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Undoubtedly, pain conditions the quality of life of millions of people worldwide 
suffering a wide range of diseases. Major research efforts are being made by the 
international scientific community to determine the mechanisms underlying 
nociception. Growing evidence points out a complex network including oxidative and 
nitrosative stress, inflammatory response and cation signaling. In this sense, transient 
receptor potential (TRP) channels have attracted researchers’ attention. Expression 
levels are very different in tissues and cells mediating a myriad of processes in our 
organism. At the neurological level, it has been observed that the expression levels
of four TRP channels (TRPA1, TRPM2, TRPV1, and TRPV4) are high in neurons related 
to nociception, including dorsal root ganglion and trigeminal ganglia neurons. 

For this reason, this research field promises to shed light on this intricated matrix 
linking oxidative stress, calcium signaling (via TRP channels), and inflammatory signals 
in different pain modalities, including neuropathic pain and chemotherapy-induced 
peripheral pain. In such a way, all this intense research activity will enable us to 
design individual and rational treatment strategies for pain relief, such as the use of 
molecular neurosurgery.
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Editorial on the Research Topic

Involvements of TRP Channels and Oxidative Stress in Pain

Defined as an unpleasant sensory and emotional experience associated with actual or potential
tissue damage, pain impairs the quality of life of millions of people worldwide suffering from a
wide range of diseases. Thus, efficient pain relief is a socioeconomic priority at the present time.
Significant research efforts are being made by the international scientific community to determine
the mechanisms underlying nociception, that is, the transmission and integration of noxious
stimuli by our nervous system. Growing evidence points to a complex network including oxidative
and nitrosative stress, inflammatory response and cation signaling. In this sense, transient receptor
potential (TRP) channels have attracted researchers’ attention. Discovered in the photoreceptor
cells of Drosophila flies, TRP superfamily is presented in different species and grouped into seven
subfamilies: TRPA, TRPC, TRPM, TRPML, TRPP, TRPV, and TPRN. The activation of these
channels depends on a number of different physical or chemical stimuli. In mammals, 28 isoforms
have been identified. Expression levels are very different in tissues and cells, mediating a myriad
of processes in our organism, such as sensory physiology. Last years, it has been observed that the
expression levels of four TRP channels (TRPA1, TRPM2, TRPV1, and TRPV4) are high in neurons
related to nociception, including dorsal root ganglia (DRG) and trigeminal ganglia neurons. In the
next decades, all this intense research on the involvements of TRP channels and oxidative stress
in pain could provide essential information for the design of individual and rational treatment
strategies for pain relief.

As an introduction to this interesting topic, Jardín et al. propose an update review focused on
the function of TRPs in the transduction of noxious sensation, especially TRPV1 and TRPA1,
and the current knowledge about differential expression and sensitivity in mammals. Moreover,
as many researchers have pointed out, there is a functional link between these two channels. It
has been observed that some TRPV1-positive neurons co-express the TRPA1 channel; in addition,
its activities are closely modulated by TRPV1 channel. In this sense, the research published by
Masuoka et al. in this special issue describes that the activities of TRPV1 channel are alsomodulated
by the presence of TRPA1 channel in primary sensory neurons. Thus, this kind of bidirectional
link between specific TRP channels activities is another interesting issue which should be further
investigated in the future. Finally, we must not forget that research in other species can shed
light on intramolecular mechanisms underlying the functioning of TRP channels. For that reason,
Kühn et al. offer us a fascinating vision of the TRPM2 channel in both humans and sea anemone
Nematostella vectensis. As authors reflect, this particular chanzyme co-activated by intracelullar
ADP-ribose and Ca2+ has evolved from one gene in a strikingly divergent manner but also has
gained analogous functional properties in both species.

4

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01084
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01084&domain=pdf&date_stamp=2018-08-08
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pariente@unex.es
https://doi.org/10.3389/fphys.2018.01084
https://www.frontiersin.org/articles/10.3389/fphys.2018.01084/full
http://loop.frontiersin.org/people/416699/overview
http://loop.frontiersin.org/people/392440/overview
http://loop.frontiersin.org/people/392150/overview
http://loop.frontiersin.org/people/392864/overview
https://www.frontiersin.org/research-topics/5551/involvements-of-trp-channels-and-oxidative-stress-in-pain
https://doi.org/10.3389/fphys.2017.00392
https://doi.org/10.3389/fphys.2017.00272
https://doi.org/10.3389/fphys.2017.00879


Carrasco et al. TRP Channels, Oxidative Stress and Pain

Turning to mammals, a growing number of evidences suggest
that oxidative stress and TRP channels are involved in noxious
sensation. Firstly, different types of pain must be distinguished,
such as neuropathic pain (NP). As discussed by Carrasco et
al., the incidence of this condition may increase in next years
and become to a worldwide public health problem. Current
knowledge points out mitochondrial dysfunction induced by
nitro-oxidative stress, inflammatory signals, and the overload
in intracellular calcium ion as possible underlying mechanisms.
Among other chronic diseases, NP is present in cancer patients
following treatment with chemotherapeutic agents, mainly
oxaliplatin, what is known as chemotherapy-induced peripheral
pain (CIPP). Naziroglu and Braidy summarize the scientific
evidence related to five temperature-regulated TRP channels
(TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) as novel targets
for treating this hardly bearable condition that may persist
from months to years following cessation of treatment. Focusing
on CIPP caused by oxalipatin, this special issue also contains
an experimental research performed by Miyake et al. This
interesting study clarifies how this noxious chemotherapeutic
agent can act differently on TRPA1 channel, depending on the
dose. In addition, results showed that ROS-mediated TRPA1
activation may be a common mechanism in the CIPP caused by
low and high oxaliplatin concentrations. Likewise, Uslusoy et al.
have observed that increased mitochondrial ROS levels, as well as
excessive Ca2+ entry and apoptosis, are involved in NP caused
by sciatic nerve injury (SNI). As authors demonstrated, this
condition can be experimentally alleviated in rats by Hypericum
perforatum treatment. Thus, the vegetal extract seems to act
through inhibition of TRPM2 and TRPV1 channels in sciatic
nerve and DRG neurons of SNI-induced rats. Furthermore,
the Research Topic also collects experimental works about
other pain modalities. The study performed by Sandoval et al.
showed the interconnection between Cdk5 activation and ROS
production by NOX1 and NOX2/NADPH oxidase complexes
during inflammatory pain. Moreover, oxidative stress has been
observed to be involved in urinary bladder disorders, particularly,
mediating the activation of TRPA1. Although this channel
seems to be responsible for urinary bladder abnormalities and
hyperalgesia in acute cystitis, its implication in chronic bladder
inflammation is less clear. In their work, Oyama et al. provide
evidence supporting that, as suspected, TRPA1 might not play a
major role in the physiopathology of long-lasting cystitis.

In summary, this research field promises to shed light
on this intricated matrix linking oxidative stress, calcium
signaling (via TRP channels) and inflammatory signals in
different pain modalities. In such a way, all this intense
research activity will enable us to design individual and
rational treatment strategies for pain relief. In fact, molecular
neurosurgery appears as one the future medical possibilities.
As explained by Pecze et al., some molecular agents can
be used as nano-surgery scalpels, which selectively would
remove neurons responsible for noxious sensation. Thus,
resiniferatoxin has recently entered to phase II clinical trial,
demonstrating its safety and efficay in the removal of specific
TRPV1+ inflammatory pain-sensing neurons. This new
medical concept could revolutionize not only the treatment
of morphine-insensitive pain conditions but also the cancer
research.

In this research topic issue, 61 authors contributed 10 articles
(6 original research and 4 reviews) from different countries in the
world (Spain, Turkey, Chile, USA, Australia, Japan, Germany,
Switzerland, and Hungary). This multidisciplinary approach
(Physiology, Neuroscience, Geroscience, Pharmacology,
Chemistry, Medicine, and Biophysics) gives the special
issue to a comprehensive analytical insight, discussing
current understanding and offering new experimental data
about the involvements of TRP channels and oxidative
stress in pain. We hope this compilation provides a
knowledge base for future researchers of this promising
research area.
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TRPs in Pain Sensation

Isaac Jardín 1, José J. López 1*, Raquel Diez 1, José Sánchez-Collado 1, Carlos Cantonero 1,

Letizia Albarrán 1, Geoffrey E. Woodard 2, Pedro C. Redondo 1, Ginés M. Salido 1,

Tarik Smani 3 and Juan A. Rosado 1
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According to the International Association for the Study of Pain (IASP) pain is

characterized as an “unpleasant sensory and emotional experience associated with

actual or potential tissue damage”. The TRP super-family, compressing up to 28 isoforms

in mammals, mediates a myriad of physiological and pathophysiological processes, pain

among them. TRP channel might be constituted by similar or different TRP subunits,

which will result in the formation of homomeric or heteromeric channels with distinct

properties and functions. In this review we will discuss about the function of TRPs in

pain, focusing on TRP channles that participate in the transduction of noxious sensation,

especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a

large number of physical and chemical stimuli.

Keywords: calcium entry, TRPs, TRPA1, TRPV1, noxious sensation

INTRODUCTION

Cytosolic free Ca2+ concentration ([Ca2+]c) is a key factor for the regulation of a large variety
of cellular functions, ranging from short-term processes, such as muscle contraction, exocytosis,
or platelet aggregation, to long-term events, including cell proliferation or apoptosis (Berridge
et al., 2000). Physiological agonists modulate [Ca2+]c through the regulation of a number of
Ca2+ transport mechanisms, based on the activation of more or less Ca2+ selective channels
and transporters. Agonist-induced Ca2+ mobilization consist, among others, of (1) the release
of Ca2+ from agonist-sensitive Ca2+ stores, mostly the endoplasmic reticulum (ER) and acidic
organelles (Lopez et al., 2005; Galione, 2006; Aulestia et al., 2011), (2) extracellular Ca2+ entry
through plasma membrane permeable channels (Salido et al., 2009a), (3) cytosolic Ca2+ clearance
either by Ca2+ uptake into intracellular stores (Lipskaia et al., 2014) or Ca2+ extrusion across
the plasma membrane (Redondo et al., 2005), and (4) Ca2+ buffering with the participation
of the mitochondria (Montero et al., 2001). While Ca2+ release from the finite intracellular
Ca2+ compartments has been reported to regulate different cellular events, Ca2+ entry from the
extracellular medium is required for the replenishment of the internal stores and also for full
activation of different cellular functions. Ca2+ entry might occur through a variety of mechanisms,
which might be grouped in voltage-operated and receptor-operated Ca2+ influx processes. In
turn, according to the activation route, receptor-operated Ca2+ entry might be classified into
receptor-mediated, second messenger-operated and store-operated Ca2+ entry mechanisms. The
simplest mechanism is receptor-mediated Ca2+ influx, which occurs through channels allosterically
regulated by agonist binding. Second messenger-operated Ca2+ entry requires the generation
of a second messenger that directly gates the channel. On the other hand, store-operated Ca2+

entry (SOCE) is regulated by the filling state of the intracellular Ca2+ stores, mainly the ER
(Putney, 1986), but also acidic organelles (Zbidi et al., 2011). According to this, a reduction in

6
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the intraluminal Ca2+ concentration results in the opening of
channels in the plasma membrane (Putney, 1986).

Among the wide variety of Ca2+-permeable channels
identified, TRP channels play a relevant functional role in
mammalian cells. TRP channels were identified in a Drosophila
mutant with visual defects, where a mutation in a channel
permeable to Na+ and Ca2+ leads to transient, rather than
sustained, receptor potential in the photoreceptors (Minke,
1977). Since the identification of the mammalian homologs of
the Drosophila TRPs in 1995 (Wes et al., 1995; Zhu et al., 1995)
these channels have been proposed as candidates to conduct both
second messenger- as well as store-operated Ca2+ entry.

TRP channels are a group of ion channels located in the
plasma membrane as well as in the membrane of a number of
intracellular organelles, where they participate in the homeostasis
of intracellular Ca2+, as well as other ions, such as Mg2+ (Fleig
and Penner, 2004; Ambudkar et al., 2007; Salido et al., 2009b).
Since TRP proteins were first described a number of isoforms
have been identified, which are grouped into seven subfamilies:
TRPC, TRPV, TRPM, TRPP, TRPML, TRPA, and TRPN (the
latter only expressed in fish, flies, and worms) and each subfamily
includes one or more members (Montell et al., 2002; Li et al.,
2011).

The structure of TRP channels comprises six membrane-
spanning helices with a pore-forming loop between the last two
transmembrane segments. The N- and C-terminal segments are
located in the cytosol and vary in the number of amino acids and
the functional motifs among the different subfamilies. Thus, the
N termini of TRPC, TRPA, TRPV, and TRPN subfamilies contain
between 4 and 30 tandem copies of ankyrin repeat domains,
involved in protein-protein interaction (Latorre et al., 2009).
Furthermore, the cytoplasmic N and/or C-termini of TRPC,
TRPM, TRPP, and TRPV channels have been reported to contain
coiled coil domains, which play an important role in the assembly
of homomeric and heteromeric complexes (Lepage and Boulay,
2007; Schindl and Romanin, 2007) as well as in the interaction
with the ER Ca2+ sensor STIM1 (Lee et al., 2014). TRPC, TRPV,
and TRPM subfamilies also contain a conserved TRP box, a
short hydrophobic region located just C-terminal of the putative
last transmembrane segment (Nilius et al., 2006). Certain TRP
members are regulated by cytosolic Ca2+ through the interaction
with C-terminal located EF-hand motifs, including TRPA1,
TRPML1, and TRPP2 (Tsiokas, 2009), or calmodulin and IP3
receptor-binding regions, this is the case of TRPC, TRPM,
and TRPV members (Tang et al., 2001; Dionisio et al., 2011).
Finally, other more restricted motifs have been reported in
different TRP members, including the tubulin-binding domain
reported in TRPV1 (Sardar et al., 2012), the kinase domain
of TRPM6 and TRPM7 (Schlingmann and Gudermann, 2005),
the conserved proline-rich region, downstream of the EWKFAR
motif, responsible for the interaction with Homer proteins and
immunophilins (Yuan et al., 2003; Sinkins et al., 2004; Jardin
et al., 2013; Lopez et al., 2013; Dionisio et al., 2015) or the
voltage sensing domain reported in TRPV1, TRPV3, TRPM8,
and TRPM4 (Nilius et al., 2003, 2005), among others.

TRP channels are activated and modulated by a wide
variety of chemical and physical stimuli including receptor

occupation via activation of phospholipase C, which, in turn,
leads to the hydrolysis of phosphatidylinositol 4,5-bisphospate
(PIP2) and the generation of lipid messengers, biosynthesis
of IP3, and subsequent Ca2+ release from the intracellular
stores, the activation of serine/threonine or tyrosine kinases
or ligand binding, including exogenous ligands, such as
capsaicin or allyl isothiocyanate, and endogenous molecules,
including eicosanoids, diacylglycerol, phosphoinositides, purine
nucleotides, or inorganic ions, such as Ca2+ and Mg2+

(Harteneck et al., 2011; Vetter and Lewis, 2011).
The sensitivity of TRP channels to a number of physical

and chemical stimuli allows these channels to be essential
components of different sensory processes, such as vision,
hearing, taste, tactile and thermal sensation, redox status, or pain
(Voets et al., 2005; Woodard et al., 2007; Wetsel, 2011; Feng,
2014; Ogawa et al., 2016).

TRP CHANNELS AND NOCICEPTION

Pain and Nociception
Pain is a subjective unpleasant sensory experience that might
be associated to real or potential damage. Noxious stimuli
are detected by pain receptors or nociceptors, nerve endings
that specifically respond to damaging stimuli and transmit the
information to the spinal cord, through which the message
is transmitted to higher nerve centers, including the brain
stem reticular formation, thalamus, somatosensory cortex, and
limbic system (Osterweis et al., 1987). Nociception, therefore,
is the process of transmission of noxious signals by nociceptors
in the primary afferent nerve fibers (Dai, 2016). Noxious
stimuli are classified into chemical, mechanical and thermal.
The transduction of nociception includes several chemical
compounds that might be released by damaged tissue, such as
K+, histamine and serotonin, or generated by enzymes activated
by tissue damage, including prostaglandins, leukotrienes, or
bradikinin (Schaible et al., 2011; Viguier et al., 2013).

A major function of the nociceptors is to detect potentially
damaging stimuli with a threshold that allows perform activities
without pain but sensitive enough to warn of the risk of damage
(Patapoutian et al., 2009). The detection of noxious stimuli by
nociceptors involves the expression of nociceptive ion channels,
which basically define the functional properties of nociceptors.
The largest group of nociceptive ion channels is the TRP channel
family (Clapham, 2003; Patapoutian et al., 2009), especially
TRPV1 and TRPA1 members. Activation of nociceptive TRP ion
channels in sensitive (i.e., dorsal root ganglion, DRG) neurons
leads to the influx of Na+ and Ca2+ across the plasma membrane
resulting in membrane depolarization that, in turn, might trigger
voltage-gated ion channel-dependent action potentials (Gees
et al., 2010) that transmit the information to the spinal cord and
the higher nerve centers as described above.

Nociceptive TRP Ion Channels
TRPV1

TRPV1 is one of the six members of the TRPV subfamily and
is involved in the detection of noxious sensation (Caterina and
Julius, 2001). TRPV1 has been found to be highly expressed in
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the plasma membrane of nociceptive DRG neurons (Caterina
and Julius, 2001). Furthermore, functional expression of this
channel has also been reported to be expressed in the ER of
DRG neurons, where it is involved in Ca2+ efflux from the
ER upon stimulation with vanilloids; although its sensitivity to
agonists is smaller when located in the ER membrane probably
due to a mechanism mediated by calmodulin, which might be
important for neuronal biology (Gallego-Sandin et al., 2009). The
structure of TRPV1 follows the pattern of the TRP channels,
with six transmembrane spanning domains, six ankyrin repeats
in the N-terminus and a large C-terminal region (Cao et al.,

2013; Figure 1). Three splice variants of TRPV1 have been
described: VR.5’sv, TRPV1b, and TRPV1var. VR.5’sv (vanilloid
receptor 5’ splice variant) shows a shorter N-terminal region due
to both an alternative initiation of translation and the lack of
transcription of an exon resulting in loss of 60 amino acids in
the N-terminus (Schumacher et al., 2000) and do not respond
to capsaicin (Eilers et al., 2007). TRPV1b shows a modification
in the N-terminal region encoded by exon 7 that leads to loss of
10 amino acids (Wang et al., 2004) and, as well as the VR.5’sv
variant, has been propose to function as a dominant-negative
channel subunit (Pecze et al., 2008; Schumacher and Eilers, 2010).

FIGURE 1 | Molecular structure of TRPA1 and TRPV1. (A) Scheme of TRPV1 and TRPA1 channels depicting individual domains. Numbers correspond to amino acids

positions of human TRPV1 and TRPA1, respectively. (B) Cartoon representing TRPV1 and TRPA1 monomers morphology within a bilayer membrane. The channel

spans the membrane up to six times with the pore located between transmembrane domains (TM) 5 and 6, and both N-terminal and C-terminal domains situated in

the cytosol. (C,D) Cartoons depicting the tetrameric assembly of TRPV1 subunits based on the X-ray crystal structure of Rattus norvegicus as described in Cao et al.

(2013). As mentioned above, the ion permeation pathway is formed by TM5 and TM6, while the remaining TM domains 1–4, surround the pore. (C) Represents a

frontal view of the channel while (D) sketches an upside-down perspective.

Frontiers in Physiology | www.frontiersin.org June 2017 | Volume 8 | Article 3928

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Jardín et al. TRP Channels in Pain

TRPV1var is generated by a failure to splice out intron 5, thus
leading to translation of a portion of the N-terminal region that
lacks the transmembrane spanning domains and the C-terminal
intracellular region (Tian et al., 2006). It has been reported
that TRPV1var, when coexpressed with the full-length TRPV1
subunits, might modulate its responses, for instance, it has been
shown to increase the response of TRPV1 to resiniferatoxin (Tian
et al., 2006).

TRPV1 is a polymodal channel sensitive to different physical
and chemical stimuli, including heat (see above), pH under 5.9
(Tominaga et al., 1998), and mechanical stimuli (Walker et al.,
2003). In addition, TRPV1 is activated by a variety of ligands
(Table 1) including vanilloids, such as capsaicinoids (the most
representative is capsaicin, the major pungent constituent of
Capsicum fruit; Caterina et al., 1997) and resiniferanoids (Szallasi
and Blumberg, 1989), α, β-unsaturated dialdehydes isolated
from a variety of plants, fungi, algae, sponges, arthropods, and

molluscs (Jonassohn et al., 1995), cannabinoids from Cannabis
sativa (Bisogno et al., 2001), ginsenosides found in the ginseng
Panax ginseng (Jung et al., 2001), a number of animal-derived
toxins, such as VaTx1, VaTx2, and VaTx3 found in the venom of
the tarantula Psalmopoeus cambridgei activates TRPV1 channels
(Siemens et al., 2006) while other toxins, including agatoxin 489
and agatoxin 505, from the spider Agelenopsis aperta, and the
analgesic polypeptide HC1, from the see anemona Heteractis
crispa, elicits TRPV1 inhibition (Kitaguchi and Swartz, 2005;
Andreev et al., 2008). Furthermore, a number of endogenous
molecules, known as endovanilloids, including leukotriene B4
and 12-S-HPETE and anandamide (a cannabinoid receptor
agonist) have been found to be potent activators of TRPV1
channels (Di Marzo et al., 2002; Hermann et al., 2003). On the
other hand, alkaloids, such as nicotine (from Nicotiana tabacum)
or yohimbine (from the bark of the tree Pausinystalia yohimbe),
phenols like grifolin, neogrifolin, and albaconol (present in the

TABLE 1 | Agonists and antagonists of TRPV1 and TRPA1 channels.

Channel Agonist Potency (EC50) Antagonist Potency (IC50) References

TRPV1 Capsaicin 0.04–1 µM Agatoxin 489 0.3 µM Jung et al., 2001; Behrendt et al., 2004; Varga et al., 2005;

Rami et al., 2006; Harteneck et al., 2011; Planells-Cases

et al., 2011; Vetter and Lewis, 2011; Xia et al., 2011
Eugenol 1 mM Agatoxin 505 0.3 µM

Resiniferatoxin 39 nM APHC1 54 nM

Polygodial 5 µM Capsazepine 420 nM

Cinnamodial 0.6 µM Nicotine 1 mM

Isovelleral 100 nM Yohimbine 25 µM

Cannabidiol 3 µM Acetylsalicylic acid 1 µM

Ginsenoside Rc ? Grifolin 26 µM

VaTx1 12 µM Neogrifolin 7 µM

VaTx2 3 µM Albaconol 17 µM

VaTx3 0.3 µM BCTC 35 nM

Leukotriene B4 30 µM AMG-517 32 nM

12-S-HPETE 10 µM SB366791 651 nM

Anandamide 30 µM

TRPA1 Allyl isothiocyanate 1–6.5 µM Camphor 0.6 mM Karashima et al., 2007; Trevisani et al., 2007; Cruz-Orengo

et al., 2008; Eid et al., 2008; Sculptoreanu et al., 2010;

Harteneck et al., 2011; Vetter and Lewis, 2011; Trevisan

et al., 2014; Wei et al., 2009; McGaraughty et al., 2010;

Brenneis et al., 2011; Sisignano et al., 2012

Cinnamaldehide 60µM HC-030031 6.2 µM

Methyl salicylate 600 µM A-967079 67 nM

Allicin 7.5 µM Chembridge-5861528 ?

Ajoene 0.5 µM

Diallyl trisufphide 0.5 µM

Hydroxy-α-sanshool 69 µM

Acrolein 5 µM

Crotonaldehyde 16 µM

19 tetra-hydrocannabinol 12 µM

Cannabinol 20 µM

Hydrogen peroxide ?

Nitrooleic acid ?

4-hydroxy-2-nonenal 27 µM

15-deoxy- 112,14-PGJ2 ?

5,6-EET ?

8,9-EET ?

?
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mushroom Albatrellus confluens) or acetylsalicylic acid have
been found to inhibit the activity of TRPV1 channels, for a
review see Vetter and Lewis (2011). Endogenous modulators
of TRPV1 activity include noradrenaline, which is able to
attenuate capsaicin-activated response by ∼60%, a mechanism
mediated by activation of α2 adrenergic receptors that has been
reported to underlie the inhibition of the incoming noxious
stimuli at the dorsal horn of the spinal cord (Chakraborty et al.,
2017).

TRPA1

TRPA1, also known as P120 and ANKTM1, is the sole member of
the TRPA subfamily. It was first described in human fibroblasts
where its expression is lost after oncogenic transformation
(Jaquemar et al., 1999). TRPA1 has been found to be expressed
in peptidergic nociceptors, as well as in a number of non-
neuronal cells, including keratinocytes (Atoyan et al., 2009),
megakaryocytes (Albarran et al., 2013) or enterochromaffin cells
(Nozawa et al., 2009), and tissues (for a review see Benemei et al.,
2014).

In addition to TRPV1, TRPA1 is specialized in the
transduction of noxious stimuli in mammals. In fact, a certain
degree of interaction between both channels has been reported.
TRPV1 is expressed in most TRPA1-expressing neurons and
about 30% of TRPV1-expressing sensory neurons also exhibit
TRPA1 expression (Story et al., 2003). Furthermore, TRPV1 has
been reported to influence several features of the TRPA1 channel,
such as voltage–current relationships and open probability
(Staruschenko et al., 2010). Further pieces of evidence for the
functional interaction between both channels comes from studies
reporting that the biophysical properties of TRPA1 are different
when TRPA1 is expressed alone or coexpressed with TRPV1 and
that the TRPV1 and TRPA1 agonists, capsaicin and mustard oil,
are able to induce heterologously desensitization of TRPA1 and
TRPV1 via calcineurin-dependent and independent pathways,
respectively (Ruparel et al., 2008).

The structure of TRPA1 shows the features of the TRP family
and consists of six membrane-spanning domains and a presumed
pore-forming region between the fifth and sixth transmembrane
domains. Its N- and C-terminal segments are predicted to be
located in the cytoplasm (Figure 1). In addition, an unusual and
characteristic feature of TRPA1 is the presence of a very long
N-terminus, which contains at least 16 predicted ankyrin repeat
domains (Story et al., 2003; Paulsen et al., 2015). It is the only
mammalian TRP channel with such high number of ankyrin
repeats, which might provide the protein a certain degree of
elasticity, as well as, the ability to interact with other proteins,
especially those of the cytoskeleton (Corey et al., 2004; Sotomayor
et al., 2005).

TRPA1 is a polymodal ion channel that can be activated by
a number of physical and chemical stimuli. Among the physical
stimuli, TRPA1 is sensitive to temperature. The 10 thermo-
TRP channels identified to date, including TRPV1-4, TRPM2,
TRPM4, TRPM5, TRPM8, TRPC5, and TRPA1, are activated by
different temperature ranges. The mammalian TRPs activated by
heat are TRPV2 (activated at temperatures over 52◦C), TRPV1
(sensitive to temperatures over 42◦C), TRPV4 (activated by

temperatures between 27 and 42◦C), TRPV3 (by temperature
over 33◦C), TRPM2 (sensitive to temperatures between 35
and 42◦C), TRPM4 and TRPM5 (sensitive to temperatures
between 15 and 35◦C). On the other hand, TRPC5 activity is
potentiated at temperatures below 30◦C, TRPM8 is sensitive to
temperatures below 25◦C and TRPA1 is activated at temperatures
below 17◦C (Caterina et al., 1999; Dhaka et al., 2006; Vriens
et al., 2014). As TRPV1 has been associated to painful heat,
TRPA1 has been reported to be associated to noxious cold
sensation (Patapoutian et al., 2003). The thermal sensitivity of
TRPA1 is conserved throughout evolution, although the range
of temperatures that activates the channel differs among the
distinct vertebrates, thus, in reptiles and amphibians TRPA1 is
sensitive to heat and, in certain snakes, TRPA1 provides sufficient
thermal sensitivity for infrared detection (Poletini et al., 2015;
Kang, 2016).

In addition, TRPA1 can be activated by a number of chemical
stimuli (Table 1), including exogenous compounds, such as
isothiocyanates, cinnamaldehyde, and methyl salicylate (the
pungent compounds associated to burning sensation present
in mustard oil, wasabi, horseradish, cinnamon and wintergreen
oil; Bandell et al., 2004), allicin, ajoene, and diallyl sulfides
(organosulfur compounds present in garlic; Bautista et al., 2006),
acrolein, and crotonaldehyde (present in cigarette smoke; Andre
et al., 2008), cannabinoids, such as 1

9 tetra-hydrocannabinoland
cannabinol (Jordt et al., 2004), alkylamides, including hydroxy-
α-sanshool (one of the compounds of the Szechuan pepper; Riera
et al., 2009; Vetter and Lewis, 2011), or endogenous compounds
such as hydrogen peroxide (Trevisan et al., 2014), nitro-oleic
acid, a byproduct of nitric oxide (Sculptoreanu et al., 2010), 4-
hydroxy-2-nonenal (Trevisani et al., 2007), the cyclopentenone
prostaglandin D2 metabolite 15-deoxy- 1

12,14-prostaglandin J2
(Cruz-Orengo et al., 2008), and different epoxyeicosatrienoic
acids (EET), including 5,6-EET (Sisignano et al., 2012) and 8,9-
EET (Brenneis et al., 2011). By contrast, a number of TRPA1
antagonists have been identified, including the synthetic HC-
030031, its derivative chembridge-5861528 or A-967079, among
others (Table 1). Most exogenous compounds activate TRPA1
channels by covalent modification of cysteines and lysines in
the N-terminus (Hinman et al., 2006; Macpherson et al., 2007;
Nilius et al., 2011), although it remains to be determined the
mechanism of activation of the channel by certain endogenous
compounds.

In addition to TRPV1 and TRPA1, other TRP members
have been associated to noxious sensation, including TRPM3,
expressed in a number of small-diameter sensory neurons
from dorsal root and trigeminal ganglia where it is involved
in the nocifensive response to heat (Vriens et al., 2011),
TRPV4, presented as an osmo-transducer in primary afferent
nociceptive nerve fibers (Alessandri-Haber et al., 2003), TRPC1
and TRPC6, which cooperate with TRPV4 in the mediation of
hyperalgesia to mechanical and hypotonic stimuli induced by
inflammatory mediators (Alessandri-Haber et al., 2009), TRPV3,
a channel sensitive to farnesyl pyrophosphate that is involved
in the sensitivity to noxious heat (Bang et al., 2010) TRPM8,
involved in cold hyperalgesia and tactile allodynia (Salat and
Filipek, 2015), TRPC3, associated to the mediation of store-
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and receptor-operated Ca2+ entry in DRG neurons (Alkhani
et al., 2014), TRPC4, which is required for the detection or
transmission of colonic visceral pain sensation, and TRPC5,
which, together with TRPC4, is relevant for pain hypersensitivity
and neuropathic pain (Westlund et al., 2014; Wei et al., 2015);
however, the involvement of these channels in pain detection or
transmission has been less characterized than that of TRPV1 or
TRPA1.

NOCICEPTIVE TRP CHANNELS AND PAIN

PATHOLOGIES

Nociceptive TRP channels have been found to be involved
in a number of pain modalities, including inflammatory pain,
neuropathic pain, visceral pain, and pain associated to certain
pathological conditions, including cancer or migraine (Mickle
et al., 2016).

The involvement of TRPV1 in inflammatory pain is the most
prominent among the TRP channels. TRPV1 antagonists have
been shown to be efficient attenuating thermal hyperalgesia
induced under inflammatory conditions and increasing the
noxious heat threshold (Tekus et al., 2010) and similar results
have been obtained in TRPV1 lacking mice models (Davis
et al., 2000). Further evidence supporting the role of TRPV1 in
inflammatory pain comes from studies reporting that TRPV1
is essential for the analgesia induced by electroacupuncture in
a mouse model of inflammatory pain (Liao et al., 2017). In
addition to TRPV1, TRPA1 has been presented as a candidate
to mediate inflammatory mechanical hyperalgesia as well as cold
hyperalgesia under inflammatory conditions (Eid et al., 2008;
Da Costa et al., 2010). Furthermore, TRPA1 has been reported
to modulate inflammation and pruritogen responses in allergic
contact dermatitis. TRPA1 is involved in skin edema, leukocyte
infiltration and antihistamine-resistant scratching inmice treated
with oxazolone (Liu et al., 2013).

Neuropathic pain occurs as a result of nerve injury. The
role of TRPV1 has been demonstrated in neuropathic pain
associated to diabetes or the administration of chemotherapeutics
(Bourinet et al., 2014). A more recent study has revealed a
high coexpression between TRPV1 and different sensitizing
agents, such as PKCε, during the development of neuropathic
pain (Malek et al., 2015) and blockade of this mechanism
by quercetin has been found to attenuate paclitaxel-induced
neuropathic pain (Gao et al., 2016). TRPA1 has also been
proposed to mediate mechanical hyperalgesia and allodynia
during neuropathic pain in diabetic patients or derived from
the administration of chemotherapeutics, probably mediated
by the synthesis of reactive oxygen and nitrogen species
(Kim and Hwang, 2013; Huang et al., 2017), which are
well-known TRPA1 activators (Trevisan et al., 2016). TRPA1
and TRPV1 have also been involved in the development of
migraine, which can be activated by a number of TRPA1
agonists (Benemei et al., 2014) and might be attenuated by
repeated desensitizing administration of capsaicin to the nasal
mucosa (Fusco et al., 2003). Furthermore, ethanol, a well-known

trigger of migraine, has been reported to induce TRPV1
activation (Nicoletti et al., 2008). Activation of TRP channels,
such as TRPV1 and TRPA1, has been reported to induce
the trigeminal calcitonin gene-related peptide pathway, which
mediate neurogenic inflammation, thus leading to the migraine
attacks (Benemei et al., 2013).

Visceral pain occurs in internal organs and its transduction
involves different TRP family members, including TRPV1,
TRPA1, and TRPM8. Silencing the expression of TRPV1 by
RNAi has been reported to attenuate visceral pain in vivo
(Christoph et al., 2006). Consistent with this, a more recent
study has revealed that decreased expression of miR-199 in
irritable bowel syndrome, which results in enhanced expression
of TRPV1, leads to increased visceral hypersensitivity (Zhou
et al., 2016). On the other hand, the luminal gasotransmitter
hydrogen disulphide has been reported to induce colonic pain
and hyperalgesia via activation of Cav3.2 and TRPA1 channels
(Tsubota-Matsunami et al., 2012). Furthermore, the TRPA1
agonist ASP7663 has been reported to prevent constipation
(a gastrointestinal motility disorder) when administered orally,
and induce analgesic abdominal effects when it is intravenously
administered (Kojima et al., 2014). Finally, TRPM8 has
been found to play a relevant role in overactive bladder
and painful bladder syndrome and it has been reported
that administration of the TRPM8 channel blocker AMTB
is able attenuate this syndrome in rats (Lashinger et al.,
2008).

Chronic pain is also a multidimensional complication of
cancer or its treatment. The role of TRPV1 in bone cancer
pain has been widely investigated. TRPV1 has been found
to be associated to bone cancer pain, as demonstrated by
pharmacological inactivation of TRPV1 as well as disruption
of the TRPV1 gene (Ghilardi et al., 2005). Furthermore, the
TRPV1 antagonist SB366791 has been reported to potentiate the
analgesic effect of intraperitoneal administration of morphine
in a mouse model of bone cancer pain. The expression of
TRPV1, as well as the TRPV1-dependent currents, have been
found to be enhanced upon the development of bone cancer
in DRG neurons. In these cells, capsaicin-mediated currents
were potentiated by administration of lysophosphatidic acid
through a mechanism dependent on PKCε but independent on
PKA and the small GTPase Rho (Pan et al., 2010). Two more
recent studes have revealed that the up-regulated expression and
function of TRPV1 in bone cancer painmight be attributed to the
the presence of tumor tissue-derived endogenous formaldehyde,
which enhances TRPV1 expression via mitogen-activated protein
kinase and PI3K, but independently on PKC (Han et al., 2012), as
well as the regulatory effects of insulin-like growth factor-1 (Li
et al., 2014). Finally, JAK/PI3K-dependent TRPV1 up-regulation
has been reported to be involved in peripheral sensitization
and bone cancer-induced pain evoked by interleukin-6 (Fang
et al., 2015). TRPV1 and TRPA1 have also been found to
be involved in neuropathic pain due to the administration
of chemotherapeutics, including oxaliplatin (Park et al., 2015),
5-fluorouracil (Yamaguchi et al., 2016), or docetaxel (Huang
et al., 2017).
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Currently, there is a body of studies and clinical trials
identifying new antagonists of the nociceptive TRPs and
characterizing their effects in the in situ attenuation of pain
transduction at the nociceptors.
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The transient receptor potential vanilloid 1 (TRPV1) channel is highly expressed in a

subset of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia of

experimental animals, responsible for nociception. Many researches have revealed that

some TRPV1-positive neurons co-express the transient receptor potential ankyrin 1

(TRPA1) channel whose activities are closely modulated by TRPV1 channel. However,

it is less investigated whether the activities of TRPV1 channel are modulated by the

presence of TRPA1 channel in primary sensory neurons. This study clarified the difference

in electrophysiological responses induced by TRPV1 channel activation between

TRPA1-positive and TRPA1-negative DRG. TRPV1 and TRPA1 channel activations were

evoked by capsaicin (1µM), a TRPV1 agonist, and allyl isothiocyanate (AITC; 500µM), a

TRPA1 agonist, respectively. Capsaicin perfusion for 15 s caused a large inward current

without a desensitization phase at a membrane potential of −70mV in AITC-insensitive

DRG (current density; 29.6 ± 5.6 pA/pF, time constant of decay; 12.8 ± 1.8 s). The

capsaicin-induced currents in AITC-sensitive DRG had a small current density (12.7± 2.9

pA/pF) with a large time constant of decay (24.3± 5.4 s). In calcium imaging with Fura-2,

the peak response by capsaicin was small and duration reaching the peak response was

long in AITC-sensitive neurons. These electrophysiological differences were completely

eliminated by HC-030031, a TRPA1 antagonist, in an extracellular solution or 10mM

EGTA, a Ca2+ chelator, in an internal solution. Capsaicin perfusion for 120 s desensitized

the inward currents after a transient peak. The decay during capsaicin perfusion was

notably slow in AITC-sensitive DRG; ratio of capsaicin-induced current 60 s after the

treatment per the peak current in AITC-sensitive neurons (78± 9%) was larger than that in

AITC-insensitive neurons (48± 5%). The capsaicin-induced current in the desensitization

phase was attenuated by HC-030031 in AITC-insensitive DRG. These results indicate

that (1) TRPV1-mediated currents in TRPA1-positive neurons characterize small current

densities with slow decay, which is caused by TRPA1 channel activities and intracellular

Ca2+ mobilization and (2) desensitization of TRPV1-mediated current in TRPA1-positive

neurons is apparently slow, due to appending TRPA1-mediated current.

Keywords: TRPA1, TRPV1, dorsal root ganglion, intracellular calcium ion, membrane current
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INTROUCTION

The transient receptor potential vanilloid 1 (TRPV1) channel
is a polymodal sensor, which is sensitive to noxious heat,
acidic pH, and irritant vanilloids, and is highly expressed
in a subset of sensory neurons in the dorsal root ganglia
(DRG) and trigeminal ganglia, predominantly contributing
to nociception. The activation of TRPV1 channels, Ca2+-
permeable cation channels, induces a large inward current,
thereby elevating intracellular Ca2+ concentration because of
the influx of extracellular Ca2+ in primary sensory neurons
(Caterina et al., 1997). The depolarization of sensory neurons
induced by the TRPV1-mediated current was shown to
be transmitted as nociceptive information to the central
nervous system (Caterina et al., 2000). The TRPV1-mediated
current responses were found to be regulated by various
receptors, such as bradykinin receptors (Tang et al., 2004),
purinergic receptors (Stanchev et al., 2009), and glutamate
receptors (Masuoka et al., 2015; Szteyn et al., 2015), thereby
modulating nociception. In contrast, elevated intracellular Ca2+

concentration induced by TRPV1 channel activation affects
the functions of nociceptors and ion channels, modulating
nociception in primary sensory neurons. The Ca2+ influx feeds
back on the TRPV1 channels, inhibiting their gating by binding
to the intracellular Ca2+ sensor, calmodulin (Rosenbaum and
Simon, 2007; Lau et al., 2012). The Ca2+ influx by TRPV1 directly
activates anoctamin 1 chloride channels, potentiating TRPV1-
mediated pain in DRG neurons (Takayama et al., 2015). TRPV1
channel activation with capsaicin inhibits the mechanosensitive
Piezo1 and Piezo2 channels by depleting phosphatidylinositol
4,5-bisphosphate and its precursor phosphatidylinositol 4-
phosphate from the plasma membrane through Ca2+-induced
phospholipase Cδ activation in DRG neurons (Borbiro et al.,
2015).

Some TRPV1-positive DRG neurons co-express the transient
receptor potential ankyrin 1 (TRPA1) channel. Recent studies
have revealed the functional and mechanical interactions
between TRPA1 and TRPV1 channels, although the physiological
significance of TRPA1 channels has been poorly understood
in TRPV1-expressing sensory neurons. The first report
showing the TRPA1-TRPV1 interaction described that the
pharmacological desensitization of TRPA1-mediated responses
is more pronounced in sensory neurons that lack TRPV1 than in
neurons that express TRPV1 (Akopian et al., 2007). Thereafter,
the probability of TRPA1 being open at negative holding
potentials is reduced by TRPV1 channels because of the complex

formation of TRPV1 and TRPA1 channels (Staruschenko et al.,
2010). Tmem100 protein was recently reported to decrease
the interaction between TRPV1 and TRPA1 channels in DRG

neurons, potentiating TRPA1 channel properties (Weng et al.,
2015). Therefore, TRPA1 channel-mediated responses are largely
modulated by TRPV1 channels in primary sensory neurons.
However, studies have scarcely investigated whether TRPV1
channel activities are modulated in the presence of TRPA1
channels. Here, we examined the differences in the kinetics
of current responses induced by TRPV1 channel activation in
TRPA1-positive and TRPA1-negative DRG neurons to elucidate

the modulating effect of TRPA1 channels on TRPV1 channel
activities.

MATERIALS AND METHODS

Animals
All mice were purchased from SLC (Shizuoka, Japan). The mice
were housed in clear acrylic cages in a temperature-controlled
room (25 ± 1◦C) with a 12-h light/dark cycle (lights on from
07:00 to 19:00). All animal procedures were approved by the
Ethics Committee of Kanazawa Medical University. The mice
were humanely treated, according to the National Institutes of
Health Guide for the Care andUse of Laboratory Animals and the
Guiding Principles for the Care and Use of Laboratory Animals
set by the Japanese Pharmacological Society.

Preparation of Primary Cultures
Culture preparation was conducted as previously described
(Masuoka et al., 2015, 2016). The C57BL/6J male and female
mice (6- to 14-day-old) were anesthetized by the inhalation
of isoflurane (Escain R©; Mylan Inc., Cecil Township, PA,
USA). DRG were rapidly dissected in ice-cold Ca2+/Mg2+-free
artificial cerebrospinal fluid (Ca2+/Mg2+-free ACSF; 143.9mM
NaCl, 3.35mM KCl, 21mM NaHCO3, 9.9mM glucose, 0.6mM
NaH2PO4) gassed with a mixture of 95% O2 and 5% CO2 (pH
7.4). Neurons were dissociated following treatment with 0.1%
type II collagenase (240–265U/mg; Worthington Biochemical
Co., Lakewood, NJ, USA), 0.1% trypsin (Gibco, San Diego, CA,
USA), and 0.01% DNase I (Sigma, St. Louis, MO, USA) in
Ca2+/Mg2+-free ACSF and shaken (35 cycle/min) in a water bath
at 37◦C for 30 min. Cells were gently triturated in Dulbecco’s
modified Eagle medium (Sigma) containing 10% horse serum
(Gibco), 5% fetal calf serum (Gibco), and 1% penicillin–
streptomycin (Wako, Osaka, Japan). Dispersed cells were passed
through a 100-µm cell strainer (BD Biosciences, San Jose, CA,
USA), and the filtered cells were seeded on glass coverslips
(13mm in diameter) coated with poly-L-lysine (Matsunami Glass
Ind., Osaka, Japan).

Whole-Cell Patch Clamp Recording
Cultured neurons were plated onto coverslips, transferred
to the recording chamber, and superfused with ACSF
(138.6mM NaCl, 3.35mM KCl, 21mM NaHCO3, 9.9mM
glucose, 0.6mM NaH2PO4, 2.5mM CaCl2, and 1mM MgCl2).
Neurons were visually identified using a 60 × microscope
objective (DIAPHOT300; Nikon, Tokyo, Japan). Whole-
cell recording were performed from small and medium
size of neurons (<25µm diameter). Pipettes for whole-cell
recordings were made from borosilicate glass capillaries
(1.5-mm outer diameter; World Precision Instruments Inc.,
Sarasota, FL, USA). Patch pipettes (4–6M�) were filled
with an internal solution containing 120mM KCH3SO3,
5mM KCl, 0.1mM K-ethylene glycol-bis(β-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid (EGTA), 5mM Na-4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 3mM
Mg-adenosine triphosphate, and 0.4mM Na-guanosine
triphosphate (pH 7.4). Series resistance was 8–20M�, which was
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monitored throughout the recording. Membrane currents were
recorded in a whole-cell configuration using an Axopatch-1D
amplifier and pCLAMP 10 software (Axon Instruments, Foster
City, CA, USA), digitized, and stored on a computer disk
for offline analysis. Current responses mediated by TRPV1
and TRPA1 were induced through 0.03–1µM capsaicin (a
TRPV1 agonist) perfusion for 15 or 120 s and 500µM AITC
(a TRPA1 agonist) perfusion for 30 s, respectively. Capsaicin
responses were recorded >5min after establishing whole-cell
configuration. AITC-induced responses were observed >5min
after capsaicin perfusion. The extracellular solution was perfused
at 2mL/min. To clarify contribution of TRPA1 channels in
capsaicin-induced current, HC-030031 (a TRPA1 antagonist)
was dissolved in ACSF with or without capsaicin and was
perfused. Temperature in recording chamber was maintained
at 30.0 ± 1.0◦C with in-line solution heaters (SF-28; Warner
Instruments, Hamden, CT, USA) and temperature controller
(TC-324C; Warner Instruments).

Calcium Imaging
Changes in intracellular calcium were measured with a
fluorescent calcium indicator, as described previously (Masuoka
et al., 2015, 2016). For microscopic fluorometric measurement,
cultured DRG neuronal cells were washed twice with ACSF
and incubated for 45 min in the CO2 incubator (37 ± 2◦C)
in a solution of 3µM of Fura-2-acetoxymethyl ester (Fura-
2 AM; Dojindo Laboratories, Kumamoto, Japan) and 0.005%
Cremophor EL (Sigma). After incubation, cells were washed in
ACSF for 30min and culture dishes were placed on the stage of
an inverted microscope (ECLIPSE TE 300, Nikon, Tokyo, Japan)
equipped with a 20 × S-fluor objective. Fluorescence images
were recorded and analyzed using a video image analysis system
(ARGUS/HiSCA, Hamamatsu Photonics, Hamamatsu, Japan).
Experimental agents were dissolved in ACSF and delivered by
continuous perfusion in the recording chamber (2mL/min) with
a peristaltic pump. Capsaicin (1mµM), AITC (500µM) and KCl
(50mM) were respectively perfused for 15, 30, and 30 s in this
order. Image pairs were captured at 5 s (beginning 5min) or
10 s intervals. Fura-2 fluorescence was recorded at an emission
wavelength of 510 nm by exciting Fura-2 at 340 and 380 nm.
The 340–380 nm fluorescence ratio (F340/F380) was used as a
parameter of intracellular calcium concentration.

Drugs
Capsaicin and allyl isothiocyanate (AITC) were obtained
from Sigma-Aldrich (St. Louis, MO, USA); 2-(1,3-
dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-
isopropylphenyl)acetamide (HC-030031) was obtained from
Abcam (Cambridge, United Kingdom). The stock solution
of capsaicin and AITC were dissolved in ethanol at the
concentration of 10mM and 2M, respectively. HC-030031
was dissolved in DMSO at 100mM. The stock solutions were
diluted with ACSF just before the experiment. The working
solutions were made not exceeding 0.03% ethanol, because
0.1–3% ethanol facilitates TRPV1 channels activity induced by
capsaicin (Trevisani et al., 2002).

Statistical Analysis
Data are expressed as mean± standard error of the mean (SEM),
and “n” represents the number of cells examined. Data were
analyzed using the SigmaPlot 13.0 software (Systat Software Inc.,
San Jose, CA, USA). Data were assessed using the unpaired t-test.
A P value of < 0.05 was considered significant.

