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Editorial on the Research Topic

Integrating Visual SystemMechanisms, Computational Models and Algorithms/Technologies

The Research Topic on “Integrating Visual System Mechanisms, Computational Models and
Algorithms/Technologies” collects novel studies that display a strong synergy between three
entities: (1) the visual system from its various angles including physiological, psychophysical, and
perceptual, (2) computational models whether descriptive or predictive, and (3) vision inspired
algorithms and applications. The interaction between modeling and the various aspects of the
visual system is expressed in the reciprocal contributions between the two. On one hand, visual
mechanisms and neuronal units provide inspiration and basis for modeling approaches and
their computational units within, and on the other hand, modeling provides novel insights and
new understandings of the visual system mechanisms and its associated behaviors. Furthermore,
computational models, and the underlying visual mechanisms, provide a basis for developing
practical algorithms to perform image processing and image understanding.

The articles in this Research Topic present computational models of the visual system
ranging from neuronal mechanisms, through visual mechanisms, to visual perceptual behavior
and visual illusions. Modeling efforts take different computational approaches from building
blocks that are inspired by mechanisms of the visual system, to a more global Gestalt approach
that attempts to explain a phenomenon regardless of the underlying elements using functional,
statistical, or learning approaches. Other articles develop applications ranging from visual system
inspired measures such as image quality and image esthetics to applications such as classification
and segmentation.

Several studies in this issue, present computational models of the visual system at the neuronal
level, and some include feasible physiological components in the model. In Gonzalez and Tsotsos,
the authors suggest a computational model of attention based on the adaptation mechanisms and
selective tuning of the V4 neurons which is expressed in the neurons’ firing rate during attentional
tasks. Different computational models are tested, coinciding with different interpretations of the
attention mechanism: (a) enhancing responses due to attention or (b) suppressing irrelevant
signals. The authors follow a model of the second type and are able to predict the temporal profiles
of neurons’ firing rate, similar to those found electrophysiologically. Through their modeling, the
authors show that high level vision processes can also be explained by low-level processes, namely,
that selectively tuning a model of attention, can reprsoduce properties of neuron firing rates related
to attention. In another article Banerjee et al., the authors propose a computational model, based
on the extreme value theory, for the integration of two sensory modalities, namely, the olfactory
input and visual sensitivity of zebrafish. The authors show that the neural signals (pattern and rate
of neuronal firing) differ in their statistical fit when the signals are uni-modal (visual) or multi-
modal (visual + olfaction). They further showed this by developing a Machine Learning based
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classifier that was able to successfully distinguish between these
neural signals. This study forms a contribution to the intriguing
area of interactions between different sensory modalities.

Two additional articles deal with the chromatic properties
of the visual system as expressed in the retinal layer and
cortical layers. In Barkan and Spitzer, a computational model
is presented which suggests an explanation of the underlying
visual mechanisms for compensating chromatic aberrations. The
computational model takes into account the spatio-chromatic
properties of the color-coded cells in the retina while taking
into account the significance of the anatomical separation of
the Konio and Parvo chromatic pathways in the visual system.
Furthermore, the model predicts the enigmatic phenomenon of
S-cone pattern reported by Shevell and Monnier. In a review
article, by Patterson et al., the authors discuss the role of retinal
midget RGC cells and cortical double opponent cells in the
context of hue perception on one hand and spatial perception
on the other. The authors present hypotheses that in some form
are not in accord with those supported by some other models
including that of Barkan and Spitzer mentioned above. As usual
in Science, especially in neuroscience, conflicting results are
always an interesting source for promotion of discussion and
comparison of opposite/different ideas.

Another group of studies develop computational models in
order to assist in understanding specific vision mechanisms.
In Piu et al., the authors acquired experimental data and
then performed statistical analysis on the data to obtain a
representation of pupil size changes. They analyzed oscillatory
dynamics of the pupil at rest by extracting features from the
cross-recurrences of these oscillators as expressed in the power
spectrum. The authors state that their novel analysis approach
can form an adaptable diagnostic tool for identifying alertness
and/or pathological status and thus might assist in clinical
assessments of pathologies associated with the autonomous
nervous system. In Reynaud and Hess, the authors analyze
their previously measured dataset and assess the visual disparity
sensitivity of subjects across different spatial frequencies. The
computational factor in their study is the data analysis methods
in which they applied inter-correlations and factor analysis
on the data and found two spatial frequency channels for
disparity sensitivity: one tuned to high spatial frequencies and
one tuned to low spatial frequencies. The authors suggest that
this tuning of disparity channels could be important in computer
vision to design multi-scale stereo matching algorithms. In
Marić and Domijan, binary attention maps are modeled using a
recurrent competitive network with excitatory-inhibitory nodes.
The model reproduces top-down mechanisms of attentions that
enhance perceived saliency of low-level features. The model is
based on an extension of previously suggested Winner Take
All (WTA) choice models, and is inspired by neurological
components such as dendritic non-linearity that act on the
excitatory units and modulate synaptic transmission. The
model integrates a large set of data in visual attention and
successfully predicts several attentional effects including the
ability to integrate information across space and time to form
the intersection or union of two maps that are defined by
different features.

Finally, a selection of articles uses computational models to
predict and explain high level visual tasks, perceptual behavior,
and visual phenomena. Some of these studies experiment with
ambiguous stimuli and suggest explanations of visual system
mechanisms that contribute to the stabilization of the visually
perceived display content. The article Cohen-Duwek and
Spitzer, models the Filling-In phenomenon and, specifically,
the alternating effects in which the background of a stimulus
may lead to two different types of perceived color: original or
complementary color. The model successfully predicts both
effects through a heat diffusion function that is triggered by
both the chromatic edges of the stimulus and the achromatic
remaining contours, in contrast to previous studies that use
the edges as blockers for diffusion and not as triggers. In
another article Cohen-Duwek and Spitzer, a computational
model is presented that predicts spatial Filling-In effects such
as the Watercolor illusion and the Cornsweet effects, that
have several chromatic edges. The model is based on the heat
diffusion equation where the scene gradients serve as heat
sources. The model successfully predicts both the assimilative
and non-assimilative watercolor effects, as well as additional
Filling-In visual effects. The study thus supports the theory that
a shared visual mechanism is responsible (or partly responsible)
for the vast variety of the “conflicting” filling-in phenomena.
Two articles studied motion integration using bi-stable moving
visual stimuli that can induce two different percepts (e.g.,
coherent and transparent). In Li et al., a bi-stable moving visual
stimuli of line segments was presented to participants and their
individual biases were modeled using a Bayesian modeling
approach indicating a preference for one of the two possible
interpretations of the scene. The authors found that increasing
density shows increasing bias in observers and that this effect
is greater in regular patterns than in irregular patterns. The
authors tested a number of Bayesian models and show that
a motion segregation prior best explains the interaction of
density and regularity observed in the collected experimental
data. The authors suggest that bias is used by observers to
stabilize visual perception of the world. In the article Liu et al.,
motion integration in normal observers was compared to
integration by observers with Anisometropic Amblyopia, a
neurodevelopmental disorder of the visual system. They showed
that when the stimuli contrast is reduced, the control observers
exhibit a change in percept patterns, but amblyopic eyes do not.
Using Baysian modeling, the authors show that indeed contrast
affects motion integration. Considering this together with the
modeling outcomes, the authors suggest that there is a different
motion coding mechanism in the amblyopic visual system.
Finally, in Yankelovich and Spitzer, Boundary Completion was
modeled, using a functional optimization approach in which
there is no need to extract different image features. The model
evaluates several possible interpretations of the input and
assigns a cost to each. The interpretation with minimal cost is
the model’s output. The model successfully predicts real and
illusory contours. Additionally, for ambiguous stimulus, the
model is able to find multiple possible image interpretations,
which are ranked according to the probability they
are perceived.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 January 2020 | Volume 7 | Article 4836

https://doi.org/10.3389/fbioe.2018.00012
https://doi.org/10.3389/fnins.2019.00865
https://doi.org/10.3389/fbioe.2018.00012
https://doi.org/10.3389/fnins.2019.00407
https://doi.org/10.3389/fncom.2017.00063
https://doi.org/10.3389/fpsyg.2018.00417
https://doi.org/10.3389/fnins.2019.00225
https://doi.org/10.3389/fnins.2018.00559
https://doi.org/10.3389/fnins.2019.00523
https://doi.org/10.3389/fnins.2018.00391
https://doi.org/10.3389/fncom.2018.00106
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Spitzer et al. Visual System, Computational Models, Algorithms

A different group of papers in this special issue, propose
practical algorithms and applications that were inspired by
elements of the Human Visual System, or include components
that do so. In Tsitiridis et al., the authors attempt to develop a
system to detect “Presentation Attacks” where a person’s image
is illegally reproduced and used to abuse a biometric system.
The authors develop a biologically-inspired presentation attack
detection model, based on features that mimic neurobiological
processes in the human visual system. Machine learning tools
are exploited to successfully predict whether incoming data
is a spoofing-attack or is a legitimate image. In the article
Paulun et al., a new system for dynamic visual recognition is
introduced that combines bio-inspired sensor and hardware with
a brain-like spiking neural network that mimics the layered
structure and the retinotopic organization of the retina and visual
cortex. Following training, the network showed a very high object
classification accuracy. Finally, two papers in this group deal
with image quality and esthetics. In Martinez-Garcia et al., the
authors address the important question of biased or imbalanced
datasets and their effect on quantitative modeling of the visual
system. The authors show this in a specific case of layered retina-
cortex models that learn to predict subjective quality ratings of
images. They show that the database under-represents certain
stimuli (such as cross-masking between different frequencies)
and thus the model trained on this database does not generalize
well. The authors show that by augmenting the database with
synthetic examples, the model shows significant improvement
in performance and generalization. The authors impress that
naturalistic databases should be combined with artificial stimuli
to improve model performance.

In the comprehensive review Brachmann and Redies, the
authors describe the advances achieved by the Vision Science
and the Computer Vision communities in the parallel fields
of experimental visual aesthetics and computational visual
aesthetics. The paper highlights the similarities between the
types of features exploited for these tasks by both communities
and the similarities between the quantitative tools used to
analyze and define these features. The review covers models and
algorithms that supply prediction of ratings, style, and artist
identification as well as computational methods in art history of
painting and photograph images. The review covers methods at
both sensorial (low-level bottom-up) and cognitive levels (high-
levels), including modern methods of deep learning. In addition,
the review summarizes results from the field of experimental
aesthetics and deal with several specific image properties. The
authors show that a close interaction between computational
and experimental approaches are fundamental to answering
difficult questions.

In this special issue, we have collected a variety of articles
that look at the intriguing cycle of: visual system, computational
models, and applications. The studies show how computational

models can explain the vision system from the neuronal level
to the behavioral level providing understanding, and novel
insights. On the other hand, the visual system provides ideas
and inspiration for the computational units and driving rules
of the models. The interaction cycle continues with the design
of practical algorithms and applications in the field of computer
vision, that arise from the computational models and the ensuing
understanding of the visual system. Some of the papers in
this collection, even succeeded in achieving algorithms that
perform on par with state-of-the-art capabilities, due to the
adoption of ideas from the visual systems. Other papers provide
inspiration for future possible algorithms to accomplish different
visual tasks.

Within this cycle of mutual contributions, we can learn some
intriguing ideas and raise interesting questions.

A recurring notion is the idea of the visual system providing
educated guesses on the visual scene, based on the visual
input as well as on priors, and internal representations and
computations. Multi-stable inputs in the 3D world, occluded and
ambiguous scenes, allow several interpretations. However, these
are processed by the visual system that considers the possible
interpretations and produces an “educated guess” as the best
explanation of the visual scene. Such a mechanism tends to lend
stability and consistency to our visual world.

An interesting insight that has been previously established, is
the importance of visual illusions as a basis for research on the
visual system. As several of the articles in this issue have shown,
illusions serve to mirror “errors” and “biases” of the visual system
as well as provide a window into the visual system’s mechanics via
visual perception.

Finally, we note that several of the articles introduce the
notion of aesthetics of the visual scene and raise the point
that beyond a comprehensive review, a small step has been
taken toward the famous philosophical-psychophysical problem
also regarding to visual aesthetics through the discussion of
originality and creativity.
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Frequency Channels Underlying
Disparity Sensitivity by Factor
Analysis of Population Data

Alexandre Reynaud* and Robert F. Hess
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It has been suggested that at least twomechanismsmediate disparity processing, one for

coarse and one for fine disparities. Here we analyze individual differences in our previously

measured normative dataset on the disparity sensitivity as a function of spatial frequency

of 61 observers to assess the tuning of the spatial frequency channels underlying disparity

sensitivity for oblique corrugations (Reynaud et al., 2015). Inter-correlations and factor

analysis of the population data revealed two spatial frequency channels for disparity

sensitivity: one tuned to high spatial frequencies and one tuned to low spatial frequencies.

Our results confirm that disparity is encoded by spatial frequency channels of different

sensitivities tuned to different ranges of corrugation frequencies.

Keywords: disparity sensitivity, qDSF, binocular vision, stereopsis, individual differences, factor analysis

INTRODUCTION

The visual system utilizes the displacement or disparity in the two images seen by the two eyes
to compute the depth of objects. In terms of the underlying mechanisms, Pulliam (1982) first
suggested that there were two global disparity mechanisms, one tuned to low spatial frequencies
involving coarse disparities and one tuned to high spatial frequencies involving fine disparities.
Yang and Blake (1991) also argued for only two spatial frequency channels for disparity processing
and their model was later refined by Tyler et al. (1994). Additional evidence for two spatial
frequency channels subserving disparity processing comes from the work of Norcia et al. (1985);
Wilcox and Allison (2009); Witz et al. (2014). However, other studies suggest a multiple channels
model (Julesz and Miller, 1975; Glennerster and Parker, 1997; Serrano-Pedraza et al., 2013).

Assessing the tuning of these channels has been of great importance for mechanistic models of
stereo computer vision (Marr and Poggio, 1979; Nishihara, 1984; Quam, 1987; Rohaly and Wilson,
1993). These can be used to map different scales of matching in hierarchical structures (Nishihara,
1984; Quam, 1987) with, for instance, coarse-to-fine constraints (Rohaly and Wilson, 1993). In
robotic vision, these tuning properties can be used to calibrate cameras (Tsai, 1986) and vergence
algorithms (Piater et al., 1999; Lonini et al., 2013).

While most studies have used masking paradigms to characterize spatial frequency channels for
stereopsis (Julesz and Miller, 1975; Yang and Blake, 1991; Shioiri et al., 1994; Tyler et al., 1994;
Glennerster and Parker, 1997; Prince et al., 1998; Serrano-Pedraza et al., 2013), another possibility
comes from factor analysis of population data (Read et al., 2016). The individual differences are
then treated as systematic and meaningful, reflecting the true variability of underlying mechanisms
rather than random noise (Peterzell, 2016). Identifying the sources of variability within the
population will inform on the common processing mechanisms. Therefore, spatial and temporal
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frequency channels can be characterized by analyzing individual
differences and correlations. The rationale is that the correlation
in detection thresholds for pairs of stimuli should be higher
for stimuli detected by the same mechanism than for stimuli
detected by different mechanisms (Owsley et al., 1983; Sekuler
et al., 1984; Billock and Harding, 1996). Hence by looking at the
inter-correlations between individuals’ sensitivity at neighboring
frequencies, one is able to determine the presence of frequency
channels (Mayer et al., 1995; Billock and Harding, 1996; Peterzell
and Teller, 2000; Simpson and McFadden, 2005; Rosli et al.,
2009). Therefore, a factor analysis of the dataset consisting of a
principal component analysis (PCA) and a rotation of the factors
in order to determine a simple structure can characterize the
tuning curves of the channels (Simpson and McFadden, 2005).
Using factor analytics within the population sensitivities Peterzell
and Teller (1996, 2000) assessed spatial frequency channels
tuning for luminance and color contrast sensitivities. Here we
use similar methods to analyze individual differences in our
previously measured normative dataset on disparity sensitivity
as a function of spatial frequency for oblique corrugations of 61
observers (Figure 1; Reynaud et al., 2015) in order to assess the
spatial frequency tuning of the underlying disparity channels.

METHODS

In this paper, we analyze the normative dataset for the disparity
sensitivity as a function of spatial frequency of 61 observers (25
males, 36 females, mean age 26 years, ±5.7 SD, with normal or
corrected to normal-visual acuity) we measured previously using
the quick Disparity Sensitivity Function (qDSF, Reynaud et al.,
2015), a method adapted from the quick Contrast Sensitivity
Function (qCSF, Lesmes et al., 2010).

The stimuli used in this dataset were stereograms composed
of spatially filtered 2-D fractal noise carriers with oblique (45◦

or 135◦) sinusoidal corrugations at 0.24, 0.33, 0.46, 0.64, 0.89,
1.23, 1.72, and 2.39 c/d. The spatial frequency of the carrier was
4 times the spatial frequency of the corrugation (see Reynaud
et al., 2015). Disparity was modulated and the subjects’ task
was to identify the orientation of the corrugation in depth (45◦

or 135◦) in a single-interval identification task to measure the
disparity detection threshold. Stimuli were displayed on a passive
wide 23′′ 3D-Ready LED monitor ViewSonic V3D231, viewed
with polarized 3D glasses at 70 cm, in a dim-lit room. Measured
individual disparity sensitivity functions as a function of spatial
frequency and their average are reproduced in Figure 1. Analysis
was performed with Matlab R2016a (The MathWorks). The
hierarchical clustering analysis was specifically performed with
the statistics and machine learning toolboxes functions.

RESULTS

The average disparity sensitivity peaks are in the high spatial
frequency range, around 1.2 c/d. However, we can observe a
large variability in the individual sensitivities: some showing a
low-pass, band-pass or high-pass profiles (Figure 1). Hence a
factor analysis of these sensitivities might provide insight into the
common mechanisms mediating them.

FIGURE 1 | Normative dataset. Disparity sensitivity as a function of spatial

frequency is reported for 61 individual observers (thin color lines) and their

average (thick black line). Sketches at the top illustrate the stimulus at different

corrugations frequencies. Adapted with permission from Reynaud et al. (2015).

Figure 2 represents the scatterplot matrix of inter-correlations
(Peterzell, 2016) for log-disparity sensitivity of all 61 observers.
In each cell within the figure, the scatterplot represent the inter-
correlation of the log-disparity sensitivity of all observers at one
frequency (frequency indicated on the diagonal in the same
row) as a function of their sensitivity at another frequency
(frequency indicated on the diagonal in the same column) are
depicted. For instance, in the bottom-left cell, the log-disparity
sensitivity of each observer at 0.24 c/d is plotted pairwise against
its log-disparity sensitivity at 2.39 c/d. Then the coefficient of
determination R2 between the two frequencies is computed.
Two regions of high inter-correlations (R2 > 0.5) at low spatial
frequency (green) and high spatial frequency (blue) appear along
the diagonal.

These two regions are supported by the hierarchical clustering
analysis of the log-disparity sensitivity at all spatial frequencies.
The pairwise distance between observations was calculated as
one minus the sample linear correlation between observations
and the hierarchical cluster tree was computed with the average
distance. The resulting dendrogram is represented at the right of
the inter-correlation matrix, with each spatial frequency being
the leaves. Nevertheless, we can note that different distance
measures and different linkage procedures can result in relatively
different final clusters, some grouping the 3 lowest and 5 highest
frequencies for instance. The two cluster branches whose linkage
is less than the default 70% are represented in blue and green.
As for the first qualitative approach, these two groups suggest
the presence of two spatial frequency channels for disparity
sensitivity, which might correspond to the coarse and fine
disparity channels.
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FIGURE 2 | Scatterplot matrix of inter-correlations. In each cell, the scatterplot represent the inter-correlation of the log-disparity sensitivity (arbitrary units) of all 61

observer at one frequency (frequency indicated on the diagonal in the same row) as a function of their sensitivity at another frequency (frequency indicated on the

diagonal in the same column). The shade of the background in each cell indicates the value of the coefficient of determination R2 between the two frequencies (from

black = 0 to white = 1). Black datapoints indicate R2 > 0.5 and white datapoints R2 < 0.5. Blue and green squares highlight regions of high inter-correlations. On the

right is represented the classification dendrogram of the spatial frequencies. The pairwise distance was calculated as one minus the sample linear correlation between

observations and the hierarchical cluster tree was computed with the average distance.

In order to determine the precise tuning of these channels,
we performed a factor analysis on the dataset. If we decompose
the full dataset with a principal component analysis (PCA), we
obtain the components shown in Figure 3A, with a percentage
of explained variance (calculated from the eigenvalues of the
PCA) associated with each component reported in the scree plot
Figure 3B.

The first component has the shape of the average sensitivity
(see Figure 1). The two first components (blue and green) explain
more than 91% of the variance and the elbow of the scree plot
occurs between the second and third components (Figure 3B).
As we previously identified two regions of high inter-correlations
and that this percentage of explained variance is considered
enough to accurately describe the data (Simpson and McFadden,
2005), these two principal components were picked to describe
the underlying disparity sensitivity channels. In order to make
sense of them, these two principal components, or factors, were
then rotated using a varimax orthogonal rotation to obtain
a simple structure accounting for the channel tuning curves
(Kaiser, 1958; Peterzell and Teller, 2000; Simpson andMcFadden,
2005; Peterzell, 2016). These factors-tuning curves are reported
in Figure 3C. The first factor peaks at the highest measured

frequency 2.4 c/d and the second peaks around 0.65 c/d.
They characterize the high and low spatial frequency channels
identified by the inter-correlation analysis (respectively blue and
green regions in Figure 2).

We wanted to test if the two channels we identified could
in fact account for different classes within the population. In
order to estimate the weights β of each of these factors in each
individual sensitivity, we projected our dataset onto the basis
defined by the two identified factors. The best linear unbiased
estimator of β is obtained using the Moore-Penrose pseudo
inverse X+ (equation 1):

β = X+y (1)

where y is the matrix of all individual sensitivities, X+ is the
Moore-Penrose pseudo inverse of the new basis matrix X whose
two columns represent the two factors and β is a two-rowsmatrix
in wihich each column contains the pair of weights associated to
the two factors estimated for each subject (Friston et al., 1995;
Woolrich et al., 2004; Reynaud et al., 2011).

The sensitivities ŷ reconstructed solely from the linear
combination of these two factors are plotted in Figure 4A
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FIGURE 3 | Factor analysis. (A) Principal components of the dataset as a function of spatial frequency. Their order is indicated by colors in (B). (B) Scree plot of the

variance explained by each component of the principal component analysis (PCA) in (A). (C) First two components rotated using a varimax rotation.

FIGURE 4 | Channels weights. (A) Individual sensitivities replotted using only the two channels factors. Same color-code as in Figure 1. (B) Scatterplot of the weights

of the first factor β1 vs. the weights of the second factor β2 for all observers. Dashed line indicates linear regression on the log-values of the weights.

(Equation 2):

ŷ = Xβ (2)

We can see that they overall faithfully reproduce the original
sensitivities except for the very low-pass profiles whose peaks
shift to the right.

To determine whether these channels can account for different
classes within the population, we report a scatterplot of the
weights β1 of the first factor vs. the weights β2 of the second factor
in Figure 4B for all observers. The mean weights for the first
and second factor are, respectively, 1.76 and 1.48. As expected
from the explained variance (Figure 3B), the weight of the first
factor—the high-frequency channel—is greater than the weight
of the second—the low frequency channel—in 70% of the cases.
The distribution of these weights appears homogeneous and no
clusters are revealed. However, the weights of the first factor seem
to be relatively greater than the weights of the second in the high
values range whereas it seems to be slightly the opposite in the

low values range. This is further revealed by the slope of the linear
regression between the log-values of the weights 0.53, which is
inferior to 1 (dashed line). In fact, the correlation between the
weight is very high (coefficient of determination R2 = 0.51, p <

0.0001). Altogether, these observations suggest that the weight of
the low and high spatial frequency channels co-vary: when the
sensitivity is high for the low frequency channel, it is high for
the high frequency channel too. But the high frequency channel
contributes relatively more when the sensitivity is high and
the low-frequency channel contributes relatively more when the
sensitivity is low, in accordance with our previous observations
(Reynaud et al., 2015).

DISCUSSION

The qDSF method assumes the sensitivity function follows
the truncated log-parabola model and hence has a bell shape
with a constant part, an increase to a peak and a drop-off
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(Watson and Robson, 1981; Lesmes et al., 2010). We previously
showed that this model can accurately represent the sensitivity
function compared to non-constrained methods (Reynaud et al.,
2015) and documents large differences in sensitivities within
the population (see Figure 1). For different individuals, this
function can peak at very different frequencies and can show low-
pass, band-pass or high-pass profiles. The resultant variability
in sensitivity across spatial frequency provides a rich dataset
for inter-correlation analyses (Peterzell et al., 1995; Peterzell,
2016).

Because two regions of inter correlations were identified
among the population in Figure 1 and because 2 components
accounted for more than 91% of the variance, our data could
accurately be described by just 2 channels. However, the criterion
to select the number of meaningful components in a PCA may
vary. Popular selection methods such as a scree plot (Jackson,
1993) or the Random average under permutation analysis will
indeed determine 2 components while some other methods will
give less (the broken stick method gives 1 component) or more
(the parallel analysis gives barely 3, the kaiser Guttman criterion
which recommends eigenvalues >1 gives 3 too). Some methods
such as the Bartlett tests even recommends all the 8 components
which would not reduce the dimensionality of the data (Bartlett,
1950). A complete description of these methods can be found in
Peres-Neto et al. (2005).

Hence, we cannot completely rule out the possibility of a
single-channel or multiple-channels hypothesis. Serrano-Pedraza
and Read reported a single channel mechanism specific to
vertical corrugations (Serrano-Pedraza and Read, 2010, though
see Witz et al., 2014). However, the large difference we can
observe between the lowpass profile of sensitivity for some
observers compared to the bandpass of other ones would
indicate that more than one channel are involved. Several studies
suggested a multiple-channels mechanism (Julesz and Miller,
1975; Schumer and Ganz, 1979; Cobo-Lewis and Yeh, 1994;
Glennerster and Parker, 1997; Serrano-Pedraza et al., 2013) with
a broad channel tuning of ∼2–3 octaves, comparable to our
observations (Schumer and Ganz, 1979; Cobo-Lewis and Yeh,
1994). It is then possible that the 2 channels we observe are part
of a multiple-channels system covering a wider range of spatial
frequencies or could also overlap with intermediate channels
continuously covering the spatial frequency range. Yang and
Blake (1991) also observed two spatial frequency channels for
disparity sensitivity using a masking paradigm. They described
one channel centered around 3 c/d which could correspond to
the high spatial frequency channel we observed and one centered
around 5 c/d. However, their study and the present study didn’t
measure the same spatial frequency range which might explain
why they didn’t identify our low spatial frequency channel and
why we didn’t observe their high one.

The results of the present study suggests that there are
two channels (Figure 4B), a low frequency channel that
contributes to the detection of low corrugation frequencies
and a more sensitive high frequency channel that contributes
to the detection of high corrugation frequencies. We didn’t
observe any dichotomy based on these two channels within
our population (Wilcox and Allison, 2009) which confirms

the observations of most other population studies (Coutant
and Westheimer, 1993; Bohr and Read, 2013; Bosten et al.,
2015).

The implications of the assessment of the tuning of these
disparity channels could be important in computer vision to
design behaviorally relevant stereo matching algorithms. For
instance, it could be used to tune the different layers of multi-
scale algorithms (Rohaly and Wilson, 1993) or provide fine
and coarse scales for algorithms processing in center and
periphery, respectively, as stereopsis could be mediated by
different mechanisms in central and peripheral vision (Wardle
et al., 2012; Witz and Hess, 2013).

CONCLUSION

The analysis of the inter-correlations in the disparity sensitivity
as a function of the spatial frequency, revealed two disparity
channels. With a factor analysis of the population data, we
determined that the first channel is tuned to high spatial
frequencies (peaks at 2.4 c/d) and the second is tuned
to low spatial frequencies (peaks at 0.65 c/d). We also
observed that these two channels are well correlated with
each other. Our results confirm that disparity is encoded
by multiple spatial frequency channels that are of different
sensitivities and subserve different ranges of corrugation
frequencies.
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Aesthetics has been the subject of long-standing debates by philosophers and

psychologists alike. In psychology, it is generally agreed that aesthetic experience results

from an interaction between perception, cognition, and emotion. By experimental means,

this triad has been studied in the field of experimental aesthetics, which aims to gain a

better understanding of how aesthetic experience relates to fundamental principles of

human visual perception and brain processes. Recently, researchers in computer vision

have also gained interest in the topic, giving rise to the field of computational aesthetics.

With computing hardware and methodology developing at a high pace, the modeling of

perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we

present an overview of recent developments in computational aesthetics and how they

relate to experimental studies. In the first part, we cover topics such as the prediction of

ratings, style and artist identification as well as computational methods in art history, such

as the detection of influences among artists or forgeries. We also describe currently used

computational algorithms, such as classifiers and deep neural networks. In the second

part, we summarize results from the field of experimental aesthetics and cover several

isolated image properties that are believed to have a effect on the aesthetic appeal of

visual stimuli. Their relation to each other and to findings from computational aesthetics

are discussed. Moreover, we compare the strategies in the two fields of research and

suggest that both fields would greatly profit from a joined research effort. We hope to

encourage researchers from both disciplines to work more closely together in order to

understand visual aesthetics from an integrated point of view.

Keywords: computational aesthetics, experimental aesthetics, visual preference, art history, artist identification,

style identification, image features, statistical image properties

1. INTRODUCTION

Dating back more than two thousand years ago, aesthetics has been the subject of debates by
philosophers and other scholars alike. Defined by the Oxford Dictionary as “the philosophy of the
beautiful or of art,” “a system of principles for the appreciation of the beautiful,” and “the distinctive
underlying principles of a work of art or a genre” (OED, 2017), aesthetics represents a field of
interest that has attracted researchers from diverse scientific disciplines, also outside of philosophy.
In 1876, the founder of experimental aesthetics, Gustav Fechner, published his seminal book
entitled “Vorschule der Ästhetik” (Fechner, 1876). He believed that the aesthetic appeal of physical
objects manifests itself in stimulus properties that can be measured in an objective (formalistic)
way. Specifically, he attempted to show that rectangles with an aspect ratio equal to the golden ratio
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are more appealing to human observers than rectangles having
other aspect ratios. Researcher have later raised concerns
about the normative role in rectangular preferences (Green,
1995; McManus et al., 2010). Nevertheless, Fechner’s scientific
(objective) view of aesthetics provided the basis for the newly
emerging field of empirical aesthetics. In this field, hypotheses
regarding the perceived beauty of images, paintings or even
every-day objects are proposed and tested experimentally for
their validity. This stimulus-driven approach, called by Fechner
aesthetics from below, was different from the aesthetics that was
prevalent in Fechner’s time and derived aesthetic principles from
superordinate philosophical concepts (aesthetics from above)
(Cupchik, 1986). Fechner is also credited for conceiving the
field of psychopysics, which relates human perception to well-
defined physical properties of stimuli. By applying this approach
to aesthetics, he attempted to relate physical image properties to
aesthetic perception in humans. The area of research that has
taken up this idea in modern times is experimental aesthetics, a
subfield of psychology.

Another discipline of natural science that studies aesthetics is
neuroaesthetics, a subfield of brain research. In this field, modern
imaging techniques, such as functional magnetic resonance
imaging (fMRI), enable researcher to study the activation of brain
regions when human observers view aesthetic stimuli (Cela-
Conde et al., 2011; Chatterjee and Vartanian, 2014). This type
of research has lead to a better understanding of what neural
networks are involved in the human brain when we have an
aesthetic experience. Research in neuroaesthetics is beyond the
scope of the present review.

In recent years, aesthetics has also been studied using
computational methods. In the field of computer science,
computational aesthetics, a subfield of computer vision, has
entered the field of aesthetics. In this area, there have been a
variety of different studies on the aesthetics in digital images, for
example, using digital reproductions of paintings. The birth of
computational aesthetics is often attributed to Birkhoff’s book
“Aesthetic Measure” (Birkhoff, 1933), although the book does
not mention the term itself (for an overview of the evolution
of the term, see Greenfield, 2005). In a very mathematical way,
Birkhoff proposed a formula for an aesthetic measure M, which
is a function of O, order or reward by a positive tone of feeling,
and C, complexity or a feeling of effort of attention. Stating that
reward should be proportional to effort, Birkhoff concludes that
M = O/C best describes their relation.

A definition of computational aesthetics is given by Hoenig
(2005), who describes it as “[...] the research of computational
methods that can make applicable aesthetic decision in a similar
fashion as humans can.” To Hoenig, this definition emphasizes
two major aspects: First, the use of computational methods,
and second, their applicability to aesthetic decision making.
More precisely, Galanter (2012) discusses how computational
aesthetics is concerned with both, “the creation and evaluation
of art using computers.” He argues that the creation of art
necessarily requires evaluation and gives the example of an artist,
who, while learning about aesthetics and gathering experience,
evaluates art created by others. When creating artworks himself,
micro-evaluations help the artist guide his own creative process.

Upon finishing his creation, the artist gains new insights about his
art in a final evaluation of the created piece. Given the importance
of the evaluation process, we will focus on it in the present review.
As pointed out by Stork (2009a), the computational analysis of
paintings has several advantages compared to an analysis carried
out by human experts. For example, a computational analysis can
pick up very subtle relationships that may escape the attention
by human observers; moreover, computational methods are
objective in nature and are potentially non-exhaustive in the
amount of detail analyzed (e.g., every single brushstroke in a
painting).

The aim of the present review is to provide an overview of
recent developments in the field of computational aesthetics and
to point out its potential relevance for research in experimental
aesthetics and vice versa. Our goal is to boost the awareness
of researchers in experimental aesthetics for the wealth of data
that computational aesthetics has generated in recent years. We
would also like to inform scientists in computational aesthetics
about some basic concepts and results from experimental
aesthetics. Our review thus outlines a possible link between
research on the objective (physical) properties of visual stimuli
and experimental studies that take into account the subjective
responses of humans to aesthetic stimuli, as originally proposed
by Fechner. Specifically, we focus on the evaluation of visual
images (photographs or digitally reproduced artworks) and
the analysis of image properties. Important areas of research
will be referenced and exemplary works will be presented,
without striving for completeness. Topics include the prediction
of ratings of photographs and paintings, the classification of
images regarding their artist or style, computational methods for
problems in art history, and, finally, the investigation of statistical
properties of aesthetically pleasing images and artworks.

2. COMPUTATIONAL AESTHETICS:

ALGORITHMS AND APPLICATIONS

Computational aesthetics is approached from different points of
view. All articles reviewed here somehow deal with aesthetics
in the form of photography and paintings and are motivated
predominantly by producing applications and testing or
improving algorithms. Accordingly, one of the tasks that is often
pursued in computational aesthetics is to develop algorithms
that allow to predict aesthetic ratings of photographs. Such
algorithms have direct applications. For example, in online photo
communities (for example Flickr, Photo.net, etc.), they can be
used to select photographs of high aesthetic quality and discard
snapshots that users would rate low. On a more commercial side,
such systems are used for retrieving and licensing high-quality
photographs from the internet for their use as stock photographs.
Another possible application is to install such algorithms in
industrial cameras and smartphones, which identify high-quality
images in the split of a second. As we will show in the present
article, there has been a tremendous success in building such
systems.

The prediction of ratings is just one possible application
among many, where computers can make decisions regarding
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aesthetics. Computational methods have also been successfully
applied to problems in art history, such as content analysis of
paintings, forgery detection, or detection of a painter’s influence.
These applications will also be reviewed in the following sections.

2.1. Prediction of Ratings
One major trend in computational aesthetics is to predict ratings
of image quality or aesthetic appeal. Possible applications of
this technology are improved cameras, which automatically
select the most appealing photos among many, optimization of
advertisements for their aesthetic value, or even talent scouting in
photo-sharing communities. In the early days of computational
aesthetics, researcher followed the then popular practice to design
features explicitly for a given task. In order to predict the aesthetic
appeal of a given image, researchers determined in how far
different photographic principles, like composition according to
the rule of thirds or depth of field, were followed in images.
They quantified these principles by expressing them numerically,
either as binary or continuous values, called features. Features
can be either local, describing only pixels or patches and their
immediate neighborhood, or they can be global and describe
properties of the image as a whole. Global features seem especially
suitable to describe artistic photographs or artworks because
concepts such as artistic composition refer to the relation
between pictorial elements across the image. Another difference
can be made concerning the level of abstraction: Low-level
features describe basic features, such as colors and edges, while
high-level features can describe more abstract image content.
The features can then be used to train a classifier on a dataset
of images so that it can learn to predict ratings given by
humans. This goal is achieved by mathematically describing the
relation between the subjective scores and the feature set. Popular
choices for classifiers are, for example, Bayes classifiers, Decision
Trees, or Support Vector Machines (SVMs). This approach will
be presented in more detail in section 2.1.1. In recent years,
computational aesthetics has gone from designing features by
hand to using generic features that have been developed for other
purposes in computer vision. This development has reached a
pinnacle with the development and widespread use of Deep
Neural Networks. Approaches using generic features will be
discussed in section 2.1.2.

