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Many statistical and methodological 
developments regarding fractal analyses have 
appeared in the scientific literature since the 
publication of the seminal texts introducing 
Fractal Physiology. However, the lion’s share of 
more recent work is distributed across many 
outlets and disciplines, including aquatic 
sciences, biology, computer science, ecology, 
economics, geology, mathematics, medicine, 
neuroscience, physics, physiology, psychology, 
and others. 

The purpose of this special topic is to solicit submissions regarding fractal and nonlinear 
statistical techniques from experts that span a wide range of disciplines. The articles will 
aggregate extensive cross-discipline expertise into comprehensive and broadly applicable 
resources that will support the application of fractal methods to physiology and related 
disciplines. 

The articles will be organized with respect to a continuum defined by the characteristics 
of the empirical measurements a given analysis is intended to confront. At one end of the 
continuum are stochastic techniques directed at assessing scale invariant but stochastic data. 
The next step in the continuum concerns self-affine random fractals and methods directed at 
systems that entail scale-invariant or 1/ƒ patterns or related patterns of temporal and spatial 

FRACTAL ANALYSES: STATISTICAL 
AND METHODOLOGICAL  
INNOVATIONS AND BEST  
PRACTICES

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology/researchtopics/Fractal_Analyses_Statistical_a/555


Frontiers in Physiology June 2013 | Fractal Analyses: Statistical And Methodological Innovations And Best Practices | 3

fluctuation. Analyses directed at (noisy) deterministic signals correspond to the final stage of 
the continuum that relates the statistical treatments of nonlinear stochastic and deterministic 
signals. Each section will contain introductory articles, advanced articles, and application 
articles so readers with any level of expertise with fractal methods will find the special topic 
accessible and useful. 

Example stochastic methods include probability density estimation for the inverse power-
law, the lognormal, and related distributions. Articles describing statistical issues and tools 
for discriminating different classes of distributions will be included. An example issue is 
distinguishing power-law distributions from exponential distributions. Modeling issues and 
problems regarding statistical mimicking will be addressed as well. 

The random fractal section will present introductions to several one-dimensional monofractal 
time-series analysis. Introductory articles will be accompanied by advanced articles that will 
supply comprehensive treatments of all the key fractal time series methods such as dispersion 
analysis, detrended fluctuation analysis, power spectral density analysis, and wavelet 
techniques. Box counting and related techniques will be introduced and described for spatial 
analyses of two and three dimensional domains as well. Tutorial articles on the execution and 
interpretation of multifractal analyses will be solicited. There are several standard wavelet 
based and detrended fluctuation based methods for estimating a multifractal spectrum. We 
hope to include articles that contrast the different methods and compare their statistical 
performance as well. 

The deterministic methods section will include articles that present methods of phase space 
reconstruction, recurrence analysis, and cross-recurrence analysis. Recurrence methods are 
widely applicable, but motivated by signals that contain deterministic patterns. Nonetheless 
recent developments such as the analysis of recurrence interval scaling relations suggest 
applicability to fractal systems. Several related statistical procedures will be included in this 
section. Examples include average mutual information statistics and false nearest neighbor 
analyses.
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Fractal statistics now routinely appear in the scientific literature.
Examples originate from many disciplines, including aquatic sci-
ences, biology, computer science, ecology, economics, geology,
mathematics, medicine, neuroscience, physics, physiology, and
psychology. This eBook provides a broad range of resources to
support the application of fractal methods and theory in physi-
ology and related disciplines. It is comprised of a set of research
topic articles that appeared in the Frontiers in Physiology specialty
section: Fractal Physiology. Our eBook chapters are organized
along a loose continuum defined by the characteristics of the
empirical measurements a given statistical technique is intended
to confront.

At one end of the continuum are techniques designed for
application to stochastic systems. van Rooij et al. (2013) describe
histograms, probability distributions, and scaling distributions in
fractal terms. The next step on the continuum concerns self-affine
random fractals and methods intended for outcome measures
that entail scale-invariant 1/f patterns or related patterns of tem-
poral fluctuation. Stadnitski (2012) overviews several statistical
procedures available for the analysis of fractal time-series mea-
surements. Riley et al. (2012) discuss an adaptive fractal analysis
that broadens the potential range of bio-signals that can be
understood from a fractal perspective. Likewise, Marmelat et al.

(2012) illustrate a relative roughness scale, helpful in determining
the applicability of a monofractal description to a given signal.
Wijnants et al. (2013) examines how of signal sampling rate arti-
facts influence spectrally derived scaling exponents. Hasselman
(2013) discusses relationships among a set of common frac-
tal time-series analyses, and advocates reliance on theory-driven
predictions as a route to understanding the systems that yield
empirical patterns. Eke et al. (2012) bridge the monofractal and
multifractal frameworks with a special emphasis on the appro-
priate and accurate characterization of measured signals. Ihlen
(2012) supplies a detailed tutorial on multifractal detrended
fluctuation analysis.

The deterministic end of the statistical continuum empha-
sizes techniques used to investigate systems that express differen-
tiable trajectories. Webber (2012) illustrates recurrence analysis
on time-series derived from several multi-dimensional dynamic
systems. Gao et al. (2012) introduces a very general analysis that
is suitable for use on both stochastic and continuous measure-
ments. Finally, Richardson et al. (2012) describe techniques that
assess relative dynamic synchrony among multiple coupled oscil-
latory time-series. Taken together, the chapters offer a gamut of
analytic strategies alongside contemporary expertise on how to
best conduct and interpret the outcomes of fractal analyses.
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Event-distributions inform scientists about the variability and dispersion of repeated
measurements. This dispersion can be understood from a complex systems perspective,
and quantified in terms of fractal geometry. The key premise is that a distribution’s
shape reveals information about the governing dynamics of the system that gave rise
to the distribution. Two categories of characteristic dynamics are distinguished: additive
systems governed by component-dominant dynamics and multiplicative or interdependent
systems governed by interaction-dominant dynamics. A logic by which systems governed
by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse
power-law samples is discussed. These mixtures are described by a so-called cocktail
model of response times derived from human cognitive performances. The overarching
goals of this article are twofold: First, to offer readers an introduction to this theoretical
perspective and second, to offer an overview of the related statistical methods.

Keywords: scaling relations, distribution analysis, dynamic systems, cognitive performance, response time

distributions, fractal analysis

Many biological, physiological, and psychological phenomena
display time evolving dynamics among their governing processes.
Very often these dynamics are straightforwardly observable, as in
the back-and-fourth limb movements that are typical of human
gait. The most successful and transparent contemporary models
of human gait originated in the mathematics of harmonic oscil-
latory systems such as the driven-pendulum (e.g., Haken et al.,
1985; Kugler and Turvey, 1987). The late 15th century research
on pendulum behavior was originally motivated by a need for
reliable clocks (e.g., Huygens, 1673/1986). The resulting math-
ematical framework was subsequently adapted to the problem
of biological locomotion (among other things). The new appli-
cation was accommodated by the straightforward observation
that, like the pendulum of a clock, both human and animal gaits
exhibit relatively regular oscillatory movements (e.g., von Holst,
1939/1973). Clearly, gait’s accessibility to measurement facilitated
progress in this domain.

Unlike locomotor activity, however, the dynamic evolution
of other biological and behavioral systems is, for various rea-
sons, relatively opaque, or simply unobservable. For instance,
time evolving dynamics likely support cognitive activity, but
those dynamics are more difficult to measure. Worse yet, many
stochastic processes entail statistical independence across time.
In these cases, scientists may only have access to distribu-
tions of measurements that characterize either the same or
categorically similar events. They can be utterly disconnected
events, related by identity only, not by an obvious adjacent
connection in time or space. Thus, a typical outcome mea-
sure might index event durations, frequencies, magnitudes, or
similar variables. Examples include earthquake magnitudes, com-
puter network traffic, war durations, and countless others.
Nevertheless, the shapes of the event-distributions that arise in

many systems are often quite lawful. Perhaps the best-known
example is when they conform to a Gaussian probability density
function.

This article is motivated by the insight that the shape of
probability distributions of events reveals information about the
dynamics that govern a system’s output. The approach leverages
the fact that the essential nature of the dynamics that govern many
natural stochastic systems can be understood without specific
knowledge of the components that comprise the system itself
(Holden et al., 2009; Holden and Rajaraman, 2012). Inferences
about dynamics follow from the statistical behavior of random
variables in conjunction with contemporary narratives regarding
the behavior of complex systems (Montroll and Shlesinger, 1982;
West and Deering, 1995).

To be sure, the methods we describe reveal less complete
dynamic information than the methods customarily used in
conjunction with observable dynamics, such as phase-space
reconstruction. Nevertheless, they do yield enough informa-
tion to categorize systems in terms of a straightforward taxon-
omy that distinguishes between component-dominant dynamics
and interaction-dominant dynamics. The event-distributions of
component-dominant systems reflect the activity of isolable
system components, their time-course, functional details, plus
unsystematic additive sources of noise (e.g., Sternberg, 1969;
Simon, 1973; Lewontin, 1974). By contrast, the event distri-
butions of interaction-dominant systems reflect emergent, irre-
ducible coordination and coupling among the processes that
govern the system (e.g., Pattee, 1973; Jensen, 1998). Dynamics
are determined by the category of component interactions in the
sense that if a given category of system dynamics is in place then
particular categories of outcome distributions are a necessary
consequence.
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van Rooij et al. Dynamics from distributions

Over the course of this article, we present several methods
for analyzing and interpreting distributions of observations in
terms of their implications for a measured system’s dynamic prop-
erties. Our entry point is a fractal perspective on distributions
that augments the traditional Euclidean geometry that underpins
conventional approaches to distribution fitting and parameter
estimation. We illustrate how to compute the fractal dimension
of an empirical distribution, how to estimate the scaling expo-
nent of an inverse power-law distribution, and finally discuss how
to apply maximum likelihood techniques to fit a promising “cock-
tail” mixture model of response time distributions from cognitive
performances.

FRACTAL DISTRIBUTION METHODS
The traditional approach to the characterization of distributions
is framed within the context of Euclidian geometry and the stan-
dard “signal plus noise” theory of measurement error that was
largely perfected by the mid-20th century (Stigler, 1986). It is a
powerful and useful framework. Arguably, however, many natu-
ral systems live on the boundary of its assumptions, or sometimes
simply fail to conform to its assumptions. The present goal is
to illustrate how distribution analysis can be broadened and
enhanced by the inclusion of concepts from fractal geometry. We
begin by reviewing the concept of dimension, and generalize the
intuitions of the standard Euclidian integer dimension to include
the fractal concept of non-integer dimension.

FRACTAL DIMENSION
Regular objects, conforming to classical Euclidean geometry, can
be characterized by their Euclidean dimension. A punctate obser-
vation is a zero-dimensional point; a dimensionless location
on a one-dimensional line of measurement. A line is a one-
dimensional object; a smooth surface has a dimension of two,
and a cube three. Euclidian objects are homogeneous and uni-
form, breaking them into scaled-down but geometrically identical
pieces, reveals their dimension.

If the sides of a cubic decimeter are measured in cubic centime-
ters; that is, if they are scaled down by a factor of 10, then exactly
1000 cubic centimeters will fit in the original cubic decimeter
because 1000 = 103. Thus the Euclidean dimension of the orig-
inal cube is exactly three. In the same vein, if the sides of a
squared decimeter are measured in squared centimeters, 100 =
102 squared centimeters fit in the original squared decimeter, and
the Euclidean dimension of the original surface is two. Finally, if a
line of one decimeter length is measured in centimeters, 10 = 101

centimeters fit in the original line and the Euclidean dimen-
sion is one (see Figure 1). This mapping even works for points,
1 = 100, a point cannot be rescaled or divided, and is therefore a
zero-dimensional object.

Another way to measure an object’s dimension is by determin-
ing its topological dimension. Topological dimension in rooted
in the idea of connectedness among points in a set. It is com-
puted by determining the dimension of the object required to
separate any part of the original set from the rest, plus one. For
instance, a line has a topological dimension of one because it can
be segmented by a single point that has zero dimension. In fact,
regular objects such as curves, surfaces, and solids each have an

FIGURE 1 | Depicts the rescaling relationships of a cube, surface, and a

line that determine a regular object’s Euclidean dimension.

integer topological dimension of 1, 2, and 3, respectively—values
that equal their Euclidean dimension (Bassingthwaighte et al.,
1994; Falconer, 2003). Both the Euclidean and the topological
dimension take only integer values.

Euclidean geometry, while characteristic of many human arti-
facts, is an exception to the rule for natural objects. The geometry
of most natural objects is highly irregular. Idealized fractal objects
are typically comprised of nested copies of the whole object. Their
dimension may fall in between the integer Euclidean values. The
fractal dimension of an object effectively indexes the relative irreg-
ularity or space-filling properties of an object. Imagine a piece
of thread held taught between two hands, the thread resembles a
straight line with Euclidean (and topological) dimension of one.
The thread begins to occupy space when it is weaved back and
forth, as in a loom, for instance, and the tighter the weave, the
more closely it approximates a two dimensional object, cloth. It
can be said to “leak” into the next higher, 2nd Euclidean dimen-
sion, and thus corresponds to a non-integer fractal dimension.

Ours is an admittedly intuitive treatment of fractal dimen-
sion. It is a complex mathematical topic and the most formal
definition of a fractal concerns a comparison of an object’s topo-
logical dimension with its space filling properties, as indexed
by yet another measure of dimension called the Hausdorff–
Besicovitch (H–B) dimension. A set for which the H–B dimension
strictly exceeds its topological dimension is a fractal (Mandelbrot,
1977). A more inclusive proposal, also put forward by Benoit
Mandelbrot, is that “a fractal is a shape that is made of parts similar
to the whole in some way” (Feder, 1988).

The take-home point is that objects can be fractal, and are
characterized by a non-integer fractal dimension. These facts
apply to sets of repeated observations of the self-same process.
If repeated measurements of the same object or process always
yield exactly the same result, then the measurement converges to a
zero-dimensional point—a value commensurate with any obser-
vation’s Euclidean or topological dimension. However, repeated
measurements of natural systems rarely yield sets of identical out-
comes. Instead, they almost inevitably vary from observation to
observation.

It is this variability or uncertainty in repeated but categorically
identical measurements that yields dispersion over the x-axis of
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a dependent measure in an experiment. In this way, the set of
measured points begins to “fill” an interval and approximate the
one-dimensional x-axis of measurement. Just as a more tightly
woven piece of thread better approximates a plane, a variable col-
lection of zero-dimensional points roughly approximates a line.
Other things equal, such as sample size, a more dispersed distri-
bution will occupy a broader interval and leak further into the
domain of the line than a less variable distribution. As such, a
distribution’s interval-filling properties are indexed by its fractal
dimension.

One way to estimate the fractal dimension of a distribution is
entailed in the common relative entropy statistic. First, generate a
histogram of the observations across a fixed interval on the x-axis
of measurement. The maximum potential range of the observa-
tions should define the interval. Once the interval is divided into
a convenient number of smaller intervals or bins, the observed
frequency in each bin is transformed into a probability, by divid-
ing each bin count by the total number of observations. Next the
Shannon information (Shannon and Weaver, 1949) is computed
across all bins, and divided by the maximum possible entropy—
the negative base-2 log of one divided by the total number of
bins B.

FDre = − ∑
pilog2pi

−log2(1/B)
(1)

Equation 1. The fractal dimension based on the relative entropy
statistic (FDre) as a function of the probability pi of finding
observations in bin i, and B, the total number of bins.

Equation 1 computes the fractal dimension based on the rel-
ative entropy statistic, the probability of finding observations in
each bin, and the number of bins. The relative entropy statistic
measures the relative “evenness” of the distribution; a value of one
indicates a uniform distribution where the probability weights
evenly cover the measurement interval. Values progressively less
than one indicate progressively more “clumpiness” (Seuront,
2010). It can be directly interpreted as a fractal dimension, the
degree to which the collection of zero-dimensional points repre-
senting the observations leaks into the next higher first Euclidean
dimension. Effectively, increases in the variability of the mea-
surements equate with increases in the fractal dimension of the
measurements. Figure 2 displays the FDre and probability den-
sities of four probability distributions that will be discussed in
this article, alongside the uniform distribution, which marks the
maximum relative entropy, and FDre of one.

On one hand, using relative entropy as a measure of the frac-
tal dimension is a fairly course grained method for assessing or
comparing the dispersion among distributions. Parametric vari-
ability statistics are more sensitive. On the other hand, it is largely
assumption free. It is most useful for empirical distributions that
are not particularly orderly. For instance, distributions that do
not appear to conform to a shape that might indicate a standard
probability density function could be reasonably adopted as a
model. We now consider the more specialized cases where empir-
ical distributions conform to familiar, idealized shapes of defined
probability density functions. We provide an introduction to
a general taxonomy of random variables that distinguishes the

characteristic mode of interactions that give rise to observables.
Again, the key focus is characteristic patterns of variability.

SUPERPOSITION vs. INTERDEPENDENCE
The central theme of statistical physics is that the macro-
scopic behavior of a system reflects the microscopic arrange-
ments of its constituent parts (Bruce and Wallace, 1989).
Characteristic system dynamics originate in the relationships
among the processes that comprise a system. Our introduc-
tion briefly distinguished two broad taxonomies of characteristic
system dynamics: component-dominant dynamics and interaction-
dominant dynamics. They each entail distinct system transactions,
superposition, and interdependence, respectively. We now explain
how component-dominant dynamics arise.

The term applies to systems that are governed by the activity
of largely isolable processes, themselves, their time-course, and
their functional details (plus unsystematic noise). Relatively weak
interactions among causal processes insure that perturbations
affect components locally, unsystematically, and individually. As
such, the effects of systematic perturbations can be localized to
individual components—that is a consequence and a benefit of
encapsulated design. Weak and additive cross-process transac-
tions insure that the components, themselves, dominate system
output. Systems that express component-dominant dynamics are
consistent with Simon’s (1973) nearly decomposable systems, since
they entail minimal linkages across time-scales and minimal
within-timescale feedback. Component-dominant dynamics rep-
resent a key prerequisite for a successful reductive analysis of a
system. They are presumed in the application of standard linear
Gaussian statistical techniques such as ANOVA and regression.

COMPONENT-DOMINANT DYNAMICS
The standard Gaussian distribution represents an archetypal out-
come or end state for systems that are comprised of components
whose effects dominate their time evolution. The dispersion or
variability around the mean of a Gaussian distribution emerges
from the combined, additive influence of innumerable weak,
accidental, and mutually independent factors (Gnedenko and
Khinchin, 1962; Hays, 1994). Each influence or perturbation
affects the outcome, if ever so slightly. Since the factor’s effects
are independent and unsystematic they cancel each other’s influ-
ence as often as they reinforce each other, in the long run. Thus,
Gaussian distributions emerge from systems whose observables
are subject to vast arrays of relatively weak, additive, and inde-
pendently acting perturbations: component-dominant systems.
In effect, the dynamics of superposition simply restate Laplace’s
Central Limit Theorem. If the assumptions of the theorem are
met, then a Gaussian distribution will result. In that case, the dis-
tribution’s mean is the only real piece of information imparted by
the entire distribution.

The standard exponential distribution represents a different
expression of component-dominant dynamics. Its probability
density is p(x) = (1/λ)e−x where x is the axis of measurement. An
exponential distribution often signifies processes that conform to
stochastic “counting” or a bottlenecked queuing process. It repre-
sents a steady, reliable accrual process that is characterized by the
mean (λ) of the distribution. The exponential distribution is thus
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FIGURE 2 | Five model distributions with approximately equal mean

and variance and the corresponding fractal dimension FDre based on

the relative entropy computed using 10 bins. The top four distributions
(Gaussian, exponential, lognormal, and inverse power-law) are ordered
according to two broad taxonomies of characteristic system dynamics:

component-dominant dynamics and interaction-dominant dynamics (see
text for details). The uniform distribution is included to define the upper
boundary for FDre . The fractal dimension gauges the relative variability
of the respective distributions; the more evenly dispersed, the larger the
FDre .

a typical example of a distribution resulting from a component-
dominant process; its properties are fully described by the average
rate 1/λ. The exponential is an expression of additive perturba-
tion in time, as the exponential arises when events have a constant
average rate per interval of time, and conform to a Poisson dis-
tribution, which, in turn, can be approximated by a Gaussian
distribution. As with the Gaussian, exponential variability arises
from unsystematic additive influences and its mean is the key
piece of information imparted by the distribution.

If an exponential rate parameter is sufficient to characterize a
process then it could, in principle, be identified and discriminated
from other processes with different characteristic rate parame-
ters or distribution functions. System outputs that conform to
an exponential support a hypothesis that component processes

themselves, dominate a system’s transactions and observed vari-
ability. Next, we introduce an alternative case, in which the
system dynamics are dominated by reciprocal, interdependent,
and multiplicative transactions among processes.

INTERACTION-DOMINANT DYNAMICS
Understanding how a system’s components interact takes prior-
ity over identifying the components themselves. This is because
one must first determine whether the components can, in princi-
ple, be recovered before one goes looking for their signatures in
event-distributions, for example (Uttal, 1990; Van Orden et al.,
2003, 2005). Interaction-dominant dynamics are associated with
systems that entail tightly coupled processes spanning a wide
range of temporal or spatial scales, including fractal systems.
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They refer to systems that entail multiplicative and/or interde-
pendent feedback transactions among the processes that govern
the system’s dynamics. Just as component-dominant dynamics
are associated with additivity, and the Gaussian distribution,
interaction-dominant dynamics are also consistent with specific
categories of distributions.

An inverse power-law distribution is a so-called heavy-tailed
distribution; the heavy tail represents large magnitude, but rare
events (Clauset et al., 2009). Thus, it expresses a salient positive
skew. If the extreme right tail of an event distribution decays as
a power function, then the probability of observing a particular
event magnitude, p(x), is the inverse of the x value itself, raised
to the scaling exponent α (alpha) that is p(x) ≈ x−α. The formal
mathematical equation of the inverse power-law probability den-
sity function is p(x) = b · x−α, where b is a positive constant. The
scaling exponent α quantifies the rate of decay of the distribu-
tion’s tail. In scientific papers, α is normally reported as a positive
number, derived from the equivalence of x−α and 1/xα. It is cru-
cial to understand that it indexes a completely different property
of data than the scaling exponent α of 1/f α or 1/f noise (e.g.,
Holden, 2005); the former characterizes the shape of a distribu-
tion, the latter describes long-range fractal patterns of correlation
across successive observations. They are statistically independent
patterns.

Inverse power-law distributions describe phenomena that
range from the distribution of online music sales to earthquake
magnitudes and citations of scientific publications (Anderson,
2006; Bak, 1996; Redner, 1998). Neurophysiological processes
also express power law behavior. For instance, the distribution
of endogenous EEG and MEG oscillations are inversely power-
law distributed (Linkenkaer-Hansen et al., 2001). Similarly,
fMRI measurements of human brains, under untasked condi-
tions, reveal scale-free power-law coordination—correlated rela-
tional networks of a given average size, that span approxi-
mately three orders of magnitude in their observed frequency
(Fraiman et al., 2009). Circular, interdependent feedback trans-
actions likely govern systems that express inverse power-law
scaling.

Power law behavior is symptomatic of self-organizing physi-
cal systems poised near a critical point (Bak, 1996; Jensen, 1998).
One of several model systems for studying the behavior of self-
organized and critical systems is a simple rice pile. Actual rice pile
experiments use an apparatus that makes detailed measurements
of rice grain activity, as kernels are continuously added to and
exit the pile (see Figure 3). Initially, small, localized piles emerge
within the larger pile. As the local piles grow, avalanches unfold.
At a critical point, a holistic coordinative balance emerges through-
out the system. The balance is governed by two competing sources
of constraint: friction and inertia (Jensen, 1998). From that point
on, the rice pile maintains a time-invariant organization, even in
the face of the constant perturbation induced by the intermit-
tent clusters of inflowing and avalanching rice. Notably, while
the classic lore surrounding this phenomenon concerned sand
piles, it is in fact long-grain rice rather than sand that entails the
proper ratio between friction and inertia to express the character-
istic behaviors associated with self-organized criticality (cf. Frette
et al., 1996).

FIGURE 3 | An example experimental setup used to study the

dynamics of one-dimensional rice piles. The first experimental
confirmation that self-organized criticality occurs in granular systems was
reported by the Cooperative Phenomena Group at the University of Oslo
(Frette et al., 1996). Rice kernels were slowly fed into the pictured device.
High-resolution photographs and tracer grains were used to track grain
transport. As predicted, the distribution of avalanche magnitudes was
consistent with an inverse power-law distribution (Image reprinted with
permission from the Cooperative Phenomena Group, University of Oslo).

When a rice pile is in a critical regime the effects of perturba-
tion are no longer proportional to the size of the perturbation—
adding one new grain might result in no change, a tiny avalanche,
or a large avalanche, affecting the entire pile. In the long run, small
avalanches occur frequently and occasional very large avalanches
unfold, all the while the pile maintains a time-invariant aver-
age height and slope. An inverse power-law distribution neatly
summarizes the relationship between the avalanche magnitudes
(indexed by grain counts) and their frequency of occurrence.

More generally, scale-invariance, as indicated by power law
scaling, is characteristic of many complex systems near a critical
point. Scale-invariance may be observed with respect to tempo-
ral or spatial variables (or both), but in each case similar changes
unfold at all time (or length) scales of the system. Of course,
power law scaling alone is not sufficient to establish criticality.
For instance, mathematical fractals routinely yield scaling rela-
tions, but they are fully deterministic systems of equations. So,
while they are iterative systems and exploit feedback, they are
not open physical or biological systems. Formally established self-
organized critical systems entail nonlinear, far-from equilibrium
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dynamics, with identified system control parameters that gov-
ern qualitative state changes (phase transitions) in the system’s
observables (order parameters, e.g., see Bruce and Wallace, 1989;
Nicolis, 1989). That said, self-organization and critical behavior
are generally accepted as plausible working hypotheses with the
observation of non-trivial scaling in complex biological systems
(e.g., Bak and Paczuski, 1995; Bak, 1996).

A striking outcome of research on critical phenomena is the
concept of universality—while the physical details of various
critical systems vary widely, their behavior near their respective
critical points is highly similar. Model rice piles are dynamic crit-
ical phenomena and express scale invariance and time-invariant
organization. Equilibrium critical phenomena, such as a super-
conducting phase transition, arise in certain conductive materials
and express scale invariant coordination near the critical temper-
ature at which electrical resistance vanishes in a superconducting
phase transition. The physical details of rice piles and supercon-
ductive materials could hardly be more distinct. Nevertheless,
member systems of both categories of critical phenomena exhibit
universalities, such as critical exponents, characteristic frac-
tal dimensions, and scale-free spatial and temporal correlation
functions.

By way of summary, the model rice pile system only reaches
a critical state when certain grain size and smoothness require-
ments are met. For instance, if one adds a constraint that changes
the balance between inertia and friction so that one or the other
term dominates the interactions, the empirical consequences of
feedback are minimized, and the rice pile converges on a charac-
teristic relaxation time. Systems in which the effects of feedback
are negligible but that are still governed by multiplicative interac-
tions exhibit lognormal instead of power law dispersion (Farmer,
1990; Holden and Rajaraman, 2012).

Lognormal distributions are found in various systems in
chemistry, biology, ecology, and economics. In biology and
ecology, multiplicative processes describe population and organ-
ism growth (Preston, 1948, 1962; Koch, 1966; May, 1981;
Magurran, 1988). Proportional amplification yields accelerating
growth. Thus, Nishiura (2007) discussed the lognormal distri-
bution as a model for the incubation times of viral infections.
Similarly, normally distributed economic growth rates yield a log-
normal distribution of future investment values because growth
operators are multiplicative.

A lognormal distribution arises from pure multiplicative inter-
actions among independent random variables. The Central Limit
Theorem established that the sum of many independent random
variables yields a Gaussian distribution. A lognormal distribution
becomes Gaussian after a logarithmic transform of the mea-
sured variable. Summing the logarithms of two or more numbers
and then taking the antilog of the sum, yields their cumulative
product. This fact offers a route to generalize the Central Limit
Theorem to multiplicative interactions among independent ran-
dom variables. Processes that generate a lognormal distribution
directly are analogue to processes that generate a normal distri-
bution. Just as the sum of many independent random variables
yields a Gaussian distribution, the product of many independent
random variables yields a lognormal distribution (Koch, 1966;
Ulrich and Miller, 1993).

One may envision a loose continuum of ideal distributions
spanning the general taxonomy of component-dominant and
interaction-dominant dynamics (e.g., Montroll and Shlesinger,
1982; West and Deering, 1995). At one extreme, there is the
Gaussian distribution, a signature of weak unsystematic additive
interactions among independent, random variables. At the other
extreme, there is the heavy-tailed inverse power-law, the signature
distribution of interdependent feedback dynamics. The mod-
erately skewed lognormal stands between these two extremes;
it arises from multiplicative interactions among independent
variables.

Admittedly, the distributions we discuss, depicted in Figure 4,
represent a tiny subset of the full catalogue of ideal statistical
distributions available to scientists. However, no matter their
original form, variables conforming to the majority of com-
mon statistical distributions are attracted to the Gaussian shape
in the case of unsystematic summation, the lognormal in the
case of unsystematic multiplication, and the power law in the
case of amplification contingent on interdependent feedback
operations. Since complex systems likely entail many processes,
operating across many time scales, the subset of distributions
discussed here represent a plausible entry point for scientific
investigation.

We illustrated how the characteristic shapes of ideal distri-
butions supply clues about the dynamics governing a complex
system. Dynamics governing a system are determined by the
transactions among the processes that compose the system. The
shapes of distributions of repeated measurements from a system
reveal information about the nature of those transactions. Note
that inferences regarding the relation between signature dynamics
and a distribution’s shape are not necessarily invertible. If the said

FIGURE 4 | The plots depict the cumulative distributions (left), and

probability density (right) functions of four ideal distributions

that signal either component-dominant or interaction-dominant

dynamics. The Gaussian and exponential distributions are symptomatic
of component-dominant dynamics while the lognormal and inverse
power-law distributions are symptomatic of interaction-dominant
dynamics. To the extent that the shapes of empirical distributions resemble
these various ideal shapes, they likely reveal information about the
governing dynamics of the system that gave rise to the distribution.
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dynamics govern the interactions of the underlying processes, the
various shapes are an unavoidable consequence. However, there
are any number of ad-hoc ways to contrive the shapes of these
distributions. Fortunately, few natural systems represent ad-hoc
contrivances.

EXAMPLE STATISTICAL TECHNIQUES
This section intersperses example distribution analyses with a bit
of practical advice for conducting and using distribution analy-
ses, especially for response time data. We emphasize a complex
systems perspective on the phenomena we discuss. We do not
claim that a complexity perspective is the only legitimate per-
spective one could take on these topics. There are, however, many
sources that one may consult for conventional narratives on these
topics. Complexity theory is a relative newcomer to the physio-
logical, behavioral, and social sciences and offers a promising new
perspective on human cognition.

HISTOGRAM METHODS
This section overviews histogram-based techniques for character-
izing power law distributions. The details and relative strengths of
these techniques are well characterized in extant references. We
strongly encourage readers to consult Newman (2005), Perline
(2005), Clauset et al. (2009), and Brown and Liebovitch (2010),
for more complete treatments of rank-frequency, histogram, and
related methods for characterizing power laws.

The rank-frequency plot is among the earliest techniques rou-
tinely used to identify and characterize power law distributions
(e.g., Zipf, 1935/1972). The relation between rank and word
frequency is the method’s namesake, but variables other than fre-
quency can be depicted instead. These plots sort items in terms of
their use, or popularity, a ranking measure, in conjunction with
a measure of magnitude. For instance, one could rank items in a
retail store in terms of best to worst sellers, and also record their
price or how often each item is sold (e.g., see Anderson, 2006).
Figure 5 depicts English words with respect to how often they
appear in printed text, according to the word frequency counts
of Brysbaert and New (2009). The plot illustrates Zipf ’s Law, an
inverse power-law relation between usage rank and frequency of
words in written text (Zipf, 1935/1972). The plot’s x-axis tracks
the relative ranking of the words on a logarithmic scale and the
y-axis similarly represents a logarithmic transform of frequency.
When the points in a double-logarithmic rank-frequency plot lie
on a straight line, the density is likely a power law (Perline, 2005;
Brown and Liebovitch, 2010).

The mathematical properties of logarithms allow a bivariate
linear regression analysis to be used to estimate the distribution’s
scaling exponent. Recall that the general form of the tail of an
inverse power-law rank-frequency plot is p(x) = bx−α, where b is
a positive constant and α the scaling exponent. Taking the nat-
ural logarithm of both sides of this equation yields ln(p(x)) =
ln(b) − αln(x). This denotes a linear relation on double logarith-
mic axes with slope −α, and scaling exponent α. Thus, a scaling
exponent can be roughly estimated from the slope of the distribu-
tion’s heavy tail on double-logarithmic scales. A fractal dimension
FDrf , related but not isomorphic to FDre, can be estimated as 1/α
(Mandelbrot, 1977; Seuront, 2010).

FIGURE 5 | This plot depicts the Zipf’s Law relation between the

frequency of occurrence of words in the SUBTLEXUS database and the

usage rank for approximately 8000 of the most common words

(Brysbaert and New, 2009). The SUBTLEXUS database is based on a total
of 51 million words that were made available as part of the Elexicon project
(http://elexicon.wustl.edu/). Displayed on log-log axes, the rank-frequency
relation approximates a straight line, indicating a power law.

Real languages, whether sampled from specific texts, whole
languages, and even translated ancient texts, express Zipf ’s law
(Seuront, 2010). Some authors speculated the pattern is inevitable
and claimed it even emerged in randomly assembled letter
strings or meaningless text (Miller and Chomsky, 1963). Despite
these historical claims, randomly assembled letter strings do
not express Zipf ’s Law. In fact, careful recent simulations and
statistical analyses revealed that random texts do not accurately
correspond to the expected power law, but real texts do express
power laws (Ferrer-i-Cancho and Elvevåg, 2010). Ferrer-i-Cancho
and colleagues observed that real texts are constrained by con-
text and meaning, not just by prior character probabilities. They
conjectured that the law-like relation between usage rank and
frequency results from these competing constraints. Zipf himself
speculated that the pattern in language emerges as a consequence
of the competing requirements to facilitate a diversity of expres-
sions while preserving simplicity of use. In any case, Zipf ’s Law
appears to reflect the expression of a universal principle of natural
language.

Rank-frequency plots are useful tools for computing scaling
exponents and estimating a fractal dimension from a distribution
of measurements. However, they lack many statistical advan-
tages offered by continuous distribution functions. For example,
empty histogram bins become problematic under a logarithmic
transform because the log of zero is undefined.

One way to address the empty bin issue, especially with smaller
sample sizes, while maintaining the histogram approach, is to
adopt logarithmically spaced histogram bins. Figure 6 depicts the
outcome of a free-recall semantic memory experiment (Nash,
2012). Participants were asked to recall as many animals as
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FIGURE 6 | Depicts the outcome of a free-recall semantic memory

session for a single participant from Nash (2012). The upper plot
displays the normalized frequency as a function of the inter-recall interval on
log-log axes. The relationship is approximately linear, indicating a power law.
The lower plot displays the inter-recall-intervals as a function of the
utterance number, the raw data used to generate the histogram.

possible in a 20-min time span. The key dependent measure was
the inter-recall-interval (IRI), the elapsed time between the par-
ticipants successive recall utterances. This paradigm yields data
sets that are comprised of perhaps 150–250 observations—a rel-
atively small sample in the domain of power law distributions.
Increasing the histogram bin widths logarithmically renders even
these relatively small datasets open to statistical characteriza-
tion (Sims et al., 2007). Measurements can then be characterized
and contrasted with alternative distributions, such as an expo-
nential. The IRI distributions are consistent with a power law
description and often yield scaling exponent values between 1
and 3 (Rhodes and Turvey, 2007; Nash, 2012). As such they
are commensurate with a particular subtype of power law dis-
tribution called a Lévy distribution that is implicated in animal

foraging activity (Sims et al., 2012, see also Edwards et al.,
2012).

PROBABILITY DENSITY METHODS
We now discuss techniques that use kernel density smoothing
and maximum likelihood estimation rather than histogram bin-
ning and regression fits to characterize empirical distributions.
Textbox 1 provides the basics on the Gaussian kernel density
estimator; it is a common technique and we adopt it in the
examples that follow. The goal is to characterize distributions
in terms of standard probability density functions. Our partic-
ular focus is on a parametric lognormal and inverse power-law
mixture density function, designed to approximate pronuncia-
tion and response time distributions that arise from standard
laboratory-based cognitive tasks.

As such, our example analyses focus on one particular category
of measurements: human response time distributions derived
from cognitive tasks. There are many types of response time tasks.
Different tasks seek to uncover the functional details of vari-
ous categories of perceptual and cognitive activities; examples
include word recognition, reading, decision-making, perceptual
categorization, and many others. Despite this variety of cogni-
tive activity, most tasks similarly impose discrete trials, and each
trial presents a single stimulus. Participants are timed as they per-
form each elementary cognitive act. Once they respond, often
with a button press signaling a specific response, the timer stops.
Thus, response time is the interval of time that elapses between
the onset of a stimulus and the collection of a response in a
laboratory-based cognitive task.

We focus on response time data from a mental rotation task.
On each trial of the task, a single character from the set 2, 5, 7, G, J,
and R was presented. The characters’ rotation ranged from 0◦ to
180◦ in 60◦ increments. The stimuli were presented in random
order, on half the trials in a normal orientation, and on the other
half, mirror-reversed. Participants pressed one key if the char-
acter was presented in its normal orientation and another when
mirror-reversed, as quickly and accurately as possible.

Broadly speaking, for this and related paradigms, statisti-
cal analyses reveal approximately constant increases in mean
response time, as a function of both the rotation and orienta-
tion factors. This outcome was originally put forward as evidence
that an analogue cognitive process literally rotates a mental rep-
resentation of each character back to the normal orientation, at
a constant rate, to accomplish the orientation judgment (e.g.,
Cooper and Shepard, 1973; Cooper, 1975; Shepard and Metzler,
1988).

Next, we present novel analyses, conducted on a subset of
response time data collected as part of a Master’s thesis project
(Ruzicka, 2005). Figure 9 depicts kernel smoothed response time
probability densities for the normally oriented, 60◦ and 120◦
rotated characters as straight, dashes and dotted black lines,
respectively. The plotted distributions represent correct individ-
ual response times, aggregated across 17 of 27 total participants.
The 17 participants were selected because they each achieved
overall error rates of 10% or less. The density function shapes
make it clear that mean response time increases as a function
of rotation. However, the density functions express complex
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Textbox 1 | Characterizing empirical distributions with Gaussian kernel density estimators.

Kernel density estimation is an empirical distribution smoothing technique. The bars of a histogram are comprised of small rectangular
“kernels” that each represents an individual data point. A kernel density uses the same logic, but in place of the standard rectangle, it
substitutes a small probability density curve to represent each point. A Gaussian kernel is perhaps the most common kernel, but any
continuous and smooth density function can be used. The value of each data point is defined as the mean of each kernel. The standard
deviation around the kernel’s mean is used for smoothing, it can be set arbitrarily, but is usually set automatically in reference to the
variability of the data set. Large kernel standard deviations yield wide kernels and lots of smoothing; small standard deviations yield
narrow kernels and very little smoothing. At each point on the x-axis the values resulting from the kernel function are summed. Clustered
regions of data contribute to larger sums, while sparse regions contribute little to the sums across the x-axis. The outcome is then
normalized to occupy unit area and yields a continuous and smooth empirical density function. Notably, the density function inherits the
properties of the kernels, such as differentiability (see Silverman, 1986; Van Zandt, 2000, 2002). The basic steps for generating a Gaussian
kernel density function are as follows:

Step 1. Let x1, x2, . . . ,xn be a set of data points perhaps a sample drawn from a population with unknown density f. The kernel density
estimate, f-hat is given by Equation 2, where the kernel, K, is the function of a continuous distribution.

f̂h(x) = 1
nh

n∑
i=1

K
(

x − xi

h

)
(2)

Equation 2. Kernel density estimate of a sample x1,x2, . . . ,xn, drawn from an unknown distribution f.

K (x) = 1√
2π

e− 1
2 x2

(3)

Equation 3. The standard Gaussian probability density function.

Step 2. Equation 3 is the standard Gaussian density function, substituting this function for K in Equation 2 results in the Gaussian kernel
density estimator:

f̂h(x) = 1
nh

n∑
i=1

1√
2π

e− 1
2

(
x − xi

h

)2

(4)

Equation 4. Gaussian kernel density estimation for a sample x1,x2, . . . ,xn, drawn from an unknown distribution f. In this equation, the x
variable refers to the location on the x-axis of measurement, and xi refers to an individual data point and h is the smoothing parameter. It
is worth noting that FDre can be computed from a kernel density function. In this case the B in Equation 1 is simply the number of points
on the x-axis for which the kernel density was computed.

changes in shape: increasing rotation results in more variable
and skewed distributions, as if they were progressively stretched.
Now we introduce a distribution function that describes these
response time distributions in terms of a probabilistic mixture of
lognormal and power law samples.

THE COCKTAIL MODEL
The cocktail model was originally conceived as a description
of individual participant’s pronunciation times derived from
the speeded naming task (see Holden et al., 2009; Holden
and Rajaraman, 2012). Pronunciation time is the elapsed time
required to begin speaking a word into a microphone, once
a printed target word is presented on a computer screen in a
speeded naming task. As such, pronunciation time is a subtype
of response time.

Stochastic systems yield distributions of measurements and in
any reasonably complex biological system innumerable imme-
diate and historical constraints attenuate measurement variabil-
ity. In a cognitive act, constraints arise from a participant’s
idiosyncratic personal history, their present state of body and
mind, and task-imposed (environmental) constraints (Hollis
et al., 2009; Van Orden et al., 2012). On any given trial in an
experiment the laboratory protocol delineates task constraints,

but a vast array of additional idiosyncratic constraints are
also sampled. Relevant constraints serve to cohere and stabi-
lize a given cognitive activity. Most important, if the system
is governed by interaction-dominant dynamics, at minimum,
probabilistically sampled constraints are expected to influence
the observable multiplicatively, yielding lognormal behavior.
Competing constraints or the absence of sufficient constraints
may amplify variability in interdependent feedback dynamics,
yielding power law behavior. The end result is likely to be a mix-
ture of samples that indicate a continuum of relative dynamic
stability.

Since lognormal patterns of variability arise from relatively
homogenous multiplicative interactions, lognormal samples rep-
resent more stable interactions among the processes and con-
straints governing a given act. By contrast, power law distribu-
tions emerge in the context of more balanced competition among
constraints, or more weakly constrained transactions among gov-
erning processes. For instance, interdependence and power law
behavior is associated with highly context sensitive near-critical
physical systems. The cocktail model attempts to capture this
continuum as straightforward mixtures of lognormal and inverse
power-law samples. Thus, for any given fit to empirical data, the
lognormal and power law samples are mixed in fixed proportions,
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just as the various liquids in a cocktail are mixed in fixed
proportions.

The shape and location of the cocktail distribution are con-
trolled by four free parameters: a lognormal mean and standard
deviation (�LN and σ), a power law scaling exponent (α) and a
power law weight parameter (ρPL), see Table 1. Three additional
parameters refer to the relative proportions of lognormal samples
in the front and back-end of the distribution (ρFLN and ρBLN ),
and the onset threshold of the power law (�PL). Their values,
however, are fully determined by the free parameters to insure
a smooth, continuous, and legitimate density and distribution
function. Some of the relationships among the cocktail model
parameters are described in Table 1. Additional details regard-
ing the model’s parameters and its full derivation can be found
in Holden and Rajaraman (2012).

There are several ways to approximate or fit a model dis-
tribution to an empirical distribution. For instance, one could
compute a nonparametric Gaussian kernel estimate of the sample
distribution and then use non-linear least squares to approxi-
mate the distribution’s parameters. A more common approach
is to use search algorithms that compute maximum likelihood
estimates of the model’s parameters. Van Zandt (2000; 2002)
provides an accessible introduction to both the methods and
the statistical properties of a number of standard response time
models.

The goal of maximum likelihood estimation is to adjust a
model’s parameters, such as the cocktail distribution, so that the
overall probabilities under the density curve are maximized. The
essentials of the algorithm are straightforward. First, a guess is
made for each parameter. There are numerous ways to make an
initial guess, ranging from “eyeballing” the distribution to gen-
erating quantitative estimates based on special transformations
of empirical statistics. Next, the probability density is computed
at each point on the x-axis of measurement representing all

observations. A point-estimate of the probability is returned for
each observation. The sum of the natural logarithm of each prob-
ability is computed, yielding a summed log-likelihood value. The
bigger this number, the more likely it is to observe the sample,
given the model and its specific parameter settings. Computerized
search algorithms are then used to iteratively explore the param-
eter space for even larger log-likelihood values, until an apparent
maximum value is reached. The search stage of the process rep-
resents an entire statistical sub-discipline, and we do not discuss
it here (see Press et al., 1992). Some search algorithms, instead
of maximizing the summed log-likelihood, minimize the nega-
tive summed log-likelihood. Matlab scripts that accomplish this
procedure for the cocktail model can be downloaded from: http://
homepages.uc.edu/~holdenjn/.

The left column of plots in Figure 7 display kernel density
estimates of the same empirical mental rotation distributions
depicted in Figure 9, now as solid black lines on three sepa-
rate plots. Maximum likelihood fits of the cocktail mixture are
depicted as white lines plotted behind the empirical density func-
tions. The model reasonably captures the empirical distributions.
All three distributions generated reliable fits (based on the 2-step
bootstrapped K–S test described in Textbox 3). Given that the
cocktail model was developed to describe the shapes of individual
participant’s pronunciation time distributions, its apparent suc-
cess at describing response time distributions aggregated across
different individuals is encouraging.

Nevertheless, an aggregation approach requires that indi-
viduals contribute relatively homogeneous distributions to the
aggregate or omnibus distribution. Otherwise, one risks either
successfully fitting a statistical artifact, a set of individual distri-
butions that are not individually consistent with cocktail mix-
tures, but when combined appear as such. The alternative risk is
unsuccessfully approximating an idiosyncratic aggregate of distri-
butions despite the fact that individually, they can be legitimately

Table 1 | Parameters of the cocktail distribution.

Parameter Description Details

�LN The mean of the lognormal portion of the
cocktail mixture distribution.

�LN tracks the location of the lognormal portion of the cocktail distribution along
the x-axis of measurement. It is expressed in natural-log units. (See details in
Textbox 2 on transformation to linear units).

σ The standard deviation of the lognormal
portion of the cocktail distribution.

σ describes the dispersion of the lognormal portion of the cocktail mixture
distribution and is depicted on a natural-log scale (see also Textbox 2).

α The scaling exponent of the inverse power-law
portion of the cocktail distribution.

α characterizes the dispersion of the power law portion of the cocktail
distribution. It describes the decay in the slow tail of the distribution. Plausible
values of α range from 1 to about 10, values outside this range are suspect, and
likely indicate a poor fit.

ρPL The relative weight of the power law
distribution in the tail of the cocktail
distribution.

ρPL indicates the portion of the mixture attributed to the power law portion of the
cocktail distribution. ρFLN , ρBLN together indicate the portion of the distribution
attributable to the lognormal. ρFLN corresponds to the portion of the lognormal
that falls to the left of �LN and ρBLN captures the portion right of the �LN . All
together, the three portions must sum to 1, the area under the density curve.

ρFLN , ρBLN , �PL The relative weight proportions of the
lognormal distribution in the front (FLN) and
back end (BLN) of the distribution, and the
onset threshold of the power law.

The values of these three parameters are constrained by the values of the four
free parameters to ensure a smooth and continuous legitimate probability
density function.
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Textbox 2 | Transforming �LN and σ to a linear-unit mean and standard deviation.

The lognormal mean �LN and standard deviation σ parameters of the cocktail distribution characterize the lognormal portion of the mixture
distribution. They are both defined in natural log units, however. Typically, distributions are characterized by their mean (M) and standard
deviation (SD) in linear units, and it is useful the transform �LN and σ values into the linear domain. Equations 5 and 6 specify the relation
between the M and SD on linear scales and the parameters μ and σ of a lognormal distribution, as specified in the logarithmic domain.
They transform the lognormal cocktail parameters into measured units, such as response time. For example, �LN = 6.2 and σ = 0.15
corresponds to a mean response time of 498 ms (SD = 75 ms). Note these values will differ from the empirical mean and standard
deviation. Empirical statistics include all the data, and will likely be larger than the �LN , and σ that describe only the lognormal portion of
the distribution.

M = eμ+
(

σ2
2

)
(5)

SD = eμ+
(

σ2
2

)√
eσ2 − 1 (6)

Equations 5 and 6. The mean and standard deviation on linear scales, as a function of the logarithmic parameters μ and σ of a lognormal
distribution.

described as cocktail mixtures. For instance, when the partici-
pants that generated error rates greater than 10% were included
in the aggregate distribution, the cocktail model failed to fit all but
the 0◦ condition. Quite often, there are many ways to perform a
task poorly, and very few ways to perform it well. Thus, including
all the participants’ responses in the empirical distribution likely
introduced multiple categories of performance, and the omnibus
distribution became too heterogeneous to be successfully approx-
imated by a single cocktail distribution. Similarly, neither of the
two aggregate 180◦ distributions (normal and mirror-reversed)
was successfully approximated by the cocktail model. Naturally,
these potential pitfalls apply to all model distributions, not just
the cocktail distribution (Estes and Maddox, 2005).

In any case, the cocktail distribution is a statistically reasonable
description of the three example rotation response time distri-
butions. Examining how the cocktail parameters tend to change
across conditions offers insight into how a given manipulation
affects performance dynamics. For instance, if the power law pro-
portion increases at the expense of the lognormal proportions,
then the manipulation plausibly increases the likelihood of inter-
dependent dynamics. Conversely, if the proportion parameters
controlling the power law tend to decrease, and/or the alpha
parameter increases, the manipulation may stabilize cognitive
dynamics.

Of course, more complex and idiosyncratic patterns of change
are possible as well. Several parameters might change as a function
of differences across individuals or across conditions. Effectively,
the cocktail parameters fall into two broad categories: parame-
ters that control location (�LN and �PL) and parameters that
control variability and skew (σ, α, ρFLN , ρBLN , and ρPL). This is
important to keep in mind when interpreting parameter changes.
Occasionally, a fitting operation will return an extremely large
power law threshold (�PL) or scaling exponent (α). A large dis-
crepancy between this threshold and the lognormal mean may
indicate a gap in the empirical distribution, possibly resulting
in a spurious local likelihood minimum. Similarly, scaling expo-
nent values greater than 10 or so are an indication that the
power law is likely superfluous to the fit. In that case, a pure log-
normal or another model may be more appropriate. Excepting

wishful thinking, we know of no viable rationale that identifies the
model’s individual parameters with specific cognitive functions or
activities.

It is important to recognize that the cocktail model is descrip-
tive, and that it relies on a reverse inference regarding the relation
between dynamics and their expression in measurements. This
reverse inference is common in scientific enterprises, an iden-
tical logic yields the routine conclusion that if a Gaussian is
observed, the system’s dynamics are additive. Given that scientists
lack a-priori knowledge about how any given cognitive manipu-
lation actually impacts neurophysiological dynamics, there really
is no guarantee that one can make sense of observed parameter
changes for the cocktail model, or other models.

RESCALING
One specific empirical pattern the cocktail model is capable of
elucidating is a rescaling relation. All the location and variability
parameters are defined in the logarithmic domain (an exception is
the power law threshold, but one can simply compute its natural
log for a rescaling test). Rescaling is indicated if location changes,
in the logarithmic domain, are the only reliable differences that
appear among the model’s parameters in contrasts across a given
set of conditions. These contrasts can be conducted with the
help of bootstrap resampling techniques (Efron and Tibshirani,
1991).

Figure 8 depicts the outcome of a rescaling test completed for
the normally oriented 0◦, 60◦, and 120◦ rotations. Each density
function represents 300 bootstrapped (resampled) replications of
the cocktail fit. The bootstrapped parameter distributions can
be treated as standard errors for each corresponding parameter.
Parameter distributions that overlap within each other’s lower 2.5
and upper 97.5 percentiles are not likely different, distributions
that are segregated beyond these thresholds are likely different.
The plots for each parameter illustrate that only the lognor-
mal mean and the power law threshold are reliably segregated.
(Arguably, σ trended up slightly, as did the 120◦ ρPL parameter).
Progressive increases that exclusively affect the location param-
eters are consistent with a rescaling of the distributions. The
bootstrap analyses indicate that the 60◦ distribution is a near
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FIGURE 7 | The plots depict three example empirical response time

distributions taken from a mental rotation task presented in Ruzicka

(2005). Each plot depicts the probability density function of an empirical
pronunciation time distribution aggregated over 17 participants. In each plot,
the black line represents a kernel-smoothed empirical probability density
function. Maximum likelihood fits of the Cocktail model are depicted in white,

behind the empirical density functions. The three left-hand plots represent
the response time distributions for normally oriented and 0◦, 60◦, and 120◦
rotated characters on linear axes. The three right-hand plots depict the same
empirical and ideal cocktail distributions on double logarithmic axes, and
make the power law decay of the distributions’ tails more apparent. All three
conditions can be reasonably approximated by the cocktail distribution.

exact rescaled copy of the baseline 0◦ distribution. This implies
multiplying the 0◦ distribution by a constant will approximate the
shape of the 60◦ distribution.

One interpretation of rescaling is that an increase in the rota-
tion angle yields a less stable incarnation of the same basic
dynamic organization that governs the orientation judgment in
the normal condition. In a sense, increasing the rotation effec-
tively weakens the constraints that enable participants to make
the orientation judgment, leading to a proportional weakening
in the dynamic interdependencies supporting the performance.
Thus, increasing the rotation angle dilates the dynamics that
support the act in a manner that resembles “zooming in” on a

self-similar fractal object by requiring additional dynamic flow to
disambiguate normal and mirror-reversed orientations, relative
to the 0◦ baseline.

An accurate description of the 120◦ distribution required
slight increases in �PL and the proportion of power law sam-
ples, over and above a pure rescaling operation. If one assumes
that discriminating orientations is more difficult when characters
are increasingly rotated, then a plausible working hypothesis
is that rotation progressively destabilizes this cognitive activ-
ity. Multiplicative compensation is sufficient to overcome the
perturbations induced by the 60◦ rotation. However, less con-
strained interdependent power law dynamics become more
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Textbox 3 | Goodness of fit.

The cocktail distribution-fitting code returns four free cocktail parameters and three additional determined parameters. However, goodness
of fit must then be assessed in some manner. There are many procedures available to complete these tests. One technique is the so-called
Kolmogorov–Smirnov test for comparing a sample distribution with a reference probability distribution. For each point on the x-axis, the
difference (D) is computed as the absolute value of the difference between the empirical and the model distribution. The maximum of
those differences is the D statistic. If the best-fitting parameters were used to define the model distribution, then a Monte Carlo technique
is recommended to evaluate the plausibility of the fit. Clauset et al. (2009), described one such method: First, a synthetic dataset is
generated using the best-fit model parameters. Second, the synthetic dataset is itself fitted with the model, and then D is computed with
respect to the synthetic dataset and its own best-fit parameters. The resulting D value is then retained. This 3-step procedure is repeated
2500 times, resulting in a distribution of 2500 D values. Significance (a p-value) is computed as the proportion of synthetic datasets with
D larger than the D resulting from a contrast to the empirical dataset and its own best-fit model. If the significance value is small (e.g.,
p < 0.1), few synthetic datasets yielded a larger D than the empirical dataset, and the empirical distribution is not likely a member of the
population described by the model. If the significance value is large (e.g., p > 0.1), many synthetic datasets yielded a larger D than the
empirical dataset and the empirical distribution is a plausible, but not necessary candidate member of the population described by the
model.

This resampling procedure is very sensitive, and one must carefully evaluate the impact of routine statistical procedures and other
artifacts, such as data censoring and measurement noise, on the outcome of any goodness of fit procedure. For example, simulations that
added Gaussian noise with SD equal to 1% (5 ms) of the average variability of a true synthetic cocktail distribution revealed that the Clauset
et al. (2009) 3-step Monte Carlo method ruled out the cocktail as a plausible model 66% of the time. By contrast, a 2-step version of the
procedure, that omitted a best-fit of the synthetic data (step 2), ruled out the cocktail model as plausible 20% of the time with the addition
of 5% (32 ms) Gaussian noise. Cognitive activity is known to entail intrinsic and extrinsic sources of noise (Diependaele et al., 2012). On
the other hand, the 2-step procedure is recognized as biased in favor of a fitted model, relative to the Clauset et al. 3-step approach. One
potential safeguard is to focus on relative goodness of fit judgments, by using identical techniques on a few candidate models. Then each
model is subject to the same procedures. Statistical mimicking and over-fitting are long recognized issues in the modeling literature and,
so far, no one-size-fits-all solution has emerged. Nevertheless, this issue can be ameliorated somewhat by focusing on candidate models
that are motivated theoretically and corroborated by independent sources of evidence (Van Zandt and Ratcliff, 1995).

FIGURE 8 | Each plot depicts the bootstrapped distribution for each of

five parameters of the cocktail model. The outcomes for the 0◦, 60◦, and
120◦ conditions are depicted as solid, dashed, and dotted lines, respectively.
The bootstrapping procedure randomly resamples the empirical response
time distributions 300 times, with replacement. The model is fit to each

resampled data set and the resulting distribution of parameter values for each
of the three mental rotation conditions are depicted in plots. Identical
analyses of the mirror-reversed conditions indicated the 120◦ distribution as a
rescaled version of the 0◦ and 60◦ distribution which, themselves were nearly
identical.
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FIGURE 9 | The left-hand plot depicts the outcome of three rescaling

simulations. Synthetic cocktail response times were generated based on
the fitted parameters for the baseline 0◦ condition (solid black line). Kernel
smoothed densities for 22 replications of the synthetic distribution are
depicted as white points, plotted behind the empirical 0◦ density. Rescaled
synthetic 60◦ distributions were generated by first computing the natural
logarithm for each synthetic baseline 0◦ distribution, after which, a
constant of 0.061 was added to each value. Likewise a constant of 0.173
was added to duplicate the baseline synthetic data and mimic the 120◦
distribution. These two values represent the difference between the 0◦
�LN parameter and the same parameter for the 60◦ and 120◦ distributions

(see Table 2). The antilog of each synthetic distribution was then
computed, thus yielding a rescaled model for both the empirical 60◦ and
120◦ distributions. The rescaled synthetic 60◦ and 120◦ distributions are
both plotted as white points behind the empirical distributions (dashed
line, and open circles, respectively). In this case, the pure multiplicative
operation properly located the synthetic distributions, but the synthetic
120◦ distribution was more peaked at the mode than the empirical
distribution (see arrow). Additional simulations revealed that a larger �PL

and proportion of power law samples, in addition to the multiplicative
operation, were required to approximate the empirical 120◦ distribution, as
depicted in the right-hand plot.

Table 2 | Cocktail parameters corresponding to the three example empirical response time distributions taken from a letter rotation task in

Figure 7.

�LN σ α ρPL �PL p-value

Normal Rotation 6.44 0.14 3.35 0.56 657 0.27

60 Degrees 6.50 0.15 3.21 0.55 702 0.39

120 Degrees 6.62 0.16 3.29 0.61 793 0.24

The lognormal location parameter, (�LN ) was used to capture the bulk of the observed shape changes across the three conditions, in a rescaling test. Goodness of

fit was computed using the 2-step bootstrap procedure described in Textbox 3.

likely with increased character rotation. Apparently, in this
case, cognitive dynamics unfold near a point of qualitative
change.

The dynamic patterns observed in these conditions unfold in
a manner that is reminiscent of near-critical systems that are
approaching critical points. As such, we speculate that rescaling
may represent a minimum boundary of change as task difficulty,
broadly construed, increases in the face of a relatively skilled per-
formance. At some point the manipulation overwhelms the key
constraints supporting the performance, and a cognitive system
must either make do with ambiguous, unreliable, or strongly
competing constraints, or perhaps it must reorganize and entrain
with alternative reliable sources of constraint. Clearly additional
research on this topic is needed, and we continue to pursue these
issues in our laboratory.

CONCLUSION
In a sense, this article has now come full circle. It began with
an overview of the fractal geometry. The crux concept of a frac-
tal is the notion of nesting and self-similarity—fractal objects
are said to be composed of rescaled copies of the whole object.
We now see that, at least for the narrowly circumscribed men-
tal rotation data, the response time distributions can be plausibly
described as rescaled copies of each other. Not all cognitive effects
can be expected to fit into such a neat package. One more typically
observes changes in shape representing variability increases that
are larger and well beyond the limits circumscribed by a rescaling
hypothesis.

Ideal mathematical fractals are typically generated through
iteration—the repeated application of the same rule. This is an
example of a single process that extends across multiple scales.
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Additional paths to scaling are available to physical and biological
systems. Short-range interactions facilitate the emergence of
multi-scale entrainment among rice grains in a rice pile and
in so-called dynamic critical systems (e.g., Bruce and Wallace,
1989; Bak, 1996; Jensen, 1998). Model self-organizing physi-
cal systems, such as rice piles, tend to be comprised of many
relatively simple homogenous elements. By contrast, complex
organisms, such as human beings, entail heterogeneous physio-
chemical and neurophysiological processes and constraints that
span a range of temporal and spatial scales. Nevertheless, these
processes must somehow coordinate to support and sustain an

organism across space and time. As we explained, the fractal
scaling expressed in event distributions derived from biological
systems, and related empirical patterns, are likely symptomatic
of the dynamics governing this multiscale coordinative activ-
ity (Bassingthwaighte et al., 1994; Turvey, 2007; Holden and
Rajaraman, 2012).
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When investigating fractal phenomena, the following questions are fundamental for the
applied researcher: (1) What are essential statistical properties of 1/f noise? (2) Which
estimators are available for measuring fractality? (3) Which measurement instruments are
appropriate and how are they applied?The purpose of this article is to give clear and compre-
hensible answers to these questions. First, theoretical characteristics of a fractal pattern
(self-similarity, long memory, power law) and the related fractal parameters (the Hurst
coefficient, the scaling exponent α, the fractional differencing parameter d of the autore-
gressive fractionally integrated moving average methodology, the power exponent β of
the spectral analysis) are discussed. Then, estimators of fractal parameters from different
software packages commonly used by applied researchers (R, SAS, SPSS) are introduced
and evaluated. Advantages, disadvantages, and constrains of the popular estimators (d̂ML,
power spectral density, detrended fluctuation analysis, signal summation conversion) are
illustrated by elaborate examples. Finally, crucial steps of fractal analysis (plotting time
series data, autocorrelation, and spectral functions; performing stationarity tests; choos-
ing an adequate estimator; estimating fractal parameters; distinguishing fractal processes
from short-memory patterns) are demonstrated with empirical time series.

Keywords: fractal, 1/f noise, ARFIMA, long memory

MEASURING FRACTALITY
Fractal patterns have been observed in numerous scientific areas
including biology, physiology, and psychology. A specific structure
known as pink or 1/f noise represents the most prominent frac-
tal phenomenon. Because it is intermediate between white noise
and red or Brown noise, it exhibits both stability and adaptability,
thus properties typical for healthy complex systems (Bak et al.,
1987). Consequently, pink noise serves as an adequate model for
many biological systems and psychological states. For instance,
pink noise was found in human gait (Hausdorf et al., 1999),
rhythmic movements like tapping (Chen et al., 1997, 2001; Ding
et al., 2002; Delignières et al., 2004; Torre and Wagenmakers,
2009), visual perception (Aks and Sprott, 2003), brain activity
(Linkenkaer-Hansen, 2002), heart rate fluctuations, and DNA
sequences (Hausdorf and Peng, 1996; Eke et al., 2002; Norris et al.,
2006). Hence, one of the main objectives for measuring fractality
is to distinguish reliably between fractal (healthy) and non-fractal
(unhealthy) patterns for diagnostic purposes. For instance, many
diseases result from dysfunctional connections between organs,
which can be viewed as loss of adaptive behavior of the body as a
complex system. Therefore, deviations from the 1/f structure can
serve as indicators for disease severity.

