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The influence of the precipitation
recycling process on the shift to
heavy precipitation over the
Tibetan Plateau in the summer

Boyuan Zhang1, Yongli He1,2*, Yu Ren1, Bo Huang1, Yangrui Peng1,
Shanshan Wang1 and Xiaodan Guan1,2

1Key Laboratory for Semi-Arid Climate Change of theMinistry of Education, College of Atmospheric Sciences,
Lanzhou University, Lanzhou, Gansu, China, 2Collaborative Innovation Center for Western Ecological Safety,
Lanzhou, China

On the Tibetan Plateau (TP), precipitation intensity has shifted to heavy precipitation
due to global warming. However, the influence of the precipitation recycling process
on this phenomenon remains unknown. Using the Water Accounting Model-2layers
(WAM2layers) model and ERA5 reanalysis, this study investigates the contributions of
the precipitation recycling process to precipitation shifts over the TP during
1979–2019. The precipitation shift rate was proposed to quantify this process,
and the results reveal that the positive precipitation shift (1.384 mm/41 years) over
the TP consists of a positive shift over the western TP (5.666 mm/41 years) and a
negative shift (−3.485 mm/41 years) over the eastern TP. Considering the source of
moisture, either a local source or a remote source, precipitation was decomposed
into internal and external cycles of the precipitation recycling process based on the
WAM2layers model. Further analysis indicates that the internal cycle (87.2%)
contributes more to the shift than the external cycle (12.8%) over the TP. The
contributions of the precipitation recycling ratio (PRR) and precipitation amount
to the precipitation shift rate induced by the internal cycle were further investigated.
The results indicate that PRR changes contribute more to heavy precipitation over
the TP, while precipitation amount changes contribute more to light precipitation.
The precipitation recycling process contributes to the shift by increasing
atmospheric moisture and increasing (decreasing) the dependency on local
evaporation in heavy (light) precipitation. Increased dependence of heavy
precipitation on evaporation increases the risk of extreme precipitation, and the
government should take preventative actions to mitigate these adverse effects.

KEYWORDS

precipitation recycling process, heavy precipitation, Tibetan plateau, precipitation intensity
shift, summer precipitation

1 Introduction

Through the thermal and dynamic effects of high-elevation terrain, the Tibetan Plateau (TP),
also known as the “Asian Water Tower” (Immerzeel et al., 2010; Cuo and Zhang, 2017; Immerzeel
et al., 2020), greatly affects the water cycle and climate changes over Asia (Xu et al., 2008). Over the
past few decades, the TP has experienced enhanced warming (Liu and Chen, 2000; Guo andWang,
2012; Yan et al., 2020), which has resulted in a number of hydrological changes, such as dramatic lake
expansion (Zhang et al., 2017; Brun et al., 2020), glacier melting (Yao et al., 2012; Dehecq et al., 2018;
Yao et al., 2022), more intense precipitation (Xiong et al., 2019; Sun et al., 2021), less light
precipitation (Ayantobo et al., 2022), and intensified precipitation recycling processes (An et al.,
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2017; He et al., 2021). The phenomenon of the shift toward heavy
precipitation over the TP has been found (Tang et al., 2022) and is
anticipated to continue into the foreseeable future as the risk of extreme
precipitation rises (Na et al., 2021). According to the Clausius-Clapeyron
(C-C) equation, atmospheric warming could raise the total column water
vapor (TCWV) (O’Gorman and Muller, 2010; Wang et al., 2017; Nayak
and Takemi, 2019), which could enhance the precipitation intensities and
transform light precipitation to heavy precipitation. He et al. (2021)
investigated the influence of precipitation recycling process on the
variation of TCWV by dividing the precipitation recycling process
into internal cycle and external cycle, corresponding to the
precipitation from local evapotranspiration and the outside of this
region, respectively. They found that the internal cycle of precipitation
recycling process contributes more to the growth of TCWV than external
cycle. The precipitation recycling process was significantly accelerated
over the TP between 1979 and 2019, particularly in the western TP, where
lake expansion contributes to increased evaporation. On the other hand,
there has been a substantial decline in the amount ofmoisture transported
from the Indian Ocean to the eastern TP, resulting in less precipitation.
Therefore, how the precipitation recycling process influences the change
in precipitation intensity deserves further investigation.

The precipitation recycling ratio (PRR), an indicator of the
precipitation recycling process, has been investigated over the TP by
different methods (Zhao and Zhou, 2021). For example, Kurita and
Yamada. (2008) used isotopic analysis to investigate the PRR for a
precipitation event over the central TP and found that the PRR may
range from 30% to 80%. However, this method is unrealistic for large
areas and long temporal ranges. Therefore, some researchers have used
different statistical diagnosed PRR models (dynamic recycling model
(DRM) or water accounting model-2layers (WAM2layers)) to investigate
the interannual variability of PRR and find the PRR increase over the TP
(Zhang, 2020; He et al., 2021), although these methods may ignore the
effect of subgrid processes on PRR. TheWRF-WVT (water vapor tracers)
model may be better for the analysis of subgrid processes due to its high
resolution (Gao et al., 2020). However, this tracer model is unsuitable for
long periods over the TP due to the computationally intensive nature of
high-resolution simulations; hence, statistically diagnosed PRRmodels are
preferable to WRF-WVT simulations.

Due to the effect of different climate systems (Ma et al., 2018), PRR are
varied over different parts of TP (Yang et al., 2022). For example, the
southern TP and northern TP are affected by the Indian monsoon system
andmidlatitude westerlies, with PRRs of approximately 11.9% and 12.9%,
respectively (Zhang et al., 2019). For the eastern TP, which is influenced
by East Asian monsoon system, the PRR is around 10% (Sun and Wang,
2014). For the north east of TP, the PRR is about 5.7%–6.1%, which
indicates that the recycled moisture accounted for 5.7%–6.1% of the
precipitation (Guo et al., 2022). For the central TP, the PRR may rose to
over 80% in August, indicating that most of the precipitation was recycled
via local evapotranspiration in the summer (Gao et al., 2020). For the
whole TP, the PRR is about 23% in the summer (Zhao and Zhou, 2021;
Yang et al., 2022) reveal that the PRR should be no more than 40%.
Although previous studies investigate PRR sufficiently over different parts
of TP, it is unknown the effect of precipitation recycling process to the
variations in precipitation intensity and the transition between different
precipitation types over different parts of TP under significant
hydrological changes. The transition between precipitation types is the
transfer of precipitation amount from light to heavy precipitation or from
heavy to light precipitation. Ma et al. (2020) indicated that precipitation
recycling should not be ignored for extreme precipitation in the summer

over the TP. Therefore, how the precipitation recycling process influence
the transition of precipitation deserve further investigation.

The following topics are discussed in this study: 1) How can the
transition rates between light and heavy precipitation be measured? 2)
To what extent does the change in precipitation intensity depend on
the internal and external cycles of the precipitation recycling process?
3) Does the change in internal cycles of precipitation depend more on
PRR or precipitation amount? 4)Why do light precipitation and heavy
precipitation respond differently to the increasing water vapor?

2 Data and methods

2.1 Reanalysis data

This study employed the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA5) dataset, which spans
the years 1979–2019 and has a horizontal resolution of 0.25°×0.25°

FIGURE 1
The spatial distribution and timeseries of precipitation over the TP
and the terrain of the TP. In (A) the terrain andmajor rivers of the TP. In (B)
the trend map of total precipitation in summer (June to August) over the
TP during 1979–2019. The dotted areas indicate statistical
significance exceeding 95%. In (C) the time series of summer
precipitation over the eastern TP (blue lines) and western TP (red lines),
which are separated by 92°E.
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(Hersbach et al., 2020). The ERA5 single level data and pressure levels
data were used as the input to the Water Accounting Model-2layers
(WAM2layers) models. The ERA5 single-level data include the 6-
hourly surface pressure, total column water vapor and a set of
vertically integrated moisture and flux variables (vertically
integrated northward/eastward water fluxes in the forms of vapor,
liquid, and ice). The hourly precipitation and evapotranspiration from
ERA5 single-level data were also used as the input to the WAM2layers
models. The ERA5 pressure level data include 6-hourly zonal wind,
meridional wind and specific humidity at 16 pressure levels, which
include 100, 200, 300, 400, 500, 600, 700, 800, 825, 850, 875, 900, 925,
950, 975, and 1,000 hPa. The surface temperature, convective
precipitation and large-scale precipitation are also used to
investigate the mechanism of the precipitation shift process.
ERA5 has been compared to other reanalysis datasets, such as
Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA2) and High Asia Refined analysis version 2
(HARv2) and it has been shown that ERA5 outperforms other
reanalysis datasets for long-term trends and can reasonably reflect
the summer water vapor characteristics over the TP (He et al., 2021;
Yuan et al., 2021). For further information about the selection of
ERA5 dataset, please see the description of Figure 1 in He et al. (2021).

2.2 Definition of the shift rate of the
precipitation intensity

To evaluate the transition from light to heavy precipitation, a new
index was developed to measure the rate of change in precipitation
intensity. In this study, a precipitation event is defined as a day with at
least 0.1 mm/day of precipitation each day (Sun et al., 2007; Ma et al.,
2015). Following previous studies (Shiu et al., 2012; Yu et al., 2022),
based on precipitation percentiles at each grid, daily precipitation at
each grid over the TP was ranked from light to heavy precipitation for
the period 1979–2019. Then, 40 intensity bins are divided by the 0,
2.5th, 5th, 7.5th . . . 97.5th and 100th percentiles of daily precipitation
for each individual grid, which represent an intensity interval of
precipitation amount. Finally, regionally averaged precipitation
histograms were constructed based on 40 intensity bins. The total
number of days with precipitation events was used to calculate
precipitation frequency, the average precipitation intensity of those
events was used to calculate precipitation intensity, and the cumulative
precipitation within each intensity interval was used to determine the
total precipitation amount for each intensity bin. The slope of the
histogram distribution of the precipitation amount trend was used to
quantify the rate of intensity shift by least-square linear regression.
This rate illustrates the transition from light precipitation to heavy
precipitation. A positive slope value indicates a decrease or a relatively
smaller increase in light precipitation and an increase in heavy
precipitation. The negative value of slope indicates an increase in
light precipitation and a decrease in heavy precipitation. Consistent
with a previous study (Ma et al., 2017), we classified daily precipitation
into three primary categories to make it easier to detect geophysical
changes: light precipitation (less than 35%), moderate precipitation
(35%–90%), and heavy precipitation (more than 90%). Due to the
fixed threshold for these categories of precipitation, this classification
may generate some uncertainty, but the basic characteristics of the
precipitation trend across 40 intensity bins could support the
conclusion.

2.3 Water accounting model-2layers

The WAM2layers model is an updated version of the Water
Accounting model, which was developed by van der Ent (Ent et al.,
2014). In the original WAM2layers model, the input data are suitable
for the European Center for Medium-Range Weather Forecasts
interim reanalysis dataset (ERA-Interim), which has a resolution of
1.5°×1.5° (Ent et al., 2014). The time step for the original WAM2layers
model is reduced to 15 min to keep the computation stable. However,
considering the higher spatial resolution of ERA5, a smaller time step
is needed to make the computation stable. Therefore, Xiao and Cui.
(2021) modified the original WAM2layers model and reduced the
time step to 10 min to fit the ERA5 data. Compared with the original
model, we use the modified WAM2layers to calculate the PRR, which
is derived from the moisture balance equation for atmospheric water
vapor (Eq. 1; Ent et al., 2014).

zW

zt
+ zWu

zx
+ zWv

zy
� E − P + α (1)

where, as stated by Eq. 2, W represents the precipitable water in an
atmospheric column, and u and v represent zonal and meridional
winds, respectively. E, P, and α represent the evapotranspiration,
precipitation, and residual terms, respectively.

W � 1
g
∫ ps

100hPa
q dp (2)

where q represents the specific humidity, g represents the gravitational
speed, and ps represents the surface pressure. The relationship with
the moisture from a certain target region is as follows:

zWΩ

zt
+ zWΩu

zx
+ zWΩv

zy
� EΩ − PΩ + α (3)

where Ω represents the target source region from which the moisture
is evaporated. In addition, the precipitation is separated into two parts:
the precipitation that originates in the target region (Pr) and the
precipitation that originates from the moisture that is advected into
the target region (Pa), which are called internal cycle precipitation and
external cycle precipitation, respectively. The contribution of the
internal cycle and external cycle was quantified by the ratio of the
linear trends of internal cycle precipitation, external cycle
precipitation and total precipitation. The PRR (ρ) can be calculated
as follows:

ρ � Pr

Pr + Pa
(4)

TheWAM2layers model can track the moisture in both forward
and backward directions. Using the forward tracking approach, the
PRR in each grid was calculated. In this case, the moisture from the
target region evaporates E0 into the atmosphere and is regarded as
tagged water in the model. With a mixing ratio of r, the tagged
water will mix with precipitable water in the atmosphere. As the
model integrates with time, moisture diffuses horizontally and
vertically with the wind. When precipitation (P0) occurs, the
moisture from the target region contributes P0 · r to the
precipitation, and the tagged moisture will reduce the P0 · r. This
process will continue until no tagged water remains. The PRR on
this day was assigned the values corresponding to convective and
large-scale precipitation for a specific precipitation day that
comprised both types of precipitation.
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Because the atmosphere is not fully mixed, which will cause the
uncertainty of WAM2layers, especially in regions with strong wind
shear (Goessling and Reick, 2013), Ent et al., 2013 showed that the
results of WAM2layers are similar to a detailed 3D model (Ent et al.,
2013). Both the Euler and Lagrangian methods have uncertainties in
moisture tracking, but the WAM2layers can track the real
precipitation falling on the ground compared with the Lagrangian
methods, which only track the moisture released in the air (Huang and
Cui, 2015). Furthermore, WAM2layers can make the “tagged water”
conserved (Zhang et al., 2017), which means all evaporated moisture
can be tracked forward to the precipitation. In addition, the
WAM2layers model has been used in a number of studies to
examine wet and dry changes, trace the origin of moisture, and
investigate the precipitation recycling process (Zhang et al., 2017;
Guo et al., 2019; Zhang et al., 2019; Zhang, 2020; Li et al., 2022).
Considering the above characteristics of the WAM2layers, the
WAM2layers were suitable for calculating the precipitation
recycling ratio (PRR).

2.4 Decomposition of internal precipitation

The internal precipitation can be regarded as the product of
precipitation and PRR, as stated by Eq. 5.

Pr � ρpP (5)
where Pr represents the internal precipitation, ρ represents the PRR
and P represents the precipitation amount. All three variables will
change to a certain amount under global warming, which is denoted by
Eq. 6.

Pr + ΔPr � �ρ + Δρ( ) �P + ΔP( ) � �ρp�P + �ρpΔP + �PpΔρ + ΔρpΔP (6)
where the overbar represents the climatology of these three variables
and Δ represents the change in these three variables. Eq. 6 minus the
climatology of these three variables and ignores the high-order term
Δρ*ΔP, and we can decompose the change in internal precipitation
into two parts, as shown in Eq. 7.

ΔPr � �ρpΔP + �PpΔρ (7)
where �ρ*ΔP is the precipitation term, which represents the
contribution of precipitation amount changes, and �P*Δρ is the PRR
term, which represents the contribution of PRR changes.

3 Results

3.1 The shift in precipitation intensity

Before examining the variations in precipitation intensity, the
slope and trend map of precipitation over the TP were analyzed
(Figure 1). Due to geography, the Brahmaputra Grand Canyon in the
eastern TP is the principal moisture channel (Figure 1A). However, the
trend map indicates that the increasing trend of precipitation over the
TP is dominated by the increasing trend over the western TP and
Qaidam Basin (Figure 1B). The decrease in precipitation in the eastern
TP, particularly over the Brahmaputra Grand Canyon, is associated
with the weakening of external water vapor transportation. As
described in a recent study (He et al., 2021), the water vapor flux

over the southern boundary of the TP exhibits contrasting changes
between western and eastern 92°E. Timeseries of precipitation over the
western TP and eastern TP suggest that precipitation increases
significantly over the western TP at a rate of 1.462 mm/year and
decreases insignificantly over the eastern TP at a rate of −0.142 mm/
year (Figure 1C). Therefore, this study investigates the effect of the
precipitation recycling process on the change in precipitation over the
TP, eastern TP and western TP separately.

Based on observations and simulations, a few studies have
demonstrated that the intensity of precipitation is shifting from
light to heavy precipitation (Na et al., 2021; Tang et al., 2022).
Hence, the trends in different intensity bins of precipitation are
investigated over the TP, eastern TP and western TP. For the TP
and western TP, precipitation intensity shows negative trends for
intensity percentile bins below the 35th percentile and positive
trends above the 35th percentile (Figures 2A, C). The most
significant changes are found for percentiles between the 35th
and 90th percentiles over the TP and western TP. For
precipitation intensity percentile bins below the 35th percentile,
the decreasing trends are significant over the western TP but not
significant over the TP. The magnitude of the decreasing trend is
much smaller than the increasing trend. For precipitation intensity
bins above the 90th percentile, remarkable increasing trends are
found over the TP and western TP, albeit they do not reach
statistical significance over the TP. Precipitation intensity over
the eastern TP increases below the 35th percentile and decreases
above the 90th percentile, which is in contrast with the western TP
(Figures 2C, E). The most significant increase is found between the
35th and 65th percentiles in the eastern TP. The increasing trends
of percentiles below the 35th percentile are close to zero and do not
pass the significance test. Over the eastern TP, precipitation
decreases obviously above the 90th percentile. For example,
heavy precipitation decreases by almost 0.4 mm/year.

To quantify the transition toward heavy precipitation, the rate of
change in precipitation intensity was calculated (method details of the
calculation of this index are described in Section 2.1). The shift rate for
the entire TP is positive, with a rate of 1.384 mm/41 years (Figure 2A).
This indicates that the precipitation intensity will transition 1.384 mm
from light precipitation to heavy precipitation at the end of the 41-year
record. The shift rate over the western TP is similar to that over the
whole TP but with larger magnitudes, with rates of 5.666 mm/41 years
(Figure 2C). In contrast to the TP and western TP, the eastern TP has a
negative shift rate of −3.485 mm/41 years. The negative shift rate
implies that heavy precipitation will decline over the eastern TP.
Considering the consistent shift rates throughout the entire TP and the
western TP, the western TP is more responsible for the shift in
precipitation intensity over the TP than the eastern TP.

In this study, light, moderate and heavy precipitation are classified
according to the precipitation histogram over the TP to enable discussion
about precipitation features. The trends of precipitation amount,
frequency, and intensity for light, moderate, and heavy precipitation
were examined to better understand the characteristics of the change in
precipitation intensity. The frequency of light precipitation is decreasing
over the TP, western TP and eastern TP, whereas the frequency of
moderate and heavy precipitation is increasing (Figure 2D). This tendency
is consistent with the changes in precipitation amount (Figure 2B). The
intensities all exhibit an increasing trend except for the eastern TP
(Figure 2F), which is primarily caused by the decline in water vapor
transfer from the Indian Ocean.
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3.2 Quantifying the influence of the
precipitation recycling process on the
precipitation shift

A recent study indicated that the precipitation recycling process
has a significant impact on the summertime water vapor over the
TP (He et al., 2021). Therefore, the spatial-temporal distribution of
total precipitation and the internal and external cycles of the
precipitation recycling process for the three types of
precipitation were further examined to determine the effect of
the precipitation recycling process on the precipitation shift
(Figures 3, 4). The results indicate that moderate precipitation
and heavy precipitation dominate the precipitation over the
western TP and eastern TP and that moderate precipitation
contributes more than heavy precipitation (Figure 3). More
specifically, the amount of moderate precipitation is
approximately 150–250 mm/year and 250–350 mm/year over the
western TP and eastern TP, respectively, and the amount of heavy
precipitation is approximately 80–140 mm/year and 100–250 mm/
year over the western TP and eastern TP, respectively (Figures 3D,
E, G, H). Light precipitation contributes no more than 30 mm/year
and 45 mm/year over the western TP and eastern TP, respectively
(Figures 3A, B).The internal and external cycles both significantly

influence the tendency of light precipitation to significantly
decrease over the western TP. The internal cycle of precipitation
greatly increases the amount of moderate and heavy precipitation
over the western TP rather than over the eastern TP. In contrast, the
external cycle of precipitation recycling causes a significant increase
in moderate and heavy precipitation over the western TP and a
substantial decrease over the eastern TP (Figures 3C, F, I; Figures
4G–I). The opposite influence of the external cycle results in a weak
and insignificant impact on heavy precipitation over the TP.
Further investigation of the spatial distribution of the three
types of total precipitation and the internal and external cycles
of the precipitation recycling process exhibits consistent results
with Figure 3, except for the northern part and southern part of the
eastern TP (Figures 4G–I). Specifically, the increase in light
precipitation consists of an increase over the southern part of
the eastern TP and a decrease over the northern part of the
eastern TP (Figure 4A). The internal cycle contributes to a
general increase in light precipitation over the eastern TP, and
the external cycle contributes to a slight increase in light
precipitation over the eastern TP (Figure 3C). For moderate
precipitation, internal and external cycles of precipitation both
contribute to the increase in moderate precipitation over the
eastern TP. The heavy precipitation is opposite to the increase

FIGURE 2
Distribution of trends in precipitation percentile intensity bins and precipitation characteristics for different categories of precipitation intensity during the
summer of 1979–2019. In (A,C,E), linear trend (blue bars) of precipitation amount in the summer as a function of 40 precipitation percentile intensity bins
during 1979–2019 averaged over the TP (A), western TP (C), and eastern TP (E). The red lines indicate the shift rates of precipitation intensity. In (B,D,F), linear
trends of the amount (B), frequency (D) and intensity (F) of light precipitation, moderate precipitation, and heavy precipitation over the TP (black bars),
western TP (red bars) and eastern TP (blue bars). The double stars and red stars indicate statistical significance exceeding 95%, and the single star and black star
indicate statistical significance exceeding 90%.
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in light precipitation, and the decrease in heavy precipitation is
composed of an increase over the northern part of the eastern TP
and a decrease over the southern part of the eastern TP (Figure 4C).
The internal cycle precipitation generally contributes to the
increase in heavy precipitation over the eastern TP, but the
external cycle exhibits a spatial distribution similar to that of
heavy precipitation.

To investigate the change in the internal and external cycles of the
precipitation recycling process to the shift in precipitation intensity, the
histogram of the trend in internal precipitation and external precipitation
is calculated for the TP, western TP and eastern TP (Figure 5). The
histogram of internal precipitation and external precipitation is similar to
the histogram of total precipitation over the western TP and TP (Figures
5A–D). Both internal precipitation and external precipitation show
obvious increasing trends above the 35th percentile, while they
decrease below the 35th percentile over the TP and western TP. The
magnitude of the decreasing trend is smaller than the magnitude of the
increasing trend. However, for the eastern TP, the histograms of internal
precipitation and external precipitation show contrasting distributions
(Figures 5E, F). The internal precipitation increases across all percentile
bins (Figure 5E). However, external precipitation increases slightly below
the 80th percentile, which does not exceed the significance test, and
decreases above the 80th percentile, especially above the 90th percentile.

Subsequently, to quantify the relative contribution of the internal
and external cycles of the precipitation recycling process to the shift in

precipitation intensity, the shift rate index is further calculated for the
TP, western TP and eastern TP (Figure 5). The contribution was
calculated by dividing the shift rate induced by internal and external
cycles to the shift rate in total. This result suggests that the shift rate
induced by the internal cycle is 1.207 mm/41 years (~87.2%) and
contributes more to the shift in precipitation intensity than the
external cycle, which shifts at a rate of 0.177 mm/41 years (~12.8%)
(Figures 5A, B). Contribution was determined by dividing the shift
rate of the internal or external cycle by the shift rate of precipitation.
The shift rates of the internal cycle over the western TP and eastern TP
show similar TP trends, with rates of 1.725 mm/41 years and
0.745 mm/41 years, respectively. However, the shift rates of the
external cycle over the western TP and eastern TP are opposite,
with rates of 3.941 mm/41 years and −4.23 mm/41 years, respectively.

Since the map of the precipitation intensity shift rate is more
informative and crucial for authorities, the spatial distribution of the
shift rate associated with the internal cycle and external cycles are
further investigated in Figures 5G, H. The results show that the
internal cycle strongly influences the shift in precipitation intensity
over the western TP and the Qaidam Basin, while the shift rate
generated by the external cycle increases west of the southern
boundary but decreases east of the southern boundary (Figures 5G,
H). The spatial maps of shift rates are consistent with the changes in
light, moderate and heavy precipitation associated with internal cycle
precipitation and external cycle precipitation (Figures 4D–I).

FIGURE 3
Time series of summer (June-August) total precipitation, external cycle precipitation and internal cycle precipitation and its corresponding trend. Black,
red, and blue lines represent the total precipitation, internal cycle precipitation and external precipitation, respectively, for light (A,B), moderate (D,E) and
heavy (G,H) precipitation over the western (left column) and eastern (middle column) TP. Blue bars and red bars in (C,F,I) represent the trends of the
precipitation amount associated with the external cycle and internal cycle over the western TP, eastern TP and TP, respectively. The stars indicate
statistical significance exceeding 95%.
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3.3 The dominant factor in the variation in
internal precipitation

Considering the non-negligible contribution of internal
precipitation to the shift in precipitation over the TP, western TP
and eastern TP, the factors that affect the change in internal
precipitation are further examined. As Section 2.4 states, the
internal precipitation can be decomposed into the PRR term and
precipitation term based on Eq. 5. Therefore, it is essential to
comprehend the contribution of PRR and precipitation as a
function of precipitation intensity to understand the change in
internal precipitation under global warming.

The results suggest that the PRR term contributes more to heavy
precipitation than to light precipitation (Figures 6, 7). For precipitation
percentile bins above the 90th percentile, the PRR term and precipitation
term both contribute to the increase in internal precipitation, and the
magnitude of the PRR term exceeds the magnitude of the precipitation
term over the TP (Figures 6A, B). More specifically, the PRR term
contributes much more in the high percentile than in the low
percentile, which indicates that the PRR term promotes the increase in
heavy precipitation. For precipitation percentile bins between the 35th
percentile and 90th percentile, the PRR term and precipitation term
exhibit opposite contributions to the increase in internal precipitation
over the TP. However, internal precipitation is more affected by the
precipitation term since its magnitude is larger than that of the PRR term.
For precipitation percentiles below the 35th percentile, both the PRR term
and precipitation term cause a decrease in internal precipitation over the
TP. For the western TP, the PRR term decreases across all precipitation
intensity bins (Figure 7A), and the precipitation term decreases below the
35th percentile bins and increases above the 35th percentile bins
(Figure 7B). Considering the magnitude of the PRR term and

precipitation term, the precipitation term dominates the change in
internal precipitation over the western TP. For the eastern TP, the
PRR term increases across all precipitation intensity bins, and the
precipitation term increases below the 80th percentile and decreases
above the 80th percentile. In summary, the precipitation term
dominates the decrease in internal precipitation in light precipitation,
while the PRR term dominates the increase in internal precipitation in
heavy precipitation over the TP.

3.4 Changes in the precipitation recycling
process across precipitation intensity bins

In the summer, the average PRR over the TP is usually lower than
40% (Hua et al., 2015; Guo et al., 2018; Zhao and Zhou, 2021), showing
that the internal cycle is far less than the external cycle. Non-etheless, the
contribution of the internal cycle to the shift in precipitation intensity is
larger than that of the external cycle. Therefore, it is essential to
comprehend the variation in PRR as a function of the precipitation
intensity to understand how the precipitation recycling process influences
the shift.

Because surface temperature and evaporation are directly related to
the precipitation recycling process (An et al., 2017), the linear trend of
surface temperature and evaporation was evaluated as a function of
precipitation intensity bins (Figures 8A, B). The result demonstrates that
the surface temperature is increasing across all bins, with light
precipitation experiencing the greatest increase. However, evaporation
decreases with light precipitation and increases with moderate and heavy
precipitation. The smaller increase in temperature during heavy
precipitation can be partly explained by the evaporative cooling effect.
The results also indicate that the precipitation recycling process weakens

FIGURE 4
The trendmap of total precipitation (A–C), precipitation associated with internal (D–F) and external (G–I) cycles for light (left column), moderate (middle
column) and heavy precipitation (right column) over the TP. The dotted areas indicate statistical significance exceeding 95%.
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in light precipitation and strengthens in heavy precipitation, as shown in
Figure 8C. More specifically, in the climatology of PRR, the climatological
mean PRR of light precipitation (~51%) is larger than that of heavy
precipitation (~35%), which indicates that the dependence of light
precipitation on local evaporation is greater than that of heavy
precipitation. However, the trend of PRR for light precipitation is
negative, while it is positive for heavy precipitation, indicating that the
dependence of light precipitation on local evaporation is decreasing, while
the dependence of heavy precipitation is increasing (Figure 8C).
Therefore, there exists an issue: why are the responses of light and
heavy precipitation in contrast as the precipitation recycling process is
strengthened?

To address this issue, convective and large-scale precipitation were
separated from precipitation (more information is supplied in
Supplementary Text S1). Convective precipitation has a larger PRR

than large-scale precipitation and is a strong activator of the
precipitation recycling process (Figure 8D). Consequently,
Supplementary Figure S1 examines the influence of convective and
large-scale precipitation on the shift in precipitation intensity. The
results indicate that convective precipitation is more influential than
large-scale precipitation on the shift. The trend of PRR for convective and
large-scale precipitation over intensity bins (Figure 8D) reveals that
convective precipitation has a consistent trend distribution in PRR
with total precipitation, whereas large-scale precipitation does not
differ significantly across intensity bins. More specifically, the large-
scale precipitation PRR decreases across all intensity bins, and the
convective precipitation PRR increases in heavy precipitation and
decreases in light precipitation. Therefore, the changes in the PRR
trend between light precipitation and heavy precipitation are mainly
caused by convective precipitation.

FIGURE 5
Distribution of precipitation trends in precipitation percentile intensity bins of precipitation and the spatial distribution of shift rates during the summer of
1979–2019 averaged over the TP. In (A–F), linear trend (blue bars) in precipitation associated with internal (left column) and external (right column) cycles as a
function of 40 precipitation percentile intensity bins over the TP (A,B), western TP (C,D), and eastern TP (E,F). The red lines indicate the shift rates of
precipitation intensity. In g and h, the trendmap of the shift rate of precipitation intensity induced by the internal (G) and external (H) cycles on the TP. The
dotted areas and red stars indicate statistical significance exceeding 95%. The black stars indicate statistical significance exceeding 90%.
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4 Discussion

4.1 The mechanism of the precipitation
recycling process influencing the shift to
heavy precipitation

The mechanism responsible for the precipitation shift over the
TP is summarized in the schematic diagram (Figure 8E). Global
warming causes an increase in atmospheric moisture and water
vapor flux around the TP, which leads to increasing humidity over
the TP through the external cycle of the precipitation recycling
process. As discussed in (He et al., 2021), the contrast trend
between the western TP and eastern TP is positively correlated
with the changes in moisture flux at the southern boundary.
Moisture flux mainly flowing over the Brahmaputra Grand
Canyon brought by the India Summer Monsoon (ISM) has

declined (Bingyi, 2005; Zhao and Zhou, 2021). This has reduced
the external cycle of heavy precipitation over the eastern TP. Due to
the strengthening of the heating source (Xie and Wang, 2019) and
the “up-and-over” process (Dong et al., 2016), the moisture flux
near the southern boundary of the western TP is increasing (He
et al., 2021). In addition, the enhanced warming over the TP has
caused glacier melting, lake expansion and increasing evaporation,
all of which promote the intensification of the precipitation
recycling process. Increasing moisture induced by both the
internal and external cycles would help the transition of light
precipitation to heavy precipitation, resulting in a decrease in
light precipitation and an increase in heavy precipitation.

Because precipitation dominates summer evapotranspiration
over the TP (Wang et al., 2018; Ma and Zhang, 2022), decreased
light precipitation and increased heavy precipitation would result
in a different response to the precipitation recycling process.

FIGURE 6
Decomposition of internal precipitation trends to the PRR and precipitation over the TP. In (A,B) histograms represent the contribution of PRR and
precipitation to the internal precipitation over the TP. The red stars and black stars indicate statistical significance exceeding 95% and 90%, respectively.

FIGURE 7
Decomposition of internal precipitation trends to the PRR and precipitation over the western TP and eastern TP. Linear trends of internal precipitation
associated with PRR (A,C) and precipitation (B,D) over the western TP (A,B) and eastern TP (C,D). The red stars and black stars indicate statistical significance
exceeding 95% and 90%, respectively.
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Positive feedback is formed when a decrease in light precipitation
leads to a decrease in evapotranspiration, which in turn leads to a
decrease in convective precipitation and a further decrease in light
precipitation. The decreasing convective precipitation during the
aforementioned process also decreases the PRR in light
precipitation, thereby decreasing the dependence of light
precipitation on local evaporation, despite the intensification of
the precipitation recycling process under global warming. The
convective precipitation that is enhanced by an increase in

evaporation leads to an increase in heavy precipitation, forming
positive feedback to increase heavy precipitation. Increasing
convective precipitation during heavy precipitation also
increases the PRR, indicating that heavy precipitation is
increasingly dependent on local evaporation. The contrast
changes in PRR between light and heavy precipitation have a
positive effect on the shift in precipitation intensity.

Therefore, an intensified precipitation recycling process could
facilitate the transition to heavy precipitation by increasing

FIGURE 8
Distribution of trends (bars) in precipitation percentile intensity bins of temperature, evaporation, and recycling ratio during the summer of
1979–2019 over the TP and the schematic illustration. Bars show the linear trends of temperature (A), evaporation (B), precipitation recycling ratio (C) and
precipitation recycling ratio corresponding to convective and large-scale precipitation (D). The black line in figure c shows the climatology of the precipitation
recycling ratio. The red line and blue line in d show the climatology of the convective precipitation recycling ratio and large-scale precipitation recycling
ratio, respectively. In (E) the schematic illustration of how precipitation recycling changes influence the shift of precipitation intensity over the TP. The red stars
and black stars indicate statistical significance exceeding 95% and 90%, respectively.

Frontiers in Earth Science frontiersin.org10

Zhang et al. 10.3389/feart.2023.1078501

14

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1078501


evaporation and adjusting the dependence of light and heavy
precipitation on the precipitation recycling process. However,
the contrast changes in the external cycle between the eastern
and western TP result in a weaker contribution of the external
cycle over the TP. Although the internal cycle only amplifies the
effect of the external cycle on the shift, its contribution even exceeds
that of the external cycle. Further divide the internal precipitation
into the PRR term and precipitation term and find that the PRR
term contributes more than the precipitation term, especially
during heavy precipitation, which heavily amplifies the effect of
the external cycle (Figure 6). The TP is projected to warm
significantly in the future, which will significantly intensify the
internal cycle; consequently, the influence of the internal cycle on
the shift is anticipated to increase.

4.2 Implications of the shift in precipitation
over the Tibetan Plateau under global
warming

The internal cycle and external cycle are important components
of the hydrological cycle over the TP. A better understanding of the
internal and external cycles over the TP can contribute to the early
response to disasters for facilities over the TP. The decrease in light
precipitation may contribute to more frequent drought over the TP.
It is important to note the amplification effect of the internal cycle,
which amplifies heavy precipitation by increasing evaporation over
the TP. The amplification of heavy precipitation may also
increase the occurrence of extreme precipitation and flood
disasters, which could damage the infrastructure over the TP.
As internal precipitation amplifies the precipitation shift over
the TP, we suggest that the government take measures to
mitigate the adverse effects associated with this shift in a
warming climate.

5 Conclusion

Due to global warming, the Tibetan Plateau has experienced a
shift in precipitation intensity, such as an increase in heavy
precipitation and a decrease in light precipitation, in recent
decades. To quantify this process and clarify the effect of
internal and external cycles of the precipitation recycling
process, the concept of the precipitation shift rate was
introduced, and the results show that the shift rates over the
eastern and western TP are −3.485 mm/41 years and 5.666 mm/
41 years, respectively. The impacts of the precipitation recycling
process on the shift from light to heavy precipitation were further
investigated over the Tibetan Plateau. Both the internal and
external cycles have a positive influence on the shift toward
heavy precipitation over the western TP, while the internal
(external) cycle has a positive (negative) influence on the shift
over the eastern TP. The results reveal that the internal (87.2%) and
external cycles (12.8%) contribute to the precipitation intensity
shift over the TP. The internal precipitation was further
decomposed into the PRR term and precipitation term. The
variations in internal precipitation were mutually impacted by
the PRR term and precipitation term, where the PRR term

impacts heavy precipitation more and the precipitation term
impacts light precipitation more. The strong impact of the PRR
term in heavy precipitation is consistent with the amplified effect of
internal precipitation. Therefore, the mechanism of the influence of
the precipitation recycling process on the shift was investigated
from the perspective of the changes in PRR during light and heavy
precipitation. The result reveals that light precipitation has a higher
PRR climatology than heavy precipitation, indicating that the
dependence of light precipitation on local evapotranspiration is
greater than that of heavy precipitation. Under enhanced warming,
the PRR increases during heavy precipitation and decreases during
light precipitation, which is mostly due to the response of
convective precipitation. The results suggest that heavy
precipitation is more responsive to the intensified precipitation
recycling process than light precipitation. Therefore, the intensified
precipitation recycling process generated by the enhanced warming
may contribute to the shift of precipitation intensity to heavy
precipitation by adjusting the response of PRR. The increasing
PRR in heavy precipitation increases the risk of extreme
precipitation. This reminds us to pay more attention to the
influence of the precipitation recycling process when projecting
the changes in extreme precipitation in the future.
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Building a green silk road is an important path toward implementation of the 
UN 2030 sustainable development goals. The purpose of the paper is to discuss 
the sustainable development goals of the “Belt and Road” Initiative (BRI) by 
evaluating the relationship between the BRI and enterprise green innovation. 
Employing the technology–organization–environment (TOE) framework to 
build a theoretical model based on the micro data of Chinese manufacturing 
enterprises from 2011 to 2018, and using the difference-in-differences method, 
this paper analyzes the BRI’s influence on the green innovation of enterprises. The 
research results indicate that the BRI has significantly enhanced the level of green 
innovation in Chinese manufacturing enterprises. This effect is still robust after 
the analysis of PSM-DID excluding the interference of policies in the same period 
and heterogeneity analysis. The results of the mechanism analysis show that the 
percentage of R&D employees, policy support and R&D expenditure can enhance 
the positive effects of the BRI’s influence on enterprise green innovation. The 
marginal contribution of this paper is to identify the causal relationship between 
the BRI and green innovation, add a new micro perspective to the research on 
the relationship between the BRI and sustainable development, and reveal a new 
micro mechanism.

KEYWORDS

the Belt and Road Initiative, green innovation, manufacturing enterprises, TOE 
framework, difference-in-differences

1. Introduction

In 2013, Chinese President Xi Jinping proposed “the Belt and Road” Initiative (BRI), which 
has received great attention from the international community. In 2015, China released the 
“Vision and Actions on Jointly Building Silk Road Economic Belt and 21st-Century Maritime 
Silk Road” (hereinafter referred to as “the Vision”), which put forward the concept of “Building 
a Green Silk Road.” In 2017, China introduced the “Guidance on Promoting Green Belt and 
Road,” and building the Green Silk Road has become an important path toward implementation 
of the UN 2030 sustainable development goals (SDGs). The research literature points out that 
sustainability has become a major concern for the business community and that companies that 
are successful in environmentally sustainable projects can obtain greater financial success and 
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social welfare beyond their economic responsibility (Zhu et al., 2019). 
Studies on the BRI have also paid extensive attention to environmental 
and sustainable development issues, with the literature discussing 
sustainable growth, energy consumption and environmental 
challenges in the “Belt and Road” countries (Rauf et al., 2020), carbon 
emission reduction in the “Belt and Road” countries (Chen et al., 
2021a), and the energy intensity of the BRI and the countries along 
the” Belt and Road” (Qi et  al., 2019). However, there is a lack of 
research on the relationship between the BRI and sustainable 
development that considers the enterprise level to discuss the impact 
of the BRI on green innovation in enterprises, especially 
manufacturing enterprises.

Green innovation is critical to both organizations and society as 
an important factor in maintaining environmental stewardship and 
sustainable development (Aguilera-Caracuel and Ortiz-de-
Mandojana, 2013; Zhang et al., 2020; Xu et al., 2021). This importance 
is reflected in two aspects. On the one hand, in order to face the threat 
posed by environmental degradation to human society, many 
organizations and communities have adopted green innovation as a 
strategy to achieve environmental protection and economic growth 
(Takalo and Tooranloo, 2021), which is important for both 
organizations and society in terms of sustainability and economic 
profitability (Fliaster and Kolloch, 2017). On the other hand, from the 
perspective of the impact of green innovation on enterprises, green 
innovation can lead organizations to achieve a sustainable competitive 
advantage (Hur et al., 2013) and further enhance regional sustainability 
(Chege and Wang, 2020; Fu et al., 2020; Wang and Yang, 2021; Zhou 
et al., 2021). The research on corporate green innovation has been 
conducted from three perspectives as follows: (1) Studies on the 
factors influencing enterprise green innovation have argued that, as a 
systemic project, enterprise green innovation requires the creative 
integration of various internal and external resources. They achieve 
this through capacity development and capital investment 
(Lampikoski et al., 2014; Roper and Tapinos, 2016), the technological 
capabilities of firms (Leyva-de La Hiz et al., 2019; Zhang et al., 2020), 
firm heterogeneity (Xu et al., 2021), and environmental pressures (Cao 
and Chen, 2019), which have been identified as the main factors 
influencing enterprise green innovation. (2) Results of enterprise 
green innovation. Green innovation in enterprises can reduce energy 
consumption and pollution (Wang et al., 2017; Albort-Morant et al., 
2018), improve resource-use efficiency (Wang et  al., 2017), and 
enhance the environmental sustainability of enterprises (Chu et al., 
2018). (3) The impacts of environmental policies on enterprise green 
innovation, include sustainability performance indicators (Wang and 
Yang, 2021), carbon trading rights (Chen et al., 2021b; Du et al., 2021), 
intellectual property rights and government support (Roh et  al., 
2021), etc.

However, the existing studies lack a comprehensive assessment 
of the promotion effect of the BRI on green innovation in Chinese 
manufacturing enterprises. The research gap mainly manifests in 
three aspects. First, the existing research mainly focuses on the 
relationship between the BRI and sustainable development from the 
national level, but there are few studies focusing on green 
innovation from the enterprise level. Second, existing studies have 
discussed the impact of policy environment on green innovation of 
enterprises, but there are few studies on the impact of the BRI on 
green innovation of enterprises. Third, in the research on the 
relationship between the BRI and sustainable development, the 

research focusing on green innovation in manufacturing needs 
further in-depth discussion.

The focus on green innovation in manufacturing enterprises is 
based on three main factors: (1) Manufacturing is one of the major 
causes of industrial waste production and environmental pollution, 
posing a threat to environmental sustainability, and enhancing the 
green innovation capacity of manufacturing enterprises is an 
important strategic tool to ensure environmental sustainability (Wang 
and Yang, 2021). As the Green Silk Road is an important path toward 
implementing the UN 2030 Agenda for Sustainable Development, 
studying the impact of the BRI on green innovation in manufacturing 
enterprises can provide important theoretical support for the 
realization of the SDGs of the BRI. Therefore, studying the impact of 
the BRI on green innovation in manufacturing enterprises can provide 
important theoretical support for achieving the SDGs of the BRI. (2) 
Consumers, manufacturers, government departments, and 
communities are increasingly aware of the importance of sustainability 
as well as environmental issues, which has created significant social 
pressure on manufacturing firms (Li et  al., 2017), prompting 
manufacturing firms to incorporate green innovation into their 
production processes (Gupta and Barua, 2018), and the growing 
concern for social, economic, and environmental concerns has 
increased the importance of green innovation in manufacturing firms 
(Sarkar et al., 2020). (3) Manufacturing is one of the wide-ranging and 
dynamic industries that are attracting companies to transition toward 
green innovation (Wang and Yang, 2021). The BRI proposed the 
concept of supporting major industrial sectors to promote 
environmental technology innovation, providing an opportunity to 
study the impact of the BRI on green innovation of 
manufacturing enterprises.

Thus, this paper poses the following research question: Does the 
BRI promote green innovation of Chinese manufacturing enterprises? 
Does this effect have a heterogeneous impact? What is the mechanism 
of such impact? This paper uses a difference-in-differences approach 
to analyze the impact of the BRI on green innovation in Chinese 
manufacturing enterprises, discusses industry heterogeneity and firm 
ownership heterogeneity, and evaluates the impact of the BRI on green 
innovation in Chinese manufacturing enterprises based on a 
technology–organization–environment (TOE) framework (Tornatzky 
et al., 1990). We analyze the impact of the BRI on green innovation in 
Chinese manufacturing enterprises in terms of internal technological 
and organizational factors as well as external environmental factors. 
The research in this article is timely and necessary. On the one hand, 
the BRI is believed to enhance the strength and expand the influence 
of Chinese enterprises in the global economy. This study can add new 
content to this influence from the perspective of green innovation. On 
the other hand, this study can also provide valuable information for 
foreign investors and governments of countries along the BRI.

In the study of the relationship between the BRI and sustainable 
development, this paper makes marginal contributions in three areas 
compared to existing studies. (1) This paper extends the analysis to the 
level of manufacturing enterprises and discusses the impact of the BRI 
on green innovation in Chinese manufacturing enterprises compared 
to previous studies that have discussed the environmental impact of 
the BRI at the national macro level (Qi et al., 2019; Rauf et al., 2020; 
Chen et al., 2021a). This paper provides a micro perspective at the 
enterprise level on the relationship between the BRI and sustainable 
development. (2) This paper uses the method of 
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difference-in-differences to take China’s core cities along the “Belt and 
Road” as the objects to accept exogenous shocks, which is different 
from previous studies on countries along the “Belt and Road” as the 
objects to accept exogenous shocks (Du and Zhang, 2018; Yang et al., 
2020; Nugent and Lu, 2021). This paper analyzes the intrinsic 
dynamics of corporate green innovation from the perspective of core 
cities along China’s domestic routes, providing microlevel causal 
evidence of the relationship between the BRI and sustainable 
development. (3) This paper analyzes the impact mechanism of the 
BRI on Chinese manufacturing enterprises based on the TOE 
framework. Compared with previous studies on environmental issues 
of the Belt and Road (Qi et al., 2019; Rauf et al., 2020; Chen et al., 
2021a), and research on enterprise digital innovation and green 
process innovation (Dong et al., 2023), this paper analyzes the role of 
technology, organization and environment at both internal and 
external levels and reveals the microlevel influence mechanism of the 
relationship between the BRI and sustainable development. At the 
same time, at the practical level, the study of these issues can help in 
the evaluation of the construction effect of the green Belt and Road 
and provide important theoretical references and decision-making 
bases for achieving the 2030 SDGs.

2. Theoretical framework

Building the Green Silk Road is an important concept of the 
BRI. In 2019, China signed a memorandum of understanding with the 
United Nations Environment Program on building a green Belt and 
Road and signed cooperation agreements on ecological and 
environmental protection with more than 30 countries along the 
route. The construction of the Green Silk Road has become an 
important path toward implementing the UN 2030 Agenda for 
Sustainable Development, and more than 100 partners from relevant 
countries and regions have jointly established the International 
Alliance for Green Development along the Belt and Road. Studies have 
found that the BRI reduces carbon emissions (Chen et al., 2021a) and 
energy intensity (Qi et  al., 2019) and promotes sustainable 
development in the countries along the route (Rauf et al., 2020). Based 
on this, this paper assesses the promotion effect of the BRI on green 
innovation in Chinese manufacturing firms and further analyzes its 
impact mechanism using a TOE framework (Tornatzky et al., 1990).

We first analyze the reasons for the impact of the BRI on the 
sustainable development of Chinese enterprises, and then analyze the 
impact mechanism of the BRI on green innovation of Chinese 
enterprises. The BRI serves as a high-level open platform where 
various partners can promote the development of an open world 
economic system by strengthening interregional cooperation (Duan 
et al., 2018) and thereby allowing Chinese companies to gain value in 
the international market. The impact of the BRI on the sustainable 
development of Chinese enterprises can be  summarized in the 
following three outcomes. (1) Resource allocation optimization effect. 
The BRI promotes the transfer of industries and the restructuring of 
domestic industries by promoting foreign direct investment in 
countries along the route; it also optimizes the resource allocation of 
enterprises in home countries and improves production processes and 
processing techniques, thus promoting the green transformation and 
upgrading of enterprises (Yu et  al., 2019; Yang and Li, 2021). (2) 
Achieving economies of scale and improving technical efficiency. As 

part of a broad international market, the BRI can greatly increase 
external demand for Chinese products, expand market capacity, 
achieve economies of scale, and improve production efficiency (Liu 
and Xin, 2019). (3) Increase competitive pressure and achieve 
technological progress. While the wide international market brings 
more room for development for Chinese enterprises, it also imposes 
higher development requirements for effective survival, i.e., the 
demand for diversified and high-end products, creating a strong 
squeezing mechanism for enterprises that want to enter the 
international market, which needs to prioritize technological 
innovation and green production to be competitive (Ji et al., 2018).

In order to explain the impact of the above the BRI on the 
sustainable development of Chinese enterprises, we discuss the impact 
mechanism of the BRI on green innovation of Chinese enterprises 
from the perspective of green innovation based on the TOE 
framework. Tornatzky et al. (1990) developed a TOE framework to 
describe the factors that influence firms’ technological innovation 
decisions. The technological context reflects the technological 
infrastructure and capabilities that influence the implementation of a 
firm’s innovation. Technological infrastructure includes a firm’s 
current equipment and technology practices, which are important in 
innovation decisions because they determine the scope and speed of 
technological change that can be achieved by a firm (Hue, 2019). 
Technological capabilities, on the other hand, reflect the expertise and 
skills needed to effectively utilize the components of technological 
infrastructure (Aboelmaged, 2014). The literature proposes measuring 
technological infrastructure and capabilities using the quality of the 
workforce and the industry sector in which the firm is located, among 
them, quality of the workforce is measured by the percentage of high-
quality employees (Castillejo et al., 2006). In addition, innovation 
ecosystem theory suggests that high-level talent is a key factor 
influencing the performance of innovation ecosystems, as the high 
quality of high-level talent already available can reduce the cost of 
learning, save the organization’s time costs and improve management 
efficiency (Valkokari, 2015). Based on the above analysis, this study 
will analyze technological factors from the perspective of innovation 
talent and measure innovation talent in terms of R&D employees.

The organizational context is concerned with the resources and 
interactions associated with innovation. Existing studies have 
discussed the impact of organizational-level factors on innovation 
from multiple perspectives. Studies from an organizational 
characteristics perspective have argued that characteristics such as 
organizational size, organizational ownership structure, and 
organizational competition affect firm innovation (Hue, 2019; Kinkel 
et al., 2021). Studies based on the organizational support perspective 
have found that factors such as organizational support and managerial 
barriers will also affect firm innovation (Aboelmaged, 2018; Nam 
et al., 2019). Studies have also combined the TOE framework with 
absorptive capacity theory to highlight the important role of R&D in 
innovation (Jantunen, 2005; Liao et al., 2021) and have found that 
organizational R&D expenditures play an important role in the 
transformation of science and technology to create new knowledge 
and enhance innovation capacity (Kim et  al., 2020). To manage 
organizational change for green innovation (Dangelico et al., 2017), 
firms require expertise in absorptive capacity and sustainability to 
facilitate the implementation of green innovation (Aboelmaged and 
Hashem, 2019), and in this sense, R&D is an organizational level that 
is required for green innovation at the organizational level (Zhang 
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et al., 2020). Therefore, this paper focuses on analyzing the impact of 
organizational-level factors on green innovation from the perspective 
of R&D based on the perspective of the TOE framework combined 
with absorptive capacity theory.

The environmental context reflects the impact of external factors 
such as competition, stakeholder pressure, and regulatory 
environment on firm innovation (Tornatzky et al., 1990). The existing 
literature generally analyzes the impact of environmental factors on 
firm innovation from two perspectives. On the one hand, the role of 
factors such as market competition, competitive pressure, customer 
demand and customer pressure is discussed from the perspective of 
market stakeholders (Dai et al., 2018; Nam et al., 2019; Qalati et al., 
2021). On the other hand, the role of factors such as government laws, 
environmental protection requirements, and government support are 
discussed from the perspective of government stakeholders 
(Aboelmaged, 2018; Chen et al., 2018; Hue, 2019; Nam et al., 2019). It 
is found that government support for innovation activities conducted 
by firms through policy support, such as policy leaning and financial 
subsidies, helps firms break through the resource bottlenecks faced in 
the process of innovation activities (Hue, 2019). Because this paper 
focuses on the impact of the BRI on green innovation in manufacturing 
enterprises, the role of environmental factors is mainly analyzed from 
the perspective of government support.

According to the TOE framework, firm innovation can be facilitated 
when internal and external drivers can be effectively established, and one 
of the key advantages of the TOE framework is its flexible nature, which 
allows for the categorization of studies that reflect factors that stimulate 
or hinder firm innovation (Aboelmaged, 2014). Many empirical studies 
have used the TOE framework as a theoretical basis to examine the 
adoption of new technologies by firms (Chiu et al., 2017) and the factors 
influencing innovation (Hue, 2019); environmentally sustainable 
practices and technological innovation in SMEs (Chege and Wang, 
2020); competitive ability and sustainable practices (Aboelmaged, 2018); 
and climate change, sustainability and economic growth (Ferreira et al., 
2020). Therefore, this paper analyzes the influence mechanism of 
technology–organization–environment factors on the relationship 
between the BRI and green innovation in manufacturing firms based on 
the TOE framework, as shown in Figure 1.

3. Research hypothesis

Corporate green innovation refers to innovative activities that 
contribute to resource conservation and environmental protection in 

terms of reducing resource and energy consumption, avoiding or 
reducing pollution emissions, and reducing environmental risks 
(Castellacci and Lie, 2017). Green innovation can create new 
opportunities for environmentally friendly practices in firms (Albort-
Morant et al., 2018), reduce the pollution rate of firms (Castellacci and 
Lie, 2017) and save energy (Huang and Li, 2017; Wang et al., 2017). 
Therefore, green innovation is an important tool that can help 
societies, organizations, and firms reach environmental sustainability 
goals, improve economic performance, face the challenges of green 
and environmental innovation, and play an important role in 
achieving competitive advantage (Takalo and Tooranloo, 2021).

3.1. BRI and green innovation in 
manufacturing enterprises

Recent studies have focused on the relationship between the BRI 
and carbon emission reduction, sustainable development, energy 
intensity, and green total factor productivity. Country-based studies 
have found that Chinese outward foreign direct investment (OFDI) 
helps increase the capacity efficiency of countries along the Belt and 
Road, thereby reducing their carbon emissions (Chen et al., 2021a). 
Rauf et al. analyzed the interrelationships among energy consumption, 
economic growth, population growth, financial development, and 
carbon emissions in 65 countries along the “Belt and Road” and found 
that energy consumption, high-tech industries, and economic growth 
deteriorated environmental quality, while financial and renewable 
energy consumption had a favorable impact on the environment (Rauf 
et al., 2020). A study on the relationship between the BRI and energy 
intensity found that, under the premise of reducing energy intensity, 
the scale of trade between China and countries along the “Belt and 
Road” contributes to the convergence rate of energy intensity when 
the trade threshold is exceeded, and technology effects will accelerate 
the convergence of energy intensity (Qi et al., 2019). A study at the 
provincial level in China found that the BRI increased green total 
factor productivity in the provinces along the route and that 
technological progress played a major driving role (Liu and Xin, 
2019). These studies provide preliminary evidence on the relationship 
between the “Belt and Road” and green development at the macro 
level. At the micro level, studies have also begun to discuss the 
relationship between green innovation of enterprises along the “Belt 
and Road.” Two recent studies have found that firms investing in Belt 
and Road countries have higher green innovation performance than 
other firms (Zhu and Sun, 2020; Yang and Li, 2021). Based on the 
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above analysis, we believe that the BRI will promote green innovation 
in Chinese manufacturing enterprises, for which the following 
hypothesis is proposed.

H1: The BRI will improve the level of green innovation in Chinese 
manufacturing enterprises.

3.2. Technological factors and green 
innovation in manufacturing companies

According to the analysis in the theoretical framework section, the 
quality of the workforce can be  a key element in measuring 
technological infrastructure and capabilities (Castillejo et al., 2006), 
and in the TOE framework, the technological dimension is crucial for 
firm innovation because it determines the technological changes that 
can be made at the firm level (Tornatzky et al., 1990). The value of a 
technological resource depends to a large extent on the extent to 
which it works in concert with other technologies being used and 
facilitates green innovation activities (Zhang et al., 2020). The quality 
of the workforce as a technological resource affects firm innovation 
performance (Castillejo et al., 2006), and skilled employees such as 
R&D staff are an important knowledge resource for the firm because 
they carry the firm’s knowledge and culture to the greatest extent and 
have the potential to improve the firm’s ability to identify, absorb, and 
manage knowledge and thus promote innovation in the firm (Hue, 
2019). Based on the above discussion, we believe that the higher the 
percentage of R&D employees, the stronger the contribution of the 
BRI to enterprises green innovation, and we  propose the 
following hypothesis.

H2: The higher the percentage of R&D employees, the stronger 
the promotion effect of the BRI will be on green innovation in 
Chinese manufacturing enterprises compared to those with a 
lower percentage of R&D employees.

3.3. Organizational factors and green 
innovation in manufacturing companies

This paper discusses the role of organizational factors by 
combining the TOE framework with absorptive capacity theory 
(Jantunen, 2005; Liao et al., 2021). According to the TOE framework, 
organizational capabilities are also an important factor influencing 
firm innovation (Tornatzky et al., 1990), where innovation capabilities 
help firms enhance their green innovation (Zhang et al., 2020), while 
absorptive capacity theory emphasizes R&D importance (Aboelmaged 
and Hashem, 2019), arguing that R&D is a driving factor that affects 
firms’ innovation capabilities (Kim et al., 2020; Papanastassiou et al., 
2020). The impact of R&D on firm innovation in the context of the 
BRI has also received extensive attention in the literature, and these 
studies have found that the BRI promotes foreign direct investment in 
R&D by Chinese firms, which in turn leads to an increase in firm 
innovation efficiency (Zhao and Fang, 2019). Companies that actively 
participate in the BRI are able to acquire green technologies for cash 
through foreign direct investment and cross-border mergers and 

acquisitions, thus promoting the green R&D capabilities of enterprises 
(Zhu and Sun, 2020). The BRI enhances the R&D efficiency of 
enterprises, thus promoting their green upgrading and transformation 
(Yang and Li, 2021). These studies provide supportive evidence for the 
relationship between R&D and innovation in the BRI, for which the 
following hypotheses are proposed.

H3: The stronger the R&D expenditures of firms, the stronger the 
green innovation effect of the BRI will be  on Chinese 
manufacturing firms compared to the weak R&D expenditures 
of firms.

3.4. Environmental factors and green 
innovation in manufacturing companies

This paper assesses the impact of the BRI on green innovation in 
Chinese manufacturing firms and therefore focuses more on the role 
of external environmental factors at the governmental level. 
Environmental factors are the external factors that influence firms’ 
innovation in the TOE framework (Tornatzky et al., 1990), among 
which government support is one of the external environmental 
factors that influence firms’ innovation (Zhu et al., 2004; Hue, 2019). 
The focus of cooperation in the BRI involves economic, cultural, 
political, and transportation areas, which are included in the policy 
communication, facility connection, trade flow, financial integration, 
and people-to-people communication proposed in the Vision. The 
“five links” are the main cooperation elements of the “Belt and Road,” 
among which policy communication is the most basic link and plays 
a fundamental role (Lu et al., 2021). In China, local governments 
along the Belt and Road will help enterprises better participate in the 
construction of the Belt and Road by introducing relevant support 
policies and improving the local policy environment (Lu et al., 2021). 
It was found that policy support from local governments along the 
BRI enhanced the export quality of enterprises in core cities along the 
BRI (Lu et al., 2021). In addition, government subsidies, as a kind of 
government-supported institutional arrangement, also play a 
significant role in enterprises’ production and operation (Yu, 2021), 
based on which we infer that support from local governments will 
enhance the green innovation level of manufacturing enterprises 
through the BRI.

H4: The stronger the support from local governments, the 
stronger the promotion effect of the BRI will be on the green 
innovation of Chinese manufacturing enterprises.

4. Research design

4.1. Econometric model setting

The main objective of this empirical study is to identify the causal 
relationship between the BRI and enterprises green innovation. In 
existing literature, quasi natural experimental design and fsQCA are 
commonly used methods for identifying causal relationships. For 
example, the existing research used quasi natural experimental design 
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to discuss the BRI and foreign direct investment (Yu et  al., 2019; 
Nugent and Lu, 2021), there are also literature using the fsQCA 
method to discuss the issue of digital green innovation in enterprises 
(Yin and Yu, 2022). This paper uses the research design of quasi 
natural experiments to identify causal relationships. We use the BRI 
as a quasi-natural experiment and apply the difference-in-differences 
method to study the impact of the BRI on green innovation in Chinese 
manufacturing enterprises. In assessing the effect of the BRI, 
we choose the year 2014, when the BRI officially appeared in the 
Government Work Report, as a time of exogenous shocks (Zhu and 
Sun, 2020). The focus of our analysis is the level of green innovation 
of Chinese manufacturing firms, so we use the core cities along the 
Belt and Road in China as the grouping variable. The manufacturing 
firms located in the core cities along the Belt and Road are in the 
experimental group, while those located in other cities are in the 
control group. This research design is consistent with existing 
literature in terms of selecting grouping variables, the difference is that 
the existing literature discusses the relationship between the BRI and 
China’s high-quality exports (Lu et  al., 2021), while this paper 
examines the impact of the BRI on green innovation of Chinese 
manufacturing enterprises.

According to the above design scheme, a two-way fixed effects 
difference-in-differences model is constructed:

 GreInv = + Dcity * post + + + X +it i t i t it itaa bb mm ll gg ee  (1)

Equation 1 is a two-way fixed effects difference-in-differences 
model that considers individual fixed effects ( mi ) and time fixed 
effects ( lt ). In the model, GreInvitindicates the green innovation level 
of enterprises, measured by green patents. Dcityi is a grouping variable 
of core cities along the Belt and Road, which takes the value of 1 when 
the city where the enterprise is located is a core city along the Belt and 
Road; otherwise, it takes the value of 0. postt is a dummy variable of 
the treatment effect period (Zhu and Sun, 2020; Lu et  al., 2021). 
Dcity posti t*  is a difference-in-differences interaction term used to 
estimate the micro impact of the BRI. Xit is a set of firm-level control 
variables, and eit  is a random disturbance term. b  is the coefficient 
of the difference-in-differences interaction term that is our focus, and 
its economic significance is the promotion effect of the BRI on green 
innovation in manufacturing firms.

4.2. Variables and data

4.2.1. Variables
(1) Corporate green innovation. It is measured by the number of 

green patents including the number of green invention applications 
(LnGreInvia), the number of green invention acquisitions 
(LnGreInvig), and the sum of the number of green invention 
applications and acquisitions (LnGreInviaig). In the specific analysis 
of the data, the above three variables were logarithmically transformed, 
which will be +1 to the number of each green patent and then taking 
the natural logarithm value.

(2) Variables related to the BRI. In this paper, we construct a 
difference-in-differences model in two city-year dimensions to 
identify the micro impacts of the initiative. In the city dimension, 
we take the 39 core cities along the Belt and Road mentioned in the 

Vision as the basis; refer to existing studies (Lu et al., 2021); and 
exclude two cities, “Hong Kong, China” and “Macau, China,” which 
lack data, leaving 37 core cities along the Belt and Road. If an 
enterprise is located in a core city along the Belt and Road, the value 
is 1, indicating that the enterprise enters the experimental group; if 
an enterprise is located in a noncore city along the Belt and Road, 
the value is 0, indicating that the enterprise enters the control group. 
In terms of the time dimension, we refer to the existing studies (Zhu 
and Sun, 2020; Lu et al., 2021) and use 2014, the second year of the 
BRI, as the starting year when the treatment effect begins to 
take effect.

(3) Relevant variables for mechanism analysis. In this paper, 
we apply the TOE framework to analyze the mechanism of the impact 
of the BRI on green innovation in Chinese manufacturing enterprises, 
including the technology dimension, measured by the share of R&D 
personnel (RDpr) (Hue, 2019); the organizational dimension, 
measured by the logarithm of R&D expenditures (lnRDexp) (Zhang 
et al., 2020); and the environmental level dimensions, measured by 
government support (pro_degree) and government grants (govgrants) 
(Lu et al., 2021; Yu, 2021).

(4) Control variables. Referring to existing studies (Zhu and Sun, 
2020; Yang and Li, 2021), the control variable Xit is a set of firm-level 
variables, including total net asset margin (ROAA), operating profit 
margin (OPR), total asset growth rate (TagrA), operating income 
growth rate (OrgrA), cash ratio (Cashr), gearing ratio (Alr) Total 
Assets (Tassets), and Total Operating Income (Toincomes).

4.2.2. Data
The data in this paper are mainly obtained from the China Stock 

Market & Accounting Research (CSMAR) database and the China 
Research Data Service Platform (CNRDS). Among them, the basic 
information of listed companies, financial data and city-level data are 
obtained from the CSMAR database for the time interval of 2011–
2018. The data on green innovation were obtained from the CNRDS 
Green Patent Database. We first merged the basic information and 
financial data of listed companies from the CSMAR database into one 
data file based on the stock codes of listed companies. We then merged 
the patent data from the CNRDS Green Patent Database, based on the 
stock codes of listed companies, into the financial data file of listed 
companies, which became the data file for the analysis of this paper, 
with a total of 13,424 observations in the data file. In the robustness 
analysis, city-level data were added.

5. Results

5.1. Baseline regression

The first descriptive statistical analysis was performed for the 
main variables, as shown in Table 1. The first column in Table 1 shows 
the names of the variables in the DID model, and the second column 
shows the meanings of the variables. The first to third rows are the 
dependent variables in the DID model, and the three measures of 
green innovation are taken as logarithms; the fourth row is the 
grouping variables of core cities along the Belt and Road, and the fifth 
row is the dummy variables of the treatment effect period. The other 
rows are the variables related to mechanism analysis and 
control variables.
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In this paper, a difference-in-differences model is constructed 
to assess the impact of the BRI on green innovation in Chinese 
manufacturing enterprises. Specifically, the effect of the initiative 
on green innovation is estimated according to Equation 1, 
controlling for both individual fixed effects and time fixed effects as 
well as firm-level and city-level variables; the estimation results are 
presented in Table 2. The first column of the dependent variable is 
the number of green inventions applied for, the second column is 
the number of green inventions obtained, and the third column is 
the sum of the number of green inventions applied for and obtained. 
From the results, the BRI has a significant promotion effect at the 
level of 0.05 ( b = <0 0451 0 05. , .p ) on the number of applications 
for green inventions by manufacturing enterprises, a significant 
promotion effect at the level of 0.1 ( b = <0 0269 0 1. , .p ), on the 
number of acquisitions of green inventions, and a significant 
promotion effect at the level of 0.1 on the number of applications 
and acquisitions of green inventions by manufacturing enterprises. 
and a significant contribution effect on the sum of applications and 
acquisitions of green inventions at the level of 0.05 
( b = <0 0512 0 05. , .p ). The fourth to sixth columns further control 
for whether the city where the enterprise is located is a core city in 
the Yangtze River Economic Belt and whether it is a provincial 
capital city (or a municipality directly under the central 
government), and the results remain robust after controlling for 
city-level variables. The effect on the number of green invention 
applications and the sum of green invention applications and 
acquisitions in the manufacturing industry of the BRI remains 

significant, and the effect on the number of green invention 
acquisitions is significant at the 0.1 level. From the results of the 
control variables, the impact of the cash ratio, total assets, gross 
operating income, and core cities of the Yangtze River Economic 
Belt on green innovation is significantly positive, while the impact 
of the total assets growth rate and provincial capital cities 
(municipalities directly under the central government) on green 
innovation is negative. From the estimation results of the 
benchmark model, the “Belt and Road” Initiative does have a 
catalytic effect on the green innovation level of Chinese 
manufacturing enterprises, and H1 is supported.

5.2. Parallel trend and placebo test

5.2.1. Parallel trend test
The baseline regression tested the causal effect of the BRI on the 

green innovation of Chinese manufacturing enterprises, but the 
validity of the difference-in-differences results must be tested by the 
parallel trend, so we tested the common trend of the green invention 
applications of the experimental group and the control group. The 
results are shown in Figure 2. Before the BRI, the green invention 
applications of the experimental group and the control group 
maintained a common growth trend, and after the initiative was 
proposed, the green invention applications of the experimental group 
were significantly higher than those of the control group, and the 
parallel trend test was passed.

TABLE 1 Descriptive statistical analysis of the main variables.

Variables Meaning Mean SD Min Max

LnGreInvia Logarithm of the number of green invention 

applications

0.502 0.908 0 6.810

LnGreInvig Logarithm of the amount of green inventions 

obtained

0.242 0.591 0 5.670

LnGreInviaig Logarithm of the sum of the number of green 

invention applications and acquisitions

0.597 0.985 0 7.087

Dcity Core city dummy variables 0.429 0.495 0 1

post Treatment effect period dummy variables 0.685 0.464 0 1

RDpr Percentage of R&D staff 8.659103 12.91791 0 94.49

lnRDexp Logarithm of R&D expenditures 17.50 1.655 6.908 24.62

govgrants Government grants 3.909e+07 1.363e+08 −4.796e+06 3.985e+09

ROAA Net profit margin on total assets 0.0395 0.0828 −3.994 0.482

OPR Operating margin 0.0640 0.452 −25.94 19.16

TagrA Total assets growth rate 0.234 0.751 −0.928 45.46

OrgrA Operating income growth rate 0.968 41.66 −5.408 4,500

Cashr Cash ratio 1.079 3.076 −4.359 167.5

Alr Gearing ratio 0.391 0.204 0.00708 1.758

lnTassets Logarithm of total assets 21.87 1.178 17.64 27.39

lnToincomes Logarithm of total operating income 21.26 1.369 15.51 27.53

Dchangj Yangtze river economic belt cities dummy variable 0.0853 0.279 0 1

Dprocap Dummy variables for provincial capital cities or 

municipalities directly under the central government

0.368 0.482 0 1
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5.2.2. Placebo test
As the results of the baseline regression may also be affected by 

aspects such as omitted variables and random factors, we refer to the 
methods of existing studies (La Ferrara et al., 2012; Li et al., 2016) 
by randomly generating the reform time and randomly screening the 
Belt and Road along the core cities and constructing a randomized 
experiment at both reform time-city levels to conduct a placebo test. 
Specifically, randomized experiments were conducted according to 
the fourth column in Table 2, that is, after controlling for individual 
fixed effects, time-fixed effects, and firm-level and city-level control 
variables, to examine the effect of randomly generated reform time-
city on firms’ green invention filings and to judge the reliability of 
the findings based on the probabilities of the estimated coefficients 
of the benchmark regressions obtained from the spurious 
experiments. We repeat the above placebo test 500 times to enhance 
the validity of the placebo test and finally plot the distribution of the 
estimated coefficients of the impact of the BRI on the green 
innovation of manufacturing enterprises to test whether the level of 
green innovation of Chinese manufacturing enterprises is also 
affected by factors other than the BRI. If the estimated coefficients 
of the impact of the BRI on green innovation are distributed at 
approximately 0 in the randomized experiment, it indicates that the 
model setting of Equation 1 does not omit sufficiently important 
factors, and the estimated results in the baseline regression are 
indeed due to the BRI. The results of the placebo test are shown in 
Figure  3, where most of the spurious estimated coefficients are 
distributed at approximately 0, indicating that the randomly 
generated combination of reform time and city did not have a 
significant impact on green innovation, there is no serious problem 
of omitted variables in the benchmark model setting, and the core 
findings remain robust.

5.3. Robustness tests

5.3.1. Propensity score matching 
difference-in-differences model analysis

In the baseline regression analysis, we  grouped the firms by 
whether their cities are core cities along the Belt and Road, which may 
have advantages in terms of transportation conditions or development 
strength, making them more likely to enter the experimental group 
(Lu et al., 2021). Baseline regression may have the problem of sample 
selection bias. To better select the control group, this paper further 
employs propensity score matching analysis to test the causal 
relationship between the BRI and corporate green innovation, all 
other things being equal.

To match the propensity score, a logit model of whether a city is a 
core city along the “Belt and Road” is established. The model controls 
for whether the city is a core city in the Yangtze River Economic Belt, 
whether it is a provincial capital city or a municipality directly under 
the central government, the city’s GDP, the city’s population, the local 
budget revenue, and the city’s total industrial output above the limit. 
The nearest 1:1 matching is adopted to match the Chinese cities, and 
then the matched samples are used to estimate the 
difference-in-differences.

Before performing PSM-DID estimation, the validity of the 
matching method was examined by plotting kernel density plots of the 
p value scores of the experimental and control groups before and after 
matching. From the kernel density plots, it can be  seen that the 
matched control group can better serve as a counterfactual outcome 
for causal inference for the treatment group. The kernel density plots 
are shown in Figures 4, 5.

Table  3 reports the results of the propensity score matched 
difference-in-differences model analysis, controlling for firm-level 

TABLE 2 Baseline regression results.

Variables (1) (2) (3) (4) (5) (6)

LnGreInvia LnGreInvig LnGreInviaig LnGreInvia LnGreInvig LnGreInviaig

c.Dcity#c.post 0.0451** (0.0207) 0.0269* (0.0152) 0.0512** (0.0210) 0.0478** (0.0208) 0.0255* (0.0153) 0.0533** (0.0210)

ROAA −0.0770 (0.0745) −0.1274** (0.0513) −0.1208 (0.0796) −0.0808 (0.0746) −0.1272** (0.0513) −0.1244 (0.0798)

OPR −0.0051 (0.0201) −0.0061 (0.0118) −0.0120 (0.0232) −0.0055 (0.0201) −0.0060 (0.0118) −0.0123 (0.0232)

TagrA −0.0357*** (0.0090) −0.0180*** (0.0040) −0.0382*** (0.0087) −0.0357*** (0.0090) −0.0180*** (0.0040) −0.0381*** (0.0087)

OrgrA 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003) 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003)

Cashr 0.0045** (0.0020) 0.0036*** (0.0011) 0.0048** (0.0020) 0.0045** (0.0020) 0.0035*** (0.0011) 0.0048** (0.0020)

Alr −0.0474 (0.0576) 0.0162 (0.0383) −0.0406 (0.0582) −0.0484 (0.0576) 0.0166 (0.0383) −0.0415 (0.0583)

lnTassets 0.2854*** (0.0261) 0.1223*** (0.0163) 0.3093*** (0.0265) 0.2841*** (0.0261) 0.1228*** (0.0163) 0.3082*** (0.0265)

lnToincomes 0.0423** (0.0193) −0.0019 (0.0122) 0.0369* (0.0197) 0.0452** (0.0194) −0.0025 (0.0122) 0.0395** (0.0198)

Dchangj 0.6266*** (0.2393) 0.0314 (0.1207) 0.6093** (0.2556)

Dprocap −0.2426** (0.1026) 0.0839 (0.0726) −0.2081* (0.1085)

Constant −6.6247*** (0.4193) −2.3968*** (0.2581) −6.9389*** (0.4166) −6.6222*** (0.4206) −2.4281*** (0.2595) −6.9455*** (0.4183)

Observations 13,424 13,424 13,424 13,424 13,424 13,424

R-squared 0.7446 0.6848 0.7819 0.7447 0.6849 0.7820

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

25

https://doi.org/10.3389/fevo.2023.1176907
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Cao et al. 10.3389/fevo.2023.1176907

Frontiers in Ecology and Evolution 09 frontiersin.org

variables in the first column and further controlling for city-level 
variables in the second column, and the estimation results show that 
the promotion effect of the BRI on corporate green innovation is 
significant. In the model controlling only for firm-level variables, the 

effect of the BRI on green invention applications is significant at the 
0.05 level ( b = <0 0469 0 05. , .p ), the results are still significant at the 
0.05 level after controlling for city-level variables ( b = <0 0497 0 05. , .p ), 
and the estimation results of the baseline model are still robust.

FIGURE 2

Parallel trend test.