2.1.1. Hand-Crafted Image Features
One of the first attempts to measure aesthetics in an image
was published by Tong et al. (2004), who proposed a method
to distinguish between photographs taken by professional
photographers and photographs taken by non-expert (home)
users. They used a set of low-level features that describe blur,
contrast, colorfulness and saliency, and combined it with general
purpose low-level features that capture texture, shape and energy
in the frequency spectrum, by using difference-edge histograms.
In total, they proposed 21 different features which added up to
846 dimensions. After reducing the dimensionality, they reported
classification results comparing Boosting, an SVM and a Bayesian
classifier, which performed best.

Using another set of low-level features, Datta et al. (2006) build
a classifier for distinguishing images of high aesthetic appeal from

other images, as rated by the community of the popular photo-
sharing website Photo.net. Overall, the authors collected 3,581
different images and split them into two classes according to their
aesthetic rating by the users of the site (low and high rating).
They explicitly stated that their goal was not to build the best-
performing classifier, but rather to be able to draw conclusions
from the best performing features. Their choice of features was
based on common intuition, rules of thumb in photography and
trends that they observed for the ratings of the collected images.
In total, they proposed a set of 56 different features, containing
basic ones, such as colorfulness, saturation, hue, size and aspect
ratio, as well as adherence to the rule of thirds. The features were
selected as follows: First, the authors used a one-dimensional
SVM to find the features with the most discriminative power and
selected the top 30. Starting with an empty features set, they then
iteratively added those features that improved the classification
the most. As a result, they found that average hue, average pixel
intensity as well as a saturation-based rule of thirds measure
contributed the most to the aesthetic value of an image, as rated
by human observers.

Ke et al. (2006) designed a system to distinguish between high-
quality professional photographs and low-quality snapshots.
They reference the work of Tong et al. (2004) but criticize their
black-box approach, which prevents them from gaining any
insight into why some photos are better than others, although
the system by Tong and colleagues performed well for the task.
Ke et al. (2006) therefore chose an approach similar to the
one by Datta et al. (2006) and designed a set of features that
capture image quality. They based their choice of the features
on interviews conducted with photographers. Their feature set
contained the spatial distribution of edges, color distribution,
hue count and blur as well as contrast and brightness. For
classification, they used a naive Bayes classifier and tested their
system on images that were downloaded from a photo contest
website. The blur feature turned out to be themost discriminative
metric.

Luo and Tang (2008) extracted very simple features that
captured lighting, simplicity, composition or color harmony,
based on the subject region and the background of an image.
They reported an improvement of classification upon Datta et al.
(2006) and Ke et al. (2006) and contributed this success to the
distinction of foreground and background, while the previous
methods computed their features on the image as a whole.

Besides focusing on low-level features as provided by Ke
et al. (2006) and Dhar et al. (2011) also integrate high-level
attributes in their system in order to predict aesthetic value and
interestingness. According to the authors, high-level attributes
define characteristics of images as humans would describe them,
and can be classified into compositional attributes (like the rule
of thirds), content attributes (like the presence of people) and
sky illumination attributes. Dhar et al. (2011) reported improved
performance compared to the approach by Ke et al. (2006).

Although the general focus of aesthetic quality assessment
in computational aesthetics is on the prediction of ratings of
photographs, a few researchers have also proposed methods for
quality assessment of paintings. Li and Chen (2009), for example,
propose a total of 40 features that capture color, brightness and
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compositional characteristics of a paintings. Using these features,
they use a Bayes classifier as well as AdaBoost on a binary task to
predict whether a painting received high or low rating scores. In
their work, they provide a detailed discussion of the importance
of the individual features.

What all these approaches have in common is that a
combination of multiple features is used to predict aesthetic
ratings. While this has proven successful for automated aesthetic
decision making, there are a number of problems that preclude
a deeper understanding of the role of individual features in
these decisions. First, because the features are not necessarily
independent of each other, it would require more sophisticated
statistical methods to extract the influence of each of them.
Second, the experimental conditions, under which ratings are
obtained in most of the above-mentioned studies, are unknown,
unspecified or variable (for example, with regard to the size of
the stimuli on the retina, the brightness of the stimuli, contrast
settings of the monitors, background illumination, sequence
of stimulus presentation etc.,). Third, the rating by users of
internet platforms often remain anonymous which precludes any
specification of their personal characteristics (sex, age, cultural
background etc.,). All these factors might influence the results or
introduce artifacts.

In experimental aesthetics, some of the features used in the
above combinatorial approaches have been isolated and studied
in psychological experiments under well-defined experimental
conditions (for a survey of such studies, see section 3).

2.1.2. Generic Image Features
Generic image features are features that are not explicitly
designed for the prediction of image aesthetics, but rather for
other popular research topics in computer vision, like object
detection and classification, scene understanding, or image
retrieval. An example of such features are the SIFT descriptors
(scale-invariant feature transform; Lowe, 2004), which were
originally designed for feature matching and image stitching.
SIFT encodes edge orientations in gray-scale images as a vector
(for more recent image descriptors, see Canclini et al., 2013).

The first study to model aesthetic ratings based on generic
image features was published by Marchesotti et al. (2011).
They used SIFT descriptors together with a color descriptor,
motivated by the assumption that aesthetic properties, such as
the presence of sharp edges or the saturation of colors, can be
described implicitly by these kind of features. The authors chose
a Bag-Of-Visual-Words and a Fisher-Vector representation in
order to represent prototypical patches for aesthetic and non-
aesthetic photographs. As a result, they reported an improvement
in classification rates for high-quality and low-quality images,
compared to the methods by Datta et al. (2006) and Ke et al.
(2006) who used hand-crafted features (see section 2.1.1). While
hand-crafted features allow to quantify which feature contributes
the most to an aesthetic rating, this interpretability is lost with
generic features. Here, conclusions can only be drawn by a
comparison of the images that are rated high or low by the
model because the features of the model are not deliberately
designed to capture known properties of aesthetics, but they
rather hide their relation to them. For example, Marchesotti et al.

report that all blurry and low-resolution images were rated low
in his model, whereas images that displayed foreground objects
with sharp edges on out-of-focus backgrounds were rated highly.
Moreover, highly-rated images had a dominant color or used
complementary colors in their palette; if too many colors were
present, images received low scores in general. On the same
dataset, Murray (2012) used a low-level contrast model that was
originally developed for saliency estimation and showed that it
can also be applied to predict aesthetic preferences.

In recent years, deep learning models, in particular
Convolutional Neural Networks (CNNs), have started to
conquer many subareas in the field of computer vision and
artificial intelligence. Although the basic idea of CNNs has
already been proposed more than three decades ago (Fukushima,
1980; Lecun and Bengio, 1995), only recently, progress in
computing technologies and the availability of huge datasets
for training have helped to restore the interest in using CNNs
for image processing (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; He et al., 2015; Huang et al., 2016). CNNs
learn a hierarchy of filters, which are applied to an input image
in order to extract meaningful information from the input. The
training is done using backpropagation, a supervised training
algorithm, in which the current output of a network is compared
to a desired output. Filter parameters of the network are changed
according to their contribution to the current error. When used
on a large training set of images, CNNs tend to learn features
that resemble Gabor-like edge detectors and color-opponent
filters at lower layers of the CNNs. These features are akin to
neural responses in the early mammalian visual system. On
higher layers of the CNNs, features capture more abstract image
content by integrating the lower-layer features (Yosinski et al.,
2015). Different open-source implementations exist, which also
include a variety of models that were pretrained for object or
scene recognition. Their availability enables researchers to either
retrain networks that already work well for recognition tasks
(a process called fine-tuning), or to use features from pretrained
models without any further modification.

CNNs have been applied to the task of rating image aesthetics.
Lu et al. (2015) trained a two-column deep neural network
simultaneously on global and local views of photographs in order
to predict their aesthetic rating class (high or low). The authors
motivated their architecture by the observation that the aesthetics
of an image is influenced by local cues, such as sharpness, as
well as global cues, which capture compositional aspects. They
evaluated different cropping strategies for the local image view
and report a higher accuracy in the prediction of image aesthetics
than reported for previous approaches on the same dataset
(Murray et al., 2012).

Dong et al. (2015) applied the AlexNet architecture presented
by Krizhevsky et al. (2012), which was trained on 1.2 million
images to discriminate between 1,000 different object categories.
They used the features of the top convolutional layer, which are
computed on the entire image, as well as on five local crops, and
trained an SVM on the concatenated features. They improved
upon the results by Marchesotti et al. (2011) by a margin of about
10%. Interestingly, their approach did not explicitly use features
trained in the context of an aesthetic evaluation, but rather for
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object recognition, so that the decision whether an image was
rated as highly aesthetic or not seemed to rely more on image
content than on image form.

Denzler et al. (2016) proposed to use CNNs as model
of perception for research in aesthetics. They trained the
AlexNet model (Krizhevsky et al., 2012) on different datasets
to experimentally evaluate how well pre-learned features of
different layers are suited to distinguish art from non-art images
using an SVM classifier. They report the highest discriminatory
power with a Network trained on the ImageNet dataset, which
outperforms a network solely trained on natural scenes.

Kao et al. (2016) proposed a multi-task learning approach, in
which a CNN was trained to simultaneously assign semantic and
aesthetic labels. They explored different network architectures
and showed that a network trained to recognize semantic
labels in addition to the aesthetic class outperforms a network
trained solely to recognize the aesthetic class of an image. This
finding is compatible with the role of both content and form in
psychological models of aesthetic experience (see below).

Nowadays, deep neural networks have largely replaced the
conventional approach of designing features deliberately in order
to reflect aesthetic concepts that derive from human intuition.
They outperform the conventional approach easily and have
a number of additional advantages: (1) Deep neural networks
learn features that are important for aesthetic evaluations
automatically, provided that a dataset is big enough. (2) They
can combine local image properties, such as sharpness or blur,
with global properties, such as composition or color harmony.
(3) They can even take into account abstract features, such as
image content, without the explicit design of such features by
humans. (4) Last but not least, deep neural networks are able to
learn image properties that humans may not even be aware of.
Such properties include unspecified compositional rules that are
employed intuitively by photographers and painters (Bell, 1914;
Arnheim, 1954; Redies, 2007, 2015).

While deep learning models are state-of-the-art in aesthetic
image evaluation, their success comes at a cost. At present,
the understanding of deep features and how they work in
object or aesthetic recognition lacks behind. Although there have
been attempts to analyze what deep neural networks actually
encode at higher layers (Yosinski et al., 2015), we are far from
understanding the success of deep learning in any significant
detail. For applications in aesthetic image evaluation, it may
be sufficient to simply build systems that closely match human
perception in deciding whether an image is considered to be
beautiful. However, for researchers who want to learn more
about aesthetics per se, the limitations of deep learning models
are particularly obvious. With handcrafted features, it is easy
to draw conclusion about which features contribute to the
aesthetic value of an image. Deep neural networks and generic
features basically represent a black-box approach that lacks
this kind of interpretability. Nevertheless, if we can develop
tools to understand deep representations in the future, the
drawback of deep learning approaches may eventually turn out
into an asset for understanding aesthetics. Such a more profound
understanding would also require that deep learning be better
explainable in terms of actual neural mechanisms. Although

some recent studies lead in this direction (for example, see
Brachmann et al., 2017), an abundance of questions remains.

2.2. Other Classifications of Images
Besides the prediction of visual preference, there has been
another trend in computational aesthetics, which tends to be
more focused on artworks than on photography. In this trend,
images are not classified according to their aesthetic appeal, but
with respect to the correct identification of the painter or the
artistic style, an undertaking which is usually performed by art
experts. From a methodological point of view, the identification
of painter and style are related tasks that often go hand in
hand. However, in the early days of computational aesthetics,
the identification of the artist who created a given painting
(Cezanne, Vermeer, Rembrandt, etc.,) was more popular. More
recently, there seems to be a shift to the prediction of the style
(Realism, Impressionism, Cubism, etc.,), as works frommore and
more art collections become digitized and available on the web.
These open-source collections enable researchers to easily collect
the huge number of images that are needed in order to train
and test algorithms. Possible applications for such methods are
recommender systems for online art markets or the more precise
description of the stylistic singularities of particular artists.

2.2.1. Artist Identification
Using a Naive Bayes Classifier, Keren (2002) computed Discrete
Cosine Transform (DCT) coefficients on an image and identified
the painters of art images (Rembrandt, van Gogh, Picasso,
Magritte, Dali) by using a voting scheme, where each 9 × 9
block of an image is assigned the style of an artist. A majority
voting for an image yielded the final result and the authors
reported an accuracy of 86% for choosing the correct painter.
Widjaja et al. (2003) focused on nude paintings and used color
of skin in order to identify the artist. They trained an SVM
on color profiles of patches extracted from images of four
different painters (Rubens, Michelangelo, Ingres, and Botticelli)
and reported a rate of correct identifications of 85%. Li and
Wang (2004) proposed a system for artist identification based
on wavelets and a Multiresolution Hidden Markov Model and
tested their approach on a dataset of grayscale Chinese ink images
that contained works by five different Chinese artists. Besides
the classification of paintings regarding their artist, they found
that their modeling approach can also be used as a measure
of similarity. To recognize the artist of an image, Lombardi
(2005) proposed a system that used a set of low-level features
for intensity, edge information, spatial frequency information, as
well as a new feature that captured color. Shen (2009) combined a
set of global visual features (color, textures, shape) and local visual
features (Gabor wavelets) and reported an identification accuracy
of 69.7% when distinguishing 25 classical Western painters in
a dataset that included Caravaggio, Rubens, Vermeer, and van
Gogh. For classification, they used an RBF neural network. Khan
et al. (2010) automatically predicted painters (Ingres, Matisse,
Monet, Picasso, Rembrandt, Rubens, Titian and van Gogh) by
using a Bag-of-Visual-Words approach. They computed SIFT
descriptors, as well as color name descriptors and trained an
SVM on a dataset which consisted of 40 images each of the
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eight artist (320 images total). They report an accuracy of 62%
for the combination of color and shape features. Condorovici
et al. (2013) used a dataset of 1,896 paintings by 15 different
artist (including Pollock, Rembrandt, Cezanne, and Magritte),
from which they extracted low-level features like an RGB color
histogram and edge information by Gabor filters. The authors
experimented with eight different classifiers, among which multi-
class logistic regression yielded the best results. Cetinic and Grgic
(2013) extracted three types of features, namely image-intensity
statistics, color-based features, and texture-based features and
used a multi-layer perceptron with one hidden layer; they
reported a 75.3% accuracy of identifying the correct one among
20 painters.

Overall, it is difficult to compare the performance of the
different methods for artist identification because a common
database, on which results could be reported and compared to
others, is lacking to date. Condorovici et al. (2013) addressed
this problem by comparing different methods to their guessing
baseline. However, this approach may give an advantage to
researcher who select painters who are more diverging to
begin with. For example, it may be harder to distinguish an
impressionist painting by Claude Monet from one by Paul
Cezanne, than to distinguish an abstract drip painting by Jackson
Pollock from a surrealist painting by René Magritte.

In summary, the most popular choices for features that are
used for the classifiers include a measure to capture texture
or spatial frequency, edge histograms for shape detection and
histograms for color analysis; all these features are low-level and
do not describe image content.

More recently, classification studies in other areas of research
no longer rely on one classifier, but report results for a set of
different classifiers that are studied in parallel. A popular choice
for this type of analysis is the Weka data mining software (Hall
et al., 2009).

2.2.2. Style Prediction
To predict art styles in various sets of artworks, different
approaches have been used. Gunsel et al. (2005) trained an
SVM classifier in order to discriminate among five painting
styles (Classicism, Impressionism, Cubism, Expressionism, and
Surrealism) as well as between twelve different painters. They
proposed a system that computes a 6-dimensional vector of low-
level features including brightness and gradient information of
an image as well as statistics of the gray-level histogram. This
system allows a user to query the system for similar paintings of
unknown style. For painter and art movement classification, the
authors report a high accuracy with a low number false positive
results. A different approach was taken by Jiang et al. (2006)
who designed a way to retrieve traditional Chinese paintings and
then classify them into one of the two styles, Gongbi (traditional
Chinese realistic painting) or Xieyi (freehand style). For this task,
they used low-level features, which captured color, texture and
edges. With a classifier that combined a decision tree and SVMs,
they obtained accuracies that are suitable for practical purposes.

Wallraven et al. (2009) asked participants to group images
from 11 different art periods (e.g., Gothic, Renaissance,
Classicism, Surrealism and Postmodern Art) and different

artists into self-selected categories. The resulting categories of
artworks corresponded well with the canonical art periods.
The authors then computed several low-level features of the
images (e. g. raw pixel values, color histograms, frequency, or a
GIST descriptor; Oliva and Torralba, 2006) and tested how well
the features described the clustering into different art periods.
The authors found a low correlation between their set of low-
level features and the grouping into art periods and concluded
that humans rely more on higher-layer properties. Siddiquie
et al. (2009) used multiple kernel learning in their approach
and chose texture, histograms of gradient orientations (HOGs),
color, and saliency as their features to discriminate between
seven different styles (Abstract Expressionism, Baroque, Cubism,
Graffiti, Impressionism and Rennaissance). Zujovic et al. (2009)
chose five different genres (Abstract Expressionism, Cubism,
Impressionism, Pop Art, and Realism). As features, they used
steerable filters as well as edge information extracted by a canny
edge detector. For color, they calculated HSV histograms and
used their bins as features. The classification was done with
several different classifiers and the authors reported a best overall
accuracy of 69.1% for the AdaBoost classifier. Shamir et al.
(2010) classified paintings of nine artists of different genres
(Impressionism, Surrealism and Abstract Expressionism) and
reached an accuracy of 91.0% in style classification by using a set
of features that contained frequency statistics, edge information
and color information. Čuljak et al. (2011) focused on texture and
color features, stating that such features are closely related to the
way humans perceive artworks. As genres, they chose Realism,
Impressionism, Cubism, Fauvism, Pointillism and Naïve Art.
They tested a range of classifiers and reported best results for
an SVM, reaching 60.2% accuracy. Ivanova et al. (2012) used
various MPEG-7 descriptors in order to distinguish different art
styles. In their experiment, they noted that color features were
better suited than texture features for distinguishing between art
styles and artists. Condorovici et al. (2015) reported that key
to a better accuracy in style discrimination is to let features be
inspired by human perception. Accordingly, they used luminance
and features that detected shape, texture, edges and color. A total
of eight genres was selected for style classification in their study.
Like other authors, they tested a set of classifiers and reached best
results with an SVM, outperforming their predecessors.

While all articles mentioned above used low-level features,
which capture formal aspects of paintings, results from Arora
and Elgammal (2012) first indicated that semantic features are
also important for style classification. The author compared
different features and reported the best results for an SVM
trained on classeme feature vectors (Torresani et al., 2010), which
represent an image as combined classification scores for many
weak classifiers that were trained on low-level descriptors.

Beginning with the work of Krizhevsky et al. (2012) and due
to the renewed interest in deep neural networks, these models
have also been applied to style prediction. Karayev et al. (2013)
used a relatively large dataset of 100K images together with
color features, GIST descriptors, saliency, meta-class features
(Bergamo and Torresani, 2012) for image content, as well as
DeCAF features (Donahue et al., 2014), which are activations of
higher layers of CNNs that encode image content rather than
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image form. They additionally trained a classifier for content
features on the categories of animals, vehicles, indoor objects
and people. For 25 different painting styles, they reached a mean
accuracy of 47.3% with all features in combination. Other than
painting style, they also reported results for photographic styles
in their article. One of their main conclusions is that style is
highly dependent on content. Another approach that also relied
on DeCAF features can be found in Bar et al. (2014). These
authors reported that a combination of DeCAF features and
PiCoDes features (Bergamo et al., 2011), a binary descriptor,
which incorporates several low-level descriptors, shows the best
performance in style recognition.

Saleh and Elgammal (2015) used the object labels that were
produced by the networks proposed in (Krizhevsky et al., 2012)
as a feature to discriminate the artist, the style and the genre of
roughly 80K paintings. They concluded that classemes (Torresani
et al., 2010) are the best way to represent artist, genre, and style-
specific properties for discrimination. Tan et al. (2016) conducted
several experiments regarding painting style, genre, and artist
discrimination and used the architecture proposed by Krizhevsky
et al. (2012). They fine-tuned a model that was trained on the
ImageNet (Deng et al., 2009) dataset for object recognition,
trained a model from scratch, and also tested SVM classifiers on
deep features. Interestingly, the fine-tunedmodel yielded the best
results in all tasks and even outperformed the model that was
trained from scratch.

Painter and style prediction go hand in hand. In the early
days, hand-crafted features that captured the same type of image
properties were equally suitable for both tasks. With more and
more image data becoming available for training, style prediction
can now be trained and tested on exceedingly large sets of images
and collections of style categories can be expanded with ease. For
painter identification, this is not necessarily the case because, for
most artists, only a relatively limited number of paintings are
available for training deep networks. As another complicating
factor, many artists changed their style during their lifetime. For
example, several abstract artists started their career with realistic
paintings (for example, Wassily Kandinsky, Piet Mondrian, and
Jackson Pollock). As a result, training deep neural networks for
painter identification will likely remain more difficult than for
style prediction.

For style prediction, the availability of huge collections of
digitized artworks will open new possibilities for researchers
who will use machine learning methods in the future. For
example, popular and widely used datasets of paintings, such as
the databases of the Google Art Project and WikiArt (formerly
WikiPaintings), contains several thousands of annotated
artworks.

As outlined for rating prediction (section 2.1), deep features
are getting more and more popular for style prediction
and increasingly replace hand-crafted features because they
are capable of representing semantic information also. For
example, Chiaroscuro style paintings often depict indoor scenes
and people, while Impressionist paintings frequently display
landscapes. Therefore, deep features do well on style prediction
and prove to be more powerful than low-level features that focus
on image form only. On the other hand, as with the prediction

of ratings, interpretability is not as high as it has been with
purposely designed features.

Although the vast area of computer-generated artistic images
is beyond the scope of the present review, we would like to point
out that deep models have boosted recent developments in this
area that harbor a large potential for understanding aesthetics.
Gatys et al. (2016) proposed an algorithm that can transfer the
style of any image to another, by matching the statistics of the
grammatrix of lower-layer features, as well as image content that
is represented at higher layers. They demonstrated that arbitrary
images can be redrawn in the style of famous paintings from
Van Gogh or Picasso. More recent generative models (Generative
Adversarial Networks [GANs]; Goodfellow et al., 2014) are even
capable of matching the style of entire collections of artworks, as
shown by Zhu et al. (2017), who used collections of paintings by
Monet, Cezanne and Van Gogh to redraw landscape photographs
to match the respective painter’s style. While GANs are advanced
methods that originate in Machine Learning, other methods like
the approach by Malo and Simoncelli (2015) focus more on
using physiologically plausible architectures to generate images
with similar textures. This latter approach is likely to have more
explanatory power because it makes use of mathematical tools
that are more directly related to findings from vision science.

2.3. Other Applications
In the previous sections, we described computational methods
to predict ratings and to discriminate between paintings by
different artists and art styles. Most of these methods rely of the
perceptual distinctness of different types of artworks. However,
art has also been studied from other perspectives. In the present
section, we review computational methods that can provide
useful help in solving questions relevant to art history as well as
art forgery detection. Some of these methods aim to discriminate
rather subtle differences between artworks that may not even be
apparent to the human eye.

For a review on earlier methods, see Stork (2009a). A more
recent overview is given in Spratt and Elgammal (2014), who
list different applications and publications of computational
methods for art analysis, including semantic annotation of
artworks, ordering of paintings by creation date, or the detection
of similarities in paintings and artists in order to reveal mutual
influences between artists.

2.3.1. Art History
Among the methods that address art historical questions, we
can discern two areas of interest. First, some researchers have
developed computational methods to study artistic technique.
Second, the influence of a painter on the style of other artists has
been studied.

Criminisi et al. (2002) developed methods for investigating
the perspective and the reconstruction of the 3-dimensional
space from realistic paintings. This information can help art
historians to answer spatial questions like, for example, to
determine the height of people or objects that are depicted in
paintings. In another study, Criminisi and Stork (2004) analyzed
inaccuracies in the perspective cues in a painting by Jan van
Eyck and demonstrated that is it unlikely that the painter used
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optical aids like mirrors during the creation of the painting
“Portrait of Arnolfini and his wife.” Stork and Johnson (2006)
applied a technique that was originally designed for detection
of tampering in photographs, in order to localize light sources
in paintings. They presented such an analysis for Georges de
La Tour’s painting “Christ in the carpenter’s studio.” Based on
their findings, they rebutted the claim that the light source of
the depicted scene lays outside the painting, which could have
been an indication of the use of optical aids as well. Papaodysseus
et al. (2006) investigated the use of stencils in late Bronze Age wall
paintings by applying a Hough Transform (a method for finding
instances of mathematically defined shapes in images), and
identified a set of stencils that were likely used during creation of
the wall paintings. Kim et al. (2014) propose statistical measures
to quantify the usage of individual colors, their variety in a
painting, and the roughness of the brightness of a painting and
report significant differences for different art periods. Berezhnoy
et al. (2005) studied color and texture features in paintings by
van Gogh. They confirmed that the painter increasingly made use
of opponent colors later in his lifetime. Later, Berezhnoy et al.
(2009) proposed a method for aiding art experts in automatically
extracting the orientations of brushstrokes in a painting.

The study of a painter’s influence on other artists, which can
be investigated by detecting similarities between images, is a
popular topic of research in computational aesthetics. Bressan
et al. (2008) used SIFT features and local color statistics to
compute similarities between images based on a Fisher Kernel
representation of the images. Shamir and Tarakhovsky (2012)
used a set of 4,027 features that represented many different
aspects of visual appearance (e.g., shape, texture, color) and
computed a phylogeny, which shows distinct clusters for classic
artists like Vermeer or Rembrandt and for modern artists like
Jackson Pollock, Marc Rothko, or Wassily Kandinsky. Wang
and Takatsuka (2012) extracted color and composition features,
which allowed them to classify Renaissance, Impressionist
and Postimpressionist paintings. Furthermore, they applied
hierarchical clustering in order to identify relationships among
artists and demonstrated that they can detect influences of
preceding art periods on Picasso’s works. Abe et al. (2013)
proposed a framework for determining artistic influences based
on the semantics of images. By using classeme features to
compute distances between images (Torresani et al., 2010), they
succeeded in identifying novel cases where one artist influenced
another, which had not been considered by art historians
before. Elgammal and Saleh (2015) approached the problem of
assessing creativity in terms of the originality of an artwork and
represented influences and originality as a graph. Relying on
classemes for subject matter and GIST features for compositional
aspects, they computed a creativity score for each painting in
comparison to contemporary artworks.

2.3.2. Forgery Detection
Another example where computational methods can help art
historians is in the detection of forgeries, which is a problem
closely related to artist identification. In artist identification,
the works of an artist are identified among many others that
usually possess rather different characteristics, which are often

obvious even to laymen. However, when detecting forgeries, any
differences may no longer be as easy to spot so that the task
may be difficult even for art experts. Both approaches aim at
identifying unique features of an artist, but an algorithm, which
works well for artist identification, may not work as well for
authentication and vice versa.

For example, Lyu et al. (2004) performed a wavelet
decomposition of eight works attributed to the Renaissance
painter Pieter Bruegel the Elder and five imitations of his
work. From the wavelet statistics, they extracted a feature vector
for subimages of each image and performed authentication by
measuring distances between these high-dimensional points.
They found that imitations of Bruegel’s works differ significantly
from authentic paintings. In another application of their
technique, they solved the problem of “many hands.” Here,
art historians are interested in how many different painters
contributed to one particular painting. Using their method,
they were able to identify at least four different painters for
face depictions in an image attributed to Pietro Perugino, a
notion that is shared by art historians. Polatkan et al. (2009)
introduced a new dataset of images that included originals and
purposely copied paintings. Using the parameters of a Hidden
Markov Model trained on wavelet coefficients, they succeeded
in discriminating the copies from the originals. Li et al. (2012)
studied the brushstrokes of paintings by Vincent van Gogh and
used them for comparison with contemporaries and forgeries,
as well as for dating different periods of van Gogh’s work.
Johnson et al. (2008) summarize different approaches by three
research groups for discriminating between 82 original van Gogh
paintings, 6 non-original works, and 13 paintings of questionable
authorship. All approaches are based on a wavelet decomposition
of the images.

The work of American painter Jackson Pollock has received
particular interest from the scientific community. Taylor et al.
(1999) performed a fractal analysis of the artist’s drip paintings
and found that the fractal dimension, computed using a
box-counting approach, increased over the artist’s lifetime.
The authors suggested that this method could be used for
authenticating or dating individual works by the artist. Taylor’s
approach was criticized by Jones-Smith and Mathur (2006), who
showed that they could easily generate images that had the same
fractal properties albeit not being similar to Pollock’s paintings
in their aesthetic value. Stork (2009b) later defended Taylor and
colleagues and argued that, while one feature in isolationmay not
be sufficient for the analysis, a combination of multiple fractal
measures can provide useful information. Shamir (2015) used a
set of features from biological image analysis (Shamir et al., 2008)
and reported an accuracy of 93.0% in discriminating between
original and non-original drip paintings.

Hughes et al. (2010) applied a sparse coding scheme in
order to compare authentic Bruegel paintings with works by
imitators. They demonstrated that their technique can be used
to discriminate between authentic and non-authentic Bruegel
drawings. Olshausen and DeWeese (2010) suggested that the
methods of detecting forgeries brought forward by Hughes et al.
(2010) could be useful not only in learning styles of particular
artists but also for using these statistics to generate novel images.
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Montagner et al. (2016) proposed a system for forgery detection
of paintings by the Portuguese painter Amadeo Souza-Cardoso.
In their approach, they combined a brushstroke analysis using
SIFT features on RGB images and an analysis of the pigments
in the painting by hyperspectral imaging. Using a dataset of 12
images, among which one was not painted by the artist, they
successfully determined the authenticity of the original paintings.

In summary, computational methods can provide support
for art historians who study individual paintings or artists.
Computational methods have aided art historians in multiple
ways, for example by enabling them to detect the use of practical
aids like stencils or projectors in the creation of an artwork.
Furthermore, telling forgeries from originals as well as the dating
of an artist’s work can be improved with the help of algorithmic
approaches. Other applications are the exploration of hitherto
unknown influences between artists.

3. EXPERIMENTAL AESTHETICS:

INVESTIGATION OF SPECIFIC IMAGE

PROPERTIES

In experimental aesthetics, researchers are not primarily
interested in reaching automatic decisions that mimic human
aesthetic judgments. Rather, the goal is to find out on what
grounds aesthetic judgement are made by human observers and
what their biological basis and evolutionary purpose might be.
In other words, applications are not the focus of research, but
rather a better understanding of aesthetic experience (Berlyne,
1974; Cela-Conde et al., 2011; Chatterjee and Vartanian, 2014;
Shimamura, 2014). Before proceeding to concrete examples, we
will briefly review some key concepts in experimental aesthetic
research.

3.1. Basic Concepts in Experimental

Aesthetics
It is generally agreed that aesthetic experience is a highly
complex phenomenon and involves at least three key domains
(perception, cognition and emotion), which are realized at
multiple levels of human social organization (universal, cultural
and individual) (Jacobsen, 2006; Marković, 2012; Chatterjee and
Vartanian, 2014; Redies, 2015).

To a large extent, perception represents bottom-up processing
of visual information. Perceptual mechanisms are thought to be
universal among humans and are likely to have their origin in the
evolution of the human visual system. Whereas it is self-evident
that any information associated with a visual stimulus must be
processed by the visual system in order to be perceived, it is still
a matter of debate whether there are specific mechanisms that
mediate the perception of aesthetic (or beautiful) stimuli at lower
or mid-levels of visual processing.

On the one hand, it has been demonstrated that visually
pleasing images are associated with specific image features that
can be measured by objective means. Because artworks of
different styles, cultures and artists differ in their content, these
common image properties reflect formal characteristics of images
(significant form; Bell, 1914). Possibly, these stimulus properties

elicit a particular state of neural activity in the visual system
(resonance; Taylor et al., 2005; Redies et al., 2007b) or induce
the activation of a specific (beauty-responsive) neural mechanism
in receptive individuals (Redies, 2015). This specific activation
can be thought of as the correlate of visual preference or, more
specifically, of the perception of beauty in images.

On the other hand, it has been argued by some modern
philosophers, art critics, psychologists and neuroscientists that
any visual stimulus can elicit an aesthetic experience, as long
as it is presented in an appropriate cultural context. Followers
of this cognitive hypothesis often reject the notion that there
are objective and universal stimulus properties that characterize
aesthetic stimuli. Instead, they emphasize the role of the art-
historical context of artworks, the intentions of the artists,
conceptual issues, the expertise of the beholder, the status of the
artwork and other culturally determined factors (Danto, 1981;
Leder et al., 2004; Zeki, 2013; Gopnik, 2014). These factors are,
by definition, not universal and do not persist over time, because
cultural conditions change perpetually; they reflect cognitive
(predominantly top-down) mechanisms in the human brain and
relate more to the content and context of artworks than to their
form. However, perceptual (sensory) and cognitive factors are not
mutually exclusive in aesthetic appreciation; several researchers
have included combinations of both types of factors in their
models of aesthetic experience (for example, see Jacobsen, 2006;
Locher et al., 2007; Marković, 2012; Chatterjee and Vartanian,
2014; Kozbelt and Kaufman, 2014; Shimamura, 2014; Redies,
2015).

Individual experiences also play an important role in aesthetic
experience, both in terms of short-term adaptation to the
beauty of visual stimuli and in long-term processes, such as
familiarization and the acquisition of knowledge about art.
Interestingly, interindividual differences have been found even
in the preference for basic stimulus properties, such as stimulus
complexity (Bies et al., 2016a; Güçlütürk et al., 2016; Lyssenko
et al., 2016; Spehar et al., 2016), color (Mallon et al., 2014; Palmer
et al., 2016), or the preference for the aspect ratio of rectangles
(McManus et al., 2010). Last but not least, the emotions of the
beholder also play an important role in aesthetic appreciation
(Leder et al., 2004, 2014; Silvia, 2005, 2014).

Against this background of concepts in experimental
aesthetics, it is clear the identification of objective image
properties in computational aesthetics can provide an important
basis for the understanding of aesthetic perception. Indeed,
the notion that aesthetic stimuli are endowed by objectively
measurable properties that can be universally recognized and
are preferred by humans across cultures seems implicit in many
studies in computational aesthetics. However, the knowledge
about other factors that depend on the cultural context of
individual artworks, on the intentions of the artists and on the
cognitive and emotional state of the beholder should make us
cautious when confronted with claims that particular image
properties are universally preferred across individuals, groups of
people or cultures.

A major research topic of experimental aesthetics is the
investigation of the specific properties of artworks. This research
allows us to gain insight into how aesthetic perception is linked
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to human vision and contributes to our knowledge on how we
perceive the world (Graham and Redies, 2010). In the field of
experimental aesthetics, researchers have studied a wide variety
of aesthetic experiences, ranging from deeply moving emotions
elicited when viewing famous artworks in a prestigious museum,
to aesthetic ratings of artworks in a laboratory setting, and
to visual preferences for simple artificial patterns displayed on
a computer screen. This wide range of aesthetic experiences
brings up two issues. First, beyond statistical image properties,
cultural, social and psychological factors play an important
role in aesthetic experience. Undoubtedly, these factors interact
with image properties that characterize artworks. Second, the
role of specific image properties may depend on the type (or
the intensity) of the aesthetic experience studied. For example,
if an image property plays a role in aesthetic preference of
simple, computer-generated patterns in a laboratory experiment,
the same property may not necessarily influence the aesthetic
appreciation of high-quality artworks in a museum (or the
classification of photographs in a computational study). With
these caveats in mind, we will describe several image properties
that have been associated with aesthetic experience in the
following sections. Again, we do not strive for completeness,
but rather review selected examples that seem particularly
instructive, with a focus on artworks and photographs.

3.2. Luminance and Color Statistics
The distribution of luminance, color and contrast belong to
the low-level image properties that can affect the preference
ratings of photographs. For example, Graham and Field (2008)
showed that luminance statistics differ between artworks and
natural scenes, as do their optical properties. By manipulating
luminance statistics in a variety of natural images, including
artistic photographs of landscapes, Graham et al. (2016) found
that humans prefer images of low skewness (i.e., the third
statistical moment) of their luminance distribution, with roughly
equal proportions of light and dark in the images. Indeed,
artworks tend to have lower-skew luminance histograms than
photographs of real scenes across cultures and time periods
(Graham and Field, 2007). The authors argue that artists use a
non-linear compression to obtain low skewness in their paintings
because images with this property can be more efficiently
processed by the visual system.

