investigation in subsequent studies.

4.2.2 Cotransplantation of islets and MSCs
Islet transplantation offers an additional advantage in that the

islet preparation can be augmented with supplementary cells

possessing immunomodulatory properties, thereby regulating the

immune response following transplantation. Mesenchymal stem

cells (MSCs) are self-renewing multipotent mesenchymal stromal

cells that can be isolated from tissues of mesodermal origin and can

differentiate into a cell lineage. MSCs have been widely used in the

field of autoimmune diseases and transplantation due to their low

immunogenicity and ability to affect innate and specific immune

cells through the release of various immunomodulatory factors. The

low immunogenicity of MSCs is due to the lack of expression of
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major histocompatibility complex-II molecules on their cell surface

and the lack of expression of costimulatory molecules (CD40,

CD86, or CD80) important for immune recognition. Therefore,

the application of allogeneic MSCs would not cause severe immune

reactions in recipients (79). By far, the most prevalent source of

MSCs in clinical trials is adult bone marrow, followed by adipose

tissue and puerperal discards such as umbilical cord tissue and

placental cells (80). In islet transplantation, MSCs can promote the

polarization of mononuclear cells/macrophages to the M2

phenotype by secreting exosomes and cytokines including

Indoleamine 2,3-dioxygenase (IDO), IL-4 and IL-10 (81), while

inhibiting their differentiation to the M1 phenotype, reducing the

production of IL-12 and blocking the maturation of dendritic cells;

the ability of immature dendritic cells to present antigen will be

diminished and ultimately weaken T-cell function, thus improving

the survival rate of the transplanted islet (82). At present, the MSC

research directions are mainly the selection of subgroups under

different types and states and MSC engineering.

Adipose-derived mesenchymal stem cells (ASCs) have

advantages such as easy acquis i t ion, more extensive

multipotential differentiation ability, a better immunoregulatory

effect, and more secretion of angiogenic factors (83, 84). Innate

immune responses are the leading cause of transplant failure for

patients undergoing total pancreas resection and autologous islet

transplantation. ASCs derived from chronic pancreatitis patients

show no significant differences in phenotype, differentiation

capacity, or secretion of growth factors compared to those derived

from healthy donors. The cotransplantation of mouse islets and

chronic pancreatitis-ASCs can inhibit the expression of TNF-a and

Bcl-2 modifying factor. Chronic pancreatitis-ASCs mediate the

expression of the graft anti-apoptotic gene TNF receptor

superfamily member 11b through paracrine IGF-1 and reduce the

infiltration of macrophages into the graft and b-cell death,

ultimately improve islet function (29). This study has some

implications for clinical islet autotransplantation because,

although MSCs have low immunogenicity, they also express

MHC I molecules and MHC II will be expressed under the

influence of IFN-g (85). Therefore, cotransplantation of the

recipient’s own ASCs would be a better choice if clinical

conditions permit. More encouragingly, the clinical trial of

autologous MSCs and islet cotransplantation has been initially

carried out, improving transplant patients’ prognosis based on

sound safety (30).

Given the potent immunomodulatory effects of hAAT, the

cotransplantation of hAAT-engineered mesenchymal stromal cells

and islets was shown to inhibit macrophage migration, significantly

reduce the infiltration of CD11c+ and F4/80+ cells, and increase the

number of CD206+ cells. By transforming macrophages into a

protective state favoring islet survival, hAAT-engineered

mesenchymal stromal cells significantly improved the survival of

cotransplanted islets (86).

However, there are limitations in the application of MSCs at

present, and the protective effect of MSCs on the graft is partly

achieved through direct contact with the graft and the cytokines it

secretes (87). Ensuring close contact between MSCs and islets

during transplantation into the recipient’s liver is challenging, and
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there is also a risk of MSC-induced thrombosis in the liver (88).

Cotransplantation of MSCs and islets under the renal capsule can

solve this problem. Still, this transplantation method has the

disadvantages of difficult transplantation and systemic insulin

release, so it is difficult to apply to clinical work. Therefore, a

team has proposed a method of carrying immunomodulatory

components derived from MSCs on islet microcapsules. The

MSCs-derived exosomes have the immunoregulatory ability to

multiply immune cells. After being loaded on the islet

microcapsule, they can exert their immunoregulatory ability on

macrophages by regulating the NF-kB signaling pathway, thus

alleviating pericapsular growth and fibrosis and significantly

delaying the rejection of xenogeneic islets in mice recipients (31).

Although this study did not adopt a portal vein transplantation

model, it still provides insights into the cotransplantation of MSCs.
4.3 Optimization of islet cells

Islet transplantation is a minimally invasive organ

transplantation technology. The technical key and difficulty lie in

the isolation and optimization of islet cells and the development of

and breakthroughs in transplantation technology.

4.3.1 Optimization of islet isolation and
culture techniques

The islet preparation protocol used in clinical practice is

becoming increasingly mature; however, research on its

optimization is ongoing. Reducing islet damage during

preparation can yield high-quality islets and minimize the innate

immune response after transplantation.

4.3.1.1 Optimization of islet isolation

Islets are cell masses with a diameter of 100 to 400 mm, and the

size of the islet cell mass can affect the outcome after

transplantation. In one study, islets with a mean diameter of 250

mm were divided into a small islet group (mean diameter <250 mm)

and a large islet group (mean diameter >250 mm). The small islet

group showed higher insulin secretion and viability and lower levels

of microthrombosis, inflammatory cytokine expression, and

inflammatory cell infiltration after transplantation (89). Although

further selection of isolated islets will waste clinical resources in the

context of the shortage of donor pancreas, this study provides some

enlightenment for the strategy of differentiation of islet cells by

inducing iPSCs.

Islet purification is the process of separating isolated islet cells

from other cells in the pancreatic parenchyma, such as exocrine

acinar cells and interstitial cells, to obtain a higher purity islet cell

preparation. High-purity islet cell preparation can reduce

complications such as increased portal vein pressure during

transplantation, the innate immune response after transplantation,

and the infiltration of neutrophils and macrophages. In clinical

practice, islet purification is usually carried out by continuous

gradient density centrifugation using Ficoll solution with different

densities and a COBE2991 centrifuge. The purification method

based on iodixanol (OptiPrep) has been applied in experimental
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research and clinical applications. Compared with Ficoll purification,

the efficiency of islet purification by this method was not

significantly different. The production of cytokines/chemokines

such as IFN-g, TNF-a, IL-1b, IL-6, IL-8, RANTES, MCP-1, and

MIP-1b in the supernatants of islet preparations in the OptiPrep

group was significantly reduced after 48 hours of culture (32). The

reduction in cytokines/chemokines can significantly attenuate the

infi l t ra t ion of immune ce l l s , such as macrophages ,

after transplantation.
4.3.1.2 Optimization of islet culture

Another procedure before islet transplantation is islet culturing

and preparation of islet preparations, which is of particular

importance for the transportation of islet preparations to

interregional clinical transplant centers. On the other hand, the

culture before transplantation creates conditions for the quality

control of the preparation and the immune induction of the

recipients before transplantation. Most importantly, a period of

culture can improve purification quality, reduce the number of

apoptotic cells and byproducts, and thus attenuate the innate

immune response after transplantation (7).

The optimization of culture methods can further reduce the

damage to isolated islets. For example, an islet culture medium with

fibrin as a scaffold and perfluorodecalin as an oxygen diffusion-

enhancing medium was shown to improve islet function, islet

viability, and islet cell hypoxia caused by three-dimensional

medium encapsulation (90). However, the islets cultured by this

method caused an infiltration of macrophages around the graft in the

early stage of transplantation into the portal vein of rats, which may

have been caused by the attachment of matrix residues to integrins

and the acceleration and enhancement of the IBMIR (91). Therefore,

developing an alternative scheme to current in vitro islet culturing to

increase the survival rate of islets while minimizing the introduction

of additional antigens to reduce the infiltration of macrophages

around the transplant is a promising research direction.

Adding drugs to the islet culture process to inhibit islet

activation and thereby reduce macrophage recruitment after

transplantation is also viable.

The complement cascade plays an amplifying role in the IBMIR,

with the core step being the cleavage of C3 into C3b by the C3

convertase. This ultimately leads to the assembly of the membrane

attack complex, the release of soluble C3a and C5a, and thus the

activation and recruitment of inflammatory cells. APT070, also

known as mirococept, is a modified fragment of complement

receptor 1 (CD35) that can protect cells against complement

activation. By preincubation with islets, C-peptide release, iC3b

production, and C4d and C5b-9 deposition in islets embedded with

thrombi were reduced in vitro. In a humanized mouse renal

subcapsular islet transplantation model, APT070 reduced the

infiltration of human CD45+ cells, macrophages (CD11b+), and

neutrophils (CD66b+) into the islets (33).

Human intestinal amyloid precursor protein (hIAPP) is a 37-

amino-acid peptide cosecreted with insulin by b cells (92) that can

promote the recruitment of macrophages by inducing the secretion

of chemokines, such as CCL2 and CXCL1, and induce macrophages
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to secrete proinflammatory factors such as TNF-a through the IL-

1R/MyD88 pathway. hIAPP is cytotoxic and induces b-cell
apoptosis through the IL-1b/Fas/caspase-8 apoptotic pathway,

which is an important reason for long-term transplant failure (93,

94). In the pretransplantation culturing process, applying the IL-

1Ra anakinra can reduce the formation of hIAPP, reduce

macrophage infiltration and antagonize hIAPP-induced b-cell
apoptosis (34). Although anakinra has been used in the clinical

treatment of rheumatoid arthritis and, when combined with

etanercept, can improve islet function (3), there have been clinical

reports of subcutaneous amyloidosis caused by long-term

subcutaneous injection of anakinra (95). Therefore, further

observation is still needed to determine its long-term efficacy.

Optimized islet culture techniques can reduce the infiltration of

inflammatory cells such as macrophages in clinical transplantation,

prolong the in vitro survival time of separated islets, reduce the

preparation frequency of islet cells for research, and provide

excellent convenience for experimental research on islet cells.

4.3.2 Related studies on the engineering of
islet cells

In addition to optimizing the preparation process of islets to

reduce their immunogenicity, another strategy to reduce

inflammation and macrophage regulation after transplantation is

to engineer islet cells.

4.3.2.1 Gene modification of islets

Gene modification technology has been widely used in the field

of organ transp lanta t ion , e spec ia l ly in the fie ld of

xenotransplantation. Specific gene KO animal-derived islets can

achieve better transplantation results in islet transplantation.

Activation transcription factor 3 (ATF3) is a stress-induced

apoptotic gene whose expression is upregulated by various signals

during islet isolation and transplantation, such as cytokines,

nutritional deficiency, serum stimulation, and calcium signals.

After transplantation, the infiltration of macrophages into the

grafts was found to be significantly reduced in islets taken from

ATF3 KO mice. The expression of caspase-3 and apoptotic factors

(Noxa, bNIP3) in transplants was significantly reduced, and the

grafts had better glucose homeostasis (35).

KO corresponds to a specific immunosuppressive gene

overexpression strategy. Developmental endothelial locus-1 (Del-

1) is an endothelium-derived anti-inflammatory glycoprotein that

regulates b2 integrin-dependent leukocyte adhesion. In a syngeneic

portal vein graft model using mice with endothelial cell-specific

overexpression of Del-1 as recipients, the overexpression of Del-1

inhibited platelet-monocyte aggregate formation by the binding of

the leukocyte b2-integrin Mac-1 to cognate counterreceptors on

platelets, predominantly glycoprotein Ib. The infiltration of Ly6G-

CD11b+ cells (monocytes) in the liver was reduced, thereby

reducing the intensity of the IBMIR and protecting the islets from

damage (36). Similarly, the knock-in of immunosuppressive genes

is a promising way to modify islets.

Heme oxygenase-1 (HO-1) has been identified as a ubiquitous

stress protein with antioxidant, anti-apoptotic and anti-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1341314
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duan et al. 10.3389/fimmu.2023.1341314
inflammatory effects and improved outcomes of islet allografts and

xenografts. Soluble TNF-a type I receptor (sTNF-aR) can inhibit

TNF-a-induced cell activation. An adenovirus vector was used to

overexpress the fusion protein sTNF-aR-Fc/HO-1 of human HO-1,

sTNF-aR, and human IgG1Fc in porcine islets. The modified

porcine islets transplanted into the subrenal capsule of

humanized mice significantly inhibited the infiltration of

macrophages and T cells into the grafts. It also reduced the

expression of RANTES, TNF-a, and IL-6 and inhibited the

apoptosis of grafts (37).

Due to the shortage of donor pancreases, inducing iPSCs to

differentiate into islets has become a prominent research topic.

However, stem cell-derived islets’ potential cytotoxicity or

oncogenicity is the main problem. Additionally, for patients with

autoimmune diabetes, islets differentiated from autologous stem

cells are also at risk of being attacked by autoimmunity. Gene

modification technology serves as an effective means to address

these issues (96). In recent research, primary human islet cells can

escape the killing effect of macrophages, NK cells and subsequent

adaptive immune response in humanized mouse model through

KO the genes encoding class I and II MHC and over express CD47.

Furthermore, through gene modification of T1DM patients’ iPSC-

derived islets, autoimmune escape was realized in autologous,

diabetic humanized mice. By blocking CD47, the islet in the

recipient can be eliminated, which ensures the safety of clinical

application in the future (38). This study suggests that reserving the

“switch” to remove the modified cells can greatly improve the safety

of gene editing technology.

4.3.2.2 The application of material chemistry in
islet transplantation

With the continuous development of materials science and

chemistry technology, breakthrough progress has been made in its

application in the medical field, including but not limited to drug

delivery and tumor targeting. Choosing a suitable material to

encapsulate islet cells and isolate islets from the portal

microenvironment can block the innate immune response and

improve the patient’s long-term dependence on immunosuppressants.

However, the difficulty of islet microencapsulation is avoiding contact

between islets and the blood while ensuring the exchange of oxygen

and nutrients and allowing the hormones released by islets to enter

the circulation. Another problem of microencapsulation is that

although the capsule of the islet prevents the infiltration of

inflammatory cells such as macrophages into the graft, the capsule

itself as a foreign body will also cause the infiltration of inflammatory

cells, and long-term macrophage infiltration will cause fibrosis

around the capsule. The capsule structure itself is also an obstacle

to vascularizing the islet. The hypovascularization of the graft will

interfere with the local clearance of hIAPP. The presence of hIAPP in

the encapsulated transplant will lead to graft failure (97).

In previous studies, alginate has always been a focal point in the

research on microcapsule materials due to its excellent

biocompatibility and ease of preparation. However, the variability

in alginate production results in inconsistent endotoxin content and

purity, which can affect its biocompatibility as microcapsules (98).

Moreover, microcapsules formed by alginate-based hydrogels will
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allow unnecessary cells to enter and exit due to their intrinsic

softness and open network structure. In contrast, microcapsules

made of traditional polymers such as polytetrafluoroethylene or

polycaprolactone can effectively prevent cell escape but may lead to

pericapsular fibrosis (99). Unlike the microcapsules made from the

materials mentioned above, thermoplastic polyurethane-based

nanofiber capsules can minimize foreign body reactions and block

unwanted macrophage activation (39). Another advantage of nano-

materials is that the shape of microcapsules, the size of pores and

the density of pores can be designed. Generally, globular proteins

have a diameter ranging from 2 nm to 10 nm, while organic

metabolites have a diameter between 0.5 nm and 1 nm. Immune

cells like macrophages and leukocytes are approximately 6-10

microns in diameter; therefore, microcapsules with a pore size of

20 nm can maintain cell function and reduce essential immune

components (100). However, the potential cytotoxicity of nano-

material microcapsules is a problem that cannot be ignored, and

further large-scale non-human primate experiments and clinical

trials are necessary to verify their safety (101).

Another strategy for islet encapsulation is drug loading of the

capsule. Dexamethasone (Dex) is an immunosuppressive

glucocorticoid that effectively inhibits inflammatory pathways and

can polarize human blood-derived monocytes to the M2 phenotype

while preserving their migratory function. However, in contrast to

other organ transplants, higher concentrations of Dex in islet

transplants severely impair cell mobility and lead to impaired

engraftment and angiogenesis. It also impairs the glucose

responsiveness of b cells. A polydimethylsiloxane scaffold

equipped with Dex can locally deliver immunoregulatory Dex in

a controlled manner and polarize macrophages into the M2

phenotype without affecting islet function, thus creating a

protective microenvironment for transplanted islets (102).

Similarly, the transplantation of dexamethasone 21-phosphate

(Dexa)-containing chitosan-coated alginate microencapsulated

porcine islets into the enterocoelia of diabetic mice can reduce

macrophage-dominant inflammatory cell infiltration and

pericapsular fibrosis (40). These results suggest that

microencapsulated islet transplantation strategies have great

potential in islet xenotransplantation.

In recent years, bilirubin, as the end product of heme

metabolism, has been found to inhibit the infiltration of KCs into

transplanted islets in the liver (103). On the other hand, bilirubin

can activate the Nrf2 pathway to polarize macrophages to the M2

phenotype and inhibit the NF-kB pathway to inhibit M1

polarization and enhance the function of M2 macrophages, thus

playing an antioxidant and anti-inflammatory role. ϵ-Polylysine-
bilirubin conjugate-encapsulated islets can effectively promote the

polarization of macrophages to the M2 phenotype, optimize the

immune microenvironment for islet survival and function, and

maintain the normal blood glucose level of recipients for more than

35 days (41).

IDO is a cytosolic, heme-containing enzyme that catalyzes the

first and rate-limiting step in metabolizing the essential amino acid

L-tryptophan to N-formyl kynurenine. Its high expression is one of

the causes of tumor immune escape, and its immunoprotective

effect on T-cell-mediated allogeneic rejection has been widely
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studied in organ transplantation. An islet-fibroblast composite graft

composed of Indoleamine 2,3-dioxygenase-expressing fibroblast-

populated collagen gel matrices and islet cells can induce

tryptophan deficiency, reduce the viability of macrophages,

inhibit their proinflammatory activity, and reduce the infiltration

of macrophages in the graft (42). Tannic acid (TA) is a natural

polyphenol with antioxidant activity that can scavenge free radicals,

i nh i b i t f r e e r ad i c a l - i nduc ed ox id a t i on , and e l i c i t

immunomodulation. A novel cytoprotective nanothin multilayer

coating for islet encapsulation consisting of TA and poly(N-

vinylpyrrolidone) can reduce M1 macrophage polarization and

the chemokine synthesis involved in leukocyte recruitment and

increase the expression of alternatively activated M2 macrophage-

associated mRNAs, such as Arg1, Retnla and Ccl17, in the graft. The

frequency and cell number of Arg-1+ and CD206+ macrophages

are significantly increased, alleviating islet transplantation rejection

(43–45). In summary, drug encapsulation is not only used as a

supplementary method for islet microencapsulation but also has the
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advantages of reducing the immunogenicity of the capsule material

itself and delivering drugs to the target area in a localized and

controlled manner, which can regulate the polarization of

macrophages while minimizing the systemic adverse reactions

and side effects of drugs. However, loading drugs onto

microcapsules limits the total amount of drugs that can be

loaded. How do we deliver drugs targeted when the drugs loaded

are exhausted? Furthermore, verifying whether grafts that lose the

immunomodulatory effect of drugs can maintain long-term

function is necessary. Additionally, most related studies do not

utilize portal vein transplantation, and different transplantation

sites may result in variations in graft function (Figure 3).
5 Discussion and outlook

Islet transplantation, an emerging organ transplantation

technology, solves the problem of insufficient insulin secretion
FIGURE 3

The strategies of islet cells engineering, islet isolation optimization, islet culture optimization, ECM regulation and MSCs cotransplantation in islet
transplantation. MMP-9 promotes the infiltration of macrophages into the graft by degrading ECM, but it also has the function of promoting the
vascularization of the graft; Diannexin inhibits the adhesion of leukocytes and platelet aggregates by binding to the externalized phosphatidylserine
residues on the islet surface; MSCs promote the polarization of M1 macrophages into M2 macrophages; The modification of hAAT strengthened
the anti-inflammatory effect of MSCs; The islet diameter less than 250 microns and the purification method based on OptiPrep can reduce the
expression of graft cytokines/chemokines and reduce the infiltration of immune cells; APT070 can inhibit the activation of complement system and
the infiltration of immune cells; Anakinra can reduce the formation of hIAPP, thus reducing macrophage infiltration; Donor ATF3 KO, sTNF-aR-Fc/
HO-1 overexpression and receptor Del-1 overexpression can reduce the infiltration of mononuclear macrophages; Thermoplastic polyurethane-
based nanofiber capsules can inhibit the activation of macrophages; Microcapsule-loaded Dex/Dexa/bilirubin can promote the M2 polarization of
macrophages and reduce the infiltration of macrophages into the graft. The black arrows indicate promotion and the red inhibitors indicate inhibition.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1341314
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duan et al. 10.3389/fimmu.2023.1341314
and dramatically improves the quality of life of diabetic patients.

Inhibiting the proinflammatory effect of macrophages in the IBMIR

directly or indirectly through different therapeutic means can

significantly improve the survival rate of early grafts. However,

macrophages have a “double-edged sword” role in the

inflammatory response. M2 macrophages have the potential to

promote the proliferation of b cells and, at the same time, play an

active role in tissue repair and blood supply reconstruction of the

graft (104). Simply inhibiting the infiltration of macrophages into

grafts is not conducive to graft repair and the vascularization

process. Regulating the M1/M2 phenotype of macrophages is the

most prevalent treatment strategy currently employed, which can

mitigate the detrimental effects of inflammatory responses on grafts

without compromising the functional capacity of M2 macrophages.

However, on the one hand, the potential inhibitory effects of this

approach on subsets of cells that are beneficial to graft function

remain unclear. On the other hand, many studies have confirmed

the role of M2 macrophages in renal and pulmonary fibrosis. M2

macrophages promote the proliferation and activation of fibroblasts

by secreting cytokines and differentiate into aSMA+ myofibroblasts

through a process called macrophage-to-myofibrolast transition

mediated by TGFb1–Smad3 signaling. Therefore, it is uncertain

whether regulating macrophage polarization will lead to fibrosis of

transplanted islets (105–107). In the latest research, mice’s kidney

macrophages were divided into monocyte-derived macrophages

and kidney resident macrophages by single‐cell RNA sequencing

technology after renal ischemia-reperfusion. More importantly,

S100a9hiLy6chi monocyte subsets were successfully defined by

analyzing tissues and performing RNA velocity analysis during

disease progression after renal ischemia-reperfusion, which played a

role in initiating and amplifying inflammatory injury throughout

the acute phase of acute kidney injury, and were verified in tissue

samples from clinical patients. In the mouse model, targeting this

subgroup to block S100a8/a9 signaling can effectively prevent acute

kidney injury caused by ischemia-reperfusion (108). Further

exploration of the heterogeneity of macrophages in inflammation

and the targeting of different functional subsets to obtain the most

ideal immune tolerance or modulation strategies are promising

research directions.

Intraportal islet transplantation is the most common route of

islet transplantation in clinical practice. However, in animal

experiments, there are other sites that could be used, such as the

renal capsule, peritoneal cavity and anterior chamber. These sites

may mitigate the IBMIR by reducing islet contact with blood. For

example, for patients with T1DM and End-Stage Renal Disease, a

new transplantation strategy is to transplant prevascularized islets

under the renal capsule of the donor’s kidney. In the non-human

primate model, this strategy will not affect the renal function of the

donor’s kidney, and it results in better islet function compared to

Intraportal transplantation and renal capsule transplantation

without prevascularization. Maintaining proper islet function

benefits the long-term survival of the donor kidney (109).

Compared with the cotransplantation of islets and MSCs, another
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popular area of research in recent years is the transplantation of

islets into MSC-rich tissues. Brown adipose tissue (BAT) is densely

vascularized and innervated and is rich in MSCs, M2 macrophages,

and immunosuppressive regulatory T cells. BAT is a potential

efficacious site for islet transplantation (110, 111). Bone marrow

is associated with advantages similar to those of BAT (112). Spleen,

an organ rich in MSC, has unique advantages as a transplantation

site. On the one hand, insulin produced by transplanted islets can

flow into the portal vein through the splenic vein, which is closer to

physiological insulin release profiles. On the other hand, spleen has

the potential to promote islet regeneration. Although some clinical

transplantation centers have performed intrasplenic islet

transplantation, there is a risk of arteriovenous thrombosis and

subcapsular hematoma (113). A more ideal transplantation site and

microenvironment are conducive to the survival and function of the

graft. Although these sites have different advantages, none can meet

the characteristics of minimal trauma, rich blood supply, and an

immune-tolerant environment; at the same time, their safety and

effectiveness still need to be verified. Additionally, they are

associated with problems such as poor oxygenation and

inconsistent outcomes in rodent and large animal islet

transplantation models (114). Therefore, exploring new

transplantation sites still requires a significant amount of time.

The strategy of combining medical and materials chemistry/

engineering techniques can obtain outstanding research results in

the field. Islet microencapsulation technology has been a popular

research direction in recent years, and the ability of systems created

with this technology to carry drugs and release drugs locally

highlights its superiority, especially in the field of xenogeneic islet

transplantation. Such systems can significantly reduce macrophage-

mediated islet destruction and protect graft function. However,

pericapsular fibrotic overgrowth is the main problem in this field,

and proinflammatory and anti-inflammatory macrophages may

mediate this adverse reaction. Only by clarifying the action

mechanism of macrophages can we further promote the

application of islet microencapsulation technology in clinical

work (115). Another advantage of materials chemistry as a

delivery system lies in its ability to enhance drug delivery and

tissue absorption, while its specific absorption by target tissues

solves the side effects of some drugs when administered systemically

(116). The strategy of utilizing nano-materials to target liver tissues

and regulate the maturation, activation, and polarization of

macrophages within the liver has lately garnered significant

attention in academic circles.

With the progression of single-cell sequencing and spatial

transcriptomics technologies, the identification of previously

unknown cell subsets with distinct functions has become feasible.

In the future, through a deeper understanding of the role of

macrophages in the inflammatory response and the continuous

optimization of corresponding immunomodulatory techniques, a

more suitable microenvironment for graft survival and function can

be constructed, and the prognosis of patients with islet transplants

can be gradually improved.
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et al. Nano-materials and their impact on the immune system. Int J Mol Sci (2023) 24
(3):2008. doi: 10.3390/ijms24032008

102. Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL. Local release of
dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by
promotion of anti-inflammatory M2 macrophages. Biomaterials (2017) 114:71–81. doi:
10.1016/j.biomaterials.2016.11.004

103. Zhu H, Wang J, Jiang H, Ma Y, Pan S, Reddy S, et al. Bilirubin protects grafts
against nonspecific inflammation-induced injury in syngeneic intraportal islet
transplantation. Exp Mol Med (2010) 42(11):739–48. doi: 10.3858/emm.2010.42.11.075

104. Vlahos AE, Cober N, Sefton MV. Modular tissue engineering for the
vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci
United States America (2017) 114(35):9337–42. doi: 10.1073/pnas.1619216114

105. Huen SC, Cantley LG. Macrophages in renal injury and repair. Annu Rev
Physiol (2017) 79:449–69. doi: 10.1146/annurev-physiol-022516-034219

106. Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal
inflammation and fibrosis. Nat Rev Nephrol (2019) 15(3):144–58. doi: 10.1038/s41581-
019-0110-2

107. Wang Y, Zhang L, Wu GR, Zhou Q, Yue H, Rao LZ, et al. MBD2 serves as a
viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci Adv
(2021) 7(1):eabb6075. doi: 10.1126/sciadv.abb6075

108. Yao W, Chen Y, Li Z, Ji J, You A, Jin S, et al. Single cell RNA sequencing
identifies a unique inflammatory macrophage subset as a druggable target for
alleviating acute kidney injury. Advanced Sci (Weinheim Baden-Wurttemberg
Germany) (2022) 9(12):e2103675. doi: 10.1002/advs.202103675

109. Pomposelli T, Schuetz C, Wang P, Yamada K. A strategy to simultaneously cure
type 1 diabetes and diabetic nephropathy by transplant of composite islet-kidney grafts.
Front endocrinol (2021) 12:632605. doi: 10.3389/fendo.2021.632605

110. Kepple JD, Barra JM, Young ME, Hunter CS, Tse HM. Islet transplantation into
brown adipose tissue can delay immune rejection. JCI Insight (2022) 7(4):e152800.
doi: 10.1172/jci.insight.152800

111. Xu K, Xie R, Lin X, Jia J, Zeng N, Li W, et al. Brown adipose tissue: A potential
site for islet transplantation. Transplantation (2020) 104(10):2059–64. doi: 10.1097/
TP.0000000000003322

112. Cantarelli E, Melzi R, Mercalli A, Sordi V, Ferrari G, Lederer CW, et al. Bone
marrow as an alternative site for islet transplantation. Blood (2009) 114(20):4566–74.
doi: 10.1182/blood-2009-03-209973

113. Sakata N, Yoshimatsu G, Kodama S. The spleen as an optimal site for islet
transplantation and a source of mesenchymal stem cells. Int J Mol Sci (2018) 19
(5):1391. doi: 10.3390/ijms19051391

114. Lei J, Zhang A, Deng H, Yang Z, Peters CW, Lee KM, et al. Intrapleural
transplantation of allogeneic pancreatic islets achieves glycemic control in a diabetic
non-human primate. Am J Transplant (2022) 22(3):966–72. doi: 10.1111/ajt.16875

115. Vaithilingam V, Fung C, Ratnapala S, Foster J, Vaghjiani V, Manuelpillai U,
et al. Characterisation of the xenogeneic immune response to microencapsulated fetal
pig islet-like cell clusters transplanted into immunocompetent C57BL/6 mice. PloS One
(2013) 8(3):e59120. doi: 10.1371/journal.pone.0059120

116. Wang J,Mao K, Cong X, TanH,WuC, Hu Z, et al. Nanoparticle delivery of CD40
siRNA suppresses alloimmune responses by inhibiting activation and differentiation of
DCs and macrophages. Sci Adv (2022) 8(51):eabq3699. doi: 10.1126/sciadv.abq3699
frontiersin.org

https://doi.org/10.1093/jmcb/mjaa009
https://doi.org/10.1182/blood-2012-04-421040
https://doi.org/10.1016/j.trre.2012.11.003
https://doi.org/10.1016/j.stem.2018.05.004
https://doi.org/10.1016/j.stem.2018.05.004
https://doi.org/10.3390/biomedicines11051426
https://doi.org/10.1016/j.biopha.2021.112042
https://doi.org/10.3390/biomedicines11071781
https://doi.org/10.3390/cells12151966
https://doi.org/10.1038/nbt.2816
https://doi.org/10.2337/db22-0117
https://doi.org/10.1155/2015/394917
https://doi.org/10.2337/db17-0705
https://doi.org/10.1111/j.1365-3083.2010.02466.x
https://doi.org/10.1016/j.biomaterials.2011.08.044
https://doi.org/10.1016/j.biomaterials.2015.02.031
https://doi.org/10.1016/j.biomaterials.2015.02.031
https://doi.org/10.2337/diab.39.5.634
https://doi.org/10.1016/j.molmet.2017.05.016
https://doi.org/10.1016/j.molmet.2017.05.016
https://doi.org/10.4049/jimmunol.1002854
https://doi.org/10.1001/jamadermatol.2022.2124
https://doi.org/10.3389/fendo.2021.636824
https://doi.org/10.3109/13506129.2012.679988
https://doi.org/10.1002/jbm.a.30541
https://doi.org/10.1002/jbm.a.30541
https://doi.org/10.1002/adma.202102852
https://doi.org/10.1038/nrd.2016.232
https://doi.org/10.3390/ijms24032008
https://doi.org/10.1016/j.biomaterials.2016.11.004
https://doi.org/10.3858/emm.2010.42.11.075
https://doi.org/10.1073/pnas.1619216114
https://doi.org/10.1146/annurev-physiol-022516-034219
https://doi.org/10.1038/s41581-019-0110-2
https://doi.org/10.1038/s41581-019-0110-2
https://doi.org/10.1126/sciadv.abb6075
https://doi.org/10.1002/advs.202103675
https://doi.org/10.3389/fendo.2021.632605
https://doi.org/10.1172/jci.insight.152800
https://doi.org/10.1097/TP.0000000000003322
https://doi.org/10.1097/TP.0000000000003322
https://doi.org/10.1182/blood-2009-03-209973
https://doi.org/10.3390/ijms19051391
https://doi.org/10.1111/ajt.16875
https://doi.org/10.1371/journal.pone.0059120
https://doi.org/10.1126/sciadv.abq3699
https://doi.org/10.3389/fimmu.2023.1341314
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yi Wang,
Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, China

REVIEWED BY

Dafei Chai,
Baylor College of Medicine, United States
Si-Yuan Song,
Baylor College of Medicine, United States

*CORRESPONDENCE

Lisha Mou

lishamou@email.szu.edu.cn

RECEIVED 06 January 2024
ACCEPTED 07 February 2024

PUBLISHED 23 February 2024

CITATION

Cooper DKC, Mou L and Bottino R (2024)
A brief review of the current status of pig
islet xenotransplantation.
Front. Immunol. 15:1366530.
doi: 10.3389/fimmu.2024.1366530

COPYRIGHT

© 2024 Cooper, Mou and Bottino. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 23 February 2024

DOI 10.3389/fimmu.2024.1366530
A brief review of the
current status of pig
islet xenotransplantation
David K. C. Cooper1, Lisha Mou2,3* and Rita Bottino4

1Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School,
Boston, MA, United States, 2Institute of Translational Medicine, The First Affiliated Hospital of
Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China, 3MetaLife
Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China, 4Imagine Islet
Center, Imagine Pharma, Pittsburgh, PA, United States
An estimated 1.5 million Americans suffer from Type I diabetes mellitus, and its

incidence is increasing worldwide. Islet allotransplantation offers a treatment, but

the availability of deceased human donor pancreases is limited. The

transplantation of islets from gene-edited pigs, if successful, would resolve this

problem. Pigs are now available in which the expression of the three known

xenoantigens against which humans have natural (preformed) antibodies has

been deleted, and in which several human ‘protective’ genes have been

introduced. The transplantation of neonatal pig islets has some advantages

over that of adult pig islets. Transplantation into the portal vein of the recipient

results in loss of many islets from the instant blood-mediated inflammatory

reaction (IBMIR) and so the search for an alternative site continues. The adaptive

immune response can be largely suppressed by an immunosuppressive regimen

based on blockade of the CD40/CD154 T cell co-stimulation pathway, whereas

conventional therapy (e.g., based on tacrolimus) is less successful. We suggest

that, despite the need for effective immunosuppressive therapy, the

transplantation of ‘free’ islets will prove more successful than that of

encapsulated islets. There are data to suggest that, in the absence of rejection,

the function of pig islets, though less efficient than human islets, will be sufficient

to maintain normoglycemia in diabetic recipients. Pig islets transplanted into

immunosuppressed nonhuman primates have maintained normoglycemia for

periods extending more than two years, illustrating the potential of this novel

form of therapy.
KEYWORDS

diabetes, islets, pancreatic, nonhuman primates, pig, genetically-engineered,
xenotransplantation
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized

by insulin-secreting b cell destruction by CD4+ and CD8+ T cells,

resulting in insulin deficiency and hyperglycemia. Genetic

susceptibility plays a role in the development of T1D, which is

associated in part with certain human leukocyte antigens (HLA) (1).

Conventional treatment of T1D includes exogenous insulin therapy,

which helps reduce hyperglycemia. However, in patients with

unstable (‘brittle’) diabetes, it is difficult to prevent life-

threatening hypoglycemia or hyperglycemia, as well as late

complications, e.g., retinopathy, nephropathy, vascular disease (2).

Islet allotransplantation is viewed as an efficient therapy for T1D.

Studies have demonstrated that islet transplantation can

significantly reduce, or eliminate, the need for daily insulin

injections, marking a pivotal shift in T1D management (3).

Furthermore, the enhanced quality of life, coupled with a notable

reduction in diabetes-related complications, underscores the

transformative potential of islet transplantation (4). By

integrating detailed outcomes from relevant research, this

introduction aims to illustrate the broader implications of islet

transplantation, not only as a mechanism for blood sugar regulation

but also to provide new solutions for the treatment of patients

with T1D.

However, the shortage of pancreases from deceased human

donors poses a problem of increasing need for another source of

islets, which may be met by gene-edited pigs (5–7).

Indeed, xenotransplantation has immense potential for the

treatment of numerous disorders and will prove to be the next

great medical revolution (8). Pancreatic islet transplantation will

benefit greatly from an unlimited number of gene-edited pigs. With

the potential advantages of neonatal islets (see below), the

transplantation of neonatal islet-like cell clusters (NICC), which

will never be available in sufficient numbers from deceased human

neonates, will become possible.

As there are an estimated 1.5 million patients with T1D and

perhaps 30 million with type 2 diabetes in the USA alone, the

number of islet transplants carried out worldwide will increase

exponentially. The islet grafts will control the patient’s blood

glucose for long periods of time (if not permanently) without the

need for daily insulin injections. Because of the ready availability of

the islet-source pigs, islet re-transplantation will be possible

whenever required and will be a relatively simple procedure.
History of islet xenotransplantation

Insulin deficiency can be overcome by transplanting pancreatic

allo-islets (9). Early attempts, none of which succeeded, were

reported in the late 19th and early 20th centuries (6). Novel
Abbreviations: HLA, human leucocyte antigen; IAPP, islet amyloid polypeptide;

IBMIR, instant blood-mediated inflammatory reaction; mAb, monoclonal

antibody; NICC, neonatal islet-like cell clusters; NHP, nonhuman primate;

SLA, swine leukocyte antigen; T1D, type 1 diabetes; WT, wild-type (i.e.,

genetically-unmodified).
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insights in pancreatic islet cell biology, the development of

improved methods of islet isolation (10), and the introduction of

an automated approach for isolating islets from human pancreases

were major steps forward (11).

In regard to islet xenotransplantation, the pig represents the

most probable source of islets for various reasons (Table 1) (5). The

sequence of porcine insulin differs by only a single amino acid from

that of human insulin and, moreover, porcine insulin was

administered to treat diabetes successfully for nearly a century

before the introduction of recombinant human insulin (12).

In the realm of islet xenotransplantation, porcine C-peptide

measurements serve as a critical marker for evaluating the survival

and functionality of transplanted pig islets in human recipients.

This test, measuring the level of C-peptide, a byproduct of insulin

production, provides insights into the pancreatic beta cells’ ability to

produce insulin post-transplantation. Notable studies include

Groth et al. (13), which marked the first human islet

xenotransplantation attempt, though without significant
TABLE 1 Advantages and disadvantages of the pig as a potential source
of organs and cells for humans, in contrast to the baboon in this role.

Pig Baboon

Availability Unlimited Limited

Breeding potential Good Poor

Period to
reproductive maturity

4-8 months 3-5 years

Length of pregnancy 114 + 2 days 173-193 days

Number of offspring 5-12 1-2

Growth Rapid (adult human
size by 6 months) a

Slow (9 years to
reach
maximum size)

Size of adult organs Adequate Inadequate b

Cost of maintenance Significantly lower High

Anatomical similarity
to humans

Close Close

Physiological similarity
to humans

Moderately close Close

Immune system in relation
to humans

Distant Close

Knowledge of tissue typing Considerable (in
selected herds)

Limited

Necessity for blood type
compatibility with humans

Probably unimportant Important

Experience with
genetic engineering

Considerable None

Risk of transfer of
infection (xenozoonosis)

Low High

Availability of designated
pathogen-free animals

Yes No

Public opinion More in favor Mixed
aBreeds of miniature swine vary greatly in size.
bThe size of certain organs, e.g., the heart, would be inadequate for transplantation into
adult humans.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1366530
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cooper et al. 10.3389/fimmu.2024.1366530
improvement in glycemic control. The study by Elliott et al. (14)

demonstrates the viability of pig islet xenotransplantation through

C-peptide tests. The transplantation of neonatal pig islets into

diabetic subjects showed a reduction in insulin dosage and an

increase in serum pig C-peptide for up to two years, indicating

sustained graft function. This evidence supports the potential of pig

islets to survive and function in humans, offering a promising

avenue for diabetes treatment by reducing insulin dependency.

Valdes-Gonzalez et al. (15) observed a reduction in insulin

needs and improvements in HbA1c over time, indicating sustained

functionality of transplanted islets. Wang et al. (16) and subsequent

trials (17, 18) further supported these findings, demonstrating the

potential of porcine islets to ameliorate diabetes management,

despite varying degrees of success and the absence of long-term

insulin independence in all cases.
The optimal age of the pig as a source
of islets

The ideal age of the islet-source pig has been discussed for many

years. Pigs can be divided into three age groups – fetal, neonatal

(approximately <14 days-old), and adult (>12 weeks-old (Table 2).

As fetal pig islets are not currently being considered for

xenotransplantation (because of limited b-cell yield and delayed

production of insulin), the choice is between adult or neonatal pigs.

There are advantages and disadvantages to both (19, 20).

Adult pig pancreases provide more fully-differentiated islets

that are thus able to secrete insulin immediately after

transplantation (Figure 1) (6). One adult pig pancreas may yield a

sufficient number of islets to control diabetes after transplantation

into a diabetic patient weighing 60kg (21). However, limitations are

(i) the high cost of maintaining the pig until of adequate size (at

approximately 6 months of age), (ii) the difficulty and high cost of

islet isolation, and (iii) poor proliferation of the islets after

transplantation (22) (Table 2). Adult sows (female pigs) that have

delivered more than two litters of piglets (i.e., retired breeders,

usually >2 years-old and weighing >200kg), may have advantages
Frontiers in Immunology 0382
over young adult pigs as sources of islets by providing a greater yield

of high-quality islets (20). However, the cost of maintaining them

for two years would be considerable.

The advantages of neonatal islets (i.e., NICC) include (i) low

cost of maintaining the piglets before pancreatectomy (<2 weeks),

(ii) much simpler and reproducible NICC isolation, (iii) lower

isolation costs compared to adult pig islets (22), and (iv)

considerable proliferation of islets after transplantation (Table 2)

(23). They may also be less susceptible to anoxic injury post-

transplant. However, they have limitations – (i) a greater number

is required to provide sufficient islets for a single adult human

recipient, and (ii) they must be cultured to mature and re-aggregate

before transplantation. Neonatal pigs can yield approximately

25,000-30,000 islets per donor pancreas. However, considering

that a patient may require 10,000-20,000 porcine islet equivalents

(IE)/kg for effective treatment, a 70kg patient may need as many as

25 or more piglet donors (10,000IE/kg x 70kg) (24). Nevertheless, if

diabetes can be efficiently treated, this approach is justified (25).

Neonatal pigs are currently considered by many researchers as

the favored age for obtaining islets for clinical use (26). The much

greater costs of maintaining the pig until adulthood and of adult

islet isolation may eventually prove decisive in favor of neonatal

pigs as sources of islets for commercial clinical transplantation.
The optimal site for pig
islet xenotransplantation

This is another topic that has been debated for many years. The

portal vein/liver is presently the favored location for islet
TABLE 2 Advantages and disadvantages of neonatal and adult pig islets
for clinical xenotransplantation.

Neonatal Adult

Isolation procedure Simple Difficult

Cost of islet isolation Low High

Islet yield/pancreas (IEQs) 25,000-50,000 200,000-500,000

Beta cells (% of islet cells) 25% >70%

Insulin production May be delayed Immediate

Proliferation in vivo Yes Little/none

Tumorigenicity Low None

Risk of pathogen transmission Low Low

Cost of housing pig until islets utilized Low High
FIGURE 1

Adult pig islets after isolation. Adult pig islets stained in red with
dithizone after isolation and purification (magnification 40x).
(Reproduced with permission from 6).
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allotransplantation (9). Nevertheless, the liver is not an optimal site

for islet engraftment (27). Intraportal islet infusion increases the

risk of hemorrhage and portal vein thrombosis. Furthermore,

oxygen tension in the portal vein is lower than in the pancreas,

which may lead to islet cell apoptosis. Most importantly, the instant

blood-mediated inflammatory reaction (IBMIR – see below) may

reduce the number of surviving islets by 60% within the first few

hours or days (28–32). Furthermore, due to the broad distribution,

biopsies of the engrafted islets are challenging and graft retrieval

impossible. Alternative sites therefore continue to be explored

(Table 3) (5, 26, 27). Transplant sites tested include the omental

pouch, striated muscle, renal subcapsular space, the gastrointestinal

submucosal space, and bone marrow.

