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Editorial: Impacts of complex
terrain on wind power output and
mechanisms to improve
prediction accuracy

Lefeng Cheng1* and Linfei Yin2

1School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong,
China, 2College of Electrical Engineering, Guangxi University, Nanning, China

KEYWORDS

accurate wind power forecasting, renewable-energy grid connection and consumption,
wind turbine parameter optimization, data-driven approach, economic scheduling
considering wind power fluctuations

Editorial on the Research Topic
Impacts of complex terrain on wind power output and mechanisms to
improve prediction accuracy

Random and intermittent shocks generated by large-scale wind farms continue to
affect the safe and stable operations of power systems significantly (Hong et al., 2024; Li
et al., 2024); hence, it is necessary to investigate the impacts of complex terrains on wind
power outputs and mechanisms to improve their prediction accuracies. To this end, we
host this Research Topic that contains nine final articles. Among these works, Kristianti
et al. investigated the influences of air flow features on alpine wind energy potential.
Man et al. proposed a multidevice wind turbine power generation forecasting model
aimed at wind farms. Zhang et al. present a meta reservoir computing method while
Konstantinou and Hatziargyriou establish a model combining convolutional neural
networks and DeepSHAP to enhance the accuracy of wind power forecasting. Wang
et al. present an incremental feedforward collective pitch control method for the wind
turbine. Zhou et al. propose an interval model for the wind turbine power curve. Xu
et al. survey some energy management strategies for a loop microgrid with wind energy
prediction and energy storage systems. Wang and Liao propose a short-term hybrid
prediction model for wind speed prediction. Finally, Gao et al. present a detailed review
of the interval reservoir computing approach and examine some case studies. Overall,
these articles cover a wide range of research topics and provide highly valuable research
methods and models that are expected to serve as excellent references for researchers
working on related research topics, particularly those related to the impacts of complex
terrains on wind power outputs and mechanisms to improve their prediction
accuracies.
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A short-term hybrid wind speed
prediction model based on
decomposition and improved
optimization algorithm

Lu Wang1,2 and Yilan Liao1*
1State Key Laboratory of Resources and Environmental Information System, Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 2School of
Sciences, Guangxi University of Science and Technology, Liuzhou, China

Introduction: In the field of wind power generation, short-term wind speed
prediction plays an increasingly important role as the foundation for effective
utilization of wind energy. However, accurately predicting wind speed is highly
challenging due to its complexity and randomness in practical applications.
Currently, single algorithms exhibit poor accuracy in short-term wind speed
prediction, leading to the widespread adoption of hybrid wind speed prediction
models based on deep learning techniques. To comprehensively enhance the
predictive performance of short-term wind speed models, this study proposes a
hybrid model, VMDAttention LSTM-ASSA, which consists of three stages:
decomposition of the original wind speed sequence, prediction of each mode
component, and weight optimization.

Methods: To comprehensively enhance the predictive performance of short-term
wind speed models, this study proposes a hybrid model, VMDAttention LSTM-
ASSA, which consists of three stages: decomposition of the original wind speed
sequence, prediction of each mode component, and weight optimization. Firstly,
the model incorporates an attention mechanism into the LSTM model to extract
important temporal slices from each mode component, effectively improving the
slice prediction accuracy. Secondly, two different search operators are introduced
to enhance the original Salp Swarm Algorithm, addressing the issue of getting
trapped in local optima and achieving globally optimal short-term wind speed
predictions.

Result: Through comparative experiments using multiple-site short-term wind
speed datasets, this study demonstrates that the proposed VMD-AtLSTM-ASSA
model outperforms other hybrid prediction models (VMD-RNN, VMD-BPNN,
VMD-GRU, VMD-LSTM) with a maximum reduction of 80.33% in MAPE values.
The experimental results validate the high accuracy and stability of the VMD-
AtLSTM-ASSA model.

Discussion: Short-termwind speed prediction is of paramount importance for the
effective utilization of wind power generation, and our research provides strong
support for enhancing the efficiency and reliability of wind power generation
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systems. Future research directions may include further improvements in model
performance and extension into other meteorological and environmental
application domains.

KEYWORDS

variational modal decomposition, attention, long short-term memory, salp swarm
algorithm, short-term wind speed prediction

1 Introduction

Wind energy plays an important role in many new energy
sources. According to the latest report released by the Global
Wind Energy Council (GWEC) (Guliyev, 2020), the global
installed capacity of wind power will reach 743 GW in 2020, with
a 53% year-on-year growth in new installations. However, the
stochastic, fluctuating and intermittent nature of wind farms
poses significant challenges to the operation and control of the
entire power system including wind farms (Lacal-Arantegui, 2019).
Among them, short-term wind speed prediction is an indispensable
factor for the development of daily scheduling plans. Therefore,
proposing a method to accurately predict the short-term wind speed
has an important impact on the economic and reliable operation of
the power system (Rizwan-ul-Hassan et al., 2021).

Currently, short-term wind speed prediction methods are divided
into twomain categories: physical process-drivenmodels (Higashiyama
et al., 2018) and data-driven models (Yuan et al., 2017). Data-driven
models are divided into statistical models (Liu et al., 2010) and artificial
intelligence models (Khodayar et al., 2017). Physical process-driven
models are mostly numerical weather prediction (NWP) models
(Lowery and O’Malley, 2012), which make predictions based on
local environmental information, such as, temperature, humidity,
and geography. These methods are usually time-consuming and
unsuitable for short-term and ultrashort-term wind speed forecasting
due to excessive model considerations and model over-complexity
(Wang and Li, 2018). In contrast, statistical models are more
suitable for short-term wind speed forecasting. Statistical models
learn the patterns of historical wind speed data and establish non-
linearmapping relationships between the data, thus realizing time series
forecasting (Rodrigues Moreno et al., 2020). Commonly used statistical
methods are time series modeling (Liu et al., 2020b), Kalman filtering
(Paliwal and Basu, 1987),Markov chain (Sahin and Sen, 2001), Bayesian
method (Liu et al., 2020a) and so on. Statistical models have high
prediction accuracy for static time series, but when facing highly
nonlinear and complex wind speed data, these methods are less
scalable and less effective in fitting.

In recent years, artificial intelligence models, including machine
learning and deep learning models, have become increasingly popular
in the field of short-term wind speed prediction (Scutaru et al., 2020).
Compared with physical and statistical models, artificial intelligence
models have greatly improved the accuracy of predicting wind speed.
Among these, artificial neural network-basedmodels seem to be the best
choice because they can learn directly from historical data of wind speed
without any a priori concepts and are more adaptable to practical
applications (Tascikaraoglu and Uzunoglu, 2014). The most basic
artificial neural network model is the back propagation neural
network (BPNN) (Wang et al., 2015). Theoretically, as long as the
number of neural units in the hidden layer of a BPNN reaches a certain

number, then any nonlinear function can be fitted. However, BPNNs
also have obvious shortcomings, firstly, it is easy to fall into the local
optimum rather than obtaining the global optimal solution, and
secondly, the learning efficiency caused by the need for too many
trainings is low, and the convergence speed is not ideal. The other
artificial neural network model, recurrent neural network (RNN)
(Zaremba et al., 2015), is better at finding local correlations
compared to BPNN. It can pass previous state information to
neurons at the current time step. This mechanism allows the RNN
to deal with dependencies in long sequences and also allows the same
parameters to be shared between each time step, which gives it a smaller
number of parameters and faster training speed, which fits well with the
temporal continuum of wind speed prediction (Tanaka et al., 2015; Yu
et al., 2018; Duan et al., 2021). However, the problem of
backpropagation in the network architecture of RNNs leads to the
problem of gradient vanishing and gradient explosion. This means that
there are difficulties with very long sequences and the gradient decreases
to near zero in hard-to-handle iterations. In order to overcome this
problem, “gate control” techniques are used in RNNmodels, such as the
long short-termmemory (LSTM) (Hochreiter and Schmidhuber, 1997)
and gate recurrent unit (GRU) (Niu et al., 2020), The GRU model
adopts a simplified gating mechanism to prevent overfitting, but its
prediction results are more logically correlated with recent time steps,
whichmay lead to the loss of useful information fromdistant time steps.
On the other hand, the LSTM model can effectively handle long-term
dependencies, avoiding the issues of gradient vanishing or exploding.
Experimental validation using multiple wind speed datasets has
demonstrated the superior predictive performance of LSTM (Altan
et al., 2021; Jaseena andKovoor, 2021; Shahid et al., 2021). However, the
computational structure of LSTM is relatively complex and it has a
larger number of parameters, which could potentially lead to overfitting.
Therefore, the key focus of research lies in effectively capturing
important information based on the data conditions within the
LSTM network, aiming to improve the prediction accuracy and
robustness of wind speed forecasts.

Due to the distinct characteristics exhibited by various singlemodels,
hybrid models can effectively leverage the advantages of different
individual models to achieve enhanced wind speed prediction
performance. Consequently, hybrid prediction models based on
decomposition and optimization have emerged as a research hotspot
in the field of wind speed prediction in recent years. In order to ensure
the sufficiency and integrity of feature decomposition and
reconstruction, some scholars have proposed a novel hybrid model
based on singular spectrum analysis and temporal convolutional
attention network with adaptive receptive field (ARFTCAN). The
results demonstrate that the proposed model effectively supports the
adaptability of short-term wind power forecasting (WPF) across all four
seasons (Shao et al., 2022). Furthermore, another group of researchers
have introduced a wind speed prediction method that combines
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quaternion convolutional neural network (QCNN), Bi-LSTM, and
adaptive decomposition techniques. This approach offers highly
accurate forecasting results for long-term wind speed prediction
(Neshat et al., 2022). Short-term hybrid wind speed prediction
models usually include three steps: decomposition, prediction, and
optimization (Ma et al., 2009). In the signal decomposition step, the
unstable original wind speed sequence is decomposed into multiple IMF
components with significant frequency characteristics by data
decomposition methods, which reduces the complexity of the original
data and performs noise reduction, e.g., empirical mode decomposition
(EMD) (Ren et al., 2016) performs adaptive decomposition of nonlinear
and highly fluctuating data in the original wind speed sequence to
improve the prediction performance of wind speed prediction models
(Naik et al., 2018). However, the EMD has the problems of large
reconstruction error, poor decomposition completeness, and large
noise residuals. Therefore, Literature (Hu et al., 2021) proposed a
method using variational mode decomposition to mine the features
of the wind speed sequence and eliminate the noise to predict each
intrinsic mode function (IMF), which has obvious accuracy advantages
over other decomposition methods in wind speed prediction.

In constructing the wind speed hybrid model, usually after signal
decomposition of the data, a parameter optimization algorithm is
also used to optimize the weights of each IMF to improve the
performance of the prediction algorithm. Among the parameter
optimization algorithms, the swarm intelligence optimization
algorithm is the most commonly used algorithm for wind speed
prediction. The swarm intelligence optimization algorithm is a
number of algorithms proposed for solving optimization
problems through the simulation study of the behavior of animal
groups, which overcomes the limitations of the traditional
algorithms when dealing with some complex problems such as,
nonlinear, multi-constraint, multi-variable, etc., and demonstrates a
better optimization ability. Some common ones are grey wolf
optimizer (GWO) (Fu et al., 2019), differential evolution (DE)
(Storn and Price, 1997), particle swarm optimization (PSO)
(Kennedy, 2011), covariance matrix adaptation evolution strategy
(CMAES) (Hansen and Ostermeier, 2001), whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016), salp swarm
algorithm (SSA) (Mirjalili et al., 2017), etc. These algorithms
have their respective advantages, but the salp swarm algorithm
(SSA), as an algorithm that achieves parameter optimization by
simulating the behavior of salp populations, exhibits significant
advantages in terms of parameter configuration, robustness, and
convergence speed. For example, SSA only requires adjusting the
position and velocity of salp individuals to update the search space.
It utilizes information transmission and competition mechanisms
among salp individuals to promote diversity and convergence
during the search process (Mirjalili et al., 2017), achieving a
balance between global and local search. Furthermore, SSA
demonstrates superior robustness and faster convergence speed
in solving complex optimization problems. However, like other
heuristic algorithms, the algorithm also suffers from problems
such as, a high likelihood of falling into local optimum, low
optimization accuracy, and unstable solution results (Faris et al.,
2018; Kang et al., 2019). Therefore, many scholars have improved
the deficiencies of the salp swarm algorithm accordingly. For
example, Literature (Faris et al., 2018) used adaptive operators to
help the salp swarm algorithm break through the optimal local

constraints in the process of follower position updating, so that the
individual salp swarm has strong global convergence ability in the
early stage, thus obtaining relatively accurate results in the later
stage. Some researchers have also designed three new
communication strategies, significantly improving the
collaborative capability of SSA (Pan et al., 2021). Alternatively,
starting from interval prediction, a novel prediction model based
on wind speed distribution and multi-objective optimization is
proposed by improving the SSA combination module (Wang and
Cheng, 2021). The aforementioned studies by these scholars lay the
foundation for the proposed multi-objective adaptive learning salp
swarm algorithm (ASSA) in this paper.

In summary, this study proposes the VMD-Attention LSTM-
ASSA (VMD-AtLSTM-ASSA) hybrid short-term wind speed
prediction model containing decomposition, prediction, and
optimization for short-term wind speed prediction. The
variational mode decomposition (VMD), as a decomposition
model in the hybrid model, decomposes the wind speed series
data into a series of intrinsic mode functions (IMFs) that can
adaptively update the optimal center frequency and bandwidth of
each IMF component, which is helpful for the subsequent work of
using the long short term memory networks (LSTM) prediction
model to incorporate the attention mechanism effectively, which
extracts the important slice information in each IMF component for
high-precision prediction. Finally, the multi-objective adaptive
learning rate salp swarm algorithm (ASSA) model is used to find
the optimal weights for each IMF component, which is finally
weighted to obtain the high-precision wind speed prediction value.

The main contributions and innovations of this paper are as
follows.

(a) The use of long short term memory networks (LSTM) with the
inclusion of an attention mechanism to individually predict the
intrinsic mode functions (IMFs) obtained through variational
mode decomposition (VMD). The Attention mechanism
identifies the importance of slice information within each
modal component, effectively improving the prediction
accuracy and robustness of the LSTM network.

(b) On the basis of the salp swarm algorithm (SSA), improvements
are made to address the problems of local optima trapping and
premature convergence in the original salp swarm algorithm.
This is achieved by proposing the adaptive learning operator
and multi-objective operator in the multi-objective adaptive
learning rate salp swarm optimization algorithm ASSA.
Ultimately, this approach achieves global optimality and
improves wind speed prediction accuracy.

(c) Through comprehensive comparisons with popular deep
learning prediction models, decomposition models, and
optimization models, this paper verifies the superiority of the
proposed hybrid wind speed prediction model VMD-AtLSTM-
ASSA in terms of individual components as well as overall
predictive performance.

The structure of this paper is described as follows: Section 2
presents the algorithmic principles of the proposed model, including
the model framework and execution process, and the model
principles; Section 3 presents and discusses the case study;
Section 4 gives the conclusions and future work.
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2 Methodology

2.1 Overall framework and execution
process of VMD-AtLSTM-ASSA

This section describes the framework structure of the proposed
VMD-AtLSTM-ASSA combined model, and the specific flowchart is
shown in Figure 1. The execution process of this study is in three
phases, which are A. Wind speed sequence decomposition, B.
Prediction of wind speed IMF components, and C. Weight
optimization. In this study, the wind speed sequence decomposition
stage utilizes the variational mode decomposition (VMD) model to
decompose the complex original sequence into stable mode
components, aiming to reduce the impact of non-stationarity and
complexity of the original wind speed sequence on prediction accuracy.
In the prediction stage, the LSTM model with attention mechanism
(AtLSTM) is used to predict the wind speed from the decomposed IMF
components. Since the predicted values of each IMF component are of
differing importance to the actual values, the proposed multi-objective
adaptive learning rate salp swarm algorithm (ASSA) algorithm is used
to give the optimal weights to each component and then superimpose
them to obtain the final highly accurate predicted values of wind speed.

2.2 Principle of VMD-AtLSTM-ASSA

2.2.1 Wind speed sequence
decomposition—variational mode decomposition

The VMD is a signal decomposition method (Dragomiretskiy and
Zosso, 2014), and the overall framework is a variational problem. That
is, assuming that each “mode” is a finite bandwidth with different center
frequencies, minimizing the sum of the estimated bandwidths of each
mode becomes a problem. In order to solve this variational problem, the
method adopts the alternating direction multiplier method, which
constantly updates each mode and its center frequency, gradually
demodulates each mode to the corresponding fundamental
frequency band, and finally extracts each mode to the corresponding
center frequency. Therefore, in this study, the VMD technique is
employed to decompose the complex original wind speed sequence.
The main objective is to decompose the original wind speed sequence,
which exhibits nonlinearity and randomness, into a series of frequency-
stable mode components, aiming to maximize the improvement in
prediction accuracy. The specific process of VMD is as follows, and the
results of the mode decomposition are shown in Figure 2.

Step 1: Assuming that each wind speed’s intrinsic mode functions
have a finite bandwidth with a center frequency, now find the
decomposed wind speed modes such that the sum of the
estimated bandwidths of each wind speed mode is minimized.
The specific model is as follows:

min
uk{ } Wk{ }

∑
k

∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jWkt

������� �������22⎧⎨⎩ ⎫⎬⎭ (1)

s.t.∑
k

uk t( )� f (2)

Where, k is the number of modes to be decomposed (positive
integer), uk and wk correspond to the k IMF and the center

frequency of the decomposition, δ(t) is the Dirac function, and *
is the convolution operator.

Step 2: In order to solve the above model, introduce the penalty
factor α (to reduce the effect of Gaussian noise) and Lagrange
multiplier operator, transform the constrained problem into an
unconstrained problem, and get the generalized Lagrange
expression: the above equation constrained problem is equivalent
to an unconstrained optimization problem through the generalized
Lagrange function, and the mathematical formulas are as follows:

L uk{ }, Wk{ }, λ( ): � a∑
k

∂ δ t( ) + j
πt( )*uk t( )[ ]e−jWkt

����� �����22
+ f t( ) −∑

k
uk t( )

�������� ��������22 +〈λ t( ), f t( ) −∑
k

uk t( )〉
(3)

Step 3: Iteratively update the parameters, uk wk and λ by
multiplier alternating direction method with the following
equation.

ûn+1k w( ) �
f̂ w( ) − ∑

i≠k
ûi w( ) + λ̂ w( )

2

1 + 2α w − wk( )2 (4)

wn+1
k � ∫∞

0
w ûn+1k w( )∣∣∣∣ ∣∣∣∣2dw∫∞

0
ûn+1k w( )∣∣∣∣ ∣∣∣∣2dw (5)

λ̂
n+1

w( ) � λ̂
n
w( ) + γ f̂ w( ) −∑

k

ûn+1k w( )⎛⎝ ⎞⎠ (6)

Where γ is the noise tolerance, which meets the fidelity
requirement of signal decomposition; n is the number of
iterations; ûn+1k (w), ûn+1i (w), f̂(w), λ̂(w) correspond to the
Fourier transforms of un+1k (t), ui(t)n�1, f(t), λ(t), respectively.

Step 4: For a given precision ∈ (∈> 0), if Eq. 7 is satisfied, the
iteration stops, otherwise return to Step 3), and finally you can
get the K, a decomposition of the IMF component denoted as
IMFk.

∑
k

un+1k − ûnk
���� ����22

unk
���� ����22 < ∈ (7)

The subsequent analysis focuses on the 15 intrinsic mode
functions (IMFs) obtained through the variational mode
decomposition (VMD), which are then utilized for short-term
wind speed prediction using an Attention LSTM model.
Additionally, the study investigates the optimization of weights
associated with each IMF. The detailed process can be found in
the flowchart depicted in Figure 1.

2.2.2 Prediction of wind speed IMF
components—attention LSTM

The IMFs obtained by applying the variational mode
decomposition (VMD) to the original wind speed sequence are
individually predicted using an Attention LSTM model. LSTM
network is a special type of recurrent neural network (RNN)
(Hossain and Mahmood, 2020). Due to its special design, LSTM
network memorizes long-term information by default, which can
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effectively solve the long-term and short-term dependence problem
when dealing with nonlinear sequence data. Compared to RNN
networks, LSTM networks overcome the problems of gradient

vanishing and gradient explosion as well as long-term memory
(Hochreiter and Schmidhuber, 1997), because the core of the LSTM
network is a memory cell state that replaces the hidden layer of

FIGURE 1
Framework and execution process of VMD-AtLSTM-ASSA model. This framework is divided into three steps, (A) is wind speed sequence
decomposition, (B) is prediction of wind speed IMF conponents, and (C) is weight optimisation, and the three steps complete the prediction of the whole
wind speed sequence in order.
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traditional neurons Ct, which is similar to a conveyor belt so that the
information is less likely to be forgotten, and therefore improves the
accuracy of the short-term wind speed prediction. However, since in
this study, each IMF component is predicted by LSTM model using
rolling slice prediction method with a step size of 60, in fact, not
every slice plays a key role in the prediction of the wind speed of each
IMF component. Therefore, the attention mechanism (Potocnik
et al., 2021) is introduced to effectively obtain the important feature
relationships of the short-term wind speed slices of the component,
so that different weights are assigned to each sample slice to improve
the accuracy and also greatly improve the computational accuracy.
Figure 1 describes the computation process of Attention LSTM. The
principle of the Attention LSTMmechanism is explained as follows:

First, each IMF after decomposition is used as an input to the
LSTM xt, and the flow of the LSTM network is as follows:

Step 1: Decide what information to discard from the memory cell
state (calculate the “forget gate” state).

f t � σ Wf · ht−1 +Wf · xt + bf( ) (8)
σ x( ) � 1

1 + ex
(9)

In the above equation, ht−1 represents the received output of the
previous node, xt is the input of IMFk, Wf is the corresponding
weight matrix, bf represents the deviation of the “forget gate”, and f t
represents the state of the “oblivious gate”.

Step 2:Decide which information is stored in the memory cell state
(calculate the “input gate” state) and calculate the candidate values
for the memory cell state.

it � σ Wi · ht−1 +Wi · xt + bi( ) (10)
~Ct � tanh Wc · ht−1 +Wc · xt + bc( ) (11)

tanh x( ) � ex − e−x

ex + e−x
(12)

In the above equation, ht−1 and xt are the same as above, Wi and
Wc are the corresponding weight matrices, bi and bc represent the

FIGURE 2
Results of variational mode decomposition (VMD) for three sites.

TABLE 1 Characteristics of the three-site wind speed datasets.

Dataset Number Statistical indicators

Mean (m/s) Sd. (m/s) Max (m/s) Min (m/s)

Site1 3,000 7.6373 1.7722 14.4030 1.8014

Site2 3,000 7.2664 1.9386 15.8270 3.0015

Site3 3,000 8.0485 3.3500 18.1090 0.8450

TABLE 2 Three evaluation indicators for model evaluation.

Metrice Definition Equation

RMSE Root mean square error

RMSE �
������������
1
N∑N

i�1
(ê1 − ei)2

√√
MAE Mean absolute error

MSE � 1
N∑N

i�1
|ê1 − ei|

MAPE Mean Absolute percentage error
MAPE � 1

N∑N
i�1
|ê1−eiei

|× 100
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deviation of the “input gate” and the deviation of the candidate value
of the memory cell state, it represents the input states, and ~Ct

represents the candidate value of the memory cell state.

Step 3: Update the current moment memory cell state with the
“forget gate” state, the “input gate” state, the previous moment
memory cell state, and the candidate value of memory cell state:

Ct � f t*Ct�1 + it*~Ct (13)

In the above equation Ct denotes the state of the memory cell at
the current moment.

Step 4: Determine what information to output from the memory
cell state (calculate the “output gate” state):

ot � σ Wo · ht−1 +Wo · xt + bo( ) (14)
ht � ot*tanh Ct( ) (15)

In the above equation, ot represents the state of “output gate”,
Wo is the corresponding weight matrix, bo represents the deviation
of “output gate”, and ht represents the output of current node.

When predicting each wind speed IMF component, it is
obviously not rigorous enough to assign the same weight to all
input slice information.While the Attentionmechanism can capture
the important features of wind speed, the Attention mechanism
evaluates the importance of different input features, focuses the
important information with high weights, ignores the less relevant
information with low weights, and finally assigns different weights to
them reasonably. Therefore, the Attention mechanism is introduced
into the LSTM prediction of each IMF component, and the specific
implementation steps of the mechanism are as follows: firstly, the
weight coefficients are calculated, i.e., the attention distribution of
the slices inside each IMF component is calculated; secondly, the

TABLE 3 Related parameter settings.

Model Parameter Parameter value

SVR Step size 60

Kernal linear

RNN Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

BPNN Step size 60

Learning rate 1e-4

Epochs 150

Batch size 64

LSTM Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

Number of hidden neurons 64

GRU Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

Number of hidden neurons 64

AtLSTM Step size 60

Dropout ratio 0.1

Epochs 150

Batch size 64

Number of hidden neurons 64

VMD noise margin 0

Alpha 7,000

number of decomposition modes 15

ASSA Population size 10

Number of iterations 50

TABLE 4 Comparison of prediction errors of five single models with AtLSTM.

Dataset Measurement model Evaluation indicators

RMSE MAE MAPE

Site1 SVR 0.5831 0.4505 7.0699

BPNN 0.6044 0.4657 7.2671

RNN 0.5348 0.3997 6.2173

GRU 0.5332 0.3967 6.1847

LSTM 0.5309 0.3954 6.1427

AtLSTM 0.5067 0.3839 5.8560

Site2 SVR 0.5409 0.4424 7.6596

BPNN 0.5067 0.3988 6.6723

RNN 0.5078 0.4075 7.1344

GRU 0.4571 0.3545 5.7271

LSTM 0.4562 0.3466 5.6348

AtLSTM 0.4418 0.3454 5.3974

Site3 SVR 0.6314 0.5270 9.4655

BPNN 0.3089 0.2229 3.9711

RNN 0.2058 0.1386 2.5879

GRU 0.2039 0.1333 2.5565

LSTM 0.2024 0.1252 2.5397

AtLSTM 0.1998 0.1249 2.5198

The best values for the evaluation indicators are bolded.

Frontiers in Energy Research frontiersin.org07

Wang and Liao 10.3389/fenrg.2023.1298088

12

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1298088


weighted summation of the calculated weight coefficients is carried
out, i.e., the weighted average of the slices of each IMF component is
calculated, and the calculation process is as follows:

Step 1: Multiply the sliced samples ai in each wind speed IMF
component with the corresponding parameter matrix Wq,Wk,Wv

to get the corresponding query (qi), key (ki), and value (vi):

FIGURE 3
Bar charts of the fitting curves and metrics for 5 individual models and Attention LSTM.
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qi � Wq · ai i � 1, 2, 3 . . .( ), (16)
ki � Wk · ai i � 1, 2, 3 . . .( ), (17)
vi � Wv · ai i � 1, 2, 3 . . .( ) (18)

Step 2: query and key perform similarity calculation to get the
weights αi,j:

αi,j � qi · kj i, j � 1, 2, 3 . . .( ) (19)

Step 3: The weights αi,j are softmax normalized to get the
normalized weights α′i,j:

α′i,j� softmax αi,j( ), (20)

softmax xi,j( ) � exp xi,j( )∑
j
exp xi,j( ) (21)

Step 4: The normalized weights are weighted and summed with
VALUE to get the final output of a certain IMF component
prediction bi:

bi � ∑
j

αi,j
′ · vj( ) (22)

2.2.3 Weight optimisation - multi-objective
adaptive learning rate salp swarm algorithm

After the prediction of each IMF component sequence, the
salp swarm algorithm (SSA) will find the optimal weights of each
component, and finally weigh the superposition to get the final
short-term wind speed prediction. The salp swarm algorithm
(SSA) simulates the group behavior of salp swarm chains, which
is a novel swarm intelligence optimization algorithm (Mirjalili

et al., 2017). In this study, the sum of IMF components represents
the salp swarm, while the individual intrinsic mode function
(IMF) represents the individual salp. During the foraging
process, the salp swarm will move towards the food in a chain
behavior, and the salp at the head of the chain becomes the leader,
and the subsequent ones become the followers. During the
movement process, the leader carries out global exploration,
while the followers fully carry out local exploration, and this
search pattern greatly increases the precision of optimization.
This foraging process is the process of finding the optimal
weights for each wind speed IMF component in this study,
where important information is given high weights and
information of low relevance is given ground weights.

However, in the SSA, the salp swarm leader is eager to reach
the local optimum from the beginning, which leads to insufficient
searching and sometimes the algorithm has a low convergence
accuracy. Therefore, this paper proposes multi-objective adaptive
learning rate salp swarm algorithm (ASSA). Aiming to solve the
problem of a lack of global awareness in population updating, we
add two different learning operators in leader position updating
and follower position updating respectively, which effectively
solves the problem of the SSA easily falling into local extremes
and improves the optimization accuracy of the algorithm. The
flowchart of multi-objective adaptive learning rate salp swarm
algorithm (ASSA) is shown in Figure 1, The optimization steps
are as follows (Mirjalili et al., 2017):

Step 1: Population initialization. Let the search space be the
Euclidean space of D × N, D represents the dimension of the
space, and N represents the number of populations. The position
of the salp swarm (IMF) is denoted by Xn � [Xn1,Xn2, . . . ,XnD]T and
the position of food (target weight) Fn � [Fn1, Fn2, . . . ,FnD]T is
denoted by n = 1, 2, 3,. . .,N. The upper bound of the search
space is ub � [ub1, ub2, . . . ,ubD] and the lower bounds are lb �
[lb1, lb2, . . . ,lbD] and j = 1, 2, 3,. . .,N. Leaders in the population
are denoted by X1

d and followers by Xi
d, ; i �

2, 3, 4, . . . ,N d � 1, 2, 3, . . . ,D

Step 2: Leader position update. During the movement and foraging
process of the salp swarm chain, the position of the food source is the
target position of all salp swarm individuals, so the leader’s position
update formula is expressed as:

X1
d � Fd + c1 ub − lb( )c2 + lb( ), c3 ≥ 0.5

Fd + c1 ub − lb( )c2 + lb( ), c3 < 0.5
{ (23)

Where: X1
d and Fd are the position of the first salp (leader) and

the position of the food in the d dimension, respectively; ub and lb are
the corresponding upper and lower bounds, respectively. Where c1,
c2, c3 are the control parameters. Eq. 23 shows that the update of the
leader’s position is only related to the position of the food, c1 is the
convergence factor in the optimization algorithm, which plays the
role of balancing the global search and local exploitation, and the
expression of c1 is:

c1� 2e−
41
L( )2 (24)

Where: l is the current iteration number; L is the maximum
iteration number. The convergence factor is a decreasing function

TABLE 5 Model error comparison of four decomposition methods combined
with AtLSTM.

Dataset Measurement model Evaluation indicators

RMSE MAE MAPE

Site1 EMD-AtLSTM 0.3472 0.2673 4.1494

EEMD-AtLSTM 0.1830 0.1445 2.2421

CEEMDAN-AtLSTM 0.4289 0.3472 6.0182

VMD-AtLSTM 0.1813 0.1411 2.1213

Site2 EMD-AtLSTM 0.2323 0.1743 2.7800

EEMD-AtLSTM 0.2058 0.1712 2.8656

CEEMDAN-AtLSTM 0.2296 0.1725 2.7366

VMD-AtLSTM 0.1678 0.1356 2.4595

Site3 EMD-AtLSTM 0.1440 0.1052 1.9368

EEMD-AtLSTM 0.1281 0.1037 1.7263

CEEMDAN-AtLSTM 0.1169 0.1095 1.4721

VMD-AtLSTM 0.1072 0.0856 1.4199

The best values for the evaluation indicators are bolded.
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from 2 to 0. The control parameters c2, c3 are randomnumbers between
0 and 1, which are used to enhance the randomness of X1

d to improve
the global search ability and individual diversity of the chain cluster.

Step 3: Follower position update. During the movement and
foraging process of the salp swarm chain, the followers move
forward sequentially in a chain by influencing each other
between the front and back individuals. Their displacements

conform to Newton’s laws of motion, and the equation for the
follower’s motion displacement is:

X � 1
2
at2 − v0t (25)

Where: t is the time; a is the acceleration, calculated as
a � (vfinal − v0)/t; v0 is the initial velocity, and
vfinal � (Xi

d − Xi−1
d )/t. Considering that in the optimization

FIGURE 4
Circular bar charts comparing the fitting curves and error metrics of the four decomposition methods combined with AtLSTM.
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algorithm, t is iterative, let t = 1 and v0 = 0. Then the following
equation can be obtained:

X � Xi
d − Xi−1

d

2
(26)

Where: i≥ 2; Xi
d,X

i−1
d are the positions of the two salps

immediately connected to each other in the d dimension,
respectively. Therefore, the position of the follower is denoted as:

Xi′
d �

Xi
d − Xi−1

d

2
(27)

where Xi′
d and Xi−1

d are the position of the updated follower and the
position of the pre-updated follower in dimension d, respectively.

However, in the SSA algorithm, the salp swarm leader runs to
the global optimum from the beginning of the iteration, which leads
to insufficient global search, and an occasionally low convergence
accuracy of the algorithm. To address this problem, this paper

proposes the ASSA algorithm. For the problem of lack of global
awareness in the population update, we add two different learning
operators on the leader position update and follower position update
respectively, which effectively solves the problem of the SSA
algorithm easily falling into the local extreme value and improves
the algorithm’s optimization accuracy.

The learning operator for leader position update is added to
make the population search more biased towards large-scale search
in the early stage and focused towards the global optimal solution in
the late stage of the search. The improved salp swarm leader position
update process is:

xi,j � Fd−k·c1 max −min( )c2+min (28)
k � exp −count

iter
( ) (29)

where count is the current iteration number in the range, [0, iter] iter
is the maximum iteration number.

TABLE 6 Comparison of prediction errors based on VMD combined with various deep learning prediction models.

Dataset Measurement model Evaluation indicators Running time(s)

RMSE MAE MAPE

Site1 VMD-SVR 0.3687 0.2902 4.4368 30.8748

VMD-BPNN 0.1916 0.1497 2.3733 220.6907

VMD-RNN 0.1867 0.1435 2.2144 850.7612

VMD-GRU 0.1825 0.1409 2.1041 1990.3243

VMD-LSTM 0.1810 0.1402 2.1066 2100.4321

VMD-AtLSTM 0.1803 0.1401 2.1213 2400.8764

VMD-AtLSTM-SSA 0.1574 0.1212 2.0123 2405.5656

VMD-AtLSTM-ASSA 0.1553 0.1204 1.8353 2410.0908

Site2 VMD-SVR 0.5746 0.4599 8.1926 28.5463

VMD-BPNN 0.2030 0.1581 2.8487 180.6700

VMD-RNN 0.1790 0.1420 2.3702 780.3212

VMD-GRU 0.1723 0.1375 2.3942 1897.5009

VMD-LSTM 0.1707 0.1361 2.3410 1901.3221

VMD-AtLSTM 0.1678 0.1356 2.4595 2287.6543

VMD-AtLSTM-SSA 0.1356 0.1091 1.7755 2293.1112

VMD-AtLSTM-ASSA 0.1319 0.1003 1.6111 2296.9898

Site3 VMD-SVR 0.5082 0.4252 7.1296 26.1276

VMD-BPNN 0.1023 0.0734 1.3104 175.3435

VMD-RNN 0.1004 0.0823 1.3261 809.9987

VMD-GRU 0.1060 0.0851 1.4559 1799.3212

VMD-LSTM 0.1090 0.0764 1.4377 1831.3221

VMD-AtLSTM 0.1062 0.0756 1.4309 2108.8876

VMD-AtLSTM-SSA 0.0758 0.0540 1.0272 2118.7650

VMD-AtLSTM-ASSA 0.0444 0.0273 1.0008 2123.5409

Values of evaluation metrics for VMD-AtLSTM,VMD-AtLSTM-SSA,VMD-AtLSTM-ASSA are bolded.
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For the position update of a salp swarm follower, the individual
position is always affected by the two individuals before and after it,
and the fitness of the two individuals is unknown. Therefore, we
propose that by calculating the fitness values of the two individuals

and restricting the poorly adapted individual, we weaken the
influence of the poorly adapted individual on the individual
update at the current moment. The improved bottles sea squirt
follower position update process is:

FIGURE 5
Curve fitting and regression fitting graphs of VMD combined with each model for prediction.
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xi,j �
1
2

xi,j + k·xi−1,j( ) f xi( )< f xi−1( )
1
2

k · xi,j + xi−1,j( ) f xi( )> f xi−1( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (30)

Where count is the current number of iterations in the range,
[0, iter] iter is the maximum number of iterations, and f(xi) is the
fitness value for each position.

This improved optimization algorithm has more than one
objective function, thus the optimization problem is changed to a
multi-objective optimization problem. We first de-measure the
objective functions to ensure that the objective functions have the
same measure; then average the objective functions, and then
transform the multi-objective optimization problem into a simple
single-objective optimization problem to solve the problem. As follows:

f xi( ) � RMSEi +MAEi( )
2

(31)

Step4: Judge whether the current iteration number count satisfies
the maximum iteration number iter, if so, output the optimal weight
results of each IMF component, otherwise return to Step2.

3 Case study

In this section, to verify the effectiveness of the proposed VMD-
AtLSTM-ASSA model, we experimentally study the model using
wind speed data collected fromwind farms in three different regions.
The VMD-AtLSTM-ASSA model is compared with popular models
in the research field. All experiments are implemented under the
deep learning framework under Python 3.7.3. The configuration of
the emulated platform is Intel(R) Core(TM) i5-8250U CPU @
1.60 GHz 1.80 GHz with 8 GB memory capacity.