Color is a feature that has been frequently used in classifiers
in the field of computational aesthetics (see section 2.1.1).
Although it is clear that color contributes much to aesthetics
of visual art, there have been relatively few studies on color
in experimental aesthetics. For example, by manipulating color
statistics of Renaissance paintings, Pinto et al. (2006) studied
lighting conditions that viewers consider optimal; they found that
human observers generally prefer illumination conditions that
yield increased chromatic diversity. Palmer and Schloss (2010)
studied human aesthetic preferences for color, using simple visual
stimuli. In their ecological valence theory, they suggest that color
preferences arise from the affective responses to color-associated
objects. In other words, people like colors that are associated
with objects they like. In how far these results generalize to
artworks remains unclear. Mallon et al. (2014) observed that

participants preferred specific combinations of color measures in
abstract artworks and that this aesthetic preference is subject to
short-term visual adaptation.

In the field of computational aesthetics, Leykin and Cutzu
(2003) compared the occurrence of color and luminance intensity
edges in paintings and photographs of real scenes. Their results
indicated that, in paintings, there are significantly more color-
only edges than in photographs of real scenes. Moreover, color
edges and intensity edges tend to coincide less frequently in
paintings than in photographs of real scenes. Cutzu et al. (2005)
build a classifier that combined color, edge and texture properties
and distinguished artworks and photographs with 90% accuracy.

Aragón et al. (2008) studied the distribution of luminance in
Vincent van Gogh’s “Starry Night” and other paintings by the
artist. Interestingly, the distribution of luminance fluctuations in
some of these images resembled the mathematical distribution
of fluid turbulence, as described by the Russian mathematician
Andrei Kolmogorov. The authors speculated that the painter
might have unwittingly introduced this property in order to
produce a special feeling of unease and motion.

3.3. Complexity
Complexity relates the subjective impression of how many
pictorial elements are contained in a visual stimulus. This
property has been studied extensively, both in computational
aesthetics and in psychological experiments. Complexity has
been captured by a multitude of statistical measures, such as
the number of visual elements in an image (Birkhoff, 1933),
the fractal dimension (Mureika, 2005; Taylor et al., 2011), GIF
compression (Forsythe et al., 2011), overall luminance gradient
strength (Braun et al., 2013), or edge density (Redies et al.,
2017).

In his seminal work on aesthetics, Berlyne (1974) suggested
that images with an intermediate degree of complexity are
preferred by humans over images of low or high complexity. His
interpretation of the inverted u-shaped relation between beauty
and complexity was that preference and interest increase steadily
with visual complexity until a maximal level of affective appraisal
is reached. With a further increase in complexity, appraisal
decreases again because of decreasing preference. Others have
argued that humans prefer an intermediate visual complexity
because our ancestors lived in a savanna-type landscape of
similar complexity (for a review, see Forsythe et al., 2011). The
relationship between liking and stimulus complexity is subject
to considerable interindividual variability, at least for artificial
images (Jacobsen and Höfel, 2002). By automatically clustering
the participants, Güçlütürk et al. (2016) described that, for one
group of participants, liking decreased as stimuli became more
complex, while another group exhibited the opposite pattern of
preference (i.e., higher liking for more complex stimuli). Bies
et al. (2016a) obtained similar results by investigating preference
ratings for exact (mathematical) fractal patterns. They also
described that their measure of complexity (fractal dimension)
interacted with symmetry and recursion of their stimuli.

Rigau et al. (2008) took Birkhoff’s aforementioned idea of
aesthetics being a trade off between order and complexity, and
proposed different global measures based on principles from
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information theory and Kolmogorov complexity. The authors
applied these measures to nine paintings by van Gogh, Seurat,
and Mondrian.

3.4. Symmetry, Balance and The Rule of

Thirds
Symmetry is a well-established property that plays a prominent
role in the perception of many natural and artificial patterns.
Symmetry can be perceived at a glance and can affect
visual detection, attention, eye movements and physiological
arousal (Locher and Nodine, 1989). Not surprisingly, several
studies have demonstrated that symmetry is involved also
in aesthetic perception. A particularly well-known example is
the perception of attractiveness of human faces (Grammer
and Thornhill, 1994). In simple geometrical (graphic) and
ornamental patterns, symmetry was shown to have a high
correlation with aesthetic judgements (Jacobsen and Höfel,
2002; Westphal-Fitch et al., 2013; Rampone et al., 2016;
al Rifaie et al., 2017). However, the role of symmetry in
photography and artworks seems less clear. The visitor to
any art museum will readily realize that simple types of
geometrical symmetry (reflectional, translational or rotational)
are not general principles of composition in traditional visual
art, although symmetry can attract attention if present in a
painting (Locher and Nodine, 1989). Accordingly, studies that
link symmetry to the aesthetic appreciation of artworks are
infrequent (Osborne, 1986). It has therefore been suggested that
the link between symmetry and attractiveness/beauty is domain-
specific (Little, 2014).

The century-old concept of pictorial balance is related to
symmetry, but on a more complex level. Unlike symmetry,
it is considered to be an important and universal factor that
contributes to the aesthetic appreciation of most types of images,
including abstract visual patterns, photographs and artworks
(McManus et al., 1985; Gershoni and Hochstein, 2011; Jahanian
et al., 2015). According to Arnheim’s Gestalt theory of visual
balance (Arnheim, 1954), an image is balanced if the center
of the displayed attractions is placed on any of the major
axes of the image (vertical, horizontal and diagonal). There are
different ways to measure balance. For example, in their study
on Arnheim’s theory, McManus et al. (2011a) used a physicalist
approach and measured the center-of-mass of the luminance
values in images. They considered an image more balanced if the
center-of-mass was closer to the geometrical center of an image.
Overall, the authors did not find evidence to support Arnheim’s
theory when they compared art photographs to photographs that
were randomly taken, or when they studied simple geometrical
figures. Jahanian et al. (2015) took another approach and
modeled pictorial balance in terms of the visual weight of several
low-level visual features that are used to calculate visual saliency.
In a large set of 120,000 images that were rated highly, the
saliency-based image hotspots aligned with Arnheim’s axes, thus
confirming his theory. A similar difference was obtained in a
study on photographic cropping. The details of photographs
that were preferred during cropping showed a more balanced
saliency distribution than the details that were avoided during

cropping (Abeln et al., 2016); no such difference was observed
for luminance-based balance McManus et al. (2011b). Some of
the computer algorithms that predict ratings of photographs and
artworks (see section 2.1.1) incorporate measures of pictorial
balance in their calculations (for example, see Ke et al., 2006; Li
and Chen, 2009).

The rule of thirds, which is a principle of composition avidly
followed in photography, seems to contradict the notion that
the major axis of an image play a significant role in balance; it
stipulates that salient compositional elements are to be placed
close to one of the third lines of the image in order for images
to be aesthetically pleasing. The rule of thirds has been used in
many computational methods to predict ratings of photographs
and artworks (for example, see Datta et al., 2006; Luo and Tang,
2008; Li and Chen, 2009). However, experimental studies did not
confirm the significance of this rule in high-quality photographs
(Amirshahi et al., 2014a) or “selfie” photographs (Bruno et al.,
2014).

3.5. Fourier Spectral Properties
Graham and Field (2007) and Redies et al. (2007b) compared
the Fourier spectral properties of natural scenes and images of
Western artworks. They found that both types of stimuli share
a scale-invariant amplitude (or power) frequency spectrum and
both have a similar slope in log-log plots. Similar results were
obtained for artworks of East Asian provenance (Graham and
Field, 2008) and for other visual stimuli that were created to
please the human eye, such as cartoons, comics and mangas
(Koch et al., 2010). In contrast, several types of non-art images,
such as photographs of simple objects and plants, do not possess
this property (Redies et al., 2007b). Notably, photographs of
faces portraits have steeper slopes of the log-log plots than
human portraits drawn by artists (Redies et al., 2007a). Mather
(2014) compared the spectral slopes of 31 artworks with those
of closely matching photographs. He found that artists compress
the spectral slopes of their works to a relatively narrow range
compared to the slopes of the photographs and proposed that
the artist’s visual system plays a central role in adjusting the
spectral slope of artworks. Humans observers tend to prefer
artificial, random-phase patterns with Fourier properties similar
to natural scenes (Menzel et al., 2015), but exhibit significant
interindividual differences in this preference (Spehar et al.,
2016). Moreover, the visual preference for these synthetic noise
images correlated well with the discrimination sensitivity of the
observers for different amplitude spectra of the images (Spehar
et al., 2016).

Interestingly, the amplitude spectrum of many uncomfortable
visual stimuli contains an excessive energy at medium spatial
frequencies and thereby deviates from the linear spectral
properties of natural scenes and images of artworks that are
perceived as pleasant (Fernandez and Wilkins, 2008; O’Hare and
Hibbard, 2011). The Fourier spectral slope of images correlates
with measures of image complexity (Table S1 in Redies et al.,
2017), in particular with the fractal dimension (Bies et al., 2016b).
A shallower slope indicates more power in the high-frequency
part of the spectrum; consequently, the images show more fine
detail and thus higher complexity.
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Schweinhart and Essock (2013) analyzed the Fourier spectral
properties in landscape paintings that were produced by a group
of local artists, and compared them to photographs of the
scenes, which the artists had painted. They asked whether the
well-known oblique effect can be observed in paintings. The
oblique effect refers to the fact that, in our natural environment,
cardinal (horizontal and vertical) edge orientations are more
prominent than oblique orientations. In the Fourier domain,
this difference translates into stronger amplitudes for cardinal
vs. oblique orientations. In the natural environment, this effect
is observed only for the lowest spatial frequencies but not for
high spatial frequencies. However, the artists implemented the
oblique effect also at high spatial frequencies, thus overregulating
this image property in their works.

3.6. Fractals and Self-similarity
The work of the abstract expressionist artist Jackson Pollock
(1912–1956) has received particular interest from the scientific
community. Taylor performed a fractal analysis of the artist’s drip
paintings using a box-counting approach and found that Pollock’s
paintings are not chaotic but possess a fractal structure (Taylor,
2002). This surprising finding prompted a series of investigations
of human responses to fractals, which are not only prevalent in
nature but can also be found in geometric and mathematical
patterns produced by humans. The studies included behavioral
investigations, studies of physiological responses, eye tracking
and brain imaging studies (Taylor et al., 2011; Taylor and Spehar,
2016). Converging evidence from these studies indicate that
both natural and artificial fractals of mid-range complexity (as
measured by the fractal dimension) elicit favorable physiological
responses and are thus preferred by human observers (see
also section 3.3). Fractals have even been shown to reduce
stress levels in the observers (Taylor, 2006) and it has been
suggested that the beneficial effect of fractal patterns can enhance
architecture and our urban environment (Joye, 2007). However,
as already observed by Aks and Sprott in their seminal study on
chaotic visual patterns (Aks and Sprott, 1996), there are large
interindividual differences in human responses to fractals and
their complexity (see section 3.3). Interestingly, Pollock created
fractal structure in his artworks long before fractal geometry was
described and studied in detail in the 1970ies (Mandelbrot and
Pignoni, 1983); he must have followed this principle intuitively
and without explicit cognitive control. As noted by Alvarez-
Ramirez et al. (2008), the finding that Pollock’s drip paintings
possess fractal structure is closely related to its scale-invariant
spectral properties (see section 3.5).

The fractal-like structure of artworks was studied also by
Amirshahi et al. (2012) who derived a measure for self-similarity
in images, based on a Pyramid Histogram of Oriented Gradients
(PHOG) representation of images (Bosch et al., 2007). In this
approach, images are self-similar if the Histograms of Oriented
Gradients (HOGs) of parts of an image resemble the HOG
of the entire image. Redies et al. (2012) applied this measure
to different image categories, ranging from natural scenes to
man-made stimuli and artworks, including a large and diverse
sets of traditional paintings of Western provenance (Amirshahi
et al., 2014b). For artworks and most natural patterns, Redies

and colleagues reported an intermediate to high self-similarity,
whereas other patterns, such as images of simple objects, faces of
buildings, were less self-similar.

Both lines of evidence suggest that traditional artworks share
specific stimulus properties with our natural environment. Our
visual system has adapted to these properties in evolution so
that it can process them with a sparse (efficient) code in order
to save computational and metabolic resources (Simoncelli and
Olshausen, 2001). It has therefore been suggested that artworks
are created so that they can be processed efficiently/sparsely by
the human visual system (Redies, 2007; Renoult et al., 2016).
The concept of sparse coding is familiar also to researchers in
computer vision (Mairal et al., 2014). Akin to the efficient coding
hypothesis is the idea that artworks can be processed fluently
and therefore evoke a pleasant feeling in human observers (Reber
et al., 2004). The fluency concept has its origin in the field of
psychology; the underlying neuronal mechanism and possible
coding strategies in the human brain remain unspecified to date.

3.7. Regularities in the Orientation of

Luminance Gradients, Edges, and Lines
In a study on large subsets of traditional Western artworks,
histograms of oriented gradients (HOGs; see section 3.6) were
found to possess a surprising regularity (Redies et al., 2012; Braun
et al., 2013): Artworks possess a relatively uniform spectrum
of luminance gradient (edge) orientations. This result implies
that all edge orientations in the artworks tend to be similarly
prominent. In other words, anisotropy of edge orientations is
low in artworks. Other types of images with low anisotropy
can be found in nature (for example, large vista scenes and
images of plants, lichen growth patterns, branches and clouds;
Redies et al., 2012). Anisotropy is larger in images of simple
objects, including faces, and other man-made patterns, such as
advertisements, building facades and urban scenes, due to the
relative prominence of single or a few orientations. For example,
horizontal and vertical orientations predominate in images of
building facades.

The finding of low anisotropy of edge orientations in artworks
was recently confirmed and extended by Redies et al. (2017),
who studied edge orientations in different categories of images,
including traditional artworks of different cultural provenance
(Western, Islamic and East Asian). They showed that the art
images possess a more uniform histogram of edge orientations
across cultures than many non-art types of images, in particular,
photographs of man-made objects and scenes. This result
mirrors the low anisotropy found in artworks (see above). In
addition, by pairwise comparison of edge orientations across each
image, Redies and colleagues found that edge orientations are
independent of each other across art images, except for edge
pairs at short distances, which tend to be collinear. In other
words, the edge orientation at one position of an image does
not allow predicting the orientations of distant edges at other
positions in the same image. Similar statistical regularities of
edge orientations are observed in some natural images, such as
lichen growth patterns. This property is independent of cultural
provenance, artistic genre or technique, or image content of
the artworks studied. The authors speculated that this regularity
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might relate to the notion of “good composition” (Arnheim,
1954) or “visual rightness” (Locher et al., 1999), which has been
advanced for traditional artworks.

Another regularity with respect to the perception of contours
is that smoothly curved lines and objects are generally
preferred over sharply angular ones (Gómez-Puerto et al., 2015).
Interestingly, humans share this preferences not only across
cultures but also with great apes (Munar et al., 2015). As a
possible explanation, Bar and Neta (2006) proposed that sharp
transitions in contour convey a sense of threat in the observer
and are therefore disliked. However, Bertamini et al. (2016)
questioned this notion and provided experimental evidence that
humans prefer curvature due to its intrinsic characteristics and
not because they reject the threat potential of angular contours.

4. CONCLUSION AND OUTLOOK

In recent years, computer vision has successfully contributed
computational methods to the evaluation of photographs and
digitally reproduced artworks. In the present work, we discussed
recent progress in this field, which has become known as
computational aesthetics. Specifically, we reviewed methods that
were developed to predict the aesthetic rating of photographs
and artworks by computational approaches. For artworks,
we provided an overview on applications of computational
algorithms to artist identification, style prediction, art historical
questions, and forgery detection.

In general, researchers in the computer vision community
tend to measure success by comparing different methods
regarding their accuracy of classification or prediction. When
using the same database, systems can easily be compared and
finding the best working approach is straightforward. However,
with recent advances in technology, algorithmic and larger
datasets, the best-performing classifiers have become black boxes
and their discrimination boundaries are no longer obvious.
From an application standpoint of view, this is not necessarily
a limitation. For example, such systems can be readily deployed
in image processing pipelines to identify images of high vs. low
aesthetic value. While early methods where restricted to the
formal aspects of a scene, more advanced methods, like Deep
Neural Networks, can take into account the content of images
as well. It was shown that the inclusion of content results in
major improvements, because different stylistic elements come
along with different content matter. For example, bright colors
are usually more pronounced in pleasant images that depict fresh
fruits than in gloomy images of street scenes at night. Such
combinatorial information can improve classification results.

Lately, computational methods have gained increasing
popularity also in the field of experimental aesthetics, an area
of research that has a long tradition as a branch of psychology
and, more recently, of neuroscience. In experimental aesthetics,
the focus is not on improving algorithms for rating prediction
systems or identifying artists or artistic styles, but rather
on gaining a better understanding of what specific stimulus
properties induce human observers to reach judgements on
beauty and to have an aesthetic experience. For example, as

discussed in section 3, converging evidence suggests that some
global image properties that also characterize natural scenes can
be found in large subsets of traditional artworks.

With recent developments in Deep Learning, it has become
harder to share knowledge between computational aesthetics and
experimental aesthetics. In the early days, insights from the active
field of experimental aesthetics provided a wealth of knowledge,
also for computational aesthetics. This knowledge resulted in the
development of computational algorithms based on handcrafted
features, which were known (or suspected) to contribute to
the aesthetic appeal of an image. During this time, empirical
aesthetics also profited greatly from the computational methods
because, for the first time, very large datasets of images could be
analyzed, rather than the small number of images that are usually
tested in psychological experiments with human observers.
However, with Deep Learning, it has became harder for empirical
aesthetics to catch up with the computational approaches.
Deep Learning models basically represent black boxes, which
prevent insight into what features they learn and how they
use them to evaluate the aesthetic quality of images, which is
the main motivation for empirical aesthetics. In future work, it
will therefore be essential to gain a better understanding and
interpretability of the decision boundaries that the computational
models draw, in order to identify concrete properties of human
aesthetic preference. Moreover, recent generative models from
computer vision (Gatys et al., 2016) are capable of producing
synthetic images that match the style of famous painters, and
are no longer discriminative only. This generative approach
may provide researchers with well-controlled stimuli for testing
human observers in experimental aesthetics.

In conclusion, much can be learned if the two areas of
aesthetic research can be recombined, taking advantage of
the methodological advances in computational aesthetics and
the identification of perceptual mechanisms in experimental
aesthetics. As an example, we recently investigated the variability
of CNN feature responses to traditional artworks and non-art
images and found that the two categories of images can be
separated by a classifier that is based on only two variance
values (Brachmann et al., 2017). However, results for some
styles of (post-)modern and contemporary art clearly deviated
from traditional art. The investigation of differences between
art styles may therefore be of particular interest in the future,
not only in computational aesthetics but also in experimental
aesthetics. Moreover, in view of the interindividual differences in
aesthetic preferences (see section 3.1), cultural diversity will be an
important issue in future research.
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The human visual system faces many challenges, among them the need to overcome the
imperfections of its optics, which degrade the retinal image. One of the most dominant
limitations is longitudinal chromatic aberration (LCA), which causes short wavelengths
(blue light) to be focused in front of the retina with consequent blurring of the retinal chro-
matic image. The perceived visual appearance, however, does not display such chromatic
distortions. The intriguing question, therefore, is how the perceived visual appearance of
a sharp and clear chromatic image is achieved despite the imperfections of the ocular
optics. To address this issue, we propose a neural mechanism and computational model,
based on the unique properties of the S-cone pathway. The model suggests that the
visual system overcomes LCA through two known properties of the S channel: (1) omitting
the contribution of the S channel from the high-spatial resolution pathway (utilizing only
the L and M channels). (b) Having large and coextensive receptive fields that correspond
to the small bistratified cells. Here, we use computational simulations of our model on
real images to show how integrating these two basic principles can provide a significant
compensation for LCA. Further support for the proposed neuronal mechanism is given
by the ability of the model to predict an enigmatic visual phenomenon of large color shifts
as part of the assimilation effect.

Keywords: aberration, chromatic adaptation, compensatory mechanisms, computer model, visual perception

INTRODUCTION

The human eye is affected by the imperfections of its optics, which degrade the quality of the retinal
image and ultimately impose limits on vision. These imperfections have both spatial and chromatic
implications. One of the most dominant chromatic implications is the phenomenon of longitudinal
chromatic aberration (LCA). LCA is a significant and dominant attribute of the visual system and has
been studied and measured extensively (e.g., Bedford and Wyszecki, 1957; Charman and Jennings,
1976).

Longitudinal chromatic aberration is induced by the dependence of the refractive power of the
lens on wavelength. As can be seen in Figure 1, the ocular refractive power is higher for shorter
wavelengths (Bedford and Wyszecki, 1957). The accommodation mechanism of human eyes can
determine the focus for each wavelength, but it is impossible to bring all of the wavelengths to focus
simultaneously (Wandell, 1995). The phenomenon of LCA has been measured extensively, both by
psychophysically (Wald andGriffin, 1947; Ivanoff, 1953; Bedford andWyszecki, 1957; Jenkins, 1963;
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FIGURE 1 | Comparison of refractive power (chromatic shift) reported by
several studies. Note that the chromatic shift is much larger for the short
wavelengths (blue photoreceptor) than for the long wavelengths (red
photoreceptor). All the data are adjusted vertically to have a zero value at the
reference wavelength of 589 nm giving the longitudinal chromatic aberration a
refractive power of about two diopters. This image has been taken with
permission from The Optical Society (Chen et al., 2003).

Howarth and Bradley, 1986) and retinoscopy methods (Charman
and Jennings, 1976; Rynders et al., 1998). These studies showed
that LCA has a refractive power of about two diopters (D), across
the visible spectrum (Figure 1).

An alternative method of representing the chromatic aberra-
tion is through the modulation transfer function (MTF), which
describes the sensitivity as a function of the spatial frequency and
the wavelength. Due to the LCA, the MTF of the S-cone (blue)
channel has a lower frequency cutoff (by a factor of 3–5) than the
MTF of the M/L cone channels (red–green) (Shevell, 2003).

An additional factor that limits the visual acuity of the S-
pathway is the low density of the S photoreceptors at the retinal
mosaic. It is plausible that this low density has evolved in the visual
system, in order not to have more sensors than the optical MTF
can utilize. The MTF thus would be limited by both the LCA
and photoreceptor density which, as mentioned above, are not
independent factors. Calkins (2001) showed that the S-cone den-
sity can be a consequence of efficient Nyquist sampling: “. . .the
eye’s optics together with what may be called ‘typical’ viewing
conditions effectively limit any evolutionary pressure to pack S
cones into the photoreceptor mosaic with a Nyquist rate greater
than about 7–8 cycles deg-1.” If we approximate the S mosaic
as triangular for ease of calculation, this sampling rate would
correspond to an upper limit of foveal density in the human retina
of 2,000–2,500 S cones mm-2. Various anatomical measurements
of the distribution of S cones in the human retina, both direct and
indirect, converge to a similar estimate: S cones peak in density at
about 2,000 cells mm-2, just outside the center fovea, representing
5–10% of the cone population (Curcio et al., 1991).

The consequence of the LCA is that the retinal image will
be focused only for the “green” wavelengths, and for the most

part will be out of focus for the bluish wavelengths. The con-
sequent image would be expected to have colored borders
(“fringes”)—similar to that seen with a cheap lens (Valberg, 2005).
Although it is not possible to remove these chromatic defects
from a lens, an efficient optical system should be designed to
minimize the distortion caused by the LCA. For example, it
is possible to correct chromatic aberration through a combi-
nation of two or more lenses, in such a way that the aberra-
tion of each lens compensates for the aberration of the other
lens (achromatic lens). In the human visual system, this solu-
tion is impractical since we are continuously changing the focal
distance.

A recent proposal suggests that Müller glial cells may play a
role in reducing the chromatic aberration due to the fact that
peripheral light at larger tilt angles will be rejected more readily
(Labin and Ribak, 2010). Another suggestion is that the short-
wavelength absorbing pigments of the ocular media may have
a function in limiting the chromatic aberration (Walls, 1963;
Nussbaum et al., 1981). However, spectral filtering in the ocular
media has a relatively small effect on the MTF (Shevell, 2003) and
none of these optical features (Walls, 1963; Labin and Ribak, 2010)
is sufficient to explain the lack of perceived distortion at sharp
achromatic edges.

It is therefore intriguing to understand how notwithstanding
the imperfections of the ocular optics, including the LCA, the
perceived visual appearance is still a sharp and clear image. Since
the optical systemof the eye cannot apparently account for the cor-
rection, it is reasonable to suppose that the neuronal system acts
to reduce the distortion (Shevell, 2003; Valberg, 2005). It should
be appreciated that a non-optical system, such as the neuronal
mechanism, cannot fully compensate for the optical limitations,
since some of the physical information is lost. (This is exhibited
by the limited MTF.)

Several studies have indeed suggested that there must be neu-
ral compensation for the eye’s aberrations. Although no specific
mechanismhas been described (Hay et al., 1963; Artal et al., 2004),
a number of compensatory options have been suggested, most of
which are related to the McCollough effect (ME) (Hay et al., 1963;
Broerse et al., 1999; Grossberg et al., 2002). The ME is a long-term
after-effect that can last from hours up to 3 months (Jones and
Holding, 1975).

The rationale to associate the ME with the LCA phenomenon
derives mainly from its long-lasting temporal property, and its
relation to chromatic edges (McCollough, 1965). The proposed
compensatory models are composed of oriented receptive fields
(RFs) (multiplexed simple cells) consisting of both chromatic-
and achromatic-separated subunits (Broerse et al., 1999; Gross-
berg et al., 2002). The elimination of the chromatic distortion is
then explained by invoking a learning mechanism that inhibits
the appearance of chromatic edges adjacent to achromatic
edges.

These models have been supported by experiments that
demonstrate that there is a long-term adaptation to chromatic
aberration caused by a wedge prism. It has been demonstrated
that dispersion of light passing through a wedge prism produces
bluish and yellowish fringes on achromatic edges. These perceived
fringes disappear when the prisms are worn for a long period of
time (about 2 days) (Hay et al., 1963). This adaptation of the visual

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2018 | Volume 6 | Article 12232

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Barkan and Spitzer Neuronal Mechanism for Compensation of LCA-Derived Algorithm

system supports the existence of a long-term corrective neural
compensation mechanism.

These models can be accounted for neuronal compensation
only when the chromatic aberration refractive power is constant.
However, the refractive power of the LCA constantly changes
due to the pupil size (that is determined by the amount of light
and the accommodation of the eye). The temporal scale of pupil
size change is within the range of 200–500ms, which is faster by
orders of magnitude than the neuronal adaptation mechanisms
described above (which can last hours to months). Consequently,
there is necessity for an additional mechanism that compensates
for chromatic aberration and is less dependent on a momentary
magnitude of chromatic aberration.

This means that a neural mechanism that compensates for
general LCA phenomenon still remains to be discovered. If such
a neural mechanism exists, it is expected that not only will it
have the ability to compensate for the LCA phenomenon but will
also be able to predict the visual phenomena generated by the
compensation neuronal mechanism.

In this paper, we propose a plausible computational model
of the retina that can compensate for LCA. The model is based
on well-known retinal color-coding RFs and does not require a
learning process. The validity of the suggested model is supported
by its ability to predict related visual phenomena.

MODEL

The model computes the perceived color in accordance with the
response of retinal color-coding ganglion cells (Daw, 2012). This
calculation involves two main stages. The first stage evaluates the
response ganglion cells of type I (L/M and M/L, on center cells)
and type II (S/LM, on coextensive cells). This stage includes the
calculation of the RF response of each color-coding cell that also
exhibits a remote adaptation mechanism. In addition, this stage
also includes two separated pathways related to the luminance and
chromatic knowledge of the two cell types. The second stage of
the model proposes a novel transformation of the ganglion cell
response into a perceived image by using an inverse function.
The source code for the model simulation is available at https:
//github.com/yubarkan/LCAcompensation/.

Response of the Opponent RF
The retinal ganglion cells receive their input from the cones
through several chemical and electrical processing layers (Shevell,
2003). The retinal ganglion cells then perform an adaptation of
the first order. The adaptation of the first order is modeled here
through adaptation of the cell inputs, rather than adaptation of
the RF subregions (Spitzer and Semo, 2002; Spitzer and Barkan,
2005). We therefore define the adapted ganglion cell input signals
as follows:

Lpr_adapted =
Lphoto−r

Lphoto−r + σL
(
Lphoto−r + Lremote

) ,

Mpr_adapted =
Mphoto−r

Mphoto−r + σM
(
Mphoto−r + Mremote

) ,

Spr_adapted =
Sphoto−r

Sphoto−r + σS
(
Sphoto−r + Sremote

) , (1)

where Ladapted, Madapted, and Sadapted are the adapted inputs from
the cones and σL,M,S are remote and local adaptation signals and
are defined as

σL = a · Lphoto−r + b + c · Lremote,

σL = a · Mphoto−r + b + c · Mremote,

σS = a · Sphoto−r + b + c · Sremote, (2)

where the remote signals are defined as

Lremote(x, y)=
∫∫

cen−area

Lphoto−r(x′, y′)· fremote(x − x′, y − y′)· dx′ · dy′,

Mremote(x, y)=
∫∫

cen−area

Mphoto−r(x′, y′)· fremote(x − x′, y − y′)· dx′ · dy′,

Sremote(x, y)=
∫∫

cen−area

Sphoto−r(x′, y′)· fremote(x − x′, y − y′)· dx′ · dy′.

(3)

The “remote” area is composed of an annulus-like shape around
the entire RF region (Spitzer and Barkan, 2005). Its weight func-
tion (f remote) is modeled as a decaying exponent at the remote area
as follows:

fremote(x, y) =
1

π · ρremote
exp

(
− x2 + y2

ρremote
2

)
; x, y ∈ remote_area.

(4)
The spatial response profile of the two subregions of the reti-

nal ganglion RF, “center” and “surround,” is expressed by the
known difference-of-Gaussians (DOG). It should be noted that
the calculation of the DOG is performed on the adapted inputs.

The “center” signals of the two spectral regions, Lcen, Mcen, are
defined as integrals of the adapted inputs (Ladapted,Madapted; Eq. 1)
over the center subregion, with a Gaussian decaying spatial weight
function (fc):

Lcen(x, y) =
∫∫

cen−area

Lpr_adapted(x′, y′) · fc(x − x′, y − y′) · dx′ · dy′,

Mcen(x, y) =
∫∫

cen−area

Mpr_adapted(x′, y′) · fc(x − x′, y − y′) · dx′ · dy′,

(5)

while Lcen(x,y) at each location represents the subregion response
of the center area, which is centered at location x, y, . . .fc and is
defined as

fc(x, y) =
1

π · ρcen
exp

(
−x2 + y2

ρcen
2

)
; x, y ∈ center_area, (6)

where ρ represents the radius of the center region of the RF. The
“Surround” signals are defined in the same manner as follows
(with a spatial weight function three times larger than that of the
“center”):

Lsur(x, y) =
∫∫

sur−area

Mpr_adapted(x′, y′) · fs(x − x′, y − y′) · dx′ · dy′,

Msur(x, y) =
∫∫

sur−area

Lpr_adapted(x′, y′) · fs(x − x′, y − y′) · dx′ · dy′,

(7)
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where fs is defined as a decaying Gaussian over the surround
region:

fs(x, y) =
1

π · ρsur
exp

(
−x2 + y2

ρsur
2

)
; x, y ∈ surround_area. (8)

The total weight of fc and fs is 1.
The response of the cells is expressed by the subtraction of the

center and surround-adapted responses as follows:

L+M−(x, y) = Lcen(x, y) − Msur(x, y),

M+L−(x, y) = Mcen(x, y) − Lsur(x, y). (9)

The S/LM retinal color-coding cell is known as the small bis-
tratified ganglion cell. The RF of this cell is known in the literature
to be coextensive (type II), i.e., it has mainly chromatic oppo-
nency rather than spatial opponency (Hubel and Wiesel, 1968;
de Monasterio, 1978; Derrington et al., 1984). Accordingly, the
response of the S-cone opponent is modeled here as a type-II
RF. The S/LM signal was therefore modeled through integration
of the chromatic difference (S/LM) over the whole RF of this
cell type:

S+LM−(x, y)

=
∫∫

blue−RF−area

[
Sadapted(x′, y′) −

Ladapted(x′, y′) + Madapted(x′, y′)
2

]

· fs_center(x − x′, y − y′) · dx′ · dy′. (10)

The spatial weight function of the RF, fc_center, is defined as in
Eq. 7.

Transformation to Image
The purpose of this stage is to model how the visual system
transforms the RF responses to a perceived image. We suggest
that in order to eliminate the effect of the blurred S/LM channel,
the visual system has to very precisely exclude this channel from
the processing of the high-spatial resolution channel. This sug-
gestion is in accordance with the consensus in the literature and
with accumulated evidence indicating that the chromatic infor-
mation that includes the S/LM information is processed through
a unique pathway, i.e., the koniocellular pathway (Hendry and
Reid, 2000). Additional support for our proposal is derived from
the observation that the L and M data that code high-spatial
resolution information are processed independently through the
parvocellular pathway (Livingstone and Hubel, 1988; Van Essen
and Gallant, 1994; Hendry and Reid, 2000; Sincich and Horton,
2005).

In order to perform a transformation from the opponent sig-
nals [L+M−, M+ L−, and S+ (L+M)−] to perceived triplet
LMS values, we propose a functional minimization framework.
We imply that the perceived values should satisfy the following
equations:

L+M− = Lper − Msurround_per,

M+L− = Mper − Lsurround_per. (11)

Lsurround_per and Msurround_per are defined in Eq. 7, but here they
are related to the perceived domain rather than adapted input
signals. We define the following error function:

E(Lper,Mper) =
[
Lper − (L+M− + Msurround_per)

]2

+
[
Mper − (M+L− + Lsurround_per)

]2
. (12)

This function is the square error between the estimation of
Lper, Mper, and the satisfaction of Eq. 12. This error function can
be minimized by various methods. For simplicity, we show the
implication of the gradient descend method as follows (Snyman,
2005):

∂Lper

∂t = −∂E(Lper,Mper)
∂Lper

,

∂Mper

∂t = −∂E(Lper,Mper)
∂Mper

. (13)

Thus, we obtain the following iterative equations:

Liper = Li−1
per + dt ·

[
2 ·

(
Li−1

per − L+M− − Mi−1
surround_per

)
+ 2 · fs(0, 0) ·

(
Mi−1

per − M+L− − Li−1
surround_per

)]
,

Mi
per =Mi−1

per + dt ·
[
2 ·

(
Mi−1

per − M+L− − Li−1
surround_per

)
+ 2 · fs(0, 0) ·

(
Li−1

per − L+M− − Mi−1
surround_per

)]
.

(14)

This iteration process provides the perceived L and M values,
independently of the S/LM channel (see the rationale above).

The perceived S-channel value (Sper) is calculated after evaluat-
ing the L and M perceived values (Eq. 14) by using the following
equation:

Sper = S+(L + M)− + (Lper + Mper)/2. (15)

According to our model, the Sper contributes to the perceived
color and not to the perceived luminance. Thus, the perceived
brightness is expressed solely by the L and M values.

METHODS

In this section, we describe the different tools and parameters used
in the model simulation. The same sets of parameters were used
for all the simulated images that are presented in Section “Results.”

Modeling Human Optics
In order to evaluate the ability of our model to compensate
for chromatic aberration, it is necessary to simulate the results
from human optics on test images. We have used the Image
System Engineering Toolbox for Biology ISETBIO,1 which pro-
vides a unique ability to simulate human optics in a real scene.

1https://github.com/isetbio/.
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FIGURE 2 | Demonstration of the longitudinal chromatic aberration (LCA)
model on an achromatic grid (A). (B) Retinal image, simulated by ISETBIO
toolbox (see Methods). (C) Model prediction for perceived image.
(D) Enlarged section of the retinal image (B), the LCA can be seen in vicinity
of the edges as lines of a blue–yellow color. (E) Enlarged section of model
prediction (C), where there is a correction of the chromatic distortion.

For this purpose, we have used high-resolution, high-dynamic,
multispectral image (HDRS) taken from the ISET High-Dynamic
Range Multispectral Scene Database available by the Image Eval-
uation Tools.2 ISETBIO also includes the WavefrontOptics code
developed by David Brainard, Heidi Hofer, and Brian Wandell.
Their code implements methods to model human eyes by taking
adaptive optics data from wave-front sensors and calculating the
optical blur as a function of the wavelength. The toolbox relies on
data collected by Thibos et al. We have chosen an illumination of
blackbody at 6,500K and uses WavefrontOptics to simulate the
retinal image produced by human optics. Figure 2 is produced by
this method.