RESULTS

We clarified the difference in kinetics of current responses
to TRPV1 channel activation between TRPA1-negative and
TRPA1-positive DRG neurons using whole-cell recording.
TRPV1 channel activation was evoked by the perfusion of
1µM capsaicin, a TRPV1 agonist. To identify TRPA1-positive
and TRPA1-negative neurons, AITC (a TRPA1 agonist) were
perfused after recording of capsaicin responses in this study.
Some studies clarified that high concentration (1mM and
over) of AITC activates porcine, mouse and human TRPV1
as well as TRPA1 (Ohta et al., 2007; Everaerts et al., 2011;
Gees et al., 2013). Therefore, TRPA1-negative and TRPA1-
positive DRG neurons were distinguished by responsiveness
to perfusion of 500µM AITC for 30 s, >5min after capsaicin
perfusion. In this condition, peak current were observed at
15–25 s after starting AITC perfusion (Figure 1B), which were
completely blocked by 10µM HC-030031, a TRPA1 antagonist.
A few recording showed very small currents (<100 pA)
without peak response before washout of AITC; they were
probably TRPV1-mediated current by AITC. In this study,
we excluded these data to accurately identify TRPA-positive
and TRPA1-negative neurons. Capsaicin perfusion for 15 s
caused a large inward current without a desensitization phase
at a membrane potential of −70mV (Figures 1A,B). The
capsaicin-induced currents in AITC-sensitive DRG neurons had
a small current density (Figure 1C) with a large time constant
of decay (Figure 1D). Membrane capacitance in recording
neurons demonstrated no significant difference between the
two groups (Figure 1E). The capsaicin-induced current density
increased in a concentration-dependent manner (Figure 1F).
The maximum response was significantly smaller in AITC-
sensitive DRG neurons (14.9 ± 4.7 pA/pF) than in AITC-
insensitive ones (43.8 ± 4.3 pA/pF); furthermore, EC50 showed
no discernible difference between the two groups (0.088 ±

0.008 and 0.104± 0.024µM, respectively). Fluorescence calcium
imaging is useful to analyze TRPV1 channels activities, because
TRPV1 channels are high-conductance Ca2+-permeable TRP
channels. Intracellular calcium mobilizations by capsaicin were
examined with Fura-2 (Figure 2). Perfusion of 1µM capsaicin
increased the intracellular calcium concentration in a subset of
DRG neurons. Elevations of intracellular calcium concentration
in AITC-sensitive neurons were significantly smaller than
that in AITC-insensitive neurons (Figures 2B,C). In addition,
duration reaching peak responses after starting the perfusion was
significantly longer in AITC-sensitive neurons (Figures 2B,D).
These results confirmed that small current densities and
slow decay of capsaicin-induced current in AITC-sensitive
neurons. We examined the possible contributions of TRPA1

Frontiers in Physiology | www.frontiersin.org May 2017 | Volume 8 | Article 27218

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Masuoka et al. Interaction between TRPA1 and TRPV1

FIGURE 1 | Differences in capsaicin-induced current between AITC-insensitive and AITC-sensitive DRG neurons. (A,B) Representative traces of current

response induced by 1µM capsaicin (cap) perfusion for 15 s and 500µM AITC perfusion for 30 s in AITC-insensitive (A) and AITC-sensitive (B) DRG neurons. The

currents were recorded with a potassium methanesulfonate internal solution at membrane potentials of −70mV. (C–E) The differences in the capsaicin-induced

current density (C), time constant of decay (D), and membrane capacitance (E) between AITC-insensitive DRG neurons (open columns) and AITC-sensitive DRG

neurons (gray columns) are shown. (F) Concentration–response curves to capsaicin in AITC-insensitive and AITC-sensitive DRG neurons. Each column and vertical

bar represent the mean ± standard error of the mean (SEM). *P < 0.05 by unpaired t-test.

channels, intracellular Ca2+ concentration, and potassium
channels to the difference in kinetics of TRPV1-mediated current
between AITC-sensitive DRG neurons and AITC-insensitive
ones (Figures 1C,D). Capsaicin responses under presence of HC-
030031 were examined more than 5 min after perfusion of HC-
030031. The differences in current density and time constant
of decay were completely eliminated in the presence of 5µM
HC-030031, a TRPA1 antagonist, in the extracellular solution
(Figures 3A,B). To explore the contributions of intracellular
Ca2+ to the different kinetics of capsaicin-induced currents
between AITC-insensitive and AITC-sensitive DRG neurons,
we recorded the TRPV1-mediated current induced by capsaicin
with intracellular solutions containing 10mM EGTA, a Ca2+

chelator. The differences in the current density and time
constant of decay (Figures 1C,D) completely disappeared when
a high EGTA concentration was added in the internal solution
(Figures 3C,D). In contrast, although potassium in the internal
solution was replaced by Cs+ to block the potassium channels,
TRPV1-mediated currents in AITC-sensitive DRG neurons
were significantly smaller with a larger time constant of decay
than those in AITC-insensitive DRG neurons (Figures 3E,F).
Presence of 10µM capsazepine, a TRPV1 antagonist, strongly
inhibited capsaicin-induced current in both AITC-insensitive
and AITC-sensitive neurons, which has no difference between
two groups (Figure 3G). These results suggest that the different
kinetics of capsaicin-induced current between AITC-insensitive
and AITC-sensitive DRG neurons are caused by TRPA1 channels
activities and the dynamics of intracellular Ca2+ concentration.

To elucidate the presence of TRPA1 current in the basal
condition in AITC-sensitive neurons, the effect of HC-030031
was examined before the application of capsaicin and AITC.
The perfusion of HC-030031 (5 µM) for 60 s slightly but
significantly attenuated the basal inward current in capsaicin-
and AITC-sensitive neurons (−17.3 ± 4.4 pA, n = 5, P <

0.05), although it had no effect in capsaicin-sensitive and
AITC-insensitive neurons (2.0± 2.7 pA, n= 13). This implied
that a tonic TRPA1 current exists in AITC-sensitive neurons in
the absence of exogenous TRPV1 and TRPA1 agonists.

Next, we examined the difference in the desensitization of
current induced by TRPV1 channel activation between AITC-
sensitive and AITC-insensitive DRG neurons. When 1µM
capsaicin was perfused for 120 s (Figure 4A), the transient peak
current was observed 15–30 s after the perfusion in all neurons,
which then gradually desensitized the inward currents. As the
decay of the capsaicin-induced current was difficult to fit with
a logarithmic curve in many AITC-sensitive DRG neurons, we
calculated the ratio of current 60 s after treatment of capsaicin
per peak current as an alternative measure. The ratio of the
current was significantly larger in AITC-sensitive DRG neurons
than in AITC-insensitive DRG neurons, indicating that the decay
of the capsaicin-induced current in the desensitization phase
was significantly slower in TRPA1-positive DRG neurons than
in TRPA1-negative DRG neurons (Figure 4B).The effects of
HC-030031 were subsequently examined. HC-030031 perfusion
significantly inhibited capsaicin-induced currents in AITC-
sensitive DRG neurons, which was absent in AITC-insensitive
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FIGURE 2 | Differences in capsaicin-induced intracellular calcium elevation between AITC-insensitive and AITC-sensitive DRG neurons. (A) Time

course of F340/F380 ratio before and after the perfusion of capsaicin (cap, 1µM) AITC (500µM) and KCl (50mM) using Fura-2 AM dye. Horizontal bars represent

periods of capsaicin, AITC and KCl perfusion. (B) Changes in F340/F380 ratio with a widespread expression of x axis between time 1 and 2.2min of (A). The

difference in peak response (C) and time reaching peak response (D) on capsaicin-induced elevation of intracellular calcium in DRG neurons. Data presented as mean

± SEM. *P < 0.05 against AITC-sensitive group.

DRG neurons (Figure 5A). The inhibitory effect of HC-
030031 was significantly larger in AITC-sensitive DRG neurons
than in AITC-insensitive DRG ones (Figure 5B). Therefore,
TRPA1-mediated current is contained in the capsaicin-induced
current in the desensitization phase in AITC-sensitive DRG
neurons. To clarify the difference in the desensitization of
the TRPV1-mediated current by repeated stimulation between
AITC-sensitive and AITC-insensitive DRG neurons, 1µM
capsaicin perfusion for 15 s was repeated five times. Repeated
short-term capsaicin perfusion gradually desensitized capsaicin-
induced current responses (Figure 6A), and no difference was
found between the two groups (Figure 6B).

DISCUSSION

We clarified that the kinetics of TRPV1-mediated current
induced by capsaicin differed depending on the coexistence of
TRPA1 channels in DRG neurons. First, the current densities
were significantly smaller in AITC-sensitive DRG neurons than
in AITC-insensitive DRG neurons. The difference disappeared
in the presence of a high EGTA concentration in internal
solutions and in the presence of HC-030031 in extracellular
solutions. Therefore, TRPA1 channels suppress TRPV1 channel

activity, possibly by regulating the basal intracellular Ca2+

concentration. TRPA1 channels are activated by exogenous
irritants, including mustard oil, allicin, acrolein (Bautista et al.,
2006), and alkaline pH (Fujita et al., 2008), and by endogenous
substances, including hydrogen peroxide, nitric oxide, hydrogen
sulfide, oxidized lipids, and general long-chain polyunsatulated
fatty acids (Andersson et al., 2008, 2012; Cavanaugh et al., 2008;
Takahashi et al., 2008; Motter and Ahern, 2012). Basal inward
currents in AITC-sensitive neurons were slightly attenuated by
a TRPA1 antagonist, which implies that a tonic TRPA1 current
exists in DRG neurons. Therefore, the spontaneous TRPA1
channel activity possibly induced by endogenous substances
inhibits proximate TRPV1 channels mediated by Ca2+ elevation.

Intracellular calcium concentrations regulate the activities of
protein kinase A, protein kinase C, Ca2+/Calmodulin-dependent
protein kinase II, and calcineurin that regulate TRPV1 channels

activities through phosphorylation or dephosphorylation of

several amino acid residues in TRPV1 channels, such as
Ser502, Thr704, and Ser800 (Rosenbaum and Simon, 2007).
The dephosphorylation of TRPV1 by calcineuline that activated

by weak intracellular calcium elevation desensitizes TRPV1

channels activities by vanilloid stimulation, capsaicin (Jung et al.,
2004). The balance of phosphorylation and dephosphorylation
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FIGURE 3 | Contributions of TRPA1 channels, intracellular Ca2+ concentration, and potassium channels to the differences in kinetics of

capsaicin-induced currents between AITC-insensitive and AITC-sensitive DRG neurons. Capsaicin-induced currents were recorded (A,B) in the presence of

HC-030031 (5µM, a TRPA1 antagonist), (C,D) with intracellular solutions containing a high EGTA concentration (10mM, a Ca2+ chelator), and (E,F) with intracellular

solutions containing cesium methanesulfonate (CsMS) instead of potassium methanesulfonate (KMS) to block potassium channels. The differences in the current

density (A,C,E) and time constant of decay (B,D,F) are shown in each recording condition. (G) Effect of capsazepine on capsaicin-induced current in AITC-sensitive

and AITC-insensitive neurons. Each column and vertical bar represent the mean ± SEM. *P < 0.05 by unpaired t-test.

FIGURE 4 | The differences in desensitization of currents induced by persistent perfusion of capsaicin. (A) Representative traces of current response

induced by 1µM capsaicin (cap) perfusion for 120 s in AITC-insensitive (left) and AITC-sensitive (right) DRG neurons. (B) The difference in the decay of

capsaicin-induced current 60 s after initiating the perfusion between AITC-insensitive DRG neurons (open column) and AITC-sensitive DRG neurons (gray column).

Each column and vertical bar represent the mean ± SEM. *P < 0.05 by unpaired t-test.

of TRPV1 under presence of TRPA1 possibly contributes to
the mechanism of small current densities of TRPV1 channels.
Second, the latencies of decay in capsaicin-induced currents
were significantly longer in AITC-sensitive DRG neurons than

in AITC-insensitive DRG neurons, which was blocked by an
internal solution containing a high EGTA concentration and
in the presence of HC-030031 in an extracellular solution. In
addition, desensitization during persistent capsaicin perfusion
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FIGURE 5 | Effects of HC-030031 on capsaicin-induced current in the desensitization phase. (A) Representative traces of capsaicin (cap)-induced current

during 2µM HC-030031 (HC) perfusion in AITC-insensitive (left) and AITC-sensitive (right) DRG neurons. (B) Inhibitory effects of HC-030031 on capsaicin-induced

current in AITC-insensitive DRG neurons (open column) and in AITC-sensitive DRG neurons (gray column). Each column and vertical bar represent the mean ± SEM.

*P < 0.05 by unpaired t-test.

FIGURE 6 | The desensitization of capsaicin-induced currents by repeated application in AITC-insensitive and AITC-sensitive DRG neurons.

(A) Representative traces of current induced by repeated capsaicin (cap) perfusion in AITC-insensitive (upper) and AITC-sensitive (lower) DRG neurons. (B)

Comparison of desensitization of capsaicin-induced current between AITC-insensitive DRG neurons (open columns) and AITC-sensitive DRG neurons (gray columns).

Each column and vertical bar represent the mean ± SEM.

was notably slower in AITC-sensitive DRG neurons than
in AITC-insensitive DRG neurons. The capsaicin-induced
current in the desensitization phase was attenuated by HC-
030031 in AITC-sensitive DRG neurons. Therefore, it seems
that TRPA1-mediated current are evoked after activation of
TRPV1 channels by capsaicin. TRPA1 channels are activated
by intracellular Ca2+ binding to the EF-hand domain (Zurborg
et al., 2007; Paulsen et al., 2015). TRPA1 channels are directly
activated by endogenous substance produced by intracellular
calcium elevation. For instance, nitric oxide is synthesized
by nitric oxide synthase (NOS) whose activation is essential
for increase in intracellular Ca2+ bringing about calmodulin
binding (Förstermann and Sessa, 2012), leading to activates
TRPA1 channels through nitrosylation of Cys421, Cys641,
and Cys665 (Takahashi et al., 2008). Actually, the neuronal

NOS predominantly expresses in small and medium size of
DRG neurons (Terenghi et al., 1993; Kolesár et al., 2016).
Considering the abovementioned reports, TRPV1 channels may
directly and/or indirectly activate TRPA1 channels by elevating
intracellular Ca2+ concentration in DRG neurons, which seems
to underlie slow decay of capsaicin-induced current after the brief
perfusion and slow desensitization of capsaicin-induced current
during the long-term perfusion in AITC–sensitive neurons.

Small peak currents induced by TRPV1 channel activation in
TRPA1-positive DRG neurons might implicate low excitability
for noxious stimuli in sensory neurons that co-express TRPV1
and TRPA1 channels under normal conditions. In contrast, the
slow desensitization of TRPV1-mediated current in TRPA1-
positive DRG neurons might enable nociceptive stimuli to
persistently excite primary sensory neurons. The tumor necrosis
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factor-alpha released from mast cells, lymphocytes, and skin
keratinocytes during inflammation increases the cotrafficking
of TRPA1/TRPV1 in trigeminal ganglion, which is involved
in hypersensation in an inflammatory disorder (Meng et al.,
2016). A previous study revealed that long-term treatment
with glutamate, an endogenous pain modulator and inducer of
inflammation, drastically increased TRPV1-mediated currents
induced by capsaicin in TRPA1-expressing DRG neurons
(Masuoka et al., 2016). The facilitation of TRPV1-mediated
currents in TRPA1-positive DRG neurons produced heat
hyperalgesia in mice (Masuoka et al., 2016). Therefore, TRPV1-
mediated electrophysiological responses in TRPA1-expressing
sensory neurons might be related to the molecular basis of
nociception in chronic abnormal pain induced by inflammation.
Recent studies clarified that sensory neurons that express TRPA1
regulate inflammation and pruritogen responses (Wilson et al.,
2011; Liu et al., 2013; Cevikbas et al., 2014). For instance, TRPA1
is required for Mas-related G protein-coupled receptor-mediated
signaling, which is activated by mast cell mediators and promotes
histamine-independent itch (Wilson et al., 2011). Interleukin-31
(IL-31), T helper cell type 2- derived cytokine, activates a small
subpopulation of primary sensory neurons expressing TRPV1,
and TRPA1 through IL-31 receptor, and produced inflammatory
and lymphoma-associated itch (Cevikbas et al., 2014). Therefore,
TRPV1 channel activation in DRG neurons that co-express
TRPA1 channels might contribute to the itch response. Our
findings might help in understanding the characteristics and
molecular mechanisms of itch often accompanied by pain.

CONCLUSION

TRPV1 mediated-currents in TRPA1-positive neurons are
characterized small densities with slow decay, which is caused
by TRPA1 channels activation and intracellular calcium
mobilization. In addition, TRPV1-mediated current in
TRPA1-possitive neurons slowly desensitize, due to appending
TRPA1-mediated current.
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Frank Kühn*, Cornelia Kühn and Andreas Lückhoff
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A decisive element in the human cation channel TRPM2 is a region in its cytosolic

C-terminus named NUDT9H because of its homology to the NUDT9 enzyme, a

pyrophosphatase degrading ADP-ribose (ADPR). In hTRPM2, however, the NUDT9H

domain has lost its enzymatic activity but serves as a binding domain for ADPR. As

consequence of binding, gating of the channel is initiated. Since ADPR is produced after

oxidative DNA damage, hTRPM2 mediates Ca2+ influx in response to oxidative stress

which may lead to cell death. In the genome of the sea anemone Nematostella vectensis

(nv), a preferred model organism for the evolution of key bilaterian features, a TRPM2

ortholog has been identified that contains a NUDT9H domain as well. Heterologous

expression of nvTRPM2 in HEK-293 cells reveals a cation channel with many close

similarities to the human counterpart. Most notably, nvTRPM2 is activated by ADPR, and

Ca2+ is a co-agonist. However, the intramolecular mechanisms of ADPR gating as well

as the role of NUDT9H are strikingly different in the two species. Whereas already subtle

changes of NUDT9H abolish ADPR gating in hTRPM2, the region can be completely

removed from nvTRPM2 without loss of responses to ADPR. An alternative ADPR

binding site seems to be present but has not yet been characterized. The ADP-ribose

pyrophosphatase (ADPRase) function of nvNUDT9H has been preserved but can be

abolished by numerous genetic manipulations. All these manipulations create channels

that are sensitive to hydrogen peroxide which fails to induce channel activity in wild-type

nvTRPM2. Therefore, the function of NUDT9H in nvTRPM2 is the degradation of ADPR,

thereby reducing agonist concentration in the presence of oxidative stress. Thus, the two

TRPM2 orthologs have evolved divergently but nevertheless gained analogous functional

properties, i.e., gating by ADPR with Ca2+ as co-factor. Opposite roles are played by the

respective NUDT9H domains, either binding of ADPR and mediating channel activity, or

controlling the availability of ADPR at the binding site located in a different domain.

Keywords: Nematostella vectensis, ADP-ribose, calcium, oxidative stress, 2-APB
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HUMAN TRPM2: HISTORY AND

HALLMARKS OF AN EXCEPTIONAL

CATION CHANNEL

The scientific community was very much excited when in 2001,
Perraud et al. reported that the human Ca2+-permeable cation
channel LTRPC2 was activated by intracellular ADP-ribose.
Two characteristics of this channel, renamed in the meantime
to TRPM2, were particularly fascinating. The first one is its
activation by ADPR, a metabolite which had not been on the
list of potential stimuli of ion channels at this time, although it
was known to induce the fertilization current in oocytes of the
sea squirt Ciona intestinalis (Wilding et al., 1998). From then
on it was quickly realized that ADPR, produced in response to
oxidative stress and as consequence of DNA damage, mediates
Ca2+ influx through TRPM2 channels which may eventually
lead to apoptosis or other forms of cell death. Second, TRPM2
contains a homology region within the cytosolic C-terminus
that strongly resembles the human NUDT9 pyrophosphatase
as well as homologous bacterial enzymes of the NUDIX-family
(Bessman et al., 1996; Perraud et al., 2003). Hence, TRPM2might
be considered a “chanzyme,” a channel protein that additionally
displays enzymatic activity intimately linked to channel function.

It has been well established that ADPR is the principal
activator of TRPM2. Few related substances have been reported
to share its agonistic properties (Grubisha et al., 2006; Tóth
et al., 2014, 2015; Fliegert et al., 2017). However, a major role
as an essential co-factor is played by Ca2+ (McHugh et al., 2003;
Starkus et al., 2007; Csanády and Töröcsik, 2009). For an effective
stimulation by ADPR, Ca2+ must be presented either on the
extracellular or the intracellular side of the plasma membrane
and its action is likely to take place within the pore region
(as discussed later). In particular, intracellular Ca2+ strongly
modulates the sensitivity of TRPM2 to ADPR, to an extent that
in neutrophil granulocytes activation of TRPM2 occurs without
an apparent increase in the intracellular concentration of ADPR
as soon as intracellular Ca2+ is elevated (Heiner et al., 2006).
Since basal levels of ADPR are sufficient to enable Ca2+-directed
TRPM2 gating, ADPR renders TRPM2 a Ca2+-activated cation
channel that is indispensible for some but not all responses of
neutrophils during antibacterial defense. Especially chemotaxis
seems to be critically dependent on the preceding stimulation of
TRPM2 and is significantly impaired in TRPM2 knock-out mice
(Sumoza-Toledo et al., 2011).

Neutrophil granulocytes are among the few cells that are not
equipped with poly(ADP-ribose)-Polymerases (PARPs; Sanghavi
et al., 1998). Along with poly(ADP-ribose) glycohydrolases
(PARGs), these are key enzymes involved in the formation of
ADPR after oxidative damage to the DNA (e.g., reviewed by
Yamamoto and Shimizu, 2016). Therefore, in many other cell
types including neurons, ADPR-induced Ca2+ influx through
TRPM2 is a decisive element in the process that terminates
in apoptosis after initiation by oxidative stress. Experimentally,
oxidative stress is frequently induced by extracellular application
of hydrogen peroxide (H2O2) to the cells. Indeed, in cell models
with overexpression of TRPM2, H2O2 is a well-established
stimulus of Ca2+ influx (Hara et al., 2002; Wehage et al.,

2002). Another extracellularly applicable stimulus of TRPM2 (as
opposed to the strictly intracellular application of ADPR) is N-
Methyl-N′-nitro-N-nitrosoguanidine (MNNG) that, like H2O2,
is an activator of PARP-1 (Buelow et al., 2008; Chiu et al., 2011).
It is believed that the action of H2O2 is an indirect one, depending
on the intracellular accumulation of ADPR (Perraud et al., 2005).
Consequently, current induction in response to H2O2 takes some
time, in contrast to the fast onset after stimulation of TRPM2with
high concentrations of intracellular ADPR during patch-clamp
experiments. The co-operation of ADPR and Ca2+, along with
the positive feed-back constituted by Ca2+ entry through already
activated TRPM2 channels (McHugh et al., 2003; Heiner et al.,
2006; Csanády and Töröcsik, 2009; Tóth and Csanády, 2010),
explains why any effect of H2O2 is strongly dependent on Ca2+,
even more strictly than under experimental conditions when
ADPR in excess is directly applied to the channel. Therefore, an
elevated intracellular Ca2+ concentration of 1µM is routinely
used in our lab in patch-clamp experiments when TRPM2 or
TRPM2 variants are tested for sensitivity toward H2O2.

Mammalian TRPM2 channels are moreover sensitive to
temperature (Togashi et al., 2006; Kashio et al., 2012) and are
apparently involved in temperature sensing (Song et al., 2016;
Tan and McNaughton, 2016), but this is beyond the scope of this
review, as is its role as a channel in membranes of intracellular
organelles (Lange et al., 2009).

TRPM2 so far is the only ion channel that is directly activated
by ADPR. This should not be confused with other regulatory
functions of ADPR, notably ADP ribosylation, which takes place,
e.g., in the purinergic P2X7 receptor and leads to channel
activation (Adriouch et al., 2008). Among the four known
“chanzymes,” the most prominent member is still the cystic
fibrosis transmembrane conductance regulator (CFTR) channel
(Ramjeesingh et al., 1999), whereas the other three ones all belong
to themelastatin-subfamily of TRP channels (Perraud et al., 2001;
Runnels et al., 2001; Schlingmann et al., 2002). Until recently, it
was believed that the catalytic activity of the respective enzyme
domain contributes decisively to their gating process. However,
now it seems clear that for TRPM6 and TRPM7, the enzyme
domain is not really essential for gating but rather performs a
regulatory function (Matsushita et al., 2005; Thébault et al., 2008;
Cai et al., 2017). In the case of CFTR and also of human TRPM2,
multiple lines of evidence suggest that not catalysis but binding
of the substrate represents the critical step for channel activation
(Tóth et al., 2014; Mihályi et al., 2016).

The principal structure of the NUDT9 homology domain of
TRPM2 which is very similar to the almost identical NUDT9
enzymes of man and sea anemone is outlined in Figure 1.
The more C-terminally localized catalytic center is formed
by a strongly conserved amino acid sequence, the so-called
NUDIX-box (Bessman et al., 1996). It has been experimentally
demonstrated that the two successive amino acid residues
glutamate-phenylalanine of this region are especially important
for the activity of the human enzyme (Perraud et al., 2003). If
these residues are mutated to isoleucine-leucine, the activity is
reduced to about 1% (Shen et al., 2003). Exactly this substitution
is present in the NUDT9H domain of human TRPM2 which
strongly suggests that the enzymatic activity has been largely
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FIGURE 1 | Multiple Sequence alignment of the NUDT9-related channel domains of hTRPM2 and nvTRPM2 and the NUDT9 enzymes of man and sea anemone.

Alignment was performed (using the tool at www.uniprot.org/align/) with amino acid sequences of the human NUDT9 enzyme (aa 59–350) the NUDT9 homology

(NUDT9H) domains of human TRPM2 (aa 1236–1503) and sea anemone TRPM2 (aa 1,271–1,551) as well as of the putative NUDT9 enzyme of the sea anemone (aa

1–281). The NUDIX sequence motif containing the catalytic active site (bold) is given in red. The functionally important deletion downstream of the NUDIX box which is

exclusively present in hTRPM2 is indicated with a green dashed line. Individual residues found to be directly involved in the binding of ADP-ribose in hTRPM2 (Yu et al.,

2017) are in gray. Most of these residues are conserved in the corresponding region of nvTRPM2 and the NUDT9 enzymes. Symbols (*, :, .) denote the degree of

conservation observed in each column as specified on the website indicated above.

abolished while NUDT9 has undergone the adaption to a channel
domain of TRPM2. Importantly, the reciprocal mutation of
the critical sequence of TRPM2 back to that of the NUDT9
enzyme abolishes any channel function (Kühn and Lückhoff,
2004; Perraud et al., 2005; Du et al., 2009) suggesting that ADPR
hydrolysis and channel function are incompatible with each
other. Moreover, channel activation can be readily achieved with
the non-hydrolyzable ADPR analog alpha, beta-methylene ADP-
ribose (AMPCPR) (Tóth et al., 2014). Taken together, there is

ample and strong evidence for the notion that catalytic activity
is not necessary and even detrimental for the activation of
TRPM2.

The currently favored view is that the NUDT9H region of
TRPM2 ensures the specific binding of the channel agonist
ADPR. Several studies have clearly demonstrated that already
subtle changes within the structure of the NUDT9H domain
may lead to a complete loss of channel function (e.g., Kühn
and Lückhoff, 2004; Perraud et al., 2005). Obviously, binding
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and subsequent channel gating have very restricted structural
requirements that can easily be disturbed.

STUDIES ON ORTHOLOGOUS CHANNELS

FROM DISTANTLY RELATED SPECIES TO

GET MECHANISTIC INSIGHT

While it is generally accepted and well documented that gating
of TRPM2 requires binding of ADPR to the NUDT9H domain,
the subsequent steps that ultimately lead to pore opening are far
from being understood. Methodological approaches that would
provide a straightforward interpretation are not obvious. In this
situation, a strategy may be helpful that has been successfully
employed for several other ion channels: the structural and
functional comparison of species variants. Prominent examples
are the capsaicin receptor TRPV1 (Jordt and Julius, 2002),
the menthol receptor TRPM8 (Chuang et al., 2004) and the
chemoreceptor TRPA1 (Laursen et al., 2015).

In this review, we will summarize the findings and
perspectives gained from studies on the TRPM2 ortholog of the
sea anemone Nematostella vectensis.

Of course, the question arises why choosing the sea anemone
as species variant. There are several good reasons for this
choice. First, the evolution especially of the TRPM channel
subfamily seems to have taken a very interesting course. In
basal metazoans and even in unicellular protists, there is only
one representative of the TRPM subfamily and this is clearly
classified as TRPM2-like (Mederos y Schnitzler et al., 2008).
This and other indications allow the conclusion that in the
beginning of the metazoan evolution, a TRPM2-like channel
stepped on stage which probably represents the evolutionary
ancestor of all modern TRPM channels. This scenario implicates
that the archetypal TRPM channel should have had structural
and functional features that are at least partially present in
all modern TRPM subtypes, including TRPM2. Nematostella
vectensis today represents a preferred model organism for the
study of the evolution of some archetypal metazoan blueprints
such as the immune system and the nervous system. Especially
for comparative studies on TRPM2, it is noteworthy that the
natural habitats of Nematostella vectensis are salt marshes along
the coasts of the northern Atlantic Ocean. Here, animals are
commonly exposed to UV radiation and diverse chemicals, all of
which can exert oxidative stress (Tarrant et al., 2014). Because the
mammalian TRPM2 ortholog represents a central player in the
process of oxidative-stress mediated apoptosis, the suitability of
Nematostella vectensis as a simplistic model appears evident.

The comparative studies on hTRPM2 and nvTRPM2 reveal
that both of these far distantly related channel orthologs are
activated by ADPR. However, and unexpectedly, this is achieved
by vastly different mechanisms and parts of the channel protein.

TOPICAL AND DETAILED STRUCTURE OF

nvTRPM2

The genome of the starlet sea anemone Nematostella vectensis
was sequenced and assembled by whole genome shotgun

by Putnam et al. (2007). A search of Nudix-linked TRPM
proteins in genomic sequence databases by Mederos y
Schnitzler et al. (2008) revealed that they are invariably
present in chordates, molluscs, echinodermates and also in
basal metazoans like cnidarians and even in unicellular protists.
As the complete expressed sequence tag (start codon to stop
codon open reading frame) of the sea anemone TRPM2-like
channel was published in the joint genome institute database
(jgi.Nemve1.248535|estExt_fgenesh1_pg.C_6220005), it was
possible to make this gene available for functional expression in
heterologous expression systems by commercial gene synthesis
(Kühn et al., 2015).

The sea anemone TRPM2 open reading frame (ORF) contains
1551 amino acid residues (aa) and on closer inspection represents
the only full-length TRPM gene product ofNematostella vectensis
(Mederos y Schnitzler et al., 2008; Peng et al., 2015). The sea
anemone TRPM2 open reading frame displays a total sequence
identity of 31% to the corresponding sequence of human
TRPM2 (1503 aa). The similarity is greatest in the N-terminal
region upstream of the putative transmembrane segments (36%
identity) and in the NUDT9H domain (39% identity), whereas
the regions containing the transmembrane segments (25%
identity) and the connecting linker to the NUDT9H domain
(27% identity) are less conserved. Furthermore, the NUDT9H
domain of nvTRPM2 (aa 1271–1,551) shows 49% sequence
identity to the corresponding sequence of the hNUDT9 enzyme
(aa 59–350) which is notably higher than between the hNUDT9
enzyme and NUDT9H (aa 1,236–1,503) of hTRPM2 (34%; Kühn
et al., 2015; see also Figure 1). Compared to the hNUDT9-
enzyme, in both nvTRPM2 and hTRPM2, the putative ADPR
binding domain of the NUDT9H domain is well conserved,
including the critical residue N1326 of hTRPM2 (Kühn and
Lückhoff, 2004; Kühn et al., 2016). However, the active site
of the hNUDT9 enzyme containing the NUDIX box signature
GX5EX7REUXEEXGU (Bessman et al., 1996) is slightly different
in NUDT9H of nvTRPM2 and markedly different in NUDT9H
of hTRPM2 (Figure 1). This fact strongly suggests that the
NUDT9H domain of nvTRPM2, in contrast to the hTRPM2
counterpart, is very likely to have a largely intact catalytic
function.

A short amino acid motif within the proximal part of
the predicted pore loop contributes significantly to the Ca2+

permeation of enzyme-linked TRPM channels (Mederos y
Schnitzler et al., 2008). In the non-selective group, among
them hTRPM2, this motif consists of the amino acid triplet
glutamine-isoleucine-proline (QIP), whereas in the more Ca2+-
selective members, as for example TRPM7, this motif is
changed to glutamate-valine-tryptophane (EVY). In general,
the TRPM2-like channels of diverse organisms ranging from
choanoflagellates to primitive chordates and also nvTRPM2
contain the motif glutamate-leucine-phenylalanine (ELF) which
indicates the signature of a more Ca2+-permeable channel
(Mederos y Schnitzler et al., 2008).

As a striking difference to the primary structure of hTRPM2,
the nvTRPM2 channel exhibits a much longer S1-S2 linker
region with numerous glutamate and lysine residues. Notably,
this region shows significant similarity to the corresponding
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region of the hTRPM3 channel which strengthens the hypothesis
that a TRPM2-like channel represents a common ancestor of
the contemporary TRPM-subfamily (Mederos y Schnitzler et al.,
2008; Kühn et al., 2015).

FUNCTIONAL EXPRESSION OF nvTRPM2

IN HUMAN CELLS REVEALS CATION

CURRENTS INDUCED BY ADPR AND BY

Ca2+

From the overall high topological similarity between nvTRPM2
and mammalian TRPs, we were confident in the beginning of
our studies that the sea anemone ortholog could be functionally
overexpressed with standard methods in mammalian cells,
although until then only few examples existed where a successful
heterologous expression of such far distantly related ion channels
had been achieved and this was in oocytes of Xenopus laevis (e.g.,
Jegla et al., 2012; Assmann et al., 2014; Baker et al., 2015). The
standard procedure of commercially available gene synthesis was
used and the codon usage was adapted to the human expression
system (Ikemura, 1985). This manipulation is frequently a
prerequisite for the successful heterologous expression of
proteins from distantly related species. The successful expression
of all TRPM2 channels (human or Nematostella orthologs) in
HEK-293 cells was verified by cell surface biotinylation assay and
Western-blot-analysis with variants containing hemagglutinin
(HA) tags downstream from the respective open reading frame
(Kühn et al., 2016). This procedure was chosen to minimize the
danger of artifacts due to species-specific antibodies. Wild-type
and mutant nvTRPM2 channels were expressed in the plasma
membrane with no obvious difference to the human ortholog.

For functional analysis, mostly the variants without HA
tags were studied using the standard whole-cell patch-clamp
technique. The non-electrophysiologists among the readers
should understand that with this technique, the cytosol of the
cells is replaced with the solution in the pipette within seconds by
diffusion. Thus, the intracellular concentrations of the standard
stimulus, ADPR, as well as the intracellular concentration of
Ca2+ is completely controlled by the composition of the pipette
fluid. For some selected nvTRPM2 variants, the biophysical
properties were explored with single-channel analysis in inside-
out patches (Kühn et al., 2016).

The electrophysiological studies demonstrate that nvTRPM2
is expressed in HEK-293 cells as fully functional cation channel
activated by ADPR and by its co-agonist Ca2+. Thus, the
principal activators of hTRPM2 are effective in the ortholog of
a distantly related species as well. In addition to many common
features of ADPR-induced currents, however, there were several
properties unique for nvTRPM2. These include in the first line
the concentration-effect-relation as well as the on and off kinetics.

In human TRPM2, stimulation with ADPR results in a current
that reaches its maximum within several tens of seconds. A run-
down takes place over several minutes and is usually incomplete
within the time frame of the experiments (Figure 2A). The
amplitudes and kinetics depend significantly on Ca2+ which
must be present on at least one side of the plasma membrane

for the induction of any current (Perraud et al., 2001; McHugh
et al., 2003; Starkus et al., 2007; Csanády and Töröcsik, 2009;
Kühn et al., 2010). The elevation of the Ca2+ concentration
either on the extracellular or the intracellular side fail to stimulate
TRPM2 channels in the absence of ADPR. On the other hand,
removal of Ca2+ from the extracellular side promptly abolishes
ADPR-induced currents when Ca2+ is absent in the cytosol.
These two findings establish the role of ADPR and Ca2+ as
essential co-agonists. In the presence of 1µM Ca2+ in the
cytosol, half-maximal current amplitudes are reached with ADPR
concentrations of about 100µM. The ADPR concentration needs
to be increased to 500µM when Ca2+ is removed from the
pipette fluid.

In characteristic distinction to hTRPM2, the Nematostella
ortholog nvTRPM2 displays much faster developing currents
of large amplitude after stimulation with ADPR; however, the
currents return to baseline within a few seconds (Figure 2B).
These responses are induced by already moderate concentrations
of ADPR (25–50µM) in the absence of intracellular Ca2+

(≤10 nM); ADPR concentrations as low as 10µMwere sufficient
with 1µM Ca2+. No currents were observed when Ca2+ was
missing on both sides of the plasma membrane (Kühn et al.,
2015). Therefore, Ca2+ is an essential co-factor as in hTRPM2.
However, one order of magnitude less ADPR is required for
nvTRPM2 than for hTRPM2.

With respect to many biophysical properties, nvTRPM2 and
hTRPM2 appear closely similar. Single channel open times
are extremely long in inside-out patches with ADPR on the
cytosolic side of the plasma membrane, frequently reaching
several hundreds of milliseconds. Likewise, there is almost no
discrimination between monovalent and divalent cations, as
shown by the reversal potential close to 0mV in asymmetric
solutions (Kühn et al., 2015).

The on-kinetics, which is markedly accelerated by Ca2+ in the
case of hTRPM2, was not modified in nvTRPM2 by increasing
the concentrations of ADPR and Ca2+. This may have not been
expected anyway because they are extremely fast for a ligand-
gated channel already at standard conditions. Interestingly, the
on-kinetics remained fast when the pore signature glutamate-
leucine-phenylalanine (ELF) of nvTRPM2 was changed to
glutamine-leucine-proline (QLP) which is characteristic for TRP
channels with little Ca2+ permeability (Mederos y Schnitzler
et al., 2008). It appears that although Ca2+ in the pore is essential,
it is not required in high amounts or concentrations; a graded
modulation of ADPR-induced currents by intracellular Ca2+

cannot be demonstrated experimentally.
Beyond the effects of Ca2+ on the on-kinetics of ADPR-

dependent currents, Ca2+ has a strong impact on the off-kinetics.
When extracellular Ca2+ is removed, ADPR induces currents
that are sustained over extended periods of time. Already this
finding suggests that Ca2+ exerts an action on the pore to induce
a rapid current decline of the current.

In any case, Ca2+ entry profoundly affects the kinetics of
ADPR-induced currents, whereas intracellular Ca2+ facilitates
the principal activation in most experimental conditions.

Further evidence for this interpretation is discussed later in
context of the effects of 2-APB. We therefore propose that the

Frontiers in Physiology | www.frontiersin.org October 2017 | Volume 8 | Article 87929

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kühn et al. Evolutionary Divergence of TRPM2 Channels

FIGURE 2 | Typical whole-cell patch-clamp recordings from hTRPM2 and from nvTRPM2 channels in HEK-293 cells. (A) Characteristic currents of hTRPM2 during

stimulation with ADPR infused through the patch-pipette. Intracellular (pipette) concentrations of ADPR and Ca2+ are indicated. Both activation and inactivation

kinetics are comparatively slow. At the end of the experiment, the currents were fully blocked by a substitution of extracellular monovalent cations with NMDG.

(B) Currents of nvTRPM2 in response to ADPR showing the characteristic fast kinetics of activation and inactivation. (C) Similar experimental conditions as shown

before but the cells had been pre-incubated for at least 5min in bath solution containing 2-APB (0.1mM). The rapid inactivation is completely suppressed. (D) No

stimulation of nvTRPM2 with 2-APB (1mM) instead of ADPR in the pipette solution. Only when applied from the extracellular side of the plasma membrane high

concentrations of 2-APB (≥1mM) induces a strong and fast current activation after a characteristic delay, while inactivation does not occur. The standard Ca2+

concentration in the bath solution for the measurements is 1.2mM Ca2+. Figures are slightly modified from Kühn et al. (2015, 2016, 2017).

current decline should be referred to as inactivation because it
relates to a pore-dependent mechanism. The term desensitization
should, in our opinion, not be used because it may be understood
to describe a process that affects binding of ADPR for which
no experimental indication exists. Unfortunately, it is not easily
possible to remove the stimulus ADPR during one experiment
and repeat its application several times. In inside-out patches,
this would be feasible; however, for some reasons that are not
understood, single channel activity in response to ADPR persists
much longer than whole-cell currents.

We have not performed a determination of the Ca2+

permeability deduced from reversal potentials in non-
physiological high Ca2+ concentrations because this approach is
unlikely to yield a true estimation of the contribution of Ca2+

to the total current under physiological ion conditions (Dzeja
et al., 1999). However, studies on the QLP variant demonstrate
that indeed Ca2+ access to the pore is improved by the ELF
motif which, interestingly, preferentially concerns permission of
activation by intracellular Ca2+, in co-operation with ADPR.

Taken together, nvTRPM is rapidly activated by ADPR and
Ca2+ as co-agonists, with considerably higher sensitivity and

faster kinetics than hTRPM2. A fast inactivation takes place
through the action of Ca2+ entering the pore.

2-APB AS A Ca2+-DEPENDENT GATING

MODIFIER OF TRPM2 CHANNELS

A general problem in the investigation of TRP channels,
especially of the TRPM subfamily, is the lack of specific
inhibitors. 2-Aminoethyl-diphenylborinate (2-APB) is one of
the better candidates since its effects on TRPM channels are at
least rapidly and completely reversible. On the other hand, the
compound is by no means channel-specific and its effect can be
inhibitory as well as activating. This depends on its concentration
and the channel type. Even on one particular channel, it may
exert both these opposite effects in a concentration dependent
manner (e.g., Li et al., 2006; Jansen et al., 2016). Likewise,
the human TRPM2 ortholog was exclusively inhibited already
by moderate concentrations of 2-APB (0.1mM), whereas the
nvTRPM2 ortholog shows different and complex responses in
the presence of 2-APB. In no case, an inhibition was observed;
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2-APB left the activation by ADPR completely intact. However,
the fast inactivation that is a characteristic feature of nvTRPM2
is completely abolished by the compound (Figure 2C) such
that sustained currents are induced by ADPR in the presence
of 2-APB (0.1–0.5mM). At higher concentrations (1mM), 2-
APB activated large currents by itself (Figure 2D); again, these
currents did not inactivate over time (Kühn et al., 2017).

Both these effects were strictly dependent on an extracellular
application and were completely absent when 2-APB was present
only in the pipette (intracellular) solution (Figure 2D; as also
demonstrated for hTRPM2; Togashi et al., 2008; Kühn et al.,
2017). This finding suggests that 2-APB acts on the channel pore;
this view is supported by experiments on nvTRPM2 variants
in which genetic manipulations have been performed in the
pore region and which show altered responses to 2-APB, in
comparison with wild-type nvTRPM2 (Kühn et al., 2017). We
are convinced that it is a safe assumption that 2-APB indeed is
a modifier of the pore properties and that it can therefore be used
as a tool to explore these properties further, in particular with
respect to Ca2+-mediated effects on the pore. The potential of 2-
APB in this respect has not yet been fully exploited but already
the initial results reveal surprising insight, as well as they give rise
to further questions and to hypotheses that should be tested in
the near future.

There are several key findings for 2-APB on nvTRPM2 that
in combination result in a straightforward interpretation of its
modes of action, although still some detailed questions remain
open.

First, these are the peculiar on and off kinetics of 2-APB when
used as a channel stimulus, i.e., in high concentrations. There
is a lag time of several tens of seconds before any effect can
be observed but afterwards, the development of currents occurs
very rapidly within seconds. Wash-out of 2-APB, on the other
hand, leads to an immediate cessation of the currents, much faster
than their onset (Kühn et al., 2017). Thus, access to the pore is
restricted as long as the channels are in a closed state but becomes
fast as soon they are opened by 2-APB. As a result, an almost
all-or-nothing kind of response to 2-APB is observed with an
extremely steep concentration-response relation. While there is
no apparent activation by 0.5mM 2-APB, a full activation takes
place if that concentration is doubled. Removal of 2-APB then
lets the stimulus quickly leave the pore and the currents recede
(Kühn et al., 2017).

The second key finding is the strict requirement on Ca2+ for
the channel stimulation by 2-APB. Ca2+ must be present on
both sides of the plasma membrane, in contrast to experiments
with ADPR as stimulus of nvTRPM2 when either extracellular
or intracellular Ca2+ was sufficient. It is tempting to speculate
but not yet proven that this relates to multiple binding sites for
Ca2+, as has been proposed for the pore of hTRPM2 (Csanády
and Töröcsik, 2009). However, some clarification is gained by
experiments with the QLP-variant of nvTRPM2. This mutation
is supposed to change the pore signature to that of a less Ca2+

selective channel (Mederos y Schnitzler et al., 2008).
Indeed, this mutation seems to impede the access of Ca2+

to the pore, and not only from the extracellular but from
the intracellular side as well. Removal of extracellular Ca2+,

which has no dramatic effect on the stimulation of wild-
type nvTRPM2, abolishes ADPR responses of nvTRPM2-QLP
completely when the standard intracellular solution is used (with
a Ca2+ concentration of 1µM). Currents can be restored when
intracellular Ca2+ is increased to 100µM (a certainly non-
physiological concentration). Likewise, the QLP variant was not
stimulated by 2-APB when the extracellular Ca2+ concentration
was normal. But with 10mM Ca2+, again non-physiologically
high, currents reappeared. The inactivation of ADPR-induced
currents in the QLP variant was normal, suggesting that not
so much Ca2+ is required for the inactivation as for the co-
agonism with 2-APB. On the other hand, as co-agonist with
ADPR, intracellular Ca2+ is more effective than extracellular one.
These findings again may point to multiple Ca2+ binding sites
within the pore with different functions, as more extensively
discussed on hTRPM2 (Csanády and Töröcsik, 2009; Tóth and
Csanády, 2012).

It should be kept in mind in this context that Ca2+ not only
accesses the pore but that it permeates it. The latter, however,
takes place only after opening of the channel. Access, on the
other hand, is decisive prior to the channel’s full activation and
may occur in its closed state or when only few channel openings
happen that do not produce a noticeable current but allow Ca2+

to reach its target within the pore. Again, Ca2+ mediates a self-
enhancing process as a co-agonist for ADPR and for 2-APB
because it leads to pore opening and at the same time its access
is favored by pore opening. Moreover, whenever differences
are observed between extracellular and intracellular Ca2+, it is
difficult to decide whether these reflects steric reasons within
the pore’s architecture or merely a matter of the required Ca2+

concentration because the intracellular Ca2+ is low and cannot
reasonably be increased too much.

The notion that Ca2+ within the pore is a prerequisite for
channel activation not only by ADPR but by 2-APB as well
is elegantly underlined by experiments on the QLP variant
where a low concentration of ADPR is present in the pipette. A
relatively small current is induced and inactivation takes place.
Then, addition of 2-APB evokes currents with two remarkable
properties. They are larger in amplitude than the previous ADPR-
dependent ones, and they occur with a shorter delay than typical
for 2-APB effects in the absence of ADPR. Our interpretation is
that some Ca2+ has remained at the putative activating site in the
pore and that the positive feedback of 2-APB and Ca2+ can now
progress earlier.

An extremely interesting process in nvTRPM2 is the fast
current inactivation which discriminates it from its human
ortholog. In hTRPM2, the current decline after stimulation with
ADPR is remarkably slow, such that the activation is frequently
perceived as permanent. However, also in hTRPM2, inactivation
may be important (Starkus et al., 2007), although at a different
timescale. In nvTRPM2, inactivation takes place within fractions
of a minute. As molecular mechanisms for this phenomenon, the
experiments with 2-APB and on the pore mutant QLP provide
strong evidence that inactivation represents processes within
the pore and should therefore, as noticed before, referred to
as inactivation, rather than desensitization. It is also clear that
it is extracellular Ca2+ passing through the pore that mediates
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inactivation. Less clear is how this is prevented by 2-APB. The
compound could interfere with the binding of Ca2+ to a (yet
undefined) site specific for inactivation. Alternatively, it may be
hypothesized that some Ca2+-induced pore collapse takes place
as basis for inactivation. Such amechanism has been proposed for
hTRPM2 (Tóth and Csanády, 2012). As soon as 2-APB is present
in the pore, collapsemay be prevented without direct interference
with Ca2+. In any case, the effects of 2-APB are immediately
reversible after wash-out.

As a side-note with the potential of an experimental pitfall, we
would like to add that 2-APB may interfere with the large cation
NMDG in a manner that is difficult to interpret biologically but
may lead to incorrect conclusions in some experiments. When
extracellular Na+ is substituted by NMDG and Ca2+ is present
as sole permeable cation at a concentration of 10mM, ADPR
induces Ca2+ influx but 2-APB does not. However, this is not due
to an inhibition of Ca2+ permeation by 2-APB because isosmotic
substitution of NMDG with sucrose restitutes Ca2+ currents
(Kühn et al., 2017). Corresponding observations were made with
2-APB and the TRPV6 channel (Kovacs et al., 2012). Thus, it
appears that NMDG blocks pore entry of 2-APB.

It is hoped that further comparison between nvTRPM2 and
hTRPM2 and the study of pore chimeras will produce insight on
the structural requirements that govern inactivation.

RESPONSES TO H2O2 DEMONSTRATE

THE FUNCTIONAL ROLE OF THE NUDT9H

DOMAIN

A key feature of all TRPM2 channel orthologs studied previously
(which were all mammalian representatives without exception)
is their activation in response to oxidative stress (Hara et al.,
2002; Fonfria et al., 2004) that is experimentally simulated by
the extracellular application of H2O2 (Wehage et al., 2002).
Currently the most accepted hypothesis is that H2O2 activates
the channel indirectly through an accumulation of intracellular
ADPR (Perraud et al., 2005). This view is supported by inside-
out patch-clamp experiments in which H2O2 apparently had
no direct effects on human TRPM2 (Tóth and Csanády, 2010).
In extension of this view, a recent study reported that H2O2

sensitizes hTRPM2 to the activation by physiological body
temperatures; the sensitization is achieved by the oxidation of a
methionine residue localized in the N-terminus of the channel
(Kashio et al., 2012). This mechanism, under some experimental
conditions and probably in vivo, may contribute to channel
activation in response to oxidative challenges.

Since not only this specific methionine residue is also
conserved in nvTRPM2 but also nvTRPM2 is more sensitive
to ADPR than hTRPM2, it was expected to confirm H2O2

responses as well, and probably stronger and faster ones because
accumulated ADPR should activate nvTRPM2 more easily than
hTRPM2. The opposite findings were obtained. H2O2 completely
failed to induce any currents. This could not be helped by
increasing the concentration or the time of incubation of H2O2;
nvTRPM2 presented itself as a channel highly sensitive to ADPR
but entirely insensitive to H2O2 (Kühn et al., 2015).