Additionally, Gilden et al. (1995), Van Orden et al. (2003, 2005)
discovered fractality in controlled cognitive performances and
other mental activities. The most striking feature of the observed
patterns was their long memory. Serial correlations were not nec-
essarily large in absolute magnitude but very persistent, which is
typical for 1/f noise. Since memory characteristics are decisive for
the development of a process, an accurate measurement of frac-
tality is indispensible for correct statistical inference concerning

the properties of empirical data and precise forecasting. There-
fore, further important goals of fractal analyses are to test for the
effective presence of genuine long-range correlations and provide
an accurate estimation of their strength.

There are different methodological approaches, and their
respective statistical parameters, to capture fractality. For each
parameter, numerous estimators have been developed, but there is
no clear winner among them (Stroe-Kunold et al., 2009; Stad-
nytska et al., 2010; Stadnitski, 2012). Furthermore, statistical
characteristics of some non-fractal empirical structures can resem-
ble those of 1/f noise, which may cause erroneous classifications
(Wagenmakers et al., 2004; Thornton and Gilden, 2005). There-
fore, proper measurement of fractality and reliable discrimination
of pink noise from other fractal or non-fractal patterns represent
crucial challenges for applied researchers. The main purposes of
this paper are to introduce appropriate measurement strategies to
practitioners and to show how to use them in applied settings. The
article intends to outline the basics of fractal analysis by providing
insight into its concepts and algorithms. Detailed descriptions of
the methods are beyond the scope of this paper and can be found
in Beran (1994), Brockwell and Davis (2002), Delignières et al.
(2006), Eke et al. (2002), Jensen (1998), and Warner (1998).

THEORETICAL CHARACTERISTICS OF FRACTAL PATTERNS
What are essential attributes of 1/f noise? The answer is long mem-
ory and self-similarity. Fractals are self-similar structures where the
whole has the same shape as its parts (e.g., broccoli or the Koch
snowflake). Hence, characteristics of a 1/f noise process remain
similar when viewed at different scales of time or space. This
implies the following statistical properties: (1) a hyperbolically
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(i.e., very slow) decaying autocorrelation function (ACF) and (2) a
specific relation between frequency (f) and size of process variation
(S): S(f)∝ 1/f. This so-called power low means that the power (vari-
ance or amplitude) of the 1/f noise process is inversely proportional
to the frequency.

The ACF describes the correlation of a signal with itself at
different lags. In other words, it reflects the similarity between
observations in reference to the amount of time between them.
Hyperbolically decaying autocorrelations imply statistical depen-
dence between observations separated by a large number of time
units or a long memory of the process. In contrast, if a process has
a short-memory and can be predicted by its immediate past, the
autocorrelations decay quickly (e.g., exponentially) as the number
of intervening observations increases. White noise is a sequence
of time-ordered uncorrelated random variables, sometimes called
random shocks or innovations, and therefore has no memory.
Brown noise or a random walk evolves from integrating white noise,
and thus can also be represented as the sum of random shocks. As
a result, the impact of a particular innovation does not dissipate
and a random walk remembers the shock forever, which implies
an infinite memory and no decay in ACF. The upper section of
Figure 1 compares the ACF of processes with different memory
characteristics.

Granger and Joyeux (1980) and Hosking (1981, 1984) demon-
strated that hyperbolically decaying autocorrelations of pink noise
can be parsimoniously modeled by means of the differencing
parameter d of the Box–Jenkins autoregressive integrated moving
average (ARIMA) methodology, allowing it to take on continuous
values (Box and Jenkins, 1970). The ARIMA method describes
processes through the three parameters p, d, and q. For example,
the following process

Yt = φ1Yt−1 + ut + θ1ut−1, ut ∼ IIDN
(
0,σ2) .

is called ARMA (1, 1) because it contains one autoregressive (Yt − 1)
and one moving average term (ut − 1). Therefore, the value of the

autoregressive parameter p reflects how many preceding observa-
tions influence the current observation. The value of the moving
average term q describes how many previous random shocks must
be taken into account when describing the dependency present in
the time series. φ is the autoregressive prediction weight and θ is the
proportion of the previous random component that still affects the
observation at a time T. Within the Box–Jenkins ARIMA frame-
work, d is whole number and refers to the order of differencing
that is necessary to make a process stationary (d = 0). Statistical
characteristics of a stationary process do not change over time or
position, i.e., mean, variance, and autocorrelation remain stable.
Thus the ARMA (1, 1) process can also be written as ARIMA (1, 0,
1). White noise is ARIMA (0, 0, 0). Models with d = 1 correspond
to a process with an infinite persistence of random shocks and
are called integrated of order 1. Brown noise is ARIMA (0, 1, 0).
Autoregressive fractionally integrated moving average (ARFIMA)
modeling extends the traditional Box–Jenkins approach by allow-
ing the differencing parameter d to take on non-integer values.
This enables ARFIMA-models to give parsimonious descriptions
of any long-range dependencies in time series. Pink noise has d
of 0.5. Stationary fractal processes with finite long memory can
be modeled with 0 < d < 0.5. For 0.5 ≤ d ≤ 1, the process is non-
stationary. Consult Beran (1994) and Brockwell and Davis (2002)
for more background on long memory and ARFIMA modeling.

The so-called power spectrum determines how much power
(i.e., variance or amplitude) is accounted for by each frequency
in the series. The term frequency describes how rapidly things
repeat themselves. Thus, there exist fast and slow frequencies. For
instance, a time series with T = 100 observations can be recon-
structed in 50 periodic or cyclic components (T /1, T /2, T /3,. . ., 2).
The frequency is the reciprocal of the period and can be expressed
in terms of number of cycles per observation. Therefore, f = 0
implies no repetition, f = 1/T the slowest, and f = 0.5 the fastest
frequency. Spectral density function gives the amount of variance
accounted for by each frequency we can measure. The analysis of
power distribution can be seen as a type of ANOVA where the

FIGURE 1 | Autocorrelation functions, logarithmic power spectra and parameter values of different fractal and non-fractal patterns.
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overall process variance is divided into variance components due
to independent cycles of different length. If the data are cyclic, there
are a few so-called major frequencies that explain a great amount
of the series’ variance (i.e., all of the series’ power is concentrated
at one or a few frequencies). For non-periodic processes like white
noise, the variance is equally distributed across all possible fre-
quencies. For pink noise, there is a special kind of relationship
between frequency and variance, which is expressed by the follow-
ing power low: S(f)∝ 1/f. Self-similarity of this process implies
that its variance is inversely proportional to its frequency. This
property becomes more vivid if the power spectrum is plotted on
a log–log scale, showing that the logarithmic power function of 1/f
noise follows a straight line with slope –1. In contrast, the power
of Brown noise falls off rapidly with increasing frequency, which
means that low frequency components predominate. As a result,
the log–log power function of Brown noise is a line with a slope of
−2. The logarithmic power spectrum of white noise has a slope of
0. Denoting the power spectrum function 1/f β, where β is called
the power exponent, we obtain β = 0 for white noise, β = 2 for
Brown noise, and β = 1 for pink noise. For short-memory (e.g.,
autoregressive) processes, the log–log power spectrum in not a
straight line because the linear relation between the power and
the frequency breaks down at the low frequencies where random
variation appears. As a result, a flat plateau (the zero slope of
white noise) dominates low frequencies in spectral plots. The bot-
tom section of Figure 1 shows the power spectra of the discussed
processes. For more details on spectral analyses, consult Warner
(1998).

Self-similarity of pink noise can also be expressed by the fol-
lowing power low: F(n) ∝ n α with α = 1. Dividing a process in
intervals of equal length n allows viewing it on different scales.
Fluctuations (F) of pink noise are proportional to n, i.e., they
increase with growing interval length. The scaling exponent α of
Brown noise is 1.5; white noise has α of 0.5.

The so-called Hurst phenomenon represents a further manifes-
tation of self-similarity (Hurst, 1965). It expresses the probability
that an event in a process is followed by a similar event. This prob-
ability, expressed as the Hurst coefficient (H ), is 0.5 for both white
and Brown noises, which is not surprising because white noise is
a sequence of independent innovations and Brown noise consists
of uncorrelated increments. The Hurst coefficient of self-similar
processes deviates from 0.5. For pink noise, H = 1. In general, we
distinguish two different classes of fractal signals: fractional Brown-
ian motions (fBm) and fractional Gaussian noises (fGn; Mandelbrot
and van Ness, 1968; Mandelbrot and Wallis, 1969). Gaussian noises
are stationary processes with constant mean and variance, whereas
Brownian motions are non-stationary with stationary increments.
Differencing Brownian motion creates Gaussian noise and sum-
ming Gaussian noise produces Brownian motion. The related
processes are characterized by the same Hurst coefficient.

To summarize, long memory and self-similarity are specific
characteristics of 1/f noise. These properties become manifest
in the hyperbolically decaying ACF and power lows. The differ-
encing statistic d, the power exponent β, the scaling exponent α,
and the Hurst coefficient H are parameters that reflect fractality.
The expected theoretical parameter values of the pink noise are
d = 0.5, β = 1, α = 1, H = 1. Figure 1 outlines relations between

parameters and contrasts the autocorrelation and spectral density
functions of 1/f noise with those of other processes.

To understand subsequent explanations, it is important to con-
ceive the difference between the following concepts: parameter,
estimator, and estimate. A parameter is a quantity that defines a
particular system, e.g., the mean μ of the normal distribution. H,β,
α, and d are fractal parameters that express exactly the same statis-
tical characteristics. The formulas presented in Figure 1 allow for
unequivocal transformations from one quantity into the other. For
instance, a stationary process with the scaling exponent α = 0.8 can
be alternatively specified by H = 0.8, d = α − 0.5 = 0.3, or β = 2,
d = 0.6. An estimator is a rule or formula that is used to infer the
value of an unknown parameter from the sample information.
For each parameter, there are usually different estimators with
diverse statistical properties. In contrast to parameters, estimators
are not numbers but functions characterized by their distributions,
expectancy values, and variances. For example, μ can be estimated
using the arithmetic mean μ̂ = X̄ = 1

T ΣT
i=1Xi or the median

μ̂ = X0.5. Both methods are unbiased, which implies that their
expected values match μ : E(X̄) = E(X0.5) = μ. However, X̄
is the better estimator of μ because of its smaller variance ensur-
ing narrower confidence intervals and thus more precise inference.
The superiority of X̄ is determined mathematically. Unfortunately,
it is not always possible to find out the best estimator this way. In
such cases, Monte Carlo simulations represent adequate tools to
determine the best method to use under the given circumstances.
For instance, computational algorithms can generate a population
with a known parameter value, e.g., a process with α = 1. Repeated
samples of the same size can be drawn from this population, e.g.,
1000 time series with T = 500, and different estimators can be
applied to the series. As a result one gets 1000 estimates of the
parameter per method. Estimate is a particular numerical value
obtained by the estimator in an application. Good estimators are
unbiased, i.e., their means equal the true parameter value, and
have small variability, i.e., their estimates do not differ strongly.
Considering that just one estimate per method is available in a
typical research situation, an estimator with the narrow range, e.g.,
[α̂(1)min = 0.9; α̂(1)max = 1.1] for α = 1, is obviously better that
the one with the broad range, e.g., [α̂(2)min = 0.5; α̂(2)max = 1.5].

ESTIMATORS OF FRACTAL PARAMETERS
Numerous procedures for measuring the fractal parameters β, α,
H, and d have been developed in recent years. Table 1 includes
estimators that are available in software packages traditionally
used by psychologists (R, SPSS, and SAS). The methods can
be assigned to three categories: (1) exact or approximate maxi-
mum likelihood (EML or AML) ARFIMA estimation of d with
the corresponding conditional sum of squares (CSS) algorithm;
(2) detrended fluctuation analysis (DFA) and signal summation
conversion (SSC), fractal methods predicated on the relationship
F(n) ∝ n α; (3) periodogram based procedures like power spec-
tral density (PSD), Whittle (FDWhittle), Sperio (fdSperio), and
Geweke–Porter-Hudak (fdGPH). The periodogram is an estimate
of the spectral density function.

Autoregressive fractionally integrated moving average algo-
rithms were described and evaluated by Stadnytska and Werner
(2006) and Torre et al. (2007). Eke et al. (2000), Delignières
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Table 1 | Estimators of fractal parameters from statistical packages R, SAS, and SPSS.

Method Outputs Available Command

ARFIMA

EML d̂ , φ̂, θ̂ SAS: IML subroutine

FARMAFIT

Fitting ARFIMA (1, d, 1): call farmafit(d, ar, ma, sigma, x, opt=1) p=1 q=1;

print d ar ma sigma;

CSS d̂ , φ̂, θ̂ SAS: IML subroutine

FARMAFIT

call farmafit(d, ar, ma, sigma, x, opt=0) p=1 q=1; print d ar ma sigma;

AML d̂ , φ̂, θ̂ R: library fracdiff summary(fracdiff(x, nar=1, nma=1))

FRACTAL

DFA α̂ R: library fractal DFA(x, detrend="bridge", sum.order=1)

SSC α̂ R-Code SSC.R Download the file SSC.R from http://www.psychologie.uni-heidelberg.de/projekte/zeitreihen/

R_Code_Data_Files.html then click “read R-code” from the data menu and start the test via

command SSC(x)

PERIODOGRAM

lowPSD β̂ SPSS, SAS, R SPSS-, SAS-, and R-Codes in Appendix
lowPSDwe β̂ R-Code lowPSDwe.R Download the file lowPSDwe.R from http://www.psychologie.uni-heidelberg.de/projekte/

zeitreihen/R_Code_Data_Files.html then click “read R-code” from the data menu and start the

test via command PSD(x)

hurstSpec α̂ R: library fractal hurstSpec(x)

fdGPH d̂ R: library fracdiff fdGPH(x)

fdSperio d̂ R: library fracdiff fdSperio(x)

FDWhittle d̂ R: library fractal FDWhittle(x)

x is the time series name. For further details, consult Stadnytska et al. (2010) and Stadnitski (2012).

et al. (2006), Stroe-Kunold et al. (2009), Stadnytska et al. (2010),
Stadnitski (2012) systematically analyzed different fractal and peri-
odogram based methods. What are the key findings of these
studies? First, all estimators require at least 500 observations for
acceptable measurement accuracy. Further, for researchers study-
ing fractality, it is essential to know that there exist different
procedures with diverging characteristics. Unfortunately for the
researcher, none of the procedures is superior to the other. The
central difficulty is that there is no clear winner among them. Sim-
ulation studies on this topic demonstrated that the performance
of the methods strongly depends on aspects like the complex-
ity of the underlying process or parameterizations. As a result,
elaborated strategies to estimate the fractality parameters are nec-
essary. Thornton and Gilden (2005) developed a spectral classifier
procedure that estimates the likelihood of a time series by com-
paring its power spectrum with spectra of the competing memory
models. Stadnytska et al. (2010) proposed a method to estimate
the long memory parameter d that combines different techniques
and incorporates ARFIMA approaches from Wagenmakers et al.
(2004). The application of this strategy to an empirical time series
will be presented later. A brief overview of procedures summarized
in Table 1 precedes the empirical demonstration.

ARFIMA METHODS
The most popular estimators of the fractional differencing para-
meter d are the EML method proposed by Sowell (1992a), the
CSS approach introduced by Chung (1996) and the approximate
method (AML) of Haslett and Raftery (1989). The main advantage
of the ARFIMA methods is the possibility of the joint estima-
tion of the short-memory and long memory parameters. This

solves a potential finite-sample problem of biased overestimation
of fractality in time series which contain both long-range and
short-range components (see Sowell, 1992b, for details). More-
over, goodness of fit statistics based on the likelihood function,
like the Akaike information criterion (AIC) or the Bayesian infor-
mation criterion (BIC), allow to determine the amount of “short-
term contamination”and enable a reliable discrimination between
short- and long memory processes.

The greatest problem with ARFIMA estimators is that they work
only for stationary series, because their range is confined to (0; 0.5).
This entails erroneous classifications of non-stationary processes
with d > 0.5 as 1/f noise. Recall that the theoretical parameter
values of pink noise are d = 0.5, β = 1, α = 1, H = 1. To illus-
trate this problem, a Brown noise series [ARIMA (0, 1, 0) with
d = 1, β = 2, α = 1.5, H = 0.5] of length T = 500 was simulated.
The upper section of Figure 2 shows the series with its ACF and
logarithmic power spectrum. Applying ARFIMA methods to this

data provided estimates of d close to 0.5 : d̂AML = 0.499, d̂EML =
0.5, d̂CSS = 0.49. Hence, checking for stationarity is a necessary
precondition for ARFIMA estimation.

Special procedures called unit root tests were developed to
prove stationarity (see Stadnytska, 2010, for a comprehensive
overview). The augmented Dickey–Fuller (ADF) test, the most
popular method available in statistical packages R or SAS, checks
the null hypothesis d = 1 against d = 0. Hence, an empirical series
with d close to 0.5 will probably be misclassified as non-stationary.
In contrast, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
acts on the assumption that process is stationary (H 0: d = 0).
Therefore the combination of both procedures allows to determine
the properties of the series under study: (1) if the ADF is significant
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FIGURE 2 | Comparison of ACF and power spectra of empirical Series: (1) Brown Noise or ARIMA (0, 1, 0); Short-Memory Series ARIMA (1, 0, 1); (3)

Fractal Series ARFIMA (1, d, 1) with d = 0.3.

and the KPSS is not, then the data are probably stationary with
d ∈ (0; 0.5); (2) in the Brown noise case, an insignificant ADF and
a significant KPSS results are expected; (3) d ∈ (0; 1), if both tests
are significant. Applying the unit root tests to the simulated Brown
noise series showed the following p-values: pADF = 0.3839 and
pKPSS < 0.01 (see Figure 3). According to this outcome, the series
is probably non-stationary, and estimating fractal parameters with
the ARFIMA methods is inappropriate.

FRACTAL AND PERIODOGRAM BASED METHODS
In contrast to ARFIMA procedures, methods like PSD (Eke
et al., 2002), DFA (Peng et al., 1993), or SSC (Eke et al.,
2000) can be applied directly to different classes of time series.
Consequently, they represent adequate tools for distinguishing
fGn and fBm signals. For the simulated Brown noise series

the following results were obtained: d̂DFA = 1.1, d̂SSC =
0.8, d̂PSD = 0.83, d̂hurstSpec = 1.1, d̂fdGPH = 0.88, d̂fdSperio =
0.79, d̂FDWhittle = 1 (see Figure 3). All estimates were converted

to d̂ using the formulas in Figure 1 to make the comparison
more convenient. For instance, DFA outputs α̂DFA = 1.595 ≈ 1.6

(see Table 1; Figure 3), thus d̂DFA = α̂DFA − 0.5 = 1.1. The
estimate of β presented in Figure 3 is β̂PSD = 1.66, hence

d̂PSD = β̂PSD/2 = 0.83. Recall that the true d-value of Brown
noise is 1, therefore, compared to the ARFIMA algorithms, the
most estimates reflect the parameter rather accurate.

However, due to considerably larger biases and more pro-
nounced SEs, the precision of fractal and periodogram based
methods is distinctly inferior to that of the ARFIMA approaches.
Moreover, algorithms like PSD, DFA, or SSC use different data

transformations like detrending or filtering. As a result, the per-
formance of estimators strongly depends on the manipulations
employed. For instance, numerous modifications have been sug-
gested to improve the PSD estimation. The method designated
as lowPSDwe consists of the following operations: (1) subtracting
the mean of the series from each value, (2) applying a para-
bolic window to the data (w), (3) performing a bridge detrend-
ing (e), (4) estimating β excluding 7/8 of high-frequency power
estimates (low). The estimator lowPSD is constructed without
transformations 2 and 3. Simulation studies demonstrated that
lowPSD were more accurate for fGn noises whereas lowPSDwe

were accurate for fBm signals (Delignières et al., 2006; Stadnitski,
2012).

The greatest disadvantage of fractal and periodogram based
methods is their poor performance for complex processes that
combine long- and short-term components. Stadnitski (2012)
demonstrated that FDWhittle, the best procedure for pure noises,
showed the worst accuracy in complex cases. To illustrate this
problem, the following two series with T = 500 observations
were simulated: a short-memory ARIMA (1, 0, 1) model with
d = 0, φ = 0.8, and θ = − 0.1; a long memory ARFIMA (1, d,
1) model with d = 0.3, φ = 0.8, and θ = −0.1 (see Figure 2).
Recall that within the scope of the ARFIMA methodology the
short-memory components of a time series can be captured
through the autoregressive terms weighted with φ and the mov-
ing average terms weighted with θ. The following estimates were
obtained for the short-memory series with the true d-value of

0 : d̂DFA = 0.53, d̂SSC = 0.22, d̂PSD = 0.55, d̂hurstSpec =
0.62, d̂fdGPH = 0.38, d̂fdSperio = 0.12, d̂FDWhittle = 0.67 (see
Figure 4). Hence, most estimators erroneously indicate a 1/f
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FIGURE 3 | R commands and results for the simulated Brown noise ARIMA (0, 1, 0) series.

pattern for this non-fractal series. For the long memory series

with the true d-value of 0.3, we obtained d̂DFA = 0.85, d̂SSC =
0.49, d̂PSD = 0.97, d̂hurstSpec = 0.91, d̂fdGPH = 0.2, d̂fdSperio =
0.28, d̂FDWhittle = 1.16. Except for fdGPH and fdSperio, we
observed here a pronounced positive bias. As a result, this sta-
tionary fGn series could be misclassified as a non-stationary fBm
signal.

The following example demonstrates the advantages of
ARFIMA methodology for complex cases. Since not every data
generating process can adequately be represented by a simple
(0, d, 0)-structure, information Criteria AIC and BIC of differ-
ent ARFIMA-models were compared first. Recall that the smallest
AIC or BIC indicate the best model. The results summarized in
Table 2 clearly favored the (1, d, 1)-pattern for the simulated long
memory ARFIMA (1, d, 1) with d = 0.3, φ = 0.8, and θ = − 0.1.

The AML estimates for this structure were d̂AML = 0.2, φ̂AML =
0.83, θ̂AML = −0.23. The point estimate of d is comparable to
those of fdGPH and fdSperio, but AML has a distinctly smaller
SE (SEAML = 0.007 vs. SEfdGPH = 0.17, SEfdSperio = 0.07) assuring
smaller confidence intervals, i.e., a more precise measurement. For
the short-memory series with d = 0, φ = 0.8, and θ = −0.1, there
were two plausible models: (1, 0, 1) according to the AIC and
(1, d, 0) according to the BIC. Fitting the (1, d, 0) model to the

data provided d̂AML ≈ 0, φ̂AML = 0.75 (see Figure 4). There-
fore, in both cases the series was correctly identified as non-fractal
short-memory structure.

FRACTAL ANALYSIS WITH EMPIRICAL DATA
As demonstrated previously, strategic approach is necessary for
a proper measurement of fractal parameters. In the following
we show how to apply the estimation methodology proposed by
Stadnytska et al. (2010) to empirical data by employing the R
software.

R can be downloaded free of charge from http://www.r-project.
org/. To perform fractal analyses, we need three packages (fracdiff,
fractal, tseries) that do not come with the standard installation.
Click install packages under the packages menu, select these pack-
ages and confirm with ok. Now the packages will be available for
use in the future. Since every command of R is a function that
is stored in one of the packages (libraries), you have to load the
libraries fracdiff, fractal, tseries each R session before performing
fractal analyses. To do so, click load packages under the packages
menu then choose the package and confirm with ok.

R is able to read data in many different formats. An easy way
to get an excel file into R is to save it in the csv format, and read it
using the command like

data=read.csv2 ("C:/ /data.csv")

Now data is a data frame with named columns ready for analysis.
If data contains three variables x, y, and z, you can analyze them
with the commands like

mean(data$x)

Frontiers in Physiology | Fractal Physiology May 2012 | Volume 3 | Article 127 | 27

http://www.r-project.org/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Stadnitski Measuring fractality

FIGURE 4 | R output for the simulated short-memory ARIMA (1, 0, 1) series.

summary(data$y)
cor(data$x,data$z)

You can easily rename variables using the following command
x=data$x.

The empirical series of length T = 512 that is analyzed below
was generated in the context of a reaction time task experiment
described by Stadnitski (2012). Response time between stimu-
lus presentation and reaction served as dependent measurement
(Figure 5A).

The first step of the analysis is to plot a series and examine
its ACF and logarithmic power spectrum. Recall that for 1/f noise
we expect a slower hyperbolic decaying autocorrelations and a
straight line with a slope of −1 in the log plot. If the autocor-
relations decline quickly or exponentially, the series is definitely
non-fractal.

plot(x, ty=‘‘l‘‘)
acf(x)
PSD-Code of R (see Appendix)

Satisfactory stability in level and variability of the series as well as a
slow decay of its ACF, depicted in Figure 5A, signalized a finite long
memory typical for fractal noises. The negative slope β̂PSD = 0.347
is, however, distinctly smaller than 1. It is important to know that

the original PSD procedure is not always the best method. Sim-
ulation studies demonstrated that excluding the high-frequency
spectral estimates from fitting for the spectral slope may improve
estimation (Taqqu and Teverovsky, 1997; Eke et al., 2000). Apply-
ing the lowPSD method (see Appendix) provided β̂lowPSD = 1.11.
Thus, the logarithmic power spectrum of the series seems to be
compatible with the pink noise pattern. The problem is that the
log–log power spectrum of short-memory ARMA (p, q) processes
can resemble the spectrum of 1/f noise (see, for example, the log
plot of the ARMA (1,1) structure in Figure 2).

Unit root tests may help to find out more about the statistical
properties of the series.

adf.test(x)
kpss.test(x)

The following p-values were observed for the analyzed series:
pADF < 0.01 and pKPSS < 0.01. According to these results, the data
under study is probably not Brown noise but it can be both fGn
and fBm. Thus, ARFIMA as well as fractal and periodogram based
method are appropriate here (see commands in Table 1). To make
the comparison of results more convenient, the fractal, and peri-

odogram based estimators were converted to d̂ and presented
in Figure 5A. The estimates ranged from 0.248 to 0.577 indi-
cating a fractal pattern. We know, however, that these methods
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overestimate fractality in time series that contain both long-range
and short-range components. Since the obtained values were all
smaller than 0.6, the ARFIMA analysis appeared appropriate.

Table 2 | Values of the information criteria AIC and BIC for the

simulated short-memory ARMA and long memory ARFIMA series in

dependence of the fitted model.

Fitted

model

ARMA (φ = 0.8,

d = 0. θ = − 0.1)

ARFIMA (φ = 0.8,

d = 0.3, φ = − 0.1)

AIC BIC AIC BIC

(2, 0, 2) 579.9649 605.2525 1439.242 1464.530

(2, 0, 1) 578.1632 599.2363 1439.540 1460.613

(1, 0, 2) 578.1626 599.2356 1438.977 1460.050

(2, 0, 0) 576.2489 593.1073 1439.350 1456.209

(0, 0, 2) 576.2489 678.1116 1763.675 1780.533

(1, 0, 1) 576.1626 593.0210 1439.625 1456.483

(1, 0, 0) 577.5258 590.1697 1489.436 1502.080

(0, 0, 1) 738.9594 751.6032 2059.512 2072.156

(0, 0, 0) 984.6744 993.0052 2573.536 2581.965

(2, d, 2) 580.3508 605.6384 1440.078 1465.366

(2, d, 1) 578.3731 599.4461 1438.590 1459.663

(1, d, 2) 578.3752 599.4482 1438.261 1459.334

(2, d, 0) 576.5114 593.3699 1437.906 1454.764

(0, d, 2) 588.8440 605.7024 1465.847 1482.706

(1, d, 1) 577.2761 594.1346 1436.262 1453.121

(1, d, 0) 578.5751 591.2189 1447.913 1460.557

(0, d, 1) 592.3358 604.9797 1526.298 1538.942

(0, d, 0) 612.2110 620.5418 1761.094 1769.523

Bold are estimates from the models with the smallest Akaike information criterion

(AIC) or Bayesian information criterion (BIC).

The preceding analyses do not allow rejecting the hypothesis
of non-fractality of the analyzed series. Therefore AIC and BIC
of different short- and long memory models were compared. The
following commands compute AIC of the (1, d, 1) and (1, 0, 1)
models:

AIC(fracdiff(x, nar = 1, nma = 1))
AIC(arima(x, order=c(1,0,1)))

To obtain BIC instead of AIC, use

AIC(fracdiff(x, nar = 1, nma = 1), k=log(n))
AIC(arima(x, order=c(1,0,1)), k=log(n)),

n is the number of observations (see Figure 4).
The results summarized in Table 3 indicated either the long

memory model (1, d, 2; the smallest AIC) or the short-memory

Table 3 | Values of the information criteria AIC and BIC for the

empirical time series.

Model

ARMA

AIC BIC Model

ARFIMA

AIC BIC

(0, 0, 0) 5308.030 5316.506 (0, d, 0) 5181.524 5190.001

(1, 0, 0) 5256.566 5269.281 (1, d, 0) 5170.354 5183.069

(0, 0, 1) 5274.145 5286.860 (0, d, 1) 5163.365 5176.080

(1, 0, 1) 5158.735 5175.688 (1, d, 1) 5161.513 5178.466

(2, 0, 1) 5160.726 5181.917 (2, d, 1) 5156.040 5177.208

(1, 0, 2) 5160.729 5181.920 (1, d, 2) 5156.016 5177.232

(2, 0, 0) 5226.219 5243.172 (2, d, 0) 5165.411 5182.365

(0, 0, 2) 5256.336 5273.29 (0, d, 2) 5162.237 5179.190

(2, 0, 2) 5162.699 5188.129 (2, d, 2) 5158.016 5183.446

Bold are estimates from the models with the smallest AIC or BIC.

FIGURE 5 | ADF and log–log plot of (A) empirical series obtained from temporal estimation task; (B) simulated ARIMA (1, 0, 1) series with φ = 0.99, and

θ = −0.92.
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model (1, 0, 1; the smallest BIC). Fitting the (1, d, 2) pattern to the
data with the command “summary(fracdiff(x, nar=1, nma=2)),”

provided the d estimate very close to 0 : d̂AML = 0.06, SEAML =
0.026, KI0.95 = (0.009; 0.111). Therefore, the series is probably
not generated from the 1/f noise process.

Fitting the (1, 0, 1) model to the data using “arima(x,
order=c(1,0,1)),” resulted in φ̂AML = 0.99, SEφ = 0.005 and

θ̂AML = −0.92, SEθ = 0.021. To demonstrate that short-
memory series with such parameter values can mimic the sta-
tistical properties of the pink noise, we simulated the ARIMA
(1, 0, 1) models of length T = 512 with the true values d = 0,
φ = 0.99, and θ = − 0.92. Figure 5B shows that its ACF, log
plot, and estimates obtained from fractal and periodogram based
methods are very similar to those of the analyzed empirical
series. For explanations of this phenomenon, consult Thornton
and Gilden (2005), Wagenmakers et al. (2004), and Stadnit-
ski (2012). Detailed descriptions of R analyses are presented in
Appendix.

CONCLUDING REMARKS
Self-similarity and long memory are essential characteristics of
a fractal pattern. Slow hyperbolically decaying autocorrelations
and power lows reflect these properties, which can be expressed
with the correspondent parameters d, β, α, and H. The frac-
tal parameters express exactly the same statistical characteristics,
thus each quantity can be converted to the other. The expected
theoretical values of pink noise are d = 0.5, β = 1, α = 1, H = 1.

There are two major types of estimators for these parame-
ters: ARFIMA algorithms and procedures searching for power
laws. The former are very accurate methods capable of mea-
suring both long- and short-term dependencies, but they can
handle only stationary processes. The latter are adequate pro-
cedures for stationary and non-stationary data, their precision,
however, is distinctly inferior to that of the ARFIMA meth-
ods. Moreover, they tend to overrate fractal parameters in series
containing short-memory components. The greatest problem
is that no estimator is superior for a majority of theoretical
series. Moreover, in a typical research situation it is usually
unclear what kind of process generated empirical data. Con-
sequently, the estimation of fractality requires elaborate strate-
gies. The spectral classifier procedure by Thornton and Gilden
(2005) and the ARFIMA estimation proposed by Stadnytska
et al. (2010) are examples of such strategic approaches. Fur-
thermore, depending of the hypotheses of the research, diverse
key objectives of fractal analyses can be distinguished: discrim-
inate between fractal and non-fractal patterns for diagnostic
purposes, test for the effective presence of genuine persistent
correlations in the series, provide an accurate estimation of the
strength of these long-range dependencies, or identify the short-
term process that accompanies a fractal pattern. Delignières et al.
(2005) point out that different objectives require distinct strate-
gies. This paper demonstrated how to distinguish between fractal
and non-fractal empirical time series employing the open source
software R.
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APPENDIX
low PSD SPSS-Code for series X with T = 512 to obtain a PSD-estimate of β.
β̂ is the negative slope of the regression ln _p = b0 + b1 ln _f (β̂ = −b1).

SPECTRA
/VARIABLES=X
/CENTER
/SAVE FREQ(f) P(SS).

COMPUTE ln_f = LN(f).
EXECUTE.
COMPUTE ln_p = LN(SS_1).
EXECUTE.
COMPUTE filter_$=(T>1 and T<(512/2*1/8+2)).
FILTER BY filter_$.

REGRESSION
/STATISTICS COEFF
/DEPENDENT ln_p
/METHOD=ENTER ln_f .

low PSD SAS-Code for series X with T = 512 to obtain a PSD-estimate of β.

proc spectra data=data out=spec p s center;
var X;
run;

data spec;
set spec;
T+1;
run;

data loglog;
set spec;
if FREQ=0 then delete;
if T>(512/2*(1/8)+1) then delete;
ln_f=log(FREQ);
ln_p=log(S_01);
keep ln_f ln_p;
run;

proc reg data=loglog;
model ln_p=ln_f;
run;

low PSD R-Code for series X to obtain a PSD-estimate of β.

n <- length(x)
spec <- spectrum(x, detrend=FALSE, demean=TRUE, taper=0)
nr <- (n/2) * (1/8)
specfreq <- spec$freq[1:nr]
specspec <- spec$spec[1:nr]
logfreq <- log(specfreq)
logspec <- log(specspec)
lmb <- lm(logspec ˜ logfreq)
b <- coef(lmb)
beta=-b[2]
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plot (logfreq, logspec, type="l")
abline(lmb)
print(beta)

PSD R-Code for series X to obtain a PSD-estimate of β.

spec <- spectrum(x, detrend=FALSE, demean=TRUE, taper=0)
specfreq <- spec$freq
specspec <- spec$spec
logfreq <- log(specfreq)
logspec <- log(specspec)
lmb <- lm(logspec ˜ logfreq)
b <- coef(lmb)
beta=-b[2]
plot (logfreq, logspec, type="l")
abline(lmb)
print(beta)

FRACTAL ANALYSES WITH R
1. Step “Preparation”

• Install R from http://www.r-project.org/
• Install the packages fracdiff, fractal, tseries [Click install packages under the packages menu, select these packages and confirm with

ok].
Some tips for comfortably working with R:
• R commands can be typed directly in the R console after the symbol “>” (see Figures 3 and 4). To obtain the R output, just press

[ENTER].
• The easiest way to administer R commands is to open a new script [click data − new script ] and write the commands there. You

can enter one or more commands in the R console by selecting them and pressing [CTRL + R].
2. Step “Data Import in R”

• Create an excel file (e.g., for one time series of length T = 500, type the name “x” in the first row of the first column, then type 500
observations in the subsequent rows of the column).

• Save data in csv format [Excel: click save as, then activate save as type and choose CSV (Comma delimited)]. As a result, you obtain
an excel file name.csv.

• Open R and click data − change directory and choose the directory where you saved the file name.csv. Typing the command
getwd() shows the current working directory of R.

• Get the excel file name.csv into R by writing in the R console the command data=read.csv2(“name.csv”) (see Figure 4).
• Choose the variable x from the frame data by typing x=data$x. Because the file name.csv and accordingly the R frame data

consist of one variable saved in the first column, you can alternatively get the variable x using the command x=data[,1]. Note
that the command data[2,] outputs the second row of the frame data.

3. Step “Performing fractal analyses”
• Load the packages fracdiff, fractal, tseries [type the commands library (fracdiff), library (fractal), library(tseries)].
• Load SSC and lowPSDwe (download the files SSC.R and lowPSDwe.R from http://www.psychologie.uni-heidelberg.de/projekte/

zeitreihen/R_Code_Data_Files.html, then click read R-code from the data menu).
• Type the following commands in the R console (see Figures 3 and 4) or write them in a script and submit by pressing [CTRL + R].

plot(x, ty=’’l’’)
acf(x)
adf.test(x)
kpss.test(x)
PSD(x)
SSC(x)
DFA(x, detrend="bridge", sum.order=1)
fdSperio(x)
fdGPH(x)
FDWhittle(x)
hurstSpec(x)
fracdiff(x)
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4. Step “ARFIMA analyses”
• Compute AIC and BIC of different long and short-memory models (see Tables 2 and 3). The command AIC(fracdiff(x, nar = 2,

nma = 2)) outputs the AIC of the ARFIMA (2, d, 2) model. The command AIC(arima(x, order=c(2,0,1))) calculates the AIC of
the ARIMA (2, 0, 1) structure.

• Estimate d of the model with the smallest AIC or BIC using the command summary(fracdiff(x, nar=0, nma=2)).

• Compute a 0.95-confidence interval using the estimate of d (d̂) and its SE: [d̂ − 1.96 · SE ; d̂ + 1.96SE].
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INTRODUCTION
Adaptive fractal analysis (AFA; Hu et al., 2009; Gao et al., 2010,
2011) is a relatively new fractal analysis method that may hold
promise in dealing with many types of real-world data. In this
paper we present a step-by-step tutorial approach to using AFA.
We begin by reviewing some basic principles of fractal processes
that will be helpful for our presentation of AFA. We then discuss
AFA and provide a guide for implementing it. We conclude with
an analysis of some synthetic signals and of some real data from
an experiment in human cognition.

FRACTAL PROCESSES
Many physiological and behavioral processes exhibit fractal
dynamics. This means the measured patterns of change over
time—the behavioral time series—exhibit certain properties,
including self-similarity and scaling (Lebovitch and Shehadeh,
2005). Self-similarity means that the patterns of fluctuations at
faster time scales mimics the patterns of fluctuations at slower
time scales. Scaling means that measures of the patterns (such as
the amount of variability present) depend on the resolution or
the time scale at which the measurements have been taken. Many
fractal analyses, including AFA, focus explicitly on how a measure
of variability scales with the size of a time window over which the
measure is calculated. Gao et al. (2007) provided a succinct and
comprehensive treatment of various fractal analysis methods.

When conducting fractal analysis of a time series it is impor-
tant to understand the concepts of fractional Gaussian noise
(fGn) and fractional Brownian motion (fBm), and the differ-
ences between the two. fGn is a stationary, long-memory pro-
cess, whereas fBm is a non-stationary, long-memory process
(Mandelbrot and van Ness, 1968; Beran, 1994; Mandelbrot,
1997). Roughly speaking, stationary processes fluctuate by a rela-
tively constant degree around a mean value that remains relatively

constant over time, whereas for a non-stationary process the
statistical moments of the process (e.g., mean and variance)
are time-dependent. “Long-memory” means that the processes
exhibit statistical dependencies (correlations) over very long time
scales, as opposed to a process for which only adjacent or nearly
adjacent data points are correlated with each other. Figure 1
depicts sample time series of fBm and fGn processes.

fGn and fBm are, nominally, dichotomous types of signals.
While this is true in an important sense, fGn and fBm are
nonetheless related. The increments of a fBm process (created
by differencing the signal, i.e., subtracting each value in the time
series from the prior value) form a fGn signal [see Eke et al.
(2000), for a detailed description of the fGn-fBm dichotomy].
Stated differently, successively summing the data points in a fGn
time series will produce a fBm time series. As described below,
fGn and fBm require different treatment when using fractal meth-
ods to analyze their temporal structure, and the results of a fractal
analysis on these two different types of signals will necessarily
have different interpretations.

A parameter called the Hurst exponent, H, provides a way to
quantify the “memory” or serial correlation in a time series. The
exact meaning of H depends on whether a signal is fGn or fBm.
H values indicate the correlation structure of a fGn signal, but
for a fBm signal the H values refer to the correlation structure of
the increments obtained by differencing the time series (Cannon
et al., 1997). It is therefore necessary to carefully classify a signal
as fGn or fBm (or some other kind of signal) before proceeding
with fractal analysis of the signal.

With that caveat noted, different H values indicate different
types of long-memory. Actually, H = 0.5 indicates the absence
of long-memory (i.e., the process is random—it possesses no
memory meaning that data points are uncorrelated with each
other) or possesses only short-memory (correlations across very
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FIGURE 1 | Top: A time series of white noise, a fGn process. Bottom: a
time series of brown noise, a fBm process. A brown noise process can be
obtained by successively summing data points in the white noise process.

small scales only). This can be considered a null hypothesis of
sorts when conducting a fractal analysis; one is often interested
in determining whether the data possess some sort of tempo-
ral structure rather than being just a truly random, uncorrelated
process.

A finding of 0 < H < 0.5 indicates an anti-correlated or anti-
persistent process for cases of fGn and fBm, respectively. This
means that increases in the signal (for fGn) or in the incre-
ments of the signal (for fBm) are likely to be followed by
decreases (and decreases are likely to be followed by increases)—a
negative long-range correlation. In contrast, 0.5 < H < 1 indi-
cates a correlated process for fGn or what is termed a persistent
process for fBm. In this case, increases in the signal (for fGn) or
in the increments of the signal (for fBm) are likely to be followed
by further increases, and decreases are likely to be followed by
decreases (i.e., a positive long-range correlation). Anti-persistent
and persistent processes contain structure that distinguishes them
from truly random sequences of data.

To reiterate the point made earlier, and as Eke et al. (2000)
carefully explained, an important first step in any type of fractal
analysis is to determine the basic type of signal one has measured,
i.e., whether the signal is fGn or fBm (see also Cannon et al.,
1997). Simply plotting the time series can sometimes help the user
make a first-pass determination about whether a pre-processing

stage of integrating the data is required. Integration is required
only if the data are a stationary, noisy increment process (such as
fGn; Figure 1). Integration is not advised if the data are a non-
stationary random-walk process (such as fBm; Figure 1). The
consequences of this choice are important; H estimates can be
artificially inflated by integration of a signal which should not
be integrated, for example, whereas a lack of integration when
it should be performed could suggest the appearance of multi-
ple scaling regions separated by a cross-over point when only one
scaling region actually exists (see Delignieìres et al., 2003).

Of course, it is often the case that a plot of the time series
cannot be easily classified as an increment or random-walk pro-
cess based on its appearance alone. Eke et al. (2000) presented a
strategy for determining the signal type, termed the signal sum-
mation conversion (SSC) method, in the context of a broader
approach to analyzing physiological signals that might exhibit
fractal dynamics. The method essentially involves comparison of
results obtained when the signal is integrated versus not inte-
grated. If H values for the non-integrated data approach or exceed
a value of 1, then integration of the signal is generally not recom-
mended. H values for non-integrated and integrated time series
generated by an ideal fBm process should differ by a value of
1; if the difference is considerably greater or less than 1 further
scrutiny of the data is required, because in that case the data
may not fit within the fBm-fGn framework (Gao et al., 2006;
Kuznetsov et al., 2012).

ADAPTIVE FRACTAL ANALYSIS
AFA is similar in some regards to detrended fluctuation analysis
(DFA; Peng et al., 1994), and many aspects of AFA will be familiar
for readers who already understand DFA. We point out some of
these similarities in our presentation of AFA to help those readers,
although familiarity with DFA is not required. Because of these
similarities, AFA shares many of the same advantages as DFA over
other fractal methods, such as the fact that H estimated by DFA
and AFA do not saturate at 1 as is the case for other methods (Gao
et al., 2006).

But despite the similarities between the methods, there are
important differences which provide AFA with some advantages
over DFA. For example, AFA can deal with arbitrary, strong non-
linear trends while DFA cannot (Hu et al., 2009; Gao et al., 2011),
AFA has better resolution of fractal scaling behavior for short time
series (Gao et al., 2012), AFA has a direct interpretation in terms
of spectral energy while DFA does not (Gao et al., 2011), and there
is a simple proof of why AFA yields the correct H while such a
proof is not available for DFA [see Equations 6 and 7 in Gao et al.
(2011)].

It is important to note that like many other analyses used
to quantify fractal scaling AFA cannot be used independently
to assert that a process is or is not a fractal process. Because
there are non-fractal processes that can falsely give the appear-
ance of fractal scaling and long-range correlations, it is desirable
to use other methods for this purpose (e.g., Wagenmakers et al.,
2004; Delignieìres et al., 2005; Farrell et al., 2006; Torre et al.,
2007).

The first step in AFA is to identify a globally smooth trend sig-
nal that is created by patching together local polynomial fits to

Frontiers in Physiology | Fractal Physiology September 2012 | Volume 3 | Article 371 | 36

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Riley et al. Adaptive fractal analysis tutorial

the time series. This is one of the primary differences between
DFA and AFA; DFA does not involve the creation of this glob-
ally smooth trend, and instead relies on discontinuous, piece-wise
linear fits. Basically, creating a globally smooth trend signal means
that one tries to recreate local features of the data using sim-
ple polynomial functions. An example is shown in Figure 2.
Small segments of the time series can be approximated reason-
ably well by adjusting the parameters of a polynomial regression
model.

We can now express these ideas in more precise terms [see
also Tung et al. (2011), who provided a thorough description of
the detrending scheme that forms the basis of AFA]. The goal
of this step of the analysis is to create a global trend—a syn-
thetic time series v(i), i = 1, 2, . . . , N, where N is the length of
the original time series. We denote the original time series as
u(i). Determination of the global trend is achieved by partition-
ing the original data u(i) into windows of length w = 2n + 1,
with the windows overlapping by n + 1 points. Since setting
w (a process we describe below) determines the value of n
[i.e., n = (w − 1)/2], n is not a free parameter that must be
chosen.

Within each window the best fitting polynomial of order
M is identified. This is done through standard least-squares
regression—the coefficients of the polynomial model are adjusted
until the polynomial fits the data with the least amount of residual
error. Increasing the order M can usually enhance the qual-
ity of the fit, but one must be cautious about over-fitting the

FIGURE 2 | An illustration of the process of identifying a globally

smooth trend signal. Linear (Top; M = 1) or polynomial (Bottom; M = 2)
trends are fit to pieces of the signal of length w (257 in this case). These
fits are shown as black lines superimposed on the original data series (gray
curves). The local fits are then stitched together (see Equation 1) to create a
smooth global trend signal, depicted in red. Notice that when the end of
the series is encountered only half of the data points in that window are
used for the trend without smoothing.

data. Typically M should be 1 or 2—i.e., a linear or quadratic
function. The goal is not to fit every squiggle or variation in
u(i) with the polynomial model, but simply to capture any rel-
atively global trends in the data while leaving enough residual
variability to analyze further. Presently, there are no validated,
objective criteria for selecting M, so careful exploration of dif-
ferent M values may be required when analyzing a given time
series.

The local fits then have to be “stitched” together in such a way
that they provide a smooth global fit to the time series. Without
this stitching, the local polynomial fits would be disconnected
with each other, as is the case for DFA. The stitching and the
resulting smooth trend signal thus represents a major distinction
between DFA and AFA. The fit to overlapping regions is created by
taking a weighted combination of the fits of two adjacent regions
to ensure that the concatenation of the local fits is smooth [math-
ematically, this means that v(i) is continuous and differentiable],
according to

y(c)(l) = w1 y(i)(l + n) + w2 y(i + 1)(l), l = 1, 2, . . . , n + 1 (1)

where w1 =
(

1 − l − 1
n

)
and w2 = l − 1

n . According to this scheme,

the weights decrease linearly with the distance between the point
and the center of the segment. This ensures symmetry and effec-
tively eliminates any jumps or discontinuities around the bound-
aries of neighboring regions. In fact, the scheme ensures that the
fitting is continuous everywhere, is smooth at the non-boundary
points, and has the right- and left-derivatives at the boundary. By
choosing the parameters of each local fit to maximize the good-
ness of fit in each case, and then applying Equation 1 to stitch the
local fits together, the global fit will be the best (smoothest) fit to
the overall time series. Furthermore, this fitting scheme will work
with any arbitrary signal without any a priori knowledge of the
trends in the data.

The next step is to detrend the data by removing the global
trend signal that was just created. We remove the trend because
are interested in how the variance of the residuals of the fit—the
more fine-grained fluctuations in the original time series u(i)—
scale with w, as described below. This type of detrending is very
different than simply removing a linear (or higher-order) fit to
the original time series prior to data analysis (cf. Di Matteo et al.,
2003); the detrending method in AFA (and DFA) is done locally
over windows of varying length w but not to the entire time
series as a whole. The residuals of the fit of the data to the trend
signal are identified by subtracting the global trend from the orig-
inal time series—we compute u(i) − v(i). (This is similar to the
detrending step performed in DFA, except that as noted for DFA
the local linear fits are not smoothly stitched together to create a
globally smooth trend signal, but rather are discontinuous with
respect to one another.)

These steps that have been described are then repeated for a
range of w values (i.e., for a range of time scales). Thus, one
must choose a minimum and maximum w, as well as the size
of the time steps (i.e., increases in w) used for the analysis. It
is perhaps best to begin with the smallest and largest possible w
values, i.e., w = 3 samples and w = N/2 samples (or N/2 + 1 if
the time series has an even number of samples) where N is the
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length of the time series. However, as discussed by Cannon et al.
(1997), exclusion of some of the smaller and larger window sizes
can increase the reliability of H estimates. This may be a help-
ful step when analyzing signals that show a single scaling region
over some intermediate range of time scales, and where issues
such as measurement noise or insufficient time series length could
cause an apparent breakdown of scaling at smaller and larger
time scales, respectively. However, one should first ensure that the
regions under consideration for exclusion do not themselves con-
tain distinct types of fractal scaling (i.e., that the signal contains
multiple scaling regions) to avoid loss of information about the
signal. In light of such considerations, we used a w range of 3
to (29 + 1 =) 513 samples for the analyses reported here. Any
further adjustments to the w range can be determined after the
next step in the analysis, when one plots log2F(w) as a function
of log2w, as we describe below in our analyses of sample data
(and see Kuznetsov et al., 2012). Typically it is sufficient to use
a step size of 1, although there may be occasions when a smaller
step size is desired to obtain better resolution for identifying lin-
ear scaling relations in the plot. In our experience, a step size
of less than 0.5 typically does not provide useful new informa-
tion, but this is an issue that should be explored for each unique
data set.

The next step is to examine the relation between the variance
of the magnitude of the residuals, F(w), and the window size, w.
For a fractal process, the variance of the residuals scales with w
(i.e., is proportional to w raised to the power H) according to

F(w) =
[

1

N

N∑
i=1

(u(i) − v(i))2

]1/2

∼ wH . (2)

Fractal scaling can be quantified through the slope (obtained
using simple linear regression) of a linear relation in a plot of
log2F(w) as a function of log2w (Figure 3). This slope provides
an estimate of the Hurst exponent, H.

It should be noted that two qualitatively different signals (one
fGn, the other fBm) could have the same H value. For example, a
white noise signal (fGn, so it is integrated prior to analysis) and
a brown noise signal (fBm, so it would not be integrated prior to
analysis) would both yield H = 0.5. Because of this one should
use caution performing statistical comparisons of H for signals
that may differ in regard to being fGn or fBm, and it is partly for
this reason that Eke et al. (2000) emphasize the need to report
signal classification along with H values. For clarity, here we dis-
tinguish between H for these two processes using the labels HfGn

and HfBm.
The above steps constitute the basic process of applying AFA.

Often one would perform AFA on each time series in an experi-
mental data set to obtain an H value(s) for each, and then submit
the set of H values to standard statistical analyses (e.g., t-test or
analysis of variance) to determine if H changes across experimen-
tal conditions or between groups of subjects. That is, H becomes
a dependent variable that is analyzed to determine if it changes
across levels of some factor.

In the next sections, we apply AFA to known, mathemati-
cal fractal processes and then to real-world data obtained from

an experiment on human cognition (repeated estimation of the
duration of a time interval). The application to known fractal
signals demonstrates how AFA is capable of classifying signals
in terms of H. The application to real-world data reveals the
complexities and challenges of using fractal analysis methods to
signals that are not idealized fractal processes, like most real sig-
nals in the biological, behavioral, and physical sciences. One of
these challenges is the matter of deciding how to identify linear
scaling regions for AFA (and this challenge applies to other fractal
methods, including DFA).

APPLICATIONS OF AFA
APPLICATION TO KNOWN FRACTAL PROCESSES
Here we present applications of AFA to artificially created time
series including some well-studied fractal processes. The advan-
tage of doing so is that we can compare the results of AFA to
what should be the “right” answers based on a priori, mathe-
matical knowledge of the artificial time series. Consistent with
the goal of this paper to serve as a tutorial for using AFA, we
do not mean for this to represent a fully comprehensive test of
the method, but rather a straightforward, minimal demonstration
that the method correctly identifies these simple “toy” signals. We
present results of AFA applied to time series of random, white
noise, and two idealized fractal processes known as pink noise and
brown noise.

Synthetic time series properties
The artificial time series were generated using MATLAB (The
MathWorks, Inc.; Natick, MA). Ten time series of length
N = 10,000 were generated for each of three categories of signals
using an inverse Fourier transform (Lennon, 2000): White, pink,
and brown noise (see Figure 4). Initially, DFA was used to verify
that the synthetic time series we created indeed had the desired
mathematical characteristics. The integrated white, integrated
pink, and non-integrated brown series were found to have mean
(± 1 SD) H values of HfGn = 0.49 ± 0.01, HfGn = 0.97 ± 0.01,
and HfBm = 0.51 ± 0.01, respectively. The close correspondence
between those results and the theoretical values of HfGn = 0.5,
HfGn = 1.0, and HfBm = 0.5, respectively, indicates that the sim-
ulations produced accurate simulations of fractal processes. Based
on our a priori knowledge of the signals, confirmed by visual
inspection of stationarity of the time series and these preliminary
checks using DFA, only the white and pink noise time series were
integrated prior to AFA. The brown noise time series were not
integrated.

Data reduction and analysis
The AFA steps described above were implemented on the set
of 30 synthetic time series. Parameters of window size w = 0.5
and polynomial orders of M = 1 and M = 2 were chosen for the
analyses (AFA was performed once with each polynomial order).
Sample AFA plots are shown in Figure 5.

Results
For the white noise time series, using polynomial orders of M = 1
and M = 2, AFA returned mean H values of HfGn = 0.49 ± 0.01
and HfGn = 0.50 ± 0.01, respectively. The pink noise time series

Frontiers in Physiology | Fractal Physiology September 2012 | Volume 3 | Article 371 | 38

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Riley et al. Adaptive fractal analysis tutorial

FIGURE 3 | On the left is depicted a demonstrations of how the fits to

different window sizes w relate to the AFA plot, shown on the right. The
AFA plot is a plot of log2F(w) (i.e., variance of the residual to the globally
smooth trend signal) as a function of log2w (i.e., time scale or window size).

A linear relation in this plot captures fractal scaling, and the slope of the line
of best fit provides an estimate of the Hurst exponent H. For visual simplicity
we only depicted non-overlapping window edges with the dotted gray line,
while the analysis uses overlapping windows.

were also effectively categorized by AFA in the original time series.
A mean H value of HfGn = 0.98 ± 0.01 was obtained using a
polynomial order M = 1 and a mean value of HfGn = 0.99 ±
0.02 was found using a polynomial order M = 2. Lastly, AFA
successfully characterized the non-integrated synthetic brown
noise time series. Using polynomial orders of M = 1 and M = 2,
AFA returned mean HfBm values of 0.51 ± 0.02 and 0.52 ± 0.01,
respectively.

Discussion
The application of AFA to the synthetic time series indicated that
AFA is able to characterize the types of noise with a similar accu-
racy as DFA. The obtained H values corresponded very closely
to the theoretically expected values and to the values obtained by
DFA (presented earlier). The estimates also exhibited high reli-
ability (low SD values). Changing the polynomial order M had
very small consequences for these synthetic data; M = 2 resulted
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FIGURE 4 | Sample time series of white (top), pink (middle), and brown (bottom) noise.

in slightly better estimates for white and pink noise (and for this
polynomial order AFA produced slightly more accurate estimates
than did DFA), but slightly worse estimates for brown noise.

APPLICATION TO REAL-WORLD DATA FROM A COGNITIVE
PSYCHOLOGY EXPERIMENT
We analyzed time series produced by a single participant who
repeatedly performed a cognitive task (estimating the duration of
a temporal interval) over the course of multiple experimental ses-
sions. The task of repeated temporal estimation is frequently used
to study the variability of human time estimation (Delignières
and Torre, 2011) and was one of the first reported cases of 1/f
noise in human cognitive behavior (Gilden et al., 1995).

Experimental methods
A single female undergraduate student who gave informed con-
sent participated voluntarily in the study which was approved by
the Institutional Review Board at the University of Cincinnati.
She was paid $10 per session. The task required the partic-
ipant to provide repeated estimates of a 1-s time interval.
Time estimates were recorded from the presses of the spacebar
of a millisecond-accurate keyboard (Apple A1048, Empirisoft).
Response times were recorded using the Psychophysics Toolbox for
Matlab (Brainard, 1997), which recorded the time of each key

press during the experiment. We defined one time interval esti-
mate as the time from the beginning of one space bar press to the
next one.

At the beginning of each experimental session the partici-
pant listened to 20 metronome beats of the 1-s interval to be
estimated. The metronome was then turned off, and the partic-
ipant then immediately began performing the time estimation
task. A total of 1050 estimates were produced consecutively in
each experimental session, and each session lasted approximately
20 min. There were two experimental conditions that varied with
regard to the presence or absence of feedback about the accu-
racy of the estimates. In the no-feedback condition the participant
did not receive any explicit feedback about timing performance.
This condition was similar to tasks used previously in contin-
uation tapping experiments (Gilden et al., 1995; Chen et al.,
2002; Wagenmakers et al., 2004; Torre and Delignières, 2008).
In the feedback condition a computer monitor was used to
present feedback specifying the error (in ms) of the most recent
estimate on every trial. For example, if the participant hit the
space bar 250 ms after 1 s had passed since the previous press,
the feedback on the screen would read “250 ms late.” The par-
ticipant first completed 10 no-feedback trials, one per day on
consecutive days, and then completed 10 feedback trials (again
one per day on consecutive days). For present purposes we focus
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FIGURE 5 | Example log2F (w) vs. log2w plots returned by AFA for the

time series depicted in Figure 4. The plots on the left side (panels A, C,

and E) are from AFA using a polynomial order of M = 1 while those on the
right side (panels B, D, and F) are from AFA using a polynomial order of
M = 2. Plots A and B are for white noise, plots C and D are for pink noise,
and plots E and F are for brown noise. The respective HfGn (A, B, C, and D)
and HfBm (E and F) values are shown for each signal.

on just the first and the last trial in each of the two feedback
conditions.

Data processing and results
We followed the standard procedure in the literature on tempo-
ral estimation to remove all observations less than 300 ms and
any observations falling beyond 3 SD from the mean. Such val-
ues are likely to originate from accidents such as double-tapping
the space bar or not initially pressing the bar hard enough, and
a significant number of these kinds of outlying values can have
detrimental results. From looking at plots of the data processed
in this way (Figure 6), it was clear that the time series of tem-
poral estimates were more similar to fGn than fBm (compare to
Figure 1)1. Therefore, we integrated our data prior to performing

1Following suggestions by Cannon et al. (1997) and Eke et al. (2000), we per-
formed spectral analyses on the data to provide a more objective classification
of our time series as fGn or fBm. The spectral exponents ranged from 0.48 to
0.75, indicating the signals were consistent with fGn.

Session 1 Session 1

Session 10Session 10

No Feedback Feedback

FIGURE 6 | Trial series of continuous time estimates with and without

accuracy feedback after removing observations faster than 300 ms and

beyond 3 SD from the mean. The participant performed the task 10 times
in each feedback condition.

AFA. Then, the same basic steps for AFA described previously
were again implemented, but with the following additional con-
siderations taken into account. We used M = 1 (given that using
M = 2 did not show consistently better results in our analysis of
the sample time series) and log2w step sizes of 0.5 (because we
wanted to enhance the resolution of the AFA plots to facilitate the
identification of linear scaling regions).

When dealing with real-world data, if fractal scaling is present
it may be limited to a range of time scales (i.e., w values). If this is
not taken into account, it may lead to inaccuracies in the estima-
tion of H. Before estimating H, then, it was important to visually
inspect the plots of log2F(w) as a function of log2w to identify
regions where linear scaling might be present. If fractal scaling
appears limited, it may be necessary to restrict the range of the lin-
ear fit to the plot to exclude regions where linear scaling does not
occur. Inclusion of regions where fractal scaling is actually absent
can lead to inaccuracies and reduce the reliability of H estimates
(Cannon et al., 1997), and may present an unrealistic picture
of the degree to which fractal scaling really is a major feature
of the signal being analyzed. In practice, it is desirable to make
this process as objective and automated as possible to avoid bias.
Elsewhere (Kuznetsov et al., 2012) we have described this issue in
more detail, and presented a quantitative procedure designed for
this process. For the sake of this tutorial, however, we chose the
linear regions visually after inspecting the AFA plots for each trial
without the linear fits imposed to examine the possibility of linear
scaling.

As often occurs with empirical data (as opposed to pure math-
ematical fractals), some of our time series yielded slightly curved
log2F(w) functions (cf. Di Matteo et al., 2003) and had cut-
off edge effects especially at larger time scales (w > 8 or 256
estimates). Visual inspection of the AFA plots (see Figure 7)
suggested two distinct regions of linear scaling, one for low w
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FIGURE 7 | AFA plots for the time series of time estimates presented in

Figure 6. The HfGn values are indicated for each scaling region.

(i.e., fast time scales) and a longer region for higher w (i.e., slower
time scales), for both feedback conditions and for both the first
and last experimental sessions. Such a finding was expected based
on previous studies that revealed HfGn < 0.5 over the faster
scales and HfGn > 0.5 at the slower scales (Lemoine et al., 2006;
Delignieìres et al., 2008).

In the first experimental session the fast scaling region for the
no-feedback condition spanned windows log2w from 1.58 to 3.17
(in terms of actual number of time estimates this corresponded
to a range of 3–9). The HfGn value associated with this region
was 0.50, indicating the presence of uncorrelated white noise. The
slower scaling region for the no-feedback condition had an HfGn

value of 0.91 (indicating a positive correlation at this scale) and
spanned windows log2w from 3.17 to 9 (13–513 estimates). On
the last trial, after a period of practice, the fast scaling region
showed a tendency to become slightly anti-correlated but was still
very close to white noise (HfGn = 0.48) and its length decreased
compared to the first session (it now spanned 1.58–2.81 log2w, or
3–7 estimates). The slow scaling region increased in length (it now
spanned from log2w = 3.17 to 9; 9 to 513 estimates) and became
more uncorrelated because its HfGn value decreased to 0.77.

A similar pattern of results was found for performance in the
feedback condition (see Figure 6, right panel). The fast scaling
region during the first session spanned windows from 1.58 to
3.17 log2w (in terms of actual number of time estimates this
corresponded to a range of 3–9) and had a HfGn = 0.48, indi-
cating uncorrelated white noise dynamics on this scale. One
major difference compared to the no-feedback condition was the
shorter length of the slow scaling region in the first session, which
now spanned values of log2w from 3.17 to 8 (9–257 estimates).
Similar to the no-feedback condition, the dynamics at this scale
exhibited positive correlation as indexed by HfGn = 0.87. The
breakdown at larger log2w is likely due to an initial transient evi-
dent in the time series plot for this session—for about the first
100 estimates the participant consistently underestimated the 1-s
interval, but then began to estimate it more accurately. Because
this only happened during one part of the trial, this affected the
slowest scaling region of the AFA plot. At trial number 10, simi-
larly to the no-feedback condition, the fast scaling region showed
a tendency to become slightly more anti-correlated but was still
very close to white noise (HfGn = 0.44) and its length decreased

compared to the first session (it now spanned 1.58–2.81 log2w,
or 3–7 estimates). The slow scaling region increased in length (it
now spanned log2w = 3.17–9; 9–513 estimates) and became less
correlated because its HfGn value decreased to 0.79.