Islet transplantation into the renal subcapsular space has shown

some success in experimental models, but limited success has been

reported in humans, possibly from ischemic injury associated with

compression of the islets. Preclinical studies in which pig islets were

successfully transplanted either under the kidney capsule of pig

littermates or in an autologous setting (thus in the absence of an

immune response) , demonstra ted is le t surv iva l and

revascularization (33). The established composite islet-kidney was

then transplanted into an immunosuppressed allogeneic recipient.

In Major Histocompatibility Complex (MHC)-matched pigs,

successful engraftment and immediate function of both the islets

and kidney was reported. In a similar model, successful engraftment

was also reported in an immunosuppressed nonhuman primate

(NHP) model (34).

To ensure the clinical relevance of these studies, it would be

essential to utilize a xenogeneic model. Now that the rejection of a

pig kidney can largely be prevented (35–37; Kinoshita et al. 20241),

it is time to explore this approach again. The primary objective is to

utilize the combined pig islet-kidney to effectively treat both renal

failure and diabetes in individuals suffering from diabetic

nephropathy. This would probably best be achieved by

implanting pig NICC into identical piglet recipients (possibly

littermates), with subsequent transplantation of the islet/kidney

into the patient.
Gene editing of the islet-source pig

Quite remarkably, adult wild-type (WT, i.e., genetically-

unmodified) pig islets have functioned in anti-CD154mAb-based

immunosuppressed diabetic NHPs for up to 965 days (38).

However, gene-editing of the pig would almost certainly have

been associated with equally good or even better results with less

intensive immunosuppressive therapy. Gene editing includes (i)

deletion of expression of the 3 known pig carbohydrate

xenoantigens (Table 4), and/or (ii) the introduction of one or

more human ‘protective’ transgenes, e.g., complement-regulatory,
1 Kinoshita,K, Maenaka A, Rosales I, Karadagi A, Tomsugi T, Ayares D, et al.

Novel factors potentially initiating acute antibody-mediated rejection in pig

kidney xenografts despite an efficient immunosuppressive regimen.

Xenotransplantation (In press) (2024).
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coagulation-regulatory, and anti-inflammatory (anti-apoptotic)

(5, 39).

Knockout of the genes for the 3 glycan xenoantigens

(providing tr iple-knockout , [TKO] pigs) is general ly

considered the basis of the pigs that will be sources of organs

and cells for clinical transplantation (Figure 2) (39). However,

while TKO pig organs represent a significant advancement in

xenotransplantation, the presence of pre-existing antibodies in

Old World NHPs against these cells (Figure 3) (41) presents a

complex challenge in pre-clinical studies, necessitating careful

consideration and ongoing research to enhance compatibility

and reduce immunological rejection.

There is evidence that the expression of protective human

proteins adds to survival of pig organs or islets in NHPs. The

adverse role of complement in pig islet xenotransplantation is well-

known (42). The expression of one or more human complement-

regulatory proteins (e.g., CD46, CD55, CD59) on the islets is

therefore beneficial (43–45). In 2009, van der Windt et al.

achieved insulin-independence in a diabetic monkey for >1 year

by transplanting WT pig islets expressing a single human

complement-regulatory protein, hCD46 (Figure 4) (43). More

recently, Hawthorne and his colleagues achieved consistent long-

term function of neonatal islets from GTKO pigs expressing human

CD55 and CD59 in immunosuppressed baboons (46).

Expression of one or more human coagulation-regulatory

proteins (e.g., thrombomodulin, endothelial cell protein C

receptor [EPCR]), contributes resistance to IBMIR (47). The

additional expression of a human anti-inflammatory gene (e.g.,

hemeoxygenase-1 [HO-1] or A20) and/or soluble human tumor

necrosis factor receptor I IgG1-Fc provides some protection from

the effects of inflammation (39, 48). Our group demonstrated

modulation of IBMIR-mediated islet damage by employing

multiple human transgenes that included complement and

coagulation inhibitors. Despite reduced early islet damage,

however, long-term improved outcome was not achieved (44).

There are further specific gene edits that can be made to the pig to

modulate the cellular response to the islet graft, e.g., (i) insertion of a

mutant (human) MHC class II transactivator gene which down-

regulates swine leukocyte antigen (SLA) class II expression, (ii)

deletion of expression of SLA class I (SLA class I-KO), or (iii)

insertion of a CTLA4-Ig gene to induce local immunosuppression,

(iv) expression of PD-L1, and (v) expression of HLA E and G (49–54).
Immunosuppressive therapy

Gene edits designed to protect against innate immunity do not

prevent the adaptive immune response (cellular rejection).

Exogenous pharmacological immunosuppression is therefore

required to modulate the immune response.

Buhler et al. were the first to demonstrate that conventional

immunosuppressive therapy, e.g., tacrolimus-based, was inefficient

in suppressing the adaptive immune response to a pig xenograft, but

that blockade of the CD40/CD154 T cell co-stimulation pathway

was much more successful (55). This observation has since been

supported by numerous studies including several involving pig islet
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transplantation in NHPs (38, 43, 44, 56) (Figure 5). Some induction

therapy (e.g., anti-thymocyte globulin, an anti-CD20mAb, and

possibly transient inhibition of systemic complement activity)

appears to be essential (Table 5) (57; Kinoshita et al.1). Anti-

CD154 mAbs have proved more effective than anti-CD40 mAbs

(38, 58), but were originally associated with thrombogenic

complications (59), though these were not seen after pig islet

transplantation (60). However, current modified anti-CD154

mAbs induce no thromboembolic complications in NHPs (36, 37;

Kinoshita et al.1).

Some immunosuppressive regimens that have proven moderately

successful in pig kidney transplantation in NHPs (Table 5) may be

considered too intensive for the treatment of diabetic patients

receiving a pig islet transplant. A less intensive regimen may need

to be developed. Park and his colleagues in South Korea succeeded in

rendering diabetic monkeys insulin-independent for approximately 2

years following transplantion of adult WT pig islets using an

immunosuppression protocol including anti-CD154mAb (38).

When this group substituted anti-CD154mAb treatment with an

anti-CD40mAb (58), they were unable to replicate these exceptional

findings. Moreover, Park et al. demonstrated that a second islet

infusion successfully restored normoglycemia under a clinically

applicable maintenance immunosuppressive regimen, without the

need for further induction therapy (61). Other co-stimulation-

blockade agents, such as CTLA4-Ig, have been less efficient in

protecting a xenograft (62). The use of islet transplantation from

multi-transgenic pigs combined with anti-CD154 mAb-based

therapy seem a promising avenue for successful engraftment.

In summary, genetic modifications in porcine islets aim to enhance

insulin production and functionality but introduce complexities such as

potential immunogenicity and alterations in islet physiology, impacting

their viability and function. Addressing these concerns necessitates
Frontiers in Immunology 0584
precision in gene-editing to minimize unintended effects, thorough

preclinical evaluations for safety and efficacy, and adherence to ethical

standards in genetic engineering. These measures are critical for

advancing porcine islet xenotransplantation as a viable treatment

option for diabetes, ensuring both the effectiveness and safety of

genetically modified islets.
The problem and prevention of IBMIR

One of the main difficulties in porcine islet xenotransplantation

is the initial inflammatory and immune reaction to the transplant –

IBMIR (28–30, 32, 63, 64).

IBMIR occurs when pig islets are introduced into the

portal vein, which is currently the preferred location for

allotransplantation. When blood comes into contact with islets,

especially xenogeneic islets, it triggers an inflammatory response

that activates the complement and coagulation systems. As a result,
TABLE 3 Comparison of different sites for free (non-encapsulated) islet xenotransplantationa.

Liver Renal
capsule

Spleen Skin Omentum Gastric
submucosal
space

Pancreas Muscle

Efficacy of
clinical trials

Good Poor Not reported Poor Limited
experience

Limited
experience

Not reported Limited
experience

Patient safety Safe Safe Safe Safe Safe Safe Possible
pancreatitis

Safe

Oxygen tension Low Not
reported

High Low Not reported High Not reported Not
reported

Vasculature Rich Poor Not reported, but
probably rich

Poor Rich Rich Not reported Rich

Site of insulin
released by the graft

Liver Not
reported

Portal vein Systemic
circulation

Portal vein Portal vein Not reported Systemic
circulation

Surgery Invasive,
some
complications

Invasive Invasive Non-
invasive

Easy Easy (endoscopy) Difficult Easy

IBMIR Yes Not
reported

Yes Not
reported

Not reported Not reported Not reported Not
reported
fr
aTable modified from (27).
TABLE 4 Known carbohydrate xenoantigens expressed on pig cells.

Carbohydrate
(Abbreviation)

Responsible
enzyme

Gene-
knockout

pig

Galactose-a1,3-
galactose (Gal)

a1,3-galactosyltransferase GTKO

N-glycolylneuraminic
acid (Neu5Gc)

CMAH CMAH-KO

Sda
b-
1,4N-
acetylgalactosaminyltransferase

b4GalNT2-KO
CMAH, Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH).
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A B

FIGURE 2

Human serum antibody binding to WT and TKO pig red blood cells (pRBCs). Correlation between human serum antibody binding to pig RBCs, by
relative geometric mean [rGM]) and age. Human serum (A) IgM and (B) IgG antibody binding to wild-type (WT) pRBCs (top) and to Triple-knockout
(TKO) pRBCs (bottom). The dotted lines indicate no IgM or IgG binding. (Note the great difference in the scale on the Y axis between A and B.) There
is almost no anti-TKO pig antibody production during the first year of life and very low levels in adults compared to antibody against WT pig cells.
(Reproduced with permission from 40).
FIGURE 3

Human and Old World monkey serum antibody binding and cytotoxicity to WT, GTKO, and TKO pig peripheral blood mononuclear cells (PBMCs).
Human (top) and Old World monkey (OWNHPs) (bottom) IgM (left) and IgG (middle) binding and complement-dependent cytotoxicity (CDC, at 25%
serum concentration) (right) to WT, GTKO, and TKO pig PBMCs. Results are expressed as mean ± SEM. (*p<0.05, **p<0.01; N.S. = not significant).
On the y axis, the dotted line represents cut-off value of binding (relative geometric mean [GM]: IgM 1.2, IgG 1.1), below which there is no binding.
For CDC on the y axis, the dotted line represents cut-off value of cytotoxicity (6.4%), below which there is no cytotoxicity. (Note the difference in
scale on the y axis between IgM and IgG.) Although there is reduced antibody binding and cytotoxicity to GTKO PBMCs in both humans and
monkeys, there is an increase in antibody binding and cytotoxicity to TKO PBMCs in monkeys. (Reproduced with permission from 40).
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the islets are quickly destroyed. One of the triggers of IBMIR is the

expression of tissue factor on the islets (31, 65, 66), as well as the

activation of complement and coagulation (63, 64). In addition,

the binding of the host’s natural anti-pig antibodies to the islets

further exacerbate IBMIR-mediated damage (Figure 6). In line with

these mechanistic observations, various complement inhibitors and

anti-inflammatory agents have been demonstrated to modulate

early islet loss (29, 31, 32), e.g., heparin, thrombin inhibitors, and

anti-platelet agents (28, 31, 67, 68).

Targeting IBMIR and immune rejection seems equally

important to ensure that pig islet grafts survive and function in

the liver (Figure 7) (69).

The destruction of pig islet grafts by IBMIR and rapid antibody-

mediated rejection are events that have similarities and differences,

but they share common features (63). Many of the genetic

modifications that influence IBMIR have a significant impact on

reducing antibody-induced rejection (5). Downregulation of pig

antigen expression, as well as transgenic expression of human

complement- and coagulation-regulatory proteins have all been

shown to protect organ and islet grafts (44, 70, 71). With relevance

to clinical application, the genetic modifications described do not

appear to impair beta cell function in vivo—orand in vitro (72, 73).

Composite transplantation of porcine islets with mesenchymal

stem cells or Sertoli cells demonstrated improved islet engraftment

after xenotransplantation (74–81). The mechanisms behind

improved islet function are thought to be associated with the

anti-inflammatory, regenerative, and immunomodulatory

properties of mesenchymal stem cells and Sertoli cells.
Encapsulation

An alternative approach to protect islets from the recipient

microenvironment is to physically isolate the islets by
Frontiers in Immunology 0786
‘encapsulation. Ongoing investigations propose micro- and macro-

structures that isolate the islet grafts from the host immune system,

while also ensuring the provision of oxygen and nutrients to the

enclosed cells and tissues (79, 82–86). Encapsulation technology in

islet xenotransplantation offers the theoretical advantage of

immunoprotection, potentially eliminating the need for systemic

immunosuppression. It aims to create a semi-permeable barrier

that shields transplanted islets from immune cells while allowing

insulin, nutrients, and oxygen to pass through. However, this

approach faces challenges, including the risk that the biomaterials

may permit cytokine penetration, potentially triggering an immune

response, and the possible insufficiency of oxygen and nutrient

transport across the encapsulation barrier, which could lead to islet

dysfunction or loss. These limitations underscore the need for

ongoing research to optimize encapsulation materials and

techniques for successful xenotransplantation outcomes.
Sensitization to HLA or to
pig xenoantigens

Two important questions have arisen. The first Is whether

sensitization to human leukocyte antigens (HLA) harms pig islet

xenotransplantation. Blood transfusions, human organ transplants,

or pregnancies can trigger the generation of antibodies directed

towards HLA antigens. In these instances, if an organ or cell

transplant is required, preexisting anti-HLA antibodies can pose

challenges in finding a suitable human donor for organ or cell

transplantation. There is evidence that anti-HLA antibodies may

target some swine leukocyte antigens (SLA), due to cross-reactivity,

but cross reactivity is expected to be minimal, thus unlikely

negatively affecting xenotransplantation (reviewed in 87).

The second question is whether sensitization to SLA would be

detrimental to subsequent human islet allotransplantation. If

sensitization to a pig xenograft develops, the existing limited
FIGURE 4

Post-transplant course of an immunosuppressed diabetic monkey
following hCD46 pig islet transplantation. Blood glucose (blue) and
pig C-peptide levels (red) in a streptozotocin-induced diabetic
cynomolgus monkey before and after intraportal transplantation of
islets from a pig expressing the human complement-regulatory
protein, CD46. No exogenous insulin was administered after the
transplant. The normoglycemic monkey was electively euthanized
after 12 months. Day 0 = day of islet transplantation. (Reproduced
with permission from 43).
FIGURE 5

GTKO pig kidney survival in baboons receiving US FDA-approved
immunosuppressive agents (Group A, in red) was much shorter than
in those receiving an anti-CD40mAb-based regimen (Group B, in
black). (Reproduced with permission from 56).
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information suggests that the recipient would not be at an

immunological disadvantage to subsequently undergo

allotransplantation (reviewed in 87).
Frontiers in Immunology 0887
The induction of immune tolerance

The ultimate goal of organ and cell allo- or xeno-

transplantation is to induce a state in which the host immune

system recognizes the transplanted pig islets as ‘self’ and makes no

effort to reject them. Discontinuing all immunosuppressive therapy

would be possible if immunologic ‘tolerance’ could be attained.

Immune tolerance to allografts has been explored by different

approaches, e.g., (i) donor-specific hematopoietic progenitor cell

transplantation (chimerism) or (ii) concomitant donor-specific

thymus transplantation (88). The role of regulatory cells,

however, in immune tolerance remains uncertain (89).

In contrast to allotransplantation with deceased donor organs,

xenotransplantation offers the advantage of elective timing of the

transplant, which provide a time window for the manipulation of

the host’s immune system towards immune tolerance. In light of

this potential advantage, if the early inflammatory events causing

IBMIR, can be successfully modulated, immune tolerance might be

achievable to control cellular rejection.
Improving function of porcine islets

Compared to humans, the porcine islet response to stimuli

presents some differences requiring further investigation. Pigs use

less insulin, need lower levels of C-peptide, and sustain higher

blood glucose levels in comparison to NHPs (Table 6) (72, 73, 92).

When stimulated with glucose in vitro, isolated porcine islets

secrete 3 to 6 times less insulin than human islets (86, 93, 94).

Genetic modifications aimed at enhancing islet function and
TABLE 5 Representative immunosuppressive and adjunctive regimen
currently administered in our center to baboons with life-supporting
TKO pig kidney grafts (which would be similar for TKO pig
islet transplantation).

Agent Dose (duration)

Induction

Thymoglobulin (ATG)
5mg/kg i.v. (day -3) (to reduce the
lymphocyte count to <500/mm3)

Anti-CD20mAb (rituximab) 10mg/kg i.v. (day -2)

C1-esterase inhibitor 17.5U/kg i.v. on days 0 and 2.

Maintenance

Anti-CD154 mAb (Tonix-1500)
30mg/kg (days 0, 2, 7, 10, 14,
and weekly)

Rapamycin
0.1-0.2mg/kg i.m./day (target trough 6-
12 ng/ml) beginning on day -5.

Methylprednisolone
10mg/kg/d on day 0, tapering to 0.25
mg/kg/d by day 7.

Adjunctive

Aspirin
40mg p.o. (alternate days), beginning
on day 4.

Erythropoietin 2,000 U i.v. x1-2 weekly (if Hct<30),

Anti-CMV and/or antibiotic
prophylaxis when
considered necessary
FIGURE 6

Binding of human IgM and IgG antibody to pig islets (xenogeneic) (A, B) and to human islets (allogeneic) (C, D). IgM (green, A, C), IgG (green, B, D),
insulin (red), nucleus (DAPI/blue). Yellow indicates colocalization of insulin and IgM/IgG. The greatly increased binding of human IgM and IgG to pig
islets (compared to human islets) is obvious. (Reproduced with permission from 63).
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insulin production in pig islets have been explored (95, 96).

However, there is some concern that forcing insulin secretion

might result in islet metabolic imbalance, and ‘exhaustion’ (86).

To overcome this potential problem, transplantation of a greater

number of islets may provide a solution.
Metabolic aspects and glucose
‘counter-regulation’

The ability to control blood glucose levels within a normal range

is dependent on the interaction of several factors. Endocrine

hormones of the pancreas, paracrine effects, the release of

neurotransmitters and neuropeptides, gluconeogenesis and

glycogenolysis all play roles in maintaining blood glucose levels.

These parameters differ between species, thus raising questions on the

potential effects of cross-species metabolic variability in the context of

xenotransplantation (92). Understanding the metabolic differences

between pigs and humans, and the potential ramifications, is vital for

the advancement of clinical xenotransplantation.

Parameters of metabolic control are more similar between

pigs and humans than between pigs and NHPs (92). However,

pigs are more glucose tolerant and have lower basal insulin levels

than humans (97). Thus, metabolic control may be more easily

established in pig-to-human than in pig-to-NHP islet

transplantation. In response to glucose changes, both isolated

neonatal and adult porcine islets demonstrate coherent insulin

and glucagon secretion and suppression in vitro. A high

concentration of glucose increases insulin secretion and

inhibits glucagon secretion. Alpha cells may play a more

prominent role in the response to glucose changes in pigs than

in humans. Glucagon secretion is more pronounced in neonatal

compared to adult pig islets (98).

Taken together, these data suggest not only that the metabolic

profile of porcine islets may be similar to human islets but also that

the highly efficient glucagon response to hypoglycemia may
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represent a clinically relevant factor predictive of timely glucose

counter-regulation.

One aspect of pig metabolism that has not yet been fully

explored has emerged from a genetic study aimed on the “thrifty

gene hypothesis” in human populations (99). According to this

hypothesis, humans have survived famine and starvation for

millennia, thus certain populations may have genes that

determine increased fat storage, which would facilitate survival

in times of want or famine. Nonetheless, in an environment

characterized by easy access to food, as in modern Western

cultures, for example, such genes predispose the genetic carrier

to develop type 2 diabetes. In contrast to this outlook for humans,

domesticated pigs and cows have long been selectively bred for

their ability to efficiently accumulate and store energy (for later

consumption by humans). Pigs and cows should, therefore, be

protected against the toxic effects of a “diabetogenic” environment

(i.e., one that favors inactivity and energy abundance).

The mechanisms that determine this resistance to diabetes are

not fully understood. However, it is known that pigs do not

accumulate amyloids (100) and are, therefore, resistant to

amyloidosis, which is one of the pathological hallmarks of

diabetes (101). Porcine islets transplanted into mice do not

accumulate amyloids, in contrast to human islets (100). Similar

observations were reported when porcine islets were transplanted

into NHPs (44). Sequencing of porcine islet amyloid polypeptide

(IAPP, or amylin, the peptide responsible for formation of fibrils of

amyloids) and comparison with human IAPP demonstrated 10

substitutions that differentiated the porcine form from the human

form and contributed to reduced amyloidogenesis. Reduced toxicity

of porcine IAPP was, indeed, demonstrated in vitro in rat (INS)

cells (100).

Moreover, genetic engineering of pig donor tissues, including

the introduction of human transgenes expressed under an insulin

promotor, do not appear to affect glucose metabolism (72,

73, 102).
TABLE 6 Fasting blood glucose, C-peptide, insulin, and glucagon levels
in cynomolgus monkeys (Macaca fascicularis), pigs, and humans a.

Cynomolgus
monkeys222a

Pigs222a Humans

Blood
glucose
(mmol·L−1)

2.2 – 4.1 (3.2) 4.0 – 5.2 (4.8) 3.9 – 5.6222b

C-
peptide
(nmol·L−1)

0.47 – 3.14 (1.39) 0.11 – 0.32 (0.16) 0.17 – 0.66222c

Insulin
(pmol·L−1)

15 – 201 (109) 7 – 12 (9) 34 – 138222c

Glucagon
(pmol·L−1)

18.7 – 179.4 (54.3) 11.3 – 13.8 (12.5) 5.7 – 28.7222c
Data are presented as ranges (mean). C-peptide (p<0.001), insulin (p=0.021) and glucagon
(p<0.001) levels were significantly higher in monkeys than in pigs, while blood glucose levels
were significantly (p<0.001) lower in monkeys. Human data are obtained from the literature
and were measured in venous plasma (90, 91).
aTable based on Casu et al. (92).
FIGURE 7

Healthy islet in the liver of an immunosuppressed cynomolgus
monkey 12 months after hCD46-transgenic pig islet transplantation.
(Reproduced with permission from 69).
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Clinical trials of pig
islet xenotransplantation

With the exception of studies by Groth et al. (13), and Wang

et al. (16, 103), free islet xenotransplantation has not undergone

clinical testing, though there have been several clinical experiments

or trials involving encapsulated islets in the absence of

immunosuppressive therapy (6). None has been totally successful.

In some of these experiments it was unclear whether improved

glycemic control was associated with meticulous medical

management (i.e., attention to diet, glucose monitoring, and

expert medical attention) rather than to insulin production by the

pig islets. However, Matsumoto et al. demonstrated a substantial

reduction of HbA1c levels for >600 days in recipients of

encapsulated porcine islets in the absence of immunosuppressive

therapy (17, 18). Minimal adverse events were reported, but

improved and more consistent efficacy is still required.

Islet-source pigs will be housed in biosecure ‘designated

pathogen-free’ facilities that eliminate most potentially-pathogenic

microorganisms. By implementing Good Manufacturing Practices

and established Standard Operating Procedures, the risk of transfer

of a pathogenic microorganism is considered small (104–106).

Although there were initial worries that porcine endogenous

retroviruses (PERV) could become activated in humans, the risk,

although hitherto unknown, is also thought to be small (14, 107,

108). Furthermore, if necessary, PERV-KO is possible (37,

109, 110).

Because the risk to the recipient is considered to be low, clinical

trials of pig islet transplantation should possibly not be held to the

high standards expected of pig organ xenotransplantation. This

particularly relates to trials of encapsulated islets in which no

immunosuppressive therapy is administered (105, 106).

According to the regulations of the U.S. Food and Drug

Administration (FDA), it is required to prioritize the selection of

patients who (i) suffer from a life-threatening disease with no access

to effective alternative treatment, and (ii) have the potential to

experience a noteworthy enhancement in their quality of life

following the procedure (111). Individuals suffering from diabetes

who are facing repeated and intense unawareness of hypoglycemia

even after receiving the best possible medical treatment may be the

most appropriate individuals to consider as potential candidates.

Those with diabetic nephropathy would benefit from the successful

transplantation of both a pig kidney and pig islets. The low risk in

pig islet xenotransplantation trials is attributed to rigorous safety

protocols, including genetic engineering of pigs to reduce human

immune reactions and meticulous screening for pathogens. This

approach minimizes potential zoonotic infections and

immunogenic complications. Compliance with FDA regulations is

ensured through adherence to established guidelines for

xenotransplantation, encompassing product safety, ethical

standards, and clinical trial conduct. Detailing these aspects can

enhance the research’s credibility, demonstrating a commitment to
Frontiers in Immunology 1089
safety, regulatory compliance, and ethical considerations in

advancing xenotransplantation as a therapeutic option.

Furthermore, if the islets are rejected, this is unlikely to be life-

threatening for the patient.
Potential insights from single-cell
RNA sequencing

The advent of scRNA-seq has inaugurated a new era in the

molecular dissection of biological processes. This technique,

distinguished by its capacity to unravel the complexities of gene

expression at an individual cell level, may prove pivotal in

demystifying the heterogeneity inherent within cellular

populations (112). This granularity of data may prove valuable in

elucidating the nuanced interplays that govern both physiological

and pathological states in complex biological systems.

In the realm of xenotransplantation, scRNA-seq may facilitate

resolution in characterizing diverse cell types within a xenograft,

encompassing the spectrum from immune cells to specialized graft

cells (113). This advanced molecular profiling may afford insight

into the intricacies of immune rejection mechanisms, graft

tolerance phenomena, and the overarching molecular

orchestration of transplantation (114). The ability of scRNA-seq

to pinpoint cellular stress responses and pathophysiological

transformations within xenografts may help refine transplantation

strategies and prolong graft viability.

In the specific context of islet transplantation, scRNA-seq has

already begun to demonstrate its potential. By dissecting the

molecular heterogeneity of islet cells and delineating the complex

immune interactions post-transplantation, scRNA-seq may help

reshape our comprehension of graft dynamics (115). This molecular

clarity may optimize immunomodulatory approaches post-

transplantation and enhance overall graft efficacy.

The integration of scRNA-seq into pig islet xenotransplantation

research may not only improve our understanding of transplanted

islet cell biology but also pioneer novel therapeutic avenues for Type

1 diabetes.
Comment and conclusions

We anticipate that eventually pig free islet transplantation will

offer a clinically-applicable therapy for patients with T1D. We

suggest that this will be a preferable approach to any form of

implantation of encapsulated islets, and that the intensity of

immunosuppressive therapy that is required will not be prohibitive.

Porcine islets appear to be metabolically compatible with

human islets, with potential advantages in glucose counter-

regulation, resistance to beta cell damage, and resistance to a

diabetogenic lifestyle.
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Diabetes mellitus, a prevalent global health challenge, significantly impacts

societal and economic well-being. Islet transplantation is increasingly

recognized as a viable treatment for type 1 diabetes that aims to restore

endogenous insulin production and mitigate complications associated with

exogenous insulin dependence. We review the role of mesenchymal stem cells

(MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by

their immunomodulatory properties and differentiation potential, are increasingly

seen as valuable in enhancing islet graft survival, reducing immune-mediated

rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-

derived extracellular vesicles further exemplifies innovative approaches to

improve transplantation outcomes. However, challenges such as MSC

heterogeneity and the optimization of therapeutic applications persist.

Advanced methodologies, including artificial intelligence (AI) and single-cell

RNA sequencing (scRNA-seq), are highlighted as potential technologies for

addressing these challenges, potentially steering MSC therapy toward more

effective, personalized treatment modalities for diabetes. This review revealed

that MSCs are important for advancing diabetes treatment strategies, particularly

through islet transplantation. This highlights the importance of MSCs in the field

of regenerative medicine, acknowledging both their potential and the challenges

that must be navigated to fully realize their therapeutic promise.
KEYWORDS

diabetes, islets, islet transplantation, MSC, immunomodulation, single-cell RNA
sequencing, artificial intelligence, regenerative medicine
Abbreviations: ScRNA-seq, single-cell RNA sequencing; MSCs, mesenchymal stem cells; T1D, type 1

diabetes; AI, artificial intelligence; EVs, Extracellular vesicles; iPSCs, induced pluripotent stem cells; ESCs,

embryonic stem cells.

frontiersin.org0193

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1389134/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1389134/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1389134/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1389134&domain=pdf&date_stamp=2024-03-28
mailto:zuhuipu@email.szu.edu.cn
mailto:wxyhorse@163.com
https://doi.org/10.3389/fimmu.2024.1389134
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1389134
https://www.frontiersin.org/journals/immunology


Mou et al. 10.3389/fimmu.2024.1389134
1 Introduction

Diabetes mellitus has emerged as a significant chronic disease

worldwide that imposes substantial social and economic burdens.

In 2021, around 537 million adults aged 20-79 were reported to

have diabetes (1), including approximately 8.4 million with type 1

diabetes (T1D) (2). T1D, a chronic autoimmune disease,

necessitates lifelong management via daily insulin injections or

continuous infusion through a pump (3). Despite advancements,

precise insulin dosage control remains challenging for some

patients, leading to the risk of hypoglycemia and further

complicating treatment (4). The FDA approval of Lantidra, the

initial allogeneic pancreatic islet cell therapy product derived from

deceased donors, marked a significant innovation in islet

transplantation, offering new hope for T1D patients struggling

with severe hypoglycemia despite intensive diabetes management

(5, 6). This development not only signifies a breakthrough in

transplantation technology but also provides an effective

alternative treatment for adult T1D patients who cannot reach

the desired glycated hemoglobin levels.

Islet transplantation, as an innovative treatment, offers T1D

patients the potential to restore endogenous insulin production,

reducing reliance on exogenous insulin and preventing long-term

complications (7). This minimally invasive method has shown

effectiveness beyond traditional treatments (8), with some centers

reporting over 50% insulin independence after five years (9, 10).

However, challenges remain, including donor cell scarcity,

substantial cell loss post-transplantation due to immediate blood-

mediated inflammatory reactions, hypoxia, and ischemia-

r epe r fu s ion in ju ry , a s we l l a s compl i c a t i on s f rom

immunosuppressants (11). Consequently, achieving optimal

glucose control often necessitates multiple transplants.

Recent strides in regenerative medicine have identified

mesenchymal stem cells (MSCs) as key players in overcoming these

obstacles (12). Due to their multipotency, immunomodulatory

properties, and low immunogenicity, MSCs derived from bone

marrow, adipose tissue, and umbilical cord blood have

demonstrated potential for enhancing islet graft survival, modulating

immune responses, and promoting tissue repair and angiogenesis (13).

This has been evidenced by their capacity to differentiate into different

cell types, such as cells that produce insulin, and their secretion of a

vast array of regenerative factors, making them promising candidates

for co-transplantation with pancreatic islets (14). The

immunomodulatory properties of MSCs, which are pivotal for

modulating immune responses and fostering tissue repair, have been

extensively documented, suggesting a significant reduction in

transplant rejection risk (15, 16). Additionally, the therapeutic

versatility of MSCs has been explored in various disease contexts,

including cardiovascular diseases and liver injury, further supporting

their broad potential in regenerative medicine.

Moreover, the exploration of MSC-derived exosomes represents

an advancement in therapeutic strategies for pancreatic islet

transplantation, highlighting a new direction in MSC-based

treatments (17). These exosomes, as carriers of regenerative and

immunomodulatory factors, present a novel approach to enhancing

the microenvironment of transplanted islets, potentially reducing
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immunological rejection and supporting islet cell survival and

function. This advancement in MSC-derived exosome research

illustrates the ongoing innovation in treatment methodologies,

aiming to address the complex challenges of islet transplantation

in diabetes management.

The comparison between MSCs, induced pluripotent stem cells

(iPSCs), and embryonic stem cells (ESCs) highlights their distinct

roles in diabetes treatment. MSCs are favored for their

immunomodulatory properties and minimal tumorigenic risk,

presenting a safer option for clinical applications. Unlike MSCs,

iPSCs and ESCs possess greater pluripotency, enabling the

generation of a broader range of cell types. However, this

approach is associated with increased ethical concerns for ESCs

and increased tumorigenic potential for both iPSCs and ESCs (18,

19). Compared to their broader differentiation capabilities, the

unique advantages of MSCs in regenerative medicine, particularly

in mitigating autoimmune responses in diabetes, are the heightened

risks associated with iPSCs and ESCs.

To enhance our understanding of MSC therapies, particularly in

the realms of diabetes treatment and islet transplantation, advanced

technologies such as artificial intelligence (AI) and single-cell RNA

sequencing (scRNA-seq) offer groundbreaking approaches (20, 21).

These innovations allow for the precise characterization of MSCs

and in-depth analysis of their molecular behaviors, which is crucial

for developing personalized, effective therapies. By incorporating

findings from a recent study that utilized scRNA-seq to analyze

immune heterogeneity in mouse models of islet transplantation, we

obtained valuable insights into the immune mechanisms that may

affect graft survival (22). The insights of this study into the

transcriptomics of islet grafts underscore the potential of scRNA-

seq for identifying key factors influencing the success of MSC

therapies, highlighting the importance of these advanced

methodologies in advancing personalized medicine and

improving diabetes care strategies.

This review not only highlights the potential of MSCs in

enhancing diabetes treatment through islet transplantation but also

addresses persistent challenges such as MSC heterogeneity and the

need for therapeutic optimization. This finding underscores the

promise of advanced methodologies such as AI and scRNA-seq for

overcoming these hurdles, suggesting that MSC therapy could offer

more effective, personalized diabetes treatment solutions in the future.
2 Background on MSCs

2.1 Therapeutic molecules and
mechanisms of MSCs

MSCs, which are derived from bone marrow, adipose tissue, the

umbilical cord, and the gingiva, play a crucial role in regenerative

medicine due to their unique ability to differentiate into multiple

cell types essential for tissue repair and regeneration (23). The

significant immunomodulatory effects of MSCs, which impact both

the innate and adaptive immune systems through the secretion of

bioactive factors with immunosuppressive and anti-inflammatory

properties, underscore their importance (24). These cells can
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differentiate into a variety of different cell types is also important,

especially when addressing T1D and enhancing pancreatic islet

transplantation outcomes by supporting graft survival, modulating

immune responses, and promoting tissue repair and angiogenesis.
2.2 MSC-derived extracellular vesicles
(EVs): broadening therapeutic horizons

The potential of MSC-derived EVs extends beyond diabetes to

conditions such as ischemic stroke and osteoarthritis, demonstrating

the wide range of applications of MSCs (25). Clinical studies have

confirmed the ability of MSCs to evolve into insulin-producing cells

and secrete healing factors, positioning them as key players in T1D

treatment (26). Furthermore, engineered MSC-derived EVs are being

developed to enhance regenerative efficacy, overcoming natural

limitations (27). Proteomic analyses of MSC exosomes from

various sources have revealed that shared mechanisms, notably

extracellular matrix interactions, are crucial for their regenerative

impact (28). The clinical application of umbilical cord MSCs

highlights the ongoing promise of MSC-based therapies in diabetes

management and beyond (26).
3 MSCs in improving islet
transplantation outcomes

In islet transplantation for diabetes treatment, MSCs play a vital

role by safeguarding islet cells and improving the outcomes of both

allo- and xenotransplantation (29–31). The broad array of secreted

molecules, including growth factors and immunomodulatory

agents, contributes to enhancing transplantation efficacy and

survival (32). During regeneration, these secretory factors

facilitate tissue remodeling and promote cellular homeostasis.

This multifaceted action of MSCs addresses key challenges in islet

transplantation, including reducing graft rejection and improving

graft performance, thus enhancing the efficacy of diabetes

treatments (33, 34). Moreover, the potential of MSCs for novel

therapeutic strategies marks an advancement in diabetes

management, suggesting that MSCs are important elements in

both regenerative medicine and autoimmune therapy. The role of

MSCs in enhancing outcomes in diabetes patients through islet

transplantation is critical, as they emphasize the broad therapeutic

potential of these cells and open new paths for diabetes

care advancements.

The exploration of the use of MSCs in diabetes treatment,

particularly through islet transplantation, highlights their potential

for advancing therapeutic strategies. MSCs are at the forefront of

regenerative medicine and autoimmune therapy, offering

innovative approaches to improve patient outcomes in diabetes

care. Their broad therapeutic capabilities and potential for new

pathways in diabetes management underscore their role in the field.

The integration of MSCs into pancreatic islet transplantation

protocols has been the focus of numerous studies, revealing

substantial improvements in transplantation outcomes (34).

These cells have demonstrated the capacity to enhance both the
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engraftment and survival rates of transplanted islets as well as their

long-term functionality, which is important for successful

transplantation. MSCs exert beneficial effects through

immunomodulatory effects, mitigating immune-mediated

rejection and autoimmune attacks. Additionally, MSCs promote a

supportive microenvironment for islets by stimulating angiogenesis

and tissue repair, addressing the challenges of islet transplantation

and advancing diabetes treatment modalities.
3.1 The protective role of MSCs during islet
isolation and culture

Its ability to protect islet vitality during isolation and culture is

crucial because it can mitigate hypoxia and inflammatory stress,

which are key factors in islet impairment. Coculturing islets with

MSCs not only preserves islet functionality but also improves

transplantation results by maintaining insulin secretion and cell

vitality. The role of MSCs in improving the internal

microenvironment for T1D treatment has been well studied. MSCs

contribute to protecting islet vitality during isolation and culture and

in mitigating hypoxia and inflammatory stress, which are key factors

in islet impairment (29, 35). Coculturing islets with MSCs not only

preserves islet functionality but also improves transplantation results

by maintaining insulin secretion and cell vitality (29, 35).
3.2 Enhancing islet transplantation through
MSC-driven immunomodulation
and angiogenesis

MSCs ameliorate the internal microenvironment post-islet

transplantation, reducing inflammation and improving patient

outcomes (29, 35). The capacity of these cells to alleviate blood-

mediated inflammatory responses post-transplant is important for

T1D patients to progress toward insulin independence. By mitigating

transplant-related stress and curtailing b-cell damage, MSCs play a

cr i t i ca l ro le . Fur thermore , the secre t ion of so lub le

immunomodulatory factors crucially suppresses immune rejection,

fostering graft tolerance.

The synergistic effect of MSCs in islet transplantation is

multifaceted, emphasizing not only their anti-inflammatory effects

but also their critical contribution to angiogenesis (36). After

isolation, islets undergo vascularization loss, increasing

susceptibility to stressors such as instant blood-mediated immune

reactions, hypoxia, and ischemia-reperfusion injury, which can lead

to apoptosis and necrosis. MSCs facilitate rapid revascularization;

secrete factors such as VEGF (37), Ang-1 (38), bFGF (32), KGF

(39), IGF-1, IGF-2, and HGF; and are important for angiogenesis

and enhancing islet graft survival and functionality. MSCs can

promote angiogenesis by activating AKT/MAPK signaling and

upregulating VEGFR signaling (40). MSCs can also perform

angiogenic modulation through complex interactions between

bioactive molecules carried by EVs, such as microRNAs (40).

Despite the inherent challenges of MSC use, such as limited

proliferative capacity and heterogeneity, ongoing studies highlight
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the capacity of MSCs to support new blood vessel formation,

ensuring that transplanted islets receive necessary nourishment

and oxygen. Along with the ability of MSCs to promote tissue

repair, this angiogenesis supports the role of MSCs in improving the

outcomes of diabetes treatments through islet transplantation (41).

The multifaceted role of MSCs in islet transplantation reflects

their capacity for immune modulation and support for angiogenesis

and tissue repair. While their use presents challenges such as limited

growth and variability, ongoing research into the origins and

functionalities of MSCs continues to enhance their application in

diabetes treatment. This exploration of the diverse origins of MSCs,

such as bone marrow and adipose tissue, and their capacities for

angiogenesis and immunosuppress ion contr ibutes to

understanding and leveraging their therapeutic impact in

islet transplantation.
4 Clinical applications and insights
of MSCs

The integration of MSC therapy into clinical practice presents

scientific and ethical challenges, including complexities and potential

risks such as immunogenicity and tumorigenicity. Examining these

obstacles and emphasizing the importance of rigorous selection,

ethical sourcing practices, and adherence to regulatory guidelines

will ensure safety and efficacy. This highlights the necessity of

continuous research, ethical deliberation, and regulatory updates to

optimize MSC therapies for diverse conditions, particularly diabetes

treatment through islet transplantation.

Despite the promising potential of MSCs in regenerative

medicine and diabetes treatment, MSCs face significant challenges

that hinder their clinical translation. These include their inherent

heterogeneity, which complicates the consistency of therapeutic

outcomes, and concerns about immunogenicity that may elicit

immune responses in recipients (42). Additionally, the potential

for MSCs to contribute to tumorigenesis remains a critical area of

investigation (43). It is important to critically evaluate these

challenges, drawing upon data from past clinical trials and

current research, to provide a comprehensive understanding of

the limitations and barriers facing the use of MSCs in islet

transplantation. This underscores the complexity of translating

MSC therapy from bench to bedside and emphasizes the need for

continued research to overcome these obstacles.

The ethical implications of MSC sourcing involve

considerations such as donor consent, particularly for MSCs

derived from human tissues (44). Ethical sourcing ensures that

donors are fully informed and agree to the use of their cells for

research or therapeutic purposes. Regulatory policies for MSC

therapies, governed by agencies such as the FDA and the

European Medicines Agency, focus on ensuring the safety,

efficacy, and quality of MSC-based products (45). These

regulations necessitate rigorous clinical trials and manufacturing

standards to prevent risks such as immunogenicity and

tumorigenicity, aiming to safeguard patient health while fostering

innovation in MSC therapy development.
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5 Overcoming challenges and
charting the future of MSC therapy in
clinical applications

The progression of MSCs from early preclinical studies to

clinical applications illustrates both their potential and the

complexities involved in MSC therapy. Despite advancements,

challenges affect their clinical success (42). In diabetes treatment,

especially islet transplantation, the variability and adaptability of

MSCs require careful clinical evaluation. The variability of MSCs

due to their different sources, preparation methods, and delivery

techniques poses significant challenges to their standardization

and consistency in therapies (46, 47). To minimize heterogeneity

and improve the predictability of outcomes, it is important to

explore strategies and potential guidelines, such as stringent cell

characterization, uniform culture conditions, and standardized

delivery methods (48). Emphasizing the need for comprehensive

quality control and clinical protocol standardization will offer

insights into advancing MSC therapies toward more reliable and

effective clinical applications, thus enhancing their utility in

regenerative medicine and beyond. Innovations such as AI (49)

and scRNA-seq (50) are promising methods for addressing these

obstacles, indicating that MSC therapy might become a standard,

personalized treatment option for diabetes in the future

(Figure 1).
5.1 AI in MSC clinical treatment

The integration of AI into MSC therapies for diabetes treatment

is an evolving field that combines two cutting-edge scientific

advancements. Although direct applications in diabetes are

nascent, the synergy between the predictive capabilities of AI and

the therapeutic potential of MSCs offers promising directions for

more precise and customized treatments. This interdisciplinary

approach aims to enhance diabetes care by leveraging AI

to optimize MSC therapy outcomes, indicating a move toward

more individualized and effective treatment strategies in

regenerative medicine.

5.1.1 Accelerating drug discovery with AI in
MSC therapies

Digital technology and AI significantly influence healthcare

innovation, particularly in drug research and development (51,

52). The capacity of AI for the de novo design of biologically active

molecules has the potential to enhance therapeutic efficacy (53).