3.1 Dataset

The study collected wind speed datasets from three sites on
https://data.nrel.gov/search-page, each with 3,000 data points.
Site1 came from the St. Thomas Wind Station in the Virgin
Islands, the United States; the site 2 wind speed dataset came from

the St. Croix Wind Station, the United States Virgin Islands, and the
site 3 wind speed dataset came from the Woodburn Wind Station in
the United States. At each of the three sites, the wind speed was
collected. The last 500 data points were taken as the test set in all
datasets, while the rest was taken as the training set. The
characteristics of the dataset are shown in Table 1 below.

3.2 Experiments and evaluation indicators

To validate the effectiveness and high accuracy performance of
the proposed hybrid model, three sets of comparative experiments
were conducted. Experiment 1 compared the predictive
performance of AtLSTM with currently popular single deep
learning models, verifying the superior predictive performance of
Attention LSTM. Experiment 2 compared the prediction results of
different wind speed sequence decomposition methods combined
with Attention LSTM, demonstrating the superiority of VMD
followed by Attention LSTM prediction. Experiment 3 compared
the prediction results of different deep learning models combined
with VMD, as well as the performance of models incorporating the
optimization models SSA and ASSA. This experiment validated the
superiority of the VMD-Attention LSTM hybrid model and the
excellent predictive performance and stability of the VMD-
AtLSTM-ASSA model. The details of these three sets of
comparative experiments will be presented in Sections 3.4–3.6.

In the experiments, three different evaluation indicators, root
mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE), were used to present and analyze
the experimental results, and according to the value of the evaluation
Indicators, the model’s prediction performance was evaluated (Jiang
et al., 2021). Their homologous expressions are shown in Table 2, it
is worth noting that N represents the length of a predicted
subsequence and ei and êi stand for the actual and predicted
values, respectively.

3.3 Model parameter settings

In order to verify the validity of the proposed model, the model
parameters used in this study are the same, eliminating the influence

FIGURE 6
Results of ASSA weight searching.
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of model parameter settings on experimental results. The Attention
LSTM is commonly referred to as AtLSTM in the experimental
setting. Table 3 shows the model parameter settings used.

3.4 Experiment 1: validating the accuracy
advantage of the AtLSTMmodel over a single
model

In this experiment, AtLSTM was compared with SVR, BPNN,
RNN, GRU, and LSTM models to validate the exceptional predictive
performance of the proposed model. The evaluation metrics for model
prediction performance are presented in Table 4, with bold font used to
indicate the metrics of the AtLSTM model. Figure 3 provides a visual
representation of the differences in predictive performance between the
proposed model and the four deep learning models.

From Table 4; Figure 3, it is evident that there are variations in
the experimental results across the three stations. Both LSTM and
GRU demonstrate excellent predictive performance, with LSTM
slightly outperforming GRU. By incorporating the Attention
mechanism, AtLSTM exhibits a significant improvement in
predictive performance compared to LSTM. As shown in
Table 4, for different datasets and the five models considered,
AtLSTM consistently achieves lower error values, indicating its
superior predictive ability. Specifically, in the experiments
conducted on the three stations, AtLSTM demonstrates a
maximum reduction of 16.16% in RMSE, 17.56% in MAE, and
19.42% in MAPE when compared to other prediction models,
namely, SVR, BPNN, RNN, GRU, and LSTM. Therefore, it can
be reasonably concluded that AtLSTM possesses superiority in
improving the accuracy of prediction results.

3.5 Experiment 2: Validating the
decomposition advantages of the VMD
model over other decomposition models

To demonstrate the superiority of AtLSTM based on the VMD
decomposition model over other decomposition methods in
improving wind speed prediction accuracy, we compared it with
EMD-AtLSTM, EEMD-AtLSTM, and CEEMDAN-AtLSTM to
validate the superior predictive performance of VMD-AtLSTM.
The evaluation metrics for model prediction performance are
presented in Table 5, with bold font used to indicate the metrics
of the VMD-AtLSTM model. The fitting graph and circular bar
chart in Figure 4 visually display the differences in predictive
performance between VMD-AtLSTM and the other three
decomposition models.

From Table 5, it can be observed that VMD-AtLSTM achieves
the lowest error values across the three locations. Compared to other
decomposition models, namely, EMD-AtLSTM, EEMD-AtLSTM,
and CEEMDAN-AtLSTM, VMD-AtLSTM exhibits maximum
reductions of 57.73%, 59.36%, and 64.75% in RMSE, MAE, and
MAPE values, respectively. In conclusion, it can be reasonably
argued that combining VMD with AtLSTM for wind speed
prediction demonstrates superiority in enhancing short-term
wind speed prediction accuracy compared to other signal
decomposition techniques.

3.6 Experiment 3: validating the predictive
performance advantages of VMD-AtLSTM
and VMD-AtLSTM-ASSA

In order to validate the superior predictive performance of the
proposed VMD-AtLSTM-ASSA model, we first compared the
prediction errors of VMD-SVR, VMD-BPNN, VMD-RNN,
VMD-GRU, and VMD-LSTM models, and then evaluated the
superiority of VMD-AtLSTM. Furthermore, we verified the
effectiveness of incorporating SSA in improving the accuracy of
VMD-AtLSTM. Subsequently, a comparison of prediction errors
was conducted between the VMD-AtLSTM-SSA and VMD-
AtLSTM-ASSA models, ultimately confirming the significant
positive impact of the proposed VMD-AtLSTM-ASSA on
prediction accuracy. Table 6 displays the prediction error metrics
and computational time for the eight hybrid models, while Figure 5
further illustrates the prediction results obtained by each model at
the three stations.

The results from Table 6; Figure 5 indicate that among the
VMD-based hybrid models, VMD-LSTM performs the best in terms
of prediction accuracy, followed by VMD-RNN and VMD-GRU.
The VMD-AtLSTMmodel exhibits improved accuracy compared to
VMD-LSTM, suggesting that incorporating attention mechanism
enhances the predictive accuracy of the LSTM model. Additionally,
it can be observed that VMD-AtLSTM-SSA reduces the RMSE value
by 12.7% compared to VMD-AtLSTM, while VMD-AtLSTM-ASSA
further reduces the RMSE value by 1.33% based on VMD-AtLSTM-
SSA. The proposed model achieves maximum reductions of 57.88%,
58.51%, and 58.63% in RMSE, MAE, andMAPE values, respectively,
compared to other prediction models. In summary, compared to
other VMD-based hybrid models, VMD-AtLSTM improves
prediction accuracy by incorporating attention mechanism into
LSTM and adding ASSA effectively optimizes prediction
accuracy. Figure 6 displays the results of weight searching for
15 IMF components after applying the ASSA algorithm at the
three stations. It can be observed that the importance of IMF
components varies across different datasets. IMF11 in Site1,
IMF7 in Site2, and IMF6 in Site3 are identified as the dominant
modes influencing the prediction results, and therefore assigned
higher weights.

Generally, the complexity of a model is related to its
computational time. Table 6 presents the running time of each
model, revealing that AtLSTM model takes slightly more time to
execute compared to the LSTM model due to the attention
mechanism requiring importance calculation for each slice of the
prediction sequence. However, the inclusion of the optimized model
ASSA only requires approximately 10 seconds. Overall, the VMD-
AtLSTM-ASSA model demonstrates superior predictive
performance.

4 Conclusion and future work

With the rapid development of China’s economy, the
consumption of traditional non-renewable resources (oil, coal,
etc.) is huge, and wind energy, as a renewable and clean energy
source, is becoming an important green power generation method
for themodern power grid. However, due to the non-linear and non-
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stationary nature of wind speed, this trait seriously affects the safe
and reliable operation of the power system, and finally leads to
problems such as, difficult grid scheduling of wind farms. Therefore,
the development of a high-precision and high-reliability short-term
wind speed prediction model can, on the one hand, provide efficient
and reliable planning for wind power, and on the other hand,
stabilize the power grid and reduce the volatility. Numerous
researchers have continuously invested in the study of wind
speed prediction models, and a steady stream of wind speed
prediction models have been proposed. Some examples of such
models are, physical models based on meteorological data
prediction; statistical models to establish the relationship with
future wind speed function by calculating the historical wind
speed; artificial intelligence prediction models based on training
the model on training samples.

However, the above methods do not work well for fluctuating
and complex data, so this paper proposes a short-term wind speed
prediction model based on a mixture of the VMD model, the
Attention LSTM prediction model, and an improved salp swarm
algorithm (multi-objective adaptive learning rate salp swarm
algorithm). In this study, the VMD model is employed to
decompose the original wind speed sequence into multiple stable
intrinsic mode functions (IMFs). Subsequently, the AtLSTM model
is utilized to individually forecast each IMF component. Finally, the
proposed ASSA algorithm is applied to assign weights to each IMF
component, resulting in a weighted aggregation that yields highly
accurate short-term wind speed predictions.

In this study, by simulating wind speed data from three wind
farms and designing three aspects of comparison experiments, the
experimental results illustrate that the data preprocessing strategy
based on VMD technology can effectively reduce the volatility and
complexity of the wind speed sequence, and significantly improve
the accuracy of short-term high wind speed prediction.
Furthermore, in the prediction module, the Attention LSTM
(AtLSTM) with an incorporated attention mechanism is
introduced. This attention mechanism enables the LSTM network
to analyze the importance of each temporal slice of input data,
assigning higher weight values to slices that have a significant impact
on the prediction results. As a result, the predictive accuracy is
enhanced. Finally, the multi-objective adaptive learning rate salp
swarm algorithm (ASSA) proposed in the weight optimization part
adds two operators on the basis of salp swarm algorithm (SSA) that
effectively solve the problem of local optimal solution, which the
original algorithm is prone to, so as to improve its accuracy in
optimization searching. In summary, by setting up a large number of
different comparison experiments, it has been verified that the
hybrid short-term wind speed prediction model proposed in this
paper based on the multi-objective adaptive learning rate salp swarm
algorithm (ASSA), Attention LSTM, and VMD has fully
demonstrated the accuracy advantage of the model.

In this study, a hybrid VMD-AtLSTM-ASSA short-term wind
speed prediction model with decomposition algorithm and
optimization algorithm is proposed to address the characteristics
of short-term wind speed unsteadiness and nonlinearity and the lack
of prediction accuracy of a single model for complex data. This
proposed model shows excellent prediction performance.
Nevertheless, this model still has more application scenarios and
room for expansion. Firstly, this study mainly focuses on the

processing and prediction of wind speed time series information,
and other data inputs, such as, wind direction information, seasonal
information, and spatial information between wind farms, can be
considered to expand the model’s environmental adaptability.
Secondly, the K value of the variational modal decomposition
algorithm used in this study is determined by judging whether
the center frequency of each IMF is aliased or omitted, also, the α
value is limited to 7,000, so the K value in this paper is selected for
the experimental data in this paper, and it is not adaptive, so the
introduction of optimization algorithms can be considered to
achieve adaptive modal decomposition. Furthermore, within this
research, we have observed that VMD-GRU demonstrates
remarkable predictive accuracy and computational efficiency.
Therefore, in future studies, we plan to introduce additional
advanced models for comparative analysis. Additionally, we aim
to conduct comprehensive optimizations addressing both the
accuracy and model complexity limitations identified in these
models during our research. In addition, the optimization
algorithm for the machine learning algorithm in this study is the
salp swarm algorithm (SSA). Considering the rapid progress in the
research of swarm intelligence algorithms, more efficient swarm
intelligence optimization algorithms can be added to the future
research, and other optimization algorithms can be replaced to
improve the prediction performance of the model. Finally, the
hybrid VMD-AtLSTM-ASSA short-term wind speed prediction
model proposed in this paper is also suitable for other datasets
with complex data, high volatility, and high accuracy requirements,
such as, crude oil prices and nuclear energy consumption.
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The wind turbine power curve model is critical to a wind turbine’s power
prediction and performance analysis. However, abnormal data in the training
set decrease the prediction accuracy of trained models. This paper proposes
a sample average approach-based method to construct an interval model of
a wind turbine, which increases robustness against abnormal data and further
improves the model accuracy. We compare our proposed methods with the
traditional neural network-based and Bayesian neural network-based models in
experimental data-based validations. Our model shows better performance in
both accuracy and computational time.

KEYWORDS

abnormal detection, data cleaning, wind power prediction, prediction accuracy,
stochastic optimization

1 Introduction

Wind power has become a significant renewable power source of global energy systems
(Gilbert et al., 2020). To ensure operation safety and high efficiency, it is critical to monitor
the operation conditions of wind turbines to predict wind power output and detect potential
faults (Wang andLiu, 2021).TheSupervisoryControl andDataAcquisition (SCADA) system
provides wind turbine data, for example, wind speed and power, for establishing models
for wind turbine power prediction and fault detection (Y. Wang et al., 2019). A significant
proportion of the SCADA data is abnormal due to communication failures, maintenance,
and other reasons (Morrison et al., 2022). A model trained by a dataset with abnormal data
is biased from a real model and suffers from reduced accuracy (Ye et al., 2021). It is necessary
to consider the data cleaning-based method to obtain a model with improved robustness
against abnormal data.

Prior results of the data cleaning method were based on clustering algorithms
(Zheng et al., 2015; 2010; Yesilbudak, 2016). In clustering algorithm-based methods, k-
means, manifold spectral clustering, and other algorithms are applied to separate the wind
power curve into partitions and then identify the outliers based on distances to the cluster
centers. An alternative method is to determine the upper and lower boundaries of the wind
power curve by boundary models. For example, Shen et al. (2019) used change point and
quantile to estimate a contour for normal data. However, the aforementioned methods fail
to identify the outliers when there are many cluster centers. The setting of the algorithm
parameters, for example, cluster number in the clustering algorithm-based method, is also
unexplainable. These reasons make the clustering algorithm-based and existing boundary
methods suffer from issues of misidentification.

Normal distribution model-based methods, proposed to overcome issues of
misidentification, use the normal distribution to fit the power data’s distribution and
then calculate the probability contours. Data with low probability are regarded as
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abnormal data. Ouyang et al. (2017) calculated mean and standard
deviation values based on exponential smoothing. Stephen et al.
(2011) used bivariate joint distribution to fit the wind power data’s
distribution.

However, the aforementioned existing methods for abnormal
detection toward improving the model accuracy have the following
disadvantages:

• Many real outliers, especially those near the normal region,
cannot be recognized.
• There are toomany hyperparameters to be set.The performance

highly depends on the hyperparameters, while the function of
each hyperparameter is unexplainable.
• To ensure performance, the prior information on the normal

points should be available, which is not practical in general
cases.

Another practical way to quantify uncertainty is to directly
use a confidence interval-aware model, known as the interval
predictor model (Campi et al., 2009; Garattia et al., 2019). The
scenario approach presented by Calafiore and Campi (2006); Campi
and Garatti (2019); and (2011); Campi et al. (2015) can be used
to establish the interval predictor model. However, the scenario
approach cannot give an exact confidence bound since a small
number of samples will give a bound with high risk, and a large
number of samples will give a conservative bound. Luedtke and
Ahmed (2008) proposed a sample average approach to obtain an
approximate solution that exactly converges to the original as the
sample number increases. In this paper, we propose the sample
average approach-based interval models and extend them into
extreme learning machines to provide a fast algorithm for training
neural networks that can exactly give the desired confidence interval.
The proposed interval model solves the abnormal detection and
wind power curve regression problems together in a direct way.

We implement experimental data-based validation to compare the
proposed methods with several existing methods.

The rest of this paper is organized in the followingway: Section 2
briefly introduces the wind power curve and then gives a formal
problem statement. In Section 3, extreme learning machine and
the theory of sample average approach for chance-constrained
optimization are briefly reviewed; Section 4 presents the proposed
interval models combining the extreme learning machine and
sample average approach; and Section 5 presents the results and
discussions of experimental data-based validation. Finally, Section 6
concludes the paper.

2 Problem description

As shown in Figure 1, a wind turbine power curve has the
following three critical points, namely, A, B, and C, which divide
the wind turbine power curve into four segments (Marvuglia and
Messineo, 2012; Shokrzadeh et al., 2014). Point A is the cut-in
wind speed from where the wind turbine starts to output the
power. Point B represents the rated power before which the output
power increases as the wind speed increases. Point C is the cut-out
speed from where the output wind power decreases even with the
increased wind speed.

The segment between points B and C gives the rated level of the
wind power output. The segment between points A and B shows a
non-linear correlation between wind speed and power. Let v be the
wind speed and P be the wind power.The non-linear correlation can
be described approximately by the following equation:

P = 1
2
CpρπR

2v3, (1)

whereCp is the coefficient of wind turbine power, ρ is the air density,
and R is wind rotor’s radius.

FIGURE 1
Brief illustration of the wind turbine power curve and estimation biases using abnormal data.
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A dataset obtained by the SCADA system can be defined by the
following equation:

DS
N = {(vi,Pi)}

N
i=1, (2)

where N is the number of the data samples. As shown in Figure 1,
the SCADA system’s data have normal and abnormal data. In other
words,DS

N is a corrupted dataset. Using the normal data, we can get
an estimated curve (blue dashed line) close to the real curve (purple
solid line). However, with the corrupted data, the estimated curve
(red dashed line) is biased from the real curve.

Therefore, it is necessary to investigate a robust power curve
estimation method for the abnormal data. In this paper, we address
the following problem.

min
f

Nc

∑
i=1
|Pi − f(vi) |

2

s.t. (vi,Pi) ∈ D̃Nr
.

(3)

Here, the set D̃Nr
is a subset of DS

N, which is obtained by cleaning
the abnormal data. Thus, we have to address the following two sub-
problems:

• data cleaning problem to obtain a cleaned data D̃Nr
;

• regression problem described by (3).

3 Preliminaries

This section briefly reviews the extreme learning machine and
sample average approach as a preparation for introducing our
proposed interval models.

3.1 Extreme learning machine

Extreme learning machine is a fast algorithm to train a single-
layer neural network (Huang et al., 2006). A single-layer neural
network has an input layer, a hidden layer, and an output layer. Let
a positive integer L be the number of neurons. The hidden layer can
be defined as a vector function by the following expression:

h (x) ≔ [h1 (x) ,…,hL (x)]
⊤.

Each hi(x), i = 1,…,L is a neuron. Often, we choose the neuron
as follows:

hi (x) ≔ G(ai,bi,x) ,

where ai,bi are the hyperparameters in the i− th neuron. The
neuron can be a sigmoid function or a Gaussian function, etc. Let

β≔ [β1,…,βL]
⊤

be the coefficient of the output layer. Then, we can write the single-
layer network as follows:

y (x) = β⊤h (x) =
L

∑
i=1

βihi (x) . (4)

As a summary, the parameters that need to be trained are
coefficient vector β and hyperparameters (ai,bi)

L
i=1. The extreme

learning machine is used to train β, (ai,bi)
L
i=1 with a giving set DN.

The algorithm of the extreme learning machine is summarized
as follows:

• randomly generate hyperparameters (ai,bi)
L
i=1;

• estimate β by solving

min
β

N

∑
t=1
‖β⊤h(xt) − yt‖

2, (5)

which gives the solution as

β* ≔ (H
⊤H)−1H⊤YN, (6)

where H ∈ ℝN×L is defined as

[[[[

[

G (a1,b1,x1) … G (aL,bL,x1)

… … …

G (a1,b1,xN) … G (aL,bL,xN)

]]]]

]

(7)

and YN is defined as

YN ≔
[[[[

[

y1

…

yN

]]]]

]

. (8)

Theorem 2.2 of Huang et al. (2006) provides the universal
approximation property of an extreme learning machine-based
single neural network regarding a dataset DN. We summarize it in
Lemma 1.

Lemma 1: For any given small ɛ and activation function G(⋅) which
is infinitely differentiable in any interval, there exists N̄ such that, for
N > N̄ arbitrary distinct samples (xt,yt), for any (ai,bi)

L
i=1 randomly

extracted according to any continuous probability distribution, with
probability one,

N

∑
t=1
‖β⊤* h(xt) − yt‖

2 < ε. (9)

Lemma 1 shows that we could use a single-layer neural network
to approximate the wind power curve.

3.2 Sample average approach

Chance-constrained optimization seeks to optimize an objective
under a stochastic constraint (Campi et al., 2015; Shen et al., 2020;
2021), which is written as follows:

min
z∈Z

J (z)

s.t.Prξ {G (z,ξ) ≤ 0} ≥ 1− α, ξ ∈ Ξ,
(10)

where z ∈Z ⊂ ℝnu denotes the input variable with the compact
feasible set Z , uncertainty is represented by ξ ∈ Ξ ⊂ ℝnξ defined
on probability space (Ξ,B(Ξ),Prξ), J(z):Z → ℝ and ∀ξ ∈ Ξ,G:Z ×
Ξ → ℝl are continuous and differentiable objective function and
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constraint function in z, respectively. Problem (10) is a relaxation
of robust optimization in which α is zero. The optimal objective
function of (10) is defined by J*α. Let Z

*
α be the optimal solution set

of (10).
The sample-based approximation is a practical way to solve

chance-constrained optimization. This paper adopts the sample
average approach presented by Luedtke and Ahmed (2008). In the
sample average approach, samples are extracted from the sample
space Ξ, and then, an approximate problem of the original chance-
constrained optimization is established. Let (ξ(1),…,ξ(N)) be an
independent Monte Carlo sample set of the random variable ξ.
After choosing ϵ ∈ [0,1) and η > 0, with sample set (ξ(1),…,ξ(N)), the
sample average approximation problem is defined as follows:

min
z∈Z

J (z)

s.t. z ∈ZN
ϵ,γ,

(11)

where ZN
ϵ,γ is defined as follows:

ZN
ϵ,γ = {z ∈Z |

1
N

N

∑
i=1
𝕀(G(z,ξ(i)) + γ) ≥ 1− ϵ}, (12)

where Λη(⋅) is defined by the following equation:

𝕀(t) =
{
{
{

0, t > 0,

1, if t ≤ 0.
(13)

Let ̃JNϵ,γ be the optimal objective function of (10) and ̃ZN
ϵ,γ be the

optimal solution. Note that both ̃JNϵ,γ and ̃ZN
ϵ,γ are decided by the

sample set, and the sample set is randomly extracted. Thus, ̃JNϵ,γ is a
random variable, and ̃ZN

ϵ,γ is a random set. The uniform convergence
of ̃JNϵ,γ and ̃ZN

ϵ,γ should be addressed.
The following assumption on G(⋅) holds throughout this paper.

Assumption 1: There exists L > 0 such that

|G (z,ξ) −G(z′,ξ) | ≤ L‖z− z′‖∞, ∀z,z
′ ∈Z and ∀ξ ∈ Ξ. (14)

Assumption 1 is reasonable since we could choose an activation
function that makes the neural networks satisfy it and also preserve
the universal approximation.

The uniform convergence of ̃JNϵ,γ and ̃ZN
ϵ,γ is summarized from

Luedtke and Ahmed (2008).

Lemma 2: Suppose that Assumption 1 holds as N→∞, γ→ 0, and
ϵ→ α, ̃JNϵ,γ→ J*α, and 𝔻( ̃Z

N
ϵ,γ,Z

*
α) → 0 with probability 1.

Lemma 2 shows that the approximate problem’s solution
converges to one in the solution set of the original problem if the
number of samples increases to infinite. In addition, for a certain
bounded value, we could use a large enough sample number to
ensure that the approximate problem’s solution is within that bound.

4 Proposed method

This section presents the proposed extreme learning machine
with a confidence region. The convergence analysis is given. In
addition, the proposed algorithm is presented.

4.1 Extreme learning machine with a
confidence region

Theprevious extreme learningmachine gives a single prediction
value for a given input. In this paper, we investigate a computation
method to give a confidence region for a given input with the
center of the confidence region as the estimation of the curve
and the normal data located in the confidence region with high
probability. In this way, we can solve problem (3). The concept of the
extreme learningmachinewith the confidence region is illustrated in
Figure 2

We want to establish an interval model to give a power curve’s
interval for any given wind speed and require the correct wind
power prediction to be within the interval at a given probability.This

FIGURE 2
Basic concept of the extreme learning machine with a confidence region.
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FIGURE 3
Experimental dataset: (A) data without labels and (B) data with labels.

FIGURE 4
Examples of boundaries: (A) SSELM, (B) BELM, and (C) SNN.

interval should be the smallest since a large interval has the issue of
being too conservative. An interval model based on a single-layer
neural network can be defined by the following equation:

Ipower ≔ { ̃P = β⊤h (v) + e,β ∈ B ⊆ ℝL,e ∈ [−γ,γ] ,γ ∈ ℝ+} . (15)

Let

θ ≔ (β,e) (16)

be the parameter vector that specifies the interval. We have a set
of θ as Θ = B × [−γ,γ]. The wind power set for a given v and
hyperparameters (ai,bi)

L
i=1 can be obtained by Θ.

In this paper, we use a ball set for Ipower . With a little
manipulation of notation, Ipower is also used for the ball interval of
wind power. Therefore, the set B is a ball. Let c and r be the center of
B. Then, the set B can be specified by the following equation:

B = {β ∈ ℝL:‖β− c‖ ≤ r} . (17)

With B defined by (17), we can rewrite Ipower in the following form:

Ipower (v, (ai,bi)
L
i=1,c, r,γ) = [c

⊤h (v) − (r‖h (v)‖+ γ) ,

c⊤h (v) + (r‖h (v)‖+ γ)] .
(18)

TABLE 1 Abnormal data detection accuracy (%) of different methods.

SSELM BELM SNN

Accuracy 91.3291 78.9714 63.5733

Then, the problem of solving the extreme learningmachine with
a confidence region is written as follows:

min
(ai,bi)

L
i=1,c,r,γ

ηr+ γ

s.t. r,γ > 0,

ℙ{P (u) ∈ Ipower (v, (ai,bi)
L
i=1,c, r,γ) ,∀v} ≥ 1− ε.

(19)

Here, η is a positive number. By using the extreme learning machine
algorithm (Lemma 1), we can obtain (ai,bi)

L
i=1 randomly. Then,

after obtaining (ai,bi)
L
i=1 randomly, we simplify the problem to the

following one:

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,

ℙ{P (u) ∈ Ipower (v, (ai,bi)
L
i=1,c, r,γ) ,∀v} ≥ 1− ε.

(20)
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FIGURE 5
Results of wind power predictions on a test set by different methods: (A) ELM, (B) SSELM, (C) BELM, and (D) SNN.

TABLE 2 Error statistics of different methods.

TrueELM SSELM ELM BELM SNN

Root of MSE 31.7651 31.8510 34.4626 32.9476 34.2956

MAE 21.3421 21.3935 23.3502 22.3977 22.8960

Let z andZε be the decision variable and feasible region of (20),
respectively. Let

ℓ*ε ≔min
z∈Zε

ηr+ γ (21)

be the optimal objective value of problem (20) and

Z*
ε ≔ {z ∈Zε:ηr+ γ = ℓ

*
ε} (22)

be the optimal solution set. Let z*ε ∈ Z
*
ε be an optimal solution. With

z*ε, we can obtain I*
power for any wind speed v. We can reject all data

outside of I*
power as abnormal data.

4.2 Sample-based approximation and
proposed algorithm

Due to chance constraints, problem (20) is not intractable.
With the sample set DS

N, we can obtain an approximate problem of
problem (20) by the following expression:

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,
N

∑
t=1
𝕀{Pt ∈ Ipower (vt, (ai,bi)Li=1,c, r,γ)} ≥ (1− ε

′)N.

(23)

Here, 𝕀{⋅} is an indicator function defined by (13). Let ̃ℓNε′ and Z̃N
ε′ be

the optimal objective value and optimal solution set of problem (23),
respectively.

Theorem 1: As N→∞ and ɛ′ → ɛ, ̃ℓNε′ → ℓ*ε, and 𝔻(Z̃
N
ε′ ,Z

*
ε) → 0

with probability 1.

 Inputs: Dataset DS
N
, ɛ′

  1: Solve Problem (23) to obtain z̃Nε′ ∈ Z̃
N
ε′

  2: Abnormal data detection

D̃Nr
= {(vt,Pt) ∈DS

N
:Pt ∈ Ipower (vt, (ai,bi)Li=1, c̃, ̃r, ̃γ) .} (24)

  3: Estimated curve

̃Pt = β̃
⊤
h (vt) , t = 1,…,N. (25)

 Output: D̃Nr
, ̃Pt, t = 1,…,N.

Algorithm 1. Proposed algorithm of the extreme learning machine with a
confidence region.

Proof. Theorem 1 can be proved by directly applying Lemma 2
since problem (20) satisfies Assumption 1.

The proposed algorithm of the extreme learning machine with a
confidence region is presented as follows.

Notice that (25) gives the estimated curve.The confidence bound
(upper and lower bounds) can be given using the interval obtained
by solving Problem (23).

5 Experimental data-based validation

This section presents the results of experimental data-based
validations. First, the experimental dataset is introduced. Then, the
results given by the proposed method and several existing methods
are compared.

5.1 Experimental data and settings

Figure 3 plots the data used in this validation. The dataset was
collected from a wind farm in Hubei, China. Figure 3A shows all
data, including abnormal data and normal data. Specialists were
approached to give labels on the data set. The data with labels are
plotted in Figure 3B.
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In this paper, we compare the performance of the following
methods:

• TrueELM: extreme learning machine using normal data;
• SSELM: the proposed extreme learning machine combined

with the sample average approach;
• ELM: extreme learning machine without data cleaning;
• BELM: Bayesian extreme learning machine proposed by Soria-

Olivas et al. (2011);
• SNN: Neural network trained by the scenario approach

presented by Sadeghi et al. (2019).

In BELM, the parameter β is assumed to obey some predefined
distribution. First, a prior distribution is set.With newdata, the prior
distribution is adjusted to a posterior distribution so that the data
have maximum likelihood.Then, the corresponding output will also
have a conditional probability, from which the confidence interval
can be calculated. In addition, SNN can be regarded as a special case
of SSELM with ɛ′ = 0.

We evaluate the mean square error (MSE) and mean absolute
error (MAE) regarding the normal data in the evaluations.

5.2 Results and discussions

Figure 4 gives the examples of boundaries estimated by SSELM,
BELM, and SNN. For each method, 10,000 samples are used.
For SSELM, the probability threshold is set as 0.09. Each method
also gives a corresponding center point of the confidence region.
The abnormal data detection performance of different methods is
summarized in Table 1. SSELM shows a better performance than
other methods. The reason that SNN shows a poor performance
is that it includes more abnormal data since it essentially gives a
completely robust interval.

The results of wind power predictions on a text set are plotted in
Figure 5. Note that the proposedmethod, SSELM, gives a prediction
that concentrates around the real value with a shorter distance.More
comprehensive results of error statistics are summarized in Table 2,
which shows that the proposed method, SSELM, performs very
close to the results the method gave using normal data. This shows
the effectiveness of the proposed method. The proposed method
increases the robustness of the regression against the abnormal data
since it can clean the abnormal data effectively and thus increases
the accuracy of regression.

6 Conclusion

This paper proposes an interval model of wind turbine power
curves to improve the accuracy of wind power prediction. The
interval model combines an extreme learning machine and the
sample average approach. Thus, the proposed interval model can
give a confidence region and center point of the wind power

prediction for a given wind speed. The confidence region can
be used for abnormal data detection, and the center point can
be used as the estimation of the wind turbine power curve
point. Experimental data-based validations have been conducted to
compare the proposed method with several existing methods. The
results show that the proposed method improves the accuracy of
both abnormal detection and wind power curve estimation.
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Incremental feedforward
collective pitch control method
for wind turbines
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In recent years, wind turbines are becoming larger, which will exacerbate the
complexity of loads Complex load change affect the output power quality and
wind turbine service life so that must be studied. Pitch control is usually used to
reduce wind turbine load. In this paper, based on the Light Detection and Ranging
(LiDAR) technology and incremental feedforward control theory, an incremental
feedforward collective pitch controller is proposed. The controller can be directly
superimposed on the traditional collective pitch controller so that the incremental
pitch angle can fully compensate wind influence. The effectiveness of the controller
is verified by multi-software platform joint simulation and hardware-in-the-loop
experiment. The results show that the controller can effectively reduce the wind
turbine power and load fluctuation when the variation trend of wind speed in the
rotor plane estimate by LiDAR data is the same as the actual wind speed.

KEYWORDS

wind turbine, Light Detection and Ranging, collective pitch control, incremental
feedforward control, predictive control, joint simulation, hardware-in-the-loop
experiment

1 Introduction

With the deepening of wind power research, it has been found that the complex load
changes of wind turbines caused by wind fluctuations and turbulence characteristics will
adversely affect the output power quality and service life of wind turbines (Yuan et al., 2020).
Currently, a wind turbine usually uses pitch control to reduce the load on the blades and
ensure a smooth output of power. Therefore, in order to cope with these problems, it is
necessary to optimize the control of the pitch angle and rotational speed of the wind turbine.

The application of Light Detection and Ranging (LiDAR) introduced wind speed
information about reaching the plane to the wind turbine control system. Scholbrock et al.
(2016) believed that by introducing this input quantity, the controller control performance could
be optimized, and it might also reduce the load of the wind turbine and increase the power
generation of the wind turbine. Khaniki et al. (2018) found that LiDAR-assisted feedforward
control was better than pseudo-feedforward control. In summary, the collective pitch control
technology based on the LiDAR wind measurement can be considered to reduce speed
fluctuations and structural loads in the full-load area of wind turbines. It has been proposed
that the LiDAR-predicted wind speed can be combined with pitch control to reduce the load of
the wind turbine and extend the life of the wind turbine by 6–8 years by some researchers
(Mikkelsen, 2014). However, some researchers have pointed out that the excessive pursuit of
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reducing load and increasing life faces the problem of reducing the net
annual energy produced in wind energy (Mathur et al., 2017).

For the moment, the collective pitch control technology based on
the LiDAR wind measurement currently has two mainstream research
directions, one of which is to completely replace the traditional feedback
control technology of the wind turbine. The collective pitch signal has
been completely processed using the corresponding algorithm of the
wind data measured by LiDAR, such as LiDAR-assisted control (David
and Steffen, 2016), collective feedforward pitch control (Haizmann
et al., 2015), model predictive control (Bottasso et al., 2014), radial basis
function neural network control (Han et al., 2018a), and fuzzy control
(Van et al., 2015).

Another research direction has been to keep the original controller
unchanged and superimpose a feedforward pitch controller, such as the
wind turbine feedforward-feedback H2 optimal control based on the
LiDAR wind measurement (Dunne and Pao, 2016), the LiDAR wind
measurement feedforward pitch control combined with the cabin
acceleration feedback (Yamaguchi et al., 2020), the joint control
mode of the baseline feedback control enhanced by gain scheduling
feedforward control based on the pseudo-LiDAR wind measurement
(Bao et al., 2018), feedforward controller based on neural network
catenary data weights (Han et al., 2018b), and the feedforward control
carried out by looking up the static pitch angle curve table after using the
LiDAR wind speed to estimate the effective wind speed of the rotor
plane (Schlipf et al., 2015).

Through the experiments of different scholars, the positive effect of
LiDAR on wind turbines has been proved. For example, the
experimental results under different turbulence conditions show that
the adaptive control method, that is, the radial basis neural network
combined with the finite impulse response filter (RBFNNFIR) based on
the LIDAR wind measurement (Jia et al., 2021), can effectively reduce
the fluctuation of the generator speed and the maximum value of the
load moment at the beginning of the blade. The optimal control of the
prediction algorithm combining the linear wind turbine model and
LiDAR-simulated wind disturbance can be applied to the non-linear
wind turbine model, which can effectively improve the control
performance, reduce the fluctuation of generator speed, and meet
the pitch activity control limitation (Bao and Yue, 2022).

In this paper, the incremental feedforward collective pitch control
method is used to calculate the increment of the pitch angle using the
wind speed disturbance increment measured by LiDAR to reduce the
impact of wind on the feedback given. This control method can realize
the smooth transition of the pitch angle in the feedforward cut-out
process. Furthermore, the wind turbine state change caused by the
wind speed change is offset by the feedforward incremental pitch
angle, which reduces the impact of the wind speed change on the wind
turbine. The effectiveness of the proposed method is verified through
joint simulation and hardware-in-the-loop experiment.

2 Incremental feedforward collective
pitch controller

2.1 Design the incremental feedforward
collective pitch control scheme

By using the LiDAR wind measurement technology, the wind
speed time series of the rotor plane can be estimated according to the

wind information measured by LiDAR, that is, the dynamic change
of the wind can be measured. Therefore, the dynamic wind
information measured by LiDAR can be used to calculate the
feedforward pitch angle to compensate for the change in the load
of the wind turbine caused by the wind change.

This paper proposes a wind turbine incremental feedforward
collective pitch control method based on LiDAR prediction wind
information. In this method, the calculated value is a given value,
without artificially adjusting the proportion of the feedforward given
in the total pitch angle. So, the controller designed using this control
method can be directly added to the original collective pitch
controller as a module. The specific steps are described as
follows: first, the dynamic model of the wind turbine is
established according to the dynamic characteristics. Then, based
on the wind information measured by LiDAR, the wind disturbance
increment signal about to reach the rotor plane is estimated. Finally,
the wind signal in the wind turbine aerodynamic torque model is
linearized to design the controller.

The collective pitch control of the wind turbine is shown in
Figure 1. The input pitch angle Δθ is the superposition value of Δθfb
and Δθff. Δθfb is the feedback pitch angle given by the baseline
controller, and Δθff is the feedforward pitch angle given by the
incremental feedforward collective pitch controller.

Eq. 1 represents the overall equation of the pitch controller.

Δθ � KPNGearΔΩ + KI∫t

0
NGearΔΩdt + KDNGearΔ _Ω︸�������������������︷︷�������������������︸
Δθf b

+Δθf f , (1)

where KP, KI, and KD are feedback control parameters of the
collective pitch setting of the wind turbine;NGear is the gear ratio of
the wind turbine; and ΔΩ is the generator speed difference.

Considering the short sampling interval, the four-order of Δv
can be regarded as the higher-order infinitesimal term. The
incremental feedforward pitch angle Δθff can be obtained as
shown in Eq. 2.