Discussion
Finite, real-world time series are typically more complex than
the ideal simulated noises of mathematics. For example, as was
apparent in these time series, experimental data can contain mul-
tiple scaling regions. Partly, this may be because experimental data
contain both the intrinsic dynamics of the process that generated
the signal plus the measurement noise inherent in any recording
device. Apart from that, the intrinsic dynamics of real-world sig-
nals may have singular events and non-stationarities that if severe
enough often can complicate many analyses (including AFA).
Because of this it is very important to carefully examine the raw
data and the corresponding scaling plots before conducing any
quantitative analyses.

With regard to the dynamics of cognitive performance in this
temporal estimation task, these results provide preliminary evi-
dence of the presence of practice effects in the continuous time
estimation task. Practice led to a decrease in the H exponent of the
slow scaling region, suggesting that the responses became some-
what more uncorrelated at this scale with practice. Of course our
preliminary results have to be interpreted with caution because
they are based on single participant and there are individual dif-
ferences in the slow scaling region H values in this task (Torre
et al., 2011). The differences between feedback conditions at the
fast time scales were not expected because previous literature
reported anti-correlated dynamics at this scale (Lemoine et al.,
2006; Delignieìres et al., 2008). Feedback clearly resulted in an
increased tendency for anti-correlated, corrective dynamics at
faster time scales because participants were displayed their per-
formance with regard to the benchmark 1 s time. They appeared
to use that information to correct performance on a trial-by trial-
basis. In the no-feedback condition, this information was not
readily available, which led to essentially random performance at
the fast time scales.

GENERAL DISCUSSION
We applied AFA to known fractal signals and to real-world data
from an experiment in human cognitive psychology that involved
the repeated reproduction of a time interval. AFA recovered the
H values of the known mathematical signals with high accuracy.
This was generally true for both M = 1 and M = 2. The choice of
polynomial order did not have a very large effect, although M = 2
yielded slightly better results for the white and pink noise signals
but slightly worse results for the brown noise signal. Linear scaling
was well defined over a single region for these signals.

Application of AFA to the experimental data revealed some
of the complexities in applying fractal analyses to real data, par-
ticularly the issue of identification of linear scaling regions. We
determined the scaling regions visually and then fit lines to them
to obtain estimates of H. Often this is sufficient, but it is not an
objective process and it could be subject to bias in an experiment
that involves testing a particular hypothesis or an initial effort to
classify a previously unanalyzed type of signal. If visual selection
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of the scaling region is used, it should be done by multiple
observers (so that inter-rater reliability can be computed) who
are blind to the experimental conditions and study hypotheses (to
avoid bias). In Kuznetsov et al. (2012) we present an objective,
quantitative technique based on model-selection methods that
could be used to identify scaling regions, but more work remains
to be done on this issue.

For the experimental time series we analyzed two linear scaling
regions were apparent rather than one. Consistent with previous
results using other analysis methods including spectral analysis
(Lemoine et al., 2006; Delignieìres et al., 2008), these regions
showed distinct slopes. The faster time scale yielded lower HfGn

and were basically random white noise processes (especially for
the no-feedback condition) with a slight tendency toward exhibit-
ing anti-correlated fluctuations. The longer time scale yielded
higher HfGn values consistent with a correlated process that was
close to idealized pink-noise. The presence of feedback had some
influence on the structure of the fluctuations of the repeated tem-
poral estimates, as did the practice afforded by performance on
consecutive experimental sessions. One of these effects was that
linear scaling for the slower time scale broke down at larger w for
the first session in the no-feedback condition, but spanned the
entire upper range of w for the last session. These results show
that AFA may be sensitive to experimental manipulations that
affect the temporal structure of data series both with regard to the
estimated H values and the range of w over which fractal scaling
occurs.

Besides the issue of identifying linear scaling region, AFA
requires several other choices such as the step size for the win-
dow size w. Typically 0.5 or 1 log2w are used, with smaller values
providing greater resolution in the AFA plot. In principle this
choice should have little impact on H estimates, and would not
seriously impact computation time except perhaps for extremely
long time series. It could, however, have a strong impact on the
ability to identify linear scaling regions, especially with regard

to resolving the existence of linear scaling regions at faster time
scales. The choice of polynomial order M for the local fits is also
important, especially for signals that may have oscillatory or non-
linear trends as higher-order polynomials may be more effective
at extracting those trends. Typical choices of 1 or 2 seemed to pro-
vide about the same accuracy in estimates of H for the known
signals we analyzed.

Other factors that impact the ability to identify linear scaling
include the sampling rate and the trial length, which, respec-
tively, will affect the ability to resolve faster and slower time scales.
These are important choices. A very high sampling rate might
indicate the appearance of scaling at very fast time scales, but if
those time scales are not physically realistic, one should be cau-
tious about interpreting them. Increasing trial length may help
reveal or resolve scaling over very long time scales, which may
be very important when dealing with apparently non-stationary
time series.

Ideally, AFA should be used in conjunction with other meth-
ods, and converging results should be sought. But because AFA
but has several advantages over similar methods such as DFA
(Gao et al., 2011) the results may not always agree, so care
should be taken in interpreting the results. Like all fractal analysis
methods, AFA requires careful consideration of signal properties,
parameter settings, and interpretation of results, and should not
be applied blindly to unfamiliar signals. It is particularly impor-
tant to plot and carefully inspect the time series and the AFA
plots to ensure that the apparent signal properties match with the
obtained results. In addition, as we noted previously the appear-
ance of linear scaling regions in an AFA plot is not a definitive test
for fractal scaling. When used carefully AFA may provide another
useful tool for analyzing signals that may exhibit fractal dynamics.
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Fractal analyses have become very popular and have been applied on a wide variety of
empirical time series. The application of these methods supposes that the monofractal
framework can offer a suitable model for the analyzed series. However, this model takes
into account a quite specific kind of fluctuations, and we consider that fractal analyses have
been often applied to series that were completely outside of its relevance. The problem is
that fractal methods can be applied to all types of series, and they always give a result,
that one can then erroneously interpret in the context of the monofractal framework. We
propose in this paper an easily computable index, the relative roughness (RR), defined as
the ratio between local and global variances, that allows to test for the applicability of frac-
tal analyses. We show that RR is confined within a limited range (between 1.21 and 0.12,
approximately) for long-range correlated series. We propose some examples of empirical
series that have been recently analyzed using fractal methods, but, with respect to their
RR, should not have been considered in the monofractal model. An acceptable level of RR,
however, is a necessary but not sufficient condition for considering series as long-range
correlated. Specific methods should be used in complement for testing for the effective
presence of long-range correlations in empirical series.

Keywords: monofractal model, long-range correlations, relative roughness

INTRODUCTION
Long-range correlations (LRC) represent a very special kind of
fluctuation in time series. In a long-range correlated series, the
current value is related to a large set of previous values, often hun-
dreds. Intuitively, the concept of short-term correlation is easily
conceivable: the current value can, for example, keep a memory of
the just previous value, as in one-order auto-regressive processes.
The concept of LRC is less intuitive: correlations appear simul-
taneously among all time scales, and are not confined on the
short-term: the current value seems to possess the memory of
the whole previous history of the series.

Long-range correlations have been discovered in the dynamics
of a number of natural and physical systems, including for exam-
ple the series of discharges of the Nile River (Hurst, 1951), the
series of magnitudes of earthquakes (Matsuzaki, 1994), the evo-
lution of traffic in Ethernet networks (Leland et al., 1994), or the
dynamics of self-esteem over time (Delignières et al., 2004). In the
domain of human movement, LRC have been evidenced in serial
reaction time (Gilden, 1997; van Orden et al., 2003), in finger tap-
ping (Gilden et al., 1995; Lemoine et al., 2006), in stride duration
during walking (Hausdorff et al., 1995), or in relative phase in a
bimanual coordination task (Torre et al., 2007a).

Long-range correlations appear as a ubiquitous phenome-
non, and this is one of the reasons that motivated its scien-
tific appealing. However, LRC should not be considered only
a mathematical curiosity: a number of authors suggested that
LRC in a time series is the hallmark of the complexity of the
system that produced the series. Complexity, in this theoretical

context, is conceived as the rich set of interactions between
the multiple components that compose the system. LRC have
been particularly studied in physiology and movement sciences,
and have been recurrently evidenced in the series produced by
young and healthy organisms. In contrast, LRC disappeared in
the series produced by aged of diseased systems (Hausdorff et al.,
1997; Goldberger et al., 2002). This result has been interpreted
as the hallmark of a loss of complexity, induced by aging or
disease.

Long-range correlations analyses are based on the monofractal
model, initially introduced by Mandelbrot and van Ness (1968).
This model is supported by a number of basic assumptions that
should be satisfied for a proper use of the analysis methods and for
sustaining consistent interpretations. In general, statistical mod-
els allow the use of formal statistical properties for analyzing the
properties of empirical data, but this is only possible if there is a
kind of analogy between the formal properties of the model and
those of the analyzed data.

This principle was at the origin of the Stevens’ theory of scales
of measurement (Stevens, 1951). As stated by Stevens, measure
is acceptable from the moment where there is a correspondence
between the empirical properties of the observed phenomenon
and the formal properties of numbers. In that case, the latter can
serve as a model for the former. Stevens described four levels of
measurement (nominal, ordinal, interval, and ratio scales), each
level being characterized by distinctive properties, and especially
by the set of mathematical operations that it allows. Each empir-
ical phenomenon has properties that limit to a specific level of
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measurement, and any reference to a higher level causes erroneous
uses numbers and inadequate statistical descriptions.

A similar reasoning can be sustained for normality. The suit-
ability of parametric statistical tests depends on the adequacy of
the normal distribution for accounting for the actual distribution
of the analyzed samples. This assumption, basically, suggests that
each value xi in the sample is composed of the additive combi-
nation of a “true” value (μ) and a random, normally distributed
noise (Eq. 1).

xi = μ + εi (1)

This model supposes that the random term accounts for the
multiple uncontrolled factors that affect the measure (individ-
ual characteristics, experimental errors, etc.). Considering that
this random term is centered on zero, averaging the sample con-
verges toward μ. The distribution of the sample is supposed
to be normal, thanks to the normality of the random term,
and the statistical properties of the normal distribution can be
applied.

Note, however, that it is possible to use forbidden operations,
with regards to the level of measurement, or to apply paramet-
ric statistics to non-normal samples. These operations will give
absurd results, and statistic tests will yield erroneous conclusions,
but in both cases one will obtain a “result.” A similar problem
can occur with the monofractal model. Fractal methods can be
applied to all types of series, in absolute terms, and they always
give a result, that one can then erroneously interpret in the context
of the monofractal framework.

Our aim in the present paper is to provide researchers with
some indications for assessing the suitability of the monofractal
framework for serving as a model for a given time series. In a first
step it seems necessary to present in more details the monofractal
model.

THE MONOFRACTAL MODEL
This model has been introduced by Mandelbrot and van Ness
(1968), and is composed of to distinct families of processes,
fractional Gaussian noises (fGn) and fractional Brownian motions
(fBm). These two families represent extensions of two well-known
stochastic processes, white noise and Brownian motion. Brown-
ian motion represents the displacement obtained by the iterative
summation of uncorrelated, normally distributed increments. In
other words, Brownian motion is the integration of a white noise
process. An important property of Brownian motion is that its
expected displacement is proportional to the square root of the
expended time.

Fractional Brownian motions extends the concept of Brownian
motion by allowing the successive increments to be correlated over
time. A positive or persistent correlation signifies that an increas-
ing trend in the past is likely to be followed by an increasing trend
in the future. Conversely, a negative or anti-persistent correlation
signifies that an increasing trend in the past is likely to be followed
by a decreasing trend.

Mathematically, a fBm series is characterized by the following
scaling law:

SD (x) ∝ Δt H (2)

which signifies that the standard deviation of the process is a power
function of the time interval (Δt ) over which it was computed. H
is the Hurst exponent and can be any real number in the range
0 < H < 1. Anti-persistent series are characterized by H < 0.5,
and persistent series by H > 0.5. Brownian motion corresponds
to the special case H = 0.5 and constitutes the frontier between
anti-persistent and persistent fBm. Eq. 2 expressed the so-called
diffusion property of fBm processes. With respect to the standard
diffusion of Brownian motion (standard deviation is proportional
to the square root of time), anti-persistent fBm are said to be
under-diffusive, and persistent fBm over-diffusive. We present in
Figure 1 (top row) three example fBm series, for three contrasted
H exponents.

Fractional Gaussian noise is defined as the series of successive
increments in a fBm. In other words a fGn is the differentiation of
a fBm, and conversely the integration of a fGn gives a fBm. Each
fBm is then related to a specific fGn, and both are characterized by
the same H exponent. We present in the bottom row of Figure 1
the fGn series corresponding to the just above fBm series. The fGn
family is centered around white noise (H = 0.5), which represents
the frontier between anti-persistent and persistent fGn.

These two families of processes possess fundamentally differ-
ent properties: fBm series are non-stationary with time-dependent
variance (diffusion property), while fGn are stationary with
constant expected mean and variance over time. As previously
explained, fGn and fBm can be conceived as two superimposed
families, invertible in terms of differentiation and integration.

Another useful conception is to conceive these two families as
representing a continuum, ranging from the most anti-persistent
fGn to the most persistent fBm. This fGn/fBm continuum is char-
acterized by the presence of scaling laws that could be expressed
in the frequency or in the time domain. In the frequency domain,
a scaling law relates power (i.e., squared amplitude) to frequency
according to an inverse power function, with an exponent β:

S
(
f
) ∝ 1

f β
(3)

This scaling law is exploited by the Power Spectral Density
(PSD) method that reveals β as the negative of the slope of the

FIGURE 1 |Top row: example series of fractional Brownian motions

(fBm) for three typical values of the scaling exponent. The central graph
represents an ordinary Brownian motion (H = 0.5). The left graph shows an
anti-persistent fBm (H = 0.25) and the right graph a persistent fBm
(H = 0.75). The corresponding fractional Gaussian noises series (fGn) are
displayed in the bottom row.
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log–log representation of the power spectrum (Figure 2). The
fGn/fBm continuum is then characterized by exponents β ranging
from −1 to 3 (see Figure 4).

In the time domain, the typical scaling law states that the stan-
dard deviation of the integrated series is a power function of the
time over which it is computed, with an exponent α. Considering
a time series x(i):

⎧⎪⎨
⎪⎩

y(i) =
i∑

k=0
x (k)

SD
(
y
) ∝ nα

(4)

This scaling law is exploited by the Detrended Fluctuation
Analysis (DFA) that reveals α as the slope of the log–log diffusion
plot (Figure 3). The fGn/fBm continuum is characterized by expo-
nents α ranging from 0 to 2 (see Figure 4). Note that the scaling law
expressed in Eq. 4 just derives from the original definition of fBm
(Eq. 1). If the series x(i) is a fGn, y(i) is the corresponding fBm and
α is the Hurst exponent. If x(i) is a fBm, y(i) belongs to another
family of over-diffusive processes, characterized by exponents α

ranging from 1 to 3, and in that case α = H + 1.
The different exponents that characterize these scaling laws are

mutually linked by very simple equations:
For fGn series:

β = 2H − 1 and α = H (5)

For fBm series:

β = 2H + 1 and α = H + 1 (6)

FIGURE 2 | Power Spectral Density analysis. The exponent β is given by
the negative of the slope of the log–log representation of the power
spectrum.

For fGn and fBm series:

β = 2α − 1 or α = (β + 1)

2
(7)

The exponents provided by PSD and DFA (β and α, respec-
tively), are useful because they allow to unambiguously distinguish
between fGn and fBm series, which could be characterized by the
same H exponents.

In this fGn/fBm continuum, LRC are generally considered
to appear in a narrow range, between β = 0.5 and β = 1.5 (i.e.,
between α = 0.75 and α = 1.25, see Wagenmakers et al., 2004). This
range is centered on β = α = 1, corresponding to the ideal 1/f noise.
Long-range correlated series present typical fluctuations, often
referred to as 1/f fluctuations, characterized by multiple interpen-
etrated waves. As can be seen in Figure 4, with the increase of the
scaling exponent (α or β), the series becomes smoother and less
stationary. Within this continuum, LRC series are characterized by
a weak stationarity, and a median level of roughness.

A INDEX OF RELATIVE ROUGHNESS
As previously stated, our aim in this paper is to provide researchers
with some indications for assessing the suitability of the monofrac-
tal model for a given time series. A number of procedures can be
proposed, often complex and time-consuming. We think, however,
that the property of roughness, previously evoked, could support a
very simple and easily computable index for testing this suitability.

Roughness has been extensively used for characterizing the tex-
ture of surfaces (Thomas, 1999). In this context, roughness can be
quantified by the deviations of a real surface from its ideal form. If
deviations are large, the surface is rough, and the surface is smooth
if deviations are small. A number of roughness parameters have
been proposed, for example the Mean Roughness, defined as the
arithmetic average of the absolute values of the deviations from
the ideal surface, or the Root Mean Square Roughness, defined as
the root mean square average of these deviations.

FIGURE 3 | Detrended Fluctuation Analysis. The exponent α is
determined as the slope of the log–log diffusion plot.
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FIGURE 4 | Representation of the fGn/fBm continuum. The continuum is
characterized by exponents β ranging from −1 to 3, and by exponents α

ranging from 0 to 2. White noise corresponds to β = 0 and α = 0.5, and

Brownian motion to β = 2 and α = 1.5. Long-range correlations are considered
to appear between β = 0.5 and β = 1.5. β = α = 1 corresponds to ideal 1/f
noise.

In the domain of time series analysis, roughness refers to the
level of short-term irregularity in the evolution of the series.
As previously proposed, roughness appears as a typical prop-
erty of 1/f fluctuations, and we think that it could be useful for
assessing the suitability of the monofractal model for a given
series.

Roughness in a series can be assessed by the computation of
local variance (Madison et al., 2009). Local variance can be defined
as the variability between adjacent points in the series. This source
of variance in a series is independent on others typical sources,
such as long-term drifts (Madison et al., 2009), or more local
trends induced by serial correlations (Torre and Balasubramaniam,
2011).

An easy way for estimating local variance is to compute the vari-
ance of the series of increments in the original series (Torre and
Balasubramaniam, 2011). Some other estimates have been pro-
posed: for example Ogden and Collier (2002) and Madison et al.
(2009) assessed local variance through the average of the squared
differences between adjacent values, and Delignières et al. (2004)
used the average of the absolute differences between adjacent val-
ues. Despite some algorithmic divergences, all these measures pro-
vide equivalent measures of local variability, in terms of variance
or standard deviation.

Local variance, however, cannot in isolation provide a rele-
vant indication for the suitability of the monofractal model. As
previously stated, local variance is independent on the strength
of serial correlations in the series: similar patterns of corre-
lation can be obtained with different levels of local variance,
and conversely identical levels of local variance could appear
in series possessing different levels of serial correlation (Torre
and Balasubramaniam, 2011). The problem is to assess the rel-
ative contribution of local variance to the global variance of
the series. In this aim, we propose an index of relative rough-
ness (RR), defined as the ratio between local variance and global
variance.

Consider a series (xi). Local variance (LVar) can be
expressed as:

LVar (xi) = Var (xi − xi−1) = 2 [Var (xi) − γ1 (xi)] (8)

γ1(xi) representing the lag-one autocovariance. One can then
obtain the following expression for RR:

RR = 2

[
1 − γ1 (xi)

Var (xi)

]
(9)

This equation suggests that for a white noise process, local vari-
ance should be twice the global variance, and RR should equal
2. One could also expect a progressive decrease of RR with the
increase of serial correlations in the series. Finally, the diffusion
property suggests that for fBm series global variance increases with
series length. As a consequence, for fBm series RR should decrease
as series length increases.

In order to analyze the evolution of RR according to the strength
of serial correlations in the series, we generated exact fractal series
with α exponents ranging from 0.1 (highly anti-persistent fGn) to
1.9 (highly persistent fBm), by steps of 0.1, using the algorithm
proposed by Davies and Harte (1987). In order to check the effect
of series length on RR, we worked on series of 512, 1024, and 2048
data points, which correspond to the series lengths mostly used in
the literature. One-hundred series was generated for each α level
and each series length. The results are illustrated in Figure 5. As
expected RR decreased as correlations increased in the series. RR
was about 2.0 for white noise, and anti-persistent fGn series were
characterized by values greater than 2.0, up to 2.9 for the most
negatively correlated series (α = 0.1). For fBm series RR presented
an asymptotical trend toward zero as α increased. As expected,
series length affects RR, but this effect is located in a narrow range
of anti-persistent fBm (between α = 1.0 and α = 1.4).

We present in Table 1 the details of the results for the range
0.5–1.5. We obtained for 1/f series (α = 1.0) a mean RR ranging
from 0.4 to 0.5, depending of series length. On the basis of these
results, it is possible to roughly estimate the limits of the range
of RR values that corresponds to the series that are usually con-
sidered as long-range correlated (0.75 < α < 1.25). For series of
512 points, RR should be approximately comprised between 1.24
and 0.28, for series of 1024 points between 1.24 and 0.17, and for
series of 2048 points between 1.21 and 0.12. Note that these values
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FIGURE 5 | Relative roughness as a function of the scaling exponent α in simulated fGn and fBm series. Results are given for series lengths of 512, 1024,
and 2048 data points.

Table 1 | Mean relative roughness (RR), computed for exact fractal

series with α exponents ranging from 0.5 to 1.5.

α Relative roughness (RR)

512 1024 2048

0.5 1.990 2.005 2.004

0.6 1.722 1.705 1.705

0.7 1.410 1.397 1.388

0.8 1.074 1.052 1.037

0.9 0.718 0.688 0.662

1.0 0.496 0.449 0.417

1.1 0.407 0.349 0.301

1.2 0.318 0.248 0.186

1.3 0.116 0.087 0.057

1.4 0.056 0.031 0.017

1.5 0.018 0.010 0.005

Results are given for series lengths of 512, 1024, and 2048 data points. Forty

series have been generated for each α level and each series length. Series that

correspond to the LRC range are indicated in bold.

should certainly not be considered as strict and absolute bound-
aries. The present results are dependent on the method we used
to generate series, and another method would have given slightly
different values.

RELEVANT SERIES FOR FRACTAL ANALYSIS: RELATIVE
PHASE IN BIMANUAL COORDINATION TASKS
The aim of RR is to provide an easily computable index for testing
the a priori suitability of the monofractal model. We think that this
index could be useful for distinguishing the variables that could
be relevant for the application of fractal analyses, and those that
clearly fall out of the scope of the monofractal model.

An interesting example can be proposed on the basis of
studies that analyzed the fractal properties of series collected
in bimanual coordination tasks. In the bimanual coordina-
tion paradigm, participants are requested to perform simulta-
neous rhythmical oscillations with the two hands, according
to a prescribed phase relationship between the two effectors
(Kelso, 1984). Two modes of coordination have been shown
to be particularly stable: the in-phase coordination, in which
homologous muscles perform simultaneous contractions, and
the anti-phase coordination, in which homologous muscles per-
form alternate contractions. The relevant variable for analyz-
ing such coordination is the relative phase, i.e., the difference
between the instantaneous phases of each oscillator. Relative phase
equals 0˚ for the in-phase mode, and 180˚ for the anti-phase
mode.

Two measures of relative phase are used in the literature, and
are generally considered as interchangeable. Continuous relative
phase (CRP) is derived from the position (xt) and velocity (xt)
time series of each oscillator. The phase angle is determined for
each oscillator using the following equation:

φt = tan−1
(

ẋt

xt

)
, (10)

and the relative phase is determined as the instantaneous difference
between the phase of each oscillator.

Discrete relative phase (DRP) is punctually computed, as the
temporal difference between similar inflection points in the oscil-
lation of the two oscillators, reported to the period of one of the
oscillators. CRP has often been interpreted as a higher resolu-
tion form of DRP. Nevertheless, Peters et al. (2003) showed that
these two measures essentially differ in nature: DRP yields infor-
mation regarding the relative dispersion of events in oscillatory
signals, while CRP described their relationship in a higher order
phase space.
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Torre et al. (2007a) analyzed the fractal properties of both DRP
and CRP series. Two example series, collected in trials performed in
in-phase mode, are presented in Figure 6 (top row). At first glance,
the two series look similar, presenting a weak stationarity around
a mean value of 0˚. However, the DRP series (left graph) contains
only 1044 data points, while the CRP series is composed of 32,000
data points (sampled at 100 Hz, representing approximately 96

consecutive cycles). The graphs in the second row highlight the
differences between the two series, by focusing on 200 points for
DRP and 2000 points for CRP. The DRP series is composed of dis-
crete points, and differences between adjacent values provide the
series with a marked level of roughness. In contrast the CRP series
appears as a very smooth motion, with slow oscillations around
the mean value.

FIGURE 6 |Top Row: relative phase series collected during a

bimanual coordination task. The task was performed following an
in-phase mode. The left graph represents a series of discrete relative
phases (DRP, 1044 data points, computed by the point estimate
method at the time of maximal pronation of the right hand). The right
graph is a series of continuous relative phase (CRP, 32,000 data

points, sampled at 100 Hz, representing approximately 96
consecutive cycles). Second row: DRP (left) and CRP (right) series.
These graphs focus on 200 points for DRP and 2000 points for CRP.
Third row: average DFA diffusion plots obtained for DRP (left), and
CRP (right) series. Bottom row: average log–log power spectra
obtained for DRP (left), and CRP (right) series.
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Relative roughness, averaged over 12 series composed of the
2048 first points of the experimental data, was about 1.22 (±0.44)
for DRP, and 0.0015 (±0.000) for CRP. These results suggest that
DRP series could be reasonable candidates for being modeled as
fGn processes, while CRP series appear clearly out of the range of
RR values expected for LRC processes.

These results are confirmed by the application of DFA and
PSD. DRP series yielded a mean α exponent of 0.76 (±0.12). The
mean β was 0.49 (±0.15), corresponding according to Eq. 7 to
a α value of about 0.75. These values converge toward the char-
acterization of DRP series as weakly persistent fGn series. The
analysis of CRP series provided completely different results. When
computed over the whole range of intervals, the mean α was of
about 1.25 (±0.11). However, a close examination of the diffu-
sion plot (see Figure 6) revealed a clear inflection, with a steeper
slope of about 1.89 (±0.03) for short time intervals, and a flat-
tened slope (0.69 ± 0.41) for long intervals. PSD yielded a mean
log–log power spectrum that also presented an inflection, with a
positive mean slope of about 0.40 (±1.58) in the very low fre-
quency region, and a highly negative slope (−5.08 ± 0.28) in the
medium to high-frequency region. This last result was consistent
with that reported by Schmidt et al. (1991), which obtained very
high β exponents for CRP series. One could question, however, the
relevancy of computing an exponent on the basis on the average
slope of this kind of spectrum. An interesting point here is the dis-
crepancy between the results obtained in the time domain (DFA)
and the frequency domain (PSD). According to Rangarajan and
Ding (2000), such a discrepancy should lead researchers to doubt
of the genuine presence of LRC in the analyzed series.

THE SPECIAL CASE OF BOUNDED SERIES
Another problem that could prevent the application of the
monofractal model is the fact that series could appear bounded
within physiological or biomechanical limits. The monofractal
model suggests that fBm series are typically unbounded. The diffu-
sion over time of a pure fBm is theoretically unlimited: fluctuations
grow as a power function of time, and the expected displacement
of the process from a given origin is likely to increase indefinitely.

When a series is bounded within physiological boundaries, the
diffusion process is obviously limited and variance cannot exceed a
ceiling value. In other words, variance is likely to become indepen-
dent on time beyond a critical time interval necessary for reaching
this ceiling value.

This problem was recently considered by Delignières et al.
(2011a), in the domain of postural control. Research on postural
control focuses on the analysis of center-of-pressure (COP) trajec-
tory, easily recorded with force platforms. A number of authors,
during the last decade, have proposed to apply to these data diverse
non-linear methods, including fractal analyses. Delignières et al.
(2011a) formulated strong reserves about the suitability of the
fractal framework for modeling COP data, which appear clearly
bounded within functional limits. Interestingly, they showed that
bounding affected primarily COP velocity, rather than COP posi-
tion series, as generally accepted in the literature (Collins and De
Luca, 1993). This result suggested that bounding could be due
to motor control limitations, rather than by biomechanical con-
straints as commonly assumed. We present in Figure 7 (top row)
an example COP velocity series, sampled at 40 Hz, that illustrates

this bounding phenomenon: COP velocity presents highly per-
sistent trends on the short-term, but these trends tend to reverse
in direction when velocity reaches the upper or the lower limits
represented by the dashed lines.

The presence of persistent trends on the short-term suggests a
rather low roughness, similar to that observed for persistent fBm
series. However, the ceiling effect on global variance yields surpris-
ing results: The computation of RR for 26 experimental series of
COP velocity of 2048 data points gave a mean value of about 1.64
(±0.66), corresponding the value expected for weakly persistent
fGn series (see Figure 5).

Liebovitch and Yang (1997) analyzed the effect of bounding
on the results produced by fractal analyses. Especially, the diffu-
sion plot obtained with the application of DFA is supposed in that
case to present a typical inflection, with a steep slope for short time
intervals revealing the persistence of the process on the short-term,
and a flattening of the slope for long time intervals, due to the lim-
itation of diffusion. The application of DFA on the series of COP
velocity clearly illustrate this crossover (see Figure 7): the diffusion
plot presents a slope of about 1.0 for short time intervals, and a
slope of 0.43 for long intervals. Note that the crossover can also be
revealed by PSD: the log–log power spectrum presents a marked
inflection, with a positive slope in the low frequency region reveal-
ing negative correlations on the long-term, and a negative slope
in the high-frequency region, due to the persistent trends on the
short-term (Figure 7, bottom row, right column).

The application of fractal-like methods to bounded series has
sometimes lead to interpretations in terms of dual fractal regime,
with a persistent behavior on the short-term and an anti-persistent
behavior on the long-term (e.g., Collins and De Luca, 1993;
Treffner and Kelso, 1995, 1999). In the present case a simpler
hypothesis related to the effect of bounding on the dynamics
of the variable under study, offers a more interesting and useful
interpretation.

DISCREPANCIES BETWEEN RELATIVE ROUGHNESS AND
SCALING EXPONENTS
The previous examples showed how the measure of RR could allow
to a priori assessing the plausibility of the fractal hypothesis. When
RR is clearly out of the range expected for LRC, the reference to
the monofractal framework can be abandoned.

Relative roughness, however, is not sufficient for unambigu-
ously characterizing a given series as long-range correlated. In
others words, a series can present a level of RR located in the range
expected for LRC processes, without being actually long-range
correlated.

In order to illustrate this problem, we simulated three sets of
time series, possessing different correlation properties. The first
set was generated by a one-order auto-regressive model:

yi = ϕyi−1 + εi (11)

In this equation ϕ is the auto-regressive parameter and was set
to 0.85. εi is a white noise process with zero mean and unit vari-
ance. The second set was generated by an integrated one-order
moving average model:

yi = yi−1 − θεi−1 + εi (12)
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FIGURE 7 |Top: an example series of center-of-pressure velocity,

during the maintenance of upright posture (sampling frequency:

40 Hz). The dashed lines represent the upper and lower limits that

bound the evolution of the series. Bottom: average DFA diffusion plot
(left) and average log–log power spectrum (right). From Delignières
et al. (2011a).

In this equation θ is the first-order moving average parame-
ter and was set to 0.8. εi is a white noise process with zero mean
and unit variance. Finally we used the Davies–Harte algorithm for
simulating a set of fractional Gaussian noise series, with H = 0.9
(Davies and Harte, 1987). Each set was composed of 100 series of
1024 points. By construction, the two first sets of series present
only short-term correlations, while the third one possesses LRC
properties.

We choose these ARMA models and their parameters values
because the application of DFA on the series generated by these
models yields diffusion plots similar to those obtained with fGn
series. We present in Figure 8 one example series of each set, and
the corresponding diffusion plots: in all cases a linear slope close
to 0.9 is obtained. Obviously the best linear fit is observed for
the fGn series, which contains genuine LRC. For the AR series,
the diffusion plot presents a slight flattening for long intervals,
and conversely the slope tends to increase for long intervals for
the MA series. However the diffusion plots obtained the AR
and MA series roughly mimic the typical shape expected from
long-range correlated series, and could easily lead to erroneous
interpretations.

More precisely, considering the 100 series of each set, the mean
α exponent was 0.92 ± 0.06 for AR series,0.92 ± 0.08 for MA series,

and 0.90 ± 0.07 for fGn series. In contrast, the computation of RR
gave different values in the three sets: the mean RR was 0.30 ± 0.03
for AR series, 0.87 ± 0.36 for MA series, and 0.69 ± 0.09 for fGn
series. For fGn series, the mean RR corresponded exactly to the
expected value (see Table 1). With respect to the obtained α expo-
nent, AR series were characterized by a mean RR value lower than
expected, and conversely for MA series RR was slightly higher than
expected.

Such discrepancies between the expected and obtained RR val-
ues could represent an interesting test for the suitability of the
monofractal model. Note, however, that these differences between
expected and obtained values should be considered with some
caution. The mean RR value of 0.30 obtained for AR series corre-
sponds to the expected value for fBm series with α = 1.1, and the
mean value of 0.83 obtained for MA series to the expected value
for fGn series with α = 0.8. Considering the possible error in the
estimation of α, especially for relatively short series (see Delig-
nières et al., 2006), the discrepancy between α and RR should be
only considered one indicator, among others, for characterizing
the series.

Some methods have been especially developed for distinguish-
ing between short-term and LRC. Wagenmakers et al. (2005) and
Torre et al. (2007b) have proposed a method based on ARMA and

Frontiers in Physiology | Fractal Physiology June 2012 | Volume 3 | Article 208 | 52

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Marmelat et al. Relative roughness

FIGURE 8 |Top row: example series simulated with a one-order

auto-regressive model (yi = 0.85yi − 1 + εi, left column), a one-order

moving average model (yi = yi − 1 – 0.8εi − 1 + εi, central column), and the

Davies–Harte algorithm (fGn with H = 0.9, right column). The
corresponding DFA diffusion plots are presented in the bottom
row.

ARFIMA modeling. This method consists in fitting 18 models to
the series. Nine of these models are ARMA (p, q) models, p and
q varying systematically from 0 to 2. These ARMA models do not
contain any long-range serial correlations. The other nine models
are the corresponding ARFIMA (p, d, q) models, differing from the
previous ARMA models by the inclusion of the fractional integra-
tion parameter d representing persistent serial correlations. One
supposes that if the analyzed series contains LRC, ARFIMA mod-
els should present a better fit than their ARMA counterparts. We
applied the ARMA/ARFIMA modeling to the three sets of series:
as expected, all series in the fGn set were recognized as long-range
correlated. In contrast, only 10% of the AR series and 14% of the
MA series were best fitted by ARFIMA models.

Note that Gilden (2009) has issued severe reservations
against methods based on goodness-of-fit criteria, such as the
ARMA/ARFIMA procedure proposed by Wagenmakers et al.
(2004). As an alternative, the author proposed global analyses that
evaluate models on the basis of their capacity of generalization.
The models are examined in terms of cross-validity, flexibility,
and representativeness.

One could wonder about the added value of the proposed RR
index, with regard to these methods that allow to detect the gen-
uine presence of LRC in data sets. RR just provides an a priori
indication about the possible relevancy of the monofractal model,
but is unable to attest for the genuine presence of LRC. One could
propose to systematize the application the aforementioned meth-
ods before any consideration of the fractal approaches. However
it is clear that these methods are rarely used in the litterature.
These methods remain complex to implement, and their theo-
retical backgrounds are sometimes difficult. Often authors prefer
to directly apply fractal methods such as PSD or DFA, and to

interpret a posteriori the obtained results. The RR index presents
the advantage to be very easy to compute, and can allow avoiding
superfluous investigations.

TIME SERIES AND EVENT SERIES
The two first examples we evoked in this paper (relative phase
series and COP velocity) open an interesting line of discussion
about the relevancy of fractal analyses. One could note that in
both cases the series that appear unsuitable for being modeled
through the monofractal framework were genuine time series, i.e.,
series of successive values spaced by equal time intervals.

In contrast, DRP series correspond to a cycle-to-cycle measure-
ment, and the time interval between two successive values depends
on the local period used as denominator in the calculation of rela-
tive phase. DRP series are just event series, composed of temporally
ordered measures, but cannot be considered genuine time series.
It is important to note that in most cases, experiments that clearly
evidenced the presence of fractal fluctuations did not consider
time series but event series. This was the case, for example, for the
inter-tap intervals series in finger tapping experiments (Gilden
et al., 1995; Lemoine et al., 2006), or for the stride intervals series
analyzed in walking experiments (Hausdorff et al., 1995, 1997).
In the set of experiments proposed by Gilden (2001), all analyzed
series were as well composed of ordered successive performances.

At a methodological level, this could be considered an obstacle
for the application of time series analyses such as those previously
presented. Is it possible to apply analyses dealing with notions
such as frequency or time intervals with data series where time
is not effectively present? The application of time series analy-
ses to event series is generally accepted pending some theoretical
adaptations. Obviously, when dealing with an event series, time
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cannot be considered in its absolute sense. When applying PSD,
“frequency” should not be read in Hertz units, but rather in terms
of inverse trial number (Gilden, 2001), or in number of cycles
for N trials or observations (Musha et al., 1985; Yamada, 1996).
As well, the “intervals” taken into account by DFA are not gen-
uine time intervals, but rather lengths of samples of successive
observations.

This distinction between time series and event series is a key
point in fractal analyses. Researchers aiming at undertaking a
fractal approach to a given system could be naturally inclined
to opt for time series, considering the nature of the statistical
procedures commonly used in this domain. However, we think
that the key variable in fractal analysis is not fluctuation in time,
but rather cycle-to-cycle or trial-to-trial fluctuation. As argued by
Kello et al. (2007), 1/f fluctuations are likely to occur when a sys-
tem is repeatedly exposed to the same set of constraints. Gilden
(2001) developed a similar idea, suggesting that the emergence
of 1/f fluctuations is dependent on the consistency of the mental
set, i.e., the reproducibility of constraints over successive trials.
When a system has to repeatedly produce the same performance
in the same situation, fluctuations in performance are likely to
reveal its constitutive complexity. Essential properties of complex
systems, such as degeneracy, suggest that the neural networks that
are in charge of the production of performance are never identi-
cal from one trial to the other, but are never completely different.
This capacity to mobilize softly assembled and evolving networks
over successive trials could be considered the essential origin of
LRC in the series of performances produced by complex systems
(Delignières et al., 2011b).

Note, however, that the collection of event series is often diffi-
cult and time-consuming. The successive performance of hun-
dreds of trials on a given task raises evident methodological
problems and experimental biases, related to fatigue, or moti-
vation. In contrast, the collection of time series, especially with
high-frequency recording devices, could appear easier. Obviously,
we do not argue that fractal analyses cannot be applied on genuine
time series. Some convincing experiments have been published
that were based on the analysis of time series, for example in the
study of force production (Sosnoff and Newell, 2005), or elec-
troencephalographic data (Nikulin and Brismar, 2004). In these
examples, however, series were recorded from systems in steady
state condition, and the successive measurements are likely to rep-
resent ordered assessments of a more or less stationary variable.
In contrast, in a number of situations time series represent a kind
of displacement in a given physical environment (for example
COP trajectories) or in a more formal space (for example CRP
series). Obviously, such series tend to present strong persistent

correlations between successive positions, and this kind of motion
falls clearly out of the scope of LRC processes. A solution in this
case can be to seek for LRC properties in the series of successive
increments, rather than in the original series (see, for example,
Stephen et al., 2010).

CONCLUSION
Long-range correlations remain a very intriguing phenomenon,
and the recent theoretical advances in this domain suggest that
these fluctuations could represent a key entry in the study of the
functional complexity of living systems. However, if the presence
of serial correlations in series of data collected on such systems is
surely more the rule than the exception (Slifkin and Newell, 1998),
this does not imply that these correlations possess long-range
properties. The RR index we discussed in this paper represents
a simple tool allowing an easy prior assessment of the plausibility
of the LRC hypothesis for a given series. We showed, however, that
additional precautions are necessary in order to avoid erroneous
conclusions or interpretations.

Note, however, that if the RR index can serve as an a priori
warning light, some options can be considered before the definitive
abandon of the monofractal framework. As previously suggested,
one can often choose alternative variables that are better suitable
for fractal analyses (e.g., DRP rather than CRP). Series transfor-
mations, by means of differentiation or integration, can also be
used for obtaining more relevant data sets. Finally series are often
contaminated by trends, caused by external effects, that could spu-
riously increase global variance, with respect to the amplitude of
local fluctuations. In those cases RR could appear very low and
lead to rejection of the monofractal hypothesis. Modified versions
of the DFA, including polynomial detrending of various orders,
have been proposed for controlling this kind of non-stationarities
(Kantelhardt et al., 2001). When series are definitively too smooth
for being accounted for by the monofractal model, one could con-
sider other methods, based on phase space reconstruction, and
especially Recurrence Analysis that allows revealing hidden reg-
ularities in apparently unpredictable signals (Webber and Zbilut,
2005).

Long-range correlations have recently become a very popular
theme of research. A number of researchers have tried to check
whether their usual objects of research could present LRC prop-
erties. However, we think that evidencing the presence of LRC
in a given system cannot represent per se an interesting research
goal. The problem is not to seek everywhere for LRC, but to deter-
mine, theoretically, where it could be important, and empirically
where it could be plausible to find such long-term persistent serial
correlations.
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Spectral analysis is a widely used method to estimate 1/fα noise in behavioral and
physiological data series. The aim of this paper is to achieve a more solid appreciation
for the effects of periodic sampling on the outcomes of spectral analysis. It is shown
that spectral analysis is biased by the choice of sample rate because denser sampling
comes with lower amplitude fluctuations at the highest frequencies. Here we introduce
an analytical strategy that compensates for this effect by focusing on a fixed amount,
rather than a fixed percentage of the lowest frequencies in a power spectrum. Using
this strategy, estimates of the degree of 1/fα noise become robust against sample rate
conversion and more sensitive overall. Altogether, the present contribution may shed new
light on known discrepancies in the psychological literature on 1/fα noise, and may provide
a means to achieve a more solid framework for 1/fα noise in continuous processes.
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Over recent decades, there has been an increasing interest in
the time-evolutionary properties of psychological data series, and
the number of methods to quantify the degree-of-randomness in
time series data is rapidly expanding. It is becoming increasingly
acknowledged that the variation from one measurement to the
next rarely fluctuates randomly, as traditionally assumed in most
standard statistical methods (Gilden et al., 1995; Gilden, 2001;
Van Orden et al., 2003). Especially the presence of 1/f noise (also
called 1/f scaling or pink noise) in repeated performances is a
robust finding. The presence of 1/f noise implies that a data sig-
nal may not be accurately described without incorporating time
at the level of analysis. We will first explain the workings of
spectral analysis through a fictive example, and then we explain
how spectral analysis can be used to estimate the presence of 1/f
noise.

Consider a participant, performing a 500-trial simple response
task. The task instruction is, for instance, to press a button when-
ever a stimulus is presented. The dependent variable of interest for
the researcher is response time to the stimulus. This participant’s
average response time turns out to be 500 ms with a standard
deviation of 35 ms. However, this participant’s task performance
constitutes the unrealistic case where the pattern of response vari-
ability over time looks exactly like a sine wave (see Figure 1A).
Now, imagine another participant, who received the same task
instruction, and showed exactly the same response times but
in a different trial order (see Figure 1C). While both response
series have an identical mean and standard deviation, they show
a distinct pattern of responses over time.

Statistics based on central tendency measures are not sensitive
to the different pattern of variability observed in both partic-
ipants. If in one experimental group all participants were like
participant 1, and in another experimental group all participants

were like participant 2, a t-test for instance, would not dif-
ferentiate among both groups because the groups would yield
equal means and standard deviations. Yet, a different inherent
process likely produced the responses. Thus, a researcher may
wonder whether trial-to-trial fluctuations observed in an exper-
iment occur randomly or not, and ask whether there is anything
systematic about the observed temporal patterns of variation.

Spectral analysis is one of the available methods to estimate
the degree of randomness in a pattern of responses over tri-
als. Spectral analysis translates dependencies in the time domain
(i.e., a pattern of change in response time over trials) as sim-
ple features in the frequency domain using an operation called a
Fourier transform, which decomposes the data series containing
changes in response over trials into its constituent frequencies.
Next, the power (the square of the amplitude) at each frequency
in the decomposed signal is plotted in a so-called a power spec-
trum (also called power spectral density function). For instance,
a power spectrum of participant 1′ s response series (shown in
Figure 1B) reveals one peak at the dominant frequency of the
sine wave. Participant 2′ s responses do not yield a dominant fre-
quency in the time domain, and consequently a spectral analysis
does not reveal any peaks in the power spectrum (see Figure 1D).
Thus, while the performances of both participants are indis-
tinguishable using central tendency measures, the two different
temporal arrangements of the same responses are distinct in
the frequency domain. The power spectrum thus provides infor-
mation which effectively complements information from t-tests,
ANOVA’s, etc. (see Slifkin and Newell, 1998; Riley and Turvey,
2002, for more examples).

Spectral analysis can not only be used to detect simple period-
icities as in the example above, but can also be used to quantify
more complex and realistic patterns of variation in psychological
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FIGURE 1 | (A) Shows a fictive data series yielding response times oscillating
as a sine wave (in milliseconds, y-axis) over trials (x-axis). (B) Shows a power
spectrum of the fictive data series shown in (A); note the peak. (C) Shows

the same data series as in (A) after randomization. (D) Shows a power
spectrum of the randomized data series shown in (C); note the absence
of a peak.

data series. Consider, for instance, another participant in the
simple reaction task whose response times show a pattern of
variability called 1/f noise, as shown in Figure 2A. 1/f noise is a
complex sequence effect spanning over the entire time course of
an experiment, and comprises undulating “waves” of relatively
longer and then shorter response times that travel across the
series. In a 1/f signal, faster (high-frequent) changes in response
time are typically small, and embedded in overarching, slower
(lower-frequent) changes of higher amplitude. In only a few
simple steps, this characteristic pattern of response variability can
be observed through spectral analysis. First, a Fourier transform
translates the data series into the sum of sines and cosines
that best fits the data series. This is schematically represented
in Figure 2B. Next, the frequency and power (amplitude2) of
each of the fitted waveforms are plotted against each other in
a power spectrum (see Figure 2C). Figure 2D shows the power
spectrum on log-scales, which makes the 1/f noise pattern even
more visible; power is in inverse proportion to frequency. The
log–log power spectrum in Figure 2D yields a slope of −1 (hence,
1/f 1 noise).

Observing 1/f noise may run against standard statistical intu-
itions because the variability in psychological data is usually
assumed to fluctuate randomly from trial to trial. A data series
with random background noise (also called white noise, see
Figure 3A), however, does not yield a relationship among fre-
quency (f ) and a particular change of amplitude S(f ) in the signal
(see Figure 3B). A power spectrum of white noise variability has
a flat slope on log scales (yielding 1/f 0 noise).

A third category of noise is called Brownian noise (see
Figure 3C), and can be described as 1/f 2 noise (see Figure 3D;
the slope is −2). Brownian noise is also called a random walk,
because it can be produced by adding a random increment to each
sample to obtain the next. In contrast to white noise, which can
be produced by randomly choosing each sample independently,
Brownian noise yields persistence or memory in the data series.

1/f NOISE IN HUMAN PERFORMANCE
1/f noise has been observed in repeated responses in many cog-
nitive tasks. Examples include simple and choice reaction (Kello
et al., 2007), mental rotation (Gilden, 1997), visual search (Aks
et al., 2002), lexical decision (Gilden, 1997), word naming (Van
Orden et al., 2003), color and shape discrimination (Gilden,
2001), implicit associations (Correll, 2008), and self-reports of
self-esteem (Delignières et al., 2004), to name a few examples.
Apart from the ubiquitous presence of 1/f -like noise in cognitive
performances (Kello et al., 2007), 1/f noise has been observed
in temporal patterns of variation at all levels of neural (Werner,
2010) and physiological organization (West, 2010).

The origins of 1/f noise in human cognition remain a theo-
retical topic of debate, however, (Van Orden et al., 2003, 2005;
Wagenmakers et al., 2005; Torre and Wagenmakers, 2009; Diniz
et al., 2010). Nonetheless, the relative presence of 1/f noise (hence,
the slope −α) has empirically been shown to distinguish among
experimental conditions (Kello et al., 2007; Diniz et al., 2010; Van
Orden et al., 2011, are reviews). Therefore, the slope of a power
spectrum is an informative measure in psychological research.
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FIGURE 2 | (A) Shows a response series yielding 1/f noise. (B) Schematically represents a number of sine waves which are fitted to the data
series through a Fourier transform. (C) Shows the 1/f noise pattern in a power spectrum, which is shown on logarithmic scales in (D).

FIGURE 3 | (A) Shows an example of white (random) noise. The power spectrum of the white noise series is shown in (B). (C) Shows an example of Brownian
noise. The power spectrum of the Brownian noise series is shown in (D).
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The scaling exponent α in 1/f α noise usually varies between white
noise and 1/f noise (0 < α < 1), but sometimes also between
1/f noise and Brownian noise (1 < α < 2).

Intriguingly, empirical evidence has accumulated suggest-
ing that the relative presence of 1/f noise is related to the
coordination of cognitive and physiological processes. For
instance, deviations from 1/f noise (either toward white noise
or toward Brownian noise) have been found with epilepsy
(Ramon et al., 2008), heart failure (Goldberger et al., 2002),
fetal distress syndrome (Goldberger, 1996), major-depressive
disorder (Linkenkaer-Hansen et al., 2005), mania (Bahrami
et al., 2005), attention-deficit-hyperactivity-disorder (Gilden and
Hancock, 2007), developmental dyslexia (Wijnants et al., 2012b),
autism (Lai et al., 2010), Alzheimer’s disease (Abásolo et al.,
2006), Huntington’s disease (West, 2006), and Parkinson’s disease
(Hausdorff, 2007). In addition, the presence of 1/f noise cor-
relates, for instance, with the severity of depression symptoms
(Linkenkaer-Hansen et al., 2005), the success rate of recovery
from traumatic brain injury (Burr et al., 2008), and falling risk in
elderly (Hausdorff, 2007). Also, the presence of 1/f noise increases
with learning (Wijnants et al., 2009) and may decrease as task
demands increase (Clayton and Frey, 1997; Correll, 2008). In each
case the overly random or overly rigid behaviors showed a value
of α further from 1, compared to conditions allowing for more
flexibly stable and adaptive performances.

These studies confirm the importance of time series methods
like spectral analysis in psychological research. Interestingly, how-
ever, all of the examples above are based on the analysis of trial
series or interval series. In a trial series, each sampled data value
represents a measure of a discrete response or response interval,
as in the example of the simple reaction task mentioned earlier.
Many variables in psychological research, however, are contin-
uous in nature, rather than discrete. Continuous processes are
represented as a time series through periodic sampling. Periodic
sampling means that the continuous process x → (t) is digitized
as a sequence of discrete data values t1, t2, t3, tn . . . , where the
total number of data points depends on the chosen sampling rate.
Interestingly, however, the clear framework suggested by the role
of 1/f α noise in trial series has not (yet) found a univocal parallel
in the analysis of psychological time series.

Here, we investigate whether differences in sample rate con-
stitute an artifact which obscures comparisons across studies and
experimental conditions. The paper is organized as follows. First,
a number of details pertaining to analytical choices for spectral
analysis are discussed. Then, it is discussed in which way sam-
ple rate affects the frequency content of a time series, and it is
explained how this artifact is usually dealt with in psychological
studies of 1/f α noise relying on continuous processes. Next, we
show how this approach renders heterogeneous estimates of the
slope −α, and offer an alternative solution that circumvents the
artifact.

1/f NOISE AND PERIODIC SAMPLING
Psychologists are in general well-aware of the characteristics of
a desired sampling regime. That is, any signal that has been
periodically sampled can only be perfectly reconstructed if the
sampling rate corresponds to a frequency that is minimally twice

the highest frequency in the original signal (this is known as
the Shannon–Nyquist sampling theorem; Shannon, 1949). When
sampling more sparsely, a phenomenon called aliasing is likely to
occur. Aliasing means that fluctuations outside of the measured
frequency range are misinterpreted as different frequencies that
fall within the measured range of frequencies, yielding distorted
results (see Holden, 2005). Therefore, sample rate is an important
input parameter when applying spectral analysis to periodically
sampled data series. The estimated frequencies should not be
faster than half the sample rate. For example, when a given time
series is sampled at 100 Hz, the frequencies estimated in spec-
tral analysis (the x-axis in the power spectrum) should fall in the
range of 0–50 Hz to avoid aliasing.

The next input parameter for spectral analysis is the number
of frequencies to be estimated within the non-aliased frequency
range. This parameter will determine the number of data points
in the power spectrum. A spectral analysis with maximum fre-
quency resolution will estimate half as many frequencies as there
are data points, because the highest resolvable frequency oscillates
back and forth every other data point. In order to understand
why the regression fit over the 25% lowest frequencies covers
such a substantial portion of the power spectrum (as can be
seen in Figures 2D and 3C,D), note that a Fourier transform
evaluates the power of each frequency within the signal equidis-
tantly within the desired frequency range. After the log trans-
formation, however, the frequencies are no longer equidistant,
and exponentially more frequencies are observed in the high-
frequency range than in the low-frequency range of the power
spectrum.

When the goal of the spectral analysis is to estimate the α scal-
ing exponent (thus, the negative slope of the logarithmic power
spectrum, or the presence of 1/f noise), another choice concerns
the number of frequencies in the power spectrum over which the
slope is fitted. That is, the slope −α is rarely fitted over all fre-
quencies, because it is known that a power spectrum often gives
unreliable results in the highest frequency range. Specifically, the
right-hand side of a power spectrum often presents a flattening
(or whitening) of the slope (Holden, 2005; Holden et al., 2011).
Therefore, excluding the highest frequencies in the log–log regres-
sion is generally recommended (Beran, 1994; Eke et al., 2000,
2002; Holden, 2005). The linear fit is often limited to the 25%
lowest frequencies that compose the spectral slope (Eke et al.,
2000, 2002) or even 10% (Taqqu et al., 1995), to achieve more
reliable scaling estimates of the scaling exponent α.

THE ARTIFACT OF SAMPLE RATE
The aim of this study is to achieve a more solid appreciation for
the effects of periodic sampling on the outcomes of spectral anal-
ysis. Specifically, a researcher’s choice of sample rate is known to
change the estimated α exponents in a particular way (Carlini
et al., 2002; Eke et al., 2002), and this bias is usually not antic-
ipated. This is especially problematic when different studies are
compared, which employ a different sampling regime of similar
performances (i.e., comparing the outcomes of spectral analysis
of trial series with outcomes of spectral analysis of time series),
or which rely on periodic sampling but employ different sample
rates.
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Carlini et al. (2002) point out that higher sample rates yield
steeper spectral slopes, hence larger α scaling exponents, com-
pared with more sparsely sampled processes. “The amplitude of
the (highest frequency) oscillations themselves decreases sharply
(when sample rate increases)” (Carlini et al., 2002, p. 246, empha-
sis added for terminological consistency). Eke et al. (2002) add:
“Increasing fs [sample rate], . . . cannot continue beyond some
upper limit for exceeding it would increase the chance that high-
frequency estimates in the power spectrum would not reflect
physiology (or more generally, the process of interest)” (Eke et al.,
2002, p. 27, emphasis added).

These observations constitute the core measurement prob-
lem raised in this paper: the outcomes of spectral analysis hinge
on sample rate. This artifact is visually presented in Figures 4A
and B, which shows the relative roughness of two different time
series (Goldberger et al., 2000) that were downsampled so that
they yield different sampling rates. Relative roughness can be con-
ceived as an index of the suitability of the monofractal framework
(cf. Marmelat et al., 2012), and describes the relative contribution
of local variance to the global variance of a time series. Figures 4A
and B reveal that the relative roughness of a time series is reduced
when sampled more densely. Specifically, Figures 4A and B sug-
gest that faster sampling comes with lower amplitude at the
higher frequencies (making the series more smooth, thus reduc-
ing local variance), which may result in overall steeper slopes in
the power spectrum compared with processes that are sampled
more sparsely.

This line of reasoning so far is straightforward, but can make a
world of difference nonetheless concerning the utility of spectral
analysis when confronted with periodically sampled, continuous
processes. That is, the highest-frequency range in the spectrum
has lower amplitude when higher sample rates are employed,
and this artifact likely protrudes gradually into lower frequen-
cies as sample rate further increases. Correctly, some authors
have assumed that such an artifact does not affect the estimate
of α, given that the biased frequencies are not used to fit the

slope −α: “This would not be much of a problem if the upper
75% of the spectral estimates were to be discarded as recom-
mended and if these irrelevant estimates would fall into the
discarded range” (Eke et al., 2002, pp. 27–28). In other words,
the challenge is to focus on the range of frequencies that is not
contaminated by the artifact. If, however, the biased frequen-
cies exceed the highest 75% frequency range, the assumption
cited above would not be valid, and different values of α would
be obtained with different sample rates. Thus, the question is
whether the non-contaminated frequency range converges on the
25% lowest-frequency range.

To answer the question, we evaluated a Galvanic Skin Response
(GSR) time series that was sampled at either 200 Hz (yielding a
time series of 216 data points), 100 Hz (215 data points), 50 Hz
(214 data points), or 25 Hz (213 data points). For each sample rate
of the same time series, the frequencies in the power spectrum
range between 0 Hz and half the sample rate to avoid aliasing.
Then, following Eke et al. (2002), the linear regression fit was
plotted over the 25% lowest frequency range, to estimate α (see
Figures 5A–D; the discarded 75% frequency range is represented
as a horizontal line). Remarkably, Figures 5A,B show rather vari-
able estimates of the spectral slope −α for the same measured
process; α ranged between 1.56 and 2.57 depending on sample
rate. In other words, even with all precautions in place, sample
rate still distorts the estimate of α.

Here, we introduce an alternative solution to the problem that
outcomes of spectral analysis can hinge on sample rate. The logic
is to fit the slope −α over a fixed amount, rather than over a
fixed percentage, of lowest frequencies. This solution takes advan-
tage of, rather than being contaminated by, inherent differences
in sample rate. Since more frequencies are estimated overall from
more densely sampled time series, fitting the slope −α over a fixed
number of low-frequencies implies a fit over a lower percentage
of low frequencies when a time series is sampled more densely.
Thus, while the bias leaks into more of the lower frequencies for
higher sample rates, a lower percentage of low-frequencies is used

FIGURE 4 | (A) Shows the relative roughness of a respiration time series at various sampling rates. (B) Shows the change in relative roughness of an EEG time
series at various sampling rates.
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FIGURE 5 | Power spectra estimated from one Galvanic Skin

Response time series sampled at 200 Hz (A), 100 Hz (B), 50 Hz (C),

and 25 Hz (D). Spectral slopes are fitted over the lowest 25% of 215

(A), 214 (B), 213 (C), and 212 (D) estimated frequencies. Note that
most of the estimated frequencies fall in the high-frequency range of
the spectrum.

to fit the slope −α. At sparser sample rates, the bias extends over
a smaller portion of the low frequencies, and a larger portion
of estimated frequencies is used to fit the slope −α. The advan-
tages of the introduced strategy can be seen in Figures 6A–D,
which shows the same power spectra as shown in Figures 5A–D,
but with the spectral slope −α now fitted over a set number of
frequencies. In contrast to Figures 5A–D, robust estimates of α

are obtained regardless of sample rate.
Fitting over a fixed number of frequencies is notably differ-

ent from fitting over a fixed percentage of frequencies. With
regard to the high-frequency range, when the slope −α is fit-
ted over the 25% of lowest frequencies, the high-frequency range
of a power spectrum is treated equally regardless of the relative
presence of spurious high-frequencies, and thus, regardless of
sample rate. Specifically, the range of discarded high frequencies
remains equals across different sample rates. When the slope −α

is fitted over a fixed number of low frequencies, as proposed
here, the discarded frequency range changes as a function of
sample rate. Specifically, as sample rate increases the range of dis-
carded high-frequencies increases as well (hence, the horizontal
line in Figures 6A–D). As a result, the range of discarded fre-
quencies converges much more closely with the range of spurious
frequencies.

With regard to the low-frequency range, fitting over the 25% of
lowest frequencies implies fitting over a different low-frequency
range for different sample rates. Specifically, relatively higher

frequencies (hence, more biased frequencies) are incorporated in
the fit as sample rate increases. For instance, in Figures 5A–D, the
fitted frequencies range between 0 and 25 Hz, 0 and 12.5 Hz, 0 and
6.25 Hz, and 0 and 3.13 Hz for sample rates of 200, 100, 50, and
25 Hz, respectively. Fitting over a fixed amount of low frequencies
(50 frequencies in this example), in contrast, implies a fit over a
stable low-frequency range, regardless of sample rate. Hence, in
Figures 6A–D, the cut-off frequency is the same; the slope −α is
fitted between 0 and 0.31 Hz regardless of sample rate.

DOWNSAMPLING
This paper examines the artifact in the estimation of 1/f noise
parameters introduced by the choice of sample rate. We expect,
based on previous observations (e.g., Carlini et al., 2002; Eke
et al., 2002), that low-amplitude fluctuations are introduced in
the high-frequency range of the power spectrum as sample rate
increases. We examine this artifact by comparing α exponent over
a range of different sample rates using a variety of simulated
and empirical time series. That is, we compare empirical or sim-
ulated data signals with their downsampled copies. In essence,
downsampling is simply a post-hoc reduction in sampling rate
by an integer factor. For a time series x(n), when downsampling
by the constant factor M, the downsampled copy y(m) may be
represented as y(m) = x(nM), where y(m) is the downsampled
sequence, obtained by taking every Mth sample from the original
data sequence x(n), thereby discarding M − 1 samples for every
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FIGURE 6 | The same power spectra as shown in Figure 5, estimated from one Galvanic Skin Response time series sampled at 200 Hz (A), 100 Hz (B),

50 Hz (C), and 25 Hz (D). Spectral slopes are fitted over the lowest 50 of 215 (A), 214 (B), 213 (C), and 212 (D) estimated frequencies.

M samples. It is to be expected that this post-hoc reduction in
sample rate will effectively alter the spectral estimates for sampled
data signals.

If increasing the sample rate has indeed the effect of reducing
the amplitude of the signal at the highest frequencies, the over-
all estimated α exponent should increase as sample rate increases.
This bias should not affect the low-frequency range of the power
spectrum, and should become more pronounced when the spec-
tral slope −α is fitted over a wider frequency range. This is
investigated by fitting the spectral slope over 10, 25, or 100% of
the lowest frequencies in the power spectrum. The outcomes are
expected to be biased more strongly when the slope is fitted over
100% of the spectrum, and gradually become less biased as the
slope is fitted over 25% (cf. Eke et al., 2002) and 10% (cf. Taqqu
et al., 1995) of the lowest frequencies only. In contrast, when the
slope is fitted over the lowest 50 frequencies only, and is thus fitted
over a stable low-frequency range, with a stable cut-off frequency,
it would be natural to expect the bias to be absent.

THE RELIABILITY OF α
The empirical data series have been collected in a precision aim-
ing study. In the study, 15 participants were invited to draw
lines back and forth between two visual targets with a stylus,
as fast and as accurately as possible. Participants received no
instruction concerning pen pressure or pen tilt strategies. The
targets were presented on a printed sheet of paper, one at the
left side of the paper and one at the right side. The target width
was 0.4 cm and the distance between targets was 24 cm. One

block of 1100 trials was completed with the dominant hand.
When the last trial was reached, a tone signaled the end of the
experiment.

Pen pressure (in grams) and pen tilt (absolute deviation from
the center of the stylus, in cm) coordinates were recorded using a
digitizer tablet connected to a regular PC. The tablet samples at a
temporal rate of 171 Hz. In addition, a GSR signal was recorded
on the fingertips of the non-moving hand at 200 Hz. Also, arti-
ficial 15 white noise signals (1/f 0), 15 1/f noise signals (1/f 1),
and 15 Brownian noise signals (1/f 2) were generated with a series
length of 216 data points, using an Inverse Fourier transform
algorithm described by Lennon (2000).