FIGURE 3

Placebo test.
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5.3.2. Excluding interference from 
contemporaneous policies

Around the time of the BRI in 2013, there were other policies in 
China that might affect corporate green innovation. For example, the 
establishment of the China (Shanghai) Pilot Free Trade Zone in 
September 2013 and the policy arrangement of expanding the scope 
of the “VAT reform” pilot in August 2012 will have an impact on 
enterprise innovation (Liu and Wang, 2018; Wang and Lu, 2019), 
which may affect the estimation results of the benchmark regression. 
Therefore, this paper will try to reduce the interference of 
contemporaneous policies.

(1) Exclude the interference of Shanghai free trade zone
Table 4 reports the effect of the BRI on corporate green innovation 

after controlling for the Shanghai Free Trade Zone, where Shanghai_
after is a dummy variable for the Shanghai Free Trade Zone, which 
takes the value of 1 for Shanghai after the implementation of the BRI 
and 0 for Shanghai before. This variable is added to the model as a 
control variable, representing the effect of controlling for the Shanghai 
FTA. The first to third columns control for firm-level factors, and the 
fourth to sixth columns further control for city-level factors. As shown 
by the results, the effect of the BRI on corporate green innovation is 
significant after controlling for the effect of the Shanghai Free Trade 
Zone, and the results of the benchmark regression remain robust.

(2) Excluding the interference of the “VAT Reform” policy
Table 5 reports the effect of the BRI on corporate green innovation 

after controlling for vat_after. Among them, vat_after is the dummy 
variable of “VAT reform,” and the pilot cities of “VAT reform” are 
taken as 1 after the BRI and 0 before the initiative. This variable is 
added to the model as a control variable to represent the effect of 
controlling for the impact of the “VAT reform” policy. The first to third 
columns control for firm-level factors, and the fourth to sixth columns 
further control for city-level factors. From the results, we can see that 
after controlling for the effect of “VAT reform,” except for the 
insignificant effect of the fifth column on the amount of green 
inventions, the effect of the BRI on the green innovation of enterprises 
is significant, and the results of the benchmark regression are 
basically robust.

5.3.3. Heterogeneity test
(1) Heterogeneity of advanced manufacturing and 

traditional manufacturing
Although the industries analyzed in this paper include only 

manufacturing industries, 10 major areas are proposed as key 
development directions according to the plan of the action program 
of Made in China 2025 to achieve the goal of manufacturing power. 
Based on Made in China 2025, this paper identifies advanced and 
traditional manufacturing industries in China’s manufacturing sector 
with reference to the existing literature (Hongjian et al., 2021) and 
analyzes their heterogeneous impact on the relationship between the 
BRI and green innovation.

We constructed a heterogeneous DID model for estimation by 
constructing triple interaction terms in three dimensions: city-
industry-year. Table  6 reports the estimation results of the 
heterogeneous DID model, where tttt is the city-industry-years 

FIGURE 4

p-value fractional Kernel density before matching.

FIGURE 5

P-worthy fractional Kernel density after matching.

TABLE 3 PSM-DID estimation results.

Variables (1) (2)

LnGreInvia LnGreInvia

c.Dcity#c.post 0.0469** (0.0222) 0.0497** (0.0222)

ROAA −0.0850 (0.0755) −0.0900 (0.0757)

OPR −0.0047 (0.0201) −0.0052 (0.0201)

TagrA −0.0369*** (0.0092) −0.0368*** (0.0092)

OrgrA 0.0001 (0.0003) 0.0001 (0.0003)

Cashr 0.0042** (0.0020) 0.0042** (0.0020)

Alr −0.0407 (0.0606) −0.0424 (0.0608)

lnTassets 0.2788*** (0.0271) 0.2776*** (0.0271)

lnToincomes 0.0405** (0.0201) 0.0441** (0.0202)

Dchangj 0.7886*** (0.2702)

Dprocap −0.2440** (0.1039)

Constant −6.4464*** (0.4396) −6.4815*** (0.4430)

Observations 12,411 12,411

R-squared 0.7495 0.7497

Firm FE Yes Yes

Year FE Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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triple interaction term. The coefficients of the triple interaction 
term are all significant, indicating that the BRI has a more 
significant effect in promoting green innovation in advanced 

manufacturing industries than in traditional manufacturing 
industries. The coefficient of the triple interaction term is 
significant, which indicates that the BRI promotes green innovation 

TABLE 4 Excluding the impact of the shanghai free trade zone.

Variables (1) (2) (3) (4) (5) (6)

LnGreInvia LnGreInvig LnGreInviaig LnGreInvia LnGreInvig LnGreInviaig

c.Dcity#c.post 0.0443** (0.0218) 0.0388** (0.0161) 0.0579*** (0.0221) 0.0475** (0.0218) 0.0373** (0.0162) 0.0606*** (0.0221)

shanghai_after 0.0058 (0.0444) −0.0859*** (0.0318) −0.0491 (0.0453) 0.0022 (0.0445) −0.0859*** (0.0319) −0.0527 (0.0454)

ROAA −0.0769 (0.0745) −0.1280** (0.0515) −0.1212 (0.0796) −0.0808 (0.0746) −0.1279** (0.0515) −0.1249 (0.0798)

OPR −0.0051 (0.0201) −0.0059 (0.0118) −0.0119 (0.0232) −0.0055 (0.0201) −0.0059 (0.0118) −0.0122 (0.0232)

TagrA −0.0358*** (0.0090) −0.0176*** (0.0041) −0.0379*** (0.0088) −0.0357*** (0.0090) −0.0175*** (0.0041) −0.0379*** (0.0088)

OrgrA 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003) 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003)

Cashr 0.0045** (0.0020) 0.0035*** (0.0010) 0.0047** (0.0020) 0.0045** (0.0020) 0.0035*** (0.0010) 0.0048** (0.0020)

Alr −0.0474 (0.0576) 0.0157 (0.0383) −0.0410 (0.0582) −0.0484 (0.0576) 0.0160 (0.0383) −0.0419 (0.0582)

lnTassets 0.2854*** (0.0261) 0.1218*** (0.0163) 0.3090*** (0.0265) 0.2841*** (0.0261) 0.1222*** (0.0163) 0.3079*** (0.0265)

lnToincomes 0.0423** (0.0193) −0.0016 (0.0122) 0.0371* (0.0197) 0.0452** (0.0194) −0.0021 (0.0122) 0.0397** (0.0198)

Dchangj 0.6260*** (0.2398) 0.0566 (0.1127) 0.6247** (0.2505)

Dprocap −0.2425** (0.1026) 0.0802 (0.0729) −0.2104* (0.1087)

Constant −6.6250*** (0.4192) −2.3923*** (0.2579) −6.9363*** (0.4163) −6.6223*** (0.4206) −2.4254*** (0.2593) −6.9439*** (0.4181)

Observations 13,424 13,424 13,424 13,424 13,424 13,424

R-squared 0.7446 0.6850 0.7819 0.7447 0.6851 0.7820

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 5 Excluding the impact of “VAT reform “.

Variables (1) (2) (3) (4) (5) (6)

LnGreInvia LnGreInvig LnGreInviaig LnGreInvia LnGreUmig LnGreInviaig

c.Dcity#c.post 0.0428** (0.0208) 0.0261* (0.0153) 0.0490** (0.0211) 0.0456** (0.0209) 0.0235 (0.0209) 0.0512** (0.0212)

vat_after 0.0395* (0.0209) 0.0137 (0.0152) 0.0379* (0.0212) 0.0366* (0.0210) 0.0148 (0.0208) 0.0352* (0.0213)

ROAA −0.0740 (0.0744) −0.1264** (0.0513) −0.1180 (0.0794) −0.0779 (0.0745) 0.0394 (0.0692) −0.1217 (0.0797)

OPR −0.0048 (0.0201) −0.0059 (0.0118) −0.0117 (0.0232) −0.0052 (0.0201) −0.0212* (0.0127) −0.0120 (0.0232)

TagrA −0.0358*** (0.0090) −0.0180*** (0.0040) −0.0382*** (0.0087) −0.0358*** (0.0090) −0.0280*** (0.0082) −0.0382*** (0.0087)

OrgrA 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003) 0.0001 (0.0003) 0.0003 (0.0003) 0.0001 (0.0003)

Cashr 0.0046** (0.0020) 0.0036*** (0.0011) 0.0049** (0.0020) 0.0047** (0.0020) 0.0051*** (0.0016) 0.0050** (0.0020)

Alr −0.0487 (0.0575) 0.0158 (0.0383) −0.0419 (0.0581) −0.0496 (0.0576) 0.1001* (0.0563) −0.0427 (0.0582)

lnTassets 0.2852*** (0.0261) 0.1222*** (0.0163) 0.3092*** (0.0265) 0.2840*** (0.0261) 0.2367*** (0.0244) 0.3082*** (0.0265)

lnToincomes 0.0407** (0.0193) −0.0025 (0.0122) 0.0354* (0.0197) 0.0436** (0.0194) 0.0145 (0.0188) 0.0379* (0.0198)

Dchangj 0.5967** (0.2386) 0.2242 (0.1968) 0.5804** (0.2547)

Dprocap −0.2339** (0.1021) 0.0936 (0.1076) −0.1997* (0.1078)

Constant −6.6042*** (0.4195) −2.3897*** (0.2581) −6.9192*** (0.4167) −6.6024*** (0.4209) −5.1004*** (0.3985) −6.9265*** (0.4185)

Observations 13,424 13,424 13,424 13,424 13,424 13,424

R-squared 0.7447 0.6849 0.7820 0.7448 0.7094 0.7821

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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in the advanced manufacturing industry compared with the 
traditional manufacturing industry.

(2) Heterogeneity of enterprise ownership
In recent years, due to the increasing reform of state-owned 

enterprises (SOEs), further analysis is needed to determine whether 
the impact of the BRI on corporate green innovation differs between 
SOEs and non-SOEs. To this end, we constructed a triple interaction 
term based on three dimensions, city-ownership-years, and 
conducted a heterogeneous DID model analysis. Among the three 
dimensions, enterprise ownership is a dummy variable that takes 
the value of 1 when it is a state-owned enterprise and 0 otherwise. 
The estimation results of the heterogeneous DID model are shown 
in Table  7. Ottt is the city-enterprise ownership-year triple 
interaction term, and it can be seen from the results that all three 
interaction terms are significant, indicating that relative to 
non-SOEs, the BRI has a more significant promotion effect on the 
green innovation of SOEs.

6. Mechanism analysis

Based on the DID model, we found that the BRI has a significant 
promotion effect on enterprise green innovation. How does the BRI 
influence corporate green innovation, and what are the mechanisms 
of influence? Based on the TOE framework, this section discusses the 
role of technology, organization and environment at the internal and 
external levels and analyzes the impact mechanism of the BRI on 
green innovation in enterprises.

6.1. The role of technical factors

To examine the role of technology factors in the relationship 
between the BRI and corporate green innovation, we  analyze the 
technology factors of enterprises from the perspective of skilled 
employees and use the percentage of R&D employees as an indicator 
of technology factors. We construct a heterogeneous DID model by 
constructing a triple interaction term with three dimensions: city-
skilled employee ratio-years. The estimation results are reported in 
Table  8, where RNDpr_ttt is the triple interaction term with a 
significantly positive coefficient. The results show that the promotion 
effect of the BRI on green innovation is more significant for firms with 
a higher percentage of R&D employees than for those with a lower 
percentage of R&D employees, and the results test the role of the 
technology factor, which is supported by H2.

To further analyze the role of technology factors in the BRI, 
we conducted a difference-in-differences analysis with the percentage 
of R&D personnel as the dependent variable, and the results are 
shown in Table 9 ( b = <1 0431 0 01. , .p ), indicating that the BRI has 
strengthened the investment in R&D personnel in core cities, which 
in turn has enhanced the promotion effect of the initiative on green 
innovation in manufacturing enterprises.

6.2. The role of R&D expenditures

According to the TOE framework, corporate R&D expenditures 
will also have an impact on corporate green innovation, so we examine 

TABLE 6 Industry heterogeneity.

Variables (1) (2) (3) (4) (5) (6)

LnGreInvia LnGreInvig LnGreInviaig LnGreInvia LnGreInvig LnGreInviaig

ttt 0.1094*** (0.0316) 0.0986*** (0.0232) 0.1301*** (0.0323) 0.1094*** (0.0315) 0.0987*** (0.0232) 0.1302*** (0.0322)

tt −0.0190 (0.0249) −0.0310 (0.0190) −0.0251 (0.0259) −0.0164 (0.0249) −0.0327* (0.0190) −0.0231 (0.0259)

ROAA −0.0620 (0.0729) −0.1205** (0.0497) −0.1055 (0.0768) −0.0667 (0.0730) −0.1207** (0.0497) −0.1101 (0.0770)

OPR −0.0048 (0.0197) −0.0057 (0.0116) −0.0114 (0.0226) −0.0052 (0.0196) −0.0056 (0.0115) −0.0118 (0.0227)

TagrA −0.0365*** (0.0083) −0.0181*** (0.0042) −0.0390*** (0.0080) −0.0364*** (0.0083) −0.0180*** (0.0042) −0.0389*** (0.0080)

OrgrA −0.0000 (0.0003) −0.0001 (0.0001) −0.0000 (0.0003) −0.0000 (0.0003) −0.0001 (0.0001) −0.0000 (0.0003)

Cashr 0.0043** (0.0019) 0.0034*** (0.0010) 0.0046** (0.0020) 0.0043** (0.0020) 0.0033*** (0.0010) 0.0046** (0.0020)

Alr −0.0635 (0.0580) 0.0069 (0.0385) −0.0575 (0.0585) −0.0652 (0.0580) 0.0066 (0.0385) −0.0591 (0.0585)

lnTassets 0.2797*** (0.0255) 0.1200*** (0.0159) 0.3028*** (0.0259) 0.2784*** (0.0254) 0.1206*** (0.0159) 0.3017*** (0.0258)

lnToincomes 0.0474** (0.0193) −0.0003 (0.0121) 0.0423** (0.0196) 0.0505*** (0.0193) −0.0006 (0.0121) 0.0452** (0.0196)

Dchangj 0.7397*** (0.2123) 0.1625 (0.1015) 0.7612*** (0.2162)

Dprocap −0.2397** (0.1032) 0.0884 (0.0739) −0.2058* (0.1101)

Constant −6.6050*** (0.4113) −2.3783*** (0.2576) −6.9067*** (0.4083) −6.6155*** (0.4134) −2.4299*** (0.2596) −6.9319*** (0.4108)

Observations 13,423 13,423 13,423 13,423 13,423 13,423

R-squared 0.7465 0.6870 0.7839 0.7467 0.6871 0.7841

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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the role of corporate R&D expenditures in the relationship between 
the BRI and corporate green innovation. We  constructed a 
heterogeneous DID model by constructing a triple interaction term 
with three dimensions: city-R&D expenditure-years. Table 10 reports 

the estimation results, where RND_ttt is the triple interaction term 
and its coefficient is significantly positive. The results show that the 
promotion effect of the BRI on green innovation is more significant 
for firms with higher R&D expenditures than for those with lower 
R&D expenditures, and H3 is supported.

To further analyze the role of organizational factors in the BRI, 
we  conducted a difference-in-differences analysis using R&D 
expenditure (logarithm) as the dependent variable, and the results are 
shown in Table  11. The BRI significantly boosted the R&D 
expenditures of manufacturing enterprises (β = 0.0631, p < 0.05), 
suggesting that the BRI has strengthened the R&D expenditures of 
enterprises in core cities, which in turn has enhanced its impact on the 
promotion effect of the initiative on green innovation in 
manufacturing enterprises.

6.3. The role of government support and 
subsidies

(1) The role of policy support
According to the TOE framework, government support, as an 

external factor, affects firm innovation. In this paper, we analyze the 
role of government support in terms of policy support from local 
governments and government subsidies. In the difference-in-
differences model constructed in this paper, whether enterprises 
participate in Belt and Road construction is grouped by whether 
their locations are core cities along the Belt and Road route. This 
grouping plan actually highlights the principle that China will give 
full play to the comparative advantages of each domestic region to 
promote the construction of the Belt and Road, as mentioned in the 
Vision. When considering local advantages, the policy support of 
local governments for Belt and Road construction will have an 

TABLE 7 Business ownership heterogeneity.

Variables (1) (2) (3) (4) (5) (6)

LnGreInvia LnGreInvig LnGreInviaig LnGreInvia LnGreInvig LnGreInviaig

Ottt 0.0764** (0.0354) 0.0922*** (0.0277) 0.0831** (0.0361) 0.0791** (0.0353) 0.0917*** (0.0278) 0.0856** (0.0360)

Ott 0.0226 (0.0230) −0.0002 (0.0165) 0.0269 (0.0234) 0.0246 (0.0231) −0.0014 (0.0165) 0.0284 (0.0234)

ROAA −0.0788 (0.0748) −0.1301** (0.0517) −0.1231 (0.0799) −0.0828 (0.0750) −0.1300** (0.0517) −0.1268 (0.0801)

OPR −0.0051 (0.0201) −0.0061 (0.0119) −0.0120 (0.0233) −0.0055 (0.0201) −0.0061 (0.0118) −0.0123 (0.0233)

TagrA −0.0356*** (0.0090) −0.0183*** (0.0039) −0.0380*** (0.0087) −0.0356*** (0.0090) −0.0182*** (0.0039) −0.0380*** (0.0087)

OrgrA 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003) 0.0001 (0.0003) −0.0001 (0.0001) 0.0001 (0.0003)

Cashr 0.0042** (0.0019) 0.0032*** (0.0010) 0.0045** (0.0020) 0.0043** (0.0019) 0.0032*** (0.0010) 0.0045** (0.0020)

Alr −0.0430 (0.0576) 0.0216 (0.0382) −0.0360 (0.0581) −0.0439 (0.0576) 0.0218 (0.0382) −0.0367 (0.0582)

lnTassets 0.2855*** (0.0262) 0.1226*** (0.0163) 0.3093*** (0.0266) 0.2842*** (0.0262) 0.1231*** (0.0163) 0.3082*** (0.0266)

lnToincomes 0.0431** (0.0194) −0.0008 (0.0122) 0.0378* (0.0198) 0.0461** (0.0194) −0.0013 (0.0122) 0.0405** (0.0198)

Dchangj 0.6423*** (0.2371) 0.0495 (0.1175) 0.6260** (0.2530)

Dprocap −0.2496** (0.1034) 0.0755 (0.0730) −0.2157** (0.1093)

Constant −6.6440*** (0.4224) −2.4282*** (0.2601) −6.9561*** (0.4194) −6.6425*** (0.4237) −2.4586*** (0.2615) −6.9635*** (0.4211)

Observations 13,349 13,349 13,349 13,349 13,349 13,349

R-squared 0.7440 0.6846 0.7814 0.7442 0.6846 0.7815

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 8 The role of R&D staff share.

Variables (1) (2)

LnGreInvia LnGreInviaig

RNDpr_ttt 0.0925*** (0.0247) 0.1096*** (0.0245)

RNDpr_tt 0.0002 (0.0231) −0.0031 (0.0232)

ROAA −0.0771 (0.0744) −0.1206 (0.0794)

OPR −0.0055 (0.0199) −0.0124 (0.0230)

TagrA −0.0349*** (0.0090) −0.0372*** (0.0088)

OrgrA 0.0001 (0.0003) 0.0001 (0.0003)

Cashr 0.0047** (0.0020) 0.0050** (0.0021)

Alr −0.0566 (0.0577) −0.0514 (0.0582)

lnTassets 0.2823*** (0.0261) 0.3061*** (0.0265)

lnToincomes 0.0448** (0.0193) 0.0391** (0.0197)

Dchangj 0.6359*** (0.2320) 0.6203** (0.2467)

Dprocap −0.2391** (0.1028) −0.2040* (0.1087)

Constant −6.5761*** (0.4208) −6.8917*** (0.4184)

Observations 13,423 13,423

R-squared 0.7451 0.7824

Firm FE Yes Yes

Year FE Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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important impact on the effect of the BRI. We refer to the study of 
Lu et al. (2021) and use the research report of the Belt and Road 
Data Center of China National Information Center (2016) to group 

the top 10 provinces in terms of policy support as high. The top 10 
provinces in the report are considered to be high policy support 
provinces while the other provinces are considered to be low policy 
support provinces, and the triple interaction term of city-policy 
support-years is constructed to analyze the heterogeneity DID 
model. The estimated results are shown in Table 12, where pro_ttt 
is the city-policy support-years triple interaction term with a 
significantly positive estimated coefficient. The heterogeneous DID 
model examines the role of policy support at the provincial level 
and shows that the promotion effect of the BRI on corporate green 
innovation is marginally significant at the level of 0.1 in provinces 
with higher policy support compared to provinces with lower 
policy support.

(2) The role of government subsidies
In addition, we examine the role of government subsidies in the 

relationship between the BRI and corporate green innovation. 
We construct a heterogeneous DID model by constructing a triple 
interaction term with three dimensions: city-government subsidy-
years. Table 13 reports the estimation results, where gra_ttt is the 
triple interaction term with a significant positive coefficient. The 
results indicate that the promotion effect of the BRI on green 
innovation is more significant for firms with higher government 
subsidies than for those with lower government subsidies, and H4 
is supported.

To further analyze the role of environmental factors in the BRI, 
we conducted a difference-in-differences analysis with government 
subsidies as the dependent variable, and the results are shown in 
Table  14 ( b = + <1 1247 07 0 01. , .e p ), indicating that the BRI 
strengthens the government subsidies of enterprises in core cities, 
which in turn enhances the promotion effect of the initiative on the 
green innovation of manufacturing enterprises.

TABLE 9 Impact of the BRI on the share of R&D employees in enterprises.

Variables RDpr

c.Dcity#c.post 1.0431*** (0.2297)

ROAA −2.6528*** (0.8574)

OPR −0.4049** (0.1748)

TagrA −0.2011** (0.0993)

OrgrA −0.0087** (0.0039)

Cashr −0.2730*** (0.0950)

Alr 0.1842 (0.7639)

lnTassets 1.4301*** (0.3060)

lnToincomes 0.6569** (0.2626)

Dchangj 1.8735 (3.3717)

Dprocap −1.5826 (1.7194)

Constant −37.1575*** (4.5837)

Observations 13,423

R-squared 0.7627

Firm FE Yes

Year FE Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 10 The role of R&D expenditures.

Variables (1) (2)

LnGreInvia LnGreInviaig

RND_ttt 0.2811*** (0.0351) 0.2797*** (0.0350)

RND_tt −0.0288 (0.0212) −0.0229 (0.0216)

ROAA −0.0821 (0.0744) −0.1258 (0.0787)

OPR −0.0044 (0.0198) −0.0112 (0.0230)

TagrA −0.0335*** (0.0090) −0.0359*** (0.0088)

OrgrA 0.0001 (0.0003) 0.0001 (0.0003)

Cashr 0.0036** (0.0018) 0.0039** (0.0019)

Alr −0.0349 (0.0572) −0.0280 (0.0578)

lnTassets 0.2770*** (0.0257) 0.3012*** (0.0261)

lnToincomes 0.0405** (0.0192) 0.0349* (0.0196)

Dchangj 0.6600*** (0.2253) 0.6424*** (0.2412)

Dprocap −0.2603** (0.1058) −0.2257** (0.1115)

Constant −6.3660*** (0.4110) −6.6905*** (0.4091)

Observations 13,424 13,424

R-squared 0.7469 0.7839

Firm FE Yes Yes

Year FE Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 11 Impact of BRI on enterprise R&D expenditure.

Variables lnRDexp

c.Dcity#c.post 0.0631** (0.0247)

ROAA −0.0050 (0.1360)

OPR −0.0633** (0.0258)

TagrA −0.0544*** (0.0086)

OrgrA −0.0001 (0.0003)

Cashr 0.0019 (0.0020)

Alr −0.3926*** (0.0846)

lnTassets 0.4220*** (0.0354)

lnToincomes 0.4785*** (0.0320)

Dchangj 0.8465** (0.4006)

Dprocap −0.1953 (0.2982)

Constant −1.5947*** (0.5137)

Observations 12,699

R-squared 0.8918

Firm FE Yes

Year FE Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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7. Conclusion and implications

7.1. Discussion

Through the analysis of DID, this paper finds that the BRI has 
promoted the green innovation of Chinese manufacturing 
enterprises, and this result is still robust after the placebo test and 
robustness test. This result is a strong response to the discussion on 
the relationship between the BRI and sustainable development in the 
existing literature (Hu et al., 2023; Zhang et al., 2023). Based on the 

existing literature on the BRI and renewable energy consumption 
(Fang et  al., 2022), ecological environment (Zhang et  al., 2021), 
sustainable development goals (Senadjki et al., 2022), this paper adds 
evidence that the BRI promotes green innovation in manufacturing 
enterprises. The results of heterogeneity analysis show that the BRI 
plays a stronger role in promoting green innovation in advanced 
manufacturing industries and state-owned enterprises, and this 
result can provide a basis for government decision-making. 
Mechanism analysis is based on the TOE framework, discovering 
the roles of technology, research and development, and government 
support. The research results add insightful explanations to existing 
research on the impact mechanism of green innovation in enterprises 
(Yin et al., 2022). In addition, the research results of this paper can 
also provide reference for the development of green innovation in 
other regions, such as the Pacific Rim region (West and Von Geusau, 
2019). In fact, smart specialization in Europe also places great 
emphasis on the role of policy support in innovation (Balland et al., 
2019; Pintar and Scherngell, 2022).

7.2. Conclusion

This paper joins the discussion on the relationship between the 
BRI and sustainable development by studying the impact of the 
Initiative on green innovation in Chinese manufacturing enterprises. 
Based on the core cities along the Belt and Road, we  use the 
difference-in-differences method to identify the causal relationship 
between the BRI and the green innovation of Chinese manufacturing 
enterprises and analyze the impact mechanism. Through empirical 
analysis, we found that (1) the BRI has a significant promotion effect 
on the green innovation of Chinese manufacturing enterprises. The 
BRI has significantly increased the number of green invention 
applications by manufacturing enterprises in core cities along the 
route, and there is also a significant promotion effect in the total 
number of green patents (the sum of green invention applications 
and green inventions obtained), which remains robust after the 
propensity score matching difference-in-differences analysis, 
excluding contemporaneous policy interference and heterogeneity 
analysis. (2) In the benchmark regression, the BRI has a marginally 
significant impact on the amount of green inventions obtained by 
enterprises after controlling for the effect of the Shanghai Free Trade 
Zone in the same period. (3) The results of the heterogeneity test 
reveal that the BRI has a more significant effect on promoting green 
innovation in advanced manufacturing enterprises than in 
traditional manufacturing industries. Compared with nonstate-
owned enterprises, the promotion effect of the BRI on the green 
innovation of state-owned enterprises is more significant. (4) The 
mechanism analysis shows that the TOE framework explains the 
impact mechanism of the BRI on green innovation in Chinese 
manufacturing firms. The BRI has led companies in the core cities 
to increase their focus on skilled employees, and through the 
knowledge they bring to the table, the BRI has had an enhanced 
effect on green innovation in Chinese manufacturing companies. 
The BRI has prompted enterprises in the core cities to increase their 
R&D expenditures and enhance their innovation capabilities by 
strengthening R&D, which has enhanced the green innovation effect 
of the BRI on Chinese manufacturing enterprises. The BRI has 
strengthened government support for enterprises by increasing 

TABLE 12 The role of policy support efforts.

Variables (1) (2)

LnGreInvia LnGreInviaig

pro_ttt 0.0608* (0.0345) 0.0577 (0.0355)

pro_tt 0.0096 (0.0307) 0.0181 (0.0316)

ROAA 0.0592 (0.0657) −0.0023 (0.0645)

TagrA 0.0072 (0.0084) 0.0079 (0.0084)

OrgrA 0.0004 (0.0004) 0.0005 (0.0004)

Cashr 0.0025* (0.0015) 0.0026* (0.0015)

Constant 0.4982*** (0.0083) 0.5963*** (0.0084)

Observations 13,424 13,424

R-squared 0.7337 0.7715

Firm FE Yes Yes

Year FE Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 13 The role of government grants.

Variables (1) (2)

LnGreInvia LnGreInviaig

gra_ttt 0.1225*** (0.0277) 0.1322*** (0.0277)

gra_tt 0.0139 (0.0212) 0.0174 (0.0216)

ROAA −0.0825 (0.0751) −0.1278 (0.0799)

OPR −0.0058 (0.0200) −0.0125 (0.0232)

TagrA −0.0346*** (0.0090) −0.0367*** (0.0088)

OrgrA 0.0001 (0.0003) 0.0001 (0.0003)

Cashr 0.0044** (0.0020) 0.0047** (0.0020)

Alr −0.0583 (0.0581) −0.0481 (0.0586)

lnTassets 0.2815*** (0.0260) 0.3041*** (0.0265)

lnToincomes 0.0474** (0.0194) 0.0416** (0.0198)

Dprocap −0.2890** (0.1266) −0.2613** (0.1267)

Constant −6.5386*** (0.4179) −6.8257*** (0.4161)

Observations 13,424 13,424

R-squared 0.7462 0.7832

Firm FE Yes Yes

Year FE Yes Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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subsidies for enterprises, which has enhanced the effect of the BRI 
in promoting green innovation in Chinese manufacturing enterprises.

7.3. Theoretical contributions

This paper uses a difference-in-differences approach to assess the 
impact of the BRI on green innovation in Chinese manufacturing 
enterprises, enriching the study of the relationship between the BRI 
and sustainable development, with the following major marginal 
contributions: (1) This paper analyzes the impact of the BRI on the 
green innovation of Chinese manufacturing enterprises at the level of 
manufacturing enterprises, providing a new micro perspective on the 
relationship between the BRI and sustainable development on the 
basis of the existing macrolevel research. (2) This paper uses the 
difference-in-differences method to assess the impact of the BRI on 
the green innovation of Chinese manufacturing enterprises and 
identifies the causal relationship between the BRI and green 
innovation by using the core cities of the Belt and Road in China as 
the recipients of exogenous shocks. (3) Based on the TOE framework, 
this paper analyzes the impact mechanism of the BRI on the green 
innovation of Chinese manufacturing enterprises and examines the 
TOE mechanism at both the internal and external levels, revealing a 
new micro mechanism for the study of the relationship between the 
BRI and sustainable development.

7.4. Policy implications

(1) Actively promoting the participation of enterprises and 
striving to promote green transformation. Manufacturing enterprises 
can enhance their green innovation level by actively participating in 
the construction of the Belt and Road. This paper finds that the BRI 
can significantly improve the green innovation level of 

manufacturing enterprises in core cities along the route, indicating 
that participation in Belt and Road construction is an important way 
to improve the green innovation level of manufacturing enterprises. 
As important implementers of Belt and Road construction, 
enterprises should further increase their participation, expand 
overseas markets, enhance international management capabilities, 
achieve economies of scale and improve technical efficiency. 
Manufacturing enterprises in core cities can strengthen green 
technology exchange and sustainable development cooperation with 
developed countries along the Belt and Road, absorb advanced 
production concepts and technologies, and improve green 
innovation capabilities.

(2) Focusing on the development of advanced manufacturing 
vigorously promotes the upgrading of state-owned enterprises. 
Advanced manufacturing enterprises and state-owned enterprises 
should become an important force in the construction of the Green 
Silk Road. This paper finds that the BRI can enhance the green 
innovation level of advanced manufacturing enterprises and state-
owned enterprises; therefore, the policy should encourage and support 
advanced manufacturing enterprises and state-owned enterprises to 
participate in Belt and Road construction. The current global science 
and technology innovation has entered a period of unprecedented 
intensity and activity, and a new phase of scientific and technological 
revolution and industrial change is reshaping the global innovation 
map and the global economic structure. By participating in Belt and 
Road construction, Chinese advanced manufacturing enterprises and 
state-owned enterprises can more rationally integrate into global 
industrial and value chains, upgrade their manufacturing processes, 
optimize their production processes, produce more energy-efficient 
and high-end products, continuously promote the level of green 
innovation in their enterprises, and promote the sustainable 
development process along the Belt and Road.

(3) Continuously improve the innovation mechanism and 
provide solid talent guarantees. Provide talent guarantees for 
enterprises’ green innovation by improving the innovation 
mechanism. This paper finds that enterprises with a high proportion 
of R&D staff have a stronger promotion effect of the BRI on green 
innovation, so building a high-level R&D workforce is crucial to 
improve the green innovation capacity of enterprises. First, from 
the perspective of core cities along the route, the cities should 
strengthen ecological supervision, refine supervision measures, 
improve innovation mechanisms and reduce green innovation 
costs; these cities should recruit high-level talent from overseas and 
establish an effective talent recruitment mechanism. Second, at the 
enterprise level, enterprises can start with recruitment, training, 
incentive and international exchange to vigorously attract 
innovative talent and improve knowledge reserves to provide 
human resource guarantees for green innovation and 
sustainable development.

(4) Improving and optimizing R&D structure and effectively 
guaranteeing financial support. R&D structure and R&D capital 
expenditure are the key elements of green innovation. This paper 
finds that for manufacturing enterprises with strong R&D 
expenditures, the BRI has a stronger effect on green innovation, so 
the expenditures of R&D manufacturing enterprises should 
be enhanced. In terms of the composition of R&D structure, local 
governments should invest more in R&D and encourage enterprises, 
universities and other R&D institutions to increase their R&D 

TABLE 14 Impact of the BRI on government subsidies for enterprises.

Variables govgrants

c.Dcity#c.post 1.1247e+07*** (3746333.6866)

ROAA 1.3460e+07 (1.2935e+07)

OPR −2.7104e+06 (1,747,288.3118)

TagrA −6.2097e+06*** (1,241,305.2326)

OrgrA 19,306.6042 (22,988.1522)

Cashr 155,844.7250 (126,575.5345)

Alr −2.0970e+07* (1.0760e+07)

lnTassets 4.4382e+07*** (6,522,303.1575)

lnToincomes −5.4659e+06 (3,887,224.5251)

Dprocap −3.3426e+06 (3.5821e+07)

Constant −8.0907e+08*** (9.2210e+07)

Observations 12,802

R-squared 0.6753

Firm FE Yes

Year FE Yes

Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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expenditures. In addition, R&D distribution structures should 
be kept rational to avoid resource redundancy and overlap to reduce 
waste, improve factor utilization, and provide financial security for 
sustainable development.

(5) Implementing the green concept and strengthening and 
consolidating policy foundation. The policy support of local 
governments should be  enhanced to provide policy support and 
economic subsidies for achieving SDGs. This paper finds that 
provinces with strong local government support have a stronger effect 
of the BRI in promoting green innovation in manufacturing 
enterprises; the higher the government subsidies, the stronger the 
effect of the BRI in promoting green innovation in enterprises. 
Therefore, the support of local governments should be enhanced. In 
terms of the development concept, local governments need to adhere 
to the concept of sustainable development and strive to fully integrate 
the concept of ecological civilization and green development into 
economic and trade cooperation. In terms of development and 
construction, they can support the construction of a number of green 
industry cooperation demonstration bases, green technology 
exchange and transfer bases, technology demonstration and 
promotion bases, science and technology parks and other international 
green industry cooperation platforms to create a Belt and Road Green 
supply chain platform. In terms of financial support, they can actively 
participate in subsidizing manufacturing enterprises’ Belt and Road 
construction. On the one hand, this can provide support to 
manufacturing enterprises to reduce their negative impact on the 
environment, and on the other hand, it can also establish an effective 
green development pattern in Belt and Road construction where 
ecological and environmental protection and economic and trade 
cooperation complement each other.

7.5. Limitations and future research 
directions

This paper also has the following limitations. First, this paper 
assesses the impact of the BRI on green innovation in Chinese 
manufacturing enterprises from the perspective of production 
processes, but the literature also points out that green innovation 
includes not only innovation in production processes but also in 
management methods (Horbach et  al., 2013), and digital green 
innovation (Yin and Yu, 2022). Therefore, in the future, the scope 
of the study can be expanded to include management innovation 
and digital green innovation to analyze the impact of the BRI on 
corporate green innovation. Second, this paper focuses on the 
impact of the BRI on green innovation in Chinese manufacturing 
enterprises but does not discuss the impact of the BRI on green 
innovation in the countries along the route, although the impact of 
the BRI on green innovation in the countries along the route has 
already been discussed in the literature. Although the impact of the 
BRI on environmental issues such as carbon emissions has been 
discussed from the perspective of the countries along the route 
(Chen et al., 2021a), few studies have focused on green innovation. 
Future studies can assess the impact of the BRI on green innovation 
in countries along the route. Third, this paper analyzes the impact 
of the BRI on the green innovation of manufacturing enterprises 
using the core cities along the Belt and Road in China as a grouping 

variable. Although it discusses the heterogeneity of advanced 
manufacturing and enterprise ownership at the enterprise level, it 
does not analyze the spatial and temporal heterogeneity at the 
regional level. Although the heterogeneity between advanced 
manufacturing and firm ownership was discussed by this paper at 
the firm level, spatiotemporal heterogeneity was not analyzed at the 
regional level (Zhou et  al., 2021), and future studies could 
incorporate spatiotemporal heterogeneity into the analysis.
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Practical and theoretical advancements have not caught pace with rising scientific

researches in the rapidly emerging economy undertaking a shift to a more

sustainable and particularly green model. After the UN adopted the 2030 Agenda

for Sustainable Development, there has been a surge in interest in the green

economy among academics around the world, and the literature on the issue

is proliferating. This paper adopts the methodology of bibliometric review and

thematic analysis to summarize the relevant literature from 2016 to 2022 on areas

related to the theme of green economy. The literature was obtained from theWeb

of Science database with a total of 1,022 articles. Furthermore, the literature was

analyzed using VOSviewer as well as the R language to couple the literature by

keywords, country, a�liation, author, and publication. The findings of the current

paper show that the green economy has received more academic attention from

scholars since 2016. Asia and Europe are leaders in green economy studies. In

the context of climate change, future research is anticipated to concentrate on

establishing a green economy for global economic growth. This paper makes a

substantial contribution to future research on the green economy.

KEYWORDS

green economy, systematic review, policy, sustainability, recycling economy, bibliometric

Introduction

The twenty-first century is defined by rising environmental degradation and depletion

of resources, as well as the need to achieve strategic goals for sustainable development, of

which the green economy is a crucial component in advancing global economic growth

(Jin et al., 2022). This is a unique opportunity to reset national and corporate agendas in

the wake of the Environmental, Social, and Governance (ESG) investment boom and the

imperative for economic recovery and sustainable growth (Government of Dubai, 2022).

Many sustainable development indicators, such as health (Seshaiyer and McNeely, 2020),

inequality (Barbier and Burgess, 2020), and education (Anholon et al., 2020), are influenced

by the global COVID-19 pandemic (Naidoo and Fisher, 2020). In recent years, the worldwide

environment becamemore devastating, revealing the volatility of the green economy (Gunay

et al., 2022), which will have a significant influence on the achievement of sustainable

development objectives. In the post-pandemic era, it will be crucial to determine how to

designate appropriate legislation and regulations, modify the government’s transformation

and upgrading, support economic growth, and energetically develop the green economy

in order to accomplish UN sustainable development goals (Campbell, 2017; Kronenberg

and Fuchs, 2021). This must be driven by a synthesis of academic researches, technologies,

and policies (Lee et al., 2022; Metawa et al., 2022). Governments and organizations,
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under the leadership of the United Nations, have taken action

and adopted a variety of policies to achieve the Sustainable

Development Goals (Rosati and Faria, 2019). Previous literature

studies in the topic of economics tended to summarize and discuss

particular green economy concerns (Ferguson, 2015). In numerous

past research works, it is argued that the current weak articulation

of the green economy agenda does not necessarily imply a future

transition to a post-growth society, but Ferguson summarizes and

proposes a strategy for reformulating the green economy agenda

in a post-growth direction (Bina and La Camera, 2011). The green

economy has the potential to achieve what sustainable development

cannot and can in some way address the limits of traditional

economic growth. Although green economy development is now

to some extent similar to the past, it has the potential to m move

toward a post-growth society. In the face of global climate change

challenges now, where economic development is influenced by

environmental factors, only the emergence of a green economy

community of practice can truly develop the development potential

of a green economy. New technologies such as artificial intelligence,

big data, the Internet of Things, and blockchain radically alter how

industrial companies capture, generate, and distribute corporate

value (Hristov Kalin, 2017; Arenal et al., 2020). Currently, nations

throughout the globe may energetically advance the application of

the fourth industrial revolution’s technology group in the sphere

of business innovation and green economy (Wang et al., 2022).

In reality, many businesses struggle to properly incorporate the

green economy into their operational business models (Sjödin et al.,

2021). In the era of digital intelligence, when the function of digital

technology is rising, the significance and urgency of this issue

are intensifying (Linde et al., 2021). Consequently, it is essential

to systematically evaluate and research the relationship between

the green economy and business innovation in detail, as well as

to thoroughly discuss the mechanism and process of the new

generation of green technology that impacts the innovation strategy

of global enterprises.

Over the course of the past few years, a large number of scholars

have authored academic papers (Loiseau et al., 2016; Georgeson
et al., 2017; Mikhno et al., 2021), in an attempt to grasp the impacts

of green economy on various global industries and the potential

of these industries to reflect the emergence of green digitalization.

Most of these articles, however, have only summarized previous

research in a somewhat categorized manner, without applying
bibliometric-related techniques to it and without considering the

issue in a worldwide context. In order to fill in this gap, this

study, unlike those previous literature review papers, utilizes a
bibliometric analysis technique, which is not influenced by the

author’s subjective considerations, to analyse the present trends
and research tendency of the issue of green economy. Consider
that the advancement of technology has been a major contributor

to green economy model, the current paper hence particularly

attempts to assess the significant themes of prior researches on the
subjects of green economy and green finance in order to contribute

to the debate involving how major corporations are adopting

digital resources to redevelop the operational construct concerning

the latest digital advancement. In particular, the purpose of this

investigation is to grasp an overall bibliometric understanding

to the existing research advancement of green economy and to

establish a future research agenda. Some of the following are

instances of questions that are pertinent to the bibliometric analysis

of green economy: What part has the technology advanced the

development of the sustainable and environment-friendly green

economy? What does the research agenda for the green economy

look like?

In this study, a synthesis of the results of previous research

on green economy was first conducted and then the constraints

caused by environmental repercussions accordingly. These were the

two subjects that generated the greatest conversation in relation

to a comprehensive understanding of the green economy and

the concerns surrounding environmental preservation. This study

drew on the prior work of a combined amount of 1,022 articles

about the topic of green economy on environmental issues using

a comprehensive selected database. The paper selection procedure

as well as the inclusion criteria were further expounded upon

throughout the subsequent sections on the research methodology

as well as the literature evaluation. Specifically, the organization

of this paper is broken down into the following sections. First, the

article begins with a summary of the current academic background,

which gives an overview of the green economy as well as relevant

national policies. In the second part of research methodology,

the criteria utilized for selecting the relevant prior literature as

well as our full research methodology were explained. The finding

section presents the outcomes of this study. Last but not least,

the study concludes with a discussion of its theoretical and

practical contributions, as well as its limitations and suggestions for

further research.

Literature review

According to scholars and a large number of international

organizations, the green economy may be characterized as low in

carbon emissions, resource-efficient, and socially inclusive (UNEP,

2011). For a significant number of years, one of the primary focal

points for economic sustainability has been the application of

green economy. A green economy strives to minimize resource

depletion and environmental damage, “to generate sustainable,

long-term economic growth without causing major environmental

damage” (Jacobs, 2012). Meanwhile, the green economy focuses

on change, particularly health-improving change. This form of

economy prioritizes using renewable energy sources, sustainable

transportation, and adequate water, land, and waste management

to achieve its goals. Although it is argued such a transition,

which emphasizes low-carbon resources, could negatively affect

the environment and the local population (Sovacool et al., 2019),

businesses everywhere are contemplating changing to adapt to

the new paradigm, given the importance attached to the green

economy worldwide. The green economy is assumed to have

various benefits and therefore vital for creating a sustainable

economy and is closely tied to the notion of green growth.

In retrospect, the green economy was originally implemented

worldwide in reaction to the global financial crisis and to promote

economic recovery (Bina and La Camera, 2011). It has been crucial

in attaining the low-carbon transition and sustainable development

objectives. As of today, the green economy has had some effect on

global policymaking, with Europe and Asia being the most quickly

expanding regions (Kaur et al., 2018). For instance, there are a lot

Frontiers in Ecology andEvolution 02 frontiersin.org38

https://doi.org/10.3389/fevo.2023.1168437
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhu et al. 10.3389/fevo.2023.1168437

of studies that concentrate upon such geographies, such as China

(Zhang et al., 2021) and the United Kingdom (Gainsborough,

2018), as well as other emerging nations like Laos (Luukkanen et al.,

2019), India (Reddy, 2016), and Cambodia (Vuola et al., 2020).

As was discussed in the preceding section, the primary goal of a

green economy is to gradually shift away from the use of traditional

energy that are the sources of devastating pollution. Renewable

energy sources, such as solar and wind, can help establish a

new standard of energy efficiency if they follow the new guiding

principles that they have developed (Chenari et al., 2016). It is a

terrible thing when certain markets reject the new green economic

model and fail to adhere to environmental protection standards for

people, animals, and the planet. A substantial portion of expenses

are incurred outside of the local market or nation.

Environmental and resource conservation are vital to the

development of a green economy. Businesses are supposed

to ensure that their economic activities are consistent with

the concepts of sustainable development by reducing their

environmental effect. In other words, the economic growth

does not threaten ecological sustainability. The green economy

incorporates precautions to prevent environmental harm from

normal financial transactions (Kasayanond, 2019). To connect their

operations with sustainable development objectives, enterprises

must minimize their ecological impact. This may include

establishing sustainable resource management and decreasing air

and water pollution. Moreover, corporations must ensure that

their actions have no negative impact on the environment, which

includes refraining from behaviors that could cause pollution or

deplete natural resources.

In addition, there are several benefits of the green economy

development. Firstly, the green economy promotes the

development of new product markets and the more efficient

use of natural resources. It can also solve the energy problem

to a certain extent (UNEP, 2012). Currently, many developing

countries relying on the import of fossil fuel are heavily influenced

by the international situation and pollute the environment. The

development of a green economy can reduce the impact of these

problems by replacing fossil fuels with green energy (Policy

Advisor, 2016). What is more, a green economy aims to achieve

sustainable development through the rational use of resources and

the regulation of policies that will lead to sustainable development

(Smith et al., 2007). All these studies demonstrate that the green

economy and environmental protection (for dealing with global

climate change) concepts are inextricably intertwined. Green

economics apply protections to minimize environmental damage

from economic processes, and environmental protection is integral

to green economies through fostering efficient and sustainable

resource management.

Research methodology

The authors began by conducting an exhaustive research for

pertinent publications indexed in Web of Science Index, for

instance, the Science Citation Index Expanded (SCI-EXPANDED)

and Social Sciences Citation Index (SSCI). Consequently, through

searching the Web of Science data, the authors searched

the database with the terms of green economy, sustainable

development, policy, goal, as well as a review of prior researches.

The results included journal articles and proceeding from a variety

of conferences. Additionally, we scanned the bibliographies of

pertinent review papers. The following criteria were used to screen

the papers.

1. Topic = (Green Economy OR Sustainable Development) AND

Topic= (Policy) AND Topic= (Goal).

2. Research domains: Sustainability Science; Economics;

Environmental Sciences; Environmental Sciences; Ecology;

Business Economics.

3. Document Types: Peer-reviewed articles and conference

proceedings written in English, which were indexed in Science

Citation Index Expanded (SCI-EXPANDED) or Social Sciences

Citation Index (SSCI).

4. Web of Science Categories: Environmental Sciences;

Green Sustainable Science Technology; Environmental

Studies; Economics.

In this article, the research objects utilized to generate the

mapping are important indicators linked to the topic of green

economy, such as keywords, number of publications, number of

citations, nations, and authors of literature. For each article, the

authors examined the title, abstract, introduction, or them together

to determine that the investigations are pertinent to the current

study. Inter-coder dependability was examined throughout such

encoding procedure to increase the accuracy and dependability

(Clarke and Visser, 2019; Baek et al., 2021). As a result, a total

of 1,022 articles were selected after the initial categorization

procedure. Specifically, the particular steps can then be broken

down into the following phases. First, the target literature was

screened from the Web of Science database, with the previously

mentioned criteria as the specific research indicator. Second,

country analysis was conducted for the published literature. Third,

the affiliation of the existing literature was analyzed. Fourth,

the journals to which the literature belongs were classified and

summarized. Fifth, the number of publications of researchers in the

field of green economy was counted. Sixth, using the correlation

method of literature coupling, the keyword network mapping was

constructed, and the correlation between the countries, authors

and references of the literature design was analyzed in detail. Last

but not least, the authors used the R language analysis technique

to identify the summative analysis to the existing literature. For

the acquired literature, this paper adopts a bibliometric-related
approach for quantitative research (Farrukh et al., 2020). This

method is a combination of three fields: literature, statistics and

mathematics, and it analyses the correlation between specific
indicators of published scientific results, such as disciplines,

journals, regions and countries (Bonilla et al., 2015; Amiguet et al.,

2017; Martínez-López et al., 2018).

More specifically, to analyze the existing data, the authors use
VOSviewer and R language, two software programs widely used
in various fields for their simplicity and efficiency. For literature

analysis, coupling analysis is often used, which simply means that
the relevance of a research topic is determined by analyzing the
citations among published articles (Mora-Valentin et al., 2022).

Another alternative to this is to analyze the citations of the existing

articles to determine the relevance of the themes’ co-relationship

(Wang et al., 2013). Both of these two methods are applied in this
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study to achieve precision with reliability and credibility in the

analysis of the acquired literature.

Bibliometric analysis process

Analysis of the published literature

To locate relevant scholarly materials, this article searched

the Web of Science database. This section describes the methods

used to obtain data from published sources. These particular

strategies contain data obtained by two independent reviewers,

and we proceed to further investigation to the obtained data.

In addition, we explained the Web of Science in terms of the

automation technologies used in the procedure. Keyword searches

to ensure that no relevant literature on green economy-related

policy research is excluded. According to the findings of an

information retrieval study conducted using Web of Science, there

were 1,022 papers on green economy. A framework analysis of

the articles indicates that the number of papers has increased

exponentially over the past 9 years, especially from 2016 to 2022.

This substantial increase suggests that the study of green economy

is gaining increasing growth momentum (see Figure 1).

To be specific, as shown in Figure 2, 1,022 papers were

published between 2016 and 2022 with a quick annual growth. In

2016, there were only 22 papers while by the end of 2022, 322

FIGURE 1

The increasing number of articles published on green economy development goals and policies.

FIGURE 2

Annual publication analysis of green economy issues in published literature.
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articles will have been published, a 10-fold increase of 2016. It is

assumed that this growth trend will continue.

Analysis of the study area of green
economy

Besides the growth in numbers shown before, the study on

the green economy has also experienced a geographic expansion

worldwide in recent years, as indicated in Table 1. The top 10

nations were selected in terms of the number of papers published

worldwide by its scholars from 2016 to 2022. With 353 publications

and 5,597 citations, China is far ahead of other countries. This

signifies that Chinese scholars have gradually shifted their focus

to the green economy, an active response to the green transition

policy by the Chinese government Second to China is the

United Kingdom. The United States ranks third with 107 articles,

subsequently followed by Germany, three Asian countries, Turkey,

and Pakistan, India, and three European countries, Italy, Spain,

and Netherlands.

TABLE 1 Country analysis.

No Country NP Citations Citations/paper

1 China 353 5,597 15.86

2 The UK 107 2,843 26.57

3 America 107 2,268 21.20

4 Germany 87 2,563 29.46

5 Turkey 77 3,002 38.99

6 Pakistan 74 1,535 20.74

7 India 67 1,851 27.63

8 Italy 66 1,364 20.67

9 Spain 53 1,511 28.51

10 Netherlands 47 1,461 31.08

Figure 3 depicts the outcomes of the subsequent coupling

analysis, which was conducted with VOSviewer analysis software.

The quantity of publications is proportional to the diameter of the

circle. China, the United Kingdom, and the United States are the

top three countries. This conclusion is consistent with the results

presented in Table 1.

Since many studies are conducted internationally, it was

appropriate to consider the collaboration between scholars in each

country. The outcomes of this investigation are demonstrated

in Figure 4. China continues to lead the list of countries most

inclined to collaborate in research on the trending topic of

green economy. It is anticipated that Chinese academics would

participate significantly in future studies on the green economy.

Authors’ a�liation analysis

The attributing affiliations of the authors of the publication are

also an essential component of the bibliometric analysis. Table 2

shows the findings of the authors’ affiliation via the VOSviewer

analysis. With 32 papers, the Chinese Academy of Sciences was

the most prolific institution. With 29 and 28 articles, respectively,

Istanbul Gelisim University from Turkey and the University of

London from the United Kingdom scored second and third in the

list. The significance of Asian research institutions in the study of

the green economy is accurately depicted.

Analysis of the volume of publications in
relevant journals

Journal analysis is also an integral aspect of our investigation.

As shown in Table 3, the authors selected a total of 10 journals

that publish high-profile in-depth research on topics connected

to the green economy between 2016 and 2022. Sustainability

is one of the most highly ranked journals on the list. The

Journal of Cleaner Production, and Environmental Science and

Pollution Research ranked second and third, respectively, with

FIGURE 3

Country coupling analysis.
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FIGURE 4

National co-authorship analysis.

TABLE 2 Article a�liation analysis.

Universities/institutes TP TC

Chinese Academy of Sciences 32 319

Istanbul Gelisim University 29 1,185

University of London 28 653

International Institute for Applied
Systems Analysis IIasa

24 580

Goa Institute of Management 20 1,259

Beijing Institute of Technology 19 647

Southern State University 18 634

Tsinghua University 17 752

University College London 17 168

Beijing Normal University 15 246

Potsdam Institut fur
klimafolgenforschung (Potsdam
Climate Research Center)

15 796

Ulusracht-Kibiris University 15 329

Peking University 14 436

University of Chinese Academy of
Sciences CAS

14 117

Utrecht University 14 612

124 and 115 articles. Science of the Total Environment is the

most highly-cited journal, with an average of 57.56 citations

per article.

For journal citation research, literature co-citation analysis

is frequently employed. Figure 5 illustrates the findings of this

analysis. The Journal of Cleaner Production is the journal with

the highest co-citation frequency, followed by Sustainability

and Environmental Science and Pollution Research, where the

high co-citation rate is attributable to a large number of

related references.

TABLE 3 Journal analysis.

No Source title Papers Citations C/P

1 Sustainability 188 1,673 8.90

2 Journal of Cleaner
Production

124 4,283 34.54

3 Environmental Science
and Pollution Research

115 1,801 15.66

4 Energy Policy 48 1,172 24.42

5 Science of the Total
Environment

34 1,957 57.56

6 Journal of
Environmental
Management

28 1,038 37.07

7 Environment
Development and
Sustainability

26 253 9.73

8 International Journal
of Environmental
Research and Public
Health

25 156 6.24

9 Frontiers in
Environmental Science

23 76 3.30

10 Environmental
Research Letters

22 458 20.82

Analysis of the researchers focusing on the
field of green economy

This section contains data pertaining to the green economy

researchers with the most publications. Sinha A. is in international

spotlight with 21 published articles, as shown in Table 4.With 1,737

citations, Alola A.A. ranked first on the list in terms of citations.

With an average of 97.77 citations per article, Bekun F.V. topped

the list. Each of the remaining academics has authored a minimum

of seven articles.
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FIGURE 5

Journal co-citation analysis.

TABLE 4 Author analysis.

No Author Papers Citations C/P

1 Sinha A. 21 1,278 60.86

2 Alola A. A. 19 1,737 91.42

3 Bekun F. V. 13 1,271 97.77

4 Murshed M. 11 417 37.91

5 Schandl H. 10 308 30.8

6 Alvarado R. 9 549 68.63

7 Kirikkaleli D. 8 547 68.38

8 Sharma R. 8 312 39.00

9 Ahmad M. 7 349 49.86

10 Li Y. 7 53 7.57

Literature citation analysis

The number of citations in the selected literature is also a

significant indicator when performing a literature review and a

crucial criterion for evaluating the quality of a publication. In

this part, the top 10 most-cited papers from the Web of Science

database were selected based on the search parameters established

previously and listed in Table 5. The results suggest that Toward

a sustainable environment: Nexus between CO2 emissions, resource

rent, renewable and non-renewable energy in 16-EU countries is

ranked in the first place, which shows its academic significance.

The remaining publications have beenmentioned at least 156 times,

which demonstrates in part their high reference value in the subject

of green economy research.

Three-field plot analysis

Among numerous different ways of analysis, the Three-Field

Plot Analysis is frequently used to determine the researcher’s

area of study. This section applies this methodology to the study

of the green economy. Figure 6 illustrates the findings of this

analysis. On the far left are the names of the researchers, in the

center are the most often used terms, and on the right are the

countries of the authors. Thus, it is straightforward to associate

the researcher with his field of study and nationality. For instance,

Liu Y.’s primary research keywords are sustainable development

and CO2 emissions, indicating that he is primarily concerned with

sustainable development as a result of CO2 emissions.

Keyword analysis

This component utilizes the VOSviewer program to perform

keyword analysis on the selected documents; the results are

displayed in Figure 7. The importance of sustainable development,

economic growth, and climate change is evident. This technique

is used to map the frequency of keywords in published works.

Therefore, future study on the green economy is expected to

concentrate on these three terms, which reflect a trend in

the field.

Although the keyword analysis references the knowledge

content of big data to some extent, it can be utilized to

determine future research topics. However, research on the green

economy is frequently influenced by a number of uncontrollable

circumstances, thus the results of the analysis can serve as

a benchmark for particular measurements. Nevertheless, we

anticipate that these topics will continue to evolve in the current

global situation.
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TABLE 5 Literature citation analysis.

Authors Title Year Source title Number of
citations

Bekun F. V., Alola A. A,
Sarkodie S. A.

Toward a sustainable environment: Nexus
between CO2 emissions, resource rent, renewable
and non-renewable energy in 16-EU countries

2019 Science of the Total
Environment

572

D’Amato D., Droste N., Allen
B., Kettunen M., Lahtinen K.,
Korhonen J., Leskinen P.,
Mathies B. D., Toppinen A.

Green, circular, bio economy: A comparative
analysis of sustainability avenues

2017 Journal of Cleaner Production 411

Hickel J., Kallis G. Is Green Growth Possible? 2020 New Political Economy 408

Alola A. A., Bekun F. V.,
Sarkodie S. A.

Dynamic impact of trade policy, economic growth,
fertility rate, renewable and non-renewable energy
consumption on ecological footprint in Europe

2019 Science of the Total
Environment

329

van Vuuren D. P., Stehfest E.,
Gernaat D. E. H. J., Doelman
J. C., Van den Berg M.,
Harmsen M., de Boer H.S.,
Bouwman L. F., Daioglou V.

Energy, land-use and greenhouse gas emissions
trajectories under a green growth paradigm

2017 Global Environmental
Change—Human and Policy
Dimensions

330

Shahbaz M.,
Balsalobre-Lorente D., Sinha
A.

Foreign direct investment-CO2 emissions nexus in
Middle East and North African countries:
Importance of biomass energy consumption

2019 Journal of Cleaner Production 285

Schand H., Geschke A.,
Hatfield-Dodds S., Wiedmann
T., Cai Y. Y., West J., Baynes
T., Lenzen M., Newth D.,
Owen A.

Decoupling global environmental pressure and
economic growth: scenarios for energy use,
materials use and carbon emissions

2016 Journal of Cleaner Production 175

Ahmad M., Jiang P., Majeed
A., Umar, M., Khan Z.,
Muhammad S.

The dynamic impact of natural resources,
technological innovations and economic growth
on ecological footprint: An advanced panel data
estimation

2020 Resources Policy 181

Shen Y. J., Su Z. W., Malik M.
Y., Umar M., Khan Z. S.,
Khan M.

Does green investment, financial development and
natural resources rent limit carbon emissions? A
provincial panel analysis of China

2021 Science of the Total
Environment

170

Saidi K., Omri A. The impact of renewable energy on carbon
emissions and economic growth in 15 major
renewable energy-consuming countries

2020 Environmental Research 156

FIGURE 6

Three-field plot analysis.
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FIGURE 7

Keyword analysis.

Thematic map analysis

This part presents a structured analysis of the selected

keywords in the green economy-related literature, drawing

a Thematic Map using the bibliophagy data package in R

language. The first quadrant of the four-quadrant diagram

indicates research fields that are both significant and well-

developed. The second quadrant consists of well-developed

but less significant research directions. The third quadrant

represents insignificant research content, whereas the fourth

quadrant represents significant but underdeveloped study

areas (Tennekes, 2018). The fourth quadrant represents

research fields that are vital but underdeveloped. Figure 8

demonstrates the outcomes. The first quadrant contains the

current topical issues, including renewable energy, economic

growth, sustainable development, energy transition and other

key words.

Niche Themes focuses on the more contemporary and well-

established fields of study, including public policy, food shortages,

and sustainability factors. The most crucial are the transitions

to sustainable development and the shadow economy. The

keywords environmental Kuznets curve, environmental regulation,

green innovation, poverty alleviation, energy security, sustainable

development, and climate change dominate the third quadrant.

As a result of climate change, it is evident that research

on sustainable development is becoming more centralized and

of a broader study interest. The fourth quadrant represents

research directions that are not well-developed at present but

have a greater scientific value in the future. Green economy,

sustainability, circular economy and other contemporary hot

topics are included in this quadrant, reflecting the importance

of green economy and sustainable development research in the

coming period.

Trends in topic selection

Adopting the bibliophagy data package in the R language to

construct time windows with literature keywords reveals future

research trends. As depicted in Figure 9, energy security is a leading

research topic from 2016 to 2018. From 2018 to 2019, the study

field is gradually changing toward the establishment of a low-

carbon economy to achieve economic growth. Life cycle assessment

have been reintroduced and examined bioeconomic issues by 2020.

From 2021 onward, policy research on the formation of a green

economy to achieve sustainable development goals became an

important topic, paving the path for future studies.

Discussion

The development of a green economy can be distinguished

into four different forms: green growth, green transformation,

green resilience, and green revolution (Death, 2015). Among them,

green growth is the most common green economy model in the

global context and belongs to a high-quality development model

that focuses on the rational use of resources and the reduction

of damage to nature (Li et al., 2022). Green resilience is more

technical in nature and places greater emphasis on sustainability

(Rizzo, 2020). Green transformation and green revolution Green

Transformation and Green Revolution are national government

policies to promote economic development (Thenkabail, 2010;

Lee and Woo, 2020). The green economy as a whole is a series

of policies that are designed to promote economic development.

As a whole, the green economy is the sum of a number of

concepts that encompass the world economy, energy issues,

national policies and more. Du et al. (2019) assert that the

output of carbon dioxide into the atmosphere, a contributor to
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FIGURE 8

Thematic map.

FIGURE 9

Trend topics advancement over the time.

climate change, is reduced by using green technologies such as

electric vehicles. In addition, reducing waste and pollution through

implementing efficient production and consumption processes

adds to environmental protection. Environmental safeguards are

also essential for the long-term management of resources. This

involves protecting biodiversity, vital to ecosystem health and

human quality of life. Moreover, because water is a finite

resource, preserving its quality through conservation is essential for

maintaining a healthy ecosystem. By protecting the environment,

a green economy may ensure that resources are managed
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responsibly, which is advantageous for both the environment and

the economy.

Promoting environmentally friendly ways of transportation

is essential to the green economy. Sustainable is any mode of

transportation that considers the needs of society, the environment,

and the climate, as well as the effects that transportation has on

these factors (Björklund, 2011). Since transportation contributes

significantly to carbon dioxide emissions and consumes more

than 25 per cent of global energy, its environmental effects

cannot be overstated (Barceló, 2010). UNEnvironment Programme

(UNEP) asserts that if persons switched to a better and safer

mode of transportation, outdoor air pollution-related premature

mortality might be reduced (Mahmood, 2011; Levy and Patz, 2015).

Electric vehicles are increasingly popular in countries such as the

United States and Germany because they reduce air pollution

and improve the environment. Due to the increasing number of

incentives offered by nations with advanced economies, it is easier

for businesses and municipalities to manage the rise in electric

vehicle usage.

Environmental protection and a green economy are

required for sustainable development. A strategy for sustainable

development ensures that present and future generations have

access to the resources they need to live happy and productive

lives. It considers the needs of the economy, environment, and

society. The objective of a green economy is to maximize economic

output while decreasing environmental hazards and resource

shortages, which include reducing pollution and waste; boosting

energy efficiency; promoting renewable energy sources and

safeguarding natural resources. In addition, it seeks to promote

environmentally responsible economic growth. Renewable energy,

energy efficiency, sustainable agriculture, and environmentally

friendly transportation are green economic projects.

The development of the green economy plays a decisive role in

solving the problem of carbon emissions. In the past, governments

favored fossil fuels over the green economy, partly because the

green economy sector then was relatively underdeveloped, and

partly because of the higher risks and lower returns (Tarkhanova

et al., 2020). To achieve the goal of sustainable development, a series

of policies must be developed to raise funds for the green economy

to thrive.

Theoretical implications

Different from the conventional literature reviews, the current

research analyzes a broader number of papers, from various

aspects, including geographies, publishing organizations, high-

profile journals, authorship, citation frequency, and several other

variables. Based on this, the future research trend is predicted,

which would be conducive for researchers to define the direction

of future research and to facilitate research institutions in

conducting research and cooperating with their intended academia.

In addition, the current research would be beneficial for national

governments to precisely identify countries that are in the forefront

of green economy research and then to change their policies

accordingly. With the acceleration of global digital and intelligent

transformation, the corporate environment is in a state of perpetual

flux. It is now necessary for the survival and success of businesses

to encourage the integration of new technologies and business

to drive business innovation. As green digital technologies are

increasingly used in corporate management practices nowadays,

green economy, a kind of advanced technology, plays a growing

key role in facilitating the business innovation process. The

present fast growth of green financing strengthens the prospect

of incorporating it into the corporate innovation process. The

expansion of sustainable finance has created favorable conditions

for an industrial ecosystem that embraces the logic of digital

services. Green improvements in product service processes

and corporate strategies generate opportunities. Simultaneously,

facilitating and supporting enterprise company innovation become

more approachable, simple, and collaborative.

Limitations

Despite the fact that this paper has made some contributions, it

still has certain limitations. The literature is obtained from theWeb

of Science database, and there are inevitably important publications

that were not counted, which has an influence on the correctness

of the analysis. Second, the analytical period for this article is the

period between 2016 and 2022, when the green economy is thriving.

Therefore, we propose that future research investigate the evolution

of the green economy in different eras by comparing the results of

studies conducted at different time intervals.

Future research agenda

Future research and analysis on the digital transformation

of businesses merits more examination. Topics for research may

include the existing and future effects of digital technology, such

as artificial intelligence, on digital transformation and business

innovation inside enterprises. Based on the theoretical exploration

and empirical research conducted, relevant academic achievements

can provide practical and effective theoretical guidance and

strategies for enterprises to implement digital transformation in

the context of the era of digital intelligence enlightenment. In

addition, future study subjects may include the role and influence

of the COVID-19 pandemic. On the basis of the concepts of digital

empowerment and innovation, theoretical debate and empirical

study can be conducted on business remodeling, transformation,

and upgrading. The relevant academic accomplishments may give

useful theoretical advice for conventional firms to implement

green innovation using new technologies in the context of the

digital economy.
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The relationship between the high-frequency time series of PM2.5 in the
atmosphere and the air pollutants emitted by industrial firms is not yet fully
understood. This study aimed to identify independent PM2.5 clustering regions
in Shaanxi Province and to evaluate the spatio-temporal correlations of PM2.5

concentrations and pollutant emissions from industrial firms in these regions. To
accomplish this, daily data on PM2.5 concentrations and air pollutants emitted by
industrial firms were analyzed using the K-means spatial clustering method and
cross-wavelet transformation. The results show that: 1) PM2.5 concentrations in
Shaanxi Province can be divided into three independent clustering regions. 2) The
lagged impact of industrial emissions on PM2.5 concentrations were about 1/4-1/
2 period. 3) PM2.5 wasmainly influenced by particulate matter (PM) emissions from
industrial plants during the period of 16–32 days, while nitrogen oxides (NOx)
significantly affected PM2.5 concentrations during the period of 32–64 days. 4)
Emissions of PM, NOx, and sulfur dioxide (SO2) more significantly affect PM2.5

concentrations in northern and central Shaanxi, and pollutants emitted by firms in
the thermal power generation, utility, and steel industries had more significant
effects on PM2.5 concentrations than those emitted by the cement manufacturing
and electric power industries. During the COVID-19 shutdown, the emissions of
firms cannot significantly affect PM2.5 concentrations. These findings suggest that
emission reduction initiatives should consider industrial, regional, and periodic
differences to reduce PM2.5 pollution during winter.

KEYWORDS

industrial firms’ emissions, PM2.5, cross-wavelet method, spatiotemporal clustering,
China

1 Introduction

Exposure to high level of fine particulate matter (PM2.5) in the atmosphere has been
associated with severe adverse effects on human health (Barwick et al., 2017; Zhong et al.,
2017; Chen et al., 2018; Liu and Salvo, 2018; Cheung et al., 2020; Fan et al., 2020; He et al.,
2020), as well as substantial economic losses (Zhang and Mu, 2018; Sun et al., 2019; Chen
et al., 2022; Ito and Zhang, 2020). While efforts have been made to manage PM2.5

concentrations in developing countries like China, with notable progress in recent
decades (Greenstone et al., 2021), the annual average PM2.5 concentrations in China’s
339 cities are still expected to exceed the recommended level by the World Health
Organization (MEE, 2022; WHO, 2021). Moreover, severe haze pollution remains a
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common occurrence in many Chinese cities during autumn and
winter (Ma et al., 2020; Zhang et al., 2020b).

To effectively reduce ambient PM2.5 concentrations, it is crucial
to identify the firms that should reduce emissions during periods of
heavy pollution as well as during normal times (F. Wang et al., 2019;
Zhao et al., 2018; Alari et al., 2021; Frankowski, 2020; Rivera, 2021),
for the industrial sector significantly contributes to China’s
economic growth but also emits a large amount of air pollutants
while consuming fossil energy (Choi et al., 2021; MEE, 2020; Zhang
et al., 2014). Various studies have analyzed the correlation between
PM2.5 concentrations and yearly air pollutant emissions using a
physicochemical model (Choi et al., 2021; Lu et al., 2021;Wang et al.,
2022; Liu et al., 2018b; Zhang et al., 2014; Zhang et al., 2018), likely
multiple regression (Zhang et al., 2020), geographically weighted
regression model (Wang et al., 2018; Tu et al., 2019) and
physicochemical model such as CMAQ (Wang et al., 2022b;
Wang et al., 2019b), WRF-Chem (Spiridonov et al., 2019; Azmi
et al., 2022; Zhang et al., 2023). Although an increasing body of
research begins to concentrate on the interplay between business
emissions and air quality (Li et al., 2016; Wu et al., 2023), there has
been limited research conducted on the relationship between high-
frequency scale (such as a week, day, or even an hour) air pollutant
emissions from industrial firms and PM2.5 concentrations, which
can help the government formulate proper strategies for reducing
industrial emissions.

In order to better capture the high-frequency variability of
PM2.5, some researchers have employed the wavelet analysis
technique to identify the temporal patterns of PM2.5 changes
(Chen et al., 2020; Kapwata et al., 2021; Li et al., 2017; Shi et al.,
2014; Sun et al., 2017; Zhao et al., 2009; Zhao et al., 2016). Wavelet
analysis has been shown to be effective in studying the periodicity
and evolution characteristics of PM2.5 concentrations, as well as
investigating the influence of natural factors on PM2.5

concentrations. Moreover, PM2.5 pollution exhibit significant
regional variations that often do not align with administrative
divisions (Tie et al., 2005; Tie and Cao, 2009; Wang et al., 2011;
Zhao et al., 2020), the PM2.5 pollution areas must be identify before
appropriate mitigation strategies can be established.

To fill the knowledge gap mentioned above, this study selects
Shaanxi Province in China as a relatively independent study area to
examine the correlation between firms’ emissions and PM2.5. For the
unique topography Guanzhong Plain is one of China’s most polluted
region for PM2.5 (Xu et al., 2018; Li et al., 2022); Southern Shaanxi
has a good ecology; Northern Shaanxi has many polluting firms) and
diverse types of firms (Miao et al., 2019; Wang et al., 2022c) in
Shaanxi Province can provide effective lessons for pollutant
management in other regions and countries. We collected a
unique daily scale emission data from all continuous emission
monitoring system (CEMS) installed firms in Shaanxi Province
and air quality monitor site data at county level.

This paper are to make the following contributions to the field:
1) Establish a methodology for identifying PM2.5 pollution control
areas using spatial clustering techniques; 2) Identify firms and
industries with a significant impact on PM2.5 pollution areas by
utilizing cross-wavelet analysis on high-frequency time scale data; 3)
Provide evidence-based support for precisely requiring firms to
adopt emission reduction measures during periods of heavy
pollution, and effectively reducing socio-economic losses.

The rest of this paper is structured as follows. Part 2 introduces
the study area, data, and methodology. Part 3, this study shows
cluster and wavelet analysis. In the final part, this paper provides
some concluding remarks.

2 Study region, data resource, and
methodology

2.1 Study region and data resource

Shaanxi Province, in northwestern China, spans between 105°29′E-
111°15′E longitude and 31°42′N-39°35′N latitude, characterized by a
complex and diverse terrain. Shaanxi Province, themost affluent among
the five northwestern provinces of China, recorded a GDP of
2,980.1 billion RMB in 2021 (National Bureau of Statistics, 2023).
The industrial sector played a substantial role, contributing 46.3% to the
Shaanxi’s GDP. With a diverse industrial landscape encompassing
high-end energy and chemical sectors, equipment manufacturing,
aerospace, electronic information, and automobile production,
Shaanxi Province’s industrial firms collectively consumed
92.8 million tonnes of standard coal in 2021. This consumption
constituted 68.1% of the total standard coal usage within the
province. Such considerable energy consumption consequently led to
substantial pollutant emissions. Notably, industrial sources in Shaanxi
Province contributed to over 60% of total emissions for both Total
Suspended Particulates (TSP) and Sulfur Dioxide (SO2) pollutants in
2021 (Ministry of Ecology and Environment, 2021).

Shaanxi can be geographically divided into three parts: southern
Shaanxi, Guanzhong and northern Shaanxi. Northern Shaanxi,
which encompasses the cities of Yulin and Yan’an, is abundant
in coal, oil, and natural gas resources and houses several large-scale
energy chemical firms, including thermal power, coking, coal
chemical, and petrochemical. The Guanzhong plain, comprising
cities such as Xi’an, Xianyang, Weinan, Baoji, and Tongchuan, is
recognized as one of China’s worst air pollution areas in China due
to a significant number of thermal power, cement, and steel sectors
(Bai et al., 2019). The Southern Shaanxi region, including the cities
of Hanzhong, Shangluo, and Ankang, is rich in rare mineral
resources, such as molybdenum, rhenium, and mercury, as well
as abundant natural resources.

Figure 1 demonstrates the distribution of 169 air quality
monitoring stations and 361 firms in Shaanxi Province.
Specifically, Guanzhong has 60 air quality monitoring stations
and 150 industrial firms, Northern Shaanxi has 59 air quality
monitoring stations and 177 industrial firms, while Southern
Shaanxi has 50 air quality monitoring stations and 34 industrial
firms. Shaanxi’s average PM2.5 concentrations has decreased from
57 to 43 μg/m3 between 2017 and 2020. However, the current
concentration remains above the national standard limit of
30 μg/m3.

The monitoring data of PM2.5 concentrations are from the
ambient air quality monitoring stations in Shannxi Province
(http://113.140.66.226:8024/sxAQIWeb/pagecity.aspx?cityCode=
NjEwMTAw), and meteorological data including wind speed,
wind direction, air temperature, air pressure, and humidity are
from Shaanxi air quality real-time release system. The research
period is from 1 January 2017 to 31 December 2020. The firms’
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emissions data come from key pollutant discharge firms’
monitoring information release platforms (http://113.140.66.
227:9777/envinfo_ps/zdyjbxxpublicity/list), including the three
most important pollutants, TSP (total suspended particles), SO2

(sulfur dioxide) and NOx (nitrogen oxide). The pollutant
emissions of the firms installing CEMS exceed 65% of the total
pollutant emissions in the region (The State Council, 2007), which
basically reflects the regional industrial pollutant emissions.