Genetic manipulations of the NUDT9H domain in hTRPM2
have revealed that its function is easily disturbed by subtle
changes. There are quite a few point mutations that render
channels completely insensitive to ADPR. Several short
sequences were deleted or substituted with the same result
(Hara et al., 2002; Kühn and Lückhoff, 2004; Perraud et al.,
2005). When analogous changes were introduced in nvTRPM2,
again surprising findings were obtained. In no case, any change
in the response to ADPR could be demonstrated. However,
these manipulations produced channels that were now readily
activated by H2O2. It is not worthwhile to summarize here the
specific alterations of NUDT9H that were studied because it
turned out that none of them contributes to the understanding
of nvTRPM2 channel function. Instead, they gave rise to a
radically different perspective on the role that NUDT9H plays
in nvTRPM2, additionally guided by elegant experiments
from Perraud et al. (2005) who co-expressed TRPM2 channels
along with a cytosolic variant of the ADPR-degrading human
NUDT9 enzyme. This co-expression suppressed the H2O2-
induced activation of human TRPM2 which is accomplished by
intracellularly accumulating ADPR. Therefore, we speculated
that the NUDT9H domain of nvTRPM2 did not mediate the
activation by ADPR at all; instead, it prevented the activation by
H2O2 by degrading ADPR in the vicinity of the channel pore.
This latter role would fit very well to the two critical residues (EF
instead of IL) in the enzymatic domain; furthermore, all changes
that created H2O2 sensitivity could then be interpreted as loss of
ADPR degradation.

As a definite experimental test of the hypothesis, a nvTRPM2
channel variant was constructed in which the entire NUDT9H
domain had been deleted (nvTRPM2-1NUD). The absence
of large parts of the C-terminus may lead to unpredictable
structural changes of the protein, possibly resulting in misfolding
and aberrant surface expression. Accordingly, it was mandatory
to verify the correct surface expression of this variant. It
is later discussed that incidentally, these expression studies
revealed unforeseen insight into the function of the human
NUDT9H domain. Not unforeseen, however, but rather hoped
for as confirmation of the tested hypothesis, were the results
on nvTRPM2-1NUD. To begin with, the surface expression
was almost normal which is prerequisite for further functional
studies. These studies then revealed that sizeable currents were
induced by ADPR, such that the absence of the NUDT9H
domain did by no means preclude channel activation by ADPR.
In further confirmation of the hypothesis, H2O2 proved as an
effective current activator on nvTRPM2-1NUD, in line with
a missing ADPR degradation in the absence of a NUDT9H
domain. As a more direct proof for the catalytic activity of the
NUDT9H domain of nvTRPM2 and for its role in preventing
channel activation by H2O2, calcium imaging experiments were
performed onHEK-293 cells in which nvTRPM2-1NUDwas co-
expressed together with one of the following NUDT9 variants
(see Figure 1): an essential part of the human NUDT9 enzyme
(aa 77–350), the isolated NUDT9H domain of nvTRPM2 (aa
1,289–1,551), or the isolated NUDT9H domain of hTRPM2
(aa 1,253–1,503). Stimulation with H2O2 resulted in Ca2+

influx through nvTRPM2-1NUD when the enzymatic inactive
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NUDT9H domain of hTRPM2 was co-expressed. In contrast,
co-expression of the human NUDT9 enzyme as well as of
the NUDT9H domain of nvTRPM2 drastically suppressed the
H2O2 responses of nvTRPM2-1NUD (Kühn et al., 2016).
Therefore, the evidence is compelling that the ADPRase activity
of the NUDT9H domain in nvTRPM2 is of decisive functional
relevance, as is in the opposite way the loss of ADPRase activity
in hTRPM2, which has already been demonstrated with the
analogous experiments by Perraud et al. (2005).

Thus, the original approach of studying species variants, to
elucidate the apparently unique NUDT9H-directed activation of
TRPM2 by ADPR, led to the realization that there exist two
completely different mechanisms for ADPR-dependent channel
gating (Kühn et al., 2016), one present in mammals and one in
cnidarians.

The cartoon in Figure 3 is intended to illustrate the results
on H2O2 stimulation of heterologously expressed wild-type
hTRPM2, wild-type nvTRPM2, and of nvTRPM2 variants in
which different parts of the NUDT9H domain have been
modified or deleted.

Several questions immediately arise. The first one is how
wild-type nvTRPM2 can show as extremely sensitive to ADPR
in patch-clamp experiments (Kühn et al., 2015) when the
NUDT9H domain degrades all ADPR in the vicinity of the
channel. Possibly, its ADPRase activity is overpowered by
the inexhaustible ADPR supply of the patch pipette. This
interpretation is in line with the experimental findings of Perraud
et al. (2005) where the ADPRase activity of the co-expressed
human NUDT9 enzyme lost its relevance when increased
concentrations of ADPR were used in the patch-clamp pipette.

As second question for which no easy answer is available
at present, we have to ask how ADPR accomplishes gating in
the absence of NUDT9H and whether there is an additional
binding site for ADPR. It is plausible that such a binding site
should be in the N-terminus as only longer intracellular region
of nvTRPM2-1NUD.

nvTRPM2—A PROTOTYPE FOR A NOVEL

MECHANISMS OF ADPR-DIRECTED

CHANNEL ACTIVATION

In principle, ADPR-dependent channel activation would not
necessarily require a binding site. Alternatively, mechanisms like
ADP-ribosylation should be discussed. PARPs, however, would
be no good candidates which could achieve such a modification
of an ion channel because they are all transferases and transfer
the ADPR-moiety from the cofactor NAD+ to the protein
(Barkauskaite et al., 2015); free ADPR is not a suitable substrate
for PARP enzymes. Moreover, ADPR is able to induce channel
gating in cell-free patches. Unless there would be membrane-
associated enzymes that accomplished ADP-ribosylation of
nvTRPM2, which seems somewhat remote in our opinion, the
finding strongly contradicts such a mechanism (Kühn et al.,
2016).

Potential binding sites might either exhibit known motifs for
ADPR binding such as the Nudix box, or represent a new type

of interaction. They are not expected to have ADPRase activity
because the non-hydrolyzable ADPR analog AMPCPR is fully
accepted as an activator (own unpublished results).

While Nudix box motifs cannot be found in the N-terminus
or in other cytosolic parts of nvTRPM2, future search of binding
sites may be guided by studies on a protein module ubiquitous
in eukaryotes, bacteria, and archaea (Chakravarthy et al., 2005).
The module was originally characterized in the histone variant
macroH2A (Chakravarthy et al., 2005) and is well known for its
capability to bind ADPR (Karras et al., 2005).

POSSIBLE ROLE OF nvTRPM2 IN VIVO

Considering the unique functional properties demonstrated by
the nvTRPM2 channel in HEK-293 cells, the question arises how
a combination of an ADPR-sensitive channel and a catalytic
active ADPRase function might work in vivo in the sea anemone.
Concededly, it is not the primary goal of our present research or
of this review to describe the physiological role that TRPM2 plays
in Nematostella vectensis. Moreover, fundamental information
is lacking that would put any speculation on such a role on a
more solid basis. In particular, data on the spatial and temporal
expression of TRPM2 in Nematostella vectensis are still missing.
Nevertheless, some thoughts on this topic may be outlined here.

During evolution, the sea anemone has separated from
man some 800 million years ago. Notwithstanding, there is a
striking degree of conservation concerning the gene families
in the genome of Nematostella and vertebrates, as revealed
by expressed sequence tag (EST) and genome analyses. This
indicates that many ancestral traits have been preserved in
Nematostella (Genikhovich and Technau, 2009). For this very
reason, Nematostella vectensis currently represents a model
organism in which fundamental biological processes are intensely
studied, such as axial patterning, plasticity of the nervous system
or stress responses (Layden et al., 2016).

Certainly, oxidative stress plays an important role in sea
anemones in their natural habitat (Goldstone, 2008; Reitzel
et al., 2008; Tarrant et al., 2014). However, at present there
is no information about the intracellular regulation of the
ADPR concentration. In particular, it has not been proven
that intracellular ADPR is mobilized by oxidative stress, as in
mammalian cells, although PARPs and PARGs as well as the
NUDT9 enzyme are represented in the genome of Nematostella
vectensis (as derived from the Joint genome institute database).
Thus, at least the signaling cascade that leads to the activation of
a Ca2+-permeable, depolarizing cation channel as consequence
to DNA damage, seems to be fully constituted in Nematostella.

Speculations on how this cascade proceeds are nourished by
the peculiar kinetics of nvTRPM2. In studies on human TRPM2,
extracellular application of H2O2 as an experimental paradigm
of oxidative stress leads to an extended channel activation,
resulting invariably in a permanent and massive elevation of
the intracellular Ca2+ concentration (Figure 4A). This kind of
response fits well to other observations in which H2O2 induces
apoptosis in a TRPM2-dependent manner (Miller and Zhang,
2011; Naziroglu, 2011; Takahashi et al., 2011). In contrast, the
consequences of nvTRPM2 activation in vivo are anticipated to
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FIGURE 3 | Putative functional role of the endogenous NUDT9H domain of the TRPM2 orthologs during oxidative stress (stimulation with H2O2). Oxidative stress

leads to intracellular accumulation of ADPR. In the case of hTRPM2 (upper), ADPR binds to the cytosolic NUDT9H domain (lacking significant ADPRase activity) and

initiates channel activation. In contrast, nvTRPM2 (lower, left) exhibits full catalytic activity. Therefore, ADPR is degraded and the cytosolic concentration of ADPR

remains too low to initiate channel activation. However, when the enzymatic function of the NUDT9H domain of nvTRPM2 is disrupted due to point mutations,

interfering either with binding or with cleavage of ADPR, or due to the deletion of the entire NUDT9H, the accumulated intracellular ADPR enables channel gating via a

second interaction site. The cartoon reflects the experimental situation of nvTRPM2 over-expression in mammalian cells (HEK-293) with no external ADPR added to

the cytosol. Note that for the proper function of nvTRPM2 in their native environment, a cellular mechanism is required that controls the catalytic activity of the

NUDT9H domain and thereby enables ADPR-dependent gating of nvTRPM2.

be far less drastic than cell death because channel activation is
short and followed by immediate inactivation. This is already
evident in patch-clamp experiments. An approach that is closer
to a physiological situation are calcium imaging experiments
because the cytosol is left intact and can be controlled and
regulated by the cells. However, an ADPR-mediated stimulation
of nvTRPM2 is not feasible in such experiments because ADPR
cannot be applied intracellularly and because application of
H2O2 is without effect on wild-type nvTRPM2 (Figure 4B). As
discussed, this lack of nvTRPM2 response, which occurs in spite
of the high ADPR sensitivity, is due to the degradation of ADPR
by the catalytic active NUDT9H domain. When the enzymatic
activity is abrogated by genetic manipulations, e.g., by deletion
of the entire NUDT9H domain, H2O2 becomes effective and
evokes increases in [Ca2+]i by Ca

2+ entry through the nvTRPM2
variants. As expected, these Ca2+ responses are characterized
by a lag time, by a rapid increase of [Ca2+]i after the lag
time, and by a fast decline. Moreover, oscillations of [Ca2+]i
are consistently found that display as sharp peaks of [Ca2+]i,
fast returns to baseline, and extended periods at baseline level
prior to the next sharp peak (Figure 4C). In many experiments,
such oscillations were observed already in the absence of H2O2.
Therefore, the basal ADPR concentration in the chosen cell
model for heterologous overexpression (HEK-293) is sufficient

for nvTRPM2 stimulation, provided the ADPR degradation by
the NUDT9H domain is prevented.

Without doubt, [Ca2+]i oscillations play a pivotal role in
many important physiological processes (e.g., circadian rhythm,
fertilization) and oscillatory Ca2+ signaling associated with
endogenously expressed TRPM channels has been described
in Caenorhabditis elegans (Xing and Strange, 2010); hence, the
finding may well be meaningful for the physiological role of
TRPM2 in the sea anemone. Unfortunately, there are still a lot
of fundamental questions about the oscillations.

Primarily, it is unclear how degradation of ADPR by
the NUDT9H domain in nvTRPM2 should be prevented in
Nematostella in vivo. One way how this might happen was
demonstrated by Carloto et al. (2006) in studies with the human
NUDT9 enzyme. In the presence of H2O2, the preferred divalent
cation for the ADPRase activity becomes Mn2+ rather than
Mg2+ which then can no longer act as cofactor; the result is
an increased Km for ADPR. Accordingly, treatment with H2O2

virtually abolishes the enzymatic activity with Mg2+ as cofactor
(Carloto et al., 2006).

Mechanistically, it is not easy to understand how the [Ca2+]i
oscillations are accomplished. Channel inactivation is certainly
a key element because 2-APB (1mM) induces no oscillations
but instead causes a permanent increase in [Ca2+]i (Figure 4D).
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FIGURE 4 | Calcium imaging reveals typical effects on intracellular Ca2+ concentrations evoked by stimulation of either hTRPM2 or of nvTRPM2 channels in

HEK-293 cells. (A) Characteristic changes of the intracellular Ca2+ concentration of cells transfected with human TRPM2 after extracellular stimulation of the cells

with 10mM H2O2. Note the plateau-like increases in [Ca2+]i. (B) Cells transfected with nvTRPM2 do not respond to oxidative stress. (C) Cells are transfected with a

channel variant of nvTRPM2 where the ADPRase activity of the NUDT9H domain has been disrupted by a deletion. H2O2 induces characteristic oscillations of

[Ca2+]i. For better distinction, the individual curves are highlighted in different colors. After replacing the standard bath solution (containing 1.2mM Ca2+) with a

divalent-free bath solution (containing 10mM EGTA) the oscillations stop. (D) Stimulation of nvTRPM2 by extracellular application of 2-APB (1mM). A plateau-like

increase in [Ca2+]i results because 2-APB is an activator and prevents channel inactivation at the same time. Responses of non-transfected cells are shown as

negative control. Figures are slightly modified from Kühn et al. (2015, 2017).

However, patch-clamp experiments have so far not revealed
how inactivation can be temporarily reversed, which seems to
be a prerequisite for oscillations. Moreover, this must happen
in an extremely homogenous and synchronized manner within
the total channel population of a cell. Cyclic regulation of
the ADPRase activity of the NUDT9H domain cannot be an
explanation because oscillations were observed exclusively in
mutants where this region is dysfunctional. Ca2+-dependent
regulation of other ADPR-degrading enzymes is a theoretical
possibility without experimental evidence.

So there are ample research opportunities for scientists
fascinated by the biology of the sea anemone and by the signaling
that nvTRPM2 may participate in. Our own interests are focused
more on what is outlined in the following chapter.

LESSONS TO BE LEARNED FROM

nvTRPM2 FOR THE GATING MECHANISM

OF HTRPM2

When we started the studies on nvTRPM2, our long-lasting and
general aim was gain of insight on the relation between structure
and function of the human TRPM2 channel, with emphasis on

gating as consequence of ADPR binding. We thought we were on
a promising path when we achieved the functional expression of
nvTRPM2 as ADPR-activated channel. Then we discovered that
the NUDT9 homology region fulfills opposite functions in sea
anemone and man, dampening the hope for learning with this
approach how the C-terminus contributes to gating.

Obviously, evolution had used strongly divergent paths to
create an ADPR-gated channel in cnidarians and mammals
which could not be anticipated. In spite of the unexpectedly large
functional inter-species discrepancies, our research on nvTRPM2
directed us toward experiments on the human C-terminus that
reveal valuable information on the function of this domain so
different from Nematostella.

Although many structural requirements for ADPR binding
have been defined in hTRPM2 as well as in the NUDT9 enzyme,
the most urgent question remains how ADPR binding to the
channel creates the structural re-arrangement decisive for gating
and which parts of the protein participate.

In a recent study, a detailed structural model for the binding
of ADPR to the NUDT9H domain of the hTRPM2 channel
was proposed (Yu et al., 2017). This model is basically guided
by the crystal structure of the human NUDT9 enzyme (Shen
et al., 2003). However, as promising as this approach may be,
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a structural view on the isolated NUDT9H domain entails the
risk of misinterpreting the situation in the full-length channel.
This reservation does not concern a potential design of drugs
that might modify the function of the NUDT9H domain. But
this approach does not necessarily elucidate the structural basis
of the interaction between the NUDT9H domain and the other
parts of the channel. Hints that may shed light on this interaction
derive from our experimental findings that certain C-terminal
modifications of hTRPM2 interfere with channel function (Kühn
et al., 2015, 2016). These findings demonstrate that not only
subtle alterations within the NUDT9H region have a strong
impact on the human channel but also manipulations of the C-
terminus outside of this region. Importantly, these modifications
appear to compromise the NUDT9H domain independently of
the function that the region fulfills in each species. In hTRPM2,
gating is prevented, whereas ADPR degradation is abolished in
nvTRPM2.

In future, it will be a major challenge to integrate all the
experimentally gained information on particular mutated single
amino acids in hTRPM2 and nvTRPM2 into structural models
that may help to explain the interaction of various parts of the
whole protein on a mechanistic level.

With respect to the yet unknown interaction mode between
NUDT9H and channel core in hTRPM2, the disturbance of the
NUDT9H domain by modifications outside of it raises further
questions. It should be studied in detail whether binding of
ADPR is impeded or whether a subsequent step within the
gating process is affected. Iordanov et al. (2016) have already
presented evidence that within the NUDT9H region, about 20%
of C-terminal sequence might represent an interface for the
transduction of ligand binding to pore-opening. It is imagined

that larger parts of the protein participate geometrically to
orchestrate a fully functional interaction.

In general, the comparison of nvTRPM2 and hTRPM2
remains an attractive approach to delineate the structural basis
for particular functional details, but these studies are only at their
beginning.

CONCLUDING REMARKS

In the sea anemoneNematostella vectensis as well as in mammals,
TRPM2 represents a cation channel activated by ADPR. This
mode of channel activation is unique and not found for any
other known channels. However, the mechanisms how ADPR
achieves gating are remarkably distinct in the orthologs, and
opposite tasks have been assigned to the NUDT9H domain.
Hence, TRPM2 is a fascinating example how one gene in distantly
related species has evolved in a strikingly divergent manner and
still has gained analogous functional properties. At the same
time, evolution has created critical but diametrically different
roles for homologous parts of the protein. In the NUDT9
domain of nvTPM2, as opposed to the situation in hTRPM2,
catalytic function is conserved and bears functional importance
for channel function. Thus, nvTRPM2 can be considered a true
and unquestionable chanzyme.
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Currently, neuropathic pain is an underestimated socioeconomic health problem affecting

millions of people worldwide, which incidence may increase in the next years due to

chronification of several diseases, such as cancer and diabetes. Growing evidence

links neuropathic pain present in several disorders [i.e., spinal cord injury (SCI), cancer,

diabetes and alcoholism] to central sensitization, as a global result of mitochondrial

dysfunction induced by oxidative and nitrosative stress. Additionally, inflammatory signals

and the overload in intracellular calcium ion could be also implicated in this complex

network that has not yet been elucidated. Recently, calcium channels namely transient

receptor potential (TRP) superfamily, including members of the subfamilies A (TRAP1), M

(TRPM2 and 7), and V (TRPV1 and 4), have demonstrated to play a role in the nociception

mediated by sensory neurons. Therefore, as neuropathic pain could be a consequence of

the imbalance between reactive oxygen species and endogen antioxidants, antioxidant

supplementationmay be a treatment option. This kind of therapy would exert its beneficial

action through antioxidant and immunoregulatory functions, optimizing mitochondrial

function and even increasing the biogenesis of this vital organelle; on balance, antioxidant

supplementation would improve the patient’s quality of life. This review seeks to

deepen on current knowledge about neuropathic pain, summarizing clinical conditions

and probable causes, the relationship existing between oxidative stress, mitochondrial

dysfunction and TRP channels activation, and scientific evidence related to antioxidant

supplementation.

Keywords: neuropathic pain, oxidative stress, inflammation, mitochondrial dysfunction, TRP channels,

antioxidants

INTRODUCTION

Currently, neuropathic pain (NP) is an underestimated socioeconomic health problem affecting
millions of people worldwide. It has been recently redefined by the International Association for
the Study of Pain as a “pain caused by lesion or disease of the somatosensory system” and it may
appear in a wide range of conditions; it can be classified into peripheral or central NP, depending
on anatomic location of the lesion or disease. Without a specific diagnostic tool, both clinicians
and researchers might use a grading system with different levels of certainty about the presence
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of NP (“possible,” “probable,” and “definite”) in a patient;
however, it should be mentioned that coexisting NP and other
types of pains (such as nociceptive pain) can make difficult a
reliable distinction (Treede et al., 2008; Jensen et al., 2011). The
common symptoms of different types of NP are mechanical
allodynia and hyperalgesia. Unlike nociceptive pain, commonly
prescribed analgesics often fail in alleviating NP. Thus, it can
become a chronic and hardly bearable condition, recently called
refractory NP. In some cases, this most severe NP may lead to
increased episodes of depression and suicide (Torrance et al.,
2013; Hassler et al., 2014; Kawaguchi et al., 2014).

Further research is needed to understand underlying
mechanisms of NP that allow to design individual and rational
treatment strategies. Growing evidence points thatmitochondrial
dysfunction induced by oxidative and nitrosative stress, along
with inflammation, constitute the physiopathological basis for
the development of several diseases (Carrasco et al., 2015).
Regarding to NP, this adverse context leads to peripheral and
central sensitization. It must be considered that mammalian
nerves are especially susceptible to free radicals, including
oxygen (ROS) and nitrogen reactive species (RNS), due to their
high content in phospholipids and axonal mitochondrion; in
addition, neuronal antioxidant defenses are weak (Areti et al.,
2014). Studies about antioxidant supplementation in animal
models of NP point that hydroxyl (•OH) and superoxide
(O•−

2 ) radicals and nitric oxide (•NO) might be involved in
the physiopathology of this kind of pain (Kawaguchi et al.,
2014). However, the way these messenger molecules regulate
pain signaling is still poorly understood. In addition, overload
intracellular calcium ion (Ca2+) has also an important role in
the etiology of NP. Ca2+ enters cells in different ways including
cation channels. Voltage gated calcium channels and chemical
channels (i.e., glutamate) are well known calcium channels
(Kumar et al., 2014). Moreover, new calcium channels namely
transient receptor potential (TRP) superfamily were discovered
in eye cells of Drosophila flyers (Hardie, 2011; Naziroǧlu,
2011). In different species, TRP superfamily is divided into 30
channels within seven subfamilies such as TRPA (ankyrin),
TRPC (canonical), TRPM (melastatin), TRPML (mucolipin),
TRPP (polycystin), TRPV (vanilloid), and TPRN (NomPC),
nevertheless there are 28 subfamilies within 6 subgroups in
mammalian (Hardie, 2011; Naziroǧlu, 2011; Uchida et al., 2017).
At least, nine members of TRP superfamily are activated by
oxidative stress including TRPM2, TRPM7, TRPA1, TRPC3,
TRPC5, TRPC6, TRPV1, TRPV3, and TRPV4 (Ogawa et al.,
2016). Dorsal root ganglion (DRG) neurons play an important
role in the painful NP. There is no barrier between the DRG
and blood and compounds with high molecular weight can

Abbreviations: APN, Alcoholic peripheral neuropathy; CIPN, chemotherapy-

induced peripheral neuropathy; DRG, dorsal root ganglion; ETC, mitochondrial

electron transport chain; GSH, glutathione; NAC, N acetyl cysteine; NP,

neuropathic pain; PARP-, poly (ADP-ribose) polymerase-1; PDN, peripheral

diabetic neuropathy; PKC, protein kinase C; ROS, reactive oxygen species;

RNS, reactive nitrogen species; SCI, spinal cord injury; TRP, transient receptor

potential; TRPA1, transient receptor potential ankyrin 1; TRPM2, transient

receptor potential melastatin 2; TRPV1, transient receptor potential vanilloid 1;

TRPV4, transient receptor potential vanilloid 4.

easily diffuse into the DRG (Abram et al., 2006). Expression
levels of TRPA1, TRPM2, TRPV1, and TRPV4 channels are
high in the DRG and trigeminal ganglia neurons (Kobayashi
et al., 2005; Obata et al., 2005; Fonfria et al., 2006; Naziroǧlu,
2011). Hence, the TRPA1, TRPM2, TRPV1, and TRPV4 play an
important role in the nociception mediated by sensory neurons,
including the DRG (Materazzi et al., 2012; Özdemir et al.,
2016; Kahya et al., 2017). Therefore, increased ROS/RNS levels
induced by several clinical conditions may play a deleterious
effect on different biomolecules (e.g., lipids, proteins and nucleic
acids), organelles and antioxidant defenses, leading to exacerbate
nitro-oxidative stress, mitochondrial dysfunction, glial activation
and inflammatory response. Recent evidence also points out the
possible implication of TRP channels in NP. Altogether, this
adverse context is ultimately responsible of the typical painful
symptoms of NP (Figure 1).

This review summarizes current knowledge about NP,
focusing on clinical conditions and probable causes, the
relationship existing among oxidative stress, mitochondrial
dysfunction and TRP channels activation and scientific evidence
related to antioxidant supplementation.

Spinal Cord Injury
Following spinal cord injury (SCI), individuals suffer not only
motor dysfunction but also the development of chronic NP.
Up to 80% of patients experience this condition within months
after injury, which dramatically impairs their quality of life;
thus, taking in account that this kind of NP is refractory to
clinical treatments, depression and suicide are very frequently
(Stillman et al., 2017). It is thought that after SCI, many
neuroadaptation responses are implemented in dorsal horn,
triggering central mechanisms which likely contribute to NP.
Apart from dysfunction of neurons, other pathogenic events have
been defined about post-SCI pain, including pro-inflammatory
signaling, microglia activation and intracellular Ca2+ alteration;
however, little is known about how oxidative stress may play a
critical role in this condition (Hulsebosch et al., 2009; Due et al.,
2014).

Evidence supports that after a central nervous system
injury, increased extracellular glutamate levels activate several
intracellular pathways including ROS formation; this change in
redox status promotes a leukocyte mediated pro-inflammatory
response that ultimately leads to the exacerbation of secondary
damage (Hulsebosch et al., 2009). In this sense, some studies have
implicated the lipid peroxidation byproduct (acrolein) in many
neuropathological diseases and NP modalities (Shi et al., 2011).
During inflammation and trauma acrolein is released, causing
damage to biomolecules and altering several cellular processes
in neurons, including mitochondria functionality. Consequently,
this aldehyde is well known to be a potent oxidant, perpetuating
a vicious cycle of oxidative stress which may partially explain its
role as TRPA1 agonist. Due et al. (2014) have reported increased
levels of acrolein within or near the injured site for at least 2 weeks
following experimental SCI, a phenomenon which was correlated
with the onset of sensory and behavioral hypersensitivity in
rats. Moreover, exogenous administration of acrolein into rodent
spinal cord also induced pain symptomatology, whereas the
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FIGURE 1 | Summary of harmful effects of nitro-oxidative stress on neuronal cells in neuropathic pain (CAT, catalase; GPx, glutathione peroxidase; GSH, glutathione;

IL-1/6, interleukin 1/6; ROS/RNS, reactive oxygen species/reactive nitrogen species; SOD, superoxide dismutase; TNF-α, tumor necrosis factor-α; TRP, transient

receptor potential; TRPA1, transient receptor potential ankyrin 1; TRPM2, transient receptor potential melastatin 2; TRPV1/4, transient receptor potential vanilloid 1/4).

treatment with its scavenger hydralazine modestly diminished
sensitivity to both tactile and thermal stimuli. Researchers also
performed in vitro assays observing that acrolein increases
neuronal excitation. Together, these findings strongly support
the pro-nociceptive role of acrolein likely via TRPA1 activation,
as deduced by increased levels of this receptor in sensory
ganglia also observed in the referred study. But as authors
mentioned, other TRP channels might also be sensitive to
acrolein and contribute to SCI-induced NP. In accordance with
these observations, Park et al. (2014) have also reported in vivo
evidence about the crucial role of acrolein in the pathogenesis
of spinal cord trauma and the potential use of hydralazine
as analgesic. In this study, a significant reduction of acrolein
levels, tissue damage, motor deficits and NP was observed in
hydralazine-treated rats.

On the other hand, other mediators may also be part of the
pathophysiological mechanisms triggered by oxidative stress in
this kind of NP, such as aquaporin-1. Apart from mediating
several physiological processes via water transport, aquaporin-1

must also play a not still well understood role in the etiology
of different neuropathological conditions; it is supposed to
contribute to some of the typical outcomes such as edema and
cyst formation. In experimental models of SCI, this protein has
been found to be significantly elevated for up to 11 months
in sensory axons, neurons, astrocytes, and ependymal cells,
despite consequent loss of nerve tissue at the site of injury.
Experimental data point oxidative stress as one of the factors that
contributes to aquaporin-1 up-regulation since administration
of the antioxidant melatonin not only reduced protein levels
but also mechanical allodynia and appearance of aquaporin-1-
positive fibers below laminae I and II (Nesic et al., 2008).

More recently, in vivo proteomic approaches of SCI have
demonstrated that peripheral nerve injury alters the expression
and/or subcellular distribution of some specific dorsal horn
proteins, for example those involved in nociceptive signaling,
cellular metabolism, plasma membrane receptor trafficking,
oxidative stress, apoptosis and degeneration (Lee et al., 2003;
Kunz et al., 2005; Singh et al., 2009). In this sense, the TRP
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superfamily’s member TRPM4 should be mentioned. TRPM4
is a non-selective, Ca2+-impermeable channel that exclusively
transports monovalent cations. TRPM4 is activated by increased
intracellular ATP concentration and oxidative stress, but it is
inhibited by intracellular ATP depletion (Nilius et al., 2004;
Simon et al., 2010). Involvement of the Cys1093 residue oxidation
in TRPM4 channel activation has also a significant role in
oxidative stress dependent (without ATP depletion) activation
and desensitization of TRPM4. Involvement of hydrogen
peroxide (H2O2) is well known for induction of necrosis; in
endogenously expressed TRPM4 HeLa cells, H2O2 induction of
both necrosis and apoptosis has been shown (Simon et al., 2010).
TRPM4 has an important role for induction of neurological
diseases. For example, involvement of TRPM4 in etiology of SCI
was reported by result of recent papers (Gerzanich et al., 2009;
Lee et al., 2014).

Chemotherapy-Induced Peripheral
Neuropathy
Many first-line chemotherapy agents used in the current
clinical practice, such as platinum-based anticancer drugs
(i.e., cisplatin, oxaliplatin), proteasome/angiogenesis inhibitors
(bortezomib/thalidomide), vinca alkaloids (i.e., vincristine,
vinorelbine) and taxanes (i.e., paclitaxel, docetaxel) cause a
dose-limiting side effect called chemotherapy-induced peripheral
neuropathy (CIPN) (Han and Smith, 2013; Kerckhove et al.,
2017). This kind of NP involves predominantly sensory nerves
and occurs in a stocking-and-glove distribution. Depending on
anticancer drugs, 38–100% of cancer patients are affected by
CIPN and its symptoms (mainly allodynia and hypersensitivity)
may persist from months to years following cessation of
anticancer treatment, a phenomenon known as coasting. It seems
that chemotherapy regimens (drug or combination of drugs
administered and dosing), methods of pain assessment and
the individual patient characteristics (presence of comorbidities
associated with increased risk of neuropathy, such as diabetes,
depression, insomnia or genetic particularities) are some of the
several factors that may influence on the onset of CIPN and
the severity of symptoms. In addition, most of the effective
analgesics in NP failed to provide symptomatic relief of CIPN
and often exhibit side effects (Han and Smith, 2013; Griffiths and
Flatters, 2015). Thus, CIPN may limit the dosing, duration and
effectiveness of the treatment, affecting survival and quality of life
of the patient (Ji et al., 2013; Kerckhove et al., 2017).

In general, unlike other types of NP (including those induced
by trauma and diabetes) axonal degeneration in peripheral nerves
is not present in CIPN (Ji et al., 2013). For this reason, NP
is suspected to be a complex phenomenon resulting from the
interrelation of various mechanisms. It has been observed that
anticancer drugs may cause neuronal damage in a variety of
ways, such as nuclear and mitochondrial DNA damage, ion
channel disturbances (i.e., calcium, sodium and potassium),
impairment of axonal transport and inflammatory process (Han
and Smith, 2013; Massicot et al., 2013; Kerckhove et al.,
2017). More recently, experimental evidence points oxidative
stress and mitochondrial dysfunction as one of the common

pathophysiological mechanisms responsible of neurotoxicity in
CIPN. Thus, overproduction of ROS and RNS may affect
redox status toward oxidation, interfering with the antioxidant
defense system and cell function. An increase in several markers
of oxidative stress (lipid peroxidation, carbonylated proteins
and DNA oxidation) in experimental models of CIPN has
been observed; moreover, homozygous individuals for GSTP1
105Ile allele, that encode the oxidative stress regulatory enzyme
glutathione S-transferase pi 1, tend to suffer this type of NP
more frequently than other people (Han and Smith, 2013). At
mitochondrial level, structural integrity and energy function
of this organelle are affected, triggering the apoptosis cascade.
Furthermore, inefficient autophagy/mitophagy of damaged
biomolecules and organelles leads to a vicious cycle in the cells,
which ultimately exacerbates the progression of the CIPN typical
neurodegeneration. Consequently, inflammatory response is
activated in both neurons and immune system cells (Massicot
et al., 2013; Areti et al., 2014). Specific oxidative damage features
in CIPN induced by most commonly used chemotherapeutic
agents are detailed below.

Regarding to CIPN induced by the taxanes, Duggett et al.
(2016) analyzed oxidative stress in DRG neurons of rats treated
with paclitaxel at three time-points (prior to pain onset (day
7), during (peak pain) and at resolution of pain). Whereas
researchers did not find any change in mitochondrial ROS or
O•−

2 levels while studying entire neuronal populations, analysis
of separately subpopulations of nociceptive neurons showed a
statistically significant increase of ROS levels in isolectin B4-
positive neurons from treated rats compared to control rats
at the three time-points studied. For authors, these results
indicate that neuronal antioxidant defenses seem to be initially
overwhelmed, leading to ROS overproduction prior to pain
onset; this phenomenon causes mitochondrial dysfunction with
increased superoxide radical levels at peak pain, triggering
signaling cascades that may underlie the coasting effect, such
as apoptosis. It has been observed that the apoptotic process in
paclitaxel induced-painful neuropathy is due to the permeability
transition pore opening, with the consequent cytochrome c
release and Ca2+ homeostasis dysregulation (Areti et al., 2014).
In this sense, Griffiths et al. (Griffiths and Flatters, 2015)
reported that the selective pharmacological modulation of the
mitochondrial electron transport chain (ETC) (at level of
complex I or III) in vivo could also reverse or attenuate the above-
mentioned symptoms, but with deleterious effects on motor
coordination in the case of complex I inhibition at 3 and 24 h after
paclitaxel administration; however, only complex III inhibition
before and during the chemotherapy exposure caused an effective
relief of pain in prophylactic studies. According to authors,
paclitaxel administration causes mitochondrial dysfunction as
first oxidative event, resulting in excessive ROS levels which could
not be counteracted by the weak antioxidant defenses of neurons;
due to this fact, ROS-driven pain behaviors start. In addition,
other studies have also demonstrated the involvement of TRP
channels in paclitaxel-induced pain, which are well known to be
predominantly expressed on this subpopulation of DRG neurons.
In fact, a specific cellular signaling pathway has been described
in mice, including the activation of protease-activated receptor 2
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and downstream enzymes phospholipase C and protein kinases A
and C by mast cell triptase, and resultant sensitization of TRPV1,
TRPV4, and TRPA1 (Chen et al., 2011). Later, Materazzi et al.
(2012) observed in vitro that paclitaxel administration induced
oxidative stress byproducts which ultimately activate TRPA1
and TRPV4. Thus, pharmacological TRP channel targeting
may offer a future possibility to attenuate paclitaxel-induced
mechanical and thermal hypersensitivity in clinical practice. In
summary, as Kerckhove et al. (2017) point the oxidative stress
in taxanes induced-NP not only causes damage to neuronal and
non-neuronal cells, but also macrophage activation, with the
consequent overproduction of pro-inflammatory cytokines, such
as TNF-α and IL-1β. In fact, Li et al. (2015) have recently reported
that paclitaxel treatment may also trigger pro-inflammatory
mechanisms inDRGneurons via toll-like receptor 4, which is also
associated to the sensitization of TRPV1.

On the other hand, platinum compounds such as oxaliplatin
have a strong neurotoxicity compared to other anticancer drugs;
more than 90% of patients develop acute neuropathy which
could become chronic in a 30–50% of the cases. However,
the complex machinery underlying CIPN is poorly understood.
To date, it has been observed that the treatment with this
kind of antitumor agents causes ROS generation, mitochondrial
dysfunction (including frataxin deficiency, mitochondrial DNA
damage and defective components of ETC), loss in antioxidant
enzymes, ion channels disturbances and nerve tissue damage
(protein carbonylation and lipid peroxidation) (Areti et al., 2014;
Kerckhove et al., 2017). It is thought that various receptors
and molecular pathways must be involved in the sensitization
of peripheral and central sensory nerves, and thus, in the
chronicity of CIPN. Recently, Massicot et al. (2013) have
described in vitro and in vivo biochemical effects after exposure to
high concentrations of oxaliplatin, including neuronal activation
of the purinoreceptor subtype 7, ROS and •NO production, lipid
peroxidation, loss of mitochondrial transmembrane potential
and further apoptosis via caspase 3 activation. Regarding to
immune response, oxaliplatin-treated neurons release significant
amounts of pro-inflammatory cytokines, mainly TNF-α and IL-
6, whereas prostaglandin E2 levels were significantly higher
in macrophagues exposed to the platinum compound than in
control cells. These inflammatory mediators might stimulate
nociceptors, leading to generation and further chronification of
painful symptoms. Overall, authors suggest that oxidative stress
along with purinoreceptor subtype 7/inflammasome pathway
would play a persistent role in oxaliplatin-induced neurotoxicity
and its transition from acute to chronic NP. In addition,
purinoreceptor subtype 7 activation has been observed to
cause caspase-1 activation, which is ultimately involved in the
expression of cyclooxygenase 2 and prostaglandin E2 and IL-β
production.

Recently, vinca alkaloids have demonstrated to exert their
neurotoxicity via activation of spinal cord glia (i.e., astrocytes
and microglia), offering an option for the treatment of CIPN
through pharmacological antagonism of this phenomenon. For
authors such as Ji et al. (2013) spinal astrocytic activation, but
no microglial activation, seems to contribute to mechanical
allodynia in vincristine-treated rats, leading to overexpression

of IL-β. This pro-inflammatory mediator might bind to
its endogenous receptor to induce N-methyl-D-aspartic acid
receptor phosphorylation in spinal dorsal horn neurons; thus,
neuronal activity and nociceptive signaling would be enhanced.
On the contrary, other studies have reported both astrocytic
and microglial activation (Sweitzer et al., 2006; Kiguchi et al.,
2008) after vincristine exposure, as well as up-regulation of other
inflammatory cytokines such as TNF-α (Kiguchi et al., 2008).
As mentioned by Ji et al. (2013), methodological differences
(i.e., animal model, dosage and route of administration, etc.)
might be one of the reasons for this discrepancy. In any case,
oxidative stress would trigger the glial activation, as well as
other processes. A study performed in vivo has revealed that
vincristine-induced ROS overproduction may also increase the
activity of the enzyme dipeptidylpeptidase IV and decrease the
levels of spinal endomorphin-2. Authors’ hypothesis reveals
that the loss of this kind of endogenous inhibitory signal
might contribute to allodynia and central sensitization, with the
subsequent development of chronic pain.

Finally, bortemozib and thalidomide are well known to act
as proteasome/angiogenesis inhibitors. However, a proteasome-
independent mechanism might also contribute to CIPN; thus,
mitochondrial dysfunction may also be involved (Kerckhove
et al., 2017). Recently, Zheng et al. (2012) have reported in rat
sciatic nerve how bortemozib, as other antitumor drugs, causes
significant deficits in complex I and II of ETC, as well as in ATP
production, at two time points (pain onset -day 7- and peak pain
-day 35-).

Therefore, scientific evidence highlights the importance of
early oxidative stress in the CIPN onset. But the important
question that remains unresolved is: what happens first after
chemotherapy administration? Mitochondrial dysfunction or
increased ROS levels? In any case, this context leads to a
vicious cycle which compromises ATP production and neuronal
viability (Figure 2). Experts agree that, experimentally, the period
between the last injection of the antitumoral agent and the time
of normal onset of pain is a crucial window for an effective
ROS scavenging. Taking into account all the above-mentioned,
monitoring oxidative stress related-parameters during the course
of CIPN could be helpful in clinical practice (Areti et al., 2014).
Moreover, some studies have demonstrated the effectiveness of
antioxidant therapies in this kind of neuropathic pain. These
promising results about antioxidant supplementation in CIPN
will be discussed later.

Diabetic Neuropathy
Peripheral diabetic neuropathy (PDN) is the most common
diabetic complication in patients with diabetes (both type 1 and
type 2). It may appear as a painful and insensate neuropathy,
compromising patient’s functionality, mood and quality of life.
Symptomatology (i.e., paresthesia, spontaneous pain, tactile
allodynia and mechanical and thermal hypo/hyperalgesia) may
improve and resolve spontaneously, or culminate in total loss
of sensation and ultimately in foot ulceration and amputation.
Current clinical strategies for the management of PDN include
glycolic control and treatment with drugs such as tricyclic
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FIGURE 2 | Relation between nitro-oxidative stress, mitochondrial dysfunction

and apoptosis in chemotherapy-induced peripheral neuropathy (ATP,

adenosine triphosphate; ETC, electronic transport channel; mtDNA,

mitochondrial DNA; mPTP, mitochondrial permeability transition pore;

ROS/RNS, reactive oxygen species/reactive nitrogen species).

compounds, serotonin noradrenalin reuptake inhibitors, α-
lipoic acid, anticonvulsants, opiates, membrane stabilizers and
topical capsaicin; however, these therapeutic options are often
inefficient, have significant side effects and its prescription
depends on the presence of comorbidities (Obrosova et al., 2008;
Pacher, 2008; Obrosova, 2009; Tesfaye, 2011; Ma et al., 2015).

Pathogenesis of PDN is poorly understood, but it is quite
clear that hyperglycemia plays a vital role in the development
of this diabetic complication. Experimental evidence points a
multifactorial etiology, linking hyperglycemia with the activation
of multiple cell phenomena such as polyol pathway, advanced
glycation end-products formation, protein kinase C (PKC)
and nuclear factor Kβ signaling, among many others (Pacher,
2008; Obrosova, 2009). It should be noted that, among
other physiological effects, chronic hyperglycemia leads to an
imbalance of the oxidative status, affecting central and peripheral
nervous system; hence, nitro-oxidative stress is also thought
to be one of the responsible factors of nervous degeneration
that characterize PDN (Mirshekar et al., 2010; Tesfaye, 2011).
In diabetic state, hyperglycemia leads to overproduction of free
radicals (i.e., mitochondrial O•−

2 , •NO and peroxynitrite) mainly
derived from glucose oxidation and lipid peroxidation, which
cause oxidative damage to biomolecules. In particular, it is well
known that oxidative DNA damage triggers the over-activation
of the nuclear enzyme poly (ADP-ribose) polymerase-1 (PARP-
1). An in vivo study performed byObrosova (2009) demonstrated
that administration of a PARP inhibitor counteract small sensory
nerve fiber dysfunction and degeneration. Therefore, PARP-1
activation seems to play an important role in the pathogenesis of
PDN in several ways, likely including the regulation of various
important inflammatory pathways. In this sense, other studies

have observed increased levels of TNF-α in diabetic animal
tissues (Satoh et al., 2003; Skundric and Lisak, 2003). In addition,
Ma et al. (2015) reported the role of mitochondrial bioenergetics
deficits in PDN and its possible link with immune response.
As authors highlighted, inflammatory signaling may lead to
inhibition of ETC activity, through induction of changes in
the phosphorylation state of proteins and the reduction of the
mitochondrial membrane potential. Taking evidence in account,
more studies are necessary to go deep into the participation of
oxidative stress, mitochondrial dysfunction and inflammatory
response in the development of PDN.

Alcoholic Peripheral Neuropathy
Long-term excessive consumption of alcohol may lead to a
condition known as alcoholic peripheral neuropathy (APN).
Like other types of NP, it is characterized by spontaneous
pain, hyperalgesia and allodynia. Regarding to APN related-
risk factors, duration and amount of total lifetime alcohol
consumption have been demonstrated as the most determinants;
interestingly, a higher prevalence has been found in women than
men (Chopra and Tiwari, 2012). Although little is known about
physiopathological mechanisms underlying APN, a combination
of direct toxic effects of ethanol or its metabolites and nutritional
deficiencies (mainly thiamine) may offer a plausible explanation
to this complication.

To date, different molecular mechanisms (i.e., PKC and
nuclear factor Kβ) (Dina et al., 2000), signaling pathways (i.e.,
MEK/ERK and apoptosis via caspase activation) (Jung et al.,
2005; Dina et al., 2007), receptors (i.e., metabotropic glutamate
and µ opioid receptors) (Miyoshi et al., 2007; Narita et al.,
2007), nerve cells (i.e., astrocytes and microglia) (Narita et al.,
2007) and neuroendocrine stress axis (i.e., sympatho-adrenal
and hypothalamo-pituitary-adrenal axis) (Dina et al., 2008) have
shown to be involved in the APN. Focusing oxidative stress,
some studies have indicated that in heavy drinkers increased
nitro-oxidative stress plays a pivotal role in the neuronal
damage. This imbalance in redox status might be caused by
acetaldehyde, a highly toxic and reactive metabolite derived
from the biphasic catabolic conversion of ethanol to acetate,
in particular, as a byproduct of the mitochondrial enzyme
acetaldehyde dehydrogenase. In the liver, acetaldehyde is known
to cause impairment of mitochondrial ETC and stimulation of
inflammatory response, among other toxic effects (Chopra and
Tiwari, 2012). Therefore, mitochondrial dysfunction may also
lead to an inefficient detoxification and subsequent accumulation
of acetaldehyde, worsening redox status and cytotoxic effects
on biomolecules, including proteins, lipids and DNA. In this
context, some in vivo studies have demonstrated that several
oxidative markers are affected by following ethanol chronic
administration. For example, glutathione (GSH) levels and GSH
peroxidase activity have been observed to be diminished in
the sciatic nerves of ethanol-fed rats compared to pair-fed
rats; on the contrary, the amount of the lipid peroxidation
product malondialdehyde increased in the same tissue (Bosch-
Morell et al., 1998). More recently, Tiwari et al. (Tiwari et al.,
2009, 2011) have confirmed significant increased levels of lipid
peroxidation andmarked decrease in GSH, superoxide dismutase
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and catalase activities in the sciatic nerve of rats which were
given alcohol for 10 weeks. Alcohol has been also found to
enhanced production of hydrogen peroxide and •OH like species
(Dicker and Cederbaum, 1992). As mentioned above, ROS
overproduction may lead to sensitization of dorsal horn cells,
activation of spinal glial cells and inflammatory response, which
ultimately activate PKC and nuclear factor Kβ translocation,
MEK/ERK signaling and apoptosis.

Oxidative Stress Dependent TRP Channels
and Pain
It is well known that ROS and RNS are produced in several
physiological functions, such as mitochondrial and cytochromes
P450 activities. These free radicals are scavenged by enzymatic
and non-enzymatic antioxidants. At 2002, two different groups
from Kyoto-Japan (Bautista et al., 2005) and Aachen-Germany
(Kistner et al., 2016) reported activation of a TRP channel namely
LTRPC2 (former name of TRPM2) by RNS and ROS. Today,
9 TRP channels (TRPA1, TRPC5, TRPM2, TRPM4, TRPM7,
TRPV1, TRPV2, TRPV3, and TRPV4) are demonstrated to be
activated by oxidative stress (Mori et al., 2016). Expression levels
of these channels are very different in tissues and cells. For
example, it has been observed that the expression levels of four
TRP channels (TRPA1, TRPM2, TRPV1 and TRPV4) are high in
neurons related to nociception. Hence, this section is focused on
these four TRP channels.

TRPA1
Cysteine is a sulfur-containing amino acid in humans. Cysteine,
as a source of thiol redox system, acts also as the main source
of different antioxidants such as GSH, glutathione peroxidase,
N acetyl cysteine (NAC) and α-lipoic acid. Hence, the cysteine
groups are main target for ROS and RNS (Sen and Packer, 2000;
Naziroǧlu, 2007).

The TRPA1 channels are activated by different stimuli
including chemicals (mustard oil and cinnamaldehyde) and
cold body temperature (≤17◦C). In addition, TRPA1 is also
an oxidative stress-sensitive Ca2+-permeable channel. Therefore,
activation of TRPA1 in neurons by oxidative stress such as H2O2

was reported (Materazzi et al., 2012; Bai and Lipski, 2013; Toda
et al., 2016). Furthermore, the TRPA1 channel is activated by
depletion of intracellular GSH, although its activation in the DRG
neurons was inhibited by antioxidants of thiol redox system, such
as GSH and selenium (Materazzi et al., 2012; Özdemir et al., 2016;
Kahya et al., 2017) (Table 1).

It is well known that increase of intracellular ROS, RNS and
Ca2+ has main roles in etiology of pain processes (Kallenborn-
Gerhardt et al., 2012; Ogawa et al., 2016). As it was mentioned
above, the TRPA1 and TRPV4 channels are activated by
different stimuli, including oxidative stress (Bai and Lipski, 2013).
Involvement of TRPA1 channels in the etiology of pain processes
has not been fully clarified yet, although there are some reports
on TRPA1 activation-induced pain processes such as diabetic
peripheral pain (Andersson et al., 2015; Jardín et al., 2017; Kahya
et al., 2017) and SCI-induced pain (Park et al., 2015; Klafke et al.,
2016) and chemotherapeutic agent-induced pain (Naziroglu and
Braidy, 2017) through excessive ROS and RNS production in the

rodents. In addition, it was reported in DRG neurons of wild
typemice and TRPA1 knockoutmice that activation of TRPV1 by
chemotherapeutic agents induced excessive ROS production and
mechanical allodynia. However, TRPA1 and TRPV4 antagonist
treatments induced decrease on the allodynia and oxidative stress
in the mice (Materazzi et al., 2012). In a previous study, the same
group did not observe Ca2+ response effects induced by exposure
to chemotherapeutic agents in cultured mouse DRG and Chinese
hamster ovary (CHO) cell line (Nassini et al., 2011), although
chemotherapeutic agent evoked an antioxidant GSH-sensitive
Ca2+ response in the CHO cell line and DRG neuron. Results of a
study indicated that chemotherapeutic agents-induced oxidative
stress caused TRPA1 activation instead of direct channel targeting
(Nassini et al., 2011). The report was confirmed by a recent
study; thus, it was observed that chemotherapeutic agent-induced
increase of TRPA1 expression, cell death and neuropathic pain in
mice DRG was reduced by aluminum and GSH treatment (Lee
et al., 2017). TRPA1 activator role of hydrogen sulfide through
nitric oxide production was recently reported in DRG neuron too
(Miyamoto et al., 2017), as shown in Table 1.