These technological advancements aim to refine MSC therapies by

improving the identification of critical molecular components and

drug targets, thus increasing the precision of drug development (54,

55). The collaboration of the pharmaceutical industry with AI firms

to develop advanced platforms underscores the role of AI in

simplifying the drug discovery process, necessitating rigorous

clinical validation to ensure the efficacy and safety of these

innovations (56).
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5.1.2 Leveraging AI for enhanced MSC
therapy development

Integrating AI into MSC therapy research is a methodical

strategy for exploring the detailed landscape of regenerative

medicine. The ability of AI to analyze extensive data enhances the

precision of identifying the molecular attributes of MSCs, which is

fundamental in regenerative therapies aimed at repairing or

regenerating tissues affected by conditions such as diabetes. The

role of AI in automating the creation of therapeutic compounds

represents a meaningful advancement toward improving

regenerative treatment efficacy (57, 58). This synergy between AI

and regenerative medicine research is poised to propel the

development of new therapeutic strategies, potentially bringing

significant benefits to patients with various chronic ailments.
5.2 ScRNA-seq in MSC therapies

The advent of scRNA-seq has enhanced the understanding and

application of MSCs (59, 60). Despite the promising potential of

MSCs in regenerative medicine and their success in preclinical

models, clinical trials have often not met expectations, partly due to

the heterogeneity of MSCs and inconsistent identification criteria.

ScRNA-seq has bridged crucial gaps by enabling precise MSC

characterization and biomarker identification and revealing gene
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expression heterogeneity within MSC subclusters (61). Such

insights are invaluable for comprehending the functional diversity

of MSCs and their roles in development, regeneration, and

pathology. Furthermore, scRNA-seq helps to elucidate the

dynamic transcriptional changes in MSCs during differentiation

and the intricate signaling pathways regulating their key functions

(20). This refined understanding, facilitated by evolving analytical

methods and integration with histological research, promises more

targeted MSC-based therapies, particularly in complex treatments

such as islet transplantation for diabetes, contributing to

personalized and effective interventions.

5.2.1 Unveiling heterogeneity and potentials
through ScRNA-seq

ScRNA-seq has improved MSC research, offer ing

unprecedented insights into the isolation, identification, and

classification of MSCs based on heterogeneity and subclusters

(62). This technology allows for more precise characterization of

MSCs, revealing the diversity of MSC subclusters and their specific

molecular expression and functions (63). By revealing dynamic

transcriptional changes and complex signaling pathways, scRNA-

seq facilitates a deeper understanding of the roles of MSCs in

development, regeneration, and pathology (64, 65). This in-depth

knowledge is crucial for developing targeted MSC-based therapies,

particularly for applications such as islet transplantation in diabetes
FIGURE 1

Artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq) for enhancing the clinical application of mesenchymal stem cells (MSCs) (1).
The upper panel shows the AI used in MSC clinical treatment. Rapid Identification: AI has drastically accelerated the discovery of novel molecular
compounds and drug targets, enhancing the development of MSC-based treatments. Sophisticated Analysis: This study utilized complex biological
datasets to optimize graft longevity and functionality within islet transplantation settings. Drug Discovery Acceleration: AI contributes to drug
research and development, improving the precision and efficiency of therapeutic discovery and development processes. Predictive Modeling: This
method employs dynamic molecular traits for MSC therapy, including protein sequences and molecular interactions, to refine therapeutic strategies
(2). The lower panel shows the results of scRNA-seq analysis of MSC therapies. Enhanced Understanding: scRNA-seq offers in-depth insights into
MSC heterogeneity, enabling precise characterization and biomarker identification. Functional Diversity: This study reveals the complex roles of
MSCs in development, regeneration, and pathology, facilitating the development of targeted therapies. Dynamic Transcriptional Changes: This
review sheds light on MSC differentiation and the regulatory pathways involved, supporting the refinement of clinical applications. Immune
Interactions: This paper describes how MSCs modulate immune cells, providing valuable information for developing MSC-based therapies for
immune modulation and tissue repair.
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treatment, by identifying MSC subpopulations with optimal

therapeutic properties and guiding the refinement of

clinical applications.

5.2.2 Unveiling the biological function of MSCs
through ScRNA-seq

The role of scRNA-seq extends beyond MSC differentiation to

uncovering MSC-immune interactions. ScRNA-seq has illuminated

the diverse ways in which MSCs modulate immune cells, from T

cells to macrophages, through various cytokines and chemokines

(66). This understanding is pivotal in diseases such as acute lung

injury, where MSCs reduce proinflammatory immune cell

infiltration and cytokine expression (67). Studies have also shown

that MSCs influence macrophage behavior in lung fibrosis,

indicating the potential of MSCs in immune modulation and

tissue repair (68). This detailed understanding is crucial for the

development of MSC-based treatments, providing fresh

perspectives for personalized and effective diabetes care strategies.
6 Conclusion

This review underscores the significant impact of MSCs on islet

transplantation for diabetes treatment. This finding highlights the role

of MSCs in enhancing islet graft survival, modulating immune

responses, and promoting angiogenesis and tissue repair, indicating

their potential for use in diabetes management. Challenges such as

MSC heterogeneity and the need for optimization in therapeutic

applications are acknowledged, with advanced technologies such as

AI and scRNA-seq offering promising solutions. The synergy between

MSCs and islet transplantation is emphasized as a forward-looking

approach to personalized, MSC-based interventions, setting a new

direction in therapeutic strategies against diabetes.
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Human allogeneic pancreatic islet transplantation is a life-changing treatment for

patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia

unawareness and high risk of severe hypoglycemia. However, intensive

immunosuppression is required to prevent immune rejection of the graft, that

may in turn lead to undesirable side effects such as toxicity to the islet cells,

kidney toxicity, occurrence of opportunistic infections, and malignancies. The

shortage of cadaveric human islet donors further limits islet transplantation as a

treatment option for widespread adoption. Alternatively, porcine islets have been

considered as another source of insulin-secreting cells for transplantation in T1D

patients, though xeno-transplants raise concerns over the risk of endogenous

retrovirus transmission and immunological incompatibility. As a result,

technological advancements have been made to protect transplanted islets

from immune rejection and inflammation, ideally in the absence of chronic

immunosuppression, to improve the outcomes and accessibility of allogeneic

islet cell replacement therapies. These include the use of microencapsulation or

macroencapsulation devices designed to provide an immunoprotective

environment using a cell-impermeable layer, preventing immune cell attack of

the transplanted cells. Other up and coming advancements are based on the use

of stem cells as the starting source material for generating islet cells ‘on-

demand’. These starting stem cell sources include human induced pluripotent

stem cells (hiPSCs) that have been genetically engineered to avoid the host

immune response, curated HLA-selected donor hiPSCs that can be matched

with recipients within a given population, and multipotent stem cells with natural

immune privilege properties. These strategies are developed to provide an

immune-evasive cell resource for allogeneic cell therapy. This review will

summarize the immunological challenges facing islet transplantation and

highlight recent bio-engineering and cell-based approaches aimed at avoiding

immune rejection, to improve the accessibility of islet cell therapy and enhance

treatment outcomes. Better understanding of the different approaches and their
frontiersin.org01101

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1375177/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1375177/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1375177/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1375177/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1375177&domain=pdf&date_stamp=2024-04-08
mailto:nhjng@imcb.a-star.edu.sg
https://doi.org/10.3389/fimmu.2024.1375177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1375177
https://www.frontiersin.org/journals/immunology


Ho et al. 10.3389/fimmu.2024.1375177

Frontiers in Immunology
limitations can guide future research endeavors towards developing more

comprehensive and targeted strategies for creating a more tolerogenic

microenvironment, and improve the effectiveness and sustainability of islet

transplantation to benefit more patients.
KEYWORDS

stem cells, regenerative medicine, diabetes, islet cells, beta cells, islet transplantation,
HLA, hypoimmune
1 Introduction

Diabetes is a chronic metabolic disorder that affects 537 million

adults aged between 20 to 79 years old. Disease prevalence is

increasing year on year and is predicted to reach 643 million by

2030 (1). Individuals with poorly controlled diabetes face increased

risk of heart disease, kidney disease, nerve complications and eye

disorders. Type 1 diabetes (T1D) constitutes 5% to 10% of all

diabetes cases, whereas the more common Type 2 diabetes (T2D)

accounts for majority of the remaining 90% to 95% of diagnosed

cases (2). T1D is an autoimmune disease resulting from the body’s

immune system attacking the insulin-producing b cells of the

pancreatic islets (3). This irreversible loss of b cells results in

insulin deficiency, impaired glucose uptake in the peripheral

tissues, and consequently hyperglycemia. The early onset of T1D,

often during adolescence, results in the need for life-long insulin

therapy and intensive blood glucose monitoring to prevent both

hyperglycemia and hypoglycemic episodes, which can severely

impact the quality of life of patients (4). Approximately 25% of

T1D patients additionally suffer from impaired awareness of

hypoglycemia (IAH) (defined as the diminished ability to perceive

the onset of low blood glucose levels), which is associated with

elevated risk of severe hypoglycemic events (SHEs) and

consequently higher risk of morbidity and mortality (5).

Furthermore, the risk of hypoglycemic events increases with the

duration of T1D.

On the other hand, T2D is a common chronic condition caused

primarily by defective insulin secretion from the pancreatic b cells

and/or insulin resistance (6). It has a multitude of risk factors

including obesity, genetic predisposition, physical inactivity, diet

contributions and ageing, and therefore has a wide range of

treatment options from lifestyle intervention to oral medications

and insulin therapy. A vicious cycle exists in which persistent

hyperglycemia leads to progressive decline in b cell compensation

and eventual onset of b cell dysfunction (7–9). As a result, subjects

progress from normal glucose tolerance to impaired glucose

tolerance, and ultimately develop full-fledged T2D.

Replacement of b cell function through pancreatic islet

transplantation is an established standard of care procedure (akin
02102
to organ tissue transplant) to treat T1D patients with impaired

hypoglycemia awareness and who experience multiple SHEs in

several countries, such as Canada, Australia, parts of Europe and

Asia (10). Human islets for allogeneic use are isolated from

deceased donor pancreases, following a series of tissue digestion,

isolation, purification, and qualification steps. As prescribed in the

Edmonton Protocol, which played a key role in revolutionizing islet

transplantation since the 2000s, human islets are transplanted by

infusion into the hepatic portal vein of the recipient based on the

required islet equivalents (IEQ) per kilogram of the recipient’s body

weight, alongside a steroid-free immunosuppression regimen (11).

Patients may need to be dosed with multiple islet infusions from

different donor pancreases to achieve euglycemia successfully. The

procedure has since remained the standard protocol for islet

transplantation and was seen as a promising step towards a T1D

cure. Long term follow ups of patients for up to 20 years after

transplant at a single centre showed that those with sustained

graft survival no longer suffered from SHEs, displayed better

insulin independence, and long term safety despite chronic

immunosuppression (12). Another 5 year follow up of over 1200

patients across multiple centres similarly established the overall

safety and efficacy of islet transplantation (13). Patients with T1D

benefit from allogeneic islet transplantation through substantial

improvement in glycemic control, almost complete abrogation of

SHEs, reduction in insulin doses, and ultimately improvement in

quality of life.

While islet transplantation may be life-changing for T1D

patients, patients need to be willing and able to undergo long

term, intensive immunosuppression. As with other solid organ

transplantation, the side effects and complications that result

require careful consideration of the risk to benefit ratio. The

treatment can result in serious side effects such as increased risk

of infections, malignancies, kidney damage, vomiting, nausea and

diarrhoea (14–16). Immediate complications associated with

intrahepatic islet transplantation includes instant blood-mediated

inflammatory reaction (IBMIR), caused by direct exposure of the

islets to the bloodstream, which triggers pro-inflammatory cytokine

release followed by complement activation and recruitment of

innate immune cells which further exacerbates inflammation and
frontiersin.org
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destruction of islets (17). For these reasons, the overall impact of

islet transplantation in its present form remains limited. With

regards to T2D, due to the multifactorial nature of diabetes

development and the presence of insulin resistance, patients with

T2D have yet to be considered for islet cell replacement therapy in

the clinical setting. However, it is possible to consider that specific

subsets of T2D patients that have severe insulin deficiency with

normal insulin sensitivity (18) may benefit from renewable islet cell

replacement to reinstate insulin production.

With the increasing prevalence of T1D and T2D globally,

patient eligibility issues and complications associated with

immunosuppression, coupled with overall shortage of cadaveric

human islets will aggravate the socio-economic burden from

disease. This situation highlights the need for novel approaches to

protect islet allografts and overcome immunological challenges

associated with allogeneic islet transplantation. In this review, we

will examine the current status of primary human islet

transplantation, the key challenges surrounding the need to

undergo chronic immunosuppression and the lack of sufficient

human donor islets. We also touch on developments in

transplantation of islet cells derived from alternative sources, and

promising avenues using bio-engineering or cell-based engineering

approaches to protect transplanted islets from immune rejection.

2 Human allogeneic primary islet
transplantation and its
associated challenges

2.1 Current status of pancreatic
islet transplantation

Human pancreatic islet transplantation offers a functional source

of b cells for the treatment of diabetes, especially in a subset of

patients with T1D who are prone to hypoglycemic unawareness and

experience severe hypoglycemia despite optimal management of

glycemic levels (11, 12, 19, 20). These have far-reaching benefits

beyond physiological changes such as improvement in patients’

mental health, relief for caregivers, resumption of work productivity

and reduced ambulance conveyance and emergency care needed. The

success of the treatment was made possible due to the seminal

research by Shapiro and team, who developed the Edmonton

Protocol, building on previous achievements by others (for a

detailed review on the history of clinical islet transplantation please

see (21)). The procedure recommends transplantation of a

cumulative islet mass of at least 10,000 IEQ per kilogram of the

recipient’s body weight. This typically required at least two infusions

from different donor material, unless insulin independence was

achieved with a single infusion (11, 20). Islets are transplanted into

the hepatic portal vein, the current clinical gold standard route,

avoiding the need for surgery. The procedure allows the islet cells to

access the circulatory system and facilitate glucose sensing and insulin

release into the bloodstream, effectively restoring glycemic control in
Frontiers in Immunology 03103
patients. Repeated islet infusions do carry the risk of procedure-

related bleeding arising from elevated intraportal vein pressure and

portal vein thrombosis (22). The protocol had set a standard for the

infusion of an adequate islet mass combined with a glucocorticoid-

free immunosuppressive regimen (e.g tacrolimus and sirolimus) (20).

In recent practices, daclizumab (non-depleting monoclonal anti-

interleukin-2 receptor antibody) and/or anti-thymocyte globulin is

administered as pre-procedural induction immunosuppression,

whereas low-dose tacrolimus (calcineurin inhibitor) in combination

with mycophenolate mofetil or sirolimus is prescribed for

maintenance immunosuppression (23). Sirolimus (mTOR

inhibitor) has been found to be more poorly tolerated by patients

with adverse side effects, hence its exclusion may result in improved

longer-term outcomes. Likewise, although tacrolimus-based

immunosuppression is effective against allo- and auto-immune

rejection, its side effects include nephrotoxicity and diabetogenicity

due to effects on the islet cells. Additionally, other anti-inflammatory

agents are needed in the peri-transplant periods to counter

proinflammatory cytokines and preserve islet function, such as

etanercept (TNFa blocker) and anakinra (IL-1 receptor antagonist)

which were found to be associated with improved clinical outcomes

as compared to regimens without the use of anti-inflammatory agents

(12, 24). Thus, ongoing research efforts remain important to define

immunosuppressant and anti-inflammatory drug combinations with

better safety profiles while remaining effective for preserving islet

graft function.

Islet transplantation has been and will continue to be a life-

changing therapy as it has resulted in positive outcomes for patients

including insulin independence, glycemic control, freedom from

SHEs and restoration of hypoglycemia awareness. These outcomes

are positively correlated with graft survival and function (fasting C-

peptide >0.1 nmol/L post-transplantation) and achievement of

HbA1c level of <7.0% (53 mmol/mol) at least 1 year post-

transplant (12, 19, 25). Furthermore, despite the long period under

an immunosuppressive regimen, sustained islet function in those

with sustained graft survival is possible, though the incidence of

cancer appeared to be higher (12, 19, 25). In the recently FDA-

approved donor-derived pancreatic islet cell therapy for T1D, known

as Lantidra or donislecel (manufactured by CellTrans Inc.), the

therapy is indicated for adults with T1D where exogenous

administration of insulin is insufficient to maintain the HbA1c

target and who experience hypoglycemia unawareness (26, 27).

FDA approval was based on experiences from Phase I/II clinical

trials that demonstrated graft survival in all 10 patients and insulin

independence maintained in 60% of patients 5 years post-transplant,

as well as in another Phase III clinical trial revealing that all 21

patients were free from hypoglycemic episodes and most maintained

HbA1c levels at ≤ 6.5% at a 1-year follow up (28, 29). Importantly, no

significant side effects were reported for the cell therapy except for

procedural-related bleeding. The approval represents a positive step

forward for T1D management in the US, though there remained

controversy over the recognition of islets as drugs instead of organs

that may place a limitation over patient access.
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2.2 Obstacles limiting widespread adoption
of human primary allogeneic
islet transplantation

Islet transplantation has proven to be a promising curative

approach for T1D patients, both saving lives and improving

quality of life. However, there remain several challenges

hindering its widespread clinical utility, particularly the need

for chronic immunosuppressive therapy and limited donor islet

availability (Figure 1).

Firstly, as islet transplant patients are required to undergo

intensive life-long immunosuppression to prevent graft rejection

and loss of islet function, the selection of immunosuppressants used

may induce side effects or autoimmunity recurrence, which will

influence islet transplantation outcome. For instance, induction of

immunosuppression with anti-thymocyte globulin as compared to

daclizumab, and maintenance of immunosuppression with

tacrolimus as compared to sirolimus, has been shown to increase

risk of autoantibody recurrence in islet transplantations (30). This

study highlighted the “off-target” effects of immunosuppressants,

particularly how immunosuppressants influence the profile of

regulatory T cells (Tregs), which are an important subset of

immunomodulatory T cells responsible for promoting immune

tolerance. Immunosuppressants that foster a richer Tregs

environment could drive tolerance and further minimize the need

for immunosuppression (31). Previous studies investigating the

impact of immune-modulatory drugs on the function of Tregs

showed that sirolimus has a Tregs-favoring effect as compared to

tacrolimus (32). Greater clarity on the immunological mechanisms

mediated by the immunosuppressants would guide future

directions in preserving Tregs numbers and function for better

success in balancing immunosuppression and transplant outcome.

Chronic immunosuppression has also been associated with

other detrimental side effects, such as b cell toxicity, kidney

toxicity, higher risk of cancer and opportunistic infections as the

protective function of the patient’s immune response is jeopardized.

Reported symptoms experienced by patients include anaemia,

nausea, fatigue, diarrhoea, and abdominal pain, though the

incidents varied amongst patients and depended on the number

of islet infusions and length of follow-up (33, 34). Common adverse

effects occurred in between 20% to 90% of patients from initial
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infusion up to 1 year following final infusion, that are mostly related

to the infusion procedure and immunosuppressive regimen

administered (34). In the event of a life-threatening infection or

cancer requiring discontinuation of immunosuppressive

medications, there was eventual loss of islet cell function and

resumption of insulin dependence (34). Additionally, patients

who are contraindicated for immunosuppression, such as those

with relevant drug allergies or who are highly susceptible to acute or

chronic infections, are not eligible for islet transplant. T1D patients

often possess pre-existing renal impairment due to longstanding

diabetes and their renal dysfunction may be exacerbated by

tacrolimus which can result in calcineurin-induced nephrotoxicity

(35, 36). In addition to nephrotoxicity, tacrolimus is further

associated with gastrointestinal side effects leading to episodic

diarrhoea. Sirolimus has also been linked to several side effects

including mouth ulcerations, neutropenia, dyslipidemia, small

bowel ulceration, peripheral edema, and the development of

ovarian cysts in females (37). The lifetime risk of lymphoma is

estimated to be 1-2% in transplant recipients undergoing long-term

immunosuppression, with the most common malignancies being

non-melanomatous skin cancers (38). At supratherapeutic levels,

tacrolimus and sirolimus have also been associated with human islet

toxicity caused by increased amyloid deposition and disrupted

insulin granule formation, though the detrimental effects on the b
cells may be reversible upon withdrawal of drug treatment (39). For

all these reasons, patients must be screened for endogenous

infections or pre-existing medical conditions that can be

aggravated following immunosuppressant therapy, and the risks

weighed alongside the benefits (non-recurring severe hypoglycemia

and achieved target HbA1c) to patients. Hence, islet transplantation

has only been considered for T1D patients complicated by IAH and

SHEs, when other lines of treatment have failed to prevent life-

threatening SHEs, placing a significant limitation on the large pool

of diabetes patients who could benefit from islet cell

replacement therapy.

A second major factor limiting the accessibility of islet

transplantation is the lack of sufficient cadaveric donor islets to

meet the global demands for human islet cell replacement. More

than 2,000 patients have received allogeneic islet transplantation

globally since year 2000 (10). This is only a small fraction of the

millions of individuals who have been afflicted with brittle T1D, not
FIGURE 1

Schematic of allogeneic primary human islet transplantation and its limitations (Created with BioRender.com).
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to mention an even larger number of patients with insulin-deficient

T2D for which such a treatment is currently not an option. A recent

report published by National Health Service (NHS) England stated

that the waiting time for islet transplant was 631 days and the

number of patients on the active islet transplant list in the UK is 29

by the end of September 2021 (40). In addition to the lack of

suitable deceased donor pancreases, the quality of islet products is

highly variable depending on the circumstances under which the

donor organ is obtained, donor characteristics, the complex islet

isolation and culturing process and the preservation conditions

before transplant (41). The method of isolating islets by enzymatic

digestion and mechanical separation can lead to potential damage

of the endocrine cells. Majority of islet transplant recipients receive

islets from multiple donors (2 to 4) as up to 60% of islet mass is lost

within the first few days following islet infusion. While

transplantation of larger islet mass (>11,000 IEQ/kg of recipient

weight) over multiple islet infusions contributes to a larger mass of

surviving b cells, this limits the number of patients that can receive

the islet allografts (42). Efforts have been made across several islet

isolation facilities to harmonize the donor selection criteria,

manufacturing procedures, and lot release attributes, but this

remains a huge undertaking to be controlled at all phases and

implemented at a larger scale (43, 44).
2.3 Xenogeneic islets as an alternative
primary cell source for transplantation

Xenogeneic islets, in particular porcine islets, have been

explored as an alternative primary cell source to supplement the

supply of primary human islets for transplantation. Porcine islets

are more readily available and possess functional characteristics that

make them a suitable substitute for human islets. They have weaker

immunogenicity and porcine insulin is structurally similar to

human insulin (with one amino acid difference that is alanine in

pigs and threonine in humans) (45). Major hurdles need to be

overcome for xenografts to be a feasible alternative in the clinic.

These include physiological incompatibility and immunological

reaction to non-human donor tissues that trigger both innate and

adaptive barriers of the immune system, resulting in rejection. In

addition, xenotransplantation presents the potential risk of zoonosis

and porcine endogenous retrovirus (PERVs). As such, previous

studies have evaluated the feasibility of xenotransplantation of

porcine islets into non-human primates (NHPs). One study

showed that an anti-CD40 (2C10R4) monoclonal antibody-based

immunosuppressive regimen together with tacrolimus was effective

in circumventing graft rejection and prolonging porcine islet graft

survival in diabetic rhesus monkeys, with median survival (serum

porcine C-peptide concentration of >0.15 ng/mL) of 60 days. All

monkeys also received anti-thymocyte globulin, cobra venom factor

(CVF), adalimumab, and sirolimus (46). In another study, a newly

engineered anti-CD40L-specific monoclonal antibody AT-1501 was

tested in a cynomolgus macaque model that had undergone

intrahepatic islet allotransplantation. The study showed that AT-

1501 enabled long-term graft survival with higher C-peptide levels
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detected compared with conventional immunosuppression (47).

AT-1501 was modified to minimize risk of thromboembolic

complications that were previously reported for CD40L-based

therapies in clinical trials, and therefore appears to be a

promising and safe agent for further testing. Another strategy to

enhance graft survivability is to utilize genetically-modified pigs

with alterations in expression of known xeno-antigens, and

modification of the complement and coagulation systems to

improve immunological compatibility between pigs and NHPs

(48). In one example, cardiac xenografts from genetically-

modified pigs with alpha 1-3 galactosyltransferase gene knockout,

expression of human complement regulatory protein CD46 and

human thrombomodulin, were transplanted into baboons (49). The

pre-transplant immunomodulatory induction regimen included

anti-thymocyte globulin and 2C10R4 antibody, followed by

maintenance with intensively-dosed 2C10R4 antibody and

mycophenolate mofetil (49). This combination of genetic

modifications and immunosuppressive regimen resulted in

sustained survival of the xenografts with median of 298 days up

to the longest of 945 days observed (49).

In further attempts to reduce immune rejection after

xenogeneic islet transplantation, porcine islets may be

encapsulated in a protective layer to avoid immune cell

recognition. In one study, neonatal porcine islets were

encapsulated in a stable and permeable alginate gel and enclosed

in a biocompatible, immunoprotective membrane, and transplanted

in the abdominal cavities of immunocompetent diabetic mice. Islet

xenograft survival, rapid lowering of blood glucose and long-term

glycemic control for >200 days was achieved without any

immunosuppressants (50). Furthermore, the devices were shown

to retain their integrity after they were retrieved and re-transplanted

in new immunocompetent diabetic mice. In a clinical study,

alginate-based encapsulation of neonatal porcine islets were

transplanted into the peritoneal cavity of eight T1D patients

without immunosuppression at up to 20,000 IEQ/kg body weight

over two separate transplantations (51). The procedure was shown

to be safe with no PERVs infection detected. Some fibrosis of the

microcapsules were observed post-transplant, however long-term

efficacy was shown with HbA1c <7% over more than 600 days and

significant reduction of serious unaware hypoglycemia (51). More

encapsulation studies involving porcine islets are discussed in a later

section and in Table 1, which lend support to the clinical benefit

provided by porcine islet xenotransplantation in T1D patients.

Besides the need to address the genetic and molecular

discrepancies between human recipients and xeno-organs, other

challenges to note include psychosocial and ethical barriers, tension

from religious beliefs, concerns for animal welfare and the use of

animals for research. Nonetheless, the careful use of existing or

novel immunosuppressive therapies, development of genetically-

modified pigs to obtain porcine islets with better immune tolerance,

and use of encapsulation to provide immune protection (to be

discussed in greater detail in section 3.1) make it possible for

porcine islets to be considered as another safe, functional and

readily available source of primary cells for T1D patients. This

will help to overcome the ongoing shortage of donor human islets.
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TABLE 1 Summary of studies investigating the use of encapsulation (micro/macro) technologies for immune isolation of allogeneic primary islets or
stem cell-derived islets for cell transplantation.

Strategy Encapsulation
Material/Device

Cell type In vivo
transplantation
in humans or
animal models
(If any)

Outcome of transplanted cells Ref

Microencapsulation Chitosan hydrogel Wistar
rat islets

Yes, diabetic C57BL/6J
mice

Encapsulated islets secreted insulin in response to glucose
stimulation, reduced blood glucose levels for four weeks, and
resulted in faster glucose disappearance rate after IPGTT
compared to naked islets. Immunostaining confirmed insulin-
positive cells in the graft and negative staining for T-cell
lineages and monocyte/macrophages.

(52)

Alginate/
polyaminoacidic-
based (patented)

Human islets Yes, T1D patients
(non-
immunosuppressed)

Improved HbA1c levels with positive serum C-peptide response
for 3 years post-transplant. Absence of immune infiltration
observed by negative expression of anti-MHC class I-II and
GAD65 antibodies 3 years post-transplant.

(53)

Alginate/poly-L-lysine/
alginate (APA)

Neonatal
porcine islets

Yes, T1D patients
(non-
immunosuppressed),
diabetic C57BL/6J mice

Reduced unaware hypoglycemia events in all patients. HbA1c <
7% achieved in 4 of 14 patients (from 1 of 14 at baseline).
Reversal of diabetes and positive porcine C-peptide in
mouse study.

(54)

Alginate/poly-L-lysine/
alginate (APA)

Neonatal
porcine islets

Yes, T1D patients
(non-
immunosuppressed)

Improved HbA1c < 7% for >600 days with reduced frequency
of unaware hypoglycemia events.

(51)

Multiple alginate sphere
formulations with
chemically modified
alginate derivatives

Cynomolgus
monkey
islets

Yes, non-diabetic
macaques
(non-
immunosuppressed)

Allogeneic islets encapsulated with Z1-Y15 alginate derivative
retained high viability, were glucose-responsive 4 months post-
implantation in the bursa omentalis. Reduced macrophage
infiltration and foreign-body reaction (FBR) and pericapsular
fibrotic overgrowth (PFO) score in encapsulated islet grafts.

(55)

Alginate polymer
incorporated with
immunomodulatory
chemokine CXCL12

hESC-
derived
b cells

Yes, diabetic C57BL/6J
mice

Enhanced insulin secretion of b cells, accelerated normalization
of hyperglycemia with glycemic correction lasting >150 days.
Limited infiltration of effector T cells, macrophages and
increased recruitment of Foxp3+ regulatory T cells to the
islet grafts.

(56)

Macroencapsulation Collagen-covered device Neonatal
porcine islets
combined
with
Sertoli cells

Yes, T1D patients
(non-
immunosuppressed)

Two of 4 patients had significant reduction in insulin
requirement maintained up to 4 years. Porcine insulin
following glucose stimulation was detectable up to 4 years.
Presence of insulin-positive cells from the explanted grafts were
observed in all patients post-transplant.

(57)

Semi-permeable ethylene-
vinyl alcohol
copolymer membrane

Mouse
pancreatic b
cell
line MIN6

Yes, diabetic C57BL/6
mice

Lowered blood glucose levels for 30 days in diabetic mice, no
host cells within device found, no difference in circulating
inflammatory cytokines in mice with and without transplant.

(58)

TheraCyte™ device Lewis
rat islets

Yes, diabetic Wistar-
Furth (WF) rats

Graft function was maintained for 6 months in both
immunized and nonimmunized rats. Immunized rats showed
high IFN-g producing CD8+ T cells as compared to control rats
transplanted with encapsulated islets.

(59)

Sernova Cell Pouch Syngeneic
mouse islets

Yes, diabetic BALB/c
mice

Restored glycemic control and showed glucose-responsiveness
for 40 days. Islets within cell pouch were stained positive for
insulin, glucagon, and endothelial cells.

(60)

TheraCyte™
macroencapsulation
device

Wild-type
C57BL/6
neonatal
pancreatic
tissue

Yes, T1D RIP-
LCMV.GP mice

Lowered blood glucose and the onset of diabetes was prevented
in some recipients. Absence of CD8+ T cells in the vicinity of
encapsulated C57BL/6 grafts.

(61)

VC-01 (PEC-Encap);
Physical barrier that
protects transplanted
grafts from host immune
cell infiltration

hESC-
derived
pancreatic
endoderm
progenitor
cells

Yes, T1D patients
(non-
immunosuppressed)

Prolonged cell survival for 24-months and positive staining for
pancreatic islet cell markers, NKX6.1, insulin and glucagon was
observed. No evidence of autoimmune rejection based on a
panel of immune function markers.

(62)

(Continued)
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3 Innovations in bio-engineering and
cell-based approaches for cell
replacement therapy to address
immunological issues

Various strategies have emerged to specifically address the

immunogenicity of transplanted cells in islet cell replacement

therapy (Figure 2). These not only aim to improve engraftment

and functionality of the islet cells, but also make such a therapy

more accessible to a wider diabetes population.
3.1 Development of encapsulation
technologies to provide an
immunoprotective environment for
transplanted islets

To protect from allograft rejection and recurrence of

autoimmunity, cell encapsulation is a common strategy that can

provide a physical barrier to shield the islets from immune cell

recognition and attack. Specifically, encapsulation helps to mediate

IBMIR which is caused by islet contact with the blood and is highly

detrimental to cell survivability. An ideal encapsulation device or

material should be biocompatible but not biodegradable, made of a
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semi-permeable material to allow entry of nutrients and oxygen, and

enable release of hormones and metabolic by-products into the

bloodstream. Such a strategy can be based on microencapsulation

or macroencapsulation (Table 1). Microencapsulation is a method in

which islet cell clusters are individually encapsulated in spherical

capsules typically 300 mm to 600 mm in diameter (67), and commonly

in alginate-based hydrogels. In contrast, macroencapsulation is based

on devices greater than 100 mm with capacity to house a larger mass

of islet cells within the membrane. Micro-capsules have an optimal

surface-to-volume ratio compared to macro-capsules that require

vascularization and sufficient oxygenation to improve islet survival

and function. Biomaterials used for microencapsulation are often

made of natural polymers such as alginate (55), agarose (68), chitosan

(52) but also synthetic polymers such as polyethylene glycol (PEG)

that form a hydrogel (50, 54, 56, 69) (Table 1). Microencapsulation

encompasses a semi-permeable membrane that has demonstrated

some success in providing immune protection and mechanical

stability in mice (50, 52), NHP (55) models and human studies (51,

53). However, microencapsulation requires more complex and

individualized fabrication processes (70), as opposed to

macroencapsulation devices that may be easier to manufacture, are

more easily retrievable after implantation, and are more favourable

for commercialization. Several devices that have been developed

include Theracyte™ from TheraCyte Inc., bAir from BetaO2

Technologies, the Cell Pouch System from Sernova, and PEC-
TABLE 1 Continued

Strategy Encapsulation
Material/Device

Cell type In vivo
transplantation
in humans or
animal models
(If any)

Outcome of transplanted cells Ref

bAir device with two
compartments: a refillable
oxygen tank and an
alginate and
polymembrane covered
chamber for
immune isolation

Allogeneic
human
pancreatic
islets

Yes, T1D patients
(non-
immunosuppressed)

Islet survival for 3-6 months, however, limited functionality,
minute circulating C-peptide levels and no benefit on metabolic
control was observed. Fibrotic tissue with immune cells were
formed surrounding the capsule.

(63)

VC-02 (PEC-Direct);
non-immunoprotective to
allow direct
vascularization of
implanted cells

hESC-
derived
pancreatic
endoderm
progenitor
cells

Yes, T1D
patients
(immunosuppressed)

Engraftment and insulin expression were observed in 63% of
subjects. Detectable C-peptide in 35% of subjects from 6 to 24
months post-implantation though with little clinical benefit.
Infiltration of host myofibroblasts into devices.

(64)

Macro device with
alginate gel microcapsules
enclosed in a
semipermeable
membrane bag with
immuno-isolation

Neonatal
porcine islets

Yes, diabetic C57BL/
6NCr mice

Improved glycemic control for more than 200 days. Explanted
devices exhibited almost no adhesion or fibrosis and showed
sustained insulin secretion.

(50)

VX-264; “channel array”
macroencapsulated b cells

Allogeneic
hiPSC-
derived
b cells

Yes, T1D patients Ongoing clinical trial with no disclosed outcomes yet. (65)

Sernova Cell Pouch Allogeneic
human islets

Yes, T1D patients Insulin independence observed for 6 to 38 months with
persistent fasting and stimulated C-peptide levels. Surviving
functional islets detected in Cell Pouches excised at >90 days
post-transplant.

(66)
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Encap (VC-01) and PEC-Direct (VC-02) from ViaCyte (now

acquired by Vertex Pharmaceuticals) (Table 1).

The Theracyte™ planar macroencapsulation device consists of

an inner hydrogel semi-permeable membrane layer for immune

protection and an outer polytetrafluoroethlene membrane layer for

neovascularization (71). Rodent islets encapsulated within the

Theracyte™ device demonstrated survival and functionality in an

immunized rat model for at least 6 months post-transplantation

(59). Porcine islets transplanted subcutaneously within

Theracyte™ also survived and was able to reverse diabetes up to

8 and 16 weeks in cynomolgus monkeys and NOD mice

respectively (72). Another device known as the bAir bioartificial

pancreas (BAP) has been tested clinically and consists of two

compartments for islets, an oxygenated chamber that maintains

physiological oxygen pressure, covered with a porous

polytetrafluoroethylene (PTFE) membrane impregnated with

alginate to provide the immunoprotective barrier (73–75). Stable

graft function and insulin secretion were observed in NHP models

of diabetes (73) and human patients (75) who received bAir
containing porcine islets and human islets respectively, both in

the absence of immunosuppressants, though complete insulin

independence was not achieved. In one Phase I clinical study,

bAir containing allogeneic human islets were subcutaneously

implanted in T1D patients (clinicaltrials.gov: NCT02064309)

(63). Although the transplanted islets survived 6 months post-

transplantation, limited functionality was observed based on

minute levels of circulating C-peptide with no impact on
Frontiers in Immunology 08108
glycemic control in the patients (63). Additionally, fibrosis or

inflammation were observed on the surface of the chamber.

Another promising technology is the proprietary Cell Pouch

system developed by Sernova, which is an implantable device

that provides a vascularized tissue matrix for cells in addition to

local microencapsulation of cells in polymer spheres. The Cell

Pouch is undergoing testing in T1D patients in an ongoing Phase I/

II clinical trial (clinicaltrials.gov: NCT03513939). In an interim

update, patients with islet transplants in the 8-channel Cell Pouches

were found to achieve insulin independence for as long as 3 years as

a result of both functional islet grafts in the Cell Pouches

supplemented by a modest intraportal islet transplant top-up

through the portal vein (66). Additionally, a second version of

the Cell Pouch with higher capacity is being evaluated and early

patient data so far revealed persistent serum C-peptide levels

detected from a single islet transplant in the 10-channel Cell

Pouch (66). The company announced a collaboration with Evotec

to test out human induced pluripotent stem cell (hiPSC)-derived

islet cells in the Cell Pouch system in future clinical trials (66).

In another Phase I/II clinical trial by ViaCyte, human

embryonic stem cell (hESC)-derived pancreatic endoderm cells

(PECs) were encapsulated in a cell-impermeable device designed

to be immunoprotective against recipient immune systems

(clinicaltrials.gov: NCT02239354). The macroencapsulation

devices containing cells (also known as VC-01 or “PEC-Encap”)

were implanted subcutaneously in T1D patients in the absence of

immunosuppression (62, 76), and evaluated for efficacy, tolerability,
FIGURE 2

Overview of strategies to avoid immune recognition and allograft rejection of stem cell-derived islet cells in the context of cell-based therapy for
diabetes treatment (Created with BioRender.com).
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and safety. Formation of neovasculature was observed in the grafts

and the PECs were able to mature in vivo into insulin-expressing b
cells, as shown by immunohistochemical staining for pancreatic

islet cell markers (NKX6.1, insulin, and glucagon) (62). VC-01 was

found to be safe, well-tolerated and immunoprotective with

evidence of prolonged cell survival up to 24 months. However,

some inconsistency of cell survival was observed amongst subjects

due to varying foreign body responses in the host (62, 76).

Furthermore, no evidence of insulin secretion was found due to

chronic damage to islets resulting from device fibrosis (62). This

suggested that the macroencapsulation device, although well-

tolerated in recipients, resulted in poor long-term engraftment

and diminished efficacy due to poor oxygenation and nutrient

supply to the transplanted cells. In efforts to mitigate cell loss due

to device fibrosis, a subsequent version of the combination product

(also known as VC-02 or “PEC-Direct”) was developed to include

engineered portals in the device to enable direct capillary

permeability and facilitate better vascularization to the implanted

cells (clinicaltrials.gov: NCT03163511) (76). However, this was a

non-immunoprotective device and patients still required

immunosuppression to limit allo- and autoimmune responses.

This time, patients exhibited meal-stimulated C-peptide secretion

following maturation of the PECs in vivo and achieved the target

blood glucose range for longer periods (26 weeks) as compared to

VC-01 (76). Subjects in which substantial cell engraftment were

observed after evaluating the explants were shown to have higher

meal-responsive C-peptide levels during the follow-up period as

compared to those with poor cell engraftment (64). While VC-02 is

general ly safe and wel l-tolerated, the side effects of

immunosuppression accounted for majority of adverse events

(AEs). Another study utilizing the same VC-02 device but with

an optimized membrane perforation increased the initial implanted

cell dose (14 x 106 cells per kg body weight) such that it is within the

range of that used for intrahepatic primary islet transplants (6-18x

106 cells per kg body weight) (20, 77, 78). After 6 months post-

transplantation, only 3 of 10 patients achieved C-peptide levels

≥0.1 nmol/L with reduced insulin dependence, and the detectable b
cell mass in the retrieved implants was found to be less than 5% of

the initial cell mass, indicating high cell loss and limited efficacy

from the device-delivered PECs (78). This could be due to

insufficient vascularization in the devices to support the

metabolically functional b cell mass. Further optimization

remains needed to increase the efficacy of the encapsulated

PECs to be comparable to that of conventional human

primary islet transplantation. These outcomes suggest that the

macroencapsulation devices not only need to prevent entry of

immune cells, but also facilitate (even encourage) vascularization

to enable better cell survival and maturation into functional b cells

and reduce infiltration of fibroblasts into the devices.

In another recent effort to evaluate macroencapsulated stem

cell-derived islets in the absence of immunosuppressants, Vertex

Pharmaceuticals, who has an ongoing first-in-human Phase I/II

clinical trial (clinicaltrials.gov: NCT04786262) for their allogeneic

stem cell-derived, fully differentiated islet cells (79), revealed the

deve lopment o f the i r second ce l l therapy program

(clinicaltrials.gov: NCT05791201) investigating the islet cell
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product encapsulated in a “channel array” device and implanted

subcutaneously (65). Though the design of the device used in the

trial has not been disclosed, based on publicly-available patent filing

information from the company, such a device would have a

thickness of at least 300mm, an average pore size ranging from 5

nm to 2500 nm and comprising 1 x 106 to 1 x 109 (PCT/US2018/

053665). The proprietary design also showed deformation of the

membrane to a formed configuration instead of a flat configuration,

with channels that enable vascularization in and around the device.

The pore size had to be fine-tuned to ensure long-term structural

integrity while allowing release of insulin and restricting leakage of

cells out of the device (PCT/US2018/053665 and PCT/US2018/

037637). It remains to be seen whether the device allows sufficient

nutrient and oxygen supply, as well as provide immune tolerance in

the absence of immunosuppression.

Across the numerous efforts from academic labs and

commercial companies to develop and test macroencapsulation

devices for islet cell transplant (Table 1), prevention of immune

attack is found to be achievable, but a balance needs to be struck to

achieve other outcomes including better vascularization and

oxygenation, maximising transplanted b cell mass, preservation of

b cell viability and function following implantation, and reduction

of foreign body reactivity. These devices also require additional

unique considerations related to manufacturing and regulatory

oversight as medical devices for use in a clinical setting,

evaluation of the biocompatibility of the materials, and selection

of transplantation site and protocol given the larger size of

the devices.
3.2 Combining hiPSC technology and
genetic engineering to generate
hypoimmune cells

Since the use of hiPSC technologies became widespread, hiPSCs

have proven to be highly versatile and amenable to genetic

manipulation. The generation of functional hiPSC-derived islets

(SC-islets) has also made significant headway in recent years,

making it possible for regenerative medicine to be part of a not-

so-distant future in diabetes therapy. The journey of developing SC-

islets in the lab to be as close to their primary human islet

counterparts as possible, and the promise of using these cells as

off-the-shelf therapy for islet cell replacement, have been extensively

discussed in other recent reviews (80–82). Previously, promising

preliminary clinical results had been released from Vertex

Pharmaceuticals on their ongoing first-in-human Phase I/II

clinical trial of lead candidate VX-880 (clinicaltrials.gov:

NCT04786262), which is a hiPSC-derived, fully differentiated islet

cell product administered to T1D patients in a similar fashion as

primary human islets, in the presence of intensive chronic

immunosuppressive therapy (83). Six patients with a history of

undetected insulin secretion tolerated the therapy well,

demonstrated islet cell engraftment with production of

endogenous glucose-stimulated insulin and had improved

glycemic control. Patients that were followed up at the 1-year

mark also displayed successful elimination of SHEs and reduction
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in HbA1c <7.0% (83). This was a landmark shift from ViaCyte’s

PEC grafts, which required cellular maturation in vivo into

functional glucose-sensing and insulin-secreting b cells, a process

that cannot be monitored and qualified before transplant.