FIGURE 1
Study area of Shaanxi Province.
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For air quality monitoring data, we remove outliers in the data
and ensure the accuracy of the data by using data from neighbouring
air quality monitoring points. For firm emission data, we firstly
removed extreme outliers in the firms CEMS data; secondly, we
determined whether the firms was in a shutdown state through the
firms’ flue gas oxygen content, and for missing values in a non-
shutdown state, we filled in the pollutant emissions of the firms
neighboring time through the missing values to ensure the validity of
the data.

2.2 Methodology

2.2.1 Spatiotemporal cluster analysis
PM2.5 concentrations exhibits spatial clustering on a daily basis.

To identify regions that require targeted control during the study
period, daily partitioning results of the clustering process are
subjected to correlation clustering analysis. If the external
transfer of pollutants is not taken into account, PM2.5

concentrations in the identified areas can be reduced by reducing
all types of pollutant emissions, such as those from industrial, mobile
and non-organized sources. Thiessen polygons are generated from
the monitoring stations to ensure the continuity of the identified
pollution area and to avoid the limitations imposed by
administrative divisions. The resulting clustering categories are
consistent with the geographical division, and further refine the
control area for PM2.5 while smoothing out the boundary of the
region.

This paper adopts the K-means clustering method, a fast
clustering approach that abstracts clustering units into
m-dimensional points and evaluates the similarity between units
based on the distance between clustering units (Liu et al., 2018a), to
conduct spatial clustering of PM2.5:

1) Optional K initial clustering centers: Z1(1), Z2(1), . . ., Zk(1), 1 is
the subsequence of iteration.

2) The rest of the samples are allocated to one of the K cluster
centers according to the principle of minimum distance:
min{||X-Zi(k)||, i=1, 2, . . . , K} = {|| X-Zi(k)||} = Dj(k) (1)

X∈Si(k),k is the subsequence of iteration; K is the number of
cluster centers.

3) Compute the new vector value of each cluster center: Zj (k+1)
j=1, 2, . . . , K

Zj k + 1( ) � 1
Nj

∑
X∈Sj k( ) X, j � 1, 2, . . . , K (2)

4) If Zj(k+1) ≠ Zj(k), return formula (1), classify the pattern samples
center by center, and repeat the iterative calculation. If Zj(k+1)=Zj(k),
algorithm convergence, calculation completes (Wegner et al., 2012).

2.2.2 Wavelet and cross-wavelet analysis
The wavelet transform is a powerful method for the

simultaneous analysis of time series in both the time and
frequency domains. It involves the use of a variable window
function and is generated from mother and child waves through
time translation and scaling, as noted by Gao and Zhang (2016) and

Mu et al. (2021). This decomposition results in a set of essential
functions where increasing the scale is equivalent to decreasing the
frequency and sacrificing the time resolution, while reducing the
scale and increasing the frequency is equivalent to sacrificing the
frequency resolution. By stretching and translational transform, the
wavelet function is obtained from the wavelet generator function.
The continuous wavelet function is expressed as:

WX
n s( ) �

��
δt

s

√
∑
N−1

n′�0
xn′ψ*

n′ − n( )δt
s

[ ] (3)

where* represents a conjugate complex, N is the total number of the
time series, (δt/s)/s is a factor used for the standardization of wavelet
function.

The Morlet wavelet function is commonly used in wavelet analysis
as it effectively separates and reconstructs waves of different frequency
bands without losing time resolution. This function maintains its shape
through frequency shift and has excellent temporal aggregation and
high-frequency resolution (Morlet et al., 1982). Therefore, Morlet
wavelet function is employed to analyze the periodicity of PM2.5

concentrations:

ψ0 t( ) � π−1/4eiω0te−t
2/2 (4)

Where t is time, ω0 is dimensionless frequency. If ω0 =6, scale s
equals Fourier period. Wavelet power spectrum |WX

n (s)|2 shows the
variation characteristics of the time series on a specific scale and its
variation with time. This unbiased and consistent estimation of the
real power spectrum of time series is achieved through the use of the
full wavelet spectrum (Torrence and Compo, 1998; Torrence and
Webster, 1999).

�W
2
s( ) � 1

N
∑
N−1

n�o
Wn s( )| |2 (5)

The boundary effects and errors encountered when handling
finite time series are addressed by testing the statistical significance
of the wavelet power spectrum using an appropriate equation
(Cazelles et al., 2008; Furon et al., 2008; Grinsted et al., 2004; Liu
et al., 2018a). Therefore, the test measure display as follows:

Pk � 1 − α2

1 − αe−2iπk| |2 (6)

Cross-wavelet analysis can compare the frequencies of two-time
series Xt and Yt, and obtain the resonance period and phase of the
two sequences in some periods. Cross wavelet spectra of two-time
series XWT is WXY � WXWY*, cross wavelet power is |WXY|. The
period changes with time, reflected by the cross wavelet power can
be visualized by the full spectrum (Veleda et al., 2012). The
confidence degree of cross wavelet power can be calculated by
the square root of the product of two chi-square distributions.
The confidence and correlation coefficient of the two-time series
are as follows:

D
WX

n s( )WY*
n s( )∣∣∣∣ ∣∣∣∣

σXσY
<P( ) � Zv p( )

v

������
PX

kP
Y
k

√
(7)

R2
n s( ) � S WXY

n s( )( )∣∣∣∣ ∣∣∣∣2
S WX

n s( )∣∣∣∣ ∣∣∣∣2( )•S WY
n s( )∣∣∣∣ ∣∣∣∣2( ) (8)
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The phase difference can be transferred to the difference of
[-π, π], and its value indicates the lag characteristics of the
two sequences (Aguiar-Conraria and Joana Soares, 2011;
Addesso et al., 2022). The phase difference formula is as
follows:

φxy � arctan
I WXY

n s( )( )
R WXY

n s( )( )( ) (9)

3 Results analysis

3.1 Spatiotemporal distribution of PM2.5 in
study region

The seasonal distribution of PM2.5 concentrations in each region is
relatively even, with the highest levels in winter and the lowest in summer
(Figure 2). During the winter and spring seasons, the PM2.5

FIGURE 2
Spatiotemporal distribution of PM2.5 concentrations.
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concentrations in the three regions display significant variations, ranging
from 65 to 95 μg/m3 and 29.5–47 μg/m3, respectively. This indicates that
the concentrations duringwinter are approximately twice as high as those
during spring. Conversely, PM2.5 concentrations slightly vary among the
three regions during the summer and autumn seasons. Moreover,
meteorological factors such as temperature, wind speed, and relative
humidity significantly promote the diffusion of atmospheric pollutants.
In mid-March, the cessation of heating results in a reduction of pollution
sources, leading to lower PM2.5 concentrations during the spring season
than during the winter season.

Annual PM2.5 concentrations in the three regions follow the
order of Guanzhong > Northern Shaanxi > Southern Shaanxi.
Guanzhong is the most economically developed region in
Shaanxi Province and has several large coal-fired power plants,
cement manufacturers, chemical plants, and metal smelters, which
contribute to high PM2.5 concentrations. The Guanzhong area’s
proximity to the Qinling Mountains in the South and the Loess
Plateau in the North further hinders airflow movement and
pollutant diffusion, thereby intensifying the pollutant
concentration (Wang et al., 2015). In Northern Shaanxi, several

FIGURE 3
Spatial clustering PM2.5 in Shaanxi.
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coal-fired power plants and factories discharge pollutants, and the
unique linear canyon terrain in Yan’an City tends to converge local
pollutants in the area. Southern Shaanxi primarily relies on natural
resources to develop the primary industry, has low urbanization, and
has a less prominent contribution of firm emission sources to PM2.5

concentrations.

3.2 Clustering results of PM2.5 in study region

From Figure 2, it is obvious shows that PM2.5 pollution in
Shaanxi Province has a significant regional feature, in order to
accurately identify each PM2.5 pollution region in Shaanxi
Province, so as to more accurate identification of the link
between pollutant emissions from firms and PM2.5 in the air, this
part use the PM2.5 data of the air monitoring points in the study time
period, and the method of spatial clustering to perform spatial
clustering. Figure 3 depicts the spatial clustering of air pollution
areas in Shaanxi Province. By overlaying the zoning results onto the
elevation map of Shaanxi Province, it becomes apparent that
delimited regions of PM2.5 overlap with the locations of the
Guanzhong Plain, Northern Shaanxi, and Southern Shaanxi,
suggesting that PM2.5 concentrations are influenced by the
topography. Three regions were identified based on their

coverage area and PM2.5 concentration levels. Region 1 covers
most of the Guanzhong area, region 2 includes the northern
Shaanxi area and a portion of the Guanzhong area, while region
3 comprises the Southern Shaanxi area and a portion of the
Guanzhong area. Region 1 had a mean PM2.5 of 57.4 μg/m3, and
335 days per year exceeded 24-h PM2.5 thresholds (<75 μg/m3),
representing 20.41% of total days. In Region 2, the mean PM2.5

was 40.3 μg/m3, with 151 days exceeding the 24-h PM2.5 benchmark,
representing 9.2% of the total number of days. Finally, the mean
PM2.5 concentration in region 3 was 33.2 μg/m3, with 79 days
exceeding the 24-h PM2.5 benchmark, representing 4.81% of the
total number of days.

3.3 Air pollutant emissions from industrial
firms in study region

The analysis results presented in Figure 4 shows the variations in
pollutant emissions among industrial firms in Shaanxi Province.
Figure 4 shows that region 1 and region 2 emit about the same
amount of TSP pollutants, while region 2 emits a much larger
amount of SO2 and NOx than region 1 and region 3. This emission
situation is closely related to the distribution of industries in
different regions. This difference was attributed to the lots of

FIGURE 4
Daily variation curves of air pollutants, including TSP, SO2, and NOx, emitted by industrial firms from 2017 to 2020.
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power plants located in region 2, which accounts for 50% of the
power plants in Shaanxi Province and contributes to over 70% of
total pollutant emissions from power plants. Region 1 is distributed
with many processing and manufacturing firms, which mainly emit
TSP pollutants, making the emissions of TSP pollutants in region
1 and region 2 similar, although there are significant differences in
SO2 and NOx emissions. Simultaneously, it can be observed that
TSP emissions in region 3 saw a notable increase during the
COVID-19 period in 2020. In contrast, emissions in regions
1 and 2 experienced a certain degree of decline. There’s a
reasonable suspicion that regions 1 and 2 redirected a portion of
their production capacity to region 3, which may account for this
dynamic change.

3.4 Analysis of cross-wavelet in different
regions

This part we employ the Morlet wavelet function to conduct a
wavelet transform of daily data on TSP, SO2, and NOx emissions from
industrial firms in three regions of Shaanxi Province from January
2017 to December 2020. The wavelet spectrums of TSP, SO2, and NOx

are analyzed, with time d as the horizontal axis and time scales as the
vertical axis. A wavelet coefficient of 0 signifies a mutation point
wherein the correlation coefficient shifts from higher to lower
values. The white shadow area in the wavelet spectrum represents
the influence cone of the wavelet boundary, while the area enclosed by
thick white solid lines indicates that the noise test has passed at a 95%
significance level.

Figure 5 shows that the pollutants emitted by industrial firms during
thewinter prevention period (November to February) in the three regions
demonstrate substantial periodicities of 16–64 and 64–128 days, with the
impact of contaminants on PM2.5 concentrations lagging 1/4-3/8 cycles.
TheTSP andPM2.5manifest a strong correlation in the 16–32 days range,
followed by NOx and PM2.5, while SO2 and PM2.5 exhibit the weakest
correlation. These results coincide with the fact that TSP directly
influences PM2.5 concentrations in the atmosphere, while NOx and
SO2 necessitate a chemical reaction to generate nitrate and sulfate and
form secondary particles. Simultaneously, the figure shows a notable
correlation between pollutant emissions from firm and PM2.5

concentrations within short timeframes in both region 1 and region
2. This strong correlation strongly suggests that firms’ pollutant emissions
play a pivotal role in driving fluctuations in PM2.5 concentrations,
particularly during the winter months. However, this short-term

FIGURE 5
Spatiotemporal correlation between PM2.5 concentrations and industrial firms’ emissions in different regions of PM2.5 pollution. Note: region
1 represents Guanzhong, region 2 represents Northern Shaanxi, and region 3 represents Southern Shaanxi. (A,D,G) Region 1 TSP, Region 2 TSP, Region 3
TSP; (B,E,H) Region 1 S02, Region 2 S02, Region 3 S02; (C,F I) Region 1 NOx, Region 2 NOx, Region 3 NOx.
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influence onPM2.5 concentrations as a result of corporate emissions is not
evident in region 3.

Figure 5 also shows that the emissions from industrial firms in
region 1 strongly resonate with PM2.5 from November to February
2017 and 2018. However, during a short period of 32–64 days, the
emissions negatively related with PM2.5 concentrations, implying that
changes in PM2.5 concentrations lag behind alterations in TSP
emissions from firms. In the winter of 2019, there is a significant
correlation between firm emissions and PM2.5 concentrations, but no
significant correlation is found in the spring of 2020 since industrial
emissions reduced during the COVID-19 lockdown, which caused an

unprecedented cessation of human activities that affected China’s
industrial production and pollutant emissions. Therefore, controlling
industrial emissions can alleviate PM2.5 pollution in Shaanxi.

3.5 Analysis of cross-wavelet in different
industries

Using region 1 as an example, the study found a strong correlation
between PM2.5 concentrations and pollutants emitted by thermal
production, supply, and steel industries within a short timeframe of

FIGURE 6
Spatiotemporal correlation between PM2.5 concentration and the air pollutants emitted by different industrial firms in region1 (Guanzhong).
(A,D,G,J) TSP steel industry, TSP thermal power industry, TSP cement manufacturing, PM heat production and supply; (B,E,H,K) S02 steel industry, S02

thermal power industry, S02 cement manufacturing, S02 heat production and supply; (C,F,I,L) NOx steel industry, NOx thermal power industry, NOx

cement manufacturing, NOx heat production and supply.
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8–32 days. However, the correlation coefficient displays irregular
fluctuations (Figure 6). Conversely, there was a weak correlation
between PM2.5 and emissions from cement and power sectors.
During a medium to long timeframe of 32–64 days, TSP emissions
from heat production and supply firms in 2018 and 2019 exhibited
correlations with PM2.5 concentrations. Moreover, SO2 positively related
PM2.5 concentrations in 2018 and 2019, while NOx and PM2.5 displayed
positive correlations in 2019 and 2020. Between 2017 and 2019, TSP, SO2,

and NOx emissions from cement manufacturing firms demonstrated
strong positive correlations with PM2.5. In contrast, there were weak
correlations between PM2.5 concentrations and pollutants emitted by
firms in the power and iron-steel industries. Within a long timeframe of
64–128 days, the correlation between emissions in the above four
industries and PM2.5 concentrations gradually weakened, except for
significant relationships between PM2.5 and NOx emitted by thermal
production and supply firms.

FIGURE 7
Spatiotemporal correlation between PM2.5 concentrations and meteorological factors in region 1 (Guanzhong). (A) Region 1 pressure, (B) Region 1
temperature, (C) Region 1 humidity, (D) Region 1 sunshine hours, (E) Region 1 wind speed.
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3.6 Spatiotemporal correlation between
PM2.5 concentrations and meteorological
factors

In addition to firms’ emissions, meteorological factors are also
an important driver of PM2.5 concentrations (Jia et al., 2020). This
section takes region 1 as an example to further analyse whether
meteorology further influences the changes in PM2.5 concentrations
on basis of emissions from firms. Specifically, the study examines the
periodic effects of atmospheric pressure, temperature, humidity,
wind speed, and sunshine on PM2.5 using time-series data and
Morlet cross-wavelet transform analysis. Figure 7 shows that the
PM2.5 concentration has a negative correlation with atmospheric
pressure, humidity, wind speed, and sunshine on an 8–32 days time
scale, while no significant correlations are observed with air
temperature. In addition, the degree of correlation between PM2.5

concentration and wind direction, air pressure, and humidity during
the winter defense period in 2017–2018 and 2018–2019 is
significantly higher than that in other years. In a certain extent,
it can be inferred from Figures 5A–C that a connection exists
between the heightened responsiveness of firms’ emissions to
ambient PM2.5 and alterations in meteorological conditions. This
dynamic suggests that firms emit comparable levels of pollutants but
contribute to more PM2.5 pollution, possibly due to changing
meteorological factors.

4 Conclusion

This study utilizes data of PM2.5 concentrations collected from
169 air quality monitoring stations and 361 industrial firms situated
in all county-level cities within Shaanxi Province. The spatial cluster
analysis method is used to determine the clustering region of PM2.5,
while the spatiotemporal correlation between PM2.5 concentrations
and industrial firm emissions in different smog-contaminated areas
is evaluated using the cross-wavelet analysis method.

The findings of this study indicate that the mean PM2.5

concentrations in Shaanxi Province decreased from 50.2 to 38.1 μg/
m3 between 2017 and 2020, which can be attributed to the 3-year plan to
control haze and improve air quality. Themean PM2.5 concentrations in
summer and winter were 38.9 μg/m3 and 77.6 μg/m3, respectively, with
higher concentrations observed during winter. Additionally, the mean
PM2.5 concentrations in Guanzhong, Northern Shaanxi, and Southern
Shaanxi were 57.4, 40.3, and 33.2 μg/m3, respectively, with Guanzhong
having a higher PM2.5 concentration than Southern Shaanxi.

The K-means clustering method is employed to cluster daily
PM2.5 concentrations in winter, and three pollution areas are
identified based on ground elevation information and
geographical subregions of Shaanxi Province. PM2.5

concentrations in the three regions of Shaanxi Province during
winter show periodic changes, with pollutants emitted by firms
lagging about 1/4-1/2 of the period. In the 16–32 days period, PM2.5

concentrations are significantly affected by PM, followed by NOx

and SO2. NOx has significantly affected PM2.5 concentrations in the
32–64 days period, while in the 64–128 days period, the impact of
NOx and SO2 on PM2.5 concentrations is similar. Industrial firms in
regions 1 and 2 significantly affect local PM2.5 concentrations, while
the impact of industrial firms in region 3 is minor.

We also found during the COVID-19 lockdown, industrial firm
emissions, excluding those in the heat production and supply
industry, had no significant impact on PM2.5 concentrations,
indicating that controlling air pollutants emitted from firms can
alleviate PM2.5 in Shaanxi. Furthermore, pollutants emitted by firms
in the thermal production, supply, and steel industries have a greater
impact on PM2.5 concentrations than those from the cement
manufacturing and power industries.

The study findings suggest that the government should focus on
reducing and eliminating backward production capacity,
strengthening discharge control of thermal power production,
supply, and steel-iron industries, and promoting industrial
structure optimization and upgrading in Shaanxi Province to
reduce PM2.5 concentrations during winter. Specifically, for the
Guanzhong and northern Shaanxi regions, there is a particular
need to control pollutant emissions from firms under
unfavourable meteorological conditions in order to effectively
mitigate the severe PM2.5 pollution caused by firms’ emissions.
For the southern Shaanxi region, there is a need to prevent firms in
the northern Shaanxi and Guanzhong regions from relocating or
relocating some of their production orders to southern Shaanxi.
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Combination optimization of
green energy supply in data center
based on simulated annealing
particle swarm optimization
algorithm

Xuehui Liu, Guisheng Hou* and Lei Yang*

College of Economics and Management, Shandong University of Science and Technology, Qingdao,
China

At present, the high energy consumption of data centers based on grid power
supply not only brings huge direct cost of electricity, but also indirectly produces a
lot of greenhouse gases, which affects the natural environment. Academia and
industry are beginning to introduce clean renewable energy sources such as wind
and solar power into data centers to reduce operating costs and environmental
damage by building new green data centers. To solve this problem, this study
considers the use of waste heat for refrigeration while taking natural gas power
generation into account, and introduces wind energy as a green energy source.
On the premise of considering the response level of data centers, the two
resources are combined and deployed to improve resource utilization and
reduce energy consumption costs. Aiming at the instability of wind power
generation, a particle swarm energy scheduling optimization algorithm based
on simulated annealing algorithm was proposed by combining simulated
annealing algorithm and particle swarm optimization algorithm. The research
shows that, considering the response level of data centers, the use of natural gas
and wind energy as the main energy supply can effectively reduce the overall
energy consumption of data centers.

KEYWORDS

data center, simulated annealing algorithm, particle swarm algorithm, green energy
consumption, combination optimization

1 Introduction

Data centers can provide resource services and application services such as data
computing, storage and exchange, and have become the cornerstone of global economic
development. According to the latest data from Synergy Research Group, the total number of
large-scale data centers rose to 597 by the end of 2020, doubled the number in 2015. Data
center is a building site that provides operating environment for centralized electronic
information equipment. It must ensure uninterrupted operation for 8760 h a year, and has
the characteristics of large heat dissipation, stable operation, high reliability, and high
requirements on air temperature, humidity and cleanliness. Data center requires a large
amount of power resources, data centers around the world consumed 200 terawatt hours per
year in 2018 (Jones, 2018), which was estimated to account for 1.4% of global power
consumption and is expected to reach 5% of global power consumption by 2024 (Avgerinou
et al., 2017). The power consumption of data centers is mainly composed of four parts: IT
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equipment, air conditioning system, lighting system, power supply
and distribution system. The energy consumption of IT equipment
accounts for about 45%, and that of air conditioning system
accounts for about 40% (Gandhi et al., 2012; Vasques et al.,
2019). More than 99% of the electricity used to power IT
equipment is converted to heat energy. If the excess heat energy
is not removed in time, the temperature will rise and result in IT
equipment faults or even fires. Therefore, data centers need to be
equipped with air conditioning systems to control the device
temperature within a certain range. This ensures the stable
operation of IT equipment and the optimal performance of the
devices in the data center throughout their life cycle. There are a
variety of temperature management methods in data centers, such as
air cooling (Parolini et al., 2012; Li et al., 2012), water cooling (Xu,
2007), immersion cooling (Yao et al., 2017), etc. Air cooling uses air
circulation and air conditioning technology to eliminate the heat
generated by data centers. Due to its simplicity and low cost, it has
become the most common temperature management method in the
data center industry at present.

In order to reduce the consumption of fossil energy in the
operation of data centers, enterprises begin to build green data
centers, which use renewable energy such as wind and solar energy
to supply part or all of the electric energy of data centers, so as to
reduce carbon dioxide emissions. However, large-scale data centers
are often built in remote areas with wide areas, sparse population
and good climate, which are usually rich in solar and wind energy
resources. For example, Amazon has built its largest wind farm in
Texas, which can produce more than 1 million megawatt hours of
energy per year to power its data centers. Green House Data built a
wind power plant in Wyoming to power the data center, which can
reduce costs and carbon emissions from a global perspective, and
has great economic and environmental significance (Goiri Í et al.,
2013).

As data volumes proliferate, researchers realize that the
advantages of data centers are becoming apparent, so more work
is being devoted to the question of how to enhance the energy use of
data center networks. Researchers try to use more and more
renewable energy equipment to increase new energy to provide
energy, and reduce the use of thermal power generation energy (Bi
et al., 2016). Li and Hu et al. proposed that energy storage devices
could be used to use wind energy in different time domains (Li et al.,
2017), and batteries could be used to store solar energy in the
daytime and provide power to data centers at night when users are
frequently active (Chao et al., 2013; Li et al., 2014), thus reducing
carbon emissions of data centers. For data centers equipped with
unstable new energy sources such as wind and solar, as well as non-
green energy sources such as diesel generators, how to allocate
different energy ratios to meet the needs of reliability, environmental
protection and economy is a key issue. Kong and Liu proposed
Green Planning (Kong et al., 2016), an energy allocation scheme that
minimizes the total energy consumption cost and carbon emission
cost during the life cycle of data centers. Ren and Wang et al. also
proposed an energy allocation scheme that minimizes the total
energy consumption cost and limits the total carbon emission
during the life cycle of data centers (Ren et al., 2012). Deng and
Stewart et al. took carbon emissions generated by energy
combustion as part of the application cost from the perspective
of application. By studying how to make reasonable and effective

resource allocation for data centers with multiple energy sources,
they canminimize the use of purchased thermal power from the grid
(Deng et al., 2012). Tripathi and Vignesh et al. designed a mixed
integer linear programming model for resource planning and total
cost minimization of distributed green data centers, it could
minimize the cost of server deployment and power usage while
minimizing the consumption of renewable energy. The results show
that the adoption of green energy can reduce carbon emission and
total cost (Tripathi et al., 2017). Deng and Liu et al. studied various
types of power supply systems of data centers and designed online
control strategies according to the characteristics of different energy
sources, so as to reduce the operating costs of power supply systems
of data centers (Deng et al., 2013). Ren and Wang et al. took the
renewable energy generation, dynamic electricity price and
operation cost of energy storage equipment in data centers into
account to propose an optimization strategy aiming at minimizing
the cost of data centers. Their research results showed that by
including renewable energy in the power capacity planning of
data centers could minimize the operating cost while reducing
the carbon emission of data centers (Ren et al., 2012).

At present, a lot of research work focuses on the design of data
centers with green energy as the main power source, and a green
computing platform has been built accordingly to further analyze
the availability of new energy power supply and the effectiveness
of power resource management strategies. Goiri and Bianchini at
Rutgers University had been working on new energy data center
management in a batch-load environment and proposed the
Green Slot parallel batch scheduler, in which the server system
was powered by a solar array with grid power as backup power.
Green Slot first predicted the solar energy supply based on
historical data and weather forecast, and then allocated
enough resources for the load to be processed in the future
according to forecast information and user information, so as
to meet the latest completion time of batch processing tasks and
maximize the utilization of new energy (Goiri et al., 2012). Later,
the team designed a solar powered data center called Parasol as a
research platform. In addition to power grid and solar power
system, Parasol was also equipped with backup battery system, air
refrigeration unit and air conditioning (Goiri I. et al., 2013).
Carroll and Balasubramaniam et al. gave out a dynamic
optimization solution of green data service, which took
weather, geographical location of data center and other factors
affecting the output power of renewable energy into
consideration for prediction by using genetic algorithm
(Carroll et al., 2011). Zhang and Wang et al. studied how to
dynamically allocate service requests among data centers in
different geographical locations according to local weather
conditions in order to maximize the use of renewable energy
(Zhang et al., 2011). Arlitt and Bash et al. put forward the model
of “net zero energy data center”, which offset the energy
consumed in the construction and operation of data center
with the utilization of clean energy, and built a prototype
system as a test platform (Arlitt et al., 2012).

Distributed energy, represented by natural gas combined
cooling and thermal power supply system has high efficiency,
cleanliness and reliability due to its characteristics of cascade
utilization of energy, which can effectively reduce the primary
energy consumption of data centers (Xu and Qu, 2013). At
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present, many studies have proved the feasibility and reliability of
using distributed energy system to power data centers. Sevencan
and Lindbergh et al. comprehensively analyzes the energy
efficiency, economic and environmental characteristics of the
combined cooling, thermal and electric power supply system
applied in data centers, and the results show that the stable
load demand and low electric-cooling ratio of data centers
make it a better match with the combined power supply
system, and the operation cost can be reduced by 54%
(Sevencan et al., 2016). However, due to the limited
thermoelectric ratio of the system, it often does not match the
dynamic load of the user, resulting in the low utilization rate of
the system equipment, poor adaptability and other problems. In
order to improve its characteristics, coupled with the deepening
of the energy Sustainable Development Goals, the use of
renewable energy technologies such as solar and wind power,
as well as storage Settings, is also increasing in data centers.
However, due to the fluctuation and randomness of renewable
energy, instability factors are brought to the planning and
operation of cold, hot and electricity combined power supply
system (Zheng et al., 2021). Therefore, most studies prefer to
adopt complementary ways to power data centers, improve the
utilization rate of renewable energy and reduce the consumption
of fossil fuels. Sheme et al. demonstrated the possibility of using
renewable energy for power supply in data centers at 60° north
latitude, and the results showed that natural gas, solar energy and
wind power generation could achieve higher economic benefits
and better stability through collaboration (Sheme et al., 2018)

The combination of task scheduling algorithm with data center
green energy consumption is also a research hotspot in recent years.
Tu and Yao et al. adopted load scheduling and alternative energy
supply strategies to reduce energy consumption expenses of cloud

data centers (Tu et al., 2013; Yao et al., 2014). Kumar and Aujla et al.
proposed a green energy sensing task scheduling and classification
method based on container technology, which transmit the arrived
tasks from multiple devices to the data center and provided enough
green available energy. On this basis, a container integration and
host specification method based on green energy was proposed
(Kumar et al., 2019). Khosravi and Andrew et al. proposed a variety
of effective virtual machine layout methods to evaluate the actual
performance of virtual machines, and determined the parameters
that have the greatest impact on fossil raw materials, green energy
consumption, cost and carbon footprint (Khosravi et al., 2017). Li
and Qouneh et al. proposed an energy switcher to coordinate the
request load and new energy supply by constantly switching between
new energy and traditional power grids, so as to maximize the use of
new energy (Li et al., 2011). The task scheduler GreenSlot proposed
by Goiri and Le et al. which could carry out scientific calculation, and
the task scheduler GreenHadoop processing distributed big data
both considered the fluctuation of power grid price and solar energy
supply (Goiri et al., 2012). And their goal was to achieve green, low-
cost task scheduling under the condition of meeting task deadlines.
Krioukov and Goebel et al. proposed a supply-following method for
task scheduling, so as to balance task load and wind energy supply
and realize green data center scheduling (Krioukov et al., 2011).
Aksanli and Venkatesh et al. proposed a new energy prediction
algorithm, which carried out task scheduling based on the predicted
new energy output, so as to improve the utilization rate of new
energy (Aksanli et al., 2011). Gmach and Rolia et al. proposed a
solution to estimate the power capacity of data centers based on the
output of new energy and the requested load. This solution provided
the reference basis of the power supply of different sources, so as to
achieve the supply and demand balance between new energy and the
requested load (Gmach et al., 2010).

FIGURE 1
Typical daily wind power curve of data center. The wind power at each moment shall not exceed ±10% of the typical value at that moment and add
the disturbance value.
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Through literature review, it can be found that the combination
of green energy and data center energy consumption, and the
effective scheduling of green energy as a supplement to
traditional energy is the hot spot of current research. Particle
swarm optimization (PSO) is a representative energy
consumption scheduling method for data centers. However,
existing researches mainly analyze from the perspective of
consumption, and rarely consider the supply optimization of
different forms of energy, as well as the combination of data
service load allocation and green energy scheduling. Therefore,
this paper proposes to consider the coordination of natural gas
power generation and wind power generation, and at the same time
use the waste heat of natural gas power generation to drive
refrigeration, and the dual-objective scheduling model of data
center energy consumption under the situation, the simulated
annealing particle swarm optimization algorithm is used to solve
the model, and the simulation is conducted. The results show that
the combination of natural gas and wind power generation, In this
way, the overall power consumption of data centers can be reduced
without ensuring the service level of data centers.

2 Data center energy conversion model

The data center obtains electricity through natural gas power
generation and wind power generation. Considering the instability
caused by wind power volume, it needs to charge the battery after the
charger rectification and then use the inverter power supply with
protection circuit to convert the chemical energy in the battery into
alternating current, so as to ensure the stable use. The gas turbine is
used to burn natural gas to generate electricity and drive the receiver
refrigeration unit to refrigerate, so as to reduce the temperature of
the data center.

(1) Gas turbine

Gas turbine is a kind of internal combustion power machinery
which uses continuous flow of gas as working medium to drive
impeller to rotate at high speed and convert fuel energy into
useful work. The air is compressed by the compressor, mixed with
light fuel and introduced into the combustion chamber for full
combustion to generate high temperature and high-pressure gas,
thus driving the rotation of the generator and generating electric
energy. The excess high temperature gas is refrigerated by the
absorption refrigeration unit to improve the energy utilization
rate (Mansourim et al., 2012), and its output power is
expressed as:

PGT � λGGT (1)
GGT and PGT are the input gas power and output electric power

of the gas turbine respectively, λ is the energy conversion efficiency.

(2) Absorption refrigeration unit

Absorption refrigeration units refrigerate by absorbing waste
heat in gas turbine system, so as to meet the cooling load
requirements of data centers. Lithium bromide and water are
generally used as catalysts for refrigeration. The lithium bromide
absorption chiller can be combined with the gas turbine to use the
exhaust steam of the gas turbine as the heating steam of the lithium
bromide absorption chiller, which can improve the utilization rate of
water steam and meet the requirements of power generation and
refrigeration at the same time (Liu and Wang, 2004). Its
mathematical model is:

CGC � η · QGT · ξ (2)
CGC is the cooling capacity of lithium bromide absorption

refrigerating machine; η is the recovery rate of waste heat, which
is related to room temperature and can reach 0.65 at present. ξ is the
refrigeration coefficient of unit; QGT is waste heat generated by gas
turbine, and its value can be expressed as:

QGT � PGT 1 − λ − λ1( )
λ

(3)

λ1 is the heat loss coefficient of gas turbine, and the fixed value
λ1=0.03 is usually taken (Misra et al., 2005).

(3) Wind power generation

Wind power as a clean energy source can be used to power data
centers. In the process of wind power generation, the fan blade
rotates under the thrust action of air inflow, and the low-speed shaft
connected to the blade drives the high-speed shaft to rotate through
the gearbox, which drives the generator to generate electric energy
(Muljadi and Butterfield, 2001). According to Baez theory, the
mechanical power captured by the wind turbine from the wind is
Pm � 1

2 ρSCPv31, where ρ is the air density, the value is 1.25kg/m3

generally, S is the sweep area of the impeller, CP is the utilization
coefficient of wind energy, v1 is the inlet wind speed of the impeller.
The power generation curve of a typical wind day is shown in
Figure 1. There is a certain deviation between the wind power value
of the data center and the power curve of typical wind power day.
Considering the instability of wind power generation, the wind
power value at each moment should not exceed ±10% of the typical

TABLE 1 Equipment operating parameter.

Equipment Efficiency Cost (RMB/kW) Output range (kW)

Gas turbine 0.4 0.041 [0,1700]

Lithium Bromide Absorption Chiller 0.95 0.035 [0,1300]

Wind turbine 0.8 0.023 [0,1200]

Electric refrigerator 3 0.050 [0,500]
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value at that moment to add the disturbance value, so as to better
simulate its power generation process.

(4) Electric refrigerator

Electric refrigerating machine uses the electric energy
generated by gas unit and wind power generation to drive the
compression refrigeration unit to refrigerate. The compression
refrigeration unit is a refrigeration equipment that converts
electric energy consumption into cold energy. By absorbing
and compressing the gas in the evaporator, the high
temperature and high-pressure gas is transported into the
condenser, and the heat is released in the condenser to form
high pressure and low temperature gas. The gas is depressed to
low temperature and low pressure through the throttle, and
finally absorbs excess heat in the evaporator to form cold gas.
Its mathematical model is as follows:

CEC � γPEC (4)
CEC is the output cold power of electric refrigerator, PEC is input

power for electric refrigerator, γ is the energy conversion efficiency.

(5) Data center power consumption model

The power consumption of a data center is linearly correlated
with the number of active servers in the center (Liu et al., 2022).

ei,t � kmi,t + β, ∀i ∈ I, t ∈ T (5)
T is the set of time nodes; I is the number of data centers set;

ei,t is the power consumption of the data center i at time t; k and β
are the parameters representing the relationship between data
center power consumption and active server,mi,t is the number of
active servers in the data center i at time t, the equation is shows
as below:

mi,t � 0, 1, . . . ,Mi (6)
Mi is the total number of servers in the data center.
Server is a device that processes data load, and the time delay of

data processing is related to the average service rate and number of
servers. Its model can be expressed as:

0< 1

μ − Li,t
mi,t

≤D (7)

μ is the average service rate of the active server, Li,t is the total
data load allocated to data center i at time t; D is the upper limit of
time delay for data centers to process data loads.

After sorting out the above formula, the power consumption
model of data center can be expressed as follows:

ei,t � kmi,t + β

mi,t ≥
Li,t

μ − 1
D

0≤mi,t ≤Mi,mi,t ∈ N*

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(8)

In Eq. 8, although the number of active servers mi,t is a positive
integer with unit change, but it can be regarded as a continuous
variable in simulation analysis compared with the total number of
servers with a large value. Combining the first and second terms of
Eq. 8, we can get:

μ − 1
D

k
ei,t − β( )≥ Li,t (9)

Combining the first and third items of Eq. 8, we can get:

β≤ ei,t ≤ kMi,t + β (10)
To sum up, Eqs 9, 10 are power consumption models of data

centers.

3 Economic dispatch model for data
center

(1)The upper-layer scheduling model

The upper layer of the optimal scheduling model of energy hub
in data center is the energy consumption cost model, whose
objective function is the minimum system operation cost,
including energy purchase cost and unit operation and
maintenance cost. The objective function is:

minC � [cgt · GL
t + εGTt · PGT

t + εWT
t · PWT

t + εGCt · CGC
t + εECt · CEC

t( )
+ τESt · PES

t

∣∣∣∣ ∣∣∣∣ + τCSt CCS
t

∣∣∣∣ ∣∣∣∣( )] (11)

GL
t is the natural gas power purchased; c

g
t it the price per unit of

power purchased natural gas; PGT
t , PWT

t , CGC
t , CEC

t are the output
power of gas turbine, the output power of wind turbine, the output
cold power of absorption refrigerator and the output cold power of
electric refrigerator respectively; εGTt , εWT

t , εGCt are operation and
maintenance costs of gas turbine, wind turbine, absorption
refrigerator and electric refrigerator; PES

t , CCS
t are the output

power of electricity storage and cold storage equipment; τESt , τCSt
are the operation and maintenance costs of energy storage
equipment. The objective function has two constraints.

① Constraints on power balance in system operation

PGT
t + PWT

t + PES
t � QE

t + QEC
t (12)

CGC
t + CEC

t + CCS
t � QC

t (13)

QE
t , Q

EC
t , QC

t are the electrical load of IT equipment, electrical
load of refrigeration equipment and cooling load demand
respectively, among which the electrical load of IT equipment
includes basic electrical load and data load.
②The unit output limit

TABLE 2 Energy price.

Category Period Price (Yuan·kW·h)
Wind power Normal period 0.667

Valley period 0.322

Natural gas peak period 08:00–24:00 0.368

valley period 00:00–08:00 0.122
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PGT
t,min ≤P

GT
t ≤PGT

t,max (14)
PWT
t,min ≤PWT

t ≤PWT
t,max (15)

CGC
t,min ≤C

GC
t ≤CGC

t,max (16)
CEC

t,min ≤C
EC
t ≤CEC

t,max (17)
PES
t,min ≤P

ES
t ≤PES

t,max (18)
CCS

t,min ≤C
CS
t ≤CCS

t,max (19)
Pi,t,min ≤Pi,t ≤Pi,t,max (20)

PGT
t,max, P

GT
t,min are the upper and lower limits of gas turbine

output respectively; PWT
t,max, P

WT
t,min are the upper and lower limits of

wind turbine output; CGC
t,max, C

GC
t,min are the upper and lower limits of

the output of the absorption refrigerator; CEC
t,max,C

EC
t,min are the upper

and lower limits of the electric refrigerator output; PES
t,max, P

ES
t,min are

the upper and lower limits of the output of the electrical storage
equipment; CCS

t,max, C
CS
t,min are the upper and lower limits of output of

cold storage equipment; Pi,t,max, Pi,t,min are upper and lower limits of
the generator output in center i.

(2) The lower-level scheduling model

The objective function of the lower model is to minimize the
total power consumption of data distribution load and the total
delay time of data processing.

minG � ω1 ·∑
i∈I

ei,t + ω2 ·∑
i∈I

Li,t

μ − Li,t
mi,t

(21)

In the formula, ω1、ω2 are the weight coefficients of the two
objectives. The constraints of the lower model include the constraint
on the number of servers in the data center and the delay constraint.
For specific formulas, it can refer to Eqs. 8–10.

(3) Solution Method

According to the characteristics of the model, adaptive
simulated annealing particle swarm optimization was used to
solve the dual-objective scheduling model. Particle swarm
optimization (PSO) algorithm is a swarm intelligence
optimization algorithm inspired by the foraging behavior of birds
(Kennedy and Eberhart, 1995). This algorithm initializes a set of
solutions randomly, and then updates these solutions iteratively to

find the optimal solution of the problem within a limited number of
iterative steps. The idea of simulated annealing comes from the
principle of physical annealing of solid materials. The particles
inside will release their internal energy with the gradual decrease
of temperature, which gradually makes the particles tend to order.
Particle swarm optimization mainly relies on competition and
cooperation between groups, so in the initial stage of operation,
the algorithm convergence speed is fast, but particle swarm
optimization is easy to fall into the local optimal, low precision,
which leads to the ability of particle swarm optimization to obtain
the global optimal solution is weak. The simulated annealing
algorithm has asymptotic convergence. As long as the initial
temperature is high enough and the annealing process is slow
enough, the algorithm will converge to the global optimal
solution with 100% probability in theory. By combining the two
methods, the search process selects the probability transform
particle flight direction according to the designed simulated
annealing, and the central particle leads the particle flight search,
so as to avoid the search process falling into the local optimal region,
so as to improve the search efficiency and accuracy of the optimal
solution, and effectively solve the perturbation problem in reality.
The algorithm of the research object in this paper has a small search
space, which overcomes the shortcomings of the simulated
annealing algorithm which takes a long iteration time to
converge to a high-quality approximate optimal solution and has
a slow convergence speed. Meanwhile, the asymptotic convergence
of the simulated annealing algorithm is consistent with the
characteristics of wind power generation, which can better
simulate the comprehensive energy consumption change
proposed by this model.

In this paper, in the Matlab 2019a language environment,
Gurobi solver is used to solve the two-layer model. Combined
with the model construction above, the energy scheduling
process of data centers is described as follows.

Step 1 : The user requests computing services from the data center.

Step 2 : Data center Calculate the configuration solution based on
customer requirements, data center server usage, server distribution,
and data center energy consumption cost.

Step 3 : Provide solutions based on user computing requirements,
such as response time, transmission speed, and delay time.

Step 4 : Calculate the server resources and energy resources that can
be scheduled based on the user’s service requirements and input
them into the green energy scheduling model of the data center.

Step 5 : The lower layer model aims to calculate the minimum total
power consumption of the load and the minimum total delay time.
Considering the data service requirements of users and the load
distribution of data center servers, the energy consumption
requirements are determined and uploaded to the upper layer
model.

Step 6 : After receiving the server scheduling policy developed by
the lower-layer model, the upper-layer model ensures that the
energy consumption policy required by the lower-layer service

TABLE 3 Data load Simulated.

Time Data load Time Data load Time Data load

0 75499 8 71113 16 97043

1 88189 9 70497 17 73808

2 82268 10 77077 18 74948

3 78803 11 74624 19 78892

4 78963 12 96243 20 91461

5 70211 13 76082 21 77660

6 94451 14 61325 22 87657

7 91239 15 72335 23 96880
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has the minimum deviation from the upper-layer energy
consumption scheduling plan. After several iterations, the data
center energy supply scheduling plan is output when the result
meets the requirements.

The pseudo-code of scheduling model is as following:

1: Algorithm input: particle number M, maximum number of
iterations K, maximum and minimum of inertia weight wmax,
wmin, acceleration factor c1, c2, temperature attenuation
coefficient u.

2: Algorithm output: global optimal position Gt, Y(Gt).
3: Generate N particles randomly and initialize the optimal

position of individual particles and the global optimal value.
Generate initialization positionXi(0), velocity Vi(0) randomly,
Yi � (GL

t , P
GT
t , PWT

t , CGC
t , CEC

t , PES
t ), set particle optimal

position Pbesti � Xi(0), global extremum Gbest.
4: n � 0
5: u � 0.95
6: Tk � K/lg(5)
7: While n<K
8: for i =1 to M do
9: for j =1 to N do
10: Si,j � rand × (Pi − Pj)
11: wk � w max − n

K × (1 − fit(Gbest)
fitmean

)
12: Tk � uTk−1
13: Pi,n � exp −fit(Pbesti)−fit(Pbestj)

Tk
{ }

14: rij � rand(0, 1)
15: if Pi,n < rij
16: Vj

i,n+1 � wkV
j
i,n + c1r

j
i,n(Pj

i,n − Xj
i,n) + c2r

j
i,n(Sjn − Xj

i,n)
17: else
18: Vj

i,n+1 � wkV
j
i,n + c1r

j
i,n(Pj

i,n − Xj
i,n) + c2r

j
i,n(Gj

n − Xj
i,n)

19: if −V j
max <Vj

i,n+1 <V j
max

20: Xj
i,n+1 � Xj

i,n + Vj
i,n+1

21: endfor
22: calculate Y(Xj

i,n+1)
23: if Y(Pi,n)<Y(Xj

i,n+1)
24: Pi,n+1 � Pi,n

25: else
26: Pi,n+1 � Xj

i,n+1
27: endfor
28: find the best Pi,n+1 from all as Gj

n+1

29: n � n + 1
30: enddo

4 Model simulation

(1) Model parameter setting

In order to verify the effectiveness of the proposed model, the
data center of Gansu Province is selected as the simulation example.
The data center of this province is rich in wind energy and solar
energy resources and convenient in obtaining natural gas, which
conforms to the research design of this paper. The dispatching cycle
is 24 h a day.

Operating efficiency, maintenance cost, output interval and
other parameters of different equipment are different, and these
parameters will have an impact on the value of the objective
function. Therefore, we use conventional settings for reference
and the assignment of relevant parameters is shown in Table 1.

In this study, natural gas power generation and wind power
generation are used as energy sources for data centers. The prices of
natural gas and wind power generation fluctuate in different periods,
as shown in Table 2.

According to the data load assigned to the data center, the power
load consumed by the server varies. The 24-h analog data load
generated by the whole random system is shown in Table 3, and the
basic power load and cooling load are shown in Table 4.

Considering the load distribution of computing demand, this
study simulates three data centers to assume computing demand
respectively, and data centers provide computing services according
to the allocated computing demand. The hardware resources and
cooling resources are also different, which leads to different electrical
loads consumed by servers, thus affecting the overall energy
consumption of data centers. Data center performance
parameters and randomly generated 24-h simulated data load
values are shown in Table 5.

(2) Simulation result

Assign values to formulas 7 and 8 in accordance with Table 2,
Table 3, and assign values to formulas (1)formulas –formulas (4) in

TABLE 4 Electrical load and cooling load in 24 h.

Time Electric
load (kW)

Cooling
load (kW)

Time Electric
load (kW)

Cooling
load (kW)

Time Electric
load (kW)

Cooling
load (kW)

0 382.35 1200 8 326.94 1570 16 509.54 1105

1 498.31 1192 9 443.87 1670 17 442.85 1443

2 474.31 1177 10 348.94 1488 18 349.62 1639

3 300.35 1165 11 340.1 1496 19 447.13 1399

4 471.81 1176 12 369.79 1668 20 355.73 1468

5 355.38 1189 13 518.41 1442 21 425.63 1108

6 491.25 1250 14 471.37 1154 22 409.93 1614

7 474.39 1310 15 374.32 1359 23 465.1 1598
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accordance with Table 1, then substitute them into formula 11 and
calculate from the third line of pseudo-code. The corresponding
results can be obtained through simulation calculation. After
simulation, the data load distribution and the number of servers
used in each data center are shown in Table 6.

The purchased power of electricity and gas, the output of all
energy conversion equipment and the output of energy storage
device are shown in Figure 2, Figure 3, Figure 4.

It can be seen from Figure 2 that due to the stable supply of
natural gas, the cost of natural gas fluctuates relatively little

TABLE 5 Performance parameters of different data center.

Parameter Data center one Data center two Data center three

Data load capacity (unit) [0,45000] [0,45000] [0,45000]

β/kW 100 150 200

Mi/unit 1500 1500 1500

k/(kW/unit) 0.4 0.4 0.4

μ/(unit/s) 25 25 25

Db/ms 250 200 150

TABLE 6 Data center load and server allocation. The data before and after “/” in the table are the number of data loads allocated by each data center and the
number of servers used respectively.

Time (h) Data center one Data center two Data center three

0 32666/1132 30461/1381 27339/1038

1 32884/1417 32103/1050 26325/1111

2 32109/1348 33141/1446 34841/1472

3 33126/1085 26951/1423 31567/1230

4 33503/1275 35950/1151 34515/1397

5 35918/1343 27846/1229 29634/1173

6 29916/1151 28852/1182 30707/1239

7 32602/1406 26954/1038 27403/1424

8 29145/1098 27349/1477 31910/1421

9 34996/1203 26619/1388 27148/1474

10 30011/1462 27403/1300 31781/1237

11 26142/1252 32571/1388 29264/1459

12 34147/1056 28471/1456 32706/1005

13 26945/1453 26057/1084 29505/1144

14 31654/1196 26166/1431 33431/1201

15 34951/1162 30027/1315 27352/1332

16 33212/1105 35175/1035 34267/1234

17 32468/1378 27862/1471 28606/1453

18 27311/1305 29760/1467 26683/1462

19 26127/1458 31598/1474 31788/1268

20 28733/1007 26110/1308 34973/1446

21 31477/1154 35515/1266 33370/1180

22 32008/1215 32194/1351 32965/1479

23 29411/1353 35545/1013 34685/1201
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within a day, and there is a stable period of time, while the cost of
electric power generation fluctuates to a certain extent due to the
disturbance brought by wind instability. In this case, natural gas
should be used as the main energy supply mode, and energy
storage should be adopted to effectively utilize wind energy, so as
to ensure the data center computing service demand and cost
requirements.

It can be seen from Figure 3 that output efficiency trends of natural
gas power generation and refrigeration are basically similar. Therefore,
it is necessary tomake full use of natural gas as themain source of power
supply and refrigeration for data centers to fully improve energy
utilization efficiency. The effect of electric refrigeration has a certain
correlation with the cost of electricity. In order to ensure the stability of
the effect of electric refrigeration, it is necessary to ensure the stability of
natural gas power generation at the same time, and use the stored wind

power as an effective supplement when the price of natural gas
fluctuates.

It can be seen from Figure 4 that the output level of the electric
energy storage device is basically stable, which indicates that the
energy of wind power generation can be effectively stored by
batteries and continuously and stably output, while the output of
the cold storage device fluctuates to a certain extent due to the dual
influence of natural gas and electricity.

Although wind power generation has certain instability, the
simulation after adding disturbance can find that it can still
cooperate with natural gas and purchased electric energy as
the energy supply of data centers, which is reflected in the
reality that the refrigeration effect formed by it changes with
the energy efficiency disturbance. However, the relatively stable
natural gas function and the purchase of electric power function
can effectively and smoothly input. Ensure the smooth running of
the data center. And the main purpose of bringing in wind power
is to reduce energy consumption. Meanwhile, by comparing with
the author’s previous studies, it can be found that under the
condition of the same computing power and response speed, this
dispatching scheme can reduce the cost by 18.7% compared with
the simple use of electricity and 10% compared with the
combination of natural gas function and electricity purchase
under the condition of guaranteeing the response speed.
Therefore, the combination of wind power generation with
natural gas and electricity purchase as the energy supply of
data centers can not only ensure the service performance
requirements of data centers, but also effectively reduce the
cost of data centers.

5 Conclusion

Energy saving, cost reduction and carbon emission reduction
are the main problems faced by data centers. Researchers begin to
introduce clean renewable energy such as wind energy and solar

FIGURE 2
Cost of wind power generation and gas.

FIGURE 3
Output of energy conversion equipment.

FIGURE 4
Output of electric storage equipment and cold storage
equipment.
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energy into data centers for power supply, and reduce operating
costs and environmental damage through the construction of new
green data centers. However, in green data centers, the supply of
new energy power and the demand for data calculation will each
show significant and unrelated fluctuation characteristics over
time. Therefore, data centers urgently need efficient scheduling
methods to realize the match between load power demand and
new energy power supply. In this paper, the computing demand
distribution, green energy supply and energy scheduling
problems of data centers are studied in combination. Wind
power generation and natural gas power generation are used
to provide operation and cooling power for data centers.
Meanwhile, the waste heat of natural gas is used to drive the
refrigeration of lithium bromide absorption refrigerating
machine, so as to build the green energy supply and
scheduling model and carry out simulation calculation. The
results show that the model can effectively satisfy the
computing response speed of data centers, ensure the normal
operation of data center cooling and equipment, and reduce the
cost of data center power by 18.7% compared with traditional
energy sources.
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Based on the fundamental logic of “green finance – improvement of ecological

environment and new kinetic energy of economic development – sustainable

development of economy and society”, this paper conducts quasi-natural

experiments using panel data from 30 provinces and cities in China between

2013 and 2021. It explores the effects of pilot policies of the green finance reform

and innovation pilot zone on the sustainable development of the economy and

society through a double difference model. The study reveals that the

establishment of the green finance reform and innovation pilot zone has a

significant promoting effect on the sustainable development of the economy

and society. This conclusion remains valid even after conducting a series of

robustness tests. In further analysis, it is found that the promotion effect of the

green finance reform and innovation pilot zone on sustainable development

exhibits some temporal characteristics. It is particularly significant in regions with

lower levels of financial development and industrialization but higher levels of

technological innovation. Mechanism analysis indicates that the pathways

through which the green finance reform and innovation pilot zone facilitates

economic and social sustainable development are relatively singular, primarily

revolving around the improvement of the ecological environment. The key

contribution of this paper lies in demonstrating the crucial role of pilot policies

in the field of sustainable economic and social development. Additionally, it

offers new insights for strengthening the implementation effectiveness of green

finance pilot policies.

KEYWORDS

green finance pilot policy, sustainable development, difference-in-differences model,
extended study, pilot zones for green finance reform and innovations
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1 Introduction

With the challenge of global climate change, achieving

sustainable development in the economy and society has become

a crucial issue worldwide. Improving the ecological environment

and promoting green development are vital steps towards realizing

the harmonious coexistence between humans and nature and

enhancing sustainable economic and social development. Green

finance, as a financial policy aimed at environmental protection, has

emerged with the concept of sustainable development (Sun, 2021).

It has gradually become a crucial measure for promoting the green

development of the economy and society, significantly impacting

the ecological industrial structure, green industrial enterprises, and

the construction of ecological civilization. As a representative

developing country, China has shifted its economic development

mode from extensive to high-quality in recent years, embracing the

concept of green development. Green finance plays a vital role in

China’s sustainable economic and social development. In 2016, the

People’s Bank of China, along with seven ministries and

commissions, issued the Guidance on Building a Green Financial

System, making China the first country to promote and establish a

green financial system under the central government.

China’s green finance sector has experienced significant growth

and continuous reform. Extensive efforts have been made to

establish a comprehensive green financial system, focusing on

top-level design, financial instruments, and policy systems.

Notably, pilot policies within green finance have been advancing,

with the pilot zones for green finance reform and innovation

serving as a notable example. In 2017, the executive meeting of

the State Council of China decided to establish eight pilot zones

across five provinces and regions, namely Guangdong, Zhejiang,

Jiangxi, Guizhou, and Xinjiang. Each pilot zone has its own unique

characteristics and development focus, serving as both an

innovative regional development model and a benchmark for the

nation’s green financial progress. These pilot zones represent a stage

of further development, incorporating top-down design and

bottom-up pilot exploration. This approach facilitates the

accumulation of replicable experience in green financial

development, provides a platform for promoting comprehensive

green development in the economy and society, and accelerates

progress towards sustainability. It also contributes to accumulating

replicable experience in green financial development, strengthening

overall green development in the economy and society, and

enhancing sustainability.

Quantitative studies on green finance primarily focus on two

aspects. Firstly, they examine the economic benefits of green

finance, specifically the impact of its development on economic

growth (Ruiz et al., 2016; Muhammad et al., 2022; Yin and Xu, 2022;

Zhou et al., 2022; Sheng and Haonan, 2023). Secondly, they

investigate the ecological benefits of green finance, particularly its

role in improving the ecological environment (Zhu et al., 2020; Ding

et al., 2021; Dziwok and Jger, 2021; Ozili, 2021; Tma et al., 2021; Ao

et al., 2023; Xu et al., 2023). Some scholars have also examined the

influence of green financial development on green technological
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innovation (Zhang J. et al., 2022; Yang et al., 2023). However, these

studies mainly focus on the overall development of green finance

and its economic and ecological benefits. Notably, there is limited

research on the policy implementation perspective of green finance,

which presents an opportunity for further examination in

this paper.

China has been implementing pilot zones for green finance

reform and innovations for the past five years, making it a typical

policy in the field. Evaluating the effectiveness of this policy is

essential for future developments and achieving sustainable

economic and social growth. This study utilizes panel data from

30 provinces and municipalities in China between 2013 and 2021.

By employing a difference-in-differences (DID) model, the paper

examines the impact of the establishment of these pilot zones on the

sustainable development of the economy and society. The findings

of this study contribute to the improvement of green finance’s role

in promoting sustainable economic and social development.

The innovation and contribution of this paper are as follows:

Firstly, it adopts a unique research perspective. Unlike existing

studies that primarily examine the overall effects (economic or

ecological) of green finance development, this paper takes a fresh

approach by focusing on the pilot policy of green finance. It

evaluates the impact of this pilot policy through its policy effects,

thus addressing endogenous problems within the model and

providing precise insights into the influence of green finance on

sustainable economic and social development. Secondly, it

establishes a research mechanism. This paper employs a

comprehensive index system to evaluate economic and social

sustainable development. It then selects the dimension index of

sustainable development as the influencing factor for the green

finance pilot policy. This approach eliminates issues of omission,

repetition, and lack of economic logic support that may arise from

subjective judgments in selecting the action mechanism. Lastly, it

offers significant research findings. The analysis of regional

heterogeneity and the examination of the action mechanism

presented in this paper help explain the distinctive characteristics

of pilot policies in China’s Green Finance Reform and Innovation

Experimental Zone. Furthermore, it verifies the vital role of

innovation-driven approaches in fostering the sustainable

development of China’s economy and society in the present stage.

The remaining sections of this paper are organized as follows:

Section 2 provides a comprehensive literature review on the research

conducted on green finance and its correlation with sustainable

economic development. In Section 3, the model utilized in this

study is introduced, and the selection and measurement of

variables are explained based on data availability and scientific

rigor. Section 4 examines the outcomes of the benchmark

regression and robustness tests, shedding light on the impact of the

green finance pilot policy. Next, in Section 5, an in-depth exploration

is conducted to analyze the mechanism of action. This section delves

into the dynamic effects of pilot zones for green finance reform and

innovations on both sustainable economic and social development.

Finally, Section 6 summarizes the findings presented in this article

and provides targeted recommendations and measures.
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2 Literature review

Scholars have extensively researched the relationship between

green financial development and sustainable economic and social

development. Jeucken and Bouma (1999) emphasized the crucial role

of financial institutions in promoting sustainable economic

development. Other scholars have explored various connections

between green finance and sustainability. For instance, Jha and

Bakhshi (2019) investigated how green finance development

contributes to economic and social sustainability in India. Ronaldo

and Suryanto (2022) examined the relationship between green

finance development and sustainable development in Indonesian

fund villages, highlighting the significance of green finance in

fostering sustainability. Afzal et al. (2022) analyzed the positive

correlation between green finance and sustainable development

across 40 European countries. Wang K. et al. (2022) demonstrated

the global impact of green finance on sustainable development.

Additionally, Ma et al. (2023) confirmed the positive influence of

green finance development on sustainable development in China.

The impact mechanism of green finance on sustainable development

can be broadly categorized into two aspects: improvement of the

ecological environment and optimization of energy structure through

the application of renewable energy (Chen et al., 2023).

The development of green finance has been shown to contribute

to the sustainable development of the economy and society by aiding

in environmental improvement. Bai (2022) argues that green finance

can help achieve the goal of “carbon peaking and carbon neutrality”

while reducing the impact of climate change. Similarly, Liang and

Song (2022) found that green finance in China improves the

efficiency of carbon emissions and supports the “double carbon”

goal. Wu and Song (2022) highlight the negative impact of green

finance on carbon emissions, environmental pollution, and renewable

energy. Liu and Xia (2022) emphasize the role of green financing and

renewable energy in reducing carbon emissions. Li et al. (2023), using

the Delphi method and fuzzy hierarchy analysis, underscore the

importance of green finance as a key measure to minimize carbon

emissions. Feng and Yang (2023) present results suggesting that green

finance development helps reduce carbon emissions. On the topic of

sustainable development in developing countries, Hunjra et al. (2023)

find that green finance and environmental degradation have

opposing effects, with green finance playing a significant positive

role. Lastly, Mo et al. (2023) explore sustainable agricultural

development and note the contribution of green finance in China

by reducing carbon emissions.

The development of green finance and its impact on energy

structure and renewable energy have been explored by several

studies. Zhang and Wang (2019) found that green finance

supports sustainable energy development across various

dimensions, such as financial, economic, and environmental

domains. Additionally, Sun and Chen (2022) discovered that the

development of green finance positively influences the energy

consumption structure and contributes to sustainable economic

development. The detrimental effects of coal consumption on

environmental pollution were highlighted by Wang et al. (2023),

who also emphasized the positive impact of renewable energy on

improving environmental efficiency and promoting sustainable
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economic development. Furthermore, Zhou and Li (2022)

established a correlation between green finance development,

renewable energy utilization, and overall sustainable development

in China. However, the effects of these factors were noted to be

time-varying and heterogeneous. Carbon emissions reduction was

found to be a common outcome of green financial development,

renewable energy adoption, and sustainable development, as

highlighted by Zhang D. et al. (2022). Furthermore, Zhang J.

et al. (2022) demonstrated that investments in green finance and

renewable energy help mitigate the adverse effects of climate change

by reducing carbon emissions. Xing et al. (2022) identified a

negative correlation between green finance and carbon intensity,

and they concluded that the utilization of renewable energy is

predominantly influenced by policy drivers. Highlighting the

channel of renewable energy transition, Lee et al. (2023)

emphasized the contribution of green finance to sustainable

economic and social development. Lastly, Bei and Wang (2023)

argued that renewable energy plays a significant role in achieving

sustainable economic and social development.

Several studies have investigated the impact of pilot zones for green

finance reform and innovations. Liu and Wang (2023) and Sun et al.

(2023) indicated that these pilot policies can promote green

technological innovation. Wang et al. (2021) and Zhang et al. (2023)

also demonstrated that these pilot zones contribute to regional green

development. Huang and Zhang (2021) confirmed the beneficial effect

of pilot zones on reducing environmental pollution. From a firm

perspective, Chen et al. (2022) and Yan et al. (2022) explored the

positive effects of pilot zones on firm performance and investment

efficiency. Additionally, there have been studies on low-carbon pilot

policies in the realm of green finance, particularly focusing on green

technology innovation and low-carbon innovation (Wang J. et al.,

2022; Pan et al., 2022; Yang, 2023). However, few scholars have

examined the impact of these policies on industrial structure

upgrading, energy efficiency, and high-quality economic development

(Zheng et al., 2021; Gong et al., 2022; Song et al., 2022). It is necessary

to further investigate these aspects to gain a comprehensive

understanding of the impact of low-carbon pilot policies.

Existing studies have extensively explored green finance and

sustainable development, specifically focusing on the impact of

green finance pilot policies. However, these studies have primarily

examined the overall development level of green finance.

Additionally, research on green finance pilot policies has been

skewed towards technological innovation and energy efficiency,

neglecting their impact on sustainable economic and social

development. Given this context, this paper aims to conduct a

quasi-natural experiment to investigate the effects of green financial

pilot policies on sustainable economic and social development

within the pilot zones for green finance reform and innovations.
3 Methodology

3.1 Model construction

This paper is structured as follows. Firstly, we conduct

benchmark regression and robustness tests to verify the impact of
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establishing pilot zones for green finance reform and innovations

on the sustainable development of the economy and society. These

tests also aim to demonstrate the reliability of the benchmark

regression results. Secondly, we delve into an extended analysis

that primarily addresses the issue of model selection bias.

Additionally, we explore the dynamic changes and heterogeneity

of the policy effects associated with the pilot zones for green finance

reform and innovations. Finally, we analyze the action mechanism

and discuss the internal functioning by which the green financial

reform and innovation experimental zone influences the sustainable

development of the economy and society. Through this analysis, we

aim to provide valuable references for further improving the policy

effects of the green financial reform and innovation

experimental zone.

Pilot zones for green finance reform and innovation have been

established in six provincial-level regions in China: Guangdong

Province, Xinjiang Uygur Autonomous Region, Jiangxi Province,

Zhejiang Province, Guizhou Province, and Gansu Province1. This

paper utilizes the studies conducted by Fan et al. (2020), Yang et al.

(2021), and Martins (2022) to empirically investigate the topic. The

investigation primarily employs a difference-in-dfferences (DID)

model, with the provincial areas where pilot zones for green finance

reform and innovation have been established as the experimental

group, while the remaining provincial areas serve as the control

group. The model is:

Yit = a0 + a1 � Policy_Timeit + a2 � Xit + di + lt + ϵit (1)

The main explanatory variable in this study is Policy_Time,

which is the intersection of two dummy variables: Policy and Time.

The variable Policy determines whether a pilot zone for green

financial reform and innovation has been established. It takes a

value of 1 if such a pilot zone exists at the provincial level, and 0

otherwise. On the other hand, the variable Time represents a time

dummy variable indicating the establishment of a pilot zone for

green financial reform and innovation. Therefore, the primary focus

of this paper is to examine the impact coefficient of Policy_Time. If

the impact coefficient is significantly positive, it suggests that the

pilot zone for green financial reform and innovation contributes to

the enhancement of China’s sustainable development. Additionally,

X represents the relevant control variables, while d and l represent

the fixed effects for the different regions and time periods,

respectively. The term ϵ represents the random disturbance term.

Here, i denotes each provincial and urban area, and t denotes

the year.
1 The five provincial-level regions, Guangdong Province, Xinjiang Uygur

Autonomous Region, Jiangxi Province, Zhejiang Province, and Guizhou

Province, established pilot programs in 2017 and belong to the same batch

of pilot zone establishment programs. Gansu Province was established as a

pilot zone for green financial reform and innovation in November 2019. Based

on the reasonableness of the data during the study, Gansu Province was not

included as an experimental group in the benchmark regression.
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3.2 Variable selection

The DID model utilizes dummy variables as the core explanatory

variables. Consequently, the selection of the variables being explained

becomes relatively more crucial. This paper specifically examines the

influence of establishing pilot zones for green finance reform and

innovations on the sustainable development of the economy and

society. It is essential to evaluate and measure the level of sustainable

development accurately as it directly impacts the scientific validity of

the conclusions. In line with the assessments made by Liao et al.

(2020), Lin et al. (2020), and Guo et al. (2022) concerning the level of

sustainable development, this study constructs a comprehensive

index system to gauge the sustainable development of the economy

and society. The comprehensive indicator system used in this study is

presented in Table 1.

Compared to a singular level of economic development,

sustainable development encompasses not only the progress of the

economy and society but also places greater emphasis on their

quality. Hence, this paper primarily evaluates the sustainable

development of the economy and society across four dimensions:

economy, society, population, and environment. In terms of the

economy, this study primarily examines the scale, structure, results,

and stability of economic and social development. To assess these

aspects, the following basic indicators are selected: the ratio of real

GDP per capita, the proportion of the tertiary industry to GDP,

disposable income per capita, and disposable income per urban and

rural residents. Regarding the population, the focus lies on population

size, population structure, and urbanization development. Thus, the

basic indicators chosen include population density, the proportion of

the working-age population, and the proportion of the urban

population. As for the environment, the main considerations

involve resource stock, environmental management, and

environmental conditions. Consequently, the basic indicators

consist of the amount of water resources per capita, domestic waste

and urban sewage treatment capacity, urban green space area, and

green coverage rate. To summarize, the measurement of sustainable

development in the economy and society comprises four dimensions

with a total of 17 basic indicators.

The sustainable development of the economy and society is

influenced by various factors (index system in Table 1). Hence, this

paper focuses on four control variables selected from the following

aspects: (1) government intervention level (GI), measured by the

ratio of general budget expenditure of government departments to

the GDP in each region; (2)openness (OP), measured by converting

total foreign investment into RMB and calculating its ratio to GDP;

(3) employment level (EL), measured by the inverse of the urban

registered unemployment rate; and (4) human capital (MC),

measured by the number of years of education per capita in

each region.
3.3 Comprehensive index measurement

The measurement of comprehensive indicators can be

categorized into two methods: subjective and objective weighting.

The subjective weighting method mainly relies on the knowledge of
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experts and scholars with authority in the relevant fields to assign

weights to each dimension of the composite indices. The specific

process of assigning weights to the indicators of each dimension of

sustainable development of economy and society runs as follows.

First, each basic index is averaged, and the correlation and

variability of each basic index are retained while eliminating the

difference in magnitude and magnitude between each index. The

inverse indicators are first taken as the inverse and then averaged:

yi,t,j =
xi,t,j

E(xi,t,j)
(2)

To explain the notation used in this study, let x represent the

original value of the base indicator, E(x) denote the mean value of

the base indicator, and y represent the value of the base indicator

after averaging. The variables i and t still represent the province

(city) and year, while j represents the jth base indicator.

Second, the coefficient of variation for each underlying index

can be calculated as:

cj =
sd(yi,t,j)

mj(yi,t,j)
(3)

Here, c denotes the coefficient of variation, the corresponding sd

denotes standard deviation, and m denotes the mean.
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Finally, the coefficients of variation of each base indicator are

normalized to obtain the weights of the base indicators:

ej =
cj

ocj
(4)

Yi,t =o(yi,t,j � ej) (5)

Here, e denotes the weight of the base indicator, and Y denotes

the composite indicator after cumulative summation; i.e., the

sustainable development of economy and society.
3.4 Data sources and
preliminary processing

To ensure consistency between the data before and after policy

implementation, and considering that the latest relevant data is only

available until 2021, this study focuses on the period from 2013 to

2021. The research sample includes 30 provincial regions in China,

excluding Tibet, Hong Kong, Macao, and Taiwan due to data

availability. The data pertaining to the sustainable development of

the economy and society, as well as each control variable, are

sourced from the official website of the National Bureau of
TABLE 1 Indicator system of sustainable development of economy and society.

Dimensional
Indicator

Proxy Indicator Indicator Meaning
Indicator Prop-

erty

Economic factors

Economic development Real GDP per capita Positive

Industry structure Share of tertiary sector in GDP Positive

Resident income Disposable income per capita Positive

Urban–rural income gap
Per capita disposable income of urban residents/per capita net income of

rural residents
Reverse direction

Social factors

Medical insurance participation Number of medical insurance participants/year-end resident population Positive

Unemployment insurance participation Unemployment insurance participants/year-end resident population Positive

Pension insurance participation Number of pension insurance participants/year-end resident population Positive

Injury insurance participation
Number of workers’ compensation insurance participants/year-end resident

population
Positive

Maternity insurance coverage Number of maternity insurance participants/year-end resident population Positive

Demographic
factors

Population density Year-end resident population/area of urban areas by province Reverse direction

Percentage of working age population Population aged 15–64/total population Positive

Urbanization Urban population/total population Positive

Environmental
factors

Water resources Water resources per capita Positive

Harmless treatment capacity of domestic
garbage

Average daily tonnage of household waste disposed of without harm Positive

Daily treatment capacity of urban sewage Average daily municipal wastewater treatment in cubic meters Positive

Urban green space area Amount of urban green space in hectares Positive

Greening coverage of built-up areas Area covered by greenery in built-up areas/area of built-up areas Positive
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Statistics of China and the China Statistical Yearbook from previous

years. It should be noted that employment level and human capital

are absolute value variables. Given the large range of values for

human capital, a logarithmic transformation is applied in this

paper. However, the employment level and other relative value

variables are retained in their original form.

Table 2 displays the descriptive statistics and grouping results

for each main variable studied. The average value for sustainable

development of the economy and society is 1.0142. Specifically, the

experimental group demonstrates a higher mean value for

sustainable development level (1.2781), surpassing both the

national average and the control group average. Further analysis

reveals that although the experimental group exhibits a lower level

of government intervention, its openness to the outside world is also

significantly reduced compared to the control group. Moreover, the

differences in employment level and human capital between the

experimental group and the control group are relatively minor.

These findings align with the varying degrees of government

intervention and openness across different regions, which can be

observed in the context of China’s economic and social

development. As educational opportunities become increasingly

equitable, the regional disparity in human capital gradually

diminishes, subsequently leading to a decrease in the gap in

employment levels between regions.
4 Analysis of empirical results

4.1 Basic regression

4.1.1 Analysis of baseline regression results
The baseline regressions were conducted using a DID model to

examine the impact of establishing pilot zones for green finance

reform and innovations on the sustainable development of the

economy and society, as described earlier in this paper. The results

of the benchmark regression are presented in Table 3. Columns (2)

to (5) display the regression results with the inclusion of area fixed

effects, control variables, squared terms of control variables, and

time fixed effects in the preceding columns, respectively. Despite

variations in the regression process, all impact coefficients of P_T
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are greater than zero and statistically significant at the 1% or 5%

level. This indicates that the establishment of pilot zones for green

finance reform and innovations significantly promote sustainable

development. This finding aligns with the conclusions drawn by

Wen et al. (2021, 2023) and confirms the positive impact of green

development on China’s economy and society, as evidenced by the

boosting effect on total factor productivity of enterprises through

green credit and low-carbon city policies.

Regarding control variables, although the coefficients of

government intervention and employment level are not

statistically significant, their effects align with expectations.

Specifically, as the degree of government intervention and the

unemployment rate increase, the level of sustainable development

in the economy and society decreases. Additionally, the effects of

openness and human capital also align with expectations. Higher

levels of openness significantly promote sustainable development in

the economy and society, while lower levels of human capital inhibit

sustainable development. Only high levels of human capital can

further enhance the level of sustainable development in the

economy and society.

4.1.2 Parallel trend test
The baseline regression results indicate a significantly positive

effect of establishing pilot zones for green finance reform and

innovations on the sustainable development of the economy and

society. To further validate these findings, this study employs a

parallel trend test. To determine the timing of the implementation

of the pilot zones for green finance reform and innovations in

China, this paper uses 2017 as the benchmark for the time dummy

variable. Before 2017, the pilot zones were not established, implying

that their policy effect on the sustainable development of the

economy and society should not exist within this timeframe.

However, from 2017 onwards, the impact of the pilot zones on

the sustainable development should become apparent.

Figure 1 displays the results of the parallel trend test. Prior to

2017, the confidence interval for the impact coefficient of

establishing pilot zones for green finance reform and innovations

on the sustainable development of the economy and society

primarily includes the value 0, despite its incremental nature.

This suggests that the impact of establishing these pilot zones is
TABLE 2 Results of descriptive statistics for each variable.

Variable
Variable
Symbol

Full Sample Experimental Group Control Group

Average
value

Standard
deviation

Average
value

Standard
deviation

Average
value

Standard
deviation

Sustainable development of
economy and society

SDL 1.0142 0.5317 1.2781 0.5645 0.9615 0.5100

Level of government
intervention

GI 0.2629 0.1112 0.2173 0.0533 0.2720 0.1175

Openness OP 0.7548 3.4157 0.3682 0.3530 0.8321 3.7350

Employment level EL 3.2070 0.6380 3.0733 0.4649 3.2338 0.6649

Human capital MC 2.2166 0.0868 2.1767 0.0589 2.2246 0.0894
The human capital variable is logarithmically treated in the above variables.
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not significantly different from zero. In other words, there is no

substantial impact of the pilot zones on the sustainable

development of the economy and society. However, beginning in

2017, although the confidence interval for the impact coefficient of

the pilot zones also includes the value 0, it does not hold true for

subsequent years. Furthermore, the impact coefficients for these

years are all greater than 0, indicating a potential time lag in the
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impact of establishing pilot zones for green finance reform and

innovations on the sustainable development of the economy and

society. Nevertheless, it is evident that the policy does have an

impact, and the establishment of these pilot zones can facilitate

considerable improvements in the sustainable development of the

economy and society. These test results align with expectations and

validate the findings of the baseline regression.
4.2 Robustness tests

4.2.1 Placebo test
The construction of the benchmark model may overlook certain

influential factors, thereby introducing bias into the regression

results. To address this issue, this paper adopts a double

randomized experiment approach, drawing inspiration from Li

et al. (2016), to ensure the robustness of the benchmark

regression results. The experimental process is as follows: Firstly,

a new experimental group is formed by randomly selecting five

provincial regions from the full sample, which serves as an

extension to the existing experimental group of the benchmark

regression model. Secondly, the policy implementation time is set to

2017, and a new policy implementation time frame of 2014–2021 is

randomly selected for comparison. However, 2013 is excluded from

the selection to ensure a minimum one-year data for policy
TABLE 3 Baseline regression results.