There is a synergic interaction between TRPA1 and TRPV1
on channel activation mechanisms in DRG, because TRPA1 is
co-localized with 30–50% TRPV1 expressing neurons in rat and
human DRG (Bautista et al., 2005). Therefore, the sensitization
ratio of TRPA1 is affected by several factors, including oxidative
stress and TRPV1 blocker (Kistner et al., 2016; Ogawa et al.,
2016). On the subject, increased sensitization of human TRPA1 in
DRG neuron was reported by inflammation and oxidative stress,
although the increased sensitization in the neuron is decreased by
antioxidant NAC and capsazepine (Kistner et al., 2016).

TRPM2
Another member of TRP superfamily is TRPM2. The enzyme
(ADP ribose) pyrophosphatase in the C-terminal domain of
TRPM2 contains is sensitive to ROS and RNS (Naziroǧlu, 2007).
TRPM2 channel in transfected cell lines is gated by extracellular
and intracellular ROS, possibly by interacting with the ADP
ribose pyrophosphatase enzyme in the tail of the protein C
domain (Perraud et al., 2001; Hara et al., 2002; Wehage et al.,
2002). Later, TRPM2 activator role of oxidative stress from
ADPR was reported in transfected cells by single channel patch-
clamp experiments (Naziroglu and Lückhoff, 2008). Presence of
TRPM2 function in DRG neuron was firstly reported in 2011
(Naziroǧlu et al., 2011a). It was highlighted that the excessive ROS
production through activation of NADPH oxidase contributes
to sensitization in DRG neuron for persistent pain induction
(Kallenborn-Gerhardt et al., 2012). Result of a more recent
study indicated involvement of NADPH oxidase on TRPM2
channel activation in DRG neuron (Naziroǧlu, 2017) (Table 1).
In addition to the TRPA1 channel, involvement of cysteine
groups on the activation of TRPM2 channels in transfected
human embryonic kidney (HEK-293) cells was reported (Mei
et al., 2006). Then, protective roles of GSH and NAC as members
of thiol redox system on TRPM2 channel and peripheral pain
inhibition in DRG neuron were also reported (Naziroǧlu et al.,
2011b; Özgül and Naziroǧlu, 2012; Sözbir and Naziroǧlu, 2017)
(Table 1). It seems that members of thiol redox system have
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TABLE 1 | Role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) on the activation of transient receptor potential channels (TRPA1, TRPM2, TRPV1,

and TRPV4) in the peripheral neuron.

Channel ROS/RNS Material Value Reference

TRPA1 H2O2, Rat DRG Protective role of GSH on peripheral pain

through inhibition of cysteine oxidation.

Bosch-Morell et al., 1998; Materazzi

et al., 2012

TRPA1 Nitric oxide Rat DRG Protective role of dithiothreitol, cysteine and

GSH on peripheral pain through inhibition of

nitric oxide production.

Naziroǧlu, 2007; Tiwari et al., 2011

TRPM2 ADP-ribose and H2O2 Rat DRG NADPH oxidase dependent activation of

TRPM2

Naziroglu and Braidy, 2017

TRPM2 ADP-ribose and H2O2 Rat DRG Protective role of GSH and NAC on

peripheral pain and channel activation

through inhibition of oxide stress.

Lee et al., 2017; Miyamoto et al.,

2017; Naziroglu and Braidy, 2017

TRPV1 H2O2 and nerve growth factor Rat DRG Protective role of GSH, selenium and NAC on

hyperalgesia and channel activation through

inhibition of oxide stress.

Mei et al., 2006; Naziroǧlu et al.,

2011b; Kahya et al., 2017

TRPV1 H2O2 Mice DRG Oxidative stress-induced inflammatory

hyperalgesia

Sözbir and Naziroǧlu, 2017

TRPV1 RNS and NADPH oxidase Mice and Rat DRG Oxidative stress-induced inflammatory

hyperalgesia and channel activation

Caterina et al., 1997; Naziroglu and

Braidy, 2017

TRPV4 H2O2 and ROS Rat DRG Protective role of GSH on peripheral pain

through inhibition of cysteine oxidation

Dina et al., 2008; Materazzi et al.,

2012

TRPV4 ROS Rat DRG Protective role of TRPV4 blockers on

mechanical allodynia and oxidative stress

Materazzi et al., 2012

important roles on inhibition of oxidative stress-dependent
TPM2 channel activation and peripheral pain in rodents.

TRPV1
A subfamily of TRP superfamily is vanilloid family. TRPV1
is a member of the vanilloid subfamily. The channel was
firstly expressed in rats through activation of high temperature
and pungent hot chili pepper component (capsaicin) in mice
DRG neuron (Caterina et al., 1997). The channel can also
be activated by different stimuli including low pH (<5.9),
high temperature (>43◦C) and oxidative stress leading to
the perception of pain, and oxidative injury (Yoshida et al.,
2006). As most of cation channel protein, TRPV1 channel
protein contains six transmembrane domains. Similar to TRPA1
(Takahashi et al., 2011) and TRPM2 (Mei et al., 2006)
membrane structure, oxidative alterations of multiple Cys
residues in different cells are involved in this mode of TRPV1
activation by modifying (Yoshida et al., 2006; Chuang and
Lin, 2009) and disulfide bond formation (Wang and Chuang,
2011). Therefore, the TRPV1 is activated in rat DRG neuron
by depletion of intracellular GSH (Naziroglu et al., 2013),
although hyperalgesia and the TRPV1 channel were inhibited
in the DRG neurons of rats by treatment of thiol redox
cycle members such as GSH, selenium and NAC (Khodorova
et al., 2013; Naziroglu et al., 2013; Kahya et al., 2017)
(Table 1).

Excessive ROS are produced in physiological functions such
as mitochondrial function and phagocytic activity. During the
killing bacteria and virus, ROS are used in the anti-inflammatory
cells such as macrophages microphages andmicroglia. Therefore,
there is a direct relationship between increased levels of ROS

and inflammatory hyperalgesia (Oehler et al., 2017). Interactions
between TRPV1 and long sustained thermal hypersensitivity in
oxidative stress-induced inflammatory hyperalgesia of mouse
hind paw were reported (Keeble et al., 2009). Therefore, there is
a direct role of oxidative stress through activation of TRPV1 on
hyperalgesia in DRGneuron of wild type andNox1 deficientmice
(Ibi et al., 2008) (Table 1). Niflumic acid is also a TRPV1 channel
antagonist and it was reported that peripheral neuropathy
by suppressing excessive ROS, RNS, inflammatory cytokine
production and TRPV1 activation in neuropathic pain-induced
rats were recovered by the niflumic acid treatment (Marwaha
et al., 2016).

TRPV4
A member of TRP superfamily is TRPV4 and it was firstly
described with mammalian osmo-transducer property (Liedtke
et al., 2000). The channel is also activated by phorbol
esters, low pH, citrate, arachidonic acid, exogenous chemicals
(bisandrographolide A) and heat (24◦C ≥) (Güler et al.,
2002; Yoshida et al., 2006). In addition to the stimulators,
activation of TRPV4 in neurons by oxidative stress such as
H2O2 was reported (Materazzi et al., 2012; Bai and Lipski,
2013), although its activation in the DRG neurons was
inhibited by GSH (Materazzi et al., 2012) (Table 1). It was
also reported in DRG neurons of wild type and TRPV4
knockout mice that activation of TRPV4 by paclitaxel induced
mechanical allodynia and excessive ROS production, although
the allodynia and oxidative stress was partially decreased
by the TRPV4 antagonist treatment (Materazzi et al., 2012)
(Table 1).
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Role of Other Factors on TRP Channels
and Pain
In addition to the oxidative stress, several other factors play
a role in the induction of CIPN with/without TRP channel
activation, including glutamate receptors, neuropeptides, PKC
and inflammation. Although their role in CIPN has been known
for a long time, there are limited reports about the interaction
between these factors and TRP channels in the literature. In
this section, some brief information is given about other main
factors and TRP channels activation related to pain induction in
experimental animals.

1) Glutamate receptors and neuropeptides: Many types of
ionotropic glutamate receptors were reported in literature.
Presence of three types of ligand-gated glutamate ion channel
receptors such as N-methyl-D-aspartate, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid, and kainite receptors has
been known for a long time. Their involvement in CIPN
was also investigated by numerous papers (Wu and Zhuo,
2009; Vécsei et al., 2015). On the other hand, substance
P and calcitonin-gene-related-neuropeptide are well known
neuropeptides in the induction of peripheral neuropathy and
nociception. Their implication in CIPN through the overload
of Ca2+ entry has been demonstrated (Hill and Oliver,
2007; Nassini et al., 2014). In addition, recent studies have
pointed out the involvement of neuropeptides on TRP channel
activation, such as TRPA1, TRPM8 and TRPV1 (Nassini et al.,
2014; Chukyo et al., 2018). For example, it was observed that
substance P was potentiated by the sensitization of TRPV1
(Marwaha et al., 2016).

2) PKC enzyme: Apart from the involvement of PKC on the

induction of oxidative stress in neurons, both human and
animal studies have linked this enzyme to several pain types
through excessive Ca2+ entry and cation channel activation
(Carozzi et al., 2015; Kumar et al., 2017). In this sense,
the involvement of PKC in experimental models of CIPN
was also evidenced by several papers, although mechanical
hyperalgesia was decreased by the treatment with PKC
inhibitors such as hypericin and calphostin C (Norcini et al.,
2009). Sensitivities of nociceptive neurons to heat stimulation
and TRPV1 activation were increased by the activation of
PKC and inflammatory mediators (Khasar et al., 1999; Gao
et al., 2016). There is also direct relationship between PKC
and onset of mechanical hyperalgesia (Khasar et al., 1999;
Hucho et al., 2006). It was reported that paclitaxel-induced
mechanical hypersensitivity were increased in the DRG of
mice by up-regulation of PKC (Dutra et al., 2015). Moreover,
antioxidants such as quercetin were able to inhibit TRPV1 and
PKC activations in a study of paclitaxel-induced peripheral
neuropathy (Gao et al., 2016).

3) Inflammation: Brain and spinal glia neurons have a main

role on homeostasis in central nervous system and peripheral
nervous system. The glial cells have been shown to contribute
to the development of chronic pain as results of surgery,
inflammation, and SCI. Therefore, reduction of NP was
observed by treatment of the glial activity (Carozzi et al.,
2015). Involvement of oxidative stress-induced inflammation

was reflected in other parts of this review (see “Chemotherapy-
induced peripheral neuropathy” and “Spinal cord injury”
sections). The increased glial neuron-induced inflammation
induces pain through TRP channel activation in DRG and
spinal cord neurons. For example, TRPV1 and TRPA1 are
activated by several stimuli related with traumatic brain
injury, including mechanical shear stress, leading to the
release of substance P and inflammation (Corrigan et al.,
2016). Enhanced expression and spinal inflammation-induced
sensitization of TRPV1 and streptozotocin-induced thermal
hyperalgesia and neuropathy were reported in rats (Bishnoi
et al., 2011). Involvement of TRPV1 in the activation of spinal
glia in mice with nociceptive, inflammatory and neuropathic
pain was also reported (Chen et al., 2009).

Antioxidant Supplementation
In general, scientific evidence reinforces the future use of
antioxidant supplementation in several pathological conditions.
Taking in account previous works of our research group
(Carrasco et al., 2013, 2014a,b) and other authors, both
preventive and therapeutic uses of antioxidants have been
reported to reduce not only oxidative stress related parameters
but also inflammatory response and pain in several diseases. As
mentioned earlier, it has been demonstrated that current drugs
used in the management of different kinds of NP are ineffective
and usually not safe for the patient. For this reason, antioxidant
supplementation might be an alternative to take in account in
clinical practice.

As an illustration, oral administration of molecular hydrogen
may have therapeutic potential for the management of NP.
Unlike other antioxidants, hydrogen reaches target organs easily,
where selectively neutralizes •OH, and does not accumulate
in living cells nor produce noxious metabolites (Kawaguchi
et al., 2014). Naringenin, an abundant flavanone in citrus fruits
(Kaulaskar et al., 2012) and genistein, a natural phytoestrogen
from soybean (Valsecchi et al., 2008), have been exhibited
analgesic, antioxidant and immunoregulatory properties in
sciatic nerve injury models. α-lipoic acid treatment (600 mg/day)
has also demonstrated to improve neuropathic symptoms (pain,
burning, paresthesia, and numbness) and deficits in patients with
NP (Tesfaye, 2011).

Concerning antioxidant supplementation in CINP, natural
antioxidants such as curcumin (Al Moundhri et al., 2013),
silibinin, α-tocopherol (Kerckhove et al., 2017), rutin and
quercetin (Azevedo et al., 2013) have exhibited antinociceptive
effects in oxaliplatin induced-CINP. For example, administration
of the flavonoids rutin and quercetin has shown to diminish
oxidative phenomena including lipid peroxidation, nitrosylation
and iNOS expression, as well as pain symptomatology (thermal
and mechanical allodynia) in treated mice compared to non-
treated ones (Azevedo et al., 2013). Likewise, the thiol compound
NAChas demonstrated to exert a beneficial effect in the treatment
of oxaliplatin induced-CINP, significantly reducing inflammatory
response (TNF-α, IL-1β and IL-6) in the neuroblastoma cell
line SH-SY5Y; additionally, researchers also observed that NAC
prevented apoptosis by inhibition of P2X7 receptor activation by
blocking ROS production and caspase-3 activation. Interestingly,
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in this study NAC exhibited the highest preventive effect
compared to other drugs also tested such as ibuprofen and
acetaminophen (Massicot et al., 2013). On the other hand,
prophylactic treatment with acetyl-L-carnitine has demonstrated
to prevent paclitaxel-, oxaliplatin- and bortezomib-induced
mitochondrial dysfunction and pain (Zheng et al., 2012). In spite
of the promising results, most clinical studies related to the use of
antioxidants as chemotherapy adjuncts did not report on their
impact on anticancer efficacy; hence, as Han et al. (Han and
Smith, 2013) highlighted this is an important question which
should be examined in greater depth. In this sense, previous
in vitro studies performed by our research group have shown
that co-administration of conventional chemotherapeutic agents
with antioxidants such asmelatonin enhances chemotherapeutic-
induced cytotoxicity and apoptosis in different cancer cell lines
(Uguz et al., 2012; Pariente et al., 2016, 2017a,b). In addition,
since some studies have also recorded failure in antioxidant
supplementation efficacy, optimal design of clinical trials in
terms of targeted delivery of antioxidants, clinical pathology
and concentration dependent dosage schedule is needed to go
ahead in the knowledge and future application of this kind of
treatment in CIPN (Kamat et al., 2008). Finally, as Areti et al.
(2014) point out monitoring oxidative stress related-parameters
(i.e., levels of malondialdehyde, GSH, superoxide dismutase and
activities of mitochondrial enzymes such as citrate synthase and
ATP synthase) during the course of CIPN could be helpful in
clinical practice.

Future Consideration
Taking in account the scientific evidence summarized in this
review, NP is a complex network of several molecular processes,
including nitro-oxidative stress, immune response, and TRP
channels activation, among others. Noteworthy, NP seems to
be not only promoted by direct injury to neurons but also
by TRP channels mediating damage in the surrounding tissue.
However, the way how these actors and other factors (e.g., sodium
channels, acid-sensing ion channels and synaptic receptors) are
interconnected leading to noxious symptomatology remains to
be unresolved.

Since 1990s, with the discovery of TRP channels, our
understanding about nociception has changed. Most nociceptive
TRP channels are predominantly expressed in peripheral sensory
neurons, but there is also a significant expression in the central
nervous system and other tissue and cell types (i.e., keratinocytes,
vascular endothelial cells, bladder epithelial cells, fibroblasts and
human dental pulp) (Mickle et al., 2016). Thus, we are still far
from a complete understanding of the biology of nociception
and its applicability in clinical practice. Current evidence points
out the possibility that multiple nociceptive TRP channels are
activated during pathological conditions, including the nine
oxidative sensitive-TRP channels known until today. Although
there are several reports on four oxidative sensitive-TRP channels
reviewed in this paper, there is no report linking the remaining
oxidative sensitive-TRP channels (TRPM4, TRPM7, and TRPC5)
and pain in the peripheral neurons. In this sense, contradictory
results have been obtained about the expression of certain TRP
channels in DRG neurons, such as TRPV4; in addition, TRPV2-6

and TRPM3 expression at this level is unknown. Furthermore,
information about some important aspects related to TRP
channels, including their location, trafficking, functionality and
overlapping in neurons and other kind of cells, both in
physiological and pathophysiological states, is lacking. Besides
their neuronal/plasma membrane location, it has been observed
that a significant fraction of TRP channels is also present in
organelles membranes which may be translocated as required
by cells exposed to injury/inflammation (Mickle et al., 2016).
Finally, it should be noted that some populations consume large
amounts of capsaicin, which is well known to activate TRPV1
channels and to induce overload Ca2+ entry in hippocampal and
DRG neurons (Kahya et al., 2017). In recent papers, we have
reported the involvement of TRPV1 channels in the induction
of epilepsy (Naziroǧlu, 2015; Naziroglu and Övey, 2015). In
this sense, some Turkish populations have been traditionally
consuming high amounts of hot chili pepper (capsaicin) in food
and it has been observed a high incidence of epilepsy in these
areas (unpublished data). Thus, similar possible relationship
between high amount hot chili pepper consumption and several
peripheral pain inductions should be investigated by future
studies. Furthermore, the relevance of TRPs in NP will remain
elusive until experimental studies (including knockdown or
knockout animal models) demonstrate that an increase in TRP
activity by exogenous TRP activators produces NP.

In any case, TRP channels are now presented as attractive
targets for the development of new-generation analgesics.
Until today, there are many small molecule blockers of
TRPV1 (AZD1386) (Clinical Trials, 2012), TRPA1 (GRC-17536)
(Clinical Trials, 2014) and TRPV3 (SAR292833) (Clinical Trials,
2016), apart from topical TRPV1 agonists, such as zucapsaicin
(Clinical Trials, 2011) and NGX 4010 (Mou et al., 2014), that
have been tested in clinical trials of several NP conditions; to
the best of our knowledge, NGX 4010 is the only compound
that has been launched for clinical use in human post-herpetic
neuralgia-NP conditions. Concerning to cancer pain, a phase
I clinical trial is being carried out to determine the efficacy of
periganglionic/intrathecal administration of the potent TRPV1
agonist resiniferatoxin in advanced cancer patients with bone
pain (Clinical Trials, 2017). However, it is suspected that other
nociceptive TRP channels may be involved in cancer pain.
Therefore, this and other questions, such as efficacy and site of
action of drugs targeting nociceptive TRP channels, will need to
be answered in the next years.

CONCLUSIONS

NP is an underestimated socioeconomic health problem affecting
millions of people worldwide, which incidence may increase in
the next years due to chronification of several diseases such as
cancer and diabetes. Nitro-oxidative stress and inflammatory
response, with the consequent activation of TRP channels, seem
to play a major role in the beginning and development of
NP. Hence, it is now urgent to discover new, effective and
safe strategies to prevent and/or treat this hardly bearable
condition. Recent discoveries in different biomedical fields
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point out the need to change paradigms about pharmacological
management of diseases. From our point of view, therapeutic
options must not only be directed to reach a molecular target,
which ultimately would represent a fixed picture of the disease,
but also to restore physiological global context in terms of
nitro-oxidative stress and inflammatory response, just as the
antioxidant treatment seems to act. Furthermore, increasing
aging population and chronic diseases prevalence demand the
development and implementation of antioxidant therapies in
clinical practice. But it must not be forgotten that possible
prevention of several diseases following a varied and balanced
diet, as well as other healthy habits, is a reality nowadays. Health
care institutions, clinicians and general populationmust be aware

of the importance of nutrition, as source of natural antioxidants,
in our physical and mental state, as much in health as in
illness.
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Kahya, M. C., Naziroǧlu, M., Övey, I. S. (2017). Modulation of diabetes-induced

oxidative stress, apoptosis, and Ca2+ entry through TRPM2 and TRPV1

channels in dorsal root ganglion and hippocampus of diabetic rats bymelatonin

and selenium.Mol. Neurobiol. 54, 2345–2360. doi: 10.1007/s12035-016-9727-3

Kallenborn-Gerhardt, W., Schröder, K., Del Turco, D., Lu, R., Kynast, K.,

Kosowski, J., et al. (2012). NADPH oxidase-4 maintains neuropathic

pain after peripheral nerve injury. J. Neurosci. 32, 10136–10145.

doi: 10.1523/JNEUROSCI.6227-11.2012

Kamat, C. D., Gadal, S., Mhatre, M., Williamson, K. S., Pye, Q. N., and

Hensley, K. (2008). Antioxidants in central nervous system diseases: preclinical

promise and translational challenges. J. Alzheimers. Dis. 15, 473–493.

doi: 10.3233/JAD-2008-15314

Kaulaskar, S., Bhutada, P., Rahigude, A., Jain, D., and Harle, U. (2012). Effects

of naringenin on allodynia and hyperalgesia in rats with chronic constriction

injury-induced neuropathic pain. Zhong Xi Yi Jie He Xue Bao 10, 1482–1489.

doi: 10.3736/jcim20121223

Kawaguchi, M., Satoh, Y., Otsubo, Y., and Kazama, T. (2014). Molecular

hydrogen attenuates neuropathic pain in mice. PLoS ONE 9:e100352.

doi: 10.1371/journal.pone.0100352

Keeble, J. E., Bodkin, J. V., Liang, L., Wodarski, R., Davies, M., Fernandes, E.

S., et al. (2009). Hydrogen peroxide is a novel mediator of inflammatory

hyperalgesia, acting via transient receptor potential vanilloid 1-dependent

and independent mechanisms. Pain 141, 135–142. doi: 10.1016/j.pain.2008.1

0.025

Kerckhove, N., Collin, A., Condé, S., Chaleteix, C., Pezet, D., and Balayssac, D.

(2017). Long-term effects, pathophysiological mechanisms, and risk factors

of chemotherapy-induced peripheral neuropathies: a comprehensive literature

review. Front. Pharmacol. 8:86. doi: 10.3389/fphar.2017.00086

Khasar, S. G., Lin, Y. H., Martin, A., Dadgar, J., McMahon, T., Wang,

D., et al. (1999). A novel nociceptor signaling pathway revealed

in protein kinase C epsilon mutant mice. Neuron 24, 253–260.

doi: 10.1016/S0896-6273(00)80837-5

Khodorova, A., Nicol, G. D., and Strichartz, G. (2013). The p75NTR

signaling cascade mediates mechanical hyperalgesia induced by nerve

growth factor injected into the rat hind paw. Neuroscience 254, 312–323.

doi: 10.1016/j.neuroscience.2013.09.046

Kiguchi, N., Maeda, T., Kobayashi, Y., and Kishioka, S. (2008). Up-regulation

of tumor necrosis factor-alpha in spinal cord contributes to vincristine

induced mechanical allodynia in mice. Neurosci. Lett. 445, 140–143.

doi: 10.1016/j.neulet.2008.09.009

Kistner, K., Siklosi, N., Babes, A., Khalil, M., Selescu, T., Zimmermann, K., et al.

(2016). Systemic desensitization through TRPA1 channels by capsazepine and

mustard oil - a novel strategy against inflammation and pain. Sci. Rep. 6:28621.

doi: 10.1038/srep28621

Klafke, J. Z., da Silva, M. A., Rossato, M. F., de Prá, S. D., Rigo, F. K., Walker, C. I.,

et al. (2016). Acute and chronic nociceptive phases observed in a rat hind paw

ischemia/reperfusion model depend on different mechanisms. Pflugers Arch.

468, 229–241. doi: 10.1007/s00424-015-1746-9

Kobayashi, K., Fukuoka, T., Obata, K., Yamanaka, H., Dai, Y., Tokunaga, A.,

et al. (2005). Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs

in rat primary afferent neurons with adelta/c-fibers and colocalization

Frontiers in Physiology | www.frontiersin.org February 2018 | Volume 9 | Article 9550

https://clinicaltrials.gov/ct2/show/NCT00804154?term=Resiniferatoxin&rank=1
https://clinicaltrials.gov/ct2/show/NCT00804154?term=Resiniferatoxin&rank=1
https://doi.org/10.1186/s12974-016-0738-9
https://doi.org/10.1016/0003-9861(92)90395-D
https://doi.org/10.1016/j.neuroscience.2006.11.053
https://doi.org/10.1111/j.1460-9568.2007.05987.x
https://doi.org/10.1111/jnc.12500
https://doi.org/10.1016/j.neuroscience.2016.06.050
https://doi.org/10.1016/j.neuroscience.2015.06.051
https://doi.org/10.1080/10799890600637506
https://doi.org/10.1038/aps.2016.58
https://doi.org/10.1038/nm.1899
https://doi.org/10.1016/j.jpain.2015.06.008
https://doi.org/10.3389/fphar.2013.00156
https://doi.org/10.1016/S1097-2765(01)00438-5
https://doi.org/10.1007/s00424-011-0922-9
https://doi.org/10.1111/jnc.12830
https://doi.org/10.1007/978-3-540-33823-9_7
https://doi.org/10.1111/j.1460-9568.2006.04913.x
https://doi.org/10.1016/j.brainresrev.2008.12.010
https://doi.org/10.1523/JNEUROSCI.1857-08.2008
https://doi.org/10.3389/fphys.2017.00392
https://doi.org/10.1016/j.pain.2011.06.017
https://doi.org/10.1371/journal.pone.0060733
https://doi.org/10.1177/153537020523000102
https://doi.org/10.1007/s12035-016-9727-3
https://doi.org/10.1523/JNEUROSCI.6227-11.2012
https://doi.org/10.3233/JAD-2008-15314
https://doi.org/10.3736/jcim20121223
https://doi.org/10.1371/journal.pone.0100352
https://doi.org/10.1016/j.pain.2008.10.025
https://doi.org/10.3389/fphar.2017.00086
https://doi.org/10.1016/S0896-6273(00)80837-5
https://doi.org/10.1016/j.neuroscience.2013.09.046
https://doi.org/10.1016/j.neulet.2008.09.009
https://doi.org/10.1038/srep28621
https://doi.org/10.1007/s00424-015-1746-9
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Carrasco et al. Oxidative Stress in Neuropathic Pain

with trk receptors. J. Comp. Neurol. 493, 596–606. doi: 10.1002/cne.

20794

Kumar, R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., et al.

(2017). Activation of transient receptor potential vanilloid 1 by lipoxygenase

metabolites depends on PKC phosphorylation. FASEB J. 31, 1238–1247.

doi: 10.1096/fj.201601132R

Kumar, V. S., Gopalakrishnan, A., Naziroǧlu, M., and Rajanikant, G.
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Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat

have been implicated in several pain states following treatment with chemotherapeutic

agents. As members of the Ca2+ permeable transient receptor potential (TRP), five

of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures,

and two of the channels (TRPA1 and TRPM8) are activated by cold temperature.

Accumulating evidences indicates that antagonists of TRPA1 and TRPM8 may protect

against cisplatin, oxaliplatin, and paclitaxel-induced mitochondrial oxidative stress,

inflammation, cold allodynia, and hyperalgesia. TRPV1 was responsible from the

cisplatin-induced heat hyperalgesia and mechanical allodynia in the sensory neurons.

TRPA1, TRPM8, and TRPV2 protein expression levels were mostly increased in the

dorsal root (DRG) and trigeminal ganglia by these treatments. There is a debate

on direct or oxaliplatin-induced oxidative cold stress dependent TRPA1 and TRPV4

activation in the DRG. Involvement of molecular pathways such as cysteine groups,

glutathione metabolism, anandamide, cAMP, lipopolysaccharide, proteinase-activated

receptor 2, and mitogen-activated protein kinase were also indicated in the oxaliplatin

and paclitaxel-induced cold allodynia. In this review, we summarized results of five

temperature-regulated TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) as

novel targets for treating chemotherapy-induced peripheral pain

Keywords: allodynia, chemotherapeutic agents, hyperalgesia, oxidative stress, thermo sensitive TRP channels

INTRODUCTION

Chemotherapeutic agents such as taxanes (paclitaxel, docetaxel) and platinum analogs (cisplatin,
carboplatin, oxaliplatin) are used in treatment of several cancer types. Taxanes inhibit progression
of mitosis through stabilization of tubulin in the treatment of solid tumors (Sharma et al.,
2007). However, platinum derived chemotherapeutic drugs inhibit DNA synthesis and repair
through cross-linking of DNA strands and are used for the treatment of several cancer types such
lung carcinoma, testicular cancer, ovarian cancer, etc. (Kelland, 2007). However, severe painful
neuropathy is a main complication of these cancer agents. Several peripheral neuropathies such
as numbness, tingling, and chronic pain distributed in a distal stocking-and-glove pattern have
been reported in patients treated with a variety of chemotherapeutic agents. The etiology of
painful neuropathy remains unclear. Current analgesic drugs cannot completely alleviate the pain,
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although they may provide partial analgesic effects in some
patients. Severe painful neuropathy due to chemotherapeutic
agents has pushed some patients to suicide (Lester and
Yang, 1996; Bauduer et al., 2000). Therefore, discovery of
novel therapeutic agents against chemotherapy-induced painful
neuropathy is an urgent subject.

In the etiology of pain and neuropathy, calcium ion (Ca2+)
overload plays an important role. Ca2+ enters into cells by
different ways including cation channels. Voltage gated calcium
channels (VGCC) and chemical channels (i.e., glutamate) are
well-known calcium channels (Kumar et al., 2014). However,
new calcium channels namely the transient receptor potential
(TRP) superfamily were discovered in eye cells of drosophila
flys (Hardie, 2011; Nazıroğlu, 2011). Today, the TRP superfamily
contains 28 channels with 7 different subgroups (Nazıroğlu, 2011;
Uchida et al., 2017).

Dorsal root ganglion (DRG) neurons have important roles
in the pathobiology of neuropathic pain. There is no barrier
between the DRG and blood, and compounds with a high
molecular weight can easily diffuse into the DRG (Abram et al.,
2006). The TRPA1, TRPV1 and TRPV4 channels are mainly
expressed in the DRG and trigeminal ganglia neurons (Kobayashi
et al., 2005; Obata et al., 2005; Fonfria et al., 2006; Nativi et al.,
2013; Yazğan and Nazıroğlu, 2017). Hence, the TRPA1, TRPV1
and TRPV4 have been associated with pain transmission of
sensory neurons, including the DRG (Materazzi et al., 2012;
Kahya et al., 2017).

Some peripheral primary afferent fibers are affected by low
and high temperature changes and are called thermoreceptors.
So far, 11 TRP channels in mammalian cells have been identified
as thermosensitive TRP (thermo-TRP) channels (Uchida et al.,
2017). Two TRP channels (TRPV1 and TRPV2) are activated
by high temperatures (43◦C≥ and 55◦C≥, respectively). Five
TRP channels (TRPV1-4 and TRPM2) are activated by different
heat temperatures, although two of TRP channels (TRPA1 and
TRPM8) are activated by cold (≤17◦C) and (≤25◦C) cool
temperatures, respectively (Caterina et al., 1999; Xu et al., 2002;
Story et al., 2003; Bandell et al., 2004; Nazıroğlu and Ozgül, 2012).
In addition, the remaining two channels, TRPM3 and TRPC5
are noxious heat and cold sensors, respectively (Vriens et al.,
2011; Zimmermann et al., 2011). In addition, TRPV1, TRPA1,
and TRPV4 are also oxidative stress-sensitive Ca2+-permeable
channels. Therefore, activation of TRPA1 and TRPV4 in neurons
by oxidative stress such as H2O2 has been previously reported
(Bai and Lipski, 2010; Materazzi et al., 2012; Toda et al., 2016).
However, activation of TRPA1 and TRPV4 in the DRG neurons
was inhibited by members of the cysteine antioxidant redox cycle
such as glutathione (GSH) and selenium (Materazzi et al., 2012;
Kahya et al., 2017).

Abbreviations: [Ca2+]i, intracellular free calcium ion; CAPS, capsaicin; CHO,

Chinese hamster ovary; CPZ, capsazepine; DRG, dorsal root ganglion; fMLP, N-

formylmethionine peptides such as formylmethionyl- leucyl phenylalanine; LPS,

lipopolysaccharide; MAPK, mitogen-activated protein kinase; PAR2, proteinase-

activated receptor 2; PARP-1, Poly-ADPR polymerase 1; ROS, reactive oxygen

species; TRP, transient receptor potential; TRPA1, transient receptor potential

ankyrin 1; TRPM8, transient receptor potential melastatin 8; TRPV1, transient

receptor potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4.

Owing to the high expression levels of TRPA1, TRPM8,
TRPV1, TRPV2, and TRPV4 in the DRG (Bridges et al., 2003;
Obata et al., 2005; Fonfria et al., 2006; Nativi et al., 2013),
these channels represent novel targets for the management of
chemotherapy-induced neuropathic pain. Present information
on chemotherapy-induced neuropathic pain in human and
experimental animals suggests the involvement of at least five
thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and
TRPV4; Table 1). In this review, we summarized the potential
role of the five thermo TRP channels as novel targets for treating
chemotherapy-induced neuropathic pain.

CHEMOTHERAPEUTIC AGENTS

There is limited information on chemotherapeutic agents and
thermo-TRP channels in pain induction, although the mode
of action of chemotherapeutic agents has been well-established
(Figure 1).

Cisplatin
Cisplatin is an effective anti-tumor drug that is used in
the treatment of several cancers such as ovarian, bladder,
and testicular cancers (Kelland, 2007). It acts by crosslinking
DNA it inhibits DNA replication and repair mechanisms
through formation of DNA-platinum products (Dzagnidze et al.,
2007). However, it also induces several adverse effects such
as mechanical allodynia, hyperalgesia, and toxicity in neurons
including DRG. Cisplatin produces a cumulative toxic effect
on peripheral nerves, and 30–40% of cancer patients receiving
this agent experience neuropathic pain (Khasabova et al., 2012).
Apoptosis, oxidative stress and necrosis pathways in the cancer
cells through TRP channel stimulation are also activated by
cisplatin treatment (Sakalli Çetin et al., 2017). Cisplatin-induced
neuropathy and apoptosis of sensory neurons were attributed
to uptake of the drug into the DRG affecting large myelinated
sensory nerve fibers (Ta et al., 2006). The damage and injury
to DRG neurons could be partially decreased by different
adjuvant therapies such as anandamide (as an endogenous
cannabinoid), which attenuates hyperalgesia in neuropathic pain
(Khasabova et al., 2012). Therefore, the prevention or reduction
in the neurotoxic effects of cisplatin remains of major clinical
significance in cancer patients.

Oxaliplatin
Oxaliplatin is a platinum complex containing agent and
is the most commonly using anti-tumor agent for the
treatment of several cancer types such as colorectal cancer
(Kelland, 2007). Oxaliplatin has less complications than cisplatin,
including a lower incidence of hematotoxicity and manageable
gastrointestinal toxicity compared to other platinum-based
chemotherapeutics. However, neurotoxicity remains a very
common complication in patients treated with oxaliplatin,
because it has a long terminal half-life (Descoeur et al., 2011;
Zhao et al., 2012). Acute and chronic pain has been reported
in patients treated with oxaliplatin. Acute neuropathies are
characterized as accrual numbness, paresthesia, dysesthesia,
and peripheral pain following 1–12 h of treatment. One
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TABLE 1 | Roles of TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4 channels on chemotherapeuty-induced peripheral pain in experimental animals.

Channel Agent Material Value/Effect References

TRPA1 Oxaliplatin Rat DRG Increased cAMP level and channel sensitization Anand et al., 2010

TRPA1 Oxaliplatin Mice DRG- trigeminal ganglion Increased channel expression level Ta et al., 2010

TRPA1 Oxaliplatin Mice DRG and CHO Oxidative and cold allodynia Nassini et al., 2011

TRPA1 Oxaliplatin Mice DRG Increased channel sensitization but no effect on cold

hyperalgesia

Chen et al., 2011

TRPA1 Oxaliplatin Mice DRG Increase of channel protein expression level but no change of

cold hypersensitivity

Descoeur et al., 2011

TRPA1 Oxaliplatin Mice DRG and CHO Oxidative and cold allodynia Materazzi et al., 2012

TRPA1 Oxaliplatin Mice DRG No thermal hyperalgesia but cold allodynia Park et al., 2015

TRPA1 Oxaliplatin Rat DRG increase of PAR2 and channel activation Tian et al., 2015

TRPA1 Oxaliplatin Rat DRG Increase of nocifensive behaviors and channel mRNA

expression levels

Mizuno et al., 2014

TRPA1 Oxaliplatin Mice DRG Increase of channel protein expression and cold

hypersensitivity

Yamamoto et al., 2016

TRPA1 Oxaliplatin Mice DRG Decrease of oxaliplatin-induced TRPA1 expression, cell death

and neuropathic pain by GSH treatment

Lee et al., 2017

TRPA1 Cisplatin Mice DRG- trigeminal ganglion Increased channel expression level Ta et al., 2010

TRPA1 Paclitaxel Rat DRG TRPA1-stimulated transmitter release was increased or

decreased as concentration and exposure time dependent

Pittman et al., 2014

TRPM8 Cisplatin Mice DRG- trigeminal ganglion Increased channel expression level Ta et al., 2010

TRPM8 Oxaliplatin Mice DRG Increase of channel expression and cold allodynia Gauchan et al., 2009

TRPM8 Oxaliplatin Mice DRG- trigeminal ganglion No change channel expression level Ta et al., 2010

TRPM8 Oxaliplatin Mice DRG No change in the TRPM8 protein expression but increase of

cold hypersensitivity

Descoeur et al. (2011)

TRPM8 Oxaliplatin and oxalate Rat DRG Increase of TRPM8 mRNA and protein expression levels Kawashiri et al., 2012

TRPM8 Oxaliplatin Rat DRG Increase of nocifensive behaviors and channel mRNA

expression levels

Mizuno et al., 2014

TRPV1 Cisplatin Mice Mechanical hyperalgesia but no pronociceptive role of TRPV1

in toxic neuropathy

Bölcskei et al., 2005

TRPV1 Cisplatin Mice DRG- trigeminal ganglion Increased TRPV1 protein expression level Ta et al., 2010

TRPV1 Cisplatin Rat DRG No changes in TRPV1 protein expression Hori et al., 2010

TRPV1 Cisplatin Mice DRG Increase of TRPV1 protein expression Khasabova et al., 2012

TRPV1 Oxaliplatin Mice DRG- trigeminal ganglion No change channel expression level but thermal hyperalgesia

and mechanical allodynia

Ta et al., 2010

TRPV1 Oxaliplatin Mice DRG Increase of channel sensitization but no effect on cold

hyperalgesia

Chen et al., 2011

TRPV1 Oxaliplatin Mice DRG Increased channel sensitization Wainger et al., 2015

TRPV1 Paclitaxel and vinorelbine Rat DRG No effect on paclitaxel and vinorelbine-induced substance P

production

Miyano et al., 2009

TRPV1 Paclitaxel Mice DRG Increase of channel expression and thermal hyperalgesia. Hara et al., 2013

TRPV1 Paclitaxel Rat DRG TRPV1-stimulated transmitter release was increased or

decreased as concentration and exposure time dependent

Pittman et al., 2014

TRPV1 Paclitaxel Human and rat DRG TRPV1 stimulation via Toll-like receptor 4 signaling Li et al., 2015

TRPV1 5-FU Rat Channel activation and pain induction by TRPV1 but not

TRPA1

Chen et al., 2013

TRPV2 Cisplatin Rat DRG Increased TRPV2 protein expression in the small DRG but not

in DRG innervating gastrocnemius muscle

Hori et al., 2010

TRPV4 Paclitaxel Rat DRG Hyperalgesia though activation of α2β1 integrin and Src

tyrosine kinase pathways

Alessandri-Haber et al.,

2008

TRPV4 Paclitaxel Rat DRG No effect Alessandri-Haber et al.,

2004

TRPV4 Oxaliplatin Mice DRG Increase of channel sensitization but no effect on cold

hyperalgesia

Chen et al., 2011

TRPV4 Oxaliplatin Mice DRG Oxidative but not cold allodynia Materazzi et al., 2012
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FIGURE 1 | Possible effects of cisplatin, oxaliplatin, and paclitaxel on thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) in the DRG neurons. Three

chemotherapeutic agents (cisplatin, oxaliplatin, and paclitaxel) induce severe peripheral pain adverse effect in treatment of cancer patients. Reports on

chemotherapy-induced pain in peripheral nerves were focused on five thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4), because their expression

levels are mostly high in the peripheral neurons. Activation of the five thermo-TRP channels by the cisplatin, oxaliplatin and paclitaxel lead to changes on levels of

channel expression, channel sensitization, nociceptive behaviors, oxidative stress, mechanical, heat and cold hypersensitivity (Anand et al., 2010; Ta et al., 2010; Hara

et al., 2013). In addition, the levels are induced by activation of some secondary molecular mechanisms such as glutathione (GSH) (Lee et al., 2017),

proteinase-activated receptor 2 (PAR2) (Tian et al., 2015), cAMP (Anand et al., 2010), and Toll-like receptor 4 (TLR4) signaling (Meseguer et al., 2014).

of main complication in the treatment of oxaliplatin in
the cancer patients is increased cold sensitivity (Kelland,
2007). Oxaliplatin is metabolized to oxalate, and dichloro
(1,2-diaminocyclohexane)platinum are produced during the
metabolism of oxaliplatin (Nakagawa and Kaneko, 2017). Cold
hyperalgesia and mechanical allodynia of oxaliplatin is attributed
to oxalate and dichloro (1,2-diaminocyclohexane)platinum
(Sakurai et al., 2009; Nakagawa and Kaneko, 2017). Additionally,
these metabolites are also responsible for oxaliplatin-induced
cold oxidative stress (Nakagawa and Kaneko, 2017).

Paclitaxel
One of the most common chemotherapeutic agents is paclitaxel
which was originally isolated from Pacific Yew tree Taxus
brevifolia Nutt (Wani et al., 1971). Paclitaxel has been mostly
used in treatment of lung, ovarian, head, neck and breast cancer
(Chen et al., 2011). In paclitaxel treatment, the division of cancer
cells is inhibited through dynamic assembly or disassembly of the
mitotic spindle (Marupudi et al., 2007). Hypersensitive reactions
such as bronchospasm, pulmonary edema and neuropathy occur
during treatment with paclitaxel (Shepherd, 2003; Sisignano
et al., 2016). Recent studies have suggested the involvement of
mitochondrial oxidative stress and overload Ca2+ entry through
VGCC and TRP channels (Materazzi et al., 2012; Duggett et al.,

2016; Sekiguchi et al., 2016), although the exact mechanism of
neuropathic pain induced by paclitaxel remains to be elucidated.

CHEMOTHERAPEUTIC AGENTS AND

THERMO-TRP CHANNELS

As already mentioned, chemotherapeutic agent can cause painful
neuropathy that is usually resistant to analgesic drugs (Hara et al.,
2013; Oehler et al., 2017). In addition to chronic neuropathy,
paclitaxel is also associated with an acute pain syndrome (Chen
et al., 2011), although its exact mechanism remains unclear.
Accumulating evidence on chemotherapy-induced pain and
hypersensitivity through activation of cation channels such as
TRPA1, TRPM8, TRPV1, and TRPV4 focused on two main
subjects, oxidative stress, and Ca2+ overload (Figure 2).

TRPA1
TRPA1 is a member of ankyrin subfamily in the TRP superfamily.
There are 6 domains and 4 pores in the structure of the TRPV1
channel. TRPV1 is activated by different stimuli such as oxidative
stress, chemicals such as mustard oil and cinnamaldehyde, and
cold body temperature (≤17◦C).

Excessive reactive oxygen species (ROS) and low levels of
antioxidants play a pivotal role in the pathobiology of cancers
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FIGURE 2 | Possible molecular pathways of cisplatin, oxaliplatin and paclitaxel on oxidative stress-dependent TRPA1 and TRPV4 activation in the DRG neurons.

Cysteine groups are main target of oxidative stress in cellular membranes and membrane of TRPA1 has rich content of cysteine groups (Takahashi et al., 2011).

TRPA1 and TRPV4 are oxidative stress-sensitive Ca2+-permeable channels. The cisplatin, oxaliplatin, and paclitaxel can results in augmented TRPA1 and TRPV4,

leading to Ca2+ influx through direct channel activation or excessive production of oxidative stress and induction of apoptosis through depolarization of mitochondrial

membranes. Overload Ca2+ influxes induce pain through substance P (SP) and excitatory amino acid production. Glutathione (GSH) is synthetized from cysteine

redox cycle. Protective role of GSH on TRPA1 and TRPV4 through oxaliplatin and paclitaxel-induced oxidative stress in DRG neuron was reported (Materazzi et al.,

2012). The molecular pathway may be a cause of chemotherapy-induced peripheral pain and this subject warrants further investigation.

(Koçer and Nazıroğlu, 2013; Koçer et al., 2014). As already
mentioned, the TRPA1 and TRPV4 channels are activated by
different stimuli, including oxidative stress (Bai and Lipski,
2010). Involvement of cysteine residues and the antioxidant,

dithiothreitol in the N domain of TRPA1, were indicated by a
mass spectrometry study (Macpherson et al., 2007). Activation
of TRPA1 though reversible covalent or oxidative modifications
of the cysteine residues in DRG of wild and TRPA1 knockout
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mice were reported (Andersson et al., 2008; Salazar et al.,
2008). Activations of TRPA1 and TRPV4 were reported in the
DRG of wild type and TRPA1 knockout mice by cold exposure
and paclitaxel-induced excessive reactive oxygen species (ROS)
production and mechanical allodynia, although the allodynia
and oxidative stress was partially decreased by the TRPA1
(HC-030031) and TRPV4 (HC-067047) antagonist treatments
(Materazzi et al., 2012). However, another study did not observe
significant differences in calcium response as an effect of
oxaliplatin or cisplatin exposure in cultured mouse DRG and
naïve Chinese hamster ovary (CHO) cell line (Nassini et al.,
2011), although cisplatin and oxaliplatin evoked an antioxidant
GSH-sensitive calcium response in the CHO cell line and DRG
neuron. Result of another study indicated that a single dose
of oxaliplatin produced mechanical and cold hyperalgesia in
wild type rats. In addition, mechanical and cold allodynia were
induced in wild type mice but not in TRPA1 knockout mice
(Nassini et al., 2011). The study also reported that cisplatin
and oxaliplatin caused TRPA1 activation via excessive ROS
production instead of direct channel targeting (Nassini et al.,
2011). In addition, it was reported that cisplatin and oxaliplatin-
induced neuropathy was treated through inhibition of platinum
accumulation in the DRG of rats (Holmes et al., 1998) and
patients with cancer, using GSH (Cascinu et al., 2002). Result
of a recent study indicated that oxaliplatin-induced increase in
TRPA1 expression, cell death and neuropathic pain in the DRG
of mice were decreased by treatment with aluminum and GSH
(Lee et al., 2017).

In addition to cysteine oxidation in the N domain of
TRPA1, inhibition of prolyl hydroxylases pathway through
decreased oxygen levels on the activation of TRPA1 in
the vagal and sensory neurons of mice was also reported
(Takahashi et al., 2011). The inhibition of prolyl hydroxylase
(PHD) induced hydroxylation of a proline residue in the
N-terminal ankyrin repeat domain induces activation of
TRPA1 through induction of hypoxia (Nakagawa and
Kaneko, 2017). TRPA1 activation through PHD inhibition
on oxaliplatin-induced cold hypersensitivity has been previously
investigated. The study showed oxaliplatin, and dimethyl
oxalate as a membrane-permeable oxalate analog induced
TRPA1 sensitization to ROS by inhibiting PHD -mediated
hydroxylation of the Pro394 residue on human TRPA1 (Miyake
et al., 2016).

During inflammation, p38 mitogen-activated protein kinase
(MAPK) has a significant role in the development and
maintenance of neuropathic pain. The involvement of TRPA1
through activation of p38 MAPK in oxaliplatin-induced acute
cold hypersensitivity in mice DRG neuron was recently
reported (Yamamoto et al., 2016). The involvement of N-
formylmethionine peptides such as formylmethionyl-leucyl
phenylalanine [fMLP] in the induction of acute pain and
mechanical allodynia through activations of TRPA1 and TRPV1
in mice were indicated by fMLP treatment (Chiu et al., 2013).
Lipopolysaccharide (LPS) is a toxic by-product of bacterial
lysis and mechanical allodynia is induced through activation of
TRPA1 and through activation of the Toll-like receptor 4 (TLR4)

signaling pathways in mice exposed to LPS treatment (Meseguer
et al., 2014).

Hypersensitivity to mechanical stimuli is called “mechanical
allodynia,” while a thermal stimulus is called “thermal
hyperalgesia.” Chemotherapy-induced peripheral neuropathy
has been widely investigated in experimental animals as
mechanical allodynia and thermal hyperalgesia. Results of
TRPA1, TRPM8, and TRPV1 on mechanical allodynia and
thermal hyperalgesia are conflicting. For example, induction of
a cold hypersensitivity through activation of TRPM8 but not
TRPA1 in mice DRG neurons was reported following acute
oxaliplatin treatment (Descoeur et al., 2011). However, on
the contrary, the involvement of TRPA1 but not TRPM8 and
TRPV1 was reported by Zhao et al. (2012) in oxaliplatin induced
acute neuropathy in DRG neurons. No significant difference
was also reported between oxaliplatin and vehicle groups for
thermal hyperalgesia at 42, 47, and 52◦C, although the presence
of cold allodynia through TRPA1 activation was reported in
oxaliplatin-treated mice (Park et al., 2015).