Δθf f � -
∂P
∂v( )
∂P
∂θ( ) 1

3!
Δv3 + 1

2!
Δv2 + Δv( ), (2)

where Δv is the wind speed increments and Δv � v1 − v2 ( where v1
is the current time wind speed value of the rotor plane estimated
from the wind speed measured by LiDAR; and v2 is the wind speed
value at the next sampling time, which is equivalent to linearization
at time tv1); ∂P/∂v is the sensitivity of power to wind speed; and
∂P/∂β is the sensitivity of power to changes in the pitch angle.

The following section will consider the FAST 5-MWwind turbine
in FAST software as an example to provide the derivation method of
this incremental feedforward collective pitch controller.

2.2 Theoretical derivation of incremental
feedforward controllers

2.2.1 Onshore wind turbine baseline collective
pitch controller

The baseline collective pitch controller is derived from the
dynamic model of the wind turbine. Finally, the variable
proportional gain PI feedback controller (Jonkman et al., 2009a)
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is obtained to control the constant speed of the generator. The
dynamic model of the wind turbine wind turbine rotor can be
expressed as

TAreo − NGearTGen � IRoter + N2
GearIGen( ) d

dt
Ω0 + ΔΩ( )

� IDrivertrainΔ _Ω, (3)
where TAreo is the aerodynamic torque captured by the wind turbine
rotor in the wind field; Ngear is the gear ratio of the wind turbine;
TGen is the generator torque; IRotor is the equivalent moment of
inertia of the wind turbine rotor; IGen is the equivalent moment of
inertia of the generator;Ω0 is the stable speed of the generator; ΔΩ is
the generator speed increment; and IDrivertrain is the equivalent
moment of inertia of the drive chain.

Generator torque can be expressed as

TGen NGearΩ( ) � P0

NGearΩ
, (4)

where Ω is the generator speed and P0 is the generator rated
power.

The aerodynamic torque of the wind turbine can be expressed as

TAreo θ( ) � P θ,Ω0( )
Ω0

, (5)

where θ is the current pitch angle of the three blades of the wind
turbine and the capture power of the wind turbine rotor P(θ,Ω0) is
the function of its pitch angle and the generator speed.

The linearization equation of generator torque and the wind
turbine rotor at the rated speed can be expressed as

TGen ≈
P0

NGearΩ0
− P0

NGearΩ
2
0

ΔΩ, (6)

TAreo ≈
P0

Ω0
+ 1
Ω0

∂P
∂θ

( )Δθf b, (7)

where Δθfb is the small disturbance in the pitch angle of the blades
due to feedback control near the operating point.

For PID control, the feedback pitch angle Δθfb is related to the
disturbance of the wind turbine rotor speed. So, the baseline
collective pitch controller of the wind turbine can be expressed as

Δθf b � KpNGearΔΩ + KI∫t

0
NGearΔΩdt + KDNGearΔ _Ω, (8)

where KP, KI, and KD are feedback control parameters for
traditional collective pitch settings of the wind turbine. The
specific parameter derivation process has been expounded by
Jonkman et al. (2009b).

2.2.2 Theoretical derivation of the incremental
feedforward collective pitch controller

The wind turbine rotor dynamic model of the FAST’s 5-MW
wind turbine is obtained under stable wind speed. The incremental
feedforward collective pitch controller can be derived. First of all,
wind speed in Eq. 5 is to be substituted by the effective rotor plane
wind speed measured by LiDAR. Therefore, Eq. 9 can be obtained.

TAreo θ( ) � P θ,Ω0, v( )
Ω0

. (9)

The wind speed signal in Eq. 9 is linearized at the working point,
and the high-order infinitesimal term of the wind speed change is
ignored. Simulating Eqs 3, 7, 9, we can obtain the following equation:

P0

Ω0
+ 1
Ω0

∂P
∂θ

( )Δθf b + 1
Ω0

∂P
∂v

( ) 1
3!
Δv3 + 1

Ω0

∂P
∂v

( ) 1
2!
Δv2 + 1

Ω0

∂P
∂v

( )Δv( )−
NGear

P0

NGearΩ0
− P0

NGearΩ
2
0

ΔΩ( ) � IDrivertrainΔ _Ω. (10)

The incremental feedforward collective pitch controller can be
obtained using Eq. 10. Before that, some assumptions need to be
made:

The speed of the wind turbine has been stabilized through the
feedback pitch angle Δθfb, that is, the speed increment of the wind
turbine is zero, and the speed increment derivative is zero.

In this steady state, the change in the rotor speed caused by the
wind speed disturbance is completely offset by the feedforward pitch
angle Δθff.

(1) The LiDAR measurement sampling time is small enough, and
the sampling time can be aligned with the sampling time of the
wind turbine’s own sampling system.

FIGURE 1
Incremental feedforward control assisted collective pitch baseline controller.
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(2) The effective rotor plane wind speed estimated by the wind
speed measured by LiDAR is exactly the same as the actual wind
speed.

(3) The wind energy utilization coefficient model of the wind
turbine is a collective and common mathematical
simplification model.

On the basis of the assumption condition (1), that is,
ΔΩ � Δ _Ω� 0, Eq. 11 can be obtained from Eq. 10.

1
Ω0

∂P
∂θ

( )Δθf f + 1
Ω0

∂P
∂v

( ) 1
3!
Δv3 + 1

Ω0

∂P
∂v

( ) 1
2!
Δv2 + 1

Ω0

∂P
∂v

( )Δv
� 0.

(11)
According to the assumptions, Eq. 11 can be used to obtain the

incremental pitch angle (2). This controller can be added as a
module to the traditional collective pitch controller to obtain Eq.
1, the incremental feedforward collective pitch controller.
Furthermore, the calculated value is the given value, without
artificially adjusting the proportion.

2.3 LiDAR wind measurement data pre-
processing

LiDAR can only measure the wind information at a certain
distance in front of the wind turbine rotor. However, for the wind
turbine control, the best predicted wind information is the wind
information that will arrive at the rotor plane exactly in the time
required by the wind turbine pitch mechanism. Therefore, the
LiDAR measurement needs to be processed accordingly (as
shown in Figure 2). Then, the pitch control is made in
advance using the wind information time series estimated in
the rotor plane.

Under the condition that LiDAR has built in the line-of-sight
wind speed and wind field reconstruction method, the main aim is to

estimate the effective rotor plane wind speed by inverting the wind
speed at the measurement point by processing the wind frequency,
amplitude, and phase.

First, the filter is used to deal with the wind speed frequency
measured by LiDAR so that the frequency unrelated to the wind
speed of the rotor plane can be filtered (Schlipf, 2015). The filtering
expression is shown in Eq. 12.

Gf ilter z( ) � b0 + b1z−1

a0 + a1z−1
. (12)

Schlipf (2015) proposed a method for determining constants,
b0,b1, a0, and a1.

Second, the wind speed amplitude of the rotor plane is estimated
using the wind speed attenuation model of the induction area of the
wind turbine (Zhang et al., 2021). Specific details are shown in
Eq. 13.

v
v∞

�
1.004 1 − 1

3
1 + k 1 + k2( )−1

2( )[ ]k ≤−1.4,

1 − 6.0
v∞

1
3

1 + k 1 + k2( )−1
2( )( ) − 1.4< k ≤ 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (13)

where v is the effective wind speed of the rotor plane, v∞ is the free-
flow wind speed, κ is the relative distance, and κ � x/R (x is the
distance from the rotor plane, and x is positive for the upstream of
the wind turbine rotor and negative for downstream; R is the radius
of the rotor plane).

Finally, the wind speed phase estimation in the rotor plane
mainly refers to the time when LiDAR measures the wind speed to
reach the rotor plane. Its calculation method contains the use of Eq.
13 and differential equations for separable variables.

∫0

x0
G′ x( )dx � v∞tmov , (14)

where x0 is the distance between the LiDAR measurement point
and the rotor plane; G(x) is the analytical solution of distance and
time information function of the wind speed attenuation model,

FIGURE 2
Diagram of LiDAR wind data preprocessing.
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G′(x) � v∞/v; and tmov is the time required for the wind speed at the
LiDAR measurement point to move to the rotor plane.

The rotor plane effective wind time series is estimated using the
above method (Zhang et al., 2022), as follows:

tori + tmov − tf ilter , 1 −m( )v∞ t( )[ ], (15)

where tori is the LiDAR measurement at the time point, tfilter is
the time delay caused by the filter filtering process, andm is the wind
speed attenuation coefficient calculated according to Eq. 13.

3 FAST/Simulink joint simulation

3.1 Simulation platform

As shown in Figure 3, FAST [an open-source software tool from
the U.S. Department of Energy’s National Renewable Energy
Laboratory (NREL)] provides mathematical models and kinetic
operations for a 5-MW onshore wind turbine, and TurbSim to
simulate the wind farm, while FAST and Simulink are connected to

exchange data via interfaces. After the control system built in
Simulink takes the input signal from FAST, the control module
calculates the control target which is fed into the FAST 5-MW wind
turbine model. The wind turbine makes corresponding actions
accordingly. The parameters of the 5-MW wind turbine are
shown in Table 1.

3.2 Simulation results under ideal estimation
of the rotor plane wind speed

During the simulation, it is assumed that the rotor plane wind
speed estimated by LiDAR is the same as the actual wind speed of
the rotor plane. In the application of feedforward controllers, the
given signal increments are corrected so that the given paddle
pitch angle signal of the feedforward controller has the least
impact on the baseline feedback controller. Two correction
methods are considered during the simulation. One is to limit
the amplitude of the feedforward signal, and the other is to
consider the correction coefficient method in the baseline
collective pitch controller (Zhang et al., 2022).

FIGURE 3
FAST/Simulink joint simulation diagram.

TABLE 1 Parameters of the 5-MW wind turbine.

Item Description

Rated power 5 MW

Number of blades 3

Rotor direction Upwind

Drive chain Multistage gearbox

Transmission ratio 97

Diameter of the rotor 126 m

Diameter of the hub 3 m

Height of the engine room 90 m

Cut-in wind speed, rated wind speed, and cut-out wind speed 3 m/s, 11.4 m/s, and 25 m/s

Starting speed and rated speed of the rotor 6.9 r/min and 12.1 r/min

Collective pitch controller time constant τ 0.11 s
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The amplitude limiting method is used to increase the amplitude
limitation for the feedforward signal and observe whether the
control presetting of the baseline feedback controller has enough
stiffness to quickly restore the stability after the feedforward control
gives a small perturbation. When a step wind speed is given as 12 m/
s–15 m/s, the incremental feedforward controller limitation is,
respectively, set as 0.025 rad, 0.050 rad, 0.075 rad, and 0.1 rad,

and the system response is shown in Figure 4. The overall control
effect of the wind turbine with limiting is better than the state
without limitation. The generator speed fluctuation performance is
the best in amplitude limitation being 0.1 rad. The turbine power
and edgewise moment are in good condition in a limitation of
0.050 rad. Fore-aft moment and fore-aft shear force have the most
pronounced volatility improvement in a limitation of 0.075 rad.
With comprehensive consideration, the limitation is determined to
be 0.075 rad.

When the given step wind speed is 12–18 m/s, it can be seen
from Figure 5 that the pitch angle has a relatively large fluctuation
under feedforward control with the correction factor or unlimited
amplitude. However, the pitch angle has a relatively gentle
variation with the 0.075-rad amplitude limitation. Therefore, in
the process of adding the incremental feedforward controller into
the wind turbine baseline collective pitch, it needs to limit the given
incremental feedforward pitch angle amplitude to the range of
0.075 rad.

Referring to the IEC Standard, the given gust signal and wind
turbine response are shown in Figure 6. The LiDAR gust warning
function is also added to the incremental feedforward controller,

FIGURE 4
Wind turbine response with different limit values.

FIGURE 5
Wind turbine response under step wind speed.
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that is, when the wind speed measured by LiDAR is greater than the
cut-in wind speed 3 m/s, or less than the rated wind speed 11.4 m/s,
the pitch angle of the wind turbine is directly set to 0+, and when
v< 3 m/s or v≥ 25 m/s, the pitch angle is directly set to 90+.

It can be seen from Figure 6 that the generator speed fluctuation
decreases by 39.42%, and the peak decreases by 182.216 r/min.
Generator power fluctuations are reduced by 46.82% and peaks
reduced by 231.82 kW. The range of edgewise moment fluctuation
decreases by 51.70%. However, the range of flap-wise moment
fluctuation increases by 4.5%. The fore-aft moment fluctuation
decreases by 51.91%, and the fore-aft shear force fluctuation
range decreases by 56.59%.

In summary, even if it has a slight enhancement effect on the
flap-wise moment fluctuation, the incremental feedforward and gust
warning can effectively reduce the load of the wind turbine system,
improving the performance of the wind turbine, diminishing the

speed and power fluctuation of the generator, and reducing the
moment and force fluctuation of the fore-aft load.

4 Experimental result analysis

The model of the wind turbine in the previous theoretical and
simulation study uses NWTC’s open-source simulation software FAST
5-MWonshore wind turbine. It can be called through an interface to be
a module in Simulink. The Beckhoff PLC of the current new version
supports Simulink programming and the real-time data interaction.
The structure of the hardware-in-the-loop experiment system is shown
in Figure 7. The LiDAR in the experimental system has no physical
object, so it uses the real experimental data collected by the LiDAR of
Molas NL in the wind farm. Since Molas NL can simultaneously
measure the wind speed and wind direction information at

FIGURE 6
Wind turbine response under IEC gust input.
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10 distances in front of the wind turbine rotor, LiDAR is used to
measure the wind data at 250 m in front of the wind turbine rotor as the
LiDAR prediction wind data to input Beckhoff Embedded PLC-
CX5130, and the wind data at 50 m in front of the wind turbine
rotor as the real data on the rotor plane is input into the rotor plane
wind speed file of the wind turbine simulation model.

The selected software and hardware models are shown in
Table 2. The sensor interface of the wind turbine in practical
applications is not used during the hardware-in-the-loop
experiment. During the application process, the Beckhoff
Embedded PLC, which is a scalable PLC system, can add the
corresponding interface to the sensor data, according to the
sensor type to achieve control applications. For example, Molas
NL wind-measuring LiDAR supports a variety of communication
protocols, and the version of the early LiDAR communication
protocol has PROFIBUS and CANopen, which can be ordered
based on needs, while the communication protocol interface of
the Beckhoff Embedded PLC master control system can also be
expanded as needed so that the two can communicate normally and
effectively. In summary, the final communication mode is

determined according to the overall selection of the components
of the wind turbine.

In the hardware-in-the-loop experiment, the real data measured
by LiDAR are used to estimate the rotor plane wind speed for control
research. This paper collected the data measured by LiDAR that is
higher than 11.4 m/s from after 19 May 2019, 2:00 a.m. In this file,
special step wind speeds, gusts, and continuously varying winds are
selected to observe the system response with estimation errors.

As shown in Figure 8, the effective wind speed of the rotor plane is
estimated using the wind speed measured by LiDAR at 250 m in front
of the wind turbine rotor. In the time period of 16 s–25 s, the wind
speed estimated by the step wind deviates greatly from the actual wind
speed. At 20 s, the difference between the estimated wind speed and the
actual wind speed is −1.34 m/s. At 24 s, the difference between the
estimated wind speed and the actual wind speed is 1.35 m/s. Although
the difference between the estimated wind speed and the actual wind
speed is large, over this time period, the trend of the estimated wind
speed remains basically the same as the actual wind. On the basis of
wind speed estimation, comparing the effect of feedforward with no
feedforward, the generator speed fluctuation is reduced by 17.13% and
the peak by 21.52 r/min; generator power fluctuations decreased by
6.8%, and peaks, by 0.024 kW; and the swinging torque fluctuation
decreased by 35.09% and the peak by 823.36 kN·m. However, the step
wind speed estimated by the wind turbine at approximately 40 s has a
significant lag, so the performance of thewind turbine does not improve
due to wrong time estimation. However, at approximately 50 s, due to
the large errors in estimating the wind speed trend, the wind turbine
pitch angle is mishandled, which results in larger power fluctuations of
the wind turbine. The above analysis shows that the incremental
feedforward control works only when the wind speed estimated by
LiDAR has the same change time and trend of the actual wind speed.

During the process, it is found that the wind turbine
operation process had a great influence on the wind speed
measurement at 50 m in front of the wind turbine rotor for
the rotor movement. As shown in Figure 8A, at the moment of
the wind step, the measurement trend of LiDAR measuring in

FIGURE 7
Frame of the hydraulic-mechanical transmission test rig.

TABLE 2 Semi-physical simulation experiment software and hardware system
selection.

Model Product description

CX5130-0125 Embedded PLC

CX2900-0038 Memory card (40G)

TC1220-0240 PLC/C++/MATLAB/Simulink, Performance
Class 40

EL3008 Bus module

EL4008 Bus module

FASTv8.16.00.a-bjj Wind turbine simulation software

MATLAB/Simulink R2016a Visual simulation software
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250 m is consistent with 50 m, but the degree of attenuation is
significantly different. On the one hand, the closer the wind speed
point of the LiDAR measurement to the rotor plane, the greater
the error. On the other hand, the control action of the wind
turbine after the gust reaches the rotor plane affects the wind
speed movement and attenuation form in front of the wind
turbine rotor.

In the same day, this paper selects a period of continuously
varying wind speeds with a better estimated trend. Since it is
hard to directly obtain the rotor plane wind speed, the wind
speed at a distance of 50 m upstream is considered the rotor
plane actual speed. Furthermore, we used the wind speed of
250 m upstream to estimate the 50 m position wind speed at the
same time. As shown in Figure 9A, at approximately 20 s, the
wind speed measured by LiDAR at 250 m is inconsistent with the
wind speed trend at 50 m, that is, the estimated wind speed curve

is inconsistent with the actual wind speed curve trend of 50 m. It
results in the incremental feedforward control misoperation.
Moreover, it causes the rotational speed, power, and load in the
incremental feedforward control have a greater fluctuation and
peak than that in the non-incremental feedforward controller.
Before 10 s and after 25 s, the trend of the estimated wind speed
is consistent with the actual wind speed. It can be observed in
Figure 9 that the generator speed fluctuation is reduced by
1.86%, the generator power fluctuation by 18.5%, the edge-
wise moment fluctuation by 2.02%, and the fore-aft shear
force fluctuation by 11.13%. The estimated wind speed of
approximately 30 s is relatively close to the actual wind speed,
so when the feedforward is active, the generator speed amplitude
is reduced by 12.11 r/min, the generator power amplitude by
0.054 kW, the edge-wise moment amplitude by 417.85 kN·m,
and the fore-aft shear force amplitude by 71.13 kN.

FIGURE 8
Experimental results of step wind speed.
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From the above hardware-in-the-loop experiment, it can be seen
that the incremental feedforward collective pitch controller based on
LiDAR proposed in this paper can reduce the fluctuation range of
the generator speed, power, and load. The precondition for the
controller to play a role is that the estimated effective wind speed of
the rotor plane should conform to the actual wind speed, and the
specific values that complete consistency are not required; however,
the trend should be consistent. This makes the specific requirements
for wind speed estimation.

5 Conclusion

This paper derives the incremental feedforward collective pitch
controller, which is superimposed on the baseline collective pitch
controller to offset the impact of wind speed changes on the wind
turbine. The joint simulation model of the FAST/Simulink 5-MW
wind turbine is designed and established, and the incremental

feedforward controller is simulated and verified under the input
conditions of step wind and gust. The simulation results show that
it can effectively reduce the unit load when the controller is with a
limit range of 0.075 rad. For example, the load fluctuation range of
gust conditions can be reduced by approximately 50%. The hardware-
in-the-loop experiment results show that the incremental feedforward
controller can achieve load reduction when the trend of the estimated
wind speed is the same as the actual wind speed with no delay. The
incremental feedforward controller is a pitch angle increment
calculated by predicting wind disturbances, so it can be added as a
module to the traditional collective pitch controller to reduce the
system load. The modularity is suitable for commercial applications.
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FIGURE 9
Experimental results of continuously varying wind speed.
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Accurate prediction of wind power generation in regions characterised by
complex terrain is a critical gap in renewable energy research. To address this
challenge, the present study articulates a novel methodological framework using
Convolutional Neural Networks (CNNs) to improve wind power forecasting in
such geographically diverse areas. The core research question is to investigate
the extent to which terrain complexity affects forecast accuracy. To this end,
DeepSHAP—an advanced interpretability technique—is used to dissect the CNN
model and identify the most significant features of the weather forecast grid
that have the greatest impact on forecast accuracy. Our results show a clear
correlation between certain topographical features and forecast accuracy,
demonstrating that complex terrain features are an important part of the
forecasting process. The study’s findings support the hypothesis that a detailed
understanding of terrain features, facilitated by model interpretability, is essential
for improving wind energy forecasts. Consequently, this research addresses an
important gap by clarifying the influence of complex terrain on wind energy
forecasting and provides a strategic pathway for more efficient use of wind
resources, thereby supporting thewider adoption of wind energy as a sustainable
energy source, even in regions with complex terrain.

KEYWORDS

convolutional neural networks, DeepSHAP, terrain complexity, feature importance, wind
power forecasting, Frontiers

1 Introduction

Wind energy is one of the most promising sources of renewable energy in the
modern world. Its sustainability and low carbon footprint make it an attractive solution
in the global effort to reduce greenhouse gas emissions and combat climate change
(International Energy Agency IEA, 2022). As the penetration of wind energy increases, the
ability to predict wind power generation becomes increasingly important for the operation
of the electricity system. Accurate forecasting is essential not only to optimise energy
production, but also to ensure grid stability and the successful integration of this variable
energy source into power grids (Ahmed et al., 2020).

Forecasting wind power is a challenging task. The variability and unpredictability of
wind, determined by many factors ranging from large-scale atmospheric dynamics to
local geographical features, make it a complex phenomenon to predict. This challenge
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is even greater in regions with complex terrain. Mountains, valleys,
coastlines and other topographic features add layers of complexity
that can significantly affect wind patterns. For example, wind speeds
can be amplified inmountain passes or become turbulent and erratic
around steep cliffs and ridges. Predicting wind behaviour in such
scenarios is critical, as these areas are often used to site wind farms
due to their highwind potential. Traditional predictionmodels often
fail to capture the nuanced interactions between wind and terrain
(Bird et al., 2013; Hanifi et al., 2020).

As the demands on wind energy forecasting continue to
grow, there is an urgent need for more advanced and accurate
methods.While historical data and physicalmodelling have been the
traditional basis for wind power prediction, the intricacies of wind
behaviour in complex terrain require sophisticated computational
techniques. In addition, to improve techniques, it is crucial to
identify and understand the key factors that affect wind power
forecasts. By identifying influential meteorological or geographical
features, we can develop fine-tuned models that offer superior
accuracy. This study uses a convolutional neural network (CNN)
to predict wind power in areas with complex terrain. The aim is to
address the unique challenges posed by these conditions and also to
understand the factors that influence these predictions, in particular
the relationship between terrain and wind dynamics.

2 Literature review

The study of wind power forecasting encompasses a wide
range of methods, from classic time series analysis to cutting-edge
machine learning strategies. Traditional techniques, in particular
ARIMA, Exponential Smoothing and Vector Autoregression, have
proven to be adept at adapting to the intricacies of complex terrain
through their ability to capture the nuanced interplay between
topography and wind flow. However, these methods have their
limitations, particularly when it comes to accommodating a wide
range of input variables and complex interdependencies between
them (Chen et al., 2009).

Machine learning techniques have emerged in the field of wind
energy forecasting and have been recognised for their ability to
successfully deal with the complexity and non-linearities inherent
in wind data (Wang et al., 2011; Giebel and Kariniotakis, 2017;
Sideratos and Hatziargyriou, 2020; Tawn and Browell, 2022). From
artificial neural networks to decision trees, support vector machines
and advanced deep learning frameworks, these methods are
redefining the benchmarks of forecast accuracy, especially in short-
term forecast models. The advent of big data and cloud computing
has further accelerated the adoption of advanced models, including
convolutional and recurrent neural networks, leading to significant
advances in regional wind power forecasting methodologies.

Several innovative techniques aimed at refining wind power
forecasts have been presented in the literature. In (Ozkan and
Karagoz, 2019), a data mining based strategy, known as the Regional
Statistical Hybrid Wind Power Forecast Technique, is detailed
for providing regional forecasts (Pinson et al., 2003). Presents
a dynamic fuzzy neural network designed to improve forecast
accuracy. In (Basu et al., 2020), a hybrid neural network model
is developed that combines the capabilities of convolutional and
multilayer perceptron networks for day-ahead forecasting.The study

in (Dong et al., 2021) addresses the challenges of sparse data with a
comprehensive approach, incorporating data correction and error
analysis into a hybrid neural network to improve forecast accuracy.
Furthermore, (Wood, 2022), presents amethodology that uses trend
decomposition along with machine and deep learning for short-
term wind capacity factor forecasting. Finally, (Yu et al., 2021),
demonstrates the use of deep quantile regression for probabilistic
forecasting, providing a robust method for dealing with forecast
uncertainty. Deep learning has also been applied to wind speed
forecasting, where the ability to predict and understand wind
patterns is critical to the efficient operation of wind farms. In
their seminal work, Wu et al. (2022a) presented an interpretable
model for wind speed prediction using multivariate time series and
temporal fusion transformers. This model is notable for its ability
to process complex time-dependent data and provide insight into
the temporal dynamics of wind speed, offering a significant advance
over traditional methods. Similarly, Neshat et al. (2021) introduced
a deep learning-based evolutionary model tailored for short-term
wind speed forecasting at the Lillgrund offshore wind farm. Their
approach combined the predictive power of deep neural networks
with evolutionary algorithms to optimise the model’s performance,
demonstrating a case studywhere deep learningmodels significantly
improved the accuracy of wind speed predictions. These studies are
part of a growing body of literature confirming the superiority of
deep learning methods in predicting wind speed, especially when
compared to classical statistical models. For example, a study by
Zhang et al. (2019) used a deep learning framework to analyse wind
turbine data and achieved remarkable success in predicting wind
speed, thereby optimising turbine performance. Furthermore, a
study by Lei et al. (2009) explored the application of convolutional
neural networks to predict wind speeds, which not only improved
prediction accuracy but also provided a better understanding of the
spatial features relevant to wind speed variations.

Despite their effectiveness, simple ANN-based forecasting
methods can struggle in complex terrain (Castellani et al., 2016;
Clifton et al., 2022). Recent studies have highlighted the potential
of deep learning to address these challenges. Toumelin et al. (2023)
presented “DEVINE,” which uses CNNs to downscale weather
forecasts with high-resolution topographic data, and demonstrated
significant improvements in wind speed bias in complex terrain.
Shin et al. (2023) emphasised the importance of spatio-temporal
data for improving CNN forecasts, while Maldonado-Correa et al.
(2021) and Eikeland et al. (2022) validated the effectiveness of
hybrid models and the inclusion of historical weather data for
probabilistic forecasting in difficult terrain. However, the use
of ANNs has presented a paradoxical challenge. Although their
performance exceeds that of traditional algorithms, the “black box”
nature of their decision-making processes has attracted criticism
(Montavon et al., 2017). The opacity of neural networks makes it
difficult to discern the logic behind their accurate classifications and
predictions, a significant problem in critical applications. To counter
this, interpretive techniques such as DeepSHAP have emerged to
provide a window into neural computation (Lundberg and Lee,
2017). DeepSHAP elucidates the influence of input features on
model outputs, providing a level of transparency that enhances
the interpretability of deep learning models (Doshi-Velez and
Kim, 2017; Chen et al., 2018), thereby fostering confidence in their
predictive capabilities.
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3 Methodology

In this study, a methodology that evaluates terrain complexity
metrics is developed for the region where wind power generation
is expected. In conjunction with this, the DeepSHAP technique is
applied to a CNN model to derive normalised importance values
for the input features. These values are then compared to the terrain
complexity matrices of the designated area. The primary goal is to
integrate these methods to identify essential input features for wind
power prediction and to discard redundant data from the input
domain.

3.1 Convolutional neural networks

CNNs have reshaped the field of machine learning, particularly
in tasks related to image and spatial data processing. Originally
developed as a computational model for vision, CNNs are
specifically designed to recognise and extract hierarchical patterns
from structured, grid-like data (Alzubaidi et al., 2021). This makes
them an ideal candidate for processing spatial data, such as
images, where pixel relationships are essential, or, more relevant,
weather grids, where spatial correlations between meteorological
factors play a key role in forecasting. The cornerstone of CNNs
lies in their ability to use convolutional layers to scan the
input data with filters that detect local patterns. These patterns,
initially simple in the early layers (such as edges or textures
in images), become increasingly abstract and complex as the
data progresses through deeper layers. This hierarchical pattern
recognition is particularly useful for weather grids, where local
interactions between variables such as temperature, pressure,
and wind speed can lead to larger regional phenomena. In
essence, CNNs can automatically and adaptively learn spatial
hierarchies from the data, eliminating the need for manual feature
engineering.

For the task of forecastingwind power generation, a simpleCNN
architecture is used that is suitable for handling the complexities
of numerical weather predictions (Wang et al., 2022). The model
consists of the following layers:

• Input layer: Accepts numerical weather predictions grids
with dimensions representing spatial coordinates (latitude,
longitude) and depth indicating various meteorological
variables (e.g., wind speed, wind direction).
• Convolutional layers: Multiple layers are used, each with a set

of filters to extract relevant features from the input data. The
ReLU (Rectified Linear Unit) is used as the activation function
to introduce nonlinearity.
• Pooling layers: Interspersed with the convolutional layers, these

layers downsample the spatial dimensions, preserving essential
information while reducing the computational burden. In this
work,max-poolingwas used, which retains themaximumvalue
from each local region.
• Fully connected layers: Following the convolutional and

pooling layers, one or more fully connected layers interpret the
extracted features and drive the prediction mechanism.
• Output layer: Provides the wind power generation prediction

for the region of interest.

Based on these characteristics, CNNs fundamentally revolve around
a sequence of mathematical operations for processing spatial data,
as presented in Eqs (1–9).

1. Convolution operation: Given an input matrix I (representing
a small section of our spatial data) and a filter matrix F, the
convolution operation is defined as follows:

(I⋆ F) (r,z) =
∞

∑
i=−∞

∞

∑
j=−∞

I (i, j) ⋅ F (r− i,z− j) (1)

For most applications, I and F are 2D matrices, and the convolution
operates throughout the spatial extent of I.

2. Activation function: Post-convolution, an activation function is
applied element-wise to introduce nonlinearity. One of the most
popular is the Rectified Linear Unit (ReLU):

ReLU (x) =max (0,x) (2)

3. Pooling operation: Pooling layers reduce the spatial dimensions
of the feature maps. For example, the max-pooling operation is
defined as:

MaxPool (I) (r,z) =max (I {i, j}∀i, j ∈ [r, r+W] ,

j ∈ [z,z+H]) (3)

where W and H are the width and height of the pooling window,
respectively.

4. Fully Connected Layers: In these layers, neurons are densely
connected. Given an input vector X, weights A, and biases b, the
output Y for a fully connected layer is:

Y = A ⋅X+ b (4)

Integrating these mathematical formulations, a CNN processes
spatial data through convolution and pooling operations, introduces
non-linearity through activation functions, and uses fully connected
layers for final predictions, all while minimising a specified
regression loss function. Batch normalisation and dropout
techniques have also been incorporated into the architecture
to ensure model stability and prevent overfitting. The general
architecture of the proposed CNN model is shown in Figure 1. The
convolution and pooling layers contained 16 filters with a kernel
size of 3 in all dimensions, and the fully connected layers contained
100 nodes each. The model was trained using the Adam optimiser
(learning rate = 0.01) with amean squared error loss function, which
is particularly suitable for regression tasks.

3.2 DeepSHAP

3.2.1 Explainable AI in general
As deep learning models become increasingly sophisticated,

their predictions can often be hard to interpret, earning
them the moniker “black-box” models. In critical applications,
such as medical imaging, power system operation or finance,
understanding the reasoning behind these predictions is crucial.
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FIGURE 1
Architecture of the proposed CNN model.

This need for interpretability has led to Explainable AI (XAI),
an interdisciplinary field that aims to make AI decision making
transparent, interpretable and trustworthy (Arrieta et al., 2020).
One prominent method in XAI is the concept of Shapley values,
which originated from cooperative game theory. Imagine a group
of workers working on a project. The Shapley value determines how
much each worker contributed to the project success, considering
all possible collaborations. In the context of machine learning, each
“worker” is a feature and the “project’s success” is the prediction.
The Shapley value for a feature is then computed on the basis
of its marginal contribution across all possible combinations
of features. Mathematically, the Shapley value for a feature i is
defined as

ϕi ( f) = ∑
S⊆N\i

|S|! (|N| − |S| − 1)!
|N|!

[ f (S∪ i) − f (S)] (5)

where f is the prediction function, N is the set of all features, and
S is a subset of N without feature i. However, computing Shapley
values can be computationally demanding, especially for DNN
with numerous input features (Castro et al., 2009). Here DeepSHAP
offers an efficient approximation by using a process analogous to
backpropagation (Goodfellow et al., 2016).

3.2.2 DeepSHAP propagation in neural networks
DeepSHAP aims to approximate Shapley values for DNN,

particularly feedforward neural networks. It does so by
redistributing the Shapley values from the output through the
network to the inputs (Lundberg and Lee, 2017). This backward
pass redistributes the importance or contributions of the output
rather than gradients. When attributing the contribution of neuron
activations to their respective inputs, the activation of one neuron
and the weight of the connection to the next must be accounted for.
Mathematically:

ϕi→j =∑
k
ϕj→k ×

ai ×wi,k

∑
l
al ×wl,k

(6)

where ϕi→j is the Shapley value of neuron i contributing to neuron j,
ϕj→k is the Shapley value of neuron j contributing to neuron k, ai is the
activation of neuron i,wi,k is the synaptic weight connecting neurons
i and j, k an index referring to neurons that neuron j contributes to
and l an index for summation, referring to all neurons that are inputs
to neuron k.

Convolutional layers, prevalent in deep learning models for
image processing, introduce an additional layer of complexity due
to shared weights across spatial dimensions. Therefore, DeepSHAP
must account for spatial relationships when redistributing
contributions. For a specific convolutional filter applied across an
input feature map, the contribution of a particular input pixel to an
output pixel depends on the filter’s weights and the relative position
of the pixels. This relationship is described by:

ϕinputr,z =∑
i,j
ϕoutputi,j ×

Ir,z × Fi−r,j−z
∑

p,q
Ip,q × Fi−p,j−q

(7)

where ϕinputr,z is the Shapley value for the pixel at position (r,z) in the
input featuremap, ϕoutputi,j is the Shapley value for the pixel at position
(i, j) in the output feature map, Ir,z is the pixel value at position (r,z)
in the input feature map, Fi−r,j−z is the weight of the convolutional
filter at the relative position to the input pixel, i and j are indices
referring to positions in the output feature map, p and q are indices
for summation, referring to all positions in the input feature map
that contribute to a specific output position.

DeepSHAP’s treatment of convolutional layers provides a
detailed perspective into which patterns or regions in input feature
maps are pivotal for the model’s decision, considering not just the
importance of a feature but its spatial context in the decision-making
process.

3.3 Terrain complexity metrics

The complexity of a terrain can significantly influence the
environmental and atmospheric dynamics, especially wind patterns.
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Several metrics have been developed to quantify different aspects
of this complexity. Understanding these metrics is crucial when
integrating them with advanced machine learning techniques, such
asDeepSHAP, to decipher the intricate interplay between terrain and
wind dynamics. The importance of these terrain metrics in various
environmental processes has been highlighted by several studies
(Stock and Dietrich, 2006; Wu et al., 2022b).

• Topographic Ruggedness Index (TRI): This index measures
roughness based on elevation variances between a cell and
its neighboring cells (Riley et al., 1999). Mathematically, it’s
expressed as:

TRI = √
n

∑
i=1
(ai − amean)

2 (8)

where ai denotes the elevation of cell i, and amean represents the
mean elevation of all adjacent cells. The value of n corresponds to
the number of cells considered.

• Standard Deviation of Elevation (SDE): A rudimentary metric,
it calculates the standard deviation of elevation values within a
specified area (Jenny and Hurni, 2011), symbolised as:

SDE = √ 1
N

N

∑
i=1
(ai − μ)

2 (9)

where ai is each elevation value, N is the total number of values and
μ is the mean elevation.

In the context of wind power prediction using CNN and
DeepSHAP, these terrain complexity metrics play a key role.
DeepSHAPdetermines the importance of each feature by calculating
the Shapley values from the output to the input layer. For spatial
datasets, such as numerical weather predictions, this reveals which
regions or patterns are critical to the model’s decision. Comparing
DeepSHAP’s feature importance values with terrain complexity
indices can be revealing. For example, areas identified as high
importance by DeepSHAP, when overlaid with regions with high
TRI or SDE values, could indicate the importance of rugged

terrain in influencing wind power predictions. In essence, if a
complex terrain metric closely matches DeepSHAP importance
values in a region, it suggests that terrain complexity is a dominant
factor in model decisions in that area. Such an investigation
provides an empirical way to understand how terrain undulations
and complexity affect wind predictability and variability. As a
result, prediction models can be refined to ensure that they
are better suited to the unique challenges posed by different
terrains.

4 Case studies

Exploring the complexities of predicting wind power generation
requires an in-depth understanding of the complex interaction
between atmospheric conditions and different terrain features. In
this context, the selection of Greece, Bulgaria and Romania as
our case studies provides a unique opportunity. These countries,
each with their own topographical characteristics, provide a diverse
landscape for our investigation. Greece’s landscape is a mixture of
ruggedmainland terrain, numerous islands and extensive coastlines.
Bulgaria, on the other hand, offers a mix of mountainous regions
and flat plains, while Romania’s topography is characterised by the
Carpathian Mountains, rolling hills and vast plains. This diversity in
the geography of these countries allows for a more comprehensive
analysis and helps us to understand regional differences in wind
power generation.