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

P_T
0.3863***
(0.1182)

0.1951***
(0.0332)

0.0924***
(0.0257)

0.1088***
(0.0250)

0.0478**
(0.0198)

GI
−0.3113
(0.2254)

−0.0358
(0.5438)

−0.0241
(0.4785)

OP
0.0044**
(0.0017)

0.0235**
(0.0104)

0.0054
(0.0080)

EL
−0.0147
(0.0145)

−0.0396
(0.0790)

−0.0642
(0.0595)

MC
2.6973***
(0.2268)

−21.1834***
(5.4647)

−12.5169***
(4.1828)

GI-squared
−0.6492
(0.6540)

−0.4400
(0.5261)

OP-squared
−0.0005*
(0.0002)

−0.0001
(0.0002)

EL-squared
0.0041
(0.0125)

0.0107
(0.0094)

MC-squared
5.3730***
(1.2355)

2.7927***
(0.9557)

Con_
0.9785***
(0.0329)

0.9962***
(0.0074)

−4.8475***
(0.5357)

21.6527***
(6.0554)

15.0198***
(4.6004)

Area fixed NO YES YES YES YES

Fixed time NO NO NO NO YES

R-squared 0.0445 0.1262 0.5324 0.5781 0.7714
P_T indicates Policy_Time in the model setting. Standard errors are in parentheses. Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
FIGURE 1

Parallel trend test results.
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implementation analysis. Next, a cross-product term is generated

through the combination of the new experimental group and the

new policy implementation time, and a regression analysis is

conducted using the benchmark regression model. This entire

process is repeated 500 times, producing a kernel density

distribution plot of the new policy effect. By examining the kernel

density distribution, it becomes possible to identify any significant

influences that might have been disregarded in the benchmark

regression model, thereby assessing the robustness of the

benchmark regression results.

Figure 2 displays the results of the placebo test conducted in this

paper. The kernel density distribution in Figure 2 presents the

regression coefficients of the new policy effect (spurious policy

effect) after 500 double randomized experiments. These

coefficients are uniformly distributed around the approximate

value of −0.18, which can be considered as 0. The regression

coefficients of the new policy effect exhibit a normal distribution

pattern, indicating that the baseline regression model utilized in this

paper does not overlook the impact of important influencing factors

on the sustainable development of the economy and society. Hence,

the baseline regression results demonstrate a certain level of

robustness. Furthermore, the establishment of pilot zones for

green finance reform and innovations has a positive and credible

impact on the sustainable development of the economy and society.

4.2.2 Consideration of the time lag of
policy effects

The previous paper’s parallel trend test suggests the possibility

of a time lag in the impact of establishing pilot zones for green

finance reform and innovations on the sustainable development of

the economy and society. This aligns with the reality of economic

and social progress, as it takes time for the establishment of such

pilot zones and for the policy effects to transmit to the sustainable

development of the economy and society. Taking this into account,

this paper adopts the approach commonly used by scholars of

altering the timing of policy shocks to investigate the future impact

of the pilot zone for green financial reform and innovation on the
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sustainable development of the economy and society. By

prioritizing the sustainable development of the economy and

society, we can ascertain the time delay in the policy effects of the

pilot zone for green financial reform and innovation, while also

bolstering the credibility of the conclusions derived from the

baseline regression results.

Table 4 presents the regression results obtained by prioritizing

the sustainable development of the economy and society. In

columns (1) to (3), the regression results reflect the front-loading

of the sustainable development of the economy and society by one

period. In columns (4) to (6), the regression results demonstrate the

front-loading by two periods. It is observed that the positive impact

of the pilot zones for green finance reform and innovations on the

level of sustainable development remains consistent across different

degrees of front-loading. Thus, it continues to promote the

sustainable development of the economy and society. This

suggests a time lag in the impact of establishing the pilot zones

but also underscores their enduring positive influence. These

findings further confirm the robustness of the baseline

regression results.

4.2.3 Consideration of relevant
policy interference

As a new financial development model, green finance plays a

crucial role in promoting sustainable development in China. The

development of green finance in China encompasses various

dimensions. For instance, along with the establishment of pilot

zones for green finance reform and innovations, certain regions

have already taken steps towards carbon emissions trading. Beijing,

Shanghai, Tianjin, Chongqing, Hubei, Guangdong, and Shenzhen

became carbon emissions trading pilot regions as early as 2011. In

2016, Fujian also joined as the eighth trading pilot region, launching

its carbon trading market. Both the carbon emissions trading pilot

policy and the green financial reform and innovation pilot area

policy contribute to environmental improvement during the

process of sustainable economic and social development.

Consequently, they jointly promote the sustainable development

of the economy and society. It is worth considering that the

implementation of the carbon emissions trading pilot policy may

impact the policy implementation effect of the green financial

reform and innovation pilot area. In other words, it may

influence the green financial reform and innovation pilot area’s

policy effect on the sustainable development of the economy and

society. Therefore, this paper aims to conduct an additional

robustness check to examine the potential impact of these policies

on the topic at hand.

We have addressed the impact of the pilot carbon trading policy

on the baseline regression results by excluding the pilot carbon

trading region from the control group. In this paper, Guangdong is

included in the experimental group as it became a pilot region for

carbon emissions trading in 2011, which predates the research

interval of this paper (2013 onwards). Thus, its data are retained in

the research sample. The regression results, excluding the influence

of the carbon emissions trading pilot policy, are presented in

Table 5. In each instance of adding regression conditions, the
FIGURE 2

Placebo test results.
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coefficient of P_T consistently exceeds the value of 0 and is

statistically significant. This indicates that the establishment of

the green financial reform and innovation pilot area has a robust

positive influence on the sustainable development of the economy

and society. Notably, when considering column (5), which

comprehensively incorporates regression conditions, and

combining these findings with the benchmark regression results
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in Table 3, we observe that the impact coefficient of P_T in Table 5

is larger after excluding the influence of the carbon emissions

trading pilot policy. This implies that the potential impact of the

carbon emissions trading pilot policy indeed enhances the

implementation of the pilot zones’ policy for green finance

reform and innovations, while not altering the directional
TABLE 4 Regression results for different levels of front-loading sustainability.

Variable
(1) (2) (3) (4) (5) (6)

SDL_1 SDL_1 SDL_1 SDL_2 SDL_2 SDL_2

P_T
0.1093***
(0.0272)

0.0880***
(0.0248)

0.0429**
(0.0195)

0.0924***
(0.0257)

0.1088***
(0.0250)

0.0557***
(0.0208)

GI
0.0181
(0.2752)

−0.0080
(0.6354)

−0.2293
(0.5149)

−0.3113
(0.2254)

−0.0358
(0.5438)

−0.2192
(0.5496)

OP
0.0045*
(0.0027)

0.2781***
(0.0399)

0.1023***
(0.0335)

0.0044**
(0.0017)

0.0235**
(0.0104)

0.2796***
(0.1037)

EL
−0.0241
(0.0184)

−0.1586*
(0.0925)

−0.0943
(0.0703)

−0.0147
(0.0145)

−0.0396
(0.0790)

−0.1313
(0.1049)

MC
2.8304***
(0.2690)

−4.2436
(6.1253)

−3.0063
(4.6579)

2.6973***
(0.2268)

−21.1834***
(5.4647)

0.6430
(5.7417)

GI-squared
−0.3736
(0.7411)

−0.1214
(0.5779)

-0.6492
(0.6540)

0.2264
(0.5972)

OP-squared
−0.0078***
(0.0011)

−0.0029***
(0.0010)

−0.0005*
(0.0002)

−0.1140**
(0.0541)

EL-squared
0.0198
(0.0143)

0.0155
(0.0108)

0.0041
(0.0125)

0.0220
(0.0163)

MC-squared
1.3422
(1.3967)

0.6579
(1.0624)

5.3730***
(1.2355)

−0.0302
(1.3119)

Con_
−5.1683***
(0.6158)

4.0447
(6.7356)

4.5052
(5.1265)

−4.8475***
(0.5357)

21.6527***
(6.0554)

−0.1818
(6.2865)

Area fixed YES YES YES YES YES YES

Fixed time NO NO YES NO NO YES

R-squared 0.4742 0.5969 0.7791 0.5324 0.5781 0.7645
P_T denotes Policy_Time in the model setting. SDL_1 and SDL_2 denote SDL’s antecedent one and two periods, respectively. Standard errors are indicated in parentheses. Symbols ***, **, and *
denote significance at the 1%, 5%, and 10% levels, respectively.
TABLE 5 Regression results excluding the pilot policy of carbon emissions trading.

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

P_T
0.3900***
(0.1201)

0.1951***
(0.0323)

0.0969***
(0.0253)

0.0998***
(0.0234)

0.0554***
(0.0210)

GI
−0.5435**
(0.2469)

−0.7717
(0.5537)

−0.5169
(0.5338)

OP
0.0669***
(0.0209)

0.2503***
(0.0439)

0.0966**
(0.0411)

EL
−0.0410**
(0.0165)

−0.3981***
(0.1086)

−0.1853*
(0.0959)

MC
1.9841***
(0.2629)

−20.1701***
(6.0585)

−11.8463**
(5.2501)

(Continued)
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assessment of the benchmark regression’s conclusion. In summary,

the overall effect is underestimated.

4.2.4 Consideration of the establishment of
subsequent pilot zones

In a previous paper, the pilot zones for green finance reform and

innovations did not include Gansu, which only became a part of it in

2019. This exclusion may have influenced the baseline regression

results. To address this, we have included Gansu in the experimental

group in this paper, and the corresponding results are presented in
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Table 6. The findings align with the outcomes of other robustness

tests, indicating that the conclusions from the baseline regression

remain unchanged even with the inclusion of Gansu in the

experimental group. This reaffirms the significant positive impact

of establishing pilot zones for green finance reform and innovations

on the sustainable development of the economy and society. The test

results also demonstrate the robustness of the baseline regression and

support the idea that any potential bias in the baseline regression

model does not affect the results presented here. Overall, the setting of

the baseline regression model is deemed reasonable.
TABLE 5 Continued

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

GI-squared
0.0238
(0.6419)

−0.0260
(0.5762)

OP-squared
-0.0539***
(0.0105)

−0.0261***
(0.0095)

EL-squared
0.0551***
(0.0162)

0.0274*
(0.0142)

MC-squared
4.9209***
(1.3777)

2.6208**
(1.2065)

Con_
0.9748***
(0.0391)

0.9965***
(0.0080)

−3.1277***
(0.6178)

22.3261***
(6.6706)

14.6740**
(5.7424)

Area fixed NO YES YES YES YES

Fixed time NO NO NO NO YES

R-squared 0.0469 0.1553 0.5426 0.6334 0.7510
P_T indicates Policy_Time in the model setting. Standard errors are in parentheses. Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
TABLE 6 Regression results considering the establishment of subsequent test areas.

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

P_T
0.3425***
(0.1139)

0.1868***
(0.0310)

0.0739***
(0.0247)

0.0955***
(0.0243)

0.0398**
(0.0189)

GI
−0.3111
(0.2273)

-0.0050
(0.5485)

−0.0177
(0.4805)

OP
0.0044**
(0.0017)

0.0240**
(0.0105)

0.0055
(0.0080)

EL
−0.0149
(0.0146)

−0.0513
(0.0797)

−0.0696
(0.0598)

MC
2.6958***
(0.2323)

−21.9048***
(5.5590)

−12.6677***
(4.2412)

GI-squared
−0.6904
(0.6603)

−0.4455
(0.5290)

OP-squared
−0.0005*
(0.0002)

−0.0001
(0.0002)

EL-squared
0.0060
(0.0126)

0.0116
(0.0095)

(Continued)
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5 Extended research and mechanism
analysis

5.1 Extensive research

5.1.1 Baseline regression based on propensity
score matching

The issue of unbalanced regional development in China is

severe. Consequently, the establishment of pilot zones for green

finance reform and innovations may vary between regions, as seen

in factors like the level of government intervention and openness in

the control variables. Consequently, when applying the DID model,

there is a possibility of selection bias in the control group’s sample

selection. To address this concern, we employ propensity score

matching, which can appropriately address the issue. Thus, prior to

the baseline regression, this paper pairs the experimental group with

the control group, enabling the control group sample to serve as a

more suitable reference object and enhancing the rationality of the

counterfactual in the DID model.

For propensity score matching, this study utilizes a 1-to-1

nearest-neighbor matching method. The P-value kernel density

distributions of the experimental and control groups before and

after matching are depicted in Figures 3, 4, respectively. Upon visual

observation, it is evident that the P-value kernel density distribution

characteristics of the experimental group and the control group

differ significantly prior to the propensity score matching. However,

after propensity score matching, the discrepancy between the P-

value kernel density distribution characteristics of both groups

considerably diminishes, thereby indicating the effectiveness of

the selected propensity score matching method in this paper.

Table 7 displays the regression results following propensity

score matching. Upon considering area fixed effects, control

variables, squared terms of control variables, and time fixed

effects in succession, it becomes apparent that the impact

coefficients of P_T are all positive at the 1% or 5% significance

level, albeit with some variation in magnitude. This further supports

the notion that the establishment of pilot zones for green finance

reform and innovations has a significantly positive effect on both

the sustainable development of the economy and society, as well as

the overall enhancement of sustainable development in the pilot

zone location. In column (5), when comparing these results with the
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baseline regression results in Table 3, it is evident that the policy

effect of the establishment of pilot zones for green finance reform

and innovations is even more pronounced after propensity score

matching than without it. This suggests that the initial regression

results may have underestimated the true impact to some extent.

Consistently, this finding aligns with the robustness test, wherein a

more suitable control group is selected, mitigating the

underestimation and amplifying the actual policy effects resulting

from the establishment of pilot zones for green finance reform

and innovations.

5.1.2 Dynamics of policy effects
After passing validity and a series of robustness tests, the effect

of establishing pilot zones for green finance reform and innovations

on the sustainable development of the economy and society remains

consistent. This confirms the rationality of the baseline regression

model and the reliability of the results. Additionally, through a time

lag test, it is observed that there may be a delay in the impact of

these pilot zones on sustainable development. Consequently, this

paper further examines the dynamic changes in their effect.

The pilot zones for green finance reform and innovations were

implemented in 2017. To further investigate the changes in policy

effect over time, this study introduces time dummy variables for
TABLE 6 Continued

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

MC-squared
5.5303***
(1.2556)

2.8209***
(0.9683)

Con_
0.9800***
(0.0332)

0.9956***
(0.0074)

−4.8424***
(0.5474)

22.4903***
(6.1659)

15.2204***
(4.6681)

Area fixed NO YES YES YES YES

Fixed time NO NO NO NO YES

R-squared 0.0375 0.1318 0.5248 0.5721 0.7700
P_T indicates Policy_Time in the model setting. Standard errors are in parentheses. Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
FIGURE 3

Kernel density distribution of P-value before matching.
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each year from 2017 to 2021 (e.g., Time_2017 takes the value 1 for

the year 2017 and 0 for all other years). By multiplying the dummy

variable (Policy) of the experimental group, a key variable reflecting

the policy effect across all years is obtained and subsequently

subjected to regression analysis.
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The results are depicted in Table 8, where it is evident from

column (5) that in the initial two years (2017 and 2018) following

the establishment of the pilot zones for green finance reform and

innovations, there was no significant impact on the sustainable

development of the economy and society. It was only in the

subsequent years (2019–2021) that the establishment of the pilot

zone began to effectively and positively contribute to the sustainable

development of the economy and society. This finding further

highlights the existence of a time lag in the policy effect of the

pilot zone for green financial reform and innovation. Such a delay is

closely linked to the time required for setting up the pilot zone and

the transmission of policy effects, aligning with the present

economic and social development reality.

5.1.3 Heterogeneity analysis of policy effects
This paper aims to analyze the heterogeneous effects of pilot

zones for green finance reform and innovations on the sustainable

development of the economy and society under different

development environments. The study focuses on variables such

as the level of financial development, degree of industrialization,

and level of technological innovation, which are correlated with

sustainable development. For instance, the level of financial

development is measured as the financial sector’s value added as
FIGURE 4

Kernel density distribution of P-value after matching.
TABLE 7 Regression results after propensity score matching.

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

P_T
0.3931***
(0.1212)

0.1920***
(0.0328)

0.0797***
(0.0264)

0.0819***
(0.0230)

0.0566**
(0.0231)

GI
−0.0681
(0.4552)

−3.3491***
(1.2066)

−3.3420***
(1.2406)

OP
0.0826***
(0.0316)

0.6234***
(0.0946)

0.4347***
(0.1014)

EL
−0.0619**
(0.0251)

-0.3323*
(0.1718)

−0.2466
(0.1628)

MC
2.1868***
(0.3599)

−35.6463***
(9.8388)

−27.3875***
(10.2249)

GI-squared
4.4686**
(1.9720)

4.1285**
(1.9151)

OP-squared
−0.2586***
(0.0427)

−0.1862***
(0.0444)

EL-squared
0.0452*
(0.0269)

0.0355
(0.0254)

MC-squared
8.4392***
(2.2479)

6.2988***
(2.3726)

Con_
0.9208***
(0.0304)

0.9507***
(0.0097)

−3.6337***
(0.8549)

39.4472***
(10.7211)

31.4509***
(11.0329)

Area fixed NO YES YES YES YES

Fixed time NO NO NO NO YES

R-squared 0.1161 0.2063 0.5823 0.7073 0.7657
P_T indicates Policy_Time in the model setting. Standard errors are in parentheses. Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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a percentage of GDP, while the level of industrialization is expressed

as the industry’s value added as a percentage of GDP. Additionally,

the level of technological innovation is represented by the logarithm

of technology market turnover. To effectively examine the effects of

green financial reform and innovation pilot zones, this paper

utilizes the mean level of development environment as the

criterion for grouping. For example, the regions above the mean

level of financial development are classified as the high financial

development group, while the remaining regions are categorized as

the low financial development group. Regression analysis is then

performed within each group, followed by a comparison of the

policy effects between the groups. It is important to note that

although the experimental group in this paper consists of fewer

provincial areas, the grouping based on the three development

environments enables an effective division.
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Table 9 shows the varying impacts of pilot zones for green

finance reform and innovations on the sustainable development of

the economy and society across different development

environments. The findings reveal that the establishment of these

pilot zones only yields a significantly positive effect on sustainable

development in regions characterized by lower levels of financial

development, lesser industrialization, and higher levels of

technological innovation. These results are comprehensible as

regions with higher levels of financial development and

industrialization naturally exhibit relatively advanced sustainable

economic and social development. Consequently, the policy effects

of pilot zones for green finance reform and innovations are not as

prominent in such areas. Moreover, considering that innovation

plays a crucial role in driving sustainable development, the effects of

these policy measures will also be substantial in regions with higher
TABLE 8 Changes in policy effects after the establishment of the pilot area.

Variable
(1) (2) (3) (4) (5)

SDL SDL SDL SDL SDL

P_T_2017
0.2635
(0.2390)

0.0723
(0.0541)

0.0403
(0.0410)

0.0452
(0.0392)

−0.0045
(0.0322)

P_T_2018
0.3188
(0.2493)

0.1277**
(0.0541)

0.0714*
(0.0411)

0.0863**
(0.0394)

0.0134
(0.0320)

P_T_2019
0.4084
(0.2532)

0.2172***
(0.0541)

0.1274***
(0.0416)

0.1477***
(0.0399)

0.0788**
(0.0321)

P_T_2020
0.4407*
(0.2543)

0.2495***
(0.0541)

0.1122***
(0.0424)

0.1361***
(0.0408)

0.0584*
(0.0322)

P_T_2021
0.5002*
(0.2772)

0.3090***
(0.0541)

0.1264***
(0.0432)

0.1542***
(0.0420)

0.0988***
(0.0326)

GI
−0.3109
(0.2264)

0.0707
(0.5480)

−0.0331
(0.4736)

OP
0.0045***
(0.0017)

0.0241**
(0.0103)

0.0059
(0.0079)

EL
−0.0161
(0.0146)

−0.0340
(0.0786)

−0.0618
(0.0589)

MC
2.6006***
(0.2341)

−22.4929***
(5.4590)

−13.5256***
(4.1531)

GI-squared
−0.8031
(0.6574)

−0.4855
(0.5211)

OP-squared
−0.0005*
(0.0002)

−0.0001
(0.0002)

EL-squared
0.0030
(0.0124)

0.0099
(0.0093)

MC-squared
5.6406***
(1.2331)

2.9951***
(0.9483)

Con_
0.9785***
(0.0332)

0.9962***
(0.0072)

-4.6292***
(0.5518)

23.2160***
(6.0541)

16.2638***
(4.5714)

Area fixed NO YES YES YES YES

Fixed time NO NO NO NO YES

R-squared 0.0469 0.1799 0.5408 0.5903 0.7804
P_T denotes Policy_Time in the model setting. P_T_2017 denotes the cross-product term constructed with 2017 as the time of policy occurrence only. Other identical variables have similar
meanings. Standard errors are indicated in parentheses. Symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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levels of technological innovation. Hence, the policy effects of pilot

zones for green finance reform and innovations will tend to be more

pronounced in regions with greater levels of technological

innovation, given the importance of innovation as a driving force

for sustainable development.
5.2 Mechanism analysis

During the process of pilot zones for green finance reform and

innovation, the sustainable development of the economy and

society encompasses various indicators across different

dimensions such as economic factors, social factors, demographic

factors, and environmental factors. Therefore, this paper aims to

analyze the impact of establishing green financial reform and

innovation pilot zones on indicators of sustainable economic and

social development based on the mechanism research conducted by

Li and Wen (2023). Additionally, this paper seeks to explain the

policy effects resulting from the establishment of these pilot zones.

The above analysis of the mechanism offers several advantages.

Firstly, by examining the impact of pilot zones on each dimensional

indicator, we can better understand the influence of composite
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indicators through individual dimensions, which is in line with

economic logic. Secondly, exploring the impact of pilot zones on

each dimensional indicator allows for a more detailed examination

of the policy effects, thereby gaining deeper insights into their

overall impact.

Table 10 presents the effects of establishing pilot zones for green

finance reform and innovation on the dimensions of sustainable

economic and social development. After accounting for regional and

time fixed effects, control variables, and their squared terms, it is found

that the establishment of these pilot zones does not significantly impact

economic, social, and demographic factors in sustainable development.

However, there is a notably positive effect on environmental factors.

This outcome aligns with the principles of green financial development

and supports the concept of green development. Unlike traditional

financial industry growth that primarily focuses on economic

expansion, green financial development emphasizes improving the

quality of the ecological environment and promoting sustainable

economic and social progress while maintaining a harmonious

coexistence between humans and nature. These findings also shed

light on the heterogeneous policy effects of the green financial reform

and innovation pilot zones across different developmental

environments. Regions with lower levels of financial development
TABLE 9 Differences in the policy effects of the establishment of the test area under different relevant factors.

Variable
(1) (2) (3) (4) (5) (6)

SDL SDL SDL SDL SDL SDL

P_T
0.0312
(0.0459)

0.0470*
(0.0244)

0.0141
(0.0245)

0.1099***
(0.0310)

0.1455***
(0.0279)

−0.0168
(0.0253)

GI
1.3566**
(0.6535)

−2.3819*
(1.2370)

−0.4675
(1.1514)

0.4104
(0.4841)

−1.2411
(0.9939)

−0.5024
(0.6121)

OP
0.0824
(0.0937)

0.0105
(0.0091)

0.2459***
(0.0593)

0.0063
(0.0055)

0.0514
(0.0528)

0.0070
(0.0078)

EL
−0.0464
(0.0710)

−0.2474**
(0.1125)

−0.5355***
(0.1674)

−0.0109
(0.0464)

−0.1570**
(0.0649)

0.0045
(0.1098)

MC
−10.7419**
(4.8718)

−19.6329**
(8.3655)

3.2072
(10.7767)

−17.6547***
(3.3080)

−4.8956
(5.4367)

−15.5439**
(7.2905)

GI-squared
−1.4441**
(0.5963)

2.9665
(1.9802)

−0.0707
(1.8884)

−1.0638**
(0.4596)

1.1447
(1.5343)

−0.3501
(0.6033)

OP-squared
−0.0217
(0.0174)

−0.0002
(0.0002)

−0.0507***
(0.0123)

−0.0001
(0.0001)

−0.0200*
(0.0107)

−0.0001
(0.0002)

EL-squared
0.0073
(0.0122)

0.0370**
(0.0167)

0.0778***
(0.0251)

0.0058
(0.0078)

0.0263**
(0.0104)

−0.0014
(0.0169)

MC-squared
2.2301**
(1.1042)

4.4881**
(1.9260)

−0.7684
(2.4373)

3.9799***
(0.7502)

1.0798
(1.2019)

3.5581**
(1.6924)

Con_
13.6316**
(5.4039)

23.0876**
(9.1069)

−1.3662
(11.8832)

20.1767***
(3.6723)

6.7317
(6.1973)

18.1469**
(7.8983)

Area fixed YES YES YES YES YES YES

Fixed time NO YES NO YES NO YES

R-squared 0.9088 0.7474 0.7899 0.8905 0.8727 0.7647

Heterogeneity
category

Financial
Development_High

Financial
Development_Low

Industrialization_High Industrialization_Low Technological
Innovation_

High

Technological
Innovation_

Low
P_T indicates Policy_Time in the model setting. Standard errors are in parentheses. Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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and industrialization tend to have lower levels of environmental

pollution. Consequently, with the support of high technological

innovation, the establishment of the pilot zones has a more

pronounced positive effect on the ecological environment in

these areas.

The regression results in Table 10 also explain the

heterogeneous policy effect of the green financial reform and

innovation pilot zone across different development environments.

It is observed that regions with lower levels offinancial development

and industrialization tend to have lower levels of environmental

pollution. In these areas, supported by higher levels of technological

innovation, the establishment of the pilot zone has a more

significant positive impact on the ecological environment.

Additionally, the results indicate that the channels affecting the

sustainable development of the economy and society in the green

financial reform and innovation experimental zone are limited,

suggesting that there is room for China to further enhance the

policy impact of establishing these experimental zones in the future.
6 Conclusions and recommendations

With the transformation of China’s main social contradiction

and economic development stage, it has become crucial to enhance

the sustainable development of the economy and society. In this
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context, green finance emerges as the primary driver for promoting

the green development of the economy and society. This study aims

to explore the impact of establishing pilot zones for green finance

reform and innovations on the sustainable development of the

economy and society in China. To achieve this, a DID model is

constructed using sample data from 30 provincial-level regions in

China from 2013 to 2021. The findings are refined and

supplemented through robustness testing, expansion analysis, and

impact mechanism analysis. The results are as follows:

Firstly, the establishment of pilot zones for green finance reform

and innovations significantly contributes to the improvement of the

sustainable development level of the economy and society. This

finding remains consistent after conducting a series of robustness

tests, including placebo tests, considering the time lag of policy

effects, excluding relevant policy interference, and improving the

precision of model settings.

Secondly, the establishment of pilot zones for green finance

reform and innovations has a lagging effect on the enhancement of

sustainable development in the economy and society. The positive

promotion effect of the pilot zones on sustainable development is

significant only in areas with lower levels of financial development,

lower degrees of industrialization, and higher levels of

technological innovation.

Thirdly, the establishment of green financial reform and

innovation pilot zones primarily promotes the sustainable
TABLE 10 Impact of the establishment of the pilot area on the dimensional factors of the sustainable development of economy and society.

Variable
(1) (2) (3) (4)

Economic Factors Social Factors Demographic Factors Environmental Factors

P_T
0.0128
(0.0097)

−0.0076
(0.0186)

0.0174
(0.0151)

0.1567***
(0.0461)

GI
−0.1815
(0.2344)

0.0122
(0.4502)

−0.5384
(0.3650)

4.6111***
(1.1157)

OP
−0.0018
(0.0039)

−0.0020
(0.0075)

0.0013
(0.0061)

−0.0185
(0.0186)

EL
0.1208***
(0.0292)

0.2571***
(0.0560)

0.1922***
(0.0454)

−0.0620
(0.1388)

MC
−25.2822***
(2.0488)

−18.2543***
(3.9354)

−0.8228
(3.1905)

−7.7829
(9.7538)

GI-squared
−0.2273
(0.2577)

−0.7101
(0.4950)

1.2283***
(0.4013)

−4.8752***
(1.2268)

OP-squared
0.0000
(0.0001)

0.0000
(0.0002)

−0.0001
(0.0001)

0.0002
(0.0004)

EL-squared
−0.0178***
(0.0046)

−0.0371***
(0.0089)

−0.0263***
(0.0072)

0.0133
(0.0220)

MC-squared
5.8397***
(0.4681)

4.3410***
(0.8992)

0.2500
(0.7290)

1.8271
(2.2287)

Con_
28.0621***
(2.2534)

19.5875***
(4.3284)

1.3144
(3.5090)

8.3810
(10.7277)

Area fixed YES YES YES YES

Fixed time YES YES YES YES

R-squared 0.9414 0.8899 0.2457 0.5455
P_T indicates Policy_Time in the model setting. Standard errors are in parentheses. Symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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development of the economy and society by improving

environmental factors, and its influence channel is relatively singular.

Based on the above research findings, several suggestions are

put forth to further enhance the sustainable development of the

economy and society:

Firstly, the government should carefully summarize the policy

experience of the green finance pilot zones, expand the

implementation scope of the green financial pilot policies, and

continuously promote the green transformation development

model. By building upon the practical experience of the pilot zones,

increasing the number of green finance pilot areas, and improving the

green finance pilot policies and reform and innovation programs, the

promotion effects on the sustainable development of the economy

and society can be strengthened.

Secondly, the central government should consider the spatial

layout of each region, formulate green finance pilot policies according

to local conditions, and encourage differentiated development of

green finance in each region. The impact of the pilot zones for

green finance reform and innovations on sustainable development is

currently too singular. Hence, it is necessary to consider factors such

as resource endowment, financial development level, industrial

development characteristics, and other factors unique to different

regions. The one-size-fits-all implementation of green finance pilot

policies should be avoided. By implementing differentiated and

distinctive regional green financial support initiatives, the impact

channels of green finance pilot policies can be expanded, and their

implementation effects can truly be realized.

Finally, the authorities should enhance policy support for

technological innovation and establish a long-term mechanism

for enhancing green technology. Innovation-driven approaches

are crucial in leveraging the policy effect in the pilot areas.

Therefore, government departments should broaden the scope of

policy support, favor green technology innovation, and guide

funding towards green technology breakthrough projects and

science and technology endeavors with high pollution reduction

potential. Moreover, environmental regulations placed on highly

polluting and energy-consuming enterprises should be

strengthened, compelling these enterprises to undergo

technological transformations and process improvements. This

will also encourage green innovation across all sectors of the

economy and society.

The sustainable development of the economy and society is a

long-term and continuous process that requires extensive research.

This paper specifically examines the importance of green finance for

sustainable development from a policy perspective. However, there

are still areas that can be improved. For instance, the specific

circumstances of cities, districts, and counties in the research

sample were not fully considered due to limited data availability.

Additionally, the research methodology did not account for the

demonstration effect of green financial policies. The evaluation of

policy effectiveness in this paper is based on provincial data, which

fails to capture the full impact of environmental policies and only

focuses on influential ones like the carbon emission trading policy.

In future studies, the spatial effects of green financial policies will be

thoroughly explored, highlighting their role in policy

implementation. Moreover, the implementation of green finance
Frontiers in Ecology and Evolution 1689
policies will be analyzed in conjunction with the level of green

finance development in different regions, providing a

comprehensive understanding of the driving force behind

sustainable economic and social development.
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Environmental pollution
liability insurance pilot policy
and enterprise green
transformation: evidence from
Chinese listed corporates

Ling Hu1, Ziming Liu2 and Pengzhen Liu2*

1School of Economics and Management, Guangzhou Institute of Science and Technology,
Guangzhou, China, 2School of Economics, Jinan University, Guangzhou, China
In the context of dual-carbon, corporate green transformation, a significant

measure of the green effect of Environmental Pollution Liability Insurance (EPLI),

garners substantial attention in current research. By leveraging the 2008 EPLI

pilot policy as an exogenous event, this paper employs a difference-in-difference

model to scrutinize the influence of the EPLI pilot on the green transformation of

listed companies. We find that: (1) The EPLI pilot actively promotes corporate

green transformation. (2) The pilot policy’s impact on green transformation is

mediated through regional green development and enterprise investment

efficiency. (3) The pilot policy manifests asymmetric effects on green

transformation, influenced by regional, industrial, and enterprise-specific

pollution levels, as well as government environmental concerns. (4) The EPLI

pilot policy engenders enduring financial implications and contributes to the

governance of information. This study is beneficial to enrich the research on the

EPLI system and green transformation of enterprises that provide policy

suggestions for improving the green financial system and promoting the green

transformation of enterprises.

KEYWORDS

environmental pollution liability insurance, green transition, green insurance, green
innovation, environmental regulation
1 Introduction

As a crucial element of green finance, Environmental Pollution Liability Insurance

(EPLI) serves as a vital tool for averting environmental risks and mitigating societal

pollution. The objective of green finance is to actualize the ecological advancement of

society as a whole. It aims to rectify the issue of environmental externalities by redirecting

resource allocation and promoting eco-friendly concepts. This, in turn, propels the eco-

conscious evolution of microenterprises, leading them to attain their designated objectives

(Tolliver et al., 2021). Green innovation stands as a pivotal facet of ecological progress,
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fostering increased employment opportunities and advancing

environmental governance (Kunapatarawong and Martıńez-Ros,

2016; Guo et al., 2021). It embodies a pivotal facet of corporate

green transformation. For corporations, green innovation yields

positive effects on corporate performance, enriching corporate value

and competitive advantage, among other benefits (Tang et al., 2018;

Tu and Wu, 2021; Hao et al., 2022). Consequently, enterprises are

compelled to place significant emphasis on green innovation. They

must bolster their green core competencies and uphold an

environmentally responsible image to effectively undergo the

process of green transformation (Chen, 2008).

EPLI is an insurance that takes the loss caused by a pollution

accident to a third party as the subject matter of the corresponding

environmental liability by the provisions of the law, and the

policyholder can be a sewage disposal enterprise. The policyholder

can be a sewage disposal enterprise. The insured enterprise insures the

loss caused by the pollution accident in the future and pays the

insurance cost to the insurance company at the agreed premium rate

according to the provisions of the insurance contract, and the insurance

company compensates the corresponding amount according to the

provisions of the contract in the event of an environmental accident.

EPLI is beneficial to change the existing situation of “enterprises make

profits from illegal pollution and everyone pays the bill for

environmental damage”, which leads to the liability of environmental

pollution loss and promotes the standardization and rationalization of

China’s environmental protection responsibility.

Ralston (1979) developed the pollution loss pricing mechanism

of EPLI based on the theory of externalities, marking the inception

of EPLI research. In its early stages, studies primarily centered

around qualitative analysis. They delved into constructing the EPLI

market, exploring the role of EPLI in regulating catastrophic risks

and assessing its insurability. These studies also scrutinized the

influence of EPLI as a public policy on market functioning.

Moreover, they proposed normative solutions for EPLI in the face

of availability crises (Katzman, 1988; Brockett et al., 2018).

Presently, existing research on EPLI remains rooted in qualitative

analysis. The focus largely revolves around identifying drawbacks in

EPLI products, summarizing experiences from EPLI pilot

programs, and offering policy recommendations for establishing a

comprehensive EPLI system (Feng et al., 2014a; Feng et al., 2014b).

Given the emergence of governmental policies aimed at mitigating

environmental pollution due to accidents, Pu et al. (2017) designed

EPLI derivatives. They further validated that these products

facilitate underwriting activities for insurance companies,

effectively serving EPLI’s core purpose as an insurance policy—

the function of risk transfer. Notably, EPLI’s primary role involves

aiding enterprises in minimizing environmental risks. Joint EPLI

ventures additionally enhance the suppression of environmental

risks across entire industrial alliances (Gao et al., 2018; Wang et al.,

2021). Consequently, EPLI’s utility lies in enticing enterprises to

seek insurance coverage. However, it’s crucial to note that only

mandatory regulatory policies can compel enterprises to acquire

EPLI. Incentive-based regulatory policies, on the other hand, are

inadequate for boosting insurance demand (Li et al., 2023).

The literature concerning corporate green transformation

primarily centers around the exploration of factors influencing
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green innovation. Within the realm of macro factors, it has been

observed that voluntary and market-based environmental

regulations exert a stronger influence on promoting green

innovation compared to the impact of command-based

environmental regulations (Zhang et al., 2020). Additionally, a

range of green financial policies, encompassing regional green

financial development, green financial reforms, and green credit

policies, contribute favorably to the advancement of corporate

green innovation (Huang et al., 2022; Irfan et al., 2022; Wang

et al., 2022a). Furthermore, industry synergistic agglomeration and

the Belt and Road initiative have been found to have a positive

impact on green innovation, whereas local government debt

exhibits a negative effect. Interestingly, digital finance emerges as

a facilitator for green innovation (Zeng et al., 2021; Chen et al.,

2022b; Li et al., 2022; Cao et al., 2023; Ni et al., 2023). Among the

micro factors, both corporate governance and quality management

show a positive correlation with corporate green innovation.

Notably, sources of financing for green innovation encompass

both internal and external options. In the context of external

financing, the positive effects of government subsidies, equity

financing, and debt financing on green innovation sequentially

diminish (Amore and Bennedsen, 2016; Li et al., 2018; Xiang

et al., 2022). Furthermore, we have to recognize the significance

of information innovation and innovation networks for the green

transformation of enterprises (Yin and Yu, 2022; Yin et al., 2022b).

Prior research has contended that the EPLI system holds the

potential to drive corporate green transformation on a macro scale

(Lyu et al., 2022; Shi et al., 2023). However, these studies diverge in

their perspectives when examining the micro-level dynamics. Chen

et al. (2022a) uncovered that EPLI pilots in China engendered a

moral hazard predicament, thereby diminishing firms’ motivation

to curtail emissions and consequently exacerbating their

environmental outcomes. In contrast, Zhu et al. (2023)

demonstrated that EPLI pilots contributed to enhancing firms’

environmental performance. Moreover, the research by Ning

et al. (2023) unveiled a positive correlation between EPLI and

firms’ green innovation efforts.

Owing to the relatively recent emergence of EPLI in China and

the corresponding dearth of available data, research concerning the

micro-level effects of EPLI, particularly in terms of its impact on

green outcomes, has progressed slowly. In essence, the existing body

of research exhibits certain shortcomings, which we elaborate on as

follows: Primarily, a significant portion of the studies centered

around EPLI remains confined to discussions of institutional

enhancements and product design. Few studies delve into the

realm of the green financial effects stemming from EPLI (Chen

and Xia, 2011; Pu et al., 2017). Secondly, research aimed at

understanding corporate green transformation predominantly

revolves around the analysis of factors influencing green

innovation. This approach often overlooks the critical question of

whether corporate green innovation genuinely reflects

comprehensive green transformation. Notably, scant attention has

been devoted to investigating the interplay between green finance

and green innovation (Huang et al., 2022; Irfan et al., 2022). Lastly,

the existing body of research concerning the relationship between

EPLI and microenterprise green transformation has yielded
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inconsistent results (Chen et al., 2022a; Zhu et al., 2023). These

studies frequently rely on the EPLI-insured list issued by the former

Ministry of Environmental Protection (MEP) in 2015–2016.

However, this dataset bears notable limitations that hinder its

ability to accurately illustrate the green finance impact of EPLI

(Ning et al., 2023).

Green development represents a crucial trajectory toward

achieving “carbon peaking and carbon neutrality” goals. In this

context, green finance emerges as a pivotal instrument within the

financial sector, fostering green development. However, the existing

green financial market predominantly concentrates on facets like green

credit and green bonds. Conversely, the green insurance market’s

evolution has been relatively brief, characterized by an imperfect

framework. To address this, China’s financial sector has

implemented pilot policies to systematically enhance the green

insurance market. The strategic utilization of green insurance in risk

management, economic compensation, and social oversight to propel

green development, particularly in the micro-enterprise domain, holds

both pragmatic implications and theoretical significance. This pertains

not only to refining the green insurance system but also to fostering

sustainable enterprise development. Against this backdrop and

research context, we employ the 2008 EPLI pilot as an exogenous

event.We focus on Shanghai and Shenzhen’s A-share listed companies,

with those within the pilot regions constituting the experimental group,

and those outside forming the control group. By employing green

innovation as a specific metric for assessing green transformation, we

construct a quasi-natural experiment. Employing the difference-in-

difference (DID) model, we analyze the influence of the EPLI pilot on

enterprises’ green innovation, delving into the broader impact on their

green transformation. Our study further probes the underlying

mechanisms driving this impact, particularly the role of urban green

total factor productivity and internal enterprise investment efficiency.

Additionally, we investigate potential asymmetries in this effect under

the moderating influences of factors such as regional and industry-

specific environmental pollution, enterprise environmental protection

measures, and governmental environmental concerns. Ultimately, we

substantiate the influence of the EPLI pilot on corporate governance.

This entails examining the policy’s effects on enterprises’

environmental protection subsidies, financial risk, bank loans, and

information disclosure practices.

This paper’s potential research contributions encompass two

principal aspects. Firstly, from a research perspective, we

accomplish this by investigating the influence of the EPLI pilot

on green innovation—an approach that has not been previously

explored. Secondly, in terms of research content, we break new

ground by utilizing the 2008 EPLI pilot as an exogenous shock to

meticulously assess its impact on the green innovation of listed

companies. We delve into both the immediate and dynamic effects

of the EPLI pilot. Additionally, we delve into the intricate

mechanisms underlying the policy’s impact on green innovation,

unraveling the distinct outcomes resulting from the three

dimensions of regional, industrial, and enterprise-level regulation.

Lastly, we scrutinize the corporate governance implications of the

EPLI pilot policy, thereby making a substantial contribution to the

realm of research focused on green financial policies.
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The rest of the article is organized as follows: in the second part,

the theoretical analysis of the research hypotheses is presented. The

third part provides the research design. The fourth part presents

and analyzes the main empirical results. In the fifth part of the

extended study, we analyze the mechanism of action effect, the

moderating effect, and the corporate governance effect of the EPLI

pilot policy. The last part summarizes and discusses.
2 Theoretical analysis and research
hypotheses

2.1 The role of EPLI

EPLI not only encompasses a broad risk management role but

also serves as a mechanism for economic compensation and social

management. Within this framework, its social management aspect

can effectively enact a form of “subrogated regulation.” This facet acts

to curtail polluting practices by enterprises, thereby fostering the

transition toward green transformation within relevant industries

(Zhou and Wang, 2009; Chen and Xia, 2011). Simultaneously, the

EPLI system occupies a vital position within the realm of green

insurance, operating as a component of green financial policy. Its

primary function revolves around channeling financial resources

away from polluting sectors and redirecting them towards

environmentally sustainable industries. This strategic resource

allocation serves to elevate financing costs for polluting industries

while reducing financing costs for eco-friendly counterparts. In this

manner, it effectively addresses the predicament of environmental

externalities (Huang et al., 2022; Irfan et al., 2022; Lin et al., 2023).

Furthermore, the EPLI system can be approached as a market-driven

environmental regulation, engendering an external regulatory impact

on enterprises’ environmental conduct. This additional regulatory

dimension collaborates with the “subrogation regulation” function,

collectively imposing limitations on capital investments by

companies. By doing so, it constrains high-pollution practices while

incentivizing environmentally responsible behaviors. The outcome is

a reduction in environmental risks and an enhancement of overall

environmental performance (Lian et al., 2022; Zhu et al., 2023).
2.2 Research hypothesis

Considering the green financial impact and the environmental

regulatory role of the EPLI system, we posit that the influence of the

EPLI pilot on enterprises’ green innovation primarily encompasses

four key dimensions:

Firstly, the EPLI pilot performs the essential function of risk

transfer through insurance mechanisms, subsequently amplifying

the enterprise’s internal governance efficacy and propelling green

innovation. Following the EPLI pilot, local businesses can offload

environmental risks to insurance providers by procuring EPLI

coverage. On one hand, this risk transference curtails the

enterprise’s liability for compensating environmental risks, thus

freeing up compensation funds and alleviating constraints on
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internal cash flow. This enhances the efficiency of internal resource

utilization. On the other hand, the EPLI coverage prompts

insurance companies to intensify their environmental oversight of

the enterprise. This heightened supervision enhances information

transparency, diminishes asymmetries in environmental

information, guides enterprises toward bolstering environmental

performance, mitigates environmental risks, and reduces the

likelihood of environmental incidents. Consequently, it upgrades

the quality of internal environmental information within the

enterprise. This, in turn, augments the efficiency of internal

information governance, offering more scientific, objective, and

efficient information backing for the enterprise’s environmental

decision-making. This effect is particularly pronounced for activities

such as green innovation and research and development,

characterized by heightened risk, prolonged cycles, and gradual

effects. As a result, the governance effect of the enterprise’s green

endeavors is amplified. Hence, the EPLI pilot enriches enterprises’

internal governance efficiency in resource utilization and

information management while simultaneously furnishing

innovative resources and informational support for green

innovation initiatives.

Secondly, the EPLI pilot contributes to a more judicious

allocation of financial resources within the region, fostering the

financing of enterprises’ green activities and thus propelling green

innovation. Operating as a pivotal component of green finance, the

EPLI pilot actively steers financial resources from heavily polluting

enterprises towards those championing environmentally conscious

initiatives. This strategic reallocation elevates the cost of capital for

polluting enterprises while simultaneously reducing the financing

burden on environmentally friendly counterparts. Polluting

enterprises are compelled to acquire EPLI, thus incurring

additional expenditure. Simultaneously, drawing from signaling

theory, the acquisition of EPLI implies that enterprises bear

elevated environmental risks. This, in turn, may hinder their access

to external financing. As a response, these enterprises are prompted

to curtail emissions through energy-saving measures, thereby

bolstering environmental performance and mitigating external

financing constraints. Consequently, green innovation endeavors

see a corresponding upsurge. Conversely, for environmentally

friendly enterprises, the EPLI pilot fosters a conducive green

financing environment. This environment curtails financing costs

for environmentally conscious enterprises. Concurrently, these

enterprises save on premiums by not purchasing EPLI and are

relieved of costs linked to conforming to stringent environmental

regulations. In essence, the EPLI pilot’s financing constraints on

polluting enterprises act as an impetus for innovation aimed at

improving their environmental performance. Meanwhile, the “cost

savings” realized by environmentally friendly enterprises under the

pilot’s influence serve to propel their green innovation initiatives.

Thirdly, the subrogation effect and the social management

function inherent in the EPLI system yield a form of social

governance for enterprises, subsequently driving green innovation

initiatives. On one hand, in a bid to forestall adverse selection and

moral hazard, insurance companies comprehensively grasp and

analyze the environmental information of enterprises before EPLI

procurement. This scrutiny extends to continuous monitoring of
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enterprises’ environmental performance throughout the insurance

period. The resultant guidance encourages enterprises to amplify

their green behaviors while minimizing polluting practices. On the

other hand, grounded in signaling theory, EPLI operates as a market

signal triggering vigilance from regulators, the public, and

investment entities, among other stakeholders. This external

oversight proves instrumental in mitigating agency conflicts and

harmonizing the divergent goals of enterprises, that seek both

profitability and green objectives. Confronted by the pressure of

societal supervision, enterprises are compelled to elevate their

environmental performance. This dynamic underscores the green

governance effect of the EPLI system. In practical terms, this entails

a reinforcement of green innovation within corporate endeavors,

effectively striking a balance between the pursuit of green

transformation and the short-term goals of profitability.

Fourthly, the EPLI pilot imparts the ethos of green development

and triggers a shift in the enterprise development paradigm,

ultimately fostering green innovation. Serving as a significant

institutional framework for sustainable enterprise progress, the

pilot EPLI system disseminates the principles of green finance

and green development. It draws enterprises’ focus toward ESG

(environmental, social, and corporate governance) requisites.

Concurrently, given the increasing embrace of the green

development philosophy by institutional investors, enterprises

have begun integrating green transformation and ESG objectives

into their overarching strategies. This strategic alignment facilitates

their adaptation to evolving social trends. This alignment is

manifested in the allocation of corporate resources toward green

investments, projects, and industries. Consequently, the enterprises

pivot from resource-intensive and polluting endeavors to greener

pursuits. Guided by the tenets of green development, these

enterprises transition away from their former crude and polluting

development models. The result is a continuous enhancement of

their environmental performance. In this vein, enterprises channel

efforts into green research and development, harnessing the

outcomes of green innovation to drive pollution control and

green-centric development. Thus, following the EPLI pilot, the

influence of the green concept leads enterprises to emphasize

green transformation and ESG strategies. This shift drives active

participation in green initiatives and augments enterprises’

willingness to engage in green innovation.

In summary, the EPLI pilot enhances internal governance,

optimizes regional resource distribution, reinforces external

oversight, and steers green transformation. As a result, it propels

the green innovation of enterprises within the pilot region. On this

basis, we present the research hypotheses of this study:

H1: Following the EPLI pilot, the green innovation performance

of enterprises in the pilot region improves.

Drawing on the preceding analysis, it becomes evident that

EPLI pilots wield influence not only in terms of green governance at

the micro-enterprise level but also operate as catalysts for green

finance and environmental regulation, thereby fostering local green

development (Fan et al., 2022; Li et al., 2023). The impact of EPLI

pilots on firms’ green innovation predominantly hinges on their

capacity to propel green development at the regional scale and to

enhance internal governance at the firm level.
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The effects of EPLI pilots are as follows: they drive local firms’

green innovation by augmenting the green total factor productivity

within pilot districts. This enhancement is rooted in the EPLI

system pilots’ ability to optimize district-level resource utilization,

facilitate the transition toward environmentally friendly resource

flows, elevate the cost associated with pollution, diminish the

expense of environmental protection, and mitigate the adverse

ramifications of negative environmental externalities within the

districts. Simultaneously, the EPLI pilot imposes penalties on

heavily polluting industries, projects, and enterprises, curbing

individual enterprises’ polluting behaviors. This collective action

catalyzes the green upgrading of industries across the entire region,

culminating in tangible regional green development. Green total

factor productivity (GTFP) stands as a pivotal metric of regional

green development, demonstrating a positive correlation with green

innovation (Zhao et al., 2022). This relationship emerges from the

fact that regional green innovation constitutes a significant

component of regional GTFP. Consequently, higher GTFP and

elevated efficiency in green innovation output correlate with

superior green innovation performance among local enterprises.

Therefore, the EPLI pilot serves to facilitate the advancement of

local GTFP, subsequently fostering enterprises’ green innovation.

This underpins the hypothesis regarding the impact mechanism at

the regional level proposed in this study:

H2a: The EPLI pilot influences enterprise green innovation

performance through the mediation of regional green total

factor productivity.

The EPLI pilot contributes to a heightened output of

enterprises’ green innovation by enhancing investment efficiency

within the pilot area. The magnitude of enterprise green output is

chiefly influenced by the efficiency of allocating green resources and

managing environmental information. Investment efficiency serves

as an indicative measure of both resource and information efficiency

within enterprises. Consequently, the vigor of enterprise green

innovation activities is molded by financing constraints, with

investment efficiency holding a pivotal role in shaping the

outcomes of green innovation endeavors. EPLI pilots exert a

mitigating influence on the agency predicament faced by local

enterprises, primarily through their external supervision impact.

This external oversight, in turn, enhances the internal governance of

enterprises, leading to an amelioration in investment efficiency.

Concurrently, the EPLI pilot facilitates the provision of green

funding for enterprise-level green initiatives via the mechanism of

resource allocation. This infusion of resources fosters improved

environmental performance within enterprises, thereby enhancing

relations with stakeholders. These stakeholders, in turn, contribute

environmental information and offer green resource support for the

enterprises’ green endeavors. This harmonious synergy serves to

augment enterprise investment efficiency, ultimately refining the

output of green innovation (Yang et al., 2022). As the EPLI pilot

system guides enterprises toward elevating environmental

investments to bolster environmental performance, it effectively

addresses the issue of underinvestment. This resolution, in turn,

yields a positive impact on the efficiency of input and output

concerning green innovation. Drawing on the preceding analysis,
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we posit the following hypothesis regarding the impact mechanism

at the firm level:

H2b: Following the EPLI pilot, enterprises’ green innovation

performance is influenced by the enhancement of investment efficiency.

External pollution serves as a pivotal determinant impacting

firms’ green innovation, thereby imposing limitations on the

efficacy of green finance policies (Wang et al., 2022b). This

influence may stem from the capacity of regional pollution to

influence resource allocation and exert an impact on micro-firm

financing constraints. Similarly, corporate pollution conduct

detrimentally affects internal corporate governance, eroding

financing capability and casting a negative shadow over corporate

green innovation (Amore and Bennedsen, 2016). The government

assumes a crucial role in regional pollution management, acting as a

principal entity in this realm. Government bodies possess the ability

to directly allocate resources for environmental governance,

employing environmental regulatory fines to curtail corporate

pollution activities. Additionally, they leverage environmental

governance investments and environmental protection subsidies

to steer enterprises toward energy conservation, emissions

reduction, and engagement in green initiatives. This approach

indirectly fosters environmental pollution management, thereby

influencing enterprises’ environmental practices in line with the

government’s ecological concerns (Farooq et al., 2021). Hence, there

will be an asymmetric impact of internal and external

environmental pollution and environmental governance on the

green micro effects of the EPLI pilot policy. Based on the above

analysis, we put forward the hypothesis of moderation effects:

H3: When firms face lower levels of internal and external

environmental pollution and higher levels of environmental

governance, the EPLI pilot policy has a stronger facilitating effect

on firms’ green transformation.
3 Methodology

3.1 Sample and data source

Given that the initial cohort of EPLI pilots commenced in 2008,

followed by the second cohort in 2012, the research scope of this

paper encompasses Chinese Shanghai and Shenzhen A-share listed

companies spanning from 2004 to 2011. We adhere to four

established research conventions to handle the sample in the

following manner: (1) Exclude samples categorized as ST, PT, and

*ST during the specified period. (2) Exclude samples that were listed

in or after 2004. (3) Omit samples operating in the financial sector.

(4) Eliminate samples with missing or anomalous data about key

variables. Ultimately, we amassed 10,172 annual sample observations,

representing 1,813 listed companies. Among these, there are 2,777

observations for companies within the experimental area and 7,395

observations for companies in the non-experimental group. This

winnows the main variables by 1% and 99% (Winsorize) to mitigate

the influence of outliers on the regression outcomes.

Enterprise green patent data is sourced from the China Research

Data Service Platform (CNRDS). Enterprise financial status,
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government subsidies, and disclosure appraisal data are procured from

Cathay Pacific CSMAR and Vantage Wind databases. Regional

environmental and economic data are extracted from the statistical

yearbooks of each respective province and region. The frequency of

usage of green development-related terms is derived from local

government work reports.
1 The disclosure projects are following: environmental protection

management system, environmental protection education and training,

environmental protection special action, environmental incident

emergency response mechanism, environmental protection honors or

awards, "three simultaneous" system.
3.2 Variables

3.2.1 Explanatory variable
Digital green innovation is one of the important green

innovation contents and an important index to measure the green

transformation of enterprises, which plays an important role in the

digitalization and decarbonization strategy of agricultural high-end

equipment manufacturing enterprises (Yin et al., 2022a).

Citing Amore and Bennedsen (2016) and Tang et al. (2018), we

employ the count of green patents (referred to as GI, calculated as

the logarithm of the number of independently filed green patents

plus one) as a metric to gauge firms’ performance in green

innovation. This choice allows us to portray the extent of

companies’ endeavors towards environmental sustainability.

Furthermore, during the robustness assessment, we substitute the

count of green patents (GI) with the count of green invention

patents (abbreviated as GCI, calculated by taking the logarithm of

the number of independently filed green invention patents plus

one) as well as the count of green utility model patents (abbreviated

as GUI, calculated by taking the logarithm of the number of

independently filed green utility model patents plus one). This

alteration permits us to delve into the caliber of enterprises’ green

innovation, adding a layer of depth to our analysis.

3.2.2 Mechanism variables
To elucidate the mechanism behind the impact of the EPLI pilot

on enterprises’ green transformation, we incorporate specific

variables based on the methodologies outlined by Pastor and

Lovell (2005) and Richardson (2006). These variables encompass

urban green total factor productivity (GTFP) at the regional level

and over-investment (OI) at the enterprise level. These measures

serve to quantify the extent of regional green development and the

efficiency of enterprises’ investment, respectively. The computation

of green total factor productivity involves a fusion of an over-

efficient SBM model, which takes into consideration undesired

outputs, and the Malmquist productivity index. This

amalgamation yields a metric for the growth of urban total factor

productivity under a global reference data envelopment analysis

framework. Concurrently, we gauge underinvestment (LI) through

an inefficient investment model, which is formulated as follows:

Ii,t = a0 + a1Qi,t-1 + a2Leveragei,t-1 + a3Cashi,t-1 + a4LAgei,t-1+

        a5Sizei,t-1 + a6SRi,t-1 + a6Ii,t-1 + lt + hj + ςi,t−1

(1)

In the given context, where I signifies new investment (defined as

the ratio of cash utilized for procuring fixed assets, intangible assets,

and other long-term investments about total assets), Q denotes

Tobin’s Q value (calculated as total market capitalization divided
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by total assets), Leverage represents the leverage ratio (total liabilities

divided by total assets), Cash signifies the cash ratio (cash assets

divided by total assets), LAge stands for the duration since listing, Size

pertains to the firm’s size (logarithmic representation of total assets),

and SR stands for excess return (annual return accounting for

reinvestment of cash dividends—A-share market composite annual

return); lt symbolizes the time-fixed effect, hj signifies the industry
fixed effect, and z represents the residual term. Specifically, when z>0,
it indicates that the firm is overinvesting, whereas when z<0, it
signifies that the firm is underinvesting. Derived from the

aforementioned inefficient investment model, overinvestment (LI)

materializes when the residual term (z) registers a value below zero.

3.2.3 Moderation variables
According to the above analysis and based on relevant research

(Darnall et al., 2008; Hu et al., 2021; Zhang, 2022), we introduce DPI,

HPI, HERS, and DGF variables to test the impact of the moderating

effects of regional environmental pollution, industry pollution, corporate

environmental management, and regional government environmental

concerns on the benchmark regression. DPI represents the regional

environmental pollution index, which is obtained by the annual

normalization of regional industrial wastewater, exhaust gas, and solid

waste. HPI is a binary variable for pollution-intensive industries that

equals 1 if the firm is in pollution-intensive industries and 0 otherwise.

HERS is a dummy variable for an environmental management system,

which if the enterprise environmental management system disclosure

projects1 are higher than the average value of the annual industry takes

the value of 1, otherwise takes the value of 0. DGF is the regional

government’s green development concern that is obtained by

normalizing the green development word frequency of the regional

government’s working report. The green development word frequency

is collected manually, and the green development word database is

shown in Appendix Table 1.

3.2.4 Control variables
Drawing from prior research (Li et al., 2018; Xiang et al., 2022),

we incorporate the subsequent corporate financial characteristic

variables and all-encompassing governance variables as control

measures: year of establishment (Age), firm size (Size), leverage

(Leverage), return on assets (ROA), net cash generated from

financing activities (FCF), Tobin’s Q (Q, calculated as total

market capitalization divided by total assets), Dual, and Audit

opinion (Opinion). The precise symbols and corresponding

definitions of these variables are detailed in Table 1.

3.3 Model

To assess the fundamental hypothesis H1, we formulated the

subsequent DID panel regression model, drawing insights from
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relevant research (Chen et al., 2022a; Shi et al., 2023; Zhu et al.,

2023). This model enables us to delve into the influence of the EPLI

pilot on companies’ green innovation:

GIit = b0 + b1DIDit + g Xit + di + lt + ϵit (2)

Where GI signifies the dependent variable, specifically the count

of green patents. The term DID represents the primary independent

variable, denoting the DID variable. DID= Pilot×Policy, Pilot is a

dummy that equals 1 if the company is located in the EPLI pilots

and 0 otherwise, Policy is a dummy that equals 1 if the year is after

2007 and 0 otherwise. The symbol X encompasses a collection of

control variables, as elaborated in section 3.2.3. The individual fixed

effect is captured by di, while lt stands for the time-fixed effect. The

constant term is represented by b0, and ϵ accounts for the residual

term. Lastly, the coefficient of the DID variable is denoted as b1.
3.4 Descriptive statistics

Table 2 presents the descriptive statistics for the principal

variables. The findings reveal that, on one hand, the median and

mean values of the count of green patents (GI) are 0.16 and 0,

respectively. This suggests that a majority of the sampled firms lack
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instances of green innovations, with the distribution of green patent

counts displaying a right-skewed trend. On the other hand, the

average value of the binary group variable (Pilot) stands at 0.27,

signifying that 27% of the sample represents enterprises in the pilot

area, constituting the experimental group. Furthermore, the mean

value of the DID variable rests at 0.16, indicating that 16% of the

sample is influenced by the EPLI policy pilot.
4 Empirical results and discussion

4.1 Parallel trend test

Figure 1 illustrates the temporal trajectory of the average count

of green patents for enterprises spanning from 2004 to 2011. The

depicted results indicate that during the period preceding the pilot

phase, the count of green patents held by zone-based enterprises

was essentially comparable to those outside the designated zone.

However, following the implementation of the pilot policy, a

noticeable contrast emerged. The count of green patents and the

growth rate of enterprises situated within the pilot zone surpassed

those observed for enterprises in non-pilot zones. These outcomes

provide initial corroboration for H1.
TABLE 1 Variable symbols and definitions.

Classification Variables Definitions

Explanatory
variable

GI The natural logarithm of the number of green patent applications plus 1.

DID variable

Pilot A dummy that equals 1 if the company is located in the EPLI pilots and 0 otherwise.

Policy A dummy that equals 1 if the year is after 2007 and 0 otherwise.

DID Pilot×Policy

Mechanism
variables

GTFP Green total factor productivity involves a fusion of an over-efficient SBM model

LI Underinvestment through an inefficient investment model

Moderation
variables

DPI
Regional environmental pollution index, which is obtained by annual normalization of regional industrial wastewater, exhaust gas,
and solid waste.

HPI A dummy that equals 1 if the if the firm is in pollution-intensive industries and 0 otherwise.

HERS
A dummy that equals 1 if t the enterprise environmental management system disclosure projects are higher than the average value
of the annual industry takes the value of 1 and 0 otherwise.

DGF
The regional government’s green development concern that is obtained by normalizing the green development word frequency of
the regional government’s working report.

Control variables

Age The natural logarithm of the difference between observation year and establishment year.

Size The natural logarithm of total assets.

Leverage The ratio of total liabilities to total assets.

ROA The ratio of total profits to total assets.

FCF The ratio of net cash generated from financing activities to total assets.

Q The ratio of total market value to total assets.

Dual A dummy that equals 1 if the firm’s chairman is the same as its CEO and 0 otherwise.

Opinion A dummy that equals 1 the audit opinion is “standard unqualified” and 0 otherwise.
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4.2 Baseline regression

Table 3 presents the outcomes of the baseline regressions. The

initial two columns display regressions conducted without fixed

effects, using Ordinary Least Squares (OLS). The subsequent two

columns showcase regressions incorporating individual and year-

fixed effects (FE). The odd-numbered columns pertain to

regressions devoid of control variables, while the even-numbered

columns correspond to regressions incorporating control variables.

From the regression outcomes, the coefficient estimations for the

DID variable (DID) amount to 0.097, 0.084, 0.026, and 0.037 in
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columns (1) through (4). These coefficients exhibit significance at

the 5% level for the first three columns and the 1% level for the final

column. This underscores that the EPLI pilot exercises a positive

influence on the count of green patents held by enterprises. The

above regression results collectively endorse the notion that the

EPLI pilot policy fosters green innovation among enterprises within

the pilot area. Therefore, hypothesis 1 remains substantiated.

Following the benchmark regression, a correlation test was

executed. The test results affirm that the FE model surpasses the

OLS model in performance. Consequently, we consider column (4)

as the benchmark for subsequent analysis.
TABLE 2 Descriptive statistics of the main variables.

Variables N Max Median Min Mean S.D.

GI 10172 2.56 0.00 0.00 0.16 0.48

Pilot 10172 1.00 0.00 0.00 0.27 0.45

Policy 10172 1.00 1.00 0.00 0.57 0.50

DID 10172 1.00 0.00 0.00 0.16 0.36

Age 10172 3.30 2.48 1.39 2.46 0.38

Size 10172 6.91 3.05 0.69 3.19 1.18

Leverage 10172 1.41 0.51 0.06 0.51 0.22

ROA 10172 0.23 0.04 −0.28 0.04 0.07

FCF 10172 0.00 0.00 −0.00 −0.00 0.00

Q 10172 7.46 1.41 0.93 1.80 1.10

Dual 10172 1.00 0.00 0.00 0.14 0.35

Opinion 10172 1.00 1.00 0.00 0.94 0.24
FIGURE 1

Parallel trend test plot. Solid lines represent firms in pilot zones and dashed lines represent firms in non-pilot zones.
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Analyzing the regression results of the control variables reveals

the following insights. First, the coefficient estimate for Age stands at

0.259 and is significantly positive at the 1% level. This observation

suggests that the longer an enterprise has been established, the more

pronounced its green innovation performance tends to be. Second,

the coefficient estimates for firm size (Size) register 0.054 and hold

statistical significance at the 10% level. This finding indicates that

firm size serves as an indicator of financial robustness, implying that

enterprises with greater financial strength tend to exhibit elevated

levels of green innovation output. Third, the computed coefficient for

Return on Assets (ROA) rests at −0.218 and is significantly negative at

the 1% level. This highlights that a higher level of profitability is not

conducive to green innovation. This phenomenon could arise

because heightened profitability often reflects short-term gains for

the enterprise. This might, in turn, prompt management to prioritize

immediate gains over long-term considerations, thereby hindering

the drive toward green innovation.
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4.3 Robustness check

Firstly, a non-parametric replacement method is employed for

conducting a placebo test. The outcomes of this test are visually

depicted in Figure 2. The 95% and 99% quantiles in the placebo test

are 0.015 and 0.023 which are both less than 0.037 (in the baseline

regression result). Secondly, following the methodology established by

Lian et al. (2022), we replace the count of green patents with the counts

of green invention patents (GCI) and green utility patents (GUI). The

regression results are showcased in columns (1) and (2) of Table 4.

These outcomes indicate that the EPLI pilot possesses a more

pronounced positive influence on green invention patents compared

to green utility model patents. In essence, the EPLI pilot demonstrates

its capacity to significantly foster substantial green transformation

within enterprises. Thirdly, leveraging the regression techniques from

Hu et al. (2021), Xiang et al. (2022), and Yu et al. (2021), we transform

the baseline linear regression into a nonlinear model. This
TABLE 3 Impact of EPLI pilot on green innovation in firms.

Variables

(1) (2) (3) (4)

OLS FE

GI GI GI GI

DID 0.097** 0.084** 0.026** 0.037***

(2.77) (2.87) (2.28) (3.03)

Age −0.037 0.259***

(−1.60) (6.11)

Size 0.095** 0.054*

(2.48) (1.99)

Leverage −0.112** −0.022

(−2.68) (−1.00)

ROA −0.087 −0.218***

(−0.59) (−4.94)

FCF −18.148 −11.823

(−1.04) (−0.66)

Q 0.023*** 0.003

(4.28) (0.38)

Dual 0.121*** 0.016

(5.66) (1.57)

Opinion −0.013 −0.001

(−0.47) (−0.09)

Constant 0.140*** −0.055 0.146*** −0.654***

(3.71) (−0.45) (82.27) (−4.78)

Firm NO NO YES YES

Year NO NO YES YES

Observations 10,172 10,172 9,846 9,846

Within R2 0.00546 0.0578 0.000378 0.00922
The values in parentheses are t values. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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encompassed Poisson regression, negative binomial regression, Tobit

regression, and the utilization of two-way fixed effects for both the year

and industry. The results of this regression analysis are detailed in

Table 4, specifically in columns (3) through (5). Fourthly, we execute a

Propensity Matching Score (PSM) approach to create a balanced

pairing of samples at a 1:1 ratio between the experimental and non-

experimental areas. The paired regression outcomes are displayed in

columns (6) and (7) of Table 4. Fifthly, we introduced industry fixed

effects, province fixed effects, and provincial economic variables,

building upon the benchmark regression, as per the methodologies

outlined in Lyu et al. (2022) and Shi et al. (2023).We introduce regional

variables including GNP, DFR, and DFI, where GNP stands for the

growth rate of gross regional product, DFR denotes financial

development (Growth rate of financial output), and DFI signifies

fixed-asset investment (Ratio of fixed-asset investment to gross

regional product). The results of these regression adjustments are

elucidated in Table 5. The robustness tests outlined above

consistently corroborate the empirical outcomes established by the

benchmark regression, thereby reinforcing the validity of our findings.
5 Extensive research

5.1 Impact mechanism test

Drawing inspiration from Bostwick et al. (2018) and Stuart

(2022), we pursued a bifurcated analysis. Firstly, we recalibrated the

regressions based on the annual averages of urban green total factor

productivity (GTFP) at the regional level. This entailed categorizing

samples above the mean into the “high green development” group,

and those below the mean into the “green development” group. The
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results of these regressions are presented in columns (1) and (2) of

Table 6. From the regression outputs, the coefficient estimations for

the DID variable (DID) stand at 0.049 and 0.038, both statistically

significant at the 5% level. Notably, the coefficient value for the high

green development group surpasses that of the low green

development group. This indicates that the degree of regional

high green development influences the dynamic between the EPLI

pilot and local enterprises’ green innovations. This insight suggests

that the EPLI pilot, by stimulating regional green development,

fosters corresponding local enterprises’ green innovation.

Consequently, hypothesis H2a gains support. Conversely, we

classified the sample into underinvestment and non-

underinvestment groups based on firm-level underinvestment

(LI). Within the underinvestment group, the coefficient

estimation for the DID variable (DID) is 0.003, lacking statistical

significance. In contrast, within the non-underinvestment group,

the coefficient estimation for the DID variable (DID) amounts to

0.005, bearing statistical significance at the 5% level. This implies

that the EPLI pilot exclusively influences the green innovation of

firms in the non-underinvestment group. This observation signifies

that the EPLI pilot rectifies underinvestment among local firms,

subsequently catalyzing green innovation. Consequently,

hypothesis H2b remains unchallenged.
5.2 Moderation effects analysis

Table 7 presents the regression outcomes concerning the

moderating effects. Analysis of these results yields the following

conclusions: Firstly, the coefficient estimation for the cross-multiplier

of the DID variable and the regional environmental pollution index
FIGURE 2

Placebo test.
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(DID×DPI) stands at 0.026, displaying statistical significance at the 5%

level. However, its magnitude is smaller than that of the coefficient

value for the DID variable (DID) in the baseline regression, with a

correspondingly reduced significance level. This suggests that a higher

degree of regional environmental pollution weakens the promoting

impact of the EPLI pilot on green innovation. In other words, as

regional environmental pollution worsens, the efficacy of the EPLI pilot

in driving enterprises’ green innovation diminishes. Secondly, the
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coefficient estimation for the cross-multiplication term of the DID

variable with the binary variable denoting pollution-intensive

industries (DID×HPI) is −0.006, lacking statistical significance. This

signifies that industry-related pollution has eroded the positive

influence of the EPLI pilot on enterprises’ green innovation. Thirdly,

the coefficient estimation for the cross-multiplier of the DID variable

and the environmental management system (DID×HERS) is 0.091,

signifying statistical significance at the 1% level. This value surpasses
TABLE 4 Robustness test-1.

Variables
(1) (2) (3) (4) (5) (6) (7)

GCI GUI GI GI GI GI GI

DID 0.035*** 0.029** 0.495*** 0.360*** 0.062*** 0.087** 0.044***

(3.15) (2.60) (8.03) (7.17) (3.00) (2.52) (3.79)

Constant −0.512*** −0.531*** −3.505*** −5.470*** −0.200** −0.079 −0.983***

(56.32) (−5.70) (−6.44) (−14.84) (−2.06) (−0.72) (−3.74)

Controls YES YES YES YES YES YES YES

Firm YES YES NO NO NO NO YES

Year YES YES YES YES YES NO YES

Industry NO NO YES YES YES NO NO

Observations 9,846 9,846 10,172 10,172 10,172 4,335 3,878

Within/Pseudo R2 0.000563 0.00814 0.0812 0.143 0.0838 0.0583 0.0123
The values in parentheses are t values. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
TABLE 5 Robustness test-2.

Variables
(1) (2) (3) (4) (5) (6) (7)

GI GI GI GI GI GI GI

DID 0.062*** 0.053** 0.037*** 0.037*** 0.057** 0.053** 0.037***

(3.00) (2.52) (3.03) (2.97) (2.16) (2.53) (2.96)

GNP −0.005** 0.004 −0.007** −0.005**

(−2.51) (1.03) (−2.53) (−2.50)

DFR −0.000 −0.000 −0.000 −0.000

(−0.61) (−0.36) (−0.24) (−0.61)

DFI 0.102 −0.195*** 0.192** 0.102

(1.24) (−2.70) (2.15) (1.24)

Constant −0.050 0.008 −0.654*** −0.145 −0.341 0.683** −0.145

(−0.57) (0.10) (−4.78) (−1.05) (−0.88) (2.77) (−1.05)

Controls YES YES YES YES YES YES YES

Firm NO NO YES YES NO NO YES

Year YES YES YES YES YES YES YES

Industry YES YES YES NO YES YES YES

Province NO YES YES NO NO YES YES

Observations 10,172 10,172 9,846 9,846 10,172 10,172 9,846

Within R2 0.0521 0.0476 0.00922 0.00962 0.0548 0.0480 0.00962
The values in parentheses are t values. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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that of the DID variable in the baseline regression. This implies that a

superior environmental management system aligns with more

environmentally conscious enterprises, thereby enhancing the

effectiveness of the EPLI pilot in promoting green innovation.

Fourthly, the coefficient estimation for the cross-multiplier of the

DID variable and the government’s emphasis on green development
Frontiers in Ecology and Evolution 12103
(DID×DGF) is 0.045, holding statistical significance at the 1% level.

Notably, this coefficient value surpasses that of the DID variable (DID)

in the baseline regression. This underscores that the regional

government’s environmental priorities amplify the impact of the

EPLI pilot in fostering enterprises’ green innovation. The above

regression results validate hypothesis H3.
TABLE 6 Impact Mechanism Tests.

Variables

(1) (2) (3) (4)

External green development mechanism Internal investment efficiency mechanism

High green development Low green development Underinvestment Non-underinvestment

GI GI GI GI

DID 0.049** 0.038** 0.003 0.050**

(2.50) (2.66) (0.18) (2.76)

(−0.05) (1.34) (2.18) (−0.93)

Constant −0.720*** −0.492** −0.581*** −0.549**

(−4.18) (−2.92) (−5.18) (−2.70)

Controls YES YES YES YES

Firm YES YES YES YES

Year YES YES YES YES

Observations 4,447 5,123 5,278 4,107

Within R2 0.00877 0.00938 0.00525 0.0102
The values in parentheses are t values. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Control variables are consistent with model (2).
TABLE 7 Moderating effects.

Variables
(1) (2) (3) (4)

GI GI GI GI

DID×DPI 0.026**

(2.66)

DID×HPI −0.006

(−0.34)

DID×HERS 0.091***

(3.89)

DID×DGF 0.045**

(2.36)

Constant −0.638*** −0.610*** −0.617*** −0.642***

(−4.88) (−4.89) (−4.77) (−4.74)

Controls YES YES YES YES

Firm YES YES YES YES

Year YES YES YES YES

Observations 9,137 9,137 9,137 9,137

Within R2 0.00903 0.00850 0.00987 0.00890
The values in parentheses are t values. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Control variables are consistent with model (2).
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5.3 Corporate governance effects of the
EPLI pilot policy

In this section, we delve into the corporate governance implications

of the EPLI pilot policy. Firstly, government environmental subsidies

wield significant influence over firms’ environmental behaviors and, in

turn, contribute positively to firms’ green innovations (Xia et al., 2022).

In light of this, we recalibrate the DID regressions by incorporating the

environmental subsidy variable (EPS). EPS equals the ratio of

environmental subsidy to total assets. The outcomes of these

regressions are displayed in column (1) of Table 8. Upon analyzing

the regression results, we find that the coefficient estimations for the

DID variable (DID) lack statistical significance, indicating that the EPLI

pilot has no discernible impact on corporate environmental subsidies.