Response of the Opponent RF
In the first stage of the model, the adapted signals are calculated
(Eqs. 1–4). The remote area was simulated as an annulus with a
diameter of 35 pixels. The adaptation parameters were chosen as
follows: a = 1, c = 1, representing equal strength for the local and
remote adaptations (Eq. 4). The parameter “b,” which determines
the strength of adaptation (Dahari and Spitzer, 1996; Spitzer and
Barkan, 2005), was taken as b = 3.

The calculation of surround signals (Eq. 7) was calculated with
fs (Eq. 8) having a decay constant (ρ) of 3 pixels. The response
of the RFs was obtained by subtracting the center and surround-
adapted responses (Eq. 9).

Transformation to Image (Inverse Function)
The purpose of this section is to perform a transformation from
the RF responses to a perceived image. The transformation was
performed using the Jacobi iterative method (Eq. 14). The itera-
tion process was initiated (i= 0) by assuming achromatic stimuli.
Specifically, all channels were initiated with the following values:

L0
per = M0

per = S0
per =

Ladapted + Madapted

2
.

2http://www.imageval.com/public/Products/ISET-SceneDatabase.html.

FIGURE 3 | Blue–yellow chromatic contrast. Blue–yellow chromatic contrast
at a cross-section of the retinal image is presented, across a horizontal line in
Figure 2 (in blue), while the model correction for longitudinal chromatic
aberration (LCA) is represented by the red line. It can be seen that the LCA,
which is represented by the blue spikes, is reduced significantly by the model
correction (red line), which eliminates the chromatic distortion.

The iterative process converges to the predicted perceived
image, while the color “fills-in” the stimulus.

RESULT

The ability of the model to reduce the effect of LCA was tested on
both the artificial and natural images. Retinal images were simu-
lated by using the ISETBIO toolbox, which takes into account the
properties of the human optical system (see Methods). The LCA
effect is very prominent when zooming into areas of luminance or
chromatic edges (Figure 2).

Figure 2 demonstrates the model’s performance on an artificial
achromatic grid (Figure 2A) composed of equal energy squares.
The image that is cast on the retina was calculated using ISETBIO
(Figure 2B). It can be seen that this image (which simulates the
eye’s optics, including the LCA) has major chromatic distortions
adjacent to the borders (Figures 2B,D). The distortion appears
“yellowish” (lack of blue) on the bright side of the border and
“bluish” on the darker side. Figures 2C,E present the effect of
the model, which simulates the retinal response and its perceived
image.Figures 2B–E show that themodel succeeds in significantly
reducing the chromatic-border distortion.

Figure 3 plots the chromatic contrast, defined as the ratio
between the value of the blue and yellow channels [B/(R+G)],
across the x-axis of Figures 2B,C. This chromatic contrast rep-
resents the chromatic deviation from neutral hue (achromatic
region). An achromatic region is characterized by a contrast value
of 1, while the higher and lower values represent deviations toward
bluish and yellowish chroma, respectively.

The blue curve plots the chromatic contrast across the cast
image (Figure 2). The fringes of the plot are indicated by the
large negative and positive spikes next to the borders (x= 90). The
results given by our model (red line) show a significant reduction
of the spike magnitude, indicating a significant reduction of the
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FIGURE 4 | Demonstration of the longitudinal chromatic aberration (LCA) model. Demonstration of the model performance on the toys’ image (A) provided by Brian
Wandell. (B) Retinal image, simulated by ISETBIO toolbox (see Methods). (C) Model prediction of the perceived image. (D) Enlarged section of retinal image (the LCA)
can be seen in the vicinity of the edges as blue–yellow colored lines. (D,E,F) represent a magnified image of the puppy’s eyes and the chromatic pattern zone in the
background of the images (A,B), and model prediction (C). The correction can be observed only after enlargement (F). The bluish color, a manifestation of the
chromatic aberration, is prominent in (E) and the model’s correction is seen clearly in (F). The change in the bluish chroma is also clear in the background pattern in
(E) and the greenish restoration in (F).

chromatic fringes. The deviation from white is also significantly
diminished. It should be noted that there is some constant hue
generated mainly on the “black” squares, which is a side effect of
the ISETBIO simulation, rather than an ideal achromatic appear-
ance (contrast value of 1).

We also tested themodel’s ability to compensate for LCAon real
images (Figure 4A), taken from the ISETBIO HDRS library. The
optics of the eye was simulated using the ISETBIO (Figure 4B; see
Methods). The results show that the model succeeds in correcting
the chromatic distortions around borders (Figure 4C). The cor-
rection is prominent in the distorted puppy dog’s eye color and
the distorted green–white pattern behind the dog (Figure 4D-F).
Although the model significantly reduces the distortion caused by
LCA, it can also cause some minor chromatic artifacts.

The neuronal mechanism that we propose as capable of cor-
recting for chromatic aberration is bound by the limitations of
the spatial frequency of the S/LM channel (Eq. 10; see Model). In
other words, a crucial part of the model suggests that the S/LM
channel is processed through a spatial low-pass filter. If such a
mechanism actually exists, we would predict that it would lead
to visual phenomena that are prominent at stimuli with high
frequencies of blue/yellow chromaticity. We would expect to see
these phenomena as a blue–yellow assimilation effect, at high-
spatial frequencies or among adjacent chromatic regions with
sharp edges. These characteristics correspond closely to with a
recent outstanding chromatic illusion, which is termed as “Chro-
matic induction from S-cone patterns” and described by Monnier
and Shevell (2004) (Figure 5).

This illusion describes the perception of a chromatic specific
narrow ring with color that differs completely, depending on the
specific chromaticity of an adjacent ring (Figure 5). Psychophys-
ical methods of analysis indicate that the chromatic shift is not
directly dependent on the absolute blue channel intensity (S) of
the blue component of the adjacent rings but rather on the relative

amount of “blue” and “yellow” intensities (S/LM) in the adjacent
rings (Shevell and Monnier, 2006).

We also tested our model on S-cone pattern stimuli, which
have been reported by Monnier and Shevell (2004) to demon-
strate prominent chromatic induction. The results (Figure 5) show
that our model succeeds in predicting the trend of the perceived
chromaticity shift toward the chromaticity of the adjacent ring
(Figure 5D). The predicted chromatic shifts, between the two test
chromaticities (the orange and pink rings) in terms of chromatic
contrast [S/(L+M)], are about 0.31. This shift agrees with the
perceived colors as measured psychophysically by Shevell and
Monnier.

DISCUSSION

This manuscript describes a neuronal mechanism and a com-
putational model, based on retinal chromatic RFs and visual
pathways, that compensate for LCA. The model can significantly
reduce the chromatic distortion at both the artificial and natu-
ral images (Figures 2 and 3). The proposal is supported by the
observation that an artifact of chromatic assimilation, which is
a predicted consequence of the model, corresponds to a well-
known chromatic assimilation phenomenon described previously
(Shevell and Monnier, 2005).

The model is based on the specific spatial and chromatic
structure of the blue–yellow channel (S/L+M) RFs, which are
spatially coextensive “type-II” small bistratified cell (SBC) (see
Model; Hubel and Wiesel, 1968; de Monasterio, 1978; Derrington
et al., 1984; Tailby et al., 2008; Crook et al., 2009; Martin and Lee,
2014) and correspond to the activities of the SBCs. These type-
II RFs are incorporated into a retinal adaptation model (Spitzer
and Barkan, 2005), and then the RF responses are subjected to
an inverse function that mediates a transformation to perceived
values. This transformation enables an evaluation of the model by
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FIGURE 5 | (A) S-cone pattern reported by Shevell and Monnier (2005). The pink and orange rings are actually physically identical. (B) Our model prediction.
(C) Zoom-in version of (A) shows that the central ring is identical. (D) Zoom-in version of (B) shows that the model successfully predicts the chromatic shift, and the
left-hand side ring appears pinkish.

consideration of an image domain, rather thanmerely on the basis
of the RF responses.

There has been some dispute in the literature regarding the spa-
tial coextensive nature of the SBC. The coextensive nature of the
SBC has been described by many electrophysiological researchers
(Hubel and Wiesel, 1968; de Monasterio, 1978; Derrington et al.,
1984). A recent experiment reported that the SBC RF may not be
spatially coextensive (Field et al., 2007). However, these results
have been criticized first because the data in Field et al. (2007)
were collected in the far retinal periphery (30–75° eccentricity),
where more recent and broad reports of the RF were recorded
within the central 20°(Hubel and Wiesel, 1968; de Monasterio,
1978; Derrington et al., 1984). Crook et al. (2009) found that
the S-ON and LM-OFF responses were spatially coextensive, or
nearly so. Furthermore, this trend of resultswas supported by large
previous papers including recent reports and a review (Tailby et al.,
2008; Crook et al., 2009; Martin and Lee, 2014).

A logical conclusion may be that the development of visual
system has been strongly influenced by the natural visual scenery.
Most of the sun’s spectral energy on earth is yellowish (550 nm)
(Figure 1.2.1 inWyszecki and Stiles, 1982), giving fewer chromatic
edges in natural scenes than achromatic edges, andwith a predom-
inance of red–green chromatic edges over blue–yellow (Hansen
and Gegenfurtner, 2009). The peak of the spectral luminance effi-
ciency of the visual system (Wyszecki and Stiles, 1982) is similar to
the peak of the sun’s spectral energy with the ocular lens tuned for
optimal focus at the same wavelength. The chromatic aberration
occurs in the short wavelengths, where there is both less solar
irradiance and fewer chromatic edges in natural images. It there-
fore appears that the ocular lens is designed to provide the opti-
mal performance at the prominent natural wavelength (~550 nm)
while allowing the aberration at shorter wavelengths, which are
less significant both for spatial and luminance information.

Although the ocular lens is tuned to the most “important wave-
lengths,” it still suffers from the consequences of the chromatic

aberration. It is plausible that the neural system compensates for
some of these optical imperfections (Wandell, 1995). We pro-
pose that the visual mechanism utilizes the absence of sharp
blue–yellow edges to diminish the effect of chromatic distortions.
In the model, this is replicated by the following mechanisms,
whose existence is supported by psychophysics and neurophysi-
ologic findings.

Luminance and high-spatial resolution chromatic information,
under photopic light conditions, is obtainedmainly from theL and
M channels—which suffer less from LCA. This idea is supported
by psychophysical evidence showing that the contribution of the
S cone to luminance perception is negligible or null (Eisner and
MacLeod, 1980; Wyszecki and Stiles, 1982). This knowledge has
been also applied in the definition of the classical CIE color space
where, for example, the V(λ)s describing the spectral luminance
efficiency (i.e., perceived brightness vs. wavelength) come mainly
from greenish and red light (Wyszecki and Stiles, 1982). As a
result, brightness is calculated by perceived L and M values with
almost no input from the S channel (Eq. 14), while the calcu-
lation of the chromaticity takes the contribution of the S value
into account as well as the contribution of the other chromatic
channels (Eq. 15).

The opponent RF structure of the S channels (SBCs) is both
spatially coextensive and chromatically complementary (Dacey,
1996; Rodieck, 1998; Eq. 10). Such an RF blurs the blue–yellow
information, so that their chromatic mixture yields an achromatic
color. In addition, the spatio-chromatic structure [of S/(L+M)
RF] yields a null response to achromatic edges, also in the pres-
ence of LCA affecting the S channel. In this way, the unique
spatio-chromatic property minimizes the chromatic distortion
(see Results; Figure 2).

In order to maintain the compensatory advantage at the reti-
nal stage, which separates high-spatial frequency information
from low-spatial frequency chromatic information, the system
has to further process these two channels separately. There are
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physiological findings, which show that the SBC RF (with B/Y
chromatic structure) indeed feeds a distinct chromatic pathway,
i.e., the koniocellular pathway (Hendry and Reid, 2000). The
origin of the koniocellular pathway lies in the SBC in the retina,
and the pathway is then relayed by the koniocellular layer in the
LGN to the cytochrome-oxidase blobs in V1. Several studies have
reported that information on color per se and information on
form are separated (Livingstone and Hubel, 1988; Van Essen and
Gallant, 1994; Sincich and Horton, 2005). The information on
form is derived solely from the parvocellular pathway [which lacks
the S/(L+M) information]. The information on color, however,
comes from both the koniocellular and parvocellular pathways.
The parvocellular pathway sends inputs from layer 4cβ to the
blobs in layer 2/3, area V1. The two separate pathways (color and
form) do have different anatomical inputs in the V2 area. Here,
the thin stripes that code the color information are fed both from
the konio and parvo pathways, whereas the pale strips, which
code the form information, are fed only by the parvo pathway.
The “form” pathway is therefore not affected by the deficiencies
of the S/(L+M) pathway. Both pathways project to area V4 and
additional higher visual areas.

Previous studies that proposed neuronal mechanisms to com-
pensate for chromatic aberration (Hay et al., 1963; Broerse et al.,
1999; Grossberg et al., 2002; Vladusich and Broerse, 2002) related
these mechanisms to long-term after-effects, such as the ME—a
long-term orientation-contingent color after-effect (McCollough,
1965). Vladusich and Broerse (2002) proposed a learning neu-
ronal model that inhibits the fringes at luminance boundaries
(caused by chromatic aberrations). Grossberg et al. (2002) pro-
posed a learning mechanism whose primary function is to
adaptively align the representations of the boundaries and sur-
faces, which are shifted due to the process of binocular fusion.
Their mechanism was able to predict the ME. Since the ME
has been previously suggested as the compensation mechanism
for chromatic aberration, the model presented by Grossberg
et al. (2002) was also regarded as a compensation model for
LCA.

In our opinion, there are two main arguments against the idea
thatMEmodels can completely explain neuronal compensation to
LCA. The first limitation of the abovemodels (Broerse et al., 1999;
Grossberg et al., 2002; Vladusich and Broerse, 2002) is that they
assume that the magnitude of LCA effect depends solely on the
magnitude of the luminance edge. However, the LCA effect also
depends on additional optical factors, such as the pupil aperture
(DeValois andDeValois, 1991), whose size changes dynamically in
response to the level of ambient illumination and accommodation.
Such learning mechanisms, therefore, would be expected to yield
chromatic artifacts when the pupil aperture size changes and
would therefore require continuous adaptation of the learning
mechanism. The learning models described above may therefore
be more applicable to transverse chromatic aberration (TCA),
which does not depend on the pupil size. Thus, there could be
two different and complementary mechanisms for the two types
of aberrations, i.e., TCA and LCA.

An additional limitation of previous models (Broerse et al.,
1999; Grossberg et al., 2002; Vladusich and Broerse, 2002) is
their assumption that the LCA is triggered only by achromatic

boundaries. In fact, chromatic aberration (and specifically the
LCA) also occurs at iso-luminance chromatic boundaries, where
there are no achromatic boundaries (Figure 1). Consequently,
the above models fail to explain how the visual system processes
chromatic fringes at non-achromatic borders.

The two types or mechanisms, the current proposed retinal
model, and the above learning mechanisms can be synergetic in
the visual system. The retinal mechanism performs an early-stage
correction that eliminates most of the LCA effects, regardless of
the degree of illumination and eye accommodation. The cortical
learning mechanism (Watanabe et al., 1992; Broerse et al., 1999;
Grossberg et al., 2002; Vladusich and Broerse, 2002; Grossberg,
2003) performs long-term adaptation that can adapt to specific
ocular changes (such as lens defects that can be caused by aging or
physical damage, etc.).

Although several studies have examined the improvement of
visual acuity through optical correction of LCA (Campbell and
Gubisch, 1967; Yoon and Williams, 2002; Artal et al., 2010), none
found better than minor improvement (or none) of the contrast
sensitivity. One may argue that these results suggest that LCA
is not a real problem of the optical system, since correcting it
does not create any significant improvement. However, in our
opinion this would be an erroneous conclusion, since the whole
visual pathway is already optimized to contend with the optical
limitations. Therefore, correction of the optical limitations is not
able to improve the situation further and it is necessary to invoke
neuronal processing (including photoreceptor accommodation,
RF structure and size, the different neuronal processing pathways,
etc.).

Furthermore, LCA is expected to be manifested not only adja-
cently to achromatic edges but also in many other spatial and
chromatic configurations. For example, one would also expect
LCA at iso-luminance chromatic edges and non-oriented edges
(such as textures or dots on a uniform background). In such
configurations, the visual image is clear, despite the fact that the
“leakage” of short-wavelength colors is still expected to influence
the chromatic appearance, and the postulated models are unable
to provide compensation.

The strength of a computational model can be enhanced by
showing its ability to predict additional phenomena. Evidence for
the competence of our model comes from its ability to predict
the enigmatic visual phenomenon of the large chromatic shifts by
S-cone pattern (Shevell and Monnier, 2005; Figure 5).

Shevell and Monnier (2006) and Cao and Shevell (2005) sug-
gested that the large color shifts are mediated by a spatially antag-
onist S+ /S− cortical RF. The “S” term referred to the S-cone
response normalized by the luminance. Cells with this type of
response while not found in the retina have been identified in
some neurons in V1 and V2 visual areas (Conway, 2001). Signif-
icantly, our model is based on retinal RFs (rather than cortical)
(Hubel and Wiesel, 1968; de Monasterio, 1978; Derrington et al.,
1984).

In addition, Shevell et al. also showed that the effect is
more prominent with high-spatial frequency of the rings. We
assume that this was the incentive to include spatially antagonist
RFs in their qualitative model. We suggest, however, that an
additional mechanism is recruited for low-frequency stimuli, i.e.,
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simultaneous contrast mechanism (see Model, adaptation of the
first order). Such a mechanism could originate from a retinal
source (Spitzer and Barkan, 2005). This suggestion should be
supported by additional experimental data, which should deter-
mine whether the effect originates from retinal vs. cortical mech-
anisms, as suggested previously (Cao and Shevell, 2005; Shevell
and Monnier, 2006).

In summary, in this manuscript, we propose a model which
explains how the visual system compensates for LCA. This
compensatory mechanism can also explain additional visual

phenomena, such as the large chromatic shifts by S-cone pattern,
for which the underlying mechanism is still unknown. In addi-
tion, this mechanism can explain the necessity for two separate
chromatic visual pathways, i.e., koniocellular and parvocellular
pathways.
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Attention modulates neural selectivity and optimizes the allocation of cortical resources

during visual tasks. A large number of experimental studies in primates and humans

provide ample evidence. As an underlying principle of visual attention, some theoretical

models suggested the existence of a gain element that enhances contrast of the attended

stimuli. In contrast, the Selective Tuning model of attention (ST) proposes an attentional

mechanism based on suppression of irrelevant signals. In this paper, we present an

updated characterization of the ST-neuron proposed by the Selective Tuning model,

and suggest that the inclusion of adaptation currents (Ih) to ST-neurons may explain the

temporal profiles of the firing rates recorded in single V4 cells during attentional tasks.

Furthermore, using the model we show that the interaction between stimulus-selectivity

of a neuron and attention shapes the profile of the firing rate, and is enough to explain

its fast modulation and other discontinuities observed, when the neuron responds to a

sudden switch of stimulus, or when one stimulus is added to another during a visual task.

Keywords: visual attention, single cell, ST-neuron, firing rate, neural selectivity

INTRODUCTION

Attention can be widely defined as “the selective prioritization of the neural representations that
are most relevant to one’s current behavioral goal” (Buschman and Kastner, 2015). Since James’
pioneering work (James, 1891), research on attention has aimed to discover a precise and systematic
description of how the brain is able to manage its limited resources for performing complex
cognitive and behavioral tasks. Visual attention, as one component of attention, has received
significant interest (Itti et al., 2005; Carrasco, 2011; Posner, 2011), leading to the proposal of detailed
descriptions of aspects like bottom-up attention (Itti and Koch, 2001; Rutishauser et al., 2004; Itti,
2005) and top-down control (Corbetta and Shulman, 2002; Oliva et al., 2003; Buschman andMiller,
2007; Bressler et al., 2008), signal integration (Corbetta et al., 1991; Rao et al., 1997; Eagleman and
Sejnowski, 2000), or focus of attention (Koch and Ullman, 1987; Desimone and Duncan, 1995;
Tsotsos et al., 1995).

Mathematical models as a wide-spread strategy are used to make insightful predictions about
neural communication, and brain dynamics in general (Hodgkin and Huxley, 1952; Destexhe
et al., 1998; Kandel et al., 2000; Dayan and Abbott, 2001; Shriki et al., 2003; Izhikevich, 2004).
Concerning visual attention, a number of relevant models have been proposed to study particular
aspects concerned with the way single neurons and circuits process incoming information during
visual tasks (Tsotsos, 1990; Niebur and Koch, 1994; Reynolds et al., 1999; Deco and Lee, 2002;
Reynolds and Heeger, 2009); One of these aspects, treated by different studies and that currently
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draws special interest, is the mechanism neurons use during
attentional tasks to accurately encode, classify and prioritize
dissimilar information using only their firing rates. For instance,
in the biased competitionmodel by Reynolds et al. (1999), stimuli
compete for a cortical representation, and the average firing rate
(response) of a neural population depends on the interaction
between the selectivity of the cells for one particular type of
stimulus or feature, and the modulation induced by attention.
The feature similarity model of Martinez-Trujillo and Treue
proposes that attention enhances neural selectivity (Martinez-
Trujillo and Treue, 2004), thus causing neurons to increase their
firing rate. The idea aligns well with the normalization model
(Lee and Maunsell, 2009; Reynolds and Heeger, 2009) in which
such enhancement relates to the contrast between the attended
stimulus and the surrounding background perceived by a neural
population. Other models also explore the relation between the
detailed anatomy of the neurons and the response to the attentive
signal. The Feedback model for example, acknowledges attention
as a top-down process that operates via cortical feedback, and
represents it using a gain factor that modulates the activity of
impinging connections to a given neuron (Spratling and Johnson,
2004). It also takes into consideration physiological properties
such as the roles of the basal (feedforward) and apical (feedback)
connections, and how by adding those elements it is possible
to resemble the response of pyramidal cells during attentional
tasks (Spratling and Johnson, 2004). In the Selective Tuning
model (ST) (Tsotsos, 1990, 2011; Rothenstein and Tsotsos,
2014), attention is also embodied as a top-down signal; but in
contrast to other models, its selection mechanism fully relies on
suppression of the irrelevant inputs to each neuron instead of the
enhancement of their activity (Tsotsos, 1990, 2011), as supported
by strong experimental evidence (Cutzu and Tsotsos, 2003; Loach
et al., 2005; Hopf et al., 2006; Bartsch et al., 2017).

Adaptation mechanisms are well known for their facilitating
role in detecting weak signals by means of stochastic resonance
(Wiesenfeld and Moss, 1995) or through sub-threshold
oscillations enhancement (Dorval and White, 2005). In a
previous modeling study Rothenstein and Tsotsos (2014) found
that by incorporating adaptation mechanisms, the overall
performance of the ST neuron was improved during a simple
attentional task. Thus, counterbalancing the rapid saturation of
the firing rate due to the presentation of a highly affine stimulus,
while resembling the shape of the firing profiles recorded in
V4 visual cells (Kosai et al., 2014) (Figures 2, 3 therein). As
a follow up of that study, in the present paper we perform a
detailed characterization of the ST-neuron firing pattern with
and without adaptation currents (Ih) (Pape, 1996). Next, and
following the design by Reynolds et al., (Reynolds et al., 1999)
we implement a simple circuit to explore various scenarios in
which adaptation currents play a role in reshaping the firing
profile of the neuron, either by fine-tuning it, or by increasing
the sensitivity of the cell to the attentional signal.

The contribution of adaptation currents to the cell’s dynamics
is further highlighted, by simulating a set of experiments that
strikingly uncovers the interplay between neural selectivity and
attention as a twofold effect. It first creates a transitory and a
stationary scenario in the firing response of the recorded cell; and

second, induces the transition between the firing patterns evoked
by two competitive stimuli in a task-dependent fashion. We
also compare the results of our simulations against experimental
findings, and show how the incorporation of Ih on the ST-
model leads the response to closely resemble the transient and
long-lasting effects observed in experimental data.

METHODS

Our model consists of four essential elements: the ST-neuron
model, the circuit’s design and connectivity, the neural selectivity,
and the selection mechanism of attention.

The ST-Neuron
The Selective Tuning model of attention (ST) relies on the
ST-neuron as its building block (Tsotsos, 1990, 2011; Tsotsos
et al., 1995). The ST-neuron is responsible for the integration
and propagation of signals across the visual hierarchy, and both
implements attentional selection as well as displays modulations
resulting from top-down attentional signals. As a rate-based
model, the response is quantified by the temporal evolution of
the firing rate (FR) according to Equation (1):

dFR

dt
=

1

τ
· (−FR+ S (P)) (1)

In this expression, P is the synaptic input, S (P) = MPξ

σ ξ+Pξ is

the Naka-Rushton sigmoid function, whose value depends on
the maximum firing rate M, the semi-saturation constant σ, i.e.,
the particular value of the input for which S(σ) = 1

2M, and the
constant factor ξ that determines the slope of S(P), i.e., how
quickly it saturates. Aiming to resemble the time evolution of
the firing rate FR, the response of the cells was restricted to
the interval [0,1] by setting M = 1, and the semi-saturation
constant σ = σ0, with σ0 = 0.25·M. The latter was chosen in
order to prevent P from growing too fast and to avoid step-
wise behavior of the activation function. The factor ξ = 3, is a
heuristic parameter whose value for neurons in the visual cortex
was previously reported by Wilson (1999). With this choice of
values for all parameters we ensure that for P = 1, S (P) =

M
0.25·Mξ+1

∼= 0.98; i.e. the reachable ceiling of the rate is not

significantly attenuated irrespective of M (see Figure 2A). This
represents a normalized and ideal scenario in which all impinging
connections to a neuron are excitatory. Finally, τ represents the
time constant of the activation and was set to τ = 10ms, thus
satisfying the kinetics of gabaergic receptors such as GABAA, and
matching the average duration of the post–inhibition refractory
period (Whittington et al., 2000; van Aerde et al., 2009).

Similar to Rothenstein and Tsotsos (2014), we considered
the effect of adaptation currents Ih on the ST-neuron, and
incorporated them in the dynamic equation as additive factors
that modulate the magnitude of the semi-saturation constant
σ. The new σ(t) is then re-computed at every time-step using
Equation (2) as follows:

σ (t) = σ0 + fslow ·Hslow (t) + ffast ·Hfast (t) (2)
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where σ0 is the original parameter. Adaptation currents consist of
two different components Hslow and Hfast , each evolving within
a particular time-scale, coupled to the value of the firing rate
FR, and whose time course is scaled by the characteristic time
constant τx with x being either fast or slow. In turn, fslow and
ffast are the values of the amplitude for each contribution. The
temporal evolution of the two components is given by the
Equation (3):

dH(t)fast

dt
=

1

τfast
·
(

−H (t)fast + FR (t)
)

and (3)

dH(t)slow
dt

=
1

τslow
·
(

−H (t)slow + FR (t)
)

Equations (1–3) are independently updated for each neuron at
every time step (1t = 2ms) using a customized Runge-Kutta 4
algorithm implemented in MATLAB 2016a, (The MathWorks,
Inc.). The original details of the implementation can be found
in Wilson (1999).

Circuit Design and Connectivity
Following the original design by Reynolds et al. (1999), our
circuit aims to represent a three tier structure, in which
the response of the top-most unit quantifies the model’s
performance. The time course of this response was computed
when the representations of two stimuli, each of which could
be located either within or outside the cell’s receptive field (RF),
competed for representation (see Figure 1C). The bottom layer
represented by two colored upwards arrows, contains the input
representation. The Intermediate layer consists of two units, each
accounting for the average response of individual populations
(black ellipses) of ST-neurons, and are tuned to the stimulus
directly below them. This level represents the activation of the
populations at V1-V2 cortices. In turn, the neuron located at
the top was defined as the main neuron (top circle). This unit
represents a V4 cell, whose complex receptive field is able to
process whole object representations.

Inputs at the bottom are represented by particular
combinations of excitatory and inhibitory connection weights
projected to the intermediate layer. Each intermediate population
receives excitatory (red continuous arrows) and inhibitory
connections (green dotted arrows) from the input, and project
them to the top. The top unit receives both types of feed-forward
inputs from the intermediate layer. Figure 1B shows a simplified
version of the circuit in which a single stimulus is presented
and processed. Connection weights were defined in the interval
[−1, 1], with the convention that w is inhibitory if −1 ≤ w <

0, and excitatory if 0 ≤ w ≤ 1. In consequence, any potential
changes to the stimulus properties should be reflected as changes
in the combination of connection weights representing it.
During the time course of each simulation the set of excitatory
and inhibitory connection weights from the intermediate layer
onto the target (top) neuron remained fixed. Consistent with our
assumptions, the representation of a given stimulus consisted

of setting only the excitatory and inhibitory connection weights
from the bottom to the intermediate layer. All other parameters
were fixed within and across simulations, unless otherwise stated.

Neural Selectivity
Neural selectivity is the mechanism by which a neuron raises its
firing rate when a stimulus has a certain feature matching its
tuning curve. Thus, a preferred stimulus is one for which the
neural selectivity is high. In order to incorporate selectivity into
the circuit, and provided that neurons were connected through
inhibitory and excitatory inputs with particular connection
weights, we assumed for a preferred stimulus an excitatory (E)
connection weight wE belonging to the interval 0.75 < wE ≤ 1,
and consequently an inhibitory (I) weight wI = 1 − wE,
belonging to 0 ≤ wI ≤ 0.25. In the case of a stimulus
with low selectivity i.e., one for which the cell selectivity
is low, the inhibitory weight approached wI = 1 and
the excitatory wE = 0. For the sake of convenience, and
bearing in mind that for the current normalized case the sum
of weighted E and I inputs satisfies

∑

|wI | · I + |wE| · E = 1,
any stimuli with 0.7 ≤ wE ≤ 0.75 were considered as of
neutral selectivity. Stimuli with 0.75 ≤ wE ≤ 1 were defined
as preferred (or having high selectivity), and stimuli with
0.5 < wE < 0.7 were defined as non-preferred (or having low
selectivity).

ST’s Top-Down Attentional Signal
The attentional signal was implemented in consonance with
the ST model, by creating a top-down branch-and-bound
selection mechanism that picked the targets and suppressed
the neural representation of the distractors, as described in
Tsotsos (2011). The amplitude of the signal between belonged
to the range [0, 1], and was computed like the absolute
difference between the magnitude of the activation of the
intermediate units, and the resulting factor was used to multiply
the weights of the unit, associated to irrelevant input. This
process has been fully described several times previously, most
recently in Tsotsos (2011) and thus will not be repeated
here.

RESULTS

Characterizing the ST Neuron Dynamics
In order to extend previous findings, we first characterized the
time course of the neuron in relation to basic parameters, and
then by modeling the response of the neuron after incorporating
adaptation mechanisms, we evaluated their effect on the cell’s
firing dynamics during a set of simulated visual tasks.

In absence of adaptation mechanisms the activation of
the ST-model neuron is determined by the two parameters
σ and τ of the Naka-Rushton function (see equation 1.
in section Methods). Although this function was first
introduced in order to account for the adaptive saturation
of photoreceptors to particular illumination conditions, its role
in shaping the response of the ST-neuron was not previously
addressed.
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FIGURE 1 | Response of a single ST-Neuron to a fully preferred stimulus. (A) Activation of the neuron occurs after presenting the stimulus during a simulated

attentional task with 300ms total elapsed time. The red curve corresponds to the ST-neuron activation in the absence of the adaptation mechanism (Ih). The blue curve

represents the same dynamics, when Ih currents are incorporated. (B) Schematic representation of the minimum circuit used to study the selectivity and attention

aspects on the ST-neuron’s response. The top unit represents a cell with a highly complex receptive field able to process abstract object representations. The unit at

the bottom represents the average response of neurons selective for that stimulus. (C) An extended representation of the circuit used to model selection and attention.

The diagram extends the circuit shown in (B). Where each population (ellipses) has high selectivity for one of two incoming stimuli represented by the colored arrows.

As a two-step exercise we first fixed the value of τ and varied σ

and then we flipped this, fixing σ while varying τ. In the first case,
we assumedM = 1.0, and σ = k·M, for k= 0, 0.25, 0.5, 0.75, and
1.0, obtaining the response curve shown in Figure 2A. Its shape
followed a sigmoid pattern with amplitude of saturation (maxFR)
proportional to the choice for σ, counterbalanced by P, and scaled
by M (red curve in Figure 1A). Our simulations show that for
every σ, the FR-profile saturated within the initial 50ms. In the
case of larger σ, any variation in k led to monotonic decrements
of the saturation rate’s magnitude (maxFR) (Figures 2A,B). The
analytical relation was well described by the expressionmaxFR =

−0.54 · σ 2 + 0.0076 · σ , with a resulting norm of residuals nr
= 0.024696. This result suggests that in the limiting condition
σ→ 0, the smaller the value of σ the closer maxFR is toM.

By fixing σ and varying τ within a biologically plausible

range with τ = 0.0, 5.0, 10.0, 15.0, and 20.0ms rather than

variations on maxFR, we observed significant effects on the

timing required by the sub-saturation period (rising phase) to

reach maxFR (see Figures 2C,D). In spite of the reasonable
behavior of the model’s output for τ ∼= 10–20ms, we embraced
experimental observations from previous studies (Jensen et al.,
2005) choosing τ = 10ms, which on one hand accounts for
an acceptable durations of the sub-saturation period of around
20ms, and on the other coincides with the reported time constant
of GABAergic synapses such as GABAA, aligning also with
the idea that “..tonic inhibition in single neurons increases the
firing threshold and reduces the membrane time constant . . . ”
(Hutt, 2012). In the case of τ shorter than 10ms unrealistically
fast saturation of the rate occurred, while for τ much larger
than 20ms, sub-saturation intervals were also extremely long.
In general, the response of the model shows consistency with
experimental findings (Kandel et al., 2000) deploying a relation
between the duration of the time required for the firing rate to
saturate, i.e., the sub-saturation period sSP and τ, given by the
analytical expression sSP = 130 · τ 2 + 6.6 · τ + 0.022, with a
norm of residuals n = 0.00775. Although the results for smaller

τ’s might reflect the action of other mechanisms, those do not
necessarily represent the dynamics in the visual cortex (Cavelier
et al., 2005).

A general result extracted from this simple analysis shows
that far from interfering with one another, σ and τ control
and modulate different parameters of the cell’s activation, and
their joint action reliably accounts for the efficacy of individual
neurons to tune their firing to particular feature(s) of the synaptic
representation of a certain stimulus.

Effects of the Adaptation Currents (Ih) on

the Firing Rate of a Single Cell
An overall comparison between the FR-profile of the neuron
without Ih and with Ih is depicted in Figure 1A. The stimulus
onset occurred at t = 0 and the removal at t = 250ms. Note
the unaffected FR-profile’s rising phase of the with-Ih scenario
(blue trace) and the appreciable changes occurring during the
post-saturation of the with-Ih case compared to the non-Ih case
(red trace). As in Rothenstein and Tsotsos (2014) Ih currents
are represented by the linear combination of a slow (Hs)

and a fast (Hf ) component, whose time courses are depicted
in Figure 2E by the blue and purple traces respectively. The
modulation imposed on the constant σ (yellow trace on top)
shows a periodic signal that slowly raises from σ0 to its maximum
within ∼130ms, and exponentially decays within a comparable
interval (∼120ms). As previously mentioned, the FR’s rising
phase remains unaffected and the overall effect is constrained to
its post-saturation phase in a two step process (see Figures 2E,F):
In the first, during a transitory interval (∼50ms), the firing rate is
driven by the activation of the Ih’s fast component Hfast , leading
the FR-profile to rapidly decay to ∼70–80% of its maximum
(maxFR). In the second, and due to Hfast having reached its
maximum, the slow activation of Hslow takes over the control and
reduces the speed of the FR decay, leading to a pseudo-plateau in
the FR-profile, in which, in absence of any further changes in the
stimulus, the FR remains constant.
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FIGURE 2 | Temporal evolution of the ST-neuron’s firing rate. (A) For a constant input, the amplitude of the firing rate has a transitory pre-saturation period which is

independent of the half saturation constant σ. However, after this point and depending on its magnitude, increasing σ led in a minor or major proportion the saturation

rate of the cell to fall and reach smaller maxFRs. (B) Analytical expression of the relation between variables depicted in (A) firing rate and σ are related through a

quadratic function for which small values of σ near 0 rapidly makes maxFR ∼= M. (C) A similar relation rules the effect of τ on the time required by the firing rate to

saturate when σ was kept fixed. The simulation shows strong modulation before the 100ms point of each simulation. In spite of maxFR remaining unchanged, the

duration of the sub-saturation period increased proportionally to τ following the trend plotted in (D). A representation of the temporal pattern for the fast (Hf ) and slow

(Hs) components of the Ih-current is shown in (E). The combined effect of the two components modulates the firing rate by adding temporal dependence to σ (see

Equation 2 section Methods), whose dynamics is represented by the top trace in (E). The response of the top cell in (F) shows the effect on the FR-profile when

submitted to the action of the synaptic inputs and the activation of Ih. Here the values of σ are identical to (A). Note in the latter the decaying post-saturation profile

and the generation of bumps before reaching the stationary firing regime.
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Response of ST-Neuron (With Ih) to Stimuli

With Different Selectivity
To run this set of experiments we initially assumed attention not
to be directed to the stimuli; thus the time course of the FR-profile
only depended on the neuron’s selectivity to a given stimulus.
We simulated various (uniquely defined) types of inputs with
selectivity being accounted for by the relative contribution of the
inhibitory and excitatory connections.