Recognising that topographic complexity is shaped by a range
of factors beyond simply elevation, a comprehensive set of metrics is
employed.These include elevationmaps, which capture the variation
in elevation from coastlines tomountain peaks in all three countries.
In addition, metrics such as the TRI and SDE are used to quantify
the ruggedness and heterogeneity of each terrain. Shifting focus,
the second analysis evaluates the capabilities of a CNN trained on
numerical weather predictions and regional wind power generation
measurements for Greece, Bulgaria and Romania, as shown in
Table 1.The primary objective of this training is to accurately predict
regional wind power generation. The input features for each case
study consist of wind speed and direction forecasts at a height
of 10 m, obtained from the Global Forecast System (GFS). These
forecasts are structured in a 3D grid format, where the first two

TABLE 1 Case study information.

Case Greece Bulgaria Romania

Input features Wind speed (10 m), Wind direction (10 m) Wind speed (10 m), Wind direction (10 m) Wind speed (10 m), Wind direction (10 m)

Forecasting horizon (hours) 24 24 24

Time step (hours) 1 1 1

Dataset ENTSO-e/GFS ENTSO-e/GFS ENTSO-e/GFS

Training period 01/01/2019–31/12/2019 01/01/2019–31/12/2019 01/01/2019–31/12/2019

Testing period 01/01/2020–31/12/2020 01/01/2020–31/12/2020 01/01/2020–31/12/2020
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dimensions represent the geographical coordinates (latitude and
longitude) covering the respective region, and the third dimension
contains the wind speed and direction forecasts. This 3D grid
is essentially an image-like array that the CNN interprets in a
similar way to a visual image. During the training phase, this
3D grid is fed into the CNN, allowing the model to learn the
spatial and temporal patterns of wind behaviour in the different
terrains of the three countries. The model is trained to recognise
how these patterns correlate with actual wind power generation,
a crucial step in making accurate predictions. The output data for
the model comes from the ENTSO-e platform, which provides
actual measurements of the wind power generated in each region.
This output is normalised by the installed capacity in each area to
standardise the data and ensure that the model’s predictions are
proportionate and comparable across different regionswith different
capacities.

However, achieving high prediction accuracy is only one aspect
of the objective; it is equally important to understand which
input features the model considers critical for its predictions.
To this end, we use DeepSHAP to generate Feature Importance
Factors (FIV). This technique provides insight into which aspects
of numerical weather prediction have the most influence on
the model’s prediction process. The third analysis attempts to
combine the results of the previous two analyses. The feature
importance matrices produced by DeepSHAP are compared with
the terrain complexity matrices for each country. This comparison
will highlight the extent to which terrain complexity affects
the importance of different input variables in the prediction
model. Such an integrative approach allows us to draw more
holistic conclusions about the interaction between terrain
complexity and wind energy production in different geographical
landscapes.

5 Results

5.1 Terrain complexity

The analysis of terrain complexity in Greece, Bulgaria and
Romania is visually summarised in Figure 2 (Greece), 3 (Bulgaria)
and 4 (Romania). The left sub-figures display the elevations
map of each country. The middle sub-figures display the TRI,
highlighting areas of significant topographic variability. Finally,
the right sub-figures display the SDE of each country, which
provides a quantitative perspective on elevation variability within
each region shown. These visual representations serve as a
foundation for understanding the complicated relationship between
terrain complexity and wind energy prediction in these different
geographical areas.

In Greece (Figure 2), the elevation map shows a high contrast
between high mountain peaks and sea level, indicative of the
mountainous regions of the country and the extensive coastline.The
TRI highlights the regions of Greece that are particularly variable
in topography, which is likely to have a significant impact on wind
flow patterns. The SDE further quantifies these variations, painting
a picture of the ruggedness of the terrain. Moving to Bulgaria
(Figure 3), the elevation map shows a mixture of flat plains and
mountain areas, the TRI highlighting the variability of the Balkan
Mountains. The SDE for Bulgaria reflects a more uniform landscape
in the plains, with pockets of complexity in the mountainous areas,
which could indicate localised areas of more unpredictable wind
behaviour. Finally, Romania’s landscape (Figure 4) is captured by
an elevation map that outlines the extensive Carpathian mountain
range as well as the lower elevation regions. The TRI highlights the
complexity of the Carpathians, which may correlate with areas of
complex wind patterns.The SDEmap confirms this complexity, with

FIGURE 2
Elevation and terrain complexity metrics over the extended area of Greece.

FIGURE 3
Elevation and terrain complexity metrics over the extended area of Bulgaria.
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FIGURE 4
Elevation and terrain complexity metrics over the extended area of Romania.

variability in elevation that can affect both micro- and macro-scale
wind flows.

5.2 Feature importance analysis

In this analysis, we examine the influence of terrain complexity
on wind power prediction by analysing the normalised FIV for
Greece, Bulgaria and Romania. Figures 5, 6 show a comparison
of these values for wind speed and wind direction predictions in
relation to the topographic metrics of each country. In the case
of Greece (Figure 5, left), the FIV of the elevation map shows
a higher importance in coastal areas and a lower importance in
the mountainous regions. This suggests that while the highlands
contribute to wind variability, it is the coastal areas where
consistent wind patterns dominate the model’s focus, possibly
due to the unobstructed flow of sea breezes that are crucial for
wind power generation. The TRI visualisation further supports
this by showing less importance in regions with high topographic
variability, suggesting that CNN may find it difficult to predict
wind patterns where the terrain is most rugged. For wind direction
(Figure 6, left), the FIV is particularly significant along the sea
coast, highlighting the importance of offshore influences on the
wind pattern for both the mainland and the islands. In the case
of Bulgaria (Figure 5, middle), the FIV for wind speed suggests
that the model assigns different degrees of importance across
the country, reflecting Bulgaria’s combination of flat terrain and
mountainous areas. Areas of significant FIV align with regions of
lower topographic complexity, suggesting that in Bulgaria, unlike
Greece, the simpler terrain of the interior may provide more reliable
wind conditions for power generation. The values of the importance
of the wind direction (Figure 6, middle) show a scattered pattern,
suggesting that the impact of wind direction on power forecasting
is influenced by the combination of the Balkan Mountains and
the surrounding plains. The Romanian analysis (Figure 5, right)
shows a clear distribution of FIV across the Carpathians and
the vast plains. The model places less emphasis on wind speed
predictions in the highly complex Carpathian region, possibly due
to the unpredictability of wind behaviour in such terrain. On the
contrary, the plains, with their more predictable wind patterns,
receive higher FIV scores. For wind direction (Figure 6, right),
the FIV is noticeably concentrated in areas that serve as natural
wind corridors, suggesting that certain flat and valley regions
are key to the prediction process of the prediction model. It is
clear that while complex terrain can introduce forecast variability,

consistent and predictable wind patterns, particularly in maritime
regions, are critical in shaping the focus of the forecast model.
This underscores the importance of considering both land- and
sea-based influences in the development of accurate wind power
forecasts.

5.3 Forecasting performance

Using the knowledge from the feature importance and terrain
complexity analysis, the proposed work is focussing on the
refinement of the input data by emphasising areas of significance
while filtering out potential noise can significantly enhance amodel’s
performance. In our efforts to optimise the input for a CNN model,
we systematically investigated three approaches. Each method
contains its own unique philosophy, based on computational
insights derived from the model or observations of the landscape.
The basic goal remained the same: to mask out inputs that help the
model deliver accurate wind power forecasts. The following sections
clarify these three correspondences and the rationale behind their
design.

5.3.1 Approach 1: feature selection based on FIV
using DeepSHAP

To improve the predictive accuracy of our CNN model for wind
power forecasting, our first approach exploits the strategic use of
FIV as determined by DeepSHAP. This method is based on the
premise that not all regions within the input data contribute equally
to the model’s predictions. In particular, regions with low FIVs,
as identified by DeepSHAP, are considered to have a minimal or
even detrimental effect on prediction accuracy. These regions could
represent noise or irrelevant information that could potentially
bias the model performance (Lundberg and Lee, 2017; Molnar,
2020). To implement this approach, we applied a selective filtering
process to the training data on the key weather variables: wind
speed and wind direction. For each of these variables, we examined
the normalised FIV values across the input grid. Areas where the
FIV was below a threshold of 0.2 were considered to be of low
importance. To mitigate their influence, we set the values in these
areas to a placeholder or dummy value of −1. This value acts as a
signal to the model, effectively “masking” these regions during the
training process. The motivation for this decision is twofold. Firstly,
by reducing the influence of less important regions, we reduce the
likelihood of the model being misled by noise or irrelevant data
points. Secondly, and more importantly, this approach sharpens
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FIGURE 5
Display of Normalised feature importance values of wind speed predictions over the ruggedness metrics’ maps of all case studies (Left: Greece, Middle:
Bulgaria, Right: Romania).

FIGURE 6
Display of Normalised feature importance values of wind direction predictions over the ruggedness metrics’ maps of all case studies (Left: Greece,
Middle: Bulgaria, Right: Romania).

the model’s focus on higher FIV regions, which are theoretically
more important in determining accurate wind power forecasts.
This method is consistent with the strategies adopted in recent
studies where researchers have successfully used feature selection
techniques based on importance values to streamlinemodel training
and improve overall accuracy.

5.3.2 Approach 2: data filtering based on terrain
complexity

The second approach focuses on the dynamic relationship
between terrain complexity and wind behaviour, an aspect less
emphasised in traditional models. Instead of relying exclusively on

FIV, this method integrates SDE as a key metric to assess terrain
complexity. This approach is based on the hypothesis that regions
with less rugged terrain, as indicated by a lower SDE, are likely to
havemore predictable and consistentwindprofiles. In contrast, areas
with a higher SDE, indicating greater ruggedness, may contribute to
the unpredictability of wind patterns. To incorporate this terrain-
based information into our CNN model, we manipulated the input
training data for both wind speed and wind direction. Specifically,
regions with an SDE value greater than 400 m were assigned a
dummy value of −1. This threshold of 400 m, determined based on
the average SDE in each region under study as shown in Figure 2,
serves as an arbitrary yet strategic boundary to differentiate between
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areas of low and high terrain complexity. By applying this filter,
we aim to sharpen the focus of the model, allowing it to focus
on regions where terrain complexity is less likely to distort wind
patterns. By selectively masking regions with high SDE values, we
potentially enhance the ability of the model to recognise and adapt
to the varying effects of terrain complexity on wind dynamics.

5.3.3 Approach 3: integrating FIV and terrain
complexity for improved data filtering

Approach 3 represents a synergistic integration of the first two
methods, merging the model-driven insights derived from FIV with
the empirical understanding of terrain complexity as indicated by
SDE. This approach is based on the premise that a more robust
and accurate forecast model can be achieved through a more
sophisticated data filtering process that takes into account both the
learned patterns of the model and the physical characteristics of
the terrain. In practice, this integrated approach involves a two-
step filtering mechanism applied to the input training data. First,
for each weather variable—wind speed and wind direction—the
regions where the normalised FIV falls below the threshold of
0.2 are identified. The values in these regions are then set to −1,
effectively “masking” them in the training data set. This step is
based on the principle that regions with low FIV contribute less
to the model’s predictive accuracy and may even act as noise,
affecting the model’s performance. Following the initial FIV-based
filtering, the approach further incorporates considerations of terrain
complexity. Areas where the SDE exceeds a predefined threshold of
400 m are also assigned a value of −1. This threshold was chosen
to distinguish regions with significant terrain variation from those
with more uniform topographic features. The choice of 400 m
as a threshold is strategic, as it aims to filter out regions where
complex terrain could introduce unpredictability in wind patterns,
potentially complicating the forecasting task. By combining these
two filtering criteria, Approach 3 creates a training dataset that is
both selective and strategic. It emphasises regions that are not only
considered important by the model (as per high FIV), but also those
with less complex terrain (as per low SDE), and thus potentially
more predictable in terms of wind behaviour. This refined dataset
is expected to guide the CNN model to focus on the most relevant
and reliable features for wind power prediction, thereby improving
its overall prediction accuracy.

5.3.4 Evaluation results
To objectively assess the efficacy of the three data preprocessing

approaches, a set of reliable evaluationmetrics was used.Normalised
mean absolute error (NMAE) and normalised mean squared error
(NMSE) were used to gain an understanding of the average
magnitude of errors and the model prediction accuracy (Willmott
and Matsuura, 2005; Chai and Draxler, 2014). The NMAE indicates
the average absolute discrepancy, while the NMSE magnifies the
effect of larger errors, thus providing an indication of the model’s
forecast reliability (Hyndman and Koehler, 2006). Additionally, the
standard deviation was calculated to measure the variability or
spread of prediction errors and to assess the consistency of the
model’s forecasting ability. The bias was also calculated to identify
any systematic overprediction or underprediction tendencies in
the model. To compare the performance of the three approaches,
metrics were calculated and compared to a baseline scenario, where

the input training data was not masked. Through this comparative
analysis, our objective is to determine the added value, if any, of the
data preprocessing steps.

6 Discussion

The comparative analysis of data processing approaches in
Greece, Bulgaria and Romania, as shown in Tables 2–4, provides
a detailed evaluation of their impact on CNN-based wind power
forecasting.

In Greece (Table 2), the baseline approach sets the standard
for comparison, with an NMAE of 4.26% and an NMSE of
0.18%. The bias and standard deviation provide information on
the average prediction error of the model and its variability.
After implementing Approach 1, which incorporates FIV-based
data filtering, a reduction in all metrics is observed, indicating
improved accuracy and model stability. Approach 2, which focusses
on terrain complexity, yields improvements but falls short of the
gains made by Approach 1, suggesting the dominance of FIV-
driven regions in influencing wind pattern predictions. However,
Approach 3, which combines both FIV and terrain complexity
considerations, outperforms the individual approaches, achieving
the lowest NMAE, NMSE, bias and standard deviation, thereby
demonstrating superior forecast performance and reliability. For
Bulgaria (Table 3), the baseline metrics are higher compared to
Greece, indicating a greater initial error in the predictions. The
adaptation of Approach 1 again proves to be beneficial, as evidenced
by the lower NMAE and NMSE. Interestingly, Approach 2 leads
to an increase in NMSE despite a reduction in other metrics,
suggesting a complex interaction between the features and the
terrain. However, Approach 3 emerges as the most effective,
significantly reducing all metrics, highlighting the value of a hybrid
approach that uses both model-driven and empirical data insights.
The results for Romania (Table 4) show the highest baseline NMAE
and NMSE of the three countries, highlighting initial challenges in
the forecasting model due to possibly more complex wind patterns
or varied terrain. Approach 1 and Approach 2 show improvements,
but Approach 2 shows a negative NMSE value that may require
further investigation to understand anomalous model behaviour.
Approach 3 demonstrates its robustness by significantly improving
the accuracy and consistency of the forecast, as indicated by
significant reductions in all metrics.

The results of the analysis from Greece, Bulgaria and Romania
clearly indicate that a hybrid approach combining both FIV and
terrain complexity metrics consistently improves CNN-based wind
power prediction. This combined strategy, as shown by the data
in Tables 2–4, consistently outperforms the individual use of either
FIV or terrain complexity metrics alone. The singular use of FIV-
based data filtering (Approach 1) while beneficial in reducing error
metrics such as NMAE andNMSE,may not fully capture the diverse
influence of complex terrain onwind patterns. Similarly, Approach 2
by focusing exclusively on terrain complexity provides a limited view
and occasionally leads to inconsistent results, such as the unexpected
increase in NMSE for Bulgaria. It is the fusion of both approaches
that provides a comprehensive understanding, integrating the data-
driven insights of FIV with the empirical knowledge of terrain
effects. This dual strategy exploits the strengths of both approaches:
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TABLE 2 Case study: Greece—evaluation results for the three approaches.

Approach NMAE (%) NMSE (%) Bias (%) Standard deviation (%)

Baseline (No Masking) 4.26 0.18 0.38 2.16

Approach 1 (FIV-based) 3.86 0.15 0.32 1.91

Approach 2 (Terrain Complexity) 3.94 0.16 0.35 1.84

Approach 3 (Combined) 3.65 0.14 0.28 1.63

TABLE 3 Case study: Bulgaria—evaluation results for the three approaches.

Approach NMAE (%) NMSE (%) Bias (%) Standard deviation (%)

Baseline (No Masking) 5.31 0.23 −0.15 2.46

Approach 1 (FIV-based) 4.67 0.18 0.23 2.20

Approach 2 (Terrain Complexity) 4.74 0.30 0.35 2.24

Approach 3 (Combined) 4.02 0.16 0.16 1.85

TABLE 4 Case study: Romania—evaluation results for the three approaches.

Approach NMAE (%) NMSE (%) Bias (%) Standard deviation (%)

Baseline (No Masking) 7.65 0.34 0.34 2.83

Approach 1 (FIV-based) 6.89 0.28 0.31 2.67

Approach 2 (Terrain Complexity) 6.56 −0.25 0.35 2.54

Approach 3 (Combined) 5.74 0.20 −0.16 2.12

FIV’s ability to identify predictive regions within the data, and the
complexity of the terrain, which reflects the geographical influence
on wind behaviour. The superior performance of Approach 3 in
all three countries underlines the synergy achieved by combining
these methods. It fine-tunes the forecast model to account for
the unique geographical characteristics of each region, resulting
in more accurate, reliable and interpretable wind power forecasts.
The consistent improvement across all metrics with this combined
approach confirms its effectiveness and demonstrates the value of
integrating different data processingmethods to improve forecasting
capability in complex, real-world applications.

7 Conclusion

This research conducted a comprehensive study of the
interaction between terrain complexity and feature importance
values derived from deep learning models, with a particular focus
on their collective impact onwind power predictions. Convolutional
Neural Networks using numerical weather prediction were used to
extract the intricate correlations influencing wind power generation
in Greece, Bulgaria and Romania. The research used metrics such
as Standard Deviation of Elevation and Terrain Ruggedness Index,

which showed a discernible effect on wind behaviour across the
diverse landscapes of these countries. The feature importance
analysis, facilitated by the DeepSHAP methodology, identified
critical areas within each country that had a significant impact
on the forecasting process. A consistent pattern emerged from
the analysis; regions with pronounced rugged terrain, particularly
inland, generally showed reduced importance. In contrast, maritime
regions emerged as a significant contributor to wind dynamics,
underlying the importance of coastal and marine areas in the
forecast models. The study tested three data filtering approaches
to improve forecast accuracy: one based on FIV, another based
on terrain complexity, and a third that combined both sets of
approaches. Across all case studies, the combined method proved
superior, consistently outperforming the others by providing the
most accurate forecasts, minimising errors and reducing variability
of results. This method effectively combines the data-driven focus
of FIV with the empirical knowledge of the field, providing a robust
framework for forecasting. In general, this research highlights the
value of integrating terrain characteristics with deep learning-
derived algorithmic predictions. By adopting such an integrated
approach, the potential for optimising wind energy forecasting is
greatly enhanced, offering a way to improve the sustainability of
energy resources in regions characterised by complex terrain.
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Microgrid has been extensively applied in the modern power system as a
supplementary mode for the distributed energy resources. The microgrid with
wind energy is usually vulnerable to the intermittence and uncertainty of the
wind energy. To increase the robustness of the microgrid, the energy storage
system (ESS) is necessary to compensate the power imbalance between the
power supply and the load. To further maximize the economic efficiency of the
system, the system level control for the microgrid is desired to be optimized
when it is integrated with the utility grid. Aiming at the aforementioned problem,
this paper comprehensively analyzes the power flow of a typical loop microgrid.
A transformer-based wind power prediction (WPP) algorithm is proposed and
compared with recurrent neural networks algorithm. With the historical weather
data, it can accurately predict the 24 h average wind energy. Based on the
predicted wind energy and the time-of-use (TOU) electricity price, a day-ahead
daily cycling profile of the ESS with particle swarm optimization algorithm
is introduced. It comprehensively considers the system capacity constraints
and the battery degree of health. The functionality of the proposed energy
management strategy is validated from three levels. First, WPP is conducted with
the proposed algorithm and the true historical weather data. It has validated
the accuracy of the transformer algorithm in prediction of the hourly level wind
energy. Second, with the predicted wind energy, a case study is given to validate
the day-ahead daily cycling profile. A typical 1 MVA microgrid is utilized as
the simulation model to validate performance of the daily cycling optimization
algorithm. The case study results show that the ESS daily cycling can effectively
reduce the daily energy expense and help to shave the peak power demand
in the grid.

KEYWORDS

wind power prediction, optimization, microgrid, energy storage system, time-of-use
price
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1 Introduction

The renewable energy such as photovoltaic and wind energy has
multiple superiorities including zero carbon emission and reduced
generation cost over conventional power Byers and Botterud (2020).
However, they also pose challenges to the modern power system
due to their distributed characteristics. The modern power system
is based on concentrated load and generationCady et al. (2015).
The increasing proportion of the distributed generations (DGs)
is challenging for the power dispatching and operating efficiency
improvement.Thus,microgrid is an emerging supplementary power
generation mode to address the challenge posed by the increasing
penetration of distributed energy resources in the modern power
system Zhao et al. (2017).

Among all renewable energy resources, wind energy has the
advantage of cost-effectiveness which makes it appropriate for
areas with rich wind energy resources such as off shore areas
Tessarolo et al. (2017). However, its intrinsic intermittence features
make it undesired for power grid operation. This problem is
particularly serious inweak grid conditions such asmicrogridwhich
has lower capacity than the large power grid.Themismatch between
the power generation and load can lead to wind curtailment which is
detrimental to increasing the operating efficiency Zhao et al. (2016).
In the worst case, it raises multiple power quality concerns such
as frequency deviation or voltage flickering and finally operating
failures.

To address the problems posed by wind energy in themicrogrid,
considerable research effort has gone into the power industry which
includes the following steps. The development of battery technology
enables energy storage systems (ESS) in the microgrid to reach
higher capacity with reduced cost. There are various types of ESS
such as the lithium-ion (Li-ion) battery, flywheel, lead-acid batter,
etc. Prakash et al. (2022). Li-ion battery has been extensively applied
in the EVs for the sake of its large energy density and relatively
mature manufacturing technology Deng (2015). Therefore, some
microgrids also utilize recycled Li-ion batteries as the ESS unit.
A large ESS with a fast dynamic response speed can greatly shave
the peak generating power and fill the load demand. The energy
storage system for microgrid generally includes battery packs and
power conversion systems. Via adjusting the output power of the
PCS, the power in the grid can be changed and the bus voltage is
maintained. However, the application of ESS introduces extra cost
for the microgrid and its cycling can lead to aging of the battery.
Using ESS daily cycling to minimize the power expense is emerging
recently Zhao et al. (2019). The Time-of-Use (TOU) price of the
electricity varies hour by hour because of the load changes hourly.
Accordingly, when the microgrid is tied to the utility grid, the ESS
charges when the TOU price is low and discharges when TOU price
is high. For the microgrid, due to the capacity limitation, the daily
optimization algorithm of the ESS can be different.

Another effort is developing more accurate wind power
prediction (WPP) algorithms. The application of emerging artificial
intelligence algorithms enables wind energy models to be more
complex and accurate with data-driven methods Zhao et al. (2017).
An accurate wind energy prediction strategy is essential for the
day-ahead optimization of the microgrid operation plan. Based on
the optimization operation plan, the energy management system of
the microgrid can effectively adjust the output power of the ESS

and DG to minimize the generated power curtailmentYang et al.
(2014). The existing WPP algorithms are usually based on recurrent
neural networks (RNN) models or the improved RNN models
such as short-term memory and gated recurrent units. However,
RNN-based models process data sequentially instead of in parallel
which makes it struggle with long-range dependencies, and under-
perform with non-stationary time-series data. Transformers, which
is renowned in natural language processing and image tasks, are now
capturing the interest of time series researchers. They show great
performance at handling global information while predefined cutoff
lengths is not needed. It shows great promise in capturing long-
range dependencies, particularly in recent time series prediction
tasks Sun et al. (2021). As an emerging algorithm, the industry
application of transformer-based model still has large space for
further development.

Aiming at addressing the aforementioned problems, this paper
introduces a kind of daily optimization method of the microgrid
with wind energy generation and ESS. Considering the TOU
price, the ESS operates in daily cycling mode to maximize the
saving for the users. A machine-learning-based WPP algorithm
is introduced. It employs the local historical wind energy data
to train the algorithm. Compared with the widely used time-
series WPP methods, the proposed energy management strategy
utilizes transformer-based algorithm to process the weather data.
Compared with the conventional RNN-based methods, its parallel
data processing feature makes it more appropriate for the day-ahead
hourly-level WPP since the operating efficiency is increased. Also,
With the prediction results, a day-ahead operation plan of the ESS
cycling which considers the battery aging is introduced with Particle
SwarmOptimization (PSO). Simulation results experimental results
have validated the functionality of the proposed forecast algorithm
and the energy management strategy.

The other sections of this paper are organized in the following
way: Section 1 summarizes the state-of-the-art WPP algorithm
and the energy management strategy for the microgrid. Section 2
analyzes the microgrid power flow, introduces the proposed WPP
method, and the TOU price profile. Based on the predicted wind
energy profile and local TOU price profile, Section 4 introduces the
day-ahead optimization algorithmof themicrogrid and the ESSwith
PSO. Section 5 introduces a case study to validate the functionality of
the proposed energy management strategy. Conclusions are drawn
in Section 6.

2 Related work

Microgrid is proposed for various applications to connect the
distributed generation resources, loads and ESSs. Since it was
first introduced in Hatziargyriou et al. (2007), both industry and
academia have dedicated much effort to improving the control
and structure of the microgrid to increase its robustness under
various operating conditions. The structure of the microgrid,
such as the terminal can be different based on the application
scenarios. Generally, the energy management of the microgrid can
be categorized into three types: hierarchical control Zhao et al.
(2016), autonomous control Pogaku et al. (2007), and master-slave
control Xie et al. (2021). The power flow control of the microgrid
is conducted via changing the operating modes of the power
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converters. Tayab et al. (2017) introduces the droop control for the
microgrid. Rosso et al. (2021) introduce the grid-forming converter
for the DGs inside the microgrid. The targets of microgrid energy
management can be concluded into two aspects: maximize the
economic efficiency and improve the system operating stability.
Improving the economic efficiency can be implemented via shaving
the peak power demand and filling the valley demand.Therefore, the
TOUprice is employed by the utility companies to assist in the power
dispatching. Yang et al. (2012) employ game-theory to optimize the
TOU pricing and maximize the benefit for the utility grid.

Compared with the conventional large grid, microgrid is usually
more vulnerable to the uncertainties of the DGs due to the limited
system capacity Shuai et al. (2016). Among all distributed energy
resources, wind and solar energy occupy the dominant penetration
in the current renewable energy structure. Compared with solar
energy, wind energy is more efficient. However, wind energy has the
intrinsic characteristics of uncertainties and intermittence which are
detrimental to the robust operation of the microgrid Wood (2020).
As summarized in Xue et al. (2014), there are two major reasons for
wind energy uncertainties: average wind speed in the long term and
fluctuating wind speed in the short term.

The integration of wind energy brings about multiple concerns
for the microgrid such as frequency fluctuation and voltage
flickering. To minimize its impact on the microgrid frequency
and the voltage, Gautam et al. (2010) propose a blade pitch angle
compensation control method and Qi and Tsuji (2023) introduce
a time-series coordinated frequency control strategy for the wind
farm. It can also result in low-frequency oscillation in the doubly fed
induction generators. Therefore, Yang et al. (2011) propose a model
to explain the mechanism and figures out the potential solutions.
Apart from the microgrid robustness, it can also affect the carbon
emission Yao et al. (2012), electricity market Ghadikolaei et al.
(2012) etc.

Tominimize the downsides brought by wind energy integration,
various methods are proposed to control and optimize the
system’s energy management. The extensively applied methods
include wind power prediction (WPP) Rodríguez et al. (2020),
wind farm system-level control Andersson et al. (2021), fault ride-
through Zhang et al. (2020), and energy storage. Among the
aforementioned four method, using ESS is the only hardware-
based method. The capacity of ESS is highly associated with
the robustness of the microgrid. Liu et al. (2018) utilize particle
swarm optimization (PSO) algorithm to determine the capacity of a
hybrid ESS.

Compared with the other methods, WPP can be assisted in
making power dispatching plan to optimize the system operation
in advance. With the increasing penetration of wind energy in
the current energy structure, WPP becomes more significant since
it provides theoretical basis to the comprehensive grid operating
optimization. Both academia and industry have dedicated numerical
effort into the research of WPP. As a critical part of the numerical
weather forecast (NWF), WPP utilizes the wind speed and wind
direction predicted withNWP as the input data. However, due to the
different locations of each wind turbine, the NWP results cannot be
directly employed to replace WPP. Also, the mutual impact between
wind turbines can also lead to prediction errors. For instance, the
wind turbine at the front side can generate a wake flow which will
affect the operation of the following wind turbines []. Therefore, an

accurate WPP model should incorporate the physical model of the
wind turbines.

Due to the intermittency and uncertainty of wind, WPP is
always challenging particularly for a single wind turbine. Generally,
WPP can be categorized into two types: short-term prediction
which aims at the time-scale shorter than 24-h Sanchez (2006),
and long-term prediction which aims at the time-scale longer
than 24-h Ahmadi et al. (2020). For the short-term prediction, the
wind speed variance and disturbance increase as the prediction
period increases due to the inertial of wind power fluctuation. The
error of short-term prediction varies due to the intermittence and
inertia of the wind turbine which is highly associated with location,
environment, and the predicted time. Due to the prediction errors,
the post-processing of the prediction results is usually necessary
Zhao et al. (2022b). Various methodologies are employed for the
short-termWPP such as theMarkov chain,Kalmanfilter, etc.Li et al.
(2001) propose a first-order artificial neural network model to
estimate the very short-term wind turbine power curve. Blonbou
(2011) introduces an artificial neural network model with adaptive
Bayesian earning and Gaussian process approximation for short-
term prediction. Senjyu et al. (2006) introduce a recurrent neural
network algorithm to conduct the long-term-ahead wind power
generation profile.

According to the aforementioned literature review investigation,
this paper will introduce a comprehensive optimization algorithm
for the loop microgrid with wind energy and ESS. The WPP
is conducted with transformer which shows superiority over the
conventional algorithms such as long short-term memory (LSTM)
and recurrent neural networks (RNNs). Also, particle swarm
optimization algorithm is utilized to make the daily cycling plan for
the battery which comprehensively considers the constraints of the
system capacity.

3 Microgrid system topology
introduction

3.1 Three-terminal microgrid system
introduction

A typical three-terminal loop microgrid is given in Figure 1. It
includes a wind energy generation terminal, a battery ESS, a load
bank and utility grid. The battery ESS is usually located close to
the load to compensate for the load demand. The ESS consists of
a battery bank and a bidirectional power converter. An transformer
is employed to connect the microgrid and the utility grid. Different
terminals are connected via transmission line. The bus voltage
is set to be 220 V ac. The transmission cable is three-phase
four-line. Generally, the transmission cables have circuit breakers
on the line.

It can be operated under islanding mode and grid-connected
mode. Islanding mode occurs when the utility grid is no longer
accessible. The top-priority target of the islanding mode is to
minimize the power outage time and maximize the system’s
robustness. In contrast, when the utility grid is available, the
energy management system will aim at maximizing the operating
efficiency.
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FIGURE 1
The topology of a three-terminal loop microgrid.

FIGURE 2
The power flow of all terminals in the three-terminal loop microgrid.

Generally, due to the generation intermittence of DG and the
missing of a large grid, only a wind energy terminal as the power
source is not enough for amicrogrid in islandingmode. Tomaintain
the power balance, as many types of DGs as possible such as
photovoltaic energy, bioenergy, and tidal energy should be employed
for a microgrid. Also, the energy storage system can operate in
grid-forming mode to maintain the bus voltage.

In the grid-connected mode, the robustness of the microgrid
can be supported by the utility grid and it is no longer the major
concern. Thus, the operating efficiency is the top priority target
for the microgrid. It can be conducted by minimizing the wind
energy curtailment and daily cycling of the ESS to benefit from the
TOU price. This paper focuses on the grid-connected mode of the
microgrid.The control of themicrogrid in grid-connectedmode can
be found in Figure 2.

FIGURE 3
The structure of the energy management strategy.

The power flow analysis is essential for operation optimization.
Figure 2 shows the power flow of the microgrid. The wind energy
generation system and the load are all unidirectional while the
transformer and the battery are bidirectional. PB, PW, PL and PG
denote the output power of the battery, wind energy generation
terminal, load, and the grid. The reference direction of each variable
is marked in Figure 2.

The energymanagement strategy of themicrogrid is hierarchical
control which includes three layers as shown in Figure 3. The
hardware layer include all physical components such as the
transmission line, the converter, the connectors, etc. The local
control of the power converter is also in the hardware layer. The
information transferring layer plays a key role in the information
exchange between the system layer and the hardware layer. It delivers
the local information such as the power flow, voltage or current to the
energy management system while the control signals are sent to the
hardware layer. The energy management system controls the whole
microgrid and dispatches the power flow in the grid. It should be
noted that the day-ahead optimization is performed in the energy
management system.

3.2 Prediction of the wind power

In 2019, wind energy played a substantial role in advancing
renewable energy, contributing to one-third of the overall growth
Wood (2020). While the evolution of wind power technology brings
evident economic and environmental benefits, the integration of
large-scale wind power into the grid faces challenges due to its
intermittent nature. WPP emerges as a pivotal solution to tackle
this issue.

As demonstrated in Section 2, WPP can be categorized based
on the time frame of predictions: ultra-short-term (0–4 h) for
managing intraday operations, short-term (typically 1 day or a few
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FIGURE 4
The encoder-decoder structure.

days in advance) for day-ahead planning and unit commitment, and
medium/long-term forecasting (spanning weekly, seasonal, annual,
or more) for wind resource assessment and selection of wind
farm sites.

WPP methodologies can be broadly classified into four primary
categories: physical models, statistical approaches, intelligent
systems, and hybrid methods as shown in Figure 4. Predictions
can also be categorized based on the types of input features they use,
such as multi-variable predictions and historical predictions. This
research, in particular, focuses on intelligent, short-term historical
predictions. For the wind prediction task, the prediction process is
defined in Eq. 1.

x̂t+1 = f (xt,…,xt−d+1) + e (1)

where x̂t+1 is the predicted wind power, f(.) is the prediction model,
and e is the prediction error.

In this study, a transformer model is employed for the
prediction task. The encoder component takes the historical time
series as input, while the decoder predicts future values in an
auto-regressive manner. To establish a connection between the
encoder and the decoder, an attention mechanism is employed.
This allows the decoder to learn how to prioritize the most
pertinent historical values from the time series before making a
prediction. Furthermore, the decoder utilizes masked self-attention
to prevent the model from gaining an unfair advantage during
training by peeking ahead and using future data to predict past
values. Note that the prediction can inevitably introduce the
prediction errors. Therefore, it is recommended to incorporate
the prediction error correction algorithm in prior to performing
optimization for the system. Some post-processing algorithms for
wind energy prediction can be found by Jiang andHuang (2017) and
Zhao et al. (2022b).

FIGURE 5
A typical TOU price profile (Own representation of data from www.
epexspot.com).

3.3 Time-of-use price

The utility company employs the TOU price profile to assist
in shaving the peak demand the filling the valley. The price
of the energy changes hourly based on the demand. A typical
TOU pricing profile is given in Figure 5. Generally, the price
is higher at the peak demand time while it decreases at the
valley demand time. The customers will adjust their usage of
electricity accordingly to minimize their daily energy expense.
For instance, the charging of electric vehicles can be delayed to
midnight when the TOU price is low. In this case, the power
of midnight in the utility grid can be slightly increased and
the operation efficiency is improved. Also, the utility company
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does not need to invest more money into the construction of
backup capacity.

4 Day-ahead ESS cycling plan

4.1 Object function and optimization
constraint

The optimization object which is improved on the basis of the
proposed algorithm in Zhao et al. (2019) aims to minimize the total
energy expense of the microgrid which is usually a community
network.Asmentioned earlier, via charging the batterywhenTOU is
low and discharging the battery when TOU is high, it can maximize
the operation efficiency for the customers. Therefore, the object
function as shown in 2 is the part the changed expense caused by
the ESS daily cycling. It should be noted that in this paper, the power
loss on the transmission line can be ignored due to the small size of
microgrid.

M =min(
24

∑
t=1

PB (N) ⋅TOU (N)) (2)

Herein, PB(N) and TOU(N) denote the output power of the ESS and
the Time-of-Use price at the hour-N. Since the load is determined
by the users and it is independent of the system-level control, the
only considered variable is ESS output power. The optimization
should followmultiple constraints such as the SoC of the battery, the
maximum power limit of each terminal and the SoC daily cycling
constraints which can be expressed in 3 - 5.

PBch
≤ PB (t) ≤ PBdisch

(3)

SoClow ≤ SoC (t) ≤ SoChigh (4)

SoC (0) = SoC (24) = SoC (initial) (5)

In 3, the output power of the battery is limited to the maximum
power rating for charging and discharging. In 4, there is a limitation
for the battery SoC. When SoC is too high, the battery is over-
charged and it can damage the hardware. In contrast, SoC is also
not desired to be very low since deep discharging can lead to a
shortened lifetime of the battery. Therefore, it is desired to limit the
battery SoC to be within an appropriate range to prevent the over
charge/discharge damaging the battery. Usually, SoClow which is the
lower limit is between 20% and 40% and SoChigh which is the upper
limit should be lower than 95%.

SoC(N) denotes the SoC of the battery at the end of hour-
N. To finish a completed charging cycle, it is needed to make the
SoC same level after completing a daily cycle. In other words,
after the charging/discharging for a day, the SoC should return
to the initial point, i.e., SoC (initial) in the equation. The SoC of
the battery at the end of each 30 min can be calculated with 6.
Herein, the loss on the power converter is neglected since it is
usually very low. Currently, the efficiency of a power converter with
wide bandgap semiconductor devices can go to 98% Zhao et al.
(2022a). To make the SoC prediction more accurate, it is usually
necessary to consider the power loss of the power converter. In this

case, the output power of the converter should be multiplied by
the efficiency.