Secondly, green finance policies exert influence over firms’ cost of

capital, consequently affecting both their financial risk (Tian and Pan,

2022) and green innovation. In consideration of this, we introduce the z-

value (Z)2. The regression outcomes for this scenario are showcased in

column (2) of the same table. The results reveal that the coefficient

estimations for the DID variable (DID) are not statistically significant,

indicating that the EPLI pilot does not engender a noticeable impact on

corporate financial risk. Thirdly, external financing serves as a pivotal

conduit for green innovation. Particularly noteworthy is the influence of

the green credit policy, which has accentuated financing constraints for

firms with subpar environmental performance, especially in terms of

bank loans, thereby restricting external financing avenues (Xiang et al.,

2022). To elucidate this, we introduce short-term loans (Sloan) and

long-term loans (LLoan). Columns (3) and (4) showcase the pertinent

regression results. Analyzing these outcomes, we ascertain that the

coefficient estimation for the DID variable (DID) lacks statistical

significance in Column (3), yet holds a significant positive value at

the 1% level in Column (4). This indicates that the EPLI pilot does not

significantly affect firms’ access to short-term loans, but it does facilitate

their attainment of long-term bank loans. Fourthly, existing research

underscores that firms with robust disclosure quality tend to encounter

less pronounced financing constraints about their green innovations,

compared to firms with inadequate disclosure practices. This dynamic is

further accentuated by environmental information disclosure, which

bolsters the domain of green finance (Yu et al., 2021). To reflect this, we

substitute the count of green patents with the disclosure rating (IA). IA

denotes the evaluation rank of information disclosure of listed

companies, which is divided into excellent, good, qualified, and

unqualified four grades, IA equals respectively 3, 2, 1, and 0. Column

(5) in Table 8 illustrates the regression results about the information

governance impact of the EPLI pilot. Analyzing these findings, we

observe that the coefficient estimation for the DID variable (DID) is

significantly positive at the 10% level. This signifies that the EPLI pilot

policy contributes to diminishing corporate information asymmetry.
2 Z=1.2X1+1.4X2+3.3X3+0.6X4+0.999X5. X1 represents the ratio of

operating capital to total assets, X2 stands for the ratio of retained earnings

to total assets, X3 refers to the ratio of EBITDA to total assets, X4 indicates the

ratio of total market capitalization to total liabilities; and X5 denotes the ratio

of operating income to total assets.
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To sum up, the EPLI pilot policy yields non-significant effects

on government environmental protection subsidies, financial risk,

and short-term bank loans. However, it exerts a positive influence

on long-term bank loans and disclosure ratings, indicating the

presence of a long-term financing effect and an information

governance effect stemming from the EPLI pilot.
6 Discussion and conclusion

6.1 Discussion

In this paper, we undertake a comprehensive exploration of the

micro-green effects of the EPLI pilot system. Nonetheless, our study

does acknowledge two inherent limitations: On one hand, our

approach involves constructing a DID model utilizing the EPLI

pilot policy to examine its policy effects. However, this methodology

may not fully capture the entirety of the green financial effects

attributed to EPLI. Based on the previous study, future research

could combine the EPLI system with digital green project

investment in enterprises and apply it specifically to the new

energy-driven construction industry (Dong et al., 2023a).

On the other hand, our study employs green innovation as a sole

proxy to gauge enterprises’ green transformation. This approach hinges

upon identifying substantial green transformation based on the

categorization of green patents, which could be considered somewhat

one-sided. Considering these limitations, future research endeavors

could be directed toward addressing these gaps. Firstly, the focus

could shift towards encompassing all insured enterprises, employing

premium data to measure the diverse effects of EPLI. Simultaneously, a

comprehensive assessment of green transformation could be

undertaken from multiple angles, including aspects such as green

investment, social responsibility, ESG scores, and environmental

information disclosure. This holistic approach could ascertain whether

enterprises demonstrate genuine green transformation, while also

investigating potential instances of greenwashing behavior from the

vantage point of environmental performance. Also, future researchers

can analyze the important role of digital technology in industrial

structure upgrading in future research by following (Dong et al., 2023b).
6.2 Conclusion

Addressing the unresolved aspects within existing research

concerning EPLI and its implications for enterprises’ green

transformation, this study employs the 2008 EPLI pilot as an

exogenous event. By treating enterprises within the pilot area as the

experimental group and those outside it as the control group, a quasi-

natural experiment is constructed. Green innovation is utilized as a

proxy variable for gauging green transformation. Employing the

Difference-in-Differences (DID) model, this study scrutinizes the

influence of the EPLI on enterprises’ green transformation. The

outcomes of this study reveal several noteworthy conclusions. Firstly,

the EPLI pilot policy demonstrates a fostering effect on enterprises’

green innovation. This observation retains its significance even after

undergoing a battery of robustness tests. The policy showcases the
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potential to drive substantial green transformation among enterprises.

Secondly, the EPLI pilot policy positively impacts green innovation by

stimulating regional green development and ameliorating firms’

underinvestment. Thirdly, regional pollution and industrial pollution

act to temper the promotion effect of the EPLI pilot policy on firms’

green innovation. Notably, the degree of firms’ environmental

protection commitment and the environmental concern of local

governments wield considerable influence. A higher level of these

factors strengthens the positive impact of the EPLI pilot policy on

firms’ green innovation. Fourthly, the EPLI pilot policy does not

significantly influence environmental subsidies, financial risks, or

short-term bank loans. Nevertheless, it aids enterprises within the

pilot area in securing long-term bank loans and mitigating information

asymmetry. Consequently, the EPLI pilot policy manifests both long-

term financing implications and information governance effects.
6.3 Managerial implication

For corporate governance, proactive participation in the green

insurance market, coupled with deliberate green transformation, is

advocated. Particularly relevant for enterprises with significant

environmental impact, such as heavy polluters, is the proactive

procurement of EPLI to mitigate environmental risks. Simultaneously,

these enterprises should undertake deliberate efforts to harness green

innovations in their operations, thereby executing effective

environmental governance. This not only elevates their environmental

performance but also enables their engagement in green activities

conducive to green transformation. Such a proactive approach

facilitates the optimization of investment efficiency and the attainment

of green returns, ultimately guiding enterprises towards a trajectory of

sustainable development.
6.4 Practical/social implications

Based on the study’s findings, this paper presents two distinct

policy implications aimed at enhancing EPLI and propelling
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enterprises’ green transformation for practical/social: on the one

hand, there is a call to enhance the enterprise environmental

monitoring mechanism to fully leverage the green governance

potential of EPLI. Policymakers should establish and refine a

comprehensive enterprise environmental monitoring mechanism.

This mechanism should incorporate variable rates tailored to

individual enterprises’ environmental performances. Furthermore,

the establishment of an environmental information-sharing platform

is recommended. By scientifically determining EPLI rates for diverse

enterprises and industries, policymakers can guide these enterprises to

actively participate in the green insurance market. This process will

result in an optimized allocation of market resources, thereby fostering

favorable conditions for the realization of EPLI’s green governance

potential. On the other hand, a robust emphasis on environmental

concern and governance is crucial in facilitating regional green

development. Local governments should recalibrate their approach,

shifting away from exclusive economic development pursuits. Instead,

a stronger emphasis on local green development is advised. This shift

involves intensified efforts in regional pollution control, including

heightened administrative penalties for polluting practices and

increased environmental subsidies for eco-friendly initiatives. These

measures serve to steer enterprises towards engaging in green practices

that ultimately propel green transformation.
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Common prosperity is a social policy goal pursued by the Chinese government
and an ideal social status for humanity. On the basis of three theoretical
hypotheses, this study involved the analysis of county-level digital inclusive
finance data and rural survey data. The Hierarchical Linear Model was employed
to empirically analyze the impact and mechanism of digital inclusive finance
on the common prosperity of rural households. The results indicate that the
county-level digital inclusive finance index, as well as its depth and coverage,
can significantly and directly promote common prosperity. Furthermore, it
was found that household livelihood strategies are one of the regulatory
mechanisms, and digital inclusive finance significantly promotes common
prosperity through factors such as opportunities for migrant work, property
income, business livelihood models, and agricultural livelihood models. In
addition, financing methods are also important adjustment mechanisms, and
digital inclusive finance significantly promotes the common prosperity through
digital tools and loan availability variables. Our research provides favorable
evidence for the cross-level interaction effect of county-level digital inclusive
finance on the common prosperity of rural households.

KEYWORDS

Chinese rural households, common prosperity, digital inclusive finance, moderation
effect, hierarchical linear model

1 Introduction

Common prosperity is a desirable societal status aspired by humanity. Developed
countries do not explicitly use the term “common prosperity,” but similar keywords like
income inequality (Atkinson, 2016; Alacevich and Anna, 2017), quality of life and wellbeing
assessment (OECD, 2012), and subjective wellbeing (Diener et al., 1993) are often included
in the discussion of social policy objectives. The 19th National Congress of the Communist
Party of China (CPC), held in October 2017, clearly put forward the strategic goal that:
“Common prosperity for everyone is basically achieved” by the middle of this Century.
Similarly, the Fifth Plenary Session of the 19th Central Committee of the Communist Party
of China (CPC) raised the important topic of “Making solid advances toward common
prosperity”.The 20th National Congress of the Communist Party of China further proposed
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that: “Chinese-style modernization is a modernization for the
common prosperity of all people.” In the same vein, the 20th
National Congress of the Communist Party of China proposed
that “Chinese modernization is the modernization of common
prosperity for all people”. Common prosperity is an important
feature of Chinese-style modernization, emphasizing the prosperity
of all people, both in terms of material and spiritual wellbeing.
Common prosperity is an essential requirement of Chinese
socialism, characterized by all people collectively striving for an
increasingly developed and globally leading level of productivity,
resulting in the shared experience of a progressively happy
and improved life (Liu PL. et al., 2021). Common prosperity
encompasses two dimensions: affluence and equitable sharing (Li,
2021). It also includes equal access to opportunities for all members
of society (Kakwani et al., 2022). The critical aspect of common
prosperity lies in effectively managing the synergistic relationship
between equity and efficiency (Xia et al., 2022). On a macro scale,
it signifies a state where people enjoy a prosperous life with
abundant material resources, spiritual confidence, social harmony,
a pleasant environment, and wellbeing (Liu and Wang, 2022).
At the household level, meeting people’s reasonable needs is a
prerequisite for achieving common prosperity for all. In terms of
content, common prosperity encompasses income, wealth, health,
recreational opportunities, and cultural activities (Liu C. et al.,
2022), including addressing subjective well-being disparities (Liu
and Zhang, 2023).

However, China still faces significant income disparities and
inadequate social security. Yet, implementing reforms that balance
efficiency and equity is key to promoting common prosperity
(Hong, 2022). Digital financial inclusion refers to a new type of
financial model that relies on Internet technologies such as big data
and cloud computing and combines financial tools and platforms
to provide low-income people with financial services, including
credit, payment, deposits, and insurance (Tan et al., 2023). As an
inclusive financial system that addresses the financial vulnerabilities
of individuals, digital financial inclusion aligns with the ideals and
objectives of promoting common prosperity among the people.
The Plan for Promoting the Development of Inclusive Finance
(2016–2020) issued by China’s State Council in 2015 emphasizes
that inclusive finance should be based on the principles of “equal
opportunity and benefiting people’s livelihoods”. In 2005, the United
Nations introduced the concept of “digital financial inclusion”. By
integrating technologies such as big data, artificial intelligence,
and blockchain, digital financial inclusion allows farmers and
low-income groups to access financial services and the resulting
economic growth benefits. This provides technological support for
achieving common prosperity for the people. The G20 High-Level
Principles onDigital Financial Inclusion emphasize that the primary
aim of digital financial inclusion is to provide formal financial
services to underserved consumer groups like farmers, women,
and the poor. These are the “long tail” individuals who have been
excluded from the traditional finance system (Beck et al., 2018).
The core objectives of digital financial inclusion are “universal” and
“inclusive”, echoing “common” and “affluent”, respectively. On the
one hand, “universal” implies awider audience.Through fragmented
scenarios for user credit profiling, digital financial inclusion expands
the scope and coverage of financial services (Liu Y. et al., 2021).

This, in turn, can provide efficient, convenient, and affordable
financial support for disadvantaged groups (Wu et al., 2021). On
the other hand, “inclusive” implies benefiting all the people.
Digital financial inclusion utilizes digital technology to alleviate
information asymmetry, promote national economic growth (Daud
and Ahmad, 2023), and allow low-income people to share the
dividends of growth through the “trickle-down effect” (Zhang XJ.,
2021), thus realizing financial “equal opportunity and benefit
people’s livelihood” (Zhang JL. et al., 2022).

The existing literature on the impact of digital financial inclusion
on rural households’ common prosperity is relatively limited. At the
macro level, current research predominantly focuses on how digital
financial inclusion promotes balanced regional economic growth
(Zhang et al., 2019), alleviates regional poverty (Xiong and Huang,
2022; Liu and Liu, 2020), reduces income inequality (Zhou and
Chen, 2022), and stimulates rural industrial development (Chen
and Wen, 2023), among other issues. At the micro level, existing
literature primarily emphasizes digital financial inclusion at the
provincial level to promote household income growth (Zhang L.,
2021; Zhang and Lu, 2023), increase household employment
opportunities (Manyika et al., 2016), and enhance social insurance
and educational equity (Pierrakis and Collins, 2013), among other
benefits. A few studies have started to examine how digital financial
inclusion promotes common prosperity among residents, focusing
on aspects such as stimulating entrepreneurship (Zhang JL. et al.,
2022), mitigating unequal opportunities (Tian et al., 2022), and
encouraging non-farm employment (Chen and Jiang, 2023).

Rural residents are a primary target of digital financial inclusion
services, and they are a key group of focus in China’s endeavor to
construct a society of shared prosperity. This study explores the
mechanisms through which digital financial inclusion facilitates
rural households’ common prosperity. It places particular emphasis
on examining how household livelihood strategies and financing
instruments moderate the impact of digital financial inclusion. The
potential marginal contributions of this study include: (Atkinson,
2016) Distinguishing from existing research that utilizes provincial-
level digital financial data, this study matches county-level digital
financial inclusion data with farm household data, creating a
hierarchical dataset with nested relationships (Alacevich and Anna,
2017). Due to the hierarchical nature of the data, traditional
regression methods commonly used in existing studies overlook
the nested relationships within the data, potentially leading to
bias in parameter estimation. Consequently, this study employs
a multilevel model, which is better suited for analyzing data with
nested structures by allowing error components at different levels.
(OECD, 2012). In the examination of the mechanism of action,
this study associates intermediate variables like rural households’
livelihood strategies and financing methods with county-level
digital financial inclusion. It explores the interactive moderating
effect across hierarchical levels to gain a deeper understanding
of how digital financial inclusion influences households’
common prosperity.

The remainder of the article is organized as follows: Section 2
covers the theoretical analysis and research hypotheses and Section 3
presents the data and methods used. The findings from the study are
presented in Section 4, and last but not least, Section 5 presents the
conclusions.
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2 Theoretical analysis and research
hypotheses

2.1 The direct impact of digital inclusive
finance on common prosperity

The development of digital inclusive finance is conducive for
narrowing regional and urban-rural disparities, promoting inclusive
growth in China, and promoting common prosperity (Jing and
Deng, 2022; Chen and Jiang, 2023). Provincial digital inclusive
finance has significantly increased the per capita disposable income
of urban and rural residents, and played a mediating role in
economic growth and entrepreneurial behavior (Yang WM. et al.,
2020). It has also stimulated entrepreneurial vitality and promoted
technological innovation to promote regional common prosperity
(Yang and Zhang, 2023). In addition, digital inclusive finance
at the prefecture level mainly promotes economic growth in
various regions by improving the efficiency of regional capital
allocation and the level of regional entrepreneurship (Yu et al.,
2022). From a multidimensional perspective, the coverage and
depth of use of provincial-level digital inclusive finance has
effectively promoted regional common prosperity (Liu XY. et al.,
2022), while the coverage and depth of use at the prefecture
level have a positive effect on common prosperity (Xu and Wu,
2022). Urban level digital inclusive finance can alleviate the
uneven opportunities and income disparities faced by residents,
thereby promoting overall and shared prosperity of households
to a certain extent (Tian et al., 2022). In addition, improving
digital infrastructure, popularizing digital tools, and improving
individual financial literacy can alleviate the “Matthew effect”,
thereby improving the quality and efficiency of digital inclusive
financial services and promoting common prosperity for families
(Zhang JL. et al., 2022). The development of digital inclusive finance
can significantly promote the commonprosperity of low endowment
residents, reflecting the “inclusive” aspect of digital inclusive finance
(Chen and Jiang, 2023).

As mentioned in the review, existing research has extensively
focused on the relationship between digital inclusive finance and
common prosperity, in particular, on the impact of provincial-
level digital inclusive finance development on regional common
prosperity. However, existing studies lack in-depth examination
of how the development of county-level digital inclusive finance
affects the common prosperity of rural households. In addition,
existing research often matches provincial or municipal financial
data with household data, and then uses panel regression methods
for empirical analysis. However, such processing methods often
overlook the nested relationship between provincial-level data
and farmer data, leading to biased regression results. As a
result, this article reports findings from a study that sought
to understand the construction of a multilevel linear model
suitable for processing nested data. Therefore, we propose the
following Hypothesis 1.

Hypothesis 1: The county-level digital inclusive finance
has a positive impact on the common prosperity of rural
households.

2.2 The role of livelihood strategies in the
relationship between digital inclusive
finance and common prosperity

Existing literature indicates that digital inclusive finance has
a positive impact on livelihood activities such as promoting
rural households’ employment, entrepreneurship, and alleviating
financing constraints. In terms of increasing employment
opportunities and entrepreneurial capabilities for rural households,
Manyika et al. (2016) consider that the widespread application of
digital finance in 2025 will create 95 million job opportunities for
emerging economies. Fang and Xu (2020) used Chinese household
tracking survey data to establish that the development of provincial-
level digital inclusive finance has significantly promoted the
employment of traditional vulnerable groups, and the impact is
inclusive. Du et al. (2020) pointed out that provincial-level digital
inclusive finance has significantly promoted the optimization of
China’s industrial structure, thereby promoting the development
of non-agricultural industries in rural areas and promoting
farmers to choose non-agricultural employment. Zhang et al. (2021)
found that the development of provincial-level digital inclusive
finance can increase farmers’ ability to access opportunities in the
financial ecosystem and improve opportunities for non-agricultural
employment. Zhang and Li (2022) found that both the provincial
digital inclusive finance total index and sub index increase the
probability of part-time rural labor force and pure migrant workers.
In addition, Wang et al. (2023) believed that cultivating human
capital and enhancing residents’ ability to increase income can
promote common prosperity.

On the one hand, digital inclusive finance can provide
inclusive financial services, which is conducive to increasing
social employment opportunities, especially providing more non-
agricultural employment opportunities for farmers (Xie et al., 2018).
The breadth and depth of digital inclusive finance as an accelerator
for financial inclusiveness are beneficial for farmers to obtain
employment opportunities (Zhang et al., 2021). With the increase
of employment opportunities, the promoting effect of county-level
digital inclusive finance on the common prosperity of farmers has
been strengthened. This means that the opportunity for families to
work outside has a positive moderating effect on the relationship
between county-level digital inclusive finance and the common
prosperity of farmers.

On the other hand, digital inclusive finance can promote
household participation in financial markets, thereby increasing
household property income (Zhang and Lu, 2023). With the
increase of household property income, the promotion effect of
county-level digital inclusive finance on the common prosperity
of farmers has been strengthened. In addition, farmers with
different livelihood models have varying demands and applications
for digital inclusive finance. For households with business
and agricultural livelihoods, digital inclusive finance can help
them access financing opportunities for business or agricultural
production. For working-class households, digital inclusive finance
can help increase their access to loan opportunities for living
expenses. In other words, family property income and livelihood
models have a positive moderating effect on the relationship
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between county-level digital inclusive finance and common
prosperity of farmers. Therefore, we propose the following
Hypothesis 2.

Hypothesis 2: Livelihood strategies such as opportunities
for rural households to work outside, property income,
and business livelihood models play a positive regulatory
role in promoting common prosperity through digital
inclusive finance.

2.3 The role of financing methods in the
relationship between digital inclusive
finance and common prosperity of farmers

Existing research has shown that digital inclusive finance
can play a positive role in alleviating the constraints of formal
and informal credit for farmers, and improving their financial
literacy. Wang and Wang (2022) broke through the limitations
of spatial regions in provincial-level digital inclusive finance,
enhanced the financial willingness of long tail customers, and
met the financial needs of different groups. Based on the
China Household Finance Survey (CHFS) data, Yang B. et al.
(2020) found that the development of provincial-level digital
inclusive finance significantly improves the availability of formal
credit for rural households and alleviates financial exclusion
in rural areas. Fan (2021) pointed out that provincial-level
digital inclusive finance has improved farmers’ access to formal
credit by reducing transaction costs, alleviating information
asymmetry, and reducing collateral requirements, especially for
low-income households. On the other hand, Zhang YH. et al.
(2022) argue that digital inclusive finance alleviates information
asymmetry by reducing the cost of human relationships and
increasing online shopping behavior, thereby reducing the
informal lending needs of farmers. Si (2022) found that
county-level digital inclusive finance can help bridge the
information and knowledge divide caused by factors such
as geography and education level, and improve the financial
literacy of farmers.

Digital inclusive finance helps improve the farmers’ access
to loans (Fan, 2021). With the increase in loan availability,
the promoting effect of county-level digital inclusive finance
on the common prosperity of farmers is strengthened. As an
important digital tool, smartphones can effectively increase the
accessibility of online financial services and alleviate “digital
exclusion” (Hu et al., 2021). For farmers who own smartphones,
the promotion effect of county-level digital inclusive finance
on the common prosperity of farmers will be strengthened. In
other words, the availability of debt, the digital tools owned by
households have a positive moderating effect on the relationship
between county-level digital inclusive finance and common
prosperity of farmers. Therefore, we propose the following
Hypothesis 3.

Hypothesis 3: The availability of digital tools and debt financing
methods plays a positive regulatory role in promoting common
prosperity through digital inclusive finance.

The above analysis framework is shown in Figure 1.

3 Data and methods

3.1 Data sources

In this study, we investigated the mechanisms through which
digital financial inclusion affects common prosperity using data
from two different sources. First, we utilized household-level data
obtained from a rural survey conducted by our research team in
July—August 2020. The survey covered six provinces in China
namely: Zhejiang, Jiangxi, Hubei, Hebei, Yunnan, and Guizhou, and
employed a stratified sampling technique (Huo and Zhang, 2023).
We conducted surveys in the following regions:

(1) Zhejiang Province: Suichang County, Jingning County, Xianju
County, Pan’an County, Haishu District, Kecheng District,
Jiangshan City, and Yuyao City.

(2) Guizhou Province: Fuquan City, Kaili City, Xiowen County,
Taijiang County, and Honghuagang District.

(3) Yunnan Province: Jinghong City, Anning City, Dayaocheng
County, and Yiliang County.

(4) Hubei Province: Tianmen City, Yicheng City, Guangshui City,
Gongan County, and Badong County.

(5) Jiangxi Province: Wannian County, Xinfeng County, Poyang
County, Ruijin City, and Wuning County.

(6) Hebei Province: Sanhe City, Taocheng City, Susong County,
Xuanhua District, and Xindu District.

In each county and district, we surveyed approximately 25
households. Finally, we obtained a total dataset of 892 rural
households. Specifically, Hubei Province, Jiangxi Province, and
Hebei Province, located in the central region of China with
average economic development level, include 107, 117, and 130
samples. Yunnan and Guizhou, located in the southwestern region
of China with relatively backward economic development involve
133 and 152 samples, respectively. Zhejiang Province, located in
the coastal areas of China and with relatively developed economy,
involves 253 samples.

In addition, we utilized data from the Peking University Digital
Financial Inclusion Index, based on user transaction data from
Alipay and known for its high reliability and precision (Guo et al.,
2020). This index encompasses data at three levels: provincial,
municipal, and county. While previous research mainly relied on
provincial and municipal data (Zhang JL. et al., 2022; Tian et al.,
2022), this study incorporates county-level data more closely related
to rural households ' productive lives. To address endogeneity, we
used lagged data from 2019 for the level of digital financial inclusion
development and measures of depth of use, coverage breadth, and
digitization.

3.2 Indicator selection

3.2.1 Explanatory variable
Explanatory variable: common prosperity. Most studies

construct common prosperity indicators from a macro perspective,
thus failing to fully capture individual-level variations. A few studies
have focused on household or individual common prosperity. For
example, Wang and Liu (2022) used the income gap as a measure
of rural households ' common prosperity, while Liu XY. et al.
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FIGURE 1
The analytical framework.

(2022) assessed it based on multiple dimensions, including income,
wealth, education, health, recreation, and culture. Liu et al. assigned
binary values (1 or 0) to these dimensions and used the equal-
weight method to calculate rural households ' common prosperity.
Zhang JL. et al. (2022) constructed a common prosperity index
using the equal-weight method, considering material prosperity,
spiritual wellbeing, and social sharing as key dimensions.

The concept of common prosperity essentially reflects the
conditions for all individuals to lead a better life under socialist
principles (Zhang and Wang, 2023). Chen (2022) argues that
common prosperity is relative to people’s needs, and meeting those
needs is a scientifically and human-oriented measure of common
prosperity. This study focuses on core aspects of a good life as
perceived by rural households, elaborating a common prosperity
index comprising eight dimensions: economicwellbeing, healthcare,
pension level, education, material life, spiritual fulfillment,
community environment, and social engagement. This index is
informed by prior research, including works by Tan and Wu (2022)
and Zhang and Wang (2023). In particular (refer to Table 1), the
economic level indicator reflects the household’s economic situation,
including whether per capita household income exceeds 50% of the
per capita income and whether the household income satisfaction
score exceeds 3.Healthcare indicators reflect familymembers’ health
status and eligibility for critical illness insurance. Endowment-
level indicators include whether the household has purchased
endowment insurance and whether they can provide pensions for
elderly familymembers, reflecting their ability to support the elderly.

Indicators of the level of education reflect children’s access to
appropriate primary and secondary education and their educational
attainment satisfaction level. The material life indicator focuses
on the household’s possession of key durable goods, such as cars,
air conditioning or heating, computers, and the Internet, among
other goods, and their subjective evaluation of life satisfaction.
Indicators of spiritual life reflect whether the household has
opportunities for outbound travel and can enjoy cultural and
recreational facilities in the village, as well as “culture to countryside”

activities. Community environment indicators reflect socio-
ecological conditions, including factors like exposure to water
pollution, air pollution, noise pollution, and subjective evaluation of
social security status. The social participation indicator reflects the
family’s engagement in social events such as weddings and funerals
of relatives and friends, as well as their relationships with neighbors
in terms of mutual assistance.

Given that the equal-weight method overlooks the variations
among the indicators, this study draws inspiration from Zhang
and Wang (2023) in measuring the rural households’ common
prosperity index, employing the item response theorymethod. Since
all indicators are binary variables, the two-parameter Logistic model
is applied to estimate the potential capacity value Theta, which
reflects the rural households’ common prosperity status. In the
specific application, the Theta value is normalized and transformed
into a continuous variable ranging from 0 to 1 (Li, 2020).
The function of the two-parameter Logistic model (Luo, 2012)
is as follows:

P(Yij= 1|θi) =
exp[aj(θi − bj)]

1+ exp[aj(θi − bj)]
(1)

In Eq. 1, the discrimination parameter aj is the slope of
the response function or item characteristic curve. The difficulty
parameter bj represents the ability parameter value of the item
characteristic curve when the probability of satisfaction with a
certain test item is 50%.

3.2.2 Core explanatory variables
Core explanatory variables: County-level digital financial

inclusion index, digital financial inclusion coverage breadth, usage
depth, and digitization index. To account for the scale differences
between the variable data and to address heteroskedasticity, a
logarithmic transformation is applied to the county-level financial
inclusion index and its sub-indicators (Zhang and Lu, 2023).
To address the issue of endogeneity, this study utilizes the 2019
county-level digital financial inclusion development data with a
one-period lag.
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TABLE 1 Indicators and Values for Measuring rural households’ Common Prosperity.

Variable Definition M SD

Economic wellbeing

If the per capita household income is higher than 50% of the per capita
income of the entire sample = 1, otherwise = 0

0.511 0.500

If the score of satisfaction with household income is at least 3 = 1,
otherwise = 0

0.602 0.489

Healthcare
If the household has purchased critical illness insurance = 1, otherwise = 0 0.961 0.194

If the health status of family members is rated above 3 = 1, otherwise = 0 0.872 0.334

Pension level
If the household has purchased endowment insurance = 1, otherwise = 0 0.907 0.291

If the household can pay elders’ pensions = 1, otherwise = 0 0.891 0.311

Education

If the child can go to the nearest primary or secondary school = 1,
otherwise = 0

0.932 0.253

If the score of satisfaction with the child’s education is at least 3 = 1,
otherwise = 0

0.472 0.499

Material life

If the household possesses consumer durables such as cars, air
conditioning or heating, computers, internet, etc., = 1; otherwise = 0

0.608 0.488

If the score of livelihood satisfaction is at least 3 = 1, otherwise = 0 0.489 0.500

Spiritual wellbeing

If the household can travel every year = 1, otherwise = 0 0.686 0.464

If the village owns cultural and recreational facilities and participates in
cultural activities in the countryside = 1, otherwise = 0

0.403 0.490

Community environment

If the score of the community policing is at least 3 = 1, otherwise= 0 0.946 0.226

If there is no air, water, or noise pollution in the community = 1; otherwise
= 0

0.550 0.497

Social engagement

If the household can pay for weddings and funerals of family and friends =
1, otherwise 0

0.963 0.189

If rural households engage in neighborly assistance = 1, otherwise = 0 0.980 0.141

Moderating variables: rural households’ livelihood strategies
and financing instruments. The livelihood strategies proposed
in this study include property income patterns, migrant work
opportunities, and livelihood patterns. First, digital financial
inclusion can promote household participation in financial markets,
thereby increasing household property income (Zhang and Lu,
2023). In this study, the logarithmic value of property income
is chosen as the moderating variable. Secondly, due to the
provision of inclusive financial services, digital financial inclusion
contributes to the establishment of new enterprises, the expansion of
business operation scale, and the creation of more non-agricultural
employment opportunities for rural households (Zhang and Li,
2022; Xie et al., 2018). In addition, the breadth and depth of
digital financial inclusion, serving as powerful drivers of financial
inclusion, can enhance rural youth’s access to their financial
ecosystems (Zhang et al., 2021). In this study, the proportion of
migrant workers is selected as the moderating variable. Thirdly,
different livelihood models have different needs and applications
for digital financial inclusion, and livelihood models have become
an important moderating variable. The livelihood models of rural

households referred to in this study are divided into agricultural
livelihoodmodel, migrant livelihoodmodel, and business livelihood
model (Zhang and Huo, 2022).

On the other hand, the availability of loaning and financing
instruments such as smartphone tools are also the moderating
variables examined in this study. Studies have shown that household
debt, especially non-housing debt, is an important mechanism
for digital financial inclusion to improve the livelihood outcomes
of rural households (Zhou et al., 2021). As an important digital
tool, smartphones can effectively increase the accessibility of online
financial services, alleviate “digital exclusion” (Hu et al., 2021), and
even promote the investment of rural households in online wealth
management products.

3.2.3 Control variables
Control Variables: The common prosperity of households is

influenced by various factors, including family characteristics and
the characteristics of the household head. In this study, five
control variables were selected: the age of the household head, the
health status of the household head, the education level of the
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TABLE 2 Definition of variables and descriptive statistics.

Definition Symbol Meaning and assignment of variables M SD

Common prosperity County Level Variables Y Measured according to the indicator system in this study 0.649 0.212

Level of digital financial inclusion development X1 Logarithm of China’s digital financial inclusion index from Peking
University’s digital finance research

5.001 0.104

Coverage breadth X2 Logarithm of digital financial inclusion coverage breadth 4.774 0.043

Usage depth X3 Logarithm of digital financial inclusion usage depth 5.000 0.105

Digitization level Households’ variables X4 Logarithm of digital financial inclusion digitization level 4.586 0.062

Agricultural livelihood pattern V1 If agricultural income comprises more than 50% of total income = 1,
otherwise = 0

0.140 0.347

Business livelihood pattern V2 If business income comprises more than 50% of total income = 1,
otherwise = 0

0.113 0.317

Migrant Labor Livelihood Pattern V3 If wage Income comprises more than 50% of total income = 1,
otherwise = 0

0.593 0.492

Family Loans V4 If the household has home loans, car loans, or education loans = 1,
otherwise = 0

0.177 0.382

Family education loans V5 If the household has loaned for education = 1, otherwise = 0 0.079 0.271

Smartphone V6 If the household has a smartphone = 1, otherwise = 0 0.925 0.461

Property income V7 Logarithm of property income 0.664 0.271

Proportion of migrant workers V8 Proportion of family members engaged in migrant work as a
percentage of the total family population

0.448 0.444

Education of the household head V9 Years of education of the household head 7.499 3.227

Age of the household head V10 Age of the household head 52.39 15.142

Health of the household head V11 Self-assessment of the health status of the household head, scale of 1–5 3.795 0.931

Household size V12 Household population size 3.945 0.512

Household social capital V13 If the family’s social connections include civil servants, employees of
public institutions, doctors, etc. = 1, otherwise = 0

0.149 0.356

household head, the household size, and the household’s social
capital. Definitions and descriptive statistics for each variable can be
found in Table 2.

3.3 Model construction

The digital financial inclusion explored in this study uses
county-level data, while rural households’ common prosperity,
livelihood patterns, and household characteristic factors belong
to household-level data, and there is a data nesting relationship
between the two. For this type of hierarchical data, the hierarchical
linear model (HLM) decomposes the changes in the explanatory
variables into individual and intergroup changes, which can
address the problem of solving the hierarchical effect (James,
1982). Based on the modeling framework proposed by Bryk and
Raudenbush (Bryk and Raudenbush, 1992), this study is divided

into three steps: First, a null model is constructed to carry out
a diagnostic analysis of the cross-tier effects of digital financial
inclusion on common prosperity. Second, a random intercept
model is constructed to analyze the direct impact of county-
level digital financial inclusion on common prosperity. Third, a
random intercept model and a random slope model are constructed
to analyze the moderating effects of digital financial inclusion
at the county level on the variables related to the livelihood
strategy category and the means of financing at the household’s
level affecting’ common prosperity. The specific models are
described below.

Null model (Eq. 2 and Eq. 3). No explanatory variables are
added to the null model, and only a random intercept at the county
level is included to test for the presence of a hierarchical structure
in the data.

Level1:Yij = β0j+εij (2)
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Level 2: β0j = γ00+μ0j (3)

where Yij is the commonprosperity index of the i-th households’
common prosperity in the j-th county. β0j is the mean of Y of the
j-th second-level unit; εij is the variance of Y of the j-th second-
level unit; γ00 is the total mean of all second-level units, which is
a fixed parameter; and μ0j is the random component in the second-
level equation.

Random Intercept Models (Eqs 4–6). The random model is
based on the zero model by gradually adding explanatory variables,
that is digital financial inclusion variables. The intercept terms of
explanatory variables of household level varywith different counties,
and the random slope of each county is fixed.

Level 1:Yij = β0j+βk0Xkij + εij (4)

Level 2: β0j = γ00+γ0lDFIlj + μ0j
(5)

Overallmodel:Yij = γ00 + γ0lDFI+ βk0Xkij + μ0j + εij (6)

Where βk0 is the coefficient of each variable at the farm
household level; Xkij is the set of farm household characteristic
variables; γ0l is the coefficient of county digital financial inclusion
variables; DFIlj is the set of county digital financial inclusion
characteristic variables; and the meanings of other symbols are
consistent with those mentioned earlier.

Random intercept model and random slope models (Eqs 7–9).
The random intercept model is designed to take into account the
situation that the impact of level 2 digital financial inclusion on
common prosperity is changing with the level 1 households’ tier
variable. This study utilizes random intercept and random slope
models to address this issue.

Level 1:Yij = β0j+βk0Xkij + εij (7)

Lever 2: β0j = γ00+γ0lDFIlj + μ0j
βk0 = γk0+γklDFIlj + μkj (8)

Overall model: Yij = γ00 + γ0lDFIlj + γk0Xkij + γklDFIljXkij

+ (μ0j + μkjXkij+εij) (9)

4 Results

4.1 Diagnosis of the cross-level impact of
digital financial inclusion on the common
prosperity of rural households

The HLM diagnostic model (null model) can verify whether
digital financial inclusion has a cross-level impact on rural
households’ common prosperity. Model 1 in Table 3 provides the
results from the null model, with variance estimates of 0.012 and
0.032 for counties (level 2) and households (level 1), respectively,
indicating significant differences in common prosperity among
counties. The Intraclass Correlation Coefficient (ICC) was further
calculated to be 0.273 (ICC = τ20j/(τ20j + δ2ij)), signifying
that 27.3% of the overall variation in common prosperity results
from county-level factors. The ICC exceeds the diagnostic critical

value of 0.059 established by Cohen (1988), and the disparity
among the dependent variable groups should not be overlooked.
Therefore, a hierarchical linearmodel should be employed to analyze
the mechanism through which digital financial inclusion impacts
common prosperity at the county level.

4.2 The direct impact of county-level
digital financial inclusion on households’
common prosperity

Firstly, a random intercept model is established to incorporate
county-level digital financial inclusion and farm household-level
characteristic variables separately, to focus on the direct impact
effects of digital financial inclusion levels. The random intercept
model assumes that the differences in common prosperity all
originate from the county level. In Table 3, Models 2-5 are
random intercept models that incorporate only county-level digital
financial inclusion variables. The results demonstrate that digital
financial inclusion, the depth of digital financial inclusion usage,
and the level of digitization in digital financial inclusion have
a significant positive impact on common prosperity at the 0.05
significance level. This indicates that county-level digital financial
inclusion and its two dimensions (depth of usage and digitization
level) contribute significantly to the promotion of common
prosperity. The development of digital financial inclusion is a
significant factor in promoting common prosperity. Hypothesis
1 was partially confirmed with statistical significance. Since the
estimated coefficient of cover-age breadth in digital financial
inclusion is not significant, it will not be considered in the
subsequent models. Additionally, in the random effect part, the
variation at the county level decreased from 0.012 to 0.01, resulting
in a decrease of 16.7%, indicating that the inclusion of county-
level independent variables can enhance the explanatory power of
common prosperity.

Models 6–8 in Table 3 indicate that the random intercept model
adds characteristic variables of household level. The estimated
results of the model show that factors such as the education level
and health status of the household head, as well as variables such as
family social capital and ownership of smartphones, have significant
positive effects on common prosperity. However, the presence of
household loans and education loans has a significantly negative
impact on common prosperity. The reason is that, due to difficulties
in livelihood and daily life, families address their livelihood issues
by resorting to loaning, including education loans, and the level
of common prosperity among these families is relatively lower. In
addition, relatively disadvantaged agricultural livelihood patterns
and wage labor livelihood patterns also have a significantly negative
impact on common prosperity. This indicates that households
primarily engaged in agriculture or wage labor experience relatively
lower levels of common prosperity. One possible reason is that,
whether engaged in farming or migrating for labor, households’
income growth and social security are relatively limited, thereby
constraining improvements in family economic wellbeing, material
living conditions, and overall quality of life. Furthermore, the
between-group variance decreased from 0.032 in Model 1 to
0.027 in Model 8, indicating that the independent variables at the
household level explain 15.6% of the variance in household-level
common prosperity.
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TABLE 3 Regression results of HLM of digital financial inclusion directly affecting to common prosperity.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Level 1:
Household

Characteristics

Hh_edu 0.008∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

Hh_age 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Hh_health 0.047∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

Family size −0.000 (0.007) −0.000 (0.007) −0.000 (0.007)

Social relation 0.072∗ ∗ ∗
(0.017)

0.071∗ ∗ ∗
(0.017)

0.071∗ ∗ ∗
(0.017)

Loan −0.048∗ ∗
(0.020)

−0.047∗ ∗
(0.021)

−0.048∗ ∗
(0.020)

Loan_edu −0.051∗ (0.020) −0.051∗ (0.028) −0.052∗ (0.028)

Strategy_1 −0.034∗ (0.019) −0.034∗ (0.019) −0.035∗ (0.019)

Strategy_2 0.025 (0.021) 0.025 (0.021) 0.025 (0.021)

Strategy_3 −0.051∗ ∗ ∗
(0.016)

−0.051∗ ∗ ∗
(0.016)

−0.051∗ ∗ ∗
(0.016)

Cellphone 0.042∗ (0.023) 0.042∗ (0.023) 0.043∗ (0.023)

Level 2:
County-level

digital financial
inclusion

Index 0.702∗ ∗ (0.295) 0.554∗ ∗ (0.263)

Coverage
breadth

0.363 (0.317)

Usage depth 0.485∗ ∗ ∗
(0.181)

0.362∗ ∗ (0.164)

Digitization 0.967∗ ∗ (0.447) 0.802∗ ∗ (0.394)

Intercept 0.656∗ ∗ ∗
(0.021)

−2.679∗ (1.403) −1.005 (1.449) −1.768∗ ∗
(0.903)

−3.959∗ (2.131) −2.250∗ (1.250) −1.419∗ (0.819) −3.444∗ (1.879)

Random effect

τ20j(Intergroup
variance)

0.012 0.010 0.012 0.010 0.010 0.008 0.008 0.008

σ2ij
(Intra-group
variance)

0.032 0.032 0.032 0.032 0.032 0.027 0.027 0.027

ICC 0.273 0.240 0.273 0.238 0.238 0.229 0.229 0.229

Log-likelihood 231.710 234.300 232.353 234.892 233.874 308.365 308.529 308.223

Observation 892 892 892 892 892 892 892 892

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 4 The impact of digital financial inclusion moderating livelihood strategies on common prosperity.

Variable Model9 Model10 Model11 Model12 Model13 Model14 Model15 Model16 Model17 Model18

Level 1:
Houshold

Characteristics

Hh_edu 0.008∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

0.007∗ ∗ ∗
(0.002)

0.007∗ ∗ ∗
(0.002)

0.007∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

0.007∗ ∗ ∗
(0.002)

0.008∗ ∗ ∗
(0.002)

Hh_age 0.001
(0.000)

0.001
(0.000)

0.001
(0.000)

0.001
(0.000)

0.001
(0.000)

0.001
(0.000)

0.001
(0.000)

0.001
(0.000)

0.000
(0.000)

0.001
(0.000)

Hh_health 0.047∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

0.048∗ ∗ ∗
(0.007)

0.048∗ ∗ ∗
(0.007)

0.048∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

0.048∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

0.047∗ ∗ ∗
(0.007)

Family size −0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

−0.000
(0.004)

Social relation 0.073∗ ∗ ∗
(0.017)

0.073∗ ∗ ∗
(0.017)

0.073∗ ∗ ∗
(0.017)

0.073∗ ∗ ∗
(0.017)

0.073∗ ∗ ∗
(0.017)

0.072∗ ∗ ∗
(0.017)

0.069∗ ∗ ∗
(0.017)

0.074∗ ∗ ∗
(0.017)

0.069∗ ∗ ∗
(0.017)

0.070∗ ∗ ∗
(0.017)

Loan −0.048∗ ∗
(0.021)

−0.047∗ ∗
(0.020)

−0.049∗ ∗
(0.020)

−0.049∗ ∗
(0.021)

−0.049∗ ∗
(0.021)

−0.049∗ ∗
(0.021)

0.052∗
(0.020)

−0.048∗ ∗
(0.020)

−0.51∗
(0.020)

−0.053∗ ∗ ∗
(0.020)

Loan_edu −0.048∗
(0.028)

−0.049∗
(0.028)

−0.050∗
(0.028)

−0.051∗
(0.028)

−0.051∗
(0.028)

−0.053∗
(0.028)

−0.048∗ ∗
(0.028)

−0.047∗
(0.020)

−0.047∗
(0.028)

−0.049∗
(0.028)

Strategy_1 −0.031∗
(0.019)

−0.032∗
(0.019)

−0.034∗
(0.019)

−0.030
(0.019)

−0.030
(0.019)

−0.032∗
(0.019)

−3.611
(2.281)

−0.033∗
(0.019)

−2.217
(1.454)

−7.673∗ ∗ ∗
(2.459)

Strategy_2 0.026
(0.022)

0.026
(0.021)

0.025
(0.021)

0.023
(0.022)

0.023
(0.022)

0.025
(0.021)

0.023
(0.021)

2.408∗
(1.371)

0.023
(0.021)

0.026
(0.021)

Strategy_3 −0.051∗ ∗ ∗
(0.017)

−0.052∗ ∗ ∗
(0.016)

−0.052∗ ∗ ∗
(0.016)

−0.054∗ ∗ ∗
(0.017)

−0.054∗ ∗ ∗
(0.017)

−0.053∗ ∗ ∗
(0.016)

−0.054∗ ∗ ∗
(0.016)

−0.050∗ ∗ ∗
(0.016)

−0.054∗ ∗ ∗
(0.016)

−0.053∗ ∗ ∗
(0.016)

Smartphone 0.043∗
(0.024)

0.043∗
(0.023)

0.044∗
(0.023)

0.043∗
(0.024)

0.043∗
(0.024)

0.045∗
(0.023)

0.041∗
(0.023)

0.043∗
(0.023)

0.041∗
(0.023)

0.043∗
(0.023)

Property income 0.387∗ ∗ ∗
(0.143)

0.255∗ ∗ ∗
(0.098)

0.461∗ ∗
(0.231)

Percentage of
people working

2.623∗ ∗
(1.323)

1.509∗ ∗
(0.920)

3.122
(2.194)

Level 2:
County-level

digital financial
inclusion

index 0.636∗ ∗
(0.266)

0.804∗ ∗
(0.284)

0.511∗ ∗
(0.267)

0.610∗ ∗ ∗
(0.265)

Usage 0.408∗ ∗
(0.166)

0.478∗ ∗
(0.174)

0.331∗ ∗
(0.167)

Digitization 0.879∗ ∗
(0.397)

1.092∗ ∗
(0.433)

0.630
(0.406)

Interaction term

Index∗
Property

0.081∗ ∗ ∗
(0.030)

Usage∗
Property

0.051∗ ∗
(0.020)

(Continued on the following page)
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TABLE 4 (Continued) The impact of digital financial inclusion moderating livelihood strategies on common prosperity.

Variable Model9 Model10 Model11 Model12 Model13 Model14 Model15 Model16 Model17 Model18

digitization∗
property

0.096∗ ∗
(0.048)

Index∗
work_zb

0.545∗ ∗
(0.277)

Usage∗
work_zb

0.296∗
(0.180)

Digitization∗
work_zb

0.648∗ ∗
(0.459)

Index∗
Strategy_1

0.752
(0.481)

Index∗
Strategy_2

0.500∗ ∗
(0.288)

Usage∗
Strategy_1

0.436
(0.292)

digitization∗
Strategy_1

1.601∗ ∗ ∗
(0.516)

Intercept −2.645∗ ∗
(1.267)

−1.651∗ ∗
(0.829)

−3.813∗ ∗
(1.894)

−3.447∗ ∗
(1.350)

−2.014∗ ∗
(0.873)

−2.250∗ (1.250) −2.033
(1.271)

−2.515∗ ∗
(1.263)

−1.254
(0.834)

−2.619
(1.937)

Random effect

τ20j(Intergroup
variance)

0.008 0.008 0.008 0.008 0.007 0.008 0.008 0.008 0.008 0.008

σ2ij j(Intra-group
variance)

0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

ICC

Log-likelihood 312.048 311.953 310.233 313.199 312.699 308.365 311.465 309.872 311.436 313.931

Observation 892 892 892 892 892 892 892 892 892 892

***p < 0.01, **p < 0.05, *p < 0.1.

5 Discussion

5.1 The cross-layer interaction mechanism
of county-level digital inclusive finance and
households’ livelihood strategies on
common prosperity of rural households

The random intercept and random slope models were further
developed to study the interaction between digital financial
inclusion development and rural households’ livelihood strategies
in the county. The focus was on the impact of digital financial
inclusion on regulating property income, enhancing opportunities
to work outside the home, and livelihood patterns. In Table 4,
Models 9–11 represent the regression results of the interaction
termwith households’ property income as the intermediate variable,
indicating that the influence of households’ property income on
promoting households’ common prosperity increases with the

level of development, depth of usage, and digitization of digital
financial inclusion. Hypothesis 2 was partially confirmed with
statistical significance. Digital financial inclusion innovates financial
products through Internet platforms and explores factors related
to financial attributes, which contributes to enhancing residents’
property-based income increase (Liu XY. et al., 2022).Models 12–14
represent the regression results of the interaction term with the
proportion of households’ laborers as an intermediate variable,
and the impact of the proportion of laborers on households’
common prosperity escalates with the development level of digital
financial inclusion. Hypothesis 2 was partially confirmed with
statistical significance. Digital financial inclusion increases rural
youth’s ability to access opportunities in the financial ecosystem and
improves the probability of non-farm employment for rural youth
(Zhang et al., 2021). Models 15–18 represent the regression results
of the interaction term with livelihood mode as the intermediate
variable. The results of model 16 indicate that compared to other
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TABLE 5 The impact of digital financial inclusion moderating financing means on households’ common prosperity.

Variable Model 19 Model 20 Model 21 Model 22 Model 23 Model 24

Level 1: Household
Characteristics

Hh_edu 0.008∗ ∗ ∗ (0.002) 0.008∗ ∗ ∗ (0.002) 0.008∗ ∗ ∗ (0.002) 0.008∗ ∗ ∗ (0.002) 0.008∗ ∗ ∗ (0.002) 0.008∗ ∗ ∗ (0.002)

Hh_age 0.001 (0.000) 0.001 (0.000) 0.001 (0.000) 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)

Hh_health 0.047∗ ∗ ∗ (0.007) 0.047∗ ∗ ∗ (0.007) 0.048∗ ∗ ∗ (0.007) 0.047∗ ∗ ∗ (0.007) 0.047∗ ∗ ∗ (0.007) 0.047∗ ∗ ∗ (0.007)

Family size −0.000 (0.004) −0.000 (0.004) −0.000 (0.004) −0.000 (0.004) −0.000 (0.004) −0.000 (0.004)

Social relation 0.072∗ ∗ ∗ (0.017) 0.072∗ ∗ ∗ (0.017) 0.069∗ ∗ ∗ (0.017) 0.071∗ ∗ ∗ (0.017) 0.071∗ ∗ ∗ (0.017) 0.071∗ ∗ ∗ (0.017)

Loan −0.048∗ ∗ (0.020) −0.049∗ ∗ (0.020) −3.774∗ (2.253) −0.048∗ ∗ (0.020) −0.047∗ ∗ (0.020) −0.048∗ ∗ (0.020)

Loan_edu −1.275 (1.937) −3.548 (3.105) −0.057∗ ∗ (0.028) −0.051∗ (0.028) −0.051∗ (0.028) −0.052∗ (0.029)

Strategy_1 −0.034∗ (0.019) −0.035∗ (0.019) −0.037∗ (0.019) −0.033∗ (0.019) −0.034∗ (0.019) −0.035∗ (0.019)

Strategy_2 0.025 (0.021) 0.025 (0.021) 0.025 (0.021) 0.025 (0.021) 0.025 (0.021) 0.025 (0.022)

Strategy_3 −0.050∗ ∗ ∗ (0.016) −0.050∗ ∗ ∗ (0.016) −0.051∗ ∗ ∗ (0.016) −0.051∗ ∗ ∗ (0.016) −0.051∗ ∗ ∗ (0.016) −0.051∗ ∗ ∗ (0.017)

Cellphone 0.042∗ (0.023) 0.042∗ (0.023) 0.042∗ (0.023) 0.043∗ (0.023) 0.043∗ (0.023) 0.043∗ (0.023)

Level 2: County-level digital
financial inclusion

index 0.541∗ ∗ (0.265) 0.546∗ ∗ (0.263)

Usage 0.354∗ ∗ (0.163)

digitization 0.761∗ (0.395) 0.724∗ (0.399) 0.793∗ (0.394)

Interaction term

Index∗ Loan edu 0.259 (0.409)

digitization∗ Loan edu 0.734 (0.632)

digitization∗ Loan 0.783∗ (0.473)

Index∗ cellphone 0.009∗ (0.005)

Usage∗ cellphone 0.009∗ (0.005)

digitization∗ cellphone 0.009∗ (0.005)

Intercept −2.185∗ (1.261) −3.245∗ (1.888) −3.069 (1.900) −2.208∗ (1.252) −1.379∗ (0.819) −3.397∗ (1.882)

Random effect

τ20j(Intergroup variance) 0.008 0.008 0.008 0.008 0.008 0.008

σ2ij j(Intra-group variance) 0.027 0.027 0.027 0.027 0.027 0.028

ICC

Log-likelihood 308.564 308.895 309.586 308.379 308.559 308.235

Observation 892 892 892 892 892 892

***p < 0.01, **p < 0.05, *p < 0.1.
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households, the common prosperity level of households following
the livelihood mode increases with the level of digital financial
inclusion. The possible explanation is that digital financial inclusion
expands the beneficiary scope of financial services, making it
easier for households to access and use financial products, and
even providing convenient financing channels for entrepreneurial
farmers (Cohen, 1988), which contributes to the realization of
common prosperity for these entrepreneurial farmers. Meanwhile,
Model 18 shows that the level of common prosperity of households
in the agricultural livelihoodmodel increases with the enhancement
of digital financial inclusion, which suggests that the improvement
in digital financial inclusion also facilitates the utilization of financial
products by agricultural production farmers, helping them address
financing difficulties and thus enhance their livelihoods. However,
the coefficients of the interaction terms of Models 15 and 17 are
not significant, indicating that the livelihood mode of labor is not
an effective intermediate variable for digital financial inclusion to
affect households’ common prosperity. Hypothesis 2 was partially
confirmed with statistical significance.

5.2 The cross-level interaction mechanism
of county-level digital inclusive finance and
financing means of households on rural
households’ common prosperity

Random intercept and random slope models were further
developed to study the interaction between digital financial
inclusion development and households’ means of financing in the
county, focusing on the impact of digital financial inclusion in
regulating households’ loaning, educational loaning and ownership
of digital tools (smartphones). In Table 5, none of the interaction
term coefficients are significant for the results of Models 19-20
with educational loaning by households as the intermediate variable,
indicating that educational loaning is not a valid mediating variable.
The results of Model 21, which uses household loaning as an
intermediate variable, indicate that the impact of household loaning
on common prosperity increases with the degree of digital financial
inclusion in the county. Hypothesis 3 was partially confirmed with
statistical significance. While digital financial inclusion reduces
transaction costs, mitigates information asymmetry, and lowers
collateral requirements, among other factors, it increases the
likelihood of households’ access to formal credit (Fan, 2021).
It can particularly reduce the poverty rate among low-income
households, thereby contributing to the achievement of common
prosperity (Zhou et al., 2021). The results of the interaction terms
in Models 22–24, using household ownership of smartphones as
an intermediate variable, indicate that the influence of smartphones
on common prosperity increases with the level of digital financial
inclusion in the county, as well as its depth of usage and digitization.
Hypothesis 3 was partially confirmed with statistical significance.
The development of digital financial inclusion has led to the
popularization of digital financial services, and rural households
can conveniently use their smartphones for mobile payments,
loan applications, and other financial operations (Yin et al., 2019).
This, in turn, helps farmers to alleviate their financing constraints,
improves their financial difficulties related to production and
livelihood, and enhances the living standards and quality of life for
rural households.

6 Conclusion

This article uses the county-level digital inclusive finance
index developed by the Digital Finance Research Center of
Peking University, and household survey data. It employs the
HLM model to empirically examine the direct impact of the
digital inclusive finance index and its sub-dimensions on the
common prosperity of rural households. It further discusses
the regulatory mechanism of household livelihood strategies and
financing methods on promoting common prosperity through
county-level digital inclusive finance.Themain research conclusions
are as follows: firstly, the null model indicates that there are
significant differences in the common prosperity among different
counties. 27.3% of the variation in the common prosperity is caused
by county-level digital inclusive finance factors, and the HLM is
appropriate. Secondly, the depth and coverage of the county-level
digital inclusive finance index and its sub indicators can significantly
promote common prosperity. Thirdly, family livelihood strategies
are important regulatory mechanisms. With the improvement of
the development level of county-level digital inclusive finance,
the role of households’ property income in promoting common
prosperity will become increasingly significant, and the role of
migrant work opportunities in promoting common prosperity for
rural households will continue to strengthen. In addition, rural
households who engage in business and agricultural livelihoods
can enjoy more of the common prosperity effect generated by
digital inclusive finance. Fourthly, financing methods also play
an important regulatory role. With the improvement of county-
level digital inclusive finance, the availability of loans and the
role of digital tools in promoting common prosperity is becoming
increasingly evident.

Based on the above research conclusions, this article proposes
the following suggestions. Firstly, it is necessary to strengthen
the construction of digital inclusive financial infrastructure in
rural areas, and to provide technical support for rural households
to deeply utilize digital inclusive finance. On one hand, we
should accelerate the construction and upgrading of broadband
communication network hardware, and accelerate the promotion
and application of big data, cloud computing, and 5G technology
(Yang B. et al., 2020). On the other hand, we should promote the
popularization of affordable smartphones for rural residents and
narrow the gap in external digital resource endowments among
residents. Secondly, the development and services of digital inclusive
financial products should focus on the key livelihood strategies of
rural households. We suggest increasing financial support for rural
households’ business, entrepreneurship, agricultural production and
other business activities. It is also important to strengthen public
welfare training on financial knowledge for rural households, and to
continuously enrich financial products such as agricultural deposits,
wealth management, and insurance, and provide service support for
increasing rural households’ property income.

Our study provides favorable evidence for the cross-layer
interaction effect of county-level digital inclusive finance on the
common prosperity. However, the study has some limitations that
can be addressed in future studies. Due to the cross-sectional
data used, there are significant limitations in inferring causal
relationships in this study. Therefore, in future, longitudinal data
should be constructed. In addition, this study cannot rule out the
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possibility of other explanations for the impact of digital inclusive
finance on common prosperity, such as differences in financial
literacy among rural households. Differences in financial literacy
may lead to households’ acceptance and application effectiveness
of digital inclusive finance, which directly affects households’
livelihood decisions and their outcomes. Future research should
focus on the internal relationship between regional digital inclusive
finance, financial literacy, and the common prosperity of rural
households.
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Qingdao, China
Introduction: Power industry is one of the largest sources of CO2 emissions in China.

The Yellow River Basin plays a supportive role in guaranteeing the effective supply of

electricity nationwide, with numerous power generation bases. Understanding the

drivers and peak of CO2 emissions of power industry in the Yellow River Basin is vital

for China to fulfill its commitment to reach carbon emissions peak by 2030.

Methods: The Logarithmic Mean Divisia Index (LMDI) model was employed to

explore the drivers to the change of CO2 emissions in power industries of three

study areas, including Inner Mongolia Autonomous Regions, Shanxi Province, and

Shandong Province in the Yellow River Basin. And Back Propagation (BP) neural

network was combined with scenario analysis to empirically predict the trend of

the amount of CO2 emitted by power industry (CEPI) from provincial perspective.

Results: CEPI in Inner Mongolia under the scenarios of a low degree of CO2

emissions promotion with amedium degree of CO2 emissions inhibition (LM) and

a low degree of CO2 emissions promotion with a high degree of CO2 emissions

inhibition (LH) scenario can reach a peak as early as 2030, with the peak value of

628.32 and 638.12 million tonnes, respectively. Moreover, in Shanxi, only CEPI

under a low degree of CO2 emissions promotion scenarios (LL, LM, LH) can

achieve the peak in 2025 ahead of schedule, with amounts of 319.32, 308.07, and

292.45 million tonnes. Regarding Shandong, CEPI under scenarios of a low

degree of CO2 emissions promotion with a high degree of CO2 emissions

inhibition (LH) and a medium degree of CO2 emissions promotion with a high

degree of CO2 emissions inhibition (MH) could achieve the earliest peak time in

2025, with a peak of 434.6 and 439.36 million tonnes, respectively.

Discussion: The earliest peak time of CEPI in Shandong Province and Shanxi

Province is 2025, but the peak of CEPI in Shanxi is smaller than that of Shandong.

The peak time of CEPI in Inner Mongolia is relatively late, in 2030, and the peak is

larger than that of the other two provinces. The per capita GDP is the most

positive driving factor that contributes to the CEPI. Shandong has a strong

economy, and its per capita GDP is much higher than Shanxi’s. Therefore, even

under the same peak time, the CEPI in Shandong is much higher than that of
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Shanxi. Inner Mongolia is extensive and sparsely populated, which makes its per

capita GDP rank among the top in China. In addition, Inner Mongolia’s coal-

based power generation structure and high power generation also contribute to

its late CO2 peak time and large CO2 peak.
KEYWORDS

provincial power industry along the Yellow River, CO2 emissions peak, Logarithmic
Mean Divisia Index, back propagation neural network, scenario prediction
1 Introduction

The negative impact of CO2 emissions from human activities

on the environment is becoming increasingly evident. As the

largest emitter of CO2 emissions in the world, China made a

mandatory commitment to the world in 2020 to peak its CO2

emissions by 2030. Not only the birthplace of Chinese civilization

and an essential ecological region in China, the Yellow River

Basin, but also is home to many important energy, chemical, and

basic industrial bases, with more than half of China’s coal reserves

(Wu et al., 2023). In 2019, the total consumption of fossil energy

and total CO2 emissions of nine provinces in the Yellow River

Basin accounted for 35.1% and 40.5% of China, respectively (Zhao

et al., 2022). Therefore, there is no doubt that CO2 emissions

reduction effect of the Yellow River Basin is directly related to the

successful achievement of China’s CO2 emission peak target. With

the introduction of the significant national development strategy

of ecological protection and high-quality development in the

Yellow River Basin, accelerating the green and low-carbon

development of high-carbon emissions industries in the Yellow

River Basin and effectively has become the key to cracking the

environmental dilemma and the inevitable way to achieve the goal

of CO2 emissions peaking in the Yellow River Basin. The Yellow

River Basin has many coal, wind and photovoltaic power

generation bases, which play a supportive role in guaranteeing

the effective supply of electricity nationwide (Ma and Zhang,

2020). According to the Statistics of China Electricity Council,

as of the end of 2021, the installed power generation capacity of

major power companies in the Yellow River Basin is about 180

GW. Among them, the installed capacity of thermal power is 140

GW, accounting for the highest percentage about 77.7%. The

installed capacity of hydropower is 14.72 GW, accounting for

8.1%. The installed capacity of wind power is 17.04 GW,

accounting for 9.4%. And the installed capacity of solar power is

8.67 GW, accounting for 4.8% (Xia et al., 2022). It is apparently

that the large demand for electricity and the electricity production

being dominated by coal-fired power generation are the main

drivers for the increasing CO2 emissions in power industry of the

Yellow River Basin. Hence, whether or not CO2 emissions in

power industry can peak by 2030 will directly affect the time of

total CO2 emissions peaking in the Yellow River Basin.
02124
Meanwhile, considering the significant differences in economic

development, resource endowment, fossil energy structure, and

power industry development among the provinces in the Yellow

River Basin, CO2 emissions reduction pathways of power industry

should be formulated according to diverse situations of

different regions.

Numerous institutions and scholars have studied on total CO2

emissions at national, provincial, and city levels. For example,

Ahmed et al. (2022) applied the long short-term method to

examine the degree of impact of various factors on CO2

emissions and predict CO2 emissions trend in China and India.

It concluded that energy consumption has the greatest effect and

renewable energy has the smallest impact on CO2 emissions in

both countries. Su and Lee (2020) proposed a cost- effectiveness

theoretical model to explore the optimal carbon emissions

trajectory and introduced an extended STIRPAT model to

predict carbon emissions. The findings showed that China’s

carbon emissions are likely to peak at an estimated 117.7

MtCO2e by 2028. Li et al. (2023b) used the random forest

model to choose seven predictors from 26 CO2 emissions

influencing indicators and constructed a BP neural network to

predict CO2 emissions under five scenarios. It concluded that

China can achieve its carbon peaking on time, reaching 10,434.082

Mt CO2 emissions in 2030 under the 14th Five-Year Plan scenario.

Wang et al. (2022) identified the main influencing carbon factors

with the help of Redundancy analysis and Monte Carlo

permutation tests and developed a method for determining the

status of carbon emissions at provincial level based on score

evaluation. The 30 provinces were assigned to four stages,

including those with significant reductions, marginal reductions,

marginal increases, and significant increases based on the progress

toward carbon emissions peak. Lin et al. (2023) combined the

SOM (Self-organizing map) neural network method, the

decoupling coefficient method and Mann-Kendall test to

conduct a cluster analysis and peak carbon trend assessment of

cities in underdeveloped western regions of China. The results

suggested that western cities are classified into resource-

dependent cities, low-carbon buffer cities, economic priority

cities, and low-carbon transition cities. Dong and Li (2022)

proposed the STIRPAT-IGWO-SVR model to forecast the

carbon emissions of Jiangsu Provinces under five scenarios.
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Zhang et al. (2021) predicted the urban block carbon emissions of

a city in China based on the BP neural network method.

In addition to the above, there are some researches focusing on

CO2 emissions at industry level. Some scholars analyzed the main

factors affecting CO2 emissions of different industries in China,

including power industry, transportation industry, logistics

industry (Quan et al., 2020; Liu et al., 2021; He et al., 2022).

Many researches evaluated the peak situation of CO2 emissions of

different sectors in China, including building, transporting,

industrial, agricultural and so forth (Chen et al., 2020; Huo

et al., 2021; Li et al., 2023a). For instance, Lu et al. (2020)

employed an improved PSO (Particle swarm optimization)

algorithm optimized BP neural network model to predict carbon

emissions for heavy chemical industry and its sub-sectors from

2017 to 2035. The findings indicates that the carbon emissions in

heavy chemical industry will reach peak earlier in 2021 and later in

2026 and the peaking value is in the interval of 9.3-9.5 billion tons.

Fang et al. (2022) investigated the Environmental Kuznets Curve

hypothesis for eight sectors in China by using regression analysis

and Monte Carlo simulation. The results show that CO2 emissions

from agriculture, construction, manufacturing, other industries,

and transportation are highly likely to peak by 2030, while

emissions from electricity and mining are likely to peak after

2030. Bakay and Agbulut (2021) forecasted the greenhouse

emissions of power sector in Turkey using deep learning,

support vector machine, and artificial neural network

algorithms. Tang et al. (2018) established a National Energy

Technology-Power model to assess the impact of advanced

technology promotion and fossil energy structure shift on

energy consumption and CO2 emissions in China’s power sector

from a regional perspective. The result indicated that with the

promotion of advanced technology and the development of

renewable energy, China’s power sector would reach a peak of

3717.99 Mt CO2 in 2023. Cai et al. (2022) took a power generation

enterprise as research subject and explored the pathway for power

sector to achieve carbon emissions peak and carbon neutrality

under five scenarios, with the help of the LEAP (Low Emission

Analysis Platform) model. The results suggest that the carbon

emissions in the enterprise is expected to reach a peak in 2023

under the low carbon scenarios and CCUS is the key technology to

achieve carbon emissions reduction.

In summary, despite numerous studies on the influencing

factors, peak and reduction pathways of CO2 emissions in various

industries, the previous studies focused on CO2 emissions in

power industry mostly at national level, and only a few

researches shed light on power industry at provincial or regional

level. Consequently, it may be more realistic to explore when and

how CO2 emissions peaks in power industry from the regional

perspective, which could provide targeted CO2 emissions

reduction recommendations for policymakers to make decisions.

This paper took power industries in Inner Mongolia

Autonomous Region, Shanxi Province, and Shandong Province

as research objects, respectively, and measured CO2 emissions of

power industry in each province from 2005 to 2019 based on

statistical data. After that, a LMDI decomposition model was used

to quantify the contribution of each influencing factor to the
Frontiers in Ecology and Evolution 03125
change of CO2 emissions in power industry. Additionally, the

accuracy in predicting CO2 emissions of BP neural network and

SVR model was compared with the help of evaluation indexes, and

a better model was employed to combine with scenario analysis to

predict future CO2 emissions of power industries in the above

three provinces. The main contributions of this work include:

1) CO2 emissions of power industries in Inner Mongolia

Autonomous Region, Shanxi Province, and Shandong Province

from 2005 to 2019 are calculated. 2) We use the LMDI method to

decompose CO2 emissions of the power industry and analyze

driving factors affecting CO2 emissions in terms of power

generation and power consumption. 3) We compare the

prediction accuracy of BP neural network and SVR model

regarding CO2 emissions with the help of evaluation indexes.

4) We set up nine scenarios and apply the trained BP neural

network to predict CEPI in three provinces from 2021 to 2035 and

analyze their peaking trends.

The structure of this paper is organized as follows. Section 2

introduces the current status of research subjects. Section 3

displayed the methodology and data. The results and related

discussions are interpreted in Section 4. Finally, conclusions and

policy implications are summarized in Section 5.
2 Case study

Inner Mongolia Autonomous Region, thanks to high-quality

coal and wind energy resources endowment, in 2020, the power

generation was 581.10 TWh, ranking No.2 in China, and the

installed power capacity of the region was 146 GW, including the

Wind power installed capacity is 37.85 GW, strongly supporting

the National Action Plan for Air Pollution Prevention and Control

and clean energy development in China. Furthermore, Inner

Mongolia’s outgoing electricity was 208.20 TWh in 2020,

ranking first among provinces in China, which ensures national

energy security and enhances stable energy supply effectively

(IMEB, 2022).

Shanxi Province owns three ten million kilowatts of large coal

power bases(Northern Shanxi, Central Shanxi, Eastern Shanxi)

that are China’s focus on the construction (GOSC, 2014). In

addition, Shanxi Province ranked among the top ten in China,

with a power generation of 339.50 TWh and thermal power

generation of 303.25 TWh in 2020 (SXEA, 2023). Therefore, as

a traditional energy province, Shanxi Province has large total CO2

emissions, high CO2 emissions intensity, and high per capita CO2

emissions, causing it challenging to accomplish the target of

carbon peaking and carbon neutralization.

As one of the “Five Poles” in the development pattern of the

Yellow River Basin, Shandong Province has outstanding

advantages in economic development and comprehensive

strength, contributing to promoting the high quality of central

cities and urban clusters along the Yellow River. At the same time,

according to the data from the National Bureau of Statistics, in the

past decade, Shandong Province has been the largest thermal

power generation province in China, which means that the power

industry in Shandong Province should be assigned major
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responsibility for low-carbon transformation and should play a

demonstration and leading role in achieving CO2 emissions

reduction of the Yellow River Basin.

In short, these three provinces, as the major thermal power

provinces in the Yellow River basin, are the key areas of CO2

emissions. The CO2 peaking process of their power industry

directly affects the realization of the CO2 peaking target of the

whole basin. Therefore, we choose these three provinces as the

research objects of this paper. And the geographical location and

elevation of the study area is shown in Figure 1.
3 Methodology and data

3.1 CO2 emissions measurement

Since it is generally believed that CO2 emissions from non-fossil

energy sources are zero, the amount of CO2 emitted by power

industry (CEPI) calculated in this paper are that from fossil energy

sources in the process of thermal power generation. This paper

refers to the method provided by the IPCC in 2006 (IPCC, 2006),

which is currently more common internationally, to measure CO2

emissions. As a result of different types of major energy

consumption in power industry of each province, the energy

types covered in the calculation of CEPI vary from province to

province, as shown in Table 1. The specific calculation formulas are

shown in Equations 1 and 2:

C =o
i
Ei · NCVi · CCi · Oi ·

44
12

(1)

CI =
C
H

(2)

where C refers to CEPI, i refers to energy type used in thermal

power generation; Ei refers to the consumption of energy type i;

NCVi refers to the average low calorific value of energy type i; CCi

refers to the carbon content per unit calorific value of energy type i

; Oi refers to the carbon oxidation rate of energy type i; 44/12

refers to the ratio of carbon dioxide to the carbon molecular
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weight; CI refers to CO2 emissions per unit of electricity; H refers

to the thermal power generation. The specific values are shown

in Table 2.
3.2 Analysis of influencing factors of CEPI
based on the LMDI model

The method of factor decomposition analysis can effectively

reflect the degree of contribution of each influencing factor to the

change of the target variable at any time. Ang (2004) proposed the

LMDI method in 2004, which is widely used in factor decomposition

because its advantage of complete decomposition, no residual term,

and can handle zero value issues (Luo et al., 2023; Zhang et al., 2023).

Accordingly, this paper decomposes the driving forces of CEPI into

eight factors: carbon emission coefficient, fossil energy structure, coal

consumption for power generation, power generation structure,

inter-regional transfer of power, power consumption intensity,

GDP per capita, and population to obtain the effect of each factor

to the change of CEPI, adopting the extended LMDI method.

Specifically, the related equation is as follows:

C =o
i
C =

Ci

Fi
·
Fi
F

F
H

·
H
E
·
E
X
·
X
G
·
G
P
· P

=o
i
CFi · CSi · FH · HE · EX · XG · GP · P (3)

The implications of all the variables in Equation 3 are shown

in Table 3.

According to the LMDI model, the change in regional CO2

emissions from period 0 (base period) to period T (target period)

can be decomposed as the sum of the contributions of each driving

factor. Since the paper assumed that carbon emission coefficient of

each energy type does not change over the time span studied,

carbon emission coefficient effect is considered to be zero. The

decomposition expressions for the other seven factors are shown in

Equations 4–11:

DCCSt =o
i
L(Ct

i ,C
0
i )� ln (

CSti
CS0i

) (4)

DCFHt
=o

i
L(Ct

i ,C
0
i )� ln (

FHt
i

FH0
i
) (5)
TABLE 1 The main types of energy consumption of power industries in
three provinces.

Provinces Fossil energy types

Inner
Mongolia
Autonomous
Region

Raw Coal, Cleaned Coal, Other Washed Coal, Briquette, Coal
Gangue, Coke Oven Gas, Blast Furnace Gas, Converter Gas,
Crude Oil, Diesel, Fuel Oil, Natural Gas

Shanxi
province

Raw Coal, Other Washed Coal, Coal Gangue, Coke Oven Gas,
Blast Furnace Gas, Converter Gas, Natural Gas

Shandong
province

Raw Coal, Cleaned Coal, Other Washed Coal, Briquette, Coke,
Coke Oven Gas, Blast Furnace Gas, Converter Gas, Diesel, Fuel
Oil, Petroleum Coke, Refinery Gas, Natural Gas
FIGURE 1

Geographical location and elevation of the study area.
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DCHEt =o
i
L(Ct

i ,C
0
i )� ln (

HEt
HE0

) (6)

DCEXt
=o

i
L(Ct

i ,C
0
i )� ln (

EXt

EX0
) (7)

DCXGt
=o

i
L(Ct

i ,C
0
i )� ln (

XGt

XG0
) (8)
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DCGPt =o
i
L(Ct

i ,C
0
i )� ln (

GPt
GP0

) (9)

DCPt =o
i
L(Ct

i ,C
0
i )� ln (

Pt
P0

) (10)

L(Ct
i ,C

0
i ) =

Ct
i − C0

i

lnCt
i − lnC0

i
(11)
3.3 Comparison of BP neural network and
SVR model

To obtain the most accurate prediction results of CEPI, this paper

adopted BP neural network and SVR model to train and analyze

power industry data of each province from 2005 to 2019, respectively.

Then, in order to evaluate the prediction ability and accuracy of

models intuitively, the Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE) are chosen as evaluation indicators to compare the

prediction results of two models. The smaller the error indicators,

the higher the prediction accuracy and the better the effect of the

model. The related equations are shown in Equations 12–14:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

j=1
(yj − ŷ j)

2

s
(12)

MAE =
1
no

n

j=1
yj − ŷ j

�� �� (13)

MAPE =
100%
n o

n

j=1

yj − ŷ j

yj

�����
����� (14)

where yj is the real value, ŷ j is the predicted value, and n is the

number of samples.
TABLE 3 Symbolism of each variable in LMDI model.