In each experiment a given pair of stimuli was shown
as input to the circuit of Figure 1C (for details see section
Methods). To maintain consistency with psychophysical studies,
we refer to the first stimulus as the reference, whose onset time
occurred at t = 0ms and its removal at t = t′ with t′ > 0,
coinciding with the onset of the second stimulus that remained
active until the end of the simulation and was denoted by
the probe. The time t = t′ was designated as the switching
time. In addition, the processing of each stimulus activated
only one of the intermediate populations, and the probe stayed
active until the end of the simulation, whose total duration of
300ms was considered to be long enough to allow input-related
information to propagate from the bottom to the top neuron
(target).

Figure 3 shows the FR-profile’s time course of the top neuron
being initially driven by the reference, whose rising phase
remained unaltered irrespective of how early t′ occurred, while
being significantly affected on its post-saturation period in two
ways. First, a latency appeared, caused by the decay of the
initial FR and second, a sudden rebound appeared with maxFR
depending on the probe alone. During the latency, and as
an effect of switching inputs, the FR-profile became unstable
leading to a transient drop and catch phase characterized by
a discontinuous change of concavity and followed by a fast
regain of firing. Once the FR surpassed maxFR due to the cell
being engaged to the probe, the profile decays following the
dynamics described in the previous section, with a pseudo-
stationary state being ruled by the slow Ih’s component. In every
experiment a neutral reference i.e. excitatory synaptic weight
WE−ref = 0.7 (blue continuous trace) systematically preceded
the probe, each of which had identical (WE−p = 0.7), larger
(WE−p = 0.75, 0.80) or smaller selectivity (WE−p = 0.65,
0.60, 0.55) than the reference. While the larger probes led to
steeper jumps in the firing rate and bumps characterized by
large maxFRs, stimuli with lower selectivity led to an even
faster decay of the FR. The stationary response always equated
the stationary response evoked by the probe in the absence of
other inputs. Note that probes with identical selectivity to the
reference did not align with the expected smooth profile evoked
by the reference. An explanation to this is that the original
tuning (i.e., the combination of weights) of the intermediate unit
processing the probe was different from that of the reference
and in consequence led to small bumps in the model (see
purple traces in Figure 3) Measuring the plausibility of this effect
needs further study and is left as an interesting open research
point.

In general, the distortion in the reference’s FR-profile was
easier to recognize for probes presented briefly after the

reference’s onset i.e., t′ less than 200ms. This result was consistent
irrespective of the probe’s selectivity (compare the shapes of the
profiles in 3.A-3.C against those in 3.D-3.F). Note that in the case
of a late t′, the transitory state did not interfere with the original
time course of the FR-profile, but took place once the cell was
close to the FR-profile’s plateau, which could be interpreted as the
replication of the original activity, but now due to the probe and
with a different base rate.

Concerning the latency, our results show that for probes with
less selectivity than the reference, the firing dropped and slowly
recovered producing a smooth trough in the FR-profile, whose
depth and width specifically depended on the relative difference
of selectivity between both stimuli, being wider for less preferred
probes, while in the case of probes with larger selectivity than
the reference the width of the trough was negligible, and the FR-
profile discontinuously lost and regained firing after switching
stimuli. In general the particular shape and steepness of the
bumps depended on the relative selectivity of the reference and
probe, and once the transition occurred the rate slowly tended to
stabilize around the stationary state evoked by the probe.

Adding the Probe to the Reference

Modulates FR-Profile but Induces No

Latencies
As a second scenario, instead of switching stimuli at t′, we
modeled a condition in which the probe was added to the
reference, while computing the time course of the top neuron’s
FR-profile (Figure 4). We ran the experiment for different probe
selectivity and onset times t′ as follows: WE−p = 0.55, 0. 60, 0.65,
0.70, 0.75, 0.80 (recalling that WI−x = 1-WE−x with x= ref or p),
using a neutral reference (i.e., WE−ref = 0.7) presented at t = 0.
The FR-profiles in Figure 4 show that in contrast to the previous
case (see Figure 3), and in the absence of attention, adding the
probe at t = t′ produced no decaying latencies. Furthermore,
probes with larger selectivity than the reference induced almost
instantaneous rebounding bumps but in this case the amplitude
of maxFR for the two stimuli never reached that of the reference
alone, while less preferred probes led to a sudden drop followed
by a less frequent but sustained and regular firing of the cell.
Without exception for all probes, the value of maxFR was fixed
across each of the diagram showing t′ = 50, 100, 150ms. In
contrast, for t′ > 150ms, i.e., t′ = 200, 250, and 300 the amplitude
of the maxFR for more preferred probes equated that of the
reference alone, while for the less preferred it got closer to zero
for late t′ followed by a smooth recovery with low but sustained
firing.

In all cases the transient phases were followed by a recovery
leading to a stationary rate. Since the sharp rebounding/dropping
effect was a direct result of the presence of Ih and of the cell
modulating its selectivity due to the probe being added, we
hypothesize that as a result of trial and error such a change
of concavity (inflection point in the first time derivative) may
be utilized as a suitable selection cue to predict the stimulus’
category. In particular, the computation of the instantaneous
(not the average) derivative satisfies that requirement, and only
demands local adaptation of the cell’s firing.
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FIGURE 3 | Stimulus exchange leads to strong discontinuities and transients in the FR-profile. Experiments were run simulating a fixed interval of 600ms, and

exchanging the stimulus at (A) t′ = 50ms, (B) t′ = 100ms, (C) t′ = 150ms, (D) t′ =200ms, (E) t′ = 250ms, and (F) t′ = 300ms. Colored traces indicate the probe’s

selectivity characterized by the excitatory weight WE-p (refer to labels in Methods for details). Switching from a neutral reference (WE−ref = 0.7) to a probe with larger

or smaller selectivity created unstable surges of firing, followed by a stationary state. Note that in the case of a late t′, the transitory state did not interfere with the

original time course of the FR-profile, but took place after the cell’s recovery and near to the FR-profile’s plateau.

FIGURE 4 | Adding a probe to the reference destabilized and induced transients on the firing rate. The reference stimulus was presented at t = 0ms (WE−ref = 0.7),

and different probes were added at (A) t′ = 50ms, (B) t′ = 100ms, (C) t′ = 150ms, (D) t′ = 200ms, (E) t′ = 250ms, and (F) t′ = 300ms. Similar to the exchange

experiment, transient bumps/troughs indicated sharp variations in the FR-profile. However, the shape and amplitude ratios between the principal and secondary

peaks depended on the probe’s addition time t′, for the case of probes with larger relative selectivity than the reference (see secondary bumps in A–F). In the case of

probes with less selectivity, the transients exhibited variable concavities and lengths, thus led to cell responses with significantly reduced and more unstable firing rates

(e.g., purple traces).
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Comparing Selectivity Results in the Model

With Experimental Findings
In a previous work on visual selection and color perception
Fallah et al. (2007), measured the response of single neurons
to a set of stimuli falling within its RF. Cells were located in
the V4 extrastriate visual cortex in primates, and tuned to a
particular hue. The animal was first exposed to a stimulus at
t = 0, and at t = t′ a second with different hue structure was
added. The recordings show a reshaping of the FR-profile in
proportion to the relative match between the hue of the stimuli
and the selectivity (selectivity) of the cell, producing FR patterns
close to those shown in Figure 4, and depicted in Figure 5A.
Ferrera et al. reported similar in-vivo dynamic while recording
from cells in areas 7a, MT and V4 (Ferrera et al., 1994). Even
though in both studies the outcome of the experiments clearly
reflects correlations between the cell’s response and feature-
related information of the stimulus, the responsible mechanism
was not characterized.

In order to explore the plausibility of the ST-cell dynamics
with Ih in explaining those results, we implemented a high
level simulation of Fallah’s experiment using the circuit from
Figure 1C The neutral reference (WE−p = 0.7) was presented at
t = 0 and a probe with larger or smaller selectivity was added
at t′ = 300ms. As a first confirmation of the model’s efficacy, we
observed that when starting with a neutral reference, the addition
of more preferred probe (WE−p = 0.80) induced a sharp increase
in the FR and a bump with similar characteristics to the effects
described in the previous section for probes with selectivity larger
than the reference (compare blue traces in Figures 5A,B). In
turn, a less preferred probe (WE−p = 0.6) led to a drop and
stabilization of the FR-profile (see red traces in Figures 5A,B).

In spite of the qualitative similarities between simulations and
experiment, once the second stimulus is added, the experiment
shows a brief period of non-responsiveness prior to a sharp
modulation of firing which is underestimated in the model, but
not necessarily as its flaw.

Since the biological problem suggests that for a particular
combination of inputs, the neuron activation remains close to
the resting state, the cell may react either by raising its firing,
whenever the threshold is reached (generating a silent period
of non-sensitive change), or by getting hyperpolarized and in
consequence reducing the firing, which does not demand a
threshold crossing and in consequence, no insensitive periods are
required. Thus, we believe this is an aspect that needs further
analysis and to account for the result, experiments using a
broader range of selectivities need to be considered in a future
study, together with further computational exploration.

Effects of Attention on the FR-Profile
The most interesting aspect concerning the ST-characterization
regards its behavior during attentional tasks. In this section we
examine the extent to which attention could or not modulate the
dynamics of the cell’s selectivity.

As proposed by the Selective Tuning model (Tsotsos, 1990,
2011; Tsotsos et al., 1995), allocating/engaging attention in the
model corresponds to the activation of the selection mechanism.
Such mechanism was represented by a top down control signal
responsible for suppressing information associated to irrelevant

stimuli, while keeping unaffected the connections between the
cells that processed information related to the attended stimulus
in a task-dependent manner. We quantified the suppressive
signal by computing the absolute difference between the weighted
inputs impinging the top neuron, and used it to multiply the
weight of the inputs from the unattended stimulus (see section
Methods). This approach has proven to be fast and accurate at
disambiguating stimuli, since rather than adding up the weighted
contribution of all incoming signals, allows single neurons
to efficiently filter them out and focus on the relevant ones.
This idea is supported a key observation by Martinez-Trujillo
et al., (Martinez-Trujillo and Treue, 2004; Khayat et al., 2010)
according to which attention modulates the input to a given
neuron instead of its direct response.

Using the circuit in Figure 1C, we studied the response of the
top neuron when the reference and the probe were presented
in isolation and simultaneously. In addition, to track possible
variations in the stationary state, the attentional signal remained
active until the end of the simulated period.

In agreement with real experiments, and regardless of the
amount of selectivity associated to each, when two stimuli of
different selectivity were exposed to the scrutiny of the top
neuron, the average behavior of the FR-profile fell in between
those evoked by each stimulus in isolation; see Figures 6A,D.
However, in the case of stimuli being simultaneously presented,
a late engagement of attention to one of them modulated the
cell’s FR and forced it to adjust it to the magnitude evoked by
the attended stimulus regardless of its selectivity, consistent with
the theory (Martinez-Trujillo and Treue, 2004). The behavior
is shown in Figures 6B,C, where the neutral reference (WE−ref

= 0.7) and the probe with less selectivity (WE−p = 0.6) were
both located inside the classical receptive field of the top neuron
and simultaneously presented at t = 0ms. When attention was
allocated at t′ = 50, 100, 200, 400, and 600ms, the FR rose
or dropped accordingly to what stimulus was attended. Similar
effects were obtained when the selectivity of the probe (WE−p

= 0.8) was larger than that of the reference, as shown in
Figures 6E,F.

Irrespective of what stimuli was considered reference or probe,
engaging attention to that of larger selectivity led the FR-profile
to generate larger bumps (maxFR) than those observed for the
attention away condition (dashed traces in Figures 6C,E); and FR
with magnitude similar to the FR evoked by the largest stimulus
in isolation. On the other hand, engaging attention to the
stimulus with less selectivity produced FR-profiles characterized
by troughs initiated at t′. In the case of Figure 6B the depth of
the transient was more profound than in the case of the traces in
Figure 6F, although in both cases the stationary response of the
FR-profile coincided with that of the stimulus with less selectivity
for the attention-away condition.

Comparing the Effect of Attention in the

ST-Neuron With Experimental Recordings
Figures 7A,B correspond to the simulated conditions in which
attention was either engaged to the reference with less selectivity
(Figure 7A) or not allocated at all (Figure 7B). Interestingly, the
resulting FR-profile in the first case shows a masking effect of
attention that, in spite of a probe having larger selectivity than
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FIGURE 5 | The ST model cell FR-profile reproduce experimental observations of V4 neurons. (A) Experimental firing rate computed on the population’s activity of V4

neurons of primates, adapted from Fallah et al. (2007). The vertical dotted line indicates stimulus appearance, and the continuous black lines the period over which

modulation of the response was computed. The red trace indicates the population response for the “preferred” (P) stimulus alone followed by the addition of the

non-preferred (NP); while the blue trace indicates the non-preferred alone, followed by the addition of the preferred. (B) Simulated experiment. Both traces represent

the response of the neuron when a neutral stimulus was presented followed by the addition of the preferred stimulus (red trace), or the non-preferred one (blue trace).

The dashed line indicates the time at which the probe addition occurred and the continuous line the time of the transient’s peak.

FIGURE 6 | Engaging attention modulates the transients, and modifies the amplitude of the stationary response. Reference and probe stimuli were simultaneously

presented and attended as indicated for each trace (see labels). The stimuli were presented at t = 0ms and attention was engaged at t′ = 50, 100, 200, 400, 600ms

after stimulus presentation. (A,D) Show the reference and probe stimuli presented in isolation (blue and red traces) and simultaneously (yellow traces). In the first

scenario, the reference is stronger and in the second the probe is stronger (higher selectivity). As expected the cell’s selectivity mechanism produced firing rates with

well differentiated maxFR’s, each proportional to the respective selectivity of the stimulus. In addition, simultaneous reference and probe presentation, led to

FR-profiles with intermediate amplitudes. Experiments were run for attention oriented to the probe (B,E), and attention oriented to the reference (C,F). Besides the

characteristic transients, directing attention to the probe shifted the tail of the fr-baselines to the profile produced by the probe alone. Attending the reference

produced similar effect on the fr-baseline, shifting in this case the tails of the response toward the reference alone FR-profile. Those long rate responses were

consistent and irrespective of the relative selectivity between the reference and the probe.
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the reference, the FR gets modestly disrupted, remaining locked
to the FR-profile of the reference. It contrasts the effect observed
for the attention-away condition, in which the selectivity led the
cell to rapidly increase the FR and adjust the FR-profile, matching
that evoked by the probe alone, in this case with larger selectivity.

In an experimental study Luck et al. (1997) measured single
cell responses of neurons located at V4 associated to the
appearance of a particular target. Stimuli were defined as effective
or ineffective on a selectivity basis. In their protocol a series of
trials consisted in presenting sequentially/simultaneously pairs
of simple stimuli characterized by color and orientation, which
could be both inside the cell’s receptive field, or one inside
and the other outside it, and attention was deployed to one
of the two regions. For further details please refer to Luck
et al. (1997). By comparing our results with those experimental
recordings (Figures 7A,C respectively), the simulation shows
good agreement, not only in the shape, but also in the time
course of the FR-profile. In contrast to the condition observed
in those figures, Figure 7B shows that in the absence of attention
(attention away condition) there is no masking at all of the scene,
and any probe stimulus with larger selectivity than the reference
will draw the largest part of the cell response when both stimuli
are located inside the RF. As in the experiment, Figure 7A shows
the response of the top neuron after presenting the reference and
probe simultaneously at t = 0, and the attentional mechanism is
deployed at t = t′. Both simulation (Figure 7A) and experiment
Figure 7C are characterized by a small modulatory dent in the
cell’s FR-profile while attending a less selective reference. The
match betweenmodel and experiment suggests that in effect from
the model’s perspective, Ih makes the neuron highly sensitive
to the effects of attention on selectivity (recall that in the
absence of Ih the cell reached saturation, and the FR couldn’t
be modulated, see red trace in Figure 1A), but also from the
biological perspective, the model suggests that attention and
selection compete for resources when stimuli with low selectivity
are attended. However, as it will be discussed later, the results in
Figure 8 show that collaborative enhancement is also possible.

Attention Competes Against or Reinforces

Neural-Selectivity
In our final experimental design, we ran simulations in which the
reference was presented at t = 0 and the probe was presented and
attended at t’ = 50, 100, 200, 400, and 600ms. Probes had either
larger or smaller selectivity than the reference. In the attention
away condition, a probe with less selectivity than the reference
produced a decaying FR-profile characterized by shallow troughs
and durations of the transient close to 150ms, followed by a
slow recovery of the FR in the direction of the stationary state
(Figure 8D). In the same condition, probes with larger selectivity
than the reference created rebounding firing rates with increasing
amplitude, especially for late stimulus onset t′.

Running the same set of experiments while attention was
allocated to the probe at t′ simultaneously with the probe’s
presentation, shows that attention has an ambiguous effect
depending on whether the transient or the stationary dynamics
of the cell’s response were analyzed. As reference, Figures 8A,B

show the FR-profile of the ST-model neuron in the attention away
condition. All traces show that consistent with previous studies
(Martinez-Trujillo and Treue, 2004), and based on its selectivity,
the cell has larger maxFR for a more preferred stimulus and vice
versa, while when the pair is active, the response always falls in
between the FR-profile of the other two.

The effect of the selection mechanism of attention seemed to
have a transitory component characterized by reinforcement of
the cell’s selectivity, while in the long term its behavior turned
competitive. Although the affirmation may look contradictory, a
careful check of Figures 8B,C shows that although the depth of
the trough is larger for the attend-to-probe scenario, suggesting a
steeper reduction of the FR (inhibition’s reinforcement), the cell’s
response to the same onsets of the probe (indicated by traces
of the same color in both figures) also corresponds to shorter
widths (duration) of the trough in the attend-to-probe condition.
In turn, when the FR was restored, the FR-profile matched that
of the probe alone, in contrast to the attention-away condition
(Figure 8B), in which the stationary state matched the FR-profile
of the pair.

Interestingly, when a probe with larger selectivity than the
reference was presented, it resulted in the opposite response of
the neuron. A comparision between individual colored traces in
Figures 8E,F shows that due to its large selectivity, a bump in the
FR-profile occurred almost after the probe’s onset in the attention
away scenario, and that its magnitude increased by increasing the
delay t′ between the onset of the reference and the probe, in a
non-linear fashion (see bumps in Figure 8E). In the stationary
state the solely effect of selectivity led the cell’s FR-profile to
match the response evoked by the pair.

In contrast, when the attentional mechanism was turned
on while presenting the probe, the reduction in firing was
represented by a deep and short trough characterizing the
transitory response, exhibiting a duration of around 20ms,
similar for all t′, and depth with magnitude near to 20% of the
maximum FR, except for t′ = 50ms, (close to 30%).

This period that we called “latency,” preceded a bump in
the FR-profile whose peak FR, was similar for most t′, and
in general larger than the maxFR of the cell obtained when
the pair was active, as shown in Figure 8F. Consistent with
the case of the troughs, the peak of the bump for t′ = 50ms
was also slightly larger than for any other t′, suggesting that
a short delay between the probe’s onset and the activation of
the attentional mechanism eases the processing of the stimulus
of interest. Regarding the stationary response, we found the
engagement of the FR to the response obtained when the
probe was presented alone, in contrast to the attention away
scenario, in which the FR was engaged to the FR-profile of
the pair (see Figures 8E,F). It is important to note that in
all simulations we implemented the selection mechanism of
attention proposed by the STmodel, which is based on inhibition
of non-relevant inputs. In an earlier work by Busse et al.
(2008), shifting attention from a cue located outside or inside
of an MT cell’s receptive to a probe in the opposite region
was preceded by a drop in the firing rate of the cell. Authors
claimed that the “short-latency decrease of responses” was caused
by an interruption of endogenous attention, due to focusing
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FIGURE 7 | When attention competes against the effect of neural selectivity, it occludes the latter. Sequential presentation of stimuli with different selectivity inside the

receptive field of the model neuron. (A) The reference stimulus is presented and attended at t=0, once the stimulus switches to another with larger selectivity, but

outside the still attended spot, the incoming stimulus barely altered the instantaneous firing of the cell, and only produced a negligible bump on the FR-profile at the

exchange time. Condition (B) represents an identical setup to the one described in (A), but in this case attention was not engaged to any of the stimuli. The absence

of attention forced the firing of the cell to get immediately locked to the incoming input. The traces in (C) were adapted from Luck et al. (1997). They show that adding

a probe with high selectivity to the receptive field of the top cell, while attending the reference also in the same receptive field, barely affects the ongoing response

evoked by the reference.

on a stimulus that delayed the expected response toward the
target.

By restricting our analysis to the case in which attention
switches from the outside to the stimulus in the inside (red
trace in Figure 9A), similar to the Busse et al. experiment, our
findings show a two-step process: first a drastic drop in the FR,
and second, the steep recovery of firing that precedes a bump. It
validates our observation that when a cell is initially active due
to a cue with certain selectivity, attention leads the single cell’s
response to a brief interruption in the FR, represented by short
and deep troughs in the FR-profile, regardless of the selectivity of
a second stimulus; and to recover the FR following a time course
whose shape (Figure 9A) is closely resembled by the model, as
depicted by the red traces in Figures 9B,C. In our simulations
the circuit in Figure 1C was initially exposed to the effect of
a neutral reference (WE−p = 0.7) and at t = t′ a probe with
more/less selectivity was added to the cell’s receptive field and
attended. The model predicts a deeper trough for the preferred
probe (WE−p = 0.8) (Figure 9B) than for a non-preferred probe
(WE−p = 0.6) (Figure 9C), and both latencies having similar
duration. However, additional experiments are required for a
solid validation of this point. The study also suggests that the
intention of switching attention generates a similar effect (black
trace in Figure 9A), but because that there is no optimal way to
simulate the intention of switching attention in the model, we
represented that condition by leaving the reference stay during
the whole simulation (see black traces in Figures 9B,C).

DISCUSSION

Attention is responsible for modulating the amount of input
received by a neuron from the stimulus in its RF. In order to
quantify the nature and magnitude of this modulatory effect,
earlier studies (Pestilli et al., 2007) have reported significant
correlation between attention and the dynamics of the threshold
and contrast sensitivity processed single neurons, supporting
some of their claims on the results of computational studies
like the biased competition (Reynolds et al., 1999) and the
multiplicative response gain model, that endow attention with
an enhancment role of single neuron’s activity (McAdams and
Maunsell, 1999; Williford and Maunsell, 2006). In a theoretical
study, Ladenbauer et al. (2014) presented a description of the
effects of adaptation mechanisms, on the single cell’s firing rate,
highlighting a major influence on the gain of firing and threshold
modulation, that agrees with the idea that external inhibitory
synaptic inputs are relevantmodulators of the input-output curve
of single neurons.

A second intriguing element concerns the eventual generation
of transients (bumps and troughs) in the firing rate of single
cells (Martinez-Trujillo and Treue, 2004; Fallah et al., 2007;
Busse et al., 2008), when a rapid stimulus switch takes place
during attentional tasks, and that this particular response is
due to suppression of irrelevant stimuli as previously posed by
Lennert andMartinez-Trujillo (2011). In an earlier paper, Tsotsos
(1990) first predicted such behavior, suggesting that inhibition of

Frontiers in Neuroscience | www.frontiersin.org 11 March 2018 | Volume 12 | Article 12351

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Avella Gonzalez and Tsotsos FRs Explained by ST-Neuron Dynamics

FIGURE 8 | Presenting and attending a probe modulates the cell’s selectivity effect. The reference was presented at t = 0 and the probe presented and attended as

indicated for each color trace at t′ = 50, 100, 200, 400, 600ms (see labels). (A,D) Show the firing rate for the stimuli presented in isolation (reference -blue, probe

-red), and simultaneously (yellow trace). The three curves are also shown as dashed lines in (B,C,E,F) when the probe was added to the reference (both located inside

the cell’s receptive field) it has the effect to increase or reduce the cell’s firing according to the cell’s selectivity for the probe. In the attention away scenarios (B,E) the

sole effect of selectivity, characterized by transients and baseline shifts, was observed. When Attention was engaged to the probe at t′, as shown in (C,F) it induced

the occurrence of large transients with sharp changes of concavity, whose magnitude significantly depended on the respective cell’s selectivity to the probe, relative to

the response in the attention away scenarios. In addition, the magnitude of maxFR in the rebounding conditions were in average 30% larger, with slower decay times

and tails shifting toward the FR-profile of the probe alone for more preferred probes, and toward the curve of the reference alone for probes with less selectivity, while

in the attention away scenario the stationary response converged toward the profile evoked by both stimuli simultaneously presented.

distractors allows the target neuron to restore its firing rate to the
level evoked by the attended stimulus in isolation.

In this study we presented a revisited version of the ST
neuron model, and characterized the effect on the firing rate
of incorporating adaptation currents (Ih) into its dynamic
equation, quantifying the neuron’s response when submitted to
various simulated experiments. We also strengthen the results
of Rothenstein and Tsotsos (2014) describing the capabilities of
the ST-neuron in reproducing experimental FR-profiles observed
in simple attentional tasks, by separating the effects related to
the cell’s selectivity when Ih currents were active, from those
related to attention. To our knowledge, this is the first time that
adaptation current mechanisms are combined with an inhibition
based model of the top-down attentive signal, to study the
response of neurons in the visual cortex during attentive states.

With regard to the ST-neuron characterization, we found that
in the absence of further mechanisms, the time course of the
firing rate was driven by the balance between the constant σ

of the Naka-Rushton term and the characteristic decay time of

the inhibitory inputs. In turn, the modulation provided by Ih
(depicted in Figures 1A, 2F) determined the existence of two
regions in the FR-profile: the first quantifying the variability of
the initial FR activation, and the second the post-saturation effect.
Using a similar circuit to the originally proposed by Reynolds, we
simulated the activation of V4 neurons, showing that selectivity
creates a strong differentiation between patterns of response
(FR-profiles), each possessing a unique maxFR (peak FR) and a
stationary rate, correlated to the relevance of the input for the
neuron. As an important aspect, the obtained FR-profile could be
linked to different features of the stimulus or even to the whole
stimulus (as in the case of V4 neurons) being represented not
only by variations in the contrast or firing threshold.

The biological plausibility of the ST-neuron proved to
be successful at reproducing different experimental scenarios,
by only modulating the relation between inputs weights
representing each stimulus. Our simulation of Fallah et al.
experiment (Fallah et al., 2007), highlights the modulatory
effect of Ih to reshape the FR, when responding to stimuli
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FIGURE 9 | The characteristics of latencies preceding the attentional rebound depends on the relative selectivity between reference and probe. In the figure, a shift of

attention occurs when a given cue (represented by a vertical dashed line) indicates the subject to attend outside of the receptive field of the measured neuron. (A) The

red trace shows the neuron’s response when the cue indicates the shift of the focus of attention from the outside to the inside, while the black trace reflects the

response when the cue instructs attention to remain in the outside of the receptive field. Adapted from Busse et al. (2008). (B) Depicts the response of the top neuron

(in the circuit of Figure 1C) to an initially non-attended neutral reference with onset at t = 0, while a preferred probe (WE−ref = 0.7) is presented and attention is

engaged at t = t′. In this case, the FR shows a short and sharp transient trough followed by a rebounding bump that engages the stationary FR-profile of the probe

alone. (C) Represents a similar condition to (B) when using a less preferred probe than the reference. In spite of a significant reduction in the peak during the rebound,

the stationary cell’s response remains engaged to the FR-profile of the probe alone. The black traces in (A,B), denote no shift of attention, cases in which the probe

was absent and the reference remained in place until the end of the simulated period.

with significant differences in the selectivity in the absence of
attention. Although the model predicts changes in the transitory
state of the FR, further experiments are required to verify the
prediction.

The significance of the Ih dynamics proved its relevance
also in more complex scenarios that included activation of the
attentional signal. As described in Results, we showed that by
incorporating the selection mechanism of attention proposed by
Tsotsos (1990), the FR-profile resembled the response of real
V4 neurons, and that by using Reynold’s design (Figure 1C),
as seen in Figure 7. A no enhancement is necessary to account
for the time course of the firing rate when stimuli with
different levels of neural selectivity are presented in isolation
or simultaneously. Furthermore, our simulations show that by
including the activation of the attentional mechanism, the FR
was able to differentially represent possible conditions for the
onsets of attention, or its shift in a non-redundant way, for
different experimental designs, regardless of how similar can
be the stimuli. In this scenario we show the interplay between
selectivity and attention (Figures 6A,B) is crucial to define the

dynamics of the FR when two stimuli suddenly switch with each
other, affecting both the transitory and the stationary phases of
the FR-profile. We predict the existence of a dual role played by
attention, in which it can enhance or compete against selectivity
during the transitory stage, and the opposite during the stationary
stage, depending on how preferred each stimulus is for the
neuron. The plausibility of our results is strongly backed up
by the significant resemblance obtained by simulating the Luck
et al. (1997), and Busse et al., experiments (Busse et al., 2008), in
which the change of selectivity in the first (Figure 7C) together
with the deployment of attention, and the shift of the focus of
attention in the second (Figure 9), are well accounted by the
significant changes in both phases of the FR-profile. Overall, the
behavior of the ST-model reflects the context-based competitive
or enhancing effect of the cross-talk between attention and
selectivity.

Our results coincided with the claim posed by the ST-model
(Tsotsos, 1990; Tsotsos and Rothenstein, 2011) that suppressing
irrelevant activity in the surround of the attentional focus forces
the cell to adapt its firing and match the rate evoked by the
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attended stimulus in isolation, in the sense that when attended,
the FR-profile of the neuron in all simulations depended on its
selectivity to that stimulus regardless of stimulus context. It made
the response produced by all stimuli within the receptive field to
be larger in the unattended scenario than when one of them was
attended, due to the presence of distractors with high selectivity
in the surrounding.

Since a significant amount of the information was encoded by
the transient (latency), we hypothesize that this period of average
duration in the range 20–30ms, during which the firing rate
suddenly drops and raises, could be required for the cells to re-
accommodate to the confluent and ongoing bottom-up effect of
selectivity and the top-down signal of attention; however, future
work will require experiments in single cells and populations
to test the functioning principles of the latency periods, so
as to characterize their time courses. Secondly, based on our
hypotheses it will be necessary to also check if the interplay
between attention and selectivity is enough to fully disambiguate
stimuli with complex combinations of features within a single
visual scene.
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A Neurodynamic Model of
Feature-Based Spatial Selection
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Huang and Pashler (2007) suggested that feature-based attention creates a special

form of spatial representation, which is termed a Boolean map. It partitions the visual

scene into two distinct and complementary regions: selected and not selected. Here, we

developed a model of a recurrent competitive network that is capable of state-dependent

computation. It selects multiple winning locations based on a joint top-down cue. We

augmented a model of the WTA circuit that is based on linear-threshold units with

two computational elements: dendritic non-linearity that acts on the excitatory units

and activity-dependent modulation of synaptic transmission between excitatory and

inhibitory units. Computer simulations showed that the proposed model could create a

Boolean map in response to a featured cue and elaborate it using the logical operations

of intersection and union. In addition, it was shown that in the absence of top-down

guidance, the model is sensitive to bottom-up cues such as saliency and abrupt visual

onset.

Keywords: boolean map, feature-based attention, lateral inhibition, neural network, winner-take-all

INTRODUCTION

In the literature on visual attention, significant progress has been made in characterizing the
principles of selection. Visual attention can be allocated flexibly to a circumscribed region of space,
the whole object or feature dimensions such as color and orientation (Nobre and Kastner, 2014).
Indeed, early work suggested that a restricted circular region of space is a representational format of
attentional selection. Posner (1980) proposed that attention operates like a spotlight that highlights
a single circular region of space with a fixed radius. All locations that fall inside the spotlight are
selected, and everything outside is left out. An extension of this proposal, which is called the zoom-
lens model, suggests that the spotlight of attention can change its radius depending on the spatial
resolution that one wants to achieve (Eriksen and St. James, 1986). If high resolution is required,
the spotlight can be narrowed to capture details in the selected region, whereas the radius of the
spotlight can be widened when a lower resolution is sufficient.

Other studies point to an object as a unit of selection. Duncan (1984) showed that it is
easier to report two attributes if they appear on the same object, relative to the scenario
in which each attribute appears on a different object. This finding implies that the object is
selected as a whole and has been replicated many times using different stimuli and behavioral
paradigms (Scholl, 2001). This effect cannot be explained by spatial attention because objects
were spatially superimposed, that is, they shared the same locations. More recently, it was shown
that attention can also be allocated to a visual feature such as color or direction of motion
independent of spatial location (Saenz et al., 2002, 2003). Single-unit recordings have shown that
feature-based attention is accompanied by the global location-independent modulation of neural
response in a range of areas in the visual cortex. Attentional modulation was described as a
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multiplicative gain change that increases responses of neurons
that are selective to attended feature values and decreases
responses of neurons that are tuned to unattended feature values
(Treue andMartinez-Trujillo, 1999;Martinez-Trujillo and Treue,
2004).

Object-based attention, however, is not necessarily
detached from spatial representation. There is behavioral
and neurophysiological evidence that object-based attention
involves selection of all spatial locations that are occupied by the
same object. Specifically, it was suggested that attention selects
a grouped array of locations (O’Grady and Müller, 2000). In
other words, attention spreads from one spatial location along
the shape of the object and highlights all locations that belong
to the object (Richard et al., 2008; Vatterott and Vecera, 2015).
Neurophysiological studies showed that object-based selection
is indeed achieved by the spreading of the enhanced firing rate
along the shape of the object (Roelfsema, 2006; Roelfsema and de
Lange, 2016).

In a similar way, feature-based attention might involve the
selection of all locations that are occupied by the same feature
value, as shown by Huang and Pashler (2007). They proposed
that attention is limited because it may access only one feature
value (e.g., red) per dimension (e.g., color) at any given moment.
However, the accessed feature value is bound to space in parallel,
without capacity limits. Feature-based attention is allocated in
space via the formation of a binary or Boolean map. When a
conscious decision is made to attend to a specific feature value,
the Boolean map indicates all spatial locations that are occupied
by the chosen feature value because they are labeled by a positive
value (e.g., 1), while all other locations are labeled with zero. In
each selection process, selected locations need not be contiguous
in space, but they must share the same feature value. After a
Boolean map is formed, it is possible to operate on its output
by applying the set operations of intersection and union. Recent
work suggests that a spatial representation, such as a Boolean
map, might mediate perceptual grouping by similarity (Huang,
2015; Yu and Franconeri, 2015). Moreover, the idea has been
recently applied successfully in the computer vision literature on
developing algorithms for saliency detection (Zhang and Sclaroff,
2016; Qi et al., 2017).

Figure 1 illustrates a Boolean map that is formed in
response to three different stimulus configurations and sequential
application of two top-down feature cues. Figure 1A shows a
simple stimulus that consists of red and green squares. An
observer might attempt to isolate only red or only green items. To
do so, a top-down cue should be supplied to the feature map that
encodes the desired feature value. For example, when attention is
directed to the red color, the top-down cue highlights all locations
that are occupied by red squares. The Boolean map picks up on
this feature cue and forms a spatial representation in which cued
locations are labeled with 1 (white) and non-cued locations are
labeled with 0 (black). In terms of a neural network, these labels
correspond to the active (excited) and inactive (inhibited) states
of the corresponding nodes in the network (Boolean Map – 1).
Later, the observer might wish to switch to green color (Boolean
Map – 2). Again, in a response to a new feature cue, the Boolean
map now shows all locations that are occupied by green squares.

Figure 1B shows a typical stimulus that is used in visual search
experiments. It consists of red and green horizontal and vertical
bars. The task is to find a red horizontal bar. This is an example
of a conjunction search task in which two feature dimensions
should be combined to find the target object. According to Huang
and Pashler (2007), the conjunction task is solved in two steps. In
the first step, a Boolean map is formed by top-down cueing of
red items, irrespective of their orientations. In the second step,
only horizontal items are cued. However, since red items have
already been selected, the second Boolean map will correspond
to the intersection of red and horizontal items. There is only
one item that satisfies these selection criteria: the target. In this
way, visual search is substantially faster compared to the strategy
of sequentially visiting each item by moving the attentional
spotlight across the visual field. It is also possible to reverse the
order of the applied feature cues. In the first step, horizontal items
might be cued, and the intersection is formed by highlighting
red items in the second step. Importantly, there is behavioral
evidence that observers indeed implement such a subset selection
strategy in conjunction search tasks (Egeth et al., 1984; Kaptein
et al., 1995). Moreover, Huang and Pashler (2012) showed that
the same strategy is used in the perception of spatial structure in
a stimulus that is composed of multiple items that differ in several
dimensions.