In combining SC-islet differentiation protocols and genome

engineering techniques (84–89), several novel approaches have been

employed to generate human islet cells that are protected from immune

rejection, potentially eliminating, or reducing the need for systemic

immune suppression and/or encapsulation. These immune evasive

strategies typically work by either artificially elevating immune

suppressive proteins (e.g. immune checkpoint manipulation) or

removing receptors important for immune cell recognition on the

cell surface (Figure 3). An essential component of innate and adaptive

immune responses is the major histocompatibility complex (MHC)

class I and II molecules which serve to present foreign antigens to the

cell surface for recognition by the host immune system. In humans,

these MHC molecules, also known as human leukocyte antigens

(HLA), are highly polymorphic with almost 10,000 alleles. Immune

rejection of hiPSC-derived cells or tissues from an allogeneic donor are

mediated through these MHCmolecules, limiting the survivability and
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therapeutic potential of the transplanted cells. Immunological

mechanisms governing allograft rejection occurs in two stages: (1)

non-specific innate responses predominate in the early phase, and (2)

antigen-specific adaptive responses by antigen presenting cells (APCs)

and dendritic cells (DCs) that result in recognition of donor antigens by

host T cells (90). Both innate and adaptive immunity contribute to

acute or chronic graft rejection.

To prevent innate immune rejection and further suppress

adaptive immune responses, various groups have developed

genetically engineered hypoimmunogenic hiPSCs or hESCs

through modification of selected HLA genes and other

immunomodulatory factors, and evaluated the ability of these

pluripotent stem cells and their derivatives to escape immune

recognition (91–93). Table 2 provides a summary of key studies

that developed hypoimmunogenic cells and evaluated the ability of

the cells to evade the host immune response in both in vitro and in

vivo assays.

The potential application of hypoimmunogenic hPSC-derived

islet cells for cell replacement therapy has been demonstrated in

several pre-clinical studies in immunocompetent diabetic animal
FIGURE 3

Immune-evasive hPSC-derived islet cells can be developed through genome-editing of the hiPSC source to knock out MHC class I and II molecules
and knock in other immunomodulatory markers to evade different T cell and NK cell recognition, creating a tolerogenic microenvironment for
allogeneic transplantation. When transplanted in humanized diabetic mouse models, unedited allogeneic hiPSC-derived islet cells face graft
rejection, whereas hypoimmunogenic allogeneic hiPSC-derived islet cells survive and are able to rescue diabetes to achieve normal blood glucose
levels in mice.
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TABLE 2 Strategies for developing and evaluating hypoimmunogenic stem cell-derived islet cells, primary islets, and other cell types.

Experimental
strategy

Cell
type
evaluated

Outcome of in vitro validation Outcome of in vivo validation Reference

Pancreatic islet cells or b cells

CRISPR/Cas9
knockout of B2M
and CIITA,
expression of CD47
by
lentiviral
transduction

miPSC and
miPSC derived
endothelial cells
(EC), smooth
muscle cells
(SMC),
cardiomyocytes
(CM).

Enzyme-linked immunospots assay (Elispots) with
splenocytes recovered 5 days after transplantation
showed that WT miPSCs had strong IFN-g and a
moderate IL-4 response, as compared to
engineered miPSCs that did not induce any
antibody response in allogeneic mice.

In vivo monitoring of luciferase expression from
transplanted cells showed that all three WT miPSC
derivatives survived up to 50 days in syngeneic
C57BL/6 mice, whereas WT miPSC derivatives were
rejected in allogeneic mice, in the absence of
immunosuppressants. In contrast, engineered miPSC-
derived ECs, SMCs showed 100% long-term survival
in both syngeneic and allogeneic mice.

(91)

hiPSCs and
hiPSC derived
ECs and CMs

Mice transplanted with WT hiPSCs, and hiPSC-
derived ECs and CMs demonstrated strong IFN-g
response and elevated IgM levels, as compared to
recipients of engineered hiPSCs that did not
mount an IFN-g response or cellular or humoral
immune response. Engineered hiPSC derivatives
did not trigger NK cell activation or NK cell
killing in killing assays.

WT and engineered hiPSCs were injected into
allogeneic humanized NSG-SGM3 mice. In vivo
monitoring of luciferase expression demonstrated WT
hiPSC derivatives were rejected, whereas engineered
hiPSC derivatives showed stable luciferase signals
over time and long-term graft survival (50 days).

Expression of PD-L1
by lentiviral
transduction
in hiPSCs

hiPSC-derived
b-like cells

Reduced expression of immune (CD45+) cells in
recovered grafts based on ex vivo flow
cytometric analysis.

Kidney capsule transplantation of PD-L1-expressing
b-like cells in C57BL/6J diabetic mice provided
sustained control of blood glucose, as compared to
those lacking PD-L1 expression. Glycemic control
correlated with detectable serum human C-peptide
and glucose homeostasis was observed for up to 50
days in immune-competent mice.

(88)

CRISPR/Cas9
knockout of HLA-
A/B/C and CIITA
while retaining
HLA-A2R in hESCs

hESC-derived
b-like cells

Retaining expression of HLA-A2 in combination
with HLA-E expression reduced NK cell activation
in NK cell degranulation assays. Flow cytometric
analysis of mice splenocytes and peripheral blood
demonstrated absence of T cells (CD45) and NK
cells (CD3) 4 weeks post-transplantation. Hence,
suggesting resistance to T cell and NK
cell cytotoxicity.

Transplantation in the spleen of immunodeficient
NSG and NSG-MHCnull mice followed by luciferase
monitoring and survival of grafts with HLA-A2R cells
up to 16 weeks post-transplantation

(87)

CRISPR/Cas9
knockout of B2M,
overexpression of
PD-L1 and HLA-E
in hESCs

hESC-derived
b-like cells

Measurement of luminescence demonstrated B2M
knockout SC-islets exhibited significantly
improved survival compared to WT SC-islets
when IFN-g treated SC-islets were co-cultured
with PBMCs in vitro.

No significant difference in blood glucose levels of
mice transplanted with WT and B2M knockout SC-
islets under the kidney capsule of diabetic humanized
NSG-MHC class I/II knockout mice. However, upon
injection of mismatched HLA-A2 PBMCs, WT SC-
islets were rejected within 2 weeks resulting in loss of
in vivo graft function. In contrast, B2M knockout SC-
islets showed delayed graft rejection while retaining
some in vivo graft function as demonstrated by GSIS.

(86)

CRISPR/Cas9
knockout of B2M
and CIITA,
expression of CD47
by
lentiviral
transduction

Primary human
pancreatic
islets, hiPSC-
derived islets

Reduced or lack of NK cell or macrophage killing
of engineered hypoimmune primary pseudo-islets
and iPSC-derived islets based on in vitro
impedence killing assays.

Transplantation in the hindlimb muscles of
immunocompetent, diabetic humanized NSG-SGM3
mice, followed by glucose monitoring. WT islet grafts
were fully rejected over 7 to 10 days, whereas
hypoimmune islets survived, engrafted, and achieved
glycemic control for up to 29 days, as shown by in
vivo luciferase assay.

(85)

CRISPR/Cas9
knockout of B2M
and CIITA,
expression of
macaque CD47 by
lentiviral
transduction
in hiPSCs

hiPSCs Serum collected from rhesus macaque
transplanted with WT islets demonstrated a peak
in total IgM (after 7 days) and IgG (after 13 days)
donor specific antibodies (DSA), based on
antibody-dependent cellular cytotoxicity (ADCC)
and macrophages or complement-dependent
cytotoxicity (CDC) assays. In contrast, rhesus
macaque transplanted with hypoimmune cells did
not induce DSAs and did not undergo ADCC or
CDC cytotoxicity.

Hypoimmune hiPSCs injected subcutaneously in the
back of immunocompetent allogeneic rhesus macaque
demonstrated unrestricted survival for 16 weeks,
whereas WT cells were rejected within 6 weeks, as
shown by in vivo luciferase assay.

(84, 89)

(Continued)
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models (85–89). Simultaneous deletion of beta-2-microglobulin

(B2M), a component of MHC class I-encoded HLA-A/B/C

molecules, and MHC class II transactivator CIITA in hiPSCs (93)

and primary human islets (85) resulted in ablation of cytotoxic

CD8+ and CD4+ helper T cell responses. When evaluated for

immune tolerance in vitro, B2M and CIITA knockout hESC- and

hiPSC-derivatives were co-cultured with T cells, NK cells

and PBMCs and were found to be resistant to T cell, NK cell, and

complement-dependent cytotoxicity and macrophage engulfment

(86–88, 93, 94) (Figure 3). The expression of the non-classical MHC
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molecules, HLA-E and HLA-G, were also found to contribute to

establishing an immunosuppressive microenvironment by binding

the inhibitory NK cell receptors CD94/NKG2A and facilitating the

escape of human tumors from the host immune response (95). A

previous study showed that HLA-A/B/C knockout hESCs and their

differentiated CD45+ cells and RPE cells that overexpress HLA-E

are resistant to CD8+ T cell cytotoxicity and NK cell-mediated lysis

in both in vitro and in vivo models (92).

Another immunomodulatory effector is CD47 which acts as an

anti-phagocytic ligand to inhibit activation of the innate immune
TABLE 2 Continued

Experimental
strategy

Cell
type
evaluated

Outcome of in vitro validation Outcome of in vivo validation Reference

Pancreatic islet cells or b cells

CRISPR/Cas9
knockout of B2M
and CIITA,
expression of
macaque CD47 by
lentiviral
transduction
in hiPSCs

hiPSC-derived
b-like cells

Histology staining demonstrated the injected sites
for WT islets had no evidence of injected cells
after 28 days, whereas sites injected with
hypoimmune b-like cells had well-formed islets
with no apparent inflammation observed.

WT and hypoimmune b-like cells were injected into
the thigh muscle of immunocompetent allogeneic
humanized NSG-SGM3 mice. Reduction in fasting
hyperglycemia, and ameliorated diabetes in mice
injected with hypoimmune b-like cells were observed
up to 28 days. In contrast, WT islet transplants
showed no effect on glucose levels in diabetic mice.

(84)

CRISPR/Cas9
knockout of B2M
and CIITA and
expression of
rhesus macaque
CD47 by
lentiviral
transduction

Primary rhesus
macaque islets

Flow cytometric analysis of WT and hypoimmune
rhesis macaque demonstrated nulled expression of
HLA Class I, no difference in HLA Class I
expression and significant increase in CD47
expression as compared to WT islets.

WT and hypoimmune islets were injected into the
quadricep muscle of immunocompetent rhesus
macaques. Hypoimmune islets achieved long-term
survival up to 40 weeks, whereas WT islets were
rejected within 1 week, as demonstrated by in vivo
luciferase assay.

(84)

Other cells

AAV-mediated
knockout of HLA-
A/B/C and knock in
of HLA-E in hESCs

hESC-derived
CD45+
hematopoietic
derivatives

T cell-mediated cytotoxicity assay demonstrated
that CD8+ T cells efficiently lysed B2M+/+ CD45+

cells, but did not kill B2M-/Edimer, and B2M-/Etrimer

cells in vitro.

Luciferase-expressing B2M+/+ and B2M-/Etrimer ESC-
derived teratomas and primed allogeneic CD8+ T
cells were subcutaneously injected in
immunodeficient NSG-B2M knockout mice. More
growth was observed in B2M-/Etrimer teratoma as
compared to B2M+/+ after CD8+ cell infusion.

(92)

CRISPR/Cas9
knockout of HLA-
A/B/C and CIITA,
knock in of PD-L1,
HLA-G and CD47
in AAVS1 site
in hESCs

hESC-derived
endothelial cells
(ECs) and
vascular
smooth muscle
cells (VSMCs)

WT and engineered hESCs-derived ECs were
pretreated with IFN-g and co-cultured with
carboxyfluorescein succinimidyl ester (CFSE)-
labeled allogeneic CD3+ T cells. Flow cytometric
analysis demonstrated reduced proliferating T
cells (CD3+), reduced activation markers (CD69+

and CD154+) in engineered ECs as compared to
WT. Similarly, allogeneic NK cells co-incubated
with engineered hESC-VSMCs demonstrated
significantly reduced NK cell degranulation
compared to WT, as shown by flow cytometric
analysis of CD107a.

WT and engineered hPSCs were subcutaneously
injected in immunodeficient mice and monitored for
teratoma formation over the course of 4 to 6 weeks.
WT teratomas displayed a slower increase in volume
compared to engineered teratomas. Furthermore,
histology staining and qPCR analysis of human
effector T cell markers CD8 and IL-2 had
demonstrated reduced T cell infiltration in engineered
cell lines compared to WT.

(93)

CRISPR/Cas9
knockout of HLA-
A/B (haploid HLA-
C) or B2M
knockout in hiPSCs

hiPSC-derived
CD43+ blood
cells and
cardiomyocytes

51Cr release assays performed with HLA-reactive
T cells demonstrated that HLA-A/B knockout
(haploid HLA-C) and B2M knockout hiPSC-
CD43+ blood cells could evade CD8+ T cell-
mediated cytolytic activity, but not in WT cells.
Flow cytometric analysis measuring CD107a
expression in NK cells co-cultured with hiPSC-
CD43+ blood cells, had demonstrated significantly
lower NK cell-mediated cytotoxicity in engineered
hiPSC-CD43+ blood cells compared to WT.

Luciferase-expressing iPSC-CD43+ blood cells were
pre-treated with IFN-g and injected intraperitoneally
into NRG mice. After transplantation of CD43+ blood
cells, CD8+ T cells were injected. In vivo luciferase
monitoring demonstrated significantly higher survival
ratio of HLA-A/B knockout (haploid HLA-C) CD43+

blood cells as compared to WT after 7 days. HLA-A/
B knockout (haploid HLA-C) also showed
significantly better survival in vivo when NK cells
were injected after transplantation of hiPSC-CD43+

blood cells, as shown by in vivo luciferase expression.

(94)
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system (96). CRISPR/Cas9-mediated knockout of B2M and CIITA

together with lentiviral transduction-based overexpression of CD47

in mouse and human iPSCs were effective in generating

hypoimmunogenic derivatives that did not trigger NK cell

activation in vitro (91). Loss of immunogenicity was also

recapitulated in vivo, as observed by significant improvement in

graft survival post-injection of mouse iPSC- and hiPSC-derived

smooth muscle cells (SMCs), endothelial cells (ECs) and

cardiomyocytes (CMs) into the right thigh muscle of

immunocompetent C57BL/6 mice (91). This approach was

replicated using hiPSC-derived SMCs, ECs and CMs that were

transplanted into humanized NSG-SGM3 mice. Humanized mice

have been widely used as a pre-clinical in vivo model that

recapitulates the human context, in this case the human immune

system. NSG-SGM3 mice used in the study supports the stable

engraftment of human myeloid lineages, regulatory T cell

populations and production of hIL-15, thereby promoting the

development and/or function of human NK cells. B2M-/-/

CIITA-/-/CD47+ hiPSC-derivatives showed sustained graft survival

for more than 50 days, whereas unedited WT derivatives were

rejected within 14 days (91).

A similar strategy was also validated in hypoimmune B2M-/-/

CIITA-/- and CD47-overexpressing primary human islets (85). WT

and hypoimmune human islets injected intramuscularly in

humanized immunocompetent mice were monitored using

bioluminescence imaging. WT islets were fully rejected within 7

to 10 days, exerted no beneficial effect on glucose homeostasis and

no detectable C-peptide secretion after 29 days. In contrast, mice

injected with hypoimmune islets showed allograft survival and

achieved glycemic control, indicating that the function of

allogeneic hypoimmune islets was sustained and confirming the

ability of B2M-/-/CIITA-/-/CD47+ to modulate immunogenicity and

escape immune attack (85). More recently, Hu et al. also reported

the successful rescue of an immunocompetent, diabetic cynomolgus

monkey with allogeneic, hypoimmune B2M-/-/CIITA-/- and CD47-

overexpressing primary rhesus macaque islets (89). C-peptide

remained detectable in the monkey serum and insulin

independence was achieved without immunosuppression for up

to 6 months (89). These results show that hypoimmune islets can be

protected from immune rejection while maintaining graft function

in vivo.

Programmed death-ligand (PD-L1) is an immune checkpoint

protein that has also been in the spotlight as it plays a role in

suppression of adaptive immune response by inducing a co-

inhibitory signal in activated T cells and promoting T cell apoptosis

(97). Gerace et al. reported genetically engineered B2M-deficient hESCs

with PD-L1 overexpression in addition to HLA-E overexpression. The

authors found that in response to PBMC injection, WT SC-islets

transplanted under the kidney capsule of diabetic humanized NSG-

double knockout (hu-NSG-DKO) mice were destroyed within 2 weeks

due to PBMC-mediated cytotoxicity, whereas graft rejection was

delayed when B2M-/- SC-islets were transplanted. At 7 weeks post-

PBMC injection, B2M-/- SC-islets gave rise to positive glucose-

stimulated insulin secretion (GSIS) outcomes and were able to

reverse diabetes in mice whereas graft function was lost in mice

transplanted with WT SC-islets (86). These results suggested that
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removal of B2M could delay the rejection of the SC-islets, though it

is possible that the grafts may eventually be completely rejected in

longer term studies. The authors however showed that overexpression

of PD-L1 in the B2M-/- SC-islets did not protect the cells from xeno-

rejection, and that overexpression of HLA-E did not provide additional

protective benefit against NK cell cytotoxicity in their model. Instead,

they found that SC-islets engineered to secrete tolerogenic cytokines

such as IL-10 and TGF-b are protected against xeno-rejection likely

due to recruitment of Tregs to induce a tolerogenic environment. The

engineered SC-islets could reverse diabetes in NODmice up to 8 weeks

post-transplantation. Another group however showed that PD-L1

overexpression could create an immune-evasive microenvironment

for SC-islets transplanted in immunocompetent diabetic mice, by

restricting T cell activation and delaying graft rejection (88). While

both SC-islets with and without PD-L1 overexpression had similar

efficacy in restoring glycemic control in diabetic mice within a few days,

the functionality of the islets lacking PD-L1 was quickly lost. On the

other hand, islet cells overexpressing PD-L1 provided sustained blood

glucose homeostasis, with human C-peptide levels correlating with

glycemic control for more than 50 days (88).

While most of the reported work on the development of

hypoimmune cells have been within pre-clinical settings, new efforts

are now emerging to evaluate the cells in clinical studies. CRISPR

Therapeutics (previously in conjunction with ViaCyte) is conducting

first-in-human Phase I clinical trials with an investigational, allogeneic,

gene-edited, hypoimmune stem cell-derived PECs for T1D

(clinicaltrials.gov: NCT05210530, NCT05565248). The cells are also

encapsulated in a device to be implanted in patients without

immunosuppressive therapy. Vertex Pharmaceuticals also announced

that it will license CRISPR Therapeutics’ gene-editing technology to

add value to their ongoing efforts in the clinical development of iPSC-

derived islet cell therapy for T1D (98). Although details of the

partnership were not disclosed, the collaboration is likely to explore

the development of hypoimmune, fully-differentiated iPSC-derived

islet cells for transplantation into T1D patients without

immunosuppression (with or without encapsulation). These studies

aim to establish whether generation of universal hypoimmunogenic

hPSCs differentiated into insulin-producing islets could provide long-

term survival due to evasion of immune-mediated detection and

killing. Positive outcomes from the trials will mean maximising the

efficacy of the transplanted islet cell mass and providing a longer term,

immunosuppression-free curative therapy for allogeneic recipients.

Despite the attractiveness of genome-edited hypoimmune cells

as a cell source for allogeneic cell therapy, the long-term safety and

efficacy remains to be ascertained as most studies are currently

conducted in vitro or in animal models. As hypoimmune cells can

escape immune detection, this raises concerns on cell malignancy,

especially for hPSC derivatives which may give rise to tumour

formation in the presence of any residual hPSCs or incompletely

differentiated cells in the graft. Furthermore, CRISPR-based

genome editing may induce unintended off-target genomic

mutations that may contribute to aberrant gene expression that

may contribute to malignancy (99–101). Therefore, tumorigenicity

tests as well as evaluation of the genomic and epigenomic stability of

modified cell lines remain essential to qualify any hPSC-based cell

product for clinical applications. New generations of gene-editing
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tools have also been developed to improve on the design of

nucleases, repair templates and analysis of potential off-target

editing to reduce tumorigenicity risk and unintended outcomes

(102–104). For instance, expression systems containing suicide gene

constructs can potentially eliminate any tumorigenic cells that arise,

to safeguard against tumour formation in hPSC-based cell therapies

(105). A recent study showed that a combination of immune-

cloaked mouse ESCs in which several immunomodulatory

transgenes are being expressed, coupled with a genomically

integrated FailSafe suicide transgene system, was able to generate

various ESC-derived tissues that possess immune privilege.

Allogeneic cells transplanted in these ‘artificially-created’,

immune-privileged sites could be protected from rejection for

months (106). The FailSafe system is a patented technology which

creates a transcriptional link between the suicide herpes simplex

virus thymidine kinase gene (HSV-TK) and a cell division gene

(CDK1) to enable killing of any undesired dividing cells using a pro-

drug treatment (106–108). Such safeguards help to improve the

safety profile of cell therapy products, particularly those that are

engineered to be more immune tolerant. For similar safety reasons,

having the cells implanted within an encapsulation device also

facilitates easy removal of the cells in case there is a need for the

graft to be excised.
3.3 Use of immune privileged stem cell
sources to generate islet cells

Another strategy for transplanted grafts to be potentially shielded

from the immune system involves the use of naturally immune

privileged stem cell sources. Several tissues in the body are

evolutionarily adapted to be protected from inflammatory immune

responses, including extra-embryonic tissues such as the amnion,

placenta and umbilical cord. These tissues possess immune privileges

so that maternal tolerance toward fetal cells may be maintained.

Specifically, these tissues contain stem cells such as umbilical cord

lining mesenchymal stromal cells (CL-MSCs), amniotic MSCs and

placenta-derived trophoblast stem cells (TSCs). These cells also

represent valuable cell sources for the generation of hiPSCs. It is

postulated that hiPSCs derived from immune privileged cells may

retain some of the same genetic signatures and epigenetic memory.

Whether the differentiated cells from these hiPSCs also maintain their

‘privileged’ status however remains to be tested in a cell type-specific

manner. Accumulating evidence suggests that the immunogenicity of

hiPSC-derived cells are cell type-dependent, as different cell types

exhibit different immunomodulatory mechanisms. Retaining at least

some extent of the immune privileges of the original tissue stem cells

may help in resisting immune destruction in the event of

allogeneic transplantation.

MSCs are multipotent stem cells with high proliferative

capacity, low immunogenicity and immune modulation

properties due to the expression of tolerogenic factors. Successful

reprogramming of placental amniotic membrane MSCs and

amniotic fluid stem cells at high efficiency has previously been

shown (109–111). The hiPSCs retained the immunomodulatory

signatures of the MSCs, such as absence of expression of MHC class
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I and II proteins, and expression of HLA-G and CD59 (109).

Umbilical cord lining epithelial cells (CL-ECs) are another

population of cells that do not express MHC class II molecules

and co-stimulatory molecules, and express non-classical HLA-E

and -G, that function to suppress maternal T cell and NK cell

responses (112). Therefore they not only have low immunogenicity

but also possess some immunosuppressive capacity (113, 114). In a

recent study, CL-ECs differentiated into retinal pigment epithelial

(RPE) cells and transplanted into mice and monkey models were

found to elicit reduced pro-inflammatory responses and immune

cell infiltration compared to transplanted RPE cells differentiated

from skin-derived hiPSCs (115). There have been few published

reports, if any, exploring differences in immune tolerance of islet

cells derived from hiPSCs reprogrammed from different cell

sources, representing a gap that warrants further study.

Besides using hiPSCs as the starting source of cells for

differentiation into insulin-secreting islet cells, MSCs have also

been directly differentiated into islet-like cells by genetic

manipulation (116) or step-wise induction using specific medium

and small molecules in vitro (117–125). Umbilical cord-derived

MSCs (UC-MSCs) are attractive as a starting material as they can be

obtained through pain-free and non-invasive methods, are available

in abundance, and have high proliferation and differentiation

capacity (118). Previous studies demonstrated that UC-MSCs do

not induce allogeneic PBMC immune responses and can suppress

the function of mature dendritic cells in vitro (113). UC-MSC-

derived islet-like cell clusters also retained their immune privileged

properties in vivo and were capable of regulating glucose

homeostasis (118). Primitive stromal cells isolated from the

umbilical cord Wharton’s jelly have also been differentiated

directly into insulin-secreting islet-like cell clusters that express

beta cell markers C-peptide and PDX1, and higher levels of secreted

insulin compared to bone marrow-derived MSCs (126). Such an

approach is however less widely adopted than hiPSC-based

differentiation into islet cells, in part due to the lack of

reproducibility in the functionality of the b-like cells derived

using these methods, and the fact that MSCs experience

replicative senescence, which will limit the ability to continuously

generate differentiated cells at larger scale. Another immune

privileged cell type of note are TSCs, which are a unique

population of stem cells derived from the placenta that are fetal

in origin, and that form the interface between the fetus and mother

throughout pregnancy (127). They are immune tolerant as they

have little to no expression of the classical MHCmolecules and may

also be differentiated into the different germ layers. Therefore, TSCs

are another understudied cell source for allogeneic cell therapy, and

attempts to derive islet cells directly from TSCs have yet to

be reported.

In conclusion, the use of immune privileged stem cells as

alternative cell sources for hiPSC generation or for direct

differentiation into islet cells could be another strategy to

eliminate or reduce the intensity of immunosuppressive

therapy without the need for genome editing. Nonetheless,

whether the differentiated cells retain their immune privilege, and

to what extent, would be crucial to ascertain in a cell type-

specific manner.
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3.4 Comprehensive stem cell banks to
facilitate HLA donor matching

It is known that the predominant mediator of allograft rejection

is HLA mismatch triggering T cell-mediated rejection. HLA

molecules found on the surface of most cells have an important

role in enabling the immune system to recognise “self” versus “non-

self” antigens (128). The MHC system in humans consists of the

classical MHC class Ia (HLA-A, -B, -C), non-classical MHC class Ib

(such as HLA-E, -F, -G) and MHC class II (HLA-DR, -DQ, -DM,

-DP) molecules that are involved in antigen presentation to CD8+ T

cells (129), natural killer cells (NK cells) (130), and CD4+ T cells

(131). HLAmatching is not currently a criterion for primary human

islet transplantation, however retrospective studies have showed

that matching at selected loci, particularly HLA-DR and HLA-B,

could improve long term islet allograft survival (132, 133), which

would further lead to more prolonged insulin independence in

patients. Another study involving follow-up of pancreas transplants

purported that the number of HLA-DR and HLA-B

matches correlated with a reduction in acute graft rejection,

though there was no evidence to suggest a similar correlation

with graft or patient survival rate (134). In other studies featuring

other tissue transplantations, HLA matching has been shown to

result in reduced allogeneic immunogenicity, increased graft

survival, and therefore potential reduction in the intensity of

immunosuppression required (135–138). Although HLA typing to

match donor and recipient antigens at selected loci is clinically

feasible, incorporating HLA haplotype matching in primary islet

transplantation remains challenging due to existing pressure from

limited cadaveric donors and the need for islet infusions from

multiple donors. Thus, an avenue that may be explored relates to

the formation of a repository of hiPSCs carrying different HLA

haplotypes that may be matched to many recipients within a given

population. Such a repository would be made up of clinical-grade

HLA homozygous hiPSCs derived from carefully selected donors

with homozygous HLA types to enable HLA matching when the

need for an allogeneic transplantation arises (139). Based on prior

experiences from cord blood and kidney grafting studies, HLA-A,

-B, and -DR have been indicated as the most important HLA loci to

match for long-term graft survival , with or without

immunosuppressive drugs (140–142).

Several groups across different countries have embarked on

efforts to derive repositories of HLA-homozygous hiPSCs that

capture the high frequency HLA haplotype backgrounds (most

typically for HLA-A, -B and -DRB1) in their population. The

Center for iPS Cell research and Application (CiRA) of Kyoto

University runs an iPSC Stock Project that aims to establish an

HLA-homozygous iPSC haplobank for most of the Japanese

population (143, 144). They recently reported a clinical-grade

iPSC haplobank consisting of 27 iPSC lines from seven HLA-

homozygous donors that could cover 40% of the Japanese

population (145). Generation of HLA-homozygous iPSC lines for

coverage of other geographical populations and ethnic groups have

also been shown in Korea, where ten of the most frequent HLA-

homozygous lines can match 41% of the population (146, 147), in

United Kingdom (139), Spain (148), and China (149). The
Frontiers in Immunology 15115
feasibility of such an endeavour has also been explored in Brazil,

where it is estimated that 3.8 million people have to be screened to

obtain 559 triple HLA-homozygous cell lines covering 95% of the

population (150). In Finland (151), the top ten most frequent

haplotypes homozygous for HLA-A to -DQB1 were compatible

with 49.5% of the population. In Australia (152), haplotyping

frequencies could be estimated from existing national blood

banks or cord blood banks. A probabilistic model developed by

Gourraud et al. evaluated multiple ancestry backgrounds and

estimated that construction of a hiPSC bank representing 20 of

the most frequent HLA haplotypes in each of the European

American and African American populations would require

screening of 26,000 and 110,000 donors respectively (153). This

would match with over 50% of the European American and 22% of

the African American populations respectively (153). Population-

specific hiPSC haplobanks may also be deployed for other

populations, especially closely related ones compared to

ethnically-diverse populations. For such a biobank to be used for

clinical applications, the cell banks have to be manufactured in

compliance with Good Manufacturing Practice (GMP) and be

qualified as a clinical grade cell bank, which is is highly costly,

resource-intensive and not a trivial undertaking. The efficiency of

such an effort depends on successfully identifying the desired HLA-

homozygous haplotypes in an opportunistic manner within a

screened population (potentially a prohibitively large one), unless

a population-wide genomic data or blood bank typing data exists

that allows for donor recall by genotype. In addition, data have

shown that HLA-matching alone may be insufficient for successful

allogeneic engraftment, and immunosuppression may still be

required (137, 154). Furthermore, tolerability of HLA-matched

hiPSCs may be dependent on other non-MHC factors such as the

method of reprogramming, the cell type being transplanted

(different cell types have different levels of immunogenicity), and

the site of transplantation (whether the site is immunologically

privileged) (155).

In addition to universal and ‘super donor’ hiPSC banks that we

have discussed so far, personalized donor-specific hiPSC banks can

also be generated for autologous use. As protocols to reprogramme

easily accessible somatic cells (such as blood) are now standardized,

it is possible to generate hiPSCs successfully for many individuals, at

scale. There are increasingly more solutions being developed for

large scale, high throughput generation of hiPSCs (156–159). These

support the potential for autologous transplantation using patients’

own iPSCs as starting material to reduce immune-mediated graft

rejection and therefore eliminate or reduce the need for

immunosuppressive therapy. Guha et al. demonstrated that

syngeneic mouse iPSCs differentiated into the three embryonic

germ layers had little to no immunogenicity when transplanted

into the subcapsular renal space of preclinical models (160).

Morizane et al. also demonstrated that autologous transplantation

of iPSC-derived dopaminergic neurons in the brains of NHPs

elicited minimal immune response (161). These studies evaluated

immunogenicity in different transplant sites, and transplantation in

immune-privileged sites such as the central nervous system, brain

and eyes do not generally trigger an immune response as compared

to other sites, hence the site of transplantation must be considered
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even in an autologous setting. There are also several other

considerations unique to hiPSC-derived cell therapy. The

immunogenicity of autologous grafts remains to be validated as

potential causes of immunogenicity include immaturity of the

hiPSC derivatives, the reprogramming process and extended

period of culturing and passaging of hiPSCs leading to genetic

and epigenetic changes, and other off-target effects when gene

correction is done on the donor cell line (162). To support the

notion that stem cell derivatives exhibit variable immunogenic

properties, Zhao et al. showed that autologous iPSC-derived

SMCs are highly immunogenic to the immune system due to the

dysregulated expression of immunogenic proteins, whereas iPSC-

derived RPE cells are not immunogenic (163). Therefore, hiPSC-

derived cells may not retain their immune privileged properties

upon differentiation, resulting in immune attack, possibly due to

differing levels of expression and activity of immunomodulatory

proteins during the cellular differentiation process (163). Long-term

(>4 months) evaluation of graft function and immune responses

need to be considered when translating pre-clinical findings to the

human context. The creation of donor cell banks for patients in

need would be costly and time-consuming, given that

reprogramming and qualification of the cell bank, followed by

subsequent differentiation into islet cells, could easily take at least

a few months. This is in contrast with other currently approved

autologous therapies such as chimeric antigen receptor (CAR)-T

cell immunotherapy which takes 2 to 3 weeks from apheresis to cell

infusion. Nonetheless, autologous hiPSC-based cell therapy remains

a useful platform for evaluating the safety and efficacy of

regenerative medicine treatments for disease without many of the

concerns that allogenic transplantations pose (164).
4 Discussion

Human islet transplantation has demonstrated substantial

success in improving the lives of T1D patients who were suffering

from SHEs, and restoring their insulin independence. There lies a lot

more potential for T1D patients and even selected T2D patients,to

benefit from an islet cell replacement therapy. However, here we have

discussed major obstacles that need to be overcome including the

need for chronic immunosuppression, lack of sufficient organ donors,

and immune responses that negatively impact on graft function.

Reduction or removal of immunosuppression is the key to being

able to treat diabetes sustainably with a curative therapy, whether

through organ/tissue transplant or a regenerative medicine

approach. The rise of hPSC-derived islet cells for therapeutic use

represents a new paradigm shift in regenerative medicine. Various

strategies have been highlighted here, namely: (1) fine-tuning of the

immunosuppressive regimen to reduce side effects, (2) exploring

alternative primary cell sources such as porcine islets, (3) using

immunoprotective encapsulation materials or devices to preserve

the long-term function of the transplanted cells, (4) using hiPSC-

derived islet cells and genetic engineering approaches to provide a

renewable and well-characterized source of cells that can evade the

host immune system, (5) harnessing the immune-privileged

properties of tissue-derived stem cells to make hiPSCs or perform
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direct differentiation to islet cells, and (6) manufacturing a

repository of HLA-homozygous hiPSCs suitable for clinical

applications. In reality, it is likely that a combination of a few of

these strategies will be needed. Current and future pre-clinical and

clinical work will need to be at the intersection of multiple

strategies, such as the use of encapsulated islet cells derived from

HLA-selected hiPSC lines that have been genetically engineered to

possess more immune-tolerant and safety features. However,

adopting multiple strategies will also mean needing to address the

shortcomings of each, and adding layers of complexity to eventual

clinical translation (Table 3). It is likely that there is no one-size-fits-

all strategy.

Immune isolation or encapsulation of islets relies on a physical

barrier to protect graft function. There are many gold standard

biomaterials used for encapsulation of islets (refer to Table 1) that

are straightforward to mass produce. The long-term durability of

the biomaterials in vivo will need to be tested and optimized in an

application specific manner. For translational purposes, production

of the encapsulation materials/devices need to conform with good

manufacturing practices and ISO standards normally under the

regulation of medical devices. Encapsulation has been tested on all

of primary human islets, porcine islets and SC-islets (Table 1), and

it is feasible for such platform technologies to be developed to suit

different cell types and disease applications. Macroencapsulation

devices have been shown to be applied to cardiovascular diseases

(165–167) and CAR-T cell therapy (168, 169) and shown promising

preclinical outcomes as well.

Although more hiPSC-based cell therapeutic products are being

tested in the clinic now, indicating that safety testing can meet the

regulatory barrier for clinical trial authorizations of specific products,

there remains many reservations about product safety that have to be

managed for each unique cell type. The creation of universal hiPSC

lines that elude immune recognition can offer tremendous promise

for regenerative medicine applications, beyond cell therapy for

diabetes. Genetic modifications to engineer hypoimmune iPSC-

derived endothelial cells and cardiomyocytes have demonstrated

efficacy in treating cardiovascular and pulmonary diseases in

immunocompetent allogeneic mice (170). However, these

hypoimmune cells also present a safety risk after human

application and need to be carefully monitored. This is due to the

potential for undesirable tumorigenicity arising from residual

undifferentiated, pluripotent cells in the final product. Therefore, in

the presence of conventional immunosuppressive therapy, or in the

case of modified hiPSCs that can escape immune surveillance, the

bodymay not be able to detect and respond to potential malignancies.

Additional genetically engineered safeguards for hiPSC-based

products are being developed for elimination of aberrant cell

growth (106, 171), but it is uncertain how these cells would behave

in human patients over time. As for ethnic-specific HLA haplotype

cell banks, though established from homozygous HLA haplotypes,

they may not provide a complete match and therefore a combination

of encapsulation technologies to provide additional immune

isolation, and/or some use of immunosuppressants or anti-

inflammatory drugs are still needed to prevent graft rejection.

There are also other factors not related to MHC compatibility that

can trigger immune responses, such as undesirable gene disruptions
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TABLE 3 Comparative analysis of immune evasion strategies for islet cell therapy.

Microencapsulation
Material

Macroencapsulation
Device

Immune privileged
stem cell sources

Hypoimmune
hiPSCs

HLA-selected
hiPSC

repository

Advantages Prevents immune cells from
recognizing the
transplanted cells

Prevents immune cells from
recognizing the transplanted cells

Naturally possess low
immunogenicity and even
immunosuppressive
capacity

Genetically
engineered in a
customizable
manner to evade the
host immune system

Facilitates HLA
matching with large
numbers
of recipients

Larger surface-to-volume
ratio enables more efficient
diffusion of oxygen
and nutrients

Longer in vivo durability/stability
compared to
microencapsulation materials

Can be used to derive
iPSCs or other cell types
that may retain their
immune privilege

Potentially a
universal stem
cell line

Provides a country/
population-specific
national
cell resource

Facilitates vascularization
in vivo

Cell chambers may be refillable
without device retrieval

Potentially applied without the need for
immunosuppressant drugs

Potentially used
with reduced
intensity of
immunosuppressant
regimen

Potential for
clinical
applications

Can be optimized for
different cell types

Can be optimized for different cell
types but restricted to limited
transplantation sites

Multipotent stem cells
may be differentiated into
a few (but limited) cell
types; iPSCs may be
differentiated into many
different cell types

iPSCs may be differentiated into many
different cell types

Provides flexibility for
transplantation at
different sites

Suitable for less invasive
transplantation methods or sites
(e.g subcutaneous implantation)

May be transplanted at different sites to suit
different regenerative medicine applications

Manufacturability Requires manufacturing in
conjunction with cells

May be mass manufactured
independently of cells initially

Stem cells may be scaled
up easily but have limited
proliferative lifetime

Unlimited quantities
of iPSCs may be
generated to obtain
universal cell bank

Unlimited quantities
of iPSCs may be
generated to obtain
HLA type-specific
cell bank

Many medically-approved,
biocompatible
biomaterials available

Manufacturing of different layers
or components required (such as
inner membrane for immune
protection, outer membrane for
neovascularization) but may be
highly tunable

High cost and resource-intensive for manufacturing clinical grade hiPSCs at
scale, though with new technological developments the costs are likely to
decrease in future

Safety Biocompatible
materials available

Biocompatible materials available Presence of partially differentiated cells or residual hiPSCs may pose
tumorigenic risk

Difficult to retrieve
depending on
implantation site

Easy to retrieve in case of
therapeutic failure or
safety concerns

Difficult to retrieve depending on implantation site, especially without
accompanying macroencapsulation device

Other limitations May be susceptible to
enzymatic or hydrolytic
breakdown in the body

Smaller surface-to-volume ratio
may result in inefficient diffusion
of oxygen and nutrients into and
within the device

Immune privilege
properties may be lost
upon reprogramming and/
or differentiation

Potential
unintended off-
target mutations
from genome
editing procedure

Generation of cell
bank requires
extensive screening
and selection
of donors

Non-refillable and
non-reusable

Need for vascularization to
improve graft survival

Multipotent stem cells
may not generate mature
cell types that fully
recapitulate the
native function

Potential for
aberrant malignant
cells to escape
immune detection

Large number of cell
lines needed to
cover majority
of population

Weak mechanical strength Limited device volume requiring
use of multiple separate devices

Immunogenicity of stem cell/hiPSC derivatives is cell-type dependent and
every cell type generated needs to be evaluated

Limited options for
transplantation site
F
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arising from the iPSC reprogramming or gene editing process,

components of the culture media, and minor histocompatibility

antigens (due to recognition of mutated proteins recognized as

foreign antigens) even in the case of HLA-matched transplants.

As SC-islets are expected to be regulated as biologics, similar to

the route that the US FDA had taken for donor-derived isolated

pancreatic islets, drug manufacturing principles will apply for the

regulation of the cell therapy (26). Unlike the limitations for freshly

harvested and isolated primary human islets, it is possible for the

sterility and potency of SC-islets, among other critical quality

attributes, to be verified prior to clinical use (172). Lessons from

clinical failures due to MSC product inconsistencies highlighted the

need to establish appropriate product quality controls, owing to the

variability in cell initiation and differentiation procedures, culture

conditions and expansion processes among others (173).

There remain various ongoing efforts for improving the outcomes

of islet transplantation. One area of research is on graft vascularization.

Previous studies sought to improve graft re-vascularization through

various methods such as transfection of tissues with mRNA encoding

angiogenic growth factors (e.g vascular endothelial growth factor

(VEGF-A)) (174), co-transplantation with vascular fragments (175),

and pre-vascularization of the engrafted site (176, 177). Alternatively,

re-vascularization of islets was also shown to be improved by resizing

the islets into smaller clusters (≈150mm diameter) combined with a

biocompatible polycation coating, that resulted in achievement of long-

term euglycemia in immunocompetent mice up to 6 months (178).

Alternative transplant sites have also been explored. For example, the

intramuscular (179), gastric submucosa (180), eye (181), and

perihepatic surface (182) are being investigated as alternative

engraftment locations that may enhance the viability of grafts. Some

immunologically privileged transplant sites enable allografts to survive

for extended or even indefinite periods, however not all sites are

suitable for islet transplantation in human patients due to site

accessibility and potential side effects (more extensive review of

alternative transplantation sites are out of the scope of this review).

Another innovative strategy to circumvent immunosuppression

include co-transplantation of islets with immunosuppressive cells

such as MSCs engineered to express PD-L1 and CTLA-4 (183),

which act as accessory cells to induce local immunomodulation.

Another study had showed that recipient-derived MSCs co-

transplanted with islet allografts and MSCs infused in diabetic

cynomolgus monkeys (fully MHC mismatched) after islet

transplantation exhibited delayed rejection due to downregulation

of memory T cells, reduced anti-donor T cell proliferation and

increased Tregs (184). While promising, administration of

immunosuppressive drugs and anti-inflammatory drugs albeit at

reduced doses is still required, and the sustenance of the

immunomodulatory effects exerted by the MSCs in the long run

remains to be determined. As allogeneic MSCs provided poorer

outcomes than autologous MSCs when used alone in the same study

(184), the need to collect and process autologous MSCs will add to

the complexity during clinical translation. Additionally, myeloid-

derived suppressor cells (MDSCs), a cell population of myeloid

origin that can mediate allogeneic immune responses, may

potentially be co-transplanted with islet allografts to help prolong

graft survival (185). Alternatively, a recent report combined cell and
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gene therapy by co-transplanting allogeneic islets with streptavidin-

FasL-presenting microgels in the omental pouch of diabetic non-

human primates (186). Using FasL as an immunomodulatory agent

induced local tolerance in the absence of immunosuppression, due

to increased number of FoxP3+ cells in the graft site.

Other areas that need to be addressed include reducing cost of

manufacturing of the hPSC-derived islet cells, through automation,

cryopreservation and better economies of scale when produced in

large scale batches. Even if the risk from immunosuppression can be

eliminated, there is also the question of where cell therapy falls within

the pipeline of standard of care treatments for poorly controlled

diabetes, in the face of insulin therapy or insulin pumps which are less

invasive. This would also depend on the availability of resources to

administer the cell product in the clinic, willingness to attend

frequent follow-ups, and availability of insurance reimbursement.