Proteinase-activated receptor 2 (PAR2) is a member of PAR
subfamily of G protein-coupled receptors and activation of
these receptors regulates several pathophysiological processes
including inflammation and pain (Wu et al., 2017). The role of
PAR2 on oxaliplatin-induced TRPA1 activation and peripheral
pain induction was recently investigated in rat DRGs by Tian
et al. (2015). The induction of mechanical hyperalgesia and
cold hypersensitivity through increased PAR2 activation was also
reported in the same study (Tian et al., 2015). Similarly, it has
been demonstrated that inhibition of PAR2 increased oxaliplatin-
induced cold sensitivity, and blockade of the TRPV1 channel
induced little effects on oxaliplatin-induced cold hypersensitive
in superficial dorsal horn of the rat spinal cord (Chen et al.,
2015). The results of both studies suggest the involvement
of PAR2 in TRPA1 activation induced cold allodynia, but
not TRPV1-induced cold hypersensitive in oxaliplatin-treated
rats. In addition, increase of channel sensitizations in TRPA1,
TRPV1, and TRPV4 was reported in DRG of mice by paclitaxel
treatment, although paclitaxel-induced cold hyperalgesia was
not decreased by treatment with TRPA1, TRPV1, and TRPV4
channel antagonists (Chen et al., 2011).

The involvement of increased intracellular cAMP levels on
TRP sensitization mediated neuronal damage was reported
(Anand et al., 2010). Results of several studies indicated that
cancer patients are very sensitive to cold after oxaliplatin
treatment. In addition to chemicals and oxidative stress,
cold body temperature (≤17◦C) activates TRPA1. Therefore,
the TRPA1 acts as a “cold sensor” which is increased by
pain induction (Yamamoto et al., 2016), although there is
inconsistent evidence for its role in cold detection (Bandell et al.,
2004; Bautista et al., 2005; Anand et al., 2010). In addition,
there is synergic interaction between TRPA1 and TRPV1 on
channel activation mechanisms in DRG, because TRPA1 is
colocalized with 30–50% TRPV1 expressing neurons in rat and
human DRG (Bautista et al., 2005). The sensitization ratio of
TRPA1 and TRPV1 are affected by several factors, including
chemotherapeutic agents. Increased TRPA1 and TRPV1 channel
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sensitization was reported in peripheral neurons of oxaliplatin-
treated mice (Anand et al., 2010; Wainger et al., 2015). Increased
protein expression levels of TRPA1 (Ta et al., 2010; Descoeur
et al., 2011; Nassini et al., 2011; Zhao et al., 2012; Yamamoto et al.,
2016), TRPV1 (Descoeur et al., 2011; Nassini et al., 2011), and
TRPM8 protein (Gauchan et al., 2009; Ta et al., 2010; Descoeur
et al., 2011) were reported in DRG and trigeminal ganglion by
acute oxaliplatin and cisplatin treatments, but conflicting reports
are also present on the expression levels of TRPA1, TRPM8 (Zhao
et al., 2012), and TRPV1 (Ta et al., 2010; Zhao et al., 2012) in the
DRG neurons.

Goshajinkigan is a traditional Japanese medicine and it has
been previously used for the treatment of numbness of the
extremities, low back pain, and diabetic neuropathy. The effect of
Goshajinkigan on neuropathy through inhibition or stimulation
of TRPA1, TRPM8, and TRPV1 channels in oxaliplatin-
induced neuropathy rat model was recently investigated (Mizuno
et al., 2014). Enhanced nociceptive behaviors and DRG mRNA
expression levels of TRPA1 and TRPM8 but not TRPV1 mRNA
in the oxaliplatin-treated rats were also decreased following
treatment with goshajinkigan.

There are some notable differences on cold dependent-
activation of TRPA1 channel between humans and rodents. For
example, cold dependent activation of TRPA1 was reported in rat
and mouse but not in humans or rhesus monkeys (Chen et al.,
2013). Co-expression and synergic interactions between TRPV1
and TRPA1 were also observed in nociceptive neuronal fibers
in rats with oral ulcerative mucositis–induced spontaneous pain
following treatment with 5-fluorouracil (5-FU), and the TRPV1
but not TRPA1 was activated by 5-FU treatment (Chen et al.,
2013).

TRPM8
TRPM8 is expressed in a distinct subset of nociceptors, including
DRG neurons and the channel is activated by cool temperature
(<25◦C), menthol, icilin (Nazıroğlu and Ozgül, 2012; Okazawa
et al., 2014). As already mentioned, hypersensitivity of cold
stimuli in patients can occur after infusion of oxaliplatin into
cancer patients. Oxaliplatin induced-cold allodynia and increases
in TRPM8 mRNA levels in the DRG of rats were also reported
(Gauchan et al., 2009; Ta et al., 2010). However, oxaliplatin-
induced cold hypersensitivity in neuropathic pain models were
decreased by deletion of the TRPM8 gene and treatments of
TRPM8 and TRPV1 antagonists, but not by a TRPV1 antagonist
(5′-iodoresiniferatoxin) treatment (Gauchan et al., 2009; Ta
et al., 2010). Consistent with these reports, one study reported
oxaliplatin-induced induction of cold hyperalgesia and increased
TRPM8 mRNA levels (3, 5, and 8 days of oxaliplatin treatment)
in the DRG of rats (Kawashiri et al., 2012). Furthermore, they
observed oxalate-induced increase of TRPM8 protein in the DRG
(Kawashiri et al., 2012).

Voltage gated calcium channels (VGCC) are very selective
to Ca2+ and they are activated by increases in voltage but they
are inhibited by a decrease of intracellular and cell membrane
voltage changes. Based on their threshold of voltage-dependent
activation, they were divided into two subgroups as high-
voltage activated channels (HVA) and low-voltage-activated

(LVA) channels (Kumar et al., 2014). HVA channels can be
further subdivided into 5 types (L-, P/Q-, N-, and R-type)
according to their biophysical, pharmacological, and molecular
features. Interactions between TRPM8 and molecular pathways
or other calcium channels were also investigated in DRG
neurons of oxaliplatin-treated experimental animals. Oxaliplatin-
induced cold hyperalgesia was increased by stimulation of the
L-type channel, nuclear factor of activated T-cell and TRPM8,
although the cold hyperalgesia was decreased by VGCC blocker
treatments. In addition, TRPM8 mRNA and protein expression
levels in the L4-6 DRG of oxaliplatin treated rats were increased
following oxaliplatin treatment (Kawashiri et al., 2012).

TRPV1
TRPV1 is a member of vanilloid subfamily of the TRP
superfamily. The channel was firstly expressed in rats through
activation of high temperature and pungent hot chili pepper
component (capsaicin) in mice DRG (Caterina et al., 1997).
In addition to capsaicin and high temperature (>43◦C), the
channel can be activated by different stimuli including low
pH (<5.9), oxidative stress leading to the perception of pain,
and oxidative injury (Tominaga et al., 1998; Yoshida et al.,
2006; Nazıroğlu, 2015). Apart from mice, the channel was
also expressed in DRG of different mammalian animals and
human (Hayes et al., 2000), and also has six transmembrane
domains. Cysteine groups as a source of thiol redox system
act as the main source of different antioxidants such as GSH,
glutathione peroxidase and alpha lipoic acid (Sen and Packer,
2000). Hence, the cysteine groups represent the main target of
ROS and reactive nitrogen species (RNS) (Nazıroğlu, 2007). In
addition to TRPA1 (Takahashi et al., 2011), it was reported that
oxidative alterations of multiple Cys residues in different cells are
involved in this mode of TRPV1 activation through modifying
the extracellular (Yoshida et al., 2006) or intracellular Cys
residues (Chuang and Lin, 2009) and disulfide bond formation
(Wang and Chuang, 2011). In addition, results of a recent study
indicated heterogeneous subunit composition of TRPV1 through
heterogeneous modification of Cys-258 residues in the human
TRPV1 tetrameric complex in disulfide bond of the channels
(Ogawa et al., 2016). Therefore, the TRPV1 is activated in DRG
(Nazıroğlu et al., 2013), hippocampus (Övey and Nazıroğlu,
2015) of rats by depletion of intracellular GSH, although the
channel was inhibited in cells following treatment with thiol
redox cycle members such as GSH, selenium and N acetyl
cysteine (Nazıroğlu et al., 2013, 2014; Kahya et al., 2017).

ROS are produced in physiological levels as part of normal
mitochondrial function and phagocytic activity. During the
removal of bacteria and viruses, ROS are produced by anti-
inflammatory cells such as macrophages microphages and
microglia. Therefore, there is direct relationship between
increased levels of ROS and inflammatory hyperalgesia (Oehler
et al., 2017). Interaction between TRPV1 and long sustained
thermal hypersensitivity (but not mechanical hypersensitivity) in
oxidative stress-induced inflammatory hyperalgesia of the mouse
hind paw has been previously reported (Keeble et al., 2009).
Therefore, there is a direct role of ROS through activation of
TRPV1 on hyperalgesia in the DRG neuron (Ibi et al., 2008).
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Cisplatin-induced TRPV1 channel expressions were
investigated in DRG neuron by Hori et al. (2010) and they
observed no change on the frequency of TRPV1-positive cells in
DRG neurons with different diameter by cisplatin treatment. The
roles of mechanical hyperalgesia in TRPV1 knockout mouse and
pronociceptive role of TRPV1 in mild burn (51◦C for 15 s) injury
was also reported in another study (Bölcskei et al., 2005), but they
observed no pronociceptive role of TRPV1 in cisplatin-induced
toxic neuropathy.

Reports on cisplatin-induced thermal sensitivity in rodents
are conflicting. For example, cutaneous mechanical allodynia and
hyperalgesia but not noxious thermal sensitivity was reported
by cisplatin treatment (Hori et al., 2010). Some studies reported
induction of mechanical and cold stimuli hyperalgesia and
allodynia associated with minor motor disorders (Authier et al.,
2003), whereas other studies (De Koning et al., 1987; Tredici
et al., 1999) reported no effects in the responses to thermal
stimulation after cisplatin treatment. In a recent study (Zhao
et al., 2012), TRPV1-mediated nociceptive behaviors are not
affected by cisplatin, paclitaxel and oxaliplatin. In addition, the
numbers of capsaicin-sensitive DRG neurons were not changed
by oxaliplatin treatment and the authors concluded that there
is no role of TRPV1 on oxaliplatin-induced acute peripheral
neuropathy in the DRG neurons. Consistent with the report,
induction of thermal hyperalgesia through increased TRPV1
expression in the DRG after paclitaxel treatment was observed,
although the hyperalgesia was decreased by TRPV1 treatment
(Hara et al., 2013). In addition, the TRPV1 activator role of
paclitaxel via stimulation of TLR4 signaling was reported in
DRG neurons of human and paclitaxel-treated rats (Li et al.,
2015).

In a study, diameters of TRPV1 remained unchanged in
mice DRG neurons following cisplatin treatment, although the
occurrence of TRPV1 in the neurons was increased by cisplatin
treatment (Khasabova et al., 2012). In contrary to the report, no
protective effect of TRPV1 (AMG9810) or TRPA1 (HC030031)
antagonists on cisplatin-evoked mechanical and cold allodynia
in rats was reported in another study (Guindon et al., 2013).
Induction of mechanical hyperalgesia, and cold allodynia (via
10◦C water) in rat models of cisplatin-induced peripheral
neuropathy were reported (Authier et al., 2003; Nassini et al.,
2011). Similar result was observed by Ta et al. (2009) and
increased thermal hyperalgesia to cold was reported in cisplatin-
treated mice. However, some authors attributed the direct effect
of cisplatin to TRPA1 instead of TRPV1 in the neuron, because
TRPA1 receptors are required for the development of cisplatin-
evoked mechanical allodynia in mice (Nassini et al., 2011;
Khasabova et al., 2012).

Increased intracellular Ca2+ concentrations induced release
of excessive substance P from the central and peripheral nerve
terminals of DRG neurons in response to noxious stimuli
(Sacerdote and Levrini, 2012). The role of VGCC blockers
and TRPV1 channel was also investigated on paclitaxel- and
vinorelbine (a chemotherapeutic drug)-induced substance P
release in DRG neuron of rats and no role of TRPV1 on the
substance P release was observed in the DRG (Miyano et al.,
2009).

The involvement of oxaliplatin on the release of calcitonin
gene-related peptide from rat sensory neurons in culture was
recently reported (Pittman et al., 2014). In addition, they
reported that TRPA1 and TRPV1 channel activation-induced
transmitter release were increased or decreased according to the
concentration and exposure time of the drug and in peptidergic
DRG neurons with small diameter by paclitaxel treatment.

TRPV2
Another member of TRP superfamily is the TRPV2 and the
channel is also a member of thermosensitive TRP channels
and it is activated by a very high-threshold heat temperature
(>52◦C; Ahluwalia et al., 2002). There are limited data and
reports on the physiological role of the TRPV2 channel in the
literature. Cisplatin-induced TRPV2 channel expressions were
investigated in DRG neuron (Hori et al., 2010) and increased
of TRPV2 protein expression in the small-cell of L5 positive
DRG neurons but not in L5 DRG cells innervating gastrocnemius
muscle was reported following cisplatin administration (Hori
et al., 2010). Increase of highly noxious temperatures (>56◦C)-
induced TRPV2 protein expression levels in peripheral thermal
of neuron via the transduction of pain hypersensitivity
(Shimosato et al., 2005). Because selective TRPV2 antagonists
are not commercially available, further mechanistic studies
including TRPV2 knockout mouse might be needed to
determine the exact involvement of TRPV2 in cisplatin-induced
neuropathy.

TRPV4
As a member of TRP superfamily, TRPV4 was firstly described
with mammalian osmotransducer property (Liedtke et al.,
2000). Several activators of TRPV4 such as low pH, citrate,
phorbol esters, arachidonic acid, oxidative stress, and exogenous
chemicals (bisandrographolide A) have been described (Güler
et al., 2002; Alessandri-Haber et al., 2004; Materazzi et al.,
2012). Additionally, TRPV4 is activated by heat (24◦C≥) (Güler
et al., 2002) and the channel is also a member of thermo-
TRP group. Enhanced nociception in neuropathic pain was
reported by heat activation of TRPV4. Therefore, TRPV4 is
essential for inflammatory thermal hyperalgesia (Davis et al.,
2000), but not for normal heat sensation (Caterina et al.,
2000).

Induction of hyperalgesia through activation of α2β1 integrin
and Src tyrosine kinase pathways in rat DRG neuron was
reported in the TRPV4 knockout mice by paclitaxel treatment
(Alessandri-Haber et al., 2008). However, similar results were
not shown in hind paw and DRG of rats by the same study,
and TRPV4 did not act an essential role in paclitaxel-induced
nociceptive behavioral responses to mechanical and hypotonic
stimulation in the hind paw (Alessandri-Haber et al., 2004). It
was reported in DRG neurons of wild type and TRPV4 knockout
mice that TRPA1 and TRPV4 are activated by paclitaxel-induced
mechanical allodynia and excessive ROS production but not
cold exposure, although the allodynia and oxidative stress was
partially decreased by treatment with a TRPV4 (HC-067047)
antagonist (Materazzi et al., 2012). RN1734 is also a TRPV4
antagonist (Vincent et al., 2009) and inhibition of TRPV4 did
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not alter nociceptive baseline in control mice, and mechanical
allodynia and heat are partially reserved by RN1734.

CONCLUSION AND FUTURE SUBJECTS

Accumulating evidence suggests that neuropathic pain and
painful neurotoxicity in the rodents are increased by selected
chemotherapeutic agent through increased sensitization
of TRPA1, TRPM8, and TRPV1. In addition, antagonists
of TRPA1 and TRPM8 were able to attenuate cisplatin,
oxaliplatin, and paclitaxel-induced mitochondrial oxidative
stress, inflammation, cold allodynia, and hyperalgesia, although
TRPV1 was responsible for cisplatin-induced heat hyperalgesia
and mechanical allodynia in sensory neurons. TRPA1, TRPM8,
and TRPV2 protein expression levels were mostly increased in
the DRG and trigeminal ganglia neurons by chemotherapeutic
agents. There is a debate on direct or oxaliplatin-induced
oxidative cold stress dependent TRPA1 and TRPV4 activation
in the DRG. Involvement of molecular pathways such as
cysteine group, GSH, anandamide, cAMP, lipopolysaccharide,
proteinase-activated receptor 2, and mitogen-activated protein
kinase were also indicated in oxaliplatin and paclitaxel-induced
cold allodynia. Therefore, there is growing evidence for the
potential role of TRP channel inhibitors as modulators of
chemotherapy-induced neuropathic pain in the clinic.

A new member of the TRP superfamily is TRPM2. The
enzyme ADPR pyrophosphatase in the C-terminal domain of
TRPM2 is sensitive to ROS and RNS (Wehage et al., 2002;
Nazıroğlu, 2007; Nazıroğlu and Lückhoff, 2008). It is well-known
that excessive ROS production contributes to sensitization in
persistent pain of DRG neuron (Kallenborn-Gerhardt et al.,
2012). In addition, results of recent studies have suggested the
involvement of warm temperature on the activation of TRPM2
channels in the rat DRG neurons (Tan and McNaughton, 2016).
To our knowledge, there is no study of the interaction between
TRPM2 channel and chemotherapeutic agents in DRG neurons.
Future studies should investigate the interactions between
TRPM2 and other oxidative stress-dependent TRP channels such
as TRPM7 and TRPC5 in the DRG neuron following exposure
to chemotherapeutic agents. There is no report on interactions
between remaining thermo-TRP channels such as TRPV3
and TRPM3 and chemotherapeutic agents in the peripheral
neurons. The interaction should be also clarified in primary
neurons.
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Koçer, M., Nazıroğlu, M., Koçer, G., and Sönmez, T. T. (2014). Effects of

bisphosphonate on oxidative stress levels in patients with different types of

cancer. Cancer Invest. 32, 37–42. doi: 10.3109/07357907.2013.861475

Kumar, V. S., Gopalakrishnan, A., Nazıroğlu, M., and Rajanikant, G. K. (2014).
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Övey, I. S., and Nazıroğlu, M. (2015). Homocysteine and cytosolic GSH depletion

induce apoptosis and oxidative toxicity through cytosolic calcium overload

in the hippocampus of aged mice, involvement of TRPM2 and TRPV1

channels. Neuroscience 284, 225–233. doi: 10.1016/j.neuroscience.2014.0

9.078

Park, J. H., Chae, J., Roh, K., Kil, E. J., Lee, M., Auh, C. K., et al. (2015). Oxaliplatin-

induced peripheral neuropathy via TRPA1 stimulation in mice dorsal root

ganglion is correlated with aluminum accumulation. PLoS ONE 10:e0124875.

doi: 10.1371/journal.pone.0124875

Pittman, S. K., Gracias, N. G., Vasko, M. R., and Fehrenbacher, J. C.

(2014). Paclitaxel alters the evoked release of calcitonin gene-related

peptide from rat sensory neurons in culture. Exp. Neurol. 253, 146–153.

doi: 10.1016/j.expneurol.2013.12.011

Sacerdote, P., and Levrini, L. (2012). Peripheral mechanisms of dental pain, the role

of substance P.Mediators Inflamm. 2012:951920. doi: 10.1155/2012/951920
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Oxaliplatin, a third-generation platinum-based chemotherapeutic agent, displays unique

acute peripheral neuropathy triggered or enhanced by cold, and accumulating evidence

suggests that transient receptor potential ankyrin 1 (TRPA1) is responsible. TRPA1

is activated by oxaliplatin via a glutathione-sensitive mechanism. However, oxaliplatin

interrupts hydroxylation of a proline residue located in the N-terminal region of TRPA1

via inhibition of prolyl hydroxylase (PHD), which causes sensitization of TRPA1 to

reactive oxygen species (ROS). Furthermore, PHD inhibition endows cold-insensitive

human TRPA1 (hTRPA1) with ROS-dependent cold sensitivity. Since cysteine oxidation

and proline hydroxylation regulate its activity, their association with oxaliplatin-induced

TRPA1 activation and acquirement of cold sensitivity were investigated in the present

study. A high concentration of oxaliplatin (1mM) induced outward-rectifier whole-cell

currents and increased the intracellular Ca2+ concentration in hTRPA1-expressing

HEK293 cells, but did not increase the probability of hTRPA1 channel opening

in the inside-out configuration. Oxaliplatin also induced the rapid generation of

hydrogen peroxide, and the resultant Ca2+ influx was prevented in the presence of

glutathione and in cysteine-mutated hTRPA1 (Cys641Ser)-expressing cells, whereas

proline-mutated hTRPA1 (Pro394Ala)-expressing cells showed similar whole-cell currents

and Ca2+ influx. By contrast, a lower concentration of oxaliplatin (100µM) did

not increase the intracellular Ca2+ concentration but did confer cold sensitivity on

hTRPA1-expressing cells, and this was inhibited by PHD2 co-overexpression. Cold

sensitivity was abolished by the mitochondria-targeting ROS scavenger mitoTEMPO and
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was minimal in cysteine-mutated hTRPA1 (Cys641Ser or Cys665Ser)-expressing cells.

Thus, high oxaliplatin evokes ROS-mediated cysteine oxidation-dependent hTRPA1

activation independent of PHD activity, while a lower concentration induces cold-induced

cysteine oxidation-dependent opening of hTRPA1 via PHD inhibition.

Keywords: TRPA1, oxaliplatin, reactive oxygen species, cold hypersensitivity, prolyl hydroxylase, cysteine

oxidation, peripheral neuropathy

INTRODUCTION

Oxaliplatin (L-OHP), a third-generation platinum-based agent,
is frequently used to treat locally advanced and metastatic
cancers of the colon or rectum. However, it increases the
incidence of chemotherapy-induced peripheral neuropathy
(CIPN), often resulting in chemotherapeutic dose delay or
treatment discontinuation (Falcone et al., 2007; Miltenburg and
Boogerd, 2014). In addition to cumulative and chronic CIPN
after multiple chemotherapy cycles, oxaliplatin induces a peculiar
acute CIPN, characterized by paresthesia, dysesthesia, or acral
numbness, in ∼90% of patients during or within hours of
infusion. Acute CIPN is specific to oxaliplatin and often triggered
or exacerbated by cold exposure (Wilson et al., 2002; Miltenburg
and Boogerd, 2014; Cavaletti and Marmiroli, 2015).

The mechanisms underlying L-OHP-induced chronic CIPN
can be explained, at least in part, by neurotoxicity in
peripheral sensory neurons due to mitochondrial dysfunction
and generation of reactive oxygen species (ROS) (Joseph and
Levine, 2009; Di CesareMannelli et al., 2012; Azevedo et al., 2013)
following accumulation of platinum in the dorsal root ganglia
(DRG) (Screnci et al., 2000; Cavaletti et al., 2001). By contrast,
L-OHP-induced acute CIPN is recognized as a channelopathy.
A body of evidence suggests that it is caused by alteration of
the kinetics of the axonal voltage-gated Na+ channel (Sittl et al.,
2012; Deuis et al., 2013) and/or activation of transient receptor
potential ankyrin 1 (TRPA1) (Nassini et al., 2011; Zhao et al.,
2012).

TRPA1 is a polymodal cation channel that plays a pivotal
role as a nociceptor (Wu et al., 2010; Viana, 2016). This
channel is opened by a large number of irritant chemicals
(Bandell et al., 2004; Jordt et al., 2004). TRPA1 is also activated
by oxidative stimuli such as, ROS and hyperoxia (Takahashi
et al., 2008, 2011). TRPA1 activation evoked by most irritant
chemicals and oxidative stimuli is caused by covalent or oxidative
modification of cysteine residues in the N-terminal region
(Hinman et al., 2006; Macpherson et al., 2007). On the other
hand, we previously identified another mechanism for TRPA1
activation; a decrease in oxygen concentration diminishes the
activity of prolyl hydroxylases (PHDs) and relieves TRPA1 from
the PHD-dependent hydroxylation of a proline residue (Pro394)
located within the N-terminal ankyrin repeat domain, leading
to hypoxia-induced activation (Takahashi et al., 2011; So et al.,
2016).

It is reported that both L-OHP and cisplatin activate TRPA1
via glutathione-sensitive mechanisms (Nassini et al., 2011).
However, we previously demonstrated that L-OHP and its
characteristic metabolite oxalate enhance the responsiveness

of TRPA1, which may contribute to the cold hypersensitivity
induced by L-OHP in mice, but this is not the case for cisplatin
and paclitaxel (Zhao et al., 2012). We also demonstrated the
molecular mechanism: L-OHP and oxalate inhibit PHD activity,
which augments the sensitivity of human TRPA1 (hTRPA1) to
ROS by inhibiting hydroxylation of Pro394. Furthermore, we
found that use of a PHD inhibitor or a hTRPA1 mutant lacking
the hydroxylation-susceptible Pro394 residue induces hTRPA1
sensitization to ROS, which enables cold-insensitive hTRPA1 to
sense cold by detecting cold-evoked ROS production (Miyake
et al., 2016). Therefore, the cold-induced indirect activation of
hTRPA1 that is sensitized by PHD inhibition may be responsible
for L-OHP-induced acute CIPN triggered by cold, although
whether L-OHP actually endows cold sensitivity to hTRPA1-
expressing cells has not been clarified. Thus, L-OHP is likely to
activate and sensitize TRPA1, but whether the L-OHP-induced
TRPA1 activation and sensitization is due to the oxidation of
cysteine residues and/or inhibition of proline hydroxylation
remains unknown.

In this study, we investigated whether and how cysteine
oxidation and/or inhibition of proline hydroxylation contribute
to the L-OHP-induced hTRPA1 activation and sensitization in
vitro. A high concentration of L-OHP evoked cysteine oxidation-
dependent hTRPA1 activation, independent of hydroxylation
of the PHD-targeted proline residue, while a subthreshold
concentration of L-OHP endowed hTRPA1 with cysteine
oxidation-dependent cold sensitivity through PHD inhibition.

MATERIALS AND METHODS

Reagents
L-OHP and allyl isothiocyanate (AITC) were purchased
from Wako Pure Chemical Industries (Osaka, Japan).
N-tert-butyl-α-phenylnitrone (PBN), cremophore EL, 2-
aminoethoxydiphenyl borate (2-APB), poly-L-lysine, and
D-mannitol were purchased from Sigma-Aldrich (St. Louis,MO).
The 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid
(BAPTA) was acquired from Dojindo Laboratories (Kumamoto,
Japan). The mitoTEMPO was obtained from Santa Cruz (Dallas,
TX). Peroxy Green 1 (PG-1) was synthesized previously (Miyake
et al., 2016) according to the literature (Miller et al., 2007).
Other drugs and chemicals were obtained from Nacalai Tesuque
(Kyoto, Japan).

Plasmids
Constructs consisting of recombinant hTRPA1, its cysteine
mutants (C633S, C641S, C665S), its proline mutant (P394A), or
the human PHD2 cDNA in the pCIneo expression vector were
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prepared previously (Takahashi et al., 2011). The pEGFP-C3 was
purchased from Clontech Laboratories (Madison, WI).

Cell Cultures and Transfection
HEK293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with GlutaMAX I (10566-016, Life
Technologies) supplemented with 10% heat-inactivated
fetal bovine serum (Sigma) and maintained at 37◦C in a
humidified incubator set at 5% CO2. HEK293 cells were co-
transfected with recombinant plasmids and pEGFP-C3 using
SuperFect Transfection Reagent (Qiagen, Hilden, Germany)
or Lipofectamine 2000 (Life Technologies). Two days after
transfection, cells were placed onto coverslips coated with
poly-L-lysine and used in electrophysiological recording or
fluorometric imaging.

Electrophysiology
Electrophysiological recordings were performed with a pipette
made from a glass capillary (outer diameter, 1.5mm) with an
internal filament (Narishige, Tokyo, Japan) pulled using a P-
87 micropipette puller (Sutter, Novato, CA). Access resistance
ranged from 2 to 5 M� when the pipette was filled with
pipette solution described below. For whole-cell patch-clamp
recordings, the bath solution contained 100mM NaCl, 2mM
CaCl2, and 10mM HEPES (adjusted to pH 7.4 with NaOH
and 300 mOsm with D-mannitol), and the pipette solution
contained 100mM Cs-aspartate, 5mM BAPTA, 1.4mM Ca-
gluconate (30 nM free Ca2+), 2mMMgSO4, 2mMMgCl2, 4mM
Na2-ATP, 10mM Na5P3O10, and 10mM HEPES (adjusted to
pH 7.4 with CsOH and 300 mOsm with D-mannitol). Current-
voltage relationships were measured using voltage ramps (−100
to +100mV over 100ms) applied every 10 s. The membrane
potential was set at 0mV. Access resistance values were
compensated by 70%. For inside-out patch-clamp recordings,
the bath solution contained 50mM Cs-aspartate, 50mM CsCl,
10mM EGTA, 1mM CaCl2 (10 nM free Ca2+), 1mM MgCl2,
10mM Na5P3O10, and 10mM HEPES (adjusted to pH 7.4 with
CsOH and 300mOsmwith D-mannitol), and the pipette solution
contained 100mMCsCl, 1mMMgCl2, 1mM EGTA, and 10mM
HEPES (adjusted to pH 7.4 with CsOH and 300 mOsm with
D-mannitol). The membrane potential was set at +80mV.
Data were filtered at 2.9 kHz. Experiments were conducted
at room temperature. Patch-clamp recordings were performed
using an EPC-10 patch-clamp amplifier (HEKA Instruments,
Lambrecht, Germany) and PATCHMASTER software (HEKA).
AITC (100µM) was used to validate the expression of hTRPA1.
The representative trace was obtained at least three independent
experiments.

Measurement of Intracellular Ca2+

Concentration ([Ca2+]i)
Cells on coverslips were loaded for 30–40min with 5µM Fura-
2 acetoxymethyl ester (Fura-2 AM; Dojindo Laboratories) in
Krebs-Ringer solution containing 140mM NaCl, 5mM KCl,
1mM MgCl2, 2mM CaCl2, 10mM glucose, and 10mM HEPES
(pH adjusted to 7.4 with NaOH) containing 0.005% cremophore
EL. Fluorescence images were captured every 5 s using alternating
excitation at 340 and 380 nm and emission at 510 nm with

an AQUACOSMOS/ORCA-AG imaging system (Hamamatsu
Photonics, Shizuoka, Japan). For the pretreatment, L-OHP
(100µM) was added to the culture medium 2 h before loading.
MitoTEMPO (10µM, 10mM stock solution in DMSO was
diluted with the Fura-2 contained Krebs-Ringer solution) was
preloaded with Fura-2 loading. Note that all drugs used for
pretreatments were removed by washing before Ca2+ imaging
experiments. Experiments were conducted at room temperature
unless otherwise stated. Cold stimulation was performed with
an SC-20 dual in-line solution heater/cooler and a CL-100
temperature controller (Warner Instruments, Hamden, CT). The
velocity of the cooling ramp is about 3.75◦C/min. The ratio
of the fluorescence intensity obtained by excitation/emission at
340 nm/510 nm (F340) to the fluorescence intensity obtained by
excitation/emission at 380 nm/510 nm (F380), namely, F340/F380,
was calculated to quantify the intracellular Ca2+ concentration
([Ca2+]i). Cells with an F340/F380 ratio >1.5 at baseline
were excluded. Statistical analysis of the change in the ratio,
1Ratio (F340/F380), was performed as follows; in Figure 3,
the average 1Ratio (F340/F380) during 0–2min after 2-APB-
application was used; in Figure 5, the 1Ratio (F340/F380) at
2min after cold stimulation was used. AITC (100µM) or 2-
APB (100µM) was used to validate the expression of hTRPA1.

Measurement of Intracellular H2O2 Level
Intracellular H2O2 level was measured using PG-1, a fluorescent
probe with high selectivity for H2O2 (Miller et al., 2007). Cells
on coverslips were loaded for 30–40min with 5µM PG-1 in
HEPES-buffered saline containing 107mM NaCl, 6mM KCl,
1.2mM MgSO4, 2mM CaCl2, 11.5mM D-glucose, and 20mM
HEPES (pH adjusted to 7.4 with NaOH). Fluorescence images
were captured every 20 s using alternating excitation at 488 nm
and emission at 510 nm with the AQUACOSMOS/ORCA-AG
imaging system (Hamamatsu Photonics). Experiments were
conducted at room temperature. The fluorescence intensity
obtained with excitation/emission of 488 nm/510 nm relative to
the values obtained at 0min (F/F0) was calculated to validate the
intracellular H2O2 concentration. The1F/F0 obtained from each
cells at 15min was used for statistical analysis.

Statistical Analysis
The data are presented as means ± S.E.M. from n independent
experiments or cells. Statistical significances were calculated
using GraphPad Prism 7 (GraphPad Software, La Jolla, CA).
The data in Figures 2B,C, 3C,D, 5B,C were compared using
unpaired Student’s t-tests (vs. Ctrl in Figure 2C, vs. WT in
Figures 3C,D, 5C). The data in Figures 1D, 5A were compared
using one-way analyses of variance (ANOVA), followed by
Tukey’s multiple comparisons test. In all cases, P < 0.05 were
considered statistically significant.

RESULTS

A High Concentration of L-OHP Induces

hTRPA1 Activation
To investigate whether L-OHP activates hTRPA1, we performed
whole-cell patch-clamp recording and fura-2-based intracellular
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FIGURE 1 | High concentration of L-OHP induces hTRPA1 activation. (A,B) Effect of L-OHP (1mM) on the whole-cell currents in HEK293 cells transfected with

control (A) or hTRPA1 (B) vector. Left traces are representative whole-cell recordings. The current-voltage relationships were acquired at the time indicated by

black-filled circle in (A,B), respectively. Membrane potential was set at 0mV. (C) Effect of L-OHP on the intracellular Ca2+ concentration in HEK293 cells transfected

with control or hTRPA1 vector (n = 26–53 cells). Left panel shows representative traces of intracellular Ca2+ imaging. Panel (D) shows the statistical analysis for

concentration-dependent effect of L-OHP (0.1, 0.3, and 1mM). n = 4–8 independent experiments. **P < 0.01 vs. the vehicle-treated hTRPA1-expressing cells (Veh).

Panels (C,D) are expressed as mean ± S.E.M. All of the experiments were performed at room temperature.

Ca2+ imaging experiments. In vector-transfected HEK293
cells, L-OHP (1mM) did not induce a membrane current
(Figure 1A). Meanwhile, in hTRPA1-expressing cells, L-OHP
(1mM) induced gradually increasing TRPA1-like outward-
rectifier currents (Figure 1B). Intracellular Ca2+ imaging
revealed that L-OHP (1mM) also significantly increased

[Ca2+]i in hTRPA1-expressing cells in a concentration-

dependent manner (Figure 1C). However, no statistically
significant increase was observed at lower concentrations of
L-OHP (0.1 or 0.3mM). These results indicate that L-OHP
activates hTRPA1 when present at a concentration of at
least 1mM.

High L-OHP-Induced ROS Generation Is

required for hTRPA1 Activation
To clarify whether L-OHP activates hTRPA1 directly, we
performed inside-out patch-clamp recording experiments for
removing intracellular components. We held the membrane
potential at +80mV, at which point weak voltage-gated hTRPA1
is easy to open. Although AITC (100µM) increased the
probability of hTRPA1 opening, a high concentration of L-OHP
(1mM) had no effect (Figure 2A), suggesting that high L-OHP
activates hTRPA1 indirectly. Since L-OHP reportedly induces
mitochondrial dysfunction and triggers ROS generation (Zheng
et al., 2011), we examined the effect of high L-OHP (1mM) on the
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FIGURE 2 | High concentration of L-OHP activates hTRPA1 via ROS

generation. (A) Effect of L-OHP (1mM) on the open probability of hTRPA1 in

inside-out recordings from hTRPA1-expressing HEK293 cells. Left upper panel

shows a representative trace, right panels show the magnified traces at the

time point as indicated in the left trace, and left lower panel shows their

histogram. Membrane potential was set at +80mV. Note that even at positive

voltage, weak voltage-dependent TRPA1 was not activated by L-OHP. (B)

Effect of L-OHP (1mM) on the intracellular H2O2 concentration in HEK293

cells. Left panel shows representative traces of intracellular H2O2 imaging

using PG-1, and right panel shows its statistical analysis. n = 28–32 cells from

two independent experiments. *P < 0.05 vs. vehicle-treated

hTRPA1-expressing cells (Ctrl). (C) Effect of pretreatment with glutathione

(1mM) or PBN (10mM) on the L-OHP-evoked [Ca2+]i increase in

hTRPA1-expressing HEK293 cells. Left panel shows representative traces of

intracellular Ca2+ imaging (n = 22–34 cells), and right panel shows its

statistical analysis (n = 5–8 independent experiments). **P < 0.01 vs.

non-treated hTRPA1-expressing cells (Ctrl). All of the experiments were

performed at room temperature. All data except for (A) are expressed as mean

± S.E.M. GSH; glutathione.

intracellular ROS level using the H2O2-specific indicator PG-1
(Miller et al., 2007). In HEK293 cells, high L-OHP induced H2O2

generation within 15min (Figure 2B). Furthermore, the high

L-OHP-evoked [Ca2+]i increase was significantly suppressed
in the presence of the antioxidants glutathione (1mM) or
PBN (10mM) (Figure 2C). These results suggest that high L-
OHP does not directly activate hTRPA1 but rather triggers
ROS generation, which causes glutathione-sensitive hTRPA1
activation.

High L-OHP-Evoked hTRPA1 Activation Is

Regulated by Cysteine Oxidation and Is

Independent of PHDs
Since ROS-induced TRPA1 activation is caused by oxidative
modulation of the cysteine residues in the N-terminal region
of TRPA1 (Takahashi et al., 2008; Figure 3A), we compared the
high L-OHP-evoked [Ca2+]i increase in HEK293 cells expressing
wild-type hTRPA1 (hTRPA1-WT) or hTRPA1 cysteine mutants
(hTRPA1-C633S, C641S, C665S) in which each ROS or oxygen-
sensitive cysteine residue was replaced with serine, which is a
well-characterized strategy to investigate the redox sensitivity of
cysteine residues in TRPA1 (Macpherson et al., 2007; Takahashi
et al., 2008, 2011). Among the hTRPA1 cysteine mutants,
hTRPA1-C641S showed a significantly weaker response to high
L-OHP (Figures 3B,C), while the responses of the other mutants
(C633S and C665S) were comparable with hTRPA1-WT. By
contrast, the response to 2-APB (100µM), a cysteine oxidation-
independent TRPA1 agonist (Hinman et al., 2006; Hu et al.,
2009b), did not differ between hTRPA1-WT and its mutants
(Figures 3B,D).

To investigate whether PHD inhibition is involved in
high L-OHP-evoked hTRPA1 activation, we examined whether
high L-OHP activates a PHD inhibition-insensitive hTRPA1
mutant hTRPA1-P394A. In whole-cell patch-clamp recordings,
L-OHP (1mM) successfully induced TRPA1-like outward-
rectifier currents in hTRPA1-P394A expressing cells (Figure 4A).
In Ca2+ imaging experiments, both hTRPA1-WT and hTRPA1-
P394A showed a [Ca2+]i increase induced by high L-OHP,
and we did not observed any difference between them
[Figure 4B, n = 6 independent experiments, P = 0.233 vs.
hTRPA1-WT (Figure 1D, 1mM L-OHP treated group, n =

8 independent experiments)]. These results suggest that high
L-OHP activates hTRPA1 in a cysteine oxidation-dependent
manner, while L-OHP-induced PHD inhibition is not involved
in this phenomenon.

A Low Concentration of L-OHP Endows

Cold Sensitivity of hTRPA1 via Both PHD

Inhibition and Cysteine Oxidation
We recently reported that PHD inhibition causes hTRPA1
sensitization to ROS, which allows hTRPA1 to sense cold
indirectly via cold-induced ROS generation (Miyake et al., 2016).
Consistently, cold stimulation had minimal effect on [Ca2+]i
in non-treated hTRPA1-expressing cells in the present study,
while pretreatment with a relatively low concentration of L-
OHP (100µM) for 2 h significantly increased [Ca2+]i compared
with that in non-treated hTRPA1-expressing cells. The cold-
evoked [Ca2+]i increase following low L-OHP pretreatment
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FIGURE 3 | High concentration of L-OHP activates hTRPA1 via Cys641 modification. Effect of L-OHP (1mM) on the intracellular Ca2+ concentration in HEK293 cells

expressing hTRPA1 cysteine mutants (hTRPA1-C633S, C641S, and C665S). 2-APB (100µM) was used to validate the expression of hTRPA1 cysteine mutants. (A)

Schematic diagram illustrates the location of cysteine and proline residues of hTRPA1 that we focused in this study. (B–D) Representative traces of intracellular Ca2+

imaging (n = 42–92 cells) (B) and its statistical analysis for L-OHP- and 2-APB-evoked [Ca2+]i increase (C,D) (n = 5–10 independent experiments). Note that we

used 2-APB instead of AITC, since AITC activates TRPA1 via Cys oxidation and not suitable for examining the full activation of TRPA1 in (D). *P < 0.05 vs. wildtype

hTRPA1-expressing cells (WT). All of the experiments were performed at room temperature. All data are expressed as mean ± S.E.M.

was partially but significantly inhibited abolished in cells co-
expressing hTRPA1 and PHD2 (Figure 5A) and in hTRPA1-
expressing cells pretreated with the mitochondria-targeting
ROS scavenger mitoTEMPO (10µM; Figure 5B). To investigate
whether hTRPA1 cysteine residues are involved in the low L-
OHP-endowed cold-evoked [Ca2+]i increase, we performed the
same experiments using hTRPA1 cysteine mutants. The cold-
evoked [Ca2+]i increase following low L-OHP pretreatment
was significantly smaller in hTRPA1-C641S and hTRPA1-
C665S mutants than that in hTRPA1-WT, while there was no
difference between hTRPA1-WT and the hTRPA1-C633S mutant
(Figure 5C). These results suggest that the low L-OHP-endowed
cold sensitivity of hTRPA1 is dependent on both PHD inhibition
and cysteine oxidation, and cold-induced mitochondrial ROS
generation is important for the cold-evoked activation of hTRPA1
sensitized by low L-OHP.

DISCUSSION

Among others, TRPA1 is activated through dual mechanisms:
covalent or oxidative modification of cysteine residues, and
inhibition of hydroxylation of a proline residue in the N-
terminal region (Takahashi et al., 2011). The results of the present
study showed that a high concentration of L-OHP (≥1mM)
evoked hTRPA1 activation via ROS-mediated cysteine oxidation,

independently of PHD inhibition, while both mechanisms are
responsible for the cold-induced activation of hTRPA1 sensitized
by the low concentration of L-OHP. The high concentration of
L-OHP activated hTRPA1 in whole-cell patch clamp recordings
and intracellular Ca2+ imaging experiments, but not membrane-
excised inside-out patch clamp recordings, indicating that
the high concentration of L-OHP affects cellular components
other than hTRPA1 itself, and indirectly activates hTRPA1.
Furthermore, glutathione and PBN suppressed the L-OHP
(1mM)-induced activation of hTRPA1, suggesting that the high
concentration of L-OHP induces ROS production that is followed
by the activation of hTRPA1 (Figure 6). We previously reported
that the low concentration of L-OHP increases the sensitivity
of hTRPA1 to ROS via PHD inhibition (Miyake et al., 2016).
In this study, we further found that the L-OHP (100µM)-
pretreated hTRPA1-expressing cells showed larger response to
cold compared with the control hTRPA1-expressing cells, which
was not observed when we used PHD2-overexpressing cells, and
was partially inhibited by the pretreatment with mitoTEMPO.
The L-OHP dependent cold response was suppressed in ROS-
sensitive cysteine-mutated hTRPA1-expressing cells, indicating
that the pretreatment of L-OHP (100µM) allows hTRPA1
to sense cold in the same mechanisms we revealed before
(Miyake et al., 2016) via modification to cysteine residues
(Figure 6).
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FIGURE 4 | High L-OHP evoked hTRPA1 activation is independent of PHD

modification. (A) Effect of L-OHP (1mM) on the whole-cell currents in HEK293

cells transfected with hTRPA1-P394A mutant vector. Left traces are

representative whole-cell recordings. The current-voltage relationships were

acquired at the time indicated by black-filled circle, respectively. Membrane

potential was set at 0mV. (B) Representative traces of intracellular Ca2+

imaging of HEK293 cells transfected with hTRPA1-WT or hTRPA1-P394A

mutant vector (n = 26–50 cells). Panel (B) is expressed as mean ± S.E.M. All

of the experiments were performed at room temperature.

TRPA1 can be activated by heavy metals such as, gold,
zinc, and cadmium via cysteine modification (Hu et al., 2009a;
Gu and Lin, 2010; Hatano et al., 2013; Miura et al., 2013).
However, the concentration of the platinum compound L-OHP
required for hTRPA1 activation (1mM) is much higher than
that reported previously for other heavy metals (µM) (Hu et al.,
2009a; Hatano et al., 2013; Miura et al., 2013). The possibility
that L-OHP directly activates hTRPA1 was ruled out since high
L-OHP was unable to evoke TRPA1 activation in inside-out
patch-clamp recording experiments. Rather, the results indicated
indirect activation of hTRPA1 through L-OHP-induced ROS
generation since (1) we detected an increase in intracellular H2O2

production following high L-OHP treatment, and (2) high L-
OHP-evoked hTRPA1 activation was blocked by the membrane-
impermeable antioxidant glutathione, consistent with a previous
report (Nassini et al., 2011). It is reported that L-OHP induces
apoptosis via mitochondrial damage (Gourdier et al., 2004),
which triggers ROS generation (Bishop et al., 2010). Taken
together, our findings suggest that high L-OHP triggers ROS
generation, presumably by mitochondria, resulting in activation
of TRPA1.

Cysteine oxidation is one of the most common mechanisms
for TRPA1 activation by various agonists, and Cys633, Cys641,
and Cys665 are crucial for activation by electrophiles (Hinman
et al., 2006; Ibarra and Blair, 2013). Among these, Cys641 and
Cys665 are important for activation by low concentrations of
H2O2 (Takahashi et al., 2008) and nitric oxide (Kozai et al.,
2014). Cys641 is also important for activation by zinc (Hu et al.,

FIGURE 5 | Cold-induced activation of hTRPA1 sensitized by low L-OHP is

dependent on PHD inhibition and cysteine oxidation. Effects of PHD2

overexpression (A), a mitochondria-targeted ROS scavenger (B) or hTRPA1

cysteine mutants (C) on the cold-evoked [Ca2+]i increase following

pretreatment with L-OHP (100µM) for 2 h in hTRPA1-expressing HEK293 cells

were investigated. (A) Left panel shows representative traces of intracellular

Ca2+ imaging from hTRPA1-expressing HEK293 cells co-transfected with or

without human PHD2 (top) and the temperature of the recording solution

(bottom). Right panel shows its statistical analysis (n = 47–83 cells from two

independent experiments). ***P < 0.001. (B) Left panel shows representative

traces of intracellular Ca2+ imaging from L-OHP-treated hTRPA1-expressing

HEK293 cells pretreated with vehicle or mitoTEMPO (10µM, loading with

Fura-2 Ca2+ indicator; top) and the temperature of the recording solution

(bottom). Right panel shows its statistical analysis (n = 94–95 cells from two

independent experiments). ***P < 0.001 vs. vehicle (0.1% DMSO)-treated cells

(Veh). (C) Left panel shows representative traces of intracellular Ca2+ imaging

from L-OHP-treated HEK293 cells expressing wildtype hTRPA1 (WT) or

hTRPA1 cysteine mutants (hTRPA1-C633S, C641S, and C665S; top) and the

temperature of the recording solution (bottom). Right panel shows its statistical

analysis (n = 202–266 cells from three independent experiments). *P < 0.05,

***P < 0.001 vs. WT. All data are expressed as mean ± S.E.M.
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FIGURE 6 | Different concentration of L-OHP elicits cysteine oxidation-dependent activation or cold sensitization of hTRPA1. (A) The mechanism underlying the high

L-OHP-induced hTRPA1 activation. L-OHP induces ROS generation (presumably via mitochondria), and the resultant ROS activate hTRPA1 via oxidation of Cys641.

(B) The mechanism underlying the low L-OHP-mediated hTRPA1 activation by cold. The long exposure of L-OHP (more than 1 h) causes the inhibition of PHDs by

oxalate, a metabolite of L-OHP, which results in the sensitization of hTRPA1. The sensitized hTRPA1 is activated by ROS produced by mitochondria following cold

exposure via oxidation of Cys 641 and Cys665.

2009a) and cadmium (Miura et al., 2013), whereas Cys633 is
involved in activation by HNO (Eberhardt et al., 2014) and
the gold compound auranofin (Hatano et al., 2013). In the
present study, we showed that mutation of Cys641 inhibited
high L-OHP-evoked hTRPA1 activation. This result further
supports indirect hTRPA1 activation by high L-OHP through
ROS generation, although mutating Cys665 had no effect, which
may partially contradict this finding. This paradox may indicate
some additional roles of L-OHP in the high L-OHP-induced
hTRPA1 activation, but further investigations are required. The
fact that mutation of Cys633 did not affect high L-OHP-evoked
hTRPA1 activation may suggest that platinum does not directly
activate hTRPA1 in a cysteine-dependent manner, like gold.

Hydroxylation of the proline residue in the N-terminal region
of TRPA1 by PHDs is critical for regulating TRPA1 activity
(Miyake et al., 2016). Although L-OHP and its metabolite
oxalate can inhibit PHDs (Miyake et al., 2016), the present
results suggest that PHDs are not involved in the high L-
OHP-evoked hTRPA1 activation. This apparent discrepancy may
be explained by the previous observation that induction of
TRPA1 sensitization in mouse DRG neurons by low L-OHP
pretreatment requires more than 1 h (Zhao et al., 2012). Thus,
it is likely that inhibition of PHDs and induction of TRPA1
sensitization by L-OHP and/or oxalate may be slower than
the high L-OHP-induced rapid ROS generation that activates
TRPA1. It is probable that cysteine oxidation by ROS, rather than

inhibition of proline hydroxylation by L-OHP and/or oxalate
and subsequent delayed sensitization of hTRPA1, contributes to
hTRPA1 activation evoked by high L-OHP.