Figure 1C illustrates an example of the union of two Boolean
maps. As in the previous example, the observer starts by
cueing red items and creating a Boolean map that consists of a
representation of their locations. In the second step, the observer
wishes to combine red with horizontal items. Therefore, in the
second step, one should cue horizontal items but simultaneously
maintain locations of the remaining items in memory. The
resulting new Booleanmap now represents the locations of all red
and all horizontal items that were found in the image. Computing
with Boolean maps might not be restricted to only two steps,
as Figure 1 suggests. It is possible to incorporate more feature
dimensions, such as motion, texture, or size, that can also be
engaged in creating Boolean maps that are more complicated.

Feature-based spatial selection, as illustrated by the Boolean
map, provides a strong constraint on the computational models
of visual attention because it requires simultaneous selection of
arbitrarily many locations based on an arbitrary criterion that
is set by the observer. Computational models of attention often
rely on a winner-take-all (WTA) network to select a single,
most salient location from the input image (Itti and Koch, 2000,
2001). TheWTA network consists of an array of excitatory nodes
that are connected reciprocally with inhibitory interneurons.
This anatomical arrangement creates lateral inhibition among
excitatory nodes that lead to the selection of a single node that
receives maximal input and the suppression of all other nodes,
which receive non-maximal input. However, when faced with
the input where multiple (potentially many) nodes share the
same maximal input level, the typical WTA network tends to
suppress all winning nodes due to a strong mutual inhibition
among them instead of selecting them together. For example,
Usher and Cohen (1999) showed that, under the conditions of
strong recurrent excitation and weak lateral inhibition, the WTA
network reaches a steady state with multiple active winners.
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FIGURE 1 | Illustration of the Boolean map that was created in response to the input image (Stimulus) after the first feature cue was applied to the spatial

representation (Boolean Map – 1) and after the second feature cue was applied (Boolean Map – 2). (A) Boolean maps that were created by two-color cues: red in the

first step and green in the second step; (B) intersection of two Boolean maps, where red is cued in the first step and horizontal orientation in the second step; (C)

union of two Boolean maps, where red is cued in the first step and horizontal orientation in the second step.

Importantly, activation of the winning nodes decreases linearly
toward zero as their quantity increases. In other words, this
network design suffers from the capacity limitation. This is a
useful property in modeling short-term memory and frontal
lobe function (Haarmann and Usher, 2001) but it is inadequate
for understanding how the Boolean map might arise in a large
retinotopic map, as exemplified by Figure 1.

Another problem is that the dynamics of the WTA network
are not sensitive to transient changes in the input amplitude.
Due to strong self-excitation and the resulting persistent activity,
the WTA network settles into one of its memory states (fixed
points). Importantly, each memory state is independent of
later inputs. If self-excitation is weakened, the network will
become sensitive to input. However, at the same time, it will
lose its ability to form a memory state and will behave like
a feedforward network (Rutishauser and Douglas, 2009). One
way to solve this problem is to apply an external reset signal
to the network before a new input is processed (Grossberg,

1980; Kaski and Kohonen, 1994; Itti and Koch, 2000, 2001).
However, this is not sufficient in the context of feature-based

attention. An intersection or union operation between two

Boolean maps requires that the currently active memory state
(formed after the first feature cue) be updated by taking into

account new input (the second feature cue). Therefore, the
dynamics of the WTA network should allow uninterrupted

transition between memory states that are governed by external
inputs. In other words, the WTA network should be capable
of state-dependent computation (Rutishauser and Douglas,
2009).

To summarize, a WTA network that is capable of computing
with Boolean maps should simultaneously satisfy two
computational constraints:

1. It should be able to select together all locations that share
a common feature value. This should be achieved without
degrading the representation of the winners.
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2. It should exhibit state-dependent computation, in which
new inputs are combined with the current memory state to
produce a new resultant state (e.g., intersection or union).

Here, we have developed a new WTA network that satisfies
these constraints and provides the neural implementation of the
Boolean map theory of attention (Huang and Pashler, 2007).

MODEL DESCRIPTION

The aim of the current work is to provide an explanation of how a
Boolean map may be formed in a recurrent competitive network
that can implement feature-based winner-take-all (F-WTA)
selection. To this end, we have extended the previously proposed
network model based on the linear-threshold units (Hahnloser,
1998; Hahnloser et al., 2003; Rutishauser and Douglas, 2009).
Concretely, the model circuit is presented in Figure 2. It consists
of a single inhibitory unit, which is reciprocally connected to a
group of excitatory units. In addition to these basic elements,
we introduce two processing components into the WTA circuit
to expand its computational power. The first is a dendritic non-
linearity, which prevents excessive excitation that arises from
self-recurrent and nearest-neighbor collaterals. We modeled the
dendritic tree as a separate electrical compartment with its
own non-linear output that is supplied to the node’s body
(Häusser and Mel, 2003; London and Häusser, 2005; Branco and
Häusser, 2010; Mel, 2016). The second is modulation of synaptic
transmission by retrograde inhibitory signaling (Tao and Poo,
2001; Alger, 2002; Zilberter et al., 2005; Regehr et al., 2009).
This is a form of presynaptic inhibition, where postsynaptic
cells release a neurotransmitter that binds to the receptors that
are located on the presynaptic terminals. Retrograde signaling
creates a feedback loop that dynamically regulates the amount of
transmitter that is released from the presynaptic terminals. Here,
we have hypothesized that such interactions occur in recurrent
pathways from the excitatory nodes to the inhibitory interneuron
and back from the interneuron to the excitatory nodes. In the
excitatory-to-inhibitory pathway, retrograde signaling enables
the inhibitory interneuron to compute the maximum instead
of the sum of its inputs. Computation of the maximum arises
from the limitation that the activity of the inhibitory interneuron
cannot grow beyond the maximal input that it receives from
the excitatory nodes. Furthermore, retrograde signaling in the
inhibitory-to-excitatory pathway enables the excitatory nodes
that receive maximal input to protect themselves from the
common inhibition. In this way, the network can select all
excitatory nodes with maximal input, irrespective of their
quantity or arrangement in visual space.

At first sight, it might appear strange to propose that
an excitatory unit can inhibit its input by releasing a
neurotransmitter that binds to the presynaptic terminal.
However, several signaling molecules have been identified to
support such interactions, including endogenous cannabinoids
(Alger, 2002). Moreover, Zilberter (2000) found that glutamate
is released from dendrites of pyramidal neurons in the rat
neocortex and suppresses the inhibition that impinges on them.
In addition, similar action has been found for GABA (Zilberter

FIGURE 2 | Feature-based winner-take-all (F-WTA) circuit. Connections

between excitatory (red circles) and inhibitory (blue disk) units are modulated

by retrograde inhibition (curved blue arrows). Self-excitation and

nearest-neighbor excitation are mediated by the dendrites of the excitatory

units. The same motif is repeated for all excitatory nodes in the recurrent map.

et al., 1999), which suggests that conventional neurotransmitters
can engage in retrograde signaling.

To situate the proposed F-WTA circuit in a larger neural
architecture that describes the cortical computations that
underlie top-down attentional control, we have adopted the
model that was proposed by Hamker (2004). He showed
how attentional selection of a target arises from the recurrent
interactions within a distributed network that consists of model
cortical area V4, the inferotemporal cortex (IT), the posterior
parietal cortex (PPC), and the frontal eye fields (FEF). Figure 3
illustrates part of these interactions that are involved in feature-
based attentional guidance. Top-down signals that provide
feature cues originate in the IT, which contains a spatially
invariant representation of relevant visual features. The IT
sends feature-specific feedback projections to the V4, where
topographically organized feature maps for each feature value are
located. For simplicity, we consider only maps for two colors (red
and green), and two orientations (vertical and horizontal). We do
not explicitly model IT and V4 dynamics. Rather, they serve here
as a tentative explanation of how input to the F-WTA network
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FIGURE 3 | Neural architecture for the top-down guidance of attention by feature cues, following Hamker (2004). Input is processed in retinotopically organized

feature maps for colors and orientations. These maps also receive top-down signals, which provide feature guidance. In this example, input image is taken from

Figure 1B and red color is cued by the top-down signals. Therefore, the activity of the nodes in the Red map is enhanced (white discs) relative to the activity in all

other feature maps (gray discs) because latter receives only feedforward signals. Black discs represent inactive nodes. In the feature maps, this indicates the absence

of a feature at a given locations. The F-WTA network sums output of all feature maps. Its activity represents all locations occupied by the cued feature. Parentheses

contain reference to cortical areas thought to be involved in proposed computations. R, red; G, green; H, horizontal; V, vertical.

arises within the ventral visual pathway. Also, we omitted the
contribution of the FEF and its spatial reentry signals to the V4
activity.

We hypothesize that the feature-based WTA network resides
in the PPC, where it receives summed input over all feature maps
from the V4. Top-down guidance is implemented by a temporary
increase in activity in one of the V4 feature maps. For example,
when the decision is made to attend to the red color, the IT
representation of red color sends feedback signals to the RedMap
in the V4. Top-down signals to the feature map are modeled as
a multiplicative gain of neural activity, which is consistent with
neurophysiological findings (Treue and Martinez-Trujillo, 1999;
Martinez-Trujillo and Treue, 2004; Maunsell and Treue, 2006).

The following neural network equations represent the
quantitative description of the model. Each unit is defined by
its instantaneous firing rate (Dayan and Abbott, 2000). The time
evolution of the activity of excitatory node x at position i in the
recurrent map is given by the following differential equation:

τx
dxi

dt
+ xi =

[

Ii (t) + αf (xi + xi+1 + xi−1) − β 1g
(

y− xi − Ty

)]+
.

(1)

The time evolution of the activity of inhibitory interneuron y is
given by

τy
dy

dt
+ y =

[

β 2

∑

i

g
(

xi − y− Tx

)

]+

. (2)

Parameters τx and τy are integration time constants for
excitatory and inhibitory nodes, respectively. We assume that
inequality τx > τy holds, which accords with the observation in
electrophysiological measurements that inhibitory cells exhibit
faster dynamics than excitatory cells (McCormick et al., 1985).
The second term on the left-hand side of Equations (1) and
(2) describes the passive decay that drives the unit’s activity
to the resting state in the absence of external input. Firing
rate activation function [u]+ is a non-saturating rectification
nonlinearity, which is defined by

[u]+ = max (u, 0) . (3)

Following Hamker (2004), we assume that feedforward input Ii
at time t to the excitatory node xi in the F-WTA network is given

by the sum over activity in all V4 feature maps I
(m)
i ,

Ii (t) =
∑

m

I
(m)
i G(m) (t). (4)

In Equation (4), m denotes available feature maps with m ∈
{

red, green
}

in the simulation that is reported in section
Simulation of the Formation of a Single Boolean Map and m ∈
{

red, green, horizontal, vertical
}

in the simulation that is reported
in section Simulation of the Intersection and Union of Two
BooleanMaps. ParameterGm refers to the feature-specific, global

multiplicative gain that all units I
(m)
i within the same feature

map m receive via top-down projections. As shown in Figure 2,
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these projections arrive from the feature representation in the
IT. Multiplicative gating is generally consistent with previous
models that describe the effect of feature-based attention on
the responses of neurons in the early visual cortex (Boynton,
2005, 2009). Equation (4) ensures that the F-WTA network is
not particularly sensitive to any feature value. Rather, it signals
the behavioral relevance of locations in a spatial map. Here, the
relevance can be set according to differences in the bottom-up

input I
(m)
i that arise from competitive interactions in the early

visual cortex. Alternatively, relevance can be signaled by the top-
down feature cues Gm that change the gain of all locations that
are occupied by the same feature value.

Dendritic output f(u) is described by the sigmoid response
function

f (u) =
Sd

1+ e−λ(u−Td)
(5)

where λ and Td control the shape of the sigmoid function and Sd
is its upper asymptotic value. We set λ to a high value to achieve
a steep rise of the dendritic activity immediately after its input
crosses the dendritic threshold, which is denoted as Td. Such
strong non-linearity is justified by experimental data, which show
all-or-none behavior in real dendrites (Wei et al., 2001; Polsky
et al., 2004). In Equation (1), parameter α controls the strength
of the impact that the dendritic compartment exerts on the soma.

Self-recurrent xi and nearest-neighbor collaterals xi−1 and
xi+1 arrive on the dendrite of the excitatory node, which is
consistent with the anatomical observation that most recurrent
excitatory connections are made on the dendrites of the
excitatory cells (Spruston, 2008). Nodes at the edge of the
network receive excitation only from a single available neighbor.
That is, node x1 receives excitation only from x2, and xN
receives excitation only from xN−1. Nearest-neighbor excitatory
interactions enable feature cues to spread activity enhancement
automatically to all connected locations that contain a given
feature value. This is not essential for the simulation of Boolean
maps but we included it in our model because recurrent
connections among nearby neurons are prominent feature of the
synaptic organization of the cortex (Douglas and Martin, 2004).
Also, we wanted to show that the proposed model is capable of
simulating object-based attention (Roelfsema, 2006; Roelfsema
and de Lange, 2016). Moreover, Wannig et al. (2011) found direct
evidence for activity spreading among neurons that encode the
same feature value in the primary visual cortex.

The output of the presynaptic interactions g(u) is defined by
the rectification non-linearity of the form

g (u) = [u]+ = max (u, 0) . (6)

In Equation (1), the term − g(y − xi − Ty) describes the
output of the presynaptic terminal that delivers inhibition from
interneuron y to excitatory node xi (Figure 4A). However, we
did not explicitly model the dynamics of retrograde signaling.
We assumed that the release of the retrograde transmitter occurs
simultaneously with the activation of the postsynaptic node and
that it is proportional to its firing rate. Therefore, it is represented
by the term− xi.

FIGURE 4 | Retrograde inhibitory signaling (blue curved arrows) from

excitatory node xi to the presynaptic terminal of inhibitory interneuron y (A)

and from the inhibitory interneuron to the presynaptic terminal of the excitatory

node (B). Both terminals compute half-wave rectification g(u) of their input.

Terminals release respective inhibitory (A) or excitatory (B) neurotransmitter

(straight horizontal arrows) only when they receive net positive input.

Function g(u) ensures that the presynaptic terminal will
release the inhibitory transmitter only when the electrical signal
from node y exceeds the inhibitory retrograde signal -xi and
the threshold for presynaptic activation, which is denoted as
Ty. In other words, node xi will be inhibited only if y > xi +
Tx. If this is not the case, node xi will effectively isolate itself
from the inhibitory influence of node y. This is always the case
for the winning node because x(t) > y(t) for t > 0. Moreover,
this result extends to all other nodes whose input magnitude
is sufficiently close to the maximal input. The strength of the
inhibition is determined by parameter β1. In a similar vein, in
Equation (2), the term−g(xi – y – Tx) describes the action of the
retrograde signal that is released from inhibitory interneuron y
on the presynaptic terminal that delivers excitation from node xi
(Figure 4B). Here, parameter Tx describes the threshold for the
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activation of the presynaptic terminal of the excitatory node and
β2 determines the strength of the excitation.

We have proposed a model of a one-dimensional network,
although it attempts to simulate phenomena that occur in 2-D,
as illustrated by Figure 1. We have chosen to work with the 1-
D version of the network simply because we want to focus on
the analysis of its temporal dynamics and its ability to combine
information over time. Without loss of generality, the computer
simulations that are reported in section Computer Simulations
should be considered as a cross-section of a 2-D network.

For simplicity, the thresholds that control the activation of
the excitatory and inhibitory nodes are all set to zero and are
omitted from the model description. Parameters were set as
follows: τx = 5; τy = 2; α = 1; β1 = 1; β2 = 10; Sd = 1;
λ = 100; Td = 0.1; Tx = 0.1; and Ty = 0.1. Parameters were
chosen in a way to simultaneously achieve intersection and
union. Systematic variations on the parameters α, β1 and β2

showed that intersection is observed when 1 ≤ (α, β1) ≤ 5. In
contrast, union is observed when 0.8 ≤ (α, β1) ≤ 1. Parameter
β2 can be set to any value above the default without changing the
results.

MODEL EXTENSIONS

The network that is defined by Equations (1) and (2) is chosen
in a way that achieves the desired behavior with the minimal
number of computational elements. This simplicity heuristic is
important for understanding model properties without adding
extra neuroscientific complexity (Ashby and Hélie, 2011).
However, at the same time, this approach sacrifices anatomical
and biophysical plausibility of the proposed model. In this
section, we present several extensions and generalizations of the
basic model that bring it closer to satisfying the neurobiological
constraints.

Inhibitory Pool
The model has just one inhibitory interneuron for computational
convenience, which is not realistic. It is known that excitatory
neurons outnumber inhibitory neurons by a factor of four in the
cortex (Braitenberg and Schüz, 1991). However, it is possible to
design an F-WTA network with a pool of inhibitory interneurons
and the appropriate ratio between excitatory and inhibitory
nodes that achieves the same behavior as the original model.
An extended F-WTA network is presented in Figure 5A. Here,
each inhibitory interneuron receives input from a subset of
the excitatory nodes. We depicted each excitatory subset as a
vertical arrangement of four nodes that do not overlap in their
projections to the inhibitory pool. Therefore, each excitatory
node projects to just one inhibitory node. Naturally, this does
not need to be the case. It is possible that each excitatory
node projects to more than one node without compromising
the network output. Importantly, all inhibitory interneurons are
mutually connected. In addition, each inhibitory interneuron
projects its output to all excitatory nodes (denoted by thick
blue arrow). As in the original model, we assume that all

inhibitory and excitatory nodes are endowed with the capability
of retrograde signaling on their synaptic contacts.

Within the pool of inhibitory nodes, retrograde signaling
enables computation of the MAX function, as in the original
model. To see this, consider the inhibitory node that receives
maximal input. Due to the retrograde signaling, it will reach a
steady state that corresponds to the computation of the MAX
function over input from its excitatory subset. Moreover, it will
not receive inhibition from the other members of the pool. All
other inhibitory nodes, which receive less excitatory support, will
be silenced because their retrograde signaling is not sufficiently
strong to prevent lateral inhibition from the winning node.
However, if there are multiple inhibitory nodes with the same
level of activity, they will remain active together. Finally, the
winning nodes send inhibition to all excitatory subsets. Since
excitatory nodes also engage in retrograde signaling, the nodes
that receive maximal input will block inhibition and remain
active. Therefore, the network output will look much like the
original model because the MAX computation on the inhibitory
nodes makes irrelevant the number of them that are active
simultaneously.

Localized Inhibition
An important shortcoming of the previous model is that it
assumes that inhibitory projections extend across the whole
network of excitatory units. This is clearly not the case in
real neural networks, where the spatial spread of inhibition is
limited. To account for this property, we have constructed a
more elaborate version of the basic model, which is shown in
Figure 5B. It contains a new pool zj of excitatory nodes with long-
range projections. The zj nodes receive input from the subset
of the xi nodes. Additionally, each zj node sends its projection
to at least one yj node from the pool of inhibitory nodes.
The number of z nodes must equal the number of inhibitory
nodes yj so that they can be indexed by the same subscript
j. Again, we assume that the zj nodes are equipped with the
ability of retrograde signaling on their synapses. Therefore, they
also compute the MAX function over all their inputs, including
feedforward input from the corresponding subset of xi nodes and
recurrent input from other zj nodes. In this design, the maximum
level of activity that is sensed by the xi nodes in one part of the
network is easily propagated via zj nodes to all other parts of the
network. Furthermore, zj nodes transfer this activity to inhibitory
nodes. Therefore, each inhibitory node will eventually receive the
maximal level of activity and apply it to the subset of xi nodes
to which it is connected. In this design, it is not necessary for
inhibitory nodes to interact with one another. The excitatory
nodes xi that receive maximal input will block inhibition by
their retrograde signaling and remain active in the same manner
as described in the previous section. In this way, the proposed
circuit achieves the same result as the original model.

Output Functions
The model employs threshold-linear output functions for the
soma and the logistic sigmoid function for dendrites. This
is inconsistent with the observation that somatic output also
saturates and is also often modeled by the sigmoid function.
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FIGURE 5 | Two variations of the F-WTA circuit design that are computationally equivalent to the basic circuit that is shown in Figure 2. (A) Circuit with a set of

inhibitory nodes, which are denoted as yj . Each yj receives input from a subset of excitatory nodes. Inhibitory nodes compete with one another and the winning node

encodes the maximum of its input. It delivers inhibition to all excitatory nodes in the same way as single inhibitory node y in the basic circuit. (B) Circuit with an

additional set of excitatory nodes zj with long-range horizontal projections. These nodes propagate the locally computed maximum level of activity to all parts of the

network. Therefore, the whole set of zj converges to a global maximum. Furthermore, they contact inhibitory nodes yj that deliver inhibition to a subset of excitatory

nodes xi .

However, in normal circumstances, neurons operate in a linear
mode that is far from their saturation level (Rutishauser and
Douglas, 2009). To provide a more systematic approach to the
output functions that are used in the model, we introduce a
piecewise-linear approximation to the sigmoid function sq(u) of
the form

sq (u) =







0 if u ≤ 0
u if 0 < u < Sq
Sq if u ≥ Sq

(7)

where Sq denotes the upper saturation point, which can be set
differently for different computational units q ∈

{

c, d, p
}

, which
correspond to the somatic, dendritic, and presynaptic terminal
outputs, respectively. With the output function sq(u) applied to
all computational elements of a single node, the model equations,
namely, Equations (1) and (2), can be restated as

τx
dxi

dt
+ xi = sc [Ii (t) + αsd (xi + xi+1 + xi−1 − Td)

− β 1sp
(

y− xi − Ty

)]

(8)

and

τy
dy

dt
+ y = sc

[

β 2

∑

i

sp
(

xi − y− Tx

)

]

. (9)

An important constraint of the model that is defined by
Equations (8) and (9) is that saturation point for the dendritic

output Sd should be chosen to be smaller than Sc, which is the
saturation point of the somatic output. In this way, feedforward
input Ii can be combined with the dendritic output without
causing saturation at the output of the node. In contrast, if
dendrites are allowed to saturate at the same activity level as
the node, the dendritic output will overshadow the feedforward
input. Consequently, the network will lose its sensitivity to
the input changes. This is undesirable with respect to the
requirements that are imposed by the sequential formation of the
multiple Boolean maps. Therefore, the choice between the linear
or the sigmoid output function for the node is not important if
the dendritic output is restricted to a smaller interval relative to
the output of the node itself.

LINEAR STABILITY ANALYSIS

Fixed Points
Fixed point is found iteratively starting from the set of nodes
receiving maximal input, xM . We assume that the winning nodes
and inhibitory interneuron are activated above their thresholds,
so we set [u]+ = u. Next, we observe that the winning nodes do
not receive inhibition from the interneuron y since xM(t) > y(t)
for t > 0. This holds because the activity of the inhibitory node is
bounded above by xM + Tx > y where Tx is a positive constant.
Then, retrograde signaling ensures that g(y − xM − Ty) = 0
for all times t. Consequently, nodes receiving maximal input are
driven solely by excitatory terms. Since the recurrent excitation
is bounded above by its asymptotic value Sd, dendritic output
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function f(u) in Equation (1) is replaced with Sd. This yields the
following approximation to the steady state of the winning nodes:

xM ≈ IM + αSd. (10)

After the xM , inhibitory interneuron y also reaches its steady state
because its activity is driven primarily by the input from xM . As
the activity of y grows, terms g(xi − y − Tx) in Equation (2)
vanish for all nodes that do not receive maximal input xi where
i /∈ M. In contrast, the presynaptic terminals of xM are above the
threshold for their activation just before y reaches equilibrium,
that is, g(xM − y− Tx) > 0. Therefore, the output function of the
presynaptic terminal g(u) can be replaced by u. Then, Equation
(2) is solved as

y =
β2k (xM − Tx)

β2k+ 1
, (11)

where k is the number of xM . When β2 is chosen to be sufficiently
large, and/or there are many nodes with maximal input xM , then

y → xM − Tx. (12)

Continuity of the function defined by Equation (2) implies that
y cannot grow above xM − Tx, that is, y(t) > xM(t) − Tx cannot
hold at any time t unless y(t0)= xM(t0)− Tx at some earlier time
t0 < t. However, equality y(t0) = xM(t0) − Tx implies that dy/dt
= 0 at time t0 because g(xM(t0)− y(t0)− Tx)= 0. In other words,
node y loses all its excitatory drive when it reaches xM − Tx. This
is true irrespective of the number k of xM . Thus, node y computes
the maximum over its input.

The xM nodes, together with the inhibitory node, create a
quenching threshold (QT) for the network, which is defined by

QT = y− Ty = xM − Tx − Ty. (13)

Grossberg (1973) introduced the concept of the quenching
threshold to describe the property of contrast enhancement in
recurrent competitive networks. Nodes whose activity is above
QT are enhanced and stored in the memory state, while all nodes
whose activity is below QT are suppressed and removed from
the memory representation. In the same manner, the remaining
excitatory nodes converge to one of two states, depending on
whether they exceed QT or not:

xi/∈M ≈

{

Ii + αSd if xi ≥ QT
0 if xi < QT.

(14)

QT and its relationship with the activity of the winning and
non-winning nodes and inhibitory interneuron is illustrated
in Figure 6. According to Equations (10), (11), and (14), the
fixed-point linearly combines input and recurrent excitation. As
maximal input increases or decreases, the fixed point will move
up or down and track these changes. Moreover, the input may
cease, and the winning nodes will settle into the activity level that
is provided by the recurrent excitation alone, which is expressed
as αSd. In other words, the network remembers who the last
winner was. The same is true in the case where the winner is
determined by transient cues that are applied sequentially on a
sustained input. This is a protocol that is used in the computer
simulations that are reported in section Computer Simulations.

FIGURE 6 | Relationship among the steady state of the winning node x1,

inhibitory node y, and all other excitatory nodes in the network, x2 … xn. The

activity of the winning node is given by the sum of its feedforward input I1 and

the output of its dendrite mediating self- and nearest neighbor excitation,

which is expressed as αSd . Inhibitory node y approximately converges to x1 –

Tx . It sets the quenching threshold (QT) that separates excitatory nodes into

two sets. Nodes x2 … xn are spared from inhibition if their activity is above the

QT (dashed line); otherwise, they are silenced to zero (solid line). QT equals y –

Ty (or x1 – Tx – Ty ) because the activity of the inhibitory node must exceed the

threshold on its presynaptic terminals that contact the excitatory nodes.

Linearization Near Fixed Points
To simplify the stability analysis, we consider an F-WTA network
with two excitatory nodes and one inhibitory node: [x1, x2, y].
This system has three fixed points: x1 is the only winner, x2 is
the only winner, and both excitatory nodes are winners. To which
fixed point the network will converge depends on the relationship
between inputs I1 and I2.

Local stability of the fixed point is estimated from the
eigenvalues of the Jacobian matrix, which is the matrix of partial
derivatives of the system of equations. If the real parts of all
eigenvalues of the Jacobian are negative, the fixed point will be
asymptotically stable (Rutishauser and Douglas, 2009). However,
before we can compute the Jacobian matrix, we note that a
linear-threshold function is continuous, but not differentiable.
To sidestep this problem, we follow the approach that was
described by Rutishauser et al. (2011) of inserting dummy terms
that correspond to the derivate. That is, we need three separate
dummy terms: ci and pxi, which correspond to the somatic and
presynaptic output functions of excitatory node i, and a set of pyi
dummy terms that describe the presynaptic output function of
inhibitory node y. The dummy terms are defined as.

ci = pxi = pyi =
d

du
[ui (t)]

+
=

{

0 if ui (t) ≤ 0
1 if ui (t) > 0.

(15)

Based on the above definition of the dummy
terms, we have constructed the Jacobian matrix of
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the system that consists of Equations (1) and (2):

J =





τ−1
x

(

c1
(

αD1f + β1py1
)

− 1
)

τ−1
x c1αD2f τ−1

x c1β1py1
τ−1
x c2αD1f τ−1

x

(

c2
(

αD2f + β1py2
)

− 1
)

τ−1
x c2β1py2

τ−1
y β2px1 τ−1

y β2px2 −τ−1
y

(

β2

(

px1 + px2
)

− 1
)



 (16)

where D1f and D2f denote the partial derivatives of the sigmoid
function with respect to x1 and x2. Now, we examine the Jacobian
matrix at the three fixed points that are mentioned above. If x1
is the only winner, then c1 = 1. However, Dx1f ≈ 0 because
the recurrent excitation of the winning node approaches its
asymptotic value, which is Sd. In addition, py1 = 0 because the
winning node blocks inhibition from node y, as discussed above.
Node x2 is inhibited below its somatic threshold, that is, c2 = 0.
Presynaptic signaling by inhibitory node y blocks excitation from
x1 and x2 is inactive, so px1 = px2 = 0. Consequently, the Jacobian
matrix at the fixed point reduces to a diagonal matrix of the form

JW1 = JW2 = JW12 =





−τ−1
x 0 0
0 −τ−1

x 0
0 0 −τ−1

y



 . (17)

All eigenvalues of the JW1 are negative, and the fixed point is
asymptotically stable. In the case when x2 is the sole winner, the
same arguments are applied to set the dummy terms, thereby
leading to the same diagonal matrix JW2 as shown in Equation
(17). Moreover, if both excitatory nodes are winners, then c1
= c2 = 1, Dx1f = Dx2f ≈ 0 and px1 = px2 = 0. Again, the
Jacobian matrix JW12 is diagonal. Thus, all three fixed points are
asymptotically stable.

The same analysis can be generalized to a network of arbitrary
size and arbitrarily many fixed points. Retrograde signaling and
dendritic saturation will ensure that the Jacobian matrix of any
size will be diagonal and that the network dynamics will be
independent of the network parameters, namely, α, β1, and
β2. Local stability analysis suggests that the system behaves
much like a feedforward network that is driven by the input.
However, an important difference is that the F-WTA network
has memory states like the recurrent network (Usher and Cohen,
1999; Rutishauser and Douglas, 2009).

COMPUTER SIMULATIONS

We performed a set of computer simulations to illustrate the
model behavior. We employed a vector of 200 excitatory units
and one inhibitory unit. Differential Equations (1) and (2)
were solved numerically using MATLAB’s ode15s solver. The
simulations were run for 250 time steps. In subsequent figures,
we followed the convention that activity of the node at position
i as a function of time is depicted by a shade of gray, with white
representing the maximal value and black representing zero.

Simulation of the Formation of a Single

Boolean Map
First, we demonstrate how a Boolean map arises in the F-
WTA network in response to the presentation of the color
cue, as illustrated by Figure 1A. In Figure 7A, we recreate a

similar stimulus condition in the 1-D map. The input consists
of red and green items of equal sizes, which are intermixed
in space on a black background. Input magnitude I was set
to 1 in both maps and to 0.2 in the empty space around
items to represent spontaneous activity in the absence of visual
stimulation. Initially, the top-down or attentional gain is set to
Gm = 1 in both feature mapsm ∈

{

red, green
}

. At t = 50, the red
color is attended, which is reflected in the input to the network
by increasing the gain for all nodes in the Red map (Gred =

2) and simultaneously reducing the gain in the Green map by
the same factor (Ggreen = 1/Gred = 1/2). Top-down gain is also
applied to the empty space between items, which is consistent
with the finding that feature-based attention spreads across the
whole visual field (Saenz et al., 2002, 2003; Serences and Boynton,
2007). The duration of the top-down cue is 50 simulated time
steps. For simplicity, top-down signals are suddenly switched on
and off without exponential decay. At t = 150, the green color is
cued in the same way.

At the beginning of the simulation, before the top-down
signals are applied, the F-WTA network simply selects all
presented items together, irrespective of their color. Next, when
the red color is cued by applying top-down signals to the
corresponding feature map, the network responds to the new
input by selectively increasing and sustaining the activity of
nodes that encode locations of red items in the input and
suppressing locations that encode green items. That is, the
network creates a Booleanmap by highlighting the spatial pattern
that is associated with the red color. Furthermore, due to a
self-excitation, the network maintains locations of the cued
feature value in working memory after the top-down signals
cease to influence the feature map. When the observer decides
to switch attention to another feature value, the network can
select the locations of the new feature value and suppress the
locations that are associated with the previously cued value
without requiring an external reset. Namely, the network is
sensitive to input changes even though it also exhibits activity
persistence.

Importantly, the activity level at selected locations is invariant
with respect to the number of active nodes. At the beginning
of the simulation, the number of active nodes was four times
larger than after the cue was delivered. However, the active nodes
remained at the same activity level as they were at the beginning
of the simulation. This is a consequence of retrograde inhibitory
signaling in recurrent pathways. It prevents unbounded growth
of inhibition due to the dynamic regulation of its strength. To
illustrate this point further, we run another simulation with items
that are almost double in size (Figure 7B). Even though the total
size of the cued items is increased, the activity of the cued nodes
converges to the same level as before. In this simulation, we also
checked that the network successfully operates even if we remove
gain reduction from the non-attended feature map.
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FIGURE 7 | (A) Simulation of the Boolean map formation in the F-WTA network in response to the sequential presentation of two color cues (red appeared between

50th and 100th and green appeared between 150th and 200th simulated time unit). (B) The same simulation with larger items and without gain modulation applied on

the unattended feature map.

Next, we determined the minimal feature gain that must be
applied on the input to produce the desired behavior. When
the gain modulation is applied simultaneously on attended
feature map GA and on unattended feature map GNA (where
GNA = 1/GA), we found that GA ≥ 1.7 is sufficient for creating
a Boolean map and switching to another one. In contrast,
when the gain modulation is not applied on the unattended
feature map, as shown in Figure 7B, the feature gain in the
attended map should be set to GA ≥ 2 to achieve the same
behavior.

Figure 8 illustrates that the F-WTA network can support
space- and object-based attention alongside feature-based
attention. When the spatial cue is applied to a single location
in one of the feature maps, the network responds by selecting
only this location. Neighboring nodes are not selected even

though they are reciprocally connected to the cued node. The
reason is that they receive weaker input relative to the cued
node. Furthermore, recurrent excitation that arrives from the
cued node is bound by the dendritic non-linearity. Thus, it
is not sufficiently strong to keep them active. Interestingly,
when the spatial cue is removed, the network activity starts
to propagate from the cued node toward the boundary of the
whole item. In this case, the network selects not just the cued
location, but all locations that are connected to it. Therefore,
the F-WTA network exhibits object-based selection, which is
consistent with neurophysiological studies that show spreading
of enhanced activity along the shape of the object (Roelfsema,
2006). This property arises because the removal of the cue
equalizes the input magnitude along the object, which allows
activity enhancement to propagate via local lateral connections.
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FIGURE 8 | Simulation of space- and object-based attention in the F-WTA

network.

In addition, this simulation shows that spatial attention can be
easily oriented toward a new location in a single jump without
the need for attentional pointers that move attention across the
map (Hahnloser et al., 1999).

Simulation of the Intersection and Union of

Two Boolean Maps

Figure 9 illustrates that the model can sequentially combine two
Boolean maps when the network is cued by top-down signals
from two separate feature dimensions. In this simulation, we
have employed a visual input that consists of red and green
horizontal and red and green vertical bars, like those that are
illustrated in Figure 1B. First, the F-WTA network is cued to
select red bars, irrespective of their orientation. In the second
step, it is cued to select horizontal bars, irrespective of their
color. However, green vertical bars are already suppressed and
the top-down signal that is supplied to them is not sufficient
to override the inhibition that arises from red vertical bars.
The net result is the selection of a subset of red horizontal
bars. In other words, the network activity converges to an
intersection between a set of red bars and a set of horizontal
bars, thereby resulting in the selection of red horizontal
bars.

Next, we examined how the network achieves the union of
two Boolean maps (Figure 10). Here, we assumed that the input
consists of two non-overlapping components: colored squares
that activate color maps but do not activate orientationmaps, and
achromatic horizontal and vertical bars that activate orientation
maps but do not activate color maps, as shown in Figure 1C.
Red-colored items occupy locations between 1 and 100 and
oriented bars occupy locations between 101 and 200. This closely
resembles the stimulus that is used by Huang and Pashler (2007)
to demonstrate the union of color and texture. Taken together,
the data show that the union of two Boolean maps is possible
only when two top-down cues overlap in time or when the second
cue closely follows the withdrawal of the first cue. In Figure 10,
the cue for the red map is applied in the interval [50, 100] and
the cue for the horizontal map is applied in the interval [110,
160]. In this case, the F-WTA network converges to the union
of red and horizontal items. However, when top-down cues do
not overlap, as shown in Figure 11, the second cue overrides the
network activity that remains from the first cue. We suggest that
this property partly explains why the union is difficult to achieve,
as observed by Huang and Pashler (2007).