SoC (N) = SoC (0) +
t

∑
i=1

PB (N) ⋅
3.6

CB ⋅DoH ⋅VB
(6)

In 6, SoC(N) is the SoC at the end of hour-N in a day. SoC (0) is
the initial SoC of a day. The SoC (0) can be assumed to be 60% at
0:00 a.m. since 60% is the recommended SoC tomaintain the battery
lifetime. Note that, due to the battery aging in the daily cycling, the
capacity fading should be considered in this case. DoH denotes the
battery degree of health which should be measured daily to avoid
SoC estimation errors. It can be conducted using an offline method
with a coulombmeter as given inYang et al. (2018).CB is the nominal
battery capacity and VB denote the battery output voltage. Also, due
to the limitation of the transformer capacity, the wind power, load
and the battery output power should follow the constraint as given
in 7. It can avoid the curtailment of the wind energy caused by the
extra-large ESS output power.

PG_min < PB + PW + PL < PG_max (7)

4.2 The optimization algorithm process of
ESS output power

The optimization flow is shown in Figure 6. Usually, the
optimization process should be performed a day ahead.

All information including the predicted wind power, ESS
specs and status, TOU profile from the utility company, and the
microgrid parameters is input to the optimization process as the
original data. Based on the given data, the fitness function as
given in Eq. 2 and the constraints as given in Eqs 3–7 can be
determined. Then the optimization can be performed. The selection
of various optimization algorithms such genetic algorithm, PSO,
simulated annealing algorithm, etc., depends on the application
scanario. To avoid the calculation results being trapped into
the local optimal point, the initial conditions and maximum
iteration generation should be carefully selected. After iteration,
the optimized ESS output power can be generated and it will
be utilized as the reference value for the ESS converter P/Q
control scheme.

5 Experimental study

5.1 Wind power prediction results

In this segment, we utilize actual wind power data to assess
the efficacy of forecasting strategies based on transformer models.
The data, generated by the Weather Research and Forecasting
(WRF) model, consists of hourly samples, amassing a total of 8,640
data points. For our analysis, we consider a historical sequence of
10 samples to predict future wind power output. The dataset is
partitioned into a training set comprising 70% of the data, and a
testing set making up the remaining 30%. We employ LSTM, GRU,
and transformer models to conduct both single-step and multi-
step predictions. In single-step forecasting, the immediate next data

Frontiers in Energy Research 06 frontiersin.org59

https://doi.org/10.3389/fenrg.2023.1334588
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Xu et al. 10.3389/fenrg.2023.1334588

FIGURE 6
The optimization flow chart of the proposed energy management
strategy.

point is predicted, while in multi-step forecasting, the prediction is
made for the third data point in the sequence.

The experiments are conducted on a Linux PC equipped with
an AMD Ryzen 5 3550H processor, clocked at 2.1 GHz, along with
16 GBofRAM.Thecomputational environment includes Python 3.9
and TensorFlow 2.8.0. Our aim is to validate the effectiveness of the
proposed forecasting approach. TensorFlow is employed due to its
ability to handle large datasets and perform complex computations
efficiently. It is very appropriate for the evaluation ofmodel accuracy
and its deployment for practical, real-time forecasting application.
The performance of each model is assessed using two metrics:
Mean Squared Error (MSE) and Mean Absolute Error (MAE). MSE
quantifies the average squared deviation between the predicted and
actual values, offering insight into themodel’s precision. Conversely,
MAE calculates the average absolute discrepancy between the
predicted and actual values, showcasing the extent of deviation in
the model’s predictions.

Upon conducting a thorough analysis of the experimental results
in Figures Figure 7, Figure 8, Figure 9, Figure 10, it is observed that
the transformermodel exhibits superior performance in comparison
to the LSTM and GRU models in both single-step and multi-step
forecasting tasks. The transformer model demonstrates comparable
proficiency to the LSTM model, and maintaining an advantage
over the GRU model. These empirical findings underscore the

TABLE 1 The specs of the microgrid for case study.

Terminal Parameter Value

Transmission line Voltage 380V3ϕ

Transformer Capacity 1000kVA

Wind turbine Capacity 500kVA

Battery Voltage 800V

Maximum discharging power 400kW

Maximum charging power 350kW

Capacity 600kWh

Original SoC 60%

SoC limitation 25%–95%

Load Capacity 800kVA

transformer model’s potential as an efficacious approach for time
series forecasting in wind power prediction endeavors.

5.2 Optimization results: a case study

A case study is given in this paper to validate the functionality
of the proposed algorithm. A 500 kVA microgrid system is utilized
for the case study. The specs of the microgrid are listed in Table 1.

The hour-level predicted wind power from the original data and
the load profile can be plotted in Figure 11. After all data such as the
wind energy generation, TOUprice, load profile, and the constraints
are determined, the optimization process can be performed. In this
paper, PSO is employed. The optimization results of the battery
output power are plotted in Figures 12, 13.

From Figures 12, 13, the battery output power matches the
TOU price. When the TOU price is high, the battery output
power increases. When the TOU price is low, the battery charges.
From Figure 7, the battery SoC is also within the set constraint
25% and 95%.

The daily expense of the microgrid is plotted in Figure 14. From
Figure 14, without the wind energy and the battery daily cycling, the
daily energy expense is 6,138 dollar.TheESS daily cycling can reduce
the energy expense by 188 dollar. If a larger battery bank is utilized,
the cost reduced by daily cycling can be larger. With wind energy
and the battery, the total daily cost of energy can be reduced to 3,200
dollar.Therefore, theDG terminal and ESS can effectively reduce the
user energy cost.

6 Discussion

To maximize the advantages of microgrid using wind power
and battery ESS, this paper proposes a kind of system-level control
strategy and the ESS daily cycling algorithm. Using WPP results and
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FIGURE 7
Model performance evaluation for the single-step forecast task.

FIGURE 8
Model performance evaluation for the multi-step forecast task.

FIGURE 9
Single-step wind power forecasting.
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FIGURE 10
Multi-step wind power forecasting.

FIGURE 11
The predicted results of the load power and generated wind power.

FIGURE 12
The TOU price, the predicted wind energy, and the ESS battery output
power.

the TOU price, it can effectively reduce the daily energy expense and
help the utility grid to dispatch energy by shaving the peak demand.
The experimental study is conducted in two levels and the results are
discussed as below.

6.1 WPP results

A transformer-basedWPP algorithm is proposed and compared
with the state-of-the-art machine learning algorithms. From the
comparison results as given in Figure 7 - 8, all machine learning
methods can predict the wind power at hourly level. However,
among the listed algorithms, the transformer algorithm shows
superiority over the LSTM and GRU model. The MSE error of

FIGURE 13
The ESS SoC and the output power.

FIGURE 14
The daily electricity expense.

the transformer algorithm in single-step prediction is much better
than LSTM and GRU model. For multi-step prediction, the GRU
model still have the largestMSE error.TheMSE error of transformer
algorithm is slightly lower than LSTM. Therefore, for 24 h WPP,
transformer can be a suitable algorithm.

6.2 ESS daily cycling optimization

From the simulation study in last section, the daily cycling of
the ESS can effectively reduce the electricity expense of the users.
The charging time focuses at 1:00-3:00 when the TOU is the lowest
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during a day. The discharging time is usually between 15:00-18:00
when the TOU is highest. It should be noted that it also charges at
23:00 since the battery SoC should return to 60% at the beginning
of a daily operating cycle. The simulation results also reveal that
the majority of saved expense is still from the wind energy which
has no cost. The daily cycling has lower benefit per day. However,
for 2 years, the daily cycling of ESS can cover the cost of the
battery lifetime aging. Also, it should be noted that in the simulation
study, PSO is employed. To achieve better optimization results,
other optimization algorithms such as GA, grey wolf optimizer, etc.,
can be tried.

7 Conclusion

In this paper, a system level control strategy is proposed for
the loop microgrid with wind energy generation terminal and the
ESS. As the theoretical basis for the system-level operation strategy
optimization, a transformer-based WPP algorithm is proposed
and compared with LSTM. The comparison results reveal that
transformer-based model has better prediction results over the
conventional time-series algorithm. With the predicted wind power
profile, the ESS daily cycling plan is made based on the optimization
algorithm with TOU price. PSO is utilized for the ESS optimization.
The case study shows that for a 1MVA microgrid with 800 kVA
regular load, the daily cycling of a 400 kVA 600 kWh ESS can
reduce the daily energy expense by 3%. Thus, the proposed energy
management strategy can effectively improve the system operating
efficiency.
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learning a time series predictive
model of wind power
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Wind energy has become an essential part of the energy power source of
current power systems since it is eco-friendly and sustainable. To optimize the
operations of wind farms with the constraint of satisfying the power demand, it
is critical to provide accurate predictions of wind power generated in the future.
Although deep learning models have greatly improved prediction accuracy, the
overfitting issue limits the application of deep learning models trained under
one condition to another. A huge number of data are required to train a
new deep learning model for another environment, which is sometimes not
practical in some urgent situations with only very little training data on wind
power. In this paper, we propose a novel learning method, named meta-
reservoir computing (MRC), to address the above issue, combining reservoir
computing and meta-learning. The reservoir computing method improves the
computational efficiency of training a deep neural network for time series data.
On the other hand, meta-learning is used to improve the initial point and other
hyperparameters of reservoir computing. The proposedMRCmethod is validated
using an experimental dataset of wind power compared with the traditional
training method. The results show that the MRC method can obtain an accurate
predictive model of wind power with only a few shots of data.

KEYWORDS

meta-learning, deep learning model, wind power prediction accuracy, time series data,
reservoir computing

1 Introduction

The utilization of wind power has dramatically improved in the last decade. Wind power
generation is random due to the uncertain property of wind speed. The uncertainty of wind
power generation brings challenges to the power system dispatch with safety constraints and
operational stability (Ummels et al., 2007). Thus, accurate wind turbine power generation
prediction is critical for improving the safety and efficiency of utilizing wind energy in
power systems (Lange, 2005). Nowadays, wind turbines are often equipped with Supervisory
Control and Data Acquisition (SCADA) systems that record the real-time data on wind
turbine operations. The data from the SCADA system can be applied to monitor the status
of the wind turbines. On the other hand, we can also use the data to build predictive models
for wind turbine power.

The research on wind power prediction has been mainly focused on providing time
series predictions based on time series data (Burke and O’Malley, 2011). Deep learning
models have been applied to improve the accuracy of wind power prediction. One
mainstream method is to use a long short-term memory (LSTM) neural network to
model the time series wind power model. For example, Chen et al. (2019) proposed
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a two-layer method, which combines extreme learning machine
and LSTM to address the nonlinear property of the wind power
model and overcome the weakness of linear combination by using
only one layer. In addition, Ko et al. (2021) proposed a deep
residual network that integrates long and short bidirectional LSTM
to improve accuracy and training efficiency further. Recently, a
probabilistic prediction of wind power has also been addressed.
Zhang et al. (2021) designed a multi-source and temporal attention
network to improve prediction performance by introducing three
specific designed sources. Furthermore, Safari et al. (2018) used
ensemble empirical mode decomposition to divide the wind power
time series into different components with different time–frequency
characteristics. Then, the authors used chaotic time series analysis
to discover the components with chaotic properties. Subsequently,
the predictive model provides the predictions for the chaotic
and nonchaotic parts separately, which improves the prediction
accuracy. Zhao et al. (2021) proposed an integrated probabilistic
forecasting and decision framework to optimize the prediction
interval of wind power and quantify the probabilistic reserve
simultaneously. An extreme learning machine is applied to reduce
the time efficiency of establishing the prediction interval. In
addition, a novel closed-form prediction for wind speed and wind
power is presented by Wang et al. (2021). Liu et al. (2018)integrated
wavelet packet decomposition, gray wolf optimizer, adaptive
boosting.MRT, and robust extreme learningmachine to increase the
accuracy of multi-step prediction for wind power.

Recent research has discovered that the wind speed dynamical
model and the wind turbine power curve depend on the
environment, such as atmospheric conditions and temperature
(Cascianelli et al., 2022; Pandit et al., 2023). None of the above
research on wind power predictive models has considered
environmental changes. Wu et al. (2023) presented a heuristic result
that considers the atmospheric model in wind power prediction.
However, it does not give hints on building a more general model.
Deep models encounter overfitting issues (Duffy et al., 2023). As
the environment changes, the prediction by deep models deviates
from the real value and needs to be modified by using data from
the new environment. The traditional training methods for deep
models need a sufficiently large number to train the model, which is
computationally complex for real-time modification. In addition, it
may not be practical to quickly obtain many new data.

The reservoir computing method is a computationally efficient
method to train neural network models (Hamedani et al., 2018;
Nokkala et al., 2022), including recurrent neural networks (RNNs)
and LSTM neural networks. Although using the reservoir
computing method for deep models can significantly reduce the
computational complexity for training, the issue of not having
enough data quickly is still unresolved. Meta-learning has been
validated to adapt the deep model to a new situation with only a
few shots of data (Li and Hu, 2021; Tian et al., 2022). This paper
combines the advantages of reservoir computing and meta-learning
and proposes a novel wind power predictive model, named the
meta-reservoir computing method. Meta-learning optimizes part
of the hyperparameters of the reservoir computing algorithm based
on a multiple-task dataset. Then, the enhanced reservoir computing
algorithm can efficiently adapt the predictive model of wind power
to a new task with a few data samples. We conducted experimental
data-based validations to evaluate the proposed meta-reservoir

computing method. The main contributions of this paper are
summarized as follows:

• This is the first study to consider the problem of adapting a deep
learning wind power predictive model with small samples.
• Meta-learning is combined with reservoir computing for the

first time to improve the training efficiency of deep learning
models for wind power prediction with the constraint of small
samples.

The remainder of this paper is organized as follows: Section 2
presents the addressed problem after formulating the model,
integrating the environment factors; Section 3 explains the proposed
meta-reservoir computing method for wind power predictive
modeling; Section 4 presents the validation results of applying the
proposed meta-reservoir computing method to an experimental
dataset; and Section 5 presents the conclusions of this paper.

2 Addressed problem: fast model
learning for wind power prediction

Let the time index be k = 0,1,2,… ,T,…. At every time k, the
wind power is defined by pk.Wind power is generated from thewind
turbine and depends on the wind speed at the current time index k.
Let sk be the wind speed at time step k. A nonlinear map called the
wind turbine power curve (Luo et al., 2022) describes the correlation
between wind speed and wind power output, which is expressed as
follows:

pk = h(sk,wk) , (1)

where wk defines the uncertainty related to the measurements and
the model bias.

On the other hand, the mechanism of generating wind speed sk
is essentially a Markov process defined by

sk+1 = f (sk,vk) , (2)

where vk is the system noise and f(⋅) is the function that describes
the state transition with randomness. Note that the randomness is
addressed by the system noise vk. Then, we can equivalently regard
the wind power itself following a Markov process defined by

pk+1 = g(pk,δk) . (3)

In practice, g(⋅) is not available. One basic solution is to use the
time series dataset of wind power to estimate g(⋅), which essentially
follows a data-driven fashion. Let

DT ≔ {pk}
T
k=0 (4)

be the available dataset. The traditional problem is to solve

min
̃g

T−1

∑
k=0
(pk+1 − ̃g(pk))

2. (5)

However, recent research reveals that the wind speed dynamical
model and the wind turbine power curve vary as the environment
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changes (Cascianelli et al., 2022; Pandit et al., 2023).Namely, instead
of using (Eqs 1, 2), the following model should be used:

pk = h(sk,θ,wk) , (6)

sk+1 = f (sk,θ,vk) , (7)

where θ defines an unknown variable to represent the influence of
the environment change. Then, the dynamical model of the wind
power is written by

pk+1 = g(pk,θ,δk) . (8)

Suppose the dataset DT includes the data collected from different
environments specified by labels from {1,… ,K}. If we train the
model ̃g by solving Eq. 5 directly based on DT, the solution
will not fit any model conditioned on the label i, i = 1,… ,K.
On the other hand, when the new dataset DK+1

T′ conditioned
on a new environment specified by θK+1 comes with very few
samples (namely, T′ is very small), there is no effective way
to adapt the solution to dataset DT to the new environment
model.

This paper addresses the problem of providing a solution
̃g* robust to each environment parameter θi, i = 1,… ,K.

On the other hand, ̃g* should also have a property that
it can be adapted to the solution of a new set, ̃gK+1, very
efficiently, with only very few data obtained on the new
environment.

3 Meta-reservoir computing for wind
power prediction

3.1 Reservoir computing

Reservoir computing is a computational approach for time series
data processing based on neural networks. Reservoir computing
was first proposed by Jaeger and Haas (2004) for optimizing RNN
models for given training data. Since RNN is widely used for time
series data modeling, reservoir computing can also be generalized
to the applications of time series data processing (Tanaka et al.,
2019).

In reservoir computing, the time series data are supposed to be
generated from unknown dynamical models driven by sequences
of inputs, and the system outputs sequences of outputs. It can
also be applied to autonomous systems by setting the input at
each time as zero. In this paper, since we do not have input for
the dynamics of wind speed, the input is not considered. The
reservoir in reservoir computing is essentially the state variable of
the established dynamical model for predicting the output, and
it does not have to represent the underlying state of the actual
physical systems (Tanaka et al., 2019). Let rk be the reservoir at time
step k. The measured output at time step k is defined by yk. The
reservoir at time step k+ 1, rk+1, is a function of rk and yk, written
by

rk+1 = frc (Wrcrk +Wbackyk) , (9)

where frc is a neural network and Wrc and Wback are the weight
matrices for reservoir–reservoir connections and output–reservoir

connections, respectively.The output at time index k+ 1 is predicted
by

yk+1 =Woutrk+1. (10)

The computational complexity is immense if we want to train
Wout, Wback, and Wrc together. Note that the model capacity is
substantial if there are enough reservoirs and neurons. The model
can achieve high accuracy even thoughWback andWrc are randomly
given and only Wout is trained. The algorithm of implementing
reservoir computing with a dataset Drc

T ≔ {yk}
T
k=0 is summarized in

Algorithm 1.
Note that λ is a parameter for regularization. Using a large

λ confers the method a higher robustness but may lose some
accuracy. With a small λ, the obtained model will have better
accuracy but may encounter the overfitting issue. The choice
of λ should be made according to the problem and the user
demands.

3.2 Meta-learning

The meta-learning discussion first focused on learning
in a multiple-task scenario. To specify the training
process of meta-learning, it is formulated as a bi-level
optimization problem. We will clearly explain how the
bi-level optimization framework of meta-learning fits our
problem.

As introduced in Section 2, the dataset DT includes the
data obtained from different environments specified by the
task labels {1,… ,K}. Then, the dataset can be divided into K
different tasks. Each task has a corresponding dataset Di

Ti
, i =

1,…,K. Instead of only considering the parameter vector in
the model to be learned in meta-learning, another important
variable, ω, which specifies the algorithm about how to learn the
parameter, is also optimized. The variable ω can include the initial
point of the parameter, the hyperparameters for the gradient-
descent method, the choice of cost function, and the selected
model.

The dataset of each task is separated into a training set Di,tr
Ti

and test set Di,te
Ti

. Note that the parameter obtained by each dataset
depends not only on the training dataset but also on the learning
variable ω. The loss function depends on the trained parameter

Inputs: dataset Drc
T
= {yk}k=0,…,T

  1: Select the model frc and reservoir rk

  2: Generate weight matrices Wback and Wrc randomly

  3: Generate initial reservoir r0 randomly

  4: Obtain the weight matrix Wout by solving the

following problem

min
T

∑
k=0
‖Woutrk −yk‖

2 +λ‖Wout‖22 (11)

Output: Initial reservoir r0, Weight matrices Wout,

Wback, and Wrc

Algorithm 1. Implementation of reservoir computing for a time series dataset
Drc

T .
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FIGURE 1
Experimental data used in this validation. The dataset includes data from eight different environments, plotted in (A–H). For each environment, there
are 13 different profiles.

FIGURE 2
Implementations of the meta-reservoir computing and reservoir computing methods.

vector. Let Ltrain(⋅) and Ltest(⋅) be the loss function for training and
testing, respectively.Then, the training process inmeta-learning can
be formulated as

min
ω

K

∑
i=1

Ltest (Di,te
Ti
,θ(i)* (ω) ,ω) , (12)

s.t. θ(i)* (ω) = argmin
θ

Ltrain (Di,tr
Ti
,θ,ω) , i = 1,…,K. (13)

Let ω* be the solution to the bi-level optimization problem. In
every iteration, the learning parameter ω is optimized for a given θ,
and finally, it converges to the optimal value for learning a task. The

optimality here refers to the given training dataset. Even for a newly
given task, the learning parameter ω* can provide better efficiency
to find the optimal parameter for the newly given task.

3.3 Algorithm for meta-reservoir
computing

This paper proposes a novel wind power predictive model
learning algorithm that combines reservoir computing and meta-
learning. As introduced in Section 2, we have the dataset DT
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FIGURE 3
Few-shot adaptation for environment 5. (A) MRC with 15 samples; (B) MRC with 30 samples; (C) RC with 15 samples; and (D) RC with 30 samples.

FIGURE 4
Few-shot adaptation for environment 6. (A) MRC with 15 samples; (B) MRC with 30 samples; (C) RC with 15 samples; and (D) RC with 30 samples.

obtained from multiple environments. Regarding each environment
as a task, we separate the dataset into

Di ≔ {p(i)k }
Ti

k=0
, i = 1,…,K. (14)

Note that we have
K

⋃
i=1

Di =DT (15)

and

Di⋂Dj = ∅, if i ≠ j. (16)

For each task, we further separate the dataset into data for
training and data for testing as follows:

Di
train ≔ {p

(i),train
k }

Ti,train

k=0
, Di

test ≔ {p
(i),test
k }

Ti,test

k=0
. (17)

Note that we have

Di
train⋂

i
D
test
= ∅, (18)

Di
train⋃

i
D
test
=Di, (19)

for every task i = 1,… ,K.
We use reservoir computing to train a temporal prediction

model of wind power. Thus, the parameter to be trained is W(i)out.
There are a lot of hyperparameters to be optimized, such as the
initial point of reservoirs, the initial point of the solution of the
optimization problem for obtainingW(i)out, the gradient-descent rate,
and the ratio λ for regularization. This study adopts the initial point
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FIGURE 5
Quantitative prediction results showing the MSE curve along with the training iteration (30 samples): (A) Environment 1; (B) Environment 2; (C)
Environment 3; (D) Environment 4; (E) Environment 5; (F) Environment 6; (G) Environment 7; (G) Environment 8.

FIGURE 6
Intuitive explanation of the quantitative prediction results.

of the solution to the optimization problem, Wout(0), and the initial
point of reservoirs r0 as the learning parameter ω*. Namely, we have

ω* = (Wout (0),r0) . (20)

Note that the learning parameter ω* is common for each task, and
the parameter differs in each task. For the loss function, we adopt
the loss function of Eq. 11 for both training and testing processes. It
is written as

Ltrain (Di
train,W

(i)
out,ω)

=
Ti,test

∑
k=0
‖W(i)outr

(i)
k − p
(i),train
k ‖

2
+ λ‖W(i)out‖

2
2, (21)

Ltest (Di
train,W

(i),*
out ,ω)

=
Ti,train

∑
k=0
‖W(i),*out r

(i)
k − p
(i),test
k ‖

2
+ λ‖W(i),*out ‖

2
2. (22)

Inputs: dataset

DT = {pk}k=0,…,T = {D
1
train
,D1

test,……,D
K
train
,DK

test}, the

regularization ratio λ, a new dataset DK+1
T′

  1: Select the model frc and reservoir rk

  2: Generate weight matrices Wback and Wrc randomly

  3: Solve the problem described by Eqs 23, 24

with dataset DT and obtain ω*

  4: Obtain the weight matrix W
(K+1)
out by solving the

following problem described by Eq. 11 with dataset

DK+1
T′

, parameters frc, rk, ω*, Wback, and Wrc

Output: ω = (r0,Wout(0)), weight matrices WK+1out, Wback,

and Wrc

Algorithm 2. Implementation of meta-reservoir computing for learning a wind
power predictivemodel.

Then, the training process in meta-reservoir computing is written
as

min
ω

K

∑
i=1

Ltest (Di
train,W

(i),*
out ,ω) , (23)

s.t. W(i),*out = argmin
W(i)out

Ltrain (Di
train,W

(i)
out,ω) , i = 1,…,K. (24)

According to the above discussions, we summarize the meta-
reservoir computing algorithm for learning a wind power predictive
model in Algorithm 2.

4 Experimental validation

In this section, we first introduce the experimental dataset
and several settings for validation. The validation results are then
presented with detailed discussions.
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4.1 Dataset for validation

This validation uses the experimental dataset shown in Figure 1.
This dataset includes time series data obtained from eight different
environments, as shown in Figures 1A–H, respectively. In addition,
for each environment, we have 13 different profiles. The same
environment means that the data were collected in the same period,
places, and weather.

For meta-learning, seven profiles in each environment are used
as training data and the rest as test data. For a fair comparison,
we compare our MRC with normal reservoir computing (RC)
without meta-learning. In each validation, we use data from seven
environments to train a model and then use the rest for validation.

The comparison of the implementations of the MRC and RC
methods is shown in Figure 2. For RC methods, the training set is
used to train a recurrent neural network.We obtain only a parameter
vector for the recurrent neural network. When a new task comes
as a test set, only a few shots in the test set are used for training
a new recurrent neural network. The trained parameter vector can
be used as the initial value of reservoir computing for updating the
recurrent neural network for the new task. For MRC methods, the
training set is used for meta-learning. Except for one parameter
vector for the training set, the learning parameter, including a good
initial point, is also obtained. When a new task comes, the learning
parameter is used to learn a new parameter vector for the new
task.

4.2 Validation results

The performance of the MRC and RC methods is evaluated
by checking the accuracy of the model learned by each method
with a fine-tuning process based on a sample number of 15 or 30
from a new task. During fine-tuning, each gradient-descent step
is computed with the same data points. Figures 3, 4 provide the
qualitative results for using environments 5 and 6 for the test. The
red solid line is the model trained by using all the data in the test
set, which can be regarded as a perfect model. The results show that
the MRC method can provide a model very close to perfection, even
with a few shots of data. Note that both MRC and RC methods do
not have good initial points. However, the MRC method can adapt
the model very quickly. The RC method fails to adapt the model to
a proper model with the limited data number.

Figure 5 providesmore quantitative prediction results.Themean
square errors (MSEs) of the model at each iteration are plotted for
each case with a different environment as the test set. It is obvious
that the proposed MRC method can adapt the model to a given
environment even though the initial MSE is almost the same as that
of the RCmethod.The reason is that theMRCmethod optimizes the
initial value of the reservoir, which may provide some information
to find a better gradient to reduce the loss. The intuitive explanation
is given in Figure 6.

5 Conclusion

A wind power prediction model must be able to be adapted
to a new environment, with a few samples of data from the new

environment. The traditional deep learning methods encounter the
overfitting issue and are hard to be adapted to a new environment.
A huge dataset is still needed. This paper proposes a novel
learning method for a wind power prediction model. The reservoir
computing algorithm is combined with meta-learning to efficiently
adapt the wind power prediction model to a new environment
with only a few samples. The algorithmic structure of reservoir
computing significantly reduces the computational complexity of
learning a deep model. On the other hand, the initial points and
other hyperparameters of reservoir computing are optimized by
meta-learning based on the historical dataset. Experimental datasets
have validated the proposed meta-reservoir computing method for
learning the wind power prediction model. The validation results
show that the proposed meta-reservoir computing can find a good
model for the new environment in a very small number of iterations
with a few shots of new data.

The proposed method opens a new avenue for training wind
power predictive models for different environments. Instead of
giving the best point for each environment, it is better to find a good
learning parameter to be ready for new tasks. In future work, we will
investigate comparing the proposedmethodwithmore existing deep
models.
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The time series data in many applications, for example, wind power and vehicle
trajectory, show significant uncertainty. Using a single prediction value of wind
power as feedback information for wind turbine control or unit commitment is
not enough since the uncertainty of the prediction is not described. This paper
addresses the uncertainty issue in time series data forecasting by proposing
the novel interval reservoir computing method. The proposed interval reservoir
computing can capture the underlying evolution of the stochastic dynamical
system for time series data using the recurrent neural network (RNN). On the
other hand, by formulating a chance-constrained optimization problem, interval
reservoir computing outputs a set of parameters in the RNN, which maps to
an interval of prediction values. The capacity of the interval is the smallest
one satisfying the condition that the probability of having a prediction inside
the interval is lower than the required level. The scenario approach solves
the formulated chance-constrained optimization problem. We implemented
an experimental data-based validation to evaluate the proposed method. The
validation results show that the proposed interval reservoir computing can give
a tight interval of time series data forecasting values for wind power and traffic
trajectory. In addition, the confidence probability over the feasibility goes to 1
very quickly as the sample number increases.

KEYWORDS

uncertain dynamical systems, probabilistic prediction, time series data, wind power
forecasting, vehicle trajectory

1 Introduction

Time series data prediction is vital in many applications for pursuing better control
or decision-making performance toward achieving a better society or quality of life. For
example, to accomplish the net-zero carbon goal, it is vital to establish a reliable power system
with renewable energy for energy supplement instead of high-carbon power generation
(Evans et al., 2021). Wind energy is one of the best choices among different kinds of
renewable energy resources. However, wind power has a stochastic nature, which makes
it challenging to realize the optimal wind power supplementation with high reliability
(Zhao et al., 2018; Ge et al., 2022). It is necessary to provide a reliable wind power prediction
for the security-constrained unit commitment (SCUC) problem to improve the optimality
and reliability of wind power supplementation (Hu and Wu, 2016). Instead of using one
single wind power prediction, the SCUC problem involved with wind power often considers
the uncertain nature of wind power. It is formulated as a stochastic program (Chen et al.,
2015). The random variables, such as wind power, are assumed to be within a bounded
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set in the formulated stochastic program (Hu et al., 2014; Dai et al.,
2016). Only with a reliable set for the random variable will the
solution of the stochastic program be faithful. Another critical
application scene is safety control in complex traffic environments.
It is crucial to give reliable sets for the trajectories of traffic
participants surrounding the self-vehicle (Liu et al, 2022; Shen and
Raksincharoensak, 2022). For example, Liu et al. (2022) proposed a
dynamic lane-changing trajectory generator based on the uncertain
evaluation of other vehicle trajectories. Yu et al. (2022) proposed a
robust and safe trajectory planning method, considering a bounded
uncertainty for the other vehicle trajectories. Lyu et al. (2022)
improved the vehicle trajectory prediction accuracy using the
information from the connected environment. Thus, a reliable set
for the random variable’s prediction is vital for robust control and
decision-making.

However, giving a reliable set for the random variable’s
prediction is challenging due to the computational complexity
issue. Conformal prediction is a method to provide scores on
confidence in the prediction value and then gives a confidence
interval (Wang et al., 2021). It can also be applied to deep
neural networks (Wen et al., 2021). However, it suffers from the
“curse of dimensionality.” The computational complexity becomes
impractical for applications as the dimension of parameters in the
model increases. The Bayesian neural network is an alternative way
to provide the confidence interval of the predictions (Neal, 2012;
Chen et al., 2021; Xue et al., 2022). The uncertainty is represented
by giving the weights on the parameters of the neural network.
However, the Bayesian neural network needs many assumptions for
practical implementation. A neural network that maps an input to
an interval of the predictions is called an interval neural network
(INN), first proposed in Ishibuki et al. (1993). Compared to the
Bayesian neural network, the INN requires fewer assumptions and
can provide probabilistic guarantees on the reliability of the obtained
neural network (Ak et al., 2015). Recently, a machine learning-
based method, called interval predictor models, was proposed
in Campi et al. (2009) and Garattia et al. (2019). The problem
of constructing an interval predictor model can be formulated
as a chance-constrained optimization problem (Shen et al., 2023).
The above methods do not consider the neural networks for
dynamic systems. In this paper, we extend the above method to
recurrent neural networks combining reservoir computing (Jaeger
and Haas, 2004) to address the uncertain quantification problem
for predictions in dynamic systems. We call the proposed method
“interval reservoir computing.” The proposed interval reservoir
computing can capture the underlying evolution of the stochastic
dynamical system for time series data using the recurrent neural
network (RNN). On the other hand, by formulating a chance-
constrained optimization problem, interval reservoir computing
outputs a set of parameters in the RNN, which maps to an interval
of wind power prediction values. The capacity of the interval is the
smallest one satisfying the condition that the probability of having
a prediction inside the interval is lower than the required level.
The scenario approach solves the formulated chance-constrained
optimization problem. We implemented experimental data-based
validation to evaluate the proposed method.

The rest of this paper is organized as follows: Section 2 gives
a general problem formulation of interval prediction in dynamical
systems; Section 3 presents the proposed interval reservoir after

briefly introducing reservoir computing and the scenario approach;
Section 4 gives the experimental data-based validation; Section 5
concludes the whole paper and discusses future work.

2 Problem formulation: prediction in
dynamical systems

In wind power or vehicle trajectory forecasting applications,
time series data are generated by an underlying stochastic dynamical
system. The stochastic dynamical system has system inputs, hidden
states which cannot be observed, and observations that sensors can
measure. A graphical model of the addressed stochastic dynamical
system is illustrated by Figure 1. Let t ∈ ℤ be the time index. The
hidden state is denoted by xt ∈ ℝ

k. The system input is represented
by ut ∈ ℝ

c. The observation is yt ∈ ℝ
d. Note that xt is not available,

and only the data on yt and ut can be obtained from the sensors.
The observation yt depends on ut and xt. However, for given
values of ut and xt, the observation yt is not deterministic but
with uncertainty. The observation yt is a random variable with a
conditional probability distribution pt(y|xt,ut). An alternative way
is to use a function involved with random variables. Let g:ℝk ×ℝc ×
ℝm→ℝd be the function that gives the observation from state and
input in the following way:

yt = g(xt,ut,wt) , (1)

where wt ∈ ℝ
m denotes the m-dimension observation noise

with the probability density function r(w). On the other
hand, the system transition is also involved with uncertainty.
Let f:ℝk ×ℝc ×ℝl→ℝk be the function that gives the state
of the next time index from the state and input in the
following way:

xt+1 = f (xt,ut,vt) , (2)

where vt ∈ ℝ
l is the l-dimension system noise with the probability

density function q(v). The initial state vector x0 is distributed
according to the probability density p0(x0).

The information on f(⋅), g(⋅), r(w), and q(v) is unavailable. In this
study, the available information is the dataset UT = {u0,u1,…,uT} of
system inputs and the dataset YT = {y0,y1,…,yT} of observations.
We want to learn models ̃f(⋅), ̃g(⋅), ̃r(w), and ̃q(v). The traditional
view is to learn ̃f(⋅), ̃g(⋅), ̃r(w), and ̃q(v) for the sake of
improving the performance of the root mean square (RMS)
of predictions or maximizing the likelihood of the dataset. In
this paper, we obtain a novel prediction model that gives a
predictive interval of the observation. We define an interval of yt
as follows.

Definition 1: Let FY be the Borel set of ℝd. An interval It ∈ FY is a
set of yt. For a given probability level α ∈ (0,1), if It ∈ FY satisfies

Prt {yt ∈ It ∈ FY} ≥ 1− α, (3)

where Prt{⋅} is the underlying probability measure defined on FY at
time index t, we call It as a α-reliable interval. The set of all α−
confidence intervals is defined as It,α. For a given probability level
α ∈ (0,1), an optimal interval I*t satisfies

ℂ(I*t) ≤ ℂ(It) , ∀It ∈ Iα, (4)
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FIGURE 1
Probabilistic graphical model for stochastic dynamical systems with hidden states xt, inputs ut, and observations yt.

where ℂ(⋅) denotes the capacity of a set.
The problem is formally summarized in Problem 1.

Problem 1: Given the system input set UT = {u0,u1,…,uT} and
observation set UT = {y0,y1,…,yT}, to obtain ̃f*(⋅), ̃g*(⋅), ̃r*(w), and
̃q*(v) by solving

min
̃f , ̃g, ̃r, ̃q
ℂ(It ( ̃f, ̃g, ̃r, ̃q))

Prt {yt ∈ It ( ̃f, ̃g, ̃r, ̃q) ∈ FY} ≥ 1− α, ∀t = 1,…,T. (5)

3 Proposed method

In this section, we briefly review the reservoir computing
and scenario approach. Then, we give the concept of interval
reservoir computing, combining reservoir computing and a
scenario approach. The probabilistic reliability of interval reservoir
computing to Problem 1 is also given.

3.1 Brief introduction to reservoir
computing

Reservoir computing is a novel algorithm to train a RNN. This
study uses the echo state network (ESN) method presented in Jaeger
and Haas (2004) to construct RNN. Let xact,t be the activation state
of RNN at time index t. The terminology “echo” implies that xact,t
is a function of all the input history ut−1,… related to the network.
The ESN consists ofmultiple sigmoidal units in discrete time, the so-
called reservoir or dynamic reservoir. A general ESN has a discrete-
time neural network with internal network units (for state xsta,t),
input units (for input ut), and output units (for observation yt). The
internal units are updated as follows.

xact,t+1 = fact (W
inut +Wxact,t +W

backyt) , (6)

where fact is the vector function of the internal unit written as fact =
[ f1act,…, f

nact
act ]
⊤.