After data collection, each time series was prepared to fit the
needs for the spectral analysis (cf. Holden, 2005). First, outliers
outside 3 × the standard deviation from the mean were removed.
Next, because the Fourier transform fits stationary sines and
cosines to the data series, simple drifts or long-term trends may
distort the results. Linear and quadratic detrending ensures that
the analyzed data series is in line with the idealized mathemat-
ics of spectral analysis. Thus, linear and quadratic trends were
removed for all data series (cf. Holden, 2005). Then, the origi-
nal time series were normalized, and truncated by removing the
data points at the beginning of the data series until 216 data points
were left. None of the empirical data series contained fewer than
216 data values.

Next, the original data series (216 data points) were down-
sampled by removing every next data point from the analysis,
so that the new data series length was 215. This procedure was
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iterated until only 210 data points were left, thereby reducing sam-
ple rate by a factor of 26. Then, for each of the resulting series, the
spectral slope was either fitted over 10, 25, or 100% of the lowest
frequencies, or over the 50 lowest frequencies.

RESULTS AND DISCUSSION
The results from the pen pressure, pen tilt, and GSR data are
shown in Figures 7A–C, which represents the fitted slope −α over
a range of different sample rates for each data set. The differ-
ent choices of fit are shown as separate lines in each Figure. It
can be seen that regardless of the percentage of low frequencies
used to fit the slope −α (10, 25, or 100%), the observed α val-
ues effectively change in function of sample rate. As predicted, α

exponents are higher at high sample rates. The artifact is most
apparent when fitting the slope over the entire power spectrum
and gradually becomes somewhat less dramatic as smaller por-
tions of the low-frequencies are used to fit the spectral slope −α.
When fitting over the 50 lowest frequencies, however (shown as
50Low in Figures 7A–D), the slope −α remains robust against
sample rate conversion.

Only the pen tilt data do not entirely confirm the expected arti-
fact. At the highest sample rates, α values derived from a fit over
the entire spectrum appear more robust than α values derived
from a fit over the 10 or 25% lowest frequencies. But also in this
example, α values derived from a fit over the 50 lowest frequencies
constituted the most robust solution.

The simulated noise patterns, however, reveal a very distinct
(hence, absent) effect of sample rate. The four choices of fit that
were evaluated are shown in Figure 7D for each category of noise
simultaneously. The random (α = 0), 1/f (α = 1) and Brownian
(α = 2) noise simulations reveal robust values of α, regardless the
choice of fit. This result confirms that the change in α arises from
differences in sample density rather than from the differences in
series length per se (with the 100% fit somewhat less reliable than
the other choices of fit, however).

These results demonstrate that the relatively arbitrary choice
of a sample rate dramatically alters the value of the α exponent
if the spectral slope −α is fitted over a fixed percentage of low-
frequencies. The bias is so strong that sample rate appears to
be more influential on the estimated exponents than the process
under scrutiny itself. This artifact is obviously problematic and
leaves researchers with difficult decisions concerning the reliabil-
ity of their analysis. The strategy of spectral analysis introduced
here results in scaling exponents that are robust against arti-
facts that come with dense sampling, and thus may solve those
questions.

THE SENSITIVITY OF α

A final confirmation of the introduced strategy for spectral analy-
sis would require an evaluation of the sensitivity of the estimated
exponents, in addition to their robustness against sample rate
conversion. Sensitive exponents are more likely to differentiate

FIGURE 7 | Average α scaling exponents from 15 pen pressure (A),

pen tilt (B), Galvanic Skin Response (C), and simultated 1/f 0, 1/f 1,

and 1/f 2 data series (D) are shown on the y-axis. The x-axis shows

sample rate for the empirical data series, and series length for the
simulated series that also were downsampled by a factor of 2 in each
step on the x-axis.

Frontiers in Physiology | Fractal Physiology January 2013 | Volume 3 | Article 495 | 63

http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Wijnants et al. Sampling bias in spectral estimation

among experimental conditions, and more clearly reveal the
relation among different variables, given that such relations are
present. In this case, we evaluate the correlation among different
streams of 1/f noise (pen pressure and pen tilt) that were collected
simultaneously in the previously introduced motor task.

The pattern of correlations between both streams of 1/f noise
(pen pressure and pen tilt) shown in Figure 8 is remarkably
heterogeneous over different sample rates, except for the strat-
egy introduced here. α exponents estimated from the original,
non-down-sampled data appear uncorrelated when relying on
conventional spectral strategies. The correlations among pen
pressure and pen tilt scaling exponents tend to grow stronger
as sample rate decreases (hence, when fewer “smoothed” high-
frequencies are introduced in the analysis). The introduced
method for spectral analysis (shown as 50Low in Figure 8),
in contrast, indicates strongly correlated streams of 1/f noise,
regardless of sample rate.

THE VALIDITY OF α

The results presented above suggest that if one follows the exact
same procedure in an experimental set-up, but uses a differ-
ent measurement device or device setting, one may end up with
vastly deviant outcomes if sampling artifacts are not anticipated.
Anticipating sampling artifacts can be as simple as fitting the
power spectrum over a set number of low frequencies (i.e., fit-
ting over a stable low-frequency range), rather than fitting the
regression line over a set percentage of frequency (i.e., fitting over
a variable low frequency range). This practice results in more reli-
able and more sensitive scaling exponents. Nonetheless, the goal
should not be to fit over a prescribed amount of low frequencies
(e.g., 50) per se. Importantly, as long as the slope does not change
in function of sample rate (i.e., after downsampling), any set
number will do reliability-wise. For instance; an idealized 1/f pro-
cess would reveal a linear slope regardless of the fitted frequency
range (hence Figure 7D).

FIGURE 8 | Correlation coefficients among α exponents estimated from

pen pressure and pen tilt data (y-axis, N = 15) over a range of sample

rates (in Hz; x-axis) using different strategies for spectral analysis.

Empirical data often show scale-invariance in a restricted
range only, however. In these cases an optimal number of frequen-
cies can be determined by performing a simple downsampling
test (i.e., Figure 7). When the scaling outcomes do not change
in function of sample rate the chosen frequency range to fit is
reliable. If the outcomes do change, the number of low frequen-
cies in the fit should be reduced until the outcomes remain robust
against sample rate conversion. In this process, one should obvi-
ously be aware of two final criteria: (1) the amount of frequencies
should be sufficient to yield reliable regression outcomes, and
(2) a linear range of the power spectrum is preferred given the
nature of the regression analysis.

With these less idealized examples of 1/f scaling, changing the
frequency range used for slope fitting may reveal ever changing
slopes over different frequency ranges, however. This would mean
one would want to ascertain the validity of an estimate in addi-
tion to its reliability over different sample rates, leading to the
question whether the scaling exponents derived using the sug-
gested fitting approach are representative for the process under
scrutiny.

To inquire the validity of the suggested fitting approach, we
simulated artificial series using the fBmW model (Thornton and
Gilden, 2005). This procedure produces series that compose a
scaling part α (i.e., a fractional Brownian motion with a known
exponent α) with white noise β (whose variance is β2) added
to it. Given that relative roughness decreases at higher sampling
rates (cf. Figure 4), it is fair to assume that the high-frequency
range of the spectrum is an artifact of sampling, and that the
valid information is to be found in the low-frequency range
i.e., the alpha put in the model. In addition, faster sampling
arguably is more susceptible to instrument noise that may distort
spectral outcomes at the higher frequencies. Thus, power spectra
produced by the fBmW-model present examples in analogy with
the sampling rate artifact, producing a well-defined elbow in the
power spectrum.

Four example power spectra produced by the model, with
α = 1.5 and β = 1.5, 1, 0.5, and 0, respectively, are shown in
Figure 9. We know from these parameters that a valid scaling
estimate should approximate 1.5; a reference point against which
different fitting strategies can be assessed. The x-axis in Figure 10
shows the number of low frequencies included in the regression
fit. The pentagram-shaped markers indicate the exponents esti-
mated when the spectra where fitted over 25% of lowest frequen-
cies. The inset reveals a region of convergence around roughly 50
frequencies, after which a point of expansion reveals the white
noise process added to varying degrees. This observation supports
the suggestion that a fit over the lowest 50 frequencies pro-
vides valid estimates of the “true” scaling exponent α (i.e., 1.5),
and questions the validity of estimates over the 25% of lowest
frequencies.

This simple simulation confirms the validity of the proposed
fitting strategy, but a better analogy to the empirical data is
possible, however. The produced series keep a number of vari-
ables stable that vary in the empirical series (e.g., series length,
number of frequencies in the spectrum, relative roughness). Also,
the resulting spectra are simple in the sense that they reveal a sin-
gle elbow, rather than the more complex staircase-like shape of
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FIGURE 9 | Four example spectra are shown, derived from the signals simulated using the fBmW-model.

FIGURE 10 | Average scaling estimates of ten simulated signals (length

is 216 data points), with α is 1.5, and β is 1.5, 1, 0.5, and 0, respectively,

fitted over a varying number of low frequencies. The pentagram
markers indicate the scaling estimates for a fit over the 25% lowest
frequencies. In the inset, it is shown that the estimates converge closely on
the modeled α parameter at around 50 low frequencies.

the empirical spectra seen in Figures 5 and 6. We therefore deter-
mined empirically the parameters that resemble the empirical
power spectra more closely.

In search for a more realistic representation, we constructed 10
series with α = 1.35 with a series length of 216, with white noise
added to it (β = 1.6). The series were smoothed with a moving
average filter with a span of 14 data points, to mimic the decrease
in relative roughness at higher sample rates. This procedure added
a steeper slope (i.e., lower amplitudes) at the high frequencies in
addition to the initial flattening due to the added white noise.
Then a portion of white noise was added again, to complete the
staircase-shape of the empirical power spectra (i.e., white noise at
the high-end of the power spectrum). Next, three times 10 series
were produced, reducing in each case the series length and the

number of overall estimated frequencies by a factor of two. Also
the β parameter and the span of the moving average filter were
reduced at each step. Examples of the resulting power spectra are
shown in Figure 11.

When fitted over a varying number of frequencies, the average
estimate of 10 simulated series for each set of parameters con-
verged on the “true” α of 1.35 at around 50 low frequencies. This
can be seen in Figure 12 (see inset), which also shows the scaling
estimates (as pentagram-shaped markers) when the lowest 25%
of frequencies were used to fit the slope. Note that Figure 12 is
restricted to 25% of low frequencies.

GENERAL DISCUSSION
When spectral scaling exponents are estimated without antici-
pating artifacts introduced by sample rate, the exponent values
themselves may fluctuate widely. The order of magnitude of these
discrepancies is dramatic: scaling exponents may differ in mag-
nitude by 1 or 2 depending on sample rate, while the order of
magnitude of reliable differences in exponents between experi-
mental groups and conditions are often in the range of 0.05–0.25
(e.g., Chen et al., 2001; Kello et al., 2007; Wijnants et al., 2009).
These discrepancies may account for known inconsistencies in
the psychological literature on 1/f noise, and perhaps, for the
lack of a comprehensive framework of 1/f noise in continuous
performance measures. Here we have introduced an empirical
solution to this problem. The proposed strategy for spectral anal-
ysis is robust against changes in sample rate and renders more sen-
sitive and valid α exponents compared with more conventional
strategies of analysis.

The artifact introduced in the high-frequency range of a power
spectrum by differences in sample rate is not due to the inherent
difference in data series length (hence, Figure 7D) but is rather a
natural consequence of the resulting differences in sample density.
That is, denser sampling implies a decrease in relative rough-
ness (i.e., because the highest frequencies in a measured signal
have lower amplitude) compared with more sparsely sampled
data. This artifact is important because it is implied that sub-
tle methodological choices, often choices of convenience, may
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FIGURE 11 | Four example spectra are shown, derived from the signals

simulated using the fBmW-model. These signals were subjected to a
moving average filter with a span of 14, 7, 4, and 2 data points, respectively,

to mimic the reduced relative roughness at high sample rates. To these
composites, another portion of white noise was added to mimic the
flattening at the high-end of the power spectrum, as in Figures 5 and 6.

FIGURE 12 | Average scaling estimates of four times 10 simulated

signals, with parameters presented in Figure 11, fitted over a varying

number of low frequencies. The pentagram markers indicate the scaling
estimates for a fit over the 25% lowest frequencies. In the inset, it is
shown that the estimates converge closely of the modeled α parameter
(1.35) at around 50 low frequencies.

radically alter the outcome of spectral analysis when sampling
artifacts are not adequately anticipated.

The proposed strategy for spectral analysis of continuous
processes is to determine the spectral slope −α over a fixed
number, rather than a fixed percentage of low-frequencies in
a power spectrum. Fitting the slope over a set number of low
frequencies implies a fit over a different high-frequency range
for different sample rates, but over a stable low-frequency range.
Fitting the slope over a fixed percentage of lowest frequencies,
however, implies a fit over a stable high-frequency range, but over
a different low-frequency range. Given that the artifact intro-
duced by sample rate specifically concerns the high-frequency

range of a power spectrum, it is obvious that the former strategy
is to be preferred. That said, the aim of the present suggestion
is not to exclude high-frequency range of a power spectrum
per se, but rather to exclude comparisons that are unreliable in
terms of frequency content (i.e., when a range of low frequencies
quiescently varies in function of sample rate). While this may
not solve the actual measurement problem (i.e., the outcomes
change in function of measurement procedure and choices of
data analysis), it does define the relation between observer and
observable more clearly than before (i.e., outcomes should be
independent of sample rate).

This suggestion follows the logic of Eke et al.’s (2002)
recommendation to discard the highest frequencies and to focus
on the lower frequencies, a recommendation that is consistent
with all example studies cited in the section “1/f noise in human
performance.” In the section “1/f noise and periodic sampling,”
we acknowledged nonetheless that 1/f scaling relations often are
observed within a finite range of scales only. The 1/f scaling
relation may thus break down at specific frequency ranges, and
usually at the highest frequencies. Interestingly, this basic fact
about power spectra of psychological data series has led some
scientists to inquire whether low- and high-frequency ranges
in a power spectrum may represent the variability of different
component mechanisms (Gilden, 2001; Delignières et al., 2008;
Torre and Delignières, 2008). The scope of the present paper did
not include an in depth discussion of that potential of spectral
analysis. The present evaluation of spectral analysis reveals no rea-
son to believe that such uses of spectral analysis are problematic
in any way when dealing with trial series or simulated data series.
Yet, the cautious implication is that estimating high-frequency
slopes is a rather delicate enterprise when confronted with time
series sampled at arbitrary sample rates.

The present investigation may shed new light on known
discrepancies in the literature on 1/f noise in psychological data.
For instance, an explicit demonstration of such a discrepancy is
described by Delignières et al. (2005) in the context of a study of
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relative phase in bimanual coordination. These authors estimated
the scaling properties of discrete relative phase, corresponding to a
cycle-to-cycle measurement yielding a trial series. The mean val-
ues of the estimated scaling exponent α ranged from 0.72 to 0.78,
while continuous relative phase (hence, the same performance
when treated as a time series), results in scaling exponents with
an average value of about 2.52 (Schmidt et al., 1991), far from
the scaling range typically observed in trial series. This example
confirms that different sampling regimes may effectively lead to
appreciably different conclusions about the nature of the observed
patterns of variability.

Also within a similar sampling regime (i.e., when an across-
study comparison yields only time series, rather than comparing
time series with trial series) different results may be obtained
with different choices of sampling. An example is provided by
studies of postural sway. “Postural sway typically exhibits frac-
tal scaling with exponents characteristic of fractional Brownian
motion (cf. Collins and De Luca, 1993), although prolonged,
unconstrained standing has suggested a pink [1/f ] noise structure

(Duarte and Zatsiorsky, 2001)” (Bonnet et al., 2006, p. 806).
These different results are methodologically interesting as well,
if one notes that Collins and De Luca (1993) sampled their
data at 100 Hz, while Duarte and Zatsiorsky (2001) sampled at
20 Hz. Here, we have shown that a comparison of these stud-
ies is only meaningful when the different sample rates of both
experiments are taken into account, hence, when the scaling
parameters are determined over an equivalent low-frequency
range.

The ability to reliably and sensitively estimate valid scaling
exponents, regardless of sample rate, and to compare these expo-
nents (whether among different streams of 1/f noise, across
experimental conditions or across studies) is undoubtedly a req-
uisite to achieve a coherent and comprehensive framework of 1/f
noise in continuous processes. The present contribution might
motivate an extension of the coherent framework of 1/f noise that
has emerged for trial series of repeated discrete responses (e.g.,
Diniz et al., 2010; Van Orden et al., 2011; Wijnants et al., 2012a,b)
to continuous performance measures.
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A PLEA FOR STRONG INFERENCE
The recent research topic “Fractal Analyses:
Statistical and Methodological Innovations
and Best Practices” reveals there is no con-
sensus among experts about the best pro-
cedure to estimate self-affine structure in
trial and time series data. One of the recur-
ring issues pertains to the validity of infer-
ences based on analysis results about the
physical change processes that generated
the empirical waveforms. In this paper I
argue that none of these approaches can
be used to validate such inferences out-
side of the context of theory evaluation
by strong inference (e.g., Platt, 1964). Two
arguments warrant this claim: (1) All pro-
cedures make an assumption about the
physics of the system under scrutiny. This
is arguably most prominent in ARFIMA
modeling, but associating an estimated
scaling exponent to a fractal dimension
is also based on assumptions (e.g., fGn
vs. fBm; Mandelbrot and Van Ness, 1968);
(2) given infinitesimal measurement reso-
lution and infinite observation time, prop-
erties like dimension and self-affinity are
not unique descriptors of a process, pat-
tern or object (cf. Vicsek, 2001). Multiple
mathematical models of physical processes
can be constructed to generate a waveform
with exactly the dynamical and invariant
properties as observed in the finite sam-
ple (e.g., Mandelbrot, 2001; Kantz and
Schreiber, 2003; Thornton and Gilden,
2005; Morrison, 2008).

The second issue pertains to a gen-
eral problem of model-based inference:
a good fit to a finite sample of mea-
surement outcomes can never be conclu-
sive in the evaluation of predictions by
theories (cf. Roberts and Pashler, 2000,
2002; Fiedler et al., 2012). Using results

of (fractal) analyses to answer questions
about the physics of the observed sys-
tem is an attempt to evaluate the ontol-
ogy of a theory, ex post facto; let’s leave
ontology evaluation to the metaphysicians
(cf. Poincaré, 1905, p. 211). The scientific
method is not a competition for mathe-
matical models constructed to produce the
best fit to measurement outcomes; instead,
theoretical predictions about the observed
system compete for highest empirical pre-
cision and accuracy in order to gain scien-
tific credibility.

In what follows I evaluate to what
extent fractal analyses are used in the con-
text of strong inference given the current
empirical record of human physiology and
performance. Subsequently I will explore
what may be gained when implicit ontol-
ogy falsification is removed from fractal
analyses by introducing the concepts of
intuitive dimension and informed dimen-
sion estimates.

ON FRACTAL SCALING AND
PLANETARY ORBITS
Why should an accurate prediction by
a theory be preferred over a good ret-
rospective model fit? Models proposed
to explain the orbit of Mercury (which
displays a perihelion advance) present
an interesting historical analogy. The
orbit was accurately modeled by the
classical geocentric models based on
Ptolemy’s Almagest (used from around
100–3500 CE; Toomer, 1984). These
models assumed celestial objects moved
around the earth on a celestial sphere that
could host one or more local orbits or
epicycles. The number of nested epicycles
was simply varied until the predicted tra-
jectory was sufficiently in accordance with

the empirical record. Curiously, to the
heliocentric models replacing Ptolemaic
astronomy like Newton’s theory of celes-
tial mechanics, Mercury’s orbit was an
anomaly! No wonder that Einstein con-
sidered the accurate prediction of this
anomaly the most important empirical test
of his theory of general relativity (Einstein,
1916; Will, 2005).

This brief history of orbit model-
ing reveals that the theoretical perspec-
tive used to observe the empirical record
changes one and the same reliably mea-
sured pattern from a good model fit,
into an anomalous phenomenon into a
critical benchmark for theory evaluation.
Ptolemy’s solution of adding epicycles to
reconstruct the shape of a trajectory is
essentially the same as adding weighted
autoregressive, moving average, season-
ally changing, or (fractionally) integrat-
ing components in a time series model.
Those components are constructed into
the model in order to create a better fit
with a pattern in the data. This is allowed
by mathematics, but their presence is not
predicted by a theory of principles about
physical change processes in living systems
and this renders its scientific evaluation
invulnerable to the presence of anoma-
lies. Compare to Newton’s closed theory
of principles: “In Ptolemy’s case, if the orbit
didn’t fit, he could add other epicycles. But
if an experiment does not fit in Newtonian
physics, you don’t know what you mean
by the words.” (Heisenberg interviewed by
Kuhn, 1963, p. 24, February 27th).

In order to advance scientific knowl-
edge about scaling phenomena in living
systems a program of strong inference
that aims to produce closed theories of
principles is needed. In order to reach
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this goal, empirical inquiries need to
go beyond describing scaling phenomena
in different populations in the context
of impaired performance or pathology
(e.g., Goldberger et al., 2002; Gilden and
Hancock, 2007; West, 2010; Wijnants et al.,
2012a). Several recent studies reveal scal-
ing phenomena can be brought under
experimental control, which is essential
for a program of strong inference (e.g.,
Kello et al., 2007; Wijnants et al., 2009;
Van Orden et al., 2010; Correll, 2011;
Holden et al., 2011; Kuznetsov et al.,
2011; Stephen et al., 2012). The diverg-
ing theoretical predictions examined in
most studies reveal that the observed
waveforms are more likely to origi-
nate from interaction-dominant com-
plexity than from component-dominant
mechanics (also see Turvey, 2007; Kello
et al., 2010; Diniz et al., 2011).

A closed theory should account for
most phenomena in the existing empiri-
cal record. A first step was recently made
in which it was shown that the well-known
speed-accuracy tradeoff in human perfor-
mance is meaningfully related to the emer-
gence of self-affine structure via nested
timescales (Wijnants et al., 2012b). At the
current level of scientific understanding
it seems reasonable to ask of those who
insist models based on AR-processes pro-
vide a parsimonious explanation of fractal
scaling (e.g., Wagenmakers et al., 2005;
Torre and Wagenmakers, 2009; Stadnitski,
2012), to provide experimental evidence
that can validate their claims.

As stated above however, most claims
about scaling phenomena based on fractal
analyses are prone to implicit ontology fal-
sification. In what follows, I will suggest an
approach to dimension estimation that is
based on intuitions about the geometry of
a curve rather than on known mathemati-
cal models of change processes. I will focus
on the mono-fractal case and show that a
consistent conversion scheme for common
estimates of self-affine structure is possible
when using this notion of dimension.

FINITE SELF-AFFINITY: THE BLIND
CURVE AND THE PERIMETER WALK
Dimension is an intrinsic property of a
mathematical object that indicates to what
extent it occupies the topological space in
which it is embedded. A dimension esti-
mate that is based on the properties of an

empirical waveform can be defined as a
finite walk in the plane that never forms a
perimeter. Formally, this is a self-avoiding
open curve dividing a bounded plane in
two unconnected regions (i.e., it is not a
Jordan Curve). Note that the properties
of the curve have a physical origin: it is
self-avoiding and open due to the arrow
of time and because observation duration
and measurement outcomes are finite, the
planar topology is bounded.

Estimation procedures derived from
formal definitions of dimension respect an
intuitive geometric notion of a scaling of
bulk with size (Theiler, 1990). Using the
definition above, the intuitive concept to
quantify would be a characterization of
the waveform as line-like or plane-like,
hence planar extent (e.g., Higuchi, 1988;
Katz, 1988; Raghavendra and Dutt, 2010).
Sevcik (1998) introduced such a dimen-
sion estimate based on the Hausdorff-
Besicovitch dimension (Hausdorff, 1919;
Xiao, 2008). It involves a double linear
transformation of the axes embedding the
waveform in a unit square of size N by
N. Its length can be calculated as the sum
of the Euclidean distance between points
on the normalized curve. The graph enti-
tled “Sevcik method” in Figure 1 shows
the equation used to approximate D based
on number of observation intervals (N–1)
and curve length L (for details see Sevcik,
1998, 2006). Across the top of Figure 1,
twelve different waveforms are shown that
were analyzed for self-affine structure (see
caption for details). The waveforms were
generated using freely available Matlab
scripts1.

INTUITIVE DIMENSION
The dimension estimates for the 12 wave-
forms based on Sevcik’s mehod are numer-
ically different from DuBC , as well as from
known exact values, the goal however is
to achieve relative consistency. Processes
that generated waveform 9 and 10 have
known D = 1.5, which is equal to a
sequence of random numbers drawn from
a Normal distribution (i.e., waveform
5, waveform 10 is its cumulative sum).
Using Sevcick’s method however, both
waveforms are classified as a Brownian
noise. If this waveform were known to be

1 The scripts are available at http://fredhasselman.com
in the section Supplementary Materials.

physiological and medical in nature, the
constrained dynamics associated with
Brownian noise would lead to profoundly
different conclusions about the health
and well-being of the patient in ques-
tion compared to blindly interpreting
the limit values D = 1.5 and H = 0.5
(e.g., Goldberger et al., 2002; Van Orden
et al., 2009). The gray-scale areas repre-
sent Sevcik’s estimate for 12100 simulated
series with ideal spectral slopes ranging
from −3 to 3. Note that at 25% of the data
length (first set of markers) the relative
ordering according to DuBC is recovered
for almost all waveforms.

INFORMED DIMENSION ESTIMATES
The other graphs represent self-affinity
exponents estimated using the power
spectrum (PSD), detrended fluctuation
analysis (DFA), standardized dispersion
analysis (SDA), and ARFIMA (modeling
strategy: Reisen and Lopes, 1999; Silva
et al., 2006). The informed estimates of
D refer to conversions of the self-affinity
indices obtained for the 12 waveforms.
ARFIMA modeling did not provide a con-
sistent conversion scheme therefore the
differencing parameter was plotted against
the PSD based estimates. The gray-scale
coded regions in these plots refer to the
PSD slope estimates for the 12100 sim-
ulated series. These areas thus display
the relation between the DFA, SDA, and
ARFIMA self-affinity indices and the PSD
slope based estimate.

The equations suggested for PSD and
DFA indices produce approximations of
well-known (H, D) pairs and should
not be confused with an analytic solu-
tion. For SDA the known formula 1-Slope
yields relatively consistent results, a prob-
lem is that for some ranges of PSD
slopes, the SDA indices are the same.
ARFIMA modeling by the AIC selection
criterion preferred models without self-
affine structure (d = 0) of varying order
(p = 0–2, q = 0–2) for the majority of
simulated PSD slope series (ARIMA 42.8%
vs. ARFIMA 20.6%). The remaining series
produced fit errors (see Supplementary
Materials for details).

Most waveforms in Figure 1 get
assigned a value for D that is in accor-
dance with their planar extent as indicated
by DuBC . Waveform 11 is more line-like
than waveform 9 and 10, which both map
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FIGURE 1 | The top row shows 12 waveforms of 211 data points

embedded in a unit square and ordered according to their planar extent

estimated by DuBC . This is a 2D box-counting dimension estimate calculated
from a binary image (2×N by 2×N logical matrix) of the graph of the
waveform. The same relative order was recovered using Sevcik’s method,
which estimates D from the waveform based on curve length L and data

length N − 1 (N ′). The gray-scale coded areas refer to Sevcik’s estimate for
12100 simulated series with PSD slopes varying from −3 to 3. In the other
graphs, the gray areas show the estimate of D based on PSD slope. The
conversion formulas relate self-affinity exponents to D informed by known
values of these exponents for power laws in spectral density. No conversion
could be found for ARFIMA modeling. See text for details.

closely to known D of Brownian noise.
Expected exceptions are waveforms 2 and
12. A sequence of random numbers drawn
from a uniform distribution (waveform 2)

has a PSD slope of zero. Taking the Fourier
transform of a square wave (waveform
12) gives a frequency spectrum of odd
harmonics only, with a slope of exactly

−2 (the Gibbs phenomenon). Another
expected result is that ARFIMA is pre-
ferred for series produced as HfGn (except
HfGn = 0.5).
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TO SELF-AFFINITY . . . AND BEYOND!
It seems possible to remove implicit
assumptions about system ontology from
fractal analysis by defining dimension
as the planar extent of a finite curve.
Direct estimates based on curve length
and 2D box-counting provide a consistent
relative ordering on this dimension. An
informed conversion scheme using esti-
mates of self-affine structure obtained
from PSD, DFA, and SDA analyses give
similar results. Some exceptions were pre-
dicted, but ARFIMA modeling could not
be included in the approach due to incon-
sistent analysis results. A mono-fractal
perspective was explored here, but there is
no reason to assume it cannot be extended
to the multi-fractal framework as well.

Exact numerical similarity of estimates
is sacrificed for the convergence of esti-
mates to a similar relative ordering. This
sacrifice is acceptable given that in prin-
ciple, even the best estimates of dimen-
sion and self-affinity leave us blind to
the physical processes that generated the
waveform. I suggest that claims about the
physics of the system need to be evalu-
ated by comparing the empirical accuracy
of theoretical predictions in a program
of strong inference, not by comparing fit
indices.
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This article will be positioned on our previous work demonstrating the importance of adher-
ing to a carefully selected set of criteria when choosing the suitable method from those
available ensuring its adequate performance when applied to real temporal signals, such
as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we
have reviewed on a range of monofractal tools and evaluated their performance. Given
the advance in the fractal field, in this article we will discuss the most widely used
implementations of multifractal analyses, too. Our recommended flowchart for the fractal
characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as
the framework for this article to make certain that it will provide a hands-on experience
for the reader in handling the perplexed issues of fractal analysis. The reason why this par-
ticular signal modality and its fractal analysis has been chosen was due to its high impact
on today’s neuroscience given it had powerfully emerged as a new way of interpreting
the complex functioning of the brain (see “intrinsic activity”). The reader will first be pre-
sented with the basic concepts of mono and multifractal time series analyses, followed by
some of the most relevant implementations, characterization by numerical approaches.The
notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal
classes and their impact on fractal time series analyses will be thoroughly discussed as the
central theme of our application strategy. Sources of pitfalls and way how to avoid them
will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from
the literature and that of our own in an attempt to consolidate the best practice in fractal
analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary
case of potentially wide interest.

Keywords: fractals, monofractals, multifractals, time series analysis, numerical testing, fMRI BOLD, brain

INTRODUCTION
Fractality (Mandelbrot, 1967, 1980, 1985; Bassingthwaighte et al.,
1994; Gouyet, 1996; Eke et al., 2002), – in addition to deter-
ministic chaos, modularity, self-organized criticality,“small word”
network-connectivity – by now has established itself as one of the
fundaments of complexity science (Phelan, 2001) impacting many
areas including the analysis of brain imaging data such as fMRI
BOLD (Zarahn et al., 1997; Thurner et al., 2003; Maxim et al.,
2005; Raichle and Mintun, 2006; Fox et al., 2007; Razavi et al.,
2008; Wink et al., 2008; Bullmore et al., 2009; Herman et al., 2009,
2011; Ciuciu et al., 2012).

The interest in fractal analysis accelerated the development
of the new paradigm beyond a rate when the new – essentially
mathematical or physical (i.e., statistical mechanics) – knowl-
edge could be consolidated, their tools thoroughly evaluated and
tested before being put to wide-spread use in various fields of
science; typically beyond the frontiers of mathematics. The lack
of an in-depth understanding of the implications of the methods
when applied to empirical data, often generated conflicting results,

but also prompted efforts at making up for this deficiency. Early,
with the migration of the fractal concept from mathematics to
various fields of science like physiology, the groups of Bassingth-
waighte (Bassingthwaighte, 1988; Bassingthwaighte et al., 1994)
and Eke et al. (1997) realized the need to adopt a systematic
approach in developing needed analytical and testing frameworks
to characterize and evaluate various monofractal time series meth-
ods (Bassingthwaighte and Raymond, 1994, 1995; Caccia et al.,
1997; Eke et al., 2000, 2002). Eke and coworkers demonstrated
that conscious and precise monofractal time series analysis could
only be done when one has an a priori concept of the nature
of the observed signals. They introduced the dichotomous frac-
tional Gaussian noise (fGn)/fractional Brownian motion (fBm)
model of Mandelbrot and Ness (1968) as the basis of monofractal
time series analysis (Eke et al., 2000, 2002) and offered a strat-
egy for choosing tools according to a proven selection criteria
(Eke et al., 2000). Given the continuing advance in the fractal
field and in sync with the increasing awareness to avoid poten-
tial pitfalls and misinterpretation of results in various forms of
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fractal analyses (Delignieres et al., 2005; Gao et al., 2007; Delig-
nieres and Torre, 2009; Marmelat and Delignieres, 2011; Ciuciu
et al., 2012), in this article we apply our evaluation strategy to
multifractal tools, and characterize their most widely used imple-
mentations. Our motivation in doing so stems from the potentials
of fMRI BOLD multifractal analysis in revealing the physiological
underpinnings of activation-related change in scaling properties
in the brain (Shimizu et al., 2004).

fMRI BOLD (Ogawa et al., 1990, 1993b; Kwong et al., 1992;
Bandettini, 1993) has been selected as an exemplary empirical
signal in our demonstrations, because its impact on contempo-
rary neuroscience (Fox and Raichle, 2007). The human brain
represents the most complex form of the matter (Cramer, 1993)
whose inner workings can only be revealed if signals reflecting
on neuronal activities are recorded at high spatio-temporal res-
olution. One of the most powerful methods, which can record
spatially registered temporal signals from the brain, is magnetic
resonance imaging (MRI; Lauterbur, 1973). The MRI scanner can
non-invasively record a paramagnetic signal (referred to as blood
oxygen level dependent, BOLD; Ogawa et al., 1990, 1993a) that
can be interpreted as the signature of the functioning brain via its
metabolic activity continuously modulating the blood content,
blood flow, and oxygen level of the blood within the scanned
tissue elements (voxels). Recently, a rapidly increasing volume
of experimental data has demonstrated that BOLD is a com-
plex signal, whose fractality – if properly evaluated – can reveal
fundamental properties of the brain among them the so called
“intrinsic or default mode” of operation that appears comple-
menting the stimulus-response paradigm in the understanding
the brain in a powerful way (Raichle et al., 2001). We hope, our
paper could contribute to this major effort from the angle of con-
solidating some relevant issues concerning fractal analysis of fMRI
BOLD.

CONCEPT OF FRACTAL TIME SERIES ANALYSES
MONOFRACTALS
All fractals are self-similar structures (mathematical fractals in
an exact, natural fractals in a statistical sense), with their fractal
dimension falling between the Euclidian and topologic dimen-
sions (Mandelbrot, 1983; Eke et al., 2002). When self-similarity
is anisotropic, the structure is referred to as self-affine; a feature,
which applies to fractal time series (Mandelbrot, 1985; Barabási
and Vicsek, 1991; Eke et al., 2002), too. Statistical fractals cannot
be described comprehensively by descriptive statistical measures,
as mean and variance, because these do depend on the scale of
observation in a power law fashion:

µ2

µ1
=

(
s2

s1

)ε

, (1)

where µ1, µ2 are descriptive statistical measures, and s1, s2 are
scales within the scaling range where self-affinity is present, and ε

is the power law scaling exponent. From this definition a universal
scale-free measure of fractals can be derived:

D = − lim
s→0

(
inf

log (N (s))

log (s)

)
. (2)

D is called capacity dimension (Barnsley, 1988; Liebovitch
and Tóth, 1989; Bassingthwaighte et al., 1994), which
is related but not identical to the Hausdorff dimension
(Hausdorff, 1918; Mandelbrot, 1967), s is scale and N (s) is the
minimum number of circles with size s needed to cover the frac-
tal object to quantify its capacity on the embedding dimensional
space (it corresponds to µ in Eq. 1). For fractal time series, the
power law scaling exponent ε is typically calculated in the time
domain as the Hurst exponent (H ), or in the frequency domain
as the spectral index (β). H and D relate (Bassingthwaighte et al.,
1994) as:

H = 2− D. (3)

Further, β can also be obtained from H as (H − 1)/2 for fGn
and (H + 1)/2 for fBm processes (Eke et al., 2000).

MULTIFRACTALS
While D does not vary along a monofractal time series, it is
heterogeneously distributed along the length of a multifractal
signal.

This phenomenon gave rise to the term “singular behavior,” as
self-affinity can be expressed by differing power law scaling along
a multifractal time series, X i as:

Xi+∆i − Xi ∝ |∆i|h(i), (4)

where h is the Hölder exponent defining the degree of singularity
at time point, i. Calculating the fractal dimension for each sub-
sets of Xi of the same h, one obtains the singularity spectrum,
D(h) (Mandelbrot spectrum), which describes the distribution of
singularities (Frisch and Parisi, 1985; Falconer, 1990; Turiel et al.,
2006).

D(h) =
log(ρ(h)/ρ(hmax))

log smin
, (5)

where hmax is the Hölder exponent corresponding to maximal
fractal dimension, smin is the finest scale corresponding to Hölder
trajectory, and ρ(h) is the distribution of singularities.

The singular behavior of a multifractal is a local property. Sepa-
ration of the singularities can be difficult, given the finite sampling
frequency of the signal of interest (Mallat, 1999). Thus, in con-
trast with monofractality, a direct evaluation of multifractality is a
demanding task in terms of the amount of data and the computa-
tional efforts needed, which can still not guarantee precise results
under all circumstance.

With the aid of different moments of appropriate measure, µ, a
set of equations can be established to obtain the singularity spec-
trum, which is a common framework exploited by multifractal
analysis methods referred to as multifractal formalism (Frisch and
Parisi, 1985; Mandelbrot, 1986; Barabási and Vicsek, 1991; Muzy
et al., 1993). Using a set of different moment orders, one can deter-
mine the scaling behavior of µq, yielding the generalized Hurst
exponent, H (q) (Barunik and Kristoufek, 2010; See Figure 1):〈
µq(s)

〉
∝ sq·H (q). (6)
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FIGURE 1 | Monofractal and multifractal temporal scaling. Three kinds of
fractals are shown to demonstrate scale-free property of these structures: a
stationary monofractal (fractional Gaussian noise), a non-stationary
monofractal (fractional Brownian motion), and a multifractal (Devil’s staircase
with weight factors p1 =p3 = 0.2, p2 =0.6). Every fractal is self-similar: fGn
and fBm in a statistical sense (as in empirical structures and processes where
fractality is manifested in equal distributions, only) and Devil’s staircase in an
exact manner (as self-similar structuring in mathematical, i.e., ideal fractals is
exact). For fractals, descriptive statistical measures [for example mean,
variance, fluctuation (Fq) etc.] depend on the corresponding scale in a power

law fashion. Thus as a scale-free descriptor, the extended Hurst exponent (H ′)
is calculated as a slope of regression line between the logarithms of the scale
(s) and Fq (For an explanation of H ′, see main text). The obtained slopes for
different magnifications of the time series [here with the order of q = (1, 2, 3),
which is the order of moment of the used measure] are the same for
monofractals and different for multifractals, demonstrating that power law
scaling behavior is a global property of monofractals, while it is a local
property of multifractals. Accordingly, note that slopes in the bottom left and
middle panel are the same, while in the right panel they indeed differ. For
further details, see main text.

On the right side of Eq. 4 ∆i corresponds to scale, s, on the
right side of Eq. 6. Using the partition function – introduced
in context of Wavelet Transform Modulus Maxima (WTMM)
method – singularities are analyzed globally for estimating the
(multi)scaling exponent (Mallat, 1999):

Z (s, q) =

N (s)∑
k=1

µ
q
i (s) (7)

τ(q) = lim
s→0

inf
log Z (s, q)

log s
, (8)

where τ(q) can be also expressed from H (q) (Kantelhardt et al.,
2002) as:

τ(q) = q ·H (q)− DT, (9)

where DT is the topological dimension, which equals 1 for time
series.

The generalized fractal dimension can also describe the scale-
free features of a multifractal time series:

D(q) =
τ(q)

q − 1
=

q · h(q)− 1

q − 1
. (10)

The singularity spectrum, D(h), can be derived from τ(q) with
Legendre transform (Figure 2), via taking

h = τ′(q), (11)

the slope of the tangent line taken at q for τ(q), and yielding

D(h) = inf
q

(qh − τ(q)), (12)

that when evaluated gives the negative of the intercept at q= 0 for
the tangent line (See Figure 2).

Natural signals have a singularity spectrum over a bounded
set of Hölder exponents, whose width is defined by [h−∞, h+∞]
(Figure 3).
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FIGURE 2 | Legendre transform. It is known that singularity spectrum,
D(h), has a concave shape, and provided that τ(q) is also a concave function,
they can be explicitly transformed into each other via the Legendre
transform (Bacry et al., 1993). Legendre transform takes a function, in our
case τ(q) and produces a function of a different variable, D(h). The Legendre
transform is its own inverse and uses minimization as the basis of the
transformation process according to Eq. 12. If minimization cannot be
achieved, the transformation would fail. On the left a real (concave), on the
right a non-concave case for τ(q) is shown. A simple concave function,
f (x )=−x 2

+ 5x +4 (shown in blue) is used for modeling τ(q). If f (x ) is
differentiable, hence a tangent line (shown in red) can be taken at point of
P 0 (q0, τ0) with a slope τ′(q), then g*(q0) is the y -intercept, (0, g*), and −g*
is the value of the Legendre transform (See Eq. 11). Maximization at (q0, τ0)

is valid since for any other point on the blue curve, a line drawn through that
point with the same slope as the red line will yield a τ0-intercept below the
point (0, g*), showing that g* is indeed obtained as a boundary value
(maximum), thus the transformation for D(h) would also yield a single
boundary value (minimum) on the green curve as D(h)=−g*= τ′(q)q−τ(q).
Steps of the transformation process are shown (1) select q, (2) read τ(q), (3)
take a tangent line at (q, τ) and determine its slope, h= τ′(q), (4) select h, (5)
determine D(h) using the above equation; repeat for the set. On the right
side, a non-concave function is shown (blue) for demonstrating a case,
when due to the non-concave shape of τ(q) the shape of the transformed
function, D(h), does not yield a realistic singularity spectrum given that in
this case the transform by failing on minimization is poorly behaved yielding
ambiguous values.

A combination parameter, Pc, can be calculated (definitions
on Figure 3) to facilitate the separation of time series character-
istics (Shimizu et al., 2004), which can aid the exploration of the
physiological underpinnings, too.

Pc =
hmax

Dmax
· FWHM . (13)

A similar parameter is W (Wink et al., 2008) calculated as

W =
W+

W−
. (14)

IMPLEMENTATION OF FRACTAL TIME SERIES ANALYSES
Implementation of concepts in reliable algorithms is a critical task,
as stationary and non-stationary signals require different meth-
ods when analyzed for their fractality. For a stationary signal the
probability distribution of signal segments is independent of the
(temporal) position of the segment and segment length, which
translates into constant descriptive statistical measures such as
mean, variance, correlation structure etc. over time (Eke et al.,
2000, 2002).

Accordingly, signals can be seen as realizations of one of two
temporal processes: fBm, and fGn (Eke et al., 2000). The fBm signal
is non-stationary with stationary increments. An fBm signal, Xi, is
self-similar in that its sampled segment Xi,n of length n is equal in
distribution with a longer segment Xi,sn of length sn when the lat-
ter is rescaled (multiplied) by s-H. This means that every statistical

measure,mn, of an fBm time series of length n is proportional to nH

Xi,n ∝ s−H Xi,sn , (15)

mn ∝ pnH , which yields log mn ∝ log p +H log n, (16)

where H is the Hurst exponent. H ranges between 0 and 1.
Increments Yi=Xi−Xi−1 of a non-stationary fBm signal yield
a stationary fGn signal and vice versa, cumulative summation of
an fGn signal results in an fBm signal. Note that most methods
listed below that have been developed to analyze statistical frac-
tal processes share the philosophy of Eq. 15 in that in their own
ways all attempt to capture the power law scaling in the various
statistical measures of the evaluated time series (Eke et al., 2002).

MONOFRACTAL METHODS
Here we focus on widely used monofractal methods selected from
those in the literature.

Time domain methods
Detrended fluctuation analysis. The method of Peng et al. (1994)
begins with the signal summed and the mean subtracted

Yj =

j∑
i=1

Xi − 〈X〉 . (17)

Then the local trend Yj,n is estimated in non-overlapping win-
dows of equal length n, using least-square fit on the data. For a
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FIGURE 3 | Approaches to multifractal analyses. Direct approach of
multifractal analysis means exploiting the local power law scaling behavior
to obtain local Hölder exponents (Eq. 4), from which the Mandelbrot
spectrum is calculated with histogram method (Falconer, 1990; Eq. 5).
Indirect approaches shown here (MF-DFA, multifractal detrended fluctuation
analysis; MF-DMA, multifractal detrended moving average; WTMM, Wavelet
Transform Modulus Maxima) estimates the scaling exponent, τ as a function
of q. It is worth to note, that this is carried out differently for MF-DFA,
MF-DMA (Eq. 9), and for WTMM (Eq. 8). From τ(q), the Mandelbrot

spectrum can be obtained with the application of the Legendre transform,
while its relation to generalized fractal dimension D(q) is given by Eq. 10.
Singularity spectrum, D(h), is an important endpoint of the analysis. The
spectrum is concave and has a nearly parabolic shape with a maximum
identified by the capacity dimension at q =0 (Mallat, 1999; Shimizu et al.,
2004; Ihlen, 2012). Please note that some of its measures (FWHM, Dmax,
W+ , W−) can be used to calculate meaningful combined parameters (such
as Pc, and W in Eqs 13 and 14, respectively) with potential in correlating
with key features of fMRI BOLD time series.

given window size n the fluctuation is determined as the variance
upon the local trend:

Fn =

√√√√√ 1

N

N∑
j=1

(Yj − Yj ,n)2, (18)

For fBm processes of length N with non-overlapping windows
of size n the fluctuation depends on the window size n in a power
law fashion:

Fn ∝ pnα, and (19)

(20)
α = lim

n→0

log Fn

log n
.

If Xi is an fGn signal then Yj will be an fBm signal. Fn then is
equivalent to mn of Eq. 16 yielding Fn∝pnH therefore in this case
α=H. If Xi is an fBm signal then Yj will be a summed fBm signal.
Then Fn∝pnH+ 1, where α=H + 1 (Peng et al., 1994).

Signal summation conversion method. This method was first
introduced by Eke et al. (2000) for enhancing signal classification
as a variant of the scaled windowed variance (SWV) analysis of
Mandelbrot (1985) as further developed by Peng et al. (1994).
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Fluctuations of a parameter over time can be characterized by
calculating the standard deviation

SDn =

√√√√ 1

N − 1

N∑
i=1

(Xi − 〈X〉)
2. (21)

For fBm processes of length N when divided into non-
overlapping windows of size n as Eq. 21 predicts the standard
deviation within the window, sn, depends on the window size n in
a power law fashion:

SDn ∝ pnH , (22)

and

H = lim
n→0

log SDn

log n
. (23)

In practice SDn’s calculated for each segment of length n of the
time series are averaged for the signal at each window size. The
standard method applies no trend correction. Trend in the signal
seen within a given window can be corrected either by subtracting
a linearly estimated trend (line detrended version) or the values
of a line bridging the first and last values of the signal (bridge
detrended version; Cannon et al., 1997). This method can only be
applied to fBm signals or cumulatively summed fGn signals.

The signal summation conversion (SSC) method was first used
for enhanced signal classification according to the dichotomous
fGn/fBm model (Eke et al., 2000). There are two steps: (1) calcu-
late from Xi its cumulative sum (this converts an fGn to an fBm or
converts an fBm to its cumulant), and (2) use the bdSWV method
to calculate from the cumulant series Ĥ ′ . The interpretation of Ĥ ′

is that when 0 < Ĥ ′ ≤ 1, then Xi is an fGn with Ĥ ′. Alternatively,
when Ĥ ′ > 1, then the cumulant series is identified as an fBm
signal of Ĥ = Ĥ ′ − 1. As seen, in order to keep Ĥ ′ scaled within
the [0,1] range, in the original version of the method in the fBm
case 1 was subtracted from the estimate of H. Given that the SSC
method handles fGn and fBm signals alike, we eliminate this step
and report values as 0 < Ĥ ′ < 1 for fGn and 1 < Ĥ ′ < 2 for
fBm signals referring Ĥ ′ as the “extended” Hurst exponent. This
way, the mere value of the Hurst exponent would reflect on signal
class, the focus of fractal time series analysis strategy. Also the use
of Ĥ ′ would greatly facilitate reviewing the results of numerical
performance analyses.

Real-time implementations of SSC and Detrended Fluctuation
Analysis (DFA) methods have been recently reported (Hartmann
et al., 2012).

Frequency domain method
Fractal analysis can also be done in the frequency domain using
methods such as the power spectral density (PSD) analysis
(Fougere, 1985; Weitkunat, 1991; Eke et al., 2000).

Power spectral density analysis (lowPSDw,e). A time series can
be represented as a sum of cosine wave components of different

frequencies:

Xi =

N/2∑
n=0

An cos [ωnti + ϕn] =

N/2∑
n=0

An cos

[
2πn

N
i + ϕn

]
, (24)

where An is the amplitude and φn is the phase of the cosine-
component with ωn angular frequency. The commonly used
sample frequency is fn=ωn/2π. The An(fn), φn(fn), and A2

n(fn)

functions are termed amplitude, phase, and power spectrum of the
signal, respectively. These spectra can be determined by an effec-
tive computational technique, the fast Fourier transform (FFT).
The power spectrum (periodogram, PSD) of a fractal process is a
power law relationship

A2
n ∝ pω−β

n , or
∣∣A(f )

∣∣2 ∝ 1/f β which yields β =

lim
n→0

log A2
n

log fn
, (25)

where β is termed spectral index. The power law relationship
expresses the idea that as one doubles the frequency the power
changes by the same fraction (2−β) regardless of the chosen fre-
quency, i.e., the ratio is independent of where one is on the
frequency scale.

The signal has to be preprocessed before applying the FFT
(subtraction of mean, windowing, and endmatching, i.e., bridge
detrending). Discarding the high power frequency estimates
improves the precision of the estimates of β (Fougere, 1985; Eke
et al., 2000). Eke et al. (2000) introduced this version denoted as
lowPSD w,e as a fractal analytical tool.

Time-frequency domain method
Fractal wavelet analysis uses a waveform of limited duration with
an average value of zero for variable-sized windowing allowing
an equally precise characterization of low and high frequency
dynamics in the signal. The wavelet analysis breaks up a signal
into shifted and stretched versions of the original wavelet. In other
words, instead of a time-frequency domain it rather uses a time-
scale domain, which is extremely useful not only in monofractal
but multifractal analysis, too. One such way to estimate H is by
the averaged wavelet coefficient (AWC) method (Simonsen and
Hansen, 1998). The most commonly used analyzing wavelet is the
second derivative of a standard normalized Gaussian function,
which is:

ψ(t ) =
d2

dt 2
e−

t 2

2 . (26)

The scaled and translated version of the analyzing wavelet is
given by

ψa;b(t ) = ψ

(
t − b

a

)
, (27)

where the scale parameter is a, and the translation parameter b.

Frontiers in Physiology | Fractal Physiology November 2012 | Volume 3 | Article 417 | 78

http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Eke et al. Pitfalls in fractal time series analysis

The wavelet transformation is essentially a convolution
operation in the time domain:

Wψ[X ](a, b) =
1

a

+∞∫
−∞

X(t ) ·ψa;bdt . (28)

From Eq. 16, one can easily derive how the self-affinity of
an fBm signal X(t ) determines its continuous wavelet transform
(CWT) coefficients:

W [X ](sa, sb)=d s
1
2+H W [X ](a, b). (29)

The AWC method is based on Eq. 29 (Simonsen and Hansen,
1998) and can be applied to fBm signals or to cumulatively
summed fGn signals.

MULTIFRACTAL METHODS
Three analysis methods are described here; all use different sta-
tistical moments (termed q-th order) of the selected measure to
evaluate the signal’s multifractality. Despite of certain inherent
drawbacks, these methods are widely used in the literature, and
can obtain reliable results if their use is proper with limitations
considered.

Time domain methods
Below, the Multifractal DFA (MF-DFA; Kantelhardt et al., 2002)
and the recently published Multifractal Detrended Moving Aver-
age (MF-DMA; Gu and Zhou, 2010) will be reviewed. We will focus
on MF-DMA, but since it is similar to MF-DFA, their differences
will be pointed out, too. They rely on a measure of fluctuation,

F, as in their monofractal variant (Peng et al., 1994), and differ in
calculating the q-th order moments of the fluctuation function.

Step 1 – calculating signal profile, Yj, by cumulative summation.
It is essentially the same as in Eq. 17, however note that in DFA
methods, the mean of the whole signal is subtracted before sum-
mation, while in DMA methods this is carried out locally in
step 3.
Step 2 – calculating the moving average function, Ỹj .

Ỹj =
1

n
·

[(n−1)(1−θ)]∑
k=−[(n−1)θ]

yt−k (30)

For further details, see Figure 4.
Step 3 – detrending by moving average: By subtracting Ỹt a residual
signal, εt, is obtained:

εt = Yt − Ỹt , (31)

where n−[(n−1) ·θ]≤ t ≤N−[(n−1)· θ].
This fundamental step of the DMA methods is essen-

tially different from the detrending step of DFA methods (See
Figure 4).
Step 4 – calculation of fluctuation measure. The signal is split into
Nn= [N /n− 1] number of windows (See Figure 4), ε(v), where
v refers to the index of a given window. The fluctuating process
is characterized by Fv(n), which is given as a function of window
size, n:

F 2
v (n) =

1

n
·

n∑
t=1

ε2
t (v). (32)

A B
C D

FIGURE 4 | Detrending scheme and fluctuation analysis for MF-DFA and
MF-DMA methods. The detrending strategy for MF-DFA (A) is that the signal
is divided into a set of non-overlapping windows of different sizes, and a local
low-order polynomial (typically linear) fit (shown in green) is removed from
each window’s data. In contrast, MF-DMA (B) removes the moving average
point-by-point calculated in different window sizes around the processed point
with a position given by θ. This parameter describes the delay between the
moving average function and the original signal. Its value is taken from [0, 1]

interval, 0 meaning only from signal values on the left (“backward,” past), in
contrast with 1 meaning that only signal values to the right (“forward,” future)
are used for calculating Ỹj . The centrally positioned sliding window
corresponds to the case of θ=0.5 balancing contributions from the past and
the future to the reference point. The approaches of MF-DFA and MF-DMA
thus ought to yield different detrended signals, whose calculated moments
(C,D) and Eqs 33 and 34 obtained by the analysis should also be somewhat
different.
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Step 5 – calculation of q-th order moments of the fluctuation
function.

Fq(n) =

(
1

Nn
·

Nn∑
v=1

F
q
v (n)

)1/q

. (33)

For q= 2, the algorithm reduces to the monofractal DMA
method. For the special case q= 0, Fq(n) can be obtained as a
limit value that can be expressed in a closed form:

log[F0(n)] =
1

Nn
·

Nn∑
v=1

log[Fv (n)]. (34)

Relation of the q-th order moment of the fluctuation measure
and H (q) follows a power law:

Fq(n) ∝ nH (q). (35)

Thus H (q) can be estimated as the slope of the least-square
fitted regression line between log n and log [Fq(n)]. Finally,
Mandelbrot spectrum is obtained with subsequent application of
multifractal formalism equations (Eqs 9–12) yielding multifractal
features τ(q), D(h).

Time-frequency domain methods
Wavelet analysis methods can be used to estimate the singularity
spectrum of a multifractal signal by exploiting the multifractal
formalism (Muzy et al., 1991, 1993, 1994; Mallat and Hwang,
1992; Bacry et al., 1993; Arneodo et al., 1995, 1998; Mallat, 1999;
Figure 5). Wavelet transform modulus maxima (WTMM) has
strong theoretical basis and has been widely used in natural
sciences to assess multifractality.

Step 1 – continuous wavelet transformation: This step is essentially
the same as described previously in Eqs 26–28 yielding a matrix
of wavelet coefficients (Figure 5B):

W ≡ [w(it , is)], (36)

where w(it, is)= |W ψ[X](t, s)|, is is the scaling index, where
s= smin, . . ., smax and it= 1, 2, . . ., N, where t is the sampling
time of each successive data point.
Step 2 – chaining local maxima: The term modulus maxima
describes any point (t 0, s0) where |W ψ=[X](t, s)| is a local
maximum at t = t 0:

∂Wψ [X] (t0, s0)

∂t
= 0. (37)

This local maximum is strict in terms of its relation to t 0 in
its immediate vicinity. These local maxima are to be chained by
interconnection to form a local maxima line in the space-scale
plane (t, s) (See Figure 5C).
Step 3 – calculating partition function. With the aid of partition
function (Eq. 7, Figure 5D), singular behavior of the multifractal

time series can be isolated. Wavelet coefficients along maxima
chains are considered as µ measures.

Z (s, q) =
∑

`∈L(s)

|w(is , it )|
q . (38)

Summation is executed along maxima chains (`), the set of all
maxima lines is marked by L(s).
Step 4 – calculating singularity spectra and parameters of mul-
tifractality. The following step is to determine the multiscaling
exponent, τ(q) by H (q), and then using Eqs 10–12 to give full
quantification of the multifractal nature.

CHARACTERIZATION OF METHODS
Before the application of fractal analysis methods, their behav-
ior should be thoroughly evaluated on a large set of signals with
known scale-free structure and broad representation (Bassingth-
waighte and Raymond, 1994, 1995; Caccia et al., 1997; Cannon
et al., 1997; Eke et al., 2000, 2002; Turiel et al., 2006). Signal
classification, estimating performance in terms of precision and
limitations of the methods should be clarified during characteriza-
tion. The capability of multifractal analysis to distinguish between
mono- and multifractal processes should also be evaluated.

Stationarity of a signal is an important property for pairing with
a compatible fractal analysis tool (see Table 2 in Eke et al., 2002).
In addition, all methods have some degree of inherent bias and
variance in their estimates of the scaling exponent bearing great
importance due to their influence on the results, which can be
misinterpreted as a consequence of this effect. The goal of perfor-
mance analysis is therefore to characterize the reliability of selected
fractal tools in estimating fractal parameters on synthesized time
series. This should be carried out at least for a range of signal
sizes and structures similar to the empirical dataset, so that the
reliability of fractal estimates could be accurately determined.

Extensive results obtained with our monofractal framework
have been reported elsewhere (Eke et al., 2000, 2002), but for the
sake of comparison it will be briefly described. Our multifrac-
tal testing framework is aimed to demonstrate relevant features of
MF-DFA and MF-DMA method, utilizing the equations described
in Section “Implementation of Fractal Time Series Analyses.”

TESTING FRAMEWORK FOR MULTIFRACTAL TOOLS ON
MONOFRACTALS
Monofractal signals of known autocorrelation (AC) structure can
be synthesized based on their power law scaling. The method of
Davies and Harte (1987) (DHM for short) produces an exact fGn
signal using its special correlation structure, which is a conse-
quence of the power law scaling of the related fBm signal in the
time domain (Eq. 19). It is important, that different realizations
can be generated with DHM at a given signal length and Hurst
exponent, which consists of a statistical distribution of similarly
structured and sized monofractals.

The next question is how to define meaningful end-points for
the tests? For ideal monofractals with a given length and true H,
Mean Square Error (MSE) is a good descriptor: it can be calculated
for each set of series of known H and particular signal length, N
(Eke et al., 2002). It carries a combined information about bias
and variance, as MSE= bias2

+ variance.
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FIGURE 5 | Relations of Continuous WaveletTransform operation,
WaveletTransform Modulus Maxima method, and multifractal formalism
to obtain singularity spectrum of an ideal multifractal. Devil’s staircase
with weight factors p1 =p3 = 0.2, p2 =0.6 was used to model an ideal
multifractal time series (A). The wavelet coefficient matrix (B) is obtained by
continuous wavelet transform in the time-scale space. Modulus maxima map
(C) containing the maxima lines across the scales defined by CWT. We call
modulus maximum of the wavelet transform |Wψ[X ](t, s0)|; any point (t 0, s0),
which corresponds to a local maximum of the modulus of |Wψ[X ](t, s0)| is
considered as a function of t. For a given scale, it means that |Wψ[X ](t 0,
s0)| > |Wψ[X ](t, s0)| for all t in the neighborhood right of t 0, and |Wψ[X ](t 0,
s0)|≥ |Wψ[X ](t, s0)| for all t in the neighborhood left of t 0. Local maxima are
chained, and in the subsequent calculations only maxima chains propagating
to the finest scales are used (Mallat, 1999). Chaining local maxima is

important, because it is proven that their distribution along multiple scales
identifies and measures local singularities, which is tightly linked to the
singularity spectrum. The moment-based partition function (D) separates
singularities of various strength as coded in (B,C) as follows. Z is obtained for
the range [smin, s] as the sum of moments of the wavelet coefficients
belonging to those along a set of maxima lines at s [shown as circles in (C)].
This definition corresponds to a “scale-adapted” partition with wavelets at
different sizes. A moment-based set of Z are plotted in a log-log
representation as shown in (D). Notice that these log Z (log s) functions are
lines representing the power law behavior of the multifractal signal within the
scaling range shown. Therefore when the slope of each and every log Z (log s)
lines are plotted as a function of moment order, q, it yields τ(q) (E). From τ(q)
via Legendre transform the singularity spectrum, D(h) (F), is obtained (See
Chapter 2, Figure 3).

Interpreting the multifaceted results of numerical experiments
is a complex task. It can be facilitated if they are plotted in a prop-
erly selected set of independent variable with impact shown in
intensity-coded representations (Figure 6; Eke et al., 2002). Preci-
sion index is determined as the ratio of results falling in the inter-
val of [H true – H dev, H true+H dev], where H dev is an arbitrarily
chosen value referring to the tolerable degree of deviation.

In the monofractal testing framework, we used DHM-
signals to evaluate the performance of MF-DMA (Gu and
Zhou, 2010) and MF-DFA (Gu and Zhou, 2006), by
the code obtained from http://rce.ecust.edu.cn/index.php/en/
research/129-multifractalanalysis. It was implemented in Matlab,
in accordance with Eqs 17 and 30–35. As seen in Figure 6, preci-
sion of MF-DFA and MF-DMA depends on N, H, and the order
of moment.

In order to compare the methods in distinguishing multifrac-
tality, end-points should be defined reflecting the narrow or wide
distribution of Hölder exponents. We select a valid endpoint ∆h

proposed by Grech and Pamula (2012), which is the difference
of Hölder exponents corresponding to q=−15 and q=+ 15
(Figure 7).

TESTING APPROACHES FOR MULTIFRACTAL TOOLS ON
MULTIFRACTALS
Extending the dichotomous model of fGn/fBm signals (intro-
duced in context of monofractals; Mandelbrot and Ness, 1968;
Eke et al., 2000) toward multifractal time series is reasonable
as it can account for essential features of natural processes
exhibiting local power law scaling. Description of an algo-
rithm creating multifractional Brownian motion (mBm) and
multifractional Gaussian noise (mGn) can be found here
(Hosking, 1984), while implementation of such code can be
found on the net (URL1: http://fraclab.saclay.inria.fr/, URL2:
www.ntnu.edu/inm/geri/software). Given that these algorithms
require Hölder trajectories as inputs, multifractality cannot be
defined exactly on a finite set, which is a common problem of such
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FIGURE 6 | Precision as a function of moment order, signal length, and
Hurst exponent. Precision of MF-DFA [left side of (A–C)] and MF-DMA
[right side of (A–C)] as a function of q, H true, N. fGn and fBm signals were
generated by DHM with length of 28, 210, 212, 214, and H true increased from
0.1 to 1.9 in steps of 0.1, skipping H true = 1 (corresponding to 1/f boundary
seen as the black horizontal line in the middle). Estimation of the
generalized Hurst exponent should not depend on q, as monofractal’s H (q)
is a theoretically constant function scattering around H true across different
order of moments. The intensity-coded precision index is proportional to the
number of estimates of H falling into the range of H true ±0.1, with lighter

(Continued )

FIGURE 6 | Continued
areas indicating more precise estimation. Calculation of this measure is
based on 20 realizations for each q, H true, N. (A) Performance of methods
for q =±5. (B) Performance of methods for q =±2. (C) Performance of
methods for q =±0.5. Besides the clear dependence of precision on H true

and N, influence of moment order is also evident, given that the lightest
areas corresponding to the most reliable estimates tend to increase in
parallel with moment order approaching 0 [Note the trend from (A–C)]. The
lower half of the plots indicates that MF-DFA is applicable for signals of both
types, while MF-DMA is reliable only on fGn signals. This result is further
supported by the paper of Gao et al. (2006), who demonstrated a saturation
of DMA at 1 for H when the true extended Hurst exponent exceeds 1 (thus
it is non-stationary).