Overall, the different areas in which the immunogenicity of

transplanted islet cells can be tackled that we have discussed here,

can help to direct current and future research and development

work, to better formulate strategies to minimise or circumvent

immune recognition and rejection in islet transplantation. These

strategies will not only positively impact the lives of patients with

complex T1D who tend to develop complications from

conventional therapy, but hopefully be accessible by a wider

group of diabetes patients in future.
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Introduction: Chronic rejection is a major complication post-transplantation.

Within lung transplantation, chronic rejection was considered as airway centred.

Chronic Lung Allograft Dysfunction (CLAD), defined to cover all late chronic

complications, makes it more difficult to understand chronic rejection from an

immunological perspective. This study investigated the true nature, timing and

location of chronic rejection as a whole, within mouse lung transplantation.

Methods: 40 mice underwent an orthotopic left lung transplantation, were

sacrificed at day 70 and evaluated by histology and in vivo µCT. For timing and

location of rejection, extra grafts were sacrificed at day 7, 35, 56 and investigated

by ex vivo µCT or single cell RNA (scRNA) profiling.

Results: Chronic rejection originated as innate inflammation around small

arteries evolving toward adaptive organization with subsequent end-arterial

fibrosis and obliterans. Subsequently, venous and pleural infiltration appeared,
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followed by airway related bronchiolar folding and rarely bronchiolitis obliterans

was observed. Ex vivo µCT and scRNA profiling validated the time, location and

sequence of events with endothelial destruction and activation as primary onset.

Conclusion: Against the current belief, chronic rejection in lung transplantation

may start as an arterial response, followed by responses in venules, pleura, and,

only in the late stage, bronchioles, as may be seen in some but not all patients

with CLAD.
KEYWORDS

lung transplantation, chronic rejection, imaging, single-cell profiling, mouse model
Introduction

Lung transplantation is a life-saving treatment for end-stage

lung diseases. However, the lung is prone to rejection due to the

strong allo-immune response of the specialized mucosal immune

barrier of the lung epithelium. Rejection represents the Achilles’

heel of lung transplantation, with a survival rate below that of

other solid organ transplantations (5-year survival of 59%) (1).

Transplant immunologists have classified rejection into three stages

depending on the timing post-transplant: hyperacute, acute, and

chronic rejection (2), occurring within the first hours, weeks, or

more than 6 months after transplantation. Chronic rejection

involves cellular and humoral immune activation, is poorly

responsive to treatment, and consequently is the main culprit for

long-term survival (2). The clinical presentation of chronic rejection

is a gradual late allograft dysfunction in which other causes such as

infection and malignancy are excluded (3). Pathologically, chronic

rejection in organ transplantation is characterized by vascular

intimal thickening and fibrosis, resulting in graft necrosis,

atrophy, and loss of functionality. In lung transplantation, the

destruction of only small airways, pathologically termed

obliterative bronchiolitis (OB), was considered the manifestation

of chronic rejection (4). Chronic rejection is presumed to be the

immunological counterpart of the clinical concept of chronic lung

allograft dysfunction (CLAD), uniting all late persisting lung

function deteriorations without identifiable cause (3, 5).

Understanding how the immunological concept of “specific”

rejection fits into the clinical concept of “non-specific” CLAD
ns syndrome; CXCR3,

XC ligand 14; CLAD,

lar matrix; FBS, Fetal

ounsfield units; H&E,

ILD, Interstitial lung

ajor histocompatibility

chiolitis; PGD, Primary

tion; Treg, Regulatory
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[bronchiolitis obliterans syndrome (BOS) and restrictive allograft

syndrome (RAS)] is essential in determining the true nature of

clinical rejection, resulting in better patient management

and outcome.

The mouse orthotopic left lung transplant model based on the

cuff technique (6, 7) is a unique way to study rejection. This model

involves all essential elements to properly study lung transplant

rejection “in a controlled way”, as it includes the lung as a

functioning organ, an immune response responding against an

MHC (H2) mismatch, the role of immunosuppression on the

lung "architecture", and immune system, and “secondary

immunodeficiency”. Reports on chronic rejection in orthotopic

lung transplantation mostly involved a minor mismatch setting

without immunosuppression (8–10); however, we developed a

unique model of chronic rejection combining a major genetic

mismatch with daily immunosuppression (11, 12).

Our aim was to document the true nature of the immune system

“rejecting” the foreign donor lung within a controlled mouse lung

transplant setting. This study addresses the timing, the location, and

the different elements of the immune system (innate and adaptive)

and lung (airways, vessels, parenchyma, and pleura) changes during

chronic rejection by using histology, in vivo and ex vivo mCT
imaging, and single-cell RNA profiling.
Methods

Mouse orthotopic left lung transplantation

All mice received human care in compliance with the European

Convention on Animal Care and the Guide for the Care and Use of

Laboratory Animals published by the National Institutes of Health

(NIH publication 86-23, 1996). The study was approved by the

Ethics Committee for Animal Research at KU Leuven (P008/2017).

Male C57BL6/N and BALB/C mice, 10–12 weeks old, were

purchased from Janvier Labs (France). Orthotopic left lung

transplantation was performed as described by Jungraithmayr

et al. (7). In summary, following thoracotomy, the artery, vein,
frontiersin.org
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and bronchus were separated from each other, and 10-0 ligatures

were placed around the structures. The pulmonary artery and

pulmonary vein were closed using 9.0 sutures. First, the vein was

anastomosed, followed by the artery, and finally the bronchus. The

sutures were released and the lung was inflated. Hereafter, the chest

was closed, and the animals were placed on a heating pad after

waking up.
Post-transplant study design

A total of 80 mice, consisting of 52 C57BL6/NRj and 28 BALB/

cJRj mice, were used. In total, 28 left lung allografts from BALB/c

donor mice were transplanted into C57BL/6N recipients. Twelve

isograft transplantations were performed with C57BL/6N donor

lungs in C57BL/6N recipients as controls. All mice received daily

maintenance immunosuppression subcutaneously, consisting of

cyclosporine (10 mg/kg/d CsA; Novartis, Belgium) and steroids

(1.0 mg/kg/d or 1.6 mg/kg/d methylprednisolone; Pfizer, Belgium).

The low dose of steroids is equivalent to the human situation, and

the high dose corresponds to other mouse models considering the

higher metabolism of mice (11, 12).

In the first set of transplantations, 16 allografts and 8 isografts

were monitored daily until sacrifice (day 70). The 8 isografts (I1–I8)

and the first 8 allografts received an immunosuppression regimen of

CsA with low steroids (A1–A8) (n = 8), while the second 8 allografts

received CsA with high steroids (A17–A24). The follow-up

included the following: daily body weight monitoring,

cyclosporine measurement in the blood (retro-orbitally bleeding)

at day 56, blood sampling to measure immunoglobulins and

complement, and in vivo μCT imaging at days 7, 35, and 70

(Figure 1). At sacrifice, a video of the ventilating lung was
Frontiers in Immunology 03125
recorded to document the lung functionality. The macroscopic

status of the lungs was classified as failure, extreme deformation,

severe deformation, and mild changes (Figure 2). A failed lung had

shrunken and was non-ventilating, with or without attachment to

the thoracic wall. Within extremely deformed lungs, the lung

structures (vessels, airways, and parenchyma) could not be

discriminated against anymore, and only a hard, solid fibrotic

mass was observed on histology. Within severe deformation, lung

structures could still be identified, but no ventilation of the lung was

seen. Macroscopically, mildly rejecting lungs were still ventilating

and had a normal volume and normal surface appearance (Figure 3,

Supplementary Figure S3). In a second group of eight allografts

receiving CsA and high steroids, mice were sacrificed earlier to

investigate the macroscopic changes and microscopic presentation

of the early μCT. Allografts were sacrificed at day 7 (A11; n = 1), day

21 (A12 and A16; n = 2), day 35 (A9 and A10; n = 2), and day 56

(A13–A15; n = 3).

A last set of transplantations of three isografts (I10–I12) and

three allografts (A25–A27) were sacrificed at days 7, 35, and 70, and

the transplanted lungs were used for single-cell RNA sequencing.

One healthy/untreated BALB/cJRj and one healthy/untreated

C57BL/6NRj left lung were used as baseline controls. Finally, for

ex vivo imaging, one isograft (I9) and one allograft (A28) were

sacrificed at day 70. An overview of the mice and methodology is

presented in Figure 1.
Longitudinal in vivo µCT imaging

To evaluate the left transplanted lung during follow-up, in vivo

μCT imaging (days 7, 35, and 70) was performed with a small-

animal μCT scanner (SkyScan 1278, Bruker, Belgium; resolution =
FIGURE 1

The study design of the allograft and isograft orthotopic single left lung transplantation in mice receiving daily immunosuppression of cyclosporine
and steroids. Isograft (blue), allograft (low dose of steroids; red), and high dose of steroids (green) were sacrificed at 10 weeks (n = 8/group; thick
lines). Additional allografts (high dose; n = 8) are sacrificed at weeks 1, 3, 5, and 8 (green, thin lines). Evaluation parameters post-transplantation are
in vivo lung imaging, serum sampling and histology, ex vivo lung imaging, and single-cell analysis. Additional mice for single-cell RNA profiling and
the ex vivo µCT are presented as dotted lines and dot-dashed lines. All animals are coded and reported later on.
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55 μm³). Mice were anesthetized, and respiratory-gated μCT images

of free-breathing animals were acquired. The respiratory cycle was

divided into four phases, from the initiation of inspiration to end

expiration, and scan parameters were described previously (13) (14)
Frontiers in Immunology 04126
to quantify lung volume and mean lung density for a manually

delineated volume of interest (VOI) on the transversal μCT images

at end expiration (15). The left transplanted and right native control

lungs were analyzed separately to investigate their changes properly.
FIGURE 3

Repeated in vivo µCT lung evolution of the isograft and allograft groups. In vivo µCT lung evolution for lung volume and parenchymal attenuation.
µCT parameters are normalized to the reference lungs. The left side shows the isografts (blue lines) stratified according to the occurrence of PGD
(dotted line) or not (full line) with group variation and individual evolution. The right side shows isografts (no PGD; blue) and allografts (green)
stratified according to mild (dotted line) and severe (full line) rejection with group variation and individual evolution. For group variation, the median
with SEM is presented at each time point.
FIGURE 2

Representative macroscopy, microscopy, and in vivo µCT of the different pathological presentations at day 70. The different patterns include fully
normal lungs, completely destroyed failures, and lungs demonstrating chronic rejection with a spectrum of extreme, severe, and mild rejection.
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To make the data comparable, untreated C57BL/6N (n = 4) and

BALB/c (n = 4) littermates were scanned to create baseline values.

Owing to the anatomical differences in lung structure and volume,

transplanted lungs of isografts were normalized using C57BL/6N

baseline data, and transplanted lungs of allografts were normalized

using BALB/c baseline data.
Lung histopathology

Lungs were fixed (10% formalin, 24 h) and paraffin sections (7

mm) were stained with hematoxylin–eosin (H&E) and Masson

trichrome (MT), and sections were evaluated by a pathologist to

identify the pathological elements of chronic rejection. To observe

how lung structural changes parallel the organization of the

immune system, mice were sacrificed at different time points to

find a sequence of events with respect to lung architecture, as

performed previously (11, 12).
Ex vivo µCT

One isograft (I9) and one mildly rejecting allograft (A28) lung

collected at day 70 were used for ex vivo μCT to reconstruct the

early changes in an allograft. The grafted lung was fixated (10%

formalin; 24 h), followed by ethanol dehydration (70%/80%/90%/

100%) and complete chemical drying in hexamethyldisilazane.

Dried lungs were scanned using an ex vivo SkyScan 1272 μCT

scanner (resolution = 2.5 μm; Bruker) to segment the airway, veins,

and arterial lumen by ITK-SNAP (16).
Blood analysis

Cyclosporine blood levels were analyzed with an immunoassay

(Dimension® RXL, Diamond Diagnostics, USA). Serum

immunoglobulins (IgGA/IgE/IgM/IgG1/IgG2b/IgG2c/IgG3) were

measured with a ProcartaPlex Mouse Isotyping Panel (Thermo

Fisher, Belgium). Serum complement factor 4d was measured by the

conventional ELISA kit C4d (MyBioSource, USA).
Single-cell RNA sequencing

Grafted lungs from three isografts (I10–I12) and three allografts

(A25–A27) at days 7, 35, and 70 were excised and immediately

processed into single-cell suspension according to the Miltenyi

protocol (Miltenyi Lung Dissociation Kit mouse). One BalBc lung

was included as a comparison. Single-cell suspensions of the left lung

of seven mice (control BALB/c, n = 1; isografts at days 7 and 70, n = 1

per time point; allografts at days 7, 35, and 70, n = 1 per time point)

were successfully obtained. Briefly, the lungs were flushed, excised,

and cleaned of excess tissue. TheMACS enzyme solution was instilled

into the lung, and the lobes were transferred into gentle MACS tubes

containing the enzyme mix to dissociate cells. Single-cell suspensions

were cryopreserved in liquid nitrogen until sequencing. Single-cell
Frontiers in Immunology 05127
RNA sequencing was performed using the 10x Genomics 3-prime-v3

dual index assay using the manufacturer’s protocol. Sequencing was

performed using an Illumina HiSeq4000. Read alignment was made

as previously published (17) using the mouse genome (GRCm39).

The gene-cell matrix was inputted into Seurat (v4.0.3) for analysis.

The matrix was filtered to remove cells with <1,000 reads or >5%

mitochondrial genes, normalized, and scaled with a regression of

mitochondrial gene percentage. Clusters were grouped using Louvain

clustering, and cell-type clusters were determined using canonical

marker genes and FindAllMarkers to identify uniquely expressed

genes based on their expression of these marker genes. Cells were

then classified into epithelial, endothelial, stromal, and immune

groups based on their type. UMAP reduction was used for

visualization. Differentially expressed genes were identified using

the FindMarkers set to compare allograft time points (e.g., A1W)

with all other groups. GO enrichment analysis was performed with

clusterProfiler (v3.18.0) (18). Up- and downregulated genes of

allografts compared to isografts and controls were identified using

the FindMarkers function in Seurat (expression in at least 10% of

cells, adjusted p-value < 0.05, and average log2 fold change < −0.25 or

>0.25). GO enrichment analysis was performed using enrichGO with

default parameters and the org.Mm.eg.db (v3.12.0). Revigo and

simRel were used to summarize GO ontology terms (19). Adjusted

log10 p-values were visualized using ggpubr (v0.4.0). Connectome

analysis was performed using the Connectome (v1.0.0) package on

github (https://msraredon.github.io/Connectome/). Default

parameters were used with the exception of setting the minimum

Z-score to 2.6 for visualization. Cellular archetypes were identified

with pseudotime analysis using the phateR (v1.0.7) and slingshot

(v1.8.0) packages in R to determine cells that show correlated or

unique features with disease progression. The visualization of

heatmaps was done using ComplexHeatmap (v2.6.2).
Statistics

Data analysis was performed with Prism10 (GraphPad, USA)

and expressed as the mean ( ± SEM). The D’Agostino and Pearson

normality test was performed. To compare the different groups, a

one-way analysis of variance (ANOVA) was used, and to compare

different groups over time, a mixed-effects model with Tukey’s

multiple comparisons post-hoc test was used. A Mann–Whitney U

test was performed to compare the different transplant groups and

time effects. A value of 0.05 was considered significant.
Results

Macroscopic and microscopic evaluation
of the lung grafts

Macroscopic evaluation of the transplanted lungs revealed

differences across and within different groups (Figure 2,

Supplementary Figure S1). Evaluation of the 24 transplanted

lungs at day 70 revealed five failures, including one isograft (I6),

two allografts with low steroid (A2 and A8), and two allografts with
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high steroid (A18 and A21). Failures histologically presented

necrosis destroying the lung, including parenchyma, airways, and

vessels. In three of the graft failures (I6, A1, and A8), an end-stage

fibrotic mass with few cells was the only remaining fragment of the

lung. To properly study chronic rejection, failures were excluded

from further analysis. Macroscopically, all isografts had a normal

lung color and morphology and were ventilated well. Within the

low-steroid allografts, three allografts showed extreme deformation

(A1, A4, and A6), and three allografts showed severe deformation

(A3, A5, and A7). Within the high-steroid group, two allografts

(A22 and A23) were severely deformed, while four allografts (A17,

A19, A20, and A24) were mildly affected. Within the allografts, only

mild rejecting allografts were ventilating at day 70 (Supplementary

Figure S1). There were no differences in body weight (p = 0.92) and

cyclosporine levels (p = 0.35) between the three groups

(Supplementary Figure S2). The cyclosporine level of all mice was

587 ± 35 μg/L. Microscopic evaluation supported the macroscopic

observation (Figure 4). Macroscopically, extreme deformation

within the low-steroid allografts (A2, A4, and A6) was presented

as intense end-stage fibrosis in all compartments. Although the

vessels and airways could be located, these were never functional.
In vivo repeated mCT evaluation

Evaluation of lung volume changes showed differences within

isografts and allografts over time (p < 0.0001) (Figure 5). Lung

volume at day 7 was comparable between allografts and isografts.

Over time, isografts showed an increasing lung volume, while

allografts decreased. Changes in lung volume were observed

between mildly and severely affected allografts versus clean

isografts (p = 0.025), as mildly and severely rejected allografts had

volume reductions at day 35 (p = 0.12 and p = 0.39) and day 70 (p =

0.18 and p = 0.40) versus isografts (Figure 5). The lung volume

difference between inspiration and expiration on mCT scans (a type

of tidal volume) was compromised in allografts and was greatly
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compromised in severely rejecting allografts. Analysis of the right

native lung confirmed that the decrease in tidal volume was caused

by the graft (Supplementary Figure S3). Parenchymal attenuation of

the transplanted lung was different (p < 0.0001) between isografts

and allografts. Allografts were initially open (day 7) and lung

attenuation appeared afterwards (Figure 6). Attenuation was

increased in mild and severe rejecting allografts at day 35 (p =

0.087 and p = 0.036) and day 70 (p = 0.15 and p = 0.0002) versus

isografts. Low-steroid allografts had more attenuation than high-

steroid allografts at days 35 and 70 (p = 0.0011 and 0.009). The

native lung had no increased attenuation, confirming the absence of

collateral damage or possible infection (Supplementary Figure S4).

Isografts demonstrated a normal lung appearance without

attenuation at day 70, but at day 7, some isografts demonstrated

attenuation and resembled potential primary graft dysfunction

(PGD) (Figure 3). PGD is a type of severe lung injury that occurs

within the first 72 h of lung transplantation and is the most

common cause of early mortality. PGD decreased towards days

35 and 70. PGD is a graft defect. Repeated mCT revealed lung

volume differences between isografts with and without PGD (p =

0.0003). While the lung volume in PGD was lower at day 7, it

returned to the level of the isografts without PGD at days 35 and

70 (Figure 3).
Pathological pattern of chronic rejection in
time and space

Pathological examination of allografts under high

immunosuppression revealed an evolutionary pattern of chronic

rejection organized by time, location, and immune response

(Figure 7). Stage 1, shown in an allograft (A11, day 7), presented

neutrophil extravasation into the vessel wall of end-arterioles,

reducing the arteriolar lumen without increasing wall thickness.

Stage 2 showed inflammation around end-arterioles and end-

venules. The innate activation around end-arterioles increased in
FIGURE 4

The pathological staging of rejection. All allografts were used to identify the stage and were subdivided into stages of rejection. Failures are
documented in orange boxes. Two animals demonstrated a part of the lung to be destroyed, and another part presented rejection (half green half
orange boxes). The color of the boxes in the included lungs represents the origin of the graft being an isograft (blue, n = 7), an allograft under high-
dose steroids (green boxes, n = 13), and an allograft under low-dose steroids (red boxes, n = 6).
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FIGURE 6

Representative macroscopy, microscopy, and in vivo µCT imaging of mild and severe chronic rejection. One allograft with mild rejection and one
with severe rejection are presented (green). In comparison, a control isograft is present, and an additional isograft demonstrating on µCT at week 1
primary graft dysfunction (PGD).
FIGURE 5

Longitudinal morphometric µCT analysis stratified according to the severity of rejection (Tx left lung). (A) Total lung volume of the transplanted left
lung. (B) Parenchymal attenuation of the transplanted left lung. The Left shows the isograft group (blue lines) stratified according to the occurrence
of PGD (dotted lines). The right shows the Allograft 1.6MP group (green lines) stratified according to the severity of rejection (mild rejection is
denoted as dotted lines and severe rejection is denoted as full lines). All data have been normalized as described in the Methods section.
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FIGURE 8

An ex vivo high-resolution µCT imaging and reconstruction of the organization of chronic rejection. The airways (light blue), arterial vessels (pink),
and venous vessels (red) of the transplanted left lung were segmented and reconstructed in 3D (middle large picture) in an isograft (left) and an
allograft (right). A transverse and sagittal image of the scans is presented above and below the reconstruction. On the right and left sides of the
figure, mCT (top) and histological (bottom) details of the broncho-vascular bundle, specifically of the location of the white arrow line, identify the
arterial origin of rejection at the generation where airways go over in respiratory bronchioles.
FIGURE 7

Representative histological illustrations of the four stages of chronic rejection. For each stage, the different anatomical lung compartments involved
were presented, including arteries, veins, bronchioles, and pleura. Stage 1, Stage 2, Stage 3, and Stage 4 are represented by A11 at day 7, A16 at day
21, A24 at day 70, and A22 at day 70, respectively.
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size with the influx of antigen-presenting cells. Simultaneously,

neutrophils infiltrated the end-venules, but the bronchioles were

still not involved. Ex vivo μCT confirmed the vessel lumens

narrowing for both arteries and veins, while the airway lumen

remained unaffected (Figure 8, Supplementary Figure S5).

Evolution toward Stage 3 consisted of immune organization
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around arteries evolving toward adaptive activation. Venules

remained innate, but monocytes appeared besides neutrophils.

The lumen of the venules decreased, and the pleural

compartment started to be infiltrated by lymphocytes. The final

stage of rejection (Stage 4) of arterioles evolved toward fibrosis with

end-arterial obliterans. The venous compartment remained
B

C

D E F
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A

FIGURE 9

Single-cell RNA profiling to validate the sequence of chronic rejection across the different cells involved and subcellular mechanisms. (A) UMAP plot
of the cells from the left lung of three isografts (7, 35, and 70 days), three allografts (7, 35, and 70 days), and one control BalBc lung color-coded by
major cellular lineage. (B) Dot plot heatmap of the expression of representative marker genes of cellular lineages. The size and color intensity of
each dot represent, respectively, the percentage or average expression of the marker gene in this cell type. Color scale: blue, high expression; white,
low expression. (C) UMAP plot of lung cells, color-coded for the indicated conditions of the left lung. (D) UMAP plot of lung cells, color-coded for
the indicated major cell subcluster. (E) Dot plot heatmap of the major cell subcluster. The size and color intensity of each dot represent, respectively,
the total number and percentage of cells within each cell type. Color scale: red, high expression; blue, low expression. (F) Gene expression heatmap
of all individual genes in every identified cell type. Color scale: red, high expression; blue, low expression. (G, H) A barplot of the GO enrichment
analysis of down- and upregulated gene signatures in allograft lungs.
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innately immune-organized, and bronchioles affected by the

neighboring arteriolar inflammation demonstrated typical

bronchiolar folding, but only one allograft presented fibrotic

intraluminal plugging (bronchiolitis obliterans).
Single-cell RNA profiling to validate the
sequence of chronic rejection

Single-cell profiling sequenced 12,821 cells from seven mice. Each

specific cell within control, isograft, and allograft lungs was presented

in a UMAP plot and gene marker validation (Figures 9A-C). The

different cell types were clustered into structural epithelial/

endothelial, innate, adaptive, and stromal cells (Figures 9D, E). The

structural cells decreased at day 7 in allografts compared to isografts

and controls and recovered gradually at days 35 and 70

(Supplementary Figure S7C). Innate cells increased at day 7 and

returned to the isograft and control levels at days 35 and 70

(Figure 9E, Supplementary Figures S7A-C). Cell profiling of

eosinophils and neutrophils was unsuccessful and could not be

evaluated. Adaptive cells, including T helper and cytotoxic cells, B

cells, plasma B cells, and Treg cells, gradually increased toward day

70. Finally, stromal cells started to increase and eventually generated

the fibrotic environment (Figure 9E) for chronic rejection. Although

adventitial fibroblasts appear to be the leading producers of

extracellular matrix (ECM), multiple stromal cells were upregulated.

Overall gene expression in allografts was increased versus

isografts and control lungs. Endothelial cells and monocytes/

macrophages showed a particular increase in gene expression,

suggestive of a key role in the onset and progression of rejection

(Figure 9F). Upregulation of signaling pathways linked to the

immune response, with innate and adaptive elements such as

MHCI/II elements, receptor binding, proteasome formation, and

downstream signal transduction (Figure 9H), was found. In the

early onset of rejection, macrophages presented an increased

expression of MHCII together with CXCR3, CXCL14, and FcRE. T

cell receptor-related costimulatory elements are upregulated at an

early stage, even prior to the increase and proliferation of the T cells

(Supplementary Figure S8D). To examine the temporal evolution of

the expression, pseudotime analysis identified genes involved in early

and late processes (Supplementary Figures S8E, F). Within the Tc

cells, inducer and effector cytokines are increasingly expressed

(Supplementary Figure S8C). ECM production was very active in

the early period after transplantation and subdued at day 70

(Supplementary Figure S9D). Contractile properties are present in

smooth muscle cells, whose expression levels decreased early after

transplantation of isografts but recovered later (Supplementary

Figure S9D). Connectome analysis confirms these complex changes

of lung homeostasis and immune activation with innate cells linked

to endothelial cell involvement early on and to adaptive cell

involvement later on (Supplementary Figures S9E, F). GO

enrichment analysis confirmed that structural cells and stromal

cells have very low general gene expression. Downregulation of

signaling pathways related to cell homeostasis, integrity, and

organization was observed to be involved in the onset of rejection

(Figure 9G). Mechanistic clues demonstrated that isografts receiving
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immunosuppression had lower levels of MHC molecules in the

structural cells. However, during rejection, MHC expression

increased in allografts above isograft levels (Supplementary Figure

S7D). These higher levels of MHCI are confirmed by the increase in

proteasome elements, expression of chemokines, and interferon

elements (Supplementary Figure S7E). In addition, MHCII

expression was also increased, especially during the early phase

of rejection.
Systemic humoral involvement

Measurements of humoral components showed large inter-

individual variation, making it difficult to reach significance. IgA

and IgG1 were below detection, while immunoglobulins IgG1,

IgG2, and IgG3 tended to increase in severe rejection. IgG2c and

IgG3 were linked to adaptive organization in late and severe

rejection. IgM slightly increased early on, while IgE and C4d

tended to increase in late severe rejection. Humoral activation

was absent in isografts (Supplementary Figure S10).
Discussion

This orthotopic lung transplant model, including a major MHC

mismatch with immunosuppression, is the first to examine the

nature, timing, and place of chronic rejection after lung

transplantation. The methodological approach combining

imaging, histology, and transcriptomic profiling allows the

observation of chronic rejection from pathology to immunology.

We revealed the true nature of chronic rejection after lung

transplantation, originating around vessels and, more precisely,

around the arterioles. After innate activation, adaptive activation

and fibrosis around arteries resulted in end-arteritis obliterans.

Only later did innate venous inflammation, pleural infiltration/

fibrosis, and “obliterative bronchiolitis” appear. mCT imaging

confirmed that the gradual rejection model within 10 weeks was

reproducible. The gradual onset of rejection questions the

segregation of rejection into hyperacute, acute, and chronic

rejection. Both cellular and humoral immunity may be part of the

same immune response to rejection, where only the timing and

magnitude differ.

The most important finding is the endothelial origin of

chronic rejection, which alludes to abandoning the old enigma

of airway-centered rejection, “obliterative bronchiolitis”. The

concept that recipients’ immune cells only identify foreign

cells in the small airway as “non-self” and induce the rather

limited immune organization of the OB is counterintuitive.

Although previous mouse lung transplant studies identified

intraluminal airway fibrosis and constriction, including pleuro-

parenchymal infiltration and fibrosis (10, 12, 20, 21), this study

identified the first site of chronic rejection as being at the

arteriole site. This new observation is in line with all solid

organ transplantations (22) and is more plausible as recipients’

immune cells enter the “foreign” donor via arteries, representing

the first contact location.
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mCT imaging opened unique insights into the progression of

rejection. Early innate onset and adaptive immune activation

around the arteries and venous compartment are presented as

mild lung attenuation. Severe attenuation is present when fibrotic

organization around arteries, venous innate inflammation, and

pleural and airway inflammation are histologically found.

Histological imaging of chronic rejection in both time and place

was confirmed by single-cell RNA profiling. The earliest event of

(chronic) rejection—endothelial activation—was observed by the

upregulation of MHC1/2, adhesion molecules, and integrins,

initiating extravasation of innate and adaptive immune cells.

Within T helper cells, early master, inducer, and effector

cytokines were not only increasingly expressed, demonstrating

lymphoid activation, but also blocked regulation as Treg cells.

Rejection is not only about immune cells controlling homeostasis

but also about structural and stromal cells. Low expression levels in

structural cells and stromal cells indicate that the lung structure is

under pressure and its homeostasis is lost. Although adventitial

fibroblasts appear to be the leading producers of ECM in rejection,

multiple stromal cells were identified as ECM drivers, supporting

the idea that rejection is more than restricted to OB lesions. In

addition to the B cell involvement found by histology and cell

profiling, humoral elements such as IgG2c and IgG3 confirmed the

adaptive response in late rejection, in line with delayed-type

hypersensitivity of rejection. Obviously, cell profiling should be

more mechanistically validated.

This murine model, with its diagnostic tool, opens new

horizons. This study maps (chronic) rejection and confirms its

standard immune response nature, as we have only one immune

system. Since all cells, cytokines, and so on resemble the classical

immune responses, it is difficult to consider the specificity of

rejection. Immune responses against microbial and malignant

cells or immune responses due to secondary immune deficiency

may have seriously biased our understanding of rejection. All can be

studied in this controlled setting by paralleling infections,

environmental factors, medication non-adherence, and

autoimmune-induced immune responses. In addition, this model

opens perspectives for immunotherapy research.

Limitations are the low n-values, the presence of failures, and

the heterogeneity of rejection. To prevent failures, it is important to

identify infections, twisted cuffs, and air leaks. The heterogeneity in

the progression and severity of rejection may be related to surgical

processes such as suturing difficulties, flushing issues, twisted cuffs,

and the uptake of immunosuppression.

Our goal to validate the histological and imaging findings of

rejection was achieved very elegantly and provided new avenues for

research. Where chronic rejection fits into the clinical hallmarks of

BOS and RAS is not clear-cut anymore, and how these mouse

findings of rejection parallel the spectrum of CLAD remains to be

answered. The observed lesions in the mouse are most consistent

with RAS. Patients with BOS may experience early chronic

rejection, but the pronounced airway pathology caused by
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immunosuppression or excessive exposure through inhalation of

microorganisms and pollution may be confused with rejection. BOS

and RAS are different but may have more overlap than identified.

This study described the true nature, timing, and location of

chronic rejection after lung transplantation in murine orthotopic

lung transplantation using cutting-edge diagnostic tools and opened

new horizons for research. It invites researchers to re-explore

chronic rejection in the clinical setting of CLAD.
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SUPPLEMENTARY VIDEO 1

Representative macroscopy, including lung ventilation, microscopy, and
µCT of the different pathological presentations. The different patterns

include fully normal lungs, completely destroyed failures, and lungs
demonstrating chronic rejection with a spectrum of extreme, severe, and

mild rejection.

SUPPLEMENTARY FIGURE 2

Postoperative body weight and cyclosporine trough levels. The cyclosporine
trough level of all mice was 587 ± 35µg/L, within the aimed range related to a

better outcome for mice.

SUPPLEMENTARY FIGURE 4

Morphometric longitudinal in vivo µCT lung evolution of the native right lung

for lung volume and parenchymal attenuation. At each time point, either

individual values or the median with SEM are presented.

SUPPLEMENTARY VIDEO 2

Representative longitudinal in vivo µCT lung reconstruction of the

representative grafts. I2, I4, A20, and A22 are represented by inspiration and
expiration scans, and three rotating and ventilating 3D reconstructions of the

scans at 7, 35, and 70 days.

SUPPLEMENTARY VIDEO 3

Representative ex vivo µCT lung reconstruction of an isograft and mild
allografts. The airways (light blue), arterial (pink), and venous (red) systems

of I9 and A28 (day 70) are segmented and reconstructed in 3D.

SUPPLEMENTARY FIGURE 6

Tidal volume of the different presentations of rejection. From the
representative graft (I2, I4; A20 A22) the lung volume difference between in

and expiration was calculated for each time point of the whole lung (upper
panel), the right native lung (left side), and the left transplanted graft lung

(right side). In the lower panel, a subdivision is made for PGD in the isograft
group and for mild versus severe in the allograft group.

SUPPLEMENTARY FIGURE 7

Single-cell RNA profiling of the different cells of the structural cell subcluster.

(A) UMAP plot of all cells of the left lung color-coded by major cellular
lineage. (B) UMAP plot of the structural cells of the left lung, color-coded by

the cellular subcluster of the structural cells. (C) Dot plot heatmap of the
structural cell subcluster. The size and color intensity of each dot represent,

respectively, the percentage of cells within each cell type. Color scale: red,

high expression; blue, low expression. (D) A heatmap of the expression of
mouse MHC1/2 complex H-2 genes within the endothelial cell lineages,

where each line represents a specific endothelial cell and the color intensity
represents the expression of the specific H2 gene. Color scale: yellow, high

expression; purple, low expression. (E) Violin plots of proteasome elements,
chemokines, and interferon pathway members were divided into the control

mouse and isograft and allograft at days 7, 35, and 70. (F) UMAP plot of lung

cells, color-coded for different adhesion molecules. Color scale: purple, high
expression; grey, low expression. G/UMAP plot of lung cells for controls,

isografts, and allografts, color-coded for the adhesion molecule CD34. Color
scale: purple, high expression; grey, low expression.

SUPPLEMENTARY FIGURE 8

Single-cell RNA profiling of the different cells of the immune cell subcluster.
(A) UMAP plot of all cells of the left lung, color-coded by major cellular

subcluster. (B) UMAP plot of the immune cells of the left lung color-coded by

the cellular subcluster of the immune cells. (C) Dot plot heatmap of the
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immune cell subcluster. The size and color intensity of each dot represent,
respectively, the percentage of cells within each cell type. Color scale: red,

high expression; blue, low expression. (D) Violin plots of T cell activation

elements specific to the T cell subcluster divided into the control mouse,
isograft, and allograft at days 7, 35, and 70. (E) and (G) Heatmaps of gene

expression of genes correlated with pseudotime disease progression
(Pseudotime: red to blue) within innate macrophages or adaptive T cells.

Gene expression was scaled and plotted from low (purple) to high
(yellow) expression.

SUPPLEMENTARY FIGURE 9

Single-cell RNA profiling of the different cells of the stromal cell subcluster.

(A) UMAP plot of all cells of the left lung, color-coded by major cellular
cluster. (B) UMAP plot of the structural cells of the left lung, color-coded by

the cellular cluster of the stromal cells. (C) Dot plot heatmap of the stromal
cell subcluster. The size and color intensity of each dot represent,

respectively, the percentage of cells within each cell type. Color scale: red,
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high expression; blue, low expression. (D) Dot plot heatmap of expression of
representative marker genes of contractility and extracellular matrix proteins

for the different groups, including control, isograft, and allograft (with time

points). The size and color intensity of each dot represent respectively the
percentage or average expression of the marker gene in this cell type. Color

scale: blew, high expression; white, low expression. (E) Connectome showing
ligand-receptor pairs identified within control, isograft, or allograft mice.

Colors denote the different cell types. (F) Connectome showing ligand-
receptor pairs identified in the different allograft timepoints (A1W, A5W, or

A10W). It should be noted that collagen ligands were highly connected in the

early stages of rejection.

SUPPLEMENTARY FIGURE 10

Serial evaluation of systemic immunoglobulins and complement factors.

Immunoglobulins included are IgG1, IgG2b, IgG2c, IgG3, IgM, IgA, and IgE
accompanied by IgG against double strained DNA, BL6 DNA, and BalBc DNA.

For complement, C4d was used.
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molecular mechanisms in
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transplantation through single-
cell RNA sequencing
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Huizhen Yu1,5,6* and Lisha Mou3,4*

1Department of Cardiology in South Branch, Shengli Clinical Medical College of Fujian Medical
University, Fuzhou, Fujian, China, 2Department of General Medicine, People’s Hospital of Longhua,
Shenzhen, Guangdong, China, 3Imaging Department, Institute of Translational Medicine, Health
Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen, Guangdong, China, 4MetaLife Lab, Shenzhen Institute of Translational Medicine,
Shenzhen, Guangdong, China, 5Department of Cardiology in South Branch, Fujian Provincial Hospital,
Fuzhou, Fujian, China, 6Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou,
Fujian, China
Islet transplantation is a promising therapy for diabetes treatment. However, the

molecular underpinnings governing the immune response, particularly T-cell

dynamics in syngeneic and allogeneic transplant settings, remain poorly

understood. Understanding these T cell dynamics is crucial for enhancing graft

acceptance and managing diabetes treatment more effectively. This study aimed

to elucidate the molecular mechanisms, gene expression differences, biological

pathway alterations, and intercellular communication patterns among T-cell

subpopulations after syngeneic and allogeneic islet transplantation. Using

single-cell RNA sequencing, we analyzed cellular heterogeneity and gene

expression profiles using the Seurat package for quality control and

dimensionality reduction through t-SNE. Differentially expressed genes (DEGs)

were analyzed among different T cell subtypes. GSEA was conducted utilizing the

HALLMARK gene sets from MSigDB, while CellChat was used to infer and

visualize cell-cell communication networks. Our findings revealed genetic

variations within T-cell subpopulations between syngeneic and allogeneic islet

transplants. We identified significant DEGs across these conditions, highlighting

molecular discrepancies that may underpin rejection or other immune

responses. GSEA indicated activation of the interferon-alpha response in

memory T cells and suppression in CD4+ helper and gd T cells, whereas TNFa
signaling via NFkB was particularly active in regulatory T cells, gd T cells,

proliferating T cells, and activated CD8+ T cells. CellChat analysis revealed

complex communication patterns within T-cell subsets, notably between

proliferating T cells and activated CD8+ T cells. In conclusion, our study

provides a comprehensive molecular landscape of T-cell diversity in islet
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transplantation. The insights into specific gene upregulation in xenotransplants

suggest potential targets for improving graft tolerance. The differential pathway

activation across T-cell subsets underscores their distinct roles in immune

responses posttransplantation.
KEYWORDS

diabetes, islet transplantation, allotransplantation, single-cell RNA sequencing, T-cell,
immunomodulation, transplant rejection, immune tolerance
1 Introduction

Islet transplantation has become a promising therapy for certain

endocrine disorders, particularly type 1 diabetes mellitus (T1DM),

which affects approximately 1.6 million Americans, and the

incidence of this disease continues to increase globally (1–3).

Despite advances in insulin therapy and continuous glucose

monitoring, achieving optimal glycemic control remains a

challenge for many patients, leading to long-term complications

and increased mortality (4, 5). The limitations of current treatments

underscore the urgent need for alternative approaches, such as islet

transplantation, to restore endogenous insulin production and

achieve tighter glycemic control. However, the success of such

transplantations is often limited by immune rejection and the

scarcity of donor islets. Recent advancements have explored the

feasibility of using personalized endoderm stem cell-derived islets,

which may provide a renewable source of islet tissues tailored to

individual patient needs, potentially overcoming the limitations of

donor availability and improving the compatibility and longevity of

grafts (6). Moreover, Encapsulation techniques, which protect

transplanted islets from the immune system using biomaterials,

offer a potential solution to enhance graft survival and function (7).

Targeted local drug delivery systems have also been developed to

modulate immune responses directly at the transplantation site,

thereby improving transplant outcomes by addressing non-specific,

alloantigen-specific, and autoimmune rejection pathways (8).

Allogeneic islet transplantation has demonstrated efficacy in

restoring insulin independence in T1DM patients; however, donor

scarcity and the necessity for chronic immunosuppression limit

its widespread application (8–10). Moreover, allogeneic islet

transplantation is also accompanied by significant immunological

challenges, primarily due to robust T-cell-mediated rejection (11).

The critical role of T-cell dynamics in islet transplantation

is underscored by their central involvement in immune tolerance

and rejection processes. Understanding the molecular mechanisms

governing T-cell responses is crucial for improving graft

survival and function. A detailed study of these dynamics

can provide insights into more effective immunosuppressive

therapies and long-term graft survival, addressing both the

immediate and prolonged challenges that impact the success of

allogeneic transplants.
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The critical role of T-cell dynamics in islet transplantation is

underscored by their central involvement in immune tolerance and

rejection processes. Detailed study of these dynamics can provide

insights into more effective immunosuppressive therapies and long-

term graft survival.

The heterogeneity of T-cell subpopulations and their distinct

roles in transplantation immunobiology has been studied. For

instance, regulatory T cells have been shown to promote graft

tolerance (12), while effector T cells contribute to graft rejection

(11). The phenotypic characterization of T-cell subpopulations in

the context of islet transplantation has revealed potential targets for

immunomodulatory therapies, indicating the potential of these cell

types for improving transplantation outcomes (13).

In this study, we utilized cutting-edge single-cell RNA

sequencing (scRNA-seq) technology (14) to dissect the molecular

mechanisms, gene expression profiles, biological pathway

alterations, and intercellular communication patterns among T-

cell subgroups in both allogeneic and syngeneic islet transplantation

models. This approach provided a high-resolution view of the

cellular heterogeneity and dynamic changes within the T-cell

community, essential for pinpointing the critical factors

influencing transplantation outcomes. Our comprehensive

analysis using scRNA-seq, along with Gene Set Enrichment

Analysis (GSEA) and CellChat, enabled us to uncover significant

genetic variations and differences in gene expression between

transplantation conditions, revealing the activation or suppression

of specific biological processes and signaling pathways within

different T-cell subpopulations. These findings offer new insights

into the complex communication patterns among T-cell subgroups

and with other cell types, highlighting differences in signaling

activities between allogeneic and syngeneic transplants that could

be pivotal for developing targeted therapeutic strategies.
2 Materials and methods

2.1 Single-cell data analysis of islet grafts

The analysis of single-cell RNA sequencing (scRNA-seq) data

from syngeneic and allogeneic islet grafts was meticulously

conducted to understand the cellular heterogeneity and
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underlying molecular mechanisms that differentiate these two

transplant types by Seurat (version 4.1.0) (15). We obtained the

scRNA-seq datasets from our previous study (GSE198865) (16).

These datasets included samples from both syngeneic (genetically

identical donor and recipient) and allogeneic (genetically different

donor and recipient) islet transplantation. Cells were filtered using

the Seurat package according to the following criteria (1): Cells with

fewer than 200 detected genes or more than 4,500 genes were

removed to exclude empty droplets or multiplets, respectively. (2)

Cells with a mitochondrial gene content exceeding 15% were also

excluded to avoid cells undergoing apoptosis or those with damaged

membranes. (3) Genes not detected in at least 3 cells were removed

to focus the analysis on biologically relevant transcripts. Following

rigorous computational quality filtering, we successfully obtained

the transcriptomes of 19,640 single cells, comprising 11,870 cells

derived from allografts and 7,770 cells originating from syngeneic

grafts. PCA was performed to reduce the dimensionality of the

dataset and to highlight the genetic variances that differentiate cells.

We utilized the “RunHarmony” function (17) within Seurat to

correct for potential batch effects across different samples,

ensuring that subsequent analyses were not confounded by

technical variations.

The t-SNE was used to visualize the data (18). Based on known

marker genes, cells were annotated to identify specific cell types,

such as lymphocytes, endothelial cells, islet cells, mesenchymal cells,

and myeloid cells. Following the initial preprocessing and

clustering, further analysis was conducted to delineate the cellular

subtypes of T cells (including 6471 cells) and understand their

functional roles within the grafts.