On the other hand, the output is computed as

yt =W
outxact,t, (7)

where Wout is the output weight. Reservoir computing is to train
Win, W, Wback, and Wout, and the algorithm is summarized as
follows:

• Design of a reservoir vector: a reservoir vector xact,t and the
internal unit, as shown in Eq. 6, are established.
• Randomly generating Win, W, and Wback, which comprise a

sparse random matrix with the maximal eigenvalue controlled.
• Determining the output layer by

min
Wout

T

∑
t=1
‖Woutxt − yt‖

2 + βTrace(WoutWout,⊤) . (8)

Figure 2 illustrates the reservoir computing concept.

3.2 Scenario approach

The scenario approach has been applied to obtain the
probabilistic boundary for a given nonlinear state space model
(Shen et al., 2020a). The theory of the scenario approach has
been presented in Calafiore and Campi (2005) for solving
robust optimization with the convex objective function and
constraint functions. The result has been extended to non-convex
cases in Campi et al. (2015). This paper reviews the method of
Campi et al. (2015).

The decision variable is θ ∈ Θ ⊆ ℝnθ . Let J:Θ→ℝ be the
objective function.The uncertain variable is denoted by δ ∈ Δ ⊆ ℝnδ .
For every instance δ ∈ Δ, a subset of Θ is defined by

Θδ = {θ ∈ Θ : h (θ,δ) ≤ 0} ,

where h: Θ×Δ→ℝm is a constraint function. Then, a robust
optimization problem can be written as

min
θ∈Θ

J (θ)

s.t. θ ∈ Θδ, ∀δ ∈ Δ.
(9)

Problem Eq. 9 is NP-hard and cannot be solved by any algorithms
for a general optimization problem. An approximate problem of
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FIGURE 2
Intuitive introduction for reservoir computing.

that in Eq. 9 is obtained by sampling a dataset δ(1),…,δ(N), which is
written by

min
θ∈Θ

J (θ)

s.t. θ ∈ Θδ(i) , ∀i = 1,…,N.
(10)

Let θ*
N be an optimal solution of the problem in Eq. 10 andAN be an

algorithm that is able to get θ*
N for a given dataset (δ(1),…,δ(N)) ∈ ΔN.

Then, we have

θ*
N =AN (δ(

1),…,δ(N)) . (11)

It is natural to doubt whether θ*
N is a feasible solution of the

problem in Eq. 9 since θ*
N does not consider constraints for all δ ∈ Δ.

Here, since the sampling process of the dataset (δ(1),…,δ(N)) ∈ ΔN is
random, we consider the feasibility of θ*

N in a probabilistic sense. We
define the violation probability herein.

Definition 2: The violation probability of any decision θ ∈ Θ is
written as

𝕍(θ) ≔ Prδ {δ ∈ Δ : θ ∉ Θδ} ,

where Prδ{⋅} defines the probability measure defined on the σ-algebra
of Δ.

For a given probability level ɛ ∈ (0,1) and a given confidence
bound 1− β ∈ (0,1), we want to get a bound of sample number
N̄(β,ε) such that

Prδ {𝕍(θ
*
N) ≤ ε} ≥ 1− β, ∀N ≥ N̄ (β,ε) .

Theorem 1 of Campi et al. (2015) is stated as follows:

Lemma 1: Let ɛ : {0,…,N} → [0,1] be a function such that

ε (N) = 1 (12)

and
N−1

∑
i=0
(N
i
)(1− ε (i))N−i = β. (13)

It holds that

PrN {𝕍(θ*
N) > ε(m

*
N)} ≤ β, (14)

where m*
N is the number of irreducible subsamples of (δ(1),…,δ(N)).

3.3 Interval reservoir computing

In this study, compared to obtain Wout by solving Eq. 8, we
intend to find an interval of Wout for every given ut, xact,t that can
finally give an α-confident interval of yt, as defined in Definition 1.
In other words, the output will locate in an interval with a probability
larger than the given level α ∈ (0,1). In addition, the interval is
expected to be optimal with the smallest area. Here, a sub-optimal
interval is targeted as the approximation of I*t . For RNN, the interval
is written as

IRNN ≔ {y =W
Outxact,t + e,W

out ∈W ⊆ ℝd×nact , |e| ≤ γ ∈ ℝ+} . (15)

Note that the set IRNN is obtained by varying the values ofWout, e in
W , andℝ+. A possible choice for the set Ω is a ball with center c and
radius r > 0:

Ω = Bc,r = {W
out ∈W : ‖ω− c‖2 ≤ r} . (16)

The interval output of the RNN obtained via Eq. 15 is explicitly
written as

IRNN,Bc,r
(xact,t,γ) = [cxact,t − (r‖xact,t‖+ γ) ,cact,t + (r‖xact,t‖+ γ)] .

(17)

Then, the problem of obtaining a spherical INN is written as

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,

Pr{yt ∈ IRNN,Bc,r
(xact,t,γ) ,∀t} ≥ 1− α, (PB,α)

yt ∈ ℝ
d,

where η is a positive number. Let θB be the decision variable of
Problem PB,α including c, r, and γ. Let ΘB,α be the feasible region
of θB of Problem PB,α. Defining the optimal objective function of
Problem PB,α by

J*B,α ≔ min
θB∈ΘB,α

ηr+ γ. (18)
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FIGURE 3
Proposed framework of the interval reservoir computing method.

Defining the optimal solution set of Problem PB,α by

A*
B,α ≔ {θB ∈ ΘB,α : ηr+ γ = J*B,α.} . (19)

Suppose that the dataset DT = {u(t),y(t)}t=1,…,T is
available. Then, we can formulate the scenario program
of Problem PB,α as follows:

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,

yt ∈ IRNN,Bc,r
(xact,t,γ) , ∀t = 1,…,T. (˜PT

B,α)

Let Θ̃T
B,α be the feasible region of θB of Problem P̃T

B,α. Defining
the optimal objective function of Problem P̃T

B,α by

̃JTB,α ≔ min
θB∈Θ̃

T
B,α

ηr+ γ. (20)

Defining the optimal solution set of Problem P̃T
B,α by

̃AT
B,α ≔ {θB ∈ Θ̃

T
B,α : ηr+ γ = ̃JTB,α.} . (21)

By adapting Lemma 1, we have the following theorem on the
probabilistic feasibility of ̃θTB,α ∈ ̃A

T
B,α.

Theorem 1: Let ̃θTB,α ∈ ̃A
T
B,α be the solution of P̃T

B,α. The interval
at t associated with ̃θTB,α is denoted by ̃IαRNN,Bc,r

(xact,t,γ). Then, the
following holds:

PrT {Pr{yt ∉ ̃I
α
RNN,Bc,r
(xact,t,γ)} > ε(m

*
T)} ≤ β, ∀t, (22)

where m*
T is the number of irreducible subsamples of

((u1,y1),…,(uT,yT)) and ɛ satisfies

ε (T) = 1 (23)

and
T−1

∑
i=0
(T
i
)(1− ε (i))T−i = β. (24)

 Inputs: data set DT = {u(t),y(t)}t=1,…,T
  1: design of reservoir vector and function

according to Eqs 6, 7

  2: randomly generate Win, W, and Wback

  3: solve Problem ̃PT
B,α and obtain ̃θTB,α

 Output: ̃θTB,α

Algorithm 1. Algorithm for interval reservoir computing.

Proof. Since ̃θTB,α is a feasible solution of P̃T
B,α, by Lemma 1, we

have

PrT {𝕍( ̃θTB,α) > ε(m
*
T)} ≤ β, (25)

where𝕍( ̃θTB,α) = Pr{yt ∉ ̃I
α
RNN,Bc,r
(xact,t,γ)}. Thus, Eq. 22 holds.

By Theorem 1, we know that it can adjust the sample number
T to regulate the violation probability. Using the scenario approach
directly, it cannot regulate the violation probability to the desired
one. We leave this issue for future work. Based on the theoretical
analysis, the algorithm for interval reservoir computing is designed,
and the pseudo-code is written in Algorithm 1.

Figure 3 illustrates the proposed framework for implementing
the interval reservoir computing method. It follows the general
frameworkwidely used to validate the time seriesmodel (Shen et al.,
2020b). The online obtained history data range from the blue
line (not the whole line). Then, the data are used to give the
future maximum likelihood prediction (the red dotted line) and
the confidence region (the red line) by the model trained by the
training dataset.

4 Validations

4.1 Wind power prediction

Let xs(t) be the wind speed at time index t and yp(t) be the wind
power at time index t. The mechanism behind the evolution of wind
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FIGURE 4
Experimental dataset in this study.

FIGURE 5
Results of a one-step-ahead prediction by the proposed interval reservoir computing (from t = 2560 to t = 2660): (A) N = 500, (B) N = 1000, (C)
N = 2000, and (D) N = 5000.

speed and wind power can be described by

xs (t+ 1) = fwind (xs (t) ,ws (t)) , (26)

yp (t) = gwind (xs (t) ,vs (t)) . (27)

Here, both fwind and gwind are unknown.
The experimental dataset shown in Figure 4 is used in this

validation. Figure 4A plots the time series data on wind speed, and
Figure 4B plots the time series data on the wind power at the same
time. There are a total of 13 groups of data. Eight groups are used as
training datasets; the other groups are used as test datasets.

In this validation, we set the threshold for violation
probability as α = 0.05. The number of samples, N, is from
{100,500,1000,2000,5000,10,000}. Figures 5, 6 show two examples
of the one-step-ahead prediction by the proposed interval reservoir
computing. The parts (a), (b), (c), and (d) of each figure provide
the results with N = 500, N = 1000, N = 2000, and N = 5000,
respectively. As the sample number N increases, the size of the
interval also increases, while the center of the interval does
not change significantly. In particular, as N surpluses 2,000, the
probability of having the data inside the interval is less than the
required value α = 0.05, implying that the proposed method gives a
more conservative interval than we expect.
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FIGURE 6
Results of a one-step-ahead prediction by the proposed interval reservoir computing (from t = 2560 to t = 2660): (A) N = 500, (B) N = 1000, (C)
N = 2000, and (D) N = 5000.

TABLE 1 Statistical performance of the proposedmethod with different sample numbers N. Mean values of 5,000Monte Carlo trials are presented.

Method/N 100 500 1,000 2,000 5,000 10,000

PrN{𝕍(θ*
N) > 0.05} 0.293 0.138 0.002 0.000 0.000 0.000

CPU time (s) 0.076 0.154 0.197 0.231 0.277 0.359

FIGURE 7
One example of a one-step-ahead prediction by the proposed interval reservoir computing for vehicle trajectory prediction: (A) N = 500 and (B)
N = 5000.

A statistical analysis has been conducted to check the
performance of the proposed interval reservoir computing. Monte
Carlo tests have been repeated 5,000 times for each choice of
sample numberN = 100,500,1000,2000,5000,10,000. We check the
violation probability and CPU time in this Monte Carlo simulation.

Themetric for checking the performance of the violation probability
is PrN{𝕍(θ*

N) > 0.05}, the chance that the violation probability is
larger than 0.05. AsN increases, PrN{𝕍(θ*

N) > 0.05} decreases to zero
quickly, as shown in Table 1. On the other hand, the computation
time increases as N increases while it is still at an acceptable level.
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TABLE 2 Statistical performance of the proposedmethod with different sample numbers N. Mean values of 5,000Monte Carlo trials are presented.

Method/N 100 500 1,000 2,000 5,000 10,000

PrN{𝕍(θ*
N) > 0.05} 0.127 0.005 0.000 0.000 0.000 0.000

CPU time (s) 0.102 0.218 0.409 0.531 0.591 0.677

4.2 Vehicle trajectory prediction

In another example, we have applied the proposed interval
reservoir computing to vehicle trajectory prediction. The
experimental data are the public dataset “US Highway 101 Dataset.”
As in the example of wind power prediction, the number of samples
is chosen from {100,500,1000,2000,5000,10,000}, and the violation
probability threshold is α = 0.05. Figure 7 shows one example of a
one-step-ahead prediction for the vehicle trajectory prediction with
N = 500 and N = 5000 results.

Statistical analysis has also been conducted in this example of
vehicle trajectory prediction. The settings of Monte Carlo tests are
the same as the example of wind power prediction. As shown in
Table 2, the results are consistent with the results of wind power
prediction.

4.3 Discussion

In this validation, we mainly check the performance of the
proposed method with different sample numbers. Indeed, it is
necessary to compare the proposed method with other uncertainty
quantification methods, such as conformal prediction and Bayesian
neural networks. We will further research on this as future work.

One drawback of the proposed interval reservoir computing
is that it cannot give an exact interval for a given violation
probability α. This drawback comes from using a scenario
approach to solve the problem PB,α. The scenario approach ensures
the approximate solution’s feasibility while not considering the
convergence of the approximate solution’s optimality. Using sample
discarding presented in (Campi and Garatti, 2011) seems to be
an excellent choice to make a trade-off between optimality and
feasibility. However, sample discarding will dramatically increase
the computational complexity of solving PB,α. We leave the issue of
optimality for future work.

5 Conclusion and future work

This paper proposes an improved version of interval reservoir
computing for time series data forecasting, for example, wind power
forecasting and vehicle trajectory forecasting. More than giving a
maximum likelihood prediction value of wind power or vehicle
trajectory, interval reservoir computing provides an interval of
the prediction. The future data will be located inside the interval
with a probability larger than the required value. To obtain the
interval, a chance-constrained optimization has to be solved for
obtaining the interval of the parameters in an RNN. We apply
a scenario approach to solve the chance-constrained optimization
problem. Experimental data-based validations have been conducted

to evaluate the proposed interval reservoir computing. Although the
results show that the proposed interval reservoir computing can give
a tight interval for wind power forecasting and vehicle trajectory
forecasting, the following issues remain to be resolved in future
work.

• It is necessary to compare the proposed method with other
uncertainty quantification methods, such as the conformal
prediction and Bayesian neural networks.
• The scenario approach for solving chance-constrained

optimization cannot ensure the convergence of the optimality
of the approximate solution. Thus, it is necessary to develop a
method that ensures the convergence of the optimality to solve
the chance-constrained optimization.
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Wind energy is one of the potential options to fill the gap in renewable
energy production in Switzerland during the winter season when the energy
demand exceeds local production capacities. With likely further rising energy
consumption in the future, the winter energy deficit may further increase.
However, a reliable assessment of wind energy potential in complex terrain
remains challenging. To obtain such information, numerical simulations are
performed using a combination of the “Consortium for Small-scale Modeling”
and “Weather Research and Forecasting” (COSMO-WRF) models initialized and
driven by COSMO-1E model, which allows us to simulate the influence of
topography at a horizontal resolution of 300 m. Two LiDAR measurement
campaigns were conducted in the regions of Lukmanier Pass and Les Diablerets,
Switzerland. Observational LiDAR data and measurements from nearby wind
sensor networks are used to validate the COSMO-WRF simulations. The
simulations show an improved representation of wind speed and direction
near the ground compared to COSMO-1E. However, with increasing height
and less effect of the terrain, COSMO-WRF tends to overestimate the wind
speeds, following the bias that is already present in COSMO-1E. We investigate
two characteristic mountain–terrain flow features, namely waves and Foehn.
The effect of mountain-induced waves of the flow is investigated through
an event that occurred in the area of Diablerets. One-year analysis for the
frequency of conditions that are favorable for mountain wave formation is
estimated. The Foehn impact on wind was observed in the Lukmanier domain.
We attempt quantification of the probability of occurrence using the Foehnix
model. The result shows a high probability of Foehn occurrence during the
winter and early spring seasons. Our study highlights the importance of
incorporating complex terrain-related meteorological events into the wind
energy assessment. Furthermore, for an accurate assessment of wind speed in
complex terrain, our study suggests the necessity to have a better representation
of the topography compared to COSMO-1E.
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1 Introduction

Switzerland has stated the objective to entirely transition to
renewable energy resources as formulated in the Energy Strategy
2050 (Swiss Federal Office of Energy, 2023b). It is therefore crucial
to explore renewable energy options, to reduce and replace the
use of unsustainable fossil fuels and thus reduce greenhouse gas
emissions (Sims, 2004;Olabi andAbdelkareem, 2022). Currently, the
largest part of Switzerland’s renewable energy production is based
on hydropower (Swiss Federal Office of Energy, 2023a). However,
the mismatch of over-production during summer and a demand
exceeding production during winter constitutes a significant
challenge, i.e., seasonal peaks of production and demand are not
aligned. During summer, hydro-power production increases due
to the seasonal snow melt and precipitation dynamics (Bavay et al.,
2009), while in winter the energy demand increases (Dujardin et al.,
2017). Dujardin et al. (2021) suggests that adding wind as a
renewable energy resource could be part of the solution to alleviate
this energy mismatch. A general increase in mean wintertime
wind speed in North and Central Europe has been reported,
fueling the motivation to explore the wind as potential energy
resource (Archer and Jacobson, 2013; Graabak and Korpås, 2016;
Clark et al., 2017; Grams et al., 2017).

The Alps cover two-thirds of Switzerland’s area
(Federal Office of Topography, 2023). These complex terrain
characteristics add to the difficulty of assessing the wind energy
potential of the country (Alfredsson and Segalini, 2017; Lange et al.,
2017; Mann et al., 2017). The characteristic spatial and temporal
patterns of the wind vary substantially according to the specific
local topography of the complex terrain. This makes it difficult to
accurately observe and quantify near-surface flow using standard
measurement techniques and instrumentation (Kruyt et al., 2018),
in particular due to sparse spatial distribution of instruments. Most
of the wind measurements are taken near the surface at 10 m
above ground (MeteoSwiss, 2022; WSL SLF, 2022), while most of
the operational wind turbines feature a hub height of 100 m. A
logarithmic wind profile is often utilized to extrapolate the wind
speedmeasured near the ground to the turbine hub height. However,
the vertical wind profile in complex terrain generally does not
follow a logarithmic shape (Dar et al., 2019; Elgendi et al., 2023).
Despite the additional problems and challenges, it has been found
that terrain complexity can also provide benefits to the local wind
power potential (Clifton et al., 2014). If this mechanism is well
understood, the interplay between wind and complex terrain could
be an untapped potential for wind energy resources. To estimate
local wind speed in complex terrain at typical turbine hub heights
wheremeasurements are unavailable, several simulation techniques,
such as computational fluid dynamics (CFD) (Dhunny et al., 2017;
Tabas et al., 2019) and numerical weather models (NWP) Kruyt
(2019), have been used while available measurements serve for
validating the accuracy of the simulations.

Simulating airflow over complex terrain requires the ability
of a model to combine the synoptic flow field and regional
scale topography (Lehner and Rotach, 2018). However, the high
computational demand of CFD and NWP models and limited
computer resources make it difficult to simulate with a fine grid
and sufficient domain size for a sufficiently long period to represent
the synoptic scale processes. On the other hand, running the model

in a too-coarse resolution often results in incorrect, unrealistic
representation of the local topography, making it inadequate for
resolving the complex terrain processes (Toumelin et al., 2023).
The accurate representation is essential for reliable wind energy
assessment in complex terrain where the spatial and temporal
variability of wind speed is high (Pickering et al., 2020; Clifton et al.,
2022; Dujardin and Lehning, 2022). Currently, assessments of large-
scale wind resources are often based on reanalyses with a typically
very coarse horizontal resolution of 50–100 km and a coarse time
step of 1–3 h (Archer and Jacobson, 2005; Archer and Jacobson,
2013; Tobin et al., 2015; Grams et al., 2017). In such a framework,
significant wind energy potential in complex terrain likely remains
undiscovered due to insufficient spatial resolution for capturing local
topographic effects.

In this paper, we propose to simulate wind in complex terrain
at a spatial resolution of 300 m, i.e., a resolution within the so-
called gray zone (Chow et al., 2019) (also referred to as “terra
incognita” in the context of turbulencemodeling (Wyngaard, 2004)).
The gray zone is a range of resolutions for which certain physical
processes start to be explicitly resolved (approximately 100 m to
1 km, Kealy et al. (2019)). When modeling turbulence, it is defined
when the turbulence length scale is comparable to the filter length
scale (Wyngaard, 2004). In the context of complex terrain, the gray
zone challenges include the correct representation of topography,
turbulence, and convective processes (Chow et al., 2019). For the
scale of the Swiss Alps complex terrain, running simulations at gray
zone resolution is cheaper in computational resources compared to
classical micro-scale simulations. Another benefit of simulations in
the gray zone is to have more insight into the interplay between the
meso-scale motion and the smaller-scale motion that occurs at the
higher resolution scale because it allows for larger domains to be
covered compared to microscale simulations. The representation of
the interplay of flow at the two different scales is crucial for gaining
accurate information on the wind energy potential in complex
terrain (Koletsis et al., 2009; Koletsis et al., 2010).

A previous study by Gerber et al. (2018) implemented the
Weather Research and Forecasting (WRF) model (Skamarock et al.,
2008), initialized by a 2.2 km resolution Consortium for Small-
scale Modeling (COSMO) analysis. This model, hereafter called
COSMO-WRF, was used to study wind and terrain-controlled
distribution of snow in the complex terrain of Dischma Valley near
Davos, Switzerland. The results of the simulation were validated and
discussed against operational weather radarmeasurements acquired
at the nearby Weissfluh summit provided by the Federal Office of
Meteorology and Climatology (Meteoswiss). Kruyt (2019) have also
used COSMO-WRF simulations to investigate the wind speed at a
450 m horizontal grid resolution in the Swiss Alps. That resolution
resulted in a significant improvement of the representation of wind
speed at the hub height of wind turbines and in the prediction of
resulting power production, compared to the results of simulations
using COSMO-1 alone, which has a spatial resolution of 0.01°. This
improvement is attributed to the better terrain representation in the
model. Results from these studies motivate us to further explore
the utilization of numerical weather models for the study of wind
speed in complex terrain areas. We combine WRF and an ensemble
of 11 forecasts with a spatial resolution of 1.1 km called COSMO-
1E (Federal Office of Meteorology and Climatology MeteoSwiss,
2023a) to study the flow in complex terrain.
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Understanding the impact of typical wind features in complex
terrain on potential wind energy production is crucial. Examples of
complex terrain phenomenon that affect wind power production are
mountain waves (Draxl et al., 2021; Xia et al., 2021) and Foehnwind
(Pickering et al., 2020). Mountain waves tend to occur when a stably
stratified air mass ascends amountain barrier and triggers buoyancy
perturbations when it descends on the lee side of the barrier. The
wave oscillation on the lee side can result in a disturbance of the
airflow, which can be propagated downward to a level of 90 m
above ground, as shown in the METCRAX II field experiment
(Lehner et al., 2016). It has also been reported that mountain wave
fluctuations can change the total power output of a wind farm
in the region of the Columbia River (United States) up to 11%
(Draxl et al., 2021). Foehn wind, on the other hand, is a strong,
warm, and dry down-slope wind (Chow et al., 2013). A statistical
mixture model named Foehnix (Plavcan et al., 2014) can be used to
separate the Foehn and non-Foehn events. This model was tested in
the Wipp Valley, Austria, using wind data of a station situated on the
crest (Sattelberg station, 11.47889°E/47.01083°N, 2107 m a.s.l.) and
a station in the valley (Ellbögen station, 11.42889°E/47.18694°N,
1,080 m a.s.l.). The complex terrain phenomenon mentioned above
have typically not been included in the wind energy assessment
process. Understanding these events can lead to a better selection
for wind turbine infrastructure and to a more accurate forecast of
energy production. Therefore in this paper, we study the effect of
mountain waves and Foehn on the wind in the Alpine area, as two
examples of complex terrain effects.

Data and results from a measurement campaign in the Swiss
Alps using a Light Detection and Ranging (LiDAR) instrument,
combined with simulation results from COSMO-WRF are used to
investigate the impact of complex terrain phenomenon on wind
speed.Wind LiDAR instruments were used in previous experiments
to measure mountain waves (Lehner et al., 2016; Udina et al., 2020)
and Foehn events (Beffrey et al., 2006). A filtering technique to
derive wind speed in complex terrain using LiDAR measurements
is provided in Kristianti et al. (2023). This technique was tested
for data obtained at the Diablerets and Lukmanier areas, both
Swiss Alps (Figure 1), during the winter season of 2020/21.

This paper aims to propose a method for studying the spatial
variability of wind speed in complex terrain and quantifying the
effect of complex terrain phenomenon on wind speed. We propose
the use of COSMO-WRF simulations in the so-called gray zone of
spatial resolution to obtain information on wind interplay between
the synoptic and local scales. Two complex terrain phenomenon,
namely waves and Foehn, are analyzed to study the impact on
wind speed in Swiss Alps area. The focus of the study is on the
wind assessment process, for which many aspects also need to
be considered (i.e. potential of social impact, etc), however, we
limit the scope of the study to wind potential only. Section 2
describes the methods used for the assessment process. Details
about the windmeasurement network and the LiDARmeasurement
campaign are described in Sections 2.1.1, 2.1.2, respectively. We
also provide a short description of the models used in this study,
namely COSMO-1E (Section 2.2.1), COSMO-WRF (Section 2.2.2),
and Foehnix (Section 2.2.3). The validation of wind simulations in
the gray zone resolution is discussed in Section 3.1. The analysis of
the complex terrain wind features is presented in Sections 3.2, 3.3

for mountain waves and Foehn, respectively. The main findings and
conclusion are summarized in Section 4.

2 Data and methods

2.1 Measurements

2.1.1 Wind measurement network
Data from two wind measurement networks are used to

validate the COSMO-WRF simulation: (a) the Inter-Cantonal
Measurement and Information System, IMIS (WSL SLF, 2022), and
(b) the Meteo Swiss SwissMetNet, SMN (MeteoSwiss, 2022). By
2021, the IMIS network counts 186 measuring stations which are
scattered over the Swiss Alps. The IMIS stations are situated at
high-elevation locations to provide data for operational avalanche
forecasts and warnings. IMIS wind speed data are measured by
R.M.Young wind sensors (model 05103) at approximately 7.5 m
a.g.l. (Lehning et al., 2000). SMN stations are distributed at middle
and low altitudes of Switzerland. SMN measures wind speed using
Lambrecht L14512 cup anemometers and Thies 2D ultrasonic
anemometers at 10 m a.g.l. (Federal Office of Meteorology and
Climatology MeteoSwiss, 2023b).

The stations used for validation of the COSMO-WRF simulation
and as input for the Foehnix model are shown in Figure 1
(star symbols) and station details are given in Table 1. Stations
Nara/Motto Crostel (SLFNAR) and Tujetsch/Crispalt (SLFTUJ) are
used for COSMO-WRF validation of the Lukmanier domain and
stations Evionnaz (EVI) and Färmel/Färmelberg (SLFFA2) are used
for COSMO-WRF validation of the Diablerets domain. SLFNAR
is located on the peak of Motto Crostel, in the middle of Valle
Leventina and Valle di Blenio, Canton Ticino, Switzerland. SLFTUJ
is located on the Crispalt ridgeline, on the northwest side of
Oberalpass, Canton Glarus, Switzerland. EVI is located in Evionnaz
city on the west side of the Rhone Valley in Canton Valais and
SLFANV is located in Färmelberg, CantonBern.The stationsAltdorf
(ALT), Biasca (BIA), and Gütsch (GUE) are used as input data
for the Foehnix model. Both ALT and BIA stations are used as
valley stations for the Foehnix model. ALT is used to represent the
southerly Foehn. BIA is used to represent the northerly Foehn. GUE
is used as crest station input of the Foehnixmodel for both northerly
and southerly Foehn.

2.1.2 LiDAR measurements
Two measurement campaigns were conducted deploying a Halo

Photonics Streamline XR Scanning Doppler wind LiDAR. The first
field campaign was conducted on the west slope of Piz Scopi,
Lukmanier, and the second campaign was conducted at Cabane
station, Diablerets (dots in Figure 1). The Lukmanier and Diablerets
campaigns were conducted from 20/10/2020 to 16/12/2020, and
from 20/02/2021 to 02/05/2021, respectively. The coordinates of
the LiDAR location were 46.58409°N,8.81890°E (blue dot, Figure 1)
at 2519 m a.s.l. at Lukmanier, and 46.33995°N,7.21491°E (red dot,
Figure 1) at 2523 m a.s.l. at Diablerets. The LiDAR configuration
was the same for both campaigns except for the elevation angle
of 45° at Lukmanier and 70° at Diablerets. The gate overlapping
mode was used to collect LiDAR data, with a range gate length
of 30 m. This resulted in radial velocity retrieval from 30 m
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FIGURE 1
Simulation domains of Diablerets (red box) and Lukmanier (blue box). The LiDAR locations in Diablerets and Lukmanier are shown by red and blue dots,
respectively. Star symbols represent the SMN and IMIS wind measurement stations. The orange line inside the Diablerets domain represents the vertical
cross-section shown in Figure 10. The black and orange line inside the Lukmanier domain represents the vertical cross-section shown in Figure 14.
Map source: (Federal Office of Topography, 2023).

TABLE 1 Details of the SMN and IMIS wind measurement stations.

Station Region Lat(N)/Lon(E) Station
elevation
(m a.s.l.)

COSMO-WRF
elevation
(m a.s.l.)

COSMO-1E
elevation
(m a.s.l.)

Network

ALT Altdorf 46°53′13”/8°37′19″ 437 444.83 452.75 SMN

BIA Biasca 46°20′10”/8°58′41″ 278 429.40 620.88 SMN

EVI Evionnaz 46°10′43”/7°06′47″ 482 493.01 589.72 SMN

GUE Gütsch, Andermatt 46°39′09”/8°36′56″ 2286 1999.96 2018.88 SMN

SLFFA2 Färmel/Färmelberg 46°10′59”/7°01′36″ 1970 1899.23 1994.16 IMIS

SLFNAR Nara/Motto Crostel 46°27′55”/8°52′01″ 2302 2022.74 1866.16 IMIS

SLFTUJ Tujetsch/Crispalt 46°41′01”/8°41′40″ 3028 2791.66 2429.81 IMIS

gates with a 3-m spacing. Under ideal conditions, the use of
this setting enables us to observe wind velocity up to a radial
distance of 2.1 km. We used 6-point and 12-point step-stare
Plan Position Indicator (PPI) scans at an elevation angle of 45°
and 70° for Lukmanier and Diablerets sites, respectively. The
scan sequence was repeated at 5- and 10-min intervals for the
Lukmanier and Diablerets sites, respectively. Post-processing from
the radial velocity to the u,v,wwind speed components followed the
procedure described in Kristianti et al. (2023).

2.2 Models

2.2.1 COSMO-1E
COSMO-1E is a numerical weather forecasting model

run over Switzerland at a horizontal resolution of 1.1 km
(Federal Office of Meteorology and Climatology MeteoSwiss,
2023a). COSMO-1E includes an ensemble of 11 forecasts computed
eight times per day. From a single forecast, several iterations are
produced to predict the probability of weather events. Therefore, the
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TABLE 2 Simulation details.

Simulation
domain

LiDAR
coordinates

Simulated
days

Main wind
direction

100 m a.g.l. Mean wind speed at the LiDAR location (m/s)

LiDAR COSMO-1E COSMO-WRF

Lukmanier 46°35
′
03″N/8°49

′
08″E

23/10/2020 Southerly 6.13 12.78 13.75

09/12/2020 Northerly 4.79 10.01 8.26

Diablerets 46°20
′
24″N/7°12

′
54″E

27/02/2021 Easterly 5.71 9.50 9.74

11/03/2021 Southwesterly 14.22 15.55 19.09

FIGURE 2
Schematic diagram of typical power curve of wind turbine.

reliability of the forecast is improved and so is the quality of short
to medium-range forecasts for extreme or highly localized weather,
compared to the deterministic forecast (Schraff et al., 2016).

2.2.2 COSMO-WRF
Numerical modeling is used to investigate the spatial

variations of wind speed in complex terrain and its effect
on the wind at typical turbine hub heights of 100 m above
ground level. We use the Weather Research and Forecasting
(WRF) model, Version 4.4.5 (Skamarock et al., 2021) initialized
and forced with COSMO-1E (Federal Office of Meteorology
and Climatology MeteoSwiss, 2023a) data provided by
Meteoswiss (COSMO-WRF, hereafter). COSMO-WRF is
used to simulate representative cases of flow events over
the complex terrain at the Diablerets and Lukmanier sites
based on observational LiDAR data. The topography input
is based on the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) global digital elevation
model (DEM) v003 (NASA/METI/AIST/Japan Space systems
and U.S./Japan ASTER Science Team, 2019) and the land use is
taken from the Coordination of Information on the Environment
(CORINE) dataset (European Environmental Agency, 2006) as
provided by Gerber and Lehning (2021). More technical details
about COSMO-WRF can be found in (Gerber and Sharma, 2018).

Owing to the steep slopes in the selected complex terrain
domains, which may lead to numerical instabilities in the
simulations, a pre-processing of the topographic data is needed. Pre-
processing of WRF is performed by using the WRF Pre-processing
System (WPS) Version 4.4 (Skamarock et al., 2021). We use three
cycles of the 1-2-1 smoothing algorithm to reduce steep slopes over
45° (Gerber and Sharma, 2018). After the smoothing process, the
maximum slope angle in the simulation domain is 46.1° and 43.6°
for the Lukmanier and Diablerets sites, respectively. The simulation
domains are set to 90 × 90 km, with the LiDAR position located at
the center (Figure 1). A single domain with no nesting is used for the
simulations, following the gray zone recommendation of Chow et al.
(2019).The horizontal grid resolution is 300 m resulting in a domain
composed of 301 × 301 grid points.

The model applies eta-level coordinates with 60 vertical levels.
The simulation is run with a time step of 0.5 s. The barometric
pressure at the top of the domain is set to 15′000 Pa. The planetary
boundary layer uses the Shin-Hong Scale scheme (Shin and Hong,
2015). The Morrison 2-moment scheme is selected (Morrison et al.,
2009) to parameterize the cloud microphysics. Longwave and
shortwave radiation use the rrtmg parameterization (Mlawer et al.,
1997). For the surface layer a Monin-Obukhov Similarity scheme
is implemented (Dyer and Hicks, 1970; Paulson, 1970; Webb,
1970; Zhang and Anthes, 1982; Beljaars, 1995). Land surface
processes are parameterized by the Noah-MP scheme (Niu et al.,
2011; Yang et al., 2011). No cumulus option is used when running
WRF. The w-Rayleigh damping option (Klemp et al., 2008) is
activated in WRF. The namelist used to prescribe the simulation can
be found on (Kristianti et al., 2024). At the grid cells where the wind
measurement stations and LiDAR are located, model output is saved
at every time step using the tslist options of the WRF model.

Two representative flow situations are simulated for each field
site, resulting in four simulation cases (two cases for Lukmanier
and two cases for Diablerets). For the Lukmanier site, observations
of 23/10/2020 and 09/12/2020 are used to represent the southerly
and northerly flow regimes, the two principal wind directions
during the campaign duration. For Diablerets, observations of
27/02/2021 and 11/03/2021 are used to represent the easterly
and southwesterly flow regimes, the two principal wind directions
during the campaign. A more detailed wind direction analysis can
be found in Kristianti et al. (2023). Details of the simulations are
summarized in Table 2.
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FIGURE 3
Daily average wind speed (top) and wind direction (bottom) profile at the field sites measured by the LiDAR (black), and simulated by COSMO-WRF
(blue), and COSMO-1E (red) during 23/10/2020 (A,E) and 09/12/2020 (B,F) in the Lukmanier domain, and 27/02/2021 (C,G) and 11/03/2021 (D,H) in the
Diablerets domain.

2.2.3 Foehnix
Foehn events are investigated and validated using a statistical

mixture model named Foehnix (Plavcan et al., 2014). The
model can distinguish between Foehn and no Foehn wind
using wind speed, wind direction, relative humidity, and
temperature differences as indicators. First, a wind direction
filter is applied. Then, the temperature difference between
the two stations is selected as the dominant variable, while
wind speed and relative humidity are used as concomitant
variables. The mixture model uses the wind speed distribution
and divides it into downslope wind and Foehn. The Foehn
phenomenon has a strong seasonal cycle, therefore to
capture this cycle, a minimum data set comprising at least
1 year is required as model input.

2.3 Power curve of wind turbine

The wind turbine power curve can be used as a tool to
estimate the power extractions from the incoming wind speed.
A typical wind turbine power curve consists of four regions of
wind speed (Figure 2). The first region represents the area where
wind speed is less than the minimum wind speed for power
production (vcut_in), therefore it does not produce any power. The
second region represents the area between the vcut_in and the rated
wind speed (vrated). In this region, the power rises rapidly until the
wind speed reaches the vrated. The third region produces a constant
power where the wind speed is between the vrated and the maximum
operational wind speed (vcut_off ). If the wind speed goes higher
than the (vcut_off ), the wind turbine does not operate to protect its
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FIGURE 4
Windrose (left) and wind speed time series (right) from the Lukmanier simulation domain at SLFNAR (A,B,E,F) and SLFTUJ (C,D,G,H) stations on
23/10/2020 (A,B,C,D) and 09/12/2020 (E,F,G,H). The black color shows the result of the wind measurement station, the blue color shows the
COSMO-WRF result and the red color shows the COSMO-1E. On 09/12/2020 (H), some observational data is missing during the night for the
SLFTUJ station.

components from possible damage due to high wind. The wind
speed above the (vcut_off ) is represented in the fourth region, which
produces no power, similar to the first region.

3 Results and discussion

3.1 Validation of wind simulation

This section compares the wind simulation results from
COSMO-WRF to the LiDAR and wind station measurements at the

two field sites.Three aspects of wind (direction, vertical profiles, and
time series of wind speed) are utilized for this purpose. In addition,
a comparison with COSMO-1E data is provided. The comparison
with wind station data represents the conditions near the ground
level and the comparison with LiDAR data represents the conditions
at a higher elevation level.