FIGURE 7 | Separating monofractals from multifractals. ∆h values
obtained by MF-DFA (as difference of Hölder exponents at q =+15 and
q =−15) are shown for monofractals with length of 210 (blue), 212 (green),
214 (red). It is clearly shown that longer signals are characterized by lower
∆h, and its value below 0.2 means that true multifractality is unlikely
present (Grech and Pamula, 2012). Signals were created by DHM at
extended Hurst exponents of 0–1.9 with a step of 0.1.

synthesis methods. Selecting a set of meaningful trajectories is a
challenging task: it should resemble those of empirical processes
and meet the analytical criteria of the selected algorithms (such
criteria are mentioned in Concept of Fractal Time Series Analyses).

On the contrary, iterative cascades defined with analytic func-
tions are not influenced by the perplexity of definitions associated
with multifractality outlined in the previous paragraph, given that
their value at every real point of the theoretical singularity spec-
trum is known. Due to their simplicity, binomial cascades (Kan-
telhardt et al., 2002; Makowiec et al., 2012) and Devil’s staircases
(Mandelbrot, 1983; Faghfouri and Kinsner, 2005) are common
examples of theoretical multifractals used for testing purposes.
A major drawback of this approach is that these mathematical
objects do not account for features in empirical datasets, but can
still be useful in comparing reported results.

The most extensive test of multifractal algorithms which used
a testing framework of signals synthesized according to the model
introduced by Benzi et al. (1993) was reported by Turiel et al.
(2006). Briefly, it is a wavelet-based method for constructing a
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signal with predefined properties of multifractal structuring with
explicit relation to its singularity spectrum. Since the latter can
be manipulated, the features of the resulting multifractal signal
could be better controlled. The philosophy of this approach is
very similar to that of Davies and Harte (1987) in that a family
of multifractal signals of identical singularity spectra can be gen-
erated by incorporating predefined distributions (log-Poisson or
log-Normal) giving rise to controlled variability of realizations.
Additionally, using log-Poisson distribution would yield multi-
fractals with a bounded set of Hölder exponents in that being
similar to those of empirical multifractals. To conclude, this testing
framework should merit further investigation.

ANALYTICAL STRATEGY
In this article we expand our previously published monofrac-
tal analytical strategy to incorporate some fundamental issues
associated with multifractal analyses keeping how these can be
applied to BOLD time series in focus. Progress along the steps
of the perplexed fractal analysis should be guided by a consoli-
dated – preferably model-based– view on the issues involved (See
Figure 8).

A fundamental question should be answered whether it is wor-
thy at all to take on the demanding task of fractal analysis? This can
only be answered if one characterizes the signal in details according
to the guideline shown in Figure 8 using tools of descriptive sta-
tistics and careful testing; first for the presence of monofractal and
later that of multifractal scale-free features. At this end, we present
here a new tool for an instantaneous and easy-to-do performance
analysis (called “performance vignette”), which can facilitate this
process and does not require special knowledge needed to carry out
detailed numerical experiments on synthesized signals (Figure 9).
The latter, however, cannot be omitted when full documentation
of any particular fractal tool’s performance is needed. In that the
vignette has been designed for prompt selection, overview, and
comparison of various methods; not for their detailed analysis.

We sustain our recommendation that proper class-dependent
or class-independent methods should be chosen.

We feel, that calculating global measures of multifractal scaling,
such as Pc (Shimizu et al., 2004) or W (Wink et al., 2008), can help
consolidating experimental findings in large fMRI BOLD volumes
across many subjects and experimental paradigms. Based on our
tests, we conclude that straightforward recommendations for mul-
tifractal analysis for the purpose of fMRI BOLD time series analysis
needs further investigations.

PITFALLS
SOURCES OF ERROR
Problems emerging from inadequate signal definition (measurement
sensitivity, length, sampling frequency)
Measurement sensitivity. The precondition of a reliable fMRI
time series analysis is that the BOLD signal has adequate definition
in terms of being a true-to-life representation of the underlying
biology it samples. In particular, the fMRI BOLD measurement
is aimed at detecting the contrast around blood filled compart-
ments in magnetic susceptibility of blood and the surrounding
medium in a uniform high field (Ogawa and Lee, 1990). A contrast
develops from tissue water relaxation rate being affected by the

paramagnetic vs. diamagnetic state of hemoglobin. The contrast
increases with decreasing oxygenation of blood, a feature that
renders the technique capable of detecting the combined effect
of neuronal metabolism coupled via hemodynamics throughout
the brain (Smith et al., 2002). As Ogawa and Lee (1990) demon-
strated, the BOLD contrast increases with the strength of the main
magnetic field, B0 (i.e., due to the sensitivity of the relaxation
rate).

In his early paper (Lauterbur, 1973), Lauterbur gave clear evi-
dence of the fact that resolution of magnetic resonance signals will
strongly depend on B0. Newer generations of scanners with con-
tinuously improved performance were constructed utilizing this
relation by incorporating magnets of increased strength (in case
of human scanners from, i.e., 1.5–7T, in small animal scanners due
to the smaller brain size with strength in the 4–17.2T range). Bull-
more et al. (2001) showed indeed, that the performance of some
statistical method and their results depended on the magnetic field
used (1.5 vs. 3T); calling for caution and continuous reevaluation
the methods in the given MRI settings.

In order to confirm the impact of B0 on the sensitivity on
the definition of the BOLD signal fluctuations, we have com-
pared the spectral index (ß) of resting-state BOLD fluctuations
in vivo to those post mortem and in a phantom in 4, 9.4, and
11.7T in anesthetized rats (Figure 10). What we have learned
from this study was that in contrast with amplitude-wise opti-
cal measurements of cerebral oxygenation and hemodynamics
such as near infrared spectroscopy (Eke et al., 2006), due to the
contrast-detecting foundations of fMRI, signal definition can-
not be characterized by comparing fluctuation ranges in vivo
vs. post mortem. After death deoxyhemoglobin molecules are
still present in the MRI voxels post-sacrifice and thus gener-
ate susceptibility-induced magnetic field gradients that would
impact diffusion of tissue water molecules (Herman et al., 2011),
a process that can generate fluctuating BOLD contrast without
ongoing physiology. What matters is that in vivo the blood gets
oxygenated and via the combined impact of neuronal metab-
olism, blood flow, and blood volume, the internal structuring
of the BOLD contrast signal will change from close to random
to a more correlated level as indicated by β, which is in vivo
significantly higher than post mortem. Increasing field strength
enhances this effect and yields a more articulated topology of β

throughout the brain. Conversely, low field measurements favor
the dominance of instrument noise in addition to being less sen-
sitive in detecting the BOLD contrast. The inference of these
preliminary data is that, given the BOLD contrast (and pre-
sumably even the spatial resolution) of our animal imaging,
a 1.5T human scanner may not be of sufficient sensitivity to
detect BOLD fluctuations at adequate definition for a reliable
monofractal analysis, not to mention multifractal analysis known
to require a much higher signal definition for an optimal perfor-
mance that can be achieved in higher field scanners (Ciuciu et al.,
2012).

While the use of fMRI is typically qualitative where the baseline
is conveniently differenced away to reveal focal area(s) of interest
(Shulman et al., 2007), this practice would not interfere with frac-
tal time series analysis, given that scaling exponent is invariant to
mean subtraction.
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FIGURE 8 | Analytical strategy for fractal time series analysis. Toward
obtaining a reliable (multi)fractal parameter, which is the purpose of the
analysis, the first step to take is to collect a high definition dataset
representing the temporal signal, X (t ), ensuring adequate definition.
Provided that quality-controlled, adequate length of signal, Xi, was
acquired at a sufficient frequency sampling X (t ) (Eke et al., 2002),
scale-free processes can be characterized in terms of either a single
global or a distribution of many local scaling exponents, the former
pertinent to a monofractal, the latter to a multifractal signal, respectively
(Figure 1). A detailed flowchart of our monofractal analytical strategy has
been reported earlier (Eke et al., 2000, 2002), hence only some of its
introductory elements are incorporated here. The signal-to-noise
ratio – as part of signal definition – is a source of concern in
preprocessing the signal. Ensuring the domination of the underlying
physiological processes over inherent noise is a critical issue, which – if
not dealt with properly – will have a detrimental effect on the correlation

structure of the signal. Endogenous filtering algorithms of the
manufacturers of MRI scanners could be operating in potentially relevant
frequency ranges of fractal analysis aimed at trend or noise removal
(Jezzard and Song, 1996). In case of BOLD signals, this problem may
prove hard to track as the system noise may cause a temporally (i.e.,
serially) correlated error in the measurement (Zarahn et al., 1997). This
may alter the autocorrelation structure of the signal with embedded
physiological content (Herman et al., 2011). Various aspects of temporal
smoothing have been discussed in Friston et al. (2000). To conclude,
scale-free properties of the signal must be preserved during steps
carried out before fractal analysis, otherwise the physiologically relevant
internal structuring of the BOLD signal cannot possibly be revealed
(Herman et al., 2011). Once a multifractal has been isolated by a
class-independent method, such as MF-DFA, we can only assume that
the multifractal structuring of the signal is due to serial correlation.

(Continued )
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FIGURE 8 | Continued
As autocorrelation structure of the signal can reflect a broad probability
distribution, surrogate analysis is needed on a shuffled signal – which
destroys this correlation – to ensure that the origin of the scale-invariance
is due to genuine autocorrelation in the signal (Kantelhardt et al., 2002).
The null-hypothesis (the signal is not multifractal) is rejected if multifractal
measures determined for the raw and surrogate sets are different. This
procedure is similar to verifying the presence of deterministic chaos
(Herman and Eke, 2006). Attention should be given to select the scaling
range properly: involving the finest and coarsest scales in calculating H (q)
would greatly impair its estimate. The range of moments should be

selected such that sufficient range of singularity spectrum is revealed,
allowing for the calculation of scalar multifractal descriptors such as P c.
Next, one has to decide as to which path of the detailed multifractal
analysis to choose (indirect vs. direct or time vs. time-frequency domain)?
Each of these paths would have advantageous and disadvantageous
contributions to the final results to consider. The methods of analysis
must be selected compatible to the path taken. Once methods have been
chosen, their performance (precision) ought to be evaluated. With
adequate performance verified, the multifractal analyses can then be
followed by attempts to find physiological correlates for the estimates of
(multi)fractal parameters.

Length and sampling frequency. A signal is a sampled
presentation of the underlying process, which generates it. Hence
the sampling frequency must influence the extent the signal cap-
tures the true dynamics of the process, which is in the focus of
fractal analysis irrespective if its analyzed in the time (in form of
fluctuations) or in the frequency domain (in form of power distri-
bution across the frequency scale). The sampling frequency should
preferably be selected at least a magnitude higher than the highest
frequency of the observed dynamics we would aim to capture.

The relationship between length and frequency can best be
overviewed in the frequency domain along with the frequency
components and aliasing artifact of the spectrum as seen in
Figure 12 of Eke et al. (2002). Note, that the dynamics of inter-
est can be best captured hence analyzed if the signal length is
long; the sampling frequency is high, because it will provide a
spectrum of many components with a weak artifactual impact
of aliasing. Herman et al. (2011) have recently demonstrated this
relationship on resting-state BOLD time series and concluded that
lower frequency dynamics are better sampled by longer BOLD
signals, whereas a high sampling rate is needed to capture dynam-
ics in a wide bandwidth signal (See Figure 3 in Herman et al.,
2011). In other words, inadequately low frequency is more detri-
mental to the result of fractal analysis than somewhat truncated
signal.

Due to the discrete representation within the bounded tem-
poral resolution of the signal, the precision of its fractal analysis
increases with its length as demonstrated on simulated signals of
known (true) fractal measures by the bias and variance of its esti-
mates. The minimum length at which reasonable results can be
expected depends not only on signal length but on the method
of analysis and the degree of long-range correlation in the sig-
nal (as characterized by its H ); an issue that has been explored
in details for monofractal time series by the groups of Bass-
ingthwaighte and Raymond (1994, 1995); Eke et al. (2000, 2002);
Delignieres et al. (2006), and for multifractal methods by Turiel
et al. (2006).

Multifractal analysis can be considered as an extension of
monofractal analysis, which is explicitly true for moment-based
methods: while in case of monofractals a scale-free measure is
obtained at q= 2, the procedure for multifractals uses a set of
different q-order moments. Think of q as a magnifier glass: differ-
ent details of the investigated scale-free structure can be revealed
at different magnification. However, if signal definition is poor
due to short length or small sampling frequency, estimates of
D(h) will become imprecise at large ±q (Figure 6). Since the

order of q needed to obtain characteristic points of the singular-
ity spectrum usually falls beyond q=± 2, a longer time series is
required to guarantee the needed resolution in this range. Hence,
dependence of precision on signal length in case of multifrac-
tals is a more complicated issue, where the effect of spectral
characteristics interacts with that of signal length (Turiel et al.,
2006).

A reasonable conclusion is that the recommended minimum
length for a reliable multifractal analysis ought to be longer
than that found earlier for monofractal series (Eke et al., 2002;
Delignieres et al., 2006).

Problem of signal class (fGn vs. fBm)
In fractal analysis, signal classification is a central issue (Eke et al.,
2000) and should be regarded as a mandatory step when a tool is
to be chosen from the class-dependent group. Living with the rel-
ative convenience of using a class-independent method does not
render signal classification unnecessary given the great importance
of proper interpretation of the findings that can be enhanced by
knowing signal class.

Recently, Herman et al. (2011) found in the rat brain using
monofractal analysis (PSD) that a significant population of fMRI
BOLD signal fell into the non-stationary range of β. These non-
stationary signals potentially interfere with resting-state connec-
tivity studies using spatio-temporal volumes of fMRI BOLD. It is
even more so, if SSC is used for signal classification (Figure 11)
and analysis (Figure 12) shifting the histogram of H ′ to the
right.

For multifractals the problem and proposed solution is gener-
ally the same, but the impact of the fGn/fBm dichotomy on the
multifractal measures is not a trivial issue. Our preliminary results
reported here (Figure 12) are steps in this direction, but this issue
calls for continuing efforts in the future. It seems that at least sta-
tionarity vs. non-stationarity is a valuable piece of information for
selecting a concise model of multifractals.

Distinguishing monofractals from multifractals
Multifractal analysis of an exact monofractal rendered at ideal
resolution (in infinite length, sampled at infinite frequency, at infi-
nite sensitivity of detection) would yield a constant H (q), a linear
dependence of τ on q and a point-like Mandelbrot spectrum with
its Hölder exponent (hmax) equal with its Hurst exponent.

Due to the finite and discrete nature of the signal, the singular
behavior of a suspected scale-free process cannot be quantified
perfectly. As a consequence, the homogeneity of a monofractal’s
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FIGURE 9 | Fractal tool performance vignette. It provides a quick
assessment of any fractal time series tool’s performance. As such can be
useful as a method of standardization and/or comparison of various
algorithms. Technically, a vignette is created as any given fractal time series
method evaluates a volume of synthesized time series for a particular fractal
parameter. The results are converted to extended H ′ as H ′ =H fGn,
H ′ =H fBm + 1 using a conversion table between H and other fractal
parameters (Eke et al., 2002). The signals are generated for a range of
length, L [Lmin, Lmax] in increments of ∆L, and for the full range of the
fGn/fBm dichotomy at β or H ′ at given increments of the exponent, ∆H’ by
the DHM method (Davies and Harte, 1987; Eke et al., 2000). The volume is
created from these signals arranged in a square raster, which will
correspond to one of four identical quadrants of the vignette. Once the
analysis by a fractal tool has been carried out the results are plotted in a
square array as shown in (A) such a way that fGn signals occupy a square
created by the four identical quadrants. The 1/f boundary separating the fGn
from the fBm range can be easily identified as plotted with a midscale color.
Warmer colors indicate over-, cooler colors underestimation of the scaling
exponent at the particular signal length or degree of correlation. When
applied to class-independent or dependent methods (B), like PSD, SSC (B,
upper half) or Disp (dispersional analysis) and bdSWV (bridge detrended
Scaled Window Variance) (B, lower half), respectively, an immediate
conclusion on signal performance can be drawn: PSD and SSC can be used
for fGn and fBm signals alike (except in the vicinity of the 1/f boundary) and
SSC is more precise. Disp (Bassingthwaighte and Raymond, 1995; Eke
et al., 2000, 2002) and bdSWV (Eke et al., 2000, 2002), two
class-dependent methods of excellent performance (note the

(Continued )

FIGURE 9 | Continued
midscale colored area in the fGn and fBm domains, respectively) do show
up accordingly. The vignette is applicable to indicate the performance of
multifractal methods, too. The monofractal H can be determined in two
ways: in case of q =2 from τ(q), and in case of q =0 from hmax in the
singularity spectrum.

singularities cannot be captured by a multifractal analysis. The
reason being is that due to numerical background noise (Grech
and Pamula, 2012) – resulting from factors mentioned above – it
would always smear the point-like singularity spectrum into one
mimicking that of a multifractal. This is confirmed by the appar-
ent uncertainties associated with the estimates of H (q) obtained
at various moments in our simulations. All in all, multifractal
analyses have been conceived in a manner that tends to view a
monofractal as a multifractal.

In order to avoid false interpretation of the data, time series
should be produced at the highest possible definition to amelio-
rate this effect and criteria should also be set up to distinguish
the two entities in the signal to be analyzed. Numerical simulation
has been demonstrated as a useful tool to work out a parame-
ter that can be used to substantiate a monofractal/multifractal
classification (Grech and Pamula, 2012; Figure 6).

Trends and noises
Empirical time series are typically non-linear, non-stationary and
can be contaminated by noise and other signal components for-
eign to the fractal analysis of the system under observation. Trend
is deterministic in its character and of typically low frequency in
contrast with noise, which has a completely random structuring
in a higher frequency range. Monofractal analysis methods are
quite robust with respect of noise, thus in case of monofractals
do not require preprocessing (Bassingthwaighte and Raymond,
1995). When uncorrelated noise is added to a multifractal process,
the shape of its singularity spectrum will also be preserved (Figli-
ola et al., 2010). However with correlated noise present, – known
to impact fMRI BOLD time series – preprocessing should be con-
sidered (Friston et al., 2000), and if carried out, it should be done
with an appropriate adaptive filter (Gao et al., 2010, 2011; Tung
et al., 2011).

In case of wavelet-based methods, a polynomial trend can be
removed based on the analyzing wavelet’s properties. However, if
the trend has a different character (i.e., trigonometric or exponen-
tial), or it has more vanishing moments than that of the analyzing
wavelet, the estimation of singularity spectrum will be impaired
(See theorem 6.10 in Mallat’s book; Mallat, 1999).

Various detrending schemes have been developed to enhance
performance of fluctuation analysis (FA) on detrended signals,
which has been compared (Bashan et al., 2008). The most com-
mon trend removal is based on fitting a low-degree polynomial to
local segments of the signal such as employed in DFA (Figure 4).
In particular, DFA’s trend removal is credited for being very effec-
tive, however – as recently reported (Bryce and Sprague, 2012) – it
can become inadequate if the trend ends up having a character dif-
ferent from the coded algorithm, which scenario cannot at all be
excluded. A further problem is that the signal arbitrarily divided
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FIGURE 10 | Definition of spontaneous BOLD fluctuations critically
depends on main field strength. Exemplary coronal scans are shown
obtained in anesthetized rat in MR scanner applying 4, 9.4, and 11.7T main
external field. All fMRI data were collected at 5 Hz in length of 4096 (212)
images with gradient echo planar imaging (EPI) sequence using 1H surface
coils (Hyder et al., 1995). (A) shows in vivo and post mortem maps of spectral
index, β. β was calculated from the spectra of the voxel-wise BOLD time
series by the PSD method for a restricted range of fluctuation frequency
(0.02–0.3 Hz) found to exhibit inverse power law relationship [fractality;
indicated by vertical dashed lines on the PSD plots in (B)]. In order to achieve
a suitable contrast for the topology, β are color coded within the fGn range

(from 0 to 1). Hence voxel data with β > 1 indicating the presence of fBm
type fluctuations are displayed saturated (in red). β maps for water phantoms
placed in the isocenter are also shown for comparison. Note, that the fractal
pattern of internal structuring of the spontaneous BOLD signal cannot be
captured at adequate definition at 4T as opposed to 11.7T, where the rate of
scale-free rise of power toward low frequencies are thus the highest at about
the same region of interest (ROI) located in the brain cortex. This dependence
translates into an articulate in vivo topology with increasing B0. Also note that
in vivo 4T cannot yield a clear topology of β when compared to post mortem,
and that the well defined topology achieved at higher fields vanished post
mortem indicating the link between β and the underlying physiology.

into analyzing window of different sizes in which trend removal is
carried out based on a priori assumption (e.g., polynomial). This
problem is exaggerated as by using partitioning of the signal into a
set of non-overlapping windows and performing detrending in a
window-based manner would not guarantee that the trend in each
and every window would be identical with the assumed one. This
is especially true for small windows, where trend tends to deviate
from that in larger windows. Contrary to expectations, this criti-
cal finite size effect is always present, thus this pitfall can only be
avoided if explicit detrending is applied by using adaptive methods
(Gao et al., 2011).

To conclude, the recently reported uncontrollable bias to the
results of DFA (Bryce and Sprague, 2012) raised major concern
as to the reliability of FA with this detrending scheme. Thus if
DFA is to be used, it should be done with special care taken in the
application of more adaptive detrending analyses.

Finally, empirical mode decomposition (EMD) is a promising
adaptive approach, one of whose feature is the ability to estimate
trend explicitly. It also creates an opportunity to combine EMD
with other fractal analysis methods like those based on FA to
achieve a more reliable scale-free method (Qian et al., 2011).

Problems of moment-based methods
Using moment-based methods to estimate the Mandelbrot spec-
trum is a common approach with some drawbacks. Due to the
discretized nature of the signal under analysis, small fluctuations
cannot be resolved perfectly and therefore the Hölder exponents
become biased in the range of their large negative moments (cor-
responding to the right tail of the singularity spectrum; Turiel
et al., 2006). All moment-based methods are influenced by the
linearization of the right tail thus yielding biased estimates of the
negative statistical moments of the measure, µ (Turiel et al., 2006).
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A

B

FIGURE 11 | Classifying rat fMRI BOLD data. Signal classification was
performed on the 11.7T BOLD dataset shown in Figure 10 by the PSD and
SSC methods (A) previous tested in this capacity by Eke et al. (2002);
misclassification rates for PSD and SSC are shown in the plots of (B) the
lower panel. Because SSC is a much better classification tool, than PSD is,
the classification topology will be drastically different for these two
methods. The ROI’s corresponding to voxel-wise signals identified by SSC
as non-stationary indeed do clearly delineate the anatomical boundaries of
the brain cortex, while those by the PSD only the spots of highest β.

This type of error cannot be eliminated with increasing the signal’s
length (Turiel et al., 2006). In case of large fluctuations in the sig-
nal, numerical limitations become problematic when calculating
large positive moments.

Problems associated with moment-based methods can be sum-
marized as follows. Firstly, a carefully selected set of different order
(q) statistical moments of µ should be calculated. Selecting too
large negative and positive moments would lead to imprecise
generalized Hurst exponent [H (q)] or multiscaling exponent
(Figure 6; Ihlen, 2012). A sufficient range of q is needed, however,
in order to characterize the global singular behavior of the studied
time series. This is especially important in the evaluation of the
spectrum, but from a practical point of view, the spectrum width
at half maximum is sufficient to obtain Pc, or W + /W−, that
are frequently used lumped parameters in describing multifractal
fMRI BOLD signals, too (Shimizu et al., 2004; Wink et al., 2008).
In summary, precise estimation of singularity strength is needed
at characteristic points of the spectrum: around its maximum
(i.e., at q≈ 0) and at its half maximum a dense definition is rec-
ommended. Thus, the optimal selection depends on the signal
character and needs to be analyzed with several sets of q. In gen-
eral, estimating spectrum between q=−5 and q= 5 is sufficient
in biomedical applications, as proposed by Lashermes and Abry
(2004). Secondly, methods implementing direct estimation of sin-
gularity spectra can be applied (Figure 3). One typical example is
the gradient modulus wavelet projection (GMWP) method, which
turned out to be superior to all other tested methods (WTMM,
too) in terms of precision as reported by Turiel et al. (2006). It was

shown that direct approaches can give quite good results in spite of
the numerical challenges imposed by calculating the Hölder expo-
nents (h) locally and without the need of using statistical moments
and Legendre transform (Turiel et al., 2006). Strategies including
the latter two approaches are widely used and can be considered
reasonably, but not exclusively reliable in terms of their handling
the numerical difficulties associated with multifractal analysis.

Problems of wavelet transform modulus maxima methods
In case of monofractals, the average wavelet coefficient method
is the most effective and the easiest to implement (Simonsen
and Hansen, 1998; Eke et al., 2002). It can be used for fBm and
cumulatively summed fGn signals.

There are other issues related to this method, whose nature
can be numerical on the one hand and theoretical on the other.
For example, the first and last points of the signal exhibits
artifactual scaling, improperly selected scales would impair the
results considerably, etc. A well-selected analyzing wavelet also
ensures reliable results, which is also proven for certain indi-
rectly calculated partition functions (via Boltzmann weights;
Kestener and Arneodo, 2003). The effect of the modifications
addressing these issues is discussed in Faghfouri and Kinsner
(2005) and a detailed test of WTMM is reported by Turiel et al.
(2006).

Due to the difficulties in the reliable application of WTMM,
other methods were developed in the field, the most promising
one being the Wavelet Leader method (Lashermes et al., 2005;
Serrano and Figliola, 2009), which has recently been applied to
human fMRI BOLD signals (Ciuciu et al., 2012). As refinements
of WTMM, the wavelet leader is beyond the scope of this review,
the reader is referred to the cited references.

Identifying the spectral extent of monofractality within a signal
Verifying the presence of self-similarity, as one of the fundamental
properties of monofractals is a key element of the analytical strat-
egy of fractal time series analysis (Eke et al., 2000; Figure 8). It
should be present within a sufficiently wide scaling range. In case
of exact (mathematical) fractals the scaling range is unbounded. In
natural fractal time series however it is typically restricted to a set
of continuous temporal scales as demonstrated by Eke et al. (2006)
for fluctuating cerebral blood volume in humans and Herman et al.
(2011) for resting-state fMRI BOLD signals in rat. As shown in the
frequency domain by spectral analysis, in both species, scale-free
structuring of the signal was present across a range of frequencies
well below the Nyquist frequency (half of the sampling frequency).
It was characterized by a systematically and self-similarly increas-
ing power toward lower frequencies that could be modeled by Eq.
25 yielding a spectral index of β > 0, which is an indication of ser-
ial correlation between the temporal events (long-term memory).
Above this range, the fluctuations were found random with β≈ 0
meaning that subsequent temporal events were not correlated. The
separation of these ranges therefore is crucial because failing to do
so would cause a bias in the estimate of β.

For fractal time series analysis a proper scaling range should be
selected where fluctuations are scale-invariant. Optimization of
the sampling process, as well as the regression analysis on log-log
representations of measures vs. scales yielding the scaling exponent
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FIGURE 12 | Fractal analyses of rat fMRI BOLD data. The 11.7T BOLD
dataset shown in Figure 10 was analyzed monofractally (A) in the frequency
domain by PSD, in the time domain by SSC, and multifractally (B) in the time
domain by MF-DFA and MF-DMA methods. Estimates of spectral index were
converted to extended Hurst exponent, H ′. Our tool performance vignette is
displayed next to the methods. Histograms of H ′ computed from the fractal
image data by SSC are shown. The vignette data reconfirms that SSC is
superior over PSD as a monofractal tool. Due to the downward bias of PSD in
the anticorrelated fGn range, H ′ are significantly underestimated. Because
SSC’s estimates are unbiased, the SSC topology should be considered
realistic, which translates into a right shift of the SSC H ′ histogram relative to
that of PSD’s. Based on the vignette pattern, among the multifractal tools,
MF-DFA works quite well on fGn and fBm signals, alike, while MF-DMA with
fair performance in the fGn range but closer to the 1/f boundary, and fails on
fBm signals of the set. For reasons mentioned above, the estimates of SSC

should be taken as precise. Given that most values in the fGn range fall into
the range of complete uncertainty of the MF-DMA (See Figure 6 at q =2) and
that MF-DMA cannot handle fBm signals, all estimates ends up being 1.0.
Differencing the signals (including those of the vignette) changed the situation
dramatically. As seen on the vignette, the originally fBm signals would be
mapped into the fGn range that can be handled by MF-DMA very well. Actually
better than the original fGn signals where slight overestimation is seen. This
kind of behavior of MF-DMA may have inference with the findings of Gao
et al. (2006). Also note, that the double differenced fGn signals end up being
overestimated. These effects are worth to investigate in order to characterize
the impact of the fGn/fBm dichotomy on the performance of these time
domain multifractal tools when signals are being converted between the two
classes. P c – as a global multifractal measure – captures a topology similarly
to the monofractal estimates. The corresponding singularity spectra do
separate with the likelihood that the underlying multifractalities indeed differ.

is essential (Eke et al., 2002). In case of time domain methods
such as DFA, DMA, and AFA as well introduced by Gao et al.
(2011), optimizing the goodness-of-fit of the regression analysis
is an example. Detailed recommendations as to how to deal with
this problem can be found elsewhere (Peng et al., 1994; Cannon
et al., 1997; Eke et al., 2002; Gao et al., 2006). When a signal’s spec-
trum contains other than monofractal components, it may prove

difficult to select a monofractal scaling range even by isolating
local scaling ranges and fitting local slopes for the spectral index.
This procedure should be carefully carried out given that local
ranges may end up containing inadequately few spectral estimates
for a reliable fitting of the trendline. When the aim is to assess the
topology of the measure, this criterion can be relaxed (Herman
et al., 2011).
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Faghfouri and Kinsner (2005) reported that improper selection
of scaling range has a detrimental effect on the results of WTMM.
Different scales correspond to different window sizes in MF-DFA
and MF-DMA method, and discarding the smallest and largest
window sizes was even suggested by Peng et al. (1994) for the orig-
inal DFA. Cannon et al. (1997) and Gao et al. (2006) suggested an
optimization for the appropriate range of analyzing window sizes
(i.e., scales). While this can be regarded as best practice in carrying
out MF-DFA, some degree of bias is still introduced to the results
arising mainly from the smallest window sizes (Bryce and Sprague,
2012).

Dualism in multifractal formalism
Amongst the indirect, moment-based methods, WTMM uses a
different approach to obtain the singularity spectrum than MF-
DFA and MF-DMA. Convergence of this dualism is very unlikely,
as the relationship of exponents in MF-DFA to the multifrac-
tal formalism is reported to be valid only in special cases (Yu
and Qi, 2011). The seminal paper of MF-DFA Kantelhardt et al.
(2002) established a relationship between the generalized Hurst
exponent and multiscaling exponent. The validity of this equa-
tion was reported to be valid only if H = 1 (Yu and Qi, 2011),
and thus another derivation for τ(q) was proposed. In addi-
tion, singularity spectra reported with MF-DFA – as it follows
from the Legendre transform of τ(q) (Eq. 9) – always reaches
their maxima at 1, while this does not hold for wavelet meth-
ods. In our opinion, revision of results obtained with MF-DFA
may be necessary along with consolidating the multifractal for-
malism published in the field, using the original papers as a
starting point of reinvestigation (Frisch and Parisi, 1985; Mandel-
brot, 1986; Barabási and Vicsek, 1991; Muzy et al., 1993; Arneodo
et al., 1998).

DEMONSTRATION
Scrutinizing relevant data in selected previous works recognized
as having proven or potential impact on the development of the
field will likely demonstrate some typical pitfalls.

SIGNIFICANCE OF SYSTEM NOISE IN THE INTERPRETATION OF fMRI
BOLD FLUCTUATIONS
Zarahn et al. (1997) demonstrated early in a careful analysis
on spatially unsmoothed empirical human fMRI BOLD data
(collected under null-hypothesis conditions) that the examined
datasets showed a disproportionate power at lower frequencies
resembling of 1/f type noise. In spite of the very detailed analy-
sis, these authors treated the 1/f character as a semi-quantitative
feature of fMRI noise and accepted its validity over a decaying
exponential model as the form of the frequency domain descrip-
tion of the observed intrinsic serial, or autocorrelation. The spec-
tral index, β, however was not reported but can be reconstructed
from the power slope by converting the semilog plot of power
vs. frequency in their Figure 3D panel to a log-log plot compat-
ible to |A(f ) |2∝1/f β model. A β value of ∼3.3 is yielded, which
is exceedingly higher than the values of 0.6 < β < 1.2 reported
recently for an extensive 3T dataset by He (2011). This precludes
the possibility that the collected resting-state 1.5T BOLD dataset
would have been of physiological origin. Our recently reported

results for the rat brain with−0.5 < β < 1.5 reconfirms this asser-
tion (Herman et al., 2011). In fact, Zarahn et al. (1997) wished to
determine if the 1/f component of the noise observed in human
subjects was necessarily due to physiological cause, but had to
reject this hypothesis because they found no evidencing data to
support this hypothesis. Zarahn et al. (1997) felt the AC struc-
ture (in the time domain, which is equivalent to the inverse
power law relationship in the frequency domain) may not be
the same for datasets acquired in different magnets, not to men-
tion the impact of using various fMRI scanning schemes (Zarahn
et al., 1997). Accordingly, and in light of our rat data for mag-
nets 4, 9.4, and 11.7T, a less than optimal field strength could
have led to a signal definition inadequate to capture the 1/fβ

type structuring of the BOLD signal of biological origin that
must have been embedded in the human datasets Zarahn et al.
(1997) but got overridden by system noise. Most recently, Her-
man et al. (2011) and He (2011) referred to the early study of
Zarahn et al. (1997) as one demonstrating the impact of system
noise on fMRI data, while Fox et al. (2007) and Fox and Raichle
(2007) as the first demonstration of 1/f type BOLD noise with the
implication that the 1/f pattern implied fluctuations of biological
origin.

SIGNIFICANCE OF THE GENERAL 1/fβ VS. THE STRICT 1/f MODEL IN THE
INTERPRETATION OF fMRI BOLD NOISE DATA
Fox et al. (2007) reported on the impact of intrinsic BOLD fluctu-
ations within cortical systems on inter-trial variability in human
behavior (response time). In conjecture of the notion that the
variability of human behavior often displays a specific 1/f fre-
quency distribution with greater power at lower frequencies, they
remark “This observation is interesting given that spontaneous
BOLD fluctuations also show 1/f power spectrum (Figure S4).
While the 1/f nature of BOLD fluctuations has been noted previ-
ously (Zarahn et al., 1997), we show that the slope is significantly
between −0.5 and −1.5 (i.e., 1/f ) and that this is significantly
different from the frequency distribution of BOLD fluctuations
observed in a water phantom,” and in their Figure S4 conclude
that “the slope of the best fit regression line (red) is −0.74, close
to the −1 slope characteristic of 1/f signals.” This interpretation
of the findings implies that the spontaneous BOLD fluctuations
can be adequately described by the “strict” 1/f model, where the
spectral index, β, in 1/f β – known as the “general” inverse power
law model – is treated as a constant of 1, not a variable carrying
information on the underlying physiology. Incidentally, studies of
Gilden and coworkers (using a non-fMRI approach) have indeed
demonstrated (Gilden et al., 1995; Gilden, 2001; Gilden and Han-
cock, 2007) that response time exhibits variations that could not
be modeled by a strict 1/f spectrum but by one incorporating a
varying scaling exponent (Gilden, 2009).

Scrutinizing the data of Figure S4 can offer an alternative
interpretation as follows. In terms of the hardware, the use of
3T magnet must have ensured adequate signal definition for the
study. In their Figure S4, spectral slopes were reported in a lumped
manner, in that power at each and every frequency were aver-
aged for the 17 human subjects first (thus creating frequency
groups), and then mean slopes along with their statistical vari-
ation were plotted for the frequency groups. The mean slope of

Frontiers in Physiology | Fractal Physiology November 2012 | Volume 3 | Article 417 | 90

http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Eke et al. Pitfalls in fractal time series analysis

−0.74 (of thee lumped spectrum) was obtained by regression
analysis. This treatment of the data implies that the |A(f )|2∝ 1/f β

model (Mandelbrot and Ness, 1968; Eke et al., 2000, 2002) was
a priori rejected otherwise the slope should have been deter-
mined for each and every subject in the group across the range
of observed frequencies and their associated power estimates (of
the true spectrum) first, followed by the statistical analysis for
the mean and variance within the group of 17 subjects, for the
following reasons. The spectral index is found by fitting a linear
model of |A(f )|2∝ 1/f β across spectral estimates for a range of
frequencies. In our opinion when it comes to provide the mean
spectral index, it is indeed reasonable (Gilden and Hancock, 2007;
Gilden, 2009) to come up with statistics on the fractal estimates
for a group of time series data first by obtaining the estimates,
proper. Averaging spectral estimates at any particular frequen-
cies and assembling an average spectrum from them tend to
abolish the fractal correlation structure for any particular time
series and develop one for which the underlying time series is
indeed missing. Because the transformation between the two treat-
ments is not linear, the true mean slope of the scale-free analysis
cannot be readily reconstructed from the reported slope of the
means. Nevertheless, if we regard its value as an approximation
and convert it to β, which being less than 1 warrants the use
of H ′= (βfGn+ 1)/2, one would yield a value of β= 0.77 and
H ′= 0.87, respectively.

A recent review by Fox and Raichle (2007) offers an impres-
sive overview and insight of how to delineate cooperative areas
(or systems) in the brain based on functional connectivity that
emerges from spatial cross-correlation maps of regional fluctuat-
ing BOLD signals in the resting brain (Biswal et al., 1995). These
authors place the spontaneous activity of the brain as captured
in BOLD fluctuations in spatio-temporal domains of fMRI data
in the focus of the review emphasizing that itis a fingerprint of
a newly recognized mode of functional operation of the brain
referred to as default or intrinsic mode (Fox and Raichle, 2007).
They argue that the ongoing investigation of this novel aspect of
the mode of brain’s operation using fractal analysis of resting-
state fMRI BOLD may lead to a deeper and better understanding
of the way the brain – on the expense of very high baseline energy
production and consumption by glucose and oxidative metabo-
lism – maintains a mode capable of selecting and mobilizing these
systems in order to respond to a task adequately (Hyder et al.,
2006). One has to add that the default or intrinsic mode of oper-
ation has been demonstrated and investigated in overwhelming
proportions by connectivity analyses based on cross-correlating
BOLD voxel-wise signals as opposed on AC of single voxel-wise
BOLD time series.

Fox and Raichle (2007) emphasize “spontaneous BOLD fol-
lows a 1/f distribution, meaning that there is an increasing power
in the low frequencies.” In their furthering on the nature of this 1/f
type distribution they refer to the studies of Zarahn et al. (1997)
and Fox et al. (2007) in the context it was described above (Fox
et al., 2007) reaching the same conclusion, in that the character-
istic model of human spontaneous BOLD is the 1/f (meaning the
“strict”) model. We would like to suggest that the notion of 1/f
distribution having a regression slope of close to−1 on the log-log
PSD plot is somewhat misleading.

In an attempt to consolidate this issue, we suggest that the data
be fitted to a model in the form of 1/fβ, where β is a variable (Eke
et al., 2000, 2002) responding to states of physiology (Thurner
et al., 2003; He, 2011) of characteristic topology (Thurner et al.,
2003; Herman et al., 2011) in the brain, not a constant of 1. A
potential advantage of this model is that by regarding β as a scal-
ing exponent the distribution can then be described to be scale-free
(or fractal).

SIGNIFICANCE OF THE 1/fβMODEL AND THE DICHOTOMOUS fGn/fBm
ANALYTICAL STRATEGY IN ANALYZING SCALING LAWS AND
PERSISTENCE IN HUMAN BRAIN ACTIVITY
As seen above, from the modeling point of view the issue of
a reliable description of the autoregressive signal structuring of
spontaneous BOLD, is fundamental and critical in resting-state. If
it is done properly, it can lend a solid basis for assessing changes
in the scaling properties in response to changing activity of the
brain. The study of Thurner et al. (2003) was probably the first to
demonstrate that spontaneous BOLD in the brain was scale-free
and that the scaling exponent of inactive and active voxels dur-
ing sensory stimulation differed. At the time of the publication of
their study, the monofractal analytical strategy of Eke et al. (2000,
2002) based on the dichotomous fGn/fBm model of Mandelbrot
and Ness (1968) did not yet reached the fMRI BOLD commu-
nity, hence Thurner et al. (2003) did not rely on it, either. In this
section we will demonstrate the implications of this circumstance
in terms of the validity and conclusions of their study. We will do
it in a detailed, didactical manner so that our reader should gain a
hands-on experience with the perplexed nature of the issue.

Subtracting the mean from the raw fMRI signal precedes the
analysis proper, Ī Ex (t ), yielding I Ex (t ) in Eq. 39,

I Ex (t ) = Ī Ex (t )−
〈
Ī Ex (t )

〉
t
, (39)

which step is compatible with (D)FA (Eke et al., 2000).
Subsequently, in Eq. 40, the temporal correlation function,

C Ex (τ), is calculated

C Ex (τ) =
〈
I Ex (t )I Ex (t + τ)

〉
=

1

N − τ

N−τ∑
t=1

I Ex (t )I Ex (t + τ). (40)

In fact in this step of the analysis the covariance was calculated
given that a division by variance was missing. Hence, it is slightly
misleading to regard Eq. 40 as the temporal (or auto) correlation
(see Eke et al., 2000, Eq. 2). Only, if assumed that the signal is fGn,
whose variance is known to be constant over time, the covariance
function can be taken as equivalent to the AC function. Because the
authors have not tested and proven the signal’s class was indeed
fGn (Eke et al., 2000), there is no basis for the validity of this
assertion.

In Eq. 41, the signal is summed yielding X Exn (τ), in order to
eliminate problems in calculating the AC function due to noise,
non-stationarity trends, etc.

Xn
Ex (τ) =

n∑
t=1

I Ex (t ) (41)
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This form of the signal is further referred to as “voxel-profile.”
Note, that the signal remains in this summed form for the rest

of the analysis (i.e., analyzed as fBm). As a consequence, spec-
tral analysis later in the study was applied to a summed – hence
processed – signal and the results were thus reported for this and
not the raw fMRI signal, which circumstance prevented reaching
a clear conclusion.

Furthermore, the authors indicated that the temporal corre-
lation function would characterize persistence. It seems the two
terms (correlation vs. persistence) are used as synonyms of one
another whereas they are not interchangeable terms: persistence is
a property of fBm, while correlation is that of an fGn signal (Eke
et al., 2000). Please note, as the raw signal has been summed, the
covariance here characterized persistence that was not present in
the raw fMRI signal.

In the next step (Eq. 42), the AC function is approximated by a
power law function with γ as its exponent

C Ex (τ) ∼ τ−γ, · · · 0 < γ < 1. (42)

Based on the equation of the AC function using the Hurst
exponent, H, γ must be proportional to 2H (Eke et al., 2000,
Eq. 15).

Subsequently, as a part of a FA of the authors (cited in their
Reference 19 as unpublished results of their own), the statistics
(F Ex (τ), standard deviation) was calculated for the AC function in
Eq. 43

F Ex (τ) =

〈(
X Exn+τ − X Exn

)2
〉1/2

n
. (43)

In the left side of Eq. 44, a general power law was applied to the
fluctuation from Eq. 43 as F Ex (τ) ∼ τα

F Ex (τ) ∼ τα, α = 1− γ
/

2. (44)

(Note, as the fluctuations have not been detrended, this method
is not the DFA of Peng et al., 1994 but strongly related to it).

Consider the scaling exponent, α, on the left side of Eq. 44.
According to Peng et al. (1994) and Eke et al. (2002) α=H only if
the raw signa l,I Ex (t ), is an fGn. However, because at this point the
summed raw signal, X Exn (τ), is the object of the analysis, α and H
should relate to each other as α=H + 1. Given that the signal was
summed in Eq. 41 leading up to Eq. 43, and the values for “out-
side the brain” were reported as α≈ 0.5, and for “inside the brain”
as 0.5 < α < 1, α must have been improperly calculated because
α cannot possibly yield a value of 0.5 for a summed signal given
that H scales between 0 and 1 and for an fBm series α=H + 1
holds. The reported value of 0.5 < α < 1 can be regarded correct
only forI Ex (t ), the raw fMRI signal, which therefore had to be an
fGn process. On the other hand, the reported values 2 < β < 3 are
correct for the X Exn signal, only (for reasons given later). Hence the
reported α and β values lacking an indication of their respective
signal class ended up being ambiguous.

Next, consider the right side of Eq. 44, which expresses α by
using γ introduced earlier. We just pointed out that the raw fMRI

signal must have been an fGn with α≡H. Consequently, α can be
substituted for H in Eq. 44 as H = 1− γ/2 and γ expressed as

γ = 2− 2H . (45)

The authors referring to power law decays in the correlations
relate the spectral index, β, to γ as

β = 3− γ, (46)

and further to α as

β = 2α+ 1.

Note, that these relations between β, γ, and α in principle do
depend on signal class that was not reported.

Now, let us substitute γ as expressed in Eq. 45 into Eq. 46

β = 3− 2+ 2H = 1+ 2H,

then express H

H =
β− 1

2
. (47)

As shown by Eke et al. (2000), Figure 2; in Eke et al. (2002),
Table 1, based on the dichotomous fGn/fBm model, Eq. 47 would
have equivocally identified the case of an fBm signal. As pointed
out earlier, the raw fMRI signal was summed before the actual
fractal analysis. Consequently, the relationship β= 3 – γ ends up
holding only if the raw fMRI signal was an fGn process. This is
therefore the second piece of evidence suggesting that the class of
the raw fMRI signal must have been fGn. Nevertheless, the rela-
tionship β= 2α+ 1 could not hold concomitantly for reasons that
follow. In an earlier paper of the group (Thurner et al., 2003),
the authors stated “The relationship is ambiguous, however, since
some authors use the formula α= 2H + 1 for all values of α, while
others use α= 2H−1 for α < 1 to restrict H to range (0,1). In this
paper, we avoid this confusion by considering α directly instead
of H.” The fGn/fBm model (Eke et al., 2002) helps resolving this
issue as neither of these relationships between α and H holds
because if α is calculated with the signal class recognized and deter-
mined, the relationship between α and H is equivocally α=H fGn

and α=H fBm+ 1. Based on the fGn/fBm model, the relationship
between β and α given in Eq. 46 as β= 2α+ 1 needs to be revised,
too, to is correct form of β= 2α− 1 (See Table 1 in Eke et al.,
2002).

Thurner et al. (2003) concluded: “Outside the brain and in
non-active brain regions voxel-profile activity is well described
by classical Brownian motion (random walk model, α∼ 0.5 and
β∼ 2).” Recall, the “voxel-profile” is not the raw fMRI signal
(intensity signal, I Ex (t ), most probably an fGn), but its summed
form, X Exn (τ), an fBm.

Our conclusion on the above analysis by Thurner et al. (2003)
is as follows: (i) α was improperly calculated by the authors’ FA
method because α∼ 0.5 cannot possibly be valid for an fBm signal
given that αfBm > 1 (Peng et al., 1994), (ii) β∼ 2 is only for-
mally valid given that it was calculated based on Eq. 46 from an
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improperly calculated α and by using an arbitrary relationship
between α and β. The subsequent and opposite effects of these
rendered the value of β to β∼ 2.

When the results of Thurner et al. (2003) are interpreted
according to the analytical strategy of Eke et al. (2000) based on
the dichotomous fGn/fBm model of Mandelbrot and Ness (1968),
the reported values of Thurner et al. can be converted for their
fMRI “voxel-profile” data X Exn to αfBm ∼ 1.5, βfBm ∼ 2, H fBm ∼ 0.5
or for the raw fMRI intensity signal I Ex (t ) to αfGn ∼ 0.5, βfGn ∼ 0,
H fGn ∼ 0.5. This interpretation of the data reported for humans by
Thurner et al. (2003) is fully compatible with the current findings
by He (2011) on the human and by Herman et al. (2009, 2011) on
the rat brain.

MULTIFRACTAL ANALYSES ON RAT fMRI BOLD DATA
Exemplary analysis on empirical BOLD data is presented on the
11.7T coronal scan shown in Figure 10 to demonstrate the inner
workings of these methods when applied to empirical data, and
point to potential artifacts, too (See Figure 12). For monofractal
analysis, we recommend using monofractal SSC for it gives unbi-
ased estimates across the full range of the fGn/fBm dichotomy.
For this reason, the topology is well defined and not as noisy as
on the PSD maps. MF-DFA, due to its inferior performance in
the strongly correlated fGn range (See Figure 6 at q= 2), failed
with this particular BOLD dataset. Also note, that the histograms
obtained for the same datasets evaluated by these different meth-
ods do differ indicating that method’s performance were different.
Proper interpretation of the data therefore assumes an in-depth
understanding of the implication of method’s performance on the
analysis. Pc and most certainly W seems a promising parameter
to map from the BOLD temporal datasets. Their proper statisti-
cal analyses along with those of singularity spectra for different
anatomical locations in the brain should be a direction of future
research.

PHYSIOLOGICAL CORRELATES OF FRACTAL MEASURES OF
fMRI BOLD TIME SERIES
Eke and colleagues suggested and demonstrated that β should be
regarded as a variable responding to physiology (Eke et al., 1997,
2000, 2002, 2006; Eke and Herman, 1999; Herman and Eke, 2006;
Herman et al., 2009, 2011).

Soon, Bullmore et al. (2001) suggested treating 1/f type fMRI
BOLD time series as realizations of fBm processes for the pur-
pose of facilitating their statistical analysis using pre-whitening
strategies. For this reason, signal classification did not emerge as
an issue to address. Then Thurner et al. (2003) demonstrated that
human resting-state fMRI BOLD is not only a scale-free signal, but
do respond to stimulation of the brain. Their analysis yielded this
conclusion in a somewhat arbitrary manner in that the importance
of the fGn/fBm dichotomy was not recognized at the time that led
to flaws in the calculation of the scaling exponent as demonstrated
above. Hu et al. (2008) and Lee et al. (2008) also reported that H
obtained by DFA can discriminate activation from noise in fMRI
BOLD signal.

In later studies dealing with the complexity of resting-state and
task-related fluctuations of fMRI BOLD, the issue of signal class

has gradually shifted into the focus (Maxim et al., 2005; Wink et al.,
2008; Bullmore et al., 2009; He, 2011; Ciuciu et al., 2012).

Recently Herman et al. (2011) found in the rat brain using
PSD that a significant population of fMRI BOLD signal fell into
the non-stationary range of β. The inference of this finding is
the potential interference of non-stationary signals with resting-
state connectivity studies using spatio-temporal volumes of fMRI
BOLD. It is even more so, if SSC is used for signal classifica-
tion (Figure 11) and analysis (Figure 12) shifting the population
histogram of H ′ to the right.

The β value converted from the reported human spectral slopes
by Fox et al. (2007) (see above) fits very well within the range of
human data reported most recently by He (2011) for the same
instrument (3T Siemens Allegra MR scanner). He (2011) adopt-
ing the dichotomous monofractal analytical strategy of Eke et al.
(2002) demonstrated that β of spontaneous BOLD obtained for
multiple regions of the human brain correlates with brain glu-
cose metabolism, a fundamental functional parameter offering
grounds for the assertion that that β itself is a functional parame-
ter. Herman et al. (2011) using the same analytical strategy (Eke
et al., 2000, 2002) on resting-state rat BOLD datasets showed that
β maps capture a gray vs. white matter topology speaking for the
correlation of β and functional activity of the brain regions being
higher in the gray than in the white matter.

With near infrared spectroscopy, – recommended by Fox and
Raichle (2007) as a cost-effective, mobile measurement alterna-
tive of fMRI to capture resting-state hemodynamic fluctuations in
the brain – a 1/f β temporal distribution of cerebral blood volume
(one of the determinant of BOLD) was found in humans, with an
age and gender dependence on β (Eke et al., 2006). Furthermore,
β determined from heart rate variability time series was found
to differ between healthy and unhealthy individuals (Makikallio
et al., 2001).

The above physiological correlates seem to have opened a new
perspective in basic and clinical neurosciences (Hausdorff et al.,
1997) by recognizing β as an experimental variable and applying
adequate tools for its reliable assessment (Pilgram and Kaplan,
1998; Eke et al., 2000, 2002; Bullmore et al., 2009; He, 2011)
with multifractal analyses as a dynamically expanding perspective
(Ciuciu et al., 2012; Ihlen, 2012), too.

We propose that the inter-regional spatial cross-correlation
(connectivity) as a means of revealing spatial organization in the
brain be supplemented by a temporal AC analysis of extended
BOLD signal time series by mapping β as an index of temporal
organization of the brain’s spontaneous activity.
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Fractal structures are found in biomedical time series from a wide range of physiological
phenomena. The multifractal spectrum identifies the deviations in fractal structure within
time periods with large and small fluctuations. The present tutorial is an introduction to
multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spec-
trum of biomedical time series.The tutorial presents MFDFA step-by-step in an interactive
Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the
website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes
where the reader can employ pieces of, or the entire MFDFA to example time series. After
introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal
processing.The main aim of the tutorial is to give the reader a simple self-sustained guide
to the implementation of MFDFA and interpretation of the resulting multifractal spectra.

Keywords: Matlab, multifractal, heart rate, gait, posture, EEG, MR, fMRI

INTRODUCTION
The structural characteristics of biomedical signals are often visu-
ally apparent, but not captured by conventional measures like the
average amplitude of the signal. Biomedical signals from a wide
range of physiological phenomena posses a scale invariant struc-
ture. A biomedical signal has a scale invariant structure when the
structure repeats itself on subintervals of the signal. Formally, the
biomedical signal X(t ) are scale invariant when X(ct ) = cHX(t ).
Fractal analyses estimates the power law exponent, H, that defines
the particular kind of scale invariant structure of the biomed-
ical signal. Fractal analyses are frequently employed in biomedical
signal processing to define the scale invariant structure in ECG,
EEG, MR, and X-ray pictures (cf. Lopes and Betrouni, 2009). The
scale invariant structures of inter-spike-interval of neuron firing,
inter-stride-interval of human walking, inter-breath-interval of
human respiration, and inter-beat intervals of the human heart
has differentiated between healthy and pathological conditions
(e.g., Ivanov et al., 1999; Peng et al., 2002; Zheng et al., 2005;
Hausdorff, 2007), and between different types of pathological con-
ditions (e.g., Wang et al., 2007). Scale invariant structures are also
found in spatial phenomena like the branching of the nervous sys-
tem and lungs (e.g., Bassingthwaighte et al., 1990; Abbound et al.,
1991; Weibel, 1991; Krenz et al., 1992), bone structure (Parkin-
son and Fazzalari, 1994), and are able to differentiate between
healthy and cancer tissues (Atupelage et al., 2012). Several reports
during the last decade suggest that changes in the scale invariant
structure of biomedical signals reflect changes in the adaptability
of physiological processes and successful treatment of pathologi-
cal conditions might change fractal structure and improve health
(Goldberger, 1996; Goldberger et al., 2002). Fractal analyses are
therefore promising prognostic and diagnostic tools in biomedical
signal processing.

Monofractal and multifractal structures of the biomedical sig-
nal are particular kind of scale invariant structures. Most com-
monly, the monofractal structure of biomedical signals are defined
by a single power law exponent and assumes that the scale invari-
ance is independent on time and space. However, spatial and
temporal variation in scale invariant structure of the biomedical
signal often appears. These spatial and temporal variations indi-
cate a multifractal structure of the biomedical signal that is defined
by a multifractal spectrum of power law exponents. As an exam-
ple, age related changes in the scale invariant structure of heart rate
variability are indicated by changes of the multifractal spectrum
rather than a single power law exponent (e.g., Makowiec et al.,
2011). The width and shape of the multifractal spectrum can also
differentiate between the heart rate variability from patients with
heart diseases like ventricular tachycardia, ventricular fibrillation
and congestive heart failure (e.g., Ivanov et al., 1999; Wang et al.,
2007). The multifractal structure of heart rate variability is there-
fore suggested to reflect important properties of the autonomic
regulation of the heart rate (Goldberger et al., 2002). Further-
more, the multifractal spectrum of endogenous brain dynamics
and response times is more sensitive to the influence of age and
cognitive performance compared to a single power law exponent
alone (Suckling et al., 2008; Ihlen and Vereijken, 2010). Further-
more, the multifractal structure of EEG and series of inter-spike
intervals have been able to differentiate between the neural activi-
ties of brain areas (Zheng et al., 2005). Multifractal analyses might
therefore be important as a computer aided tool to increase the
precision of neurosurgeries. The main aim of the present tutorial
is to introduce a robust analysis called the multifractal detrended
fluctuation analysis (MFDFA) that can estimate the multifractal
spectrum of power law exponents from a biomedical time series
(Kantelhardt et al., 2002). Those readers not familiar with analysis
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of monofractal fluctuations in biomedical signals are referred to
Eke et al. (2000).

The tutorial is intended to be a self-sustained guide to the
implementation of MFDFA to time series and interpretation of
the resulting multifractal spectra to the readers that are unfa-
miliar to fractal analysis. In order to be a self-sustained guide,
the tutorial decomposes MFDFA into a series of simple Matlab
codes that are introduced in a step-wise manner to the reader.
The tutorial is meant to be interactive where the reader can
employ the Matlab codes while reading the text to enhance the
understanding of MFDFA. The reader is therefore advised to
download the folder “Introduction to MFDFA” at the web site
www.ntnu.edu/inm/geri/software where all Matlab codes used in
the tutorial are available. The reader should set the folder as
the current directory folder in Matlab before reading the fol-
lowing sections of the tutorial. The folder can be set as current
directory folder by pasting it into the current directory window
after opening Matlab. Matlab variables, parameters,
and commands are written in the Matlab command font and a
red color to separate them from the rest of the text. The reader
can type the red commands in the Matlab command window
wherever they appear in the text to access variables and
parameters or plot them with Matlab’s plot function. A
translation of the Matlab codes of MFDFA to the mathemati-
cal notations used by Kantelhardt et al. (2002) are given for the
readers interested in the mathematical details of the MFDFA.
The rest of the tutorial is divided into two sections: the imple-
mentation of MFDFA in Matlab is introduced step-by-step in
Section “Multifractal Detrended Fluctuation Analysis in Matlab”
where the interpretation of the resulting multifractal spectrum is
emphasized. Important issues for the best practice of MFDFA are
discussed in Section “The Best Practice of Multifractal Detrended
Fluctuation Analysis.”

MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS IN
MATLAB
The construction of MFDFA is divided into eight steps: Section
“Noise and Random Walk Like Variation in a Time Series” intro-
duces a method to convert a noise like time series into a random
walk like time series that is a preliminary step for MFDFA. Section
“Computing the Root-Mean-Square Variation of a Time Series”
introduces root-mean-square (RMS) that is the basic computa-
tion within MFDFA and a typical way to compute the average
variation of biomedical time series. Section “Local Root-Mean-
Square Variation in the Time Series” introduces the computation
of local fluctuation in the time series as RMS of the time series
within non-overlapping segments. In Section “Local Detrending of
the Time Series,” the same local RMS is computed around trends
that are often encountered in biomedical time series. In Section
“Monofractal Detrended Fluctuation Analysis,” the amplitudes of
the local RMS are summarized into an overall RMS. The over-
all RMS of the segments with small sample sizes is dominated
by the fast fluctuations in the time series. In contrast, the over-
all RMS for segments with large sample sizes is dominated by
slow fluctuations. The power law relation between the overall
RMS for multiple segment sample sizes (i.e., scales) is defined
by a monofractal detrended fluctuation analysis (DFA) and is

called the Hurst exponent. In Section “Multifractal Detrended
Fluctuation Analysis of Time Series,” MFDFA is obtained by the
q-order extension of the overall RMS. The q-order RMS can
distinguish between segments with small and large fluctuations.
The power law relation between the q-order RMS is numeri-
cal identified as the q-order Hurst exponent. In Section “The
Multifractal Spectrum of Time Series,” several multifractal spec-
tra are computed from the q-order Hurst exponent. In Section
“A Direct Estimation of the Multifractal Spectrum,” an alternative
version of MFDFA is introduced that compute the multifractal
spectrum directly from the local fluctuations without the q-order
overall RMS.

Before starting the introduction of MFDFA, the reader can type
load fractaldata.mat in the Matlab command window
to access the time series, whitenoise, monofractal, and
multifractal. These time series will be used as test series in
the rest of Section “Multifractal Detrended Fluctuation Analysis
in Matlab” while constructing MFDFA piece-by-piece. The con-
struction of the Matlab code for MFDFA is represented as Matlab
code boxes within the text. The main intention of these Matlab
code boxes is that the reader should paste the Matlab code into the
Matlab command window while reading the tutorial. Figures are
accessed by typing the plot command at the end of the Matlab code
boxes. The reader can access all Matlab code boxes by opening the
m-file Matlabcodes contained in the “Introduction to MFDFA”
folder.

NOISE AND RANDOM WALK LIKE VARIATION IN A TIME SERIES
The red traces in Figure 1 show an ordinary random walk
(lower panel), a monofractal random walk (middle panel) and
a multifractal random walk (upper panel). The fractal property
of these random walks is reflected by their picture-in-picture
similarity as illustrated in the upper panel of Figure 1. Small
“hills” and “valleys” with similar structure appear when you
zoom on the large “hills” and “valleys” of the random walk.
The DFA is employed to time series with a random walk like
structure (Peng et al., 1995). However, most biomedical time
series have fluctuations that are more similar to the increments
of the random walks (see the blue traces in Figure 1). If the
biomedical time series has the noise like structure of the blue
traces in Figure 1, it should be converted to a random walk
like time series before employing DFA. Noises can be converted
to random walks by subtracting the mean value and integrate
the time series. Time series whitenoise, monofractal,
and multifractal are all noise like time series and are
converted to random walk like time series by Matlab code 1
below:

Matlab code 1:

RW1=cumsum(whitenoise-mean(whitenoise));
RW2=cumsum(monofractal-mean(monofractal));
RW3=cumsum(multifractal-mean(multifractal));

Type plot1 in the command window to access Figure 1.

COMPUTING THE ROOT-MEAN-SQUARE VARIATION OF A TIME SERIES
A conventional analysis of variation in biomedical time series is to
compute the average variation as a RMS. The reader can use Matlab
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FIGURE 1 |The time series multifractal (upper panel),

monofractal (middle panel), and whitenoise (lower panel) are

shown as blue traces. They are examples of noise like time series
used in the present tutorial. All time series contain 8000 data samples
each where the sample numbers are indicated by the horizontal axis.
Matlab code 1 converts the noises (blue traces) to random walks (red

traces) that have a picture-in-picture similarity (subplot in the upper
panel). Notice that the time series multifractal has distinct periods
with small and large fluctuations in contrast to time series
monofractal and whitenoise. The aim of this section is to
introduce MFDFA that quantify the structure of fluctuations within the
periods with small and large fluctuations.

code 2 below to compute RMS for the time series whitenoise,
monofractal, and multifractal:

Matlab code 2:

RMS_ordinary=sqrt(mean(whitenoise.^2));
RMS_monofractal=sqrt(mean(monofractal.^2));
RMS_multifractal=sqrt(mean(multifractal.^2));

Type plot2 in the Matlab command window to access Figure 2.

Figure 2 illustrates that the average amplitude of variation
(i.e., RMS) is equal for all three time series, whitenoise,
monofractal, and multifractal, even though they
have quite different structures. MFDFA will be able to distin-
guish between these structures as we will see in the sections
below.

LOCAL ROOT-MEAN-SQUARE VARIATION IN THE TIME SERIES
The multifractal time series in the upper panel have local fluctua-
tions with both large and small magnitudes. RMS in Matlab code
2 can be computed for segments of the time series to differentiate
between the magnitudes of the local fluctuations. A simple pro-
cedure is to cut the time series into equal-sized non-overlapping
segments and compute a local RMS for each segment. This can
be done by Matlab code 3 below and is the core procedure of
MFDFA:

Matlab code 3:

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale=1000;
m=1;
segments=floor(length(X)/scale);
for v=1:segments

Idx_start=((v-1)*scale)+1;
Idx_stop=v*scale;
Index{v}=Idx_start:Idx_stop;
X_Idx=X(Index{v});
C=polyfit(Index{v},X(Index{v}),m);
fit{v}=polyval(C,Index{v});
RMS{1}(v)=sqrt(mean((X_Idx-fit{v}).^2));

end

Type plot3 in Matlab command window to access Figure 3.