The analysis revealed distinct T cell populations in the

transcriptome data. Among these, the CD4+ Tconv (Conventional

CD4+ T Cells) were characterized by the presence of Cd4 and Tnfsf8

markers. The Activated CD8+ T Cells were identified using Cd8a and

Klrc1 markers. Regulatory T Cells, also known as Tregs, were

distinguished by Il2ra and Foxp3 markers. The Dividing T Cells

were recognized by Stmn1 and Top2a markers, indicating their

proliferative state. Memory T Cells were characterized by Sell and

Ccr7 markers. Finally, Gamma Delta T Cells were identified based on

the presence of Blk, Cd163l1, and Rorc markers.
2.2 Analysis of differentially
expressed genes

To explore the molecular differences between T-cell subsets

derived from syngeneic and allogeneic islet grafts, we used a

rigorous approach to identify differentially expressed genes

(DEGs). Initially, DEGs were screened using the Wilcoxon rank-

sum test. This nonparametric test was chosen for its efficacy in

identifying differences between two independent samples, which is

essential for our study comparing two distinct graft conditions.

After initial screening, the limma package (version 3.59.1) was used

to refine our DEG analysis. Limma provides a robust framework for

analyzing gene expression data, particularly through its ability to fit

linear models for comparisons of interest and its empirical Bayes

smoothing of standard errors, which enhances the reliability of
Frontiers in Immunology 03138
DEG identification. Genes were considered differentially expressed

based on two key criteria. We set the adjusted p-value threshold of

less than 0.05 to ensure that the findings were statistically significant

while controlling for multiple testing errors. A cutoff for a |log2-fold

change| of more than 0.25 was applied. This threshold helped in

identifying genes with meaningful expression differences, avoiding

those with minor fluctuations that are less likely to be biologically

significant. This extensive DEG analysis helped reveal the molecular

variations within and across major T-cell clusters and subcell types,

with detailed expression profiles visualized in various figures. We

generated heatmaps to visually represent the DEGs between the

syngeneic and allogeneic grafts within each T-cell subset. Heatmaps

are particularly effective for this purpose because they provide a

clear and intuitive visualization of the expression levels across

multiple genes and conditions, facilitating quick identification of

patterns and outliers in the data. This methodology not only

ensures a robust analysis of gene expression differences but also

helps in understanding the functional implications of these

differences in the context of T-cell behavior and the immune

response in islet transplantation.
2.3 Pathway enrichment analysis in T
cell subsets

To elucidate the functional implications of differentially

expressed genes (DEGs) identified within T-cell subsets from

syngeneic and allogeneic islet grafts, we conducted a

comprehensive pathway enrichment analysis using the

HALLMARK gene set collection from the Molecular Signatures

Database (MSigDB). This analysis aimed to identify key biological

processes and signaling pathways that are differentially activated or

suppressed across these cell subsets.

For each T-cell subset, we performed gene set enrichment

analysis (GSEA) using the preranked list of genes based on their

log2-fold changes. Specifically, we used the irGSEA software

(version 2.1.5) and MSigDB’s mh.all.v2023.2.Mm.symbols.gmt as

the gene set database. This analysis helps in identifying whether

HALLMARK pathways show differences between syngeneic and

allogeneic islet grafts. Pathway enrichment analysis provided

detailed insights into the molecular mechanisms underlying T-cell

responses in syngeneic versus allogeneic islet grafts. This

comprehensive pathway enrichment analysis not only delineated

the specific pathways activated or repressed in different T-cell

subsets but also provided a molecular framework for

understanding the potential impacts of these pathways on the fate

of islet grafts.
2.4 Analysis of cell communication
patterns in T-cell populations
using CellChat

We then applied CellChat (version 2.0.0) to analyze intercellular

communication by quantifying and visualizing the contributions of

different ligands and receptors expressed by these cells (19). This
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allowed us to delineate the cellular hierarchies and communication

dynamics within the T-cell population. We utilized CellChat to

detect and interpret complex communication patterns among the

T-cell subgroups. This included the identification of four incoming

signaling patterns. These patterns represent the pathways through

which T cells receive signals from other cells, helping us understand

how external signals influence cell behavior and function. Three

outgoing signaling patterns: These patterns illustrate how T cells

send signals to other cells, indicating their role in modulating

immune responses and cellular environments. This algorithm

enabled the distinction between autocrine (self-signaling within

the same cell type) and paracrine (signaling between different cell

types) communication modes. The analysis provided a structured

understanding of which cell types are the predominant senders and

receivers of signals, which is critical for identifying key regulatory

nodes within the immune system.

To effectively communicate our findings, we used CellChat’s

built-in visualization functions. Network plots: Network plots

showing the overall signaling network and highlighting the most

influential cell types and pathways. Sankey diagrams: These diagrams

depict the flow of signals between different cell groups, providing a

clear representation of communication from senders to receivers.

Heatmaps and chord diagrams: These visualizations quantified and

compared the strength and frequency of interactions across different

signaling pathways, emphasizing the contributions of each cell type to

the overall communication network. We integrated the results from

CellChat in our study to compare the signaling activities between

syngeneic and allogeneic grafts. This integrative approach helped in

pinpointing differential signaling pathways that might be responsible

for the distinct immune responses observed between the two graft

types. By employing this comprehensive methodology, we were able

to uncover nuanced insights into the cellular communication

landscape, revealing how specific signaling pathways are

orchestrated within T-cell populations and their impact on

graft outcomes.
2.5 Statistical analysis

All analyses were performed in R (version 4.2.1). We established

statistical significance at P < 0.05.
3 Results

3.1 Workflow of this study

The workflow of this study is shown in Figure 1. Step 1: Our

study’s workflow begins with the analysis of single-cell datasets

containing both syngeneic and allogeneic islet grafts. Initial quality

checks, data standardization, and preliminary dimensionality

reduction set the foundation for deeper analysis using T-SNE to

identify distinct cellular clusters within the grafts. Further

subdivision revealed five major cell types, which were expanded

into ten subtypes, enabling detailed cellular profiling and

differential gene expression analysis. In-depth scRNA-seq analysis
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of T-cell populations revealed six transcriptionally distinct clusters.

We further expanded this classification into 20 distinct

subcell types.

Step 2: We then conducted a comprehensive analysis of

differentially expressed genes (DEGs) across these cell types and

subtypes to explore molecular differences.

Step 3: We performed pathway enrichment analyses to identify

signaling pathways such as HALLMARK INTERFERON ALPHA,

GAMMARESPONSES, and TNFA SIGNALING VIA NFKB. These

pathways were particularly notable for their varied expression

across memory T cells, Tregs, and other T-cell types, highlighting

both autocrine and paracrine signaling.

Step 4: Cell−cell interaction analyses further revealed significant

ligand−receptor interactions between various T-cell subsets,

emphasizing the communication dynamics within the T-cell

populations. Pattern recognition techniques map these interactions,

distinguishing cells as signal senders or receivers through specified

signaling patterns, thus providing a comprehensive view of the

communication and signaling mechanisms at play within T-cell

populations. This multifaceted approach not only clarified the

internal communication patterns among T cells but also linked

these patterns to broader immune responses in islet transplants.

Our study included a detailed analysis of the MIF signaling pathway,

focusing on its impact across various T-cell subgroups. We explored

autocrine signaling within the Treg and activated CD8+ T-cell groups

and compared it to the paracrine signaling observed in the CD4+

Tconv, dividing T, memory T, and gdT cell groups. This process

helped us assess the number of cells involved and the likelihood of

communication within each subgroup.
3.2 Analysis of single-cell datasets

In the initial phase of our research, we obtained single-cell

datasets that included syngeneic and allogeneic islet grafts from our

previous study (GSE198865) (16). We conducted thorough quality

checks, standardized the data, and performed initial steps to reduce

dimensionality. Subsequently, we applied the T-SNE technique to

achieve further dimension reduction, which allowed us to clearly

distinguish cellular clusters specific to syngeneic versus allogeneic

islet grafts.

Our analysis identified five main cell types, depicted in

Figure 2A, which included lymphocytes, endothelial cells, islet

cells, mesenchymal cells, and myeloid cells. We extended our

analysis to categorize these cells into 10 detailed subtypes, as

shown in Figure 2B, and their markers are displayed in

Figure 2C. These subtypes consist of B cells, endothelial cells, islet

cells, mesenchymal cells, CD4+ T cells, macrophages, CD8+ T cells,

regulatory T cells (Tregs), natural killer (NK) cells, and dendritic

cells (DCs), providing a detailed view of the cell variety within the

grafts. The distribution of each cell type across the samples is

thoroughly documented in Figure 2D. Additionally, we performed a

differential gene expression analysis, the results of which are shown

in a volcano plot in Figure 2E.

In-depth scRNA-seq analysis of T-cell populations revealed six

transcriptionally distinct clusters: CD4+ Tconv cells, Tregs,
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activated CD8+ T cells, dividing T cells, memory T cells, and gd T

cells, as shown in Figure 3A. We expanded this classification into 20

distinct subcell types, as depicted in Figure 3B, with the markers

shown in Figures 3C, D. These subtypes, which include various

forms of activated CD8+ T cells, dividing T cells, memory T cells,

regulatory T cells, and different T helper cell types, provide a

detailed perspective on the cellular diversity within grafts. The

proportions of these subcell types across the samples are detailed

in Figure 3E.
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3.3 Comparative analysis of DEGs in T cells
between syngeneic and allogeneic
islet transplants

To investigate the molecular differences between T cells from

syngeneic versus allogeneic islet grafts, we conducted a thorough

differential gene expression analysis. This approach enabled us to

identify and characterize the DEGs across six major distinct clusters

of T cells (Figures 4A–C) and 17 subcell types (Figures 4D–F).
FIGURE 1

Study workflow diagram.
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Statistical significance was established using the Wilcoxon rank-

sum test and refined through the limma package, with genes

considered significantly differentially expressed at an adjusted p-

value < 0.05 and a |log2 fold change| > 0.25. By employing

bioinformatics tools, we generated heatmaps to visually represent
Frontiers in Immunology 06141
the DEGs between the syngeneic and allogeneic islet grafts within

each T-cell subset. The upregulated DEGs within six primary T-cell

clusters in allogeneic islet grafts are presented in Figure 4A. The

upregulated DEGs within six primary T-cell clusters in syngeneic

islet grafts are presented in Figure 4B. The detailed expression of
B

C

D E

A

FIGURE 2

Single-cell RNA sequencing analysis of islet grafts. (A) Cellular clusters identified in islet grafts display the five main cell types identified within the
islet grafts, which are lymphocytes, endothelial cells, islet cells, mesenchymal cells, and myeloid cells. (B) Subdivision of cell types showing the ten
detailed subtypes of the main cell types for further cellular profiling and analysis. (C) Marker expression profiles showing the expression markers for
each of the ten cell subtypes, providing insight into the cellular identity and function within the grafts. (D) The distribution of cell types documents
the distribution of each cell type across the sampled grafts, highlighting variations between syngeneic and allogeneic samples. (E) Volcano plot of
differential gene expression showing the results of the differential gene expression analysis, identifying significantly upregulated and
downregulated genes.
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DEGs within six primary T cells from syngeneic versus allogeneic

islet grafts is presented in Figure 4C. The upregulated DEGs within

17 subcell types of T cells in allogeneic islet grafts are presented in

Figure 4D. The upregulated DEGs within 17 subcell types of T cells

in syngeneic islet grafts are presented in Figure 4E. The detailed

expression of DEGs within 17 subcell types of T cells from

syngeneic versus allogeneic islet grafts is presented in Figure 4F.
Frontiers in Immunology 07142
3.4 Pathway enrichment in T cell subsets

Furthermore, we conducted pathway enrichment analysis on

these cellular subsets (Figure 5A). This analysis highlighted that the

HALLMARK INTERFERON ALPHA RESPONSE pathway was

predominantly activated in memory T cells, whereas it was

suppressed in CD4+ Tconv cells and gdT cells. Similarly, the
B

C D

E

A

FIGURE 3

Detailed scRNA-seq analysis of T-Cell populations. (A) Cellular clusters of T cells identified in islet grafts show the six main cell types identified within
the islet grafts. (B) Subdivision of T-cell types showing the 20 detailed subtypes of the main T-cell types for further cellular profiling and analysis. (C)
The heatmap shows the specific marker profiles of different T-cell types. (D) The t-SNE analysis shows the specific marker profiles of different T-cell
types. (E) The proportions of different T-cell types distributed across samples. DivT, Dividing T; Tm, Memory T.
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B C

D E

F

A

FIGURE 4

Comparative DEG analysis in T cells. The differentially expressed genes in T-cell clusters and subtypes between syngeneic and allogeneic transplants
were visualized using heatmaps. (A) Upregulated DEGs in allogeneic T-cell clusters are upregulated within five primary T-cell clusters from allogeneic
islet grafts, highlighting genes with significant expression changes. No upregulated genes were identified in gd T cells. (B) Upregulated DEGs in syngeneic
T-cell clusters illustrate upregulated DEGs within six primary T-cell clusters from syngeneic islet grafts, emphasizing genes with notable increases in
expression. (C) Comparative DEG expression in T-cell clusters. Detailed comparisons of DEG expression within six primary T-cell clusters from both
syngeneic and allogeneic islet grafts are presented, providing a direct visual contrast of molecular differences. (D) Upregulated DEGs in allogeneic T-cell
subtypes across 17 subcell types of T cells in allogeneic islet grafts, delineating the specific genes that are predominantly expressed. (E) Upregulated
DEGs in syngeneic T-cell subtypes displayed upregulated DEGs across 17 subcell types of T cells in syngeneic islet grafts, revealing genes with increased
expression. (F) Comparative DEG expression in T-cell subtypes revealed by a detailed visual comparison of DEG expression across 17 subcell types of T
cells from syngeneic versus allogeneic islet grafts, highlighting molecular distinctions.
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HALLMARK INTERFERON GAMMA RESPONSE was elevated in

memory T cells and Tregs but reduced in CD4+ Tconv cells.

Additionally, the HALLMARK TNFA SIGNALING VIA NFKB

pathway was prominently active in Tregs, gdT cells, dividing T

cells, and activated CD8+ T cells. The HALLMARK IL2 STAT5

SIGNALING pathway exhibited increased activity in Tregs but

decreased activity in bothmemory T cells and activated CD8+ T cells.

In terms of the expression levels and distribution of

differentially expressed genes among the cell subsets, the
Frontiers in Immunology 09144
highest intensity of genes in the memory T cells was detected

in the HALLMARK INTERFERON ALPHA (Figure 5B) and

GAMMA RESPONSES (Figure 5C) subsets, each of which

was marked at approximately 0.2 in the respective figures. Treg

cells showed the most significant changes in the expression of

HALLMARK IL2-STAT5 (Figure 5D), IL6-STAT3 SIGNALING

(Figure 5E), and HALLMARK TNFA SIGNALING VIA NFKB

(Figure 5F), with intensities of approximately 0.15, 0.1, and

0.15, respectively.
B

C

D E F

A

FIGURE 5

Pathway enrichment analysis. The activation of key HALLMARK signaling pathways in T cells was shown to provide insight into their roles in immune
responses. (A) Pathway enrichment analysis details the results of pathway enrichment analysis across T-cell subsets, highlighting pathways that are
differentially activated or suppressed. (B) HALLMARK INTERFERON ALPHA response in memory T cells quantifies the INTERFERON ALPHA response
activation in memory T cells. (C) HALLMARK INTERFERON GAMMA Response in T cells shows an elevated INTERFERON GAMMA response in
memory T cells and Tregs and reduced levels in CD4+ Tconv cells. (D) HALLMARK IL2-STAT5 signaling in Treg cells emphasizes strong IL2-STAT5
pathway activation in Treg cells. (E) HALLMARK IL6-STAT3 signaling in Treg cells is highly active in the IL6-STAT3 signaling pathway in Treg cells.
(F) HALLMARK TNFA SIGNALING VIA NFKB in Treg cells illustrates the activation of TNFA SIGNALING VIA NFKB in Tregs, gdT cells, dividing T cells,
and activated CD8+ T cells.
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3.5 Analysis of cell−cell interactions in
T cells

Pronounced ligand−receptor interactions were observed across

various T-cell types, with notable exchanges between dividing T

cells and activated CD8+ T cells, Tregs, CD4+ Tconv cells, and gdT
cells (Figures 6A, B). The number of interactions among these cells

is shown in Figure 6A, and the interaction weights/strengths are
Frontiers in Immunology 10145
shown in Figure 6B. Figures 6C–H shows the details of the ligand

−receptor interactions between various T-cell types. Figure 6C

shows strong interactions between CD4+ Tconvs and Tregs and

between CD4+ Tconvs and gdT cells. Figure 6D shows the strong

interactions between Tregs and gdT cells. Figure 6E shows the

strong interactions between activated CD8+ T cells and both gdT
cells and Tregs. Figure 6F shows strong interactions between

dividing T cells and gdT cells, Tregs, CD4+ Tconvs and activated
B

C D E

F G H

A

FIGURE 6

Cell-cell interaction network. (A) The interactions among T cells represent the number of ligand-receptor interactions among various T-cell types,
emphasizing network complexity. (B) Interaction strength among T cells shows the interaction weights or strengths among various T-cell types,
providing insights into the intensity of cellular communication. (C-H) Detailed ligand−receptor interactions. (C) through (H) show the strong
interactions between specific pairs of T-cell types, revealing the key pathways and mediators involved in cellular communication.
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CD8+ T cells. Figure 6G shows strong interactions between

memory T cells and Tregs and between memory T cells and gdT
cells. Figure 6H shows the strong interactions between gdT cells and

Tregs and between gdT cells and dividing T cells.
3.6 Analyzing cell communication
patterns and signaling pathways
in T-cell populations

The patterns of cell communication for groups that primarily

acted as signal receivers (cells stimulated by ligands) are shown in

Figure 7A. The width of the flow in the diagram indicates the

contribution of each element to the pattern. CD4+ Tconv, Treg,

memory T, and gdT cells mainly receive stimuli through pattern #1,

which includes the MIF, GALECTIN, IL16, and TGFb signaling

pathways. Activated CD8+ T cells predominantly receive stimuli

through pattern #3, which consists solely of the CCL and IFN-II

signaling pathways. Dividing T cells primarily receive stimuli

through pattern #2, which includes only the CXCL and TNF

signaling pathways.

The pattern of cell communication in groups primarily serving

as signal senders (secretion ligands) is shown in Figure 7B. Most of

the CD4+ Tconv cells that secrete ligands communicate via pattern

#4, which includes the IL16 signaling pathway. All activated CD8+

T cells and memory T cells communicate via pattern #1, which

encompasses the GALECTIN and CXCL signaling pathways. All

dividing T cells communicate via pattern #3, which includes the

CCL, TGFb, and TNF signaling pathways. All gdT cells

communicate via pattern #2, which includes the IFN-II

signaling pathway.

By comparing Figures 7A, B, we can distinguish between

autocrine and paracrine links. Specifically, the MIF and TGFb

signaling pathways primarily mediate autocrine signaling, while

the CCL and CXCL pathways mainly facilitate paracrine

communication between activated CD8+ T cells and dividing

T cells.
3.7 Analyzing autocrine and paracrine
signaling in T cells via the MIF
signaling pathway

The MIF signaling pathway was further analyzed, revealing its

impact on various T-cell subgroups (Figure 7C). On the left, the

diagram illustrates autocrine signaling within the Treg and

activated CD8+ T-cell groups, while the right side shows their

paracrine signaling. Figure 7D divides the focus into two types of

signaling affecting CD4+ Tconv cells: dividing T cells, memory T

cells, and gdT cells. The left side of the diagram represents paracrine

signaling in these groups, and the right side illustrates autocrine

signaling in the same groups. The size of the circles in the diagram

indicates the number of cells in each group, and the width of the

lines suggests the likelihood of cell communication occurring.

Detailed visualizations that complement the insights into the

MIF signaling pathway are provided in Figures 7E–G. A ring chart
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illustrates the distribution and prominence of various T-cell groups

within the MIF signaling pathway, highlighting their respective

contributions and interactions (Figure 7E). The positioning and size

of each segment within the ring chart correlate with the role

prominence of each cell group, as derived from the heatmap

(Figure 7F). A chord diagram was further used to map the

intricate network of cell communication within the MIF signaling

pathway (Figure 7G). This diagram shows the connections between

different T-cell groups, with the thickness of each chord

representing the strength and frequency of interactions between

the groups. As in Figure 7F, where the heatmap depicts the

likelihood of role assumption, the chord diagram in Figure 7G

visually emphasizes the central role of gdT cells, as they act as the

main mediators managing signal flow during cell communication.

Together, these results underscore the dynamics of cellular

interactions, and the crucial roles certain T-cell groups play

within the signaling pathway.
4 Discussion

Islet transplantation has emerged as a promising therapeutic

strategy for patients suffering from type 1 diabetes (20, 21).

Allogeneic islet transplantation offers potential cures, yet they are

hindered by immune rejection and the scarcity of compatible

donors (8). This study aimed to address these challenges by

dissecting the molecular mechanisms underlying T-cell responses

in both transplantation scenarios, highlighting the necessity for a

deeper understanding of immune dynamics to improve

transplant outcomes.

Immune rejection in allogeneic islet transplantation is directly

linked to the loss of functional pancreatic islets (22, 23). By

elucidating the T-cell-mediated immune responses that contribute

to islet graft rejection, this research endeavors to unlock new avenues

for enhancing graft survival and function (24). The insights gained

from our investigation into the differential gene expression and

signaling pathways of T-cell subsets in allogeneic and syngeneic

transplants could shed light on novel immunomodulatory

therapies, potentially revolutionizing the management of type 1

diabetes and improving patient prognoses.

Given the complexity of immune responses in islet

transplantation, identifying differentially expressed genes (DEGs)

in T-cell clusters is crucial. The upregulation of specific genes within

the major T-cell clusters and subtypes in syngeneic transplants

suggests a unique molecular signature potentially linked to graft

rejection or other immune responses. These DEGs could serve as

biomarkers for transplant outcomes or therapeutic targets to

enhance graft survival.

Our single-cell transcriptomic analysis has provided significant

insights into T-cell heterogeneity and its molecular mechanisms in

islet transplantation. Notably, the enrichment of the HALLMARK

INTERFERON ALPHA RESPONSE pathway in memory T cells

indicates a heightened antiviral defense, which is crucial for graft

survival. Conversely, the suppression of this pathway in CD4+

helper and gd T cells likely represents a regulatory mechanism to

prevent tissue damage. Additionally, the widespread activation of
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FIGURE 7

Cell communication patterns and signaling pathways (A) Signaling patterns for signal receivers showing signaling patterns for T-cell groups acting as
signal receivers, detailing the pathways stimulated by ligands. (B) Signaling Patterns for Signal Senders Illustrate signaling patterns for T-cell groups
acting as signal senders, highlighting the pathways through which these cells secrete ligands. (C) MIF signaling pathway autocrine and paracrine
signaling in T cells demonstrates the impact of the MIF signaling pathway on Tregs and activated CD8+ T cells, showing autocrine (left) and
paracrine (right) signaling. (D) Signaling modulation among T-cell subtypes depicts autocrine and paracrine signaling within CD4+ Tconv cells,
dividing T cells, memory T cells, and gdT cells. The circle sizes and line widths represent the number of cells and the potential strength of
communication, respectively. (E) Ring chart visualization of the distribution of the MIF signaling pathway in the T-cell group. A ring chart showing
the distribution and role prominence of various T-cell groups within the MIF signaling pathway. (F) The heatmap of role prominence in MIF signaling
displays a heatmap showing the likelihood of role assumption by different T-cell groups, with color intensity indicating each group’s role
prominence. (G) Chord diagram of T-cell communication in MIF signaling. A chord diagram maps the network of T-cell communications within the
MIF signaling pathway, with chord thickness reflecting the strength and frequency of interactions, particularly highlighting the role of gdT cells as
central mediators.
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the HALLMARK TNFA SIGNALING VIA NFKB pathway across

various T-cell subsets, including regulatory T (Treg) cells, gd T cells,

proliferating T cells, and activated CD8+ T cells, highlights the

critical role of TNFa in mediating inflammatory responses, which

may be targeted to modulate graft rejection and enhance tolerance.

The activation of the HALLMARK TNFA SIGNALING VIA NFKB

across multiple T-cell subsets suggests a heightened inflammatory

state which could predispose to graft rejection or dysfunction.

Conversely, the suppression of the INTERFERON ALPHA

RESPONSE in CD4+ Tconv and gdT cells may represent a

compensatory, regulatory mechanism aimed at tempering the

immune response to avoid overactivation and potential

graft damage.

The interaction between proliferating T cells and activated CD8

+ T cells, as revealed through ligand−receptor analysis using

CellChat, underscores the complexity of communication within

the T-cell community. These interactions are pivotal for

orchestrating the immune response to transplanted tissues,

highlighting their potential as targets for enhancing graft

acceptance and preventing rejection. Similar challenges are

observed in other types of organ transplantation, where post-

transplantation diabetes mellitus (PTDM) emerges as a serious

complication affecting graft and patient survival (25).

Furthermore, the analysis revealed the critical role of the MIF

signaling pathway in modulating interactions among various T-cell

subtypes. This pathway is influenced by autocrine signaling in Tregs

and activated CD8+ T cells, as well as paracrine signaling in CD4+

conventional T (CD4+ Tconv), proliferating T, memory T, and gd T
cells. This complex signaling pathway highlights the integral role of

MIF in immune regulation and suggests that detailed insights into

this pathway could inform strategies to modulate immune responses

in transplant settings. Moreover, the significant role ofMIF in various

biological processes and immune responses, particularly its impact on

different T-cell types, underscores its potential as a biomarker or

therapeutic target in islet transplantation. Compared to findings from

the previous study (11), our study further elaborates on the role of gd
T cells in graft environments, providing a deeper understanding of

their dual role in immunoregulation and inflammation.

Our findings highlight the potential of targeting specific T-cell

signaling pathways, such as TNFA via NFKB, to modulate the

immune response in islet transplantation. These pathways hold

promise as therapeutic targets to enhance graft tolerance. However,

the limited sample size in our study may affect the generalizability of

these results. To address this, further studies should investigate the

role of these pathways in larger cohorts to explore the mechanistic

basis of their modulation using targeted therapies or genetic

techniques. Additionally, we recommend conducting future

clinical trials designed to assess interventions aimed at the TNFA

and interferon pathways, which have been identified as critical in

our study. Such trials could provide deeper insights into their

potential to improve transplantation outcomes and validate our

findings across a broader population, thereby enhancing their

applicability and impact in clinical settings.

In summary, our study highlights the intricate interplay of T-

cell subsets and their communication networks, which are crucial
Frontiers in Immunology 13148
for understanding immune responses in pancreatic islet transplants.

Through detailed analyses using GSEA and CellChat, we identified

specific biological processes and signaling pathways that are

differentially regulated across T-cell subpopulations. These

insights not only deepen our understanding of T-cell behavior in

the context of transplantation but also offer potential avenues for

developing targeted immunomodulatory therapies aimed at

improving transplant tolerance and longevity.
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Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
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Background: Islet transplantation is a promising treatment for type 1 diabetes

that aims to restore insulin production and improve glucose control, but long-

term graft survival remains a challenge due to immune rejection.

Methods: ScRNA-seq data from syngeneic and allogeneic islet transplantation

grafts were obtained from GSE198865. Seurat was used for filtering and

clustering, and UMAP was used for dimension reduction. Differentially

expressed genes were analyzed between syngeneic and allogeneic islet

transplantation grafts. Gene set variation analysis (GSVA) was performed on the

HALLMARK gene sets from MSigDB. Monocle 2 was used to reconstruct

differentiation trajectories, and cytokine signature enrichment analysis was

used to compare cytokine responses between syngeneic and allogeneic grafts.

Results: Three distinct macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) were

identified, revealing complex interactions and regulatory mechanisms within

macrophage populations. The significant activation of macrophages in

allogeneic transplants was marked by the upregulation of allograft rejection-

related genes and pathways involved in inflammatory and interferon responses.

GSVA revealed eight pathways significantly upregulated in the Mø-C2 cluster.

Trajectory analysis revealed that Mø-C3 serves as a common progenitor,

branching into Mø-C1 and Mø-C2. Cytokine signature enrichment analysis

revealed significant differences in cytokine responses, highlighting the distinct

immunological environments created by syngeneic and allogeneic grafts.

Conclusion: This study significantly advances the understanding of macrophage

roles within the context of islet transplantation by revealing the interactions
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between immune pathways and cellular fate processes. The findings highlight

potential therapeutic targets for enhancing graft survival and function,

emphasizing the importance of understanding the immunological aspects of

transplant acceptance and longevity.
KEYWORDS

type 1 diabetes (T1D), islet transplantation, macrophages, immune rejection, single-cell
RNA sequencing (scRNA-seq), syngeneic transplantation, allogeneic transplantation,
cytokine
1 Introduction

Islet transplantation, a promising treatment for type 1 diabetes

(T1D), aims to restore insulin production and achieve better

glucose control (1). Although allogeneic islet transplantation has

been approved and utilized in several countries for many years, the

recent FDA approval of Lantidra in the United States marked a

significant milestone in T1D treatment (2–4). According to a 20-

year report of islet transplantation, significant progress has been

made in improving graft survival and function, with advancements

in immunosuppressive protocols and transplantation techniques

contributing to better outcomes (5). Despite this progress, long-

term graft survival and functionality remain challenging, primarily

due to immune rejection (6, 7). Traditional approaches involve

immunosuppressants, which have significant side effects, including

increased infection and tumor risk (8–10).

The application of single-cell RNA sequencing (scRNA-seq)

technology in islet transplantation is particularly novel and urgent

due to its unparalleled ability to provide detailed insights into cellular

heterogeneity and dynamic gene expression profiles at single-cell

resolution. This technology allows us to dissect the complex immune

microenvironment within transplanted islets, specifically focusing on

macrophages, which play a pivotal role in graft acceptance and

rejection. Previous methodologies, such as bulk RNA sequencing,

lack the ability to identify distinct cellular subtypes and their specific

functions within the graft microenvironment. In contrast, scRNA-seq

enables the identification and characterization of diverse macrophage

subsets and their roles in modulating immune responses.

The complexity of the immune microenvironment extends

beyond the immediate challenges of immune rejection and

immunosuppressant usage to include the elaborate interplay

between transplanted islet cells and host immune cells, such as T

cells (46), B cells, macrophages, dendritic cells, NK cells and

neutrophils (11–13). Macrophages are critical in islet

transplantation due to their dual role in promoting tissue repair

and mediating immune responses (14). These versatile cells are

involved in various processes, including phagocytosis, antigen
02151
presentation, and cytokine production, which influence graft

survival and function. The ability of these cells to polarize into

either proinflammatory (M1) or anti-inflammatory (M2)

phenotypes significantly influences graft outcomes (15). Previous

studies have highlighted the conflicting roles of macrophages in islet

transplantation, with some reports indicating their contribution to

graft rejection and others suggesting their involvement in immune

tolerance. However, these studies were limited by their inability to

precisely characterize macrophage subsets and their functional

states within the transplant microenvironment.

Recent research underscores the therapeutic potential of

macrophages due to their plasticity and diverse functions.

Macrophage-based cell therapy can be engineered for tissue

repair, immune modulation, and targeting specific diseases (14).

Alpha-1 antitrypsin has been shown to suppress proinflammatory

macrophage activity, improving islet graft survival (15). Polylysine-

bilirubin conjugates support islet viability and promote M2

macrophage polarization, aiding transplant acceptance (16). Islet

transplantation can modulate macrophage activity to induce

immune tolerance and promote angiogenesis, enhancing

transplant success (17). Additionally, immunomodulatory

injectable silk hydrogels maintain functional islets and promote

M2 macrophage polarization, facilitating graft acceptance (18).

Our previous research identified three distinct macrophage

subsets (Mø-C1, Mø-C2, and Mø-C3) through scRNA-seq,

revealing their complex involvement in immune rejection and

tolerance processes (19). Building on this foundational work, the

current study presents a reanalysis of an existing scRNA-seq dataset

from mouse transplantation models to characterize macrophage

phenotypes associated with syngeneic and allogeneic islet grafts.

The aim of this study was to further elucidate the mechanisms by

which these macrophages contribute to transplantation outcomes.

By comparing key pathways, we sought to uncover the specific roles

of macrophage subsets in graft outcomes. This detailed profiling not

only enhances our understanding of macrophage biology in islet

transplantation but also identifies potential therapeutic targets to

improve transplant success and longevity.
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2 Materials and methods

2.1 Single-cell data analysis of islet grafts

ScRNA-seq data of syngeneic islet transplantation and

allogeneic islet transplantation grafts were obtained from

GSE198865 (19). Seurat (version 4.4.0) was used for filtering and

subsequent clustering (20). Cells with RNA feature counts less than

200 or greater than 4500 and a mitochondrial content exceeding

15% were excluded as poor-quality cells. Genes not detected in at

least 3 cells were removed from subsequent analysis. These

thresholds were set to eliminate low-quality cells and potential

doublets, ensuring the reliability of downstream analyses. The

mitochondrial content threshold is based on the principle that

high mitochondrial gene expression may indicate stressed or

dying cells, which could bias the results.

Uniformmanifold approximation and projection for dimension

reduction (UMAP) (21) was performed using the Seurat R package

with the first 75 principal components after performing principal

component analysis (PCA) on the 2000 most highly expressed

genes. Identification of significant clusters was performed using the

FindClusters algorithm in the Seurat package with the resolution set

to 0.6. Batch effect correction was performed using the

“RunHarmony” function (22). Cell subtypes were annotated

according to cell markers from the original study (19).
2.2 Differentially expressed genes
(DEG) analyzed

For the analysis of DEGs, we used the Wilcoxon rank-sum test

for comparisons between two groups. This nonparametric test is

suitable for comparing two independent groups and is robust for

single-cell RNA sequencing data. The analysis was further refined

using the limma package in R (version 4.2.2), where genes were

identified as differentially expressed based on two criteria: fold

change > 0.25 and an adjusted P value < 0.05. Venn diagrams and

heatmaps were generated to visualize the interactions between the

DEGs and key pathway gene sets. Heatmaps were generated to

visualize the results.
2.3 Gene set variation analysis (GSVA)

Pathway analyses were predominantly performed on the

HALLMARK gene sets described in the Molecular Signatures

Database (MSigDB) and exported using the MSigDB package

(version 7.5.1). We applied GSVA using standard settings, as

implemented in the GSVA package (version 1.46.0) (23).

Differences in pathway activity per cell according to GSVA

among the different macrophage clusters. To correct for multiple

comparisons, we employed the Benjamini-Hochberg method to

control the false discovery rate (FDR). This correction is crucial for

minimizing type I errors when conducting multiple statistical

tests simultaneously.
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2.4 Analyzing the role of key gene sets
in macrophages

To explore the roles of related gene sets in macrophages identified

in GSVA, we conduct a specialized analysis of the expression patterns

of these gene sets to uncover their potential role in transplant immune

responses. Venn diagrams are used to display the intersection genes

between each gene set and the DEGs in various macrophage

subgroups from both syngeneic and allogeneic transplants.
2.5 Reconstruction of differentiation
trajectories using Monocle 2

Using the R package Monocle 2 (version 2.8.0) (24),

differentiation hierarchies within different clusters were

reconstructed. Cell fate decisions and differentiation trajectories

were reconstructed with the Monocle 2 package, which utilized

reverse graph embedding based on a user-defined gene list to

generate a pseudotime plot that could account for both branched

and linear differentiation processes.
2.6 Cytokine signature enrichment analysis

To assess the cytokine signatures of macrophage subsets (Mø-

C1, Mø-C2, and Mø-C3) in syngeneic and allogeneic islet

transplantation grafts, we utilized the Dictionary of Immune

Responses to Cytokines at single-cell resolution. This approach

was based on the transcriptional response data to individual

cytokine stimulation collected by Cui et al. (25). We compared

the cytokine signatures of macrophage subsets after allogeneic islet

transplantation to those after syngeneic islet transplantation.

Immune response enrichment analysis (IREA) (25) was

subsequently conducted to calculate enrichment scores for each

cytokine. This analysis identified the 86 cytokines with the

enrichment for each macrophage subset.
2.7 Statistical analysis

For the analysis of gene expression in the scRNA-seq data, all

single-cell sequencing data statistical analyses were performed in the

R Seurat package (version 4.4.0). Heatmaps were generated from the

row-scaled expression values using the heatmap package in R

(version 4.2.1). We established statistical significance at P < 0.05.
3 Results

3.1 The workflow of this study

The workflow of this study is illustrated in Figure 1. We began

by acquiring single-cell datasets from GSE198865 covering both

syngeneic and allogeneic islet grafts. Following stringent quality

control, normalization, and initial dimensionality reduction, we

used uniform manifold approximation and projection (UMAP) to
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1407118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pu et al. 10.3389/fimmu.2024.1407118
distinguish cellular clusters from syngeneic and allogeneic islet

grafts. ScRNA-seq analysis of macrophages revealed three distinct

clusters (Mø-C1, Mø-C2, and Mø-C3) with their marker genes. We

then conducted differential gene expression analysis across

macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) to identify

differentially expressed genes (DEGs) between syngeneic and

allogeneic grafts. Gene set variation analysis (GSVA) revealed
Frontiers in Immunology 04153
pathway activity differences, with eight pathways upregulated in

Mø-C2 macrophages. Intersection analysis identified key genes

involved in pathways across Mø-C1, Mø-C2, and Mø-C3, as

visualized through Venn diagrams and heatmaps. Trajectory

analysis using Monocle 2 and cytokine signature enrichment

analysis further elucidated macrophage dynamics and immune

responses in islet transplantation.
FIGURE 1

Workflow of this study. Mø, macrophage.
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3.2 Analysis of single-cell datasets

In the foundational stage of our study, we accessed single-cell

datasets encompassing both syngeneic and allogeneic islet grafts

sourced from GSE198865 (19). After implementing rigorous quality

control measures (Figures 2A, B), normalization processes, and initial

dimensionality reduction steps, we utilized UMAP for dimension

reduction. Cellular gene markers from the original dataset were used

to categorize six primary cell types (Figure 2C): :lymphocytes(markers:

Cd3e, Cd4 and Cd8),endothelial cells (markers: Pecam1, Egfl7 and

Plvap), islet cells (markers: Ins1, Chga and Scg2), mesenchymal cells

(markers: Col3a1, Col1a1 and Col1a2), myeloid cells (markers: Cd68,

Gzma and Cd7), and acinar cells (markers: Amy2a, Ptf1a and Mist1).

These major cell types were further partitioned into 11 subcell types

(Figure 2D): B cells (markers: Cd19, Cd79a and Ms4a1), endothelial

cells, islet cells, mesenchymal cells, CD4+ Th cells (markers:Cd4, Tnfsf8

and Lat), CD8+T cells (markers: Cd8a, Cd8b1 andMs4a4b), regulatory

T cells (Tregs, markers: Il2ra, Ctla4 and Cd2), macrophages (markers:

Cd68, Csf1r and Pla2g7), natural killer cells (NK, markers: Gzma, Cd7

andKlrb1c), acinar cells and dendritic cells (DCs, markers: Clec9a, Xcr1

and Cd24a).

Meticulous scRNA-seq analysis of macrophage populations

revealed three transcriptionally unique clusters, namely, Mø-C1,

Mø-C2, and Mø-C3, providing deep insights into the heterogeneity

and functional specialization of macrophage communities in the

context of islet transplantation (Figure 2E). The marker genes of

Mø-C1, Mø-C2, and Mø-C3 are shown in Figure 2F. The

proportions of Mø-C1, Mø-C2, and Mø-C3 are shown in

Figure 2G. The proportion of Mø-C1 cells was significantly

greater in syngeneic grafts, whereas the proportion of Mø-C2 cells

was considerably greater in allogeneic grafts. The proportion of Mø-

C3 cells was similar in both the syngeneic and allogeneic grafts. This

granular view of cellular landscapes sets the stage for a nuanced

understanding of the immunological intricacies governing graft

survival and acceptance.
3.3 Comparative analysis of DEGs in
macrophages between syngeneic and
allogeneic islet transplants

To investigate the molecular differences between macrophages

from syngeneic versus allogeneic islet grafts, we conducted a

thorough differential gene expression analysis. This approach enabled

us to identify and characterize the DEGs across three distinct clusters of

macrophages: Mø-C1 (Figure 2H, Supplementary Table 1), Mø-C2

(Figure 2I, Supplementary Table 2), and Mø-C3 (Figure 2J,

Supplementary Table 3). By employing bioinformatics tools, we

generated volcano plots to visually represent the DEGs between the

syngeneic and allogeneic islet grafts within each macrophage subset.

The analysis revealed significant differences in the expression of genes

involved in critical pathways associated with graft acceptance, immune

response modulation, and islet cell survival.
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3.4 Key pathways upregulated in Mø-C2
macrophages during islet-
allograft transplantation

Pathway analyses primarily utilized HALLMARK gene sets

from the Molecular Signatures Database (MSigDB), which are

exported via the MSigDB package. GSVA scores per cell revealed

pathway activity differences across macrophage clusters (Mø-C1,

Mø-C2, and Mø-C3). Notably, eight pathways were significantly

upregulated in Mø-C2 cells, underscoring their critical role in islet-

allograft transplantation. These pathways included DNA repair,

MYC targets, G2M checkpoint, inflammatory response, E2F targets,

allograft rejection, interferon alpha response, and interferon gamma

response (Figure 3A). The number of DEGs within these pathways

is detailed in Figure 3B.
3.5 Signaling pathway dynamics in Mø-C1

Intersection analysis identified key genes involved in eight

distinct pathways within the Mø-C1 macrophage cluster, as

illustrated by the Venn diagram (Figure 4A). These pathways

include DNA repair (including 2 genes), MYC targets (including

10 genes), G2M checkpoint (including 2 genes), inflammatory

response (including 20 genes), E2F targets (including 1 gene),

allograft rejection (including 17), interferon alpha response

(including 9 genes), and interferon gamma response (including 25

genes). The heatmaps shows the up-regulated DEGs (Figure 4B)

and down-regulated DEGs (Figure 4C) in allograft compared with

syngeneic graft within these pathways. Detailed information on all

DEGs in pathways related to Mø-C1 is provided in Supplementary

Tables 4, 5. This analysis highlights the involvement of diverse

genes in crucial pathways, shedding light on the multifaceted roles

of Mø-C1 macrophages in islet grafts.
3.6 Pathway analysis in Mø-C2

A Venn diagram (Figure 5A) was generated to identify genes

significantly enriched in seven pathways within the Mø-C2 cluster.