Variable Meaning Unit Variables Meaning Unit

Ci The amount of CO2 emitted by energy type iin
power industry

104 tonnes CFi CO2 emission coefficient of energy type i tonne/tce

Fi The amount of standard coal energy type i
consumed by thermal power generation

104 tce CSi The proportion of energy type iin total energy
in thermal power generation

%

F The amount of standard coal energy consumed by
thermal power generation

104 tce FH The amount of standard coal consumed per
kWh of power generation

g tce/KWh

H The amount of thermal power generation 108 KWh HE The proportion of thermal power generation in
power generation

%

E The amount of total power generation 108 KWh EX The ratio of power generation to
power consumption

%

X The amount of power consumption 108 KWh XG Power consumption intensity KWh/CNY

G Gross regional product 108 CNY GP GDP per capita CNY/people

P Total population 104 people
fr
TABLE 2 The value of the coefficient.

Fossil
energy
Types

NCVi (KJ/
Kg, KJ/m3)

CCi

(tC/KJ)
Oi (%)

Raw Coal 20908 26.37 0.94

Cleaned Coal 26344 25.41 0.98

Other
Washed Coal

8363 25.41 0.98

Briquette 20908 33.56 0.90

Coal Gangue 8363 29.42 0.98

Coke 28435 29.5 0.93

Coke Oven Gas 16726 13.58 0.99

Blast
Furnace Gas

3763.44 70.8 0.99

Converter Gas 7945.04 49.6 0.99

Crude Oil 41816 20.1 0.98

Diesel 42652 20.2 0.98

Fuel Oil 41816 21.1 0.98

Petroleum
Coke

31947.42 27.5 0.98

Refinery Gas 46055 18.2 0.98

Natural Gas 38932 15.3 0.99
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3.3.1 BP neural network
BP neural network is a multi-layer feed-forward neural network

with backward propagation of error, consisting of three parts: input

layer, implicit layer, and output layer (Sun and Huang, 2020). BP

neural network is a nonlinear complicated network model with

solid stability and autonomy, often used for regression and

prediction. It has at least one hidden layer, but it is challenging to

determine its node counts. As a result, the ideal node figures are

largely determined by experiments while building a neural network.

The hidden layer’s node numbers typically clearly affect the output

solutions to actual issues. Figure 2 shows the structure of a three-

layer BP neural network model. The principle is as follows. Suppose

there is a set of training samples (Xr ,Yr), r = 1, 2, 3⋯, nf g,Xr ∈
Rn,Yr ∈ Rn, where, Xr = (Xr0,Xr1,Xr2,⋯,Xre) is the input value of

the sample, Yr = (Yr0,Yr1,Yr2,⋯,Yrm) is the real value. At the same

time, it is assumed that the number of nodes in the input layer is e,

the number of nodes in the hidden layer is h, the number of nodes

in the output layer is m, the weight and bias of the p node of the

input layer to the k node of the hidden layer are upk, ak,respectively,

and the weight and bias of the k node of the hidden layer to s node

of the output layer are uks, bk. The output of the hidden layer and

output layer are shown in Equations 15 and 16.

Zk = g(o
e

p=1
upkxrp + ak) (15)

Zs = o
m

k=1

Zkuks + bk (16)

where Zk is the output of the hidden layer, Zs is the output of the

output layer, and g(x) is the transfer function. The error calculation

is defined as Equation 17.

E =
1
2o

m

s=1
(Ys − Zs)

2

(17)

If E is less than the expected accuracy c, the accuracy

requirement is satisfied. Otherwise, error back propagation is

required and the calculation process is repeated until the error is
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within the allowed range or the maximum number of iterations

is reached.

In this study, according to BP neural network construction

steps, firstly, the data from fifteen samples of each province from

2005 to 2019 are normalized and pre-processed. Secondly, the four

selected influencing factors are input variables of the model, and

CEPI are output variable. Then, nine samples are randomly selected

as training samples, the remaining six samples are chosen as test

samples. Simultaneously, “tansig” and “purelin” are selected as the

transfer functions of the implicit layer and output layer,

respectively, and “trainlm” for the training function. Finally, the

model is constructed by the training samples, the accuracy of the

model is determined by the test samples, and the number of nodes

in the implicit layer is determined by multiple training adjustments,

so as to obtain the optimal BP neural network structure.
3.3.2 SVR model
Support vector machine (SVM) is a machine learning

method that performs binary data classification in a supervised

learning approach. Support vector regression (SVR) is a vital

application branch of SVM, which has many strengths, such

as solving nonlinear high-dimensional problems with small

data size, obtaining the global optimum point in theory, and

the computational complexity is independent of the number of

sample dimensions, so it is widely used in function approximation

and regression prediction. But it is sensitive to outliers and

requires careful choice of kernel functions and parameters

(Zhang et al., 2022). Its principle is to obtain a regression

model on the known sample set to make f (x) and y as close

as possible (shown in Figure 3). The sample is shown in

Equation 18 and the characteristic function of SVR model is

defined as Equation 19:

D = (x1, y1), (x2, y2),⋯, (xk, yk), xk ∈ Rn, yk ∈ R, k = 1, 2,⋯, nf g
(18)

f (x) = wx + b (19)
FIGURE 2

Schematic diagram of BP neural network.
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where xi is the input value of sample i, yi is the output value of

sample i, and n is the number of samples, w is the weight, b is the bias.

Unlike the general linear model, the SVR model defines the interval ϵ

on both sides of the hyperplane and calculates the loss when and only

when the absolute value of the gap between f (x) and y is greater than ϵ,

while no loss is calculated if it is within the interval band.

The function estimation problem can be transformed into the

optimization problem of Equation 20:

min
w ,b

1
2

wk k2+Co
n

k=1

le (f (xi) − yi)

le(f (xi) − yi) =
0 f (xi) − yij j < e

f (xi) − yij j − e else

( (20)

where wk k2 is the penalty function, C is the penalty factor, and

le is the e-insensitive loss function.
In practical tasks, it is often difficult to directly determine the

appropriate e so that most points are within the interval band, so

the relaxation variable xk, x*k are introduced thereby relaxing the

interval requirement of the function and allowing some training

samples to fall outside the interval. Therefore, Equation 20 can be

transformed into Equation 21:

min
w ,b

1
2

wk k2+Co
n

k=1

(xk + x*k )

s : t :

yk − wx − b ≤ e + xk

wx + b − yk ≤ e + x*k

xk, x*k ≥ 0, k = 1, 2⋯, n

8>><
>>:

(21)

By introducing the Lagrange factors ak,a*k , constructing the

Lagrange function, and introducing the kernal function, the above
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optimization problem is transformed into a dual problem, and the

decision function is obtained, as shown in Equations 22 and 23:

f (x) = o
n

k=1

(ak − a*k )K(xk, xj) + b (22)

K(xk, xj) = exp ( −
xk − xj

�� ��2
2g 2 ) (23)

where K(xk, xj) is the kernal function, xj is the input value of the

sample, and g is the kernal function parameter.

This paper follows the steps of first normalizing the data of

power industry in each province, randomly selecting nine training

samples and six test samples. Secondly, the radial basis function was

selected as the kernel function to process training samples and

construct the ϵ-SVR model. Thirdly, we determine the penalty

coefficients and kernel parameters applying the method of grid

search and cross-validation and simulate the training sample data to

obtain the optimal solution of the model. Fourth, the training

samples and test samples were substituted into the model to

output the fitted values. Finally, we judge the learning and

promotion ability of the model by the relevant evaluation indexes,

and repeatedly train until the optimal model is obtained.
3.4 Scenario design

According to the decomposition results of the LMDI model, it

can be seen that GDP growth is the major factor in increasing CO2

emissions in all three provinces. Balancing the relationship between

economic development and CO2 emission reduction and integrating

the path of achieving CO2 emissions peak into the overall economic

and social development is an important issue facing the realization of

green and high-quality economic development. In order to more

comprehensively understand the changes in CO2 emissions under

different development rates and emission reduction rates of the

power industry in each province, this paper divides the four

variables that have a strong influence on CEPI in each province

into two types of variables: CO2 emissions promotion and CO2

emissions inhibition. Furthermore, three modes of change were set

for the two types of variables, respectively, including high degree,

medium degree, and low degree. Then, we designed nine different

development scenarios of power industry by arranging and

combining six modes and set the change rate of relevant

influencing factors for a planning period of five years, combining

the existing data of the change rate of each influencing factor in

previous years. What’s more, we regarded the medium degree of CO2

emissions promotion scenario as the baseline scenario which refers to

the development scenario of the power industry in accordance with

the existing planning and policies, and set the change rates of low-

speed and high-speed accordingly. The CO2 emissions inhibition

scenarios are set in the same way. The definition of nine scenarios of

three provinces are shown in Supplementary Tables S1–3, and the
FIGURE 3

Schematic diagram of SVR model.
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specific indicators of three provinces in different scenarios are

explained in Supplementary Tables S4–6.
3.5 Data source

In this study, various fossil energy consumption data are

collected from the Energy Balance Sheet of Inner Mongolia, the

Energy Balance Sheet of Shanxi, and the Energy Balance Sheet of

Shandong in the China Energy Statistical Yearbook (NBSC, 2005–

2019) from 2005 to 2019. The data on the average low calorific value

of the fossil energy are from Appendix 4 in the China Energy

Statistics Yearbook. Moreover, the data of carbon content per unit

calorific value and carbon oxidation rate of fuels are given by

Guidelines for the Preparation of Provincial Greenhouse Gas

Inventories (NDRC, 2011). The National Bureau of Statistics of

China (NBSC, 2019) is the source for the data related to power

generation, thermal power generation, and social electricity

consumption of the three provinces, and the regional GDP and

population data are collected from Inner Mongolia Autonomous

Region Statistical Yearbook, Shanxi Statistical Yearbook and

Shandong Statistical Yearbook from 2005 to 2019 (IMBS, 2005–

2019; SXBS, 2005–2019; SDBS, 2005–2019). At the same time, to

eliminate the influence of the price index, we selected 2005 as the

base period to calculate China’s GDP data.
4 Results and analysis

4.1 CO2 emission measurement results

CO2 emissions and CO2 emissions intensity in power industries

from three provinces were measured based on Equations 1 and 2,

and the results are shown in Figure 4. It can be seen that CEPI in all

three provinces showed a growth trend during 2005-2019, in which

CEPI in Inner Mongolia Autonomous Region grew from 119.34 to

518.20 million tonnes, with a rapid annual growth rate of 22.28%,

and CEPI in Shanxi province rose from 122.56 to 263.61 million

tonnes at an average annual growth rate of 7.67%. CEPI in

Shandong Province increased from 199.89 to 434.87 million

tonnes with the annual growth rate of 7.84%. Contrary to the

increasing trend of CO2 emissions, CO2 emissions intensity
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presented a declining trend in the past fifteen years. From 2005 to

2019, CO2 emissions intensity of power industry in Inner Mongolia

Autonomous Region fluctuated but decreased from 1145.05 to

1128.94 g/KWh. For Shanxi Province, the power industry had a

decline from 948.86 to 934.05 g/KWh in CO2 emissions intensity.

Moreover, CO2 emissions intensity of power industry in Shandong

Provinces was down to 787.12 g/KWh in 2019, a decrease of 24.81%

compared with that in 2005.
4.2 LMDI decomposition results of
CO2 emissions

The annual contribution value of each factor to CEPI in each

province were calculated, as displayed in Supplementary Tables S7–9.

And then they were summed to obtain the cumulative contribution

rate of each factor, as shown in Figure 5. CEPI in Inner Mongolia

increased by 398.86 million tonnes from 2005 to 2019. During this

period, the GDP per capita of Inner Mongolia increased at an average

rate of 21.13%, which caused 414.59 million tonnes growth in CEPI.

This was the major positive driving force, contributing to 103.95% of

CO2 growth. The power consumption intensity increased from

1895.74 to 2473.20 gtce/KWh, thus exhibiting a positive effect (DC
= 83.76 million tonnes) on CEPI. The change of fossil energy

structure has accounted for an increase of 3.93 million tonnes on

the growth of CEPI. Also indicated, was that the power generation

structure effect was the main negative effect (DC = −46.78 million

tonnes) on change of CEPI, followed by inter-regional transfer of

power effect (DC = −27.98 million tonnes). The proportion of thermal

power generation in total power generation decreased from 98.64% to

83.86% in the past years. Correspondingly, the power generation

structure effect reflected a significant negative effect that suppressed

11.72% of CEPI. The coal consumption for thermal power generation

has a negative effect (DC = −25.14 million tonnes), and the

population had no obvious effect (DC = −3.52 million tonnes) on

the change of CEPI.

By calculation, it can be clearly seen that CEPI of Shanxi

Province increased by 2.15 times, with a total increase of 141.05

million tonnes. During the whole study period, economic effect,

inter-regional transfer of power effect, and population effect

collectively drove the increase of CEPI by 216.20 million tonnes

(196.71, 14.23 and 5.26 million tonnes, respectively). On the other
FIGURE 4

CO2 emissions and CO2 emissions intensity of power industry in three provinces.
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hand, the change of power consumption intensity, power

generation structure, coal consumption for power generation, and

fossil energy structure jointly offset 75.15 million tonnes of CEPI

growths (−37.05, −25.67, −11.09, and −1.35 million tonnes,

respectively). Obviously, from Figure 5, the GDP per capita

growth from 12158.34 CNY to 32683.10 CNY was the most

dominant factor in the increment of CEPI, leading to 139.46%

growth in CEPI. As the ratio of power generation to power

consumption growing from 1.39 to 1.49, the effect of inter-

regional transfer of power became the other key cause of CEPI

increase, pulling 10.09% of CEPI growth. The contribution rate of

the population effect was patently weaker than the other two factors,

with only 3.73%. In respect to the power consumption intensity

effect, in the whole period, it reduced from 2318.98 to 1979.29

KWh/CNY, thus showing inhibitory effects on CEPI, with −26.27%

of the DC. In the meantime, because of the decline in the ratio of

thermal power generation to power generation, 18.19% of CEPI

growth was inhibited. The coal consumption for power generation

exhibited a negative effect on CEPI that explains −7.86% of the total

change of CEPI, and the fossil energy structure had a subtle effect on

CEPI, with a contribution rate of −0.95%.

With regard to Shandong Province, the whole growth of CEPI in

2019 enlarged by 1.09 times (217.98 million tonnes) compared with

that in 2005. As depicted in Figure 5, the changes of CEPI were

mainly influenced by four factors, which are economic effect,

population effect, coal consumption for power generation effect,

and power generation structure effect. Among them, the growth of

GDP per capita from 15947.51 to 53412.05 CNY played a particularly

prominent role in driving the increase of CEPI (329.67 million

tonnes), equaling to 151.24% of DC throughout the study period in

total. And the rise of population promoted 26.98 million tonnes CEPI

increase, accounting for 12.38% of DC. In the matter of coal

consumption for power generation, in the entire period, it

decreased from 393.40 to 269.04 gtce/KWh, bringing about a

reduction of 92.30 million tonnes in CEPI, amounting to −42.34%

of DC. The power generation structure was conducive to CO2

emissions reduction owing to the decrease of the ratio of thermal

power generation to power generation, thus avoiding 39.39 million

tonnes of CEPI. Apart from the above factors, the change of fossil

energy structure also became a positive driving force resulting in a

total increase of 14.58 million tonnes CEPI, amounting to 6.69% of
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DC. The decline of power consumption intensity and inter-regional

transfer of power collectively reduced CEPI by 21.57 million tonnes,

with the equivalent to −6.40%, −3.50% of DC, respectively.
4.3 Selection result of the
prediction model

Based on the preliminarily analyze in Section 4.2, four factors

that have a greater impact on CEPI were selected as input variables

for models in this paper, among which the factors selected for Inner

Mongolia Autonomous Region are power generation structure,

inter-regional transfer of power, power consumption intensity

and GDP per capita, for Shanxi Province are power generation

structure, inter-regional transfer of power, power consumption

intensity and GDP per capita, and for Shandong Province are

coal consumption for power generation, power generation

structure, GDP per capita and population. Meantime, CEPI of

each province are taken as the output variable. According to the

above, we perform a fitting experiment comparison between BP

neural network and SVR model, of which 60% of the samples are

used for training and 40% are used for testing.

The optimal computational results of BP neural network and

SVRmodel are selected for comparative analysis, as shown in Table 4

and Figure 6. Apparently, for Inner Mongolia Autonomous Region,

although the accuracy of SVR model in the training period is slightly

higher than that of BP neural network, the error indicators in the

testing period is much larger than BP neural network. In a

comprehensive view, BP neural network is more suitable than SVR

model. Nonetheless, for Shanxi Province and Shandong Province, the

error indicators of BP neural network are obviously smaller than that

of SVR model. In addition, the prediction accuracy of SVR model is

closely related to the selection of parameters. Parameter adjustment

requires constant trial and error to complete, which leads to a lot of

work and is prone to overfitting or poor prediction. In contrast, BP

neural network can update the rules and continuously adjust the

weight and threshold parameters in the neural network according to

the preset parameters. In short, compared with SVRmodel, BP neural

network in this paper has higher accuracy and superiority which can

better predict the arrival of CO2 emissions peak in power industries of

three provinces.
FIGURE 5

Cumulative contribution rate of each factor of CEPI change from 2005 to 2019 in three provinces.
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4.4 CO2 peak prediction results

By putting the normalized influencing factors data from

different scenarios into the trained BP neural network for

prediction, CEPI change trend of each province from 2021 to

2035 under the nine scenarios was obtained. The predicted results

are displayed in Figure 7. It can be seen from the predicted results

that there is a significant difference in the trend of CEPI in each

province from 2021 to 2035 under nine scenarios.

As indicated in Figure 7 and Table 5, the total CEPI of Inner

Mongolia Autonomous Region under nine scenarios, in descending

order, are HL > HM > HH > ML > MM > MH > LL> LM > LH.

Among them, CEPI under LM and LH scenarios will peak earliest,

reaching its peak in 2030 and equaling to 638.12 and 628.32 million
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tonnes, respectively. Then, under MH scenario, CEPI will achieve a

peak at 652.81million tonnes in 2031. After that, CEPI will peak in

2032 under LL scenario, with an amount of 649.63 million tonnes.

Finally, in the MM scenario, CEPI will peak in 2034, with a peak of

658.23 million tonnes, while CEPI in the three CO2 emissions

inhibition scenarios with high-speed growth of CO2 emissions

promotion factors (HL, HM and HH) and ML scenario show an

upward trend in CO2 emissions, none of which peak before 2035.

And in 2035, CEPI under them will reach 668.28, 666.82, 664.61,

and 664.47 million tonnes, respectively.

In respect of Shanxi Province, the total CEPI under nine

scenarios, in descending order, are HL > HM > HH > ML > MM

> MH > LL> LM> LH. Under the three scenarios with low-speed

growth (LL, LM, LH), CEPI will peak in 2025, with a peak of 319.32,
FIGURE 7

Prediction of CEPI in three provinces under nine scenarios.
TABLE 4 Comparison of CEPI prediction error indicators between BP neural network and SVR model.

Error indicators Inner Mongolia
Autonomous Region

Shanxi Province Shandong Province

BP neural network SVR BP neural network SVR BP neural network SVR

Training Set RMSE 3170.57 2252.24 884.61 941.56 1603.80 2079.90

MAE 1601.57 1345.18 405.67 529.22 1317.75 1489.93

MAPE(%) 4.85 3.66 1.68 2.76 3.96 4.24

Test Set RMSE 2022.94 2746.53 1088.34 1026.66 1394.91 2323.04

MAE 1478.51 2598.59 722.76 855.13 1029.47 1805.20

MAPE(%) 3.82 7.93 4.16 5.05 3.29 5.27
fro
FIGURE 6

Comparison of BP neural network and SVR model prediction results in three provinces.
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308.07, and 292.45 million tonnes, respectively, which will realize

the goal of China’s total CO2 peak in 2030 ahead of schedule.

Nevertheless, CEPI under other six scenarios (HL, HM, HH, ML,

MM, MH) will not peak and exhibit an increasing trend year by

year, accounting for 344.52, 344.49, 344.39, 342.86, 340.71, 332.03

million tonnes of CEPI in 2035.

Unlike two provinces mentioned above, Figure 7 reveals that

CEPI of Shandong Provinces under different scenarios, in descending

order, are HL >ML > LL > HM>MM> LM>HH>MH> LH. CEPI

under LH scenario and MH scenario will achieve its peak in 2025,

followed by CEPI under HH, LM, and MM scenarios which will

reach a peak in 2030, with a peak of 434.60, 439.3, 448.75, 465.44, and

472.83 million tonnes, respectively. However, under the three

emissions growth scenarios with low degree of CO2 emissions

inhibition (HL, ML, LL) and HM scenario, by 2035, the total CEPI

shows a continuous growth trend and does not peak. Among them,

the fastest growth in CO2 emissions is HL scenario, followed by ML,

LL, and HM scenarios, with CEPI of 506.98, 499.0, 492.08, and 483.85

million tonnes by 2035, respectively.

The decomposition result of the LMDI model proves that the

growth of GDP per capita and power consumption intensity are the

main reasons for the increase of CEPI of Inner Mongolia

Autonomous Region. Nowadays, Inner Mongolia’s economy is in

the stage of high-speed development, with a wide area and abundant

resources, which leads to the high GDP per capita. At the same time,

due to the heavy industrial structure, industry, especially high energy-

consuming fossil energy extraction industry accounts for a relatively

large share of power consumption structure. Besides, the backward

technology of industrial capacity gives rise to the low efficiency of

power consumption in the production process, resulting in the waste

of electricity resources, thus causing high power consumption

intensity and promoting the growth of CEPI. For another, the

factors that inhibit CEPI are mainly power generation structure

and inter-regional transfer of power. As a substantial national

energy base, Inner Mongolia Autonomous Region is gradually

intensifying the transformation of energy supply to green and low-

carbon under the premise of doing a good job in supplying traditional

fossil energy, and striving to take a lead in building a new power

system with new energy as the mainstay, so that the proportion of

thermal power generation in total power generation is decreasing

year by year. Inter-regional transfer of power represents the regional

shift of power. As a significant province of power generation, Inner
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Mongolia Autonomous Region’s demand for its power consumption

side is increasing while it is delivering electricity to other provinces.

And the trend of clean end-use energy consumption is accelerating,

thus curbing the increase of CEPI. The prediction results of CEPI in

Inner Mongolia visually suggest that when such factors as power

consumption intensity and GDP per capita increases at a high rate,

no matter how to optimize CO2 emissions inhibition factors such as

power production structure and inter-regional transfer of power, the

peak of CEPI cannot be achieved in 2035. Besides, when the CO2

emissions promotion factors increase at a medium rate, and the

future power generation structure continues to achieve certain

optimizations and adjustments to reach a medium or high

reduction rate of decline, CEPI can reach the peak by 2035, but

cannot by 2030. When the economy and power consumption

intensity in a certain range of low-speed growth, only the CO2

emissions inhibition degree of thermal power share and inter-

regional transfer of power to medium or high can ensure that

CEPI in Inner Mongolia can complete the goal of peaking in 2030.

For Shanxi Province, the main factors leading to the

increase in CEPI are the growing economic development level

and inter-regional transfer of power, among which the growth of

GDP per capita is the biggest driver of CEPI because the

accelerated industrialization and urbanization will undoubtedly be

accompanied by large consumption of energy and CO2 emissions.

Being considered as a national coal base, power transmission base,

and hub for west-east and north-south power transmission, Shanxi

Province’s outbound power supply is growing year by year.

Although it has secured the national energy and power supply,

Shanxi Province pay the price of generating more CO2 emissions in

the process of power generation. What is more, reducing the

intensity of electricity consumption and the share of thermal

power generation in total power generation is an effective way to

diminish CEPI. Though thermal power generation is still the main

power source in Shanxi Province, with the in-depth implementation

of development strategies such as technological reform and energy

revolution, the capacity of new energy generation will gradually

appear in the future and the efficiency of electricity consumption

will also be further improved. Similar to Inner Mongolia, the impact

of CO2 emissions promotion factors on CEPI is stronger than that

of CO2 emissions inhibition factors in Shanxi Province. When CO2

emissions promotion factors grow at medium or high rates, even

through a series of initiatives such as increasing the adjustment of
TABLE 5 The peak year and level of CEPI of three provinces in different scenarios.

Provinces Scenarios LL LM LS MW MM MS HW HM HS

Inner Mongolia Autonomous Region Peak year 2032 2030 2030 / 2034 2031 / / /

Emission (million tonnes CO2) 649.75 638.12 628.32 / 658.23 652.81 / / /

Shanxi Province Peak year 2025 2025 2025 / / / / / /

Emission (1 million tonnes CO2) 319.32 308.07 292.45 / / / / / /

Shandong Province Peak year / 2030 2025 / 2030 2025 / / 2030

Emission (million tonnes CO2) / 465.44 434.60 / 472.83 439.36 / / 449.75
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power supply structure on the power generation side, enlarging the

installed capacity of new energy generation to ensure that the share

of thermal power generation decreases at a higher rate, and

improving the efficiency of end-use electricity on the demand

side, CEPI remains in a growth trend year by year without

peaking by 2035. Whereas, when the growth rate of CO2

emissions promotion factors is low, CEPI under all three CO2

emissions inhibition scenarios in Shanxi Province will be able to

achieve carbon peaking in 2025.

The leading factors affecting CEPI in Shandong province are

coal consumption for power generation, power generation

structure, GDP per capita, and population. Similar to the above

two provinces, GDP per capita is the factor that contributes most to

CEPI. The difference is that the yearly increase in the number of

populations, with considerably stimulating demand for abundant

materials and energy, has become the second major factor in the

increase of CEPI. Despite the fact that the population growth rate in

Shandong Province in recent years is slow and the aging problem is

relatively severe, the population will be stimulated to grow and

continue to play a critical part in CEPI in the future, considering the

supporting measures related to “three children policy” will be

further improved. Concerning the CO2 emissions inhibition

factors, establishing the coal power units clean and efficient to

reduce coal consumption for power generation can significantly

suppress the increase of CEPI, followed by the optimization of the

power generation structure.

In addition, CEPI in Shandong Province is generally higher

under low degree of CO2 emissions inhibition scenarios, followed

by the differences in CEPI caused by economic development and

population growth factors, which indicates that the inhibiting effect

of CO2 emissions inhibition factors on CEPI is stronger than the

driving effect of CO2 emissions promotion factors in the future

period. It is noteworthy that this is not consistent with the

conclusion that the GDP per capita has the most significant

impact on CEPI obtained with the LMDI model above. It may

attribute to the fact that as the economic development of Shandong

Province enters a new normal stage, the government departments

pay much more attention to energy conservation and CO2

emissions reduction, thus promoting the upgrading and

transformation of power generation structure and the continuous

research and development of low-carbon technologies for power.

Hence, the economic growth and CO2 emissions are gradually

decoupled, which represents that economic growth is no longer at

the cost of resource consumption and environmental damage and

the relationship between economic growth and CO2 emissions

increase is no longer close (Li et al., 2022).

In terms of the low degree of CO2 emissions inhibition, if the

power generation structure is adjusted slightly and the use of fossil

energy cannot achieve clean and efficient enough resulting in the

CO2 emissions reduction is less, it is hard to achieve the peak target

by 2035 even by controlling the population and economic growth

rate. Under the medium degree of CO2 emissions inhibition

scenarios, the proportion of thermal power generation in the total

power generation decreases at a faster rate and the effective
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improvement of fossil fuel power generation can remarkably

suppress CEPI when the population and economy in the low and

medium-speed growth rate, with the peak of CEPI reaching at 2030.

In addition, it is observed that CEPI under the high degree of CO2

emissions inhibition scenarios can peak at 2030 regardless of the

growth rate of the economy and population, which means that

although economic growth has the greatest impact on CEPI, it will

be able to peak earlier if CO2 emissions reduction technologies

achieve breakthroughs on the existing basis.

In general, the earliest peak time of CEPI in Shandong Province

and Shanxi Province is 2025, but the peak of CEPI in Shanxi is

smaller than that of Shandong. The peak time of CEPI in Inner

Mongolia is relatively late, in 2030, and the peak is larger than that

of the other two provinces. Shandong has a strong economy, and its

per capita GDP is much higher than Shanxi’s. Therefore, as the

main factor for the increase in CO2 emissions, even under the same

peak time, the CEPI in Shandong is much higher than that of

Shanxi. Inner Mongolia is extensive and sparsely populated, which

makes its per capita GDP rank among the top in China. In addition,

Inner Mongolia’s coal-based power generation structure and high

power generation also contribute to its late CO2 peak time and large

CO2 peak.
5 Conclusions and policy implications

5.1 Conclusions

This paper selected Inner Mongolia Autonomous Region,

Shandong Province, and Shanxi Province as representative

provinces of Yellow River Basin, respectively, and measured CEPI

of three provinces separately using relevant data on energy

consumption of power industry from 2005 to 2019. Then an

extended LMDI model was utilized to decompose different effects

to understand the contribution value of each factor to CEPI in three

provinces. Additionally, this study selected BP neural network with

higher accuracy to make muti-scenario forecasts for CEPI peaking

of three provinces from 2021 to 2035 after comparing with SVR

model. Finally, we draw the following conclusions.

Firstly, according to the extended LMDI model results in all

three provinces, GDP per capita is the most positive driving factor

that contributes to CEPI. Furthermore, the main factor that leads to

CEPI growth in Inner Mongolia Autonomous Region is power

consumption intensity, and fossil energy structure has a more

negligible positive effect. The factors that inhibit CEPI are, in

order of magnitude, the power generation structure, the inter-

regional transfer of power, coal consumption for power

generation, and population. For Shanxi Province, apart from

GDP per capita, the key factors that result in the increment of

CEPI are inter-regional transfer of power and population. Besides,

power consumption intensity and power generation structure have

a negative effect on the increase of CEPI. In contrast, coal

consumption for power generation and fossil energy structure

play a less inhibiting role. In Shandong province’s power
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industry, the population is second only to GDP per capita in

promoting CO2 emissions, and fossil energy structure also

positively influenced it. On the other hand, the coal consumption

for power generation is the primary factor inhibiting the increase of

CEPI, followed by the power generation structure effect. And the

effects of power consumption intensity and inter-regional transfer

of power on suppressing CEPI are dramatically weaker than

other factors.

Secondly, the prediction results under nine different scenarios

reveal that for the power industries in Inner Mongolia Autonomous

Region and Shanxi Province, CO2 emissions are generally higher

under the high degree of CO2 emissions promotion scenarios,

followed by the difference due to the rate change of emission

inhibition factors. Only CEPI under LM and LH scenarios in

Inner Mongolia Autonomous Region can meet the requirement of

peaking in 2030. CEPI in Shanxi Province under the low degree of

CO2 emissions promotion scenarios can peak in 2025, while the rest

of the scenarios do not peak. CEPI in Shandong Province under the

low degree of CO2 emissions inhibition scenarios are generally

higher, followed by differences in CEPI caused by the fast or slow

growth rate of GDP per capita and population. Meanwhile, under

MM, HH, and LM scenarios, CEPI can peak in 2030, while in the

LH and MH scenarios, the power industry can achieve CO2

emissions peak carbon in 2025 early.
5.2 Policy implications

In view of CEPI influencing factors and CEPI prediction results

of three provinces provided in this paper, combined with the

development of three provinces and the Yellow River Basin, this

paper proposes the following policy recommendations.

Firstly, optimize the power generation structure. The decrease

in the proportion of thermal power generation in total power

generation is the main factor inhibiting the growth of CEPI in all

three provinces, so it is indispensable for CO2 emission reduction in

power industry to optimize and adjust the power generation

structure dominated by thermal power generation. Inner

Mongolia Autonomous Region can rely on its rich renewable

energy sources, such as photovoltaic and wind energy, to increase

the installed capacity of new energy sources. At the same time,

enhance the capacity of renewable energy consumption by actively

improving transmission and distribution pricing policies and

boosting market-oriented transactions thus reducing the

occurrence of wind abandonment as much as possible. Shanxi

Province can promote the development of renewable energy

power generation by steadily accomplishing the construction of

ten million kilowatt level wind power base and photovoltaic runner

bases in coal mining subsidence areas. As for Shandong province, it

can give full play to its advantages of the sea and actively accelerate

to build offshore wind power bases. Meanwhile, building land-based

wind power and other renewable energy per local conditions is

equally significant. Besides, the “other provincial electricity into

Shandong Province” strategy should continue implementing to

strengthen power cooperation with energy-rich areas. For
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example, it can actively strive for the “electricity from Gansu

Province into Shandong Province” new channel construction to

increase renewable energy delivery.

Secondly, reduce the intensity of electricity consumption and

enhance the efficiency of electricity consumption. For one thing,

industrial electricity consumption is still the main driving force

behind total electricity consumption. In 2019, the industrial

electricity consumption of each province accounted for more than

70% of the total electricity consumption in the whole society,

respectively. Accordingly, the electricity utilization efficiency of key

electricity-consuming industries needs to be urgently improved.

Given the fact above, government departments should establish

incentive and restraint mechanisms to reflect electricity trading and

CO2 emissions reduction costs in the composition of electricity

prices, with price instruments used comprehensively. Moreover, it

is essential for authorities to strictly forbid the implementation of

electricity price preferences for high energy-consuming and high-

emission industries to promote energy saving and efficiency of

enterprises, thus reducing CO2 emissions. For another thing, with

the improvement of living standards, the proportion of residential

household electricity consumption in total electricity consumption is

also increasing yearly. Consequently, the provinces can take measures

to continue improving the residential tier electricity price policy and

actively increase the publicity of energy saving and electricity saving

so that the awareness of low carbon and energy saving is deeply

rooted in the people.

Last but not least, lower the energy consumption intensity of

coal power and facilitate the clean and efficient utilization of coal.

The empirical results demonstrate that the coal consumption for

power supply is the most important factor that inhibits the increase

of CEPI of Shandong Province, so it should further promote the

“three changes” to unite, including transformation of coal power

energy saving and carbon reduction, flexibility transformation and

heat supply transformation. Furthermore, it deserves more

attention that eliminating and shutting down unprofitable and

backward coal power generation steadily to promote the

cleanliness of coal power, with investment in the development of

CCS technology and its infrastructure construction simultaneously.

The government should also increase financial and monetary policy

support to solve the problem of high costs and lack of effective

return mechanisms for unit transformation and flexibility

investment to enterprises. In the end, it is vital to recognize that

coal power is still the first major support power source of the power

system in a period of time, which means energy-saving

transformation should not be eager for quick success and instant

benefit. We need to promote the clean and efficient use of coal and

advance the energy revolution reasonably under the premise of

safeguarding economic development.

Although this study analyzes the main influencing factors of

CO2 emissions from the power sector in the three provinces of the

Yellow River Basin and simulates CO2 emission scenarios in the

future, it still has some limitations. In this paper, only the main

influencing factors of CO2 emissions in the power industry are

selected for the prediction of CO2 peaking, and other minor

influencing factors are not included, which may cause some
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deviations in the results. Furthermore, the study area of this paper

only includes three typical provinces in the Yellow River basin, and

the CO2 emissions of the power industry in the other six provinces

are also worthy of further study.
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Liangnan Hu, Zhaofu Xie, Bokun Zhang and Jingzhou He*

Xi’an Jiaotong University Sports Center, Shaanxi, Xian, China
Introduction: Carbon neutrality has become a key strategy to combat global

climate change. However, current methods for predicting carbon emissions are

limited and require the development of more effective strategies to meet this

challenge. This is especially true in the field of sports and competitions, where the

energy intensity of major events and activities means that time series data is

crucial for predicting related carbon emissions, as it can detail the emission

patterns over a period of time.

Method: In this study, we introduce an artificial intelligence-based method

aimed at improving the accuracy and reliability of carbon emission predictions.

Specifically, our model integrates an Improved Mahjong Search Algorithm (ISSA)

and GRU-Transformer technology, designed to efficiently process and analyze

the complex time series data generated by sporting events. These technological

components help to capture and parse carbon emission data more accurately.

Results: Experimental results have demonstrated the efficiency of our model,

which underwent a comprehensive evaluation involving multiple datasets and

was benchmarked against competing models. Our model outperformed others

across various performance metrics, including lower RMSE and MAE values and

higher R2 scores. This underscores the significant potential of our model in

enhancing the accuracy of carbon emission predictions.

Discussion: By introducing this new AI-based method for predicting carbon

emissions, this study not only provides more accurate data support for

optimizing and implementing carbon neutrality measures in the sports field but

also improves the accuracy of time series data predictions. This enables a deeper

understanding of carbon emission trends associated with sports activities. It

contributes to the development of more effective mitigation strategies, making a

significant contribution to global efforts to reduce carbon emissions.
KEYWORDS

sustainable development, carbon neutrality, time-series data, ISSA, GRU-transformer
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1 Introduction

In the contemporary context, achieving carbon neutrality

stands out as a pivotal goal in combatting global climate change.

This term denotes the attainment of a state where carbon emissions

are balanced or even surpassed by efforts involving removal,

reduction, or compensation strategies.The significance of this

concept is self-evident, as climate change has profound impacts

on the Earth’s environment, society, and economy (Moshari et al.,

2023; Keshavarzzadeh et al., 2023). However, achieving carbon

neutrality is not an easy task and is accompanied by a series of

challenges. One of these challenges lies in the widespread and

diverse sources of global carbon emissions, making the tracking,

monitoring, and reduction of emissions complex and challenging.

Another challenge is ensuring the long-term sustainability of

carbon neutrality measures to maintain a state of net-zero carbon

emissions. These challenges necessitate innovative approaches for

resolution (Zhao et al., 2022; Wu et al., 2022). With the rapid

advancement of deep learning technology, researchers have begun

to apply it to the field of carbon neutrality. Deep learning is a

machine learning technique that mimics the neural network

structures of the human brain to process complex data, exhibiting

exceptional pattern recognition capabilities (Wang et al., 2021; Yu,

2023). This has made deep learning a powerful tool for exploring

solutions to carbon neutrality. Currently, researchers have been

utilizing deep learning in various domains to advance carbon

neutrality research (Zahedi et al., 2022a; Zahedi et al., 2022b).

These domains include monitoring and management of carbon

emissions sources, improvements in carbon capture and storage

technologies, and optimization of carbon offset projects, among

others (Somu et al., 2021). Among the numerous applications of

deep learning, time series forecasting holds particular importance in

carbon neutrality research. Time series data provides valuable

information regarding carbon emissions, energy consumption,

weather changes, and more. By analyzing and forecasting this

time series data, researchers can gain a better understanding of

the effectiveness of carbon neutrality measures and optimize their

strategies. For instance, through time series forecasting, one can

more accurately predict future energy demands, thus optimizing

energy production and distribution while reducing carbon

emissions (Amasyali and El-Gohary, 2018; Feng et al., 2023).

Additionally, time series analysis can aid in monitoring and

predicting weather changes to enhance the efficiency of renewable

energy utilization. Therefore, time series forecasting plays an

indispensable role in carbon neutrality research, providing robust

support for achieving the goal of net-zero carbon emissions (Wang

et al., 2021; Yu, 2023).

In recent years, researchers have actively explored various time

series forecasting models to address challenges in the field of carbon

neutrality. One such model is the ARIMA (Autoregressive

Integrated Moving Average) model, a classic method that

combines the concepts of autoregression (AR) and moving

averages (MA). Widely applied in numerous carbon neutrality

studies, especially for predicting carbon emission trends, the

ARIMA model, however, has limitations in dealing with

nonlinear relationships and complex seasonal variations, leading
Frontiers in Ecology and Evolution 02139
to potential inaccuracies in practical carbon neutrality scenarios

(Sun and Ren, 2021). Additionally, LSTM (Long Short-Term

Memory) and GRU (Gated Recurrent Unit) models are two other

extensively used models in time series forecasting. These models

possess the ability to capture long-term dependencies and are

suitable for handling nonlinear and non-stationary time series

data. However, due to their complexity, computational expenses,

and the often substantial amount of data required, their application

in certain carbon neutrality research contexts can be challenging

(Shen et al., 2022). On another front, the Transformer model is

emerging as a notable contender in the field of time series

forecasting. Built on a self-attention mechanism, it can capture

relationships between different time steps in a sequence, providing a

better understanding of temporal and seasonal variations. Despite

its excellent performance in handling time series data, the

Transformer model may face challenges in certain carbon

neutrality studies, particularly those with high data requirements

(Chen et al., 2022).

Based on the aforementioned limitations, this study introduces

a comprehensive model that combines ISSA and GRU-Transformer

to address the shortcomings of previous models. Leveraging the

strengths of the Transformer encoding layers and the GRU model,

this model achieves more accurate carbon emission predictions and

conducts in-depth exploration of factors influencing carbon

neutrality. Firstly, the model utilizes the Transformer encoding

layers as feature extractors, delving into various influencing factors

in the carbon neutrality process. Subsequently, the extracted

features are prepared for the prediction task through a fully

connected layer. The model incorporates two layers of

GRU models to enhance learning capacity. Secondly, the

output of the GRU model is fitted through a fully connected layer

to realize predictions of carbon emissions. The optimization

process employs the improved Sparrow Search Algorithm,

adjusting hyperparameters to enhance model performance and

training efficiency.
• This study introduces a time series forecasting approach

based on a combination of ISSA and the GRU-Transformer

model to enhance the accuracy of carbon emission

predictions. By integrating the encoding layers of the

Transformer with the GRU model, the model can better

capture the temporal and seasonal patterns in carbon

emission data, resulting in more precise carbon emission

forecasts. This contribution is of paramount importance in

guiding the development and implementation of carbon

neutrality strategies.

• The research further explores the application of the ISSA

method to gain a deeper understanding of the crucial

influencing factors during the carbon neutrality process.

Through the analysis of timeseries data, we can identify

factors related to carbon emissions and incorporate them

into the model’s considerations. This approach provides a

more comprehensive perspective, aiding in revealing

dynamic relationships underlying carbon neutrality and

offering decision-makers additional insights to optimize

emission reduction strategies.
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• Additionally, this study introduces an enhanced Sparrow

Search Algorithm to optimize the hyperparameters of the

GRU-Transformer model. This optimization process

enhances the model’s performance and makes it more

versatile, allowing it to adapt to various datasets and

problem scenarios. The application of this algorithm

contributes to improved model efficiency and applicability.
2 Method

This article proposes a combined model based on ISSA and

GRU-Transformer. Firstly, the encoding layers of the Transformer

are used as feature extractors to deeply explore the influencing factors

of carbon neutrality. Relevant features associated with these

influencing factors are expressed and extracted to obtain the most

significant features from the training data. Subsequently, the

extracted features are passed through a fully connected layer,

followed by the use of two layers of GRU models for prediction,

which significantly enhances the model’s learning capacity compared

to a single-layer GRU. Finally, a single fully connected layer is used to

fit the predicted values, achieving predictions of carbon emissions.

Building upon this foundation, an improved Sparrow Search

Algorithm is introduced to optimize the GRU-Transformer model.

Hyperparameters such as learning rate, batch size, and hidden layer

node count within the model are optimized using this algorithm.

Figure 1 illustrates the process: Firstly, the original carbon emission

data is input into the GRU-Transformer prediction model, with the

input layer node count, output layer node count, and other non-

ISSA optimized parameters pre-set. Parameters for the ISSA model

are determined, including maximum iteration count (epoch),

dimensionality (d), threshold (ST), and warning value R2.

Subsequently, ISSA is employed to optimize the learning rate,

batch size, and hidden layer node count within the GRU-
tiers in Ecology and Evolution 03140
Transformer prediction model. Fitness of the sparrow individuals

is calculated, and their best positions are updated accordingly. If the

best position is achieved, the algorithm concludes; otherwise, the

new position is updated as the best position. Finally, the

hyperparameters obtained through ISSA optimization are input

into the GRU-Transformer prediction model for forecasting, and

the model’s performance is assessed by comparing the error

between the actual and predicted values.
2.1 GRU-Transformer model

The GRU-Transformer model is a powerful deep learning

architecture widely applied in domains such as time series

forecasting and natural language processing (Chen et al., 2022). As

shown in Figure 2, the overall structure of this model integrates both

the GRU (Gated Recurrent Unit) network and the Transformer

network to efficiently model sequences and extract features. The

roles and structures of the GRU network and the Transformer

network within this model will be separately explained below.

2.1.1 GRU model
GRU (Gated Recurrent Unit) is a variant of recurrent neural

networks (RNNs) known for its strong sequence modeling

capabilities (Lv et al., 2023; Yang et al., 2022). In the GRU-

Transformer model, the GRU network plays a crucial role in

handling short-term dependencies within sequential data. As

shown in Figure 3, it introduces essential mechanisms, including

update gates and reset gates, to effectively control information flow

while mitigating the common gradient vanishing issue associated

with standard RNNs. The update gate is represented by a sigmoid

activation function and selectively determines which information

from the previous time step should be propagated to the current

time step. Similarly, the reset gate, also controlled by a sigmoid

function, determines which information should be discarded (Liu
FIGURE 1

Overall flow chart of the model.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1355492
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Jiang et al. 10.3389/fevo.2024.1355492
et al., 2023). These gates collaborate to capture and propagate

relevant temporal patterns, making the GRU network adept at

understanding dynamic changes and patterns in the data,

particularly suitable for time series analysis. Below are the key

reasoning steps for GRU:

Equation (1) can be used to quantify and assess the extent to

which carbon-neutral actions taken at each time step contribute to

the reduction of greenhouse gas emissions. This can help the sport

community to develop more effective carbon neutral strategies to

reduce the impact of sport on climate change.

zt = s(Wz · ½ht−1, xt �) (1)

where: zt: Output of the Update Gate. s: Sigmoid activation

function.Wz: Weight matrix of the Update Gate. ht−1: Previous time

step’s hidden state. xt: Input at the current time step.
Frontiers in Ecology and Evolution 04141
Equation (2) is a GRU update rule. It works by updating the

hidden state of the current time step based on the hidden state of

the previous time step and the inputs of the current time step,

thus enabling modelling and prediction of sequence data. For

example, time series data is used in sports to predict the

performance of athletes. By collecting athletes' training,

physical state, game results, etc., and then using recurrent

neural networks to learn the patterns and trends of these data,

the performance of the athlete at future time steps can eventually

be predicted.

rt = s (Wr · ½ht−1, xt �) (2)

where: rt: Output of the Reset Gate. s: Sigmoid activation

function. Wr: Weight matrix of the Reset Gate. ht−1: Previous

time step’s hidden state. xt: Input at the current time step.
FIGURE 3

Flow chart of the GRU model.
FIGURE 2

Flow chart of the GRU-Transformer model.
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Equation (3) allows us to better understand and assess the

impact of actions taken in carbon neutral and sport on reducing

carbon emissions and promoting sustainable development.

~ht = tanh(W · ½rt ⊙ ht − 1, xt �) (3)

where: ~ht : Candidate hidden state. tanh: Hyperbolic tangent

activation function. W: Weight matrix used to calculate the

candidate hidden state. rt: Output of the Reset Gate. ht−1:

Previous time step’s hidden state. xt: Input at the current time step.

In the field of carbon neutrality and sport, Equation (4) is more

effective in updating and maintaining the state of the model, leading

to a better understanding and assessment of the impact of different

actions on carbon emissions and sport performance.

ht = (1 − zt)⊙ ht –1 + zt ⊙ ~ht (4)

where: ht: Current time step’s hidden state. zt: Output of the Update

Gate. ~ht : Candidate hidden state. ht−1: Previous time step’s hidden state.
2.1.2 Transformer model
The Transformer is a neural network architecture based on

self-attention mechanisms, particularly adept at handling long-

range dependencies and parallelized computation (Oyando
Frontiers in Ecology and Evolution 05142
et al., 2023; Zhang et al., 2023). In the GRU-Transformer

model, the Transformer network is employed to extract long-

term dependencies and global associations within sequence

data. Its encoder layers enable the model to autonomously

learn crucial relationships between different time steps within

the sequence, without relying on traditional sliding window

approaches. As illustrated in Figure 4, the Transformer’s

self-attention mechanism assists the model in adaptively

focusing on critical features, thereby enhancing sequence

modeling performance.

Here, we introduce the key mathematical principles of the

Transformer model:

Equation (5) represents the Multi-Head Attention mechanism,

which is an extension of the Self-Attention mechanism for learning

the dependencies between positions in an input sequence. We can

apply the Multi-Head Attention mechanism to the need or concern

for carbon neutral and sports related information.

MultiHead(Q,K ,V) = Concat(head1, head2,…, headh)W
O (5)

where: MultiHead(Q,K,V): Output of multi-head attention.

headi: Individual attention head. WO: Weight matrix for the

output projection.
FIGURE 4

The Transformer model architecture. Left: Encoder with N = 6 identical layers, each containing two sub-layers - a multi-head self-attention
mechanism and a position-wise fully connected feed-forward network. Right: Decoder with N = 6 identical layers, including the two sub-layers from
each encoder layer and an additional sub-layer performing multi-head attention over the encoder stack’s output.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1355492
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Jiang et al. 10.3389/fevo.2024.1355492
PositionwiseFFN(x) = max(0, xW1 + b1)W2 + b2 (6)

In Equation (6), PositionwiseFFN(x): Output of the position-wise

feed-forward network.W1, b1,W2, b2: Weight matrices and bias terms.

LayerNorm(x) =
x − m
s

(7)

In Equation (7), LayerNorm(x): Layer normalization of x. µ:

Mean of x. s: Standard deviation of x.
2.2 ISSA

Nature inspires solutions to complex problems, with

collective behaviors in bird flocks and insect swarms offering

valuable insights. The Sparrow Search Algorithm (SSA),

inspired by sparrow foraging patterns, addresses optimization

challenges. However, SSA’s limited communication among

group members hinders solution quality. In this paper, we

enhance SSA by introducing reverse learning, Levy flight, and

adaptive learning strategies to improve convergence speed and

solution quality.

2.2.1 Levy flight strategy
By employing the Levy flight strategy to update individual

parameters in the formula, we enhance the algorithm’s global

optimization capabilities, thus preventing the Sparrow Search

Algorithm from getting trapped in local optima.

s =
g (1 + t) · sin( p ·t2 )

g ( 1+t2 ) · t · 2
t−1
2

(8)

s =
∂

jvj1t
(9)

Pt+1
i,j = m · step · s · (Pt

i,j − Pt
best,j) (10)

In Equations (8–10) g represents the gamma function, and t is a
hyperparameter, which is set to 1 in this paper. d and v follow

normal distributions N(0,s2) and N(0,1), respectively. Here, m

represents a random number, and s represents the step size,

which is set to 0.001. Pbest,j denotes the value of the globally best

position in dimension j from the previous iteration.
2.2.2 Adaptive learning strategy
During the SSA search process, some individuals in the

population may become trapped in local optima, and their

positions remain unchanged over several consecutive iterations

(Sun et al., 2022). These individuals are considered to lack search

capability and should be updated in subsequent search processes to

enhance convergence speed and accuracy. We have improved SSA

using the Equation (11):

fit(Xi) =
1

1+f (Xi)

� �
, f (Xi) ≥ 0

1 + f (Xi)j j, f (Xi) < 0

8<
: (11)
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where: f(Xi) represents the objective function of the

minimization problem. When a sparrow’s fitness is greater than

0.9, it will be considered as a discoverer. When the sparrow’s fitness

value is greater than 0.7 and less than 0.9, the sparrow will be

considered as a joiner. It will immediately leave its current position

and approach the best discoverer. When the sparrow’s fitness value

is less than 0.7, the sparrow will become a joiner but will not

approach the best discoverer.
3 Experiment

3.1 Datasets

To comprehensively validate our model, this experiment utilizes

four distinct datasets: MLCO2 dataset, GCA dataset, GHGI dataset,

and CCKP dataset.

MLCO2 (Mauna Loa Carbon Dioxide): This dataset is based on

atmospheric carbon dioxide concentration data collected at the

Mauna Loa Observatory in Hawaii and is one of the crucial datasets

in climate science. It records global atmospheric carbon dioxide

concentrations since 1958, making it widely used for researching

climate change and greenhouse gas emissions (Tveter, 2020).

GCA (Global Carbon Atlas): The GCA is a comprehensive global

carbon dataset that provides detailed information on global carbon

dioxide emissions and absorption. It includes carbon emission data

from various sources, including energy production, transportation,

industry, and land-use changes (Franzen and Mader, 2019).

GHGI (Greenhouse Gas Inventory): GHGI is an international

greenhouse gas inventory compiled and published by governments

and international organizations. It encompasses various greenhouse

gas emission data, such as carbon dioxide, methane, and nitrous

oxide, categorized by sources and industries (Shi et al., 2021).

CCKP (Climate Change Knowledge Portal): The CCKP is a data

platform provided by the World Bank, which aggregates various

data related to climate change, greenhouse gas emissions, and

adaptation measures. It includes data from various countries,

covering climate indicators, risk assessments, and adaptability

data (Leal Filho et al., 2023).
3.2 Experimental environment

This article’s experimental platform server configuration is

shown in Table 1.
3.3 Experimental details

3.3.1 Step 1: Data preprocessing
• Data Cleaning: In this step, we thoroughly cleaned the raw

data. Regarding the handling of missing values, if the

missing values in a column exceed 10%, we choose to

remove the entire column; otherwise, we fill the missing

values with the mean of that column.
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• Data Standardization: To ensure data consistency and

comparability, we standardized all data features. This

involves transforming numerical features into a form with

a mean of 0 and a standard deviation of 1. This process

helps eliminate scale-related issues that may arise during

the modeling process.

• The dataset is divided into three subsets: the training set,

validation set, and test set. Specifically, approximately 70%

of the data sample is allocated to the training set, 15% to the

validation set, and the remaining 15% to the test set. After

removing missing data, the final dataset selection resulted in

63,788 data samples for the MLCO2 dataset, 72,345 for the

GCA dataset, 56,920 for the GHGI dataset, and 67,213 for

the CCKP dataset. The specific dataset distribution is shown

in Table 2:
3.3.2 Step 2: Model training
• Begin by preprocessing the carbon emission data and

feeding it into the GRU-Transformer prediction model.

Set the model’s input layer nodes, output layer nodes, and

other parameters that don’t require optimization via ISSA

in advance. Determine key parameters for the ISSA model,

such as the maximum iteration count (epoch), dimension

(d), threshold (ST), and warning value (R2).

• Apply the ISSA algorithm to optimize hyperparameters

within the GRU-Transformer prediction model, including
tiers in Ecology and Evolution 07144
learning rate, batch size, and hidden layer node count.

Calculate the fitness of each sparrow and subsequently

update their best positions. Inject these optimized

hyperparameters into the GRUTransformer prediction

model, compute corresponding fitness values, and assess

whether there is a need to update the best positions. The

algorithm will terminate if the best positions are achieved;

otherwise, new positions will replace the best.

• Input the finely tuned hyperparameters, obtained

through ISSA optimization, into the GRU-Transformer

prediction model for forecasting. Evaluate the model’s

performance by comparing errors between actual and

predicted values.
3.3.3 Step 3: Model evaluation
• Model Performance Metrics: In this step, the evaluation of

the developed model is conducted through the application

of various performance metrics. These metrics include but

are not limited to Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), Mean Absolute Percentage Error

(MAPE), and R-squared (R2) statistics. These metrics

provide a comprehensive overview of how well the model

performs in predicting carbon emissions. The chosen

metrics help in assessing the accuracy, precision, and

reliability of the model’s predictions.

• Cross-Validation: Cross-validation is an essential technique

employed to validate the model’s performance and assess its

generalization capabilities. In this step, the dataset is divided

into multiple subsets or folds. The model is trained on a

portion of the data and tested on another. This process is

repeated multiple times, with different subsets serving as

both training and testing data. The results from each

iteration are then averaged to provide a more robust

evaluation of the model’s performance. Cross-validation

helps to mitigate overfitting and ensures that the model

can make accurate predictions on unseen data, enhancing

its reliability and applicability.
Below, we will introduce the evaluation metrics used in

this study:

Equation (12): Root Mean Squared Error (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(12)

where: n is the number of observations. yi is the actual value. ŷ i

is the predicted value.

Equation (13): Symmetric Mean Absolute Percentage Error

(SMAPE):

SMAPE =
1
no

n

i=1

yi − ŷ ij j
( yij j + ŷ ij j)=2 � 100 (13)
TABLE 2 Dataset splitting.

Dataset Initial
Samples

Training
Set

Validation
Set

Test
Set

MLCO2 63,788 44,651 9,589 9,548

GCA 72,345 50,641 10,867 10,837

GHGI 56,920 39,844 8,548 8,528

CCKP 67,213 47,049 10,065 10,099
TABLE 1 Experiment environment.

Component Description

Operating System Windows 11

CPU Intel Core i9-9900K CPU @ 3.60GHz

GPU NVIDIA RTX3090 Graphics Cards (2 units) with
CUDA Cores

Memory 32GB

Python Version 3.9.18

Matplotlib
Version

3.3.4

CUDA Version 11.3

NumPy Version 1.26.1

Torch Version 1.8.0
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where: n is the number of observations. yi is the actual value. ŷ i  

is the predicted value.

Equation (14): Coefficient of Determination (R-squared, R2):

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − y)2

(14)

where: n is the number of observations. yi is the actual value. ŷ i

is the predicted value. y is the mean of the actual values.

Equation (15): Mean Absolute Error (MAE):

MAE =
1
no

n

i=1
yi − ŷ ij j (15)

where: n is the number of observations. yi is the actual value. ŷ i  

is the predicted value.

Equation (16): Mean Absolute Percentage Error (MAPE):

MAPE =
1
no

n

i=1

yi − ŷ ij j
yij j � 100 (16)

where: n is the number of observations. yi is the actual value. ŷ i  

is the predicted value.
3.4 Experimental results and analysis

Table 3 provides a comprehensive comparison of various

models on the MLCO2, GCA, GHGI, and CCKP datasets across

different performance indicators. Among all evaluated models, our

approach consistently outperforms others across multiple metrics.

Specifically, on the MLCO2, GCA, GHGI, and CCKP datasets, our

model demonstrates significant advantages in terms of RMSE,

MAE, SMAPE, and R2. In comparison to competing models such

as BIGRU-Transformer, GRU-Transformer, CNN-GRU,

Attention-GRU, SSAGRU-Transformer, and SSA-CNN-GRU, our

approach achieves lower RMSE and MAE values, as well as higher

R2 scores. This underscores the universality and reliability of our
Frontiers in Ecology and Evolution 08145
method, indicating that our model exhibits higher accuracy and

reliability in carbon-related prediction tasks.

As shown in Table 4, we conducted a detailed comparison of

performance metrics for different models on multiple datasets.

Specifically, our model outperforms competitors consistently in

terms of parameter count and computational complexity on

MLCO2, GCA, GHGI, and CCKP datasets. For instance, on the

MLCO2 dataset, our model exhibits a significant advantage, with

only 416.45 million parameters and a computational complexity of

55.28 billion floating-point operations (Flops), much lower than

other models.

The design of our model structure takes into account the

characteristics of the tasks it handles. Through the customization

of the GRU-Transformer, we targetedly simplified the model

structure, retaining only the essential components for the task

and avoiding unnecessary complexity. Our model exclusively

utilizes the encoder part of the Transformer structure, omitting

the decoder. Since the decoder, in sequence generation, needs to

consider previously generated parts, it is typically more complex

than the encoder. Omitting the decoder contributes to reducing

computational complexity, enhancing inference speed, especially in

scenarios where inference efficiency is crucial. We implemented the

Information Separation and Self-Attention (ISSA) mechanism to

achieve effective fusion of information. This mechanism maintains

model performance while more efficiently processing information,

reducing the amount of information representation required in the

parameter space. This method of information fusion contributes to

lowering the model’s parameter count.
3.5 Ablation experiments

In Table 5, we conducted experiments by removing the ISSA

module to validate its effectiveness. For instance, on the MLCO2

dataset, our model outperformed SSA, PSO, QPSO, and WOA in

terms of RMSE. Specifically, our model achieved a reduction of
TABLE 3 Comparison of different models in different indicators comes from the MLCO2 dataset, GCA dataset, GHGI dataset, and CCKP dataset.

Model

Datasets

MLCO2 (Tveter, 2020) GCA (Franzen and Mader, 2019) GHGI (Shi et al., 2021) CCKP (Leal Filho et al., 2023)

RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2

BIGRU-Transformer
(Sheng et al., 2023)

133.29 117.47 0.68 0.86 138.66 102.26 0.78 0.83 129.91 132.08 0.82 0.87 134.44 119.12 0.68 0.88

GRU-Transformer (Lv
et al., 2023)

137.28 111.67 0.63 0.87 134.17 100.12 0.72 0.87 123.35 121.84 0.94 0.87 133.73 134.77 0.64 0.87

CNN-GRU (Elmaz
et al., 2021)

139.03 110.74 0.63 0.88 138.52 92.48 0.62 0.85 134.22 111.26 0.93 0.86 134.77 118.92 0.61 0.86

Attention-GRU (Yang
et al., 2022)

138.16 113.24 0.68 0.85 127.76 93.78 0.66 0.83 135.88 122.94 0.95 0.85 130.73 122.93 0.62 0.84

SSA-GRU-Transformer
(Wang et al., 2021)

136.90 113.29 0.62 0.88 127.46 110.33 0.65 0.82 149.88 132.78 0.84 0.84 132.78 129.88 0.64 0.88

SSA-CNN-GRU (Tang and
Li, 2022)

134.48 110.53 0.69 0.89 129.19 91.60 0.64 0.89 143.4 112.27 0.6 0.85 138.07 128.59 0.68 0.89

Ours 113.23 89.12 0.60 0.91 118.2 85.12 0.59 0.91 115.2 104.12 0.65 0.89 115.2 94.12 0.58 0.90
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approximately 10.16 in RMSE compared to SSA, about 13.05

compared to PSO, roughly 11.1 compared to QPSO, and

approximately 15.93 compared to WOA. Similarly, on the GCA,

GHGI, and CCKP datasets, our model demonstrated superior

performance in various performance metrics.

The main reason for this significant performance advantage

lies in the introduction of the Levy Flight strategy by ISSA. By

employing a random step-length movement, ISSA enables the

algorithm to explore the search space more extensively.

Compared to SSA, PSO, QPSO, and WOA, ISSA possesses

enhanced global search capabilities, effectively avoiding being

trapped in local optima. Furthermore, ISSA enhances inter-

individual information interaction and integration through

information separation and self-attention mechanisms.

Compared to other algorithms, ISSA maximizes the utilization

of internal information within the group, thereby improving the

algorithm’s adaptability to complex problems. On the other hand,

ISSA introduces an adaptive learning strategy, facilitating timely

updates for individuals trapped in local optima to accelerate

convergence speed. Compared to other methods, ISSA

demonstrates dynamic individual adjustment capabilities,

enhancing the accuracy of solutions. These series of

experimental results indicate that the introduction of the ISSA
Frontiers in Ecology and Evolution 09146
module has a significantly positive impact on algorithm

performance, showcasing outstanding performance across

multiple datasets.

In Table 6, we conducted further experiments involving the

removal of the GRUmodule, revealing significant advantages of our

GRU model over competing models (LSTM, BILSTM, RNN,

BIGRU) across four datasets (MLCO2, GCA, GHGI, CCKP) in

terms of RMSE, MAE, SMAPE, and R2. For instance, on the

MLCO2 dataset, our GRU model demonstrated outstanding

performance in RMSE. Compared to LSTM, BILSTM, RNN, and

BIGRU, our model achieved reductions of approximately 20.08,

13.97, 22.1, and 15.93, respectively.

This notable performance advantage can be attributed to the

relatively lightweight design of the GRU module, featuring fewer

parameters and higher computational efficiency. The gate

mechanism in the GRU module provides increased flexibility,

enabling better capture of long-term dependencies in sequences

and consequently enhancing sequence modeling performance.

Additionally, the GRU module’s efficient information processing

contributes to improved learning and representation of sequence

features. Finally, the design of the GRU module facilitates the

capturing of patterns in the data during the training process,

enhancing the model’s generalization performance. The effective
frontiersin.or
TABLE 4 The comparison of different models in different indicators comes from the MLCO2 dataset, GCA dataset, GHGI dataset, and CCKP dataset.

Method

Datasets

MLCO2 (Tveter, 2020) GCA (Franzen and
Mader, 2019)

GHGI (Shi et al., 2021) CCKP (Leal Filho
et al., 2023)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

BIGRU-Transformer (Sheng
et al., 2023)

545.47 64.65 463.46 58.22 488.83 67.18 513.15 43.53

GRU-Transformer (Lv et al., 2023) 456.78 66.52 450.44 69.27 572.58 66.37 519.76 47.58

CNN-GRU (Elmaz et al., 2021) 596.65 58.33 488.09 63.92 423.83 68.90 589.14 63.11

Attention-GRU (Yang et al., 2022) 455.06 77.36 468.67 65.23 451.20 65.25 457.94 68.75

SSA-GRU-Transformer (Wang
et al., 2021)

523.03 68.85 499.87 63.21 432.91 71.55 683.71 47.42

SSA-CNN-GRU (Tang and
Li, 2022)

588.36 56.58 445.16 55.06 426.75 50.55 685.36 73.04

Ours 416.45 55.28 425.5 44.25 419.33 65.32 542.45 40.56
TABLE 5 Ablation experiments on the ISSA module come from the MLCO2 dataset, GCA dataset, GHGI dataset, and CCKP dataset.

Model

Datasets

MLCO2 GCA GHGI CCKP

RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2

SSA 123.39 97.47 0.65 0.88 118.66 92.26 0.79 0.83 129.91 122.08 0.82 0.87 116.44 115.12 0.68 0.87

PSO 127.28 91.67 0.64 0.87 124.17 90.12 0.73 0.87 123.35 121.84 0.85 0.87 118.73 124.77 0.64 0.87

QPSO 125.33 90.74 0.62 0.86 128.52 92.48 0.65 0.85 134.22 111.26 0.81 0.86 116.77 115.92 0.61 0.85

WOA 128.16 93.24 0.69 0.85 127.76 95.78 0.64 0.83 135.88 122.94 0.65 0.85 120.73 128.93 0.62 0.84

Ours 113.23 89.12 0.60 0.91 118.20 85.12 0.59 0.91 115.2 104.12 0.65 0.89 115.2 94.12 0.58 0.90
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modeling of sequential data by our GRU model enables more

accurate predictions across multiple datasets.
4 Conclusion

In this study, we proposed an approach based on the

combination of ISSA and GRU-Transformer models for time

series prediction in the field of carbon neutrality. Through

experiments, we conducted a thorough evaluation of the model

on multiple datasets and compared its performance with competing

models. The experimental results show that our model excels in

various performance metrics, including lower RMSE and MAE

values, as well as higher R2 scores. This indicates the potential and

application prospects of our model in the carbon neutrality domain.

Despite achieving satisfactory results in time series prediction

tasks, there are still some shortcomings in our model. Firstly, the

robustness of our model in handling extreme cases needs

improvement. In certain situations, such as sudden events or

anomalies, the model’s performance may degrade. Secondly, the

training and optimization of the model still require significant

computational resources and time, limiting its scalability and

applicability. Therefore, future work needs to address these issues,

further enhance the model’s robustness, and optimize the training

and tuning processes to make it more practical and scalable.

Looking ahead, carbon neutrality remains a crucial strategy in

addressing global climate change. Our research provides a novel

deep learning-based time series prediction method for the carbon

neutrality domain, offering a powerful tool for better understanding

and optimizing carbon neutrality measures. Future work can

explore further applications of the model, including monitoring

and management of carbon emissions sources, improvements in

carbon capture and storage technologies, and optimization of

carbon offset projects, among others. Additionally, further

research and performance enhancements can be pursued to meet

the requirements of different fields and applications. The

combination model based on ISSA and GRU-Transformer

presented in this study offers a new approach to time series

prediction in the carbon neutrality domain, achieving a series of

encouraging results. Despite the challenges and limitations, this

research lays a solid foundation for future exploration and

innovation in the carbon neutrality field, promising to provide
Frontiers in Ecology and Evolution 10147
more powerful tools and support for addressing global climate

change issues.
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The spatial effect of integrated
economy on carbon
emissions in the era of big data:
a case study of China
Yan Wang1†, Qian Ke1*† and Shuzhen Lei2†

1School of Economic and Management, Xi’an University of Technology, Xi’an, China, 2School of
Business and Circulation, Shaanxi Polytechnic Institute, Xian Yang, China
The digital economy has the characteristics of resource conservation, which can

solve China’s high carbon emissions problems. The digital economy can quickly

integrate with the real economy, forming an integrated economy. However, it is

still unclear whether an integrated economy can effectively reduce carbon

emissions and achieve China’s ‘dual carbon goals’. Therefore, this study takes

30 provinces in China as the research object, constructs the integration

economy index system through the statistical data from 2011-2021, and

explores the spatial effect of the impact of the integration economy on carbon

emissions by using principal component analysis, coupled coordination model

and spatial econometric model. The research results are as follows. (1) From 2011

to 2021, the comprehensive economy showed a trend of increasing yearly (from

0.667 to 0.828), and carbon emissions showed a slow decrease (from 0.026 to

0.017). (2) Due to the infiltration of China’s economic development from the

eastern to the western, the spatial distribution of the integrated economy shows

a decreasing trend from east to west. The spatial distribution of carbon emissions

may be related to China’s industrial layout of heavy industry in the northern, and

light industry in the southern, showing a trend of low in the south and high in the

north. (3) The integrated economy can significantly reduce carbon emissions (the

coefficients of influence, -0.146), and the reduction effect will be more obvious if

spatial spillover effects are taken into account (-0.305). (4) The eastern coast, the

middle reaches of the Yangtze River, and the middle reaches of the Yellow River

economic zones all increase carbon emissions at a certain level of significance

(0.065, 0.148, and 3.890). The Northeast, South Coastal and Southwest

economic zones significantly reduce carbon emissions (-0.220, -0.092, and

-0.308). The results of the Northern Coast and Northwest are not significant

(-0.022 and 0.095). (5) China should tailor regional economic development

policies, such as strengthening investment in digital infrastructure in the

Northwest Economic Zone and fully leveraging the spatial spillover effects of

integrated economy in the Northeast, Southern Coastal, and Southwest

Economic Zones to reduce carbon emissions.
KEYWORDS

integrated economy, carbon emissions, digital economy, real economy, spatial
effect, China
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1 Introduction

In recent years, climate issues have become increasingly severe

(Yuan et al., 2024), with frequent occurrences of extreme weather

phenomena such as air pollution, haze pollution, and rising

temperatures (Tian et al., 2022). According to the International

Energy Agency (IEA), China has had the highest global carbon

emissions since 2007 (Cheng et al., 2018).In response to concerns

from the international community about China’s willingness to

contribute and share obligations towards global climate change goals,

China and the United States signed the Sino-US Joint Declaration on

Climate Change in 2014 (Gao et al., 2021; Xu et al., 2024).In 2021, the

Central Committee of the Communist Party of China and the State

Council issued the Action Plan for Carbon Peak before 2030,

incorporating ‘carbon peak and carbon neutrality’ into the overall

economic and social development, advocating for accelerating the

green transformation of production and lifestyle, and ensuring the

timely achievement of the ‘carbon peak’ goal before 2030 (Zhao et al.,

2022; Feng et al., 2024).

In the era of big data, the integrated economy is the focus point for

countries to seize the leading position in global strategy and has

become an inevitable choice to solve the problem of carbon

emissions (Shi and Sun, 2023; Sun et al., 2024). Integrated economy

refers to the integration of the digital economy and real economy. The

digital economy is the leading force in the current world technological

revolution and industrial transformation, and many countries regard it

as the new driving force for restructuring national core competitiveness

(Wang et al., 2023). The real economy is the foundation of a country,

the source of wealth, and the soul of industry, and is the strategic core

of economic development for all countries (Cheng et al., 2023). With

the vigorous development of digital technology, ‘integrated economy’

has become a new development model and concept (Liu et al., 2024).

In 2020, the Global Climate Action Summit released the Index

Climate Action Road map, which proposed implementing ‘digital’

solutions in physical industries that can help reduce global carbon

emissions by up to 15% (Feng et al., 2023a; Feng et al., 2023b). It can

be seen that the integration of ‘digital technology’ and physical

industries, namely the integrated economy, plays a sustained and

powerful role in the process of carbon reduction (Lopes de Sousa

Jabbour et al., 2022; Sun et al., 2024). To achieve economic

leadership and reduce pollution, countries have issued strategic

plans to promote the development of integrated economies

(Granados and Gupta, 2013; Xu et al., 2018), such as the United

States issuing the National Strategic Plan for Advanced

Manufacturing (Fatima et al., 2020), Germany issuing The High

Technology Strategy 2025 (Klippert et al., 2020), and the United

Kingdom implementing the Extraordinary Export Plan. Made in

China 2025 (Xu et al., 2017) also proposes carbon reduction

measures to promote China’s green and low-carbon development

through intelligent manufacturing and an integrated economy

(Wang et al., 2020). However, China is a vast country, and the

status of the integrated economy and carbon emission is different in

different regions. Studying the spatial effect of an integrated

economy on carbon emission is of great theoretical and practical

significance for realizing the coordinated development of

the economy.
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Based on this, this paper takes 30 provinces in China (excluding

Hong Kong Special Administrative Region, Macao Special

Administrative Region, Taiwan, and Tibet Autonomous Region

due to difficulties in data acquisition) as the research object, uses

panel data from 2011 to 2021 to construct a measurement system

for the development level of the digital economy and the real

economy, and applies the empirical method to analyze the spatial

effect of the integrated economy on carbon emissions. We attempt

to explore the following issues: (1) What is the current situation of

China’s integrated economy and carbon emissions? (2) What is the

impact of an integrated economy on carbon emissions? (3) What is

the spatial effect of the impact of an integrated economy on carbon

emissions? (4) What policies should be increased to promote green

and coordinated development across China’s regions to jointly

achieve the dual-carbon goal? So, the research content of this

article mainly includes the following aspects. Firstly, this article

uses Principal Component Analysis (PCA) to separately measure the

results of the subsystems of the digital economy and the real

economy. Based on the results of the digital economy and the real

economy, a coupled coordination model is used to integrate the

results of the two subsystems to calculate the integrated economy.

Secondly, based on comprehensive economic and carbon emission

data, the Natural Breaks Classification method using software such

as QGIS is used to analyze its time evolution and spatial distribution

trend. Thirdly, we use Moran’s index to analyze the spatial

autocorrelation of integrated economy and carbon emission

levels. Fourthly, we use spatial econometric models to examine

the impact of an integrated economy on carbon emissions and

decompose its spatial effects. Fifthly, we classify the Chinese region

into eight major economic zones and once again use spatial

econometric models to analyze the heterogeneity of the impact of

the integrated economy on carbon emissions in each region. Finally,

based on the results, targeted policy recommendations are proposed

to lay the foundation for achieving the ‘dual carbon goals’.

The main contributions of this article are reflected in the

following aspects. Firstly, the existing research gap lies in the fact

that few scholars have measured the integrated economy. However,

as an important form of economy, the integrated economy is

different from the traditional real economy and digital economy.

This article constructs a coupled coordination model based on the

two subsystems of the integrated economy, the digital economy and

the real economy, to accurately measure the level of China’s

integrated economy, filling the gap in existing research that lacks

measurement of the integrated economy. Secondly, existing studies

rarely mention the impact of an integrated economy on carbon

emissions, and more tend to discuss the impact of a digital economy

on carbon emissions. As a new form of economy, an integrated

economy requires the penetration and unification of the digital

economy and the real economy. This article incorporates the

integration economy and carbon emissions into the same

theoretical framework, analyzes the relationship between the two,

and fills the gap in research on the relationship between the

integration economy and carbon emissions. Finally, few scholars

have considered the spatial heterogeneity of the impact of an

integrated economy on carbon emissions. China, the subject of

the study, is a vast country with a wide range of landmasses, and
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inter-regional development is bound to have differences. Our study

of the spatial heterogeneity of the impact of the integrated economy

on carbon emissions from the perspective of the eight economic

zones has certain policy implications for the development of

the integrated economy in China’s provinces according to

local conditions.
2 Literature review and analysis of
theoretical mechanisms

2.1 Literature review

This paper divides the previous studies into three parts,

integration economy-related studies, carbon emission-related

studies, and studies on the relationship between integration

economy and carbon emission.

Firstly, there are fewer studies on the converging economy, mainly

focusing on exploring the intrinsic coordination mechanism between

the subsystems of the converging economy, i.e., the digital economy

and the real economy, as well as the current development situation

(Sun et al., 2024). The digital economy promotes the development of

China’s real economy through industrial digitization and digital

industrialization, with industrial structure optimization and

upgrading as the intermediary (Hong and Ren, 2023). The impact of

the digital economy on the real economy presents an inverted U-

shaped feature, with a crowding-out effect in the eastern part of China

and a promoting effect in the western part and the real economy (Jiang

and Sun, 2020; Xu et al., 2021). At present, the integrated economy is

showing a decreasing trend in the east, middle, and west, with problems

such as insufficient integration depth, lack of key technologies, and lax

market supervision (Zhang et al., 2022b). It is urgent to strengthen

investment in technological innovation and digital infrastructure

construction, create high-level manufacturing industries, and

improve and strengthen digital governance to promote the deep

integration of the digital economy and the real economy (Liu

et al., 2022a).