The comparison of the observed daily averaged LiDAR wind
speed and wind direction profiles, the COSMO-1E, and the
COSMO-WRF simulations for four different periods is presented
in Figures 3A-H. The wind speed profiles in the top row show
that both COSMO-1E and COSMO-WRF overestimate the wind
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speed compared to the LiDAR measurements, especially at low
elevations (Figures 3A, C). A relatively good agreement of the wind
direction profile betweenmeasurement, COSMO-1E, and COSMO-
WRF can be seen for the profiles with little change of wind
direction with height (Figures 3E, H). However, the marked wind
direction change with height (veering or backing) (Figures 3F, G),
was neither captured in COSMO-1E nor COSMO-WRF.The slightly
improved representation of the COSMO-WRF wind direction
profile especially near the ground compared to COSMO-1E
(Figure 3F), may be explained by the better terrain representation in
COSMO-WRF compared to COSMO-1E. However, with increasing
height and lower influence of the terrain, the wind direction follows
COSMO-1E as this is used as forcing. The wind direction change
from 200° (southerly) to 100° (easterly) in the lowest 300 m above
ground level (Figure 3G) is also not represented by both models.
The wind direction profile from COSMO-1E and COSMO-WRF is
rather constant with height (approximately 100° and agrees well with
observations higher than 300 m a.g.l.

Overall, COSMO-1E and COSMO-WRF show wind speed
overestimation in all wind speed profiles and some disagreements
in wind direction, especially for profiles with veering winds. This
disagreement illustrates the complexity of the wind in mountain
regions and the difficulty of simulating it. The overestimation of
wind speed by COSMO-WRF can be explained by the overestimated
input data from COSMO-1E. Table 2 presents the 100 m a.g.l. mean
wind speed at the LiDAR location in COSMO-1E and COSMO-
WRF, representing a wind turbine hub height. Compared to the
LiDAR measurements, the simulated wind speed is overestimated
by approximately 5 m/s by both models.

Further analysis compares the time series of wind speed and
the wind roses from COSMO-WRF and COSMO-1E to wind
measurement stations. Figures 4, 5 show wind roses and time
series of wind speed at wind measurement stations situated in the
Lukmanier and Diablerets domains, respectively. Details of these
measurement stations used for validation can be seen in Table 1.
For the case study of 23/10/2020 (Figures 4A, C), the wind roses
fromCOSMO-1E andCOSMO-WRF at SLFNAR and SLFTUJ show
more distributed directions compared to the observations, which are
mainly clustered around the southerly (SLFNAR) and southwesterly
(SLFTUJ) sectors. The observed difference in wind direction is
explained by the COSMO-1E wind direction input data, while
COSMO-WRF shows a slight deviation from its initial direction in
COSMO-1E. For the case study of 09/12/2020 (Figures 4E, G), on
the other hand, the wind rose shows better agreement between the
measurements, COSMO-1E, and COSMO-WRF.

Figures 4B, D, F, H show the wind speed time series at the
SLFNAR and SLFTUJ station, respectively. The time series of wind
speed shows an underestimation byCOSMO-1E andCOSMO-WRF
compared to the measurements, except in the COSMO-WRF case
of SLFTUJ on the 23/10/2020 and SLFNAR on the 09/12/2020.
This contradicts the comparison between LiDAR and simulation
profiles, where COSMO-1E and COSMO-WRF overestimate the
wind speed (Figure 3). This might be the result of a lower elevation
represented inCOSMO-1E andCOSMO-WRF, compared to the real
elevation of the SLFNAR and SLFTUJ stations (Table 1). During the
smoothing process in WPS, the steepness of the slope in COSMO-
WRF is reduced. After smoothing, to reach a maximum steepness
of approximately 45°, topographic peaks get “shaved” and valleys

are “filled.” The elevation difference is more significant for the
near ground level wind speed, where the comparison with wind
measurement stations is performed. At higher elevations, as we
can see from the comparison with LiDAR, COSMO-WRF tends
to be closer to COSMO-1E as the terrain influence diminishes.
A slight improvement in the near-ground wind speed comparison
from COSMO-WRF (right column, Figure 4) can be the result
of a smaller elevation difference between COSMO-WRF and the
stations compared to COSMO-1E and the stations (Table 1) since
with 300 m horizontal grid resolution COSMO-WRF has a better
terrain representation than the 1 km of COSMO-1E.

Figure 5 shows the comparison of wind direction and wind
speed time series for the Diablerets domain. For 27/02/2021 at
the SLFFA2 station (Figure 5A), observed winds are from all
directions, while COSMO-WRF, and COSMO-1E show dominant
NE-E directions. For the case study of 11/03/2021 at SLFFA2 station
(Figure 5E), measurements show a significant difference in wind
direction compared to the models, which could be due to the local
terrain sheltering of the station still insufficiently resolved. The time
series of wind speed (Figures 5B, F), show a slight overestimation
by COSMO-1E and COSMO-WRF at the SLFFA2 location which
may again be due to an overestimation of the SLFFA2 station
elevation in COSMO-1E. This would result in an overestimation of
wind speed from COSMO-1E compared to the measurement. On
27/02/2021 at EVI station (Figure 5C), the wind directions from
models and measurements are well aligned. On 11/03/2021 at EVI
station (Figure 5G), the modeled wind direction (SE) is well aligned
with part of the measured wind, however, the other part is opposite
to the modeled wind. At the EVI station, the measured and modeled
wind speed time series show a good agreement (Figures 5D, H). For
wind speed near ground level, COSMO-WRF seems to performwell,
if the model terrain elevation in COSMO-WRF is similar to the
real terrain elevation. This explanation is consistent with a better
agreement of both elevation and near-ground time series of wind
speed at the SLFFA2 and EVI stations, compared to the SLFNAR and
SLFTUJ stations. At higher elevations of the atmosphere, however,
the influence of the input and boundary conditions from COSMO-1
in the COSMO-WRF model becomes stronger and might result in
overestimation.

In conclusion, COSMO-WRF shows improved simulation
results near the ground compared to COSMO-1E, as a result
of the better terrain representation in COSMO-WRF. However,
model performance is limited by the input data used (COSMO-
1E), which tends to overestimate the wind speed at the height,
where the wind turbines are located (cf. Table 2). Therefore, existing
biases in the forcing data aloft cannot be completely rectified with
improved surface representation. The COSMO-WRF simulations
are improving surface representation but remain limited due to
the (still) coarse horizontal resolution of 300 m and the maximum
allowed slope angle of approximately 45°. These two limitations
bear the risk of compromising the terrain’s full influence. As
the simplification of the terrain leads to an overestimation or
underestimation of wind speed depending on the location, it is
important to use multiple sites for a robust and representative
comparison between models and measurements. The further use of
the COSMO-WRF model in this study is to study and quantify the
effect of complex terrain on wind power potential, thus the model
needs to capture the event mechanism. This will contribute to the
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FIGURE 5
Windrose (left) and wind speed time series (right) from the Diablerets simulation domain at EVI (A,B,E,F) and SLFFA2 (C,D,G,H) stations on 27/02/2021
(A,B,C,D) and 11/03/2021 (E,F,G,H). The black color shows the result of the wind measurement station, the blue color shows the COSMO-WRF result
and the red color shows the COSMO-1E.

main goal of our study, namely for a better understanding of the
possible mechanism of Foehn and mountain waves that influence
wind variability in complex terrain.

3.2 Influence of mountain waves on wind
speed at turbine hub height

This section aims to investigate how events of mountain waves
influence the wind at the hub height of a potential turbine at
the Diablerets site and to quantify the conditions favoring the
generation of mountain waves. By utilizing satellite images, the

observed mountain wave event is validated and analyzed using
COSMO-WRF simulations. Afterward, we describe the effect
of mountain waves at turbine height levels and underline the
importance of including this aspect in wind energy assessment in
complex terrain.

For finding a mountain wave, the high wind speed period
measured at Diablerets on 11/03/2021 is selected (Figure 6, blue
dots). The area within the white box in Figure 7A is selected to
check the corrected reflectance from Moderate Resolution Imaging
Spectro-Radiometer (MODIS) satellite images on 11 and 12 March
2021 (Figures 7B, C). On 12/03/2023 (Figure 7C), we see cloud
bands, perpendicular to the wind over the Alps, as seen from the
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FIGURE 6
LiDAR wind speed measurements at Diablerets from 20/02/2021 to 02/05/2021 (black dots) and the simulation period on 11/03/2021 (blue dots) at
100 m a.g.l.

LiDAR’s wind rose (Figure 9A). This cloud pattern is associated
with mountain waves that often occur downwind of a mountain
when the atmosphere is stably stratified, especially during the winter
season. A similar pattern can also be seen in the blue-circled area on
11/03/2021 and 12/03/2021, suggesting the event lasted for 2 days.
Due to the limited availability of LiDAR data on 12/03/2021, only
data from 11/03/2021 are analyzed. Over Switzerland, COSMO-
1E at approximately averaged 2,400 m a.g.l. of terrain following
coordinates show a pattern of alternating positive and negative
vertical wind velocities (Figure 8). The horizontal wind direction is
consistent with the LiDAR’s wind rose and the cloud pattern shown
in the satellite images. The simulated wave pattern is strongest in
the southwesternAlpine region (tallestmountains) andweakest over
the (Rhone River) valley. However, the alternating vertical velocity
pattern covers most of Switzerland, apart from the Ticino region in
the South. This shows the wide impact area of the wave event and
the importance of understanding the event to accurately assess its
influence.

To study the impact of mountain waves at the turbine height,
the event was simulated with COSMO-WRF in the Diablerets
domain depicted as a red box in Figure 1. The result of COSMO-
WRF is used to analyze the mountain wave event. Following the
main wind direction obtained from LiDAR measurements and the
COSMO-WRF simulation (Figures 9A, B), which shows a very good
agreement between both, a cross-section at 70°–250° is plotted
(Figure 1, orange line in Diablerets domain). The vertical cross-
section is plotted at 08h00 11/03/2021 for approximately 15 km
radius distance from the LiDAR location (black dot, Figures 10A, B).
Vertical cross-sections of horizontal (Figure 10A) and vertical wind
speed (Figure 10B) from COSMO-WRF are utilized to visualize
the mountain wave event. We can see an undulating pattern
of potential temperature contours and horizontal wind speed,
indicating the presence of the mountain wave (Figure 10A). The
pattern of potential temperature (Figure 10A) agrees very well with
the alternating upward-downward vertical velocity (Figure 10B).
This simulated oscillating pattern shows the model’s ability to
simulate the mountain wave event. The potential temperature
profile at the LiDAR site increases with height, indicating a stable
atmosphere, and favoring the formation of mountain waves.

Further, the Hovmoller diagram is used to present the evolution
of the horizontal and vertical wind speed cross-section (x-axis) in

time (y-axis) (Figures 10C, D). The Hovmoller diagram of vertical
wind speed (Figure 10D) shows relatively stationary positive and
negative velocity patterns, especially at the east side of the LiDAR
site (black vertical line).This quasi-constant vertical velocity pattern
indicates stationary mountain waves also visible in Figure 10B.
The Hovmoller diagram of the horizontal wind speed shows an
increase in wind speed in several areas which is interpreted as
another propagating mountain wave from west to east (blue dashed
line, Figure 10C). To better understand the timing of the event,
another pair of Hovmoller diagrams of horizontal (Figure 10E)
and vertical (Figure 10F) wind speed is provided at the location
of the LiDAR. The horizontal wind speed increases at 10h00,
which coincides with the downdraft wind inferred from the vertical
velocity pattern, as evident in Figure 10F. This increase in wind
speed might be caused by a downdraft by the mountain wave event,
as described in Lehner et al. (2016).

Figure 11 shows the time series of wind speed at the Diablerets
LiDAR site measured by the wind LiDAR, and simulated with
COSMO-WRF and COSMO-1E. All results are hourly averaged.We
notice a prominent oscillation in the LiDAR data at the wind turbine
hub height, especially after 10h00. This indicates a correlation with
the downdraft from the propagated wave seen from the Hovmoller
diagram. The timing and amplitude of the oscillations simulated by
COSMO-1E and COSMO-WRF correspond well, suggesting that
COSMO-1E is suitable for providing initial data for amountainwave
simulation case. The oscillations observed during 11/03/2021 at the
Diablerets LiDAR site were approximately 10 m/s, as can be seen
from the COSMO-WRF simulation.The study of (Draxl et al., 2021)
(Cascade Range region USA) showed that wind speed oscillations
on the order of 5 m/s can already create oscillations in wind turbine
power output in their case study. Therefore, we may anticipate
oscillations of wind speed if a turbine is placed in a region influenced
by mountain waves, such as the Diablerets region.

During themeasurement period, the wind rose of the Diablerets
site shows two predominant wind directions, i.e., southwesterly
and northeasterly [as shown in Kristianti et al. (2023)]. These main
wind directions are also found as the annual average using data
of the Wind Atlas Switzerland (Koller and Humar, 2016). The
LiDAR measurement and the COSMO-WRF simulation during
the 11/03/2021 event represent a case study of a situation with
a main wind direction from the Southwest (Figures 9A, B), and
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FIGURE 7
(A) Selected area (white rectangle) of the MODIS satellite images [map source (ESRI, 2023)]. EOSDIS satellite image [source: NASA EARTHDATA (2023)]
on (B) 11/03/2021 and (C) 12/03/2021 of the region indicated in (A) at 60-m resolution. Snow and ice on the surface are shown in red color. Green and
white represent land and clouds, respectively. The blue dot indicates the Diablerets site.

FIGURE 8
Vertical velocity from the terrain following coordinate of COSMO-1E with average height of 2,400 m a.g.l. on 11/03/2021, 12h00. Green arrows
represent the horizontal wind speed and direction. The red and blue colors represent upward and downward vertical velocity, respectively. Country
border is provided by GADM (2022).

the Wind Atlas data indicate that this case is not an isolated
but rather frequently recurring event in the Diablerets area.
Cloud lines perpendicular to the southwesterly wind direction
can be seen from the satellite images (Figure 7), indicating the
same wind direction as seen from the LiDAR measurement and
simulation result (Figures 9A, B).

COSMO-1E 2019 data is used to find the relative frequency of
atmospheric conditions favoring the formation of mountain waves.
We adopted the wind speed threshold and static stability used in
Díaz-Fernández et al. (2022). Note that this threshold is mainly
based on the atmospheric condition neglecting the topographic
characteristics. The purpose of focusing only on the atmospheric
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FIGURE 9
Windrose on 11/03/2021 at 100 m a.g.l. at the Diablerets LiDAR site from (A) LiDAR measurements and (B) the COSMO-WRF simulation. Colors
represent wind speed in m/s unit.

conditions is to create a universal threshold that can be quickly
adapted to any location in the Alpine region. As shown in Figure 7B
almost the entire Swiss Alpine area may be affected by mountain
waves, therefore we focus on atmospheric conditions that allow
generation of mountain waves and assume spatial coverage at
the scale of the Alpine region. We acknowledged that this crude
estimation may lead to significant overestimation but serves here
as an order of magnitude characterization to get an idea of the
significance of mountain wave events.

For a mountain wave to develop, wind speed needs to be high
enough to traverse the mountain ridge, otherwise flow separation
or other topographic wind flow will occur instead of a wave.
Following the recommendation of Reichmann (1978) and the study
of Draxl et al. (2021), a wind speed aloft larger than 8 m/s would
be sufficient for a mountain wave to be formed. Therefore, the first
threshold is a wind speed at 1,164 m a.g.l. equal or larger than
8 m/s. The second threshold is the static stability (ST, Eq. 1) number
following the equation and threshold used by Díaz-Fernández et al.
(2022). For a wave to form, the static stability (ST) number is
required to be between 0.0002 and 0.0014 K/Pa. T is temperature,
θ is potential temperature, and p is the barometric pressure.
Variable d(θ) and dp are calculated using potential temperature
and pressure difference from 1,164 m a.g.l. and 10 m a.g.l. from
COSMO-1E data.

ST =
−( T

θ
) ∗ d (θ)

dp
(1)

The percentage of atmospheric conditions favorable for the
potential formation of mountain waves is shown in Figure 12 for
the Diablerets and Lukmanier LiDAR sites. Both sites show a
higher percentage of favorable conditions during the winter time,
covering up to 80% of the time. This result demonstrates the
importance of considering mountain waves when assessing wind
energy, especially, when wind energy is designed to respond to the
increased winter energy demand. Both sites also show a slightly
higher percentage during the first half of wintertime in October
to December compared to January to March. The percentage

is lower during the spring and summer seasons from April to
September. However, there is still a significant number of days
with the potential of mountain wave formation of approximately
40%. This might be due to the relatively high wind speed at the
Diablerets and Lukmanier LiDAR sites and the stable atmospheric
conditions during the night time, both leading to the defined
threshold being met.

The fluctuation in wind speed related to the mountain wave
event has the potential to influence wind energy production,
depending on its location in the region of the power curve (Figure 2).
In this paper, we are solely focusing on the impact of wind speed
fluctuations andwe exclude other variables related tomountainwave
event that might also influence the power output (i.e. turbulence,
etc). For a mountain wave to occur, it requires high wind speed,
as we defined in the threshold above. Depending on the type of
wind turbine, it is less likely that the fluctuation will occur in the
first region, below the vcut_in. If the fluctuation occurs within the
second region (between vcut_in and vrated), depending on the scale
of the fluctuation amplitude, we can expect a high impact on the
power output production. For stable output of power production and
minimum impact ofmountain wave on power production, the range
of fluctuation ideally occurs within the third region (between vrated
and vcut_off ) but not reaching the fourth region, which in this case
could lead to wind turbines not operating. The region distribution
of the power curve varies between the wind turbine infrastructures.
The goal of introducing the possibility of mountain wave occurrence
during the planning and wind assessment process is to help the
process of infrastructure selection to maximize the potential power
production in the area.

Mountain wave events in the Diablerets region have been shown
to influence the wind speed at the typical height of wind turbine
hubs. For regions prone to a high occurrence of mountain waves,
we suggest consideration ofmountainwaves potentially propagating
down to the level of wind turbine hubs when assessing wind
potential in complex Alpine terrain. In Switzerland, wintertime
energy demand increases; at the same time, the stable atmospheric
conditions during winter create a favorable situation for mountain
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FIGURE 10
Vertical cross-section from COSMO-WRF on 11/03/2021, 08h00, following the orange line in Figure 1 of (A) horizontal wind speed and (B) vertical wind
speed. The black dot indicates the LiDAR site. The contour lines in (A) show the potential temperature. The horizontal axis represents the latitude and
longitude from west to east. The color bars in (ace) and (bdf) represent horizontal and vertical wind speeds, respectively. Red in the (B,D,F) color bar
indicates upward vertical wind. Hovmoller diagram of (C) horizontal and (D) vertical wind speed at the height of 2564.90 m a.s.l. following the orange
line as above. Hovmoller diagram of (E) horizontal wind speed and (F) vertical wind speed at the LiDAR location. The black vertical line in (C,D)
represents the LiDAR location. The blue dashed line in (C,D) represents the propagating wave. The vertical axis of (abef) represents the height above sea
level and the vertical axis of (cd) represents the hours.

FIGURE 11
Hourly averaged time series of wind speed from LiDAR, COSMO-WRF, and COSMO-1E at the Diablerets LiDAR site on 11/03/2021. The color legend
represents the height above ground level.

Frontiers in Energy Research 13 frontiersin.org94

https://doi.org/10.3389/fenrg.2024.1379863
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Kristianti et al. 10.3389/fenrg.2024.1379863

FIGURE 12
Time fraction (%) of conditions favorable for the occurrence of mountain waves based on the COSMO-1E 2019 data at the (A) Diablerets and (B)
Lukmanier sites.

FIGURE 13
Daily mean wind speed from COSMO-WRF at 100 m a.g.l. in the Lukmanier region on 23/10/2020 (A) and 09/12/2020 (B). The arrows indicate the
wind direction. The contour lines show the elevation above sea level in the COSMO-WRF model. The black crosses show the locations of the wind
measurement stations used as input for the Foehnix model.

waves to occur. We have shown that the percentage of favorable
atmospheric conditions for wave formation is higher during the
winter time up to 80% at the Lukmanier and Diablerets LiDAR sites.
Further investigation is still needed to study how the downward
propagation of mountain waves exactly influences wind energy
production.

3.3 Influence of Foehn wind at turbine hub
height

In this section, the influence of Foehn on potential wind
is explored and a statistical estimation of event occurrence is

provided, to support an accurate wind assessment in complex
terrain. First, we provide analyses of two Foehn events in the
Lukmanier domain (Figure 1, blue box) using two simulations with
a southerly (23/10/2020) and northerly (09/12/2020)wind direction,
respectively. Then the statistical estimation of how often Foehn
events occur is provided based on meteorological measurements
in the surroundings of the Lukmanier area in 2022 using the
Foehnix model (Plavcan et al., 2014) (Sect. 2.2.3). Figure 13A
shows the mean wind speed from COSMO-WRF on 23/10/2020 at
100 m a.g.l. in the Lukmanier domain during southerly Foehn.
The simulation shows high wind speed over the lee slopes of
the main mountain ridges, corresponding to the northern part
of the domain. Figure 13B shows the simulated mean wind speed
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FIGURE 14
Vertical cross-section from COSMO-WRF on 23/10/2020, 13h00 for southerly Foehn (left) and on 09/12/2020, 09h00 for northerly Foehn (right) for
(A,B) horizontal wind speed (m/s), (C,D) temperature (K), and (E,F) relative humidity (%). For the southerly Foehn event, the vertical cross-section starts
from 46.64560°N,8.61934°E (south of GUE crest station) to 46.71181°N,8.58495°E (east side of Göschenen valley) as shown by the black line in the
Lukmanier domain, Figure 1. For the northerly Foehn event, the vertical cross-section starts from 46.66363°N,8.60292°E (northwest of GUE crest
station) to 46.43380°N,8.86705°E (along Valle Leventina) as shown by the orange line in the Lukmanier domain, Figure 1.

on 09/12/2020 during northerly Foehn. In this case, areas of high
wind speed over the lee slopes are located in the southern part
of the domain.

For further analysis, a vertical cross-section is shown in
Figure 14 with the wind direction left to right and including the crest
and valley in the direction of Foehn wind. For both, the northerly
and southerly case, we see an increase in wind speed at the lee side
of the mountain (Figures 14A, B) confirming the situation shown in
Figure 13. The increase in horizontal wind speed is accompanied
by an increase in temperature (Figures 14C, D) and a decrease in
relative humidity (Figures 14E, F), all typical characteristics of a
warm dry Foehn wind. As we see in Figure 14, the altitude affected
by the Foehn event involves the height where wind turbines operate.
Therefore, for wind assessment purposes in areas known to be

affected by Foehn, we recommend including the frequency of Foehn
occurrence for a more accurate wind assessment.

Applying the Foehnix model, we select the GUE crest as the
central indicator station for both the northerly and southerly Foehn.
BIA and ALT are selected as downwind indicator valley stations for
northerly and southerly Foehn, respectively. More details of these
stations can be found in Table 1 and their location is shown in
Figure 1. The wind direction filter was chosen based on the wind
roses of the three stations and the topography situation. Figure 15
shows the wind roses of the stations ALT, GUE, and BIA for
2022. A total number of 8,760 hourly wind speed records were
utilized. ALT station shows a major wind direction from the south-
southeast, while BIA presents a dominant wind direction from the
north-northwest. Both stations show a secondary sector almost
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FIGURE 15
Wind roses for the measurement stations of (A) Altdorf (ALT), (B) Biasca (BIA), and (C) Gütsch (GUE) for the year 2022. The color bar represents wind
speed (m/s).

opposite to the respective dominant sector. GUE station, located on
the crest, shows prevailing winds from both directions, north and
south. Taking the local topography situation andwind direction into
consideration, we pick the southeasterly as the main axis for the
wind direction filter of southerly Foehn. We also pick northerly for
the wind direction filter for the northerly Foehn. Hence, we applied
a wind direction filter of 45°–225° and 270°–90° for southerly and
northerly Foehn, respectively. The wind direction filters span within
a sector of 180° following a recommendation by Plavcan et al. (2014)
and is set equally for both crest and valley stations.The defined wind
direction filter cluster the measured wind in the specified sectors.
Then, based on air temperature difference, wind speed, and relative
humidity, the Foehnixmodel identifies the probability of occurrence
of Foehn events.

When the estimated probability of Foehn exceeds 50%, it is
assumed that a Foehn event occurs. The threshold of 50% follows
the classification threshold used by Plavcan et al. (2014)The Foehnix
model provides the number of hours with favorable conditions
for Foehn generation (Figures 16A, B). The northerly Foehn has
the highest frequency during the winter months of January and
February. A similarly high frequency of northerly Foehn during
winter has been reported by Meteoswiss for the Poschiavo station
in eastern Switzerland from 2008 until 2020 (MeteoSwiss, 2023).
This comparison ismade to show the representativity of the seasonal
patterns for a larger region and for a longer period of time. Poschiavo
and Altdorf are some of the most representative stations for the
northerly and southerly Foehn according to MeteoSwiss (2023)
(Figures 16C, D). Poschiavo station, in particular, has been known
for its record-high Foehn activity MeteoSwiss (2023). This can also
be seen from the high hours of favorable conditions produced
by the Foehnix model for the northerly Foehn (Figure 16A). The
frequency of northerly Foehn from the Foehnix model varies
strongly from spring to autumn 2022, while the Foehn hours from
Poschiavo station are lowest from August to November. Following
the Foehnix results, the southerly Foehn has the highest occurrence
in March 2022. The long-term data from Altdorf shows the highest
frequency in April from 1991 to 2020 (MeteoSwiss, 2023). Both

show the lowest frequency during July and August. The difference
between the result of the Foehnix model from measurement
stations in 2022 and the long-term records from Meteoswiss can be
attributed to the inter-annual variability and different locations of
the stations.

The Foehn event increases the wind speed significantly in
the valley region and has a high probability to be higher than
the vcut_off (fourth region, Figure 2). Therefore, wind assessment
in the area with a high probability of Foehn occurrence should
be done thoroughly. The benefit of including the Foehn event
in the wind assessment is not only for a better selection of
appropriate infrastructure but also to give us a better picture
of the future potential production of wind turbines. With the
right infrastructure, a wind turbine could handle the high wind
speed event of Foehn and reduce the number of nonoperational
wind turbines. Even when the Foehn event still results in a non-
operational wind turbine, including it in the assessment process
will improve the accuracy of the production forecast. A high
number of hours of Foehn as seen in Figure 16 should be taken
into consideration, especially if the goal is to fulfill the energy
demand during the wintertime. The warm dry high wind speed
produced by the Foehn event can also reduce the icing issue for the
wind turbine during the wintertime. For the installation of wind
turbines in a remote complex terrain area, this would mean less
maintenance needed.

Foehn has been shown to increase the wind speed on
the lee slopes in the Lukmanier domain. Results from an
analysis of historical Foehn data from Meteoswiss, together with
model predictions based on data measured in 2022 show a
significantly higher frequency of Foehn events especially during
the winter (northerly Foehn) and spring season (southerly Foehn),
strengthening the motivation to include Foehn analysis in wind
power assessments with the objective to reduce the energy
production gap during the winter season.More research is needed to
quantify the impact of Foehn on turbine power yields, the impact of
turbulence, and to develop better forecasts for accurate wind speed
assessment.
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FIGURE 16
Number of hours of favorable conditions for (A) northerly Foehn (BIA and GUE stations) and (B) southerly Foehn (ALT and GUE stations) to occur based
on the Foehnix model using measurements of 2022. Number of hours of (C) northerly Foehn at Poschiavo from 2008 to 2020, and (D) southerly Foehn
at Altdorf from 1991 to 2020 (MeteoSwiss, 2023).

4 Conclusion

For providing the most advanced assessment of wind potential
in complex mountain terrain, it is necessary to improve our
understanding and the modeling of topography-induced effects on
wind. This paper presents examples of terrain effects on wind in the
Swiss Alps, namely mountain waves and Foehn, and estimates the
occurrence of these phenomena. Two field measurement campaigns
were conducted in the Lukmanier and Diablerets areas of the Swiss
Alps collecting wind data using a Doppler wind LiDAR instrument.
The COSMO-WRF model is used to investigate meteorological
events that led to stronger wind at the mountain tops and the
typical height of wind turbine hubs during the field measurements.
The numerical simulations with COSMO-WRF using wind data
from measurement stations located in the model domain show an
improvement in wind speed representation near ground level in
complexmountain terrain. However, modeled high-resolution wind
further aloft is mainly driven by the input data, COSMO-1E, which
shows an overestimation compared to the LiDAR measurement
data. More realistic input data is needed for a more accurate
simulation of wind at higher altitudes.

Mountain waves and Foehn are investigated as examples of
meteorological phenomena that happen in Alpine complex terrain
with significant impact for the wind energy production, especially
during winter. Mountain waves occur during stable atmospheric
conditions which are more prevalent in winter, when the demand
of energy is high. Our study shows that the wind speed fluctuations

associated with mountain waves can propagate downward to the
height above ground where the wind turbines typically operate, i.e.,
100 m. Further study on the frequency of events and the downward
propagation process is still needed for an accurate assessment of
wind speed in complex terrain.

The simulation of Foehn events in the Lukmanier area shows
that such winds may have a strong effect at the level where the
wind turbines operate. Using the Foehnix model, we estimated
the probability of Foehn occurrence, which was found higher
during winter and early springtime than during summer and
fall. This information is useful for establishing a more accurate
assessment of wind power potential in complex terrain. This
finding adds the significance of including the Foehn assessment
for accurate wind prediction in the Alpine complex terrain. The
performed measurements, simulations, and analyses enable an
improved accuracy of wind assessment especially during winter
by considering prominent characteristic flow features and the
meteorological conditions favoring their genesis and occurrence.
This underlines the dominant influence of the local terrain and
topography on the wind speed and wind direction and thus on
potential wind power production by turbines deployed at selected
favorable sites for that purpose.

This study underlines the need for sufficiently detailed
assessment, including the near surface effects such as through Foehn
and mountain waves, to assess their quantitative impact on the
potential power production ofwind turbines in the Swissmountains.
The future studywill include amore in-depth analysis of the complex
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terrain phenomenon mechanism in the Swiss Alps region, such as
analysis for the area of impact and a more solid recommendation
for wind energy community in the area with a high probability of
mountain wave and Foehn cases. Due to the limited data availability
during our measurement campaign, we have a limited number of
cases to investigate. A longer and more thorough campaign will
help to add more cases to investigate and create a more generalized
conclusion. It might also discover more examples of complex terrain
phenomenon which have impacts on wind energy, other than
mountain waves and Foehn. Integrating the information on the
impact of complex terrain phenomenon with machine learning [i.e.
Dujardin and Lehning (2022)] and Digital Twin and its integration
to Geographical Information System (GIS) (Agostinelli et al., 2022;
Yousef et al., 2023; Piras et al., 2024) will also increase the accuracy
of monitoring and performance prediction of wind turbines. The
present research acts as a step forward in accurately estimating
potential wind power and optimally using it for renewable energy
production, particularly during periods when it is most needed, i.e.,
the winter season when power demand is high and other renewable
sources are limited.
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Multi-device wind turbine power
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In recent years, the global installed capacity of wind power has grown rapidly. Wind
power forecasting, as a key technology in wind turbine systems, has received
widespread attention and extensive research. However, existing studies typically
focus on the power prediction of individual devices. In the context of multi-turbine
scenarios, employing individual models for each device may introduce challenges,
encompassing data dilution and a substantial number of model parameters in power
generation forecasting tasks. In this paper, a single-modelmethod suitable formulti-
device wind power forecasting is proposed. Firstly, this method allocates multi-
dimensional random vectors to each device. Then, it utilizes space embedding
techniques to iteratively evolve the random vectors into representative vectors
corresponding to each device. Finally, the temporal features are concatenated
with the corresponding representative vectors and inputted into the model,
enabling the single model to accomplish multi-device wind power forecasting
task based on device discrimination. Experimental results demonstrate that our
method not only solves the data dilution issue and significantly reduces the
number of model parameters but also maintains better predictive performance.
Future research could focus on using more interpretable space embedding
techniques to observe representation vectors of wind turbine equipment and
further explore their semantic features.

KEYWORDS

wind power generation, time series forecasting, space embedding, hidden feature, long
short-term memory

1 Introduction

Since the Industrial Revolution in the 18th century, with the advancement of technology
and social progress, the demand for energy has grown rapidly (Wang et al., 2019).
Conventional energy sources such as oil, coal, and natural gas not only have limited
reserves but also contribute to environmental pollution and global warming (Wang et al.,
2019). Wind energy, as a clean and widely distributed renewable energy, has gained global
attention in recent years (Liu and Chen, 2019; Wang et al., 2021; Yang et al., 2021).
However, the fluctuation of wind energy leads to the instability of power output in wind
farms, which imposes additional burdens on energy storage devices and potentially affects
the reliability of power supply (Parsons et al., 2004).
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Incorporating efficient wind power forecasting methods into
power control systems can effectively reduce operational costs and
significantly enhance the reliability of wind power systems (Contaxis
and Kabouris, 1991; Kariniotakis et al., 1996). Existing wind power
forecasting methods mainly focus on individual devices. However,
in practical applications, multiple wind turbines often operate in
parallel within a wind power system. Assigning independent
forecasting models to each device would result in two problems:
firstly, dividing the dataset based on devices would lead to limited
training data for each model, causing data dilution; secondly, each
device having an independent model would result in a large number
of total parameters, making accurate forecasting of wind turbine
power generation increasingly challenging. In this paper, we propose
a training method for prediction models applicable to multi-device
scenarios, aiming to address the challenges of data dilution and
excessive parameters.

2 Relevant work

The existing time series forecasting methods can be mainly divided
into two categories: one consists of classical statistical methods with
high interpretability and theoretical foundations, while the other
category comprises more efficient methods based on artificial neural
networks. The method proposed in this paper combines deep neural
networks with space embedding technology from the field of natural
language processing, aiming to effectively address the issue of multi-
device wind turbine power generation forecasting.

2.1 Traditional wind power
forecasting methods

The traditional wind power forecasting methods include physics-
based models and statistic-based methods. The physics-based models
play an crucial role in traditional forecasting methods, which consider
meteorological factors (such as pressure, humidity, and temperature)
from numerical weather prediction (NWP) and local topography for
forecasting (Jung and Broadwater, 2014; Fang and Chiang, 2016; Hu
et al., 2020). In terms of short-term forecasting capability, thesemethods
generally performmoderately well, and their results aremore suitable as
a reference for long-term forecasting (Hu et al., 2020;Wang et al., 2021).
The Autoregressive Integrated Moving Average (ARIMA) model,
which is based on the theory of differencing, transforms non-
stationary processes into stationary ones to address prediction
problems (Ariyo et al., 2014). However, this method can only model
individual attributes and fails to consider the correlations among
multiple attributes at different time steps. In addition, ARIMA has
high computational costs and is rarely applied to modeling and
forecasting tasks involving long sequences.

2.2 Time-series forecasting methods based
on deep learning

The commonly used wind power forecasting methods based on
deep learning include two methods: Recurrent Neural Networks
(RNN) and Transformer models. In comparison to the classical

RNNmodel, its variants, such as Long Short-TermMemory (LSTM)
(Hochreiter and Schmidhuber, 1997)and Gated Recurrent Unit
(GRU) (Cho et al., 2014), are more prevalent. LSTM was
proposed to address the problem of vanishing gradients caused
by long sequence backpropagation. GRU, compared to LSTM,
reduces the number of gate units and parameters, making it
easier to train it to convergence. Additionally, it exhibits similar
performance to LSTM in multiple tasks (Chung et al., 2014). Lai
et al. advocated for forecasting models that encompass the impacts
of both long-term patterns (such as day-night and season) and
short-term patterns (like cloud fluctuations and wind direction).
Building upon this concept, they introduced LSTNet, a variant of
Convolutional Recurrent Neural Network (CRNN) (Lai et al., 2018).
RNN possesses inherent capability in modeling time series data.
However, the issue of gradient explosion has not been entirely solved
yet. Moreover, their auto-regressive output mode not only extends
the output time for long sequence forecasting tasks, but also
increases training time due to challenges in parallel training.

The Transformer architecture was initially proposed for
machine translation tasks (Vaswani et al., 2017). Although the
Transformer model exhibits excellent performance in the field of
NLP, its drawbacks are also evident: the model structure is complex,
it has a large number of parameters, and it requires a relatively long
time to produce outputs. Informer (Zhou et al., 2021) is a variant of
the Transformer model designed for time series forecasting tasks. It
incorporates the ProbSparse attention mechanism to reduce
sampling time and introduces a generative decoder that can
output the entire prediction sequence in a single step,
significantly reducing the time complexity of the forecasting task.
AutoFormer (Wu et al., 2021) introduces a novel attention
mechanism called Auto-Correlation, which has stronger
information aggregation capability, enabling it to achieve superior
forecasting performance compared to variants such as Informer.
However, the main advantage of the Transformer architecture lies in
its multi-head attention mechanism, which exhibits permutation
invariance. Even with the addition of positional encoding in the
data, the application of attention mechanisms inevitably results in
the loss of temporal information. In the field of natural language
processing, semantics and word order are not entirely bound, but in
the domain of time series forecasting, the output results are highly
correlated with the temporal order. Zeng et al., 2023 have
demonstrated that in some time series prediction tasks, a single-
layer linear neural network outperforms Transformer-based
networks and offers significant advantages.

2.3 Feature engineering

Feature engineering is the process of transforming raw data into
features that better represent the essence of the problem. Effective
feature engineering can consistently enhance the forecasting
accuracy of the model. Two-dimensional Discrete Wavelet
Transform (2D-DWT) and the 2D Fast Discrete Orthonormal
Stockwell Transform (2D-FDOST) method are used to extract
new effective dynamic features from dynamic electrical signals
(Karasu and Sarac, 2019; Karasu and Saraç 2022). Compared to
the Fourier transform, these methods exhibit stronger adaptability
and noise resistance, allowing for localized analysis in different
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frequency domains and thereby capturing detailed features more
effectively. However, these methods have a high computational
complexity and are not suitable for scenarios requiring real-time
processing. The Multi-Objective Grey Wolf Optimizer (MOGWO)
is commonly used to extract a small set of useful features from a large
volume of dynamic electrical signals, improving data quality and
reducing computational overhead (Karasu and Saraç, 2020). The
Grey Wolf algorithm has fewer parameters, is easy to implement,
and requires less computational time, but the solutions found may
not always be optimal. A feature selection method based on
Sequential Floating Forward Selection (SFFS) has been used to
reduce the historical operating data of lots of wind turbines in a
wind farm environment to 660 effective features (Peng et al., 2021).
This not only reduces the computational overhead of the forecasting
model but also enhances its forecasting accuracy. However, the
hyper-parameters of this algorithm are not adaptive, making it
highly dependent on empirical expertise.