In addition, we examine the boundary conditions on the
choice of the feature gain parameter. We parametrically vary the
feature gain in steps of 0.1 starting from G = 2 and moving
below and above to determine when the ability to form the
intersection or union breaks down. When the gain modulation is
applied simultaneously on attended (GA) and unattended (GNA)
feature maps, we find that GA should be chosen from the interval
[1.5, 2.1] to achieve the intersection between two maps. When
GA < 1.5, the network fails to segregate cued from non-cued
locations in the first step. In contrast, whenGA > 2.1, the network
successfully segregates cued from non-cued locations in the first
step. However, the gain is too high, so all horizontal items are
selected together in the second step. That is, the representation of
red horizontal items is merged with the representation of green
horizontal items. When GNA = 1 throughout the simulation,
GA should be chosen from the interval [1.8, 2.0] to achieve
intersection.
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Marić and Domijan Feature-Based Spatial Selection

FIGURE 9 | Simulation of the intersection of red and horizontal items.

With respect to the union of two maps, the feature gain
GA should be chosen from the interval [1.4, 2.0] when GNA

= 1/GA and from the interval [1.6, 2.0] when GNA = 1.
When GA is chosen below the suggested intervals, feature
gain is too weak, and the second cue will not be able to
raise the activity level of the nodes that represent horizontal
items above the quenching threshold. Therefore, the network
ends up with the Boolean map of red items that is formed
in the first step. When GA is chosen above the suggested
interval, the network switches between the representation

of the red items in the first step to the representation of
the horizontal items in the second step. In this case, the
feature cue is too high, and the activity of the nodes that
represent horizontal items simply overrides the activity of
the nodes that represent the red items. These constraints
are derived from the situation in which the two top-down
cues overlap in time. As shown above, temporal lag of
the second cue relative to the first cue also destroys the
ability of the network to form the union of two Boolean
maps.
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FIGURE 10 | Simulation of the union of red and horizontal items.

Simulation of Bottom-Up Spatial Selection
Finally, we have shown that when there is no top-down
guidance, the network selects the most-salient locations based
on the bottom-up salience that is computed within feature maps
(Figure 12). We did not explicitly model competition among
maps, but it is reasonable to assume that in a scene with many
multi-featured objects, their input magnitudes (i.e., saliencies)
will be different. Therefore, we arbitrarily assigned different input
magnitudes to different items. As shown in Figure 12A, the F-
WTA network selects the most salient object if the difference in

inputmagnitude between the twomost active nodes is sufficiently
large. However, when this difference is small, as shown in
Figure 12B, the F-WTA model chooses two most salient items
together. Furthermore, in both examples, the network activity
retains the input amplitude of the winning item (or items),
thereby illustrating the ability to compute the functionmaximum
(Yu et al., 2002).

The precision of saliency detection depends on the threshold
for the activation of synaptic receptors on the inhibitory
interneuron. In all reported simulations, it was set to Ty = 0.1.
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FIGURE 11 | Breakdown of union of red and horizontal items when the delivery of top-down cues for red and horizontal items is separated by a large temporal gap.

If smaller values were chosen, the network would improve in
terms of precision and be able to separate the two objects that
are presented in Figure 12B. However, this comes at the price of
losing the ability to form a union of two Booleanmaps. Therefore,
there is a trade-off between the precision of saliency detection and
the ability to form Boolean maps.

An important aspect of stimulus-driven attentional control
is attentional capture by peripheral cues. Behavioral studies
have shown that the abrupt onset of a new object in a visual
scene can automatically capture attention even if it is irrelevant

for the current goal (Theeuwes, 2010). Figure 13 illustrates the
sensitivity of the F-WTA network to abrupt visual onset. To
simulate this effect, we have made the additional assumption
that the network receives input not only from a sustained
channel that is comprised of feature maps in V4 but also from
a transient channel that responds vigorously only to changes in
input (Kulikowski and Tolhurst, 1973; Legge, 1978). Thus, when
the abrupt onset is accompanied by a strong transient signal that
exceeds the activity level of the currently attended item, the F-
WTA network temporarily switch activity toward the location of
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FIGURE 12 | Selection of the most salient item in the absence of top-down guidance. (A) When the most salient item is sufficiently distinctive from other items, the

F-WTA network selects it. (B) When the saliency of all items is relatively low, the F-WTA network may select more than one item because it has a limit on the precision

by which it separates inputs of different magnitudes.

the onset (Figure 13A). Here, the input at the locations that are
occupied by the winning item in the center of the map was set
to IW = 2. Input to all other items was set to Ii = 1. Finally, the
transient input that appears on the sides of the map was set to
IT = 4. It is sufficient to set IT ≥ IW + 0.8 to achieve sensitivity
to abrupt onsets. Moreover, the same relation holds even if we
choose a larger value for IW .

Next, when abrupt onset produces only weak transient signals
(IT = 2) that do not satisfy the inequality that is stated above
(IW = 2), the activity in the F-WTA network resists abrupt onset
and stays on the previously attended item (Figure 13B). This
observation is consistent with behavioral findings that abrupt
onset can be ignored (Theeuwes, 2010), perhaps by attenuating
the response of the transient channel. Another possibility is that
the top-down gain for the attended location can be increased
so that it exceeds the activity of the transient channel. In this
case, intense focus on the current object prevents attentional
capture, which is consistent with the psychological concept of the
attentional window (Belopolsky and Theeuwes, 2010).

DISCUSSION

We have proposed a new model of the WTA network that
can simultaneously select multiple spatial locations based on a
shared feature value. We named the model the feature-based
WTA (F-WTA) network because the unit of selection is not a
point in space or object, but rather an abstract feature value
that is set by the top-down signals. We have demonstrated how

the F-WTA network implements the central proposal of the
Boolean theory of visual attention that there exists a spatial map
that divides the visual space into two mutually exclusive sets.
One set represents all locations that are occupied by the chosen
feature value. The other set contains all other locations, which
are not of interest. The Boolean map controls spatial selection
and access to the consciousness (Huang and Pashler, 2007).
Moreover, we have shown that the network successfully integrates
information across space and time to form the intersection or
union of two maps that are defined by different feature cues.
Previous models of the WTA network are not capable of such
integration because they require that the current winner be
externally inhibited to allow attentional focus to move from
one location to another (Kaski and Kohonen, 1994; Itti and
Koch, 2000, 2001). Another possibility to move activity across
locations in the network is to introduce dynamic thresholds
that simulate habituation or fatigue in individual neurons. In
this case, current winner loses its competitive advantage due
to the raise of its threshold. This allows non-winners to gain
access to working memory (Horn and Usher, 1990). However,
both approaches are not suitable for forming the intersection
or union of a set of previous winners and a set of later
winners.

Another important property of the F-WTA network that sets
it apart from previous models of WTA behavior is the ability to
select and store arbitrarily many locations in the memory. This
is achieved by inhibitory retrograde signaling, which effectively
isolates winning nodes frommutual inhibition. First, the amount
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FIGURE 13 | Sensitivity to abrupt visual onsets. (A) When the transient signal that is produced by the abrupt onset of a new object is sufficiently strong, it temporarily

draws attention to itself. (B) When the transient signal is weak, attention resists abrupt onset and stays on the item that was selected at the beginning of the simulation.

of inhibition in the network is significantly reduced because the
inhibitory interneuron computes the maximum instead of the
sum of the recurrent input that it receives from the excitatory
nodes. Second, the winning excitatory nodes release their
retrograde signals and block inhibition from the interneuron.
Consequently, arbitrarily many winners can participate in
representing the selected locations without degrading their
activation. In other words, there is no capacity limit on the
number of objects that can be simultaneously selected. This
is consistent with recent behavioral findings that suggest that
our ability to select multiple objects is not fixed. Rather, spatial
attention should be considered a fundamentally continuous
resource without a strict capacity limit (Davis et al., 2000, 2001;
Alvarez and Franconeri, 2007; Liverence and Franconeri, 2015;
Scimeca and Franconeri, 2015).

In addition, the network is sensitive to the sudden appearance
of a new object in the scene, which suggests that it can also
be guided by bottom-up feature cues (Theeuwes, 2013). We
hypothesize that the network receives strong input from the
transient channel. Such input overrides the network’s current
memory state, thereby making it sensitive to abrupt onsets.
Moreover, the transient channel can be activated by any type
of change in the spatiotemporal energy of the input, and not
just by the sudden appearance (or disappearance) of objects. For
example, it will be activated by a sudden change in the direction of
motion (Farid, 2002). When the network simultaneously receives

transient input from different locations, they all will be selected
together. In this way, the network achieves temporal grouping of
synchronous transient input. That is, the network can discover
spatial structures that are defined purely by temporal cues (Lee
and Blake, 1999; Rideaux et al., 2016).

Biophysical Considerations
As noted above, the model of the F-WTA network rests
upon three key computational elements: the dendrite as
an independent computational unit, retrograde signaling on
synaptic contacts, and computing the maximum over inputs.
Here, we review supporting neuroscientific evidence that
suggests that all three biophysical mechanisms are plausible
candidates for computation in real neural networks.

There is a growing body of evidence that the excitatory
pyramidal cell should not be viewed as a single electrical
compartment. Rather, it consists of multiple independent
synaptic integration zones arranged in a two-layer hierarchy
(Häusser and Mel, 2003; London and Häusser, 2005; Branco and
Häusser, 2010; Mel, 2016). Using a detailed biophysical model
of the pyramidal neuron, Poirazi et al. (2003) showed that its
output is well approximated by a two-layer neural network. In
the first layer of the network, dendrites independently integrate
their synaptic input and produce sigmoidal output. In the second
layer, the dendritic output is summed at the soma to produce
the neuron’s firing rate. Importantly, the somatic and dendritic
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output functions need not be the same (Jadi et al., 2014). For
example, Behabadi and Mel (2014) showed that the soma of the
model neuron generates nearly linear output, while the dendritic
output is sigmoid. In our model, the dendrite conveys recurrent
excitation to the node. Due to the dendritic non-linearity, there is
no risk of unbounded activity growth in the node. Furthermore,
the dendritic output is summed with the external input at the
soma of the node. By using a linear output function at the soma,
we have ensured that the F-WTA network remains sensitive to
input fluctuations.

Synaptic transmission can be dynamically regulated in an
activity-dependent manner, as shown by the existence of
depolarization-induced suppression of inhibition (DSI) (Pitler
and Alger, 1992) and depolarization-induced suppression of
excitation (DSE) (Kreitzer and Regehr, 2001). DSI (DSE)
refers to the reduction in inhibitory (excitatory) post-synaptic
potentials following depolarization of the postsynaptic cell.
These processes have been observed in various brain regions,
including the cerebellum, hippocampus, and neocortex. A
retrograde messenger that is released from postsynaptic cell due
to its depolarization mediates DSI and DSE. After release, the
retrograde messenger binds to the receptors at the presynaptic
axon terminals and suppresses the release of the transmitter.
Based on these properties, Regehr et al. (2009) suggested that
a possible physiological function of DSI and DSE is to provide
negative feedback that reduces the impact of the synaptic input
on the ongoing neural activity.

The model behavior rests upon the assumption that the
inhibitory interneuron computes the maximum instead of the
sum of its inputs. There is some direct physiological evidence
that real cortical neurons indeed compute the MAX function.
For example, Sato (1989) examined responses of neurons in the
primate inferior temporal cortex to the presentation of one or two
bars in their receptive field. He concluded that the responses to
two bars that were presented simultaneously were well described
by the maximum of the responses to each separately. In a
similar vein, Gawne and Martin (2002) recorded the activity
of neurons in primate V4 and found that their firing rate in
response to the combination of stimuli is best described by
the maximum function over the firing rates that are evoked by
each stimulus alone. Furthermore, Lampl et al. (2004) directly
measured membrane potentials in the complex cells of the cat
primary visual cortex and found evidence for the MAX-like
behavior in response to the pair of optimal bars.

Indirectly, the importance of the MAX-like operation
in cortical information processing can be appreciated by
considering the many computational models of visual functions
that have employed it in simulating rich and complex
datasets. For example, Riesenhuber and Poggio (1999) employed
hierarchical computation of the MAX function in a model of
invariant object recognition. Spratling (2010, 2011) used it in
simulating a large range of classical and non-classical receptive
field properties of V1 neurons. Moreover, Tsui et al. (2010) used
MAX-like input integration to explain diverse properties of MT
neurons and Hamker (2004) used it in his model of top-down
guidance of spatial attention. Furthermore, Kouh and Poggio
(2008) developed a canonical cortical circuit that is capable of

many non-linear operations, including computation of the MAX
function. Here, we have shown that a single inhibitory node that
is endowedwith retrograde signaling can compute themaximum.

Based on the proposed model, we have derived two
testable predictions. The cortical network that is involved in
spatial selection will contain inhibitory interneurons that can
compute the MAX function. Moreover, both the excitatory
and inhibitory neurons in this network will be endowed with
the anatomical structures that support retrograde signaling
(presynaptic receptors and postsynaptic transmitter release sites).

Comparison With Other WTA Network

Models
Several models of biophysical mechanisms have been proposed
for implementing WTA behavior in a neural network, including
linear-threshold units (Hahnloser, 1998; Rutishauser and
Douglas, 2009), non-linear shunting units (Grossberg, 1973;
Fukai and Tanaka, 1997), and oscillatory units (Wang, 1999;
Borisyuk and Kazanovich, 2004).

A simple model of a competitive network that is based on
linear-threshold units has been extensively studied. Stability
analysis revealed that this network requires fine-tuning of
the connectivity to achieve stable dynamics that can perform
cognitively relevant computations, such as choice behavior
(Hahnloser, 1998; Hahnloser et al., 2003; Rutishauser et al., 2015).
Recently, Binas et al. (2014) showed that a biophysically plausible
learningmechanism could tune the network connections in a way
that keeps the network dynamics in the stable regime. Here, we
have shown how dendritic and synaptic non-linearities ensure
that the network dynamics near fixed points depends only on
the time constants of the nodes and not on the parameters that
control recurrent excitation and lateral inhibition. Therefore, a
precise balance between excitation and inhibition is not necessary
for achieving a stable memory state. Moreover, the network is
sensitive to the input and can iteratively combine the current
memory state with new input to form the intersection or union
of them.

An important problem for WTA networks that are based on
the linear-threshold or sigmoid output functions is that they
lack a mechanism for controlling inhibition between the winning
nodes. Therefore, they have limited capacity to represent multiple
winners. Usher and Cohen (1999) showed that their activation
decreases up to the point of complete inactivation as the number
of winning nodes increases. This is due to the increased amount
of mutual inhibition. The problem cannot be solved simply by
reducing the strength of the lateral inhibition because it is not
known in advance howmany locations will be cued. On the other
hand, feature-based spatial selection requires that the network
be able to adjust automatically the amount of inhibition to
accommodate the selection of a very small or very large number
of winners.

Grossberg (1973) proposed a recurrent competitive map
model that was based on shunting non-linear interaction between
the synaptic input and the membrane potential. The output of
the model depends on the exact form of the signal function
that is used to convert membrane potential into the firing rate.
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When the signal function is chosen to grow faster than linear,
the network exhibits WTA behavior. By contrast, when the signal
function is sigmoid, the network can select multiple winners if
they have similar activity levels. The most important property
of this model is the existence of the quenching threshold. All
nodes whose activity is above QT are enhanced and all nodes
whose activity is below QT are suppressed. This behavior is
similar to the operation of the F-WTA network that was proposed
here. However, an important difference is that in the shunting
model, QT is fixed and dependent on the parameters of the
network. In contrast, the feature-based WTA network exhibits
dynamic QT that depends on the input to the network and not
on its parameters. In this way, the F-WTA network rescales its
sensitivity to the input fluctuations.

More recently, a version of the recurrent competitive map
was applied in modeling object-based attention (Fazl et al.,
2009). It was shown that sustained network activity in the
model PPC encompasses the whole object as an attentional
shroud around it. Such spatial representation of a single object
supports view-invariant object recognition within a larger neural
architecture, namely, ARTSCAN. In an extension of the model,
Foley et al. (2012) proposed two separate competitive networks
that account for distinct properties of object- and space-based
attention. A network with strong inhibition is limited to the
selection of a single object. The other network utilizes weaker
inhibition to support multifocal spatial selection. To increase the
capacity of this network to represent multiple objects, Foley et al.
(2012) suggested that the amount of lateral inhibition could be
controlled externally. As the number of objects that should be
selected together increases, the lateral inhibition should become
weaker to counteract the effect of the larger number of nodes that
participate in the competition. In contrast, the F-WTA network
does not require such external adjustments of the strength of
the lateral inhibition to accommodate the selection of arbitrarily
many objects of arbitrary size. Moreover, in the F-WTA network,
object-based and multifocal spatial attention coexist within the
same circuit. Whether the network exhibits object-based spatial
selection depends on the type of cue that is presented to the
network and not on its parameters.

Wang (1999) proposed a model of object-based attention
that relies on the phase synchronization and desynchronization
among oscillatory units. At each location of the recurrent
map, there is a pair of excitatory and inhibitory units with
distinct temporal dynamics that creates a relaxation oscillator.
Excitatory units are also mutually connected with their nearest
neighbors and with a global inhibitor. The network is initialized
with random phase differences between oscillators at different
network locations. The activity of the global inhibitor further
enforces phase separation among excitatory units. However,
local excitatory interactions among nearest neighbors oppose
global inhibition and result in phase synchronization that spreads
among nodes that encode the same object. The net result of
these interactions is temporal segmentation and selection of one
active object representation at a time in a multi-object input
image. Importantly, the network can switch its activity from
one object representation to another. However, this transition
is generated internally by the oscillator dynamics. It is not

possible to drive the object selection by external cues such
as top-down gain control or bottom-up cues such as abrupt
onsets. Moreover, it is not possible to enforce simultaneous
selection of more than one object by a joint feature value
because the global inhibitor will desynchronize all nodes that
encode non-connected items. Therefore, it is not clear how
synchronous oscillations could support feature-based attentional
selection. Taken together, it is still an open issue whether they
are relevant for perception and cognition (Ray and Maunsell,
2015).

Limitations
The proposed model of spatial selection successfully simulates
the formation of the Boolean map and its elaboration by the
set operations of intersection and union but does not fully
implement all aspects of the theory that was proposed by Huang
and Pashler (2007). Precisely, it does not explain why attention
is limited to only one feature value per dimension or how the
observer sequentially chooses one feature value after another
or combines feature dimensions into intersections or unions
of Boolean maps. It is likely that this severe limitation arises
from some form of the WTA network. However, this constraint
requires a more elaborate model of the interactions among the
spatially invariant representation of the feature values in the IT
cortex and the interactions between the IT and the prefrontal
cortex, where decisions and plans are made.

In all simulations that are reported here, we kept items
segregated in space. This was not the case in the stimuli that
were used by Huang and Pashler (2007). They employed a matrix
of colored squares that were connected to one another. This
is because activity spreading can occur among adjacent nodes
even if they encode different feature values. Activity spreading
is observed after top-down signals stop favoring one feature
value over the other. In this case, all feature maps contribute
equally to the input of the F-WTA network and the network is
no longer able to discriminate between selected and unselected
feature values. One way to solve this issue is to assume that
the top-down signals are constantly present during the whole
trial. In this way, the activity magnitude on the cued locations
is kept above that on the non-cued locations. Therefore, non-
cued locations are treated as background noise and suppressed,
despite their proximity to the cued locations. Another possibility
is to impose boundary signals that act upon recurrent collaterals
of the nodes in the F-WTA network in a way that is similar
to how activity spreading is stopped in the network models of
brightness perception (Grossberg and Todorović, 1988), visual
segmentation (Domijan, 2004), and figure-ground organization
(Domijan and Šetić, 2008).

Finally, input to the network does not follow the distance-
dependent activity profile that is usually observed in the visual
cortex. However, this is not a critical issue for the model’s
performance because the precision of selection depends on the
thresholds for presynaptic terminal activation, namely, Tx , and
Ty. If they are set to very small values, the network will tend
to select the centers of the objects when the input pattern is
convolved with a Gaussian filter. In contrast, if they are set to
larger values, the network will be able to select extended parts of
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the objects and possibly even the whole objects. In the same way,
the model achieves resistance to the input noise. As thresholds
are set to larger values, the network can tolerate a larger amount
of noise. However, this comes at a cost of less-precise selection, as
demonstrated by the simulation that is shown in Figure 12.

CONCLUSIONS

We have demonstrated how the feature-based WTA network
achieves spatial selection of all locations that are occupied by the
same feature value without suffering from capacity limitations.
The network responds to the top-down cue by storing in
memory spatial pattern that corresponds to the cued feature
value, while non-cued feature values are suppressed. In this way,
we have shown how the Boolean map is formed. In addition,
we have shown that it is possible to create more complex spatial
representations that involve the intersection or the union of two

or more Boolean maps. In this way, the F-WTA network goes
beyond the capabilities of previous models of the competitive
neural network, which cannot integrate information across space

and time. Our work suggests that dendritic non-linearity and
retrograde signaling are biophysically plausible mechanisms that
are essential for model success.
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Anisometropic amblyopia is a neurodevelopmental disorder of the visual system. There

is evidence that the neural deficits spread across visual areas, from the primary cortex

up to higher brain areas, including motion coding structures such as MT. Here, we used

bistable plaid motion to investigate changes in the underlying mechanisms of motion

integration and segmentation and, thus, help us to unravel in more detail deficits in

the amblyopic visual motion system. Our results showed that (1) amblyopes globally

exhibited normal bistable perception in all viewing conditions compared to the control

group and (2) decreased contrast led to a stronger increase in percept switches and

decreased percept durations in the control group, while the amblyopic group exhibited

no such changes. There were few differences in outcomes dependent upon the use of

the weak eye, the strong eye, or both eyes for viewing the stimuli, but this was a general

effect present across all subjects, not specific to the amblyopic group. To understand

the role of noise and adaptation in such cases of bistable perception, we analyzed

predictions from a model and found that contrast does indeed affect percept switches

and durations as observed in the control group, in line with the hypothesis that lower

stimulus contrast enhances internal noise effects. The combination of experimental and

computational results presented here suggests a different motion coding mechanism in

the amblyopic visual system, with relatively little effect of stimulus contrast on amblyopes’

bistable motion perception.

Keywords: plaid motion, anisometropic amblyopia, motion coding mechanism, bistable percept, model prediction

INTRODUCTION

Amblyopia is a neurodevelopmental disorder of the visual system. The condition is caused
by an imbalance in visual input during cortex development, mostly in infancy (Wong, 2012;
Hess and Thompson, 2015). Anisometropic amblyopia is typically due to the presence of a
chronic blur. These conditions result in a weakening or suppression of the input from the
amblyopic eye, and, thus, this input is processed abnormally within the visual cortex (Hubel
and Wiesel, 1965, 1970; Kiorpes and McKee, 1999; Hess and Thompson, 2015). Such an
abnormal processing causes amblyopes to see differently from neurotypical subjects in visual
perception tasks; for example, amblyopes may exhibit a reduction in contrast sensitivity, stereo-
acuity (3D, depth perception), or visual acuity (Bradley and Freeman, 1981; Levi et al., 2011).
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In contrast, suprathreshold contrast perception seems equivalent
between both eyes of amblyopes (Hess and Bradley, 1980), while
prolonged observations of static gratings by amblyopes make
them report illusory static or dynamic patterns in the stimulus
(Sireteanu et al., 2008; Thiel and Iftime, 2016).

In addition to the above basic visual features, other spatial
and temporal processing are also affected by amblyopia in early
visual cortices (Barnes et al., 2001; Bonhomme et al., 2006;
Hess et al., 2010; Li et al., 2011). Increasing evidence has
demonstrated that amblyopia is also associated with abnormal
function of the MT/MST areas, which are highly motion-
sensitive and related to local and global motion integration
(Britten et al., 1992; Born and Bradley, 2005; Majaj et al., 2007).
There is strong neurophysiological evidence to suggest that
motion integration and segregation processing involve area MT
(Newsome and Parés, 1988; Salzman et al., 1990). In addition,
psychophysical studies have shown abnormal global motion
perception in amblyopia, even after adjusting for the deficits
in contrast sensitivity. These results strongly suggest that the
motion-sensitive areas MT/MST are affected by this disorder
(Ellemberg et al., 2002; Constantinescu et al., 2005; Simmers
et al., 2006; Aaen-Stockdale et al., 2007; Thompson et al.,
2008; Ho and Giaschi, 2009; El-Shamayleh et al., 2010), and a
recent neuroimaging study found evidence of abnormal cortical
processing of pattern motion in amblyopia (Thompson et al.,
2012).

In psychophysical research, plaid motion is a particular
stimulus used to investigate the underlying neural mechanisms
of motion integration and segregation (Adelson and Movshon,
1982). Plaid stimuli are typically constructed from two drifting
gratings within a circular aperture. The drifting directions of
both gratings are different. When the two gratings have similar
temporal and spatial properties, the stimulus will produce an
initial percept of a single patterned surface drifting in a “global”
direction, which is a unique combination of both component
directions. With prolonged observation of the pattern, a
perceptual switching phenomenon occurs; the plaid motion can
be seen either as “coherent motion” (a single object moving
rigidly) or as “transparent motion” (two independent gratings
sliding over each other), dubbed bistable motion perception.
Because of the advances in the theoretical understanding of
bistable perception, we considered that plaid motion would be
a particularly useful probe for investigating the mechanisms of
motion segmentation and integration and help us to unravel in
more detail the deficits in the amblyopic visual motion system.

The various observations of bistable perception have inspired
models of multistability, which mainly focus on bistable rivalry
(Lago-Fernández and Deco, 2002; Laing and Chow, 2002;
Moreno-Bote et al., 2007). In such models, the random
alternation of percepts is influenced by the competition between
two neuronal populations via reciprocal inhibition, noise levels
in the neural inputs and some sort of adaptation, e.g., spike
frequency adaptation and/or synaptic depression. Such models
are extendable to tristable percepts, of which plaid motion
perception is argued to be an example (Huguet et al., 2014). In all
of these models, the exact number of percept switches together
with the durations of the two major types of percepts are very
sensitive to internal variables, especially internal noise. Thus, any

changes in internal variables differentially affect all measurable
variables.

This manuscript first describes results of three experiments
performed to compare the bistable motion perception in
anisometropic amblyopes (AMB) and neurotypical observers
(NTE). Experiment 1 was mainly performed as an exploratory
study to search for plausible differences between AMB and NTE
in plaidmotion perception. This experiment led to the hypothesis
of differential effects associated with stimulus strength between
AMB and NTE that was tested in Experiment 2. Experiment 3
was a control test of the main finding of contrast effects. In the
last part, with the help of simulations, we analyzed one model
predictions (Moreno-Bote et al., 2007) in order to compare to the
experimental results, and thus to propose putative changes in the
mechanisms of motion coding in the amblyopic visual system.

METHODS

Observers
A total of 32 observers participated in the experiments, including
17 normal-sighted subjects (five women and 12 men; including
two authors; age range 20–42) and 15 anisometropic amblyopes
(one woman and 14 men; age range: 23–27). A portion of the
observers in these two groups participated in experiments 1, 2,
and 3. The exact number of subjects within a given experiment
is stated in the corresponding section. All amblyopes had
anisometropic amblyopia; amblyope #10 had bilateral amblyopia.
For that person, the eye with the best visual acuity (strong
eye) was treated as the fellow eye in all the analysis. Detailed
ophthalmologic characteristics of these observers, including
amblyopia type and optical correction, were obtained during
normal university medical examinations at the department of
ophthalmology in the hospital of USTC. The amblyopic group
was defined according to the Preferred Practice Protocol (PPP)
of The American Academy of Ophthalmology (Wallace et al.,
2018), with anisometropic type was defined as the difference
of dioptre sphere above 1.5 and/or the difference of dioptre
of cylinder over 1.0 who can not fuse image in retina well
binocularly. Nonamblyopes had normal or corrected-to-normal
eyesight, while amblyopes wore their best refractive corrections.
All observers provided informed consent and received a fee of 60
CNY/hour for participating in the experiments. The experiments
were approved by the ethics committee of the School of Life
Science of USTC and followed the tenets of the Declaration of
Helsinki for experiments with human subjects. Table 1 presents
the eyes characteristics of the amblyopes.

Apparatus
Stimuli were presented on an ASUS VG248 monitor with a 1,920
× 1,080-pixel resolution at a frame rate of 120Hz. Observers were
comfortably seated 100 cm in front of the screen in a dark room,
with their chin and forehead resting on a chinrest. When the
eye signal was available, binocular or monocular eye movements
(randomly) were monitored and recorded for a portion of the
observers (13 amblyopes/10 normal observers) with an Eyelink
1,000 eye recording setup and sampled at 500Hz to confirm
correct eye fixation at the stimulus location.
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TABLE 1 | Ophthalmic details of the observers with amblyopia.

Obs Age/sex Type Refraction SA VA

(MAR)

Amb1 25/M RE anis +6.00 DS/+1.00 DCx25 100 10.00

LE Ø 1.000

Amb2 27/M RE anis +4.00 DS/+1.00 DCx85 50 10.00

LE Ø 1.00

Amb3 26/M RE anis +2.50 DS/+1.00 DCx170 160 3.16

LE −0.75 DS 0.63

Amb4 23/F RE anis −2.00 DCx110 100 2.00

LE −6.00 DS 1.00

Amb5 26/M RE anis +1.50 DS/+1.50 DCx60 400 6.31

LE −1.00 DS/−0.50 DCx160 1.00

Amb6 23/M RE anis +1.00 DCx105 400 3.98

LE −4.00 DS/−1.25 DCx30 0.79

Amb7 25/M RE −0.500 DS 25 1.00

LE anis +2.500 DS/0.500 DCx90 1.58

Amb8 25/M RE +3.00 DS/+1.00 DCx85 400 0.79

LE anis +5.50 DS/0.75 DCx95 3.16

Amb9 23/M RE −1.250 DS/−1.00 DCx160 63 0.79

LE anis 1.00 DCx80 1.58

Amb10 23/M RE anis −5.50 DS/−2.00 DCx10 32 3.98

LE anis −5.250 DS/-5.00 DCx175 6.31

Amb11 25/M RE −1.50 DS/−0.50 DCx30 400 0.79

LE anis +4.50 DS/0.50 DCx35 5.01

Amb12 25/M RE −2.75 DS/−0.50 DCx10 400 1.00

LE anis +1.00 DS/+1.00 DCx95 3.98

Amb13 24/M RE −2.75 DS/−1.00 DCx20 50 1.00

LE anis +3.75 DS/0.75 DCx115 2.00

Amb14 26/M RE anis −2.50 DS 100 3.16

LE +2.00 DS/+0.50 DCx96 0.63

Amb15 26/M RE anis +1.00 DS/+1.50 DCx95 32 3.98

LE Ø 0.79

Obs, observer; Amb, anisometropic amblyope; M, male; F, female; RE, right eye; LE, left

eye; anis, anisometropic; DS, dioptre sphere; DC, dioptre of cylinder; Ø, plano; SA, stereo

acuity; VA, visual acuity; MAR, minimum angle of resolution.

Stimuli
The stimulus comprised two rectangular-wave gratings presented
through a circular aperture 7.7◦ in diameter on a middle-gray
background of RGB 126. Gratings moved at 3◦/s (defined in
the direction normal to their orientation) in directions 90◦

apart (angle α hereafter), with a spatial frequency of 3 c/d
and duty cycle of 50%. The mean direction of motion of both
gratings was either vertical upward or horizontal leftward, thus
making the coherent pattern perceived as moving upwards or
leftwards, respectively. Grating contrast was defined in RGB
units, and two contrasts of 30% (high) and 5% (low) values
were possible, with both gratings having the same contrast. A
pink fixation point was added in the middle of the circular
aperture to help subjects locate the stimulus center and minimize
optokinetic nystagmus (Huguet et al., 2014), and subjects
were instructed to fixate this point throughout the stimulus
presentation.

Experimental Procedure
Subjects were first familiarized with the stimuli and procedure.
They had to report the time of percept change with two
keyboard keys, with each key indicating that they perceived either
coherent motion or transparent motion. They were instructed to
passively report the percepts, without trying to influence them.
Each observer was exposed to both global coherent directions
(upward and leftward) to avoid motion direction adaptation,
one (Experiment 1) or two (Experiment 2) contrast levels (for
Experiment 1, 30% contrast; for Experiment 2, 30 and 5%
contrast), and three eye conditions (binocular, left, right eye
monocular), corresponding to a total of 6 or 12 different stimulus
configurations. Presentation time was 120 s for each stimulus,
and observers were tested on each configuration one time. The
order of presentation was random. Because the first percept
is known to always be coherent in normal-sighted observers
(Hupé and Rubin, 2003), and amblyopes are able to demonstrate
possible grating misperceptions/illusions (Hess et al., 1978; Hess
and Bradley, 1980; Thompson et al., 2008; Thiel and Iftime,
2016), each observer was debriefed at the end of each 120-
s trial about their first percept (coherent or not) and overall
visibility of the pattern. All participants reported that they could
clearly see the stimuli, a single moving plaid stimulus and
two grating surfaces sliding over each other, in all conditions,
even at the lowest contrast used in this study. No amblyopes
reported differences between AE and fellow eye perception of the
moving gratings, out of the switch rate/duration differences. The
dominant eye of each subject was assessed with the hole-in-card
experiment. Stereo acuity was assessed with the Titmus Stereopsis
Test. Visual acuity was measured using a standard wall-mounted
Tumbling E chart, from a distance of 5 metres, and defined as
the score associated with a correct judgment rate of 75% at the
minimum angle of resolution.

Model Simulation and Numerical

Procedures
We implemented the tristable model of motion
coherence/transparency proposed by Huguet et al. (2014).
This model is a firing rate-based tristable model that includes
three pools of neuronal populations that encode three different
percepts: coherence (C), transparent with the leftward moving
grating on top (TL), and transparent with the rightward moving
grating on top (TR). The equations describing the dynamics of
the three populations are:

τ
drc

dt
= −rc + S(−β1rTR − β1rTL − ac + Ic + nc)

τ
drTR
dt

= −rTR + S(−β1rc − β2rTL − aTR + ITR + nTR )

τ
drTL
dt

= −rTL + S(−β1rc − β2rTR − aTL + ITL + nTL ) (1)

with ai, Ii, and ni representing adaptation, external input, and
noise for each population, respectively. The time constant τ was
τ = 10ms. β1 is the cross-inhibition strength between population
C and T (including TR and TL), while β2 is the inhibition strength
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between TR and TL. The intensity of external input changes is
represented with IC and IT = ITR = ITL .

The function S is a sigmoidal transducer of input-output
function:

S (x) =
1

1+ θ−(x−θ)/k
(2)

with threshold θ = 0.2 and k= 0.1.
The adaptation of firing activity was done through the terms

aC, aTR , aTL and all followed the same time evolution:

τ
dai

dt
= −ai + γ ri (3)

with τ = 2,500ms, and a maximum strength of γ = 0.25 for all
populations.

Noise input is modeled with an Ornstein-Uhlenbeck process
as:

dni

dt
= −

ni

τs
+ σ

√

2

τs
× ξ (t) (4)

with τS = 200ms, σ = 0.08, and ξ (t) is a white-noise process
whose mean value is zero with a standard deviation of one and
no temporal correlations.

In this model (Huguet et al., 2014), we adjusted the cross-
inhibition strength values β1 and β2, external input value IC
and IT (ITR and ITL were set equal), noise strength value σ, and
adaptation strength value γ to reproduce our behavioral results
with other parameters remaining unchanged. The time window
of simulations was set to 120 s, corresponding to the length of one
block of measure in the psychophysical experiment, and repeated
simulations were performed to obtain the mean and variability of
the variables analyzed in the experiments.

Since we focused on the bistable condition, we report only
transparent and coherent states by considering TR and TL as the
transparent percept. A coherent percept was defined when rC was
simultaneously higher than rTR and rTL and otherwise defined
as transparent. For each 120 s of simulations, we computed the
number of switches and durations of coherent and transparent
states.

Data Analysis
For each 120-s trial, the number of percept changes was
computed from the first report of a transparent percept to the
end of the trial, as in work by Hupé and Rubin (2003). The
dominance durations were measured between successive presses
of the two keys. The duration of the last interrupted percept
was not computed. The first percept was coherent in all trials
(as reported in the debriefing), but in some conditions, a few
subjects did not first press the “coherent” percept key, due to
their knowledge of this appearance. Dominance durations were
log10-transformed (Moreno-Bote et al., 2010).

Each dependent variable was analyzed with within-between
analysis of variance, while all statistical levels used Geisser-
Greenhouse epsilon-hat-adjusted values where appropriate. In
the first analysis, the dependent variable was the number of key-
presses for each condition, which allowed for the comparison of

the frequencies of perception switches in different conditions and
observers (amblyopes/normal observers). This analysis included
the data from all subjects. In the second analysis, the dependent
variable was the mean duration of the percept, with an additional
within-subject factor in the ANOVA corresponding to coherent
and transparent conditions. In this analysis, observers who were
unable to see perceptual switches in at least one condition
were not included due to lack of the corresponding variable.
This phenomenon only appeared in 3 out of 15 anisometropic
amblyopes (2 in Experiment 1 and 2 in Experiment 2) and 1 out
of 17 NTE subjects (in Experiment 1), and it was mostly present
for horizontal motion directions. We also calculated the mean
value and standard deviation for each condition across all normal
subjects and found that 1 of the 11 subjects in Experiment 2 had
percept durations that deviated above 2 SD from the between-
subjects mean of the condition in 8 out of 24 conditions. In
contrast, the other subjects had such deviations in a maximum of
2 conditions. For this reason, we also removed this subject data
in the analysis of percept durations.