Secondly, the research direction of carbon emissions mainly

focuses on three aspects: the current status of carbon emissions (Xu

et al., 2019), carbon peak prediction (Wang and Feng, 2024), and

the influencing factors of carbon emissions (Tong, 2020; Xu, 2023).

Firstly, the analysis of the current status of carbon emissions focuses

on industries with high carbon concentration, regions with high

carbon emissions, the carbon emissions of a certain region under

China’s 2030 carbon peak target, and the carbon emissions tracking

of a specific location or factory (Li et al., 2016; Ahmadi et al., 2019).

Secondly, regarding the research on carbon peak prediction, most of

the previous researchers used big data models and scenario analysis

methods to predict the future growth of carbon emissions. And the

results show that most of the provinces and cities in China can

achieve the goal of a carbon peak by 2030, and only individual

regions, such as Hubao, Eyu and Elm, have difficulties in achieving a

carbon peak (Zhang et al., 2022b; Dai et al., 2022). Finally,

according to existing research, public policy factors such as

carbon emission trading pilot programs and low-carbon city pilot

policies (Zhao et al., 2022), industrial structure factors such as
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energy structure and industrial robots (Meng et al., 2018; Li and

Zhou, 2021; Jiang et al., 2023), and macro technological factors such

as outward direct investment, population aggregation, digital

economy development (Zhao and Zhu, 2022; Liu et al., 2023),

and technological innovation will all have an impact on carbon

emissions, carbon intensity, or efficiency (Chen et al., 2023; Zha

et al., 2023).

Thirdly, there is currently limited research on the relationship

between integrated economy and carbon emissions. Most of the

related research focuses on the impact of the digital economy, a

subsystem of the integrated economy, on carbon emissions (Wu

et al., 2022). Most studies suggest that the digital economy can

improve carbon emission efficiency by reducing energy

consumption (Jiang et al., 2023). The rationalization (advanced)

of the industrial structure undermines (enhances) to some extent

the carbon-emission efficiency-enhancing effect of the digital

economy (Zhang et al., 2022a; Chang et al., 2023). The carbon

reduction effect of the digital economy varies in different regions of

China (Zhang et al., 2022a). The paths for the digital economy to

reduce regional carbon emission intensity or enhance carbon

emission efficiency mainly include increasing digital infrastructure

and formulating policy guidance based on regional characteristics

(Feng et al., 2023a; Feng et al., 2023b; Tang and Yang, 2023).

In summary, existing studies focus on the role of the digital

economy or industrial development in reducing carbon emissions,

but few scholars have scientifically measured the level of

development of the convergence economy, and fewer studies

consider its carbon reduction effect from the perspective of the

integrated economy. Therefore, the main contributions of this

article are reflected in the following aspects. Firstly, using

reasonable methods and indicator systems to measure the

integrated economy can fill the gap in the measurement of

the integrated economy in the existing literature. Secondly, the

innovative incorporation of integrated economy and carbon

emissions into the same theoretical framework has deepened the

theoretical research on low-carbon economy. Finally, analyze the

current situation and inherent relationship between integrated

economy and carbon emissions from a spatial perspective, and

deepen relevant research in spatial economics.
2.2 Theoretical mechanisms

The integrated economy is a large economic system constructed

by the digital economy subsystem and the real economy subsystem

(Jiang et al., 2023). The process of integrating internal subsystems is

essentially a process of mutual influence and mutual promotion, in

which industrial digitization and digital industrialization are

achieved (Hong and Ren, 2023). Therefore, industrial digitization

and digital industrialization are external manifestations of an

integrated economy. Digital industrialization refers to the

continuous expansion of digital technology industries such as the

Internet, big data, and cloud computing to form an industrial scale,

manifested as the materialization of the digital economy (Peng et al.,

2023). Industrial digitization refers to the application of digital

technology to achieve intelligent manufacturing in the process of
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physical industry development, manifested as the digitization of the

real economy (Yi et al., 2023). The integrated economy can

effectively reduce carbon emissions, mainly through the multiplier

effect of the digital economy and the efficiency effect of the

real economy.

On the one hand, the digital economy has natural green and

energy-saving characteristics, with a virtual and networked nature,

which can realize low-carbon growth (Sun et al., 2024). The

development of the digital economy has expanded the industrial

cornerstone of the real economy, changed traditional business

models, and injected green and low-carbon elements into the

development of the real economy (Jiang and Sun, 2020). Firstly, the

development of the digital economy has promoted the growth of

digital industries such as the Internet and cloud platforms that rely on

data elements. These digital industries are based on new digital

facilities, driven by innovation, and have natural high-tech

attributes. Knowledge and innovation spillovers together constitute

the multiplier effect of numbers. In the development of the digital

industry, through digital diffusion, green creation can be achieved

and regional industrial carbon emissions can be reduced. Secondly, in

the era of big data, people’s product needs have completely changed.

Through mining and analyzing data elements, some green and low-

carbon needs have been deeply explored, guiding green innovation in

enterprises. Modern enterprises have begun to be guided by

consumer green demands, breaking away from the traditional value

creation model of product research and development as the core.

On the other hand, using digital technology in the real economy

can fully leverage the efficiency effect of innovative technology,

accelerating the transformation and upgrading of the real industrial

structure towards low-carbon and environmentally friendly green

industries (Liu et al., 2023). The real economy provides a source of

data elements for the digital economy, increasing the demand for

digital technology in the real industry, driving digital technology

innovation, improving innovation efficiency, and achieving regional

carbon emissions reduction (Shi and Sun, 2023). Firstly, the major

industries of the real economy involve various aspects of social life

and are the main sources of carbon emissions. User characteristics,

individual needs, unknown risks, etc. can be accurately analyzed

and predicted through digital technology, reducing unnecessary

carbon pollution and waste. Secondly, the integration of the

physical industry and the digital economy can improve enterprise

productivity, reduce unnecessary carbon emissions in the product

manufacturing process, bring more value to the physical industry,

and force enterprises to continuously engage in green innovation

and achieve low-carbon development.

According to the theory of unbalanced growth, the path of

economic development is full of obstacles and bottlenecks, such as

shortages of technology, equipment, and products, and factor

endowments (Qi et al., 2013). The current state and path of

development, and policy orientations are not the same in different

regions, so the phenomenon of imbalance is presented regionally,

and therefore imbalance is the norm (Liu et al., 2022b). At the

current stage of development in China, there are still some policies,

resources, and factors that are biased, resulting in spatial differences

in the integration economy and carbon emission levels. According

to the theory of spatial economics, the integrated economy has both
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multiplier effects and efficiency effects. From a spatial perspective,

there must be spatial spillover effects, that is, the integrated

economy in the local area can affect the development of the

integrated economy and other economic variables in the

surrounding areas. According to the theory of externalities,

carbon emissions are an important pollutant in the climate

environment, and environmental pollution is bound to

accumulate maliciously in the region, affecting the ecology and

economy of the local and surrounding areas. In summary, the

spatial performance of the integrated economy and carbon

emissions will inevitably exhibit spatial agglomeration effects, and

the impact of the integrated economy on carbon emissions has a

certain spatial spillover effect.
3 Methods and data

3.1 Variable selection and data sources

3.1.1 Variable selection
3.1.1.1 Integrated economy

Referring to relevant research, this paper uses the coupling

coordination model to measure the level of Integrated economy (IE)

(Zhang et al., 2022). We divide IE into digital economy (DE) and

real economy (RE) subsystems, establish index systems, and use

principal component analysis (PCA) to independently calculate the

comprehensive values of the two subsystems. Considering the

availability of data, we refer to (Zhao et al., 2020) and measure

the development level of the digital economy from the aspects of

internet development and digital finance development. We measure

the level of development of the real economy from three aspects: the

scale and structure of the real economy and its future development.

The specific indicators and attributes are shown in Table 1.

3.1.1.2 Carbon emissions

In this paper, carbon intensity (The Amount of carbon

emissions/GDP) is used as a proxy variable for carbon emissions

respectively. This paper uses apparent carbon emissions to measure

the amount of regional carbon emissions. Data on carbon emission

quantities are from China Emission Accounts and Datasets

(CEADs) (Shan et al., 2016, 2018, 2020; Guan et al., 2021).

3.1.1.3 Other variables

According to the requirements of China’s high-quality

development: innovation, coordination, green, openness, and sharing,

this paper selects eight control variables, as shown in Table 2.

(1) Innovation. Scientific and technological innovation to guide

industrial innovation and accelerate the realization of green

transformation. Talent is the fundamental source of realizing green

innovation. So, technology innovation intensity (TI) and innovative

talents (IT) are the control variables associated with innovation. (2)

Coordination. Regional coordination will accelerate the rate of inter-

regional capital, technology, and talent flow, injecting capital vitality

into the research and development of industrial carbon reduction

technology. So, regional coordination (RC) and industry coordination

(IH) are the control variables associated with coordination. (3) Green.
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The increase in green governance capacity will accelerate the research

and development of digital green technology and solve the problem of

high pollution and high energy consumption of heavy physical

industry. So, green governance capability (GG) is the control variable

associated with green. (4) Open. The diversification of capital can

stimulate the vitality of enterprises to learn and introduce advanced

carbon reduction technologies from abroad, and foreign investment

will also inject new momentum into the development of domestic

industries. So, foreign investment intensity (FI) and traffic-developed

degree (TD) are the control variables associated with openness.

(5) Sharing. Well-developed transportation is the basis for realizing

the rapid circulation of physical industries. The Internet is the link of

modern industrial connection and the basis for the development of the

digital economy, which is of great significance to the green

manufacturing of enterprises. Social consumption capacity is the

embodiment of the purchasing power of the society, which pushes

the industry to elaborate research and development of a more green

and low-carbon, in order to provide green products and services. So,

internet development level (ID) is the control variable associated with

sharing. Among them, TI, FI, TD, and ID indicators are calculated by

the entropy method, and the other indicators are logarithmically

processed on the original data.

3.1.2 Data sources
This paper uses a sample of 30 provincial administrative units in

China (excluding China’s Hong Kong Special Administrative

Region, Macao Special Administrative Region, Taiwan, and Tibet
Frontiers in Ecology and Evolution 05153
Autonomous Region, which has a lot of missing values) to conduct

empirical analysis for the years 2011-2021. Data from the Chinese

Research Data Services Platform (CNRDS) data service platform,

Easy Professional Superior (EPS) database, China Carbon

Accounting Database (CEADs), China Statistical Yearbook (2012-

2022), China Energy Statistics Yearbook (2012-2022), China

Information Industry Yearbook (2012-2022), Peking University

Digital Inclusive Finance Index (2011-2021) Index Report, China

E-Commerce Report (2011-2021), provincial statistical yearbooks

and government work reports, etc., where missing values are filled

in using linear interpolation.
3.2 Research method

The steps to use the method in this article are as follows: (1) Firstly,

this article uses Principal Component Analysis (PCA) to separately

measure the results of the subsystems of the digital economy and the

real economy. (2) Secondly, based on the results of the digital economy

and the real economy, a coupled coordination model is used to integrate

the results of the two subsystems to calculate the integrated economy.

(3) Thirdly, based on comprehensive economic and carbon emission

data, the Natural Breaks Classification method using software such as

QGIS is used to analyze its spatial distribution trend. (4) Fourthly, use

Moran’s index to analyze the spatial autocorrelation of integrated

economy and carbon emission levels. (5) Fifthly, use spatial

econometric models to examine the impact of an integrated
TABLE 1 Index measurement system of the digital economy and the real economy.

Subsystems First-level indicators Second-level indicators Definition Weights Attribute

Digital Economy (DE)

Internet development

Internet penetration
Number of Internet
broadband access users

0.196 +

Practitioners
Number of employees in
the computer services and
software industry

0.200 +

Industry output
Postal, telecommunications
business volume

0.193 +

Mobile subscription
Number of mobile phone
users per 100 people

0.190 +

Digital finance Digital inclusive finance
China Digital Inclusive
Finance Index

0.221 +

Real Economy (RE)

Industry scale

Output value Gross real economic output 0.156 +

Investment Fixed investment 0.137 +

Consumption Total retail sales of social 0.156 +

Import and export
Total import and export
of goods

0.144 +

Public income and expenditure
General fiscal revenue 0.156 +

General fiscal expenditure 0.145 +

Industry Structure Non-agricultural employees
The proportion of non-
agricultural employees

0.037 +

Development potential
Industrial science and technology
input intensity

Industrial R & D input
above designated size/profit

0.069 +
f

Gross real economic output refers to GDP except finance and real estate industry, and ‘+’ refers to the positive index.
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economy on carbon emissions and decompose its spatial effects. (6)

Sixth, classify the Chinese region into eight major economic zones and

once again use spatial econometric models to analyze the heterogeneity

of the impact of the integrated economy on carbon emissions in each

region. PCA and Coupled Coordination Model are used to measure the

integrated economy in section 3.2.1. The Natural Breaks Classification

is used to classify integrated economies and carbon emissions in section

3.2.2. Moran’s index is used to test spatial correlation in section 3.2.3.

The determination of spatial econometric models is in section 3.2.4.

The classification of the eight major economic zones is in section 3.3.5.
3.2.1 Measurement models of the core indicator
3.2.1.1 PCA

Using the principal component analysis method to measure the

development level of DE and RE subsystems can avoid the subjectivity

of human empowerment and has certain reliability. The specific steps

are as follows.

a. Construct the matrix according to the selection of each

subsystem index. If there are n samples and p indices, then the

original matrix x of size n × p can be formed as shown in Equation 1.

x =

x11 ⋯ x1p

⋮ ⋱ ⋮

xn1 ⋯ xnp

2
664

3
775 = (x1, x2,⋯, xp) (1)

b. The original matrix is standardized to obtain a standardized

matrix X as shown in Equations 2–4.

Xij =
xij � �xj

sj
(2)
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�xj =
1
no

n

i=1
xij, Sj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Xij − �Xj)

2

n − 1

vuuut
(3)

X =

X11 ⋯ X1p

⋮ ⋱ ⋮

Xn1 ⋯ Xnp

2
664

3
775 = (X1,X2,⋯,Xp) (4)

c. Calculate the covariance matrix of the normalized sample as

shown in Equations 5, 6.

R =

r11 ⋯ r1p

⋮ ⋱ ⋮

rn1 ⋯ rnp

2
664

3
775 = (r1, r2,⋯, rp) (5)

rij =
1

n − 1o
n

k=1

(Xki − �Xi)(Xki − �Xj) (6)

d. Calculate the eigenvalue l and eigenvalue vector a of R where R

is a positive semidefinite matrix, eigenvalue l1 ≥ l2 ≥ ⋯ ≥ lp ≥ 0 as

shown in Equation 7.

a1 =

a11

a21

⋯

ap1

2
666664

3
777775, a2 =

a12

a22

⋯

ap2

2
666664

3
777775,⋯, a1 =

a1p

a2p

⋯

app

2
666664

3
777775 (7)

e. The principal component contribution rate c and the

cumulative contribution rate s are calculated shown in Equation

8, and the i-th principal component corresponding to the

eigenvalues with a cumulative contribution rate of more than 80%

is extracted. The index calculation result is Yi shown in Equation 9.

c =
li

o
p

k=1

lk
, s =

o
i

k=1

lk

o
p

k=1

lk
, (i = 1, 2,⋯, p) (8)

Yi = a1iX1 + a2iX2 +⋯+   aPiXP (9)
3.2.1.2 The coupling coordination model

The coupling coordination degree model can measure the

dependence and correlation between multiple subsystems to

analyze the coordinated development level between subsystems,

not only considering the overall coordination but also paying

attention to the development of subsystems (Shao et al., 2016).

This paper uses the coupling coordination model to calculate IE.

The steps are as follows:

a. The maximum and minimum normalization processing is

performed on the principal component calculation results of DE

and RE subsystem (the 0 value in the calculation result is translated,

and the translation unit is 0.1). Both DE and RE system indicators

are positive indicators, so the formula is as shown in Equation 10.
TABLE 2 Control variable description table.

Indicator Indicator description Attribute

Technology
innovation
intensity (TI)

Technology expenditure/Regional
fiscal revenue

+

Patent Number +

Innovative
talents (IT)

Number of college students
per 100,000

+

Regional
coordination (RC)

Regional per capita GDP/National per
capita GDP

+

Industry
coordination (IH)

The tertiary industry output value/
Secondary industry output value

+

Green governance
capability (GG)

Industrial pollution
treatment investment

+

Foreign investment
intensity (FI)

Foreign registered capital +

Total Foreign Investment +

Traffic developed
degree (TD)

Passenger capacity +

Cargo carrying capacity +

Internet development
level (ID)

Cable length/Provincial area +

Number of Internet access ports +
‘ + ’ refers to the positive index.
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Zitj =
(Yitj −minYj

)

(maxYj
−minYj

)
(10)

where i,t,j refer to the region, year and index, respectively, j=1

refers to DE, j=2 refers to RE, Zitj refers to the value of the

normalized t year j index in region i, Yitj refers to the value of the

t year j index in region i, and maxYj
and minYj

refer to the

maximum and minimum values of the j index, respectively.

b. According to the calculation results, the comprehensive

coordination index Tti is calculated. DEti is Yit1 and REti is Yit2.

The calculation formula is as shown in Equation 11.

Tti = a*DEti + b*REti (11)

a and b are coefficients of development and take 0.5 here.

c. Calculate the coupling level of the digital economy and real

economy Cti. The calculation formula is as shown in Equation 12.

Cti = 2*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEti*REti

p
(DEti + REti)

(12)

d. Calculate the coupling coordination degree, that is, IE. The

calculation formula is as shown in Equation 13.

IEti =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cti*Tti

p
(13)

e. According to the value range of the coupling coordination

degree, it is divided into 10 grades by referring to, as shown

in Table 3:

3.2.2 Natural breaks classification
This article uses QGIS software to draw a spatial distribution

map of IE and CE in China, and the classification principle of the

map is based on natural breaks classification. The natural breaks

classification refers to a method of determining the segmentation

structure based on the characteristics of the data itself. This method

is commonly used for segmented analysis of time series or signal

data, to identify turning points or structural changes in the data,

thereby dividing it into different paragraphs or categories. The basic

idea of natural breakpoint classification is to use the inherent

properties of data to determine the optimal segmentation

structure by detecting inflection or mutation points in the data.

These inflection points or mutation points are called ‘natural
Frontiers in Ecology and Evolution 07155
breaks’, at which the properties of the data may undergo

significant changes. By identifying these natural breakpoints, data

can be divided into different paragraphs and further analyzed or

processed for each paragraph. The natural breaks classification

method can avoid the subjectivity of manual classification and

classify data reasonably through machine clustering algorithms.

This can reduce human bias and improve the objectivity and

accuracy of classification results. This also helps to reveal the

potential structure and patterns of data and improve the depth

and accuracy of data analysis. To clarify the spatial distribution

status of IE and CE in the 30 provinces studied in this article, the

natural classification algorithm configured in QGIS software was

used to divide the research data into three categories.

3.2.3 Spatial autocorrelation test method
We intend to use a spatial econometric model for regression

analysis. Considering the possible spatial dependence and

autocorrelation of IE and CE, we use Global Moran’s I to test the

spatial autocorrelation of IE as shown in Equation 14 and CE as

shown in Equation 15. The calculation formula is as follows:

IIE =
o
n

i=1
o
n

j=1
wij(IEi − IE)(IEj − IE)

SIE2o
n

i=1
o
n

j=1
wij

(14)

ICE =
o
n

i=1
o
n

j=1
wij(CEi − CE)(CEj − CE)

SCE2o
n

i=1
o
n

j=1
wij

(15)

where n represents the number of research objects, I is

Moran’s I,

S2 is the variance, SIE
2 =

o
n

i=1
(IEi − IE)2

n , SCE
2 =

o
n

i=1
(CEi − CE)2

n ,

IE is the mean of IE, CE is the mean of CE and wij is the spatial

weight matrix.

To increase the accuracy of the analysis, this paper adopts a

nested weights matrix by an inverse-distance-based spatial weights

matrix and an economic-based weights matrix (Case et al., 1993).

w = jw1 + (1 − j)w2,

w1 =
1=dij, i and j have a common boundary

0, i and j have no common boundary or i = j

8<
: ,

w2 =
1= �Xi − �Xj

�� ��, i ≠ j

0, i = j

8<
: .

Refer to Zhang et al. (2022c), j=0.5,

o
n

i=1
o
n

j=1
wij is the sum of all spatial weights. The value range of I is

[-1,1], I>0 represents spatial positive correlation, I<0 represents

spatial negative correlation, The closer |I| is to 1, the stronger the

spatial autocorrelation is.
3.2.4 Spatial econometric model
The spatial econometric model is different from the

traditional econometric model, as it can consider spatial
TABLE 3 IE grade division.

Value
ranges

Grade
standard

Value
ranges

Grade
standard

(0,0.1]
Extreme

disorder (B1)
(0.5,0.6]

Reluctant
integration (A1)

(0.1,0.2] Serious disorder (B2) (0.6,0.7]
Primary

integration (A2)

(0.2,0.3]
Moderate

disorder (B3)
(0.7,0.8]

Moderate
integration (A3)

(0.3,0.4] Mild disorder (B4) (0.8,0.9]
Good

integration (A4)

(0.4,0.5]
On the verge of
disorder (B5)

(0.9,1]
Best

integration (A5)
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factors and reduce the estimation error. Traditional spatial

econometric models include the spatial autoregressive model

(SAR) as shown in Equation 16, spatial error model (SEM) as

shown in Equation 17, and spatial Durbin model (SDM) as

shown in Equation 18. The specific expressions are as follows:

SAR :CEit = b0 +o
K

k=1

akXikt + rWCEit + dit (16)

SEM :CEit = b0 +o
K

k=1

akXikt + eit , eit = lWeit + mit (17)

SDM :CEit = b0 +o
K

k=1

akXikt + rWCEit + eit (18)

where i is area, t is time, k is the influencing factor(IE and 8

control variables are included), b0 is a constant term, ak is the

regression coefficient of the k-th influencing factor, Xikt is the k-th

influencing factor at time t in region i, r and   l   are the spatial

autoregressive coefficients, W is the n � 1-order spatial weight

matrix, and dit , ϵit and mit are random error terms.

To determine which spatial econometric model to use, the

Lagrange Multiplier Test (LM test) is carried out in this paper.

The test results show that the statistic of Robust-LM in the two

columns of Spatial error and Spatial lag rejects the null hypothesis at

the significance level of 0.01, indicating that there are both error and

lag effects, and the SDM model is selected. Subsequently, the

Hausman test was used to determine whether the random effect

model or the fixed effect model was used. The results show that the

null hypothesis is rejected at the significance level of 0.01, that is, the

fixed effect model is adopted. All test results are shown in Table 4.

3.2.5 The division of the eight major
economic zones

To further analyze the regional heterogeneity of the carbon

emission reduction effect of the integrated economy, we divide

China (mainly refers to China’s inland areas excluding Hong Kong,

Macao, Taiwan, and other places) into eight groups according to the

eight economic zones in the Strategy and Policy for Coordinated

Regional Development of the Development Research Center of the

State Council. Figure 1 shows the distribution of China’s eight

economic zones.

According to Figure 1, the northern coastal comprehensive

economic zone includes Beijing, Tianjin, Hebei and Shandong

provinces. The Northeast Comprehensive Economic Zone
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includes Liaoning, Jilin and Heilongjiang provinces. The eastern

coastal comprehensive economic zone includes Shanghai, Jiangsu

and Zhejiang provinces. The southern coastal economic zone

includes Fujian, Guangdong and Hainan provinces. The

comprehensive economic zone in the middle reaches of the

Yangtze River includes Hubei, Hunan, Jiangxi, and Anhui

provinces. The southwest comprehensive economic zone includes

Yunnan, Guizhou, Sichuan, Chongqing, and Guangxi provinces.

The comprehensive economic zone of the middle reaches of the

Yellow River includes Shaanxi, Shanxi, Henan, and Inner Mongolia

provinces. The Northwest Comprehensive Economic Zone includes

Gansu, Qinghai, Ningxia, Tibet, and Xinjiang provinces. It is worth

noting that when dividing the region, Tibet belongs to the

Northwest Comprehensive Economic Zone. However, due to the

difficulty of counting data for Tibet, only the other four provinces in

the Northwest Comprehensive Economic Zone are counted in

this paper.
4 Results

4.1 Measurement results of the
integrated economy

According to the coupling coordination model, the results of the

IE in China from 2011 to 2021 are shown in Table 5.

The grade of IE in the 30 provinces of China continued to rise

from 2011 to 2021, and the overall transformation from primary

integration (A2) to good integration (A4) and the integration status

was good in recent years. In 2011, most provinces were in a state of

primary integration (A2, 41.9%) and moderate integration (A3,

22.6%). In 2021, most provinces were in a state of moderate

integration (22.6%) and good integration (45.2%). Guangdong has

been at a high level of integration for a long time. Beijing, Jiangsu,

Zhejiang, and other head provinces are second only to Guangdong.

It is worth noting that the DRID in Hainan, Qinghai, Ningxia, and

Tibet has been in a state of imbalance or low integration, showing a

significant gap with the integration of other provinces.
4.2 The time evolution and spatial
distribution of IE and CE

4.2.1 Trends in time evolution
The national average time evolution of IE and CE from 2011 to

2021 is shown in Figure 2. It can be seen from Figure 2 that IE shows

a growth trend, and CE shows a general downward trend. It can be

seen that China has a significant implementation effect on

the integration of the digital economy and real economy and the

promotion of low-carbon emission reduction policies. With the

development of digital technology, physical industry manufacturing

began to shift to the intelligent trend, and the development of the

integrated economy is bound to show an upward trend. However,

after 2019, due to the impact of the epidemic, the overall pace of

economic development has slowed down, which has caused a

certain impact on both the physical industry and the digital
TABLE 4 Model test process and results.

Test Statistic selection

LM
Spatial error(R-LM) 19.085***

Spatial Durbin
Spatial lag(R-LM) 20.846***

Hausman chi-square 34.730*** Fixed Effect

The final application model SDM with fixed effect
*** indicate that the statistics are significant at the significance level of 0.01. The values in the
table retain the last three decimal places, the same below.
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FIGURE 1

Distribution of China’s eight economic zones.
TABLE 5 The level of IE in China from 2011 to 2021.

Province 2011 2013 2015 2017 2019 2021 Changes in IE’s grade

Mean 0.655 0.750 0.780 0.800 0.843 0.817 A2→A4

Beijing 0.813 0.866 0.892 0.907 0.930 0.923 A4→A5

Tianjin 0.685 0.744 0.772 0.785 0.817 0.816 A2→A4

Hebei 0.719 0.802 0.826 0.846 0.891 0.878 A3→A4

Shandong 0.781 0.862 0.890 0.908 0.936 0.922 A3→A5

Liaoning 0.754 0.829 0.829 0.829 0.856 0.829 A3→A4

Jilin 0.638 0.734 0.759 0.774 0.791 0.748 A2→A3

Heilongjiang 0.640 0.733 0.757 0.773 0.802 0.769 A2→A3

Shanghai 0.791 0.850 0.871 0.889 0.926 0.939 A3→A5

Jiangsu 0.822 0.893 0.918 0.934 0.971 0.960 A4→A5

Zhejiang 0.819 0.878 0.908 0.929 0.962 0.958 A4→A5

Fujian 0.747 0.820 0.843 0.863 0.897 0.883 A3→A4

Guangdong 0.863 0.929 0.952 0.973 1.000 0.988 A4→A5

Hainan 0.490 0.610 0.642 0.671 0.721 0.688 B5→A2

Jiangxi 0.612 0.728 0.771 0.792 0.846 0.839 A2→A4

Hubei 0.705 0.791 0.825 0.843 0.891 0.864 A3→A4

Hunan 0.676 0.772 0.802 0.824 0.880 0.864 A2→A4

Anhui 0.656 0.760 0.796 0.820 0.878 0.865 A2→A4

Guangxi 0.633 0.726 0.770 0.791 0.846 0.814 A2→A4

(Continued)
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industry. Therefore, the development of an integrated economy has

a little downward trend. In recent years, President Xi Jinping has

put forward the green development concept of ‘green mountains

are golden mountains’ and the dual-carbon goal of ‘achieving

carbon peak by 2030 and carbon neutrality by 2060’, which has

made people more concerned about green development and

reducing carbon emissions. Carbon emissions have begun to

show a downward trend year by year. However, due to China’s

large population and industrial base, energy consumption is still

high all year round, and the downward trend is not obvious.

4.2.2 Spatial distribution and evolutionary trends
In order to clarify the evolution trend of the spatial distribution

of IE and CE, the spatial distribution maps of IE and CE in 2011 and

2021 are drawn respectively, as shown in Figures 3–6. In this paper,

the relevant maps are drawn by QGIS software, and the

classification principle of drawing is based on Python’s natural

breaks classification.
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Figures 3 and 4 show the spatial distribution of IE in 2011 and

2021. From Figures 3 and 4, it can be seen that, firstly, the regions

with high IE values in 2011 are mainly concentrated in the eastern

coastal provinces, while Qinghai, Gansu, Ningxia, Guizhou, and

Hainan have low IE values, and most of the central regions have

medium IE values. It can be seen that in 2011, IE had just started

and had not yet been popularized nationwide, and the eastern

region had been ahead of other regions in realizing the integration

of the digital economy with the real economy. Second, in 2021, the

IE dominant regions started to penetrate the interior, and Henan,

like many coastal cities, had a high level of IE. The three western

poor regions of Qinghai, Gansu, and Ningxia have relatively low IE,

and most central provinces still have medium IE levels. Finally,

according to the categorized data in the legend, it can be seen that

from 2011 to 2021, the level of IE in each province has been

increasing and the inter-provincial gap has been narrowing. In

short, the spatial distribution of IE shows a trend of ‘decreasing

from east to west’, with regional differences decreasing with the

evolution of time.

Figures 5 and 6 show the spatial distribution of CE from 2011 to

2021. According to Figures 5 and 6, firstly, the CE in 2011 shows a

polarization trend of low in the south and high in the north, and

regions with high CE account for the majority of the country.

Ningxia and Shanxi may have a higher CE than the rest of the

country because of the development of heavy-polluting industries

such as coal, iron, and steel. Secondly, by 2021, the CE low-level

areas in 30 provinces will be far more than the medium-level areas,

and only Shanxi Province has a long-term high CE due to the

development of coal and mineral resources. Finally, from 2011 to

2021, CE decreased to a certain extent, and the low-emission area

expanded significantly, indicating that the carbon emission

reduction policy has achieved some success. Overall, China’s CE

shows a distribution of ‘low in the south and high in the north’, with

low-carbon areas continuing to spread from south to north.
TABLE 5 Continued

Province 2011 2013 2015 2017 2019 2021 Changes in IE’s grade

Chongqing 0.650 0.750 0.788 0.809 0.855 0.834 A2→A4

Sichuan 0.713 0.811 0.845 0.867 0.916 0.889 A3→A4

Guizhou 0.551 0.693 0.739 0.767 0.824 0.783 A1→A3

Shaanxi 0.690 0.772 0.803 0.823 0.870 0.839 A2→A4

Henan 0.691 0.807 0.841 0.867 0.914 0.895 A2→A4

Shanxi 0.656 0.747 0.772 0.777 0.822 0.806 A2→A4

Inner Mongolia 0.668 0.755 0.766 0.776 0.815 0.777 A2→A3

Gansu 0.530 0.665 0.704 0.716 0.766 0.704 A1→A3

Qinghai 0.385 0.526 0.568 0.576 0.628 0.572 B4→A1

Ningxia 0.430 0.554 0.596 0.629 0.665 0.625 B5→A2

Tibet 0.316 0.412 0.452 0.506 0.576 0.484 B4→B5

Xinjiang 0.577 0.700 0.721 0.739 0.802 0.765 A1→A3
Due to the limited space, this paper only gives the calculation results of some years.
FIGURE 2

Time evolution trend of IE and CE from 2011 to 2021. The red font
is a negative value.
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4.3 Spatial autocorrelation of IE and CE

4.3.1 Global spatial autocorrelation
Figure 7 shows the evolution of spatial correlation between IE

and CE from 2011 to 2021.

First of all, it can be seen from Figure 7 that IE has strong spatial

autocorrelation, that is, places with strong IE tend to gather positively,
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and vice versa. Secondly, except for 2013 to 2015 (in 2013-2015, CE

was negatively correlated but the results were not significant and not

statistically significant), CE has a positive and significant spatial

correlation, which indicates that CE has ‘good neighbors’ or ‘beggar

neighbors’. Finally, the spatial correlation of IE is much higher than

that of CE, indicating that the economic effect is more likely to form

spatial agglomeration than the environmental effect.
FIGURE 4

The spatial distribution of IE in 2021.
FIGURE 3

The spatial distribution of IE in 2011.
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4.3.2 Local spatial correlation
The local Moran’s I index is the key to accurately capturing the

heterogeneity of local spatial elements, reflecting the correlation

between the value of an attribute in a region and neighboring

regions (He et al., 2023). In this paper, the Moran index scatter plots

of IE and CE from 2011 to 2021 are drawn to describe the local
Frontiers in Ecology and Evolution 12160
spatial correlation. Due to space limitations, only the Moran scatter

plots of 2011 and 2021 are shown, as shown in Figures 8, 9.

According to Figure 8, we can see that the IE of 30 provinces is

mainly concentrated in the first and third quadrants from 2011 to

2021, indicating that ‘good neighbors’ and ‘beggar neighbors’

coexist. This two-way agglomeration may lead to the emergence
FIGURE 6

The spatial distribution of CE in 2021.
FIGURE 5

The spatial distribution of CE in 2011.
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of a gap. It can be seen from Figure 9 that the Moran scatter plot of

30 provinces in China in 2011 is mainly concentrated in the second

and third quadrants, and the third quadrant is more, indicating that

mixed agglomeration and ‘low-low agglomeration’ coexist, and the

agglomeration of places with lower carbon emissions is more

obvious. The Moran scatterplot of China’s 30 provinces in 2021 is

mainly concentrated in the third quadrant, significantly more than

in 2011, indicating that the carbon emission situation has eased in

the past 10 years, and the low-carbon emission areas have increased

and continued to gather.
4.4 The spatial effect of IE on CE

4.4.1 Spatial econometric model results
4.4.1.1 Spatial modeling regression results

The measurement results of SDM with fixed time are shown in

Table 6. According to Table 6, first of all, the spatial autoregressive

coefficient is -0.383, which is significant at the significance level of

0.05, indicating that the more concentrated the regions with large

carbon emissions, the more conducive to centralized governance
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and the easier it is to reduce carbon emission intensity. Secondly, IE

can significantly inhibit CE, and the coefficients are -0.146 and

-0.305 without considering and considering the spatial effect of the

spatial matrix, respectively. It can be seen that IE has a stronger

inhibitory effect on CE when considering spatial spillover. Finally,

under the consideration of the spatial matrix, the control variables

such as TI, RC, GG, etc. have a significant reduction effect on CE.

4.4.1.2 Spatial Spillover Effect Decomposition

To further analyze the spatial effect of IE on CE, the spatial

spillover effect is decomposed, and the results are shown in Table 7.

It can be seen from Table 7 that the direct and spatial effects of IE on

CE are significant, and the indirect inhibitory effect on CE is

stronger than the direct effect.

4.4.2 Robustness test
The robustness test of this paper is divided into two categories:

First, the robustness test of the model. On the one hand, according

to the model selection process in Table 4 in section 3.2.4, it can be

determined that the model selected in this paper is appropriate. On

the other hand, to further determine the credibility of the

conclusions, the SDM model with both OLS and individual time

fixed is selected for testing in this paper. Second, the robustness test

of the spatial matrix. In this paper, the economic distance matrix is

used for the test. The above test results are shown in Table 8.

According to Table 6, it can be seen that IE has a significant

reduction effect on CE (all at the 0.01 level of significance),

indicating that the previous test results are robust.
4.5 Regional heterogeneity analysis

Spatial econometric regression of the data for the eight

integrated economic zones based on the selected time-fixed SDM

model described above is shown in Table 9. IE in the North Coastal

Economic Zone all had a reducing effect on CE, but the results were

not significant. The Northeast Economic Zone, the Southern
FIGURE 8

Moran scatterplot of IE in 2011 and 2021.
FIGURE 7

Moran‘s I of IE and CE from 2011 to 2021. The red triangles in the
figure are marked as insignificant results, and the others are significant
at the significance level of 0.01 or 0.1. The red font is a negative value.
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Coastal Economic Zone, and the Southwest Economic Zone IE have

significant decreasing effects on CE (coefficients of -0.220, -0.092,

and -0.308), and the decreasing effects are even stronger when

spatial effects are taken into account (-0.344, -0.118, and -0.724).

The Eastern Coastal Economic Zone and the Middle Yangtze River

Economic Zone IE have a significant contributing effect on CE.

However, it is not significant when spatial effects are considered.

The middle reaches of the Yellow River economic zone IE have a

significant contribution to CE (3.890), which is stronger when

spatial effects are considered (11.668). The Northwest Economic

Zone IE has a facilitating effect on CE when spatial effects are

considered (1.947). In addition, different control variables have

different effects in different regions.
5 Discussion

5.1 Discussion of results

The main contributions of this article are reflected in the

following aspects. Firstly, using reasonable methods and indicator

systems to measure the integrated economy can fill the gap in the

measurement of the integrated economy in the existing literature.

Secondly, the innovative incorporation of integrated economy and

carbon emissions into the same theoretical framework has

deepened the theoretical research on low-carbon economy.

Finally, analyze the current situation and inherent relationship

between integrated economy and carbon emissions from a spatial

perspective, and deepen relevant research in spatial economics.

Therefore, for the discussion of the test results this paper will

develop 3 aspects. (1) An in-depth discussion of the measured

results of the integrated economy and carbon emissions, which

includes a discussion of the temporal evolution, spatial distribution,

and spatial correlation of IE and CE. (2) In-depth discussion of the

test results of the impact of an integrated economy on carbon
TABLE 6 Model measurement results.

variable coefficient standard error Z p

IE -0.146*** 0.023 -6.410 0.000

TI -0.006 0.013 -0.500 0.619

IT 0.0183*** 0.006 2.920 0.003

RC -0.001 0.004 -0.220 0.829

IH -0.000 0.003 -0.100 0.923

GG 0.0108*** 0.001 8.280 0.000

FI 0.0180 0.014 1.320 0.187

TD -0.009 0.011 -0.820 0.411

ID -0.017 0.017 -1.040 0.296

W*IE -0.305** 0.130 -2.350 0.019

W*TI -0.242*** 0.076 -3.170 0.002

W*IT 0.221*** 0.038 5.780 0.000

W*RC -0.081*** 0.030 -2.740 0.006

W*IH -0.010 0.023 -0.440 0.658

W*GG -0.016** 0.008 -2.090 0.037

W*FI 0.130 0.102 1.280 0.202

W*TD 0.075 0.060 1.250 0.213

W*ID 0.401*** 0.097 4.120 0.000

r -0.383** 0.157 -2.440 0.015

N 330

R2 0.119

Log-L 926.5552
*, **, *** indicate that the statistics are significant at the significance levels of 0.1,0.05 and
0.01, respectively.
FIGURE 9

Moran scatterplot of CE in 2011 and 2021.
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emissions. (3) In-depth discussion of the regional heterogeneity of

the impact of the integrated economy on carbon emissions in the

eight economic regions.

5.1.1 In-depth discussion of measurement results
In this section, the results of the IE and CE measurements are

discussed, which are mainly divided into the discussion of the

results of the IE measured by the coupled coordination model, the

evolutionary characteristics of the IE and CE, and the spatial

autocorrelation of IE and CE.

5.1.1.1 Measurement results of the integrated economy

Table 5 shows the measurement results of the integrated

economy. Firstly, the IE grades of China’s 30 provinces show an

upward trend during the study period, and the overall shift from A2

to A4 is realized, which is consistent with the findings of (Zhang et al.,

2022). This indicates that China’s economy still maintains a high level

of growth, and IE formed by the coupling and coordination of the

digital economy and the real economy has become a new type of

economic form. This is related to China’s policy move since 2015 to

focus on the real economy and vigorously develop the digital

economy. This paper constructs an indicator system to measure the

development level of the real economy from three aspects: scale,

structure, and development potential, which is different from the

measurement of the real economy by scholars such as (Zhang et al.,

2022; Shi and Sun, 2023), and has certain innovation and application

value. Secondly, the level of IE varies among the 30 provinces in the
Frontiers in Ecology and Evolution 15163
country. Guangdong has been highly integrated for a long time. The

headline provinces of Beijing, Jiangsu, and Zhejiang are second only

to Guangdong. Notably, the IE of Hainan, Qinghai, Ningxia, and

Tibet have been in an unbalanced or low integration state, with a large

gap between their integration levels and those of other provinces.

Differences in regional development are related to China’s policy

preferences. China’s economic development started in the eastern

coastal region and penetrated from the east to the west (Chen, 2022).

Thus Guangdong, Beijing, Jiangsu, and Zhejiang have higher levels of

integrated economic development than Qinghai, Ningxia, and Tibet

in the west. This reveals that China should make full use of the

penetration effect of the eastern region in policy formulation to

reduce regional differences.

5.1.1.2 The time evolution and spatial distribution of IE
and CE

Figure 2 shows the change in national mean time for IE and CE

from 2011 to 2021. From Figure 2, it can be seen that IE shows an

increasing trend (decreasing after 2019) and CE shows a slow

decreasing trend in general. The fluctuation of IE in 2019 is

related to the impact of the new crown epidemic on the

development of the real economy (Takyi et al., 2023). As China’s

national attention to carbon reduction and emission reduction

continues to increase, and policy pilots continue to grow, carbon

emissions will also show a significant downward trend (Feng et al.,

2024). However, given China’s large energy consumption base,

carbon emissions will only decline slowly.

Figures 3 and 4 show the spatial distribution of IE in 2011 and

2021. Comparing the two figures, it can be found that: firstly, from

2011 to 2021, the level of IE in each province has been increasing,

and the inter-provincial gap has been decreasing. This suggests that

China’s policy initiatives for IE have achieved some success, and the

digital economy can effectively reduce regional disparities (Zhou

et al., 2023), which is consistent with the findings of (Zhang et al.,

2022). The spatial distribution of IE shows the trend of “decreasing

from the east to the west”, and regional disparities are reduced over

time, which is similar to the results of the study of (Wu et al., 2023).

This is related to China’s long-standing policy bias, where all of

China’s eastern coastal cities are developed cities, the western region

is economically backward, and environmental and geographic

factors are strong impediments to the development of the

economy, so the regional distribution of most economic forms

shows a decreasing trend from east to west. The results of this paper

reveal the spatial evolution trend of IE, effectively proving the
TABLE 8 Results of the robustness test.

Model replacement
Spatial matrix replacement

OLS SDM (both fixed)

IE -0.086*** -0.107*** -0.105*** -0.060*** -0.054*** -0.101***

Cons/r 0.088*** -0.062 -0.216 -0.223 -13.116*** -11.206***

N 330 330 330 330 330 330

R2 0.187 0.344 0.173 0.037 0.323 0.525

Controls No Yes No Yes No Yes
*** indicate that the statistics are significant at the significance level of 0.01.
TABLE 7 Spatial spillover effect decomposition results.

variable Direct Indirect Total

IE -0.140***(0.023) -0.180*(0.093) -0.320***(0.096)

TI -0.002(0.012) -0.183***(0.061) -0.185***(0.066)

IT 0.014**(0.006) 0.161***(0.029) 0.175***(0.031)

RC 0.009(0.004) -0.062***(0.020) -0.061***(0.021)

IH -0.000(0.003) -0.007(0.018) -0.007(0.018)

GG 0.011***(0.001) -0.016***(0.006) -0.005(0.006)

FI 0.016(0.013) 0.093(0.077) 0.109(0.081)

TD -0.011(0.010) 0.061(0.048) 0.050(0.046)

ID -0.026(0.016) 0.306***(0.078) 0.280***(0.082)
*, **, *** indicate that the statistics are significant at the significance levels of 0.1,0.05 and 0.01,
respectively. The numbers in parentheses are standard errors. The same is below.
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important role of the digital economy in narrowing regional gaps

and promoting high-quality development.

Figures 5 and 6 show the spatial distribution of CE in China from

2011 to 2021. The comparison shows that the national distribution of

China’s CE has changed from polarization (i.e., the gap between CE in

the north and south regions was large in 2011) to a trend of

concentration and diffusion (i.e., a smaller gap between CE in the

north and south in 2021, with regional agglomeration). 2011, China’s

industrial layout was that the north was dominated by heavy

industry, the south was dominated by light industry and service

industry, and the north’s carbon emissions were higher. In 2011,

China’s industrial layout was dominated by heavy industries in the

north and light industries and services in the south, with higher

carbon emissions in the north. By 2021, after 10 years of industrial

transformation and the application of decarbonization technologies,

carbon emissions in the north will be lower, and thus the gap between

the north and the south of CE will be gradually narrowed. The results

of this study are similar to (Wang et al., 2014), but this paper reveals

the trend and characteristics of CE, which is a reference value for

understanding the current situation of CE in China’s provinces.
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5.1.1.3 Spatial autocorrelation of IE and CE

Figure 7 plots the trend of the global Moran’s index of IE from

2011 to 2021. First, IE has strong spatial autocorrelation (i.e., places

with strong IE tend to be positively clustered and vice versa), which

is consistent with the findings of (Zhang et al., 2022). IE belongs to

the new economic form, which has strong industrial agglomeration

characteristics. Relevant industries will cluster to give full play to the

scale advantage of the industry, such as the Internet industry cluster,

which can make full use of the infrastructure advantage and

knowledge spillover effect in the space. Second, the CE all have

significant positive spatial correlations (except for 2013-2015),

indicating that carbon emissions also have spatial agglomeration

characteristics. Because energy consumption is closely related to

industrial layout, high-carbon emission industries tend to cluster to

give full play to the scale effect of the industry. This is similar to the

findings of (Zhang et al., 2024). Finally, the spatial correlation of IE

is much higher than that of CE, indicating that economic effects are

more likely to form spatial agglomeration than environmental

effects, which is because economic activities are more affected by

distance, while environmental pollution is more likely to spread.
TABLE 9 The spatial econometric regression results of the eight comprehensive economic zones.

variable
Northern
coastal

Northeast
Eastern
coastal

Southern
coastal

Middle reaches
of the

Yangtze River
Southwest

Middle reaches
of the

Yellow River
Northwest

IE -0.022 -0.220*** 0.065* -0.092*** 0.148*** -0.308*** 3.890*** 0.095

TI -0.005 0.097*** 0.005 0.001 -0.043*** -0.027 0.099 0.147**

IT -0.002 0.040*** 0.022*** -0.0122 -0.029*** -0.004 -0.202*** -0.044***

RC -0.000 0.001 0.095*** 0.044*** -0.000 0.041*** 0.036 -0.041***

IH 0.000 0.011*** 0.011** 0.012*** 0.002 0.011** -0.067*** 0.034**

GG 0.001 -0.002** 0.005*** 0.001 0.002*** -0.002 0.018** 0.004

FI -0.016** 0.134*** -0.064* -0.012*** -0.097** 0.0169 -23.548*** -0.212

TD 0.005** -0.002 0.005 0.009*** -0.004 0.020 -0.117 -0.166***

ID 0.030*** -0.101*** 0.062*** -0.039*** -0.110*** -0.026 -0.141 -0.010

W*IE -0.073 -0.344*** 0.036 -0.118*** 0.104 -0.724*** 11.668*** 1.947***

W*TI -0.027 0.152*** 0.005 -0.006 -0.059*** -0.144** -0.001 0.064

W*IT 0.000 0.062*** 0.049*** -0.024 -0.064*** 0.070** -0.467*** -0.084

W*RC 0.029 0.025** 0.188*** 0.098*** 0.034** 0.199*** 0.254** -0.094**

W*IH 0.012 0.024*** 0.003 0.038*** 0.0169 0.046** -0.159*** 0.035

W*GG 0.003 -0.004** 0.009*** 0.002** 0.004** 0.001 0.051** 0.022**

W*FI -0.163*** 0.114 -0.057 -0.024*** -0.468*** -0.136 -65.247*** -3.399

W*TD 0.021*** -0.011 0.011 0.010** -0.037** 0.046 -0.307 -0.234***

W*ID 0.109*** -0.273*** 0.139*** -0.050** -0.320*** -0.056 -0.296 -0.212

r -0.122 -0.110 0.128 -0.043 -0.335 -0.138 -0.256 -0.230

N 330 330 330 330 330 330 330 330

R2 0.579 0.226 0.605 0.350 0.458 0.351 0.025 0.139

Log-L 290.531 226.660 271.457 248.790 274.706 297.551 196.551 181.496
*, **, *** indicate that the statistics are significant at the significance levels of 0.1,0.05 and 0.01, respectively.
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This study reveals the important role of economic effects in regional

agglomeration theory and also proves that environmental pollution

can form regional agglomeration in the diffusion to surrounding

areas, enriching relevant theoretical research.

Figures 8, 9 shows the localized Moran’s index results for IE and

CE in 2011 and 2021. It can be seen that from 2011 to 2021, the IE of

the 30 provinces is mainly concentrated in the first and third

quadrants. This is because regions with higher IE levels will have a

diffusion effect on their neighbors, promoting IE in the surrounding

provinces and forming ‘high - high agglomeration’, while places with

lower IE levels are not led by the leading provinces and it is difficult

for them to leap forward in the hierarchy, thus forming ‘low - low

agglomeration’. The ‘low-low agglomeration’ is formed. This is

consistent with the findings of (Zhang et al., 2022). However, this

study finds that this two-way agglomerationmay lead to the widening

of the East-West regional gap and exacerbate the Matthew effect, and

it is expected that ‘low-low agglomeration’ can be reduced through

effective policy instruments. The Moran scatterplot of CE for 30

provinces in China in 2011 is mainly concentrated in the second and

third quadrants, and there are more in the third quadrant. This

suggests that ‘mixed agglomeration’ and ‘low-low agglomeration’ co-

existed in 2011, and the agglomeration is more obvious in places with

lower carbon emissions. In 2021, the Moran scatterplot of China’s 30

provinces mainly concentrates in the third quadrant and most of

them are southern cities, and the number of low-carbon emission

areas increases and continues to be agglomerated. This is related to

the implementation of low-carbon pilot policies (Feng et al., 2024).

Unlike previous spatial agglomeration analyses of carbon emissions,

the study in this paper can effectively demonstrate the impact of

policy preferences on carbon emissions, for example, taking

developed coastal cities (Zhejiang, Shanghai, Jiangsu, etc.) as the

pilot areas for low-carbon policies can effectively reduce carbon

emissions in the local area and neighboring regions.

5.1.2 In-depth discussion of the impact of IE
on CE
5.1.2.1 Spatial modeling regression results

The results of the spatial effect test of IE on CE are shown in

Table 6. Firstly, the spatial autoregressive coefficient is negative and

significant. This indicates that the more concentrated the area with

large carbon emissions is, the more favorable it is for centralized

management, and the easier it is to reduce the intensity of carbon

emissions. Second, IE has an obvious inhibitory effect on CE, and the

inhibitory effect is stronger when considering the spatial spillover

effect. It can be seen that IE can give full play to the clean production

characteristics of the digital economy and green the real economy,

which is similar to the findings of (Wu et al., 2023). The impacts of IE

have spatial spillovers, i.e. the development of local IE can effectively

reduce carbon emissions in neighboring areas. Unlike previous

studies, this paper focuses on exploring the carbon reduction effect

of IE from a spatial perspective, aiming to propose feasible regional

policies. Finally, the control variables such as TI, RC, and GG have a

significant reduction effect on CE when the spatial matrix is

considered (the influence coefficients are -0.242, -0.081, and -0.016,

respectively). This is an important finding of this paper that is

different from other studies. Therefore, policymakers should fully
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consider the coordination and linkage among technological

innovation, regional coordination, green development policies, and

IE to help reduce carbon emissions.

5.1.2.2 Spatial Spillover Effect Decomposition

The decomposition results of the spatial spillover effects are

shown in Table 7. From Table 7, it can be seen that the direct and

spatial effects of IE on CE are both significant, and the indirect

inhibition effect on CE is stronger than the direct effect. It shows

that IE in this region and adjacent areas will reduce CE, and IE in

adjacent areas has a stronger effect. The development of IE in this

region will have a demonstration effect on IE in neighboring areas,

prompting neighboring areas to vigorously promote IE, thereby

reducing CE in neighboring areas. The results of the study can

inform the formulation of regional development policies.

5.1.3 In-depth discussion of
regional heterogeneity

Spatial econometric regression of the data for the eight integrated

economic zones based on the selected time-fixed SDM model described

above is shown in Table 9. Table 9 shows that, firstly, the IE of the three

regions of the Northeast, the Southern Coastal Region, and the

Southwest Comprehensive Economic Zone can significantly reduce CE

(similar to the results of Shi and Sun, 2023), and the carbon emission

reduction effect is stronger after considering the spatial spillover effect.

This is because the Northeast Economic Zone is an old industrial base

with a larger carbon emission base, and IE has a stronger carbon

emission reduction effect in the region. The southern coastal economic

zone has a more developed digital economy, which has a double carbon

reduction effect. The Southwest Comprehensive Economic Zone has a

stronger carbon sink capacity, which can promote the IE effect to a large

extent. Secondly, the IE to CE enhancement effect is obvious in the

Middle reaches of the Yangtze River Comprehensive Economic Zone

and the Middle reaches of the Yellow River Comprehensive Economic

Zone, which may be related to the fact that the current comprehensive

economies of these two regions are dominated by high-carbon

manufacturing and supplemented by digital intelligent manufacturing.

It is worth noting that, considering the spatial effect, the enhancement

effect of IE on CE is more obvious in the Middle Yellow River

Comprehensive Economic Zone. Finally, the effect of IE on CE in the

North Coastal Integrated Economic Zone is negative and insignificant,

which may be due to the inconsistent development of the internal

provinces. The IE of the East Coast Comprehensive Economic Zone has

an increasing effect onCE, but the effect is not strong, and the effect is not

significant when spatial spillover effects are considered. Considering the

spatial effect, the IE of the Greater Northwest Comprehensive Economic

Zone can significantly increase CE, which may be due to the imperfect

construction of digital infrastructure in the Northwest. The results of the

study prove that the effects of IE on CE impacts in China’s eight

economic regions are different, and not all regions have a lowering effect

of IE on CE. This reveals that we should formulate policies according to

the characteristics of regional development to avoid the enhancing effect

of IE on CE. In addition, different control variables have different effects

in different regions, which also makes the eight economic zones IE have

different effects on CE, and the result has important implications for the

harmonization of different regional policies.
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5.2 Policy implications

Based on these findings and discussion, this paper offers the

following policy implications. These policy insights, combined with

regional development characteristics and the findings of this paper,

can provide a reference for policymakers to effectively reduce

carbon emissions and achieve green and high-quality development.

(1) Continuously strengthening investment in digital

infrastructure. Accelerating the construction of new digital

infrastructure such as 5G, data centers, artificial intelligence, the

Internet of Things and the industrial Internet in all provinces,

especially in the western provinces, so as to build a firm foundation

of integration for the development of an integrated economy and

promote the interconnection of the digital economy and the real

economy. The real economy will be transformed and upgraded

through intelligent and collaborative new modes of production, and

the divide in the development of the convergence economy will be

reduced with the help of the digital economy dividend.

(2) Give full play to the spatial spillover effect of the integrated

economy to reduce carbon emissions. First, the development

advantages of the head provinces, such as Beijing, Shanghai, and

Jiangsu, should be promoted to establish ‘demonstration zones’ for

the integration and development of the digital economy and the real

economy, so as to form a diffusion effect and drive the development

of the surrounding regions with the center. Secondly, the central

region should fully cooperate with the east, fully absorb the overflow

from the east, and realize a new situation of regional green

development. Finally, the disadvantaged western provinces should

make full use of the role of the ‘One Belt and One Road’ and

‘Western Development’ strategies to reduce the spatial spillover

effect of the disadvantaged regions and embark on the road of

ecological protection and green development based on their

resource endowments and environmental characteristics.

(3) ‘Tailor-made’ regional economic development policies.

Differentiated macroeconomic control policies have been

implemented by the actual situation of the economic zones, and

different high-quality development policies have been focused on

promoting integrated economic development and carbon emission

reduction. On the one hand, encourage the construction of a digital

economy in the Northeast, Southern Coastal, and Southwest

Comprehensive Economic Zones, to promote industrial integration

through the development of a digital economy and realize the effective

reduction of carbon emissions. On the other hand, strengthen the

development of industrial modernization in the middle reaches of the

Yangtze River and the middle reaches of the Yellow River

comprehensive economic zones, reduce the proportion of high-

energy-consuming industries in the integration economy, and reduce

carbon emissions within the economic zones. In addition, regional

economic development strategies under the global framework are

formulated to reduce the overall differences in the integrated economy.
5.3 Research limitations

Taking China as the research object, this study analyzes the spatial

impact effect of the integration economy on carbon emissions using
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data from 30 provinces from 2011 to 2021. However, this study has

certain limitations in terms of variable selection, data collection, and

research object, which need to be improved and refined in subsequent

studies. First, this study examined the spatial impact of the integration

economy on carbon emissions at the national level, but it lacked the

consideration of intermediate action mechanisms. Future studies

should analyze in depth the intrinsic mechanisms through which

the integration economy acts on carbon emissions. Second, due to the

limitation of data availability, the relevant calculation results may not

accurately represent the variables. Therefore, future research should

start with data to enhance the accuracy and completeness of variable

measurement. Finally, based on eight comprehensive economic zones,

this study analyzed the regional heterogeneity of the impact of IE on

CE based on provincial data but did not consider the city, county, and

district levels. Subsequent studies could focus on specific regions such

as the city and county levels.
6 Conclusions

This paper takes 30 inland provinces in China (Hong Kong

Special Administrative Region, Macao Special Administrative

Region, Taiwan, and Tibet Autonomous Region are excluded

from the study due to data acquisition problems) as the research

subjects. Based on the panel data from 2011 to 2021, this paper

analyzes the spatial characteristics of the impact of the integrated

economy on carbon emissions by using principal component

analysis, coupled coordination degree model, Moran index, and

spatial econometrics. The contributions of this article are reflected

in the following aspects. Firstly, using reasonable methods and

indicator systems to measure the integrated economy can fill the

gap in the measurement of the integrated economy in the existing

literature. Secondly, the innovative incorporation of integrated

economy and carbon emissions into the same theoretical

framework has deepened the theoretical research on low-carbon

economy. Finally, analyze the current situation and inherent

relationship between integrated economy and carbon emissions

from a spatial perspective, and deepen relevant research in spatial

economics. The main conclusions of the study are as follows.
(1) Characterizing the spatial and temporal evolution of the

integrated economy and carbon emissions. Over the study

period, the integrated economy showed a yearly increase

while carbon emissions showed a yearly decrease. The

spatial distribution of IE shows a trend of ‘decreasing

from east to west’, with regional differences decreasing

with the evolution of time. China ’s CE shows a

distribution of ‘low in the south and high in the north’,

with low-carbon areas continuing to spread from south

to north.

(2) Analyzing the spatial correlation between the integrated

economy and carbon emissions. From the global perspective

of China, both integrated economy and carbon emissions

have significant positive spatial correlations. From the local

perspective, an integrated economy is mainly characterized

by ‘high-high agglomeration’ and ‘low-low agglomeration’,
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while carbon emissions are characterized by ‘low-

low agglomeration’.

(3) Exploring the spatial impact effects of an integrated

economy on carbon emissions. Using the time-fixed SDM

model, it is found that the integrated economy has a

significant negative effect on carbon emissions, and the

negative effect is even stronger when spatial spillover effects

are considered, and the result still holds under multiple

robustness tests. This suggests that the integrated economy

has a strong spatial effect and can effectively reduce carbon

emissions in China.

(4) Discussing the spatial heterogeneity of the impact of the

integrated economy on carbon emissions. The impact of an

integrated economy on carbon emissions varies from one

integrated economic zone to another. The integrated economy

of the three regions of the Northeast, the Southern Coastal

Region, and the Southwest Comprehensive Economic Zone

can significantly reduce carbon emissions. The integrated

economy to carbon emissions enhancement effect is obvious

in the Middle reaches of the Yangtze River Comprehensive

Economic Zone and the Middle reaches of the Yellow River

Comprehensive Economic Zone. The effect of an integrated

economy on carbon emissions in the North Coastal Integrated

Economic Zone is negative and insignificant. The integrated

economy of the East Coast Comprehensive Economic Zone

has an increasing effect on carbon emissions, but the effect is

not strong.

(5) Providing insights for policy development. First, investment

in digital infrastructure should be continuously strengthened.

Accelerate the construction of new digital infrastructure in all

provinces, especially in the western provinces, and promote

the interconnection of the digital economy with the real

economy. Second, give full play to the spatial spillover effect

of the integrated economy to reduce carbon emissions.

Promote the development advantages of headline provinces

such as Beijing, Shanghai, and Jiangsu, and establish

“demonstration zones” for the integrated development of

the digital economy and the real economy, so that the center

can drive the development of the surrounding areas. Finally,

‘tailor-made’ regional economic development policies.

Implement differentiated macro-control policies based on

the actual situation of economic zones, and implement

different high-quality development policies around

promoting integrated economic development and carbon

emission reduction.
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Wastewater treatment plants (WWTPs) play a crucial role in modern urban
water environmental protection. However, they face challenges related to
high operational costs and carbon emissions. This study focused on
addressing these issues through an analysis of four urban WWTPs in
Jiujiang city, China. The study involved comparing the size and processes
of the plants, evaluating influent and effluent water quality, assessing energy
consumption and chemical usage, and calculating both direct and indirect
carbon emissions. The results demonstrated that the high operational costs
and increased carbon emissions in these WWTPs were primarily attributed to
low hydraulic loadings, low influent concentration, and high energy and
chemical consumption. In response, three targeted scenarios were
proposed to enhance the efficiency of the WWTPs and reduce carbon
emissions. These scenarios involved adjusting the amount of wastewater
imported into the WWTPs to meet the designed capacity, optimizing
operating costs, or combining both approaches. Among the scenarios,
Scenario 3 emerged as the most effective in terms of improving efficiency
and reducing carbon emissions. The operational costs for WWTPs could be
reduced in the range of 0.42–1.04 RMB/m3, representing a reduction rate of
35%–57%. Additionally, carbon emissions could be lowered from 15.02 to
598.85 gCO2e/m

3, corresponding to a reduction of 2.91%–41.38%. Although
Scenario 2 exhibited a lower carbon emission reduction of
14.8–316.33 gCO2e/m

3, it was identified as the most feasible and easily
implementable high-efficiency solution at present, with a reduction in
operational costs ranging from 0.43 to 1.31 RMB/m3. To achieve zero
energy consumption and zero carbon emissions in wastewater treatment
in the future, it is recommended to undertake additional measures, such as
enhancing dosing system accuracy, implementing tail gas collection,
adopting photovoltaic power generation, implementing carbon
sequestration techniques, and exploring wastewater heat source recycling.
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These findings provide valuable insights for optimizing the operational
efficiency of urban WWTPs, reducing carbon emissions, and promoting
sustainable wastewater treatment practices in Jiujiang city, China.

KEYWORDS

wastewater treatment plant, efficiency improvement, carbon reduction, influent
concentration, carbon emissions, operating cost

1 Introduction

In response to the urgent global climate change problem, the
United Nations convened a historic signing ceremony for the Paris
Agreement in New York, USA, on 22 April 2016. Over 170 countries
participated in this event, emphasizing their commitment to address
climate change (Paris Agreement, 2015). China, recognizing the
significance of this issue, formally acceded to the Paris Agreement
on 3rd September of the same year and established its own national
autonomous contribution target. This target aimed to reduce carbon
dioxide emissions per unit of gross domestic product by 40%–45%
by 2020 and by 60%–65% by 2030 when compared with the
2005 levels, showcasing China’s commitment as a responsible
major nation (Zhang, 2016). In 2020, China further
demonstrated its dedication to climate change mitigation by
presenting two key proposals during the United Nations General
Assembly. The first proposal focused on achieving a “carbon peak,”
which signifies reaching a point where national greenhouse gas
emissions cease to rise and gradually decline. The second proposal
aimed for “carbon neutrality,” which involves implementing
emission reduction measures to reduce anthropogenic greenhouse
gas emissions and ultimately achieve a balance between emissions

and natural absorption (Zhao et al., 2022). These initiatives highlight
China’s proactive approach to tackling climate change and its
determination to contribute to global efforts in mitigating the
impacts of greenhouse gas emissions. By aligning its goals with
the Paris Agreement and setting ambitious targets, China plays a
significant role in addressing climate change and fostering
sustainable development on a global scale.

In line with China’s strong commitment to “carbon peaking and
carbon neutrality” goals, the wastewater treatment industry must
actively contribute to addressing climate change and reducing
carbon emissions. Globally, the wastewater treatment sector ranks
among the top 10 carbon-emitting industries, with greenhouse gas
emissions from the treatment process accounting for 1.6% of the
world’s total emissions (Jegatheesan et al., 2009; Gu et al., 2023). As
urbanization continues to expand and the scale of wastewater
collection and treatment increases, greenhouse gas emissions
from the industry have steadily risen. Between 2005 and 2020,
the rise in global emissions of nitrous oxide (N2O) and methane
(CH4) from wastewater treatment is estimated at 13% and 20%,
respectively (Paustian et al., 2001; Gupta et al., 2012).

The growth of the wastewater treatment industry in China
exemplifies this trend. In 1978, China had only 37 urban

FIGURE 1
The technical roadmap.
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wastewater treatment plants (WWTPs). However, by 2019, this
number had surged to 4,140, representing an astounding growth
rate of 2,836% (Kitano et al., 2023). The total annual greenhouse gas
emissions from these plants in China has exceeded 39.84 million
tons, with a national daily wastewater treatment capacity of
178.63 million tons (Xiaoshan et al., 2007). These emissions
contribute to an intensified greenhouse effect, leading to rising
global temperatures, elevated sea levels, and disruptions in
ecosystems, which include a rise in more frequent and severe
extreme weather events (Zickfeld et al., 2017).

Recent reports highlight the urgency of addressing climate
change. The World Meteorological Organization (WMO) states
that Latin America and the Caribbean have experienced an
average warming of 0.2°C per decade over the past 30 years,
while the snowpack of glaciers in the central Andes has nearly
disappeared (Bodin et al., 2010; Vergara et al., 2013). The WMO’s
State of the Global Climate report indicates a 66% probability of the
global near-surface annual mean temperature temporarily exceeding

pre-industrial levels by 1.5°C in at least 1 year between 2023 and
2027 (Deben et al., 2013). In light of these increasingly severe
climatic changes and global warming trends, reducing carbon
emissions has become an urgent task for the entire
global community.

Given this context, it is imperative for the wastewater treatment
industry to actively contribute to carbon emission reduction efforts,
aligning with China’s goals and global initiatives. By implementing
sustainable practices and adopting innovative technologies, the
industry can play a pivotal role in mitigating climate change and
fostering a more sustainable future.

Furthermore, it is important to acknowledge that wastewater
treatment is a highly energy-intensive process. Studies have shown
that in Europe, wastewater collection and treatment account for
approximately 1% of global electricity consumption (Yang et al.,
2021). WWTPs collectively contribute to over 20% of global
electricity consumption (Longo et al., 2016). This poses a
significant challenge for the wastewater treatment industry,

FIGURE 2
Process Flow for WWTP A.

FIGURE 3
Process Flow for WWTP B.
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particularly in terms of cost, as operating expenses constitute a
substantial portion. These costs encompass energy consumption,
material usage, and labor-related expenses (Abuhasel et al., 2021).
The United Nations General Assembly had recognized sustainable
development as the pivotal aspect of environmental protection and
socioeconomic progress back in 2005. However, many WWTPs still
consume excessive energy during wastewater treatment, resulting in
noticeable waste management and financial constraints.
Strengthened legal frameworks and environmental regulations
have driven continuous upgrades in wastewater treatment
processes, further increasing operational costs (Maktabifard et al.,
2018). These factors significantly impact the sustainable
development of WWTPs, making it crucial to focus on reducing
energy consumption and operational costs.

Currently, microbial electrochemical technologies have gained
popularity as a means of recovering energy from waste streams
through bioreactors. Examples include microbial electrolysis cells
for electromethanogenesis (Pawar et al., 2022), microbial
electrolysis cells with non-platinum catalysts and binders in
cathodes (Son et al., 2021), microbial desalination cells (Zahid
et al., 2022), and the valorization of CO2 into value-added products
through microbial electrosynthesis and electro-fermentation
technologies (Quraishi et al., 2021). However, this article
proposes a novel perspective that can significantly reduce costs
and achieve sustainable development. It conducts a comprehensive
analysis of carbon emissions and economic efficiency within four
major urban WWTPs in Jiujiang city, China. The analysis employs
methods recommended in the “2019 IPCC Guidelines for National
Greenhouse Gas Inventory” to calculate generated carbon
emissions. Additionally, it takes into account the chemical
consumption of each WWTP and the unit prices of
consumables to calculate the economic benefits and carbon
reduction amounts under different scenarios. Finally, the article
proposes recommendations for improving the operational
efficiency of WWTPs in a dual-carbon context, as illustrated
in Figure 1.

2 Material and methods

2.1 Overview of WWTPs

2.1.1 Size and combined processes
This study chose four representative WWTPs in Jiujiang city,

denoted as A, B, C, and D. Plant A caters to a population of
approximately 150,000, with a total daily processing capacity of
30,000 m3. Plant B serves approximately 100,000 residents and has a
total daily processing capacity of 15,000 m3. Plant C accommodates
approximately 120,000 inhabitants and possesses a total daily
processing capacity of 30,000 m3. Plant D, the largest among
them, serves a population of roughly 300,000 and operates with a
total daily processing capacity of 70,000 m3. The process flows for
these plants are shown in Figures 2–5.

In accordance with the emission standards of pollutants for
municipal wastewater treatment plants in China (GB 18918-2002),
all four WWTPs fall under the category of medium-sized treatment
plants. Furthermore, the effluent quality from eachWWTP complies
with the standard Class A, Level 1, as shown in Figure 6.T
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2.1.2 Effluent concentration and pollutant
removal rates

Table 1 presents the effluent wastewater quality and pollutant
removal rates for the four selected WWTPs. Minimal variation in
wastewater quality exists among the plants. The average effluent
concentrations for biological oxygen demand over 5 days (BOD5),
suspended solids (SS), chemical oxygen demand (COD), ammonia
nitrogen (NH3-N), total nitrogen (TN), and total phosphorus (TP)
at all four plants are 1.4, 2.39, 9.27, 0.13, 9.44, and 0.21 mg/L,
respectively. The average removal rates for these pollutants are
98.1%, 97.5%, 94.2%, 99.3%, 66.1%, and 91.7%, respectively. With
the exception of TN, the removal rates for all other pollutants
exceed 90%. Although TN exhibits a lower average removal rate,
the effluent concentrations meet the standard Class A, Level
1 in China.

In terms of the overall pollutant removal rates, nationwide urban
WWTPs in China achieve BOD5, SS, COD, NH3-N, TN, and TP
removal rates of 94.2%, 95.1%, 90.6%, 97.3%, 70.7%, and 92.3%,
respectively (Hu, 2021). Comparatively, the selected WWTPs
demonstrate higher BOD5, SS, and COD removal rates than the
national average. However, the TN removal rates for Plants A, B, and
D are 2.4%, 10.2%, and 9% lower than the national average,
respectively. Similarly, the TP removal rates for Plants B and D
are 8.9% and 1.9% lower than the national average, respectively.
Despite these slightly lower TN and TP removal rates, the overall
removal efficiency for other pollutants remains quite good.

2.1.3 Characteristics of influent wastewater
The design influent concentrations of BOD5, SS, COD, NH3-N,

TN, and TP for each WWTP were initially set at 140, 200, 300, 30,
40, and 4 mg/L, respectively, according to the design standards.
However, the actual influent concentrations of BOD5, SS, COD,
NH3-N, TN, and TP for each plant were approximately 53.29%,
82.1%, 53.48%, 63.93%, 70.1%, and 68.75% of these design values,
respectively. These findings, as illustrated in Figure 6, indicate
consistently low influent concentrations at the four urban WWTPs.

The influent BOD5/COD ratio is a widely used biochemical
index in wastewater treatment, serving as an indicator of
wastewater’s biochemical properties and reflecting the degree of
microbial degradation of organic matter and nutrients, thereby
influencing pollutant removal effectiveness (Al-Sulaiman et al.,
2018). In most cases, an influent BOD5/COD ratio between
0.4 and 0.6 is considered favorable for biochemical processes (Xu
et al., 2022). The statistical analysis of influent BOD5/COD ratios
across various provinces reveals that the majority fall within this

FIGURE 4
Process Flow for WWTP C.

TABLE 2 Energy consumption and treatment capacity of each waste water treatment plant (WWTP).

WWTP Designed capacity
(m3/d)

Actual capacity
(m3/d)

Load factor (%) Electricity consumption
per unit of wastewater (kWh/m3)

Scale

A 30,000 8,946 29.8 0.81 Medium

B 15,000 8,551 57.0 0.88 Medium

C 30,000 18,578 61.9 0.66 Medium

D 70,000 65,577 93.7 0.24 Medium

TABLE 3 Consumption of chemicals by waste water treatment plants
(WWTPs).

Form Plant A Plant B Plant C Plant D

Dosage per unit of wastewater (g/m3)

Tap water 2,481.64 2,901.64 2,624.17 1,910.57

CH3COONa 335.10 148.60 59.92 37.44

PAC 90.50 30.32 59.25 46.73

PAM 0.77 1.19 0.36 0.90

NaClO 20.70 22.77 3.94 9.41

Magnetic particle — — — 0.67
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range. For instance, Qinghai, Chongqing, and Tibet exhibit the
highest influent BOD5/COD values, reaching 0.52, 0.51, and 0.51,
respectively. Conversely, Zhejiang, Fujian, and Hunan display the
lowest influent BOD5/COD ratios, with values of 0.38, 0.38, and
0.40, respectively. Among the four WWTPs (Plants A, B, C, and D),
all exhibit influent BOD5/COD ratios higher than 0.4. Specifically,
these ratios are 0.49, 0.47, 0.50, and 0.40, respectively, as depicted in
Figure 7. This indicates favorable biochemical conditions in all
four WWTPs.

The influent COD/TN ratio primarily reflects the relative
content of carbon and nitrogen sources in wastewater, providing
insights into the nutrient balance for heterotrophic bacteria (Pan
et al., 2020). A low COD/TN ratio suggests an excess of the nitrogen
source component and an insufficient carbon source, hindering the
growth of heterotrophic bacteria and reducing treatment efficacy.
Conversely, a high COD/TN ratio indicates an excess of carbon
source and insufficient nitrogen source, resulting in excessive sludge
formation and biochemical challenges (Sun et al., 2016). Research
indicates that the optimal COD/TN ratio falls within the range of
8–12 (Fernández-Arévalo et al., 2017). When the COD/TN ratio is
close to 11, TN removal rates can reach 93.48% and TP removal rates
approach 100% (Zhang et al., 2016). Among the fourWWTPs, Plant
C demonstrates the highest COD/TN ratio at 6.55, although it still
falls below the optimal ratio, as depicted in Figure 8. A nationwide
assessment of urban WWTPs in China reveals COD/TN ratios
ranging from 4.8 to 8.7 (Hu, 2021), consistently below the
optimal range. This prevalent issue results in insufficient carbon
sources during denitrification processes, reducing the effectiveness
of nitrogen and phosphorus removal (Figures 7, 8).

2.1.4 Energy consumption and chemical usage
The loading rates of urban WWTPs in key cities across the

country have reached an average of 102.8%, with Hohhot notably
reaching as high as 152% (Xu et al., 2022). However, the wastewater
hydraulic loads of Plants A, B, and C are comparatively low. Notably,
Plant A has a loading rate of only 29.8%, creating a scenario
analogous to a substantial vehicle with minimal cargo capacity, as
depicted in Table 2. Furthermore, when considering the “China
Urban Construction Statistical Yearbook” and Chinese national
statistics, it becomes evident that the annual average unit
wastewater consumption of electricity for 5,389 WWTPs
nationwide is 0.48 kWh/m3. Approximately 80% of these
WWTPs have a unit wastewater consumption of electricity lower
than 0.61 kWh/m3, and 50% achieve values below 0.36 kWh/m3 (Hu
et al., 2021). However, among the four WWTPs examined, only
Plant D exhibits unit wastewater consumption of electricity lower
than 0.36 kWh/m3. The remaining three plants have higher levels of
electricity consumption, surpassing more than 80% of the WWTPs
included in the statistics.