Methods for extracting dynamic features from historical power
data are commonly used to assist neural network models in
forecasting. However, the static features of wind turbine
equipment have received less attention from researchers. Static
factors, such as the type of wind turbine components, geographic
environmental conditions, equipment layout, and equipment failure
status, can also have a long-term impact on the power generation
patterns of wind turbines, making them not entirely dependent on
measurable internal conditions and weather factors.

Mikolov et al. (2013a), Mikolov et al. (2013b) both schemes infer
the properties of words based on the distributional order of words in
sentences. In natural language, there exist semantic and syntactic
correlations between words, and deep learning models need to
discover the semantic features hidden beneath the distributional order
of words to accurately predict their sequence. However, apart from
geographical location, there is no obvious distributional correlation
among wind turbine devices. Therefore, CBOW and Skip-gram
schemes are not suitable for the task of feature representation for
wind turbines. The graph embedding technique (Grover and
Leskovec, 2016) requires the model to predict the connectivity
structure between nodes in the graph. Then, it utilizes gradient
descent algorithm to infer high-dimensional vector representations of
nodes or the entire graph. However, in a distributed wind farm, the
geographical positions of wind turbines do not conform to the structure
of a graph because there is no explicit connection between the nodes
representing the wind turbines. Therefore, graph embedding techniques
cannot be directly applied to the representation of wind turbine devices,
nor can they directly uncover the hidden static features that influence the
device’s own power generation patterns. Position Embedding (Vaswani
et al., 2017), which is a manually specifiedmethod for encoding sequence
order, utilizes a fixed calculation approach without neural networks or
gradient descent algorithms. This method is applied in the position
encoding of Transformer models. However, the hidden features of wind
turbines are more complex than sequential order, and representation
vectors calculated using manually specified algorithms based on device
identifiers are unable to effectively reflect the characteristics of wind
turbine devices.

Considering the complexity of static factors that influence wind
turbine power generation patterns and the implicit correlations among
turbines, this paper sets the task of training device representation vectors
as power generation forecasting. To achieve this, the gradient descent

algorithm is employed to evolve randomly initialized data into vectors
that represent the static factors of the devices. This method directly
uncovers hidden static factors that impact device power generation
patterns. Different from traditional space embedding methods:

(1) Traditional space embedding methods are commonly used
to generate generic representation vectors that are not
specific to particular business scenarios. As a result, they
fail to capture representation information in specific task
scenarios. The proposed space embedding technique in
this paper specifically addresses the task scenario of
distributed wind turbine power forecasting, generating
representation vectors that are exclusively applicable to
this task scenario.

(2) In traditional space embedding methods, the tasks of
generating entity representation vectors and the subsequent
tasks of using these vectors often differ. The proposed space
embedding method in this paper, however, aligns the task of
generating vectors with the subsequent task, both of which is
power generation forecasting.

2.4 Work presented in this paper

Classical statistical models, recurrent neural networks, and deep
neural networks based on the Transformer architecture are all
forecasting models designed for single devices. However, in
multi-device scenarios, allocating independent prediction models
for each device would result in data fragmentation, significantly
reducing the available dataset for each model, while substantially
increasing the total number of parameters. This paper presents an
innovative method for wind power forecasting: instead of splitting
the dataset according to devices or providing independent models
for each device, a single model is trained to predict the power
generation for each individual wind turbine device. The static
characteristics of individual devices have an impact on the power
generation patterns. However, a single prediction model cannot
differentiate between different devices or take into account the
differences in device operating patterns, leading to a loss in
forecasting accuracy. To address this issue, this paper utilizes
space embedding technology to infer the hidden features of each
device and applies it to represent the wind turbines. The essence of
space embedding technology is the same as that of neural networks,
both of which are derived from causal effects and use gradient
descent algorithms to calculate the static attributes that effectively
affect the target task. Therefore, this article aims to propose a
method that does not rely on expert knowledge and complex
modeling processes to obtain the static properties of wind
turbine equipment (including inherent equipment features and
some long-term climate characteristics that do not change).
During the power generation forecasting process, the
representation vectors are concatenated with the temporal data
and inputted into the neural network model. This approach
enables the model to consider both the dynamic historical data
and the inherent static characteristics of the devices. Experimental
validation shows that the proposed method achieves a superior
forecasting performance while reducing the parameter quantity to
only 0.74% of the comparative method.
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The main contributions of this paper are as follows:

(1) Proposed a method that utilizes the complete dataset for
model training and employs a single model for wind power
forecasting across multiple wind turbines. This method
addresses the issue of data dilution and significantly
reduces the number of model parameters.

(2) Introduced a space embedding technique specifically
designed for wind turbines. This technique is used to
represent the impact of hidden static features of the
devices on power generation patterns, addressing the issue
of predictive performance loss caused by an individual
model’s inability to differentiate between devices.

(3) The experiments demonstrate that the single-model method
using the complete dataset not only significantly reduces the
number of parameters but also improves predictive
performance. Building upon this foundation, the utilization
of wind turbine embedding technology further enhances
prediction accuracy. This paper verifies a positive
correlation between the dimension of representation
vectors and the accuracy of power generation forecasting.
However, there is limited improvement in performance when
the dimension becomes excessively large.

3 Theoretical background

3.1 Long Short-Term Memory

Long Short-TermMemory (LSTM) is a special type of Recurrent
Neural Network (RNN). Compared to traditional RNN, LSTM

alleviates the issues of vanishing and exploding gradients in
modeling long sequences. When receiving input from the upper
layers of the network, the LSTM layer needs to unfold itself
horizontally to match the shape of the input data. The data flow
mechanism of LSTM makes it naturally suitable for modeling
sequential data, but also hinders parallel computation. The
diagram below illustrates the data propagation and internal
structure of LSTM during horizontal unfolding.

In Figure 1, the LSTM layer consists of multiple blocks, where
each block shares the same parameters, and data propagation
occurs strictly in linear order. Each LSTM block includes a
forget gate ft, an input gate it, and an output gate ot. The
forget gate ft controls whether historical information in the
memory cell should be forgotten. The input gate it determines
whether the input data Xt should be written into the memory cell.
The output gate ot decides the extent to which information from
the previous time step is transmitted to the next LSTM block. The
formulas for these three gate units and the memory cell are
as follows:

ft � σ Wf · Xt, ht−1[ ] + bf( ) (1)
it � σ Wi · Xt, ht−1[ ] + bi( ) (2)
ot � σ Wo · Xt, ht−1[ ] + bo( ) (3)

~Ct � tanh Wc · Xt, ht−1[ ] + bc( ) (4)

In the formulas,W and b represent the learnable parameters and
bias terms for each gate unit. σ stands for applying the sigmoid
activation function after performing matrix multiplication between
the input data and the network parameter matrix. The formula for
the sigmoid activation function is as follows:

FIGURE 1
Illustration of LSTM layer structure.
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sigmod x( ) � 1
1 + e−x

(5)

The activation function will map the input data to a value
between 0 and 1. The closer the value is to 0, the smaller the
influence of the mapped data will be in the subsequent matrix
multiplication. The formulas for the cell state Ct and hidden state ht
calculations are as follows:

Ct � ft · Ct−1 + it · ~Ct (6)
ht � ot + tanh Ct( ) (7)

The derivative of Ct with respect to Ct−1 is represented as
∂Ct
∂Ct−1 � ft + Ct−1 ∂ft

∂Ct−1 + ∂it
∂Ct−1

~Ct+it ∂ ~Ct
∂Ct−1, where ft falls between

0 and 1. Therefore, the internal structure of LSTM can effectively
prevent the occurrence of gradient explosion or gradient vanishing.

3.2 Space embedding technology

Space embedding technology is a technique that computes the
continuous vector representation of entities in a high-dimensional
space. It originated from word embedding in the field of Natural
Language Processing (NLP). Typically, space embedding technology
evolves the vector representation based on the distribution
phenomena or behavioral patterns of entities in specific tasks,
evolving random data into high-dimensional vectors with
representational capabilities. In the field of NLP, performing
space embedding computation is an upstream task. This task is
not specific to particular business scenario but rather aims to convert
abstract natural language into a more easily processable data format.
Conversely, downstream tasks are tailored to specific business
scenarios and rely on the representations vector generated by
upstream tasks. Figure 2 illustrates the relationship between
upstream and downstream tasks.

Regarding the word embedding technology, predicting word
distribution tasks are considered upstream tasks, while using
evolved word vectors for tasks such as machine translation,
sentiment analysis, or named entity recognition is referred to as

downstream tasks. The distributional hypothesis proposed by Harris
in 1954 serves as the theoretical foundation of word embedding
technology. This hypothesis posits that words with similar contexts
also have similar meanings and should correspond to similar high-
dimensional continuous representation vectors (Harris, 1954).
Word embedding technology derives high-dimensional
continuous vector representations based on the phenomenon of
word distribution. Typically, researchers train a deep neural network
to predict word distributions and employ the gradient descent
algorithm to update network parameters and word vector
matrices simultaneously. After training the neural network until
convergence, the high-dimensional vector representations
corresponding to words have evolved from their random initial
states to appropriate states. These representations can be used to
describe the hidden features associated with each word.
Representative models of this technology include word2vec, Elmo
(Sarzynska-Wawer et al., 2021), Bert (Devlin et al., 2018).

After word embedding technology, embedding techniques have
further developed into graph embedding for graph structures
(Grover and Leskovec, 2016), position embedding for sequential
order (Vaswani et al., 2017), and data embedding architecture
known as data2vec for multi-modal data (Baevski et al., 2022),
among other techniques or approaches.

It is crucial to recognize that power fluctuation patterns are
influenced by both dynamic factors, such as changes in internal
turbine states and meteorological conditions, and the static
attributes of the turbine equipment. The design of turbine blades
and the control strategy significantly affect energy capture and
conversion efficiency, while the geographical and climatic context
of the equipment directly impacts power generation fluctuations.
Additionally, the static attributes of the turbine have a lasting impact
on its power generation patterns, making its power output not
entirely dependent on real-time internal and meteorological data.
Even turbines of the same types may exhibit differences in their
power generation patterns due to variations in environment, layout,
and maintenance conditions.

However, characterizing the static features of turbines faces
three challenges:

FIGURE 2
Diagram illustrating the association between upstream and downstream tasks.

Frontiers in Energy Research frontiersin.org05

Man et al. 10.3389/fenrg.2024.1346369

106

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1346369


1. Although common SCADA datasets include a wealth of
dynamic data from the operational phase, hey do not record
details on common static features such as blade shape, wind
adaptability, altitude, climate, and geographical environment.

2. It is challenging to analyze the correlation between a single
static feature and power fluctuations, which limits our ability to
discern and rank the relationship between static features and
power fluctuations.

3. Analyzing the correlation between a single static feature and
power fluctuations is challenging, which limits researchers’
ability to distinguish and rank the extent of correlation between
static features and power fluctuations.

In the absence of effective features, researchers can predict
the distribution of entities by training models to ensure the
models capture the static hidden features of the entities. The
Word2vec model infers the hidden semantic features of words
based on the order of word distribution, and the graph
embedding model node2vec infers the hidden features of
nodes based on their connectivity structure in the graph. To
overcome the challenges mentioned above and effectively
capture the static features of turbine equipment, it is feasible
to consider inferring potential static features based on the
turbine power patterns.

We considered training models to infer hidden turbine features
during the process of forecasting wind speed or direction. However,
the static feature vectors generated in this way only reflect the
climatic characteristics and do not represent the equipment
characteristics (such as conversion efficiency, wind adaptability,
or fault conditions). Constructing correlation graphs based on
the similarity of power fluctuation patterns between turbines and
using graph embedding techniques can also capture the static
features of turbine nodes, though the static features obtained this
way tend to represent inter-device correlations more. To
comprehensively characterize the static factors affecting the
equipment’s power pattern, we set both upstream and
downstream tasks as the same, namely, the turbine power
forecasting task. The representation vector generated based on
this describes the static factors that affect the power fluctuation
pattern. The vector semantics are not limited to climatic factors,
equipment models, operational strategies, etc., but may also include
other related factors that have not been researched but have a
tangible correlation.

This paper presents an embedding technique that does not rely
on entity distribution correlation. Specifically, when performing
wind power forecasting tasks using neural networks, this paper
utilizes the gradient descent algorithm to iteratively evolve randomly
initialized vectors into high-dimensional representations of the wind
turbine’s hidden static factors. Traditional space embedding
techniques rely on predicting the distribution patterns of entities.
However, in our method, we generate representation vectors by
predicting the target attribute, i.e., Active power, directly. This
method is not only applicable for generating representation
vectors of entities without specific distribution phenomena, such
as turbine generators, but also directly discovers hidden features that
are highly correlated with the target attributes. The representation
vectors generated by embedding technology are derived from longer
segments of the training dataset, which allows them to encompass

features from a wider time span. In contrast, the wind power
forecasting task only accesses data from a limited number of
historical time steps. The representation vectors provide
additional evidence for the forecasting task. Subsequent
experiments evaluated the impact of different dimensional
representation vectors on the forecasting model, and verified the
capability of embedding techniques to enhance the performance of
the forecasting models.

4 Methodology

4.1 Task description

Wind power forecasting tasks fall into the category of time
series forecasting tasks, which require models to predict future
time steps based on historical time step data. Each time step
corresponds to a sampling for factors such as turbine power,
wind attributes, and internal device states. Typically, such tasks
involve input data X ∈ RK×T, where K and T represent the
number of historical time steps and the number of features
per time step, respectively. After being processed by the
forecasting model, the model’s output is denoted as Y ∈ RN×T,
where N is the specified number of forecasting steps for the task.
Specifically, in the scenario of single-property forecasting tasks,
the model’s output is Y ∈ RN×1. In time series forecasting tasks,
we aim for minimal discrepancy between the model’s
predictions and actual measurement values.

In the proposed method, each wind turbine contains a vector
hi ∈ RM to represent its own characteristics, where M represents the
number of attributes contained in the representation vector. The
representation vector of the wind turbine will be concatenated with
the dynamic temporal data and sent as part of the input data into the
model. In this scenario, the input data of the model is X ∈ RK×(T+M),
and the model output is Y ∈ RN×1.

4.2 Overview of method

In the proposed method of this paper, the wind power
forecasting task is decomposed into two tasks: an upstream
embedding task to infer the hidden features of wind turbines,
and a downstream task to forecast power generation based on
the hidden features.

The upstream and downstream tasks are not completely
independent. As shown in Figure 3, the same data processing
method and model architecture are used for model training in
both the upstream and downstream tasks. The hidden static
features generated by the upstream task are used as additional
features, which will be concatenated with the historical time steps
in the downstream task, and inputted into the LSTM model. In the
proposed method, after the input data pass through the LSTM layer,
Dropout layer, and linear projection layer, only the data
representing future time steps is used as output, while the
content representing historical time steps is discarded. The
discarded portion does not contribute to the calculation of the
loss function and does not have a positive effect on the
optimization of the model parameters.
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4.2.1 Concatenation of blank time steps
In time series forecasting tasks, historical data is inputted into a

neural network model, which then generates future data as output.
In classical scenarios, researchers commonly utilize a sliding window
approach to predict a limited number of time steps. Taking Figure 4

as an example, 4 previous time steps are used to forecast
1 subsequent time step, resulting in the generation of an entire
time-series through multiple autoregressive iterations.

This paper argues that the method of the sliding window
results in wastage of computational resources and time, as it
requires inputting K historical time steps into the model for
each prediction, and a long sequence needs multiple iterations
to be fully generated. Therefore, this paper concatenates
additional blank data with the historical time step to align
the output format with the expected format. As shown in
Figure 5, the prediction model needs to output data for N

FIGURE 3
Overview of the method architecture.

FIGURE 4
Diagram of autoregressive prediction method.

FIGURE 5
Diagram of the novel prediction method.
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future time steps, with the number of blank time steps matching
the desired output.

Due to the fact that LSTM can propagate data through the cell
state Ct and hidden state ht when unfolded, inputting blank time
steps into the LSTM model does not cause interruption in
information transmission.

4.2.2 Replication and concatenation of
hidden features

The proposed hidden feature space embedding method aims to
extract the hidden static features of the wind turbine devices thereby
uncovering the latent factors that influence the operation patterns of
the wind turbines.

As shown in Figure 6, in the process of pre-training, the hidden
feature vector hi ∈ RM corresponding to wind turbine i will be
replicated K + N times. It is concatenated directly with historical
time steps Xh

i ∈ RK×T and blank time steps Xb ∈ RN×T, forming an
input matrix Input(K+N)×(T+M) with a shape of (K +N) × (T +M),
which is then inputted into the LSTM model. This paper adopts the
unique spatial dynamic wind power forecasting dataset, SDWPF (Zhou
et al., 2022), provided by Longyuan Power Group Co., Ltd. This dataset
contains a total of 134 wind turbines, so the hidden feature embedding
matrixH ∈ R134×M contains the representation vectors of 134 turbines.
It is essential to ensure that the hidden feature vector hi and the
historical time step Xh

i are from the same turbine.
The hidden features, as input data, participate in computation

and obtain corresponding gradients through a backward
propagation process. Subsequently, multiple rounds of iteration
are performed using the gradient descent algorithm. The
randomly initialized vectors gradually evolves into representation
vectors that capture the hidden static features of the wind turbine
devices. The algorithmic procedure is illustrated in Algorithm 1.

4.3 Evaluation metrics

This paper employs four performance evaluation metrics for
forecasting models: Mean squared error (MSE), Mean Absolute

Error (MAE), Pearson correlation coefficient (Corr), and
coefficient of determination (R2). The formulas for calculating
these metrics are as follows:

MSE � 1
n
∑n

1
ŷi− yi( )2 (8)

MAE � 1
n
∑n

1
ŷi− yi
∣∣∣∣ ∣∣∣∣ (9)

Corr � Cov ŷ, y( )															
Var ŷ( ) × Var y( )√ � ∑n

i (ŷi− ŷ) × yi − �y( )																					∑n
1 ŷi− ŷ( )2 × ∑n

1 yi − �y( )2√ (10)

R2 � SSR

SST
� ∑n

1 ŷi− �y( )2∑n
1 yi − �y( )2 (11)

In the above equations, ŷ represents the predicted values
generated by the model, while y represents the measured
values. The metrics of Mean Squared Error (MSE) and Mean
Absolute Error (MAE) measure the discrepancy between the
predicted values and the measured values, where smaller values
indicate better performance.The Correlation (Corr) metric describes
the degree of correlation between the predicted sequence and the
actual sequence, with its value ranging from −1 to 1. A larger value
indicates a stronger positive correlation, while a smaller value
indicates a stronger negative correlation. The R-squared (R2)
metric quantifies the fitting degree of the predicted values to the
actual values, with a value ranging between 0 and 1. Ideally, it
should approach 1.

The forecasting model is prone to generating a straight line at the
mean of the actual values as the prediction result, which exhibits a
poor correlation with the actual values. Although theMSE andMAE
metrics have small values in this case, the R-squared (R2) metric
approaches zero, indicating the model’s limited ability to capture
volatility.

Furthermore, this paper introduces a custom comprehensive
evaluation metric called Mean Standardized Score (MSS). It is
calculated using the following formula:

Score x( ) � Corr x( ) + R2 x( ) −MSE x( ) −MAE x( ) (12)

FIGURE 6
Replication and Concatenation process of hidden feature vectors.
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MSS � Mean
Score x( ) −Mean Score x( ), 0( )

Std Score x( ), 0( ) , 1( ) (13)

The calculation of the MSS metric consists of three steps:

(1) First, the original four evaluation metrics are summed
according to the principle of adding positive gains and
subtracting negative gains. This yields the total score of
each model across all criteria.

(2) Then, the scores for each task are normalized. Due to the
differences in task difficulty, the dimensions of the scores are
inconsistent, resulting in tasks with higher scores having a
greater impact on the final evaluation. Through the
normalization operation, we ensure that the scores of each
task have the same dimension, eliminating the influence of
task difficulty on the final evaluation. Here,
“Mean(Score(x), 0)” and “Std(Score(x), 0)"”mean taking
the mean and standard deviation of the scores for different
models under the same task.

(3) Finally, the scores of each task under the same model are
averaged to determine the overall score of the model.

5 Experiment and analysis

5.1 Data preprocessing

This paper utilizes the unique spatial dynamic wind power
forecasting dataset, SDWPF (Zhou et al., 2022), provided by
Longyuan Power Group Co., Ltd. The dataset spans a period of
184 days and includes sampled data from 134 wind turbines. The
SCADA system compiles the collected data at 10-min intervals, with
each wind turbine accounting for 184 (days) × 24 (hours) × 6
(intervals), resulting in a total of 26,496 time steps. The entire dataset
contains 26,496 × 134 (units), summing up to 3,550,464 time steps.

Each time step is associated with 13 dynamic features, including data
from internal features of the wind turbine equipment as well as
climate-related data.

The content and format of the dataset are presented in
the Table 1.

During the data preprocessing stage, the following steps were
conducted on the dataset in this paper:

1. The feature of turbine ID was discarded. This paper employed
space embedding technique to obtain a multi-dimensional
vector representation of the hidden features of turbines.
This method can provide richer turbine feature information
for the model, whereas the turbine ID does not contain
descriptive information about the static features of the device.

2. The feature of operating days was discarded. This feature is
used to identify the sequential relationship between data.
However, recurrent neural networks have the inherent
ability to model time series data. Additionally, the data in
the test set and validation set belong to future data, and this
feature differs from the training set in terms of mean and
variance, which can affect the model’s judgment. Therefore,
this paper chooses to remove this feature.

3. Recoding the time feature. The format of this feature is “hour:
minute,” and its content is not numerical, making it unsuitable
for direct input into the model. In this paper, the timestamp
was split to create two new dimensions.We hope themodel can
recognize the pattern of the relationship between power
generation and the time variation within a day.

Figure 7 shows the data preprocessing process in a more
intuitive way after preprocessing, the attributes of the dataset and
their descriptions are shown in the Table 2.

This paper explores the correlation between multidimensional
features and active power (Prtv), as shown in the heat map.

As depicted in Figure 8, a strong correlation is evident between
active power (feature 10) and wind speed (feature 1), located at
coordinates (1, 10). Additionally, there is an insignificant correlation
between the active power (feature 10) and the temperature inside the
turbine nacelle (feature 4), corresponding to coordinates (4, 10).
Furthermore, the heatmap exhibits a strong negative correlation
between the active power (feature 4) and the pitch angle of the three
blades (feature 6, 7, and 8), corresponding to coordinates (7, 10), (7,

TABLE 1 Overview of dataset contents.

Index 0 1 2 . . .. . .

TurbID 1 1 1 . . .. . .

Day 1 1 1 . . .. . .

Tmstamp 0:00 0:10 0:20 . . .. . .

Wspd 12.23 11.58 11.21 . . .. . .

Wdir −0.83 −3.32 −1.38 . . .. . .

Etmp 29.08 29.01 29.17 . . .. . .

Itmp 41.9 42.01 42.24 . . .. . .

Ndir −23.73 −23.7 −28.84 . . .. . .

Pab1 1.07 1.06 1.04 . . .. . .

Pab2 1.07 1.06 1.04 . . .. . .

Pab3 1.07 1.06 1.04 . . .. . .

Prtv −0.21 −0.25 −0.25 . . .. . .

Patv 1549.53 1549.71 1534.77 . . .. . .

FIGURE 7
Diagram of data feature processing and normalization scheme.
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10) and (8, 10) respectively. The time feature (feature 10 and 11)
shows few correlation with other features.

5.2 Comparison between the improved
method and traditional methods

In this research, 80% of the dataset is used as the training set,
while the remaining 20% is allocated for the validation and test sets.
Apart from the time feature, each dimension of the features is
normalized using mean and standard deviation. The proposed
method in this paper for multi-device power generation
forecasting is not dependent on a specific neural network model,
but can complement the improved methods of neural network
models. Choosing an appropriate neural network model can

improve the accuracy of power generation forecasting tasks in
specific application scenarios. Conventional neural network
models include but are not limited to Transformer and its
variants, as well as recurrent neural network models such as
LSTM or GRU. We adopts the LSTM as the experimental object
and compares the performance difference between the traditional
method and the single-model method that integrates space
embedding technology. Table 3 displays the best results obtained
from three experiments under the same conditions. Bold in the table
is used to highlight the best results under the same experimental
conditions, and the following table is the same.

The “Multi LSTM”method in the table does not utilize the space
embedding technique to obtain device representation vectors.
Instead, it assigns a independent LSTM model to each turbine
device for power generation forecasting. Since each device has an
independent model, the dataset is also divided by devices. In the
“Single LSTM & 8 Hidden Features” method, we use a single model
and an undivided training set to forecasting the power generation of
134 turbine devices. At the same time, we introduce an 8-
dimensional vector to represent the hidden static features of the
turbine devices. The “ARIMA” scheme employs the classical
statistical model ARIMA for power generation forecasting. The
data in the table represents the average performance of all
turbines’ predictions.

Based on the table results, it can be observed that the forecasting
model using hidden features has fewer model parameters and
demonstrates significant advantages across all four metrics.
Particularly noteworthy is the 23.6% improvement in the MSE
metric for ultra-short-term forecasting (1 h, 6 time steps).
Compared to traditional approaches that merely input historical
power data into neural network models, the method presented in
this paper utilizes hidden features to represent the impact of wind
turbine static attributes on their power generation patterns, enabling
the forecasting model to make more accurate predictions based on
the inherent properties of the equipment. Additionally, in traditional
methods, since neural network models cannot distinguish which

TABLE 2 Display of dataset features and descriptions.

Column Column name Description

1 Wspd (m/s) The wind speed recorded by the anemometer

2 Wdir (°) The angle between the wind direction and the position of turbine nacelle

3 Etmp (℃) Temperature of the surrounding environment

4 Itmp (℃) Temperature inside the turbine nacelle

5 Ndir (°) Nacelle direction, i.e., the yaw angle of the nacelle

6 Pab1 (°) Pitch angle of blade 1

7 Pab2 (°) Pitch angle of blade 2

8 Pab3 (°) Pitch angle of blade 3

9 Prtv (kW) Reactive power

10 Patv (°) Active power (target variable)

11 Hour Hour of the record

12 Minute Minute of the record

FIGURE 8
Heat map for attribute correlation analysis of the dataset.
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device the time series data originates from, separate forecasting
models are assigned to each device. The dataset consists of
134 turbines, and the parameter size of the traditional method
would reach 134 times that of the proposed method. This leads
to wastage of computational resources without yielding significant
performance improvements. However, the approach in this paper
distinguishes devices based on hidden features which represent the
differences between turbines, allowing the entire dataset to be used
for model training. The augmentation of data also supports
enhancements in forecasting accuracy. Additionally, due to the
high randomness of the data, the performance of the statistic-
based model ARIMA is not satisfactory.

We selected Wind Turbine NO. 1 and uses a 1-h ahead
prediction to assess the short-term effectiveness of the forecasting
model. By comparing Figure 9 and Figure 10, two advantages of the

model trained with hidden features and the complete dataset can
be observed:

• Higher accuracy: The results shown in Figure 10 demonstrate
a stronger correlation between the orange line and the blue
line. This observation aligns with the model’s superior
performance over the traditional models in terms of
correlation (Corr) and determination coefficient (R2)
indicators.

• Higher certainty: Compared to Figure 9, the predicted values
in Figure 10 exhibit smaller short-term fluctuations.

It should be noted that, the measured values from time step 700 to
1600 in the graph are displayed as 0, which is actually a result of data set
incompleteness and filled with 0 instead of real measurements.

TABLE 3 Performance comparison between improved method and traditional method.

Model Params (Million) Metrics Horizon Count

6 12 24 48 96 144

ARIMA - MSE 0.8245 0.8252 0.8262 0.8283 0.8339 0.8398 0

MAE 0.7296 0.7295 0.7298 0.7300 0.7313 0.7332

Corr 0.0003 -1e-5 −0.0010 −0.0021 −0.0027 −0.0033

R2 0.0392 0.0556 0.0778 0.1137 0.1410 0.1470

Multi LSTM 6.8 MSE 0.2149 0.2983 0.4646 0.5730 0.6811 0.7489 2

MAE 0.3140 0.3753 0.4566 0.5513 0.6260 0.6421

Corr 0.8601 0.8000 0.6912 0.5196 0.3174 0.2688

R2 0.6382 0.5413 0.4314 0.2734 0.1556 0.1172

Single LSTM & 8 Hidden Features 0.104 MSE 0.1584 0.2572 0.4033 0.5953 0.6596 0.6703 23

MAE 0.2552 0.3313 0.4376 0.5428 0.5730 0.5981

Corr 0.8957 0.8284 0.7085 0.5120 0.3990 0.3322

R2 0.7819 0.6262 0.5834 0.3956 0.2708 0.2063

FIGURE 9
Forecasting performance of traditional method on wind
turbine #1.

FIGURE 10
Forecasting performance of the Single Model method with
8 Hidden Features on wind turbine #1.
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5.3 Performance evaluation on hidden
feature dimensions

The above experiment compared the performance between the
traditional method and the improved method that utilizes 8-
dimensional hidden features. We will further examine the impact
of additional dimensions of hidden features on the efficacy of the
forecasting model in this research.

There are similarities in the power generation patterns among
different wind turbines. Therefore, training the model using data from
other wind turbines can enhance its emphasis on the conversion pattern
between climate factors and power generation, thus reducing the risk of
overfitting. The experiment demonstrates that even when the dimension
of device representation vectors is 0, the forecasting performance of a
single model is still superior to the traditional method of assigning
independent models to each device. This implies that the negative
impact caused by the inability of the model to differentiate between
devices is smaller than the positive gain achieved through dataset
augmentation. This phenomenon verifies the similarity in power
generation patterns among wind turbine devices. In addition, the
advantages of the forecasting model are more significant when the
dimension of the device representation vector is higher. This
phenomenon confirms the existence of differences in the power
generation patterns among different devices. The information
contained in the device representation vector provides additional
features to the forecasting model, enabling more accurate predictions.

From Table 4, it can be observed that different dimensions of hidden
features exhibit varying gain effects on the model. Among them, the 8-
dimensional hidden features contribute the highest gain to themodel. It is

worth noting that Table 4 only explicitly compares the optimal
performance under different conditions, without considering the
negative impact of non-optimal attributes (non-bolded fields) on the
performance of the method. Therefore, in order to compare the relative
differences in model performance under different scenarios, we adopts
the comprehensive scoring criterion MSS, aiming to comprehensively
evaluate the methods.

As shown in Table 5, it can be observed that although the 12-
dimensional hidden feature model does not perform as well as the 8-
dimensional model in terms of the number of optimal score
quantity, its negative impact on non-optimal scores is less severe
compared to the 8-dimensional hidden feature model. This results in
a small difference in overall scores between the two models.

The above performance differs from the space embedding task
in natural language processing (NLP) tasks. In NLP tasks, word
vectors usually have higher dimensions (512–1024 dimensions),
while the dimensions of the hidden features of wind turbines are

TABLE 4 Comparative results of models with different dimensions of hidden features on four criteria.

Dimension Metrics Horizon Count

6 12 24 48 96 144

0 MSE 0.1641 0.2586 0.3899 0.6156 0.6622 0.7032 3

MAE 0.2581 0.3396 0.4253 0.5724 0.5906 0.6272

Corr 0.8935 0.8234 0.7175 0.4906 0.3794 0.2774

R2 0.7154 0.6597 0.5897 0.3892 0.2259 0.1770

4 MSE 0.1614 0.2652 0.3974 0.5935 0.7026 0.7091 2

MAE 0.2547 0.3390 0.4454 0.5534 0.5991 0.6178

Corr 0.8938 0.8186 0.7121 0.5166 0.3416 0.2631

R2 0.7622 0.7140 0.4774 0.4146 0.2737 0.1576

8 MSE 0.1584 0.2572 0.4033 0.5953 0.6596 0.6703 14

MAE 0.2552 0.3313 0.4376 0.5428 0.5730 0.5981

Corr 0.8957 0.8284 0.7085 0.5120 0.3990 0.3322

R2 0.7819 0.6262 0.5834 0.3996 0.2708 0.2063

12 MSE 0.1627 0.2645 0.3994 0.6017 0.6549 0.7102 5

MAE 0.2554 0.3430 0.4388 0.5437 0.5749 0.6162

Corr 0.8934 0.8188 0.7111 0.5300 0.4057 0.3016

R2 0.7380 0.6781 0.5473 0.4266 0.2783 0.2661

TABLE 5 Score table ofmodels with different dimensions of hidden features
under the MSS criterion.

Model MSS

Multi LSTM −1.69729642

Single LSTM & 0 Hidden Features 0.09489346

Single LSTM & 4 Hidden Features 0.14731688

Single LSTM & 8 Hidden Features 0.72910813

Single LSTM & 12 Hidden Features 0.72597795
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much lower than this range. 8-bit binary numbers can encode
256 entities, while the representation vectors generated by space
embedding technique exhibit excellent representational capacity.
Given that there are only 134 wind turbines, the number of hidden
features should not differ significantly from 8 ([log1342 ] + 1). The gain
of the model exhibited a turning point when the dimension of the
representation vector was 8. This indicates that there is a certain
degree of coupling between the static factors among wind turbines
and their power generation patterns, and the number of
independent influential factors is not substantial. The following
figure demonstrates the iterative process of inferring the 12-
dimensional representation vectors for wind turbines.

From Figure 11 and Figure 12, it can be observed that after being
initialized with a normal distribution, some representation vectors
exhibit the convergence of multiple features to the same point. This

phenomenon confirms the existence of certain coupling between
hidden static feature representations. Therefore, it can be concluded
that a 12-dimensional hidden feature is not the most compact
embedding representation for wind turbines. Excessive hidden
features not only increase computational burden, but may also
lead to overfitting of the prediction model. This paper argues
that in this task scenario of distributed wind farm power
generation forecasting, the number of hidden features should not
be excessive. The results of the experiment demonstrate the
effectiveness of static features in assisting forecasting, indicating
that detailed features that affect the target task can be inferred to a
certain extent without relying on specific expert knowledge and on-
site detail modeling. However, the correspondence and
representation effect between hidden features and real features in
the on-site environment still need further research.

The hyperparameters used in the forecasting model for the
experiment will be displayed in Table 6.

6 Conclusion

This paper investigates the problemofmulti-device power generation
forecasting in distributed power grid scenarios and proposes a
forecasting method that combines space embedding techniques from
the field of natural language processing. This method utilizes space
embedding techniques to uncover hidden static features of each power
generation device and uses these features as device identifiers. This
allows a single model to distinguish between devices and accurately
predict the power generation of multiple devices. The proposedmethod
is independent of experimental models and does not rely on specific
neural network architectures. It complements the improvements made
in neural network algorithms. The experiments have shown that the
proposed forecasting method, which integrates space embedding
technology, not only significantly reduces the number of model
parameters but also achieves higher prediction accuracy. The
experimental results also indicate that the gain of representation
vectors varies across different dimensions. The gain utility becomes
less apparent, When the dimension of device representation vector is
excessively large in the scenario described in this paper.

The proposed method in this paper focuses on using a single
model to perform forecasting tasks for devices within the entire
distributed power grid. However, there are several aspects that can
be improved in the future:

(1) This paper confirms the compatibility of LSTM and space
embedding technology. The subsequent investigation should
involve considering the use of variants of the Transformer
architecture to replace the classical LSTM model and verify
the compatibility of space embedding technology with
Transformer models in time series forecasting tasks.

(2) The representation vector of the wind turbine device is static
data and does not vary with the time series, which is different
from the temporal data. Currently, we concatenate the
representation vector with the time steps data directly. In
the future, we will consider using a more robust approach to
integrate the device representation vector with the
temporal data.

FIGURE 11
The 12-dimensional hidden features of Wind Turbine 6 converge
to 8 points.

FIGURE 12
The 12-dimensional hidden features of Wind Turbine
80 converge to 7 points.
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(3) The proposed prediction method integrates space
embedding technology without relying on specific
neural network architectures. Combining space
embedding technology with models specific to the
business scenario may lead to even better performance.
In future work, we consider incorporating convolutional
operations and attention mechanisms into the neural
network to further enhance the accuracy of
forecasting models.

Input:

H � h1 ,h2 , . . . ,h134{ }, hidden features Matrix, includes

hidden features of 134 turbines.

X � x1
1,x

1
2 , . . . ,x

1
K ,x

2
1 ,x

2
2, . . . ,x

2
K , . . . ,x

134
1 ,x134

2 , . . . ,x134
K{ },

Historical data of 134 wind turbines, each sequence

containing K time steps.

Y � y1
1,y

1
2 , . . . ,y

1
N ,y

2
1 ,y

2
2 , . . . ,y

2
N , . . . ,y

134
1 ,y134

2 , . . . ,y134
N{ }, Future

data of 134 wind turbines, each sequence containing N

time steps.

lr, the learning rate

Output: hidden features Matrix H.

1 for epoch in range (1, 10), do:

2 for i in range (1, 134), do:

3 input � concat(repeat(hi ,K, dim � 0),Xi , dim � 1)
4 ŷi = LSTM (input)
5 loss = MSELoss(ŷi ,yi)
6 loss.backward

7 LSTM.parameters = LSTM.parameters −
LSTM.parameters.grads × lr

8 hi = hi− hi.grad × lr

9 end for

10 end for

11 return H

Algorithm 1. Turbine Embedding.
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