The first line of Matlab code 3 converts the noise like time
series, multifractal, to a random walk like time series X (i.e.,
Matlab code 1). The third line of Matlab code 3 set the parame-
ter scale that defines the sample size of the non-overlapping
segments in which the local RMS, RMS{1}, are computed. The
fifth line is the number of segments that the time series X can
be divided into where length(X) is the sample size of time
series X. Thus, segments= 8 when length(X)= 8000 and
scale= 1000. The sixth to fourteenth line is a loop that com-
putes the local RMS around a trend fit{v} for each segment by
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FIGURE 2 |The time series multifractal (upper panel ), monofractal

(middle panel ), and whitenoise (lower panel ) with zero average (red

dashed lines) and ±1 RMS (red solid lines). All time series have equal

RMS = 1, but quite different structure. RMS is only sensitive to differences in
the amplitude of variation and not differences in the structure of variation.
Notice the different scaling for the vertical axis of the multifractal time series.

updating the time Index (see red v arguments in Matlab code
3). In the first loop v= 1, the Index{1} goes from sample 1
to sample 1000. In the second loop v= 2, the Index{2} goes
from sample 1001 to sample 2000. In the final loop v= 8, the
Index{8} goes from sample 7001 to 8000.

LOCAL DETRENDING OF THE TIME SERIES
Slow varying trends are present in biomedical time series and
detrending of the signal is therefore necessary to quantify the
scale invariant structure of the variation around these trends.
In Matlab code 3, a polynomial trend fit{v} is fitted to X
within each segment v (see blue command lines in Matlab code
3). The first blue command line is the parameter m that defines
the order of the polynomial. The polynomial trend are linear
when m= 1, quadratic when m= 2, and cubic when m= 3 (see
Figures 3A–C). The first blue command line within the loop
defines the polynomial coefficients C used to create the poly-
nomial trend fit{v} of each segment (see dashed red lines in
Figure 3). The local fluctuation, RMS{1}(v), is then computed
for the residual variation,X(Index{v})-fit{v}, within each
segment v. The local fluctuation, RMS{1}(v), is illustrated in
Figure 3 as the distance between the red dashed trends and the red
solid lines.

MONOFRACTAL DETRENDED FLUCTUATION ANALYSIS
In the DFA the variation of the local RMS{1} are quantified by an
overall RMS (F) in Matlab code 4 below:

Matlab code 4:

F=sqrt(mean(RMS{1}.^2));

The fast changing fluctuations in the time series X will influ-
ence the overall RMS,F, for segments with small sample sizes (i.e.,
small scale) whereas slow changing fluctuations will influence
F for segments with large sample sizes (i.e., large scale). The
scaling function, F, should therefore be computed for multiple
segments sizes (i.e., multiple scales) to emphasize both fast and
slow evolving fluctuations that influence the structure of the time
series. The scaling function, F(ns), can be computed for multi-
ple scales by including Matlab code 3 and 4 within a new loop
marked as red command lines and arguments ns below:

Matlab code 5 Part 1 of DFA

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale=[16,32,64,128,256,512,1024];
m=1;
for ns=1:length(scale),

segments(ns)=floor(length(X)/scale(ns));
for v=1:segments(ns),

Idx_start=((v-1)*scale(ns))+1;
Idx_stop=v*scale(ns);
Index{v,ns}=Idx_start:Idx_stop;
X_Idx=X(Index{v,ns});
C=polyfit(Index{v,ns},X(Index{v,ns}),m);
fit{v,ns}=polyval(C,Index{v,ns});
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FIGURE 3 |The computation of local fluctuations, RMS{1},

around linear (A), quadratic (B), and cubic trends (C) by Matlab

code 3 (m= 1, m= 2, and m= 3, respectively). The red dashed line
is the fitted trend, fit{v}, within eight segments of sample size

1000. The distance between the red dashed trend and the solid red
lines represents ±1 RMS{1}. The local fluctuation, RMS{1}, around
trends is the basic “building block” of the detrended fluctuation
analysis.

RMS{ns}(v)=sqrt(mean((X_Idx-fit{v,ns}).^2));
end
F(ns)=sqrt(mean(RMS{ns}.^2));

end

Type plot4 in the Matlab command window to access Figure 4.

In the first red command line, a vector with multiple seg-
ment sizes (i.e., scales) is set by the reader. In the second
red command line, a loop is initiated where Matlab code 3 is
computed from the smallest to the largest scale. The segment
sample size, scale(ns), are updated by the red index ns.
The local fluctuation, RMS{ns}, is a set of vectors where each
vector have a length equal to the number of segments [i.e.,
segments(ns)]. In the first loop for ns= 1, the local fluc-
tuation RMS{1} is a vector of local RMS values computed for
500 segments [i.e., segments(1)] each containing 16 samples
[i.e.,scale(1)]. In the last loop forns= 7, the local fluctuation
RMS{7} is a vector with local RMS values computed for seven seg-
ments [i.e., segments(7)] each containing 1024 samples [i.e.,
scale(7)]. In the last command line, the scaling function (i.e.,
overall RMS),F(ns), are computed for multiple scales by Matlab
code 4. Figure 4 illustrates the local fluctuations, RMS{ns}, and
the overall RMS, F(ns), for multiple scales.

DFA indentifies the monofractal structure of a time series as
the power law relation between the overall RMS (i.e., F in Matlab
code 4) computed for multiple scales (i.e., scale in Matlab code

5). The power law relation between the overall RMS is indicated
by the slope (H) of the regression line (RegLine) computed by
Matlab code 6 below:

Matlab code 6: Part 2 of DFA

C=polyfit(log2(scale),log2(F),1);
H=C(1);
RegLine=polyval(C,log2(scale));

Type plot5 in Matlab command window to access Figure 5.

The slope, H, of the regression line, RegLine, is called the
Hurst exponent (Hurst, 1951). The Hurst exponent defines the
monofractal structure of the time series by how fast the overall
RMS,F, of local fluctuations,RMS, grows with increasing segment
sample size (i.e.,scale). Figure 5 shows that the overall RMS, F,
of local fluctuations,RMS, is growing faster with the segment sam-
ple size for the monofractal and multifractal time series
compared with whitenoise time series. The larger Hurst expo-
nent,H, is visually seen as more slow evolving variations (i.e., more
persistent structure) inmonfractal andmultifractal time
series compared with whitenoise. Figure 6 illustrates that the
Hurst exponents defines a continuum between a noise like time
series and a random walk like time series. The Hurst exponent
will be in the interval between 0 and 1 for noise like time series
whereas above 1 for a random walk like time series. A time series
has a long-range dependent (i.e., correlated) structure when the
Hurst exponent is in the interval 0.5–1 and an anti-correlated
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FIGURE 4 |The local fluctuations, RMS{ns} (blue lines), computed by

Matlab code 5 for segments with multiple segment sizes (i.e., scale). The
scaling function F{ns} is the overall RMS (red line) of the local fluctuation
RMS{ns}. Notice that F{ns} decreases on smaller scales.

FIGURE 5 |The plot of overall RMS (i.e., F in Matlab code 5) versus

the segment sample size (i.e., scale in Matlab code 5) where both F

and scale are represented in log-coordinates. The scale invariant
relation is indicated by the slope, H, of the regression lines, RegLine,
computed by Matlab code 6. The slope, H, is a power law exponent

called the Hurst exponent because F and scale are represented in
log-coordinates. Notice that both the monofractal and
multifractal time series have more apparent slow fluctuations
compared to whitenoise indicated by larger amplitudes of the overall
RMS on the larger scales.
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FIGURE 6 |The range of Hurst exponents defines a continuum of fractal

structures between white noise (H = 0.5) and Brown noise (H = 1.5). The
pink noise H = 1 separates between the noises H < 1 that have more
apparent fast evolving fluctuations and random walks H > 1 that have more

apparent slow evolving fluctuations. The examples monofractal (red trace)
and whitenoise (turquoise trace) used in the present tutorial are both noise
like time series. The long-range dependent structure of most biomedical
signals is located within the illustrated continuum of fractal structures.

structure when the Hurst exponent is in the interval 0–0.5. The
time series has an independent or short-range dependent struc-
ture in the special case when the Hurst exponent is equal to
0.5. According to Figure 5, time series whitenoise has a time
independent structure with Hurst exponent close to 0.5 whereas
monofractal, and multifractal has a long-range depen-
dent structure with Hurst exponent between 0.7 and 0.8. The
reader should notice that short-range dependent processes can
mimic the scale invariance in Figure 5 for certain scaling ranges
(cf. Gao et al., 2006).

MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS OF TIME SERIES
The structure of the monofractal and multifractal time
series are different even though they have similar overall RMS
and slopes H in Figure 5. The multifractal time series have
local fluctuations with both extreme small and large magnitudes
that is absent in the monofractal time series. The absence of
fluctuations with extreme large and small magnitudes results in
a normal distribution for the monofractal time series where the
variation is described by the second order statistical moment (i.e.,
variance) alone. The monofractal DFA are therefore based on
the second order statistics of the overall RMS (i.e., F in Matlab
code 4). In the multifractal time series, local fluctuation,
RMS{ns}(v), will be extreme large magnitude for segments v
within the time periods of large fluctuations and extreme small
magnitude for segments v within the time periods of small
fluctuations. Consequently, the multifractal time series are not
normal distributed and all q-order statistical moments should to

be considered. Thus, it’s necessary to extend the overall RMS in
the monofractal DFA (i.e., F in Matlab code 4) to the follow-
ing q-order RMS of the multifractal DFA (Fq in Matlab code 7
below):

Matlab code 7:

q=[-5,-3,-1,0,1,3,5];
for nq=1:length(q),

qRMS{1}=RMS{1}.^q(nq);
Fq(nq)=mean(qRMS{1}).^(1/q(nq));

end
Fq(q==0)=exp(0.5*mean(log(RMS{1}.^2)));

Type plot7 in the Matlab command window to access Figure 7.

The first command line in Matlab code 7 defines a set of
q-orders from −5 to 5. The second line initiates a loop that com-
putes the overall q-order RMS,Fq(nq), from negative to positive
q’s (see the red arguments nq). The q-order weights the influ-
ence of segments with large and small fluctuations, RMS{1}, as
illustrated in Figure 7. Fq(nq) for negative q’s (i.e., nq= 1–
3) are influenced by segments v with small RMS{1}(v). In
contrast, Fq(nq) for positive q’s (i.e., nq= 4–6) are influ-
enced by segments v with large RMS{1}(v). The local fluctu-
ations RMS{1} with large and small magnitudes is graded by
the magnitude of the negative or positive q-order, respectively.
Fq for q= −3 and 3 is more influenced by the segments v
with the smallest and largest RMS{1}(v), respectively, com-
pared to Fq for q= -1 and 1 (see Figure 7). The midpoint
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FIGURE 7 | An illustration of qRMS{1} computed by Matlab code 7.

qRMS{1} is the q-order of the local fluctuateons (i.e., RMS{1}) and are the
building block of the overall q-order RMS (i.e., Fq in Matlab code 7).
qRMS{1} is represented for the monofractal (green traces) and
multifractal (blue traces) time series. The negative q-order (q = −3
and −1) amplifies the segments in the multifractal time series with
extreme small RMS{1} whereas positive q-order (q = 3 and 1) amplifies

the segments with extreme large RMS{1}. Notice that q = −3 and q = 3
amplify the small and large variation, respectively, more than q = −1 and
q = 1. Notice also that the monofractal time series has no segments
with extreme large or small fluctuations and, thus, no peaks in qRMS{1}.
The overall q-order RMS is able to distinguish between the structure of
small and large fluctuations and, consequently, between the
monofractal and multifractal time series.

q= 0 are neutral to influence of segments with small and large
RMS{1}. Notice that the last line of Matlab code 7 redefines
the special case q(nq)= 0 because 1/0 goes to infinity [i.e.,
1/q(q= = 0)= inf in Matlab]. The reader should also notice
that Fq(q= = 2) are equal to second order statistics F in Matlab
code 4 because sqrt(x)= x∧(1/2) in Matlab. The monofrac-
tal DFA in Matlab code 5 can now be extended to a MFDFA by
simply changing Matlab code 4 to Matlab code 7 in the last line
of Matlab code 5. This change is highlighted with red command
lines in Matlab code 8 below:

Matlab code 8 Part 1 of MFDFA1

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale=[16,32,64,128,256,512,1024];
q=[-5,-3,-1,0,1,3,5];
m=1;
for ns=1:length(scale),

segments(ns)=floor(length(X)/scale(ns));
for v=1:segments(ns),

Index=((((v-1)*scale(ns))+1):(v*scale(ns)));
C=polyfit(Index,X(Index),m);

fit=polyval(C,Index);
RMS{ns}(v)=sqrt(mean((X(Index)-fit).^2));

end
for nq=1:length(q),

qRMS{nq,ns}=RMS{ns}.^q(nq);
Fq(nq,ns)=mean(qRMS{nq,ns}).^(1/q(nq));

end
Fq(q==0,ns)=exp(0.5*mean(log(RMS{ns}.^2)));

end

The relationship between Matlab code 8 and the mathematical equations used to

introduce the MFDFA in Kantelhardt et al. (2002) are given below:

Eq. 1 in Kantelhardt et al. (2002):

X: Y (i) ≡
i∑

k=1

[xk − 〈x〉]
multifractal: x

mean(multifractal): 〈x〉
The number Ns of non-overlapping segments:

segments(ns): Ns ≡ int(N/s)

length(X): N

scale(ns): s
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Eq. 2 in Kantelhardt et al. (2002):
RMS{ns}(v): F(s,v)

mean((X(Index)-fit).∧2):
1

s

s∑
i=1

{Y [(v − 1)s + i] −yv (i)}2

Index: (v − 1)s + i for i = 1, 2, ..., s

fit: yv (i) =
m∑

k=0

Ck im−k

C: Ck

Eq. 4 in Kantelhardt et al. (2002):

Fq(nq,ns): Fq(s) ≡
{

1

Ns

Ns∑
v=1

[F 2(s, v)]
q/2

}1/q

qRMS{nq,ns}: [F 2(s, v)]
q/2

mean(qRMS{nq,ns}):
1

Ns

Ns∑
v=1

[F 2(s, v)]
q/2

The q-order Hurst exponent can now be defined as the slopes
(Hq) of regression lines (qRegLine) for each q-order RMS (Fq).
Both Hq(nq) and qRegLine{nq} is computed by looping
Matlab code 6 for each q-order (see red command lines and
arguments nq in Matlab code 9 below):

Matlab code 9 Part 2 of MFDFA1

for nq=1:length(q),
C=polyfit(log2(scale),log2(Fq(nq,:)),1);
Hq(nq)=C(1);
qRegLine{nq}=polyval(C,log2(scale));

end

Type plot8 in Matlab command window to access Figure 8.

The relationship between Matlab code 9 are given below in the mathematical notation

used in Kantelhardt et al. (2002):

Hq(nq): h(q)

qRegLine{nq}: log2

(
Fq(s)

) = h(q) log 2(s) + C

Figure 8 shows that the slopes Hq of the regression lines are q-
dependent for the multifractal time series (see Figure 8A).
The difference between the q-order RMS for positive and negative
q’s are more visual apparent at the small segment sizes compared
to the large segment sizes (see Figure 8A). The small segments are
able to distinguish between the local periods with large and small
fluctuations (i.e., positive and negative q’s, respectively) because
the small segments are embedded within these periods. In con-
trast, the large segments cross several local periods with both small
and large fluctuations and will therefore average out their differ-
ences in magnitude. Thus, the relationship between the q-order
RMS of the multifractal time series becomes similar to the
monofractal time series at the largest segment sizes (com-
pare Figures 8A,B). Both the monofractal and whitenoise
time series have no periods with small and large fluctuations
and, consequently, the same difference between the q-order RMS
irrespective of the segment sample sizes (see Figures 8B,C). The
growing similarity between the q-order RMS of multifractal
and monofractal time series with increasing segment sam-
ple size leads to a decreasing Hq for multifractal time
series (see Figure 8D). The decreasing Hq indicates that the seg-
ments with small fluctuations have a random walk like structure
whereas segments with large fluctuations have a noise like struc-
ture (see the continuum of Hurst exponents in Figure 6). The
similarity between the scaling function F of monofractal and
multifractal time series in Figure 5 is indicated by the
intercept of Hq around q = 2 (compare blue and red traces in

Figure 8D). Thus, the monofractal DFA in Matlab code 5 and 6
will not distinguish between the structure of the monofractal
and multifractal time series.

THE MULTIFRACTAL SPECTRUM OF TIME SERIES
The q-order Hurst exponent Hq is only one of several types of
scaling exponents used to parameterize the multifractal structure
of time series. The typical procedure in the literature of MFDFA is
to first convert Hq to the q-order mass exponent (tq) and there-
after convert tq to the q-order singularity exponent (hq) and
q-order singularity dimension (Dq; Kantelhardt et al., 2002). The
plot of hq versus Dq is referred to as the multifractal spectrum
(see Figure 9C). The q-order mass exponent tq can be computed
from Hq by the Matlab code 10 below (see Figure 9B):

Matlab code 10 Part 3 of MFDFA1

tq=Hq.*q-1;

Eq. 13 in Kantelhardt et al. (2002)

The mass exponent tq is used to compute the q-order singu-
larity exponent (hq) and the q-order singularity dimension (Dq)
by Matlab code 11 below (see upper right Figure 9):

Matlab code 11 Part 4 of MFDFA1

hq=diff(tq)./(q(2)-q(1));

Dq=(q(1:end-1).*hq)-tq(1:end-1);

Equation 15 in Kantelhardt et al. (2002)

Type plot9 in the Matlab command window to access Figure 9.

Themonofractal andwhitenoise time series has a mass
exponenttqwith a linear q-dependency. The linear q-dependency
of tq leads to a constant hq of these time series because hq is the
tangent slope of tq (see the first command line in Matlab code
11). The constant hq reduces the multifractal spectrum to a small
arc for the monofractal and whitenoise time series (see
Figure 9C). In contrast, themultifractal time series has mass
exponents tq with a curved q-dependency and, consequently,
a decreasing singularity exponent hq. The resulting multifractal
spectrum is a large arc where the difference between the maximum
and minimum hq are called the multifractal spectrum width (see
arrow in Figure 9C).

The reader should notice that the q-order singularity expo-
nent hq and corresponding dimension Dq computed by Matlab
code 11 are referred to as α and f(α) in Kantelhardt et al. (2002),
but as h and D(h) in other literature (e.g. Ihlen and Vereijken,
2010). Furthermore, the singularity dimension can be confused
with the generalized dimension and the box counting dimension
that is other ways to parameterize the multifractal structure of
time series (see Equation 14 in Kantelhardt et al., 2002).

The Hurst exponent defined by the monofractal DFA repre-
sents the average fractal structure of the time series as illustrated
in Figure 6 and is closely related to the central tendency of mul-
tifractal spectrum. The deviation from average fractal structure
for segments with large and small fluctuations is represented by
the multifractal spectrum width. Thus, each average fractal struc-
ture in the continuum of Hurst exponents (see Figure 6) has a
new continuum of multifractal spectrum widths that represents
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FIGURE 8 | q-order RMS Fq(nq,:) and corresponding regression

line qRegLine{nq} computed by MFDFA (i.e., Matlab code 8 and 9)

for time series multifractal (A), monofractal (B), and

whitenoise (C). (A) The scaling functions Fq (blue dots) and
corresponding regression slopes Hq (blue dashed lines) are
q-dependent. (B,C) The scaling functions Fq (red and turqouish dots) and
regression slope Hq (red and turqouish dashed lines) are q-independent.

(D) The q-order Hurst exponent Hq for the time series multifractal
(blue trace), monofractal (red trace) and whitenoise (turqouish
trace) where the colored dots represents the slopes Hq for q = −3, −1,
1, and 3 illustrated in (A–C). Notice that the intercept of Hq for
multifractal and monofractal time series [intercept between blue
and red trace in (D)] are close to q = 2. This intercept reflects the
similarity between their overall RMS, F, in Figure 5.

the deviations from the average fractal structure (see Figure 10).
Furthermore, the shape of the multifractal spectrum in Figure 10
does not have to be symmetric. The multifractal spectrum can
also have either a left or a right truncation that originate from a
leveling of the q-order Hurst exponent for negative or positive q’s,
respectively (see Figure 11). The leveling of q-order Hurst expo-
nent reflects that the q-order RMS is insensitive to the magnitude
of the local fluctuations. The multifractal spectrum will have a
long left tail when the time series have a multifractal structure that
is insensitive to the local fluctuations with small magnitudes (see
upper Figure 11). In contrast, the multifractal spectrum will have
a long right tail when the time series have a multifractal structure
that is insensitive to the local fluctuations with large magnitudes
(see lower Figure 11). Another continuum of right and left trunca-
tions exists for each multifractal spectrum width in the continuum
illustrated in Figure 10. Thus, the width and shape of the multi-
fractal spectrum is able to classify a wide range of different scale
invariant structures of biomedical time series.

A DIRECT ESTIMATION OF THE MULTIFRACTAL SPECTRUM
The transformation of the q-order Hurst exponent Hq to the
mass exponent tq and, finally, to the multifractal spectrum Dq

and hq is stated as a “just-the-way-it-is” argument in the above
section without mathematical details. The reader might ask at
this point why one should define and interpret the multifrac-
tal spectrum Dq and hq and not only Hq that are directly
estimated by Matlab code 8 and 9. Estimating the multifractal
spectrum directly from the local fluctuation, will answer this
question and give a less abstract definition of the multifractal
spectrum. A local Hurst exponent can be defined directly from,
RMS{ns}(v), for each time instant v. The local Hurst expo-
nent estimated for a multifractal time series will fluctuate
in time in contrast to the time independent Hurst exponent
estimated by the monofractal DFA (see Matlab code 5 and 6;
Figure 5). The temporal variation of the local Hurst exponent
can be summarized in a probability distribution and the multi-
fractal spectrum is just the normalized probability distribution
in log-coordinates. Thus, the width and shape of the multifractal
spectrum reflect the temporal variation of the local Hurst expo-
nent or, in other words, the temporal variation in the local scale
invariant structure of the time series. In order to estimate the
local Hurst exponent, the local fluctuation, RMS{ns}(v), has
to be defined within a translating segment centered at sample v
instead of within non-overlapping segments. Thus, Matlab code
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FIGURE 9 | Multiple representations of multifractal spectrum for

multifractal (blue traces), monofractal (red traces), and

whitenoise (turquoise trace) time series. (A) q-order Hurst exponent Hq
computed in Matlab code 9. (B) Mass exponent tq computed in Matlab code
10. (C) Multifractal spectrum of Dq and hq (upper right panels) computed in

Matlab code 11 and plotted against each other. The arrow indicates the
difference between the maximum and minimum hq that are called the
multifractal spectrum width. Notice that the constant Hq for monofractal
and whitenoise times series leads to a linear tq that further leads to a
constant hq and Dq that, finally, are joined to become only tiny arcs in (C).

8 has to be modified to Matlab code 12 below (see red command
lines):

Matlab code 12 Part 1 of MFDFA2

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale_small=[7,9,11,13,15,17];
halfmax=floor(max(scale_small)/2);
Time_index=halfmax+1:length(X)-halfmax;
m=1;
for ns=1:length(scale_small),

halfseg=floor(scale_small(ns)/2);
for v=halfmax+1:length(X)-halfmax;

T_index=v-halfseg:v+halfseg;
C=polyfit(T_index,X(T_index),m);
fit=polyval(C,T_index);
RMS{ns}(v)=sqrt(mean((X(T_index)-fit).^2));

end
end

(The reader must be patient because this code might take a couple of minutes)

The first red command line defines a vector of small seg-
ment sizes (i.e., scale_small) where the segment sizes
increases with two samples. This increase of two samples is
necessary to align the center of segments according to the
Time_index. The third red line set the Time_index for the
local fluctuation, RMS{ns}, that exclude the halfmax num-
ber of samples at the start and the end of the time series

(see second red command line). Then a loop are initiated for
each segment size where the local fluctuations, RMS{ns}(v),
are computed for a translating segment centered at sample
v= Time_index. The translating segment includes the local
samples that are updated by T_index (see last red command
line). The local Hurst exponent (Ht) can now be computed
from the local fluctuation, RMS{ns}, by the Matlab code 13
below:

Matlab code 13 Part 2 of MFDFA2

C=polyfit(log2(scale),log2(Fq(q==0,:)),1);
Regfit=polyval(C,log2(scale_small));
maxL=length(X);
for ns=1:length(scale_small);

RMSt=RMS{ns}(Time_index);
resRMS{ns}=Regfit(ns)-log2(RMSt);
logscale(ns)=log2(maxL)-log2(scale_small(ns));
Ht(ns,:)=resRMS{ns}./logscale(ns)+Hq(q==0);

end

Type plot12 in the Matlab command window to access Figure 12.

The first two command line defines the regression lineRegfit
equal to the regression line qRegLine{q= = 0} computed
by Matlab code 8. Regfit represents the center of the spread
of local RMS and are the regression line of the overall q-order
RMS, Fq(q= = 0,:). A loop for each scale ns computes

www.frontiersin.org June 2012 | Volume 3 | Article 141 | 107

http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Ihlen Multifractal analysis in Matlab

FIGURE 10 | Illustration of a continuum of multifractal time series

with the same q-order Hurst exponent for q = 2 but with different

multifractal spectrum width [compare vertical axis of the (A) and the

arrow in the (B)]. Notice the growth of structural differences between the
periods with small and large fluctuations as the multifractal spectrum
width become larger.

FIGURE 11 | Illustration of multifractal spectra with a right truncation (upper right panel ) and a left truncation (upper left panel ). These truncations
originate from the leveling of the q-order Hurst exponents for negative q’s (upper right panel ) and positive q’s (upper left panel ), respectively.
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FIGURE 12 | (A) A summary of how the local Hurst exponent Ht is estimated
in Matlab code 13. The regression line Regfit (red center line) is the center
of the spread of local RMS in log-coordinates and is equal to the regression
line qRegLine{q= = 0} in Matlab code 8 and 9 [see (B)]. The minimum and
maximum local Hurst exponent Ht(5,:) is the slope of the upper and lower
red lines, respectively, that converge from the maximum and minimum of
RMS{5} onto the regression line Regfit at the maximum scale maxL.
Consequently, the local Hurst exponent Ht(ns,:) estimated by dividing the
residual resRMS{ns}(v) for each time instant v by logscale(ns) (i.e., the
difference between the maximal scale maxL and scale(ns) in
log-coordinates) and adding the slope Hqq=0 of the regression line Regfit.

(B) The scaling function Fq (blue dots) and the regression lines
qRegLine{nq} (blue lines) computed by Matlab code 8 and 9. All Fq lies
within the envelope between the red lines for the maximum and minimum
Ht(5,:), but does not cover the entire range in the same way as the local
RMS{5} in (A). (C) The smallest scales used to compute the local Hurst
exponents and the multifractal spectrum illustrated in Figure 13. The red dots
represent the maximum RMS{ns}(1080) and minimum RMS{ns}(1199)

for multiple segment sample sizes [i.e., scale(ns)] at time instant v= 1080

and v=1199, respectively [see Figure 13A] whereas blue dots represent the
local fluctuations for 30 other time instants. Notice that both the horizontal
and vertical axes in all panels are in log-coordinates.

the residual fluctuation resRMS{ns} of log2(RMS{ns})
around the regression line Regfit for each sample v of the
time series. In Figure 12B, the differences between the overall
q-order RMS, Fq, converge toward each other with increasing
scale. This convergence is inevitable for multifractal variation
by the linear relationship between Fq for all q-order and the
assumption of monotonical decreasing q-order Hurst exponent,
Hq (see Figure 8D). The same convergence is seen for the local
RMS in Figure 12A and is used to estimate the local Hurst
exponents, Ht(ns,:). Ht(ns,:) is estimated as the slope
of the line from local RMS in log-coordinates to the endpoint
of the regression line, Regfit, at the largest scale, maxL (see
Figure 12). Consequently, Ht(ns,:) are obtained by divid-
ing the residuals resRMS{ns} by logscale (i.e., the dif-
ference between maximal scale maxL and the scale(ns) in
log-coordinates) and adding the slopeHq(q= = 0) of regression
line, Regfit (see Figure 12A). Figure 13A illustrates the local
Hurst exponent Ht(ns,:) for ns= 5 (i.e.,scale(ns)= 15)
for the multifractal, monofractal, and whitenoise
time series. The local Hurst exponent Ht(ns,:) has larger
variation for the multifractal time series compared to

the monofractal and whitenoise time series. The small
Ht(ns,:) in the periods of the multifractal time series
with local fluctuations of large magnitudes (i.e., large RMS{ns})
reflects the noise like structure of the local fluctuations (see red
dashed lines in Figure 13A). In contrast, the larger Ht(ns,:)
in the periods with local fluctuations of small magnitudes (i.e.,
small RMS{ns}) reflects the random walk like structure of the
local fluctuations (see black dashed lines in Figure 13A). The
local Hurst exponent Ht in periods with fluctuations of small
and large magnitudes is therefore consistent with the q-order
Hurst exponent Hq for negative and positive q’s, respectively.
The advantage of local Hurst exponent Ht compared with q-
order Hurst exponent Hq is the ability of Ht to identify the
time instant of structural changes within the time series. In
studies where the physiological phenomenon is perturbed at
some time instant v, the local Hurst exponent Ht(ns,v) can
identify how this perturbation affects the local scale invariant
structure of the biomedical time series. The temporal varia-
tion of local Hurst exponent Ht can be summarized in a his-
togram representing the probability distribution (Ph) of Ht (see
Figure 13B). The multifractal spectrum (Dh) is defined simply
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FIGURE 13 | (A) The multifractal, monofractal, and whitenoise

time series (upper panel) and their local Hurst exponents Ht(:,5) computed
by Matlab code 13 (lower panel). The multifractal time series have a
larger variation in the local Hurst exponents Ht(5,:) compared with the
monofractal and whitenoise time series. The period with the local
fluctuation of the smallest magnitude in multifractal time series contains
the maximum Ht(5,:) (see Htmax in period between the black dashed lines)
whereas the period with the local fluctuation of the largest magnitudes

contains the smallest Ht(5,:) (see Htmin in the period between red dashed
lines). (B) The probability distribution Ph of the local Hurst exponents Ht
estimated as histograms by Matlab code 14 for the multifractal,
monofractal, and whitenoise time series. (C) The multifractal spectrum
Dh estimated from distribution Ph by Matlab code 14 for the same time
series. The distribution Ph and spectrum Dh have a larger width for the
multifractal time series compared to the monofractal and
whitenoise time series.

by the log-transformation of the normalized probability dis-
tribution (Ph_norm). The probability distribution (Ph) and
multifractal spectrum (Dh) are computed by Matlab code 14
below:

Matlab code 14 Part 3 of MFDFA2

Ht_row=Ht(:);
BinNumb=round(sqrt(length(Ht_row)));
[freq,Htbin]=hist(Ht_row,BinNumb);
Ph=freq./sum(freq);
Ph_norm=Ph./max(Ph);
Dh=1-(log(Ph_norm)./-log(mean(scale)));

Type plot13 in Matlab command window to access Figure 13.

The first line in Matlab code 14 convert the matrix Ht to the
vector Ht_row that are the input argument in hist function
used to compute the histogram for Ht_row. The second input
argument in hist function are BinNumb that set the num-
ber of bins in the histogram. A sufficient choice for BinNumb
is the square root of the sample size of Ht_row (see the sec-
ond command line). The output variables of hist function are
the center of each bin Htbin and the number freq of local
Hurst exponents that fall into each bin. The probability distrib-
ution Ph are computed by dividing the number freq of local

Hurst exponents in each bin by the total number of local Hurst
exponents, sum(freq) (see Figure 13B). The multifractal spec-
trum Dh are computed by first define Ph_norm by normaliz-
ing Ph to the maximum probability max(Ph) and then divide
log(Ph_norm) by –log(mean(scale)) (cf. Struzik, 2000;
Scafetta et al., 2003). The multifractal spectrum Dh are there-
fore directly related to the distribution Ph of the local fractal
structure of the time series. The distribution Ph is the same for
the local scale invariant structure of the time series as the con-
ventional probability distribution are for the local amplitudes of
the time series. The present state of the physiological system is
connected to both past and future states that influence the local
scale invariant structure of time series. Thus, distribution Ph and
the multifractal spectrum Dh of biomedical time series might
reflect important properties of the self-regulation of physiological
processes.

THE BEST PRACTICE OF MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS
The MFDFA introduced piece-by-piece in Section “Multifractal
Detrended Fluctuation Analysis in Matlab” can be combined into
two Matlab function MFDFA1 and MFDFA2, respectively:
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Matlab functions for MFDFA

Matlab code 8 to 11:

[Hq,tq,hq,Dq,Fq]=MFDFA1(signal,scale,q,m,Fig);

Matlab code 12 to 14:

[Ht,Htbin,Ph,Dh]=MFDFA2(signal,scale,m,Fig);

Type help MDFA1 or help MFDFA2 in the Matlab command window to access

the definition of the input and output variables. The help functions provide examples

for the employment of MFDFA1 and MFDFA2 to time series.

The main aim of Section “The Best Practice of Multifrac-
tal Detrended Fluctuation Analysis” is to guide the application
of MFDFA1 and MFDFA2 to biomedical time series. In Section
“Multifractal Detrended Fluctuation Analysis in Matlab” the read-
ers has gained insight into the construction of MFDFA1 and
MFDFA2 and this insight will help them to avoid potential pitfalls
in the application of MFDFA1 and MFDFA2. The best practice
of MFDFA1 and MFDFA2 has several steps. First, the structure of
biomedical time series must be similar to noise before employ-
ing MFDFA1 and MFDFA2 (see blue traces in Figure 1). Section
“Random Walk or Noise Like Time Series?” introduces conversions
to make the biomedical time series similar to a noise like time
series. Secondly, the local fluctuations within the biomedical time
series cannot be close to zero. Section “Local Fluctuations Close
to Zero?” discusses possible origins for local fluctuations close
to zero and possible solutions to this problem. Thirdly, the bio-
medical time series must be scale invariant within the predefined
range of scales. Section “Is the Time Series Scale Invariant?”3 dis-
cusses the general assumption of a scale invariant time series as
input in MFDFA1 and MFDFA2. Fourth, the input parameters
scale, q, and m in MFDFA1 and MFDFA2 must be sufficiently
defined for each biomedical time series. Section “How to Set
the Input Parameters Scale, q, and m in MFDFA1 and MFDFA2”
introduces guidelines for the optimal parameter setting. Finally,
Section “Other Multifractal Analysis” lists other multifractal analy-
ses where results can be compared to results from MFDFA1 and
MFDFA2.

RANDOM WALK OR NOISE LIKE TIME SERIES?
MFDFA1 and MFDFA2 have the best performance when signal
are a noise like time series. However, it can be difficult according to
Figure 6 to visually differentiate between random walk and noise
like time series. A possible solution suggested by Eke et al. (2002)
is to run a monofractal DFA (i.e., Matlab code 5 and 6) before
running MFDFA1 and MFDFA2. The time series are noise like if
Hurst exponentH is between 0.2 and 0.8. In this case,MFDFA1 and
MFDFA2 can be employed directly without transformation of the
time series. However, the time series are random walk like when H
is between 1.2 and 1.8. In these cases, the time series should either
be differentiated before entering the MFDFA1 or MFDFA2 or the
conversion to random walk in the first line of Matlab code 8 and 12
should be eliminated. If the time series are random walk like + 1
should be added to the output variables Hq, hq, and tq from
MFDFA1 and Ht and Htbin from MFDFA2. Table 1 summarize
the categories of the Hurst exponent estimated by a monofractal
DFA with corresponding conversion of the biomedical time series
that should be performed before entering it into MFDFA1 and
MFDFA2.

Table 1 | Conversions of the biomedical time series X and adjustment

of Hq and Ht.

Hurst

exponent (H)

Conversion Adjustment of

Hq and Ht

<0.2 signal=cumsum(X-mean(X)) −1

0.2–0.8 No conversion 0

0.8–1.2 No conversion 0

1.2–1.8 signal=diff(X) +1

>1.8 signal=diff(diff(X)) +2

LOCAL FLUCTUATIONS CLOSE TO ZERO?
The local fluctuation in the time series is defined as a local RMS
within both MFDFA1 and MFDFA2. Large error appears in the
multifractal spectrum when RMS is close to zero because both
log2(Fq) for negative q’s in Matlab code 8 and log2(RMSt)
in Matlab code 12 becomes infinitely small (i.e., -inf in Mat-
lab). Extreme large Hq will be present for negative q’s as output
from MFDFA1. Equivalently, extreme large outliers in Ht will be
present as output from MFDFA2. Consequently, local RMS close
to zero will lead to large right tails for the multifractal spectrum.
The problem of segments with RMS close to zero can be solved by
eliminating RMS below a certain threshold (eps). The threshold
eps can be set to the precision of the measurement device that is
recording the biomedical time series. As an example, the measure-
ment of the inter-beat intervals of the human heart is measured
as the time interval between R-peaks in ECG and has a typical
precision of 1 millisecond. Thus, RMS below 1 millisecond can
be eliminated from further analysis when MFDFA1 and MFDFA2
are employed to series of inter-beat intervals. Elimination of local
fluctuations below the measurement error is possible in MFDFA1
by setting eps= 1 and RMS{ns}(RMS< eps)= [] in Matlab
code 8.

There are two main reasons why the local fluctuation RMS
becomes zero in segments with small sample sizes. First, the poly-
nomial trend fit of the time series can be overfitted in segments
with small sample sizes (i.e., small scale). An overfitted trend will
be similar to the time series and cause the residual fluctuations,
RMS, to be close to zero. The sample size of the smallest segment
(i.e., scale) should therefore be much larger than the polynomial
order m to prevent an overfitted trend. Secondly, the biomedical
time series might be smooth with little apparent variation and
therefore similar to the polynomial trend even for low order m. In
these cases, the value of the smallest scales should be raised and
the scale invariance checked carefully (see “Is the Time Series Scale
Invariant?” below).

IS THE TIME SERIES SCALE INVARIANT?
The application of both Matlab function MFDFA1 and MFDFA2
assumes that the biomedical time series are scale invariant.
This means that plot(log2(scale),log2(Fq)) yield a
linear relationship between log2(scale) and log2(Fq)
(see Figure 8)., The q-order Hurst exponent Hq should not
be estimated by a linear regression if the relationship between
log2(scale) and log2(Fq) is curved or S-shaped. Con-
sequently, the first output from MFDFA1 to be visually checked
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should be plot(log2(scale),log2(Fq)). Non-linear
relation in this plot might arise from several reasons. First, an
insufficient orderm for the polynomial detrending will yield a non-
linear relationship between log2(scale) and log2(Fq) for
scale invariant time series with a trend. The solution is to run
MFDFA1 or MFDFA2 multiple times with different m and com-
pare their plot(log2(scale),log2(Fq). Secondly, local
fluctuations RMS close to zero for small scales would yield a non-
linear dip in lower end of plot(log2(scale),log2(Fq)).
This dip can be prevented by elimination of RMS below
the measurement error suggested in Section “Local Fluctua-
tions Close to Zero?” or by choosing a larger minimum input
scale. Finally and most importantly, a non-linear relationship
in plot(log2(scale),log2(Fq)) might originate from
the phenomenon recorded in the biomedical time series. As an
example, respiratory frequency creates distinct oscillations in the
fast fluctuations of the heart rate variability (Stein and Kleiger,
1999) and cause the scale invariance to break down at the small-
est scales. Another example is postural sway in humans where
the variation of the center of pressure has two distinct scaling
regions thought to represent two distinct modes for human bal-
ance control (Collins and De Luca, 1993). One way to detect
the sub-regions with scale invariance is to look for periods with
approximately constant log2(Fq(q= = 1,:)./scale) in
plot(log2(scale),log2(Fq(q= = 1,:)./scale))
within the entire scaling range (cf. Gao et al., 2006). The scales
where log2(Fq(q= = 1,:)./scale) are no longer con-
stant indicates the segment sizes above and below which the
local fluctuations (i.e., RMS) are no longer scale invariant. These
points will in many cases have phenomenological explanations
and should not be ignored.

HOW TO SET THE INPUT PARAMETERS scale, q, AND m IN MFDFA1
AND MFDFA2
The Matlab functions MFDFA1 and MFDFA2 have input parame-
ters scale, q and m. The estimation of the multifractal spec-
tra is dependent on these parameter settings. The rest of this
section gives guidelines to the parameter settings in MFDFA1 and
MFDFA2:

Scale
The input parameters scale is the multiple segment sizes for
the computation of local fluctuation RMS in Matlab code 8 and
12. A minimum and maximum sample size of the segments [i.e.,
min(scale) and max(scale) in Matlab] has to be chosen
to construct the set of scales used in MFDFA1 and MFDFA2.
Both statistical and phenomenological arguments exist on how
to choose the minimum and maximum segment size. The sta-
tistical argument is to choose minimum and maximum segment
sizes that provide a numerical stable estimation of RMS and Fq
in Matlab code 8 and 12. The minimum segment sample size
should be large enough to prevent error in the computation of
local fluctuation RMS. The minimum segment size larger than 10
samples is a “rule of tumb” for the computation of RMS. Fur-
thermore, the minimum sample size must be considerably larger
than the polynomial order m to prevent overfitting of polyno-
mial trend (see “Local Fluctuations Close to Zero?” above). Thus,

minimum segment size of 10 samples might be too small for
large trend order m (Kantelhardt et al., 2002). In MFDFA1, the
maximum segment size should be small enough to provide a suf-
ficient number of segments in the computation of Fq in Matlab
code 8. A maximum segment size below 1/10 of the sample size
of the time series will provide at least 10 segments in the com-
putation of Fq in Matlab code 8. Furthermore, it’s favorable to
have a equal spacing between scales when they are represented in
plot(log2(scale),log2(Fq)) to obtain a optimal per-
formance of the linear regression that estimates q-order Hurst
exponent Hq. Equal spacing between log2(scale) is provided
by Matlab code 15 below:

Matlab code 15:

scmin=16;
scmax=1024;
scres=19;
exponents=linspace(log2(scmin),log2(scmax),scres);
scale=round(2.^exponents);

Matlab code 15 is employed before runningMFDFA1where the
minimum segment size,scmin, maximum segment size,scmax,
and the total number of segment sizes, scres, are predefined.
The segment sizes (i.e., scale) in MFDFA2 should be small in
order to provide a stable estimation of the probability distribu-
tion Ph and, consequently, the multifractal spectrum Dh (Scafetta
et al., 2003). The local Hurst exponent Ht for large scale will have
a smooth and slow varying dynamics that are not well described
by a probability distribution Ph. Thus, a small scaling range like
scale= [7,9,11,13,15,17] used in Matlab code 12 are
preferable in MFDFA2. However, the reader should notice that the
small segment sizes (i.e.,scale) in MFDFA2 come at the expense
of a less precise estimation of the local fluctuation RMS. The
imprecise estimation of RMS can be seen as measurement noise
of the local Hurst exponent Ht present for the monofractal
and whitenoise time series in Figure 13A. The measurement
noise in Ht is represented as a distribution Ph and multifractal
spectrum Dh for monofractal and whitenoise time series
with a non-zero width (see Figures 13B,C).

Phenomenological argumentations are important for the
choice of minimum and maximum segment sizes within the
boundaries that provide numerical stable computations. For
example, it is unlikely that the movement of the center of mass
is faster than 10 Hz during postural sway. If ground reaction force
is sampled at 200 Hz by a force plate then the minimum segment
size should be larger than 200/10 Hz = 20 samples. Another exam-
ple is to exclude the smallest segment sizes in heart rate variability
known to be dominated by oscillations due to the respiratory fre-
quency. Furthermore, heart rate variability operates with several
ranges of scales (i.e., fluctuations with high frequency, low fre-
quency, very low frequency, ultra low frequency) that are suggested
to be influenced by different mechanisms (e.g., respiratory fre-
quency, baroceptive responses, circadian rhythm; e.g., Stein and
Kleiger, 1999). Three scale invariant sub-bands are also found in
EEG signal where the Hurst exponent are able to separate between
healthy subjects and epileptic subjects (Gao et al., 2011). Thus,
MFDFA1 can be employed to sub-bands of the scaling range in
these phenomena (e.g., Makowiec et al., 2011).
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q-order
The input parameter q in MFDFA1 decides the q-order weighing
of the local fluctuationRMS in Matlab code 8. The q-orders should
consist of both positive and negative q’s in order to weight the peri-
ods with large and small variation in a time series. The precision
of the computation of the q-order Hurst exponent Hq decreases
with increasing negative and positive q-orders. This imprecision
are explained by the result in Figure 7. The single segment with
the smallest and largest variationRMSwill tower up as a single sky-
scraper by increasing negative and positive q-orders, respectively,
and completely dominate the scaling function Fq (i.e., overall
q-order RMS in Matlab code 7). The domination of the single seg-
ments with the smallest and largest variation destabilizes Fq and
leads to an increasing spread around the regression lines of Fq (see
q = 3 and -3 in Figure 8A). The choice of q-orders should therefore
avoid large negative and positive values because they inflict larger
numerical errors in the tails of the multifractal spectrum. The
stability of the computation of the multifractal spectrum is also
dependent on the differences between the segments of largest and
smallest variation. Time series that have large multifractal spec-
trum width will have large differences between the segments with
the smallest and largest variation and, consequently, destabilize the
computation of Fq at smaller negative and positive q-orders (com-
pare multifractal scaling in Figure 8A with the monofractal scaling
in Figure 8B). A sufficient choice of q-orders will be between – 5
and 5 for most biomedical time series (Lashermes et al., 2004). The
destabilization of the Fq at large negative and positive q-orders is
also dependent on the sample size of the time series. Time series
with large sample size will have multiple segments with extremely
large and small variation whereas time series with moderate sam-
ple size will only have a single segment. Multiple segments of large
and small variation would stabilize the computation of Fq for
large negative and positive q-orders. There exists no consensus for
the definition of a “too small” sample sizes for multifractal analy-
ses, but the reader should interpret the result with caution when
MFDFA1 and MFDFA2 are employed to time series with less than
1000 samples.

Trend order m
In both MFDFA1 and MFDFA2, the local fluctuation RMS is com-
puted around a polynomial trend where its shape is defined by
the order m. A higher order m yield a more complex shape of the
trend, but might lead to overfitting for time series within small
segment sizes as discussed in Section “Local Fluctuations Close
to Zero?” above. Thus, m= 1–3 are probably a sufficient choice
when the smallest segment sizes contains 10–20 samples. Most
studies that employ DFA to biomedical time series do not report
the details of the polynomial detrending. Still, the multifractal
spectrum for multiple orders m should be compare to ensure that
the multifractal spectrum are not influenced by non-stationary
trends in the time series. The trends present in biomedical sig-
nals do not have to be of a polynomial shape but might have
oscillatory or ramp-like shapes. Both MFDFA1 and MFDFA2 can
be extended to include more adaptive detrending procedures like
wavelet decomposition (Manimaran et al., 2009), moving aver-
age (Carbone et al., 2004), and empirical mode decomposition
(Qian et al., 2009). Furthermore, an adaptive fractal analysis is

shown to perform better than the DFA with polynomial detrend-
ing when employed to biomedical time series with strong trends
(Gao et al., 2011). Extensions and modification of the detrend-
ing procedure in MFDFA1 and MFDFA2 is preferable if MFDFA
are employed to biomedical time series with strong trends. Mat-
lab functions for MFDFA with other detrending procedures are
available at www.ntnu.edu/inm/geri/software.

OTHER MULTIFRACTAL ANALYSIS
The basic component of both MFDFA1 and MFDFA2 are the local
fluctuation, RMS. Statistical parameters other than RMS can be
used to define the local fluctuation in a time series. In multifractal
analyses based on wavelet transformations, the local fluctuation is
defined as the convolution product between the time series and
a waveform fitted within local segments of the time series (cf.
Daubechies, 1992; Mallat, 1999). The results from analyses called
wavelet transformation modulus maxima (Muzy et al., 1991), mul-
tifractal analysis with wavelet leaders (Jaffard et al., 2006; Wendt,
2008), and gradient modulus wavelet projection (Turiel et al.,
2006) can therefore be directly compared with the results from
MFDFA1 and MFDFA2. In an entropy-based estimation of the
multifractal spectrum, the local fluctuation is defined as the sum
of the time series within the local segment relative to the total
sum of the entire time series (Chhabra and Jensen, 1989). This
method uses a q-order entropy function instead of a q-order RMS
and estimates hq and Dq, directly, as the regression slope of the q-
order entropy functions. The MFDFA has been shown to perform
as well as or better than these multifractal analyses (Kantelhardt
et al., 2002; Oświęcimka et al., 2006; Serrano and Figliola, 2009;
Huang et al., 2011). However, extensions of detrending procedure
in MFDFA1 and MFDFA2 should be considered when the biomed-
ical time series contains strong oscillatory or ramp-like trends (Hu
et al., 2009; Huang et al., 2011).

SUMMARY
The multifractal spectrum reflects the variation in the fractal struc-
ture of the biomedical time series. The multifractal structure of
the inter-beat intervals can identify pathological conditions of the
human heart (e.g., Ivanov et al., 1999; Wang et al., 2007). The
multifractal structure in neural activity can separate the activity
of different brain areas and thereby guide more precise neuro-
surgery (Zheng et al., 2005). The present tutorial has introduced a
multifractal time series analysis called MFDFA (Kantelhardt et al.,
2002). MFDFA is simply based on the computation of local RMS
for multiple segment sizes as illustrated in Section “Multifractal
Detrended Fluctuation Analysis in Matlab.” However, special issues
in Section “The Best Practice of Multifractal Detrended Fluctuation
Analysis” for the best practice of MFDFA are of paramount impor-
tance when MFDFA are employed to biomedical time series. First,
a monofractal DFA should be employed to ensure that the biomed-
ical time series has a noise like structure. A conversion according
to Table 1 should be made if the time series has not a noise like
structure. Secondly, local fluctuation close to zero should be elim-
inated within MFDFA. Thirdly, the presence of scale invariance
should be checked by first running MFDFA1 over a large scaling
range [e.g.,scmin= 10 andscmax= length(signal)/10
in Matlab] and then plot log2(scale) against log2(Fq). If
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scale invariance is not present for the entire range, then MFDFA1
can be rerun with modified input parameter scale for scale
invariant sub-bands within the original scaling range. MFDFA1
should be employed with a q-orders between -5 and 5 and for

multiple trend orders m. MFDFA2 should be employed instead of
MFDFA1 when the time instant for structural change in the bio-
medical time series is of importance or when the biomedical time
series contain less than 5000 samples.
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By definition, fractal structures possess recurrent patterns. At different levels repeating
patterns can be visualized at higher magnifications. The purpose of this chapter is three-
fold. First, general characteristics of dynamical systems are addressed from a theoretical
mathematical perspective. Second, qualitative and quantitative recurrence analyses are
reviewed in brief, but the reader is directed to other sources for explicit details. Third,
example mathematical systems that generate strange attractors are explicitly defined, giv-
ing the reader the ability to reproduce the rich dynamics of continuous chaotic flows or
discrete chaotic iterations. The challenge is then posited for the reader to study for them-
selves the recurrent structuring of these different dynamics. With a firm appreciation of the
power of recurrence analysis, the reader will be prepared to turn their sights on real-world
systems (physiological, psychological, mechanical, etc.).

Keywords: dynamical systems, recurrence analysis, mathematical fractals, homeodynamics, dimensionality

DYNAMICAL SYSTEMS IN N -DIMENSIONAL SPACE
HOMEOSTASIS VERSUS HOMEODYNAMICS
Systems, mathematical and physical, are each framed by a set of
deterministic rules defined by the interaction of multiple compo-
nents (variables) as coupled by adjustable constants (parameters)
and scaled by fixed constants. To the extent that such systems
are time-varying, they are posited to be dynamical in nature
as opposed to static. Many dynamical mathematical systems are
explicit, exact, noise-free, and time-reversible. But real-world sys-
tems from physics, chemistry, and biology are at best ill-defined for
they exist in noisy environments and have interactions with other
neighborhood systems (changing coupling strengths). The mathe-
matical description of real-world systems is often approximate and
incomplete. The presence of noise itself has the ability to shape,
even tune, dynamical systems such as in the case of stochastic
resonance (Wiesenfeld and Moss, 1995).

A closed system can be conceptually portrayed as a bounded
area embedded within a surrounding environment as illustrated
in Figure 1. Although the simple systems are represented in two
dimensions (flat), no dimensionality is implied or excluded. If the
system is rigid the boundary is fixed and inflexible (solid line), but
if the system is plastic the boundary (dashed line) can move and
adapt to the surrounding environment. In this sense, experience
teaches that the first system is more traditionally mathematical
whereas the second system is more intrinsically biological. Flexi-
bility and adaptability of the boundary determines system survival
and success in harsh environments.

From the field of physiology came the very helpful concept of
system homeostasis. The foundation of homeostasis stems back
to Claude Bernard (1813–1878) and his concept of the milieu
intérieur of the extracellular environment of multicellular living
systems (Gross, 1998). However, it was Walter Cannon (1871–
1945) who coined the term homeostasis (Cannon, 1929) which
has since been elevated to the status of scientific law as it were.
Principles of homeostasis assume that systems of the body are
constrained within certain tight bounds whereby system variables

are attracted to so-called constant or static values compatible with
life. Good, if not obvious, examples include the control of arterial
plasma pH at 7.40; normal body temperature near 37˚C; and mean
blood pressure around 100 mm Hg to name a few.

Homeostasis implies the presence of feedback regulation of
dynamical systems affected by sensors that report back to the con-
trol center of the system. A half century ago engineering sciences
started impacting physiological thinking, so much so that the con-
cept of set points was in vogue for living organisms. Taken to its
extreme, however, homeostasis can become a straight jacket to
dynamical systems. In this context, the poster child for homeosta-
sis might be the cadaver state where all movement is disallowed!
Indeed, many living physiological systems seem to be missing
an error signal (Somjen, 1992), and concepts of homeostasis
and Gaussian statistics may be barriers to understanding natural
variability (West, 2010).

With much deeper appreciation for the rich dynamics afforded
by dynamical systems, the idea of homeodynamics is much more
satisfying. Homeodynamics sets trajectories free from the over-
bearing constraints of homeostasis (Lloyd et al., 2001). These two
concepts can be simply contrasted by considering a simple physics
metaphor. Think of a system represented by a marble fallen into a
hole in the center of a circular plate. With tilting motion applied to
the plate (noise), the marble remains locked in its fixed position,
unless the disturbance becomes too great. This is rigid homeosta-
sis where the marble is entrapped on a strong attractor. Now think
of a second system also consisting of a marble on a plate, but this
plate has no center hole. As the plate is tilted motion is imparted to
the marble. As long as the marble remains on the plate and moves
freely over its domain, the system is stable. This is homeodynamics.
Only when the tilt angle becomes too steep or the marble velocity
becomes too fast does the system fail.

TRANSIENTS AND NON-STATIONARITIES
For any system to be termed dynamic, it must show motions in
time or contrasts in space. The state of the system can be considered
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FIGURE 1 | Closed systems are distinguished from their surrounding
environments by definitive boundaries, firm (left) or fuzzy (right).

as either homeostatic or homeodynamic. Interestingly, homeosta-
tic systems can have motions in the sense that it moves toward the
well of attraction. Similar to the phase-space diagram of Figure 2,
a marble swirling around a stationary funnel cone will soon come
to rest in the smaller-diameter funnel spout where it will remain
at its fixed point. The pathway traversed by the marble is called
the trajectory and the destination is called the basin of attraction.
Likewise, magnets will hold iron filings in complicated yet rigid
patterns within multiple basins of attraction.

From the perspective of homeodynamics, however, trajec-
tories can also be seen as non-stationarities operating over a
field containing basins of attraction always changing. Living sys-
tems, especially, have weak and variable basins of attraction
meaning that the dynamic is always on the move, never rest-
ing per se, as the wells of attraction rise and fall. This would be
like the complex motions of a marble rolling over a large rub-
ber sheet which was continually subjected to topological contour
changes.

DIMENSIONALITY AND RIEMANN SPACE
Examine Figure 3 from left to right. If one works with points
(very, very small marbles), a single point is mathematically defined
as occupying a dimension of zero. As soon as a second point is
introduced to the system, it must be separated by a finite distance
from the first point. The line connecting the two points forms
a line which resides in a dimension of 1. Sliding the horizontal
line vertically defines a square (or rectangle) which lives in a two-
dimensional plane (flat or curved). Shifting the square forms a
cube or rectangular box which exists in three-dimensional space.
Movement of the cube perpendicular to the three orthogonal axes
forms a hypercube or tesseract which cannot be drawn because
it exits in four-dimensional space. In this type of metric space or
Riemann space, the dimensions are integers with no upper limit
(0, 1, 2, 3, 4, etc.). The higher the dimension the more complex is
the system that can be represented. Note that a three-dimensional
system moving in time (a dimension itself) requires four variables
to locate the system or object.

One definition of system complexity relates to the number of
interacting variables present: the more the variables, the higher
the complexity. And the higher the complexity, the greater must

FIGURE 2 | Pathway of a transient trajectory of a dynamical system
enroute to its stable singularity. Public source: http://en.wikipedia.org/
wiki/Phase_space

FIGURE 3 | Representation of N dimensions arising from points
moving in orthogonal directions. Adapted from public source:
http://en.wikipedia.org/wiki/Dimension

be the dimensionality of the system. Thus systems have dimen-
sions that can be captured by embedding methods. For example,
one can compute the distance between sub-states of the system by
defining the Euclidean distance between vectors of the system. The
trick is to be sure that the system is being studied in the dimension
in which it resides, less it be under-represented topologically as
it were. To study a three-dimensional ball in two-dimensions, a
plane can cut through the object and results in a circle of vary-
ing radius depending upon where the slice is made. Conversely,
to study a three-dimensional ball in four-dimensions adds no new
information, but is merely a waste of computational effort. System
information is maximized in the dimension in which the system
lives.

There are various ways to estimate the dimension of a dynam-
ical system, but there are two cautions to remember. First, mea-
surement of dimensionality depends upon the system being in
some kind of homeostatic steady state. This is practically realized
for mathematical systems, but not necessarily biological systems.
Second, the algorithms employed for the estimation of dimension-
ality, lose their efficiency as fast as the dimension being estimated
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increases. This is known supposedly as “the curse of dimension-
ality” in which only the lower dimensions can be measured with
confidence (Parker and Chua, 1989). Third, the presence of real-
world noise inflates the dimension being measured. This is not a
problem for mathematical systems in which there is no noise (save
digital noise), but the more the noise present the greater the real
dimension of the system gets inflated. The reason for this is that
no dimension exists that can completely capture the full dynamic
of pure stochastic noise.

With the introduction of low-dimensional chaos (Lorenz,
1963) and fractal structures (Mandelbrot, 1983) it became fashion-
able to hypothesize that the complexity of biological systems could
be explained by few-variable systems operating in low dimen-
sions. But since the number of quasi-steady state experimental
points required to estimate the system dimension is 10∧dimension,
dimensions greater than six are impractical to measure and inac-
curate to report. But one surprise from fractal structures was the
discovery that dimensions need not be integers. Rather dimen-
sions can be fractions (non-integers; Grassberger and Procaccia,
1983).

DIFFERENTIAL FLOWS AND DIFFERENCE MAPS
Time-varying (or space varying) systems in the real-world are
smooth and continuous insofar that the distance from point to
point is vanishingly small. Electrical analog systems best represent
such continuous and smooth signals as measured as AC voltage
waves from wall sockets (American: 110 V sinusoid at 60 Hz). But
we live in an artificial digital world where reality is discretized
into steps that are significantly larger than the vanishingly small
limit in calculus. The higher the digitization frequency, the higher
is the fidelity of reproduction. But magnification (amplification)
of these signals always reveals the tell-tale steps of these artificial
reproductions of reality.

These comments are made from a purist standpoint. However,
it seems fair to declare a digitized system as continuous if (and only
if) the signal is sampled at least 10 times faster than the fastest fre-
quency within that signal. Here these quasi-smooth signals are
considered to be flows, dynamical flows of the combined system
variables interacting. For example, as a fly navigates a room (true
continuous flow), high-frequency stroboscopic “stopping” of the
motion faithfully captures the trajectory (fictive continuous flow).
There is a caution here. The fair assumption above is disrupted
when surprise events occur within the dynamic. No theory of max-
imal digitization frequency will suffice and the sampling theorem
of Henry Nyquist (1889–1976) is violated (Nyquist, 1924).

Another way of describing a system is to divide the continuous
flow into intervals. This is particularly easy if the signal possess a
stereotypic marker which can serve as triggers to end one inter-
val and start another. Thus, interspike intervals (ISIs) are easily
computed from neuronal spike trains. Likewise, R-wave to R-wave
intervals (RRIs) are easily computed from the PQRST flows of
the English electrocardiogram (ECG) or German elektrokardio-
gramm (EKG). In general, whether or not there are distinctive
features in the time series, difference maps can still be generated by
defining a barrier that is one dimension below that of the system.
Mathematically these difference maps are called Poincaré sections
(Rasband, 1990) named after the French mathematician Henri

Poincaré (1854–1912) who contributed so much to non-linear
dynamics (before the invention of the computer). Figure 4 illus-
trates the formation a two-dimensional Poincaré section from a
smooth and continuous three-dimensional flow. Every time the
dynamical flow crosses the two-dimensional surface (S), differ-
ence points are plotted on the surface. If the points in the Poincaré
section form patterns, there are deterministic rules in place gov-
erning (steering) the dynamic. In this case, the next point P(i+ 1)
becomes a function of the previous point P(i). Such maps can
diagnose simple periodicities (single point), multi-stable systems
(multiple points), and chaotic trajectories (fractal points). How-
ever, if the flow is stochastic (white noise) the Poincaré section will
display points in random patterns without structure, implying that
no determinist rules are in place.

TERMINAL DYNAMICS
Many smooth and continuous mathematical functions are con-
tinuously differentiable and possess unique solutions of the Lip-
schitz type named after German mathematician, Rudolf Lipschitz
(1832–1903). Other smooth and continuous mathematical func-
tions are not continuously differentiable, have multiple solutions
of the non-Lipschitz type, and are strictly non-deterministic and
non-reversible in time (or space). Possible trajectories of one non-
deterministic system is schematized in Figure 5. Starting at time
zero (t 0), f(x) is greater than 0 and the trajectory decays toward the
horizontal axis. When the trajectory reaches this axis (t e), instead
of continuing through a single point to the region of negative val-
ues (as a Lipschitz type system would do), it is extinguished (halts).
Mathematically, when f(x)= 0 all dynamic motion ceases and the
system is rendered non-Lipschitzian. The only way for the system
to be kicked back into action is for infinitesimal noise to jitter the
system off of this singularity, forcing f(x) 6= 0. Since this dynam-
ical action restart can happen at any time following the start of

FIGURE 4 | Example of how a Poincaré section reduces the
dimensionality of a dynamical system. Public source:
http://en.wikipedia.org/wiki/File:Poincare_map.svg
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FIGURE 5 | Schematic of terminal dynamic with multiple trajectory
selections. Adapted from Figure 24.8 of Zbilut et al. (1996).

the singularity, the solutions to the equation become numerous
and variable, initiating new trajectories (1, 2, or 3) where f(x) is
non-zero at different times (t 1, t 2, t 3, respectively). This trajec-
tory selection is unique, flows with the direction of time, and is
non-reversible through the singularity.

There are many real-world examples of non-deterministic sys-
tems which possess alternating deterministic trajectories and sto-
chastic pauses. For example: jet aircraft land and pause at the
gate before taking off again; pauses interrupt arm extensions and
flexions; flatline isopotentials are recorded in the normal ECG
between T -wave repolarizations and P-wave excitations; and the
active running of ants is punctuated by stationary pauses. To best
way to model such systems would be to describe the dynamical
trajectories with differential equations interspersed with realis-
tic (and stochastic) pauses between trajectories (system stop or
pause).