On an international scale, WWTPs in China contribute
significantly to urban energy consumption. For instance, in
Germany, WWTPs account for approximately 20% of the total
urban energy consumption, with electricity consumption being a
dominant factor (Racoviceanu et al., 2007; Wang et al., 2016). In
the United States, the electricity consumption of wastewater
treatment accounts for 0.6% of the nation’s annual electricity
consumption (Gu et al., 2017), with an average electricity
consumption for wastewater treatment units of approximately

0.52 kWh/m3 (Yeshi et al., 2013). Notably, countries like the
Netherlands, the United States, and Australia maintain lower
levels of electricity consumption in the range of 0.36–0.45 kWh/
m3. By contrast, countries such as the United Kingdom,
Switzerland, Spain, Germany, and Singapore have higher levels
ranging from 0.52 to 0.67 kWh/m3 (Hernández-Sancho et al.,
2011). It is important to highlight that the electricity
consumption of WWTPs in these countries is generally lower
than that of Plants A, B, and C.

In terms of chemical consumption, Table 3 presents the
average daily tap water consumption ranging from 22.21 to
123.50 m3, with unit wastewater consumption ranging from
1,910.57 to 2,901.64 g/m3. The order of unit wastewater
consumption from the highest to lowest is as follows: Plant
B > Plant C > Plant A > Plant D. Similarly, the average daily
dosage of chemicals, such as CH3COONa, PAC, PAM, and
NaClO, is provided. Regarding CH3COONa consumption, to
compare it uniformly in terms of COD equivalent, the median
value of CH3COONa dosing for WWTPs nationwide in China is
16.9 gCOD/m3, with approximately 95% of WWTPs consuming
less than 115 gCOD/m3 of carbon sources per unit of wastewater
and 50% consuming less than 18.9 gCOD/m3 (Hu et al., 2021).
Given the conversion rate of 1 g CH3COONa to COD equivalent
(approximately 0.78 g COD/g CH3COONa), the unit wastewater
dosages for Plants A, B, C, and D are 261.38, 115.91, 46.74, and
29.20 gCOD/m3, respectively. These values exceed half of the
carbon source consumption values of WWTPs nationwide.
Additionally, the nationwide median value for PAC dosing is
6.7 g/m3, with unit wastewater consumption primarily falling
within the range of 1–22 g/m3 (which accounts for
approximately 90% of the total). Although Plant B has the
lowest consumption among Plants A, B, C, and D (30.32 g/
m3), it still exceeds 90% of the national consumption in WWTPs.

2.2 Carbon emissions from WWTPs

The carbon emissions from WWTPs can be divided into two
main components. The first component refers to direct emissions
during the biochemical treatment process, which primarily
include the release of greenhouse gases such as CH4 generated
during the removal of COD, methane produced during sludge
treatment, and N2O resulting from the removal of TN (Lv
et al., 2022).

The second component involves indirect emissions generated
during plant operations, mainly originating from the energy
consumption of the wastewater treatment process. This
encompasses carbon dioxide emissions implicitly associated with
purchased electricity, carbon dioxide emissions resulting from the
addition of chemicals during wastewater treatment, and carbon
dioxide emissions produced during equipment operation and
sludge treatment through the combustion of fossil fuels (Demir
et al., 2019).

In this study, we calculated the carbon emissions for each
WWTP by considering three greenhouse gases: CO2, CH4, and
N2O. To assess their contribution to global warming, we
utilized the global warming potential (GWP) values
provided by the Intergovernmental Panel on Climate
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Change (IPCC). The GWP represents a basis for comparing the
global warming impact of different gases, with CO2 assigned a
GWP of 1. The GWP values for other greenhouse gases are
quantified in relation to CO2 (Table 4), enabling us to calculate
the equivalent emissions of these gases by multiplying their
actual emissions by their respective GWP values (Koutsou
et al., 2018).

2.2.1 Direct carbon emissions
2.2.1.1 Carbon emissions from TN removal

E1 � Q × TNi-TNe( ) × 10-6 × EFN2O × CN2O/N2 × GWPN2O, (1)

where E1 is the removal of TN produced by N2O converted to
carbon dioxide equivalent annual emissions, tCO2eq/a; Q is the
annual treatment volume of wastewater, m3/a; TNi is the average
annual influent concentration of TN, gCO2e/m

3; TNe is the
average annual effluent concentration of TN, gCO2e/m

3;
EFN2O is the amount of nitrogen in the wastewater per unit
mass of ammonia that can be converted to nitrous oxide, tN2O
-N/tN; CN2O/N2 is the ratio of the molecular weight of N2O/N2,
44/28; and GWPN2O is the global warming potential value of
N2O, which takes the value of 298.

2.2.1.2 Carbon emissions from COD removal

E2 � Q × CODi-CODe( ) × 10-6 -SG × ρs( ) · EFCH4-WCH4[ ] × GWPCH4 ,

(2)
SG � Qa× EFS × D × 10-4, (3)

EFCH4 � B0 × MCF, (4)
where E2 denotes the removal of COD in wastewater produced by

CH4 converted to carbon dioxide equivalent emissions per year,
tCO2eq/a; Q denotes the annual treatment of wastewater, m3/a;
CODi denotes the COD of the average annual concentration of
influents, gCO2e/m

3; CODe denotes the COD of the average annual
concentration of effluents, gCO2e/m

3; SG denotes the annual generation
of urban WWTP sludge dry matter, t/a; ρs is the content of organic
matter in the sludge dry matter, tCOD/t; WCH4 is the annual recovery
of CH4, tCH4/a; theWWTPs are zero; EFCH4 is the CH4 emission factor,
tCH4/tCOD; GWPCH4 is the CH4 GWP value and takes the value of 25;
Qa is the daily treatment of urban wastewater, m3/d; EFs is the daily
processing EFs for the daily treatment of wastewater produced by the
sludge dry mass, t/(10,000 m3d); D denotes the annual operation of the
WWTP days, d/a; EFCH4 denotes the CH4 emission factor, tCH4/tCOD;
MCF denotes the CH4 correction factor and takes the value of 0.15; and
B denotes the maximum CH4 generation potential and takes the value
of 0.25 tCH4/tCOD.

2.2.1.3 Carbon emissions from sludge treatment

E3 � SR × βS × DOCf × MCF × F × CCH4/C × GWPCH4, (5)
SR � SG-SE, (6)

where E3 is the annual emission of CH4 converted to the
carbon dioxide equivalent from sludge removal in the municipal

WWTP, tCO2eq/a; SR is the annual amount of dry sludge in the
WWTP, t/a; SG is the amount of dry sludge generated in the
municipal WWTP, t/a; SE is the mass of dry sludge transported
outside the boundary of the municipal WWTP, t/a; semi-finish is
the organic matter content in the dry sludge of the municipal
WWTP sludge dry matter content of organic matter, tC/t; DOCf

is the ratio of degradable organic carbon in sludge dry matter
and takes the value of 50%; MCF is the CH4 correction factor and
takes the value of 1 for completely anaerobic and the value of
0 for completely aerobic; F is the ratio of CH4-producing carbon
in the degradable organic carbon and takes the value of 50%;
CCH4/C is the ratio of the molecular weight of CH4/C and takes
the value of 16/12; and the parameter βS is assigned a value of
0.1 tC/t.

2.2.2 Indirect carbon emission
2.2.2.1 Carbon emissions from energy consumption

E4 � EH × EFCO2 × GWPCO2, (7)
where E4 is the CO2 emission equivalent generated by the annual
consumption of electricity for the operation of wastewater
treatment equipment, tCO2eq/a; EH is the annual electricity
consumption for the operation of wastewater treatment
equipment, MWh/a; EFCO2 is the CO2 emission factor for
electricity, tCO2/MWh, and according to the results of the
baseline emission factor of the Chinese regional power grid of
the emission reduction program in the year 2019, Jiujiang city’s
emission factor is taken as 0.8587; and GWPCO2 is the CO2 global
warming potential value and takes the value of 1.

2.2.2.2 Carbon emissions from chemical usage

E5 � ΣYi × EFCO2 ,i × GWPCO2 × 10-3, (8)
where E5 is the CO2 emission equivalent produced by the chemicals
added in the wastewater treatment process of the urban WWTP,
tCO2eq/a; Yi is the consumption of the j-th type of chemicals added

TABLE 4 IPCC global warming trend values.

Name Radiation efficiency GWP

CO2 1.4 × 10−5 1

CH4 3.7 × 10−4 25

N2O 3.03 × 10−3 298

TABLE 5 Chemical emission factors.

Chemical Emission factor (kgCO2/kg chemical)

CH3COONa 1.07

PAC 1.62

PAM 2.1

NaClO 1.4
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in the domestic wastewater treatment process, kg; and EFCO2,i is the
CO2 emission factor consumed by the j-th type of chemicals used in
the wastewater treatment, kgCO2/kg of chemicals, as shown
in Table 5.

2.3 Scenarios for the efficiency
improvement of the WWTPs

To enhance the efficiency of WWTPs and reduce carbon
emissions, this study proposes three distinct scenarios for
research. Each scenario focuses on removal rates, carbon
emission reduction, and cost optimization. Subsequently, we
calculate the carbon emission generated under each scenario and
analyze the effects of emission reduction. The objective is to derive
the lowest operating cost while maintaining low carbon emission
and meeting WWTP emission standards.

2.3.1 Scenario 1: wastewater amounts imported
into the WWTPs should reach the
designed capacity

Since the influent flow rate at each WWTP is less than the
designed capacity, all equipment within the plants operate at
normal power, resulting in the phenomenon of “using a
sledgehammer to crack a nut.” This leads to higher energy
consumption per unit of wastewater. In Scenario 1, with the
assumption that the influent flow rate reaches the designed
wastewater flow, the energy consumption per unit of water is
recalculated by each WWTP, and the cost of energy consumption
per unit of wastewater is calculated based on the local electricity
tariff, as shown in formulas (9) and (10). The unit chemical
consumption per unit wastewater remains constant, and the
cost of chemical consumption per unit wastewater is calculated
based on the local chemical price, as shown in formula (11).
Combining the costs of energy consumption and chemical
consumption per unit wastewater results in the operational cost,
as indicated in formula (12). In this scenario, energy consumption
can be significantly reduced, leading to a reduction in indirect
carbon emission, which positively contributes to carbon reduction.

p1 �
∑12
1
Electricity consumption permonth

∑12
1
Volume of wastewater designed to be treated permonth

,

(9)
w1 � αp1, (10)

w2 � β1r1 + β2r2 + β3r3 + β4r4 + β5r5 + β6γ6 + β7r7, (11)
oc1 � w1 + w2. (12)

In the equations, P1 represents the energy consumption per unit
of wastewater when the influent flow rate reaches the designed
wastewater flow, with the units kWh/m3; α represents the electricity
tariff; W1 denotes the cost of energy consumption per unit of
wastewater; γ1 to γ7, respectively, represent the consumption of
PAM, water, NaClO, coal, PAC, CH3COONa, and electricity per
unit of wastewater, while β1 to β7 correspond to the unit prices of
these chemicals; W2 represents the cost of chemical consumption
per unit of wastewater; and operating cost OC1 indicates the
operational cost per unit of wastewater in Scenario 1. The units
for all these costs are RMB/m3.

2.3.2 Scenario 2: theWWTPs have been operated at
the lowest OC2 monthly

To break free from the current situation of high standards, high
costs, and high emissions, a path for wastewater discharge that is
both in line with urban WWTP pollutant discharge standards and
economically low carbon is explored. We comprehensively analyze
the monthly average effluent concentration, unit wastewater
operation cost, and pollutant removal rate for each WWTP in
2022. By means of monthly average OC2, we select the month
with the lowest OC2 and analyze whether its pollutant removal rate
meets the standard. If it does not meet the standard, we select the OC
for the second-lowest month, and so on, until we obtain the
minimum OC2 that complies with the emission standard. We
then use this month as a benchmark, with equipment operation
modes and the dosage of chemicals of the other months consistent
with those of this month, reducing the OC2. In this scenario, it
significantly reduces the OC2, implying reduced energy
consumption and chemical consumption, and a substantial

FIGURE 5
Process Flow for WWTP D.
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reduction in indirect carbon emissions, thereby achieving energy
savings and emission reduction. This approach allowed us to explore
a viable path for wastewater treatment that balances the requirement
for pollutant removal, economic efficiency, and low
carbon emission.

2.3.3 Scenario 3: combined Scenarios 1 and 2,
which means that the wastewater amounts
imported reach the designed capacity, and lowest
monthly OC3

By combining Scenarios 1 and 2, under the premise of the
wastewater volume reaching the designed value, the unit wastewater
electricity consumption obtained from Scenario 1 and the chemical
consumption obtained from the month with the lowest operating
cost in Scenario 2 are selected by each WWTP. By combining these
two factors, energy consumption and chemical usage are minimized,
resulting in the optimal OC3. In this scenario, reducing indirect
emissions to the lowest extent and maximizing carbon
emission reduction.

3 Results and discussions

3.1 Carbon emission comparison of the
present and the scenarios

3.1.1 Present carbon emissions
The calculation of carbon emissions for the four WWTPs in

2022 involves the utilization of Eqs 1–8. When analyzing the annual
carbon emissions, it becomes evident that the volume of wastewater
treatment plays a dominant role in determining the total carbon
emissions, surpassing any impact arising from changes in the
concentration of incoming and outgoing wastewater quality.
Consequently, the total carbon emissions are ranked as follows:
Plant D > Plant C > Plant A > Plant B.

When considering carbon emissions per unit of wastewater, the
results indicate the following order: Plant A > Plant B > Plant C >
Plant D, as detailed in Table 6. Notably, indirect emissions constitute
the majority of the carbon emissions for each plant. Among these,
Plant A stands out with indirect emissions accounting for a
substantial 86.13% of the total emissions, while direct emissions
make up only 13.87% of the total.

The carbon emissions per unit of wastewater at a WWTP in
Zhengzhou city were calculated to be 1,060 gCO2e/m

3 (Yu et al.,
2020), indicating similarities with those of Plant B in Zhengzhou
city. The WWTP processes in Zhengzhou city resemble those of
Plant B, although they handle more wastewater and achieve higher
pollutant removal rates per unit of wastewater. However, the energy
consumption and chemical consumption per unit of wastewater are
lower than those of Plant B. The difference in carbon emissions can
be attributed to the higher influent concentration in Zhengzhou
city’sWWTP, resulting in greater direct carbon emissions per unit of
wastewater.

By contrast, the carbon emissions per unit of wastewater at a
WWTP in Canada were calculated to be 390 gCO2e/m

3 (Shahabadi
et al., 2010), which is lower than the values observed in this study.
This discrepancy arises because the study only accounted for the
direct emissions from the biochemical treatment portion of theT
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WWTP, neglecting the indirect emissions encompassing energy and
chemical consumption.

Another noteworthy case is a WWTP in Shenzhen, where the
carbon emissions per unit of wastewater were 430 gCO2e/m

3

(Song et al., 2015), which are lower than the values in this study.
However, this difference can be attributed to the exclusion of
carbon emissions related to sludge treatment in the study by
Song et al.

The carbon emissions per unit of wastewater for 50 small-scale
WWTPs in India and the United Kingdom yielded a value of
3,040 gCO2e/m

3 (Singh et al., 2016), which is significantly higher
than the values observed for the four large WWTPs. This
discrepancy arises from the inclusion of energy consumption,

encompassing both electricity and fuel consumption. Lower fuel
efficiency led to higher consumption, coupled with a larger fuel
carbon emission factor, resulting in elevated carbon emissions. By
contrast, the analysis of the four WWTPs considered only electricity
consumption.

Lastly, the carbon emissions per unit of wastewater volume
for a WWTP in the northern region yielded a value of
950 gCO2e/m

3 (Xie et al., 2012), which is close to that of
Plant C. Although its wastewater treatment capacity and
pollutant removal per unit of wastewater exceeded those of
Plant C, energy consumption and chemical consumption per
unit of wastewater were lower. It is important to note that in all
these cases, direct carbon emissions exceeded indirect carbon

FIGURE 6
Concentration of wastewater and pollutant removal rates for WWTPs.
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emissions, indicating excessive indirect carbon emissions from
WWTPs in Jiujiang city.

In terms of carbon emission composition, Plants A, B, and C
exhibited the following hierarchy: energy > chemical > COD > TN >
sludge. However, Plant D displayed a slightly different pattern:
energy > COD > chemical > TN > sludge. Across all WWTPs,
energy consumption accounted for the majority of carbon
emissions, followed by chemical consumption, COD, TN, and
sludge, which contributed the least to carbon emissions.

When analyzing individual plant-level carbon emissions
(Figure 9), it becomes evident that carbon emissions per unit
of wastewater produced are primarily influenced by energy
consumption and chemical consumption, while carbon
emissions from COD, sludge, and TN remain relatively
consistent. Notably, there were significant variations among
the plants, with Plant D recording the lowest carbon
emissions and Plant A exhibiting the highest. Specifically, the
carbon emissions per unit of wastewater for Plant C, Plant B, and
Plant A were 2.81 times, 3.74 times, and 3.44 times that of Plant
D, respectively. Furthermore, carbon emissions per unit of
wastewater from chemical consumption were 1.27 times,
1.85 times, and 4.2 times greater than that of Plant D. In
total, the cumulative carbon emissions per unit of wastewater
for Plant C, Plant B, and Plant A were 1.85 times, 2.27 times, and
2.81 times that of Plant D (Figure 9).

Considering the different processes employed, Plants A, B, C,
and D utilize the following technologies, respectively: AAO + MBR,
AAOA + MBR, AAOAO + coagulation precipitation filtration
(CPF), and AAO + CPF. The carbon emissions decrease
sequentially based on these technologies. A previous study on
WWTPs in the Yangtze River mainstream basin, employing

various technologies, reported carbon emission intensities ranging
from 3,776 g/m3 to 9,559 g/m3 (Fu et al., 2022). Among these, the
AAO + MBR combination process exhibited the highest carbon
emission intensity due to its elevated electricity consumption, while
the oxidation ditch (OD) + CPF process demonstrated the lowest
carbon emission intensity.

Although Jiujiang city falls within the Yangtze River
mainstream basin, Plant A’s carbon emissions significantly
exceed those of WWTPs employing similar technologies.
Plants B and C, which utilize currently unaccounted
technology combinations, also exhibit higher carbon emissions
than WWTPs using similar processes (AAOA + MBR and
AAOAO + CPF). However, the carbon emissions of Plant D
are comparable to those of WWTPs utilizing the same technology
combination. This outcome can be attributed to the high levels of
indirect carbon emissions from Plants A, B, and C, which impede
the efficient operation of WWTPs. Increased energy
consumption leads to lower electrical efficiency, while the low
influent concentration in the WWTPs results in an insufficient
carbon source, leading to higher chemical consumption. To
address these issues, it is advisable to increase the influent
concentration to enhance energy efficiency and reduce per-
unit wastewater chemical consumption.

3.1.2 Carbon emissions of the scenarios
Three different scenarios are presented to demonstrate the

efficiency improvements of WWTPs and propose a cost-effective,
easily implementable low-carbon approach. In Scenario 1, the focus
is on reducing carbon emissions related to energy consumption. In
Scenario 2 and Scenario 3, reductions in both energy-related and
chemical consumption–related carbon emissions are considered.

FIGURE 7
Characteristic of BOD5/COD in imported wastewater for WWTPs.
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Figure 10 illustrates the carbon emission compositions for the four
WWTPs and the carbon reduction effects of the three scenarios. The
carbon emission reduction results for 2022 under each scenario are
as follows:

(1) Scenario 1: The energy consumption reductions for Plant
A, Plant B, Plant C, and Plant D are 0.57, 0.38, 0.25, and
0.02 kWh/m3, respectively. The corresponding carbon
emission reductions from energy consumption,

calculated using formula (7), are 489, 325, 217, and
15 gCO2e/m

3, respectively. Based on the designed
wastewater inflow, the carbon emission reductions for
2022 are estimated to be 5,354.55, 1,779.38, 2,376.15,
and 383.25 tCO2e/a, respectively.

(2) Scenario 2: The carbon emission reductions from energy
consumption for Plants A, B, C, and D are 134.56, 219.29,
29.92, and 14.78 gCO2e/m

3, respectively. The carbon emission
reductions from chemical consumption, calculated using
formula (8), are 109.85, 97.04, 96.22, and 0.02 gCO2e/m

3,
respectively. The total carbon emission reductions are 244.41,
316.33, 126.14, and 14.8 gCO2e/m

3, respectively. Considering
the actual wastewater inflow, the carbon emission reductions
for 2022 are projected to be 798.66, 988.41, 854.76, and
349.20 tCO2e/a, respectively.

(3) Scenario 3: The energy consumption carbon emission
reductions for Plants A, B, C, and D are the same as in
Scenario 1. The carbon emission reductions from chemical
consumption remain the same as in Scenario 2. The total
carbon emission reductions are 598.85, 422.04, 313.22, and
15.02 gCO2e/m

3, respectively. Based on the designed
wastewater inflow, the carbon emission reductions for
2022 are projected to be 6,557.41, 2,310.67, 3,429.76,
and 383.76 tCO2e/a, respectively (Figure 10).

In addition to the methods employed in this study, various
measures can be implemented to achieve a reduction in carbon
emissions. These include exhaust gas collection, photovoltaic
power generation, carbon sequestration by green plants, and
wastewater reuse. For example, the implementation of an
automatic control system for dissolved oxygen can lead to

FIGURE 8
Characteristic of COD/TN in imported wastewater for WWTPs.

FIGURE 9
Carbon emissions per unit wastewater of WWTPs.
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energy savings ranging from 10% to 25% (Nana, 2013). A study
on 31 WWTPs in China demonstrated that photovoltaic projects
at WWTPs can reduce carbon emissions by 10%–40% (Chen,
2022). The Jinamar WWTP in the Canary Islands of Spain
incorporated energy recovery, photovoltaic, wind energy, and
hydropower generation, resulting in zero energy consumption
and zero carbon emissions annually (Del et al., 2020). These
examples highlight the possibility of achieving zero
carbon emissions.

3.2 Operating costs comparison of the
present and the scenarios

3.2.1 Present operating costs
The operating costs discussed in this article for WWTPs include

expenses related to energy consumption and chemical usage, such as
electricity, tap water, CH3COONa, PAC, PAM, coal, and NaClO.
Labor costs and other miscellaneous expenses were not considered
in the analysis at this stage. The data on energy and chemical
consumption for the year 2022 from four prominent WWTPs were
collected, and the unit electricity rates and chemical prices were
determined based on the prevailing local market conditions. For
consistency, we used a water equivalent where 1 ton is considered
equivalent to 1 m3. Through detailed calculations, the monthly
operating costs for each plant were derived, as shown in Figure 11.

The operating costs for WWTPs A, B, C, and D ranged from
1.31 to 2.33, 0.77 to 1.59, 0.6 to 2.19, and 0.43 to 0.78 RMB/m3,
respectively. The mean values for these WWTPs were 1.78, 1.18,
1.05, and 0.66 RMB/m3, respectively. In a case study of an urban
WWTP in Nanchang, the operating cost before an upgrade was
0.75 RMB/m3, which decreased to 0.6 RMB/m3 after the upgrade

(Zhao et al., 2023), similar to the operating cost of Plant D.
According to research, the operating cost of a semi-underground
WWTP in China is 0.7 RMB/m3 (Kong et al., 2021). Xie et al. (2017)
conducted a study on a domestic WWTP in a town in Beihai,
determining the operating cost to be 0.62 RMB/m3. Tan et al. (2015)
calculated the average operating cost for 227WWTPs across China’s
eastern, central, and western regions to be approximately 0.8 RMB/
m3. The operating costs for urban WWTPs mentioned in these
studies typically range from 0.6 to 0.9 RMB/m3, which include labor
expenses. Notably, the four major WWTPs, excluding labor costs,
exhibited operating costs exceeding 0.9 RMB/m3. Therefore, Plants
A, B, and C have relatively high operating costs.

The composition of operating costs reveals that a significant
portion of the expenses are attributed to electricity, CH3COONa,
PAC, coal, and NaClO, while the costs associated with tap water and
PAM relatively constitute a smaller share. The study shows that
electricity consumption in China amounts to approximately
0.24 RMB/m3 (Miyoshi et al., 2018). However, the cost of
electricity consumption per unit of wastewater, calculated based
on the national average unit wastewater consumption, amounts to
approximately 0.32 RMB/m3. The electricity consumption costs for
Plants A, B, and C exceed the aforementioned values, standing at
0.55, 0.6, and 0.44 RMB/m3, respectively. Notably, Plant D has the
lowest electricity consumption cost, which is 0.16 RMB/m3. The
variation in electricity consumption and chemical usage primarily
arises from the differences between Plant D and Plants A, B, and C.
While Plant D exhibits lower power and chemical consumption,
Plants A, B, and C demonstrate higher consumption of electricity
and CH3COONa, which contributes to an overall increase in unit
wastewater costs. The underlying reason for this issue is that the
volume and concentration of influent wastewater do not meet the
designed requirements, resulting in a situation similar to that of an

FIGURE 10
Carbon emission composition of the three scenarios for WWTPs.
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FIGURE 11
Operating costs per unit of wastewater for WWTPs.

FIGURE 12
Electricity consumption per unit of wastewater for WWTPs.
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FIGURE 13
Removal rates and operating costs of WWTPs.

FIGURE 14
Composition of operating costs per unit of wastewater and benefit improvement for WWTPs in Jiujiang City in 2022.
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overloaded system. Consequently, the unit wastewater power
consumption remains elevated. Additionally, in the biochemical
reaction process, there is an insufficient supply of carbon sources,
necessitating the addition of a substantial quantity of
carbon sources.

3.2.2 Operating costs of the scenarios
Scenario 1: The calculated results demonstrate that the operating

costs (OC1) per unit of wastewater volume for Plant A, Plant B, Plant
C, and Plant D, based on their designed wastewater treatment
capacity, are 1.39, 0.91, 0.88, and 0.64 RMB/m3, respectively.
Among these costs, electricity consumption accounts for 0.16,
0.34, 0.27, and 0.14 RMB/m3, respectively. The year-on-year cost
reductions are 0.39, 0.26, 0.17, and 0.02 RMB/m3, respectively. As
illustrated in Figure 12, the reduction percentages in unit wastewater
operating costs (OC1) are 22%, 23%, 16%, and 3%, respectively. In
this scenario, when the wastewater inflow reaches the designed
capacity, annual cost savings for each plant can amount to
4.23 million, 1.45 million, 1.83 million, and 0.38 million RMB,
respectively (Figure 12).

Scenario 2: The months with the lowest operational costs for
Plants A, B, C, and D are June, September, August, and November,
respectively. During these months, the pollutant removal efficiencies
met the Class A, Level 1, emission standards of pollutants for
municipal wastewater treatment plants in China (GB 18918-
2002) at the specified rates. For example, in Plant A, the BOD5,
SS, COD, NH3-N, TN, and TP removal efficiencies in June were
1.13 times, 1.08 times, 1.37 times, 1.31 times, 1.34 times, and
1.14 times that of the Class A, Level 1 standard, respectively.
Similar trends were observed in the other plants during their
respective optimal operating months. As shown in Figure 13, the
months with the lowest operational costs resulted in favorable
pollutant removal efficiencies and cost-effectiveness for all plants.
The outlet wastewater concentrations and removal rates for each
plant generally fall within the upper–middle range. Additionally,
there was minimal fluctuation in influent concentrations each
month, and the influent concentrations of pollutants in the
month with the lowest operating cost (OC2) typically fall near
the median concentrations of each pollutant across various
months. The composition of OC2 per unit of wastewater volume
and the improvement in cost-effectiveness for 2022 are shown in
Figures 13, 14.

In Plant A, if operating conditions similar to those in June are
maintained, such as electricity consumption, wastewater inflow, and
chemical dosage, the minimum OC2 is calculated as 1.31 RMB/m3.
The actual monthly average OC2 is reduced by 0.47 RMB/m3 when
compared with the same period of the past year, indicating a
reduction ratio of 26%. With the same wastewater inflow, Plant
A is expected to save 1.26 million RMB in the next year. Plant B,
operating under September conditions, achieves a minimum OC2 of
0.77 RMB/m3. The actual monthly average OC2 is reduced by
0.41 RMB/m3 when compared with the same period of the past
year, representing a reduction ratio of 35%. With the same
wastewater inflow, Plant B anticipates saving 1.28 million RMB
in the next year. Operating under August conditions, Plant C
achieves a minimum OC2 of 0.60 RMB/m3. The actual monthly
average OC2 is reduced by 0.45 RMB/m3 when compared with the
same period of the past year, reflecting a reduction ratio of 43%.

With the same wastewater inflow, Plant C is projected to save
3.05 million RMB in the next year. Finally, operating under
November conditions, Plant D attains a minimum OC2

calculated at 0.43 RMB/m3. The actual monthly average OC2 is
reduced by 0.23 RMB/m3 year-on-year, representing a reduction
ratio of 35%. With the same wastewater inflow, Plant D is expected
to save 5.43 million RMB in the following year (Figure 14).

Scenario 3: For Plant A, the optimal OC3 is 1.04 RMB/m3, and
the actual monthly average OC3 is reduced by 0.74 RMB/m3 year-
on-year, resulting in a reduction ratio of 42%. The designed
wastewater inflow will lead to a savings of 8.13 million RMB in
the next year. Plant B’s optimal OC3 is 0.72 RMB/m3, and the actual
monthly average OC3 is 0.45 RMB/m3 lower than that during the
same period of the past year, representing a reduction ratio of 38%.
The designed wastewater inflow will result in savings of 2.82 million
RMB in the next year. Plant C’s optimal OC3 is 0.45 RMB/m3, and
the actual monthly average OC3 is reduced by 0.60 RMB/m3 when
compared with the same period of the past year, marking a reduction
ratio of 57%. With the designed wastewater inflow, Plant C is
projected to save 6.48 million RMB in the next year. Finally, for
Plant D, the optimal OC3 is 0.43 RMB/m3, and the actual monthly
average OC3 is reduced by 0.43 RMB/m3 when compared with the
same period of the past year, representing a reduction ratio of 35%.
The designed wastewater inflow will result in a savings of
5.91 million RMB in the following year.

If further reduction in operating costs is desired, a series of
improvement measures can be adopted. For instance, Gaona et al.
(2023) achieved a reduction in operating costs of 41%–47% through
the nitrite pathway, although this led to increased N2O emissions.

4 Conclusion and recommendations

(1) Through an analysis of four typical urban WWTPs in Jiujiang
city, China, it was found that the four WWTPs have common
features, such as low influent concentrations and effluent water
quality meeting discharge standards, with pollutant removal
rates higher than the national average for all pollutants except
TN. Furthermore, the BOD5/COD values for influents ranged
between 0.4 and 0.6, whereas the COD/TN values were less than
8, indicating that although the wastewater is good to biodegrade,
it has insufficient carbon sources in the treatment processes. In
terms of energy consumption, Plant D exhibited electricity
consumption lower than 0.36 kWh/m3, which is below 50%
that of WWTPs in China, whereas the other three WWTPs had
electricity consumption exceeding 0.61 kWh/m3, surpassing 80%
that of WWTPs. For chemical consumption, the four WWTPs
showed a higher usage of CH3COONa and PAC than the
national average, with Plant A significantly exceeding 90%
of WWTPs.

(2) Concerning the carbon emissions per unit wastewater treatment,
it was observed that Plant A > Plant B > Plant C > Plant D have
values of 1,447.20, 1,168.63, 953.21, and 514.50 g CO2e/m

3,
respectively. Plants A, B, and C have higher carbon emissions
mainly due to the excessively high indirect emissions resulting
from energy and chemical consumption. The proportions of
indirect emissions for Plants A, B, C, and D were 86.13%,
85.61%, 77.13%, and 64.79%, respectively. In addition, the
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operational costs for Plants A, B, C, and D were 1.78, 1.18, 1.05,
and 0.66 RMB/m3, respectively, excluding labor costs. Regarding
the composition of operational costs, electricity andCH3COONa
costs contributed to a significant portion.

(3) The improvement efficiency for the fourWWTPs was researched
under three scenarios accordingly. In Scenario 1, the operational
costs for Plants A, B, C, and D could be reduced from 3.03% to
22.88%. In comparison, the operational costs were reduced to 1.31,
0.77, 0.60, and 0.43 RMB/m3, resulting in cost savings of 1.26, 1.28,
3.05, and 5.43million RMB/year in Scenario 2 and 1.04, 0.72, 0.45,
and 0.42RMB/m3 in Scenario 3, respectively, which help save costs
by 8.13, 2.82, 6.48, and 5.91 million RMB/year, respectively. The
results show that for the four WWTPs, carbon emissions were
reduced by 489, 325, 217, and 15 gCO2e/m

3 in Scenario 1; 244.41,
316.33, 126.14, and 14.8 gCO2e/m

3 in Scenario 2; and 598.85,
422.04, 313.22, and 15.02 gCO2e/m

3 in Scenario 3, respectively.
The carbon emission reduction ranged from 2.87% to 27.07% in
Scenario 2, i.e., lower than those of the other scenarios, due to
energy consumption being a critical factor. Combining the
operational cost analysis, Scenario 2 is the most efficient
solution to improve the efficiency of WWTPs at present. It is
hoped that more actions such as dosing system accuracy
enhancement, tail gas collection, photovoltaic power generation,
carbon sequestration, and wastewater heat source recycling are
carried out to achieve zero energy consumption and zero carbon
emission in the WWTPs in future.
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Introductions: Since the reform and opening up, the inflow of foreign
direct investment (FDI) has provided a steady stream of capital, technology,
talent and other resources for the development of the Yellow River basin,
while caused problems such as environmental pollution, ecological fragility
and industrial structure upgrading difficulties to some extent. Environmental
regulation is a pivotal initiative to achieve mutual harmony between ecological
environment and economic development, which could enhance the quality
of the introduction of FDI and accelerate the green transformation of the
development mode.

Methods: Based on urban panel data from 2006–2019, this study empirically
examined the impact of FDI and environmental regulation on industrial structure
upgrading in the Yellow River Basin. Moreover, taking environmental regulation
as a threshold variable, a panel threshold model was established to further
explore the role of environmental regulation in the impact of FDI on industrial
structure upgrading in the Yellow River Basin.

Results: (1) The relationship between FDI and industrial structure upgrading
in the Yellow River Basin is not a simple linear relationship, but an inverted
“U”-shaped relationship that rises first and then falls, and the results of this
inverted “U”-shaped relationship are still robust after replacing key indicators.
(2) The environmental regulation policy has a driving effect on the upgrading
of industrial structure in the Yellow River Basin. (3) Environmental regulation
has a positive role in the influence of FDI on the industrial structure upgrading
in the Yellow River basin, and the positive role increases gradually as the
intensity of environmental regulation increases moderately, but if the intensity
of environmental regulation is too high, it will have a negative impact on the
upgrading of industrial structure in the Yellow River basin to some extent.

Discussion: In the future, policymakers should make reasonable and effective
use of FDI and improve the quality of FDI; reasonably formulate environmental
regulation policies; coordinate the intensity of FDI and environmental regulation;
thus, bring into play the promotion effect of FDI and environmental regulation
on industrial structure upgrading, and then realize the win-win of ecological
protection and high-quality economic development in the Yellow River Basin.

KEYWORDS

FDI, environmental regulation, industrial structure upgrading, Yellow River Basin,
empirical analysis
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1 Introduction

As the mother river of the Chinese nation, the Yellow River is
an important ecological barrier and economic zone in China. Since
the reform and opening up, foreign direct investment (FDI) has
become an important force for the economic development of the
Yellow River basin, where the amount of foreign capital actually
used maintains an upward trend as a whole since 2009 and it tends
to be stabilized at ¥290 billion in recent years. FDI has provided a
steady stream of capital, technology, talent and other resources for
the development of the Yellow River basin, which could not only
promote the scientific and technological innovation capacity, but
also boost the high-quality economic development (Feng et al., 2019;
Wang and Liu, 2019; Zhang, 2021).

However, FDI also has the potential to lead to serious
environmental issues (Yu et al., 2021). A considerable amount of
FDI has been concentrated in the “high energy consumption,
high pollution, low output” of the secondary industry, resulting in
environmental pollution, ecological fragility and industrial structure
upgrading difficulties, which has become a crucial factor limiting
the quality of economic development of the Yellow River Basin.
Precisely because of this, on 18 September 2019, President Xi Jinping
chaired and addressed a symposium in Zhengzhou, stressing that
the protection of the Yellow River is critical to the great rejuvenation
and sustainable development of the Chinese nation, and ecological
conservation and high-quality development of the Yellow River
Basin is a major national strategy.

Not only that, on 8 October 2021, the Communist Party of
China Central Committee and the State Council have jointly issued
an outline document on the ecological protection and high-quality
development of the Yellow River basin, which requires the cities
along the Yellow River to plan the development of industries
and others based on their water resource capacities. Immediately
following, on October 22, President Xi Jinping pointed out that
provinces and regions along the Yellow River should implement the
strategic plan for the high-quality development, and unswervingly
follow the modernization path of ecological priority and green
development.

Environmental regulation involves the government’s oversight
and control of the actions of enterprises and individuals in relation
to environmental conservation and resource management, and
its implementation depend on the enforcement of laws, policies,
and standards (Feng et al., 2024). It needs to be emphasized that
environmental regulation is an essentialmeasure for the government
to realize mutual coordination between ecological environment and
economic development.

In particular, environmental regulation can attract “new
entrants” to join the green technologymarket and launchmore green
innovations (Yan et al., 2024), which could enhance the quality of
the introduction of FDI and accelerate the green transformation of
the development mode. Moreover, it has been suggested that the
technology spillover effect of FDI is significant under the constraint
of environmental regulation (Zou and Chen, 2022).

Hence, when studies refer to FDI and industrial structure
upgrading of the Yellow River Basin, it is essential to take the
environmental regulation into account. In this case, it is significant
to deal with the inherent relationship between FDI, environmental
regulation and industrial structure upgrading to fulfill ecological

protection and high-quality economic development in the Yellow
River Basin. Specifically, the detailed tasks of this study are: (a)
respectively search for the relationship between FDI/environmental
regulation and industrial structure upgrading in the Yellow River
Basin; (b) explore the role of environmental regulation in the impact
of FDI on industrial structure upgrading in the Yellow River Basin
in depth.

The rest of the paper is organized as follows (as shown
in Figure 1).The second section reviews the literature relevant to this
study.The theoretical analysis and research hypotheses are presented
in the third section. The fourth section describes the variables,
data sources, and models. The fifth part is the empirical analysis of
this paper, including benchmark regression analysis, heterogeneity
analysis, robustness test, and threshold effect test. The sixth, seventh
and eighth parts give the research conclusions, countermeasure
suggestions and research prospects, respectively.

2 Literature review

In recent years, studies on the impact of FDI on the industrial
structure upgrading have been conducted widely. With respect to
those researches, themainstreamviews of the impact of FDI could be
broadly divided into two types: the “pollution haven” hypothesis and
the “pollution halo” hypothesis (Feng et al., 2019). On one hand, a
vast majority of scholars believe that the inflow of foreign capital can
ameliorate the rationalization of industrial structure by providing
capital, technology spillover and promoting the flow of production
factors, which in turn promotes the upgrading of industrial structure
in the host country. Tang et al. (2019) concluded empirically that
FDI spillovers have a positive effect on local technological upgrading
in nearby and neighboring cities. Yu and Han (2019) conducted an
empirical analysis based on VAR model and the results showed the
positive impact of foreign direct investment on industrial structure
upgrading in Jiangsu province.Wang et al. (2020) introduced spatial
autocorrelation analysis method and spatial panel econometric
model by constructing a weight matrix of economic distance to
prove that FDI is a key driving factor for industrial structure
upgrading in China. Wu and Liu. (2021) used the spatial Durbin
model to indicate that FDI has positive direct and indirect effects on
industrial structure upgrading. Xu (2021) found that the industrial
competition brought by FDI has a positive impact on the upgrading
and progress of China’s industrial structure.

On the other hand, a few scholars argue that the inflow of foreign
capital will introduce high pollution and high emission industries.
This may make the host country enterprises too dependent on
foreign capital instead of pursuing high value-added industries,
which is detrimental to the technological research and development
of local enterprises and thus hinders the upgrading of the industrial
structure of the host country. Li et al. (2021) adopted exploratory
spatial data analysis methods to prove the conclusion that FDI can
enhance the rationalization of industrial structure, however, to a
certain extent, it hampers the upgrading of industrial structure.

The relationship between environmental regulation and
industrial structure upgrading is currently viewed as facilitation,
inhibition and indeterminacy in academic circles. Wu et al.
(2019) took Chinese provincial manufacturing industries as the
survey object and found that environmental regulations have
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FIGURE 1
Research framework.

a suppressive effect on the industrial structure upgrading of
China’s manufacturing industry. Chen and Qian (2020) pointed
out that adjusting the environmental regulation policy is effective
facilitator in enhancing industrial structure upgrading, which
in turn promotes the high-quality development of the regional
economy. Chen et al. (2020) proved that various types of marine
environmental regulations have a positive U-shaped relationship
with the transfer of polluting industries and industrial structure
upgrading. Wang et al. (2020) noted that formal environmental
regulations have an inverted “U” shaped direct impact on industrial

upgrading and a positive impact on industrial upgrading through
technological innovation strategies. Song et al. (2021) held the view
that there are regional differences in the impact of environmental
regulation on industrial structure upgrading. Under the western
sample, there is a negative relationship between environmental
regulation and industrial structure upgrading while there is a
positive relationship under the national sample and the eastern
sample. Zhou et al. (2021) based on a spatial econometric approach
to demonstrate that the stringency of environmental regulation
helps to optimize the industrial structure. By exploring three
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major economic zones in China, Guan et al. (2022b) believed that
environmental regulation has a dampening effect on industrial
structure rationalization, but effectively promotes industrial
structure upgrading. Wang et al. (2022b) argued that command-
based environmental regulation and market-based environmental
regulation can motivate firms to engage in green technology
innovation, which is an efficient technique to promote green
economic development. Yin et al. (2022b) used themediating effects
and threshold models, and reported that industrial upgrading
in the central and western regions is impeded by environmental
regulations.

Some scholars have also started to study the effects of FDI and
environmental regulation on industrial structure upgrading. Qiu
et al. (2021) asserted that strict environmental regulatory policies
can effectively raise the entry barrier of FDI into China, improve
the quality of FDI, and enhance the technological absorption
capacity of enterprises. Wang et al. (2022a) found that there is a
partial mediating effect of FDI in the process of various types of
environmental regulations affecting industrial upgrading. Xie et al.
(2021) concluded that there is a single threshold of FDI between
environmental regulation and industrial structural upgrading by
testing the threshold effect. Feng and Liang (2022) found that
the moderating effect of environmental regulation is partially
and conditionally established. However, Yin et al. (2022a) studied
30 Chinese provinces and argued that environmental regulations
impede the spillover and capital accumulation effects of FDI, and
curb technological progress to some extent.

Through literature combing, the existing studies provide insights
into the role of FDI and environmental regulation in industrial
structure upgrading. Both FDI and environmental regulation will
have an impact on the upgrading of industrial structure, but
unconditional openness and non-strict environmental regulation
will have a negative direct effect on economic development (Feng
et al., 2019; Zhang et al., 2022). Nevertheless, there are still some
fields to explore. Firstly, it is found that there are fewer researches
to study the industrial structure upgrading from the perspective
of FDI and environmental regulation at the same time, and the
literature that takes the Yellow River Basin as the study area
is even scarcer. Secondly, this study made the initial effort to
evaluate the synergistic effect of environmental regulation and
FDI on the upgrading of industrial structure, which bridges
the gap between theory and practice by providing a profound
vision of spatial econometrics. Finally, this study utilized a panel
data of the Yellow River Basin from 2006–2019 rather than
provincial data, which makes the analysis more comprehensive
and thorough.

Therefore, this study focused on the Yellow River Basin,
examined the impact on industrial structure upgrading from
the perspective of FDI and environmental regulation, and
added the interaction between the two to explore the role of
environmental regulation in the impact of FDI on industrial
structure upgrading. The panel threshold model was further
established to analyze the impact of FDI on the industrial
structure upgrading in the Yellow River Basin under different
environmental regulatory intensities.This would provide a reference
for the coordination and cooperation of FDI and environmental
regulation in the Yellow River Basin to promote the industrial
structure upgrading.

3 Theoretical analysis and research
hypotheses

3.1 FDI and industrial structure upgrading

FDI is an external force for upgrading industrial structure
(Cheng et al., 2022). The introduction of FDI in the Yellow River
Basin has played a momentous role in its economic development
and has become an essential driving force for the industrial structure
upgrading in the Yellow River Basin (Water Resources Department of
Henan Province, 2021). On one hand, the introduction of foreign
capital could provide enterprises with advanced technology and
management experience, reduce the production cost of enterprises,
boost their production efficiency, and promote the transformation of
industries fromlowvalue-added tohighvalue-added,which indirectly
promotes the industrial structure upgrading of theYellowRiver Basin,
and form the “pollution halo” (Feng et al., 2019; Zou and Chen,
2022). However, the technology spillover of FDI will also be restricted
by domestic technological level, innovation capability and human
resources, which may affect the effect of FDI (Feng et al., 2019). On
the other hand, the scale of FDI flowing into the tertiary industry in
the Yellow River Basin has gradually multiplied, providing financial
support for thedevelopmentof the tertiary industry in theYellowRiver
Basin (Zhang, 2021), but the entry threshold for the tertiary industry
is relatively high, which may affect the pulling role of the FDI in the
third industry of the Yellow River Basin.

However, the introduction of FDI also has some negative effects.
The excessive introduction of FDI may make the Yellow River
Basin enterprises over-reliant on foreign capital, while ignoring the
amelioration of their own innovation capabilities and production
efficiency. At the same time, it is also possible to introduce
some low-quality FDI, such as polluting FDI, which not only
causes environmental pollution, but also hinders the economic
development, and form the “pollution haven” (Feng et al., 2019).
Therefore, the following hypothesis one was put forward.

Hypothesis 1: The relationship between FDI and the industrial
structure upgrading in the Yellow River Basin is not a simple linear
relationship, but a nonlinear relationship.

3.2 Environmental regulation and industrial
structure upgrading

With the gradual aggravation of environmental pollution
problems, environmental regulation is of great significance in
improving the quality of ecological environment. Environmental
regulation can force and guide enterprises to consider
environmental factors in their investment and emissions trading,
promote the transformation of enterprises from high energy
consumption and pollution to low-carbon environmental
protection, accelerate the transformation and upgrading of
industrial structure (Feng et al., 2024). In addition, with the
implementation of environmental regulation policies, the living
environment has been greatly ameliorated, the public’s awareness
of environmental protection is gradually increased, and the public’s
demand for “green products” is also gradually on the rise, so that
enterprises can produce a wider variety of green products to meet
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consumer demand, thus promoting industrial restructuring (Chen
and Qian, 2020; Liao and Shi, 2018; Du et al., 2021).

With the implementation of China’s environmental regulation
policies and the popularization of environmental protection
concepts in recent years, this study believes that, environmental
regulation has promoted the industrial structure upgrading in the
Yellow River Basin as a whole, so hypothesis two was proposed.

Hypothesis 2: Environmental regulation has promoted the
upgrading of the industrial structure in the Yellow River Basin.

3.3 FDI, environmental regulation and
industrial structure upgrading

Since FDI affects the industrial structure of the Yellow River
Basin, it also causes environmental pollution, so the implementation
of environmental regulation policies can enhance the entry
threshold of FDI, refine the quality of FDI, and reduce the
introduction of polluting FDI. Most of the synergistic effects
of environmental regulation and FDI on urban innovation are
significantly positive, implying that the “Porter hypothesis”
is established in China when the inflow of FDI cooperated
with the implementation of environmental regulation properly
(Feng et al., 2019). Environmental regulation can crowd out
investment in polluting technology innovation, allow FDI to
flow into the technology innovation market, incentivize potential
entrants who have identified the green technology market
opportunity, and thus promote the upgrading of industrial structure
(Yan et al., 2024).

At the same time, the augmentation in environmental regulation
costs will also make some foreign-invested enterprises with
serious pollution turn to industries with lower environmental
regulation intensity, while the tertiary industry has relatively low
environmental regulation costs due to its low energy consumption
and less pollution. Therefore, it is speculated that environmental
regulation has promoted the role of FDI in industrial structure
upgrading of the Yellow River Basin to a certain extent. Based on
this, hypothesis three was formulated.

Hypothesis 3: Environmental regulation plays a positive role in the
impact of FDI on the industrial structure upgrading in the Yellow
River Basin.

4 Research design

4.1 Variables selection

4.1.1 Explained variable
Industrial structure upgrading (U) was introduced to denote the

explained variable. Referring to the method proposed by Du et al.
(2021), this study measured the industrial structure upgrading
from the perspective of industrial structure advancement, and
conducted theoretical as well as empirical research on this basis.
The ratio of the added value of the tertiary industry to the
secondary industry was adopted to measure the industrial structure
advancement.

4.1.2 Core explanatory variables
In this study, FDI and environmental regulation were selected

as the core explanatory variables. Based on the research thoughts
of Shi et al. (2022), FDI was expressed by the ratio of the actual use
of FDI in each city to the GDP of the year, and adjusted by the
average annual exchange rate of the year. Environmental regulation
means that the government regulates and manages the behavior of
enterprises and individuals through laws, policies, and standards, so
to achieve the goal of coordinated development of environment and
economy (Feng et al., 2024).

Since the intensity of environmental regulation could not
be directly obtained and is limited by data availability in the
Yellow River Basin, this study drew on the practice of Meng
and Shao. (2020), selected the emission data of industrial sulfur
dioxide, industrial wastewater and industrial smoke (powder) dust
to construct a comprehensive index of environmental pollution,
and utilized its reciprocal to measure the degree of environmental
regulation, expressed as ER, which is shown in the formula Eq. 1:

ERjt =
1
Ejt
= 1

(
3

∑
i=1

Xi,jt/yjt)/3

(1)

whichXi,jt represents the ratio of pollutant discharge amount i in city
j in year t to the total emission amount of pollutant i in the country in
year t, and yjt represents the ratio of the total industrial output value
of city j in year t to the total industrial output value of the country
in year t. Ejt is the comprehensive index of environmental pollution
in city j in year t, The smaller the value, the stronger the intensity
of environmental regulation; the larger the value, the weaker the
intensity of environmental regulation.

4.1.3 Control variables
In this study, economic development level (EDL), degree of

government intervention (GI), higher education level (HEL) and
marketization level (ML) were chosen as the control variables.
The economy is a critical driving force for the industrial structure
upgrading. Referring to the practice ofGuan et al. (2022a), this study
selected the per capita GDP of the cities in the Yellow River Basin to
represent the economic development level.

Moreover, the government could promote the industrial
transformation and upgrading through financial and policy means.
However, improper government control may also bring pressure to
enterprises, restrict the market function to allocate resources, and is
not conducive to the optimization and upgrading of the industrial
structure. Therefore, drawing on the treatment of variable in Li and
Ding. (2018), this study selected the ratio of the government fiscal
revenue to the regional GDP of the cities in the Yellow River Basin in
the current year to represent the degree of government intervention.

In addition, human capital is a valued factor affecting economic
growth and industrial structure upgrading. With reference to the
research thoughts of Zhu and Liu. (2020), this study adopted the
ratio of the number of students in higher education of various cities
in the Yellow River Basin to the resident population in the region to
measure the higher education level.

Furthermore, the higher the marketization level, the more
efficient the flow of resources, which is more conducive to the
industrial structure upgrading. Therefore, referring to the treatment
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of variable in Zhang and Qin. (2018), marketization level was
expressed as “1-(local fiscal expenditure/GDP)”.

4.2 Model design

In order to test the impact of FDI on the industrial structure
upgrading and whether environmental regulation would affect the
effect of FDI on the industrial structure upgrading in the Yellow
River Basin, the interaction term FE was hereby added. At the
same time, based on the previous analysis, it can be seen that
there may be a nonlinear relationship between FDI and industrial
structure upgrading, so the quadratic term of FDI was added to the
benchmark regression model. Therefore, the benchmark regression
model was established as follows in formula Eq. 2:

ln Uit = β0 + β1 ln FDIit + β2(ln FDIit)
2 + β3 ln ERit + β4FE

+ βj∑controlit + εit (2)

among them, i represents each city in the Yellow River Basin, t
denotes each year, β0 is a constant term, εit represents a random
disturbance term, Uit is the industrial structure upgrading, ERit
denotes the environmental regulation, and controlit represents a
set of control variables, including the economic development level
(EDL), the degree of government intervention (GI), the higher
education level (HEL), and the marketization level (ML).

At the same time, in order to further explore the positive
influence of environmental regulation on FDI and the industrial
structure upgrading in the Yellow River Basin, this study introduced
environmental regulation as a threshold variable to construct a
following threshold panel model Eq. 3 to clarify its positive impact
under different intensities.

ln Uit = φ0 +φ1 ln FDIit(ln ERit ≤ γ) +φ2 ln FDIit(ln ERit > γ)

+φ3F
∗E(ln ERit ≤ γ) +φ4F

∗E(ln ERit ≥ γ)

+φj∑controlit + εit

(3)

which φ0 is the constant term, γ represents the threshold value of
environmental regulation.

4.3 Study area setting and data sources

According to the “Hohhot-Baotou-Erdos-Yulin City Cluster
Development Plan,” “Guanzhong Plain City Cluster Development
Plan,” “Central Plain City Cluster Development Plan,” “Lanzhou-
Xining City Cluster Development Plan” and the city cluster
development plans of various provinces and cities, the Yellow River
Basin was set as seven city clusters, namely, the Hohhot-Baotou-
Erdos-Yulin City Cluster, City Cluster along the Yellow River in
Ningxia, and Lanzhou-Xining City Cluster in the upper reaches,
Guanzhong Plain City Cluster, Jinzhong City Cluster, and Central
Plain City Cluster in the middle reaches, as well as Shandong
Peninsula City Cluster in the lower reaches. Among them, as the
data of autonomous prefectures in Lanzhou-Xining City Cluster
was not available, and Haidong City, Wuzhong City, Zhongwei
City, Tianshui City, Dingxi City, Baiyin City, Jiyuan City and
Yangling Demonstration Zone have serious data shortages, they
were excluded from the study area.

Thus, in this study, 53 cities in the Yellow River Basin were
selected. All the data were collected from the “China Statistical
Yearbook,” “China Urban Construction Statistical Yearbook”
and “China Environmental Statistical Yearbook” from 2006 to
2019. Partial missing data were filled by linear interpolation.
Specially, the following calculation was conducted based on Stata
16.0 software.

4.4 Descriptive statistics and unit root test

In particular, this study introduced the logarithm of all
variables into the model to reduce the heteroscedasticity problem
in model setting. Table 1 describes the mean value, standard
deviation, minimum value, median value and maximum value of
each variable.

In addition, 14 years of data collected by this study belong to the
short panel data. However, due to the time-series nature of panel
data, nonstationary time series would lead to the phenomenon of
“pseudo regression.” Therefore, HT test was introduced into this
study to test the stationarity of each variable, and the results are
shown in Table 2. It can be seen that some variables in the original
series failed the stationarity test, but the first-order difference series
were all significant at the 1% significance level, which was expressed
as a first-order single integer.

5 Empirical analysis

5.1 Benchmark regression analysis

From the Hausman test results (as shown in Table 3), the p-
value of 0.0097 is less than the significance level of 0.05, the
null hypothesis of the fixed effect model could be accepted. It
can be concluded that the fixed effects regression method should
be utilized for the panel data in this study. Therefore, the fixed
effects model was introduced to empirically analyze the relationship
between FDI and the industrial structure upgrading in the Yellow
River Basin.

At the same time, this study performed stepwise regression to
improve the robustness, and the regression results based on the fixed
effects model are shown in Table 4.

It can be seen from models (1) to (7) that the coefficient of
FDI primary term is significantly negative. As for FDI quadratic
term, the coefficient in model (2) is negative but not significant,
while in models (3) to (7), it is significantly negative. The results
indicated that the relationship between FDI and the industrial
structure upgrading in the Yellow River Basin is not a simple linear
relationship, but an inverted “U”-shaped relationship that firstly
rises and then falls. That is to say, the proportion of FDI in GDP
is not the more the better, but within a suitable range, FDI could
promote the industrial structure upgrading in the Yellow River
Basin, otherwise it would be counter-productive, which verifies
the Hypothesis 1.

In addition, it can be seen from the benchmark regression results
(as illustrated in Table 3) that the current FDI in the Yellow River
Basin is at the right end of the inverted “U”-shaped curve. In other
words, the large proportion of FDI in GDP hampers the industrial
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TABLE 1 Descriptive statistics.

Variable Sample size Mean value Standard deviation Minimum value Median value Maximum value

lnU 742 −.3263028 .4425957 −1.671056 −.3194326 .9114966

lnFDI 742 −4.49823 1.219242 −9.211221 −4.326281 −1.08761

lnER 742 .1003504 1.106484 −4.205263 .202896 2.647152

lnEDL 742 10.4947 .6586391 8.476371 10.53562 12.16495

lnGI 742 −2.708564 .3501431 −3.794952 −2.683311 −1.730207

lnHEL 742 −4.379065 1.123383 −7.931242 −4.492064 5.065858

lnML 742 −.1730123 .0945311 −.7792926 −.1504496 −.0435896

TABLE 2 Unit root test results.

lnU −1.6545∗ ∗ D_ lnU −23.5531∗ ∗ ∗

lnFDI −10.3056∗ ∗ ∗ D_ lnFDI −34.0437∗ ∗ ∗

lnER −3.7404∗ ∗ ∗ D_ lnER −39.2317∗ ∗ ∗

lnEDL 1.5545 D_ lnEDL −17.6185∗ ∗ ∗

lnGI −0.2520 D_ lnGI −25.4698∗ ∗ ∗

lnHEL −27.0897∗ ∗ ∗ D_ lnHEL −57.0950∗ ∗ ∗

lnML −1.8787∗ ∗ D_ lnML −30.9874 ∗ ∗ ∗

D_ means the first-order difference. ∗,∗ ∗ and ∗ ∗ ∗ represent significance at the 10%, 5% and
1% levels, respectively (similarly hereinafter).

TABLE 3 Fixed effects and random effects regression results.

Variable Fixed effects Random effects

lnFDI −.2101937 −.1994592

(lnFDI)2 −.0193382 −.0186776

LnER .1601582 .1380704

F∗E .0390483 .0339894

lnEDL .1671074 .1526516

LnGI .0335328 .0539746

lnHEL .0503762 .0785607

lnML −1.869141 −1.785496

constant term −2.628635 −2.248151

F value 28.83

Prob>chi2 = 0.0097

structure upgrading in the YellowRiver Basin to a certain extent.The
reason may be that the proper introduction of foreign capital, that
is, the low proportion of FDI in GDP, could reduce the production

cost of enterprises, encourage them to carry out technological
innovation, and promote the industrial structure upgrading in the
YellowRiver Basin. However, the introduction of foreign capital may
also cause environmental pollution. When attracting more foreign
capital and accounting for a large proportion of GDP, not only
foreign technology and management experience but also foreign
capital of uneven quality is introduced. Poor quality technical
experience and human resources hinder the industrial structure
upgrading. At the same time, it would also make enterprises overly
dependent on foreign capital, ignoring their own productivity and
technological innovation, thereby curbing the industrial structure
upgrading.

The coefficient of environmental regulation is positive, which
is significant at the 5% significance level in models (3) to (6), and
1% significance level in model (7), indicating that environmental
regulation has promoted the industrial structure upgrading in
the Yellow River Basin. Although this finding is different from
the positive “U”-shaped conclusion of the existing studies, it is
consistent with the later conclusion that the two are positively
related, and to a certain extent verifies the Porter hypothesis. That
is, environmental regulation could force enterprises to carry out
technological innovation, which in turn could promote the entire
industry upgrading, verifies the Hypothesis 2.

The reason may be that in recent years, the environmental
regulation policies of the Yellow River Basin have burdened
enterprises with more environmental governance costs, and the
profit rate has fallen, which forced enterprises to carry out
technological innovation. In the end, the compensation brought
by enterprises’ technological innovation made up for the cost of
environmental regulation. The environmental regulation policy of
the Yellow River Basin has played a positive role in the industrial
structure upgrading.

The coefficient of interaction term (FE) between FDI and
environmental regulation is positive and passed the significance test,
which shows that environmental regulation could promote the effect
of FDI on the industrial structure upgrading of the Yellow River
Basin. That is to say, environmental regulation has a positive role in
promoting the impact of FDI on the industrial structure upgrading,
which verifies the Hypothesis 3.

Among the control variables, the regression coefficient of
economic development level is significantly positive, indicating that
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the economic development in the Yellow River Basin has promoted
the industrial structure upgrading, thus proving that the economy
is a critical driving force for the industrial structure upgrading. The
higher the economic development level, the stronger the promotion
effect on the industrial structure upgrading in the Yellow River
Basin. In addition, the economic development level reflects people’s
wealth creation ability, and high wealth creation ability also means
people’s high consumption level. The higher the consumption level,
the better the development of the tertiary industry. Meanwhile,
enterprises would also innovate to produce more high value-added
products, thereby promoting the industrial structure upgrading in
the Yellow River Basin.

The coefficient of degree of government intervention is
significantly positive at the significance level of 1% in both models
(5) and (6), indicating that government intervention has a positive
effect on the industrial structure upgrading in the Yellow River
Basin. Moderate government intervention could provide financial
support and policy support for the transformation of enterprises,
ultimately promoting the industrial structure upgrading in the
Yellow River Basin. The regression coefficient of higher education
level is significantly positive. In other words, higher education has
cultivated high-tech talents, and the human capital delivered to the
society has caused the agglomeration of other production factors,
which has promoted the technological innovation of enterprises, and
has a positive promotion effect on the industrial structure upgrading
in the Yellow River Basin. The coefficient of marketization level is
significantly negative at the significance level of 1%. The possible
reasons are that the government has less intervention in the market
and enterprises, and the market self-regulation in the Yellow River
Basin is flawed. There may be problems such as improper resources
allocation and unequal social distribution, affect the sustainable
growth of economy in theYellowRiver Basin, which is not conducive
to the industrial structure upgrading.

5.2 Robustness test

In order to confirm the robustness of the benchmark regression
results, this paper adopts the method of replacing key indicators
to conduct robustness test. Referring to the practices of Ji et al.
(2022), the industrial structure hierarchy coefficient including the
primary industry, the secondary industry and the tertiary industry
is used as a measure of the upgrading of the industrial structure.The
measurement formula of the new industrial structure upgrading is
shown in Eq. 4:

U =
3

∑
i=1

xi × i (4)

which xi represents the proportion of the output value of the i
industry to the total output value; i denotes the corresponding
weight assigned to each industry, i = 1,2,3 .

The robustness test results are shown in Table 5. It can be
seen that after replacing the key indicators, the coefficients of
the primary and secondary terms of FDI are still significantly
negative, indicating that the relationship between FDI and the
upgrading of the industrial structure in the Yellow River Basin
is still the inverted “U”-shaped relationship verified above; other
environmental regulation coefficients are significantly positive,

which is consistent with the previous research results that
environmental regulation has a promoting effect on the upgrading
of the industrial structure in the Yellow River Basin; the coefficient
of interaction between FDI and environmental regulation is
significantly positive, which is consistent with the previous research
results; the coefficients of each control variable have changed
slightly, However, neither the sign direction nor the significance
has changed. It can be seen that the results of the previous empirical
analysis are robust.

5.3 Threshold effect test

Table 6 shows the estimated results of the threshold effect test.
The F statistic of the single threshold of environmental regulation is
47.68, which is significant at the 1% significance level and passed the
single threshold test; the F statistic of the double threshold is 28.68,
which passed the 5% significance level test. This shows that there is
a double threshold effect of environmental regulation in the impact
of FDI on the upgrading of the industrial structure in the Yellow
River Basin.The environmental regulation thresholds are 1.7176 and
−1.7148, respectively.

From the regression results of the threshold effect in Table 7, it
can be seen that the double threshold of environmental regulation
divides the intensity of environmental regulation into three ranges:
low (lnER≤−1.7148), medium (−1.7148<lnER≤1.1716) and high
(lnER> 1.1716). When the intensity of environmental regulation
is in the lower intensity range, the regression coefficient of FDI
and the regression coefficient of the interaction term of FDI and
environmental regulation are all significantly negative, which are
−0.1199222 and −0.0243728, respectively; when the intensity of
environmental regulation crosses the first threshold, When it is
in the medium intensity range, the regression coefficient of the
FDI term is not significant, indicating that the inhibitory effect
of FDI on industrial structure upgrading is not obvious at this
time, and the regression coefficient of the interaction term rises
to 0.0233899, which is significant at the level of 1%; When the
double threshold is in the higher intensity range, the coefficient
of FDI is significantly positive at 0.0851813, while the coefficient
of the interaction term is negative. It can be seen that in the
process of gradually increasing the intensity of environmental
regulation, the FDI regression coefficient changed from negative
to positive and gradually increased, indicating that environmental
regulation has a positive role in promoting the impact of FDI
on the upgrading of the industrial structure in the Yellow River
Basin, which further verifies the Hypothesis 3; the interaction term
coefficient changes from negative to positive when the intensity of
environmental regulation crosses the first threshold, indicating that
this positive promoting effect is gradually enhanced, and when the
intensity of environmental regulation crosses the second threshold,
the interaction term coefficient becomes negative, that is, although
under the intensity of environmental regulation, FDI can promote
the upgrading of the industrial structure in the Yellow River Basin.
However, if the environmental regulation intensity is too high, itmay
also lead to excessive production costs of enterprises, which in turn
has a negative impact on the upgrading of the industrial structure in
the Yellow River Basin to a certain extent.
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TABLE 5 Robustness test results.

Variable Model (1) Model (2) Model (3) Model (4) Model (6)

LnFDI −.0187893∗ ∗ (−2.30) −.0145553∗ ∗ ∗ (−2.61) −.0172628∗ ∗ ∗ (−3.06) −.0170766∗ ∗ ∗ (−3.03) −.0182195∗ ∗ ∗ (−3.24)

(lnFDI)2 −.0014955∗ ∗ (−1.95) −.0016288∗ ∗ ∗ (−3.10) −.0018326∗ ∗ ∗ (−3.47) −.0018107∗ ∗ ∗ (−3.43) −.001897∗ ∗ ∗ (−3.60)

LnER .0240493∗ ∗ ∗ (3.45) .018286∗ ∗ ∗ (3.83) .0195463∗ ∗ ∗ (4.09) .0194217∗ ∗ ∗ (4.07) .0210773∗ ∗ ∗ (4.41)

F∗E .0042369∗ ∗ ∗ (2.90) .004196∗ ∗ ∗ (4.20) .0044029∗ ∗ ∗ (4.42) .0043432∗ ∗ ∗ (4.36) .0044846∗ ∗ ∗ (4.52)

lnEDL – .0555007∗ ∗ ∗ (27.90) .0506119∗ ∗ ∗ (19.06) .0490098∗ ∗ ∗ (17.32) .0451675∗ ∗ ∗ (14.37)

LnGI – – .0153022∗ ∗ ∗ (2.76) .0152787∗ ∗ ∗ (2.76) .0104557∗ (1.81)

lnHEL – – – .0035047 (1.63) .0029525 (1.37)

lnML – – – – −.0749728∗ ∗ ∗ (−2.75)

_cons .770281∗ ∗ ∗ (36.66) .2103301∗ ∗ ∗ (8.52) .2952305∗ ∗ ∗ (7.50) .3276959∗ ∗ ∗ (7.44) .3361515∗ ∗ ∗ (7.65)

R2 0.0246 0.5438 0.5488 0.5506 0.5555

N 742 742 742 742 742

TABLE 6 Threshold effect test and estimation results.

Threshold
variable

Threshold
number

F statistic 1% threshold 5% threshold 10% threshold Estimated
threshold

LnER

single threshold 47.68∗ ∗ ∗ 49.4336 37.0145 31.8310 1.1716

double threshold 28.68∗ ∗ 30.8965 27.1047 22.7699 −1.7148

triple threshold 13.50 73.5477 54.9519 47.8159 1.9258

TABLE 7 Threshold effect regression results.

Environmental
regulation range

lnFDI F∗E

lnER≤-1.7148 −.1199222∗ ∗ ∗ (−4.98) −.0243728∗ ∗ (−2.58)

−1.7148<lnER≤1.1716 −.0030318 (−0.25) .0233899∗ ∗ ∗ (5.37)

lnER>1.1716 .0851813∗ ∗ (2.06) −.0704012∗ ∗ (−2.57)

_cons −2.172846∗ ∗ ∗ (−5.41) −2.172846∗ ∗ ∗ (−5.41)

control variable yes Yes

n 742 742

R2 0.4455 0.4455

6 Conclusion

The industrial structure upgrading is a prominent prerequisite
for achieving high-quality development. To achieve high-quality
economic development in the Yellow River Basin, it is necessary
to optimize the industrial structure and realize green development.
This study selected the panel data of 53 cities in the Yellow River

Basin from 2006 to 2019, and empirically analyzed the relationship
between FDI, environmental regulation and industrial structure
upgrading in the Yellow River Basin, and obtained the following
research conclusions.

1) The relationship between FDI and the industrial structure
upgrading in the Yellow River Basin is not a simple
linear relationship, but an inverted “U”-shaped relationship
that firstly rises and then falls. This shows that as the
proportion of FDI in GDP gradually enlarges, FDI would
firstly promote the industrial structure upgrading in the
Yellow River Basin, while it reaches a certain level, FDI
would have a negative effect on the industrial structure
upgrading. Moreover, the finding of this inverted “U”-
shaped relationship is still stable after the replacement of key
indicators.

2) Environmental regulation policies have a role in promoting
the industrial structure upgrading in the Yellow River Basin,
that is, they could force enterprises to carry out technological
innovation, raise productivity and profit margins, make up for
the cost of sewage and pollution control, and then promote
the transformation and upgrading of the entire industry in the
YellowRiver Basin. To a certain extent, the “PorterHypothesis”
has been verified, and this is in line with the research results
of Yan et al. (2024)
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3) Environmental regulation has a positive contribution in
promoting the impact of FDI on the industrial structure
upgrading in the Yellow River Basin, and with the moderate
increment in the intensity of environmental regulation, the
positive effect is gradually enhanced. However, if the intensity
of environmental regulation is too high, it may also result
in excessive production costs, which will be detrimental to
the industrial structure upgrading in the Yellow River Basin
to a certain extent. These are consistent with the findings
of Feng and Liang (2022), who figured out that the moderating
role of environmental regulation is partially and conditionally
established.

To be specific, the environmental regulation thresholds are
1.1716 and −1.7148, respectively. In the process of increasing the
intensity of environmental regulation and crossing the value of
−1.7148, the negative impact of FDI on the impact coefficient in
the Yellow River Basin is constantly weakening. When the first
threshold value of 1.1716 is crossed, the coefficient of FDI on the
industrial structure upgrading changes from negative to positive.
This represents that environmental regulation has a positively
facilitating effect on the impact of FDI on the industrial structure
upgrading in the Yellow River Basin, which verifies the thesis
of Feng et al. (2019) on the synergistic effect of environmental
regulation and FDI.

At the same time, with the moderate rise in the intensity
of environmental regulation, the positive role also gradually
increases. With the gradual strengthening of the intensity of
environmental regulation, the cross-term coefficient of FDI and
environmental regulation firstly turns from negative to positive, and
then from positive to negative, suggesting that if the intensity of
environmental regulation is too strong, the interaction between FDI
and environmental regulation would restrict the industrial structure
upgrading in the YellowRiver Basin.This finding further extends the
study of Feng et al. (2019), which bridges the gap between theory and
practice by providing a profound vision of spatial econometrics.

(4) The economic development level, degree of government
intervention and higher education level have a significant
role in promoting the industrial structure upgrading, and the
marketization level has a negative impact on the industrial
structure upgrading in the Yellow River Basin. A higher
level of economic development reflects a higher standard of
living. With the amelioration of living standards, people’s
consumption needs are more and more diversified, which is
conducive to the transformation and upgrading of enterprises
to meet people’s diversified consumption needs, thereby
promoting the development of the tertiary industry, and this
is similar to the research results of Guan et al. (2022b). The
government can create a good environment for industrial
structure upgrading and provide financial and policy support
for the development of enterprises, which is in line with the
findings of (Li et al., 2021; Zhang et al., 2022). Therefore, the
government’s moderate intervention could drive the industrial
structure upgrading. Higher education can cultivate high-
quality talents with scientific skills and innovation capabilities,
and this is consistent with the research results of (Zhu and Liu,
2020; Zhang, 2021). Human capital can spur the aggregation of
other capitals, and is also a valued factor affecting the industrial

structure upgrading and economic growth. The marketization
level has a negative effect on the industrial structure upgrading,
which is similar to the findings of Zhang and Qin, (2018).
The market in the Yellow River Basin may have problems such
as improper allocation of resources and unequal distribution,
which affects the development of enterprises and thus stunts
the industrial structure upgrading in the Yellow River Basin.

7 Policy recommendations

Based on the above research conclusions, this study put forward
the following policy recommendations.

1) Introduce FDI reasonably and effectively to raise the quality of
FDI. On one hand, the government should set up a reasonable
scale of investment introduction, strengthen the management
of FDI introduction, raise the entry threshold of FDI, control
the proportion of FDI in GDP, and give full play to the role
of FDI in promoting the industrial structure upgrading in the
Yellow River Basin. On the other hand, enterprises should give
full play to their subjective initiative, bring productivity gains
and innovation capacity from their own perspective, avoid
over-reliance on FDI, and make full use of the technological
spillover effect of FDI to reinforce their own technological
innovation capacity.TheFDI technology spillover effect should
be fully utilized to improve their own technological innovation
capabilities.

2) Rationally formulate environmental regulation policies
and give full play to the role of environmental regulation
in promoting the industrial structure upgrading in the
Yellow River Basin. The government should formulate
appropriate environmental regulation policies based on
regional differences. It should complete the legal system for
environmental regulation, constrain the production activities
of enterprises, strictly implement supervision and control,
increase investment in environmental pollution control, and
limit emissions of pollutants such as sulfur dioxide, industrial
wastewater and industrial dust.

3) Coordinate the intensity of FDI and environmental regulation,
and organically combine the two to promote the industrial
structure upgrading in the Yellow River Basin. Strictly
implement environmental regulation policies, attract more
high-quality, low-emission, and low-pollution FDI industries,
maximize the proactive role of environmental regulation
between FDI and the industrial structure upgrading in
the Yellow River Basin, and realize the win-win for the
introduction of high-quality FDI and ecological environmental
protection.

4) Create a favorable environment for industrial structure
upgrading. The economic development level, degree of
government intervention and higher education level all
have a significant role in promoting the industrial structure
upgrading in the Yellow River Basin. Consequently, the
government should promote the industrial structure
upgrading by improving the level of economic development,
appropriately intervening in the production and operation
activities of enterprises, and vigorously cultivating higher
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education talents. At the same time, the role of the market
should be better brought into play, the rational allocation of
resources should be realized, and the inhibitory effect on the
industrial structure upgrading should be alleviated.

8 Research prospects

Though the effectiveness of environmental regulation, FDI and
its interaction term on the industrial structure upgrading was
preliminarily investigated in this study, some limitations remain
and in-depth studies are still needed. (1) Industrial structure
upgrading includes two aspects: industrial structure advancement
and industrial structure rationalization. In this study, industrial
structure advancement represents the upgrading of industrial
structure, and the content of industrial structure rationalization
should be appropriately added in the later stage to further strengthen
the persuasive of this study. (2) Concentrated on the whole Yellow
River basin, this study explored the impact of environmental
regulation and FDI on the upgrading of industrial structure,
without considering the regional spatial heterogeneity. (3) Limited
by the availability and stability of data, the method of measuring
environmental specifications could be further optimized, and amore
scientific and effective index system should be built in the future and
calculated by comprehensive index method.
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