We previously reported that PHD inhibition by a PHD
inhibitor dimethyloxalylglycine (DMOG) sensitizes hTRPA1
to ROS and induces channel opening at cold temperatures.
Furthermore, similar cold hypersensitivity is also observed
in the mice treated with DMOG, which is also inhibited
by a TRPA1 antagonist HC030031 (Miyake et al., 2016).
Consistently, in the present study, pretreatment with a relatively
low concentration of L-OHP potentiated the cold sensitivity
of hTRPA1. Furthermore, this L-OHP-induced cold sensitivity
was significantly reduced when treated with a mitochondria-
targeting ROS scavenger, suggesting that ROS generated from
mitochondria during cold exposure contributes to the L-OHP-
induced cold sensitivity, similar to DMOG. Consistent with
our results, previous in vivo experiments showed that L-OHP-
induced cold hypersensitivity was attenuated by a single acute
administration of a ROS scavenger (Miyake et al., 2016) or a
mitochondria-targeting ROS scavenger (Toyama et al., 2014).
Furthermore, the results obtained from Cys641 and Cys665
hTRPA1 mutants confirmed that these residues are responsible
for activation by H2O2 (Takahashi et al., 2008) and contribute
to the indirect cold sensitivity of hTRPA1 induced by low L-
OHP. These results suggest that ROS presumably generated from
mitochondria during cold exposure oxidize cysteine residues in
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the N-terminal region of hTRPA1, thereby activating hTRPA1
following exposure to low L-OHP pretreatment. However, in
this study, mitoTEMPO did not completely inhibit the cold-
induced increase of [Ca2+]i in the low L-OHP-treated hTRPA1
expressing cells. This mitoTEMPO-insensitive component may
be ROS-independent but still PHD-dependent, since the over-
expression of PHD2 completely inhibited the cold-induced
hTRPA1 activation and hTRPA1-P394A mutant (that mimics
a constitutively PHD-inhibited condition) shows a weak ROS-
independent cold sensitivity (Miyake et al., 2016). By contrast, the
mutation demonstrated that Cys633 had no effect on the indirect
cold sensitivity of hTRPA1, which may indicate that platinum
itself is not involved in this phenomenon. This hypothesis is
consistent with our previous findings that other platinum-based
chemotherapeutic agents such as, cisplatin and carboplatin do
not induce acute cold hypersensitivity (Zhao et al., 2012).

The concentration of L-OHP in commercial infusions is
about 1.25mM, while the calculated blood concentration in
patients is <100µM (Chalret du Rieu et al., 2014). Although L-
OHP accumulates in the DRG and peripheral nerves (Screnci
et al., 2000; Cavaletti et al., 2001), the concentration of L-OHP
required to evoke TRPA1 activation (1mM) appears to be too
high to explain L-OHP-induced acute CIPN. In addition, a high
concentration of cisplatin, which does not induce acute CIPN,
also activates TRPA1 via ROS generation (Nassini et al., 2011).
Thus, high L-OHP-evoked TRPA1 activation via ROS generation
is unlikely to be responsible for acute CIPN following L-OHP
treatment. Interestingly, delayed mechanical, thermal, and cold
hypersensitivity following repeated administration of L-OHP in
rodents is prevented by some antioxidants (Joseph and Levine,
2009; Di Cesare Mannelli et al., 2012; Azevedo et al., 2013) and
a TRPA1 blocker (Nassini et al., 2011). Furthermore, TRPA1
activation via ROS is associated with mechanical hypersensitivity
induced by cisplatin (Nassini et al., 2011) and some other classes
of chemotherapeutic agents such as, paclitacel (Materazzi et al.,
2012), bortezomib (Trevisan et al., 2013), and vincristine (Old
et al., 2014). Thus, ROS-mediated TRPA1 activation may be a
common mechanism for cumulative and chronic CIPN.

In conclusion, we further clarified the molecular details of
how L-OHP activates or sensitizes hTRPA1. L-OHP exhibited
complex concentration-dependent effects on hTRPA1; high
L-OHP evoked hTRPA1 activation in a proline-independent
manner, while low L-OHP sensitized hTRPA1 in a proline-
dependent manner. This finding implies that the same chemical
agent can function via different molecular mechanisms to
regulate target proteins in a concentration-dependent manner.
Nevertheless, the present results provide experimental evidence
that TRPA1 blockage may be of clinical benefit for CIPN patients
treated with L-OHP.
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(2017) Inhibition of the TRPM2 and

TRPV1 Channels through Hypericum

perforatum in Sciatic Nerve

Injury-induced Rats Demonstrates

their Key Role in Apoptosis and

Mitochondrial Oxidative Stress of

Sciatic Nerve and Dorsal Root

Ganglion. Front. Physiol. 8:335.

doi: 10.3389/fphys.2017.00335

Inhibition of the TRPM2 and TRPV1
Channels through Hypericum
perforatum in Sciatic Nerve
Injury-induced Rats Demonstrates
their Key Role in Apoptosis and
Mitochondrial Oxidative Stress of
Sciatic Nerve and Dorsal Root
Ganglion

Fuat Uslusoy 1, Mustafa Nazıroğlu 2, 3, 4* and Bilal Çiğ 3, 4
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Sciatic nerve injury (SNI) results in neuropathic pain, which is characterized by the

excessive Ca2+ entry, reactive oxygen species (ROS) and apoptosis processes although

involvement of antioxidant Hypericum perforatum (HP) through TRPM2 and TRPV1

activation has not been clarified on the processes in SNI-induced rat, yet. We investigated

the protective property of HP on the processes in the sciatic nerve and dorsal root

ganglion neuron (DRGN) of SNI-induced rats. The rats were divided into five groups as

control, sham, sham+HP, SNI, and SNI+HP. The HP groups received 30 mg/kg HP for 4

weeks after SNI induction. TRPM2 and TRPV1 channels were activated in the neurons by

ADP-ribose or cumene peroxide and capsaicin, respectively. The SNI-induced TRPM2

and TRPV1 currents and intracellular free Ca2+ and ROS concentrations were reduced by

HP, N-(p-amylcinnamoyl) anthranilic acid (ACA), and capsazepine (CapZ). SNI-induced

increase in apoptosis and mitochondrial depolarization in sciatic nerve and DRGN of

SNI group were decreased by HP, ACA, and CapZ treatments. PARP-1, caspase 3 and

9 expressions in the sciatic nerve, DRGN, skin, and musculus piriformis of SNI group

were also attenuated by HP treatment. In conclusion, increase of mitochondrial ROS,

apoptosis, and Ca2+ entry through inhibition of TRPM2 and TRPV1 in the sciatic nerve

and DRGN neurons were decreased by HP treatment. The results may be relevant to the

etiology and treatment of SNI by HP.

Keywords: apoptosis, Hypericum perforatum, sciatic nerve injury, mitochondrial oxidative stress, TRPM2, TRPV1
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GRAPHICAL ABSTRACT | Poly (ADP-ribose) polymerase (PARP) catalyzes the transfer of ADP-ribose (ADPR) in nucleus during the DNA repair

processes. TRPM2 channel is gated by ADPR and reactive oxygen species (ROS) through activation of ADP-ribose (ADPR) pyrophosphate enzyme in its nudix

domain motif although it was inhibited by N-(p-amylcinnamoyl)anthranilic acid (ACA). TRPV1 channel is also activated by ROS and capsaicin (CAPS) but it is inhibited

by capsazepine (CapZ).
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INTRODUCTION

Calcium ion (Ca2+) is an important messenger in neurons of the
body (Kumar et al., 2014). Many physiological functions such as
muscle metabolism, neuronal recovery, mitochondrial-reactive
oxygen species (ROS) production, and apoptosis were regulated
by the intracellular free Ca2+ ([Ca2+]i) concentration (Nazıroğlu,
2007; Kumar et al., 2014). The Ca2+ passes the cell membrane
with several channels such as chemical gated and voltage gated
calcium channel (VGCC). Apart from the well-known channels,
transient receptor potential (TRP) cation channel family was
recently discovered in different cells. Some subfamilies of the
TRP family, such as TRP melastatin 2 (TRPM2) and TRP
vanilloid 1 (TRPV1) are activated by oxidative stress (Tominaga
and Tominaga, 2005; Nazıroğlu, 2011, 2015). The activator of
TRPM2 channel was firstly discovered through activation of
adenosine diphosphate ribose (ADPR) pyrophosphatase enzyme
of C-terminal tail in the Nudix box motif of the channel
by intracellular ADPR (Perraud et al., 2001) and extracellular
H2O2 (Hara et al., 2002). Then, ADPR-independent activation
mechanism of TRPM2 channel was indicated in a cell line by
a single channel patch-clamp study (Nazıroğlu and Lückhoff,
2008). Activation of TRPV1 channel is firstly indicated in dorsal
root ganglion neuron (DRGN) by capsaicin (Caterina et al.,
2000). Then, involvement of oxidative stress on activation of the
TRPV1 channel through activation of NADPH oxidase pathway
was indicated by a cell line study (Susankova et al., 2006) and
DRGN (Ding et al., 2016) studies. TRPM2 and TRPV1 expression
levels are high in the DRGNs and overload Ca2+ entry through
the channels involved in neuropathic pain (Isami et al., 2013;
Pecze et al., 2013; Akpınar et al., 2016) and apoptotic (Hara et al.,
2002) processes. The association between overload Ca2+ entry
through TRPM2 and TRPV1 and peripheral pain intensity has
been reported in sciatic nerve injury (SNI)-induced rats (Dolu
et al., 2016). Accumulating evidence indicated that importance of
oxidative stress, the TRPM2 and TRPV1 channels in DRGN and
sciatic nerve injuries has been increasing in experimental animal
and human (Facer et al., 2007; Frederick et al., 2007; Haraguchi
et al., 2012). On the subject, it was reported that expression levels
of TRPM2 and TRPV1 are increased in sciatic nerve and DRGN
by spinal cord injury (SCI) and SNI (Frederick et al., 2007; Szigeti
et al., 2012; Matsumoto et al., 2016).

It was demonstrated that inflammatory, mechanical injury,
and ischemia induces excessive production of ROS, Ca2+ entry,
and apoptosis through VGCC in neurodegenerative diseases
such as SCI and SNI (Fisunov et al., 2000). Association
between overload Ca2+ entry and excessive production of
ROS has also been well-known in neurodegenerative disease
(Graphical abstract). Involvement of excessive ROS production

Abbreviations: [Ca2+]i, intracellular free calcium ion; ACA, N-(p-

amylcinnamoyl) anthranilic acid; CAPS, capsaicin; CapZ, capsazepine; CPx,

cumene hyroperoxide; DHR, dihydrorhodamine; DRGN, dorsal root ganglion

neuron; HP, Hypericum Perforatum; PARP-1, Poly-ADPR polymerase 1; ROS,

reactive oxygen species; SCI, spinal cord injury; SNI, sciatic nerve injury; TRP,

transient receptor potential; TRPC6, transient receptor potential canonical 6;

TRPM2, transient receptor potential melastatin 2; TRPV1, transient receptor

potential vanilloid 1; WC, whole cell.

and overload Ca2+ entry has been emphasized in the generation
of neuropathic pain after traumatic injuries (Genovese et al.,
2006; Özdemir et al., 2016). Based on these findings, some
dietary antioxidants have been tested for their clinical efficacy
in treating oxidative stress, apoptosis, and Ca2+ entry because
they acted to be safe and well-tolerated (Genovese et al., 2006;
Alipour et al., 2014; Özdemir et al., 2016).Hypericum perforatum
(HP) is also known as St John’s worth which has been used
as a popular plant medicine for treatment of several diseases
such as skin wounds, burns, and mental depression (Stojanović
et al., 2013). Antioxidant and ROS scavenger effects of flavonoids
are well-known for a long time and the main component of
HP is flavonoids such as hyperforin, pseudohyperforin, rutin,
quercetin, and quercitrin (Kusari et al., 2009; Stojanović et al.,
2013). A protective effect of HP on sciatic nerve in rats was
recently reported (Mohammadi et al., 2012). Antioxidant and
ROS scavenger effects of HP both in DRGN of SCI-induced rats
(Uchida et al., 2008; Nazıroğlu et al., 2014a) and neutrophil of
patients with inflammatory diseases (Nazıroğlu et al., 2014b,c)
were reported. Recently, we observed modulator role of HP on
apoptotic, inflammatory and oxidative stress values in muscle,
blood and brain of SNI-induced rats (Uslusoy et al., 2017).
Therefore, HPmay attenuate oxidative stress, apoptosis and Ca2+

entry through modulation of TRPM2 and TRPV1 in DRGN and
sciatic neurons of SNI-induced rats.

SNI-induced apoptosis and oxidative stress may be reduced
by [Ca2+]i concentration through modulation of TRPM2 and
TRPV1 channels by HP. To our knowledge, there is no report of
HP on apoptosis, oxidative stress and Ca2+ entry in SNI-induced
rats. The aim of the current study is to determine the molecular
mechanism of HP on apoptosis, oxidative stress and Ca2+ entry
through TRPV1 and TRPM2 regulation in the sciatic nerve and
DRGN after SNI.

MATERIALS AND METHODS

Animal
We used 40 female Wistar rats (aged between 3–4 months old) in
the current study. The animals were housed two per cage, under
controlled conditions of room temperature (22◦C) and humidity
(65–70%), on a 12 h light-dark cycle and allowed free access to
commercial feed and tap water. Accessing the feed of the operated
animals was facilitated to the rats though using specific cage
apparatus in sham and SNI-induced groups for recovery days (3
days) of the operations.

Hypericum perforatum (HP) Extract
The HP extract was purchased from Indena (Indena Industria
Derivati Naturali) S.p.A. Viale Ortles, Milan, Italy. The
extract was mainly containing 0.10–0.30% total hypericin, 6.0%
flavonoids, and 6.0% hyperforin (Özdemir et al., 2016; Uslusoy
et al., 2017).

Study Groups
The rats were equally divided into five groups (n = 8) as follows:
The control group had no SNI and treatment. They received one
ml of 0.9% w/v saline solution via gastric gavage for 4 weeks.
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FIGURE 1 | Induction of sciatic nerve injury in right leg of the rats. After

anesthesia (A), the common sciatic nerve of the right hind paw was exposed

the middle of thigh by blunt dissection through the biceps femoris (B). For

sciatic nerve crush, a hemostatic sterile clamp was used. The sciatic nerve

was crushed for a total of 30 s. Then, the wound was closed with a 2.0 suture

and rats were allowed to recover in the postoperative room. In sham-operated

rats, the same surgical procedure was followed, the connective tissue was

freed, and no ligatures were applied.

In the sham group, they exposed the same surgical procedure of
SNI group, but no ligatures were applied to right leg (Figure 1).
In sham+HP group, exposed same procedure of sham group,
but the rats were supplemented HP. In the SNI group, they
exposed the same surgical procedure of SNI group and ligatures
were also applied to right leg. In SNI+HP group, exposed same
procedure of SNI group, but the rats were supplemented HP.
The HP (30 mg/kg/day) was dissolved in ml of 0.9% w/v saline
and it was administrated to the rats via gastric gavage for 4
weeks (Özdemir et al., 2016; Uslusoy et al., 2017). SNI in the SNI
group was induced in the rats according to method of Bennett
and Xie (1988). In the SNI+HP group, the rats received oral
HP (30 mg/kg/day). In the SNI+HP, the rats received HP (same
as the sham+HP group) after SNI induction (same as the SNI
group).

Twelve hours after the last HP dose administration, all
rats were decapitated in accordance with Suleyman Demirel
University (SDU) experimental animal legislation. The skin,
muscle (Musculus piriformis), sciatic nerve, and DRGN
samples were isolated as described in a previous study
(Özdemir et al., 2016). In patch-clamp experiment and [Ca2+]i
concentration assays, the DRGNs were further treated with
cumene hyroperoxide (CPx) (0.1 mM) or ADPR (1 mM) and
capsaicin (0.01 mM) for activation of TRPM2 and TRPV1

channels, respectively and they were also inhibited the TRPM2
channels blockers, N-(p-amylcinnamoyl) anthranilic acid (ACA
and 0.025 mM) and TRPV1 blocker, capsazepine (CapZ and
0.1mM).

Induction of SNI and Preparation of Sciatic
Nerve and DRGNs
Briefly, the rats were anesthetized by cocktail of xylazine (12.5
mg/kg) and ketamine (100 mg/kg) via intraperitoneally and the
common sciatic nerve of the right hind paw was exposed the
middle of thigh by blunt dissection through the biceps femoris.
For sciatic nerve crush, a hemostatic sterile clamp was used. The
sciatic nerve was crushed for a total of 30 s. Then, the wound
was closed with a 2.0 suture and rats were exposed to recover in
the postoperative room. For excusing the effects of anesthetics
and surgical operation on the investigated values, we induced
sham group. In sham-operated rats, the same surgical procedure
was followed, the connective tissue was freed, and no ligatures
were applied. After 3 days of the surgical operation, all animals
received gentamicin (5 mg/kg, i.p.) to prevent sepsis.

The DRGN (T13-L5) were carefully dissected from peripheral
nerve roots (Nazıroğlu et al., 2014a). The neurons were incubated
in DMEM with 1% penicillin-streptomycin in 500 ml of DMEM.
The connective tissue was removed and ganglia were treated with
collagenase IV (0.28 ml in DMEM), and tyripsin (25,000 units/ml
in DMEM for 45 min at 37◦C and in an atmosphere containing
95% air and 5% CO2. After dissociation with a sterile syringe,
the DRGN suspension of medium and high size was obtained
by centrifuged at 1,500 g and the medium and high size neurons
were removed for the analysis (Akpınar et al., 2016).

Measurement of [Ca2+]i Concentration in
Sciatic Nerve and DRGN
In [Ca2+]i measurement, extracellular buffer was contained
140mMNaCl, 5 mM KCl, 1 mMMgCl2, 2 mM CaCl2, 10 mM 4-
(2-hydroxyethyl)-1- piperazineethanesulfonic acid (HEPES), and
5 mM glucose (pH 7.4). Lysis buffer (pH 7.5) contained 20 mM
Tris X-100, 150 mM NaCl, 1 mM ethylenediaminetetraacetic
acid (EDTA), 1 mM EGTA, 0.1% Triton X-100, 2.5 mM sodium
pyrophosphate.

The sciatic nerve and DRGNs (106/ml) were allowed to
recover in RPMI-1640 medium for 1 h before being loaded
with 2 mM fura-2-AM for 30 min in a water-jacketed cuvette
(37◦C) with continuous magnetic stirring (Espino et al., 2010).
Fluorescence was monitored with a Carry Eclipsys (Inc, Sydney,
Australia) spectrofluorometer immediately after 0.1 ml cell
suspension was added to 0.9 ml Ca2+-containing extracellular
medium, by recording excitation signals at 340 and 380 nm
and emission signal at 505 nm at 1 s intervals. For calibration
of [Ca2+]i, maximum, and minimum fluorescence values were
obtained by adding the detergent Triton X-100 (0.1%) and
the Ca2+ chelator EGTA (10 mM) sequentially at the end of
each experiment. Calculation of the [Ca2+]i concentrations were
described in previous studies (Espino et al., 2010; Akpınar et al.,
2016), assuming a Kd of 155 nM. The [Ca2+]i concentrations
in TRPM2 and TRPV1 experiments were recorded by using
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the integral of the rise in [Ca2+]i for 125 s after addition of
cumene hyroperoxide (CPx and 0.1 mM) or capsaicin (0.01 mM)
(Akpınar et al., 2016; Demirdaş et al., 2017), respectively. The
[Ca2+]i concentration is expressed as nanomolar (nM) taking a
sample every second as previously described (Espino et al., 2010).

Electrophysiology
We used whole-cell mode of patch-clamp techniques (EPC10
patch-clamp set, HEKA, Lamprecht, Germany) was used
in the DRGN of current studies (Akpınar et al., 2016;
Özdemir et al., 2016). Resistances of whole cell recording
electrodes were adjusted to about 3–6 M� by a puller (PC-
10 Narishige International Limited, London, UK). We used
standard extracellular bath and pipette solutions as described
in previous studies (Nazıroğlu and Lückhoff, 2008; Akpınar
et al., 2016). The intracellular Ca2+ concentration was held as
1µM instead of physiological concentration (0.1µM) in TRPM2
experiments because the channels are activated by presence of
high intracellular Ca2+ concentration (McHugh et al., 2003).
Holding potential of the patch-clamp analyses in the DRGNs
was −60 mV. Voltage clamp technique was used in the analyses
and current-voltage (I-V) relationships were obtained from
voltage ramps from −90 to +60 mV applied over 200 ms. All
experiments were performed at room temperature (22± 1◦C).

In the experiments, TRPM2 channels are gated by ADPR
(1 mM in patch pipette) although they were inhibited by ACA
(0.025 mM). In a recent study, we observed activation of TRPV1
channels by medium level (0.01 mM) CAPS instead of low
(0.001mM)CAPS (Nazıroğlu, 2017). Therefore, TRPV1 channels
were activated by adding extracellular (in patch chamber) CAPS
(0.010mM), and the channels were inhibited by administration
of capsazepine (CapZ and 0.1 mM) into patch chamber through
extracellular buffer. For the analysis, the maximal current
amplitudes (pA) in a DRGN were divided by the cell capacitance
(pF), a measure of the cell surface. The results in the patch clamp
experiments are the current density (pA/pF).

Intracellular ROS Production Measurement
Dihydrorhodamine (DHR) 123 is an uncharged and
nonfluorescent intracellular ROS production indicator. It
can easily pass across cell membranes where it is oxidized to
cationic rhodamine 123 which localizes in the mitochondria and
exhibits green fluorescence. The sciatic nerve and DRGNs were
incubated with 20µm DHR 123 at 37◦C for 25 min (Bejarano
et al., 2009). The fluorescence intensities of the rhodamine 123
were assayed (excitation; 488 nm and emission; 543 nm) by using
an automatic microplate reader (Infinite pro200; Tecan Inc,
Groedig, Austria). The results were expressed as fold-increase
over the pretreatment level.

Mitochondrial Membrane Potential (JC-1)
Analyses
The mitochondrial membrane potential (5,5′,6,6′-tetrachloro-
1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide, JC-1) was
determined by JC-1 dye as described in previous studies
(Bejarano et al., 2009; Espino et al., 2010). The JC-1- loaded
sciatic and DRGNs neurons at 37

◦

C for 45 min were excited at
488 nm and emission was detected at 590 nm (JC-1 aggregates)

and 525 nm (JC-1 monomers). Values were calculated from
emission ratios (590/525) and they are presented as fold-increase.

Cell Viability Assay
To determine the cell viability after SNI induction and
HP treatment, we used to cell viability analyses as 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
in the neurons as described elsewhere (Demirdaş et al., 2017).
After incubation for 60 min with medium containing MTT
solution (5 mg/ml), removed the neurons and dissolved the
resulting MTT formazan in DMSO. Absorbance values were
recorded in a spectrophotometer at 490 nm (UV-1800, Shimadzu,
Kyoto, Japan). The data are presented as the fold increase over the
pretreatment level (experimental/control).

Assay for Apoptosis, Caspase 3, and 9
Activities
The apoptosis levels were determined by using the
spectrophotometer and a commercial kit of Biocolor Ltd.
(Northern Ireland) as described in a previous study (Demirdaş
et al., 2017). The method is based on loss of asymmetry in
membranes of apoptotic neurons.

The determinations of caspase 3 and caspase 9 activities in
the sciatic nerve and DRGN neurons were performed in the
microplate reader (Infinite pro200) by using caspase 3 (N-acetyl-
Asp-Glu-Val-Asp-7-amino-4-methylcoumarin) and caspase 9
(His-Asp-7-amino-4-methylcoumarin) substrates. Details of the
assays were indicated in recent studies (Akpınar et al., 2016;
Özdemir et al., 2016). The substrate cleavage wasmeasured at 360
nm (excitation) and 460 nm (emission). Values were calculated
as fluorescence units/mg protein. The data are expressed as
fold-increase.

Western Blot Analyses
Standard procedures are used in the Western Blot analyses of
sciatic nerve, DRGN, muscle, and skin (Akpınar et al., 2016;
Özdemir et al., 2016). In the analyses, caspase 9 (p35/p10
Polyclonal Antibody), caspase 3 (p17-specific Polyclonal
Antibody), beta actin (polyclonal antibody) and Poly-ADPR
polymerase 1 (PARP-1) (polyclonal antibody) were purchased
from (Proteintech, USA) although secondary antibodies (Rabbit
IgG, HRP-linked whole anti-Aβ, from donkey) were purchased
from GE Healthcare (Amersham, UK). Relative levels of
immunoreactivity in ECL Western HRP Substrate (Millipore
Luminate Forte, USA) were quantified using Syngene G:Box Gel
Imagination System (UK). Rabbit anti-β-actin (1:2000) was used
as an internal control for the concentration of proteins loaded.
The data are expressed as relative density over the control level.

Statistical Analyses
All data were represented as means ± standard deviation (SD).
The data were analyzed by using 17.0 version of SPSS statistical
program (Chicago, Illinois, USA). P ≤ 0.05 was considered
to indicate a statistically significant difference. Presence of
significance in the five groups was once detected by LSD-test.
Then p-value levels of significances in the data were analyzed by
using Mann-Whitney U-test.
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FIGURE 2 | Effect of Hypericum perforatum (HP) treatment on [Ca2+]i concentration and TRPM2 in sciatic nerve (A) and dorsal root ganglion neurons

(DRGNs) (B) of control, sham and SNI-induced rats. (n = 8 and mean ± SD). The animals received oral HP for 4 weeks. Then, these dissected neurons of control,

sham and SNI were further in vitro treated with CPx (0.1 mM) and ACA (0.025 mM) before loading Fura-2 for 125 s. ap ≤ 0.05 and bp ≤ 0.001 vs. control and sham

groups. cp ≤ 0.05 and dp ≤ 0.001 vs. sham+ACA and sham+HP groups. ep ≤ 0.001 vs. sham+HP+ACA group. fp ≤ 0.001 vs. SNI group. gp ≤ 0.05 and
hp ≤ 0.001 vs. SNI+ACA group. kp ≤ 0.05 vs. SNI+HP group (C).

RESULTS

Effects of HP on TRPM2 Channel
Activation-Induced [Ca2+]i Concentration
in Sciatic Nerve and DRGNs of
SNI-Induced Rats
TRPM2 channel was discovered as first candidate of oxidative
stress dependent TRP channels because it has oxidative sensitive
ADPR pyrophosphatase enzyme in C domain (Perraud et al.,
2001). HP is containing antioxidant flavonoids in its content
(Kusari et al., 2009; Stojanović et al., 2013). In etiology of SNI,
oxidative stress hasmain role andHPmaymodulate the oxidative
stress dependent-activated TRPM2 in sciatic nerve and DRGN
of SNI-induced rats. For clarifying the modulator role of HP in
the neurons, the neurons of HP supplemented rats were further
in vitro stimulated by CPx (0.1 mM) (Figures 2A,B). Addition of
CPx caused a significant rise in [Ca2+]i concentration of sciatic
nerve and DRGNs of SNI group which is attributed to activation
of Ca2+-permeable TRPM2 channels. This rise in intracellular
[Ca2+]i concentration was markedly (p ≤ 0.001) higher in the
SNI group than in the control and sham groups (Figure 2C).

We observed low level of [Ca2+]i concentration of the neurons
in HP and ACA treated group. The [Ca2+]i concentration in
the neurons was significantly lower in the sham+HP (p ≤ 0.05),
sham+ACA (p≤ 0.05), and sham+HP+ACA (p≤ 0.001) groups
than in control and sham groups. The [Ca2+]i concentration
in the neurons was low in SNI+HP and SNI+ACA and
SNI+HP+ACA groups as compared to as compared to SNI
only (p ≤ 0.001). It seems that HP modulated the SNI-overload
[Ca2+]i concentration through regulation of TRPM2 in the
neurons.

Effects of HP on TRPV1 Channel
Activation-Induced [Ca2+]i Concentration
in Sciatic Nerve and DRGNs of
SNI-Induced Rats
Stimulation of CAPS caused a significant rise in [Ca2+]i
concentration of sciatic nerve and DRGNs of SNI group
which is attributed to activation of Ca2+-permeable TRPV1
channels (Figures 3A,B). Figure 3C showed that, comparing
with the control and sham groups, despite of the fact that
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FIGURE 3 | Effect of Hypericum perforatum (HP) treatment on [Ca2+]i concentration and TRPV1 in sciatic nerve (A) and dorsal root ganglion neuron

(DRGN) (B) of control, sham and SNI-induced rats. (n = 8 and mean ± SD). The animals received oral HP for 4 weeks. Then, these dissected neurons of control,

sham and SNI were further in vitro treated with CAPS (0.01 mM) and CapZ (0.1 mM) before loading Fura-2 for 125 s. ap ≤ 0.05 and bp ≤ 0.001 vs. control and sham

groups. cp ≤ 0.05 and dp ≤ 0.001 vs. sham+CapZ and sham+HP groups. ep ≤ 0.001 vs. sham+HP+CapZ group. fp ≤ 0.001 vs. SNI group. gp ≤ 0.05 and hp ≤

0.001 vs. SNI+CapZ group. kp ≤ 0.05 vs. SNI+HP group (C).

the concentration of [Ca2+]i was higher in SNI group, the
TRPV1 inhibitors (HP and CapZ) could efficiently decrease
the concentration of [Ca2+]i which was induced by SNI
induction (p ≤ 0.001). We observed low level of [Ca2+]i
concentration of the neurons in HP and CapZ treated group.
The [Ca2+]i concentration in the neurons was significantly
lower in the sham+HP (p ≤ 0.05), sham+CapZ (p ≤ 0.05)
and sham+HP+CapZ (p ≤ 0.001) groups than in control and
sham groups. The [Ca2+]i concentration in the neurons was
low in SNI+HP and SNI+CapZ and SNI+HP+CapZ groups as
compared to as compared to SNI only (p ≤ 0.001). It seems that
HP modulated the SNI-overload [Ca2+]i concentration through
regulation of TRPV1 in the neurons.

Effects of HP on ADPR-Induced TRPM2
Currents in DRGN of SCI-Induced Rats
The effects of antioxidant HP for TRPM2 channels activated
by ADPR are indicated in Figure 4. ADPR (1 mM) induced
a current in murine DRGNs (Figures 4B,C). There was no

current in absence of ADPR (Figure 4A). Current densities of
the DRGNs were markedly (p ≤ 0.001) higher in the SNI+CAPS
group (Figure 4F) than in the control (p≤ 0.001), control+CAPS
(p ≤ 0.05) and control+CAPS+CapZ (p ≤ 0.001) groups.
There was no activation of TRPM2 channel in HP (Figure 4D)
and SNI+HP (Figure 4E) groups and the current densities in
the DRGNs were significantly (p ≤ 0.001) lower in HP and
SCI+HP groups as compared to the SCI group (Figure 3).
These results indicate that up-regulation of TRPM2 channel
activity through HP treatment may be critical for SNI-mediated
overload Ca2+ entry and intracellular ROS production in the
DRGNs.

Effects of HP on CAPS-Induced TRPV1
Currents in DRGNs of Control and
SNI-Induced Rats
The murine DRGNs were activated by capsaicin (Figures 5B–D).
The CAPS-induced currents were reversibly and partially blocked
by CapZ and NMDG+ replacement instead of Na+. There was
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FIGURE 4 | Effects of HP on TRPM2 channel activation in dorsal root ganglion neuron (DRGN) of control and SNI-induced rat. The TRPM2 currents in

DRGN were stimulated by intracellular ADPR (1 mM in patch pipette) but they were inhibited by extracellular ACA (0.025 mM) in the patch-chamber. W.C.: Whole cell.

Control (without SCI induction and stimulation): Original recordings from control neuron (A). (B). Control+ADPR group (without SCI induction). (C). SNI group (with

SCI induction). (D). SCI+HP group: The rats received HP after SCI induction. (E). HP group: The rats received HP without SCI induction. (F). TRPM2 channel current

densities in the DRGN. The numbers in parentheses indicated n numbers of groups were indicated by numbers in parentheses. (ap ≤ 0.001 vs. control. bp ≤ 0.001

vs. control+ADPR group. cp ≤ 0.001 vs. control+ADPR+ACA group. dp ≤ 0.001 vs. SNI+ADPR group. ep ≤ 0.001 vs. SNI+ADPR+ACA group).
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FIGURE 5 | Effects of HP on TRPV1 channel activation in dorsal root ganglion neuron (DRGN) of control and SNI-induced rat. The TRPV1 currents in

DRGN were stimulated by extracelular capsaicin (CAPS and 0.01 mM in patch chamber) but they were inhibited by extracellular CaPZ (0.1 mM) in the patch-chamber.

W.C.: Whole cell. Control (without SCI induction and stimulation): Original recordings from control neuron (A). (B). Control+CAPS group (without SCI induction). (C).

SNI group (with SCI induction). (D). SCI+HP group: The rats received HP after SCI induction. (E). HP group: The rats received HP without SCI induction. (F). TRPV1

channel current densities in the DRGN. The numbers in parentheses indicated n numbers of groups were indicated by numbers in parentheses. (ap ≤ 0.001 vs.

control. bp ≤ 0.001 vs. control+CAPS group. cp ≤ 0.001 vs. control+CAPS+CapZ group. dp ≤ 0.001 vs. SNI+ADPR group. ep ≤ 0.001 vs. SNI+ADPR+ACA

group).
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FIGURE 6 | Effects of Hypericum perforatum (HP) on the apoptosis and cell viability (MTT) levels through TRPM2 (A) and TRPV1 (B) in sciatic nerve of

SNI-induced rats (mean ± SD and n = 3). Apoptosis level was measured by using a commercial kit. Values expressed as fold increase (experimental/control). These

neurons were dissected from control, SNI and treated animals. The animals were received HP via gastric gavage. The neurons in TRPM2 and TRPV1 experiments

were stimulated with cumene hydroperoxide (CPx and 0.1 mM) capsaicin (CAPS and 0.01 mM) although they were inhibited by ACA (0.025 mM) and CapZ (0.1 mM),

respectively. (ap ≤ 0.001 and ep ≤ 0.05 vs. control, sham, sham+HP, sham+HP+ACA and sham+HP+CapZ groups. bp ≤ 0.001 and cp ≤ 0.05 vs. SNI group.
dp ≤ 0.05 and fp ≤ 0.001 vs. SNI+ACA and SNI+CapZ groups. gp ≤ 0.05 vs. SNI+HP group).

no current in the absence of CAPS (Figure 5A). The current
densities of DRGNs were significantly higher in the SNI+CAPS
group than in control (p ≤ 0.001) and control+CAPS (p ≤ 0.05)
groups although the densities were significantly (p ≤ 0.001)
lower in control+CAPS+CapZ and SNI+CAPS+CapZ groups
as compared to in the SNI groups (Figures 5E,F). The densities

were decreased in the neuron by HP treatment and they were

low in SNI+HP and SNI+HP+CapZ groups (p ≤ 0.001). These

results indicate that CAPS and ROS overload the Ca2+ entry

through TRPV1 channel activation. However, the SNI-induced

TRPV1 currents through modulation of oxidative stress were

decreased by the antioxidant HP treatments.

Effect of HP on the Apoptosis and Cell
Viability (MTT) Values in the SNI-Induced
Sciatic Nerve and DRGNs
Involvements of TRPM2 and TRPV1 on the apoptosis and MTT
in the sciatic nerve and DRGN are shown in Figures 6A,B,
respectively. Apoptosis levels were markedly (p ≤ 0.001)
measured high in the SNI group, although MTT-values were
significantly (p ≤ 0.001) lower in the SNI group. However, the
apoptosis levels were markedly decreased in ACA (p ≤ 0.05),
CapZ (p ≤ 0.05), and HP (p ≤ 0.001) treated groups although
MTT-values were (p ≤ 0.05 and p ≤ 0.001) increased by the
treatments.
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Effect of HP on the Caspase Activities,
Intracellular ROS Production and JC-1
Level in the Sciatic Nerve of Control, SNI
and HP Groups
Caspase activity analyses were performed caspase 3 and 9
substrate in the plate reader. The caspase 3 and 9 activities were
markedly (p ≤ 0.05) increased in sciatic nerve and DRGNs (data
are not shown) of SNI groups through TRPM2 (Figure 7A) and
TRPV1 (Figure 7C) activations. However, the caspase activities
were markedly (p ≤ 0.05) decreased in the neurons through
inhibition of TRPM2 and TRPV1 channels by HP with/without
ACA and CapZ treatments.

Induction of SCI in rats induced a mitochondrial membrane
depolarization as detected by the increase in the mitochondrial-
specific voltage-sensitive dye JC-1 fluorescence ratio. The
JC-1-value in the sciatic nerve (Figures 7B,D) and DRGNs
(unpublished data) was significantly (p ≤ 0.05) higher in the
SNI group than in the control and HP groups although its value
was significantly (p ≤ 0.01) lower in the SNI+ACA, SNI+CapZ,
SNI+HP, SNI+HP+ACA, and SNI+HP+CapZ groups than in
the SNI group only.

Previous studies demonstrated that DRGNs produced
intracellular ROS under nerve injuries through TRPM2 and
TRPV1 channel activations (Ding et al., 2016; Özdemir et al.,

2016). To determine whether HP, as an antioxidant plant
extract, can cause redundant ROS accumulation in cytosol of
sciatic nerve and DRGNs, we investigated intracellular ROS
levels through TRPM2 and TRPV1 channel activations in
SNI-induced and HP-treated sciatic nerve and DRGNs. The
SNI-induced increase of intracellular ROS level in SNI group
was also decreased in the SNI groups by HP, ACA and CapZ
treatment (p ≤ 0.05). The results implied that HP treatments
might decrease the levels of SNI-induced mitochondrial ROS in
the sciatic nerve and DRGNs by inhibiting TRPM2 and TRPV1.
The JC-1 and ROS levels were further decreased in SNI+ACA
(p ≤ 0.05 and (p ≤ 0.001) and SNI+HP+ACA (p ≤ 0.05 and
(p ≤ 0.001) groups as compared to SNI and SNI+HP groups.
Therefore, involvement of TRPM2 channel inhibition on the
JC-1 and ROS in the sciatic nerve was more significant than
in inhibition of TRPV1 channels due to antioxidant properties
of HP.

Effect of HP on PARP-1, Caspase 3, and 9
Expression Levels in Sciatic Nerve, DRGN,
Skin, and Muscle of the SCI-Induced Rats
Caspase 3 is synthesized as an inactive pro-enzyme that is
processed in cells undergoing apoptosis by self-proteolysis and/
cleavage by other caspase activation, including caspase 9. The

FIGURE 7 | Effects of Hypericum perforatum (HP) on the intracellular ROS production and cell mitochondrial membrane depolarization (JC-1) levels

through TRPM2 (A,C) and TRPV1 (B,D) in sciatic nerve of SNI-induced rats (mean ± SD and n = 3). Values expressed as fold increase (experimental/control).

Sciatic neurons were dissected from control, SNI and HP treated animals. The neurons in TRPM2 and TRPV1 experiments were stimulated with cumene

hydroperoxide (CPx and 0.1 mM) capsaicin (CAPS and 0.01 mM) although they were inhibited by ACA (0.025 mM) and CapZ (0.1 mM), respectively. (ap ≤ 0.05 and
cp ≤ 0.001 vs. control, sham, sham+HP, sham+HP+ACA and sham+HP+CapZ groups. bp ≤ 0.05 and dp ≤ 0.001 vs. SNI group. ep ≤ 0.05 vs. SNI+ACA group).
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caspase 9 is activated by the active caspase 3 (Carrasco et al.,
2015). Caspase 9 induces death signals by triggering other types
of caspase activation. Active caspase 3 and 9 expression levels act
main role the progress of apoptosis in neuronal injury (Özdemir
et al., 2016). In the current study, Caspase 3 and 9 expression
levels in the sciatic nerve (Figure 8A), DRGN (Figure 8B), skin
(Figure 8D), and muscle (Figure 8E) were markedly (p ≤ 0.05)
higher in SNI group than in control. However, the caspase
expression levels in the four samples were decreased by the
HP treatments and their expression levels in the sciatic nerve

(p ≤ 0.05), DRGN (p ≤ 0.05), skin (p ≤ 0.001), and muscle
(p ≤ 0.05) were markedly lower in SNI+HP and sham+HP
groups than in SNI group only.

PARP-1 acts main role in DNA repair (Nazıroğlu, 2007) and its
expression level is increased in neurodegenerative diseases such
as SCI and SNI but it expression level was decreased in SNI and
DRGN by antioxidants (Wu et al., 2009; Yin et al., 2015). PARP-
1 is also acted a source for many apoptotic proteases, including
caspase 3 (Citron et al., 2000). In the current study, we analyzed
PARP-1 expression levels in the sciatic nerve (Figure 8C), DRGN

FIGURE 8 | Effects of Hypericum perforatum (HP) on the PARP-1, caspase 3 and 9 expression levels in sciatic nerve (A,C), DRGN (B,C), skin (D,F) and

muscle (Musculus piriformis) (E,F) and skin (F) of rats with SNI (mean ± SD and n = 3). Anti-β-actin was used as an internal control for the concentration of PARP1,

caspase 3 and 9. Values expressed as fold increase (experimental/control). Sciatic nerve DRGN neurons were dissected from control, SNI and HP treated animals.

(ap ≤ 0.05 vs. control, sham, sham+HP groups. bp ≤ 0.05 and cp ≤ 0.001 vs. SNI group).
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(Figure 8C), skin and muscle (Figure 8F). PARP-1 expression
levels in the sciatic nerve, DRGN, skin andmuscle were markedly
(p≤ 0.05) higher in SNI group as compared to control. However,
the PARP-1 levels in the sciatic nerve (p ≤ 0.05), DRGN (p ≤

0.001), skin (p ≤ 0.001), and muscle (p ≤ 0.05) were markedly
lower in SNI+HP and sham+HP groups as compared to SNI
group only.

DISCUSSION

The current results implied that HP treatments might decrease
the levels of SNI-induced [Ca2+]i accumulation, mitochondrial
ROS, apoptosis levels, and PARP-1, caspase 3, 9 activities and
expressions in the sciatic nerve andDRGNs by inhibiting TRPM2
and TRPV1. To our knowledge, this is the first evidence for
a function of SNI pathophysiological process implicating the
sciatic nerve and DRGN and, in particular, peripheral pain, and
neurodegenerative diseases.

Recent reports indicate that functional TRPM2 and TRPV1
are expressed in the sciatic nerve and DRGNs (Isami et al.,
2013; Pecze et al., 2013; Akpınar et al., 2016), the present
literature findings suggest that TRPM2 and TRPV1 act role in
acute mechanical nociceptive pain Ca2+ signaling. Considerable
evidence indicated that TRPM2 and TRPV1 are activated
and potentiated by excessive intracellular ROS production
(Susankova et al., 2006; Ding et al., 2016). Activation of
TRPM2 and TRPV1 enhanced [Ca2+]i accumulation due to
their permeability to Ca2+ (Pecze et al., 2013, 2016; Nazıroğlu
et al., 2014a) which were involved in several physiological and
pathological processes such as neuronal viability, apoptosis,
and neuronal recovering signaling. The SCI-induced oxidative
stress status evokes TRPM2 and TRPV1 channels to activation
and triggers higher amounts of Ca2+ entry to the cell cytosol
(Özdemir et al., 2016). HP is strong antioxidant because it
contains several flavonoid antioxidants (Kusari et al., 2009;
Stojanović et al., 2013). As source of these antioxidants, HP
acts important role in etiology of neurodegenerative diseases
such as SNI and SNI (Kusari et al., 2009; Stojanović et al.,
2013). Recent studies have observed perturbations of Ca2+

homeostasis through TRPM2 and TRPV1 activations caused
by excessive levels of mitochondrial oxidative stress in the
neurons from experimental animals with nerve injury (Nazıroğlu
et al., 2014a; Xiang et al., 2016). Induction of SNI elevates
oxidative stress levels in neurons (Rogoz et al., 2015) and
consequence of excessive Ca2+ influx, apoptosis exists by
activation of cation channels (Özdemir et al., 2016). In the
current study, we observed SNI-induced [Ca2+]i accumulation
and increased current densities through TRPM2 (ADPR and
CPx) and TRPV1 (CAPS) channel activators caused by excessive
levels of mitochondrial oxidative stress, although their levels were
decreased by antioxidant property of HP.

We found also that the level of Ca2+ influx through
the inhibition of TRPM2 and TRPV1 channels decreased by
the HP treatment. It is well-known that intracellular Ca2+

signaling with/without oxidative stress acts an important role
in pathophysiological functions of pain. Increases in Ca2+

concentration may conduce to the membrane mitochondrial
depolarization (Bejarano et al., 2009; Espino et al., 2010),
activation of ADPR pyrophosphatase that will enhance the
TRPM2 channel potency, and activation of a variety of
intracellular enzymes such as PARP-1 and caspase (Perraud
et al., 2001; Hara et al., 2002; Nazıroğlu and Lückhoff, 2008).
Previous studies have shown that the intracellular Ca2+ influx
into sciatic nerve and DRGNs neurons through increased activity
sensitization of TRPM2 and TRPV1 channels acted a main role
in mechanical hypersensitivity and pain associated with nerve
injury (Haraguchi et al., 2012; Nazıroğlu, 2012, 2015; Rogoz et al.,
2015) although the hypersensitivity and pain are decreased by
inhibition of calcium channels through HP treatment (Uchida
et al., 2008; Nazıroğlu et al., 2014a; Özdemir et al., 2016).
Hence, we provided the novel finding that HP treatment potently
decreased SNI-induced overload intracellular Ca2+ entry by
modulation of TRPM2 and TRPV1 channel activations.

The impairment of neuronal membrane permeability causes
overload Ca2+ influx into cytosol and it leads to excessive
production of ROS in the neurons (Kumar et al., 2014;
Demirdaş et al., 2017). Increased [Ca2+]i concentration through
activation of TRPM2 and TRPV1 causes disruption of the
Ca2+ contents of intermembrane space through mitochondrial
permeability transition activation in the mitochondria (Pecze
et al., 2013). The dysfunction of mitochondria triggers generation
of endogenous ROS. Caspases, a group of enzymes are activated
by overload [Ca2+]i concentration and excessive ROS products
that found cleavage (inactive) caspases before the neurons
undergo apoptosis (Citron et al., 2000). However, taken together
the excessive ROS production and Ca2+ impairment of the
neurological cells have revealed that a key role in the pathogenesis
of neurodegenerative diseases such as SNI and SCI (Gupta et al.,
2014; Özdemir et al., 2016). Antioxidants through inhibition of
TRPM2 and TRPV1 regulate the mitochondrial and apoptotic
imbalance and help to normal neuronal functions (Nazıroğlu,
2012). In the current study, the apoptosis, caspase 3, caspase 9,
PARP-1, JC-1, and intracellular ROS-values were increased in
the sciatic nerve and DRGNs by SNI induction although their
values were decreased in the neurons by HP, TRPM2 (ACA),
and TRPV1 (CapZ) blockers. Similarly, apoptosis, ROS, JC-1,
caspase 3 and 9 values through inhibition of TRPM2 in human
phagocytic cells were decreased by HP incubations (Nazıroğlu
et al., 2014b,c). The modulator role of HP on TRPM2 channels
and oxidative stress in DRGN of rats was indicated by an
experimental rat study (Nazıroğlu et al., 2014a). More recently,
the HP extract has been reported to efficiently attenuate oxidative
stress, apoptosis and Ca2+ entry through modulation of TRPM2
and TRPV1 channels in DRGN of SCI-induced rats (Özdemir
et al., 2016). Current results supported results of the reports on
HP treatment in the human phagocytic cells and rat DRGNs
(Nazıroğlu et al., 2014a,b,c; Özdemir et al., 2016).

TRPC6 channel is belonging to the superfamily of TRP. It
was reported that hyperforin caused intracellular Ca2+ elevations
through TRP canonical 6 (TRPC6) in PC12 cells (Leuner
et al., 2007) although other effects of hyperforin are described
which might also participate in its pharmacological actions.
For example, hyperforin attenuates voltage- and chemical-gated
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Ca2+ conductances in isolated hippocampal neurons and
cerebellar Purkinje neurons (Chatterjee et al., 1999; Fisunov et al.,
2000). At the cellular level, the hyperforin induced mitochondrial
membrane depolarization through releasing zinc and calcium
ions from these intracellular organelles (Tu et al., 2010).
Contrary, depletion of intracellular Ca2+ stores with the SERCA
pump inhibitor (thapsigargin) did not affect hyperforin-induced
[Ca2+]i transients although hyperforin increased Ca2+ entry
through TRPC6 channel activation in primary hippocampal
neurons (Leuner et al., 2013). Decrease of indomethacin-
induced Ca2+ mobilization, cytotoxicity, apoptosis, and caspase
activation in Caco-2 cell line was reported by quercetin as
a component of HP (Carrasco-Pozo et al., 2012). Hyperforin
also induced Ca2+ transients in dissociated primary cultures of
embryonic cortical neurons through channels displaying TRPC6-
like properties (Tu et al., 2009). Recently it was reported that that
hyperforin induces TRPC6-independent hydrogen ion currents
in HEK-293 cells, cortical microglia, chromaffin cells, and lipid
bilayers (Sell et al., 2014). No association between, hyperforin-
induced apoptosis, TRPC6 activation and oxidative stress in
neonatal pig glomerular mesangial cell was reported (Soni and
Adebiyi, 2016). Contrary, cerebral ischemia-induced rat cortical
neuron TRPC6 degradation, oxidative stress and apoptosis were
reduced at 24 h of cerebral ischemia by hyperforin treatment (Lin
et al., 2013). According to the conflicting results, the mechanisms
of hyperforin on TRPC6 are not fully understood and its effect
on the channel seems cell specific and different from antioxidant
effect on TRPM2 and TRPV1 in sciatic nerve and DRGN.