RECURRENCE PLOTS
AUTO RECURRENCES (IMPLEMENTED BY PROGRAM RQD)
Recurrence is a theoretical mathematical concept that has practi-
cal utility in the real-world. Events can recur in time; places can be
revised in space. For starters, take a time series, any digitized time
series, which is by definition a linear vector of N points. Form two
identical copies of this vector calling the first Vi and the second
Vj. Compare each point in vector Vi with every point in vector
Vj and compute the distance between them by taking the absolute
differences between paired scalars according to this formula.[

Dij
]
=

∣∣(Di − Dj
)∣∣ for i = 1 to N and j = 1 to N (1)

This calculation will generate an [Ni, Nj] square matrix called
the distance matrix with N ×N elements. Plotting the distances
at each Vi, Vj coordinate produces an unthresholded recurrence
plot which can be color coded. A ubiquitous line of identity (LOI)
forms a central diagonal where i and j scalars are always identical
(distances of 0). Likewise, the distances are exactly symmetrical to
around this LOI since the distance from point i to point j is the
necessarily the same as the distance from point j to point i. Figure 6
(left) plots an unthresholded (global) recurrence plot that is color

FIGURE 6 | Global (left) and local (right) recurrence plots of monthly
sun spot activity from May 1874 to September 2005 (131 years,
5 months) obtained from the Royal Greenwich Observatory. Twelve
cycles of 11 years each are duplicated as time series beneath the
recurrence plots. With a delay of 1 and embedding dimension of 1, the
distance matrices are scaled from 0 to 100%. With the threshold set to
100% (left) the entire matrix is plotted in 10 different colors representing
10% steps (saturated, unthresholded recurrence plot). With the threshold
set to 1% (right) only a fraction of the first step is plotted in a single color
(sparse, thresholded recurrence plot).

coded by distance (from blue= 0–10% to red= 90–100%). It can
be noted that the dark blue rectangles in the recurrence plot cor-
respond to the nadirs in the sun spot activities, but that the red
recurrent points line up with the largest peak in sun spot activity.

To generate a sparse recurrence matrix, the distance matrix
must be thresholded. The formula for the recurrence matrix is
given below where the epsilon threshold (ε) is some fraction of
the maximum distance in the distance matrix and theta (Θ) is the
Heaviside function that replaces the distance matrix with either 1
for distances below threshold (close or recurrent points) or 0 for
distances above threshold (distant or non-recurrent points).

Ri, j := Θ
(
εi −

∣∣xi − xj
∣∣) , i, j = 1, . . . N (2)

Distance matrix thresholding is demonstrated in Figure 6
(right) in which epsilon is set to 10% of the maximum distance.
In this case, only the dark blue recurrent points are plotted, leav-
ing the remainder of the area as white space (above threshold).
Thresholding converts the saturated global recurrence plot (mul-
ticolored, 100% saturated) into a sparse recurrence plot (single
colored, 5.835% saturated).

Typical recurrence plots from very different dynamical systems
are illustrated in Figure 7. The fundamental observation is that
parallel trajectories score as diagonal lines parallel to the central
LOI. Periodic processes score with very long diagonals (panel 1)
whereas deterministic chaotic processes score with short diago-
nals (panel 2). Auto-regressive processes have parallel trajectories
that stack vertically, forming block patterns (panel 3). However, in
the case of stochastic systems where each point in the time series
is time-independent from all other points, recurrence plots lose
these diagonal line structures (panel 4). Thus the key to discover-
ing determinist rules in dynamical systems is to look for diagonal
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FIGURE 7 | Recurrence plots (top) of time series (bottom) including (left to right): tracheal pressure (rodent); pink noise (auto-regressive process of
integrated white noise); Hénon chaotic attractor (x variable); white noise (caesium137 beta decay).

line structures, the length, number, positioning, etc. which convey
insight into the organization of the dynamics.

The examples given above discuss (for simplicity) the recur-
rences between points. However, by implementing embedding
procedures with lag delays between embedded points, it is possible
to cast the dynamic into higher dimensional space. Typically, the
Euclidean norm is used to compute vectors and then the Euclid-
ean distances between all possible vectors are computed. If the
distances fall below a threshold cutoff (epsilon), that vector pair is
said to be recurrent. To find the proper embedding dimension, it is
recommended to use the false nearest neighbor approach (Kennel
et al., 1992). It is always better to overestimate the ideal embed-
ding dimension than underestimate it so that the full dynamic
can be captured in its proper dimension (as opposed to a projec-
tion to a lower-dimensional wall as it were). Then for embedding
dimensions greater than 1, the proper time delay between embed-
ded points must be found. This can be determined by looking
at the first minimum in the autocorrelation function or the first
minimum in the mutual information function (Fraser and Swiney,
1986). Typically, lag or delay values are greater than one for smooth
flows. However, for discrete intervals (Poincaré sections of flows),
lags of one works just fine.

CROSS RECURRENCES (IMPLEMENTED BY PROGRAM KRQD)
As discussed, auto recurrence looks for parallel trajectories within
a single time series. Likewise, cross recurrence looks for parallel
trajectories between two time series. As explained in the equation
below, the distances between all vectors pairs, xi and yj are com-
puted and thresholded to form a recurrence matrix. In this case
the LOI and symmetry across the central diagonal are both lost if
xi and yj vectors are different. There are practical implementation
rules for computing cross recurrence plots (Webber, 2012). First,
both signals must be digitized simultaneously at the same digiti-
zation rate. Second, both signals must be amplitude adjusted over
the same range (e.g., the unit interval from 0 to 1) to minimize
the distance between parallel but separated trajectories. Third, the
signals must be smooth flows, not discrete intervals. Fourth, the
lag intervals should be set to 1. Cross recurrence plots are use-
ful in separating out events in one signal that lead, lag, or occur
simultaneously with the second signal.

Ri, j := Θ
(
εi −

∣∣xi − yj
∣∣) , i, j = 1, . . . N (3)

FIGURE 8 | Cross recurrence plot (left) and joint recurrence plot (right)
of a fluid-coupled system consisting of an independent sinusoidal
driver (upper trace) and dependent coupled rotor (lower trace).

Shockley et al. (2002) performed coupled-oscillator experi-
ments on a fluid dynamical system. A gravity-driven rotor was
freely spun within a tray filled with a fluid of selectable viscosity
(low, medium, or high). Then the tray was pushed and pulled hori-
zontally by a sinusoidal driver motor system. As shown in Figure 8
(left) for a high viscosity medium, the sinusoidal motion of the
driver tray distorted the motion of the rotor (lower two traces).
The non-linear coupling of the rotor to the driver was then stud-
ied by cross recurrence plots which in this case shows the high
degree of non-linearity along deterministic squiggles which form
crossing patterns (due to the embedding dimension being selected
as 1).

JOINT RECURRENCES (IMPLEMENTED BY PROGRAM JRQD)
The concept of joint recurrences is different from that of cross
recurrences (Marwan et al., 2007). That is, instead of looking
for parallel trajectories between two time series, joint recurrences
look for recurrent points common to the auto recurrence plots of
each signal separately. By this means joint recurrences can detect
direction of phase synchronizations. Joint recurrence plots are
expressed mathematically as the intersection of two individual
auto recurrence plots of separate time series, x and y. It is advised
that recurrence parameters be selected the same for each time
series, but this is not absolutely necessary theoretically. The utility
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of joint recurrence plots awaits further exploration.

Ri, j :=
[
Θ

(
εi −

∣∣xi − xj
∣∣)] ∩ [

Θ
(
εi −

∣∣yi − yj
∣∣)]

i, j = 1, . . . N (4)

Returning to the coupled-oscillator experiments of Shockley
et al. (2002), the coupling of rotor to driver were reexamined by
joint recurrence plots. In this case, Figure 8 (right) shows the high
degree of linearity along deterministic lines with bulges at peri-
odic intervals. Taken together, this simple example highlights how
joint-recurrences and cross recurrences are two different ways in
which coupled system variables can be studied. (More work is
required in this area.)

RECURRENCE QUANTIFICATIONS
The recurrence plot when first reported was heralded as a math-
ematical tool for revealing hidden rhythms within complex time
series (Eckmann et al., 1987). And so it is. But it soon became
apparent that recurrence plots had two inherent difficulties. First,
there were numerous recurrence parameters that needed to be
set logically to match the data set under investigation. These
parameters included the threshold radius, embedding dimension,
time delay between embedded points, selection of the distance
norm (max, min, or Euclidean norm), rescaling of the distance
matrix, a parameter that defined the shortest number of recurrent
points forming a line segment (typically two), and the size of the
recurrence window) short, medium, long. The author has writ-
ten extensively on how to select recurrence parameters elsewhere
(Webber and Zbilut, 2005).

The second difficulty with recurrence plots was the plots them-
selves. That is, how are the intricate and beautiful patterns to
be interpreted? Instead of reading into recurrence plots patterns
unique to the observer (I see a canoe in the clouds, you see
a banana), recurrence quantification were born to extract from
recurrence plots different aspects of the plots. To date there are
eight unique features that are extracted from recurrence plots
according to strict mathematical definitions. These recurrence
variables, as they are called, include percent recurrence (recur-
rence density or recurrence rate), percent determinism (portion
of recurrent points aligning into diagonal lines), dmax (length
of longest diagonal line), Shannon entropy (complexity of line
structure distributions), trend (homogeneity or inhomogeneity of
recurrent points over plot), percent laminarity (portion of recur-
rence points aligning into vertical lines), vmax (length of longest
vertical line), and trapping time (average vertical line length). The
strict mathematical definition of these variables can be found else-
where (Webber and Zbilut, 2007; Webber et al., 2011). The idea
is that from a single time series (with auto recurrence plots) or
double time series (with cross or joint recurrence plots) multiple
reporters of the embedded dynamic are produced. It is the differ-
ential sensitivities of these recurrence variables depending upon
the system under study that render RQA as a sensitive non-linear,
multidimensional tool for exploring the so-called hidden rhythms
in complicated signals. The beauty of this analysis is that no mod-
eling assumptions on the time series are required, no statistical
distributions are excluded, inherent noise in the signal does not
stymy the analysis since the threshold is adjustable, short data sets

(n= 30) can yield useful data, and outliers need not be dropped,
clipped, substituted, or replaced.

MATHEMATICAL FRACTALS
FRACTALS AND RECURRENCE STRUCTURES
There is a natural linkage between fractals and recurrence. By def-
inition, fractals are self-similar structures observed repeatedly or
recurrently at different scales of magnitude. The natural world
is filled with fractal examples such as mountains, clouds, trees.
Thus small trigs from real trees conveniently pass as surrogates
for full trees on HO train layouts. In physiology, the lungs form
a fractal branching pattern from trachea to terminal alveoli with
23–27 branched generations. This fractal form minimizes the dead
space volume of the conducting pathways (airways without alve-
oli), delivers oxygenated air quickly to the live space (airways with
alveoli), and packs the entire lung within the thoracic space yet
provide a huge surface area for gas exchange (70 m2). Likewise,
the human circulatory system starting with the large single aorta
(2.5 cm diameter) branches numerous times to finally form the
millions of tiny systemic capillaries (7 µm diameter), only to col-
lect them again from venules to vena cava and to repeat (recur) the
process once again in the pulmonary circuit flowing through the
lungs. The bronchiolar tree for air flow is also fractal and amenable
to fractal modeling (Canals et al., 2004).

The theoretical study of fractals comes from the field of math-
ematics. Unlike natural fractals which have fundamental limits or
minima (e.g., patent alveoli cannot be smaller than 100 µm and
capillaries with blood flow cannot be smaller than 5 µm), math-
ematical fractals are infinitely deep and unbounded. From the
study of mathematical fractals comes the concept of self-similarity
in which graphical depictions of systems at deep levels reveals
(reflects, recurs) images of larger parent structures magnitudes of
scales distant. And these are not simple structures of geometric
forms, but complex structures of lace-like beauty waiting to be
discovered using the computer as a digital microscope.

Mandelbrot (1924–2010) is the father of fractal geometry. He is
famous for asking the question,“How long is the coast of Britain?”
(Mandelbrot, 1967). The answer to this question is, surprisingly,
the cumulative length depends upon the length of the measur-
ing ruler! That is, the shorter the ruler, the longer is the measured
length. The longest total length would be the integral of the bound-
ary taken to the infinitesimal limit. The conclusion is that the
quantitative description of structures is scale dependent. Because
of this fact, Mandelbrot was able to construct artificial worlds
from algorithmic computations on the computer that could pass
as actual geography in the real-world. It is not overstating the sit-
uation to affirm that our natural world is not as geometric as it is
fractal in design.

What follows are detailed descriptions of five mathematical
fractals, the dynamics of which can be studied by recurrence strate-
gies. The first two fractal systems are continuous flows, and the
remaining three fractal systems are discontinuous maps. Suffi-
cient information will be provided to allow the reader to study the
dynamics of these fractals in detail. More questions will be raised
than answered, but the intent of the author is to simulate further
research into this fascinating field linking mathematical fractals
with recurrence plots and quantifications. The methodology is
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fully applicable to fractal biological systems (Bassingthwaighte
et al., 1994) which are not addressed herein because of space
constraints.

LORENZ ATTRACTOR
Edward Lorenz (1917–2008) was an American mathematician and
meteorologist who studied a simplified model of atmospheric
convection using three ordinary differential equations. The way
air swirled around the overhead atmosphere depended on three
parameters (a, b, c) which dictated the interaction of three strongly
coupled variables (x, y, z) as defined below.

dx
/

dt = a ×
(
y − x

)
(5)

dy
/

dt = −b × x − y − x × z (6)

dz
/

dt = −c × z + x × y (7)

where:
a= 10 (ratio of the fluid viscosity of a substance to its thermal

conductivity).
b= 28 (difference in temperature between the top and bottom

of the gaseous system).
c = 8/3 (width to height ratio of the box being used to hold the

gaseous system).
and
x = rate of rotation of convection cylinder.
y = temperature differential at opposite sides of the cylinder.
z = deviation of the system from a linear, vertical graphed line

representing temperature.
Mathematical solution of the system of Lorenz equations results

in a three-dimensional structure known as a dynamical attractor.
Dynamical motion is captured on the single trajectory forming
the attractor, but other negative spaces are devoid of legal trajec-
tory pathways. The contrast between the presence and absence of
trajectory pathways gives shape to the attractor which appears like
the wings of a butterfly (with asymmetric donut holes) as shown
in Figure 9.

What is remarkable about the Lorenz attractor (and conse-
quently a fundamental principle of chaotic dynamics) is that not
only can rich dynamics be continued within and expressed by sim-
ple non-linear systems (e.g., consisting of a mere three variables),
but that the single dynamical trajectory shows sensitive depen-
dence on initial conditions. What this means is that by just altering
the initial conditions of just one variable by a smidgeon (non-
mathematical term) will lead to two different trajectories over
time. For example, if variables x1 and x2 differ numerically by just
10−5 (x1= 0.10000 and x2= 0.10001), everything else remaining
exactly the same, then the pathways will eventually diverge. Such
extreme sensitivity of chaotic systems to initial conditions has been
called the “butterfly effect” in honor of insect shape of the Lorenz
attractor.

To study the recurrence structure of the Lorenz system, the
three system variables can be followed over time by solving the

FIGURE 9 |The Lorenz strange attractor in its chaotic mode. Public
source: http://en.wikipedia.org/wiki/Lorenz_system

three ordinary differential equations using standard fourth-order
Runge–Kutta estimations. Initial conditions can be set as vari-
ables x = y = z = 0.1 using fixed parameters a= 10, b= 28, and
c = 8/3. The first points of the three-dimensional trajectory can
be retained to follow the transients (off-attractor dynamics) before
the dynamic settles on the attractor proper. The higher the time
increment (e.g., dt = 0.01), the longer will be the transient. The
Lorenz attractor can be viewed in the x,y plane (two paper plates),
the x,z plane (butterfly), and the y,z plane (owl mask) which are
projections of the three-dimensional object.

Since the Lorenz attractor is a three-dimensional structure,
auto recurrence plots can be generated on any one of the vari-
ables. Selecting an embedding dimension of 3 will suffice because
the dimension of this attractor is fractal between 2 and 3. And
any two variables can be paired to generate cross recurrence plots
(KRQD x y ; KRQD x z ; KRQD y z) or joint recurrent plots (JRQD
x y ; JRQD x z ; JRQD y z). See Webber (2012) for free RQA
software and detailed explanations of proper implementation
procedures.

RÖSSLER ATTRACTOR
Otto Rössler (1940–present) is a German biochemist responsible
for the mathematical attractor that bears his name. The Rössler
attractor is similar to the Lorenz attractor and consists of three
coupled differential equations. Insofar that the first two equations
are linear, the Rössler attractor turns out to be simpler than the
Lorenz attractor and easier to analyze.

dx
/

dt = −y − z (8)

dy
/

dt = x + a × y (9)
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FIGURE 10 |The Rössler strange attractor in its chaotic mode. Public
source: http://en.wikipedia.org/wiki/R%C3%B6ssler_attractor

dz
/

dt = b + z × (x − c) (10)

where:
a= 0.2, b= 0.2, and c = 5.7.
As shown in Figure 10, the Rössler attractor is a three-

dimensional chaotic attractor, with unstable spiral orbits in the
x,y plane that grow up into the z plane. The system has only
one manifold and is fractal in nature. Like the Lorenz attractor,
the Rössler attractor demonstrates sensitive dependence on initial
conditions, the hallmark of chaos, and fracticality.

To study the recurrence structure of the Rössler system, the
three system variables can followed over time by solving the
three ordinary differential equations using a standard fourth-
order Runge–Kutta estimation. For example, starting conditions
can begin with variables x = y = z = 0.1 using fixed parameters
a= 0.2, b= 0.2, and c = 5.7. Again the initial points the three-
dimensional trajectory (transient or off-attractor dynamics) can
be studied as can the following points (stable or on-attractor
dynamics) using a high resolution time increment of dt = 0.01.
The x, y, and z variables can be examined using recurrence plots
and quantifications.

As can be demonstrated for the Lorenz attractor, the Rössler
attractor can be shown to possess steady state,periodic, and chaotic
dynamics depending up the value of the b parameter. As parame-
ter b decreases from 2 to about 1.44, the x variable settles on
single point attractors. With further decreases in parameter b, the
x variable falls into a period-2 then period-4, then period-8 sta-
ble periodic states until full chaos erupts with b values less than
0.7. There are brief periodic windows embedded within chaotic
regimes for lower values of b approaching 0. But at b= 0.2 as

is the typical choice, the Rössler attractor is in a strong chaotic
mode.

LOGISTIC ATTRACTOR
Robert May (1938–present) called attention to the logistic map
(May, 1976). This deceptively simple difference equation illus-
trates how complex dynamics can arise from non-linear recurrent
interactions of a single variable. In this case, the next x is a function
of the current x2 term.

Xn+1 = a × Xn × (1− Xn) (11)

where:
a= 0–4 and 0≤ x ≤ 1.
As illustrated in Figure 11, the logistic map forms a “Saint

Louis Arch” in the second dimension (Figure 11A) and a “roller
coaster” in the third dimension (Figure 11B). Interestingly, as tun-
ing parameter a is increased from 0 to 4, the dynamics of x follows a
period-doubling pathway to chaos. Trulla et al. (1996) investigated
these dynamics with RQA windows by adiabatically increment-
ing parameter a. Transitions between periodicity and chaoticity
were easily distinguished by RQA variables, particularly DET and
LMAX. In fact, 1/LMAX values positively correlated with Lya-
punov exponents in the chaotic frames, confirming the postulate
of Eckmann et al. (1987).

The principle difference between the Logistic attractor and the
Lorenz and Rössler attractors is that it is an iterated map, not a con-
tinuous flow. Because sequential points are iterated, they resemble
Poincaré sections not unlike how R–R intervals represent planes
through the ECG flow dynamic. In any case, it is proper to select a
delay of one point when dealing with iterated dynamics (difference
equations as opposed to differential equations).

HÉNON ATTRACTOR
Another excellent example of an iterated map is the Hénon attrac-
tor named after French mathematician, Michel Hénon (1931–
present). As explicitly defined in the equations below, this system
consists of the interplay between x and y variables interlinked
through two parameters, a and b, and a single constant, 1. The
non-linearity of this two-dimensional system derives again from
the x2 term.

Xn+1 = yn + 1− a × X 2
n (12)

Yn+1 + b × Xn (13)

where:
a= 1.4 and b= 0.3.
The plane plot of the coupled x,y variables reveals the dou-

ble crescent shape of the Hénon attractor as shown in Figure 12.
Dark points show allowed positions of the dynamic, and white
space reveals disallowed positions never part of the stable dynamic.
Transients can be studied by examining the x,y variables starting
at randomly selected initial conditions for x0, y0. The fracticality
of the Hénon attractor can be demonstrated by focusing in on one
of the single arms of the double crescent (magnify the scale) and
discovering yet another double-banded structure. This unveiling
of bands after band continues to infinity!
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FIGURE 11 |The Logistic map in two-dimensions (A) and three-dimensions (B). Public source: http://en.wikipedia.org/wiki/File:Logistic_map_scatterplots_
large.png

FIGURE 12 |The Hénon strange attractor in its chaotic mode. Adapted
from public source: http://en.wikipedia.org/wiki/H%C3%A9non_map

It is very instructive to study the dynamics of the Hénon attrac-
tor by following the time courses of x, y individually and coupled in
both the chaotic and periodic modes of the system. To get started,
hints can be gleaned from Webber and Zbilut (1998).

MANDELBROT ATTRACTOR
Mandelbrot has already been introduced above as the father of
fractal geometry. However, most interesting and beautiful is the
mathematical set named after him. The Mandelbrot set is a flat
structure with infinitely deep fractal patterns that lives in the com-
plex plane. The intriguing and early book, The Beauty of Fractals,
by Peitgen and Richter (1986) captures much of the essence of
the Mandelbrot Set which stems from the simple iteration of the

complex equation consisting of one complex variable, z, and one
complex constant, c. The non-linear chaotic dynamics of this equa-
tion grows out of the complex and real parts of both the variable z
(z real, z imaginary) and the constant c (c real, c imaginary), the
former of which is squared according to the following equation.

zn+1 = z2
n + c (14)

The Mandelbrot set (M set) is a black and white set meaning
that complex point c either belongs to the M set (black) or does
not belong to the M set (white). To keep things simple, the equa-
tion can be implemented by setting both z real and z imaginary to
zero and setting c real from −2 to +1 and c imaginary from −1
to +1. Iteration of the equation will alter the z variable to either
some type of converging dynamic (period 1, 2, 4, 8, etc. or chaotic)
or diverging dynamic (tending toward infinity). If the system con-
verges then constant c is a member of the M set and can be plotted
as a black point on the complex plane of c imaginary versus c real.
If the system fails to converge than constant c is a not a member
of the M set as is plotted as a contrasting white point. The M set is
illustrated in Figure 13 in which characteristic cardioids are seen
at both low and high magnifications, demonstrating the fractal
structuring of the set. Mandelbrot conjectured that his set was dis-
continuous, meaning the some white space interspersed between
points of the set. But Douady and Hubbard (1984/1985) proved
that the M set was truly continuous. To visualize the continuity of
the set requires high resolution computer graphics.

To illustrate recurrence properties of the M set, formula 14
was iterated 1000 times using as initial conditions: z real= 0.0,
z imag= 0.0, c real=−0.75, and c imag= 0.005. In the c plane this
is positioned deep within the seahorse valley, the gap between the
large cardioid to the right and smaller circle to the left (Figure 13,
left). The question is, is this specific point a member of the M set or
not? In this case, variable z was iterated 632 times before it started
going toward infinity. Thus complex point c is not a member of
the M set, but still it took many iterations to determine this.

www.frontiersin.org October 2012 | Volume 3 | Article 382 | 123

http://en.wikipedia.org/wiki/File:Logistic_map_scatterplots_large.png
http://en.wikipedia.org/wiki/File:Logistic_map_scatterplots_large.png
http://en.wikipedia.org/wiki/H%C3%A9non_map
http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Webber RQA of fractal structures

FIGURE 13 | Mandelbrot set low resolution (left) and high resolution (right). Public source: http://en.wikipedia.org/wiki/File:Mandel_zoom
_00_mandelbrot_set.jpg

The dynamics of z real and z imag were studied individually by
generating their respective recurrence plots as shown in Figure 14.
Using a delay of one, embedding of five, no rescaling of the dis-
tance matrix, and absolute radius of 0.01 and color steps of 0.001
(dark blue to purple). It can be noted that z real shows a gen-
tle decrescendo in terms of amplitude whereas z imag displays a
gradual crescendo. Nevertheless, after 632 iterations the system
explodes toward infinity. Thus imaginary point c is very close to
the M set border, but never touches it.

The reader is challenged to study other transient dynamics of
the complex z variable as it moves from 0.0 to either a steady
state dynamic or a non-steady state dynamic depending upon the
value of complex parameter c. The most complicated and most
interesting dynamics are seen at the borders at very high magnifi-
cations deep within the M set. In these places the c parameter is
taken out to the sixth decimal point or finer causing the z vari-
able to go through hundreds of iterations before it diverges or
converges. Here the user can examine z real and z imaginary vari-
ables either individually or coupled using recurrence programs.
No space remains in this paper to carry this out, so the reader
should take it as an assignment to discover the rich dynamics of
the iterated equation in which are hidden all the exquisite beauty
of the M set.

CONCLUSION
In this communication we have moved from (1) conceptual def-
initions of systems to (2) simple overview themes of recurrence
quantifications for analysis of non-linear (and linear) systems to
(3) practical implementation of recurrence analyses on systems of
common fractals. By design (space limitations notwithstanding)
much work has been left to the reader for study fractals on his/her
own by combining these conceptual and practical ideas. For the
experienced RQA user, it will be easy to move into the mathemati-
cal fractal world using recurrence strategies. For the new RQA user,
it will be absolutely necessary to first read the long chapter (mono-
graph) written by the author to learn the proper procedures for
setting RQA parameters and interpreting RQA variables (Webber
and Zbilut, 2005). Learning by doing is always the best teacher.

Deemphasized in this chapter is the specific application
of recurrence plots and quantifications to real-world systems

FIGURE 14 | Recurrence plot of z real (left) and z imag (right) scaled from
point 1 to point 629 or the 633-point time series (lower traces). The
system diverges toward infinity at the end of the each series, but the
dynamics of the real and imaginary components are rather different.

found in physics, chemistry, biology, and medicine, for exam-
ple. The author has already addressed these things elsewhere
(Webber and Zbilut, 2005). The value of this present chap-
ter is to identify fractals as mathematical systems which pos-
sess deep-rooted complexity and repeating structures at different
magnification scales. In this sense they become analogies for
real-world systems which possess many of the same properties.
Whether a system be mathematical or material, it is governed
by dynamical rules which define boundaries, fuzzy or sharp,
depending upon the state of the system (quasi-steady state or
transient), and the presence of noise (numerical round-off or
environmental).

The big idea of this chapter is that dynamical rules in com-
plex, non-linear systems can be ferreted out as it were, by
applying recurrence analyses to dynamical time series. Embed-
ding procedures allow measured variables to serve as surro-
gates for unmeasured variables (Webber and Zbilut, 2005). The
reader is challenged to apply RQA to systems of their choice.
We live in a fractal world, nay fractal universe. And recur-
rence analysis is one way to delve into the mysteries which lie
before us.
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Physiological signals often are highly non-stationary (i.e., mean and variance change with
time) and multiscaled (i.e., dependent on the spatial or temporal interval lengths). They
may exhibit different behaviors, such as non-linearity, sensitive dependence on small dis-
turbances, long memory, and extreme variations. Such data have been accumulating in all
areas of health sciences and rapid analysis can serve quality testing, physician assessment,
and patient diagnosis.To support patient care, it is very desirable to characterize the different
signal behaviors on a wide range of scales simultaneously.The Scale-Dependent Lyapunov
Exponent (SDLE) is capable of such a fundamental task. In particular, SDLE can readily
characterize all known types of signal data, including deterministic chaos, noisy chaos, ran-
dom 1/f α processes, stochastic limit cycles, among others. SDLE also has some unique
capabilities that are not shared by other methods, such as detecting fractal structures from
non-stationary data and detecting intermittent chaos. In this article, we describe SDLE
in such a way that it can be readily understood and implemented by non-mathematically
oriented researchers, develop a SDLE-based consistent, unifying theory for the multiscale
analysis, and demonstrate the power of SDLE on analysis of heart-rate variability (HRV)
data to detect congestive heart failure and analysis of electroencephalography (EEG) data
to detect seizures.
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1. INTRODUCTION
Complex systems, such as physiological systems, usually are com-
prised of multiple subsystems that exhibit both highly non-linear
deterministic, as well as, random characteristics, and are regulated
hierarchically. These systems generate signals that exhibit complex
characteristics such as sensitive dependence on small disturbances,
long memory, extreme variations, and non-stationarity (i.e., mean
and variance change with time). Examples of such signals in phys-
iology are abundant (Bassingthwaighte et al., 1994). An example
of heart-rate variability (HRV) data for a normal young subject
(Physionet, 2011) is shown in Figure 1. Evidently, the signal is
highly non-stationary and multiscaled (i.e., dependent on the spa-
tial or temporal interval lengths), appearing oscillatory for some
period of time (Figures 1B,D), and then varying as a 1/f process
for another period of time (Figures 1C,E).

While the multiscale nature of signals such as shown in Figure 1
cannot be fully characterized by existing methods, the non-
stationarity of the data is even more troublesome, because it
prevents direct application of spectral analysis, or methods based
on chaos theory and random fractal theory. For example, in order
to reveal that the HRV data is of 1/f nature (Akselrod et al.,
1981; Kobayashi and Musha, 1982) with anti-persistent long-range
correlations (i.e., algebraically decaying autocorrelation function;

Peng et al., 1993; Ashkenazy et al., 2001) and multifractality (i.e.,
multiple power-law behavior; Ivanov et al., 1999), time series such
as shown in Figure 1A has to be pre-processed to remove compo-
nents (such as the oscillatory ones) that do not conform to fractal
scaling analysis. However, automated segmentation of complex
biological signals to remove undesired components is a significant
open problem, since it is closely related to the challenging task of
accurately detecting transitions from normal to abnormal states
in physiological data.

Rapid accumulation of complex data in all areas of natural and
health sciences has made it increasingly important to be able to
analyze multiscale and non-stationary data. Since multiscale sig-
nals behave differently, depending upon the temporal and spatial
scale at which the data are examined, it is of fundamental impor-
tance to develop measures that explicitly incorporate the concept
of scale so that different data behaviors on varying scales can be
simultaneously characterized.

Straightforward multiscale analysis include short-time Fourier
transform based time-frequency analysis, wavelet analysis (Strang
and Nguyen, 1997; Mallat, 2008), and time-domain adaptive fil-
tering (Gao et al., 2011b; Tung et al., 2011). Multiscale analysis can
also be based on chaos theory and random fractal theory (Gao
et al., 2007). In many instances, the latter two theories are more
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FIGURE 1 | Non-stationarity in HRV data: (A)The HRV data for a normal subject; (B,C) the segments of signals indicated as A and B in (A); (D,E) power

spectral density E (f ) vs. frequency f for the signals shown in (B,C).

appealing, since measures from chaos or fractal theories can be
associated with the complexity of the signal and the underlying
physiological system, and thus can stimulate researchers to ask
whether the complexity of the signal may change when certain
pathology of the physiological system progresses, and if so, how.
Indeed, they have been used extensively in physiology (Goldberger
and West, 1987; Kaplan and Goldberger, 1991; Garfinkel et al.,
1992; Peng et al., 1993; Bassingthwaighte et al., 1994; Fortrat et al.,
1997; Ivanov et al., 1999; Kaneko and Tsuda, 2000; Ashkenazy et al.,
2001; Gao et al., 2007, 2011b).

The key element of random fractal theory is scale-invariance,
i.e., the statistical behavior of the signal is independent of a spa-
tial or temporal interval length. With scale-invariance, only one
or a few parameters are sufficient to describe the complexity of
the signal across a wide range of scales where the fractal scal-
ing laws hold. Because of the small number of parameters, fractal
analyses are among the most parsimonious multiscale approaches.
Chaos theory also provides a few multiscale approaches, including
ε-entropy (Gaspard and Wang, 1993; where entropy is a way of
measuring uncertainty), the finite size Lyapunov exponent (FSLE;
Torcini et al., 1995; Aurell et al., 1996, 1997), multiscale entropy
(MSE; Costa et al., 2005), and the scale-dependent Lyapunov expo-
nent (SDLE; Gao et al., 2006b, 2007). FSLE and SDLE are in
fact closely related – conceptually SDLE is partially inspired by
FSLE. The algorithm for computing SDLE, which is derived from
that for computing time-dependent exponent curves and will be
defined shortly (Gao and Zheng,1993,1994a,b; Gao,1997), is com-
pletely different from that for computing FSLE. This leads to a few
important differences between FSLE and SDLE: (1) FSLE assumes

the underlying dynamics to be divergent, and thus is positive;
SDLE, however, is assumption-free, and therefore, can assume any
value. Consequentially, SDLE possesses a unique scale separation
property, i.e., different types of dynamics manifesting themselves
on different scales. This allows SDLE to readily detect intermittent
chaos and detect fractal structures from non-stationary signals,
while FSLE does not. (2) It is much easier to analytically derive
and numerically verify scaling laws for SDLE than for FSLE for
various types of processes.

In this article, we aim to present SDLE in such a way that it can
be readily understood and implemented by non-mathematically
oriented researchers1. We shall focus on its capabilities that are not
shared by other popular chaos or fractal analysis methods, such
as detecting intermittent chaos, detecting fractal structures from
non-stationary data, and characterizing fractal scaling laws for sto-
chastic limit cycles. We shall also consider detection of epileptic
seizures from electroencephalography (EEG) and certain cardiac
disease from heart-rate variability (HRV) data, for the purposes
of (1) shedding new light on the interpretation of complexity of
physiological data, and (2) illustrating SDLE’s clinical relevance.

The remainder of the paper is organized as follows. In Section
2, we first define SDLE, then apply it to characterize low-
dimensional chaos, noisy chaos, and random 1/fα processes, and
show how SDLE can readily detect intermittent chaos and deal
with non-stationarity. As real world applications, in Section 3,
we apply SDLE to characterize EEG and HRV data for detecting

1Implementation includes two files, sdle.m and lamda.m.
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epileptic seizures and certain cardiac disease. Finally, in Section 4,
we make a few concluding remarks, including a discussion of best
practices for experimental data analysis using the SDLE approach.

2. SDLE: DEFINITIONS AND FUNDAMENTAL PROPERTIES
Chaos theory is a mathematical analysis of irregular behaviors of
complex systems generated by non-linear deterministic (i.e., future
behavior described by the initial conditions) interactions of only a
few degrees of freedom without concern of noise or intrinsic ran-
domness. Random fractal theory, on the other hand, assumes that
the dynamics of the system are inherently random. One of the most
important classes of random fractals is 1/fα processes with long-
range correlations, where 1 < α < 3. Therefore, the foundations
of chaos theory and random fractal theory are entirely different.
Consequentially, different conclusions may be drawn depending
upon which theory is utilized to analyze a data set. In fact, much of
the research in the past has been devoted to determining whether a
complex time series is generated by a chaotic or a random system
(Grassberger and Procaccia, 1983a,b; Wolf et al., 1985; Sugihara
and May, 1990; Kaplan and Glass, 1992; Gao and Zheng, 1994a,b;
Pei and Moss, 1996; Gaspard et al., 1998; Dettmann and Cohen,
2000; Poon and Barahona, 2001; Hu et al., 2005). From past
research, 1/fα processes have distinguished themselves as providing
counter examples that invalidate commonly used tests for chaos
(Osborne and Provenzale, 1989; Provenzale and Osborne, 1991;
Hu et al., 2005). In fact, the two research communities, one favor-
ing chaos theory, the other random fractal theory, often assume
two polar positions, either rarely communicating or constantly
debating with each other as to the applicability of their theories2.
While this classic issue, distinguishing chaos from noise, is still

2This statement is a little over-simplified; singular measure based multifractal theory
can be applied to both deterministic chaos and random processes.

important, the authors believe that chaos and random fractal the-
ories should be used synergistically in order to comprehensively
characterize the behaviors of signals over a wide range of scales.
Based on this belief, we aim to develop a complexity measure that
cannot only effectively distinguish chaos from noise, but also aptly
extract the crucial or the defining parameters of a process gener-
ating the data, be it chaotic or random. SDLE is a measure that has
these capabilities.

SDLE stems from two important concepts, the time-dependent
exponent curves (Gao and Zheng, 1993, 1994a,b; Gao, 1997) and
the finite size Lyapunov exponent (Torcini et al., 1995; Aurell et al.,
1996, 1997). SDLE was first introduced by (Gao et al., 2006b, 2007),
and has been further developed in (Gao et al., 2009, in press) and
applied to characterize EEG (Gao et al., 2011a), HRV (Hu et al.,
2009a, 2010), Earth’s geodynamo (Ryan and Sarson, 2008), and
non-autonomous Boolean chaos (Blakely et al., under review). To
better understand SDLE, it is beneficial to consider an ensemble
forecasting framework. An example is shown in Figure 2, where
we observe that 2500 close by initial conditions rapidly evolve to
fill the entire attractor. A fundamental question is, how do we
characterize such evolutions?

SDLE is a concept derived from a high-dimensional phase
space. Assume that all that is known is a scalar time series
x[n] = x(1), x(2), . . ., x(n). How can we obtain a phase space? This
can be achieved by the time delay embedding technique (Packard
et al., 1980; Takens, 1981; Sauer et al., 1991). This technique is per-
haps the most significant contribution of chaos theory to practical
data analysis, since non-trivial dynamical systems usually involve
many state variables, and therefore, have to be described by a high-
dimensional state (or phase) space. The embedding technique
consists of creating vectors of the form:

Vi = [x(i), x(i + L), . . . , x(i + (m − 1)L)] ,

i = 1, . . . , Np (1)

FIGURE 2 | Error growth in the chaotic Lorenz system (Lorenz, 1963)

illustrated using an ensemble forecasting framework, where 2500 initial

conditions, initially represented by the pink color, evolve to those

represented by the red, green, and blue colors at t = 2, 4, and 6 units.
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where Np = n − (m− 1)L is the total number of reconstructed vec-
tors, and the embedding dimension m and the delay time L are
chosen according to certain optimization criteria (Gao et al., 2007).
Specifically, L alone may be determined by computing the first
zero of the autocorrelation or the first minimal point of mutual
information (Fraser and Swinney, 1986), while joint determina-
tion of m and L may be achieved using false nearest neighbor
method (Liebert et al., 1991; Kennel et al., 1992), which is a static
geometrical method, or time-dependent exponent method (Gao
and Zheng, 1993, 1994b), which is a dynamical method. Note that
when the time series is random, the embedding procedure trans-
forms the self-affine (i.e., x and t have to be stretched differently
in order to make the curve look “similar,” since the units for x and
t are different) stochastic process into a self-similar (i.e., part of
the curve in the high-dimensional space looks similar to another
part or the whole when it is magnified or shrinked, since all the
axes have the same unit) process in phase space. In this case, the
specific value of m is not important, so long as m > 1.

After a proper phase space is re-constructed, we consider an
ensemble of trajectories. We denote the initial separation between
two nearby trajectories by ε0, and their average separation at time
t and t + Δt by εt and εt + Δt, respectively. The trajectory separa-
tion is schematically shown in Figure 3. We can then examine the
relation between εt and εt + Δt, where Δt is small. When Δt → 0,
we have,

εt+Δt = εt eλ(εt )Δt , (2)

where λ(εt) is the SDLE given by

λ (εt ) = ln εt+Δt − ln εt

Δt
. (3)

Equivalently, we can express this as,

dεt

dt
= λ (εt ) εt . (4)

Given a time series data, the smallest Δt possible is the sampling
time τ.

FIGURE 3 | A schematic showing 2 arbitrary trajectories in a general

high-dimensional space, with the distance between them at time 0, t,

and t + δt being ε0, εt, and εt + δt, respectively.

Note that the classic algorithm of computing the Lyapunov
exponent λ1 (Wolf et al., 1985) amounts to assuming εt ∼ ε0eλ1t

and estimating λ1 by (ln εt − ε0)/t. Depending on ε0, this may
not be the case even for truly chaotic systems, such as shown in
Figure 2. This is emphasized in the schematic of Figure 3 – εt + δt

could in fact be smaller than εt. A greater difficulty with such an
assumption is that for any type of noise, λ1 can always be greater
than 0, leading to misclassifying noise as chaos. This is because
εt will be closer to the most probable separation so long as ε0 is
small (for a more quantitative discussion of this issue, see Gao
and Zheng, 1994b). On the other hand, Eq. 2 does not involve any
assumptions, except that Δt is small. As we will see, chaos amounts
to λ(ε) being almost constant over a range of ε.

To compute SDLE, we check whether pairs of vectors (Vi, Vi)
defined by Eq. 1 satisfy the following Inequality,

εk �
∥∥Vi − Vj

∥∥ � εk + Δεk , k = 1, 2, 3, . . . , (5)

where εk and Δεk are arbitrarily chosen small distances, and

∥∥Vi − Vj
∥∥ =

√√√√ m∑
w=1

(
xi+(w−1)L − xj+(w−1)L

)2
(6)

Geometrically, Inequality (5) defines a high-dimensional shell
(which reduces to a ball with radius Δεk when εk = 0; in a 2-
D plane, a ball is a circle described by (x − a)2 + (y − b)2 = r2,
where (a, b) is the center of the circle, and r is the radius). We
then monitor the evolution of all such vector pairs (Vi, Vj) within
a shell and take the ensemble average over indices i, j. Since we are
most interested in exponential or power-law functions, we assume
that taking logarithm and averaging can be exchanged, then Eq. 3
can be written as

λ (εt ) =
〈
ln

∥∥Vi+t+Δt − Vj+t+Δt
∥∥ − ln

∥∥Vi+t − Vj+t
∥∥〉

Δt
(7)

where t and Δt are integers in units of the sampling time, the angle
brackets denote the average over indices i, j within a shell, and

εt = ∥∥Vi+t − Vj+t
∥∥ =

√√√√ m∑
w=1

(
xi+(w−1)L+t − xj+(w−1)L+t

)2
(8)

Note that the initial set of shells for computing SDLE serve as ini-
tial values of the scales; through evolution of the dynamics, the
scales will automatically converge to the range of inherent scales –
which are the scales that define Eqs 3 and 4. This point will be
clearer after we introduce the notion of characteristic scale below.

Also note that when analyzing chaotic time series, the condition

∣∣j − i
∣∣ � tuncorrelated (9)

needs to be imposed when finding pairs of vectors within a shell,
where tuncorrelated denotes a time scale beyond which the two vec-
tors Vi and Vj are no longer along the tangential motions (i.e.,
close orbital motions similar to two cars driving in the same
lane, one following the other closely) of the same trajectory (Gao
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and Zheng, 1994b). Often tuncorrelated > (m − 1)L is sufficient to
ensure the elimination of the effects of tangential motions and the
convergence of initial scales to the inherent scales (Gao et al., 2007).

Finally, we note that

Λ(t ) = 〈
ln

∥∥Vi+t − Vj+t
∥∥ − ln

∥∥Vi − Vj
∥∥〉

(10)

is called the time-dependent exponent curves by Gao and Zheng
(1993, 1994a,b). Since Λ(t ) = ln εt − ln ε0, we immediately see
that SDLE amounts to the local slopes of such curves vs.

εt = ε0eΛ(t ). (11)

With this realization, the algorithm for computing SDLE can
be summarized by the following pseudo code (the actual For-
tran, C, and Matlab codes are available from the authors, or at
http://www.gao.ece.ufl.edu/GCTH_Wileybook/programs/lambda_
k_curves/):

(1) (More or less arbitrarily) choose the scale parameters εk, Δεk,
k = 1, 2, 3, . . .; properly choose m and L to reconstruct a suit-
able phase space from a scalar time series using Eq. 1; also
choose t uncorrelated . These are the basic parameters needed for
lambda.m in step (2).

(2) Compute the time-dependent exponent Λ(t ) curves:
for i = 1:Np − tuncorrelated – Tmax

for j = i + tuncorrelated:NP – Tmax

check Inequality (5); if valid,
save Λ(t ) = ln

∣∣∣∣Vi + t − Vj + t
∣∣∣∣, t = 0, 1, . . ., Tmax

end
end

(3) Estimate SDLE as the local slopes of Λ(k). Specifically, at time
t = kδt, where δt is the sampling time, the scale parameter
εt is given by Eq. 11, while the local slope of Λ(k) may be
estimated by

(Λ(k + 1) − Λ(k − 1))/2kδt .

Equivalently, the local slope may be estimated based on ln εt, where
εt is given by Eq. 11. To improve estimation of the local slope of
Λ(k), filtering may be used to suppress local variations.

2.1. SCALING LAWS FOR SDLE
SDLE has distinctive scaling laws for chaotic signals and 1/fα

processes. First we analyze the chaotic Lorenz system (shown in
Figure 2) with stochastic forcing:

dx/dt = −16(x − y) + Dη1(t ),

dy/dt = −xz + 45.92x − y + Dη2(t ),

dz/dt = xy − 4z + Dη3(t ).

(12)

where ηi(t ), i = 1, 2, 3 are independent Gaussian noise forcing
terms with zero mean and unit variance. When D = 0, the sys-
tem is clean. Figure 4 (top) shows a few Λ(t ) curves for the clean
Lorenz system; the bottom of the Figure shows five SDLE curves,
for the cases with D = 0, 1, 2, 3, 4. The computations are done
with 10000 points and m = 4, L = 2. We observe the following
interesting features:

FIGURE 4 |Top: Λ(t ) curves for the clean Lorenz system; bottom: SDLE

λ(ε) curves for clean and noisy Lorenz systems.

(1) For the clean chaotic signal, λ(ε) fluctuates slightly around
a constant. As is expected, this constant is the very largest
positive Lyapunov exponent, λ1,

λ(ε) = λ1. (13)

The small fluctuation in λ(ε) is due to the fact that the
divergence (i.e., expansion) rate on the Lorenz attractor is not
uniform (i.e., varies from one region to another). This non-
uniform divergence is the origin of multifractality in chaotic
systems.

(2) When there is stochastic forcing, λ(ε) is no longer a constant
when ε is small, but diverges to infinity as ε → 0 according the
following scaling law,

λ(ε) ∼ −γ ln ε, (14)

where γ is a coefficient controlling the speed of loss of infor-
mation (i.e., defined as the measure of uncertainty involved
in predicting the value of a random variable). This feature
suggests that entropy generation is infinite when the scale ε

approaches zero.
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(3) When the noise is increased, the part of the curve with
λ(ε) ∼ − γ ln ε shifts to the right. In fact, the plateau (i.e.,
the chaotic signature) can no longer be identified when D is
increased beyond 3.

To facilitate practical applications, we emphasize that there are two
features that are important in real data analysis: (i) the location of
the −γ ln ε curve; this includes the slope and the position of the
“transition” point from −γ ln ε curve to the plateau scaling; and
(ii) the width of the plateau.

Note that similar results to those shown in Figure 4 have been
observed in other model chaotic systems, such as the Mackey-Glass
delay differential equation with multiple positive Lyapunov expo-
nents (Mackey and Glass, 1977). Also note that Eq. 14 characterizes
various types of noise, including independent identically dis-
tributed random variables, or noise with correlations (including
long-range correlation) for time scale up to the embedding win-
dow, (m − 1)L. This means SDLE is close to zero if Inequality (9)
is imposed when it is computed.

At this point, it is beneficial to introduce a concept, character-
istic scale, or limiting scale, ε∞, which is defined as the scale where
SDLE is close to 0. In terms of the Λ(t ) curves, this amounts to
where the curves are flat, as shown in the top plot of Figure 4. If one
starts from ε0 � ε∞, then, regardless of whether the data is deter-
ministically chaotic or simply random, εt will initially increase
with time and gradually settle around ε∞. Consequentially, λ(εt)
will be positive before εt reaches ε∞. On the other hand, if one
starts from ε0 � ε∞, then εt will simply decrease, yielding negative
λ(εt), again regardless of whether the data are chaotic or random.
When ε0 ∼ ε∞, then λ(εt) will stay around 0. For stationary noise
processes, the only scale available after t > (m − 1)L would be this
limiting scale, since SDLE will always close to 0. In other words,
for noise, the only scale resolvable is ε∞. Note however, for some
dynamical systems, ε∞ may not be a single point, but a function
of time, such as a periodic function of time. When this is the case,
the motion can be said to have large scale coherent motions. This
is often the case for physiological data.

Next we consider 1/fα processes. Such type of processes is
ubiquitous in science and engineering (see Gao et al., 2007 and
references therein). Two important prototypical models for such
processes are fractional Brownian motion (fBm) process (Mandel-
brot, 1982) and ON/OFF intermittency with power-law distrib-
uted ON and OFF periods (Gao et al., 2006a). For convenience,
we introduce the Hurst parameter 0 < H < 1 through a simple
equation,

α = 2H + 1. (15)

Depending on whether H is smaller than, equal to, or larger than
1/2, the process is said to have anti-persistent correlation, short-
range correlation, and persistent long-range correlation (Gao
et al., 2006a). Note that D = 1/H is the fractal dimension of such
processes, and Kolmogorov’s 5/3 law for the energy spectrum of
fully developed turbulence (Frisch, 1995) corresponds to H = 1/3.

It is well-known that the variance of such stochastic processes
increases with t as t 2H. Translating this into the average distance
between nearby trajectories, we immediately have

εt = ε0t H . (16)

To obtain SDLE from Eq. 16, we can use the defining Eq. 3 to
obtain λ(εt) ∼ H /t. Expressing t by εt, we obtain

λ (εt ) ∼ Hε
−1/H
t (17)

Equation 17 can be readily verified by calculating λ(εt) from such
processes. Therefore, SDLE offers a new means of estimating H. In
fact, SDLE improves analysis over commonly used fractal analysis
methods in two important situations: (i) in some non-stationary
environments where commonly used fractal analysis methods fail
to detect fractal structures from the data, SDLE may still be able
to; this will be shown shortly; and (ii) Eq. 17 also characterizes
stochastic limit cycles. This is true for many model systems (Gao
et al., 1999a,b, 2006b; Hwang et al., 2000), as well as essential and
Parkinsonian tremors (Gao and Tung, 2002).

SDLE also has distinct scaling laws for random Levy processes,
and complex motions with multiple scaling laws on different scale
ranges. For the details, we refer to Gao et al. (2006b, 2007).

2.2. DETECTING INTERMITTENT CHAOS BY SDLE
Intermittent chaos is a type of complex motion where regular (i.e.,
periodic) and chaotic motions alternate. It is a crucial ingredient
of the intermittent route to chaos, one of the most famous and
universal routes to chaos (Gao et al., 2007). One can envision that
intermittent chaos may be associated with the physiological tran-
sitions from normal to abnormal states, and vice versa. Therefore,
studying intermittent chaos can be very important for physiology
in general and pathology in particular. Since intermittent chaos is
a universal phenomena to many dynamical systems, without loss
of generality and to ease repeatability, we examine the logistic map

xn+1 = axn (1 − xn) , (18)

with a = 3.8284. An example of the time series is shown in
Figure 5A. We observe that time intervals exhibiting chaos are
very short compared with those exhibiting periodic motions. Tra-
ditional methods for computing Lyapunov exponent, being based
on global average, is unable to quantify chaos in such intermit-
tent situations, since the laminar phase dominates. Neither can
FSLE, since it requires that divergence dominates most of the
time. Interestingly, the SDLE curve shown in Figure 5B clearly
indicates existence of chaotic motions, since the plateau region
extends almost one decade in the scale (see arrow A in the
Figure).

One might wonder why Figure 5B is more complicated than
Figure 4 (bottom), even though the model system is a simpler
logistic map. The reason is that the motion now is intermittent.
Realizing intermittent transitions, we can readily understand all
the features in Figure 5B: the scale regions indicated by arrows
B and C in Figure 5B are due to the transitions from periodic
to chaotic motions, and vice versa. To understand the transition,
consider two very close trajectories in the laminar region. So far
as they stay in the laminar region, ε will remain small. When both
trajectories enter the chaotic region, the distance between them
will become greater – this divergence becomes stronger when the
trajectories get deeper into the chaotic region, till it stabilizes at
the plateau region, after it is fully within the chaotic region. This
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FIGURE 5 | (A) An intermittent time series generated by the logistic map
with a = 3.8284. (B) The SDLE curve for a time series of 10000 points, with
m = 4, L = 1, and a shell size of (2−13.5, 2−13). A plateau, indicated by arrow A,
is clearly visible. Regions indicated by arrows B and C are due to transitions
between periodic and chaotic motions, and arrow D indicates the region of
oscillatory motions.

argument is equally valid when the motion gets out of the chaotic
region.

The discussion above can be readily extended to understand
the circular structure, indicated as arrow D, in Figure 5B. This
structure is caused by the large scale laminar flows (i.e., oscillatory
motions). Region D is an example of a limiting scale being not a
constant. Such a feature can often arise in physiological data, as we
will see shortly in Section 4.

In summary, we conclude that the oscillatory part of the data
only affects the scale range where λ(ε) ∼ 0. It cannot affect the
positive portion of λ(ε). Therefore, SDLE has a unique scale sep-
aration property such that different motions are manifested on
different scales.

2.3. DETECTING FRACTAL STRUCTURE FROM NON-STATIONARITY
DATA

The HRV data shown in Figure 1A motivates us to consider com-
plicated processes generated by the following two scenarios. One
is to randomly concatenate 1/f 2H + 1 and oscillatory components.
Another is to superimpose oscillatory components on 1/f 2H + 1

processes at randomly chosen time intervals. Either scenario gen-
erates signals that appear quite similar to that shown in Figure 1A.
The λ(ε) curves for such processes are shown in Figure 6, for a
wide range of the H parameter instances. We observe well-defined
power-law relations, consistent with Eq. 17, when λ(ε) > 0.02.
Figure 6 clearly shows that oscillatory components in the signals
can only affect the SDLE where λ(ε) is close to 0. The effects of
oscillatory components on SDLE observed in these scenarios is
another manifestation of SDLE’s scale separation property. It is
most important to emphasize that none of other commonly used

FIGURE 6 | SDLE λ(ε) vs. ε curves for the simulation data. Eight
different H values are considered. To put all the curves on one plot, the
curves for different H values (except the smallest one considered here) are
arbitrarily shifted rightward.

fractal analysis methods are able to detect fractal structure from
such non-stationary data.

Now, let us ask: when we perturb chaotic data by similar pro-
cedures, will we still be able to detect chaos? The answer is yes. In
fact, the intermittent chaos discussed above may be viewed as an
example of such a procedure.

We are now ready to fully understand why the SDLE can
deal with the types of non-stationary data constructed here. One
type of non-stationarity causes shifts of the trajectory in phase
space – the greater the non-stationarity, the larger the shifts. SDLE,
however, cannot be significantly affected by trajectory shifts, espe-
cially large ones, since it is based on the co-evolution of pairs of
vectors within chosen small shells. The other type is related to
oscillatory components. The oscillatory components only affect
SDLE where it is close to zero, therefore, will not alter the distinct
scaling for chaos and fractal processes.

3. APPLICATIONS: BIOLOGICAL DATA ANALYSIS
As we have mentioned, the popularity of chaos and fractal the-
ories in modeling physiology is closely related to the desire of
learning whether a healthy brain, heart, etc., may be associated
with greater complexity, greater chaoticity, or greater adaptabil-
ity due to properties such as long-range correlations. While such
complexity interpretations are very appealing, one has to envision
that the reality is more difficult, since disease diagnosis is compli-
cated by many factors where the cause is unknown. For example,
as man-made chemicals are designed and used, it has yet to know
how they affect the body. To (1) shed new light on the interpreta-
tion of complexity of physiological data, and (2) illustrate SDLE’s
clinical relevance, in this section, we apply SDLE to examine two
types of physiological data, HRV and EEG. As we shall see, the
most relevant scaling law for these data is Eq. 14, which cannot
be obtained by standard chaos or conventional random fractal
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analysis. Due to space limitations, we shall only briefly describe a
complexity measure, when it is used for comparison with SDLE.

3.1. EEG ANALYSIS
EEG signals provide a wealth of information about brain dynam-
ics, especially related to cognitive processes and pathologies of
the brain such as epileptic seizures. To understand the nature
of brain dynamics as well as to develop novel methods for the
diagnosis of brain pathologies, a number of complexity measures
have been used in the analysis of EEG data. These include the
Lempel-Ziv (LZ) complexity (Lempel and Ziv, 1976), the permu-
tation entropy (Cao et al., 2004), the Lyapunov exponent (LE; Wolf
et al., 1985), the Kolmogorov entropy (Grassberger and Procaccia,
1983b), the correlation dimension D2 (Grassberger and Procac-
cia, 1983a; Martinerie et al., 1998), and the Hurst parameter (Peng
et al., 1994; Hwa and Ferree, 2002; Robinson, 2003). Since foun-
dations of information theory, chaos theory, and random fractal
theory are different, and brain dynamics are complicated, involv-
ing multiple spatial-temporal scales, it is natural and important
for us to ask whether there exist relations among these complexity
measures, and if so, how to understand those relations.

The EEG signals analyzed here were measured intracranially
by the Shands hospital at the University of Florida (Gao et al.,
2011a). Such EEG data are also called depth EEG and are con-
sidered cleaner and more free of artifacts than scalp (or surface)
EEG. Altogether, we have analyzed 7 patients’ multiple channel
EEG data, each with a duration of a few hours, with a sampling
frequency of 200 Hz. When analyzing EEG for epileptic seizure
prediction/detection, it is customary to partition a long EEG sig-
nal into short windows of length W points, and calculate the
measure of interest for each window. The criterion for choosing
W is such that the EEG signal in each window is fairly station-
ary, is long enough to reliably estimate the measure of interest,
and is short enough to accurately resolve localized activities such
as seizures. Since seizure activities usually last about 1–2 min, in
practice, one often chooses W to be about 10 sec. When applying
methods from random fractal theory such as detrended fluctua-
tion analysis (DFA) (Peng et al., 1994), it is most convenient when
the length of a sequence is a power of 2. Therefore, we have cho-
sen W = 2 × 1024 = 2048 when calculating various measures. We
have found, however, that the variations of these measures with
time are largely independent of the window size W. The relations
among the measures studied here are the same for all the 7 patients’
EEG data, so we illustrate the results based on only one patient’s
EEG signals.

We have examined the variation of λ(ε) with ε is for each seg-
ment of the EEG data. Two representative examples for seizure
and non-seizure segments are shown in Figure 7. We observe that
on a specific scale ε∗, the two curves cross. Loosely, we may term
any ε < ε∗ as small scale, while any ε > ε∗ as large scale. Therefore,
on small scales, λ(ε) is smaller for seizure than for non-seizure
EEG, while on large scales, the opposite is true. The variations
of λsmall − ε and λlarge − ε with time for this patient’s data, where
small − ε and large − ε stand for (more or less arbitrarily) chosen
fixed small and large scales, are shown in Figures 8A,B, respec-
tively. We observe two interesting features: (i) the pattern of vari-
ation of λsmall − ε(t ) is reciprocal of that of λlarge − ε(t ). This result

FIGURE 7 | Representative SDLE λ(ε) (per second) vs. ε for a seizure

and non-seizure EEG segment.

can be expected from Figure 7. (ii) The variations in λsmall − ε(t )
and λlarge − ε(t ) clearly indicate the two seizure events. Therefore,
either λsmall − ε(t ) or λlarge − ε(t ) can be used to accurately detect
epileptic seizures.

We now compare the SDLE with three commonly used mea-
sures from chaos theory, the largest positive Lyapunov exponent
(LE), which we have discussed earlier; the correlation entropy
(Grassberger and Procaccia, 1983b), and the correlation dimen-
sion (Grassberger and Procaccia, 1983a). We also choose one
measure from random fractal theory, the Hurst parameter. We
discuss the three measures from chaos theory first.

As we have discussed, LE is a dynamic quantity, character-
izing the exponential growth of an infinitesimal line segment,
εt ∼ ε0eλ1t , ε0 → 0. For truly chaotic signals, 1/λ1 gives the
prediction time scale of the dynamics. Also, it is well-known that
the sum of all the positive Lyapunov exponents in a chaotic system
equals the Kolmogorov-Sinai (KS) entropy. The KS entropy char-
acterizes the rate of creation of new information (or loss of prior
knowledge) in a system. It is zero, positive, and infinite for regular,
chaotic, and random motions, respectively. However, it is diffi-
cult to compute. Therefore, one usually computes the correlation
entropy K 2, which is a tight lower bound of the KS entropy. Simi-
larly, the box-counting dimension, which is a geometrical quantity
characterizing the minimal number of variables that are needed
to fully describe the dynamics of a motion, is difficult to compute,
and one often calculates the correlation dimension D2 instead.
Again, D2 is a tight lower bound of the box-counting dimension.
For in-depth discussions of K 2 and D2, we refer to Gao et al.
(2012).

From the above brief descriptions, one would expect that λ1(t )
and K 2(t ) are similar, while D2(t ) has little to do with either λ1(t )
or K 2(t ). Surprisingly, from Figures 8C,D,E, we observe that this
is not the case: λ1(t ) is similar to D2(t ), but reciprocal of K 2(t ).
In a moment, we shall explain how these puzzling relations may
be understood based on λsmall − ε(t ) and λlarge − ε(t ).
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FIGURE 8 |The variation of (A) λsmall − ε, (B) λlarge − ε, (C) the LE, (D) the K 2 entropy, (E) the D2, and (F) the Hurst parameter with time for EEG signals of a

patient. The vertical dashed lines in (A–F) indicate seizure occurrence times determined by medical experts.

Next we consider the calculation of the Hurst parameter H. As
pointed out earlier, H characterizes the long-term correlations in a
time series. There are many different ways to estimate H. We have

chosen DFA (Peng et al., 1994), since it is more reliable (Gao et al.,
2006a), and has been used to study EEG data (Hwa and Ferree,
2002; Robinson, 2003).
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Figure 8F shows H (t ) for our EEG data. We observe that the
pattern of H (t ) is very similar to that of λ1(t ), but reciprocal
to K 2(t ) and D2(t ). Such relations cannot be readily understood
intuitively, since the foundations for chaos theory and random
fractal theory are entirely different.

Let us now resolve all of the curious relations observed between
λ1(t ), K 2(t ), D2(t ), and H (t ).

(1) Generally, entropy measures the randomness of a dataset. This
pertains to small scale. Therefore, K 2(t ) should be similar to
λsmall − ε(t ). This is indeed the case. We should point out that
we have also calculated other entropy-related measures, such
as the Lempel-Ziv complexity (Lempel and Ziv,1976),which is
closely related to the Shannon entropy, and the permutation
entropy (Cao et al., 2004), and observed similar variations.
Therefore, we can conclude that the variation of the entropy
is represented by λsmall − ε(t ), regardless of how entropy is
defined.

(2) To understand why λ1(t ) calculated by the algorithm of Wolf
et al. (1985) corresponds to λlarge − ε(t ), we note that the algo-
rithm of Wolf et al. (1985) involves a scale parameter that
whenever the divergence between a reference and a perturbed
trajectory exceeds this chosen scale, a renormalization proce-
dure is performed. When the algorithm of Wolf et al. (1985)
is applied to a time series with only a few thousand points, in
order to obtain a well-defined LE, a fairly large scale parameter
has to be chosen. This is the reason that the LE and λlarge − ε

are similar. In fact, the scale we have chosen to calculate λ1(t )
is even larger than that for calculating λlarge − ε(t ). This is the
reason that the value of λ1(t ) shown in Figure 8C is smaller
than that of λlarge − ε(t ) shown in Figure 8B.

(3) It is easy to see that if one fits the λ(ε) curves shown in Figure 7
by a straight line, then the variation of the slope with time
should be similar to λsmall − ε(t ) but reciprocal of λlarge − ε(t ).
Such a pattern will be preserved even if one takes the loga-
rithm of λ(ε) first and then does the fitting. Such a discussion
makes it clear that even if EEG is not ideally of the 1/f2H + 1

type, qualitatively, the relation λ(ε) ∼ ε−1/H holds. This in
turn implies D2 ∼ 1/H. With these arguments, it is clear that
the seemingly puzzling relations among the measures consid-
ered here can be readily understood by the λ(ε) curves. More
importantly, we have established that commonly used com-
plexity measures can be related to the values of the SDLE at
specific scales.