These pathways included DNA repair (including 2 genes), MYC

targets (including 4 genes), G2M checkpoint (including 1 gene),

inflammatory response (including 12 genes), allograft rejection

(including 15 genes), interferon alpha response (including 7

genes), and interferon gamma response (including 24 genes). The

heatmaps was generated to visualize the up-regulated DEGs

(Figure 5B) and down-regulated DEGs (Figure 5C) in these

pathways. Detailed information on all DEGs in pathways related

to Mø-C2 is provided in Supplementary Tables 4, 5. This analysis

underscores the significant activation of inflammatory and immune

response pathways in Mø-C2 macrophages, particularly in the

context of allograft rejection.
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FIGURE 2

Single-cell RNA sequencing (scRNA-seq) insights into islet transplantation. (A) Quality control metrics for scRNA-seq of syngeneic and allogeneic
islet grafts. (B) The number of detected genes showed no correlation with the percentage of mitochondrial content but was significantly correlated
with sequencing depth. (C) Uniform manifold approximation and projection (UMAP) visualization highlights six predominant cell types within islet
grafts, underscoring the diverse cellular landscape. (D) Further UMAP analysis revealed 11 subcell types, providing a detailed view of cellular diversity
within the grafts. (E) Comparative UMAP plots of three macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) in allogeneic (left panel) versus syngeneic
(right panel) islet grafts reveal distinct cellular distributions. (F) Maker genes of three macrophage clusters. (G) The proportions of Mø-C1, Mø-C2,
and Mø-C3. The number of Mø-C2 cells in allografts was significantly greater than that in syngeneic grafts. (H–J) The variance in gene expression
between syngeneic and allogeneic grafts across macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) is depicted, emphasizing the differential
expression landscape. Mø, macrophage.
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3.7 Pathway insights for
Mø-C3 macrophages

Key genes associated with five pathways in the Mø-C3 cluster

were identified through intersection analysis, as shown in the Venn

diagram (Figure 6A). These pathways included MYC targets

(including 1 gene), inflammatory response genes (including 2

genes), allograft rejection genes (including 5 genes), interferon

alpha response genes (including 5 genes), and interferon gamma

response genes (including 7 genes). The heatmaps shows the up-

regulated DEGs (Figure 6B) and down-regulated DEGs (Figure 6C)

within these pathways. Detailed information on all DEGs in

pathways related to Mø-C3 cells is provided in Supplementary

Tables 4, 5. This analysis revealed the significant roles of the

interferon response and allograft rejection pathways in Mø-C3

macrophages, contributing to the understanding of their function

in the immune response to transplantation.
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3.8 Macrophage transcriptional state
bifurcation and cell fate of three clusters
(Mø-C1, Mø-C2, and Mø-C3)

Trajectory manifold analysis of macrophages from islet

grafts was conducted using the Monocle 2 algorithm, which

identified distinct cellular trajectories or fates based on

expression profiles (Figure 7A). The analysis revealed that

macrophages primarily originate from the Mø-C3 cluster,

which branches into the Mø-C1 and Mø-C2 clusters.

Comparative trajectory analysis of macrophages from

syngeneic and allogeneic grafts (Figure 7B) further elucidated

these dynamics, showing that Mø-C3s serve as common

progenitors for both transplant types.

The density plots (Figures 7C, D) illustrate the pseudotime

projections of transcriptional changes for the three macrophage

clusters (Mø-C1, Mø-C2, and Mø-C3). The proportion of Mø-C3
FIGURE 3

Gene set variation analysis (GSVA). (A) Pathway analyses primarily utilized HALLMARK gene sets from the Molecular Signatures Database (MSigDB),
which were exported via the MSigDB package. GSVA scores per cell revealed pathway activity differences across macrophage clusters (Mø-C1,
Mø-C2, and Mø-C3). The red box highlights eight pathways significantly upregulated in Mø-C2 cells, underscoring their critical role in islet-allograft
transplantation. These pathways included DNA repair, MYC target, G2M checkpoint, inflammatory response, E2F target, allograft rejection, interferon
alpha response, and interferon gamma response pathways. (B) The number of differentially expressed genes (DEGs) within pathways significantly
upregulated in Mø-C2 macrophages. Mø, macrophage.
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macrophages was relatively similar in both syngeneic and allogeneic

grafts (Figure 2G), indicating that a stable progenitor state was

unaffected by the type of graft. However, Mø-C1 macrophages were

found in greater proportions in syngeneic grafts (Figure 2G),
Frontiers in Immunology 08157
suggesting that they play a role in promoting graft tolerance.

Conversely, Mø-C2 macrophages were more prevalent in

allogeneic grafts (Figure 2G), which is indicative of their

involvement in inflammatory responses and graft rejection.
FIGURE 4

Signaling pathway dynamics in Mø-C1. (A) Intersection analysis highlights key genes involved in eight distinct pathways within the Mø-C1
macrophage cluster, as shown in the Venn diagram. These pathways included DNA repair, MYC target, G2M checkpoint, inflammatory response, E2F
target, allograft rejection, interferon alpha response, and interferon gamma response pathways. (B) Heatmap of up-regulated DEGs in allograft
involved in these pathways. (C) Heatmap of down-regulated DEGs in allograft involved in these pathways. Mø, macrophage.
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3.9 Cytokine signature enrichment
in macrophages

To evaluate macrophages in islet grafts, we employed a

comprehensive dictionary of immune responses to cytokines.

Responses to 86 cytokines were analyzed by comparing syngeneic

and allogeneic grafts (Figure 8A). The immune response

enrichment analysis (IREA) cytokine enrichment plot (Figure 8B)

displays the enrichment score (ES) for each cytokine response
Frontiers in Immunology 09158
across the three macrophage clusters (Mø-C1, Mø-C2, and Mø-

C3) in syngeneic versus allogeneic grafts. The bar length represents

the ES, while shading indicates the FDR-adjusted P value from a

two-sided Wilcoxon rank-sum test, with darker shades reflecting

greater statistical significance (red for allografts, blue for

syngeneic grafts).

This evaluation is based on data collected by Cui et al. (25),

where transcriptional responses to individual cytokine stimulation

were measured. For Mø-C1s, the top 10 cytokines with the strongest
FIGURE 5

Pathway analysis in Mø-C2 macrophages. (A) Venn diagram identifying significant genes across seven pathways within the Mø-C2 cluster. These
pathways include DNA repair, MYC targets, G2M checkpoint, inflammatory response, allograft rejection, interferon alpha response, and interferon
gamma response pathways. (B) The heatmap visualizes the up-regulated DEGs in allograft involved in these pathways. (B, C) The heatmap visualizes
the down-regulated DEGs in allograft involved in these pathways. Mø, macrophage.
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enrichment in allografts compared to syngeneic grafts were

adiponectin, IL15, IFNa1, IFNb, IFNg, prolactin, IL7, IL11, IL18,
and LIF (detailed results are provided in Supplementary Table 6).

For Mø-C2s, the top 10 cytokines with the strongest enrichment in

allografts were IFNg, IFNa1, IFNb, IL15, IL18, adiponectin, IL27,
IL12, IL11, and IL36a (detailed results are provided in

Supplementary Table 7). For Mø-C3s, the top 10 cytokines with

the strongest enrichment in allografts were IFNg, IFNa1, IFNb,
IL15, IL18, adiponectin, IL2, IL12, IL36a, and IFNk (detailed results
are provided in Supplementary Table 8).

These analyses collectively offer a comprehensive view of the

molecular underpinnings that define the macrophage-mediated

response in syngeneic and allogeneic islet transplantation. By

shedding light on the specific pathways and genes differentially

expressed in various macrophage populations, this research

underscores the complexity of the immune response to

transplantation and points toward potential therapeutic targets

for enhancing graft survival and function.
4 Discussion

Single-cell RNA sequencing (scRNA-seq) technology has

already found extensive applications in immunology (26) and
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transplantation (27) research due to its ability to provide high-

resolution insights into cellular heterogeneity and the distinct

functional states of individual cells. In this study, we leveraged

single-cell RNA sequencing to thoroughly examine macrophage

dynamics and molecular mechanisms in islet transplantation by

comparing syngeneic and allogeneic grafts. By analyzing data from

GSE198865 (19), we identified three distinct macrophage clusters

(Mø-C1, Mø-C2, and Mø-C3) and explored their differential gene

expression and pathway activities. Our detailed single-cell analysis

revealed complex interactions and regulatory mechanisms within

macrophage populations that were not previously captured by bulk

RNA sequencing studies. This detailed view of cellular

heterogeneity and functional specialization provides deeper

insights into the molecular underpinnings of immune responses

in transplantation, thereby the existing research.

Recent studies have demonstrated that macrophage

heterogeneity and the distinct functional roles of various

macrophage subpopulations are critical in shaping immune

responses in different tissue contexts (28). For instance, research

has shown that tissue-resident macrophages exhibit unique gene

expression profiles and functional specializations depending on

their tissue of origin and local microenvironment (29).

Furthermore, the diversity of macrophage activation states,

ranging from proinflammatory to anti-inflammatory and tissue
FIGURE 6

Pathway insights for Mø-C3 macrophages. (A) Key genes associated with five pathways in the Mø-C3 cluster were identified through intersection
analysis. These pathways include MYC targets, inflammatory response, allograft rejection, interferon alpha response, and interferon gamma response.
(B) Heatmap showing the up-regulated DEGs in allograft within these pathways. (C) Heatmap showing the down-regulated DEGs in allograft within
these pathways. Mø, macrophage.
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repair phenotypes, underscores the complexity of their roles in

immune regulation (30).

By comparing our findings with those in the literature, we observe

both the confirmation and expansion of previously reported results.

The observed upregulation of allograft rejection, inflammatory

response (31, 32), and interferon (33) signaling pathways in

allogeneic transplants corroborates previous studies emphasizing the

central role of these pathways in mediating inflammatory responses

and immune rejection. However, our study extends these findings by

providing a more nuanced understanding of the differences in

macrophage polarization states between syngeneic and allogeneic

transplants, highlighting a skew toward a more inflammatory

phenotype in allogeneic settings. Our analysis revealed significant

activation of macrophages in allogeneic transplants, marked by the

upregulation of allograft rejection-related genes and pathways involved

in inflammatory and interferon responses, supporting the hypothesis

that immune rejection in allogeneic transplants is driven by the host’s

immune response to foreign antigens.

Gene set variation analysis (GSVA) is a nonparametric,

unsupervised method that assesses pathway activity changes over

a sample population in an expression dataset. GSVA transforms

gene expression data from a gene-centric to a pathway-centric view,

enabling the evaluation of pathway-level changes across samples

(23). It has been widely utilized in immunological studies to

elucidate the involvement of various signaling pathways in

immune responses, disease mechanisms, and therapeutic

interventions, providing insights into the functional context of
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gene expression alterations in immune cells (34). We used GSVA

methods and identified eight pathways that were significantly

upregulated in the Mø-C2 cluster, namely, DNA repair, MYC

target, G2M checkpoint, inflammatory response, E2F target,

allograft rejection, interferon alpha response, and interferon

gamma response pathways. These pathways are crucial for

understanding the immune response dynamics in islet

transplantation and highlight potential therapeutic targets to

modulate macrophage activity and improve graft outcomes.

Detailed intersection analyses and heatmaps of differentially

expressed genes (DEGs) across the macrophage clusters provided

insights into the polarization states of macrophages. These findings

suggest a shift toward a proinflammatory phenotype in allogeneic

transplants, which may contribute to graft rejection. This insight is

crucial for developing targeted therapies that could reprogram

macrophages to a more tolerogenic state.

Monocle 2, originally described by Qiu et al., utilizes a

technique called reverse graph embedding to reconstruct the

trajectories of single cells as they progress through different states

(24). This method is particularly powerful for revealing the dynamic

changes in cell fate decisions over time. Monocle 2 constructs a

trajectory of single-cell transcriptomes by ordering cells along a

pseudotime axis, which helps in understanding the progression and

differentiation of cells in various biological processes.

Recent studies have demonstrated the application of Monocle 2

in various research contexts. For instance, Wang et al. (35) used

Monocle 2 to create a single-cell transcriptome atlas of human
FIGURE 7

Macrophage transcriptional state bifurcation and cell fate of three clusters (Mø-C1, Mø-C2, and Mø-C3). (A) Multifold trajectories of macrophages
from islet grafts analyzed using the Monocle 2 algorithm. Solid and dotted lines indicate distinct cellular trajectories or fates as determined by their
expression profiles. (B) Comparative trajectory analysis of macrophages from syngeneic and allogeneic grafts using the Monocle 2 algorithm.
(C, D) Density plots illustrating pseudotime projections of transcriptional changes for the three macrophage clusters (Mø-C1, Mø-C2, and Mø-C3).
Mø, macrophage.
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euploid and aneuploid blastocysts, providing insights into early

human development and chromosomal abnormalities. Huang et al.

(36) applied Monocle 2 to explore the molecular landscape of sepsis

severity in infants, revealing that enhanced coagulation, innate

immunity, and T-cell repression are key factors. Additionally, Su

et al. (37) conducted a direct comparison of mass cytometry and

single-cell RNA sequencing of human peripheral blood

mononuclear cells using Monocle 2 to elucidate cellular

heterogeneity and immune responses. Walzer et al. (38) employed

Monocle 2 to study the transcriptional control of the

Cryptosporidium life cycle, shedding light on the parasite’s

developmental stages and potential therapeutic targets.

Furthermore, Wu et al. (39) integrated single-cell sequencing and

bulk RNA-seq to identify and develop a prognostic signature related

to colorectal cancer stem cells, utilizing Monocle 2 to trace the

differentiation pathways of cancer stem cells. These applications

highlight Monocle 2’s versatility and effectiveness in tracing cell fate

decisions and understanding complex biological processes, making

it a valuable tool in both basic and translational research.

Trajectory analysis using Monocle 2 revealed distinct cellular

trajectories and fate decisions within macrophage populations,
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further elucidating the complexity of macrophage responses in

islet grafts. The analysis showed that Mø-C3 serves as a common

progenitor, branching into Mø-C1 and Mø-C2. Interestingly, the

proportion of Mø-C3 cells was similar in both the syngeneic and

allogeneic grafts, indicating that the baseline macrophage state was

unaffected by the transplant type. In contrast, Mø-C1 cells were

predominantly present in syngeneic grafts, while Mø-C2 cells were

more abundant in allogeneic grafts. This suggests that Mø-C1

macrophages are more strongly associated with a tolerogenic

environment, whereas Mø-C2 macrophages are linked to a more

inflammatory response characteristic of graft rejection.

Our cytokine signature enrichment analysis revealed notable

differences in cytokine responses between syngeneic and allogeneic

grafts. For Mø-C1 macrophages, the top 10 cytokines with the

strongest enrichment in allografts compared to syngeneic grafts

included adiponectin, IL15, IFNa1, IFNb, IFNg, prolactin, IL7,
IL11, IL18, and LIF. These cytokines are known to play diverse

roles in immune modulation and inflammation. For example, IFNg
(40, 41) and IFNb (42) are critical for enhancing antigen presentation
and promoting a Th1 immune response, which is often associated

with graft rejection. Similarly, IL15 and IL18 (43) are potent
FIGURE 8

Cytokine signature enrichment in macrophages. (A) A comprehensive dictionary of immune responses to cytokines was utilized to evaluate
macrophages in islet grafts. We analyzed the responses to 86 cytokines by comparing syngeneic and allogeneic grafts. (B) The IREA cytokine enrichment
plot displays the enrichment score (ES) for each of the 86 cytokine responses across three macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) in
allogeneic versus syngeneic grafts. The length of the bars indicates the ES, while the shading reflects the FDR-adjusted P value from a two-sided
Wilcoxon rank-sum test, with darker shades denoting greater statistical significance (red for allografts, blue for syngeneic grafts). Mø, macrophage.
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activators of NK cells and T cells, further contributing to the

inflammatory milieu.

In Mø-C2 macrophages, the top 10 enriched cytokines in

allografts were IFNg, IFNa1, IFNb, IL15, IL18, adiponectin, IL27,
IL12, IL11, and IL36a. The presence of IL27 (44) and IL12 (45)

suggests their strong involvement in promoting Th1 and Th17

responses, which are crucial for initiating and sustaining immune

responses against transplanted tissues. IL36a, a member of the IL-1

cytokine family, is known for its role in amplifying inflammatory

responses and has been implicated in autoimmune diseases,

suggesting its potential involvement in graft rejection mechanisms.

For Mø-C3 macrophages, the top 10 enriched cytokines in

allografts were IFNg, IFNa1, IFNb, IL15, IL18, adiponectin, IL2,
IL12, IL36a, and IFNk. IL2 is essential for T-cell proliferation and

survival, indicating a supportive environment for effector T-cell

responses in allogeneic grafts (45). The enrichment of IFNk (42), an

interferon involved in antiviral responses, further highlights the

complexity and multifaceted nature of the immune response in

allogeneic grafts.

The enrichment of these cytokines in allografts underscores

their critical roles in mediating immune responses and promoting

inflammatory environments that are conducive to graft rejection. In

contrast, syngeneic grafts, which are genetically identical to the host,

do not provoke such robust inflammatory cytokine responses,

allowing for better graft acceptance. Our findings align with

previous studies showing that proinflammatory cytokines, such as

IFNg, are upregulated in allogeneic transplants, contributing to

graft rejection. Conversely, the role of anti-inflammatory cytokines

such as IL-10 in supporting graft acceptance is well documented,

highlighting their importance in creating a tolerogenic environment

in syngeneic transplants.

The distinct cytokine profiles observed in our study highlight

the importance of cytokine signaling pathways in shaping the

immune landscape during transplantation. Targeting specific

cytokines or their signaling pathways could offer new therapeutic

strategies to balance immune activation and tolerance, thereby

improving graft survival and function. Future research should

focus on developing targeted therapies that modulate these

cytokine responses to improve transplant outcomes.

While our study provides substantial insights, it is essential to

acknowledge several limitations. Primarily, the reliance on animal

models necessitates careful consideration when extrapolating

findings to human clinical scenarios. Validation in human

transplant samples is crucial to ensure clinical relevance.

Additionally, single-cell RNA sequencing captures a snapshot of

gene expression, which may not fully represent dynamic

cellular processes.

Despite rigorous statistical methods, including the Wilcoxon

rank-sum test and the limma package, there remains significant

variability in gene expression profiles across different macrophage

clusters and transplantation models. Differences in cell capture

efficiency, sequencing depth, and batch effects can introduce

biases, despite stringent quality control measures and batch

effect correction.
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Future research should focus on corroborating these insights in

human transplant samples and exploring the therapeutic potential

of targeting identified pathways to modulate macrophage function

and improve transplant efficacy. Exploring immune regulatory

strategies that specifically target the proinflammatory macrophage

response while avoiding broad immunosuppression represents a

promising research direction. Finally, experimental validation of

computational predictions, such as key pathway activation and

cytokine expression, is essential to corroborate our results and

translate them into clinical applications. Addressing these

limitations in future studies will be critical for advancing our

understanding of macrophage dynamics in islet transplantation

and improving clinical outcomes.

In conclusion, our study significantly advances the knowledge

of macrophage roles within the context of islet transplantation. By

meticulously dissecting the interactions between immune pathways

and cellular fate processes, we provide a detailed understanding of

the immune response and identify potential targets for therapeutic

intervention. These findings lay a foundation for innovative

research pathways and therapeutic strategies aimed at improving

transplantation therapies and achieving long-term success in

treating type 1 diabetes. Our work underscores the necessity of

further exploration to enhance transplant viability and highlights

the importance of understanding the immunological aspects of

transplant acceptance and longevity.
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As an effective treatment for diabetes, islet transplantation has garnered

significant attention and research in recent years. However, immune rejection

and the toxicity of immunosuppressive drugs remain critical factors influencing

the success of islet transplantation. While immunosuppressants are essential in

reducing immune rejection reactions and can significantly improve the survival

rate of islet transplants, improper use of these drugs can markedly increase

mortality rates following transplantation. Additionally, the current availability of

islet organ donations fails to meet the demand for organ transplants, making

xenotransplantation a crucial method for addressing organ shortages. This

review will cover the following three aspects: 1) the immune responses

occurring during allogeneic islet transplantation, including three stages:

inflammation and IBMIR, allogeneic immune response, and autoimmune

recurrence; 2) commonly used immunosuppressants in allogeneic islet

transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus),

mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late

immune responses in xenogeneic islet transplantation and the immune effects of

triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus)

on xenotransplantation.
KEYWORDS

islet transplantation, immune response, immunosuppressants, xenotransplantation,
allogenic and xenogenic islet transplantation
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1 Introduction

Diabetes is a chronic metabolic disease characterized by high

blood glucose levels, affecting over 500 million people worldwide.

Type 1 diabetes (T1D) results from an autoimmune response that

destroys the insulin-producing b-cells in the body, resulting in the

inability to produce insulin to regulate blood glucose levels (1). Since

the discovery of insulin in 1922, insulin therapy has been used to treat

patients with T1D. This disease requires minute-to-minute regulation

of blood glucose levels, and measures such as exogenous insulin

supplementation and continuous glucose monitoring (CGM) can

have a certain delay in detecting and controlling blood glucose levels,

which insulin injections cannot achieve (2, 3). Only by transplanting

insulin-producing cells from donors can we precisely measure and

deliver the appropriate doses of insulin (4). Additionally, although

intensive insulin therapy can improve glycated hemoglobin levels, it

does not prevent diabetic complications (5). When patients face

severe metabolic complications, failure of exogenous insulin

treatment, or when insulin use fails to prevent acute complications,

islet transplantation becomes a necessary treatment measure (6). The

transplantation of pancreatic tissue, whether whole pancreas or islets,

is a clinical option for the treatment of labile type 1 diabetes. Pancreas

transplantation is usually performed as a multi-organ transplant

procedure; most of these (72%) are combined pancreatorenal

procedures. Therefore, it is particularly suitable for patients with

type 1 diabetes combined with end-stage renal disease. Open surgery

is required to transplant the entire pancreas into the abdominal cavity

of the recipient and connect the blood vessels and digestive tract. The

operation is complicated and traumatic, and the recovery time is long.

Whole organ pancreas transplants restore euglycemia almost

immediately following transplantation, and long-term graft survival

rates are excellent. Despite the need for immunosuppression,

recipient morbidity and mortality decreased significantly, as did the

risk of complications associated with poor glycemic control and a

better quality of life (7, 8). Islet transplantation refers to the isolation,

purification and transplantation of islets from the pancreas of the

donor into the recipient (detailed procedures are described below).

Islet transplantation is suitable for type 1 diabetes patients who have

experienced severe hypoglycemic events. Following Edmonton

protocol, the islets are injected directly into the recipient’s liver

portal vein under the ultrasound observation, and the operation is

less traumatic, the anesthesia time is shorter, the invasion is less, and

the recovery time is fast. Although many patients experience

significant improvements in blood sugar control after

transplantation, exogenous insulin may still be required, and long-

term success rates are relatively low.

As an alternative therapy, islet transplantation can sustainably

reverse T1D. Successful islet transplantation eliminates the need for

stringent blood glucose monitoring and prevents the progression of

diabetic complications. However, a significant challenge faced by islet

transplantation is the immune response of the body to the foreign

islets. When donor islets are exposed to the recipient’s immune

system, the implants can trigger a rapid immune response (9, 10).

Therefore, the survival rate of islets after isolation and transplantation

becomes a major issue. Immunosuppressive therapy is currently the

most popular immunomodulation method to ensure the survival of
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islet grafts. Clinical islet transplantation began in the 1970s (11), but

due to various reasons, its clinical efficacy was not ideal. It was not

until 1999 that Shapiro et al. (12) proposed and established a standard

set, including donor selection, islet equivalent transplantation, and

post-operative immunosuppressive regimens. They used a large

number of isolated islet cells for transplantation and implemented

a new regimen post-operatively, using a steroid-free regimen and

reduced doses of calcineurin inhibitors (sirolimus, low-dose

tacrolimus, and daclizumab), known as the “Edmonton Protocol”

(12). Once this protocol was promoted, clinical results improved

significantly, marking an important milestone in clinical IT. With the

promotion of the Edmonton clinical protocol and the continuous

improvement of islet cell isolation techniques, the survival rate of islet

transplantation has significantly improved but is still relatively low

compared to other organs. Moreover, it is known that the traditional

methods of using immunosuppressive drugs during and after islet

transplantation can cause many side effects, such as mouth ulcers,

peripheral edema, anemia, weight loss, and paroxysmal diarrhea (9,

13). Therefore, to improve the survival rate after islet transplantation,

many issues must be addressed, including islet viability, effective

implantation, and the application of immunosuppressants that lead

to islet damage (14). Therefore, the purpose of this article is to

summarize the immune responses and mechanisms of action of

immunosuppressants that occur after islet transplantation to better

guide islet transplantation and improve islet survival rates.
2 Immune response in allogeneic
islet Transplantation

2.1 Inflammatory response

Clinical islet transplantation requires four steps: perfusion of

the donor pancreas, digestion of the pancreas to separate the islets

from the exocrine tissue, purification of the islets, and

transplantation via the portal vein infusion of islet into the

recipient (15). When the prepared islets are infused into the

patient’s body through the portal vein, it triggers an inflammatory

response. Early inflammatory response leads to the early loss of islet

viability, posing a significant challenge to the long-term survival

rate of islet transplantation. This early inflammatory reaction

significantly affects islet viability, with estimates indicating that up

to 50% of transplanted islets may be lost during this initial phase

(16). Post-pancreas transplantation, ischemia-reperfusion creates

an inflammatory environment, where the Instant Blood-Mediated

Inflammatory Reaction (IBMIR) plays a crucial role. Injecting

purified islets into the recipient’s portal vein promotes an innate

immune-dependent inflammatory response, known as IBMIR.

IBMIR is initiated by the intense activation of the coagulation

cascade, where the negatively charged surface of the islets activates

the intrinsic coagulation pathway (17), and the tissue factor (TF)

expressed by the islets induces the extrinsic coagulation pathway (18).

Simultaneously, islets secrete inflammatory factors such as IL-8 and

MCP-1, which have chemotactic and pro-inflammatory effects on

macrophages and neutrophils (19, 20). Activated platelets can adhere

by binding to the extracellular matrix (ECM) and collagen on the
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surface of islets. Additionally, due to the rapid transient expression of

p-selectin on the membranes of activated platelet alpha granules and

vascular endothelial Weibel-Palade bodies, the p-selectin lectin-like

domain present on neutrophils and monocytes binds with sialyl

Lewis x and p-selectin glycoprotein ligand-1, mediating the rolling of

neutrophils and monocytes on endothelial cells and their adhesion to

platelets (21, 22). On the other hand, vascular endothelial cells secrete

IL-6 and IL-8, promoting the aggregation of neutrophils and

macrophages (19). Complement activation is triggered by natural

immune antibodies IgG and IgM. When isolated islets are exposed to

blood, the complement system is rapidly activated, leading to the lysis

of islet cells. Simultaneously, the production of anaphylatoxins C3a

and C5a further induces the aggregation of macrophages and

neutrophils, promoting the release of cytokines such as IL-1, IL-6,

IL-8, and TNF-a by monocytes (23). Granulocytes appear 8 hours

after islet transplantation, with extensive infiltration into the grafts

after 12 hours. Neutrophils are the main members of the granulocyte

family and the first line of defense in innate immunity. They contain

various cytokines that, when activated, are released and cause damage

to islets; neutrophils significantly contribute to the activation and

recruitment of macrophages at acute inflammation sites. Once

activated, they produce various chemokines to attract monocytes

and macrophages. Additionally, neutrophil infiltration leads to the

release of cytokines such as TNF-a and macrophage inflammatory

protein-1a by T cells and macrophages, which can expand IBMIR

and induce subsequent adaptive immunity, triggering and enhancing

cellular rejection (23, 24) (Figure 1). Aggregated macrophages

continuously secrete cytokines such as IL-6 and IL-8 to sustain the

inflammatory response and release pro-inflammatory factors such as
Frontiers in Immunology 03167
IL-1b, IFN-g, and TNF-a. The IL1b secreted by macrophages and

neutrophils binds to IL-1b receptors on the surface of islet cells,

activating IL-1 receptor-associated kinases and TNF receptor-

associated factor 6, leading to the phosphorylation and degradation

of IkB, releasing NF-kB, which then enters the nucleus to regulate the

transcription of multiple genes, including IL-1, IL-6, TNF-a, and

iNOS. TNF-a produced by macrophages and islet cells binds to TNF

receptors, activating the NF-kB and MAPK pathways and inducing

apoptosis. Apoptosis is mediated by caspase-3 activation through the

MAPK pathway or by activating effector caspases, including FADD-

mediated caspase-3 activation. IFN-g produced by macrophages

binds to IFN-g receptors on islet cells, activating JAK1 and JAK2.

Activated JAK2 then activates Signal Transducer and Activator of

Transcription 1 (STAT1). STAT1 is then transferred to the nucleus

for gene regulation, ultimately leading to islet cell apoptosis. The pro-

apoptotic effect of STAT1may be partially mediated by the activation

of caspase-2, caspase-3, and caspase-7 (25). Under the combined

action of cytokines IL-1b, TNF-a, and IFN-g, the overexpression of

iNOS in b-cells and macrophages leads to excessive synthesis of NO.

Subsequently, NO loses electrons and combines with superoxide

radicals to form highly reactive peroxynitrite (ONOO-). The

cytotoxicity of ONOO subsequently induces islet cell apoptosis. On

the other hand, macrophages play an antigen-presenting role,

promoting the activation of T cells into CD8+ T cells and CD4+ T

cells. Activated T cells produce cytokines such as IFN-g, TNF-a, and

lymphotoxin, thereby inducing b-cell apoptosis. (Figure 1). Lisa

Özmen et al. (26) exposed human islets to ABO-compatible blood

and found that administering Melaglavin dose-dependently

eliminated IBMIR. In the absence of or at concentrations below 0.4
FIGURE 1

Immune mechanisms at three stages of allogeneic islet transplantation. The immune responses occurring during allogeneic islet transplantation
included three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence. In the early stages of transplantation,
islets secrete pro-inflammatory factors and activate the complement system, promoting the recruitment of platelets, neutrophils, and monocyte
macrophages to the graft. Vascular endothelial cells secrete cytokines and release P-selectin, promoting the adhesion between monocytes/
neutrophils and platelets. Accumulated monocyte macrophages and neutrophils further enhance the recruitment of macrophages and the secretion
of cytokines. Green arrows indicate the process by which the complement system promotes cytokine secretion by monocytes. Red arrows indicate
the process by which neutrophils enhance cytokine secretion by macrophages. Purple arrows represent the process by which P-selectin promotes
the adhesion of monocytes and neutrophils to platelets. Within days after transplantation, the release of inflammatory signals leads to increased
cytokine production, with neutrophils signaling macrophages and dendritic cells to the site of islet phagocytosis, presenting antigens on their surface
and recruiting adaptive immune cells. The infiltration of helper and cytotoxic T cells further damages the islets, recruiting B cells that produce
antibodies against the allogeneic islets and differentiating T cells into memory T cells, ultimately leading to the rejection of the overall allogeneic
transplant. TNFa, tumor necrosis factor alpha; MIP1a, macrophage inflammatory protein-1 alpha; IFN-g, interferon; MCP-1, monocyte
chemoattractant protein-1; GAD65, glutamic acid decarboxylase 65; IA-2, insulinoma-associated protein 2; ZnT8, transporter 8. ROS, reactive
oxygen species; TH1, T helper 1 cells; TFH, follicular helper T cells; pTreg, peripheral regulatory T cells.
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mmol/l of Melaglavin, the integrity of islets exposed to blood was lost.

However, at concentrations of 1-10 mmol/l, Melaglavin inhibited

coagulation and complement activation, leading to reduced platelet

and leukocyte activation and consumption. This protective effect

indicates that thrombin plays a crucial role in IBMIR and suggests

that thrombin inhibition could improve the outcomes of clinical islet

transplantation (26). L. Moberg et al. perfused human islets with fresh

ABO-compatible blood for 30 minutes. In control samples

(containing either only islets or blood with non-inhibitory anti-TF

[4503]), coagulation occurred within 15 minutes. However, blood

containing inhibitory anti-TF [4509] inhibited coagulation

throughout the observation period. The study found that IBMIR is

initiated by TF and consistently occurs during clinical islet

transplantation, even in the absence of clinical symptoms like

portal vein thrombosis. Inhibiting this process may increase the

success rate of clinical islet transplantation and reduce the number

of donors required per patient (18).

IBMIR, characteristic of innate inflammatory responses and

thrombotic pathway, is driven by the activation of the coagulation

cascade, with negatively charged islet surfaces activating the

intrinsic coagulation pathway, and tissue factor (TF) expressed by

the islets triggering the extrinsic pathway.

The innate immune system is the body’s rapid response to an

initial infection or injury. In IBMIR, the following components are

mainly involved: Neutrophils: They are the first cells to arrive at the

transplant site, release inflammatory mediators and oxygen free

radicals, mediate local tissue damage and remove pathogens.

Monocytes and macrophages: Monocytes are recruited and

converted into macrophages, which further release cytokines

(such as TNF-a and IL-1) that intensify the inflammatory

response and enhance recruitment of immune cells. Cytokines

released by neutrophils and macrophages in IBMIR not only

promote local inflammatory responses, but may also affect T cell

activation and subsequent adaptive immune responses (27).The

activation of innate immune cells can lead to apoptosis or necrosis

of the transplanted islet cells, thus reducing the survival rate of the

grafts. The inflammatory response triggered by IBMIR may cause

more immune cells to aggregate, forming positive feedback and

further aggravating the damage. There is a close interaction between

IBMIR and congenital leukocyte response, which together affect the

success rate of islet transplantation.
2.2 Allogeneic immune response

The allogeneic immune response, which is adaptive immunity,

occurs later but leads to long-term functional reduction of b-cells,
resulting in a significant portion of islets losing their insulin

independence. Analysis of pancreatic sections from T1D patients

reveals significant immune infiltration within individual islets,

confirming the crucial role of CD4 and CD8 T cells in b-cell
destruction (14, 28). Despite high levels of systemic inflammation

markers in T2D patients, their islets do not exhibit similar T cell

infiltration, in stark contrast to the pancreatic sections of T1D

patients, making islet autoantibodies a differential diagnostic

marker between T1D and T2D (4). The presence or development
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of alloreactivity (against human leukocyte antigens, HLA) and its

impact on allogeneic graft survival is well-defined in the solid organ

transplantation literature. Donor-specific antibodies (DSA) binding

to endothelial cells or islets (which constitutively express Class I

HLA and aberrantly upregulate Class II HLA) can activate the

classical complement pathway. Even in the absence of complement,

some DSAs can promote antibody-dependent cellular cytotoxicity,

where innate immune cells bind to Fc fragments, triggering the

release of cytolytic enzymes by neutrophils and NK cells. C4d is a

degradation product of the classical complement pathway,

covalently bonded to the endothelium, serving as a marker for

antibody-mediated immunity (4). Transplanting allogeneic islets or

pancreas to T1D recipients expressing major and minor

histocompatibility antigens on endogenous islets and pancreas

can elicit complex adaptive B cell and T cell responses, leading to

classical allogeneic graft rejection.

Key effector immune cells include cytotoxic T cells (CD8+ T

cells), macrophages, plasma cells, and CD4+ T helper cells. In

human T1D, existing evidence from single-islet studies from the

Network for Pancreatic Organ Donors with Diabetes suggests that

b-cell destruction is largely mediated by direct contact between CD8

T cells and b-cells, as well as CD4 T cell-mediated M1 macrophage

polarization (29–31).

CD8+ T cells eliminate cells presenting non-self antigens by

inducing apoptosis through the release of cytotoxic molecules (such

as granzymes and perforin) or through cell-surface interactions (such

as the binding of Fas ligand (also known as CD95L) on T cells to Fas

receptors on the target cells) (32). Activated CD8+ T cells infiltrating

the graft also induce macrophage activation, particularly through the

expression of pro-inflammatory cytokines such as IFN-g (33).
Macrophages typically exhibit pro-inflammatory characteristics

and display M1 polarization during acute rejection, producing pro-

inflammatory cytokines that lead to direct cellular damage and

coordinate pro-inflammatory immune responses (34). Their

primary function is phagocytosis, recognizing damaged allogeneic

graft tissue through pattern recognition receptors such as Toll-like

receptors. As antigen-presenting cells, macrophages can present

allogeneic antigens on MHC class II molecules, thereby promoting

the adaptive immune response (35).

Plasma cells are another type of effector immune cell derived

from B cells and form the cornerstone of humoral immunity. They

enable the body to combat foreign invaders not only by neutralizing

pathogens but also by performing various effector functions,

including regulating hypersensitivity reactions, activating the

complement cascade, and modulating the mucosal microbiome.

However, their activity can be problematic in solid organ

transplantation (36). In transplantation, plasma cells can produce

donor-specific antibodies (DSAs), which lead to acute and chronic

rejection by activating the complement system, resulting in vascular

injury and graft loss. The impact of DSAs has been extensively

evaluated in various solid organ transplants (37–39).

CD4+ T helper cells play a critical role in immune rejection.

They coordinate the activation of other immune cells, such as B cells

and cytotoxic T cells, to enhance the immune response against

allogeneic material. These CD4+ T cells are capable of producing

and releasing various cytokines, including interferon-gamma (IFN-
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g) and interleukin-2 (IL-2). Additionally, CD4+ T cells actively

interact with B cells, promoting antibody production and thereby

strengthening humoral immunity (40, 41). CD4 T cells can provide

“help” to B cells and stimulate antibody production (as described

above), as well as promote effector CD8 T cell responses and

stimulate resident macrophages in the islets (42, 43).

Auto-reactive CD4 T cells interact with dendritic cells

presenting islet antigens (44) and can differentiate into T helper

1 (TH1) cells, follicular helper T cells (TFH), peripheral regulatory

T cells (pTreg), or anergic cells. TFH cells help B cells produce

high-affinity islet-specific antibodies (29). TH1 cells activate

dendritic cells and enhance antigen presentation to islet-specific

CD8 T cells (45), thereby inducing the proliferation of effector

CD8 T cells (45). TH1 cells migrate to the pancreas (46), secrete

pro-inflammatory cytokines interferon-g (IFNg) and TNFa, and
induce b-cell death (47). TH1-derived IFNg and TNFa stimulate

M1 macrophages in the islets to produce reactive oxygen species

(ROS), TNFa, and IL-1b (48), further amplifying the cycle of b-
cell death (30)The resulting inflammation leads to increased

infiltration of CD8 T cells, which directly kill b-cells via perforin
and granzyme B (49), while natural and peripheral regulatory T

cells (nTreg and pTreg) attempt to suppress this response through

TGFb and IL-10 (50).
2.3 Autoimmune recurrence

Patients with T1D and concurrent autoantibodies have a lower

success rate for islet transplantation due to the presence of memory

CD4+ and CD8+ T cells, which rapidly reactivate to target islet

antigens (IA-2, GAD-54, and ZnT8) and destroy the transplanted

islets (42, 43). Patients with T1D who have long-term b-cell
transplants still have the ability to destroy islets. Reviewing the

case of David Sutherland’s identical twin transplant surgery, where

the pancreas of an unaffected twin was transplanted into the twin

with long-term T1D without immunosuppression, resulted in the

loss of transplanted b-cell function and pancreatitis (51, 52). This is

because most individuals’ immune systems develop the ability to

distinguish self from non-self. In T1D, the loss of the ability to

recognize insulin-producing islet b-cells as self leads to an

autoimmune response, which destroys b-cells in the natural

pancreas (53, 54). This autoimmune response is primarily

mediated by T cells, which are the main effector cells in the b-cell
destruction process. Moreover, there is ample evidence that isolated

allogeneic islet transplants may cause autoimmune recurrence in a

small but significant proportion of patients. In the autoimmune

process, when islets or pancreas are transplanted into recipients

with T1D, donor b-cells express b-cell-specific antigens that are

attacked by T cells and B cells (55–58). These include insulin

(proinsulin), glutamic acid decarboxylase 65 (GAD65),

insulinoma-associated protein 2 (IA2), and zinc transporter 8

(ZnT8), which are highly antigenic to both B cells and T cells in

humans (59). This explains why islet autoantibodies sometimes rise

sharply within weeks after transplantation. This increase usually

occurs without any signs of allogeneic immunity (60). Therefore,

transplanting islets or pancreas into T1D recipients is a renewed
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challenge to the autoreactive memory response and may lead to the

recurrence of autoimmune function post-transplant.

In summary, when allogeneic islets are transplanted into T1D

patients, a comprehensive immune response is elicited against the

foreign tissue. Besides the classic rejection of the allogeneic graft, the

outcomes of islet or pancreatic transplantation may be severely

impacted by early intense inflammatory responses and the

reactivation of autoimmunity. In simple terms, the three stages of

immune response experienced are inflammation and IBMIR,

allogeneic immune response, and autoimmune recurrence. Within

days after transplantation, the release of inflammatory signals leads

to increased cytokine production, with neutrophils signaling

macrophages and dendritic cells to the site of islet phagocytosis,

presenting antigens on their surface and recruiting adaptive

immune cells. The infiltration of helper and cytotoxic T cells

further damages the islets, recruiting B cells that produce

antibodies against the allogeneic islets and differentiating T cells

into memory T cells, ultimately leading to the rejection of the

overall allogeneic transplant. The entire process of allogeneic

transplant rejection may be amplified in T1D patients because

they have effectively primed T cells specifically targeting b-cells.
3 Immunosuppressants in allogeneic
islet transplantation

A major issue in islet transplantation is transplant rejection. To

prevent this complication, immunosuppressive drugs such as

cyclosporine, tacrolimus, mycophenolate mofeti l , and

corticosteroids must be used (61). However, immunosuppressants

have severe side effects, including inducing diabetes, nephrotoxicity,

and carcinogenic effects (62–65).
3.1 Calcineurin inhibitors

There are many types of calcineurin inhibitors (CNIs), such as

the commonly used cyclosporine and rapamycin. The potent

immunosuppressive properties of cyclosporine were discovered in

1976. Cyclosporine blocks the clonal expansion of resting T cells by

inhibiting the transcription of genes encoding IL-2 and the high-

affinity IL-2 receptor, which is crucial for T cell activation (66).

Tacrolimus (FK506) was the first macrolide antibiotic explored

for its effective immunosuppressive properties in 1987 (67, 68). The

mechanism of toxicity of tacrolimus is as follows: tacrolimus binds

to the immunophilin FK506-binding protein 12 (FKBP12) to form a

complex that binds and inhibits the mammalian target of

rapamycin (mTOR) kinase, thereby exerting immunosuppressive

activity (69, 70). This kinase is a key regulator of cell metabolism,

growth, and proliferation. Importantly, inhibition of mTOR by

tacrolimus causes cell cycle arrest in the mid-to-late G1 phase, thus

potentially inhibiting tumor cell growth and, importantly, its

immunosuppressive function by inhibiting T cell and B cell

proliferation (71). However, FKBP12 and mTOR are ubiquitously

expressed. Therefore, there is a possibility of “off-target” effects on

cells other than tumor and immune regulatory cells.
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mTOR kinase exists in two distinct complexes: mTOR complex

1 (mTORC1) and mTOR complex 2 (mTORC2). They have

different substrates and are regulated differently (Figure 2).

Although they share some core components, such as mTOR,

mLST8, and DEPTOR, they also contain other unique proteins.

For example, a unique component of mTORC1 is RAPTOR

(regulatory associated protein of mTOR), which acts as a bridge

to bind mTOR to its downstream effectors (72, 73). An important

component of mTORC2 is the protein Rictor (rapamycin-

insensitive companion of mTOR), which is necessary for the

formation of the mTORC2 complex and its kinase activity (74,

75). Importantly, mTORC1 is highly sensitive to inhibition by

rapamycin, whereas mTORC2 was initially thought to be resistant

to rapamycin (74, 75), but in fact, it is sensitive to long-term

rapamycin treatment in some cell types (76–78). Therefore, both

complexes may play a role in the immunosuppressive and toxic

effects of rapamycin. Consistent with its role as a key regulator of

cell metabolism, proliferation, and growth, mTORC1 activity is

regulated by nutrients, growth factors, and cellular energy levels

(Figure 2). The best-characterized targets of mTORC1 are eIF4E-
Frontiers in Immunology 06170
binding protein (4E-BP) and S6 kinase protein (S6K), both of which

play important roles in the regulation of protein synthesis.

The role of mTORC1 in B cell function is as follows. An

important aspect of maintaining glucose homeostasis is the

maintenance of pancreatic B cell mass and the ability of B cell

mass to increase in insulin-resistant states such as obesity. The

increase in B cell mass is due to increased neogenesis (progenitor

cell generation) and proliferation (hyperplasia), hypertrophy, and

reduced apoptosis. There is substantial evidence indicating that

rapamycin significantly reduces the proliferation of B cells and

progenitor cells, thereby affecting the maintenance of B cell mass.