In summary, our study provided for the first time that
apoptotic pathway, overload Ca2+ entry, and mitochondrial
ROS production through increased activation of TRPM2 and
TRPV1 were increased in sciatic nerve and DRGNs of SNI-
induced rats. We identified that SNI-induced sensitization of
TRPM2 and TRPV1 activity to induce apoptosis and oxidative
stress in the neurons was decreased through modulation of the
channels by HP treatment. Inhibition of the channels through

HP treatment was probably mediated by direct inhibiting ROS
to decrease channel gating. Therefore, current results provide
that HP acts a neuronal modulator role against ROS-induced
apoptosis Ca2+ mobilization through inhibition of TRPM2 and
TRPV1 channels in sciatic nerve and DRGNs. This finding is
of particular significance and may provide an explanation for
the SNI-induced neuronal survival and peripheral pain reduce
properties of HP. TRPM2 and TRPV1 channels may become
an important pharmacological target in the treatment of SNI-
induced apoptosis and pain.

ETHICS STATEMENT

The study was approved by the Local Experimental Animal
Ethical Committee of Suleyman Demirel University (SDU)
(Protocol number: HADYEK-07-2015). The study was
performed in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and
the European Community’s Council Directives (86/609/EEC).

All experiments were carried out in accordance with the
approved guidelines.

AUTHOR CONTRIBUTIONS

MN and FU formulated the present hypothesis and MN was
responsible for writing the report. FU was responsible for
induction of SNI. BÇ was responsible for sciatic nerve, DRGN
isolation and cytosolic Ca2+ release analyses. Graphical abstract
figure was produced by BÇ.

ACKNOWLEDGMENTS

The abstract of the study as oral presentation was published in
the 6th World Congress of Oxidative Stress, Calcium Signaling
and TRP Channels, held 24 and 27 May 2016 in Isparta, Turkey
(http://www.cmos.org.tr).

REFERENCES
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The participation of reactive oxygen species (ROS) generated by NOX1 and

NOX2/NADPH oxidase has been documented during inflammatory pain. However, the

molecular mechanism involved in their activation is not fully understood. We reported

earlier a key role of Cyclin-dependent kinase 5 (Cdk5) during inflammatory pain. In

particular, we demonstrated that TNF-α increased p35 expression, a Cdk5 activator,

causing Cdk5-mediated TRPV1 phosphorylation followed by an increment in Ca2+

influx in nociceptive neurons and increased pain sensation. Here we evaluated if Cdk5

activation mediated by p35 transfection in HEK293 cells or by TNF-α treatment in primary

culture of nociceptive neurons could increase ROS production. By immunofluorescence

we detected the expression of catalytic subunit (Nox1 and Nox2) and their cytosolic

regulators (NOXO1 and p47phox) of NOX1 and NOX2/NADPH oxidase complexes, and

their co-localization with Cdk5/p35 in HEK293 cells and in nociceptive neurons. By

using a hydrogen peroxide sensor, we detected a significant increase of ROS production

in p35 transfected HEK293 cells as compared with control cells. This effect was

significantly blocked by VAS2870 (NADPH oxidase inhibitor) or by roscovitine (Cdk5

activity inhibitor). Also by using another ROS probe named DCFH-DA, we found a

significant increase of ROS production in nociceptive neurons treated with TNF-α and

this effect was also blocked by VAS2870 or by roscovitine treatment. Interestingly,

TNF-α increased immunodetection of p35 protein and NOX1 and NOX2/NADPH oxidase

complexes in primary culture of trigeminal ganglia neurons. Finally, the cytosolic regulator

NOXO1 was significantly translocated to plasma membrane after TNF-α treatment and

roscovitine blocked this effect. Altogether these results suggest that Cdk5 activation is

implicated in the ROS production by NOX1 andNOX2/NADPH oxidase complexes during

inflammatory pain.
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INTRODUCTION

During tissue damage, several inflammatory mediators as
tumor necrosis factor-α (TNF-α) are locally released, activating
signaling pathways in sensory neurons that increase peripheral
sensitization and pain signaling (Khan et al., 2008; Sessle,
2011; Rozas et al., 2016). Activated protein kinases such as
PKC, PKA, and Cdk5 are involved in peripheral sensitization
through phosphorylation of several ion channels expressed
on nociceptive neurons (Basbaum et al., 2009; Rozas et al.,
2016; Coddou et al., 2017). Cdk5 is an essential kinase in
brain development and function (Dhariwala and Rajadhyaksha,
2008; Utreras et al., 2009a; Contreras-Vallejos et al., 2012).
Interestingly, our group reported earlier that Cdk5 plays a crucial
role during inflammatory pain signaling (Utreras et al., 2009a,
2011; Prochazkova et al., 2013; Rozas et al., 2016; Coddou et al.,
2017). Cdk5 is a proline-directed serine/threonine kinase, mostly
active in post-mitotic neurons, where its specific activators p35
and p39 are mainly expressed (Lew et al., 1994; Dhariwala and
Rajadhyaksha, 2008; Utreras et al., 2009c). We reported also that
cytokines such as TNF-α or TGF-β1 up-regulate p35 expression
and Cdk5 kinase activity with a subsequent phosphorylation of
transient receptor potential vaniloid 1 (TRPV1) and purinergic
P2X2a receptor (P2X2aR), which are important receptors
channels involved during inflammatory pain signaling (Utreras
et al., 2009b, 2011, 2012, 2013; Prochazkova et al., 2013; Rozas
et al., 2016; Coddou et al., 2017).

On the other hand, reactive oxygen species (ROS) represent
important players during inflammation (Mittal et al., 2014).
There is growing evidence supporting ROS as molecules that
contribute to pain hypersensitivity (Kallenborn-Gerhardt et al.,
2013). Interestingly, antioxidant therapy has been used to
overcome painful effects developed in inflammatory pain models
(Khattab, 2006; Lauro et al., 2016; Wu et al., 2017). There
are several enzymatic systems that generate ROS such as
lipoxygenases, xanthine oxidases, cyclooxygenases, cytochrome
P450 monooxygenases, nitric oxide synthases, and NADPH
oxidases (NOX) (Holmström and Finkel, 2014; Bórquez et al.,
2016; Wilson et al., 2017). NOX enzymes belong to the NOX
family that is composed by seven members (NOX1-5 and Duox
1-2). Interestingly, Nox1, Nox2, and Nox4 catalytic enzymes
have been associated with pain signaling (Kallenborn-Gerhardt
et al., 2012, 2013, 2014; Geis et al., 2017). NOX enzymes reside
at the plasma membrane in tight association with the integral
membrane protein p22phox. When NOX complex becomes
active, it generates ROS by a catalytic transfer of electrons
from NADPH to O2 to form superoxide anion and hydrogen
peroxide (Sumimoto et al., 2005). Nox1 activation occurs by
PKC-mediated phosphorylation of the cytosolic subunit Nox
organizer 1 (NOXO1) allowing NOXO1-p22phox interaction
(Debbabi et al., 2013). Similarly, activation of Nox2 (Gp91phox)
needs the recruitment of the regulatory cytosolic subunits
p47phox, p67phox, and Rac1 (El-Benna et al., 2008). Multiple
serine phosphorylation of p47phox by PKC is a key step that
induces association with p22phox at the plasma membrane and
activation of the complex (Fontayne et al., 2002; Meijles et al.,
2014). In the present work we describe a new role of Cdk5 in

the modulation of redox balance in nociceptive neurons. Thus,
activation of Cdk5 in HEK293 cells and primary sensory neurons
was related to increased ROS production. Interestingly, this effect
was blocked by inhibition of NOX complex or Cdk5 kinase
activity, suggesting a molecular link between Cdk5 and NOX-
mediated ROS production. Implications of these findings could
address additional roles of Cdk5 in pain signaling.

MATERIALS AND METHODS

Transfection of HEK293 Cells
HEK293 cells (ATCC#CRL-1573) were grown in Dulbecco
Modified Eagle Medium (DMEM) containing 10% of fetal
bovine serum (FBS) and penicillin/streptomycin (100 mg/mL)
(Invitrogen, Carlsbad CA). HEK293 cells were transiently
co-transfected with mouse CMV-p35 (Coddou et al., 2017)
and HyPer constructs (Evrogen, Moscow, Russia) by using
Lipofectamine 2000 reagent (Invitrogen, Carlsbad CA) and
treated with roscovitine (30µM, Sigma-Aldrich, Saint Louis,
MO) or VAS2870 (1µM, Calbiochem, CA USA) during 24 h and
1 h, respectively.

Primary Culture of Mouse Nociceptive
Neurons
Nociceptive neurons were cultured as described previously
(Coddou et al., 2017). Briefly, trigeminal ganglia (TG) and
dorsal root ganglia (DRG) were dissected out from 7 to 10
month-old C57/FVB mice and incubated with collagenase XI
(0.66 mg/mL) and dispase II (3 mg/mL, Sigma-Aldrich, Saint
Louis, MO) in an INCmix solution (NaCl 155mM; K2HPO4

1.5mM; HEPES 10mM; glucose 5mM; at pH 7.4). Enzymatic
digestion was performed for 45min at 37◦C in 5% CO2,
and consecutively treated with DNase I (100µg/mL, Roche
Diagnostic, Indianapolis, IN) during 10min at 37◦C. TG/DRG
cell suspensions were separated over discontinuous 28–12.5%
Percoll gradients (GE Healthcare). Isolated cells were cultured in
minimum essential media (MEM) supplemented with 10% FBS,
penicillin/streptomycin (100mg/mL), andMEM-Vit (Invitrogen,
Carlsbad CA). Cells were plated on 12-mm poly-L-lysine-coated
glass coverslips and cultured for 2 days in vitro (2DIV). To
evaluate the involvement of Cdk5 activation by TNF-α and NOX
signaling, TG and DRG primary cultures (2DIV) were treated
with TNF-α (25–50 ng/mL, Sigma-Aldrich, Saint Louis, MO)
in the presence or absence of roscovitine (20µM) or VAS2870
(1µM) during 24 h and 1 h, respectively. Animal experiments
were conducted in accordance with the principles and procedures
of the Ethics Committee of the Biology Department, Faculty of
Sciences, Universidad de Chile, Santiago, Chile.

Immunofluorescence Assays
HEK293 cells transfected with p35 or primary cultures of TG and
DRG neurons were washed with warm PBS for 5min and fixed
with a 4% PFA-4% sucrose solution in PBS at 37◦C for 20min.
Cells were washed and permeabilized for 5min with 0.2% Triton
X-100-PBS solution. After washout with PBS, cells were blocked
with a 5% BSA solution in PBS at room temperature for 1 h.
Primary antibodies were used at following concentrations:
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anti-Cdk5 mouse DC17 (1:100), anti-p35 rabbit C19 (1:100),
anti-Nox1 goat sc-292094 (1:100), anti-NOXO1 rabbit sc-5821
(1:100), anti-NOXA1 rabbit sc-160597-R (1:100), anti-p47phox

rabbit sc-14015 (1:100), anti-MAP1B goat N-19 (1:200), anti-p35
goat A-18 (1:100) (from Santa Cruz Biotechnology); anti-
gp91phox mouse ab109366 (1:100), and anti-p22phox rabbit
ab75941 (1:100) (from Abcam); anti-βIII tubulin mouse clone
G7121 (1:1000) (from Promega); p35 rabbit C64B10 (1:100)
(from Cell Signaling Technology, Denver, USA). All primary
antibodies were diluted in 1% BSA solution and incubated
overnight at 4◦C. The coverslips were washed with PBS and then
incubated with corresponding Alexa Fluor-conjugated secondary
antibodies. We used the following secondary antibodies:-Donkey
anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor 488 #A21202-Donkey anti-Rabbit IgG
(H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa
Fluor 488 #A21206-Donkey anti-Rabbit IgG (H+L) Highly
Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 #A10040-
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed
Secondary Antibody, Alexa Fluor 546 #A10036-Donkey anti-
Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa
Fluor 633 #A21082 (Molecular Probes, Life Technologies, Grand
Island, NY) in combination with Dapi (Thermo Fisher Scientific)
for 1 h at room temperature. Finally, coverslips were washed
with PBS and mounted on a slide with FluorSave (Calbiochem).
Images were acquired using confocal microscopy (LSM 710Meta
Model, Carl Zeiss Microscopy) and processed with the LSM
Image Browser (Carl Zeiss Microscopy) software.

Immunofluorescence Quantification
Analysis
As an estimation of protein amount in individual neurons,
the fluorescence intensity was quantified as reported earlier
(McCloy et al., 2014). Confocal images (40X) acquired from
immunofluorescences were processed by using ImageJ 1.46r
software (NIH, Bethesda, MD) and individual ROIs were
assigned to each neuron and integrated density was obtained for
each fluorescent emission.

Hydrogen Peroxide Measurement in
Transfected HEK293 Cells
We evaluated hydrogen peroxide content in HEK293 cells by
using HyPer sensor as previously reported (Belousov et al., 2006).
HEK293 cells co-transfected with HyPer and CMV-p35 plasmids
during 24 h were fixed in 4% paraformaldehyde/4% sucrose
solution in PBS. Then, cells were excited at 488 and 405 nm and
emission was collected at 505–530 nm in a confocal microscopy
(LSM 710 Meta Model, Carl Zeiss Microscopy). Fluorescence
emission from excitation at 488 nm was divided by fluorescence
emission at 405 nm excitation (488:405) as a measure of the
hydrogen peroxide content (Belousov et al., 2006).

Neuronal ROS Measurement
To evaluate intracellular ROS levels, primary cultures of mouse
TG and DRG neurons were incubated simultaneously with
CellTrackerTM Orange dye (CMTMR 1µM, Thermo Fisher

Scientific) and 2
′

,7
′

-Dichlorofluorescin diacetate (DCFH-DA
1µM, Sigma) for 20min at 37◦C similarly to previously reported

(Wilson et al., 2015). DCFH-DA detects intracellular oxidative
species by increasing fluorescence emission after oxidation (Lebel
and Bondy, 1990). Sensory neurons were fixed and mounted to
measure the fluorescence by excitation at 488 nm and emission
acquisition at 505–530 nm. Fluorescence from CMTMR dye
incorporated in neurons was used to normalize DCFH-DA
emission, and was acquired by excitation at 543 nm and emission
acquisition at 548–679 nm.

Translocation to Plasma Membrane
Analysis
To estimate plasma membrane translocation of NOX cytosolic
subunits (NOXO1 and p47phox), we drew a line that crosses the
2D surface of each neuron from end to end (Figure 6A). Gray
value was obtained along the drawn line to estimate the amount
of protein in zones near and far of plasma membrane (peripheral
and centric areas, respectively). Mean gray value of centric areas
were calculated as the mean of all gray values comprising the
medial portion of the drawn line (30% of total line). Peripheral
areas were defined as the first 4µm from the periphery to the
center in the drawn line. Mean gray value was calculated in
this short section alike centric areas. Finally, the mean gray
value of peripheral area (two per neuron) was normalized to
corresponding centric area mean gray value (Figure 6A).

Western Blot Analysis
Protein extracts from HEK293 cells transfected with p35
were obtained in T-PER buffer (Pierce, Rockford, IL) with
Complete Mini protease inhibitor cocktail tablets and PhosSTOP
phosphatase inhibitor cocktail tablets (Roche Diagnostic,
Indianapolis, IN). Protein extracts were resolved in 12%
SDS-PAGE gels and transferred to nitrocellulose membranes
(Invitrogen, Carlsbad, CA). Membranes were soaked in blocking
buffer (5% non-fat dry milk in Tris-Buffered Saline (TBS) with
0.05% Tween-20 (TBS-T)) for 1 h at room temperature, and then
incubated overnight at 4◦C, with primary antibody diluted in 1%
non-fat dry milk blocking buffer. The membranes were washed
in TBS-T and incubated for 1 h at room temperature with the
secondary antibodies diluted in 1% non-fat dry milk blocking
buffer. Immunoreactivity was detected by using Super-Signal
West Pico Chemiluminescent Substrate (Thermo Scientific,
Rockford, IL). Western blots were performed by using anti-p35
rabbit C19 (1:250) and anti-Cdk5 mouse DC17 (1:500) from
Santa Cruz Biotechniology; anti-α-tubulin mouse (1:10.000)
from Sigma. We used secondary antibodies anti-mouse and
anti-rabbit coupled to Horseradish Peroxidase from Santa Cruz
Biothecnology. The optical densities of the bands were quantified
using an image analysis system with ImageJ 1.46r software (NIH,
Bethesda, MD).

Statistical Analysis
All experiments were performed a minimum of three times. All
graphs show themean± SD. Statistical evaluation was performed
with GraphPad Prism software, version 6.1 (GraphPad, San
Diego, CA). Significant differences between experiments were
assessed by an unpaired t-test or a one-way analysis of variance
with a Bonferroni’s multiple comparison test, where α was set
to 0.05.
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RESULTS

Endogenous Expression of NOX
Complexes in HEK293 Cells
To establish Cdk5 participation in NOX1 and NOX2-dependent
ROS production, we analyzed the immunolocalization of
NOX1 and NOX2/NADPH oxidase complexes in HEK293 cells
transfected with p35 that endogenously express Cdk5 (Figure 1).
By immunofluorescence we detected co-localization of catalytic
(Nox1 and Nox2) and cytosolic subunits (NOXO1 and p47phox)
with p35 protein. We observed endogenous expression of
Nox1, Nox2, NOXO1 and p47phox in plasma membrane and
in cytoplasmic regions of HEK293 cells (Figures 1A–D, green
label).We also found that HEK293 cells expressed othermembers
of the catalytic NOX core such as p22phox and NOXA1 (data
not shown). Most important, we immunodetected p35 in some
transfected cells co-localizing with NOX1 and NOX2 complexes
(Figures 1A–D, red label). Additionally, we detected endogenous
Cdk5 and transfected p35 proteins byWestern blot fromHEK293
cells in the presence or absence of roscovitine (Figure 2A). We
also confirmed that HEK293 cells transfected with p35 have
increased Cdk5 kinase activity (data not shown), similarly as
previously reported (Zheng et al., 2002).

Increased Cdk5-Dependent ROS
Production in HEK293 Cells
To evaluate if ROS production is affected by increased Cdk5
activity in transfected HEK293 cells, we used the genetically
encoded biosensor HyPer which detects intracellular production
of hydrogen peroxide (Lukyanov and Belousov, 2014; Wilson
et al., 2015). Firstly, by immunofluorescence we determined
p35 expression in HEK293 cells co-transfected with p35 and
HyPer plasmids (Figure 2B). Then, we generated a HyPer
map (480/405 nm ratio) for each treatment condition of
HEK293 cells. In HEK293 cells overexpressing p35 we found
a significant increase of hydrogen peroxide content and this
effect was significantly reverted by roscovitine (Figures 2B,C).
Interestingly, Cdk5-dependent ROS production was also reverted
by NOX inhibitor, VAS2870 (Figures 2B,C), suggesting that
NOX complexes represent a source for the elevated ROS
observed in this model. The basal hydrogen peroxide production
was not affected by roscovitine treatment and only slightly
reduced by VAS2870 treatment (Figures 2B,C). These results
suggest that production of ROS is dependent, in part, on Cdk5
activity in HEK293 cells expressing active NOX1 and NOX2
complexes.

Endogenous Expression of NOX1 and
NOX2 Complexes and Cdk5/p35 in Primary
Culture of TG Neurons
Our previous data suggests that Cdk5 is involved in ROS
production mediated by the NOX1 and NOX2 complex in
HEK293 cells. Importantly, the production of ROS (Kallenborn-
Gerhardt et al., 2013) and also Cdk5 kinase (Utreras et al.,
2009a) are active participants during pain signaling. Therefore,
we evaluated the co-distribution of Cdk5/p35 with members

FIGURE 1 | Endogenous expression of Nox1/NOXO1 and Nox2/p47phox in

HEK293 cells transfected with p35 plasmid. (A,C) Representative

immunofluorescences showing catalytic subunits Nox1 and Nox2 (in green,

respectively) co-localizing with p35 (in red) in transfected HEK293 cells.

(B,D) Representative immunofluorescences of regulatory subunits NOXO1 and

p47phox (in green, respectively) co-localizing with p35 (in red) in transfected

HEK293 cells. Inset for each figure showing staining by separate in larger

magnification. DAPI for nuclear staining (gray). Scale bars are 20 and 5µm

insets.

of NOX1 and NOX2 complexes in sensory neurons. The NOX
family members NOX1 and NOX2 have been associated with
pain processes (Kallenborn-Gerhardt et al., 2013), consequently
we studied their distribution in primary culture of mouse
TG neurons. By immunofluorescence, we identified that NOX
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FIGURE 2 | Increased Cdk5 kinase activity in HEK293 cells transfected with p35 produced elevated hydrogen peroxide content measured by HyPer probe.

(A) Western blot analysis against p35, Cdk5, and α-tubulin from HEK293 cells untransfected (UT), transfected with p35 (p35), and transfected with p35 and treated

with roscovitine (30µM) (p35 + Rosc) during 24 h. (B) Representative immunofluorescences of p35 (left) and HyPer 480/405 ratio (right) from HEK293 cells

transfected with p35 and HyPer, treated with roscovitine or VAS2870. Thermal scale: increased hydrogen peroxide content toward red. (C) Normalized HyPer

480/405 ratio in same conditions of (B). Scale bars are 20µm. The bar graphs represent mean ± SD of n = 4–7 different cell cultures. Number of cells analyzed is

showed inside each column. Statistical differences correspond to a one-way ANOVA with a Bonferroni’s multiple comparison test.

members of both complexes are highly expressed in neurons
of all sizes (small, medium, and large neurons), respect to
non-neuronal cells (Figure 3, negative cells for βIII-tubulin).
Catalytic (Nox1 and Nox2) and cytoplasmic (NOXO1 and
p47phox) subunits were mostly found in somata and in neurites,
with the exception of NOXO1, which was equally identified in
both neuronal regions including large processes (Figures 3A–H).
We also observed endogenous Cdk5 and p35 expression in TG
neurons and others cells co-localizing with both NOX1/NOX2
complexes (Figures 3A–H), suggesting that Cdk5-dependent
ROS production is likely to occur in trigeminal ganglia
neurons.

TNF-α Increased ROS Production in
Primary Culture of TG and DRG Neurons
Previously, we reported that TNF-α increases Cdk5 kinase
activity by transcriptional up-regulation of p35 in cell lines
and in TG and DRG neurons (Utreras et al., 2009b; Rozas

et al., 2016). To evaluate the association between TNF-α-
mediated Cdk5 activation and NOX-dependent ROS production
in nociceptive neurons, we performed primary cultures of mouse
TG and DRG neurons treated with TNF-α and we further
measured ROS production by using DCFH-DA probe (Lebel
and Bondy, 1990; Wilson et al., 2015) (Figures 4A,B). We found
that TNF-α treatment significantly increased the intracellular
ROS content. In contrast, this effect was completely blocked
by roscovitine, suggesting the involvement of Cdk5 in ROS
production in sensory neurons (Figures 4A–D). Interestingly, we
found that the source of ROS content in TG and DRG primary
culture was NOX-dependent, since VAS2870 also blocked the
TNF-α-mediated ROS production (Figures 4A–D). Basal ROS
production was not affected by roscovitine treatment and only
slightly reduced by VAS2870 in DRG neurons. These data are in
agreement with our previous results obtained in HEK293 cells,
suggesting that Cdk5 contributes to ROS balance in nociceptive
neurons. However, the molecular mechanism involving Cdk5
activity in ROS production through NOX complexes is not clear.
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FIGURE 3 | Endogenous expression of NOX1 and NOX2 complexes with Cdk5/p35 in primary culture of trigeminal ganglia neurons. Representative

immunofluorescences of catalytic subunit Nox1 (A,B) and its regulatory subunit NOXO1 (C) and NOXA1 (D) in red, co-localizing with Cdk5 and p35 (in green)

expressed endogenously in primary culture of trigeminal ganglia neurons. Representative immunofluorescences of catalytic subunit Nox2 (E) and its regulatory

subunits p47phox (F,H) and p22phox (G) in red, co-localizing with Cdk5 and p35 (in green) expressed endogenously in primary culture of trigeminal ganglia neurons.

βIII-tubulin or MAP1B is a marker of neurons (gray). Scale bars are 50 or 10µm (insets).
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FIGURE 4 | TNF-α increases ROS production in primary culture of mouse TG and DRG neurons. Representative images of primary cultures loaded with DCFH-DA

(DCF) and CMTMR (CT) probes from TG (A) and DRG (B) neurons treated with TNF-α alone or with roscovitine or VAS2870. (C,D) Quantification of fluorescence

intensity of DCF normalized by CT under each corresponding treatment in TG neurons (C) or DRG neurons (D). Scale bars are 20µm. The bar graphs represent mean

± SD of n = 3 different experiments. Statistical differences correspond to a one-way ANOVA with a a Bonferroni’s multiple comparison test. Number of analyzed

neurons for each treatment is inside the corresponding bar.
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FIGURE 5 | TNF-α treatment increases p35, Nox1 and Nox2 expression in primary culture of mouse TG neurons. (A) Representative immunolocalization of p35

(green) and βIII-tubulin (red) from TG neurons treated with TNF-α alone or with roscovitine. Scale bars are 50µm. (B) Quantification of p35 fluorescence intensity of

images in (A). (C) Representative images of Nox1, NOXO1, Nox2, and p47phox endogenous expression in TG neurons treated with TNF-α alone or with roscovitine.

Scale bars are 10µm. (D–G) Quantification of Nox1 (D), NOXO1 (E), Nox2 (F), and p47phox (G) fluorescence intensity in TG neurons of images in (C). The bar graphs

represent mean ± SD. Statistical differences correspond to a one-way ANOVA with a Bonferroni’s multiple comparison test. Number of analyzed neurons is inside

each corresponding bar.

TNF-α Increased Expression of NOX1 and
NOX2 Members in Primary Culture of
Mouse TG Neurons

Because TNF-α increased ROS production in nociceptive
neurons, presumably by NOX/NADPH oxidase increased
activation, we analyzed the catalytic and cytoplasmic subunits

of NOX1 and NOX2 complexes in primary TG cultures treated
with TNF-α by immunofluorescence. First, we confirmed that
TNF-α increased p35 immunodetection in primary culture of TG
neurons (Figures 5A,B) similarly as previously reported (Rozas
et al., 2016). We also found that TNF-α treatment increased
immunodetection of Nox1, NOXO1, Nox2, and p47phox in
TG neurons. Interestingly, roscovitine treatment significantly
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FIGURE 6 | TNF-α increases NOXO1 translocation to plasma membrane in primary culture of mouse TG neurons. (A) Upper panel: Descriptive sketch for

measurement of plasma membrane translocation of cytosolic NOX subunits. Line represents the measurement of plasma membrane protein translocation indicating a

peripheral area (blue section) followed for a centric area (red section). Lower panel: Descriptive plot profile showing measurement of cytosolic NOX along 2D neuron

surface. (B) Representative immunofluorescences of NOXO1 (white/green) and βIII-tubulin (red) from TG neurons treated with TNF-α (50 ng/ml) alone or with

roscovitine (20mM) during 24 h. Scale bars are 20µm. (C,D) Measurement of NOXO1 (B) and p47phox (D) translocation to plasma membrane in 2DIV primary culture

of TG neurons treated with TNF-α alone or with roscovitine. Plasma membrane translocation was measured from fluorescence intensity into plasma membrane

(peripheral area) of TG neurons, normalized against fluorescence intensity in the cytosolic compartment (centric area). The bar graphs represent mean ± SD.

Statistical differences correspond to a one-way ANOVA with a Bonferroni’s multiple comparison test. Number of analyzed neurons is inside each corresponding bar.

blocked TNF-α effect in the immunodetection of Nox1 in
cultured TG neurons. On the other hand, immunodetection of
NOXO1, Nox2, and p47phox was not affected by roscovitine
treatment (Figures 5C–G).

TNF-α Increased NOXO1 Translocation to
Plasma Membrane in Primary Culture of
Mouse TG Neurons
Our results showed a significantly increased NOX-dependent
ROS production in nociceptive neurons directed by TNF-α
signaling and in part by Cdk5 activation. However, an important
aspect in NOX complex activation is the recruitment of
cytoplasmic subunits to plasmamembrane (Debbabi et al., 2013).
Therefore, we analyzed the plasma membrane translocation
(Figures 6A,B) of cytoplasmic subunits NOXO1 and p47phox

after TNF-α treatment by using confocal images (Figure 5C).
These analyses revealed that NOXO1 translocation to plasma

membrane was enhanced upon TNF-α treatment (Figure 6C).
In contrast, we did not find a clear change in its distribution
toward peripheral regions for p47phox (Figure 6D). Interestingly,
roscovitine treatment reverted TNF-α effect on NOXO1 plasma
membrane translocation (Figures 6B,C), which suggests a role of
Cdk5 in the recruitment of NOXO1 to peripheral compartments
in primary cultured nociceptive neurons.

DISCUSSION

In the present work we established for the first time an association
between Cdk5 activation and ROS production directed by
NOX1 and NOX2 complexes suggesting an important role
during inflammatory pain (Figure 7). First, in HEK293 cells
transfected with p35, a heterologous expression system, the
activation of Cdk5 promotes hydrogen peroxide production that
was reverted by pharmacological inhibition of NOX complex or
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FIGURE 7 | Proposed mechanism for ROS production in nociceptive neurons

exposed to TNF-α. Under an inflammatory state, primary sensory neurons are

exposed to a pro-inflammatory cytokines soup. TNF-α binds to TNF-α

receptor and triggers the MAPK/ERK1/2 pathway. ERK1/2 translocate to

nucleus promoting the expression of the transcription factor Early growth

response protein 1 (Egr1) which consecutively binds to the p35 promoter

causing an increase of p35 protein expression. Activation of Cdk5 by p35

leads to phosphorylation of diverse substrates located in nociceptive neurons;

we suggest that this event favors NOX complex association and consequently

increases ROS production in these neurons. As ROS represent signaling

molecules in pain hypersensitivity, we speculate that this redox imbalance

could modify functions of other proteins involved in signal transmission of

nociceptive neurons.

by inhibition of Cdk5 activity. Second, in primary culture of
mouse nociceptive neurons, an endogenous expression system,
TNF-α treatment increased ROS production and this effect
was reverted by inhibition of Cdk5 or NOX complex. Third,
TNF-α treatment increased the expression of catalytic (Nox1
and Nox2) and cytosolic (NOXO1 and p47phox) members of
NOX1 and NOX2 complexes in TG neurons. Moreover, TNF-
α treatment induced NOXO1 plasma membrane translocation
and roscovitine blocked this effect. Altogether these results
demonstrate that Cdk5 contributes to ROS production mediated
by NOX1 and NOX2 activation and suggest its involvement
during inflammatory pain.

Few years ago, our group established the participation of
Cdk5 in pain signaling (Pareek et al., 2006; Utreras et al., 2009a)
principally after initiation of an inflammatory response (Utreras
et al., 2009b, 2011, 2012; Rozas et al., 2016). In particular,
Cdk5 phosphorylates many substrates important in pain such
as TRPV1 (Pareek et al., 2007; Jendryke et al., 2016; Rozas
et al., 2016), P2X2aR (Coddou et al., 2017), KIF13B (Xing
et al., 2012), delta opioid receptors (Xie et al., 2009), among
others. Cdk5 phosphorylates TRPV1 in Thr407 decreasing its
activation threshold (Jendryke et al., 2016; Rozas et al., 2016).
Similarly, Cdk5 phosphorylates purinergic receptor P2X2aR
in Thr372 slowing desensitization of the channel (Coddou
et al., 2017). Interestingly, both TRPV1 and P2X2aR are ion
channels related with hypersensitization during inflammatory
pain (Linley et al., 2010). On the other hand, ROS molecules play

an important role during inflammatory and neuropathic pain
(Kallenborn-Gerhardt et al., 2013), however, the link between
ROS production and Cdk5 activation has not yet been addressed
until now.

Our results showed that direct activation of Cdk5 by p35
overexpression significantly increased intracellular ROS
production in HEK293 cells. Since VAS2870 treatment
significantly decreases this redox imbalance, NOX complex
raises as a good candidate of ROS source in HEK293 cells. Several
members of NOX1 and NOX2 complexes were immunodetected
in HEK293 cells, which supports the participation of these
enzymes in ROS production mediated by Cdk5 activation. In
addition, we detected a NOX-dependent basal production of
hydrogen peroxide by HyPer sensor in these cells, because
NOX inhibition with VAS2870 significantly decreased ROS
production in untransfected cells. Since VAS2870 treatment
did not revert Cdk5-mediated ROS levels totally, it could be
explained by the activation of other sources of ROS induced
by p35 overexpression. In addition, ROS production was not
completely abolished in HEK293 cells transfected with p35
and treated with roscovitine, probably because Cdk5 activation
by p35 overexpression overcomes the inhibition capacity of
roscovitine and a fraction of Cdk5 remained active. Interestingly,
this effect was not observed in primary culture of TG neurons
where p35 levels were considerably smaller as compared with our
heterologous expression system. Moreover, higher concentration
of roscovitine could generate a toxic effect on the cells or favor
non-specific inhibition of other biological pathways (Bach et al.,
2005; Li et al., 2008).

We reported earlier that overexpression of TNF-α in
nociceptive neurons increases p35 expression and Cdk5 activity,
with a subsequent TRPV1 phosphorylation and an increment in
pain signaling (Rozas et al., 2016). Here, we evaluated whether
increased Cdk5 activity mediated by TNF-α enhances ROS
production in nociceptive neurons. Our results showed that
TNF-α treatment significantly increased ROS production in DRG
and TG neurons approximately in 50% as compared with control
neurons. Similar to HEK293 cells, both roscovitine and VAS2870
treatment reverted ROS production induced by TNF-α, which
supports a molecular link between Cdk5 and NOX complexes
function, and establishes a potential contribution of Cdk5
activation in the redox balance of nociceptive neurons. Most
important, participation of NOX complexes in pain signaling
has been already reported (Ibi et al., 2008; Kim et al., 2010;
Im et al., 2012b; Kallenborn-Gerhardt et al., 2012; Lim et al.,
2013; Kallenborn-Gerhardt et al., 2014). However, only few
reports are linked to pro-inflammatory activation (Ibi et al.,
2008; Lim et al., 2013). On the other hand, there is evidence
that pro-inflammatory cytokines like TNF-α modulate NOX-
dependent ROS production in different types of cells (Chen et al.,
2008; Lin et al., 2015a; Blaser et al., 2016) including neurons
(Barth et al., 2009, 2012; Kuhn, 2014). In addition, interleukin
1β and interleukin 6 have been involved in ROS production
mediated by NOX enzymes in different cellular models (So
et al., 2007; Kim et al., 2010; Pang et al., 2012; Kuhn, 2014).
Our data suggests that increased ROS production mediated by
TNF-α treatment could be explained by a higher expression of
NOX1 and NOX2 members in nociceptive neurons similarly to
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previous reports (Kim et al., 2007, 2010; Blaser et al., 2016).
However, NOX4 represents an important source of ROS in DRG
neurons contributing to pain hypersensitization (Im et al., 2012a;
Kallenborn-Gerhardt et al., 2012; Ding et al., 2017), moreover
regulating TRPV1 activity (Lin et al., 2015b; Ding et al., 2016).
Therefore, this study cannot exclude the possibility that NOX4
participates in Cdk5-mediated ROS production.

NOX cytosolic members NOXO1 and p47phox can undergo
post-translational modification by phosphorylation dependent
of PKC (Fontayne et al., 2002; Debbabi et al., 2013) inducing
NOX activation and ROS production. Interestingly, we
found a minimal consensus sequence (Ser/Thr-Pro) for
Cdk5 phosphorylation in mouse p47phox protein (Ser215
and Thr356) and a full consensus sequence for Cdk5
(Ser/Thr(Pro)X(Lis/His/Arg) (Bórquez et al., 2013) in NOXO1
protein (Ser3). Therefore, we postulate that Cdk5 upon activation
could phosphorylate cytosolic subunits of NOX1 and NOX2,
promoting activation and ROS production, although further
experiments are needed to demonstrate such a novel regulation.

Considering this scenario, we think that Cdk5-mediated ROS
production in nociceptive neurons could contribute to enhancing
pain signaling by an additional mechanism. Interestingly, several
receptors expressed on the surface of TG and DRG neurons
are susceptible to activity modulation by cysteine oxidation,
such as TRPV1, transient receptor potential ankyrin 1 (TRPA1),

N-methyl-d-aspartate (NMDA) receptors, and T-type Ca2+

channels, among others (Gamper and Ooi, 2015). However
additional experiments are needed to demonstrate the real
impact of Cdk5-mediated ROS production in the nociceptive
circuitry including the central nervous system. In summary,
taken together our results suggest that Cdk5 activation may
be implicated in the ROS production by NOX1 and NOX2
complexes during inflammatory pain and this relationship could
address additional roles to Cdk5 in pain signaling.
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Chronic inflammatory bladder disorders, such as interstitial cystitis/bladder pain

syndrome, are associated with poor quality of life. The exact pathological processes

remain unclear, but accumulating evidence suggests that reactive oxidative species

(ROS) are involved in urinary bladder disorders. Transient receptor potential ankyrin 1

(TRPA1), the most sensitive TRP channel to ROS, was shown to be responsible for

urinary bladder abnormalities and hyperalgesia in an acute cystitis model. However,

the roles of TRPA1 in chronic inflammatory bladder are not fully understood. We

previously established a novel mouse cystitis model induced by intravesical injection

of hydrogen peroxide (H2O2), resulting in long-lasting frequent urination, bladder

inflammation, pain-related behavior, and histopathological changes. In the present

study, we investigated the pathophysiological role of TRPA1 in the H2O2-induced long-

lasting cystitis mouse model. Under anesthesia, 1.5% H2O2 solution was introduced

transurethrally into the bladder of female wild-type (WT) and TRPA1-knockout mice and

maintained for 30min. This increased the number of voids in WT mice at 1 and 7 days

after injection, but reduced the number in TRPA1-knockout mice at 1 day but not 7

days after injection. Spontaneous locomotor activities (increase in freezing time and

decrease in distance moved) were reduced at 3 h after injection in WT mice, whereas

the spontaneous visceral pain-related behaviors were attenuated in TRPA1-knockout

mice. Furthermore, upregulation of c-fos mRNA in the spinal cord at 1 day after injection

was observed in WT but not TRPA1-knockout mice. However, there was no difference

in histopathological changes in the urinary bladder, such as edematous thickening in

the submucosa, between WT and TRPA1-knockout mice at 1 or 7 days after injection.

Finally, Trpa1 mRNA levels in the L5-S1 dorsal root ganglion were not altered, but levels

in the urinary bladder were drastically increased at 1 and 7 days after injection. Taken

together, these results suggest that TRPA1 contributes to acute bladder hyperactivity

such as frequent urination and bladder pain, but does not appear to play a major role in

the pathological processes of long-lasting cystitis.
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INTRODUCTION

Lower urinary tract symptoms, such as urinary frequency,
urgency, nocturia, and abdominal visceral pain, lead to
impaired quality of life. These symptoms are features of
chronic inflammatory bladder disorders including interstitial
cystitis/bladder pain syndrome (IC/BPS). Many hypotheses
about the pathogenesis of chronic cystitis have been
proposed, such as urothelial dysfunction, inflammation,
neural hyperactivity, an autoimmune response, and toxic urinary
agents (Homma et al., 2016). However, the exact pathological
processes involved remain unclear.

Accumulating evidence suggests that reactive oxidative
species (ROS) contribute to bladder disorders. Excess ROS
are a feature of various bladder pathological conditions
including bladder outlet obstruction (Lin et al., 2005), bladder
ischemia/reperfusion (Yu et al., 2004), and bladder inflammation
models (Chien et al., 2003). Furthermore, ROS are abundantly
produced by inflammatory cells such as macrophages,
neutrophils, and mast cells when they infiltrate an inflamed
bladder (Brooks et al., 1999; Winterbourn, 2002; Chien et al.,
2003; Ndengele et al., 2005). ROS induce bladder hyperactivity by
activating capsaicin-sensitive C-fiber afferent pathways (Masuda
et al., 2008; Nicholas et al., 2017). In cyclophosphamide- or
ifosfamide-induced acute cystitis animal models, the metabolite
acrolein enters the urothelium and causes bladder inflammation,
which is prevented by ROS scavengers or antioxidants (Yildirim
et al., 2004; Batista et al., 2007; Song et al., 2014). In addition,
a human study demonstrate that the serum total antioxidant
capacity in IC/BPS patients is lower than that in healthy controls
(Ener et al., 2015). Thus, it is likely that ROS play a critical role
in the etiology and/or pathology of chronic cystitis.

Transient receptor potential ankyrin 1 (TRPA1), a non-
selective cation channel, is highly expressed in a subset of
nociceptive C-fibers where it acts as a polymodal nociceptor (Wu
et al., 2010). TRPA1 is activated by various irritants and oxidative
stimuli including ROS, and contributes to nociceptive and
inflammatory pain generation (Jordt et al., 2004; Bautista et al.,
2006; Andersson et al., 2008; Sawada et al., 2008). In the lower
urinary tract, TRPA1 is expressed in the urothelium or detrusor
of the urinary bladder in addition to the C-fibers (Du et al., 2008;
Streng et al., 2008). This is because intravenous administration
of a TRPA1 antagonist does not alter the voiding function, while
intravesical infusion of a TRPA1 agonist increases themicturition
frequency (Streng et al., 2008; Minagawa et al., 2014), indicating
that TRPA1 does not play a major role in bladder function under
physiological conditions. By contrast, in a cyclophosphamide-
induced cystitis model, bladder hyperalgesia, and voiding
frequency are caused by activation of TRPA1 (Meotti et al., 2013;
DeBerry et al., 2014). Moreover, human studies reveal that Trpa1
mRNA levels in the urinary bladder are markedly elevated in
patients with IC/BPS (Homma et al., 2013) and bladder outlet
obstruction (Du et al., 2008). Thus, it is likely that ROS-sensitive
TRPA1 may play a key role in the pathogenesis or pathology of
chronic cystitis, although this is not fully understood at present.

We previously established a novel long-lasting cystitis
mouse model by intravesical injection of hydrogen peroxide

(H2O2) (Homan et al., 2013). The H2O2-induced long-
lasting cystitis model is characterized by long-lasting frequent
urination, bladder inflammation, pain-related behavior, and
histopathological changes (Homan et al., 2013; Dogishi
et al., 2015). In the present study, we investigated the
pathophysiological roles of TRPA1 in the H2O2-induced
long-lasting cystitis model using TRPA1-knockout (KO) mice.

MATERIALS AND METHODS

Animals
All experiments were performed according to the ethical
guidelines recommended by the Kyoto University Animal
Research Committee. The protocol was approved by the Kyoto
University Animal Research Committee (permit number: 2015–
40, 2016–40). Trpa1+/+ (wild-type;WT) and Trpa1−/− (TRPA1-
KO) mice lines were bred from heterozygous mice with a
C57BL/6 × 129 S1 background that were obtained from Jackson
Laboratory (Bar Harbor, ME). Mouse lines were backcrossed
to C57BL/6 J mice for at least 10 generations, and genotyped
by genomic PCR using primers 5′-tcatctgggcaacaatgtcacctgct-3′

and 5′-tcctgcaagggtgattgcgttgtcta-3′. FemaleWT and TRPA1-KO
mice aged between 5 and 6 weeks old were used, while female
C57BL/6 J mice of the same age were purchased from Japan SLC
(Shizuoka, Japan) and used in some experiments. All mice were
housed under constant ambient temperature (24 ± 1◦C) and
humidity (55 ± 20%), with an alternating 12 h light/dark cycle
(lights came on automatically at 8:00 a.m.). Food and water were
freely available.

H2O2-Induced Cystitis Model
The H2O2-induced cystitis model was generated as previously
reported (Homan et al., 2013). Briefly, under 2–3% isoflurane
(Pfizer, NY) anesthesia, a polyethylene tube (PE-10; Clay-Adams,
Parsippany, NJ) was introduced into the bladder transurethrally
and the lower abdomen was pressed gently to withdraw urine.
Next, 50 µL of 1.5% H2O2 solution (Wako Pure Chemical
Industries, Osaka, Japan) in sterile saline was introduced into the
bladder through the catheter. The H2O2 solution was drained
from the bladder after 30min by pressing the lower abdomen.

Measurement of the Number of Voids and
Spontaneous Locomotor Activities
Mice were kept in an individual plastic cage (10 × 20 ×

30 cm: width × length × height) lined with filter paper
(Advantec Chromatography Paper No. 50; Toyo Roshi Kaisha,
Ltd., Tokyo, Japan) and allowed to acclimate for 30min before
experiments. After replacing the filter paper, the mouse was
videotaped for 15min, and the number of voids was quantified
from the videotape by counting urine spots on the filter paper.
Subsequently, freezing time and move distance were analyzed
using the ANY-maze video tracking system (Stoelting Co., Wood
Dale, IL).

Histological Examination
Mice were deeply anesthetized with 64.8 mg/kg sodium
pentobarbital (Kyoritsu Seiyaku Co., Tokyo, Japan) and perfused
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transcardially with potassium-free phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde. Bladders were
removed, postfixed overnight in 4% paraformaldehyde, and
embedded in paraffin (Sakura Finetek Japan, Tokyo, Japan).
Paraffin-embedded tissues were cut into 5µm sections and
stained with hematoxylin and eosin (HE) using standard
procedures. Histopathological examination was performed with
a light microscope (BX-53F; OLYMPUS, Tokyo, Japan).

Real-Time RT-PCR
Anesthetized mice were perfused transcardially with PBS and
bladders, the L5-S1 dorsal root ganglion (DRG), and the L5-S1
spinal cord were removed, flash-frozen in liquid nitrogen, and
stored at −80◦C until use. Total RNA was isolated from tissues
with ISOGEN reagent (Nippon Gene, Tokyo, Japan), and cDNAs
were synthesized with a ReverTra Ace qPCR RT Kit (Toyobo,
Osaka, Japan). Real-time quantitative PCR was performed using
the StepOne real-time PCR system (Life Technologies, Carlsbad,
CA) with 20 µL reactions containing 1 µg of total RNA and the
THUNDERBIRD SYBR qPCR Mix (Toyobo). Oligonucleotide
primer pairs for 18S rRNA (5′-GCAATTATTCCCCATGAACG-
3′ and 5′-GGCCTCACTAAACCATCCAA-3′), Trpa1 (5′-TGA
GATCGACCGGAGT-3′ and 3′-TGCTGAAGGCATCTTG-5′),
c-fos (5′-CCGAAGGGAACGGAAT-3′ and 3′-TGCAACGCA
GACTTCT-5′), glutathione peroxidase 1 (GPx1; 5′-GTTTCC
CGTGCAATCAGTTC-3′ and 3′-CAGGTCGGACGTACTTGA
GG-5′), and catalase (5′-GCGGATTCCTGAGAGAGTGG-3′

and 3′-TGTGGAGAATCGAACGGCAA-5′) were used. The
results for each gene were normalized relative to 18S rRNA levels
measured in parallel in each sample.

Statistical Analysis
Data are expressed as means ± S.E.M. Statistical analysis was
performed with the GraphPad Prism 6 program (GraphPad
Software, La Jolla, CA). Unpaired t-tests or Mann-Whitney

U-tests were used to determine mRNA expression levels. The
number of voids, freezing time, and distance moved were
analyzed with two-way ANOVA, followed by the Tukey post-
hoc test. In all cases, statistical significance was defined by a
p-value < 0.05.

RESULTS

Effect of TRPA1 Deletion on the Number of
Voids in H2O2-Induced Cystitis Mice
The number of voids was measured in WT and TRPA1-KO
mice at 1 and 7 days after intravesical injection of saline
(controls) or H2O2. Consistent with our previous report (Homan
et al., 2013), an intravesical injection of 1.5% H2O2 significantly
increased the number of voids 1 day after injection [F(1, 69) =
71.82, p < 0.001]. This increase was significantly suppressed
in TRPA1-KO mice [F(1, 69) = 12.30, p < 0.001]. Both H2O2-
injected WT and TRPA1-KO groups exhibited a significant
increase in the number of voids compared with saline-injected
WT and TRPA1-KO groups, respectively, and the number
of voids in H2O2-injected TRPA1-KO mice was significantly
lower than in H2O2-injected WT mice (Figure 1A). At 7 days
after injection, the number of voids was significantly increased
in H2O2-injected groups [F(1, 67) = 16.31, p < 0.001], with
significant increases observed in both WT and TRPA1-KO mice.
However, there was no significant difference between WT and
TRPA1-KO H2O2-injected groups [F(1, 67) = 0.1099, p= 0.7413;
Figure 1B].

Effect of TRPA1 Deletion on Visceral
Pain-Related Behaviors in H2O2-Induced
Cystitis Mice
Reduced spontaneous locomotor activity in rodents is considered
evidence of visceral pain-related behavior, as previously reported

FIGURE 1 | Number of voids in H2O2-injected wild-type (WT) and TRPA1-KO mice. WT or TRPA1-KO mice were injected intravesically with saline or 1.5% H2O2. At

1 day (A) and 7 days (B) after injection, the number of voids was counted in a 15min period. Values are means ± S.E.M. for each group of 10–27 mice. *p < 0.05,

**p < 0.01, ***p < 0.001 (n.s., not significant).
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in a cyclophosphamide-induced cystitis mouse model (Miki
et al., 2011). We previously reported a decrease in spontaneous
locomotor behavior at only 3 h after intravesical H2O2 injection
(Dogishi et al., 2015). In the present study, to examine the effect
of TRPA1-KO on visceral pain-related behavior, spontaneous
locomotor activities including freezing time and distance moved
were analyzed over a 15min period in freely moving WT and
TRPA1-KO mice at 3 h after H2O2 injection. Intravesical H2O2

injection significantly increased freezing time [F(1, 39) = 8.323,
p < 0.01] and reduced the distance moved [F(1, 39) = 4.717, p
< 0.05] in WT but not in TRPA1-KO mice. TRPA1 deficiency
significantly reduced freezing time [F(1, 39) = 11.23, p < 0.01].
The freezing time in WT mice was significantly increased in the
H2O2-injected group compared with the saline-injected control
group, but a significant increase was not observed in H2O2-
injected TRPA1-KO mice. Furthermore, the freezing time in
H2O2-injected TRPA1-KO mice was significantly shorter than
that in H2O2-injected WT mice (Figure 2A).

Similarly, H2O2-injected WT mice displayed a significant
decrease in the distance moved compared with saline-injected
WT mice. In TRPA1-KO mice, no significant difference was
observed between saline- andH2O2-injected groups, andmoving
distance in the H2O2-injected group was increased compared
with H2O2-injected WT mice, but not significantly (Figure 2B).