As we have pointed out, around the characteristic scale ε∞, λ(ε) is
always close to 0. The pattern of λ(ε) around ε∞ is governed by the
structured components in the data, such as the α, γ, β, and δ brain
waves. From Figure 7, we observe that the patterns for seizure
and non-seizure EEG segments are very different. In particular,
the pattern of the limiting scale for seizure EEG resembles that of
the intermittent chaos indicated by arrow D in Figure 5. Since the
brain dynamics on this scale are different from those on smaller
scales, such information is clearly helpful in preliminary detec-
tion or prediction of seizures. However, we shall not pursue this
issue further here, as further use of the SDLE methods for seizure
forewarning would require coordination with clinical verification.

3.2. HRV ANALYSIS
HRV is an important dynamical variable of the cardiovascular
function. Its most salient feature is the spontaneous fluctuation,
even when the environmental parameters are maintained constant
and no perturbing influences can be identified. Since the observa-
tion that HRV is related to various cardiovascular disorders (Hon
and Lee, 1965), a number of methods have been proposed to ana-
lyze HRV data. They include methods based on simple statistics
from time and frequency domain analyses (see Malik, 1996 and
references therein), as well as those derived from chaos theory
and random fractal theory (Kobayashi and Musha, 1982; Gold-
berger and West, 1987; Babyloyantz and Destexhe, 1988; Kaplan
and Goldberger, 1991; Pincus and Viscarello, 1992; Bigger et al.,
1996; Ho et al., 1997). We shall now show that the SDLE can read-
ily characterize the hidden differences in the HRV under healthy
and diseased conditions, and shed new light on the dynamics of
the cardiovascular system.

We examine two types of HRV data, one for healthy subjects,
and another for subjects with the congestive heart failure (CHF),
a life-threatening disease. The data were downloaded from the
(Physionet, 2011). There are 18 healthy subjects and 15 subjects
with CHF. Part of these datasets were analyzed by random frac-
tal theory. In particular, 12 of the 15 CHF datasets were analyzed
by wavelet based multifractal analysis (Ivanov et al., 1999), for the
purpose of distinguishing healthy subjects from CHF patients. For
ease of comparison, we take the first 3 × 104 points of both groups
of HRV data for analysis. In Figures 9A,B, we have shown two
typical λ(ε) vs. ε curves, one for a healthy subject, and another for
a patient with CHF. We observe that for the healthy subject, λ(ε)
linearly decreases with ln ε before λ reaches around 0, or, before ε

settles around the characteristic scale, ε∞. Recall that this is a char-
acteristic of noisy dynamics (Figure 4). For the CHF case plotted
in Figure 9B, we observe that the λ(ε) is oscillatory, with its value
always close to 0, and hence, the only scale resolvable is around
ε∞. Since the length of the time series used in our analysis for the
healthy and the CHF subjects is the same, the inability of resolv-
ing the λ(ε) behavior on scales much smaller than ε∞ for patients
with CHF strongly suggests that the dimension of the dynamics of
the cardiovascular system for CHF patients is considerably higher
than that for healthy subjects.

We now discuss how to distinguish between healthy subjects
and patients with CHF from HRV analysis. We have devised two
simple measures, or features. The first feature characterizes how
well the linear relation between λ(ε) and ln ε can be defined.
We have quantified this by calculating the error between a fitted
straight line and the actual λ(ε) vs. ln ε plots of Figures 9A,B. The
second feature is to characterize how well the characteristic scale
ε∞ is defined. This is quantified by the ratio between two scale
ranges, one is from the 2nd to the 6th point of the λ(ε) curves,
and another is from the 7th to the 11th point of the λ(ε) curves.
Now each subject’s data can be represented as a point in the feature
plane, as shown in Figure 10. We observe that for healthy subjects,
feature 1 is generally very small, but feature 2 is large, indicating
that the dynamics of the cardiovascular system is like a non-linear
system with stochasticity, (i.e., with resolvable small scale behav-
iors and well-defined characteristic scale ε∞). The opposite is true
for the patients with CHF: feature 1 is large, but feature 2 is small,
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FIGURE 9 | λ(ε) (per beat) vs. ε (in semi-log scale) for HRV data of (A) a healthy subject and (B) a subject with CHF.

FIGURE 10 | Feature plane separating normal subjects from subjects

with CHF, where Feature 1 quantifies the goodness-of-fit of Eq. 14 to

the actual SDLE curve, and Feature 2 is related to how well the

characteristic scale ε∞ is defined.

indicating that not only small scale behaviors of the λ(ε) curves
cannot be resolved, but also that the characteristic scale ε∞ is not
well-defined. Very interestingly, these two simple features sepa-
rate completely the normal subjects from patients with CHF. The
results show that no formal methods of statistical clustering are
needed and that presentation of the feature space can be read-
ily usable for diagnostics. In fact, each feature alone can almost
perfectly separate the two groups of subjects studied here.

It is interesting to note that for the purpose of distinguishing
normal HRV from CHF HRV, the features derived from SDLE are
much more effective than other metrics including the Hurst para-
meter, the sample entropy, and multiscale entropy. For the details
of the comparisons, we refer to Hu et al. (2010).

Finally, we emphasize that the results presented here should not
be interpreted as 100% accurate in distinguishing normal from

CHF patients, since only 18 normal and 15 CHF HRV data sets
were available to us and analyzed here. It merits noting, however,
that other approaches, such as wavelet based multifractal analysis
(Ivanov et al., 1999), are not able to achieve the classification rate
of SDLE, when all these data were used. The preliminary analysis
demonstrates that SDLE could be used over collected HRV data as
a first indication of possible non-healthy cardiovascular issues. The
use of SDLE could provide valuable complementary information
in patient testing.

4. CONCLUDING REMARKS
In this paper, we have discussed a multiscale complexity measure,
the SDLE. We have shown that it can readily (1) characterize low-
dimensional chaos, random 1/f α processes, and stochastic limit
cycles, (2) detect intermittent chaos, and (3) conveniently deal with
non-stationarity, especially to detect fractal from non-stationary
data. Furthermore, we have shown that SDLE can accurately detect
epileptic seizures from EEG and distinguish healthy subjects from
patients with CHF from HRV. More importantly, we have estab-
lished that commonly used complexity measures for EEG can be
related to the value of the SDLE at specific scales, and that the
pattern of the SDLE around the characteristic scale ε∞ contains
a lot of useful information on the structured components of the
data that may greatly help detect significant patterns. Because of
the ubiquity of chaos-like motions and 1/fα-type processes and
the complexity of HRV and EEG data, our analyses strongly sug-
gest that the SDLE is potentially important for clinical practice,
and provides a comprehensive characterization of complex data
arising from a wide range of fields in science and engineering.

Our analyses have a number of important implications.

(1) To comprehensively characterize the complexity of compli-
cated data such as HRV or EEG data, a wide range of scales
has to be considered, since the complexity may be different
on different scales. For this purpose, the entire λ(ε) curve,
where ε is such that λ(ε) is positive, provides a good solution.
Using the entire λ(ε) curve is particularly important when one
wishes to compare the complexity between two signals – the
complexity for one signal may be higher on some scales, but
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lower on other scales. The situation shown in Figure 7 may be
considered one of the simplest.

(2) For detecting important events such as epileptic seizures,
λsmall − ε and λlarge − ε appear to provide better defined fea-
tures than other commonly used complexity measures. This
may be due to the fact that λsmall − ε and λlarge − ε are evaluated
at fixed scales, while other measures are not. In other words,
scale mixing may blur the features for events being detected,
such as seizures.

(3) In recent years, there has been much effort in searching for
cardiac chaos (Goldberger and West, 1987; Babyloyantz and
Destexhe, 1988; Kaplan and Goldberger, 1991; Garfinkel et al.,
1992; Fortrat et al., 1997; Kaneko and Tsuda, 2000). Due to
the inability of unambiguously distinguishing deterministic
chaos from noise by calculating the largest positive Lyapunov
exponent and the correlation dimension, it is still unclear
whether the control mechanism of cardiovascular system is
truly chaotic or not. Our analysis here highly suggests that
if cardiac chaos does exist, it is more likely to be identi-
fied in healthy subjects than in pathological groups. This is
because the dimension of the dynamics of the cardiovascular
system appears to be lower for healthy than for patholog-
ical subjects. Intuitively, such an implication makes sense,
because a healthy cardiovascular system is a tightly cou-
pled system with coherent functions, while components in

a malfunctioning cardiovascular system are somewhat loosely
coupled and function incoherently.

As example applications, we have focused on the analyses of HRV
and EEG data here. It is evident that SDLE will be useful for other
kinds of physiological data analyses. While much of the past as well
as current research has been focused on determining whether some
experimental data are chaotic or not, the scaling laws of SDLE sug-
gest that it is often feasible to obtain the defining parameters of the
data under study, without a focus on assessing the chaotic nature
of the data. While in principle, SDLE is able to do so without
pre-processing of the data under study, suitable detrending and
denoising may help. A particularly simple and versatile procedure
is the smooth adaptive filter developed by the authors, which has
been successfully applied to recover chaos in an extremely noisy
environment (Hu et al., 2009b; Gao et al., 2010, 2011b; Tung et al.,
2011).

ACKNOWLEDGMENTS
This work is supported in part by U.S. NSF grants CMMI-1031958
and 0826119 as well as by the State Key Laboratory of Non-linear
Mechanics (LNM), Institute of Mechanics, Chinese Academy of
Sciences, Beijing, People’s Republic of China. We also thank Dr. Jay
Holden and two anonymous reviewers, for their many constructive
comments which have considerably improved the manuscript.

REFERENCES
Akselrod, S., Gordon, D., Ubel, F., Shan-

non, D., Barger, M., and Cohen, R.
(1981). Power spectrum analysis of
heart rate fluctuation: a quantitative
probe of beat-to-beat cardiovascular
control. Science 213, 220–222.

Ashkenazy, Y., Ivanov, P., Havlin, S.,
Peng, C., Goldberger,A., and Stanley,
H. (2001). Magnitude and sign cor-
relations in heartbeat fluctuations.
Phys. Rev. Lett. 86, 1900–1903.

Aurell, E., Boffetta, G., Crisanti, A., Pal-
adin, G., and Vulpiani, A. (1996).
Growth of non-infinitesimal per-
turbations in turbulence. Phys. Rev.
Lett. 77, 1262.

Aurell, E., Boffetta, G., Crisanti, A., Pal-
adin, G., and Vulpiani, A. (1997).
Predictability in the large: an exten-
sion of the concept of Lyapunov
exponent. Physica A 30, 1–26.

Babyloyantz, A., and Destexhe, A.
(1988). Is the normal heart a peri-
odic oscillator? Biol. Cybern. 58,
203–211.

Bassingthwaighte, J., Liebovitch, L., and
West, B. (1994). Fractal Physiology.
New York: Oxford University Press.

Bigger, J., Steinman, R., Rolnitzky, L.,
Fleiss, J., Albrecht, P., and Cohen,
R. (1996). Power law behavior
of rr-interval variability in healthy
middle-aged persons, patients with
recent acute myocardial infarction,
and patients with heart transplants.
Circulation 93, 2142–2151.

Cao, Y., Tung, W., Gao, J., Protopopescu,
V., and Hively, L. (2004). Detect-
ing dynamical changes in time series
using the permutation entropy. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys.
70, 046217.

Costa, M., Goldberger, A., and Peng,
C. (2005). Multiscale entropy analy-
sis of biological signals. Phys. Rev.
E Stat. Nonlin. Soft Matter Phys. 71,
021906.

Dettmann, C., and Cohen, E. (2000).
Microscopic chaos and diffusion. J.
Stat. Phys. 101, 775–817.

Fortrat, J., Yamamoto, Y., and Hughson,
R. (1997). Respiratory influences on
non-linear dynamics of heart rate
variability in humans. Biol. Cybern.
77, 1–10.

Fraser, A., and Swinney, H. (1986).
Independent coordinates for strange
attractors from mutual information.
Phys. Rev. A 33, 1134–1140.

Frisch, U. (1995). Turbulence – The
Legacy of A.N. Kolmogorov. Cam-
bridge: University Press.

Gao, J. (1997). Recognizing random-
ness in a time series. Physica D 106,
49–56.

Gao, J., Cao, Y., Tung, W., and Hu, J.
(2007). Multiscale Analysis of Com-
plex Time Series – Integration of
Chaos and Random Fractal Theory,
and Beyond. Hoboken, NJ: Wiley.

Gao, J., Chen, C., Hwang, S., and Liu, J.
(1999a). Noise-induced chaos. Int. J.
Mod. Phys. B 13, 3283–3305.

Gao, J., Hwang, S., and Liu, J. (1999b).
When can noise induce chaos? Phys.
Rev. Lett. 82, 1132–1135.

Gao, J., Hu, J., Mao, X., and Tung, W. (in
press). Detecting Low-Dimensional
Chaos by the “Noise Titration”
Technique: Possible Problems and
Remedies. Chaos, Solitons, &
Fractals.

Gao, J., Hu, J., and Tung, W. (2011a).
Complexity measures of brain
wave dynamics. Cogn. Neurodyn. 5,
171–182.

Gao, J., Hu, J., and Tung, W. (2011b).
Facilitating joint chaos and frac-
tal analysis of biosignals through
nonlinear adaptive filtering. PLoS
ONE 6, e24331. doi:10.1371/jour-
nal.pone.0024331

Gao, J., Hu, J., and Tung, W. (2012).
Entropy measures for biological sig-
nal analysis. Nonlinear Dyn. doi:
10.1007/s11071-011-0281-2

Gao, J., Hu, J., Tung, W., Cao, Y., Sarshar,
N., and Roychowdhury, V. (2006a).
Assessment of long range correlation
in time series: how to avoid pitfalls.
Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 73, 016117.

Gao, J., Hu, J., Tung, W., and Cao, Y.
(2006b). Distinguishing chaos from
noise by scale-dependent Lyapunov
exponent. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 74, 066204.

Gao, J., Sultan, H., Hu, J., and Tung,
W. (2010). Denoising nonlinear
time series by adaptive filtering

and wavelet shrinkage: a compari-
son. IEEE Signal Process. Lett. 17,
237–240.

Gao, J., and Tung, W. (2002). Patholog-
ical tremors as diffusional processes.
Biol. Cybern. 86, 263–270.

Gao, J., Tung, W., and Hu, J. (2009).
Quantifying dynamical predictabil-
ity: the pseudo-ensemble approach
(in honor of Professor Andrew
Majda’s 60th birthday). Chi. Ann.
Math. Series B 30, 569–588.

Gao, J., and Zheng, Z. (1993). Local
exponential divergence plot and
optimal embedding of a chaotic time
series. Phys. Lett. A 181, 153–158.

Gao, J., and Zheng, Z. (1994a). Direct
dynamical test for deterministic
chaos. Europhys. Lett. 25, 485–490.

Gao, J., and Zheng, Z. (1994b). Direct
dynamical test for deterministic
chaos and optimal embedding of
a chaotic time series. Phys. Rev. E
Stat. Nonlin. Soft Matter Phys. 49,
3807–3814.

Garfinkel, A., Spano, M., Ditto, W., and
Weiss, J. (1992). Controlling cardiac
chaos. Science 257, 1230–1235.

Gaspard, P., Briggs, M., Francis,
M., Sengers, J., Gammons, R.,
Dorfman, J., and Calabrese, R.
(1998). Experimental evidence for
microscopic chaos. Nature 394,
865–868.

Gaspard, P., and Wang, X. (1993). Noise,
chaos, and (ε,τ)-entropy per unit
time. Phys. Report. 235, 291–343.

Frontiers in Physiology | Fractal Physiology January 2012 | Volume 2 | Article 110 | 137

http://dx.doi.org/10.1371/journal.pone.0024331
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Gao et al. Multiscale analysis of biosignals

Goldberger, A., and West, B. (1987).
Applications of nonlinear dynam-
ics to clinical cardiology. Ann. N. Y.
Acad. Sci. 504, 155–212.

Grassberger, P., and Procaccia, I.
(1983a). Characterization of strange
attractors. Phys. Rev. Lett. 50,
346–349.

Grassberger, P., and Procaccia, I.
(1983b). Estimation of the Kol-
mogorov entropy from a chaotic
signal. Phys. Rev. A 28, 2591–2593.

Ho, K., Moody, G., Peng, C., Mietus,
J., Larson, M., Levy, D., and Gold-
berger, A. (1997). Predicting sur-
vival in heart failure cases and con-
trols using fully automated methods
for deriving nonlinear and conven-
tional indices of heart rate dynamics.
Circulation 96, 842–848.

Hon, E., and Lee, S. (1965). Electronic
evaluations of the fetal heart rate
patterns preceding fetal death: fur-
ther observations. Am. J. Obstet.
Gynecol. 87, 814–826.

Hu, J., Gao, J., and Tung, W. (2009a).
Characterizing heart rate variability
by scale-dependent Lyapunov expo-
nent. Chaos 19, 028506.

Hu, J., Gao, J., and Wang, X. (2009b).
Multifractal analysis of sunspot
time series: the effects of the 11-
year cycle and Fourier truncation.
J. Stat. Mech. doi: 10.1088/1742-
5468/2009/02/P02066.

Hu, J., Gao, J., Tung, W., and Cao, Y.
(2010). Multiscale analysis of heart
rate variability: a comparison of dif-
ferent complexity measures. Ann.
Biomed. Eng. 38, 854–864.

Hu, J., Tung, W., Gao, J., and Cao, Y.
(2005). Reliability of the 0-1 test for
chaos. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 72, 056207.

Hwa, R., and Ferree, T. (2002). Scal-
ing properties of fluctuations in the
human electroencephalogram. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys.
66, 021901.

Hwang, S., Gao, J., and Liu, J. (2000).
Noise-induced chaos in an optically
injected semiconductor laser. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys.
61, 5162–5170.

Ivanov, P., Amaral, L., Goldberger, A.,
Havlin, S., Rosenblum, M., Struzik,

Z., and Stanley, H. (1999). Multifrac-
tality in human heartbeat dynamics.
Nature 399, 461–465.

Kaneko, K., and Tsuda, I. (2000). Com-
plex Systems: Chaos and Beyond.
Berlin: Springer.

Kaplan, D., and Glass, L. (1992). Direct
test for determinism in a time-series.
Phys. Rev. Lett. 68, 427–430.

Kaplan, D., and Goldberger, A.
(1991). Chaos in cardiology.
J. Cardiovasc. Electrophysiol. 2,
342–354.

Kennel, M., Brown, R., and Abarbanel,
H. (1992). Determining embed-
ding dimension for phase-space
reconstruction using a geometri-
cal construction. Phys. Rev. A 45,
3403–3411.

Kobayashi, M., and Musha, T. (1982).
1/f fluctuation of heart beat period.
IEEE Trans. Biomed. Eng. 29,
456–457.

Lempel, A., and Ziv, J. (1976). On the
complexity of finite sequences. IEEE
Trans. Inform. Theory 22, 75–81.

Liebert, W., Pawelzik, K., and Schus-
ter, H. (1991). Optimal embedding
of chaotic attractors from topolog-
ical considerations. Europhys. Lett.
14, 521–526.

Lorenz, E. (1963). Deterministic non-
periodic flow. J. Atmos. Sci. 20,
130–141.

Mackey, M., and Glass, L. (1977).
Oscillation and chaos in physio-
logical control-systems. Science 197,
287–288.

Malik, M. (1996). Task force of the
European society of cardiology and
the North American society of pac-
ing and electrophysiology: heart
rate variability: standards of mea-
surement, physiological interpreta-
tion,and clinical use. Circulation 93,
1043–1065.

Mallat, S. (2008). A Wavelet Tour of Sig-
nal Processing, 3rd Edn. Amsterdam:
Academic Press.

Mandelbrot, B. (1982). The Fractal
Geometry of Nature. San Francisco:
Freeman.

Martinerie, J., Adam, C., Quyen, M.,
Baulac, M., Clemenceau, S., Renault,
B., and Varela, F. (1998). Epilep-
tic seizures can be anticipated by

non-linear analysis. Nat. Med. 4,
1173–1176.

Osborne, A., and Provenzale, A. (1989).
Finite correlation dimension for
stochastic-systems with power-law
spectra. Physica D 35, 357–381.

Packard, N., Crutchfield, J., Farmer,
J., and Shaw, R. (1980). Geometry
from time-series. Phys. Rev. Lett. 45,
712–716.

Pei, X., and Moss, F. (1996). Characteri-
zation of low-dimensional dynamics
in the crayfish caudal photoreceptor.
Nature 379, 618–621.

Peng, C., Buldyrev, S., Havlin, S.,
Simons, M., Stanley, H., and Gold-
berger, A. (1994). On the mosaic
organization of DNA sequences.
Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 49, 1685–1689.

Peng, C., Mietus, J., Hausdorff, J.,
Havlin, S., Stanley, H., and Gold-
berger, A. (1993). Long-range
anticorrelations and non-Gaussian
behavior of the heartbeat. Phys. Rev.
Lett. 70, 1343–1346.

Physionet. (2011). MIT-BIH nor-
mal sinus rhythm database and
BIDMC congestive heart failure.
Available at: http://www.physionet.
org/physiobank/database/#ecg

Pincus, S., and Viscarello, R. (1992).
Approximate entropy: a regularity
statistic for fetal heart rate analysis.
Obstet. Gynecol. 79, 249–255.

Poon, C., and Barahona, M. (2001).
Titration of chaos with added noise.
Proc. Natl. Acad. Sci. U.S.A. 98,
7107–7112.

Provenzale, A., and Osborne, A. (1991).
Convergence of the k2 entropy for
random noises with power law spec-
tra. Physica D 47, 361–372.

Robinson, P. (2003). Interpretation
of scaling properties of electroen-
cephalographic fluctuations via
spectral analysis and underlying
physiology. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 67, 032902.

Ryan, D., and Sarson, G. (2008). The
geodynamo as a low-dimensional
deterministic system at the edge of
chaos. Europhys. Lett. 83, 49001.

Sauer, T., Yorke, J., and Casdagli, M.
(1991). Embedology. J. Stat. Phys. 65,
579–616.

Strang, G., and Nguyen, T. (1997).
Wavelet and Filter Banks. New
York: Wellesley-Cambridge
Press.

Sugihara, G., and May, R. (1990). Non-
linear forecasting as a way of distin-
guishing chaos from measurement
error in time series. Nature 344,
734–741.

Takens, F. (1981). “Detecting strange
attractors in turbulence,” in Dynam-
ical Systems and Turbulence, Lecture
Notes in Mathematics, eds D. A. Rand
and L. S. Young (New York, NY:
Springer-Verlag), 366.

Torcini, A., Grassberger, P., and Politi,
A. (1995). Error propagation in
extended chaotic systems. J. Phys. A
Math. Gen. 28, 4533.

Tung, W., Gao, J., Hu, J., and Yang, L.
(2011). Recovering chaotic signals in
heavy noise environments. Phys. Rev.
E Stat. Nonlin. Soft Matter Phys. 83,
046210.

Wolf, A., Swift, J., Swinney, H., and Vas-
tano, J. (1985). Determining Lya-
punov exponents from a time series.
Physica D 16, 285–317.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 11 November 2011; accepted:
08 December 2011; published online: 2
January 2012.
Citation: Gao J, Hu J, Tung W-w and
Blasch E (2012) Multiscale analysis of
biological data by scale-dependent Lya-
punov exponent. Front. Physio. 2:110.
doi: 10.3389/fphys.2011.00110
This article was submitted to Frontiers in
Fractal Physiology, a specialty of Frontiers
in Physiology.
Copyright © 2012 Gao, Hu, Tung and
Blasch. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution Non Commercial
License, which permits non-commercial
use, distribution, and reproduction in
other forums, provided the original
authors and source are credited.

www.frontiersin.org January 2012 | Volume 2 | Article 110 |

4

138

http://www.physionet.org/physiobank/database/#ecg
http://dx.doi.org/10.3389/fphys.2011.00110
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


METHODS ARTICLE
published: 19 October 2012

doi: 10.3389/fphys.2012.00405

Measuring group synchrony: a cluster-phase method for
analyzing multivariate movement time-series
Michael J. Richardson1*, Randi L. Garcia2, Till D. Frank2,3, Madison Gergor4 and Kerry L. Marsh2,3

1 Department of Psychology, Center for Cognition, Action, and Perception, University of Cincinnati, Cincinnati, OH, USA
2 Department of Psychology, University of Connecticut, Storrs, CT, USA
3 Center for the Ecological Study of Perception-Action, University of Connecticut, Storrs, CT, USA
4 Department of Psychology, Colby College, Waterville, ME, USA

Edited by:

John G. Holden, University of
Cincinnati, USA

Reviewed by:

Fred Hasselman, Radboud
University Nijmegen, Netherlands
Dirk Cysarz, Witten/Herdecke
University, Germany

*Correspondence:

Michael J. Richardson, Department
of Psychology, Assistant Professor,
Center for Cognition, Action,
and Perception, ML 0376,
4150-B Edwards C1, University of
Cincinnati, Cincinnati,
OH 45221-0376, USA.
e-mail: michael.richardson@uc.edu

A new method for assessing group synchrony is introduced as being potentially useful
for objectively determining degree of group cohesiveness or entitativity. The cluster-phase
method of Frank and Richardson (2010) was used to analyze movement data from the
rocking chair movements of six-member groups who rocked their chairs while seated
in a circle facing the center. In some trials group members had no information about
others’ movements (their eyes were shut) or they had their eyes open and gazed at a
marker in the center of the group. As predicted, the group level synchrony measure was
able to distinguish between situations where synchrony would have been possible and
situations where it would be impossible. Moreover, other aspects of the analysis illustrated
how the cluster phase measures can be used to determine the type of patterning of
group synchrony, and, when integrated with multi-level modeling, can be used to examine
individual-level differences in synchrony and dyadic level synchrony as well.
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A common feature of many social activities, including a group
of friends walking to class together, an audience swaying to the
music of their favorite rock band at a concert, or a highly trained
rowing team racing down a river, is the synchrony or coordina-
tion that occurs between the movements of the actors involved.
Although the magnitude or stability of movement synchrony
can differ across different social situations, it is a natural part
of interpersonal behavior (Bernieri and Rosenthal, 1991; Fowler
et al., 2008; Marsh et al., 2009; Miles et al., 2009; Richardson
et al., 2010) and can result both intentionally due to intrinsic task
requirements (i.e., when rowing) and spontaneously (i.e., when
friends are walking to class) due to the myriad of perceptual-
motor couplings that exist during social interaction (Schmidt
et al., 1998; Repp and Penel, 2004; Schmidt and Richardson,
2008).

Movement synchrony may be a fundamental means of becom-
ing a social unit with others (Marsh et al., 2009; Marsh, 2010), and
of blending the boundaries of one’s self with another (Paladino
et al., 2010). Synchrony helps build rapport with others (Bernieri
et al., 1996; Chartrand and Bargh, 1999; Hove and Risen, 2009;
Marsh et al., 2009), and telegraphs to outsiders that individuals
are a social unit and have rapport (Macrae et al., 2008; Lakens,
2010; Lakens and Stel, 2011). Being psychologically distanced
from another individual can cause a reduction in interpersonal
synchrony (Miles et al., 2010). Synchrony not only facilitates
memory for those we synchronize with (Miles et al., 2010) but
can more generally facilitate performance of cognitive or linguis-
tic tasks (Richardson et al., 2005; Shockley et al., 2009). Thus,
developing a detailed understanding of why and when it does

or does not occur has significant implications for understanding
social behavior.

It should come as no surprise then that there is a large
body of research that has attempted to examine and model
such behavior (see Schmidt and Richardson, 2008; Marsh et al.,
2009, for reviews). Despite the fact that movement synchrony
presumably can occur between 3 or more individuals, research
on between-person movement synchronization has, with rare
exception, been limited to the movement coordination of dyads.
Typically, these studies involve recording the movements of a sin-
gle limb from each participant (e.g., each participant’s leg, arm,
or hand movements) under different intentional and social con-
straints (e.g., Boker and Rotondo, 2003). Movement synchrony
or coordination is then quantified using various bivariate mea-
sures, such as relative phase, frequency difference, frequency, or
cross-spectral coherence, cross-correlation, and cross-recurrence
analysis. Interaction between two subsystems, in general, and
phase synchronization between two dynamical systems, in partic-
ular, can also be quantified by means of various entropy measures
(Tass et al., 1998; Wojcik et al., 2001), mutual information (Palus,
1997), phase distribution (Frank et al., 2000), and phase diffusion
index measures (e.g., Pikovsky et al., 2001; Schelter et al., 2007).
The most commonly used quantifications are the mean and SD
of the relative phase time-series (φ and SDφ, respectively) that
occurs between the movements of the two participants, where
the relative phase time-series, φ(t), is calculated as the difference
between the phase angles, θ(t), of the two movement time-series
[i.e., θ2(t) − θ1(t)]. For 1-to-1 frequency locked synchrony, φ is
used to identify the degree to which the pattern of coordination

www.frontiersin.org October 2012 | Volume 3 | Article 405 | 139

http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology/10.3389/fphys.2012.00405/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MichaelRichardson&UID=22859
http://community.frontiersin.org/people/RandiGarcia/69388
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TillFrank&UID=63230
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KerryMarsh&UID=58157
http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Richardson et al. Measuring group synchrony

is equal to or shifted away from one of the two stable states of
interlimb coordination, namely φ = 0◦ and 180◦ (referred to as
inphase and antiphase coordination, respectively). SDφ is used to
determined the stability of the coordination, with greater values
of SDφ corresponding to weaker or less stable states of coordi-
nation (e.g., Schmidt et al., 1990; Richardson et al., 2007). The
distribution of φ(t) has also been used to quantify the degree of
spontaneous synchrony, in that observing a greater number of rel-
ative phase angles around 0◦ and 180◦ is indicative of intermittent
or relative coordination (Schmidt and O’Brien, 1997; Richardson
et al., 2007).

What about the movement synchrony or coordination that
involves more than two people? There are important theoretical
reasons why studying synchrony at a group level may be impor-
tant. Whereas dyadic interpersonal coordination forms the basis
for joint action (Clark, 1996), communication, rapport, and the
formation of relationships (Tickle-Degnen and Rosenthal, 1990;
Fiske, 1992), group-level synchrony may be an important behav-
ioral indicator of group cohesiveness, the degree to which a group
has a sense of “groupness,” or existence as an entity (i.e., group
entitativity, a term coined by Campbell, 1958). Group cohesive-
ness, entitativity, and social identification are viewed as crucial
processes in understanding a range of phenomena, from dysfunc-
tional group decision-making (Janis, 1982), to social influence
(Festinger et al., 1950), intergroup conflict, and social identity
processes (Simon and Pettigrew, 1990; Tsui and Gutek, 1999;
Tajfel and Turner, 2004). To date, however, nearly all means of
assessing degree of groupness involves self-report (Lickel et al.,
2000). We hypothesize that, as occurs with dyadic interpersonal
synchrony (Miles et al., 2010), group synchrony may occur when
individuals have mutual interpersonal connection with others.
These may be due to valence bonds (friendship and liking) or
due to some functional reasons for their connection (belong-
ing to a family, or a workgroup that must cooperate). Thus,
a behavioral means of assessing group synchrony could poten-
tially revolutionize the study of group processes. Furthermore,
if group synchrony measures are integrated with methodological
techniques that allow for multi-level modeling of data it would
provide the ability to look at both dyadic and individual level
synchrony within a group, as well as group-level differences in
synchrony, that is, the ability to empirically determine the level at
which synchrony is occurring (Bond and Kenny, 2002). For exam-
ple, being able to identify individual differences in synchrony with
the group provides the potential to understand how some indi-
viduals within a group may be strongly pulled to coordinate with
others, whereas others may tend to be relatively impervious to
such social influence.

Almost no research studies have examined the movement syn-
chronization that occurs between 3 or more individuals. One
exception is work by Néda et al. (2000a,b) in which they exam-
ined the synchronized clapping of an audience in a naturalistic
setting. As this latter work points out, group process research
requires that researchers examine not only consequent emer-
gent synchrony as a final product, but also the individual level
movements that contribute to synchrony or group coordina-
tion. Being able to assess the movements of each individual in
the process of examining group synchrony is therefore critical.

One reason for the lack of such research concerns the inabil-
ity of researchers to simultaneously record the limb and body
movements of multiple individuals. However, recent technical
advances in multi-sensor motion tracking systems (e.g., NDI’s
optical tracking systems, Polhemus’s Liberty, or Latus magnetic
tracking systems) that can provide time series records of the limb
or body movements of many individuals means that this is no
longer a barrier.

A second reason for the limited group synchrony research is a
lack of verified statistics for quantifying the magnitude and stabil-
ity of the synchrony that can occur between multiple movement
time-series. This latter issue is really a two-fold issue. First, how
can one effectively measure the overall synchrony of a group of
individuals as a whole? Second, how can one effectively measure
the degree to which the movements of any one individual in the
group are synchronized to the movements of a group as a whole?
Here, we address these questions by adapting and testing a clus-
ter phase method recently proposed by Frank and Richardson
(2010). The method is based on the Kuramoto order parame-
ter1 (Kuramoto, 1984, 1989), which has been used previously to
examine the phase synchronization of many-body systems (e.g.,
a large set of oscillators), such as the synchronized firefly flash-
ing and chirping of crickets, (see Strogatz, 2000, for a review),
and synchronized applause (Néda et al., 2000a,b). The method
directly quantifies phase synchronization in noisy experimental
multivariate data.

CLUSTER PHASE QUANTIFICATION OF GROUP SYNCHRONY
The Kuramoto based cluster phase method proposed by Frank
and Richardson (2010) can be used to quantify phase synchro-
nization in noisy experimental multivariate data as follows.

First, for n movement (participant) times-series,
x1(ti), . . . , xk(ti), where k = 1, . . ., n and i = 1,. . . , T time
steps, calculate the phase times-series for each movement, θk, in
radians [–π π]. This can be done either using the Hilbert trans-
form or a frequency normalized continuous phase calculation
(see Pikovsky et al. (2001) for an overview of these standard
phase calculation methods).

Second, calculate the group phase time-series or cluster phase
q(ti) from:

q́(ti) = 1

n

n∑
k = 1

exp(iθk(ti))

and

q(ti) = atan2(q́(ti))

1Classically, the Kuramoto method is defined in the thermodynamic limit
(i.e., for systems composed of an extremely large number N of oscillatory
units such that the limit N → ∞ can be considered as a good approxima-
tion; Kuramoto, 1984, 1989). Frank and Richardson, however, described how
this method can be adapted to quantify phase synchronization in multivariate
time series when the number N of movement time-series or trajectories is rel-
atively small compared to the thermodynamic limit (i.e., N can be 5, 10, 25,
50, or 100).
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where n = the number of movements, i = √−1 (when not used
as a time step index), and q́(ti) and q(ti) are the resulting cluster
phase in complex and radian [–ππ] form, respectively.

Third, calculate the relative phases for the individual move-
ments with respect to the cluster phase as:

φk(ti) = θk(ti) − q(ti)

where k = 1 , . . . , n and φk is the relative phase times for each
movement (participant).

Forth, compute the mean relative phase φk and the degree of
synchrony ρk for every movement k with respect to the group
behavior q from:

φ́k = 1

N

N∑
i = 1

exp(iφk(ti))

φk = atan2(φ́k),

and

ρk =
∣∣∣φ́k

∣∣∣

where N is the number of time steps ti, φ́k and φk is the mean
cluster phase in complex and radian [–π π] form, and ρk ∈ [0, 1].
Here, ρk corresponds to the inverse of the circular variance 2 of
φk(ti). Thus, if ρk = 1 the movement is in complete synchro-
nization with the group (i.e., the phase of the movement at any
time step ti is equivalent to the group phase shifted by a constant
phase). If ρk = 0 the movement is completely unsynchronized to
the group. Note that φk captures the phase shift of a movement
with respect to the group behavior q. For stable synchrony (i.e., ρk

tending toward 1) it can be used to compare if movements have
the same mean phase with the group and, thus, determine the
between movement relative phase relations. For instance, if φn =
φm then the mean relative phase between movement (participant)
m and n is zero and they are perfectly inphase with one another.

Finally, the degree of synchronization of the group as a whole
ρgroupat every time step ti is defined by:

ρgroup,i =
∣∣∣∣∣

1

n

n∑
k = 1

exp{i(φk(ti) − φk)}
∣∣∣∣∣

where ρgroup,i ∈ [0, 1] and the mean degree to group synchro-
nization is computed as:

ρgroup = 1

N

N∑
i = 1

ρgroup,i

As with ρk above, the larger the value of ρgroup,i and ρgroup (i.e.,
the closer to 1) the larger the degree of group synchronization.

2Circular variance is a circular or directional statistic that measures the spread
of a set of dihedral angles. See Fisher (1993) for more details.

Note that ρgroup provides a single measure of group synchrony for
a behavioral period (trial), whereas ρgroup,i provides a continuous
measure of group synchrony3.

EXPERIMENTAL TEST OF METHOD
To test the effectiveness of the above method, we conducted a
study of group synchrony in which groups of six participants,
arranged in a circle, rocked in rocking chairs at a self-selected
or predetermined frequency. This social coordination paradigm
was chosen for two reasons. First, the rocking chair movements
of many participants could be recorded easily by placing motion
tracking sensors unobtrusively behind the head rest of each par-
ticipant’s chair. Second, previous research has found that the
natural period of rocking chairs is quite stable such that the indi-
vidual differences in participant weight has a negligible effect on
movement frequency (Richardson et al., 2007). Third, previous
research (Richardson et al., 2007) has demonstrated that rocking
chair movements can be synchronized, but only when partici-
pants have information about their co-participant’s movements
(e.g., can see each other). In short, this methodology provided
a way to examine the effectiveness of the cluster phase statistics
in determining the phase synchronization of multivariate time-
series movement data under intentional (eyes-open) and chance
(eyes-closed) levels of coordination.

METHOD
PARTICIPANTS
Eight groups of six participants (48 participants in mixed gender
groups) were recruited for the study. All participants were Colby
college undergraduate students who completed the experiment
for partial course credit or monetary incentive (US $6.00). All
participants were naïve to the study’s purpose and had not pre-
viously participated in a study on rhythmic or social movement
coordination4.

MATERIALS
Participants sat and rocked in six identical wooden rocking chairs.
The chairs were positioned evenly around a central 10 × 10 cm
target that stood on a 5 cm wide by 1.2 m high stand. The chairs
formed a circle with a radius of 1.25 m, with the radius assessed
from the center of target to the front of the chairs. The Euclidean
x-y-z movements of each rocking chair was recorded at 120 Hz
using a magnetic tracking system (Polhemus Liberty, Polhemus
Corporation, Colchester, VT), with the motion sensors attached
unobtrusively to the back of each chairs’ headrest.

PROCEDURE
Upon arrival each participant was randomly assigned to one
of the six chairs. Participants were instructed to rock at a self-
selected frequency (groups 101–104) or at a frequency of 0.6 Hz5

3Although not demonstrated here, ρgroup,i could be used to determine tran-
sient and stationary behavior across a behavioral period.
4The participants and data presented here are not the same as reported by
Frank and Richardson (2010).
5Extensive pilot testing revealed that individuals naturally rocked at between
0.5 and 0.7 Hz. Thus, 0.6 Hz was chosen as it represented the average self-
selected (comfort mode) frequency of individuals.
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(groups 201–204). With respect to the latter groups, a metronome
beat was presented to participants for 30 s prior to beginning
the experiment trials so that participants could practice rocking
at this frequency. The metronome was not presented during the
experimental trials. This metronome condition was employed to
ensure that participants rocked at a tempo more consistent with
the natural rocking tempo of the chairs, as deviations from a
systems natural movement frequency can decrease coordination
stability (e.g., Richardson et al., 2007; Schmidt and Richardson,
2008).

Every group completed three 3 min trials in the following
order: one eyes closed trial; and two eyes open trials. For the eyes
closed trial, participants were instructed to either rock at their
own self-selected tempo or at the practice (0.6 Hz) frequency
(depending on group) with their eyes closed. This trial allowed
for a measure of chance level synchrony as participants had
no visual information about their co-participants’ movements.
For the eyes open trials, participants were instructed to rock at
a self-selected frequency or at the practice frequency (depend-
ing on group) while attempting to synchronize their rocking
chair movements as a group. To control for looking direction,
all participants were instructed to look at the central target.
No instructions as to the form or pattern of synchrony were
provided.

DATA REDUCTION AND SIGNAL PROCESSING
Due to the circular arrangement of the chairs the z-direction
(up-down) of movement was extracted from the movement
recordings for analysis as it was the only uniform direction
(motion time-series) across chairs (see Figure 1). Prior to per-
forming the analysis, the movement time-series were down-
sampled from 120 to 60 Hz, centered around zero, and low-pass
filtered using a 10 Hz Butterworth filter. The Hilbert transform
was employed to calculate the phase times-series for each move-
ment. In addition to performing the cluster phase analysis defined
above, a peak-picking algorithm was used to obtain the mean
frequency (Hz) of the chair movements for each trial and was
calculated as the inverse of the mean time between the points of
maximum extension. This frequency analysis revealed that par-
ticipants produced the equivalent movement frequencies in both
the self-paced (M = 0.58, SD = 0.06) and metronome paced
(M = 0.60, SD = 0.04) conditions and for both the eyes-closed

FIGURE 1 | Example time-series of the rocking chairs’ z-direction

(up-down) movements over time.

(M = 0.59, SD = 0.08) and eyes-open (M = 0.50, SD = 0.03)
conditions. This is consistent with previous rocking chair research
(Richardson et al., 2007), and reflects the tendency of participants
to produced movements close to a systems natural or resonant
frequency (Kugler and Turvey, 1987; Richardson et al., 2007).
Given that an initial analysis of the data revealed no significant
effects of whether individuals’ pacing was set by the experimenter
or not, this factor was removed from the analysis and the eight
groups were treated as equivalent with respect to pacing.

RESULTS AND DISCUSSION
The aim of the current experiment was to demonstrate that the
cluster phase method proposed by Frank and Richardson (2010)
could be used to effectively measure group synchrony. As a way of
illustrating the effectiveness of the differing cluster phase statistics
we first present a qualitative assessment of ρgroup,i (which pro-
vides a continuous measure of group synchrony) and the cluster
phase calculations of mean and SD of relative phase (which can be
used to illustrate the patterning of the synchrony). Following this,
we then present a quantitative (statistical) analysis of the clus-
ter phase statistics ρgroup, ρk, and ρd (see below for definitions)
to objectively determine the effectiveness with which they can be
used to (1) measure the presence and magnitude of group move-
ment synchrony as a whole, (2) the degree to which the different
individuals in the group were synchronized to the movements of
the group as a whole, respectively, and (3) the degree to which two
individuals within the group are synchronized with each other.

Recall that the eyes-closed condition enabled a measure of
chance level coordination, that is, a statistical magnitude by which
actual coordination could be assessed against. Thus, while the
overall magnitude of the cluster phase statistics, ρgroup,i, ρgroup,
and ρk (i.e., the closer to 1) is indicative of greater synchrony, the
instructive comparison for both the qualitative and quantitative
analysis presented below is the magnitude difference between the
eyes-closed and eyes-open conditions. Specifically, the magnitude
of the cluster phase statistics, ρgroup,i, ρgroup, and ρk should be
greater for the eyes-open condition compared to the eyes-closed
condition.

QUALITATIVE ANALYSIS
An inspection of Figure 2, which plots ρgroup,i averaged across
group as a function of time, provides preliminary support for the

FIGURE 2 | Continuous group synchrony, ρgroup,i averaged across

group and trial.
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cluster phase method. Specifically, the data presented in Figure 2
reveals how following an initial transient period of approximately
15 s, ρgroup,i for both of the eyes-open trials remained at a much
greater level across the course of the trials than that observed
for the eyes-closed condition. A similar pattern was exhibited for
each of the eight groups, with ρgroup,i ranging between approx-
imately 0.7 and 0.9 for the coordination (eyes-open) condition
and between approximately 0.2 and 0.4 for the chance level
(eyes-closed) condition.

With respect to the patterning of the synchrony that emerged
during the intentional coordination (eyes-open) trials, individ-
uals within a group tended to exhibit an inphase pattern of
coordination to the group as a whole (as measured by φclus.,
M = 0.38, SD = 15.21), with a modest degree of stability (as
measured by SDφclus., M = 41.34, SD = 20.94). The individual
measures, by chair number, of φclus. and SDφclus. are displayed
in Table 1. Note that although φclus. and SDφclus. could be deter-
mined for the eyes-closed condition the circular nature of relative
phase means that such calculations are trivial for chance (or inter-
mittent) coordination and do not reflect a meaningful synchrony
relationship.

QUANTITATIVE ANALYSIS
The ρgroup and ρk measures for the eyes-closed and both eyes-
open trials are displayed in Table 2. To assess the validity of

the ρgroup statistic in measuring group based synchrony, a One-
Way repeated measures ANOVA was conducted to compare the
three trials (eyes closed, eyes-open trial one, and eyes-open trial
two). If ρgroup is a valid measure of group synchrony then it
should be a significantly greater (closer to 1) in the eyes-open
conditions than in the eyes-closed condition, where any syn-
chrony that occurs is simply due to chance. This was indeed the
case, with the omnibus ANOVA revealing a significant effect of
trial, F(2, 14) = 189.10, p < 0.01, η2 = 0.96 (see Figure 3) and a
post-hoc analysis (Tukey-HSD) finding that the two eyes-open tri-
als were significant greater than the eyes-closed condition (both
p < 0.01), but were not significantly different from each other
(p > 0.95).

In addition to the group-based measure of synchrony, ρgroup,
Frank and Richardson (2010) also proposed that the cluster phase
statistic of ρk could be used to measure the extent to which each
individual is synchronizing with his or her group. Just as in the
analyses using group based synchrony above, this would be vali-
dated by finding significantly more individual synchrony, greater
magnitudes of ρk (closer to 1), in the eyes open compared to the
eyes-closed condition. Of more import is the possibility that ρk

can be used to examine the variation in the extent to which differ-
ing individuals within a group are synchronized with their group
as a whole. This latter possibility was investigated using multilevel
modeling with 2 levels (individual crossed with trial is level 1 and

Table 1 | Mean (SD) cluster relative phase (φclus. and SDφclus., respectively).

Group no. Trial Chair number

1 2 3 4 5 6

101 Eyes Closed − − − − − −
Eyes Open (T1) −12.4 (17.6) −3.9 (23) 3.4 (13.6) 5.2 (24) −4.5 (49.3) 10.5 (12.1)

Eyes Open (T2) −9.9 (18.3) 1.2 (21) −2.3 (17.5) 4.5 (27.1) −6.2 (23.3) 12.7 (15.8)

102 Eyes Closed − − − − − −
Eyes Open (T1) −3.6 (30) −10.8 (28.6) −0.9 (29.2) 0.8 (20.4) 56 (69.5) −0.1 (20.1)

Eyes Open (T2) 6.3 (35.1) −21.7 (22.5) 15.2 (27.4) 7 (19.6) −4.7 (32.4) −1.7 (28)

103 Eyes Closed − − − − − −
Eyes Open (T1) −0.5 (18.5) −4.2 (22.9) 7.5 (19) 13.2 (28.3) 2.6 (46.6) −48.4 (64.2)

Eyes Open (T2) −3.4 (22.1) −5.9 (23.8) 0.8 (21) −2.5 (28.9) 0.7 (44.9) 39.2 (69.7)

104 Eyes Closed − − − − − −
Eyes Open (T1) −1.8 (17) 31.1 (37.9) −5.9 (19.7) −21.4 (46) 11.9 (24) −13.7 (23.3)

Eyes Open (T2) 10 (32.4) 27.1 (30.6) −19.7 (36) −14.2 (32.5) 5.6 (28) −9 (21.9)

201 Eyes Closed − − − − − −
Eyes Open (T1) −15.3 (13.2) 4.8 (30.2) 15.3 (17.5) 10.7 (16.5) −11.7 (24.2) −3.5 (16.2)

Eyes Open (T2) −21.3 (17.1) 3.1 (45) 4.8 (18.9) 4.2 (17.5) 16.6 (25) −5.8 (15.1)

202 Eyes Closed − − − − − −
Eyes Open (T1) 11.1 (24.7) −0.8 (23.4) −12 (54.1) −20.5 (30.3) 14.4 (36.7) 3.9 (34)

Eyes Open (T2) 0.3 (27.2) 7.1 (22.4) −8.3 (62) −13.8 (43.5) 19.4 (26.3) −30.3 (64.3)

203 Eyes Closed − − − − − −
Eyes Open (T1) 13 (43.6) −8.9 (21.8) −8.1 (21.2) −9 (23.8) 8.8 (24.2) 8.1 (32.7)

Eyes Open (T2) 12.2 (62) −4.4 (31.4) 12.8 (24) −1 (25.5) 6.8 (50.3) −32.9 (56.3)

204 Eyes Closed − − − − − −
Eyes Open (T1) −30.3 (33.5) −4.8 (23.7) 6 (33.3) 13.6 (26.4) 7.9 (30.3) 5.3 (31)

Eyes Open (T2) −18.7 (24) −0.9 (23) 2.7 (24) −9.2 (24.7) 20.7 (32.4) 6.9 (23.3)
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Table 2 | Individual (ρk ) and group (ρgroup) cluster amplitudes.

Group no. Trial Chair number

1 2 3 4 5 6 ρgroup

101 Eyes Closed 0.30 0.27 0.42 0.40 0.38 0.31 0.36

Eyes Open (T1) 0.95 0.92 0.97 0.91 0.63 0.98 0.89

Eyes Open (T2) 0.95 0.93 0.95 0.89 0.92 0.96 0.93

102 Eyes Closed 0.31 0.42 0.14 0.32 0.34 0.46 0.36

Eyes Open (T1) 0.86 0.88 0.87 0.94 0.26 0.94 0.80

Eyes Open (T2) 0.81 0.92 0.89 0.94 0.84 0.88 0.88

103 Eyes Closed 0.36 0.34 0.30 0.35 0.34 0.40 0.36

Eyes Open (T1) 0.95 0.92 0.95 0.88 0.67 0.37 0.80

Eyes Open (T2) 0.93 0.91 0.93 0.87 0.69 0.26 0.77

104 Eyes Closed 0.36 0.35 0.41 0.39 0.38 0.36 0.38

Eyes Open (T1) 0.96 0.78 0.94 0.68 0.91 0.92 0.87

Eyes Open (T2) 0.84 0.86 0.80 0.84 0.88 0.93 0.86

201 Eyes Closed 0.33 0.38 0.48 0.41 0.30 0.25 0.37

Eyes Open (T1) 0.97 0.86 0.95 0.96 0.91 0.96 0.94

Eyes Open (T2) 0.96 0.69 0.95 0.95 0.91 0.97 0.90

202 Eyes Closed 0.40 0.22 0.32 0.43 0.58 0.30 0.41

Eyes Open (T1) 0.91 0.92 0.55 0.86 0.79 0.82 0.81

Eyes Open (T2) 0.89 0.92 0.41 0.71 0.90 0.37 0.71

203 Eyes Closed 0.37 0.47 0.17 0.39 0.35 0.34 0.36

Eyes Open (T1) 0.71 0.93 0.93 0.91 0.91 0.84 0.87

Eyes Open (T2) 0.42 0.85 0.91 0.90 0.61 0.52 0.71

204 Eyes Closed 0.35 0.41 0.34 0.33 0.46 0.33 0.38

Eyes Open (T1) 0.83 0.91 0.83 0.89 0.86 0.85 0.87

Eyes Open (T2) 0.91 0.92 0.91 0.91 0.84 0.92 0.90

FIGURE 3 | Mean group synchrony, ρgroup, as a function of condition

and trial (T).

group is level 2). The variable Condition (fixed effect at level 1)
was dummy coded with two indicator variables: an eyes closed
indicator variable, as well as an eyes open trial 1 variable; thus,
eyes open trial 2 was the comparison group. As in the group-based
synchrony analyses above we found a significant difference in
individual synchrony between the eyes closed condition and the
eyes open trial 2 condition (b = −0.47, p < 0.01) with the eyes
closed condition eliciting less individual synchrony. Furthermore,

there was no statistically significant difference in individual syn-
chrony between eyes open, trial 1 and eyes open, trial 2 (b = 0.02,
p = 0.32).

Interestingly there was statistically significant individual vari-
ance in this synchrony in all three trials with the most individual
synchrony in the eyes open conditions, as would be expected;
however, it was not large (eyes closed: σ̂2

ρk,individual
= 0.006, p <

0.01; eyes open trial 1: σ̂2
ρk,individual

= 0.02, p < 0.01; eyes open

trial 2: σ̂2
ρk,individual

= 0.03, p < 0.01). Variance in synchrony at
the individual level measures whether or not some individuals
are more synchronized with their groups than other individuals
in each condition. There was also statistically significant covari-
ance between individual synchrony in the first eyes open trial
and in the second, σ̂2

ρk,individual
= 0.55, p < 0.01, which indicates

that there is some consistency in individual synchrony across tri-
als; that is, those who individually synchronize to their groups
in the first eyes open trial tended to individually synchronize
in the second eyes open trial. The covariances between the eyes
open trials and the eyes closed trial were zero—as one would
expect since the individuals who become synchronized in the eyes
closed trials are random and not necessarily the ones who tend
to synchronize. Likewise, we also tested if there was group based
individual synchrony. This effect measures the extent to which
some groups’ members are more synchronized with the group
than other groups’ members. For example, some groups may
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have individuals that are strongly influenced by others (regard-
less of whether there is a group-level synchrony that is emerging)
whereas others might not. Since there were no systematic differ-
ences in how groups were created we might not expect there to
be any group-based variance. Indeed this is the case, there was no
group variance—thus groups do not vary in their overall levels of
individual synchrony.

DYADIC SYNCHRONY
While the Frank and Richardson (2010) cluster phase method
examined here enables a measure of group synchrony (ρgroup)
and the degree to which each individual is synchronizing with the
group (ρk), one should still examine dyadic synchrony (i.e., the
synchrony between pairs of individuals in a group). That is, for
each pair of phase time series θk and θk′ , with k �= k′, one should
examine the degree of dyadic synchronization, ρd. This can be
obtained by first calculating the relative phases for each pair of
individuals within a group,

φd(ti) = θk(ti) − θk′(ti)

where k = 1 , . . . , n and φd is the relative phase times series for
each pair d = 1 , . . . , n, and then by computing the degree of
dyadic synchrony, ρd for every pair d from:

φ́d = 1

N

N∑
i = 1

exp(iφd(ti))

and

ρd =
∣∣∣φ́d

∣∣∣

where N is the number of time steps ti, φ́d is the mean dyadic
relative phase in complex form, and ρd ∈ [0, 1]. Again, ρd cor-
responds to the inverse of the circular variance of φd(ti), where
ρd = 0 reflects no synchrony and ρd = 1 reflects perfect dyadic
synchrony.

See Table 3 for the ρd values by dyad within each group.
Multilevel modeling, with dyad as the unit of analysis (level 1)
controlling for individual and group as level 2, was again used to
test for variation in dyadic synchrony at the individual and group
levels. A Social Relations Model (Kenny, 1994) approach to the
decomposition of variance was used with constraints to account
for the symmetric nature of the measurement (i.e., group mem-
ber A’s synchrony with group member B is equal to group member
B’s synchrony with group member A). For this analysis, only the
eyes open trial two condition was used. Interestingly, there was
statistically significant individual variance in dyadic synchrony,
σ2

d,individual = 0.014, p < 0.01. That is, some individuals were
more synchronized with the others in the group, on a pairwise
basis. There was no group-based variance in dyadic synchrony
however, σ2

d,group = 0.017, p = 0.13. Group-based variance here

measures the extent to which some groups had pairs of mem-
bers that were more synchronized with each other than were
pairs in other groups. Even though group-based variance was not
found in this context, in either the dyadic or individual measure

Table 3 | Dyadic, ρDyad, Cluster Amplitudes.

Group no. Chair no. Chair number

2 3 4 5 6

101 1 0.90 0.88 0.85 0.83 0.89

2 – 0.85 0.89 0.82 0.88

3 – – 0.84 0.91 0.95

4 – – – 0.84 0.83

5 – – – – 0.90

102 1 0.70 0.70 0.76 0.69 0.86

2 – 0.84 0.90 0.82 0.77

3 – – 0.91 0.68 0.78

4 – – – 0.73 0.82

5 – – – – 0.78

103 1 0.87 0.86 0.81 0.63 0.19

2 – 0.85 0.78 0.59 0.21

3 – – 0.82 0.61 0.21

4 – – – 0.50 0.18

5 – – – – 0.14

104 1 0.70 0.61 0.62 0.82 0.73

2 – 0.67 0.68 0.76 0.76

3 – – 0.66 0.68 0.70

4 – – – 0.67 0.82

5 – – – – 0.80

201 1 0.62 0.91 0.91 0.82 0.93

2 – 0.59 0.60 0.63 0.67

3 – – 0.91 0.85 0.90

4 – – – 0.84 0.91

5 – – – – 0.85

202 1 0.84 0.24 0.67 0.83 0.28

2 – 0.29 0.68 0.90 0.29

3 – – 0.17 0.27 0.52

4 – – – 0.69 0.10

5 – – – – 0.25

203 1 0.25 0.29 0.29 0.18 0.39

2 – 0.90 0.86 0.42 0.33

3 – – 0.91 0.50 0.36

4 – – – 0.49 0.35

5 – – – – 0.30

204 1 0.84 0.78 0.81 0.72 0.83

2 – 0.81 0.79 0.72 0.84

3 – – 0.81 0.83 0.80

4 – – – 0.71 0.83

5 – – – – 0.74

of synchrony, there may be other contexts in which we would
expect variation across groups to be present. For example, if some
groups had pairs of friends in a group and other groups did
not, then group-level differences in dyadic synchrony would be
expected.

Addressing such an issue, however, is beyond the scope of
the current paper; more detailed features of the groups were not
manipulated nor assessed in the study. Although low levels of
dyadic synchrony would constrain the ability to have group syn-
chrony, it is important to note that a group could have a high
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mean level of dyadic synchrony (e.g., ρd,group close to 1), without
having high levels of group synchrony (e.g., ρgroup approximately
0.5), since they are measuring different processes. The distinc-
tion between group mean dyadic synchrony and group synchrony
is that group synchronization measures the extent to which at
any moment in time the interactions between all group mem-
bers establish a “central” group behavior that acts in turn as
an attractor for every individual member, whereas dyadic syn-
chronization measures the degree to which two particular group
members synchronize their behavior over the course of time
when we considered them isolated from the remaining group
members. This central group behavior reflects a mutuality and
interdependence of influence. This attractor might not even be
an observed state that an individual or a dyad is achieving—
much as a prototype for a given cognitive category captures
something about category members as a whole and might not
be something ever specifically observed in any members (Rosch
and Lloyd, 1978). Thus, measures of group level synchrony
would be expected to relate to psychological and physical fac-
tors that lead to a strong sense of “groupness”—group entitativity
or cohesiveness. The benefits of investigating these other lev-
els of synchrony, individual, and dyadic, are that they allow us
to empirically test the extent with which the synchrony process
is a process that emerges as a result of relatively unidirectional
influences.

CONCLUSION
Here we presented and tested an analysis method proposed by
Frank and Richardson (2010) for measuring the magnitude and
patterning of the movement synchrony that can occur between
the movements of a group of individuals. We experimentally
tested the multivariate time-series method using a group-based
rocking chair paradigm in which six participants positioned in a
circle rocked in rocking chairs. In addition to instructing partic-
ipants to intentionally coordinate their rocking chair movements
with their eyes-open, we also instructed groups to rock in an
eyes-closed condition in order to test whether the cluster phase
statistics could effectively differentiate between intentional and
chance levels of group synchrony. In particular we were inter-
ested in determining (1) whether the cluster phase statistic ρgroup

could effectively measure the overall synchrony of a group of
individuals as a whole and, (2) the degree to which ρk could effec-
tively determine whether the movements of any one individual
in the group are synchronized to the movements of a group as a
whole.

The results revealed that ρgroup and ρk did provide effective
measures of (1) and (2), respectively, in that both statistics could
statistically differentiate between the intentional (eyes-open) and
chance level (eyes-closed) conditions (see Figures 2 and 3). In
addition, the results revealed that the cluster phase measures of
the mean and SD of relative phase (i.e., φclus. and SDφclus., respec-
tively) can be used to identify the patterning of the synchrony
that emerges. More specifically, the data presented in Table 1
demonstrates how φclus. and SDφclus. can be used to determine
whether individuals are coordinated to the group as a whole in an
inphase (0◦) or antiphase (180◦) manner, or in some other sta-
ble relative-phase relation (e.g., 90◦, 45◦). Consistent with past

research using rocking chairs (Richardson et al., 2007), relative
phases near inphase were the dominant pattern.

We also illustrated how this analysis can be conducted within
the context of considering all levels of influence (dyadic as well
as group) within a group. Although we did not have any manip-
ulations in this study that would lead dyadic processes to be
crucial factors, we have illustrated how such analyses would be
conducted. In situations where pairs of allies are present within a
group of strangers or allies are absent, and in situations where one
individual is a group leader versus when a leader is absent, the pat-
terns of dyadic level synchrony should distinguish these different
groups.

At present the cluster phase method presented here can-
not account for coupling delays or leading/following behavior.
However, it is plausible to assume that the method could be gen-
eralized to take such effects into account. First, the Kuramoto
model with delay has been studied in the literature (e.g., Huber
and Tsimring, 2003) and data analysis techniques have been
developed to determine the underlying evolution equations of
such stochastic delay systems (see e.g., Frank et al., 2004, 2005).
The challenge in this context is that it is difficult to distinguish
between the two kinds of couplings that lead to the same obser-
vation: a coupling without delay such that the attractor is at a
particular phase difference different from zero and a coupling
with delay e.g., with an in-phase attractor. Therefore, generaliz-
ing the current approach to account for delays is not a trivial
matter. Mathematical models for leading/following behavior have
been proposed for example for group and jury decision-making
(e.g., Boster et al., 1991). It might be possible, therefore, for the
Kuramoto model and cluster phase method presented here to be
generalized in an analogous way and, thus, future work should be
directed accordingly.

In the current study, we employed an eyes-closed condition
as a control condition by providing a measure of chance level
coordination. It is worth noting, however, that one could gener-
ate surrogate data for control purposes—i.e., by shuffled recorded
data or by generating data with known random influences based
on the recorded data (see e.g., Schreiber and Schmitz, 2000). Such
surrogate data analysis would enable one to quantify chancel level
group synchrony (as well as individual and dyadic synchrony)
without the need for a control condition or control trials (i.e., no
visual or non-coupled movement trials). For some experimental
designs this may be preferable. For instance, when multiple tri-
als or specific control trials may unduly influence participants’
movements or may reveal the true nature of the study (i.e., when
investigating spontaneous or unintentional coordination).

Researchers may have some concerns regarding whether these
methods are constrained to situations where group members are
seated, and seated in rocking chairs in particular. Although the
analyses presented here all involve analysis of rhythmic (peri-
odic) behavior, it is important to note that the analyses could be
extended to situations where the movements involve natural ges-
tural or postural movements during conversation (Schmidt et al.,
2011) or movement during dance (Himberg and Thompson,
2010; Van Dyck et al., 2010). It is also possible that the analy-
sis proposed could even be adapted to quantify group cognitive
behavior and performance (e.g., Woolley et al., 2010).
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By validating the cluster phase method proposed by Frank
and Richardson (2010) the current study provides a practi-
cal demonstration of how researchers interested in group syn-
chrony can objectively measure the magnitude of such synchrony.
Accordingly, the cluster phase statistics could be used in future
research to determine whether and how the magnitude and
stability of group synchrony influences the social dynamics of
group interaction. In particular, we would predict that strength
of group synchrony is correlated with self (and perceiver) reports
of group entitativity, cohesiveness, and identification with the
group. More broadly, it seems likely that the cluster phase method
will aid social scientists interested in investigating the dynamic

time-dependent structure of group behavior, with respect not
only to movement synchrony and group dynamics, but a broad
spectrum of human perception and action phenomena.

AUTHOR NOTE
Example MATLAB code for the cluster phase method can
be downloaded from http://homepages.uc.edu/∼richamo/
downloads.html. Example data can also be downloaded for
demonstration purposes and for testing the analysis code.
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