The most compelling evidence for the role of mTORC1 in

regulating B cell mass comes from in vivo transgenic mouse

models (79). Overactivation of mTORC1 by selectively

overexpressing Rheb (80) or deleting TSC1 (81) or TSC2 (81, 82)

in B cells leads to increased B cell size and mass, along with

improved insulin secretion and glucose tolerance. These effects

may be partially mediated by S6K, as mice lacking S6K1 or rpS6

exhibit hypoinsulinemia and glucose intolerance with reduced B cell

size (83, 84). Additionally, transgenic mice overexpressing
FIGURE 2

The mTOR signaling pathway in islets. Upon stimulation by insulin and other growth factors, phosphoinositide 3-kinase (PI3K) converts
phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-trisphosphate (PIP3), which localizes PKB to the membrane and activates
it through PDK1 and mTORC2. Activated PKB phosphorylates and inhibits TSC1/2. Rheb, a small GTPase inhibited by TSC2, positively regulates
mTORC1 activity. mTORC1 phosphorylates S6 kinase 1/2 and 4EBP1, leading to increased mRNA translation. Amino acids activate mTORC1 through
Rag A/B and C/D. Under low energy conditions, the ratio of AMP to ATP increases, activating AMP-activated kinase (AMPK), which phosphorylates
and activates the TSC1/2 complex, thereby inhibiting mTORC1. mTORC2 activity is primarily mediated through unknown pathways. mTORC2
phosphorylates and activates PKB, serum- and glucocorticoid-induced kinase 1 (SGK1), and PKC. Arrows indicate stimulatory effects; block ends
indicate inhibitory effects; solid lines represent direct effects, and dashed lines represent indirect effects. Atg13, Autophagy-related protein 13; DAP1,
Death-associated protein 1; Deptor, DEP domain-containing mTOR-interacting protein; 4EBP, eIF4E-binding protein; GbL-G, Protein Gb-like; HIF1,
Hypoxia-inducible factor 1; IMP2, Insulin-like growth factor 2 mRNA-binding protein; mLST8, Mammalian lethal with Sec13 protein 8; PDK1,
Phosphoinositide-dependent protein kinase 1; Protor, Protein observed with Rictor; Raptor, Regulatory associated protein of mTOR; Rictor,
Rapamycin-insensitive companion of mTOR; Sin1, Stress-activated protein kinase-interacting protein 1; TFIIIC, Transcription factor 3C; ULK1, Unc-51
like kinase 1.
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constitutively active S6K exhibit improved glucose tolerance and

enhanced insulin secretion with increased B cell size (85). Although

these studies strongly suggest the critical role of mTORC1,

manipulation of mTOR upstream regulators (e.g., Rheb) may

affect pathways beyond mTORC1, so causality cannot be

definitively established. There is extensive work investigating the

role of mTOR in regulating cell proliferation in certain cell types,

but little is known about the exact mechanisms by which mTORC1

signaling regulates B cell cycle progression. However, it is known

that mTORC1 can regulate the synthesis and stability of cyclins D2

and D3 in B cells (86). These cyclins form complexes with cyclin-

dependent kinase 4, controlling cell cycle progression. In rat islets

treated with rapamycin, reduced levels of cyclins D1 and D2 were

observed, accompanied by decreased b-cell proliferation (87).

mTORC1 also appears to play a role in insulin secretion by

pancreatic B cells. Knockdown of TSC1 in mice results in

significantly increased insulin production, independent of B cell

mass (81). Additionally, long-term rapamycin treatment inhibits

glucose-stimulated insulin secretion (GSIS) in cloned B cell lines as

well as rodent and human islets. However, it is unclear whether this

effect is mediated by mTORC1 or mTORC2. The control of insulin

secretion in B cells involves many complex signaling pathways, and

the mechanism by which rapamycin regulates insulin secretion

remains unknown. One proposed mechanism is that inhibition of

mTORC1 reduces mitochondrial function, particularly the activity

of a-ketoglutarate dehydrogenase. This leads to reduced

carbohydrate metabolism, thereby decreasing mitochondrial ATP

production (88), which is known to regulate insulin secretion in B

cells (89). Another explanation is that rapamycin promotes

autophagy, a process primarily controlled by mTORC1 rather

than mTORC2, or intracellular degradation of cytoplasmic

proteins involved in insulin production, leading to inhibition of

insulin secretion (89).

It is not completely clear how the activity of mTORC2 is

regulated, but there is evidence that it can be stimulated by amino

acids and growth factors (90, 91). Downstream targets of mTORC2

include protein kinase C (PKC)-a (85–87) and protein kinase B

(PKB) (92), two serine/threonine kinases that play roles in the

regulation of key cellular processes such as apoptosis, proliferation,

motility, and differentiation, as well as serum- and glucocorticoid-

induced kinase 1 (93), which plays a role in the control of ion

transport (94) (Figure 2).

In mice, B cell-specific deletion of the Rictor gene (an important

component of mTORC2) is associated with reduced plasma insulin

levels due to decreased insulin secretion from islets, leading to

hyperglycemia (95). This is related to reduced B cell mass and

proliferation but does not increase B cell apoptosis. Research by

Adam D. Barlow et al. has demonstrated that knocking down Rictor

in rat islets using small interfering RNA results in increased B cell

apoptosis and reduced GSIS (76). These studies specifically

demonstrate that mTORC2 activity plays a dominant role in B cell

survival and function. Importantly, prolonged rapamycin treatment

(24 hours) of MIN6 cells, rat islets, or human islets leads to

dissociation of mTORC2, thereby inhibiting its expression. This

precedes the toxic effects of rapamycin on function and activity,

occurring simultaneously with reduced PKB phosphorylation and
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downstream signaling. Interestingly, the expression of constitutively

active PKB in MIN6 cells and rat islets can mitigate the harmful

effects of rapamycin on GSIS and cell viability (76). Overall, this

suggests that rapamycin B cell toxicity is primarily mediated through

inhibition of mTORC2 and its subsequent impact on PKB signaling.

However, this is based on in vitro experiments with B cells and needs

to be further confirmed in vivo.

Extensive research indicates that PKB, as a key downstream

effector of mTORC2, plays an important role in B cell survival and

function. These studies further reveal the potential role of mTORC2

in B cell homeostasis. For instance, transgenic mice expressing

constitutively active PKB in B cells show a significant increase in B

cell mass due to increased B cell number and size (96, 97). This is

manifested by significantly elevated plasma insulin levels, improved

glucose tolerance, and resistance to streptozotocin-induced diabetes.

In INS-1 cells, rat B cell lines, and primary rat B cells, expression of

constitutively active PKB has also been shown to protect against

lipotoxicity (98), cytokine-induced cytotoxicity (99), and AMPK-

mediated cytotoxicity (100). Conversely, studies in transgenic mice

lacking PKB show significantly elevated blood glucose levels, reduced

insulin levels, and impaired glucose tolerance.

Rapamycin is a key immunosuppressant, particularly in islet cell

and kidney transplantation. However, extensive in vitro and in vivo

evidence strongly suggests that rapamycin has harmful effects on

pancreatic B cells and peripheral insulin sensitivity. This toxicity is

mainly because rapamycin inhibits mTOR, which is part of complex

signaling pathways controlling many important cellular functions

(including mRNA translation, cell proliferation, cell growth,

differentiation, protein synthesis, angiogenesis, and apoptosis)

through mTORC1 and mTORC2 (71). In summary, rapamycin-

induced B cell toxicity and insulin resistance are likely mediated

primarily through mTORC2 rather than mTORC1 (76, 95).

In addition to the above mechanisms, although rapamycin is

structurally unrelated to cyclosporine, it shares many intracellular

pathways that inhibit calcineurin and subsequently block IL-2

production. It acts by limiting the dephosphorylation and

translocation of nuclear factor of activated T cells (NFAT).

NFATs play a critical role in T cell activation. When T cells are

stimulated by antigens, intracellular calcium levels rise rapidly,

activating calcineurin. Activated calcineurin dephosphorylates

NFATs, exposing nuclear localization signals and causing NFATs

to translocate from the cytoplasm to the nucleus. In the nucleus,

NFATs bind to specific DNA sequences, regulating the

transcription of related genes and participating in T cell

proliferation, differentiation, and cytokine production.

Calcineurin signaling is essential for insulin secretion and b-cell
proliferation (101), and specific inactivation of calcineurin in b-cells
is associated with age-related hyperglycemia (102). Apoptosis of

islet cells related to calcineurin inhibition is also thought to occur

through the limitation of cAMP response element-binding protein

(CREB), which reduces the expression of insulin receptor substrate-

2 (IRS-2), limits Akt phosphorylation, and affects insulin secretion

(103, 104). CNIs also reduce the expression of cell surface glucose

transporter 4 (GLUT4) and decrease insulin-stimulated glucose

uptake in adipocytes (105), potentially leading to peripheral

insulin resistance.
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Moreover, rapamycin promotes reduced mitochondrial Ca2+

uptake, which has been shown to impair respiration and ATP

production, leading to impaired glucose-stimulated insulin

secretion (GSIS) (106). CNIs, particularly rapamycin, enhance the

deleterious effects of glucolipotoxicity on b-cells, inducing the

expression of forkhead box protein O1 (FoxO1), thereby limiting

proliferation (107), and reducing insulin content and secretion (108).

Rapamycin causes reversible graft dysfunction, characterized by

amyloid deposition and macrophage infiltration in transplanted

islets (101), with no clear evidence of b-cell death. Ultrastructural
examination of the grafts shows reduced insulin granules,

accompanied by increased transcripts associated with extracellular

matrix deposition and inflammation. Heparin is primarily used to

reduce IBMIR-mediated cell destruction of islets, promoting the

fibrillation of human islet amyloid polypeptide (IAPP) and has

been shown to simultaneously promote amyloid deposition and

reduce b-cell apoptosis (109). Rapamycin exerts its antifibrotic

function by inhibiting JAK2/STAT3 signaling activation through

targeting JAK2, thereby inhibiting M2 macrophage polarization

(110). After transplanting human islets into NSG mice, rapamycin

inhibits b-cell function by activating islet-resident macrophages

through inhibition of the NFAT pathway and by stimulating

macrophages to produce IL-1b through increased amyloid

deposition in the transplanted islets (111). Heparinase treatment

significantly reduces amyloid deposition and subsequent b-cell
toxicity (112).

As two types of CNIs, cyclosporine and rapamycin have similar

mechanisms of action, but rapamycin has been shown to be 10-100

times more potent than cyclosporine in inhibiting mixed lymphocyte

cultures and the generation of cytotoxic T cells in vitro (66).
3.2 Mycophenolate Mofetil

In 1993, Mycophenolate Mofet i l (MMF), the 2-4

morpholinoethyl ester of the biologically active compound

mycophenolic acid, was introduced as a new immunosuppressant

(113). MMF reversibly inhibits inosine monophosphate

dehydrogenase (IMPDH), a key enzyme in the de novo synthesis of

the purine nucleotides in DNA (i.e., guanine and adenine) (114).

Lymphocytes play a crucial role in graft rejection, and without

IMPDH, they cannot produce sufficient amounts of purines (115).

Consequently, MMF can prevent the proliferation of T cells and B

cells, thereby inhibiting antibody production. Additionally, by

lowering intracellular GTP levels in lymphocytes, MMF inhibits

glycosylation and the expression of certain adhesion molecules,

thus reducing lymphocyte migration to the graft (116). However,

its effect on T cell proliferation has garnered more attention due to

the critical role of T cells in the allogeneic response (117). MMF is

considered a safe drug, with the most commonly reported side effects

being mild and primarily involving the gastrointestinal system

(diarrhea, abdominal pain, nausea, and vomiting) (118–120). Its

main advantage is the lack of nephrotoxicity and diabetogenic

effects, making MMF an important drug in kidney and

islet transplantation.
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3.3 Glucocorticoids

T1D is secondary to the initial autoimmunity of islets, resulting

from the inflammatory destruction of b-cells (74). Inflammatory

macrophages are key in maintaining islet injury (121). Pro-

inflammatory cytokines, partly derived from macrophages and

damaged b-cells, further inhibit b-cell function by inducing nitric

oxide production (122, 123). As T1D progresses, pro-inflammatory

cytokines inhibit b-cell regeneration, stimulate peripheral insulin

resistance, and maintain insulin inflammation (124).

Glucocorticoids (GC) are used clinically for their powerful anti-

inflammatory and immunosuppressive effects (125), but high doses

of glucocorticoids promote peripheral insulin resistance and inhibit

b-cell function (62, 63, 126), thus discouraging their use in T1D

treatment and transplantation protocols (12). However, the general

notion that GC’s effects on b-cells are purely harmful has been

increasingly challenged (127–131). It has now been demonstrated

that selective GC regeneration within b-cells can prevent

inflammatory b-cell destruction, suggesting that GC-targeting

therapy with 11b-hydroxysteroid dehydrogenase type 1 (11b-
HSD1) may improve the course of T1D and islet transplantation

aggravated by high-dose hormones.
3.4 Bortezomib

In addition to the health risks posed by infections and cancer

due to broad immunosuppression, numerous studies report that

widely used immunosuppressants such as glucocorticoids or

calcineurin inhibitors are cytotoxic to islet b-cells (71, 132). Thus,
there has been a need to develop tolerance-promoting regimens that

can retain the viability and function of islets post-transplantation.

Bortezomib, a selective inhibitor of the 26S proteasome, has been

FDA-approved for treating relapsed multiple myeloma (133, 134).

Bortezomib’s mechanism of action involves inhibiting the

proteasomal degradation of IkB, thereby inhibiting the activation

of nuclear factor kB (NF-kB) (135, 136). Since NF-kB is a key

transcription factor involved in the expression of various genes

related to immune responses, numerous studies have demonstrated

the immunosuppressive effects of bortezomib. It selectively depletes

alloreactive T cells in vitro and reduces the secretion of T helper 1

(Th1) cell cytokines (137). Additionally, bortezomib can modulate

the function of dendritic cells (DCs): treatment with bortezomib

induces a skewed phenotypic maturation of DCs in response to

lipopolysaccharides (LPS) and other endogenous stimuli while

reducing cytokine production (138). Other studies have also

reported that bortezomib can prevent graft-versus-host disease

(GVHD) and allograft rejection in mouse models of allogeneic

stem cell and cardiac transplantation (139, 140). Furthermore,

bortezomib can inhibit the activation of rapamycin-resistant

memory T cells without affecting the viability of regulatory T cells

(Tregs) in non-human primates (141). Overall , these

immunomodulatory effects suggest that bortezomib has the

potential to be a promising immunosuppressant candidate in

islet transplantation.
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So-Hee Hong et al. (142) conducted a related study using

BALB/c spleen cells to pre-sensitize C57 BL/6 mice, administering

low-dose bortezomib (0.1 mg/kg) for 4 consecutive days to observe

its immunosuppressive effects in vivo. Since NF-kB is the primary

transcription factor for DC maturation, DC maturation status was

detected by measuring the expression levels of MHC class II

molecules and other co-stimulatory molecules in CD11c+ DCs.

The conclusions suggested that low-dose bortezomib only reduced

the expression of MHC class II molecules without affecting other

co-stimulatory molecules expressed on DCs. Unlike other studies

showing bortezomib’s inhibitory effect on alloreactive T cells with

high-dose treatment, short-term low-dose bortezomib treatment

did not significantly affect the percentage of splenic effector memory

cells (CD4+CD44 and CD8+CD44) and the number of T cells

producing allogeneic antigen-specific interferon-g. Based on these

results, it was speculated that low-dose bortezomib might inhibit

DCs in vivo by altering their MHC class II expression.

Additionally, some studies suggest that high-dose rapamycin

treatment impairs b-cell regeneration and reduces islet engraftment,

adversely affecting islet transplantation (143, 144). Therefore, So-

Hee Hong et al. (142) developed a new combination therapy based

on low-dose bortezomib and rapamycin, which is highly tolerable

and minimally cytotoxic to b-cells, as a potential alternative and

tolerance-promoting immunosuppressive regimen in allogeneic

islet transplantation. They tested the efficacy of low-dose

bortezomib alone or in combination with rapamycin in an islet

transplantation model. Low-dose (0.1 mg/kg) bortezomib treatment

groups showed longer graft survival rates compared to control

groups (0.05 mg/kg group: P=0.1, 0.1 mg/kg group: P=0.0036).

Low-dose (1 mg/kg) rapamycin was added to the same

transplantation environment. Compared to the control group, the

0.05 mg/kg bortezomib + rapamycin group (P=0.0011) and the 0.1

mg/kg bortezomib + rapamycin group showed significantly

prolonged islet graft survival (P=0.001). Although not statistically

significant, the combination of rapamycin and bortezomib

increased graft survival compared to the bortezomib-only

treatment group. In the 0.1 mg/kg bortezomib plus rapamycin

treatment group, 4 out of 6 mice maintained normoglycemia for

100 days, while 2 out of 6 mice in the 0.1 mg/kg bortezomib-only

treatment group maintained normoglycemia for 100 days.

Additionally, the mean graft survival period increased from 24

days to 58 days after adding rapamycin to the 0.05 mg/kg

bortezomib treatment group. To determine whether low-dose

bortezomib + rapamycin treatment induces immune tolerance,

grafts were removed from recipient mice that maintained

normoglycemia for over 100 days, and a second graft (islets from

BALB/c donors) was transplanted into the contralateral kidney.

Interestingly, mice with the second graft maintained

normoglycemia for 50 days without any immunosuppression. To

determine whether this tolerance was systemic, BALB/c and C3H

(third-party) as well as C57 BL/6 (control) skin grafts were

transplanted into the flank of the second transplant recipients.

The C3H skin grafts were rejected on day 14 post-transplant (DPT).

The rejection of BALB/c skin grafts was somewhat delayed but

ultimately rejected on DPT 18. Unexpectedly, the rejection of

BALB/c skin appeared to result in the rejection of the second islet
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graft, as blood glucose levels returned to hyperglycemia 20 days

after the skin rejection reaction. Thus, it was concluded that this

combination therapy induced tolerance to islet-specific antigens,

and its inhibitory effect was insufficient to prevent strong skin graft

rejection. Many studies have shown that Th1 cells are major

participants in graft rejection in various transplant models, with

interferon-g playing a key role by activating cytotoxic CD8+ T cells

(145, 146). So-Hee Hong et al. investigated whether bortezomib

alone or in combination with rapamycin could reduce Th1 and

interferon-g-producing cells. Splenocytes from allogeneic islet

transplant mice that maintained normoglycemia for over 60 days

were stimulated in vitro with irradiated BALB/c splenocytes,

followed by ELISPOT analysis. The combination therapy group

showed almost no detectable interferon-g-producing cells.

Although a reduction in interferon-g-producing cells was also

observed in the bortezomib-only group, it was not as pronounced

as in the combination therapy group. Moreover, no significant

changes were observed in other cytokine-producing cells in the

combination therapy group. MLR assays were used to detect BALB/

c-specific T cell responses in recipient mice treated with bortezomib

+ rapamycin. The results indicated that the mice’s T cells had a

lower proliferative response to BALB/c antigens but not to third-

party C3H antigens. Therefore, these results suggest that low-dose,

short-term combination therapy with bortezomib and rapamycin

significantly increases graft survival and induces tolerance to islet

antigens while inducing severe BALB/c-specific T cell

hyporesponsiveness, increased Tregs, and reduced inflammatory

cytokines (142).
4 Xenotransplantation

The increasing number of patients in need of organ transplants

has made xenotransplantation of islets a potential future treatment

option for diabetic patients due to the shortage of organ donors.

According to recent advances in preclinical studies on non-human

primates, porcine islets may be the ideal choice among various

animal organs and tissues for xenotransplantation (147), mainly

due to the biochemical compatibility of porcine and human insulin

and the potential to obtain a large number of donor pigs through

relatively short turnover breeding strategies. Additionally, another

theoretical advantage of porcine islets is their potential resistance to

autoimmune recurrence against human b-cells (148). The main

barrier to interspecies transplantation is the preformed xenogeneic

antibodies that cause hyperacute rejection. Hyperacute rejection

(HAR) is a rapidly occurring rejection in islet transplantation and

other organ transplants, usually occurring within minutes to hours

after transplantation. This condition arises from the interaction

between pre-existing antibodies from humans or non-human

primates (NHP) and the antigens present in the graft

(149).Among these antibodies, the most common are IgMs and

IgGs that identify galactose-a1,3-galactose (a-Gal) residues, which
are attached to glycoproteins and glycolipids by the a1,3
galactosyltransferase (a1,3GT) found in non-primate genomes.

Humans and apes do not have a-Gal epitopes (150).

Furthermore, approximately 70–90% of these antibodies
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specifically target a-Gal epitopes (151). As a result, when an organ

from a pig is transplanted into a human or a non-human primate

(NHP), the existing anti-Gal antibodies attach to the a-Gal epitopes
found on the graft’s vascular endothelium. This interaction triggers

the production of complement component 3b (C3b), activates the

complement system (152), and leads to the formation of a

membrane attacking complex (MAC).These responses result in

the lysis of endothelial cells, damage to the vasculature, and

ultimately, rejection of the graft (153, 154). Additionally, the

disruption of endothelial vascular integrity leads to interstitial

hemorrhage, tissue ischemia, and necrosis (155, 156).

Additionally, the failure of the graft is exacerbated by thrombotic

occlusion of capillaries, fibrinoid necrosis in arterial walls, and the

accumulation of neutrophils (157). The histopathological

characteristics of hyperacute rejection (HAR) include

compromised vascular integrity, edema, thrombi rich in fibrin

and platelets, as well as interstitial hemorrhage accompanied by

extensive deposition of immunoglobulins and terminal

complement products on the walls of vessels (157). In order to

reduce the occurrence of hyperacute rejection, the following

measures can be taken: first, immunosuppressants mentioned in

this paper are the main measures; knocking out the a1,3GT gene in

pigs (GTKO pigs) (158).With the identification of carbohydrate

xenoantigens (159) and advances in genetic engineering, it is

possible to eliminate these xenoantigens (160) to prevent

hyperacute rejection. However, T-cell-mediated xenogeneic

immune responses are very intense and more challenging to

control compared to immune responses against allogeneic

antigens (161).

The xenogeneic T-cell response to porcine islets can be triggered

through both direct and indirect antigen presentation (162). Once

activated, T cells can mediate graft destruction through direct

cytotoxicity (163) or by differentiating into cytokine-producing

helper T cells that assist B cells in class switching and antibody

production, or by activating innate cells such as macrophages and NK

cells involved in xenotransplant rejection (164, 165). Th1 and Th2

cytokines, such as IFN-g and IL-4, play significant roles in this

process (166–168). It has been experimentally demonstrated that

the infusion of carbodiimide-fixed donor splenocytes (ECDI-SP) can

exert effective immunoregulatory effects through the silent clearance

of apoptotic cells, effectively inducing donor-specific tolerance

(169–172).
4.1 Early acute inflammatory response

Islet xenotransplantation represents a promising therapeutic

alternative for treating type 1 diabetes. However, shortly after

transplanting donor islets into the recipient, a robust innate

immune response is triggered, including an IBMIR, which

adversely affects the functionality of the islet transplant (153).

IBMIR is triggered by the xenogeneic contact between blood

and islets, involving the activation of coagulation and complement

systems, as well as complex interactions between leukocytes and

platelets, which significantly impact the function and survival of

xenografts, thereby adversely affecting the outcomes of islet
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xenotransplantation (17, 173) (Figure 3). Therefore, the following

section explains the mechanisms of IBMIR components.

Research for IBMIR found that platelet-independent

complement activation was observed 30 minutes after porcine

islets were exposed to plasma, and the formation of membrane

attack complexes could be observed in porcine islet tissue pathology

sections 60 minutes later, with up to 40% of islets losing their

function (174). Complement system activation occurs through

three different pathways (known as the classical pathway, lectin

pathway, and alternative pathway), depending on the nature of the

initial trigger. Regardless of the activation pathway, all pathways

converge at the cleavage of C3 by C3 convertase. C3 convertase

cleaves the central component C3 into the anaphylatoxins C3a and

C3b (175), with the primary function of C3b and its cleavage

product iC3b being opsonization for phagocytosis. Additionally,

iC3b can bind to complement receptors CR3 and CR4, leading to

immune cell adhesion and activation (176, 177). Since complement

activation is associated with the proteolytic cleavage of its

components, proteases represent another “non-traditional”

pathway of complement activation (178, 179).

The classical pathway (CP) is triggered by antigen-antibody

complexes recognized by C1q. A major process in this pathway is

the production of CP C3 convertase C4b2b, generated by the

cleavage of C4 into C4a and C4b, followed by the splitting of C2

into C2a and C2b (180). Activation of the lectin pathway (LP) is

initiated by the binding of mannose-binding lectin (MBL) or

ficolins to pathogen surfaces, involving the participation of MBL-

associated serine proteases MASP-1 and MASP-2, which is

significantly similar to CP activation (181).

The spontaneous hydrolysis of C3 to C3(H2O) accounts for the

constitutive and continuous low-level activation of the alternative

pathway (AP) (182). The generated C3b assembles the APC3

convertase C3bBb together with factor B and factor D (183). The

APC3 convertase complex is stabilized by the binding of properdin

(184–186).

In all three pathways, the cleavage of C3 to produce C3b is a

major component of C5 convertase, which cleaves C5 into the

anaphylatoxins C5a and C5b (187). C5b participates in the

formation of the membrane attack complex (MAC) by recruiting

complement components C6, C7, C8, and C9, with the primary

function of mediating the lysis of pathogens or target cells (188).

On the other hand, C3a and C5a anaphylatoxins, by interacting

with G-protein-coupled C3a and C5a receptors, are highly effective

chemoattractants, promoting the recruitment of inflammatory cells

to sites of injury or infection. Furthermore, C3a and C5a can

activate immune cells, upregulating the expression and release of

inflammatory cytokines and mediators (175, 189).

The coagulation cascade is involved in both hemostasis and

thrombosis (190). The tissue factor of the so-called extrinsic

pathway is a core participant in coagulation (191), involved in the

pathology of thrombosis, including cardiovascular diseases (192,

193) and biomaterial-related processes (194). Inflammatory stimuli

or endothelial cell activation produce the extrinsic factor X complex

composed of TF and activated coagulation factor VII (FVIIa) (195).

The extrinsic factor X complex, in turn, promotes the activation of

factor X (FX), which, together with activated FVa and Ca2+, forms
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the prothrombinase complex that mediates the conversion of

prothrombin to thrombin (196). Thrombin can activate platelets,

cleave prothrombin into thrombin, leading to the formation of

insoluble thrombin (197).

Coagulation and thrombosis are involved in acute reactions to

both allogeneic and xenogeneic islet transplantation (18) (198).

Notably, exposure of human or porcine islets to human blood

results in rapid activation of coagulation, evidenced by upregulated

TF levels (199) and significant thrombin generation (26). Moreover,

allogeneic islet transplantation is associated with thrombotic

manifestations, such as fibrin deposition and the localization of

transplanted islets within thrombi (198). Therefore, endogenous

antithrombotic agents are significant as potential beneficial

modulators of IBMIR. The fine-tuning of the coagulation cascade

(200) is mediated by antithrombin III (ATIII), which inactivates

thrombin, FXa, and FIXa (201); activated protein C (APC), which,

along with protein S, blocks FVa and FVIIIa (202); tissue factor

pathway inhibitor (TFPI); and thrombomodulin (TM). TFPI binds

and inhibits FXa or the TF/FVIIa complex (203). TM’s anticoagulant

activity is mediated by binding to thrombin. The TM-thrombin

complex further promotes the generation of APC (204). However,

thrombin bound to TM can cleave and activate thrombin-activatable

fibrinolysis inhibitor (TAFI) (205), conferring procoagulant

properties by blocking fibrinolysis. In the context of xenogeneic

islet transplantation, transgenic pigs overexpressing hemostasis-

regulating molecules have been generated. For this purpose, the

expression of hTFPI protected the xenografts, promoting the

achievement of normoglycemia after xenotransplantation. Porcine

TM has been shown to be a poor cofactor for human thrombin,

resulting in the loss of its protective function and increased
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coagulation (206). Thus, transgenic overexpression of hTM in pigs

can avoid the thrombotic manifestations observed after

xenotransplantation of porcine islets (207).

The contact of host blood with transplanted islets rapidly

triggers a series of thrombo-inflammatory responses, including

upregulation of TF expression (199) and thrombin generation

(26). Additionally, the induction of TAFI further propagates the

procoagulant effect (208). Intravascular coagulation is induced

(209), forming thrombi that capture the islets (198).

Concurrently, activation of CP and AP of the complement system

occurs, generating anaphylatoxins that lead to the recruitment of

inflammatory cells to the graft. Moreover, active complement

fragments deposit on the graft, promoting complement-

dependent islet lysis (210). Platelets and leukocytes infiltrate the

transplantation site and adhere to the islet surface (26, 211).

Consequently, the integrity of the islet grafts is compromised,

leading to substantial early loss of transplanted islets (212, 213).

The acute destruction of a significant proportion of transplanted

islets by IBMIR is the primary reason why a high number of islets

are required for effective islet transplantation (214). Interestingly,

the degree of islet damage increases with the decreasing

compatibility between donor and recipient species. Therefore, in

the case of xenogeneic islet transplantation, IBMIR becomes more

relevant because the recipient cannot control IBMIR induced by

xenogeneic islet transplantation due to incompatibility between

regulators and effectors, respectively, for the IBMIR of xenografts

and recipient cells (215). Furthermore, regulatory proteins are

considerably lacking in porcine islet preparations (216). Thus,

developing effective treatment regimens targeting the regulatory

parameters of IBMIR is imperative (173) (Figure 3).
FIGURE 3

Overview of key steps in the IBMIR process during islet xenotransplantation. The contact between xenogeneic blood and islets triggers the activation
of the extrinsic coagulation pathway mediated by tissue factor (TF). Consequently, downstream effector thrombin is produced, leading to fibrin
deposition and thrombosis. The attachment of platelets to the islets further supports the pro-coagulant effect. Activated complement fragments
(iC3b) deposit on the islet surface, and the anaphylatoxins C3a and C5a activate and attract leukocytes. The formation of the membrane attack
complex (MAC) mediates islet lysis (FVIIa, activated coagulation factor VII; MAC, membrane attack complex).
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In further studies targeting IBMIR, Bennet et al. cultured

isolated islets in whole blood in the presence of soluble CR1

(sCR1). They demonstrated that sCR1 treatment blocked

complement activation associated with IBMIR and protected the

islets from damage. Simultaneous inhibition with sCR1 and heparin

eliminated the adverse effects of IBMIR by reducing the activation

of coagulation, complement, and leukocytes. Interestingly, in vivo

experiments confirmed the protective effect of sCR1, as the use of

this inhibitor supported islet integrity, which could be evaluated by

the reduction in insulin release shortly after transplantation (198).

Notably, isolated islets can act as a source of procoagulant

factors. TF, the main trigger of coagulation in vivo, has been found

in isolated islets (18, 199), and its knockout (217, 218) or inhibition

with specific antibodies (219) has been shown to be beneficial in

blocking IBMIR. Interestingly, nicotinamide (a vitamin B

derivative) has been used to reduce the expression levels of TF

and coagulation, thereby improving IBMIR (20), and leading to

improved islet function after transplantation (220).

Islet xenografts can be considered as foreign biological surfaces,

and exposure to recipient blood triggers a strong innate immune

response. Therefore, an emerging strategy to eliminate the adverse

effects of IBMIR is to coat the surface of isolated islets with

inhibitory molecules, thereby locally inhibiting the coagulation

and complement systems at the transplant site. A 14-patient

Phase 1/2a study in New Zealand showed that neonatal porcine

islets encapsulated with alginate-poly-L-ornithine-alginate (APA)

were safe and reduced unawareness of hypoglycemia in patients

with type 1 diabetes (221). Strategies such as donor-specific

hematopoietic progenitor cell transplantation (mixed chimerism)

and concomitant donor-specific thymus transplantation showed

great promise for improving immune tolerance (221, 222).
4.2 Early acute rejection

Studies have shown that during early acute rejection of porcine

islet xenografts, the rejecting host graft exhibits direct and indirect

anti-donor T cell IL-17 responses and produces strong anti-pig

antibodies with severe B cell infiltration (148). IL-17 produced by

the early donor stimulus dominates the early acute rejection

response rather than IFN-g production. Treatment with porcine

ECDI-SP inhibits the host anti-pig IL-17 response, and when

combined with transient B cell depletion (such as anti-CD20

monoclonal antibody) and short-course sirolimus, this triple

therapy significantly and durably suppresses the host anti-pig IL-

17 response and significantly prolongs the survival time of porcine

islet xenografts (223). During early acute rejection, B cells may help

induce the differentiation of IL-17-producing T cells and the

production of xenogeneic antibodies by plasma cells. Studies have

shown that B cell antigens presented by B1 B cells can effectively

promote Th17 differentiation (224–226). Conversely, Th17 cells are

effective B cell helper cells that can induce B cell proliferation in

vitro and trigger their class switching in vivo (227). It can be

imagined that the induced xenogeneic IL-17 response feeds back

to promote B cell proliferation and differentiation, establishing a
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positive feedback loop between B cells and Th17 cells, effectively

promoting early acute rejection of islet xenografts.
4.3 Late rejection

In the context of late rejection initially protected by porcine

ECDI-SP + anti-CD20 + sirolimus triple therapy, it was found that

late rejection appeared to be entirely cell-mediated, as xenogeneic

antibodies could not be detected after the rejection of the islet

xenografts. Secondly, the phenomenon of late rejection seemed to

always be associated with highly aggressive B cell infiltration in the

graft. Thirdly, indirect xenogeneic IFN-g responses appeared before

the late rejection after B cell reconstitution (148). It can be imagined

that newly emerged B cells directly acquire xenogeneic antigens in

the graft and induce indirect anti-donor IFN-g responses. Graft-

infiltrating B cells may also directly initiate cytotoxic T lymphocytes

within the graft, leading to the in situ destruction of the graft (228).
5 Strategies for treating the immune
response to xenogeneic
islet transplantation

5.1 Islet encapsulation

Islet encapsulation is an advanced method of islet

transplantation, where isolated islets from humans or pigs can be

transplanted without the need for toxic immunosuppression. This

proves particularly beneficial for porcine islet xenotransplantation.

Encapsulating islets with a semipermeable barrier allows for the

exchange of nutrients and hormones, including insulin, while

maintaining immune isolation, thus overcoming one of the major

obstacles of xenotransplantation. Although clinical trials of porcine

islets have achieved some success in New Zealand and Argentina,

more research may be needed to develop optimal encapsulation

methods and materials before this technology is ready for larger

clinical trials in the United States. Key factors influencing

encapsulation technology include:

1. Capsule size and material: Traditionally, smaller capsules

are believed to be more effective due to easier material exchange

through the capsule (229). However, recent studies suggest that

spherical materials with diameters ≥1.5 mm exhibit significantly

better biocompatibility compared to smaller or differently shaped

counterparts (230). An in vivo study demonstrated that 1.5 mm

alginate-encapsulated rat islets could restore blood glucose control

in streptozotocin-induced diabetic C57 BL/6 mice for up to 180

days. This indicates that biocompatibility might be more crucial

than material exchange efficiency in terms of effectiveness. Alginate

consists of linear binary copolymers of b-D-mannuronic acid and

a-L-guluronic acid. The length and sequence of mannuronic and

guluronic acid chains in alginate hydrogels, as well as the

mannuronic to guluronic acid ratio (M

ratio), determine alginate’s mechanical strength, elasticity,

durability, permeability, and swelling properties. The use of
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multivalent cations (Ca²+, Ba²+) and polycations (poly-L-lysine or

poly-L-ornithine) during alginate synthesis alters its properties (231).

For example, alginate-poly-L-ornithine capsules provide high

biocompatibility, better stability, and improved mechanical strength

but induce excessive pericapsular cell overgrowth and macrophage

activation, leading to capsule fibrosis. Multivalent cations like barium

can avoid such fibrosis but reduce molar selectivity.

2. Transplantation site: Since the early 1970s, the liver infused

via the portal vein has been widely accepted as the optimal site for

islet transplantation in rodents. This principle, due to the prevalence

and importance of rodent studies, has been extended to most animal

models and nearly become the preferred site for microencapsulated

islet transplantation (232). However, subsequent studies have

identified several reasons why the liver is not the best site,

including: (1) interaction with blood flow causing IBMIR, reducing

islet mass by up to 50%; (2) the possibility of thrombosis during

infusion; (3) relatively lower oxygen tension compared to the

pancreas (233, 234). Intraperitoneal transplantation is also

common, mainly due to its low volume limitation on grafts.

However, this site has several drawbacks, including lack of close

contact with blood flow, uncertain distribution of encapsulated islets,

and the tendency for capsules to stack in the pelvic cavity of bipedal

animals, making them difficult to retrieve. Subcapsular kidney

transplantation is often used in animal models, considering the

large number of encapsulated islets used for clinical transplantation

and the lack of aggregation at this site. The subcutaneous space can be

used for large numbers of encapsulated islets; however, this site is

notoriously poor for blood access. Prevascularized subcutaneous

spaces seem promising for both device and device-free methods

(235), though this area requires two surgeries for prevascularization

and actual transplantation. The omental pouch can also be used

without two surgeries, potentially making it an ideal site for

encapsulated islet implantation. In fact, studies using

immunocompetent diabetic rat models have shown long-term

function of encapsulated islets in the omental pouch (236).

Researchers have also explored potential sites such as the gastric

submucosa, peritoneal space, spleen, bone, and muscle. Animal

models have identified specific advantages of several alternative

sites, such as low blood contact to reduce IBMIR or the ability to

biopsy the site after islet delivery, but to date, these positive results

have been offset by equally compelling negative factors such as

insufficient oxygen supply, surgical difficulty, or the need for more

islets to correct blood glucose imbalance. Ongoing research may

eventually yield a better site for islet infusion, though the liver

remains the best choice for clinical islet transplantation despite its

recognized limitations.

Porcine and microencapsulated islets have both been used

clinically without significant side effects. However, compared to

allogeneic naked islet transplantation, this method’s effectiveness is

still suboptimal. Improving islet quality, enhancing capsule

biocompatibility, and determining suitable implantation sites are

crucial for the implementation of this therapy (237). Further

research should make this method as effective as allogeneic naked

islet transplantation, representing a real breakthrough in

overcoming donor shortages and avoiding or mitigating the side

effects associated with immunosuppressive drugs.
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5.2 Immunosuppressants
for xenotransplantation

In 1994, CG Groth reported the first xenotransplantation of

porcine fetal islet-like cell clusters in a T1D patient. This study

demonstrated the feasibility of porcine islet transplantation but did

not show improvement in the patient’s condition (238). Over the

following decades, porcine islet xenotransplantation has been more

thoroughly explored in preclinical trials with non-human primates

(239, 240). Humoral rejection is the main obstacle to the success of

xenotransplantation. The a1,3Gal epitope, present on the surface of

almost all animals except humans and some primates, is the

primary antigen causing hyperacute rejection in pig-to-human

and pig-to-non-human primate islet xenotransplantation. The

University of Pittsburgh and Revivicor, Inc. designed Gal

knockout (GTKO) pigs that do not express Gal (158). This

proved to be a significant milestone in the development of

xenotransplantation. Although other xenogeneic antigens were

later discovered, Gal remains the most relevant, and GTKO pigs

are considered a potential choice for eventual clinical translation.

However, Gal knockout does not prevent islet rejection, and other

genetic manipulations have been explored. In 2009, the Pittsburgh

islet team first demonstrated long-term function (up to one year) of

islet grafts in streptozotocin-induced diabetic non-human primates

transplanted with porcine islets genetically modified to express

human complement regulatory protein (hCD46). hCD46

expressed on porcine islets limited antibody-mediated rejection,

allowing for the reduction of immunosuppression to maintain

sufficient islet mass for long-term normal function. However, it

did not reduce the initial islet loss associated with IBMIR as

expected (241). This led to the further development of multigene

pig islet donors capable of providing multifaceted protection to

enhance islet transplantation. Five years later, the same group

achieved similar success, long-term transplantation of islets from

multigene pigs for the first time. A pig with four modified genes, (i)

GTKO, and (ii) hCD46, (iii) human tissue factor pathway inhibitor

(hTFPI) for antithrombotic and anti-inflammatory effects, and (iv)

CTLA4-Ig to inhibit cellular immune responses, demonstrated

improved success rates in retaining is let mass early

postoperatively and maintaining islet implantation and function

for up to one year during transplantation (242). This study also

provided preliminary insights into glucose metabolism in pigs

expressing human genes regulated by the insulin promoter,

demonstrating that multiple islet-targeting transgenes inserted

into pigs were not harmful to islet function and opened the door

to further experiments and genetic manipulation for islet

xenotransplantation (243). Multigene donor pigs have been

shown to be a reproducibly effective source of islets for pig-to-

non-human primate xenotransplantation (209). CG Park and

colleagues at Seoul National University in Korea are conducting

ongoing research of great significance for islet xenotransplantation,

successfully maintaining normal blood glucose levels in diabetic

primates within 600 days post porcine islet transplantation (244). A

common feature of these successful long-term porcine-to-non-

human primate islet studies is the use of CD154 monoclonal

antibody (mAb)-based immunosuppression to prevent rejection.
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Although there is evidence that anti-CD154 mAb is effective and

safe in pig-to-non-human primate islet transplantation models

(245), it is associated with thromboembolic complications in

humans and is not clinically translatable.

Despite promising data on the use of anti-CD40 antibody (co-

stimulatory blockade) in organ xenotransplantation (246, 247), the

islet xenotransplantation community is still searching for a clinically

translatable immunosuppressant that can successfully prevent

rejection without causing excessive side effects. New techniques for

targeted genomic editing, particularly clustered regularly interspaced

short palindromic repeats (CRISPR)-associated protein-9 nuclease

(Cas9), offer hope that further genetic manipulation of porcine islets

can improve compatibility between host and donor, thus allowing

successful control of rejection with previously unfeasible

immunosuppression. The field of islet xenotransplantation is

steadily advancing and may soon approach clinical-grade

experience and technology to begin clinical trials (248).
6 Conclusion and perspectives

6.1 Affirming islet transplantation

Islet transplantation holds great promise for the treatment of

T1DM, as it offers the potential to restore euglycemia in a reliable

manner, protects against hypoglycemia and glycemic liability in a

way that exogenous insulin administration has thus far been unable

to achieve. It has reduced many complications of diabetes and

greatly improved patient healing.
6.2 Role and limitations
of immunosuppressants

Limited islet survival after implantation hinders the success of

IT due to innate immune attack through IBMIR, recurrent

autoimmune islet destruction, or alloimmune rejection. The need

for lifelong immunosuppressive therapy and the attendant risks of

infection, cancer, and nephrotoxicity pose their own unique

additional challenges, making this treatment unattractive to all

but those at risk of severe brittle hypoglycemia. Optimizing new

blood vessel formation by better controlling angiogenesis,

suppressing inflammation, and reducing oxidative stress can all

further improve outcomes.
6.3 Challenges and difficulties

The number of islets available for transplantation is a major

limitation for both autoislet and alloislet approaches to b-cell
replacement therapy. Therefore, the establishment of an

unlimited source of islet tissue for transplantation has been a

long-sought-after goal.
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6.4 Future research directions

Stem cells: Significant progress has been made in the science

and application of pluripotent stem cells, which are now entering

early-stage pilot clinical trials. The possibility that cell

transplantation can be accomplished with less need for

immunosuppressants remains a real possibility, and progress is

being made in immunomodulatory control through Treg infusion,

MSC co-transplantation, and other innovative approaches.

Porcine islet xenotransplantation: Porcine islets have the

advantage of targeting normal insulin similar to that present in

humans, as well as the physiological ability to handle the heavy

demands of insulin secretion. Importantly, porcine IAPP contains

amino acid substitutions in the region corresponding to residues 20

to 29 that prevent the formation of fibrils (249, 250). Disadvantages

include the larger immunologic barrier of xenogeneic than allogeneic

tissue that presents an additional risk for hyperacute rejection and

requires more intensive immunosuppression (239, 240),

Islet encapsulation technology: Islet encapsulation provides a

barrier to protect transplanted islets, mainly by preventing excessive

fibrosis, promoting local vascularization, and preventing future

chronic immunosuppressive rejection. The latest data from NOD

mice appear to confirm that agarose microencapsulated islets protect

against autoimmune reactions (251). A recent paper published in

PNAS shows that large encapsulated islets placed in the omentum

protect grafts from immune attack and improve glucose metabolic

control (252). These data demonstrate the potential of this technique

as a safe method for successful islet transplantation.
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