Effect of TRPA1 Deletion on Upregulation
of c-fos mRNA in the Spinal Cord of
H2O2-Induced Cystitis Mice
Activation of bladder sensory neurons responsible for bladder
hyperactivity and pain-related behaviors is correlated with the
induction of c-fos mRNA expression, an immediate early gene,
in the spinal cord (Avelino et al., 1999; Dinis et al., 2004). To
determine whether TRPA1 deletion affects neuronal activity in
the spinal cord caused by H2O2-induced cystitis, c-fos mRNA
levels in the L5-S1 spinal cord, the area of termination of most
bladder afferents (Nadelhaft and Booth, 1984), were examined

1 day after intravesical saline or H2O2 injection. In WT mice,
H2O2 injection caused a significant upregulation in the relative
expression of c-fos mRNA compared with the saline-injected
control group. By contrast, in TRPA1-KO mice, there was no
significant difference between saline- and H2O2-injected groups
(Figure 3).

Effect of TRPA1 Deletion on
Histopathological Changes in the Bladder
of H2O2-Induced Cystitis Mice
Cystitis induced by intravesical H2O2 injection was
histopathologically examined by HE staining of the bladder
of WT and TRPA1-KO mice. In H2O2-injected mice, severe
edematous thickening in the submucosa was observed compared
with the saline-injected control group at 1 day after injection,
which was partially alleviated by 7 days after injection in
both WT and TRPA1-KO mice. There was no difference in
histopathological changes between WT and TRPA1-KO mice
(Figure 4).

Expression of Trpa1 mRNA in the Bladder
and DRG of H2O2-Induced Cystitis Mice
The effects of H2O2 injection on Trpa1 mRNA levels in the
urinary bladder and L5-S1 DRG were examined. Intravesical
H2O2 injection drastically elevated the relative expression levels
of Trpa1mRNA in the bladder on day 1 and 7. By contrast, there
were no differences in the expression levels of Trpa1 mRNA in
the L5-S1 DRG between saline- and H2O2-injected groups at 1
and 7 days after injection (Figure 5).

DISCUSSION

In the present study, using an intravesical H2O2-induced long-
lasting cystitis mousemodel (Homan et al., 2013), we showed that
TRPA1 is involved in initial bladder hyperactivity, but apparently
not in the pathological processes involved in long-lasting cystitis,

FIGURE 2 | Spontaneous locomotor activities in H2O2-injected WT and TRPA1-KO mice. WT or TRPA1-KO mice were injected intravesically with saline or 1.5%

H2O2. At 3 h after injection, freezing time (A) and distance moved (B) were measured in a 15min period. Values are means ± S.E.M. for each group of 10–13 mice.

*p < 0.05 (n.s., not significant).
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FIGURE 3 | Expression levels of c-fos mRNA in the spinal cord of H2O2-injected WT and TRPA1-KO mice. WT (A) or TRPA1-KO (B) mice were injected intravesically

with saline or 1.5% H2O2. At 1 day after injection, the L5-S1 spinal cord was removed, and c-fos mRNA levels were measured by real-time RT-PCR. The values were

normalized against 18S rRNA mRNA levels and presented relative to those of saline-injected mice (set as 1). Values are means ± S.E.M. for each group of 5–14 mice.

*p < 0.05 (n.s., not significant).

FIGURE 4 | Histopathological examination of the bladders of H2O2-injected WT and TRPA1-KO mice. WT (A,B,D,E) or TRPA1-KO (C,F) mice were injected

intravesically with saline (A,D) or 1.5% H2O2 (B,C,E,F). At 1 day (A–C) and 7 days (D–F) after injection, bladders were removed and fixed, and tissue sections (5µm)

were stained with hematoxylin and eosin. Asterisks indicate the bladder lumen. Scale bar = 200µm.

since (1) TRPA1 deletion reduced the initial increase in the
number of voids and the decrease in spontaneous locomotor
behaviors, which were accompanied by a reduction in c-fos
mRNA upregulation in the spinal cord; (2) TRPA1 deletion had
no effect on the delayed frequent urination; (3) TRPA1 deletion
had no effect on histopathological changes in the urinary bladder

at 1 or 7 days after injection. Furthermore, we found that Trpa1
mRNA levels in the urinary bladder were drastically increased at
1 and 7 days after H2O2 injection, but levels were not altered in
the DRG.

We confirmed that an intravesical injection of H2O2 produced
long-lasting frequent urination, visceral pain-related behaviors,
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FIGURE 5 | Expression levels of Trpa1 mRNA in the urinary bladder and DRG of H2O2-injected mice. WT mice were injected intravesically with saline or 1.5% H2O2.

At 1 day (A,C) or 7 days (B,D) after injection, bladders and the L5-S1 bilateral DRG were removed and Trpa1 mRNA levels in the bladder (A,B) and DRG (C,D) were

measured by real-time RT-PCR. The values were normalized against 18S rRNA mRNA levels and presented relative to those of the saline-injected group (set as 1).

Values are means ± S.E.M. for each group of 3–6 mice. *p < 0.05.

and bladder inflammation, as previously reported (Homan
et al., 2013; Dogishi et al., 2015). Since H2O2 can activate
TRPA1 (Andersson et al., 2008; Sawada et al., 2008), it is
conceivable that H2O2 injected intravesically could directly
stimulate TRPA1 in the bladder, leading to the generation
of long-lasting cystitis. However, the present findings showed
no apparent differences in histopathological changes in the
urinary bladder between WT and TRPA1-KO mice injected
with H2O2. Thus, direct stimulation of bladder TRPA1 by
exogenous H2O2 appears not to play a major role in the
induction of cystitis. Since the H2O2 solution was immediately
drained from the bladder at 30min after injection, and because
H2O2 remaining in the bladder was rapidly degraded, H2O2-
induced cystitis appears to be caused by non-selective insults
to the bladder wall, probably by lipid peroxidation, protein
oxidation, and DNA damage, as we discussed previously
(Homan et al., 2013). In addition, we confirmed that TRPA1
deletion had no effects on the mRNA expression levels
of antioxidant enzymes, GPx1, and catalase (Supplementary
Figure 1).

The present behavioral experiments revealed that initial
bladder hyperactivity, including frequent urination and visceral
pain-related behaviors, was mediated, at least in part, through
TRPA1 activation. In the lower urinary tract, sensations in
the urinary bladder are conveyed to the spinal cord through
primary sensory afferent neurons consisting of two types of
fibers; myelinated (Aδ) and unmyelinated (C). It is well-
known that C-fibers respond to noxious stimuli, while Aδ-fibers
respond to bladder filling under physiological conditions (Fowler
et al., 2008). Several pieces of evidence suggest that intravesical
resiniferatoxin- or capsaicin-induced desensitization of C-fibers
results in an increased bladder capacity and reduced bladder
pain perception through inactivation of spinal cord neurons in
an animal model of acute cystitis (Dinis et al., 2004; Saitoh
et al., 2009). Taken together with the present results showing the
loss of c-fos mRNA upregulation in the spinal cord of H2O2-
injected TRPA1-KO mice, this suggests that activation of C-
fibers through TRPA1 stimulation enhances the activity of spinal
cord neurons, resulting in frequent urination and abdominal
visceral pain during the initial phase of long-lasting cystitis.
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Acute damage to bladder urothelial cells induced by exogenous
H2O2 injection causes hyperpermeability of the urothelial barrier
(Homan et al., 2013). Thus, the submucosa is exposed to
irritants in the urine, which may activate TRPA1 expression on
the bladder terminal of C-fibers. Alternatively, H2O2-induced
acute inflammation of the bladder may be accompanied by
bladder vascular hyperpermeability and infiltration of abundant
inflammatory cells, including neutrophils, into the submucosa
(Homan et al., 2013; Dogishi et al., 2017). Several lines of evidence
suggest that ROS produced from infiltrated inflammatory cells
contribute to bladder hyperactivity (Chien et al., 2003; Masuda
et al., 2008). Consequently, it is conceivable that excessive ROS
produced from infiltrated inflammatory cells in the submucosa
may activate TRPA1. Under severe initial bladder inflammation,
it is possible that TRPA1 may be sensitized to ROS by various
inflammatory mediators (Gouin et al., 2017).

By contrast, TRPA1 appears not to play a major role
during the latter stages of long-lasting cystitis. At 7 days after
intravesical H2O2 injection, frequent urination was partially
alleviated, although it still persisted, and the decrease in
spontaneous locomotor behaviors ceased, as reported previously
(Homan et al., 2013; Dogishi et al., 2015). The observed
severe edematous thickening of the submucosa was partially
alleviated by 7 days after injection. Furthermore, we previously
reported that the urothelial damage and hyperpermeability are
recovered within several days, while bladder inflammation, such
as accumulation of inflammatory cells and increased expression
of inflammatory cytokines, persisted (Homan et al., 2013). Under
such long-lasting inflammatory bladder conditions, excessive
ROS production and/or sensitization of TRPA1 to ROS in
the bladder may be recovered. We previously reported that
bladder tissue remodeling, such as hyperplasia of the urothelium,
vascularization, and fibrosis, is induced in the late phase of long-
lasting cystitis (Homan et al., 2013; Dogishi et al., 2017). In
addition to hyperactivity of bladder sensory neurons induced
by long-lasting inflammation, bladder structural changes may
affect the micturition function, leading to frequent urination.
However, it is difficult to perform cystometric analysis in
the present mouse cystitis model, although we could measure
intercontraction interval and intravesical pressure in intravesical
H2O2-induced rat cystitis model (Dogishi et al., 2017). Such
technical problems by using genetically-modified mice limit to
analyze the urodynamics in the mouse cystitis model. Further
detailed investigations including cystometry will be needed
to elucidate the roles of TRPA1 in the long-lasting bladder
hyperactivity.

Recent evidence suggests that activation of TRPA1 may
cause and/or enhance neurogenic inflammation (Gouin et al.,
2017). However, the present results suggest that TRPA1 is not
responsible for the occurrence and maintenance of bladder
inflammation. Consistently, a TRPA1 antagonist attenuates
visceral nociception in an ifosfamide-induced cystitis model,
although ifosfamide-induced bladder inflammation is not
suppressed (Pereira et al., 2013).

In the lower urinary tract, TRPA1 is expressed in both C-fibers
and the bladder epithelium (Streng et al., 2008; Wu et al., 2010).

This raises the question of which sites expressing TRPA1 are
associated with initial bladder hyperactivity. In the present study,
we found that Trpa1 mRNA levels were drastically upregulated
in the urinary bladder from the initial to the late phases, but not
in the L5-S1DRG. Consistent with these findings, upregulation of
Trpa1mRNAwas reported in the urinary bladder of patients with
bladder outlet obstruction or IC/BPS (Du et al., 2008; Homma
et al., 2013), suggesting that upregulation of TRPA1 expression
in the urinary bladder may be pathologically correlated with
bladder disorders. Given these expression changes, it is possible
that TRPA1 expressed in the urinary bladder, rather than in
the DRG, may be responsible for initial bladder hyperactivity.
However, this interpretation may be a hasty judgement because
the involvement of TRPA1 was observed only during the initial
phase, but not in the late phase, although upregulation of
Trpa1 mRNA persisted until at least 7 days after injection.
Under inflammatory conditions, the sensitivity of TRPA1 in
the DRG is reportedly enhanced without changes in expression
levels, and this allegedly contributes to hyperalgesia (Zhou
et al., 2013). Thus, functional sensitization of TRPA1 expressed
in the DRG may contribute to initial bladder hyperactivity,
including frequent urination and visceral pain-related behaviors.
Further investigation is therefore required to identify the sites of
TRPA1 expression responsible for the pathology of long-lasting
cystitis.

In conclusion, the present study revealed that TRPA1
contributes to initial bladder hyperactivity, affecting the
frequency of urination and abdominal visceral pain, but it
does not appear to play a major role in the pathology of
long-lasting cystitis. Therapeutic strategies targeting TRPA1
may be effective for minimizing bladder hyperactivity in
acute cystitis, but its usefulness for chronic cystitis may be
limited.
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“Molecular neurosurgery” is emerging as a new medical concept, and is the combination

of two partners: (i) a molecular neurosurgery agent, and (ii) the cognate receptor whose

activation results in the selective elimination of a specific subset of neurons in which this

receptor is endogenously expressed. In general, a molecular surgery agent is a selective

and potent ligand, and the target is a specific cell type whose elimination is desired

through the molecular surgery procedure. These target cells have the highest innate

sensitivity to themolecular surgery agent usually due to the highest receptor density being

in their plasma membrane. The interaction between the ligand and its receptor evokes

an overactivity of the receptor. If the receptor is a ligand-activated non-selective cation

channel, the overactivity of receptor leads to excess Ca2+ and Na+ influx into the cell

and finally cell death. One of the best known examples of such an interaction is the effect

of ultrapotent vanilloids on TRPV1-expressing pain-sensing neurons. One intrathecal

resiniferatoxin (RTX) dose allows for the receptor-mediated removal of TRPV1+ neurons

from the peripheral nervous system. The TRPV1 receptor-mediated ion influx induces

necrotic processes, but only in pain-sensing neurons, and usually within an hour. Besides

that, target-specific apoptotic processes are also induced. Thus, as a nano-surgery

scalpel, RTX removes the neurons responsible for generating pain and inflammation

from the peripheral nervous system providing an option in clinical management for the

treatment of morphine-insensitive pain conditions. In the future, the molecular surgery

concept can also be exploited in cancer research for selectively targeting the specific

tumor cell.

Keywords: TRPV1, vanilloids, capsaicin, resiniferatoxin, sensory neurons, necrosis, apoptosis

THE CONCEPT OF MOLECULAR SURGERY AND RELATED
TECHNOLOGIES

Our goal with this review is to summarize the basics behind “molecular surgery,” a new concept of
biomedical technology, which have prototyped with the vanilloid receptor type 1 (TRPV1) target.
Currently, resiniferatoxin (RTX) is the number 1 drug candidate to implement the “molecular
neurosurgery” technology at cellular levels. To demonstrate the safety and efficacy of the molecular

Abbreviations: RTX, resiniferatoxin; CAP, capsaicin; TG, trigeminal ganglia; DRG, dorsal root ganglia; FDA, Food and Drug

Administration; NIH, National Institutes of Health; PAM, positive allosteric modulator; CGRP, Calcitonin Gene Related

Peptide; SP, Subtance P; B2B, bench-to-bedside.
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neurosurgery, Dr. Michael J. Iadarola and Dr. Zoltan Olah have
initiated a bench-to-bedside (B2B) project in 2000 that has
recently entered Phase II (Brown D. C. et al., 2015). Headed
by clinicians, the bedside team has already recruited more than
30 cancer pain patients in the clinical trial, which represents a
novel and unique treatment option in clinical management of
morphine-insensitive cancer pain (Brown D. C. et al., 2015).

The current clinical protocol prescribes a single dose of
intrathecal RTX, to treat pain with an agonist of TRPV1 channel.
TRPV1 was molecularly identified in 1997 (Caterina et al.,
1997). TRPV1 belongs to the diverse transient receptor potential
(TRP) family of non-selective cation channels (Benemei et al.,
2015). The human TRP superfamily is composed of 27 members
which are grouped into six subfamilies based on their amino
acid sequence homology: canonical (C), vanilloid (V), melastatin
(M), polycystin (P), mucolipin (ML), and ankyrin (A). They all
share the common feature of six transmembrane domains and
permeability to cations (Montell, 2005).

TRPV1 is dominantly expressed at the source of the
inflammatory pain signals (Patapoutian et al., 2009), thus
agonist-mediated removal of specific TRPV1+ inflammatory
pain-sensing neurons, or “acheurons,” as we call them, can
manage even severe chronic pain situations. The detailed
mechanism, as it has been revealed, is the RTX-induced
cytotoxicity, which exploits the high specificity and affinity of this
exovanilloid to TRPV1. This induces a subsequent flux of Ca2+

and Na+ ions into the acheurons (Olah et al., 2001; Karai et al.,
2004; Pecze et al., 2013).

One of the preferred goals of the clinical trial, started in 2008
in the National Institutes of Health (NIH, Bethesda, Maryland),
is to manage morphine-insensitive, and subsequently unbearable
pain cases that are currently an unmetmedical need. The trial also
will provide evidence on better end-of-life quality and palliative
care of cancer patients and deliver the proof of concept of
molecular neurosurgery: only TRPV1+ acheurons, a verified
subset of sensory neurons, can be removed by RTX-induced
cytotoxicity. The technology is amenable due to the fact that it
is supported by a number of experiments carried out in various
mammals, from rodents to primates (Olah et al., 2001; Karai
et al., 2004; Brown et al., 2005; Tender et al., 2005; Brown D. C.
et al., 2015; Brown, 2016). The methods and kits for the selective
ablation of pain-sensing neurons have been patented (Iadarola
et al., 2012).

Although there are drug leads acting as TRPV1 inhibitors
in different stages of R&D pipelines at a number big pharma
companies (Kaneko and Szallasi, 2014), currently, there is no
vanilloid drug on the market other than capsaicin (CAP). In
contrast to RTX, however, CAP is not an optimal compound
to target TRPV1 and implement the molecular neurosurgery
technology. First of all, ours and others’ experiments validated
that CAP is less potent as an agonist of TRPV1 than RTX
(Szallasi and Blumberg, 1999). In general, one can say that
RTX acts in a low nanomolar range on TRPV1, while CAP
acts in a low micromolar range, but the exact EC50 values
vary between assays (Szallasi and Blumberg, 1999; Olah et al.,
2001). As many pharmaceuticals may lose their specificity at
higher doses, TRPV1-independent cytotoxic effects have been

reported at concentrations above 10 micromolar for RTX and
above several hundred micromolar for CAP, tested on Sf9 insect
cells that do not have the TRPV1 gene (Pecze et al., 2008).

The vanilloid-binding site of TRPV1 is mapped to a protein
region embedded in the lipid membrane, which justifies the use
of the more lipophilic RTX. Thus, currently RTX is the vanilloid
with the highest affinity and efficacy. We have also determined
that CAP, due to its lower affinity and quicker dissociation from
the receptor, is an inappropriate drug for implementation of the
molecular neurosurgery and unable to deliver robust agonist-
induced cytotoxicity within minutes, as noted with RTX, even
in vivo (Olah et al., 2001; Karai et al., 2004; Brown et al., 2005;
Tender et al., 2005).

EXTENDED USE OF THE
AGONIST-INDUCED CYTOTOXIC
MECHANISM FOR PAIN MANAGEMENT

TRPV1 channels are highly expressed on C- and Aδ-type sensory
neurons. The cell bodies of somatic sensory afferent fibers
lie in the dorsal root ganglia (DRG) and trigeminal ganglia
(TG). TRPV1 can be stimulated by (i) endovanilloids, produced
naturally by peripheral tissues in response to injury, (ii) heat
source of moderately high temperature (42–49◦C), and (iii)
extracellular acidosis (pH ∼6.0; Caterina et al., 1997; Tominaga
et al., 1998). Endovanilloids are defined as endogenous ligands
of TRPV1 (van der Stelt and Di Marzo, 2004). Three different
classes of endogenous lipids have been found recently that can
activate TRPV1, and these are unsaturated N-acyldopamines,
lipoxygenase products of arachidonic acid and linolenic acid,
and the endocannabinoid anandamide (van der Stelt and Di
Marzo, 2004). These compounds are produced at the site
of inflammation. Endogenous TRPV1 ligands have different
pharmacological properties (e.g., affinity, potency, metabolic rate,
etc.) compared to naturally occurring exogenous agonists such
as CAP or RTX, and consequently endogenous ligands have
different physiological functions. As an example, endogenous
agonists are involved in the generation of chronic pain,
while exogenous agonists are capable of alleviating chronic
pain (Carnevale and Rohacs, 2016). Potent vanilloids such as
CAP or RTX can be administered in a different manner for
the removal of TRPV1+ neurons. Routes of administration
include (I) topical epicutaneous (application onto the skin),
(II) intraarticular, (III) intrathecal (IV) intraganglionic, and (V)
systemic intraperitoneal.

I. Topical CAP has been used for medicinal puposes for
centuries, mainly to treat toothache. Creams containing
CAP, generally in the range of 0.025–0.1% by weight,
are now available in many countries, and often do not
require a prescription, for the management of neuropathic
and musculoskeletal pain. CAP creams have shown
analgesic benefits in postherapeutic neuralgia, painful
polyneuropathies including diabetic and HIV-related
neuropathy, and postmastectomy/surgical neuropathic
syndromes (Jorge et al., 2010). The CAP 8% patch is
approved by FDA (U.S.Food and Drug Administration)

Frontiers in Physiology | www.frontiersin.org June 2017 | Volume 8 | Article 378115

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pecze et al. Molecular Surgery Concept from Bench to Bedside

for postherapeutic neuralgia. Epidermal nerve fiber density
in skin areas exposed to the high-concentration CAP
patch (8%) was clearly lower 1 week after a single 60-min
application as compared with control biopsies, but at 24
weeks, epidermal nerve fiber density appears similar to the
control (Kennedy et al., 2010). Topical RTX administration
was studied for treatment of ophthalmic pain. In rat cornea,
a single application of RTX dose-dependently eliminated
the CAP-induced eye-wiping response for 3–5 days (Bates
et al., 2010). This analgesic effect was fully reversible (Bates
et al., 2010). The distant surviving neuronal body generates
new C-, and Aδ-afferents, which repairs inflammatory pain
sensation (Donnerer, 2003; Kennedy et al., 2010). Thus,
the analgesic effect of topical vanilloid administration is
reversible.

II. In the sinovial fluid of joints, RTX can inactivate the C-,
and Aδ-nerve pain signaling, but only temporarily.These
nerves recover in a month due to fiber regeneration, guided
by the unaffected axons in the nerve (Neubert et al., 2003;
Kissin E. Y. et al., 2005). This process should be much faster
and more complete after intra-articular than sciatic nerve
RTX administration, due to the shorter part of the ablated
nerve fibers in the first case. These experimented approaches
will provide the possibility for a reversible interruption of
nerve fiber signaling without their complete and irreversible
destruction (Neubert et al., 2003; Kissin E. Y. et al., 2005;
Kissin I. et al., 2005).

III. In contrast to topical administration, other routes of
application generate irreversible changes, because these
treatments eliminate not only the periferal axons, but also
the body of the TRPV1-positive sensory neurons. Complete
removal of the pain sensing neurons are a treatment option
for chronic, uncurable pain conditions, such as cancer pain.
RTX can be equally potent as an ablative agent of C-fiber
and Aδ-afferents in patients with non-terminal stage of
diseases coupled with neuropathic complication, including
chronic phantom pain and type 2 diebetes (Karai et al.,
2004; Brown et al., 2005; Mannes et al., 2005; Neubert
et al., 2005; Tender et al., 2005). We and others have
collected the necessary evidence for the extended use of
the agonist-induced cytotoxic mechanism to carry out
molecular neurosurgery. Due to the extreme specificity of
RTX to TRPV1, the cytotoxicity does not affect other sensory
modalities, such as super-heat, cold, light touch, noxious
mechano-, and proprioceptive sensations. The RTX-assisted
neurosurgery neither impairs bystander motor neurons nor
influences consciousness (Olah et al., 2001; Karai et al., 2004;
Brown et al., 2005; Tender et al., 2005; Patapoutian et al.,
2009). The safety and efficacy of RTX have successfully been
validated even in dogs and monkeys (Olah et al., 2001; Karai
et al., 2004; Brown et al., 2005; Tender et al., 2005; Gunthorpe
and Szallasi, 2008).

IV. In contrast to intrathecal administration, intraganglionic
injection may need an advanced imaging technology R&D
process, in order to fully support robotic anatomical
guidance (i.e., needle placement by computer tomography).
With this technology at hand, we can treat severe focal pain

syndromes right at the source, and remove acheurons from
a sub-domain of DRG or TG branches. One of the well-
defined medical needs in trigeminal neuralgia requires CT-
guided needle placement to inject RTX with an intra-nerve
anatomic precision (Brown J. D. et al., 2015).

V. Prior to transgenic TRPV1 knockout models, systemic
chemo-denervation was employed with potent vanilloids
(Jancso et al., 1967; Szolcsanyi et al., 1990) to study
animal behavior with altered pain sensations. Respiratory
depression represents the limiting factor in rats for acute
and systemic administration of CAP or RTX (Szallasi et al.,
1989). The therapeutic window for RTX is wider than
for CAP. RTX administered at a dosage of 50µg/kg body
weight effectively removed all pain-sensing neurons in
young adult mice (Pecze et al., 2009). Mice survived the
procedure and lived to an old age in the animal facility. They
remained fertile, however they were not able to adapt to heat
stress (Pecze et al., 2009). If subjected to elevated ambient
temperature (38◦C), RTX-treated rats showed a steady rise in
body temperature, ultimately leading to collapse, in contrast
to control animals, which did not show these behaviors
(Szallasi and Blumberg, 1989).

In conclusion, RTX usually provides a better pharmacological
profile than CAP. CAP is effective in micromolar concentrations
and ranked approximately three factors of magnitude less potent
as a vanilloid agonist than RTX. Although RTX is more potent,
paradoxically it evokes less pain feeling than CAP, because the
initial activation of the pain pathway via TRPV1 is immediately
cut by the ionic influx-induced fragmentations of pain-sensing C-
and Aδ-fibers. Even an intrathecally administered 1µg/kg dose
of RTX can rapidly eradicate the inflammatory pain signaling
by a robust TRPV1-amplified cytotoxicity without significant
side effect, tested in patient dogs suffering either cancer or
osteoporosis pain (Brown et al., 2005). At the site of application
the action potential conductivity of the acheuron’s membranes
is blocked in seconds, either when RTX is given proximally
(i.e., intrathecal, intraganglionic) or distally (i.e., transdermal)
to the neuronal body. Thus, only a small dosage of noxious
stimuli can reach the central nervous system (Caudle et al.,
2003; Neubert et al., 2003; Karai et al., 2004). In the veterinary
practice, RTX-treatments of severe cancer and osteoporotic
patient dogs have demonstrated initial, short-lived physiological
changes, but then the blood pressure and cardiac parameters
went back to the normal range. The benefit of longterm and
permanent elimination of unbearable inflammatory pain justifies
the effective ablation of acheurons (Karai et al., 2004; Tender
et al., 2005).

EMPIRICAL USAGE OF MOLECULAR
SURGERY

Nowadays, rational and mechanism-based applications of
technologies based on specific molecular surgery agents can
replace previous empiric practices. The surface of the human
body, externally, while the gastrointestinal system, internally,
are continuously exposed to pungent compounds such as
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CAP, gingerol, piperine, allyl-isothiocyanate (i.e., chili pepper,
ginger, black pepper, and mustard, respectively), and other
phytochemicals from spices for hundreds or thousands of
years (Iwasaki et al., 2008; Masamoto et al., 2009). Likewise,
either by chance or conscious use, RTX had been applied in
human since the ancient times. Tribal witchdoctors in Africa
often administered the latex from different Euphorbia species
to the wound after removal of a tooth to diminished pain
and inflammation. Empirically, a number of pungent vanilloids
supplement our daily meals. Various Hungarian dishes are made
exclusively with hot peppers, so the human body is frequently
exposed to vanilloids. In Asia as well, different pungent bioactive
ingredients are used in their daily diet and target either the
TRPV1 or TRPA1 channels. Thus, many of the agents mentioned
in this review are administered to humans, either by frequent
consumption or empiric application, first as folk medicine, then
in medical practice (Sterner and Szallasi, 1999; Szallasi and
Blumberg, 1999). Epidemiologic evaluations and natural uses
have demonstrated that these bioactive phytochemicals can save
medical expenses and prolong lifespan. A large cohort study
revealed that consumption of spicy food is inversely correlated
with the mortality caused by cancer, ischemic heart diseases and
respiratory diseases (Lv et al., 2015).

THE ROLE OF ADVANCED IMAGING
TOOLS

For the exploration of the function of the TRPV1 channel,
confocal fluorescence microscopy was vastly instrumental.
Firstly, confocal microscopy was used for the imaging of
dynamics in intracellular free Ca2+ concentrations ([Ca2+]i)
(Figure 1). Moreover, by tagging of TRPV1 channel with
fluorescent proteins, the mechanism of cell death became visually
trackable in real-time (Figure 2 and Supplementary Video; Olah
et al., 2001). Both N- and C-terminally tagged TRPV1 proteins

results in fully functional TRPV1 channels. Cells ectopically
expressing the TRPV1 receptor show necrotic bleb formation
upon CAP stimulation (Pecze et al., 2013). Bleb formation is
dependent on both Ca2+ and Na+ influx (Pecze et al., 2016b).
Bleb formation can be so intensive that the cell blows up,
until finally the loss of the plasma membrane integrity leads
to necrotic cell death (Pecze et al., 2016b). Besides this, cell
organelles such as the mitochondria and endoplasmic reticulum
also show fragmentization within 1 h (Olah et al., 2001). High
resolution confocal images has helped in the figuring out of the
molecular neurosurgery mechanism and in distinguishing the
difference between the efficacy of CAP and RTX (Olah et al.,
2001). Cells ectopically expressing fluorescently tagged TRPV1
channels were voltage-clamped and 10µM CAP induced large
inward currents similar to that of 125 pM RTX. Capsazepine, a
competitive TRPV1 antagonist, attenuated the vanilloid-induced
currents (Olah et al., 2001; Liu et al., 2003; Marshall et al.,
2003).

Fusion of TRPV1 with rationally chosen fluorescent protein
allows for co-localization studies which exploit the fluorescence
resonance energy transfer (FRET) phenomenon (Hellwig
et al., 2005; Zagotta et al., 2016). The optical sectioning
capabilities of confocal fluorescence microscopes followed
by 3D reconstruction revealed the innervation pattern of the
epithelium of guinea-pig trachea by TRPV1 immunoreactive
axons (Watanabe et al., 2005). Confocal images showed the loss
of TRPV1-immunoreactive DRG neurons and afferent terminals
in the spinal cord after RTX treatment (Chen and Pan, 2006).

Ectopically expressed fusion proteins allowed for the
determination of the sub-cellular distribution of TRPV1
receptors. It became clear that in addition to the plasma
membrane (PM), where previously, TRPV1 was expected to
mechanistically localize (TRPV1PM), it was also found and noted
to operate in the endoplasmic reticulum (TRPV1ER), as well
(Olah et al., 2001; Karai et al., 2004). The endoplasmic reticulum
(ER) is the major intracellular storage of Ca2+ ions and like

FIGURE 1 | Ca2+ imaging. (A) NIH-3T3 cells ectopically expressing TRPV1 were loaded with the cytosolic Ca2+ indicator Fluo-4-AM. (B) Minute scales imaging of

[Ca2+]i reveals two populations in NIH-3T3TRPV1 cell line. A set of cells responds to 1µM CAP with non-declining increase of [Ca2+]i and dies very soon while the

other population survives the initial necrotic-phase in which the [Ca2+]i transitions back to closed to its resting levels. This later option rarely occurs with RTX, as RTX

is several thousandfold more potent than CAP in several assays (Szallasi and Blumberg, 1999). The original experiment was published in 2004 (Karai et al., 2004).
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FIGURE 2 | Time-lapse analysis of vanilloid evoked structural changes in MCF7 breast cancer cell line. MCF7 cells were transiently transfected with TRPV1-GFP

construct. These show green fluorescence. Cells were treated with 50µM CAP. TRPV1-GFP expressing cells, and only these cells, blow blebs during a 10-min period

(red arrowheads). MCF7 cells also endogenously express low levels of TRPV1 channels. This level is not enough to induce bleb formation, but some MCF7 cells

produce invadopodium, an ameboid structure promoting cancer cell invasion, in response to CAP treatment (yellow arrowheads). The original experiment was

published in 2016 (Pecze et al., 2016b).

TRPV1PM, the TRPV1ER receptor is also gated by vanilloids and
contributes to the agonist-induced cytotoxicity. The potency
of less lipophilic CAP on TRPV1ER, is likely hampered by its
slow membrane penetration and distribution to deeper cellular
compartments (Lazar et al., 2006).

MECHANISM OF ACTION

In physiological conditions, TRPV1 is activated by the
endogeneous ligand produced at the site of inflammation
or tissue injury. TRPV1 is a non-selective cation channel
with a higher permeability for divalent cations, such as Ca2+

(permeability ratio PCa/PNa is around ∼10; Gees et al., 2010).
However, both Ca2+ and Na+ influxes through the TRPV1
channel play a role in the transmission of nociceptive signals
from the periphery toward the central nervous system. Besides
this, activation of TRPV1 causes cell depolarization. Sensory
neurons as excitable cells express voltage-operated ion channels.
Activation of TRPV1 channels triggers the gating of those
channels. The firing pattern of neuronal cells is modulated
by conductance changes via TRP channel activation or
inhibition (Gees et al., 2010). It is worth noting that TRPV1
produces an analog Ca2+ signal i.e., the amount of Ca2+ ions
passing through the channel is proportional to the stimulus
intensity. The activated inositol phospholipid pathway acts as
an amplifier and frequency-based modulator on Ca2+ signals
produced by TRPV1. The frequency of the intracellular Ca2+

oscillations are related to the strength of TRPV1 stimulation
(Pecze et al., 2016a). Since exogenous TRPV1 ligands (CAP
and RTX) have different pharmacological properties such
as higher affinity and potency compared to endogenous
agonists, they consequently induce an over-activity of the
TRPV1 receptor. Thus, RTX and CAP induce a prolonged
increase in [Ca2+]i, but only in sensory neurons expressing

TRPV1 while not in other cells (Olah et al., 2001; Karai et al.,
2004).

DESENSITIZATION VS. DELETION OF A
CELL/NEURON

Desensitization is the phenomenon in which a receptor’s
responsiveness decreases after continued or repeated stimulation
with an agonist. Prolonged or repeated applications of
CAP causes persistent desensitization of TRPV1 in an
electrophysiology-based experiment (Touska et al., 2011).
Although this effect can also contribute to pain insensitivity
after vanilloid treatment to some extent, our experiments show
that sensory neurons or axons were absent in the treated region.
Thus, in contrast to desensitization, an alternative mechanism
of potent vanilloids has been proposed; complete removal of
TRPV1-specific nociceptive neurons is the cause of the long-
lasting/permanent inflammatory pain-free state (Olah et al.,
2001; Caudle et al., 2003; Karai et al., 2004) and these findings
were later confirmed by others (Chen and Pan, 2006; Kennedy
et al., 2010; Kun et al., 2012).

However, controversy regarding nerve fiber degeneration vs.
long-lasting desensitization without neuronal degeneration still
exists in terms of the explanation for the mechanism of potent
vanilloid agonism. Prior to transgenic TRPV1 knockout models,
chemo-denervation was employed with potent vanilloids (Jancso
et al., 1967; Szolcsanyi et al., 1990) to study animal behavior
without pain sensation. Although the inflammatory pain-free
state that either CAP or RTX treatment produced was unusually
long lasting (Szallasi et al., 1989; Szallasi and Blumberg, 1992),
more than minutes or hours, the early explanations of the
analgesic actions of vanilloids suggested a desensitization of
nerve terminals (Szolcsanyi et al., 1975). Thus, the literature still
uses long-lasting desensitization as an explanation.
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NECROTIC VS. APOPTOTIC PROCESSES

It was determined in a number of experiments that RTX
(i.e., 1µg/kg) produces analgesia by robust Ca2+-mediated
cytotoxicity, if applied (i) intradermally, lasting for several days to
a month, or (ii) intrathecally and intraganglionically, permanent
for a lifetime, removing the entire TRPV1+ neuron (Szabo et al.,
1999; Karai et al., 2004).

The cellular and molecular mechanisms underlying the
vanilloid-induced neural loss are still unresolved. Evidence for
CAP-induced neuronal cell death by apoptosis with caspase
activation has been reported (Shin et al., 2003; Jin et al., 2005),
while some studies state that it is an apoptosis-like, but caspase-
independent process (Movsesyan et al., 2004; Davies et al.,
2010). Still other studies doubt the process to be apoptotic
at all in nature (Olah et al., 2001; Caudle et al., 2003). It is
very likely that both apoptosis and necrosis might play a role
in TRPV1-mediated toxicity, depending on the strength of the
activation and moreover on the experimental protocol. The Ca2+

ionophore ionomycin acts by creating Ca2+-permeable pores in
cell membranes. Analagous to TRPV1-related cytotoxicity, it can
induce either apoptosis or necrosis in cultured cortical neurons
(Gwag et al., 1999).

The MCF7 breast cancer cell line, although it expresses
endogeneously low levels of TRPV1 receptors, cannot be
subjected to necrotic-like procecesses by administration of CAP
or RTX, but shows the typical structural changes when TRPV1
is ectopically overexpressed (Figure 2). Interestingly, in MCF7
cells, the mere overexpression of GFP-tagged TRPV1 channels
decreased cell viability (Pecze et al., 2016b). We observed that
mainly apoptotic processes were activated, but mitotic arrest in
MCF7GFP-TRPV1 cells was also detected. The absence of mitosis
in the surviving MCF7GFP-TRPV1 cells subsequently did not allow
for the establishment of stable MCF7GFP-TRPV1 clones, although
we had been successful in establishing cell clones permanently
expressing ectopic TRPV1 proteins using non-tumor-derived cell
lines such as HaCaT, a spontaneously immortalized keratinocyte
cell line from adult human skin (Pecze et al., 2008), or NIH-3T3
cells, a spontaneously immortalized mouse embryo fibroblast
cell line (Olah et al., 2007). Moreover, prolonged treatment
of non-transfected MCF7 cells with CAP induces apoptotic
processes due to increased oxidative stress (Kosar et al., 2016).
The supposedmechanisms of necrotic and apoptoic processes are
summarized in Figure 3.

SAFETY AND EFFICACY OF MOLECULAR
SURGERY AGENTS IN HUMANS

Resistance to vanilloids provides additional safety and efficacy
to the molecular surgery technology. We and others have noted
that TRPV1 and its mRNA are detected in a broader spectra of
cells rather than only from DRG or TG origins. Paradoxically,
the occurrence of TRPV1 does not necessarily mean that the cell
can automatically be deleted by the vanilloid-mediated molecular
surgery. Vanilloid binding cannot be mechanistically linked
either to channel opening or to permanent elevation in [Ca2+]i.

FIGURE 3 | Necrotic and apoptotic processes after TRPV1 stimulation. (A) In

the unstimulated state, the resting [Ca2+]i is the result of the low rate of influx

and efflux across the plasma, ER- and mitochondria membranes. Red and

blue arrows indicates the energy-requiring and energy-independent fluxes,

respectively. After stimulation, two types of Ca2+ response can be observable

leading to necrotic (B) and potentially apoptotic processes (C). (B) During the

necrotic processes TRPV1 activation results in a sustained increase in [Ca2+]i.

After that, Ca2+ ions are accumulated in the mitochondria (Pecze et al.,

2016b) but released from the endoplasmatic reticulum. These processes lead

to the fragmentation of these organelles (Olah et al., 2001). Blebs appears at

the plasmamembrane due to the cell volume increase. (C) During the

apoptotic processes TRPV1 activation does not result in a sustained increase

in [Ca2+]i, but rather to a transient Ca2+ signal mainly due to the depletion of

the ER Ca2+ stores. In this situation, Ca2+ extruding systems is still able to

create an equilibrium between the Ca2+ influx and Ca2+ efflux reverting

[Ca2+]i close to its basal levels before stimulation. However, this new

equilibrium requires elevated energy consumption. Mitochondria therefore

produce more energy, but during their normal operation they also produce

reactive oxygene species (ROS; Michael Murphy, 2009). ROS production was

significantly increased in cultured DRG neurons after bath application of CAP

(1µM) or RTX (200 nM) compared with the untreated neurons (Ma et al.,

2009). This can induce oxidative stress and apoptosis Fleury et al., 2002.

This issue has been addressed in studies of human keratinocytes
(Pecze et al., 2008; Kun et al., 2012).

One potential explanation for vanilloid resistance is that
TRPV1 subunits need to form a homotetramer channel,
a quaternary structure required for maximal vanilloid
sensitivity and channel activity (Kedei et al., 2001; Garcia-
Sanz et al., 2004; Moiseenkova-Bell et al., 2008). Any
obstacles that hamper quaternary structure formation of
the pore from the subunits may reduce the cell’s sensitivity to
vanilloids. Mounting evidence shows that TRPV1 is capable
of heteromerization with other TRP channel homologs upon
co-expression (Fischer et al., 2014). Major determinants of
TRPV1 oligomerization have recently been localized to the
C-terminal 684Glu-721Arg, the so-called association domain
(Garcia-Sanz et al., 2004). Recombinant association domains
form stable multimers, however, association domain-deleted
TRPV1 is monomeric and blocks self-assembly of wild-
type subunits in functional homotetramers. Evolutionarily
conserved, homologous, but not identical, association domains,

Frontiers in Physiology | www.frontiersin.org June 2017 | Volume 8 | Article 378119

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pecze et al. Molecular Surgery Concept from Bench to Bedside

however, may allow for the combinatorial assembly of different
TRP channels that are gated by distinct ligands other than
vanilloids.

Besides this, our experiments indicate that TRPV1 channel
density on the plasma membrane is an important factor for the
cell’s sensitivity to vanilloids (Pecze et al., 2016b). Cells expressing
lower density of the TRPV1 channel are evidently more resistant
to TRPV1-mediated cytotoxicity. Unfortuntely, although tumor
cells express higher levels of TRPV1 than normal epithelial
cells, they still do not have enough receptors to perform tumor-
targeted TRPV1-mediated necrotic-type eradication (Pecze et al.,
2016b). Nevertheless, several experiments (Diaz-Laviada and
Rodriguez-Henche, 2014) as well as a case report (Jankovic
et al., 2010) suggest that vanilloids have anti-cancer activity. The
origin of the anticancer effects of vanilloids is not completely
solved and it needs further examination. Whether it is TRPV1-
mediated or a TRPV1-independent effect is still in question
(Diaz-Laviada and Rodriguez-Henche, 2014). To make things
more complicated, pain sensing neurons innervate the tumor
mass and communicate with the tumors (Li et al., 2013).
Systemic removal of TRPV1+ neurons in mice increased
the number of metastasis of breast cancers (Erin et al.,
2004).

PROOF OF THE EFFICACY OF
MOLECULAR NEUROSURGERY FOR THE
TREATMENT OF TYPE II DIABETES AND
URINARY DISFUNCTIONS

The proof of the applicability of molecular surgery reveals a
second use of RTX in type II diabetes as an anti-neuropathic
treatment agent (Gram et al., 2005; Moesgaard et al., 2005).
The system that regulates insulin secretion from beta-cells
in the islet of Langerhans has a vanilloid-sensitive inhibitory
component. Calcitonin Gene Related Peptid (CGRP)-expressing
TRPV1+ primary sensory fibers innervate the islets. The CGRP-
containing primary sensory neurons are targets of the RTX-
mediated molecular neurosurgery. Elimination of vanilloid-
sensitive primary afferents by vanilloids before the development
of hyperglycemia prevents the increase of plasma glucose levels
and coincides with enhanced insulin secretion and a loss of
CGRP-expressing islet-innervating fibers. These data indicate
that CGRP-containing fibers in the islets are sensitive to
molecular neurosurgery, and that elimination of these fibers
contributes to the prevention of the deterioration of glucose
homeostasis through increased insulin secretion in genetically
obese rats (Gram et al., 2005, 2007; Moesgaard et al., 2005).

Vanilloid-sensitive C- and Aδ-afferents are present in the
human bladder’s urothelium and are involved in the micturition
reflex. Although, intravesically administered RTXmost likely acts
analogous to CAP, its better pharmacodynamic profile allows
for an increase in bladder volume and a higher threshold for
the micturition reflex (Payne et al., 2005; Raisinghani et al.,
2005). This improvement coincides with a disappearance of
CGRP and Substance P (SP) immunoreactive fibers, selective
biomarkers of afferents of TRPV1+ neurons. Thus, the loss of

CGRP and SP peptide immunoreactivity, consistent either with
agonist-mediated depletion of neurotransmitters, or deletion
of these fibers by vanilloid-mediated Ca2+-cytotoxicity via
molecular neurosurgery.

Overactive bladder syndrome, a common type of micturition
disorder, can lead to the loss of bladder control, which is
then known as urge incontinence. First CAP (Szallasi et al.,
1993; De Ridder et al., 1997), then RTX (Lazzeri et al., 1997),
were tried as experimental drugs to inactivate incontinency
in the clinical settings (Figure 4). It has been long known
that these reflexes in the bladder are mediated by C- and
Aδ-fiber afferents of nociceptive neurons located in the sacral
DRGs. The Afferon Inc., in the late 90’s, patented a method of
treating neurogenic urinary dysfunction with RTX (Cruz and
Agersborg, 2014), and has enrolled patients affected with urge
incontinence due to various neurological diseases. The Afferon
was admitted into phase II clinical trials. Currently, Eli Lilly
and Company has exclusive worldwide license rights for the
commercial use of RTX for the treatment of bladder disease
or function. Unfortunately, in contrast to these practices (Guo
et al., 2013; Foster and Lake, 2014), RTX is still not a registered
drug.

Nevertheless, the effectiveness of intravesical RTX treatment
strongly varies from study to study. The reasons for these
inconsistencies in the clinical outcome might be manifold: too
dilute samples of vanilloids were used, different origins of the

FIGURE 4 | Topical intravesical medication of RTX via transurethral instillation

promises several advantages over oral systemic CAP therapy. Intravesically

administered RTX penetrates the vesical mucosa and submucosa by diffusion

and binds to TRPV1+ nerve endings. The suggested “balloon dilator” method

benefits from the increased surface of urothelium due to the thinning of the

bladder mucosa.
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latent disease resulting in urinary disfunction, or the simple lack
of a significant effect of RTX in a specific type of urinary problem.
We would like to pay attention to the fact that strong adsorption
of RTX and CAP molecules into the tubes of the application
devices might also occur. These technical problems can cause a
huge variance in the clinical outcomes. Animal experiments will
be required to obtain the appropriate material for these tubes. By
using a water-soluble formulation of vanilloids (Appendino et al.,
2010) the adsorption of vanilloid molecules onto the tubes might
also be avoidable. The loss of the TRPV1+ nerve endings in the
urothelium can serve as a marker for the successful intravesical
instillation.

OTHER AGONIST-ACTIVATED
CA2+-CHANNELS AS TARGETS OF NOVEL
MOLECULAR SURGERY AGENTS

The molecular mechanism of TRPV1-mediated cytotoxicity
shows conspicuous similarity to glutamate-receptor mediated
excitotoxicity, i.e., robust Na+ and Ca2+ influx, cell swelling,
mitochondrial Ca2+ loading, and production of reactive oxygen
species (Dong et al., 2016). Ionotropic glutamate receptors, as
glutamate is the main excitatory neurotransmitters in the central
nervous system, play important role in production of excitatory
postsynaptic potentials, neuronal migration, synapse formation,
learning, and memory (Choi and Rothman, 1990; Dugan et al.,
1995). Kainic acid, an agonist for kainate-class ionotropic
glutamate receptors, is commonly injected into laboratory animal
models to study the effects of experimental ablation. However,
attempts to limit cell loss to specific hippocampal neurons
have been met with mixed successes and failures (Jarrard,
2002).

The concept ofmoleculary surgery would be an ideal approach
for cancer treatment. Tumors express a different composition
of TRP channels than normal cells (Park et al., 2016). Finding
a specific TRP target overexpressed only in the tumor cells and
finding a potent agonist would provide an ideal pair for the
tumor-specific eradication. Recently, it was found that kidney
cancer cells can be efficiently and specifically targeted by (-)-
Englerin A, a potent and selective activator of TRPC4 and TRPC5
channels (Akbulut et al., 2015). The renal cancer cell line A498,
which is most sensitive for (-)-Englerin A, has a highest degree of
expression of TRPC4 among the NCI60 cell lines (Akbulut et al.,
2015). New derivatives of (-)-Englerin A have been synthetized
in order to find effective drugs for the treatment of renal cell
carcinoma. A patent application has been filed for this treatment
(Echavarren et al., 2011). These new derivatives open a new way
of the final goal of finding effective drugs for the treatment of
renal cell carcinoma.

CONCLUSIONS AND PERSPECTIVES

Evidence-based and clinically-tried B2B-approaches, such as
molecular neurosurgery prototyped with RTX and TRPV1

channel, can be extended for other applications. Here we
put an emphasis to the analgesic use of the agonist-induced
selective cytotoxic mechanism, however by analogy, a number
of robust, biological cell deletion mechanisms may be used
in the near future. For example, treatment of metastatic
cancers might be amenable by using cancer-specific TRP
targets.

Currently, RTX is the most powerful molecular surgery agent
in Phase II clinical trials to manage cancer pain in humans.
RTX has also been evaluated in severe inflammatory pain states
and various neuropathies, as it only removes acheurons and
preserves any other bystander cells, fibers, and nerve endings,
with little or no side-effects. RTX works in conjunction with
TRPV1, with a lack of any effect to cells which do not express
TRPV1.

Combination treatment, however, may extend the utility
of CAP or other weaker agonists enhancing the cytotoxic
effect of vanilloids. A family of positive allosteric modulators
(PAM) of TRPV1 only activates Na+ and Ca2+ entry via the
vanilloid receptor channel if a vanilloid (CAP, RTX, piperine,
etc.) is already bound to the receptor (Roh et al., 2008).
These compounds extend the molecular tools of molecular
surgery. PAM further increases by 2–3-fold the maximal effect
of vanilloids on the induction of Na+/Ca2+-uptake, producing
little or no action when used alone (Roh et al., 2008; Kaszas
et al., 2011; Lebovitz et al., 2012). Thus, weaker exovanilloids
such as CAP and piperine, present in hot peppers and black
peppers, or even weaker endovanilloids can serve as agents to
fight against inflammation, pain, and neuropathies. Morevover,
RTX, together with a PAM molecule, MRS1477, can provide
innovative solutions to number of currently unmet medical
needs. The exact mechanism of positive allosteric modulation
and the domain specificity of the binding site is not enterely
known. Therefore, a more detailed quantitative structure-activity
relationship and the determination of the TRPV1-mediated
cytotoxic capacity of PAMs must be examined by further
studies.
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