RESULTS

Experiment 1
In the first experimental test, we measured the performance
of each subject in three eye conditions (binocular, monocular
with strong eye, and monocular with weak eye) with only
a strong contrast of the gratings (30%) and global moving
directions upwards and leftwards. We focused on the number
of perceptual switches and mean duration of each percept type.
Twenty subjects participated in this experiment; 10 of them
were anisometropic amblyopes (AMB), and the remaining were
neurotypical subjects (including two authors) that had no known
visual deficits (NTE). During the experiment, all amblyopic
subjects reported that they did not feel any difference between
the fellow eye or binocular condition when using the amblyopic
eye to watch the stimulus.

Frequency of Perceptual Switches
Figure 1 illustrates the number of key-presses in each viewing
condition for the two groups. There was a significant difference
between the two moving directions [F(1, 18) = 15.865, p = 0.001]
showing that, globally, the number of perceptual switches for the
vertical motion directions were higher than for the horizontal
directions. Eye viewing conditions also showed significant
differences in perceptual switches [F(1.987, 35.758) = 5.836,
p = 0.006], with the post-hoc Bonferroni test revealing a
difference between the binocular and weak eye conditions
[F(1, 18) = 10.860, p = 0.004]. Statistical analysis showed that
there was no difference between the two groups of subjects
[F(1, 18) = 1.061, p= 0.317], nor a significant interaction between
the observer groups and the other factors (see Table 2 for full
ANOVA results).

Duration of the Two Percept Types in Different

Conditions
Figure 2 summarizes the results of the duration of the percepts.
Statistical analysis showed that there was no difference between
the two groups of subjects [F(1, 15) = 0.559, p = 0.466],
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FIGURE 1 | The mean number of percept switches in Experiment 1, split

between the factors motion direction (Hzt: horizontal, Vrt: vertical), eye viewing

(BE-binocular, AE/nDE-nondominant eye, FE/DE- fellow/dominant eye), and

Group (AMB/NTE). Error bars indicate between-subject SEM.

indicating that the mean perceived duration of each percept
type was similar in normal and amblyopic people. A significant
difference was found in the durations of each percept type
[F(1, 15) = 10.925, p = 0.005], with duration of coherent
percept being longer than the duration of the transparent
percept, independent of the subject group (see Figure 2A).
We also found significant differences in motion direction
[F(1, 15) = 22.272, p< 0.001] with the mean of log10-transformed
duration of horizontal direction being longer than that of
the vertical direction (mean of horizontal = 0.673, mean of

TABLE 2 | ANOVA results on Presses Number of Experiment 1.

Variables df F Sig. Partial Eta Squared

Eye 1.987, 35.758 5.836 0.006 0.245

Eye * Group 1.987, 35.758 1.988 0.152 0.099

Dir 1, 18 15.865 0.001 0.468

Dir * Group 1, 18 1.146 0.298 0.060

Eye * Dir 1.736, 31.241 3.141 0.064 0.149

Eye * Dir * Group 1.736, 31.241 1.319 0.279 0.068

Group 1, 18 1.601 0.317 0.056

vertical = 0.570) and a significant interaction between direction
and group [F(1, 15) = 10.062, p = 0.006; see Figure 2B]. This last
interaction was due to the much longer percept duration for the
horizontal motion directions than for the vertical ones in AMB,
while NTE exhibited similar values for both directions. There
was also an interaction between eye condition and direction
[F(1.927, 28.906) = 3.927, p= 0.031; Figure 2C]. For the horizontal
direction, the means of the log10-transformed durations for
each eye condition were similar but were distinct when the
global motion direction was vertical. This difference may indicate
that there are different strategies to address different motion
directions. Additionally, with the change in the direction, the
weak eye showed a relatively stable log10-transformed duration.
Post-hoc Bonferroni-adjusted comparisons showed a difference
between the weak eye and binocular condition in its interaction
with direction [F(1, 15) = 8.787, p = 0.01]. No significant
differences were found in other factors (see Table 3 for complete
ANOVA results).

Experiment 2
From the above Experiment 1 results, we observed that there
were few differences between amblyopes and non-amblyopes
in their perception of a bistable plaid motion stimulus. This
outcome was unexpected because, based on previous reports
of stronger noise in the motion amblyopic system (Simmers
et al., 2006) and possibly a very different visual motion coding
system in amblyopes (Thompson et al., 2012), we expected that
motion rivalry, due to its keen sensitivity to internal noise and
inhibition strength (Huguet et al., 2014), would result in strong
systematic differences between the two observer types. Given
the non-significant differences, we realized that our experimental
designmight havemissed the effects because of the relatively high
contrast of the gratings. Thus, if the activation of the motion
system was too high such that the signal-to-noise (SNR) ratio was
relatively large, then any internal noise differences might have
gone unnoticed. Therefore, we performed a second experiment
that was identical to the first in all aspects except that one more
factor was added, the contrast of the stimuli, with two levels,
high (30%) and low (5%) contrast. By decreasing the contrast,
we expected that the SNR would also decrease, and differences
between the groups would be observed, with a prediction that
there would be a main effect of lower contrast in which the low-
contrast condition would be associated with more perceptual
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FIGURE 2 | The mean log10-transformed percept durations showing (A) a main effect of percept type, (B) main effect of motion direction, and (C) an interaction

between eye condition and direction. Mean of the log10-transformed percept durations expressed in seconds. C, coherent; T, transparent; NTE, Neurotypical/Normal;

AMB, Amblyopes; Vrt, vertical; Hzt, horizontal; BE, binocular condition; AE/nDE, weak eye of subjects; FE/DE, fellow/dominant eye of subjects. Error bars indicate

between-subject SEM.

TABLE 3 | ANOVA results on Mean of log-10 Durations of Experiment 1.

Variables df F Sig. Partial Eta

Squared

Per 1, 15 10.925 0.005 0.412

Per * Group 1, 15 0.297 0.594 0.019

Eye 1.869, 28.038 2.723 0.086 0.154

Eye * Group 1.869, 28.038 0.836 0.437 0.053

Dir 1, 15 22.272 0.000 0.598

Dir * Group 1, 15 10.062 0.006 0.401

Per * Eye 1.772, 26.586 0.722 0.479 0.046

Per * Eye * Group 1.772, 26.586 0.371 0.669 0.024

Per * Dir 1, 15 1.164 0.298 0.072

Per * Dir * Group 1, 15 0.033 0.858 0.002

Eye * Dir 1.927, 28.906 3.927 0.032 0.207

Eye * Dir * Group 1.927, 28.906 2.100 0.142 0.123

Per * Eye * Dir 1.740, 26.101 1.175 0.319 0.073

Per * Eye * Dir * Group 1.740, 26.101 0.468 0.605 0.030

Group 1, 15 0.559 0.466 0.036

switches in amblyopes when compared to the high-contrast
condition.

Twenty-one subjects participated in this experiment, with 10
anisometropic amblyopes (AMB; 5 of them also participated in
Experiment 1), and the remaining were neurotypical subjects
(NTE; 4 of them participated in Experiment 1).

Frequency of Perceptual Switches
Here, we still used the number of key-presses to represent the
frequency of perceptual switches. Analysis included data from
all 21 subjects (10 AMB and 11 NTE). Figure 3 shows the
main significant effects and interaction of how the press number
increased with lower contrast and that the frequency of percept
switches was globally lower in the weak eye condition than in
the other conditions. There was no significant difference in the
performance of normal and amblyopic subjects [F(1, 19) = 0.287,

p = 0.598]. However, there was a significant difference in
contrast [F(1, 19) = 5.575, p = 0.029], direction [F(1, 19) = 5.697,
p= 0.028], and eye condition [F(1.904, 36.171) = 4.446, p= 0.020].
The number of presses increased with the decrease in contrast,
potentially due to an increase in internal noise or, equivalently,
a decrease in the signal-to-noise ratio. Upon examination of
the effects of the global direction of motion, both groups had
higher percept switches when stimuli were moving upward (as
in Experiment 1). Post-hoc comparisons (Bonferroni-corrected)
for eye conditions showed a difference between the binocular and
weak eye conditions [F(1, 19) = 6.426, p = 0.02] and a difference
between the weak and strong eye conditions [F(1, 19) = 5.472,
p= 0.03].

An interaction between contrast and eye condition was also
found in this case [F(1.904, 30.537) = 5.492, p = 0.013]. However,
no other interactions were significant (see Table 4 for complete
ANOVA results).

Duration of Two Percept Types in Different Conditions
Here, we analyzed the duration of both percept types (i.e.,
coherent and transparent) for different contrast, eye, and moving
direction conditions and whether there were differences between
neurotypical subjects and anisometropic amblyopes; 2/10 AMB
were not included because of at least one condition with no
percept switch, and 1/11 NTE was excluded as an outlier (see
section Methods).

Figure 4A illustrates the durations of both direction and eye
conditions for subject groups and stimulus contrast conditions.
Statistical analysis showed that there were no differences between
the two groups of subjects [F(1, 16) = 0.298, p= 0.593], indicating
that globally, percept durations were similar in normal and
amblyopic people. Significant differences were found across
contrast conditions [F(1, 16) = 5.173, p= 0.037] and percept type
[F(1, 16) = 19.241, p = 0.0005; Figures 4B,C]. Lower contrasts
globally decreased percept duration, paralleling the increase in
number of switches. The duration in the coherent percept was
always longer than that in the transparent percept regardless of
subject group (Figure 4C).
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FIGURE 3 | Main significant effects and interaction in Experiment 2 for number of percept switches. (A) Interaction plot for contrast and eye conditions. DE (dominant

eye) and FE (fellow eye) corresponded to the strong eye for normal and amblyope observers, respectively; nDE (non-dominant eye) and AE (amblyopic eye)

corresponded to the weak eye for normal and amblyope observers, respectively. BE was the binocular condition. (B) Main effect of global motion direction. Mean

number of switches was higher in the vertical condition (Vrt) than in the horizontal condition (Hzt). Error bars indicate between-subjects SEM.

TABLE 4 | ANOVA results on Presses Number of Experiment 2.

Variables df F Sig. Partial Eta

Squared

Crt 1, 19 5.575 0.029 0.227

Crt * Group 1, 19 2.725 0.115 0.125

Dir 1, 19 5.697 0.028 0.231

Dir * Group 1, 19 2.954 0.102 0.135

Eye 1.904, 36.171 4.446 0.020 0.190

Eye * Group 1.904, 36.171 1.591 0.218 0.077

Crt * Dir 1, 19 1.911 0.183 0.091

Crt * Dir * Group 1, 19 0.019 0.893 0.001

Crt * Eye 1.607, 30.537 5.492 0.013 0.224

Crt * Eye * Group 1.607, 30.537 1.042 0.351 0.052

Dir * Eye 1.867, 35.469 1.550 0.227 0.075

Dir * Eye * Group 1.867, 35.469 0.046 0.946 0.002

Crt * Dir * Eye 1.828, 34.728 1.737 0.193 0.084

Crt * Dir * Eye * Group 1.828, 34.728 1.441 0.250 0.070

Group 1, 19 0.287 0.598 0.015

ANOVA also showed significant interactions between
subject groups and contrast condition [group vs. contrast,
F(1, 16) = 9.326, p= 0.008; Figure 4B]. In NTE, percept duration
decreased with a decrease in contrast, while amblyopes had
no clear variation. This effect suggested that amblyopes seem
to have a different motion processing mechanism from NTE.
Another interaction showed a significant effect of the contrast
and eye condition [F(1.973, 31.575) = 4.420, p= 0.021; Figure 4D].
The performance in the binocular condition and stronger eye
condition was similar across contrast conditions, while results
differed according to contrast when the observer was using
the weak eye to do the task. In this latter viewing condition,
duration was slightly decreased when contrast increased, and
the duration was always longer than the duration in the other
two eye conditions. Thus, this interaction was mainly caused
by the weak eye. Post-hoc Bonferroni-corrected comparisons

for interaction between contrast and eye conditions showed
that the dominant/fellow eye had a strong tendency for
resulting in a different outcome than the binocular viewing
condition [F(1, 16) = 4.463, p = 0.051], while the weak eye had a
different outcome than the binocular condition [F(1, 16) = 7.624,
p= 0.014]. No other effects were significant (Table 5).

Experiment 3: Control of Contrast Effects
We performed a control experiment to cross-check the effect of
contrast in a different manner. We measured 5 AMB and 6 NTE
(all participated in Experiment 1 or Experiment 2) in only the
vertical condition to avoid a low number of switches with 6 levels
of contrast (0.03, 0.05, 0.1, 0.15, 0.35, 0.5) with the hypothesis
that the AMB should exhibit no variation with contrast, while the
NTE should show an increase in the number of switches with a
lower contrast. The results showed a clear interaction between the
linear slopes of the number of switches versus contrast in AMB
and NTE [group vs. contrast: F(1, 8) = 11.9, p = 0.009], with the
slope from AMB not different from zero (b= 4.2, CI = [−11.74,
20.22], R2 = 0.12, p = 0.502) and a significantly negative slope
from NTE (b = −18.27, CI = [−26.76, 9.78], R2 = 0.90,
p = 0.0039; see Figure 5). These results were also present when
analyzing overall mean percept duration vs. contrast [Group vs.
Contrast: F(1, 8) = 9.31, p = 0.016; Figure 5]. The results were
nearly identical when regressing in log-contrast space (number
of switches vs. log-contrast, interaction group vs. contrast:
F(1, 8) = 11.898, p = 0.009; percept duration vs. log-contrast,
interaction group vs. contrast: F(1, 8) = 9.037, p= 0.017].

In summary, as expected, we found that contrast affected
percept switches and percept durations by increasing the number
of switches and decreasing the durations of the percepts with
lower contrasts of gratings. In line with our expectation, this
effect was mainly observed in NTE, and AMB showed no clear
changes in percept duration with changes in contrast. Thus, based
on our original hypothesis of decreased SNR with lower stimulus
contrast, AMB seemed to show weak changes in plaid motion
perception when contrast of the stimulus varied.
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FIGURE 4 | Main significant effects and interactions in Experiment 2 for variable percept durations. (A) Results of mean of log10-transformed percept durations

expressed in seconds for eye condition, motion direction, and subject group. (B) Interaction between contrast and subject group. (C) Interaction between contrast

and eye conditions. (D) Main effect of percept type. Note there was no difference between amblyopic and normal subjects. Error bars indicate between-subjects SEM.

Correlation Between Bistability and VA or SA

We tested the correlation of the classic visual deficits as
measured with the visual acuity (VA) and stereo acuity (SA)
tests with the strength of bistability as measured through the
number of switches. Table 6 shows that there were no significant
correlations for all monocular conditions in the amblyopic group
in both Experiments 1 and 2.

Model Predictions of Bistable Motion Perception and

Consequences for the Amblyopic Visual Motion

System
We used the tristable model defined by Huguet et al. (2014) to
identify the plausible internal mechanisms underlying the results
of Experiment 2. Because these authors argued and presented
evidence that moving plaid stimuli consist of not two but three
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TABLE 5 | ANOVA results on Mean of log-10 Durations of Experiment 2.

Variables df F Sig. Partial Eta

Squared

Crt 1, 16 5.173 0.037 0.244

Crt * Group 1, 16 9.326 0.008 0.368

Dir 1, 16 2.785 0.115 0.148

Dir * Group 1, 16 0.623 0.442 0.037

Eye 1.742, 27.868 3.155 0.064 0.165

Eye * Group 1.742, 27.868 1.524 0.236 0.087

Per 1, 16 19.241 0.000 0.546

Per * Group 1, 16 0.813 0.381 0.048

Crt * Dir 1,16 0.147 0.706 0.009

Crt * Dir * Group 1,16 0.074 0.789 0.005

Crt * Eye 1.973, 31.575 4.420 0.021 0.216

Crt * Eye * Group 1.973, 31.575 0.039 0.961 0.002

Dir * Eye 1.711, 27.375 2.178 0.139 0.120

Dir * Eye * Group 1.711, 27.375 0.545 0.559 0.033

Crt * Dir * Eye 1.783, 28.527 2.714 0.089 0.145

Crt * Dir * Eye * Group 1.783, 28.527 0.288 0.727 0.018

Crt * Per 1, 16 1.430 0.249 0.082

Crt * Per * Group 1, 16 0.682 0.421 0.041

Dir * Per 1, 16 0.360 0.557 0.022

Dir * Per * Group 1, 16 0.332 0.572 0.020

Crt * Dir * Per 1, 16 0.119 0.735 0.007

Crt * Dir * Per * Group 1, 16 0.400 0.536 0.024

Eye * Per 1.872, 29.944 2.213 0.130 0.121

Eye * Per * Group 1.872, 29.944 0.026 0.968 0.002

Crt * Eye * Per 1.799, 28.777 0.482 0.603 0.029

Crt * Eye * Per * Group 1.872, 29.944 1.325 0.279 0.076

Dir * Eye * Per 1.885, 30.154 0.256 0.763 0.016

Dir * Eye * Per * Group 1.885, 30.154 0.009 0.988 0.001

Crt * Dir * Eye * Per 1.607, 25.713 1.012 0.362 0.060

Crt * Dir * Eye * Per * Group 1.607, 25.713 0.925 0.390 0.055

Group 1, 16 0.298 0.593 0.018

different percepts, i.e., the transparent condition with two clearly
perceived sliding gratings can have two states with different
depth orderings, and that there are perceptual switches across the
three states, we considered this model as more relevant to our
experiments even though the experimental task was only a simple
dual report of either transparent or coherent motion. Their
model incorporates three populations of neurons that code three
possible percepts: coherence (C), transparent with the leftward
(counterclockwise) moving grating on top (TL), and transparent
with the rightward (clockwise) moving grating on top (TR); in
the use of the model here, we considered the transparent state (T)
only when the C state was not active. A schematic of the model is
presented in Figure 6, and it contains 6 parameters (β1, β2, γ, σ,
IC, IT = ITL = ITR). The model is used in a range of parameters
providing winner-takes-all behavior where only one of the three
populations can be active at a given time, thus representing
the active percept. Competitive inhibition between the three
neuronal populations, together with spike-frequency adaptation

and internal noise, provide the substrate for perceptual switches
between the percepts.

As described in Huguet et al. (2014), the model parameters
play essential roles in determining the mean number of percept
switches and their duration. We parametrically varied the
parameters in order to understand their effects on the two main
measures. Figure 6 presents representative simulation results for
model parameters of β1 = 0.9, β2 = 0.7, σ = 0.06, γ = 0.2, IC = 1,
and IT = ITL = ITR = 0.9IC, when varying one of the last four
parameters. An increase in internal noise σ strongly increases
the number of percept switches and concurrently decreases the
durations of the two percepts of C and T states (Figure 7A).
An increase in the adaptation strength γ also increases the
number of perceptual switches but differentially affects the C
and T states (Figure 7B), with the C state duration showing a
stronger relation (decrease) to an increase in adaptation than
the T state, making C durations longer than the T duration
at low γ and the reverse pattern observed with stronger γ.
When the input strength is varied (with relative input T-to-C
as constant; Figure 7C), the number of percept switches rapidly
decreases at low inputs, corresponding to rapid increases in the
signal-to-noise ratio. However, the number of percept switches
is also observed to exhibit a minimum after which it begins to
increase again. From multiple simulations, we found that this
minimum was strongly dependent on the relative input strengths
(IT/IC) as well as on the inhibitory strengths (β1, β2; results not
shown). The durations of the two types of percepts, C and T,
concurrently changed with a strong change in the number of
switches. The percepts also showed a change in their relative
durations with low input strengths showing T states longer than
C ones and a reversal at higher input values. Finally, a change
in the relative strength between C and T inputs demonstrated a
typical bell-shaped curve for the number of switches (Brascamp
et al., 2015), with the maximum value near input equality,
together with their concurrent C and T state duration changes
(Figure 7D). These last effects mimicked the expected effects
of relative input strengths onto the two variables as observed
in previous reports (Moreno-Bote et al., 2010; Brascamp et al.,
2015).

Similar observations were obtained for other inhibitory
strengths (β1, β2) but with the absolute values of noise,
input, adaptation, and relative input strengths correspondingly
changed.

The above simulations show two important effects. First,
the number of perceptual switches and percept durations
are very sensitive to the internal noise and adaptation
strength (Figures 7A,B). This observation supports the original
hypothesis that plaid gratings would show differences between
the two groups of subjects that putatively have different noise
levels in their motion visual system (Mansouri and Hess, 2006).
In contrast to this prediction, Experiment 1 did not show any
differences between AMB and NTE. Second, a striking effect
was present in the simulation for the absolute input strengths
IC and IT that represent the inputs of the C and T states. At
very low input levels, the internal noise of the system is much
stronger than the input strengths and thus makes the system
oscillate much faster between the two states. This effect is in line
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FIGURE 5 | Linear regression across different contrast conditions in AMB and NTE. Top showing percept switches; bottom showing percept duration. Left column

graphics for AMB; right column for NTE. Solid line was the best-fit line, while the dashed line indicates the 95% confidence band of the best-fit line. Error bar indicates

the SEM.

TABLE 6 | Correlation between bistablity and SA or VA.

Number of percept

switches vs.

Pearson

Correlation

Sig. N

Experiment 1 Log of SA −0.272 0.447 10

Log of VA of AE −0.192 0.596 10

Log of VA of FE 0.217 0.546 10

Experiment 2 Log of SA −0.034 0.927 10

Log of VA of AE −0.383 0.274 10

Log of VA of FE −0.372 0.290 10

with our hypothesis that lower grating contrasts would increase
the number of switches and percept durations, which led us to
perform Experiment 2 with the idea that AMB should exhibit an
increase in the number of switches and also show a decrease in
the durations of the percepts. However, the results differed from
our expectation, withNTE showing the predicted effect, but AMB
showing no changes with lower grating contrasts.

DISCUSSION

We investigated putative differences in the visual motion system
between anisometropic amblyopes and neurotypical observers
through the use of bistable plaid motion perception. First, our
group of amblyopes globally exhibited normal bistable perception
in any viewing condition (binocular, monocular with amblyopic
or fellow eye) when compared to the control group. Second,
we hypothesized that lower contrast of the plaid stimulus
should emphasize the internal noise differences between the
two groups and thus lead to a stronger increase in percept
switches and decrease in percept durations. The results confirmed
this hypothesis only in the control group, while the amblyopic
group exhibited no changes. These latter results are at odds
with the idea of stronger noise in the amblyopic motion system,
and plausible explanations of these discrepancies are discussed
below.

Bistable perception of plaid square gratings was found to be
normal in anisometropic amblyopes when compared to that in
the neurotypical controls. These results are in agreement with
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FIGURE 6 | Network architecture for the neuronal competition model with direct mutual inhibition. The activity of each population is associated with a different

percept: coherent (C), transparent right (TR), or transparent left (TL ). Each population receives an excitatory deterministic input of strength I and independent noise n.

Spike-frequency adaptation is present in each population. The function S() represents the sigmoidal transducer.

FIGURE 7 | Representative model results. The effects of noise (A), adaptation (B), input strength, as the absolute value of IC and IT =ITL =ITR (C), and relative

transparent-to-coherent input (D) on the mean number of percept switches (red curves and right y-axis) and percept durations (black curves and left y-axis, expressed

in log10 of seconds). Error bars indicate standard deviation of n = 30 simulations for each datum.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2018 | Volume 12 | Article 39188

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Bistable Motion Perception of Amblyopia

previous reports of normal perception of bistable sine-grating
plaids in such group of subjects (Thompson et al., 2008, 2012;
Hamm et al., 2014), even when first-order contrast deficits are
taken into account (Tang et al., 2012). In our study, these earlier
reports are confirmed through analysis of perceptual bistability
applied on square gratings.

While bistability of the percepts was similarly seen and
stochastic across eye-viewing conditions and groups of subjects,
our methods and results unveiled a new and unexpected effect
of contrast on plaid motion perception in amblyopes. Based
on reports of possibly stronger internal noise in the amblyopic
visual motion system (Simmers et al., 2003; Mansouri and Hess,
2006; Hamm et al., 2014) and theoretical insights into perceptual
bistability and neural noise (Brascamp et al., 2006; Moreno-
Bote et al., 2007; Shpiro et al., 2009; Huguet et al., 2014), lower
contrasts of the stimulus were argued to decrease the duration of
each percept in amblyopes when compared to that in the control
group. This effect was found, but it was reversed between groups,
with the control group showing decreased percept stability
(decrease in percept durations), while the amblyopes did not
exhibit such an effect.

This result is interesting in at least two aspects. First,
contrast sensitivity, the reciprocal of contrast threshold that is
used to describe subjects’ ability to visually detect a target, is
known to be strongly affected in amblyopic eyes (Woodruff,
1991). Earlier research has shown that contrast sensitivity is
highly decreased in the amblyopic eye, especially at high spatial
frequencies, but the sensitivity of the fellow eye is also affected
when compared with the eyes in normal subjects (Bradley
and Freeman, 1981). Interestingly, amblyopes do not exhibit
clear deficits in contrast perception at suprathreshold stimulus
contrasts, indicating that there is no clear contrast coding
abnormality for the suprathreshold contrast range in amblyopes
(Hess and Bradley, 1980; Loshin and Levi, 1983). On the contrary,
suprathreshold static grating perception is affected but in a very
different manner. Amblyopes staring at images of classic square
gratings perceive perceptual distortions of the stimulus that could
be of static or dynamic nature (Hess et al., 1978; Sireteanu
et al., 2008; Thiel and Iftime, 2016). Thus, the two facts that
(1) our group of amblyopes perceived the 120-s moving plaids
normally, with classic perceptual bistability and no reports of
differences in perception between the weak and fellow eyes, and
(2) amblyopes did not show an effect of contrast on the global
bistability of the percept hint to a motion coding system in their
visual pathway that uses dynamic visual input in a different way
from neurotypical subjects. The results of neurotypical subjects
experimentally confirmed the inversed “Levelt IV rule” at low
contrasts (Brascamp et al., 2015), but the overall pattern of results
led us to consider in further detail the models of plaid motion
perception and a plausible explanation of the effects observed in
amblyopes.

In analyzing and applying a model (Huguet et al., 2014),
we found that input intensity indeed affected percept switches
and durations as hypothesized. These effects also suggested that,
for amblyopes, contrast of the stimulus is decoupled from or
very weakly related to the “input” variable of the model. This
suggests that there may be different motion coding system in the

amblyopic visual system from that in the neurotypical one, with
the perceptual switches observed in the former visual motion
system related to different mechanisms.

From a neurophysiological perspective, motion coding and
decoding of plaid stimuli might not be performed at a single
stage, but instead, multiple areas may be involved (Thompson
et al., 2012; Villeneuve et al., 2012). Thus, the segregation of
motion (transparency) or the assimilation of motion (coherency)
may be coded in a distributed manner across the early cortices.
The differences between our amblyopic and control groups
in contrast effects might stem from the fact that, in the
amblyopic system, motion coherency and transparency coding
could be more widely distributed than in neurotypical subjects,
as suggested by a recent study (Thompson et al., 2012). From a
different and more detailed perspective, the major motion area
MT is known to contain cells that can selectively respond to
the pattern or components of moving plaid gratings (Rust et al.,
2006) and, furthermore, has some depth coding structure (Born
and Bradley, 2005) that should help to create depth ordering of
different motion surfaces. Although MT cells in the macaque
monkey seem to have dominance over fellow eye inputs, the
distribution of cells sensitive to pattern and the components
of plaid gratings were found equal (El-Shamayleh et al., 2010),
thus showing global similar plaid motion coding. Therefore,
we might assume that the equivalent percepts of coherence
and transparency are decoded through a simple rule: to decode
only one neuronal population—component or pattern cells.
Because MT cells receive major input from V1 cells, the contrast
dependence of all MT cells should be similar. The observation in
control subjects of stronger perceptual changes at lower contrast
supports the idea that pattern and component cells should be
similarly activated by contrast strength. On the other hand,
the lack of contrast effects in amblyopes seems to indicate that
pattern and component cells have different input relations to the
contrast of the stimulus. This difference provides an interesting
possibility and its exact nature is far from the scope of the current
study.

Importantly, themodel used here ismore qualitative in nature,
helping to grasp essential structural differences and changes
in the multistable perception of plaid motion stimuli but not
providing a realistic implementation of motion coding. Recent
studies reported that, closely related to our work, tristable motion
perception could be explained by a more detailed motion-
tuned neuronal population (Meso et al., 2016; Medathati et al.,
2017) that more closely resembles MT physiology. Further
investigations and theoretical modeling also incorporating depth
coding should help to unravel the plausible changes in the
amblyopic motion system.

A systematic and interesting difference we found was the
global direction effect. Both amblyopes and normal subjects
had more percept switches when global motion direction was
upward, i.e., vertical, than when it was horizontal. We did not
find systematic effects between the two groups across the first
two experiments. Differences between cardinal axes have already
been reported in previous studies of visual motion perception
in ambiguous conditions (Castet et al., 1999; Hupé and Rubin,
2004). The exact nature of the asymmetry in bistability between
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vertical and horizontal global motions may lie in the eye
movement differences between these two cardinal directions. The
global effect present across all observers might stem from clear
differences in eye movement dynamics of horizontal and vertical
eye movement (fixational, reflexive, or voluntary pursuit eye
movements) (Baloh et al., 1988; Sparks, 2002). This explanation
partly supports a separate control of vertical and horizontal
pursuit, which may contribute to the direction difference that
is systematically reported. Furthermore, eye movement may
influence the percept through retinal motion. Van Dam et al.
demonstrated that the retinal image shift, caused by saccade, can
change the bistable percept (van Dam and van Ee, 2005, 2006).
For clarification of the exact mechanism of such a direction effect
and determination of whether amblyopes with clear changes or
deficits in eye movements exhibit an effect on perception of plaid
motion, further studies are still needed with proper measures
and controls for eye movements in neurotypical and amblyopic
groups.

In summary, by using bistable plaid motion as a probe of
the visual motion system, we found a systematic and clear effect
of stimulus contrast on perceptual bistability in neurotypical
subjects that was not present in anisometropic amblyopes. The
former effect is explained by classic models of multistability
and thus hints toward a generally different motion coding and
decoding system in the amblyopes.
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This paper introduces a new system for dynamic visual recognition that combines

bio-inspired hardware with a brain-like spiking neural network. The system is designed to

take data from a dynamic vision sensor (DVS) that simulates the functioning of the human

retina by producing an address event output (spike trains) based on the movement

of objects. The system then convolutes the spike trains and feeds them into a brain-

like spiking neural network, called NeuCube, which is organized in a three-dimensional

manner, representing the organization of the primary visual cortex. Spatio-temporal

patterns of the data are learned during a deep unsupervised learning stage, using spike-

timing-dependent plasticity. In a second stage, supervised learning is performed to train

the network for classification tasks. The convolution algorithm and the mapping into

the network mimic the function of retinal ganglion cells and the retinotopic organization

of the visual cortex. The NeuCube architecture can be used to visualize the deep

connectivity inside the network before, during, and after training and thereby allows

for a better understanding of the learning processes. The method was tested on the

benchmark MNIST-DVS dataset and achieved a classification accuracy of 92.90%. The

paper discusses advantages and limitations of the new method and concludes that it is

worth exploring further on different datasets, aiming for advances in dynamic computer

vision and multimodal systems that integrate visual, aural, tactile, and other kinds of

information in a biologically plausible way.

Keywords: Spiking neural networks (SNN), NeuCube, dynamic vision sensor (DVS), MNIST-DVS, retinotopy, deep

learning in SNN

INTRODUCTION

During the past years, the quest for accurate image recognition systems has been one of the driving
forces behind major advances in the field of artificial neural networks such as the development
of convolutional neural networks (Lecun et al., 1998). Today, algorithms for image recognition
are well advanced and can be found in many applications such as search engines, security systems,
industrial robots, medical devices, and virtual reality. Besides themany areas of application, another
reason for the fast progress in image recognition might be the vast knowledge about the human
visual system. The eye is arguably the best studied human sensory organ and the visual cortex has
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been the main object of interest in a large number of
neuroscientific studies. Findings from vision science have
inspired the development of new hardware as well as novel
algorithms and computational tools. High-definition and high-
speed cameras have long surpassed the capacities of the human
eye in terms of spatial and temporal resolution. On the software
side though, it still proves to be a difficult task to extend the scope
of present achievements in static image recognition to dynamic
visual recognition of moving objects or a moving scene.

The benefit of accurate and fast dynamic visual recognition
is apparent: each of the above-mentioned applications of image
recognition constitutes a potential application area for dynamic
visual recognition systems. Any kind of robot that must navigate
within a three-dimensional environment or perform tasks on
moving objects would benefit from an accurate and fast dynamic
visual system. The popular topic of self-driving cars is only
one example. Other potential implementations include security
systems, automated traffic prediction and tolls, monitoring of
manufacturing processes, navigational tools in air and ship traffic,
or diagnostic assistants for inspections or surgery. Since the
human visual system’s adaptability and efficiency are still highly
superior to computer systems when it comes to tasks of dynamic
vision, it is natural to let biology serve as an inspiration for the
development of new computational models.

Previous works have used a combination of bio-inspired
visual sensors and spiking neural networks for the recognition
of human postures (Perez-Carrasco et al., 2010), the extraction of
car trajectories on a freeway (Bichler et al., 2012), or the control
of robotic movements (Jimenez-Fernandez et al., 2009; Perez-
Peña et al., 2013). We consider these very promising approaches,
though the mentioned works lack benchmarking results that
make them comparable.

This paper introduces a new system for dynamic visual
recognition that combines a silicon retina device with a brain-
like spiking neural network (SNN). As we introduce the different
parts of our proposed system, we include findings from vision
science that inspired us or that might provide promising
approaches for future improvements. We present the setup
and the results of a benchmarking experiment carried out on
the MNIST-DVS dataset and show that our system achieves
a classification accuracy of 92.90% on this dataset. The SNN
architecture NeuCube is very flexible in terms of its connectivity
and learning algorithms and allows for the visualization of
the learning processes inside the SNN. After discussing the
advantages and limitations of the system, we conclude by
suggesting further exploration of the system’s performance with
modified algorithms and different datasets.

THE PROPOSED SYSTEM ARCHITECTURE

The Dynamic Vision Sensor
The Dynamic Vision Sensor (DVS) was developed at the Institute
for Neuroinformatics in Zürich as a fast and storage efficient
silicon retina system (Delbruck, 2008). Unlike conventional
frame-based video cameras that capture multiple frames per
second and store a large number of pixels for each of these
frames, the DVS only captures changes in the brightness of single

pixels caused bymovement of the scene or an object (Lichtsteiner
et al., 2008). This is called an Address Event Representation
(AER) since the output of the sensor consists of a time series
of events together with their location (address), representing
the temporal contrast of a specific pixel at a specific time. By
responding to temporal contrast on the pixel-level rather than
taking a continuous series of snapshots of the whole scene, the
DVS mimics the functioning of the human retina much better
than conventional video cameras (Purves, 2012).

Together with its focus on movements within a scene there
is another reason to choose the DVS over a conventional video
camera for a dynamic vision system based on a spiking neural
network: the address event output of the DVS comes in the form
of a series of spike trains, each spike train corresponding to
one pixel of the sensor. Every single spike in the train of one
specific pixel represents a change in brightness in that pixel at
a specific time. However, there are two difficulties with taking the
raw DVS output as spike trains and directly feeding them into a
spiking neural network: firstly, the sensor can achieve a very high
temporal resolution of 1µs and a spike train for a single pixel will
initially consist of many time steps, e.g., 2,000,000 time steps for a
2 s video, and a relatively small number of spikes. Feeding such a
spike train into a spiking neural network would result in very low
overall spiking activity and probably unsatisfying performance.
Secondly, although the sensor’s spatial resolution of 128× 128=
16,384 pixels is low compared to conventional video cameras, it is
desirable to reduce computational cost by integrating the signals
of multiple pixels into single input neurons for the SNN rather
than creating 16,384 input neurons.

For this purpose, we propose an algorithm for the
compression of time and the convolution and pooling of
the DVS pixels into a total of 128 spike trains consisting of
roughly 100 time steps for each second of video data that can
then be fed into 128 input neurons of an SNN.

Proposed Encoding Algorithm of DVS Data
as Input Data for the SNN System
The algorithm we propose is inspired by the structure and
organization of retinal ganglion cells. These cells receive
information from photoreceptors on the retina and transmit
them to the brain (Purves, 2012). There are different types of
retinal ganglion cells, but we focus on two global properties
shared by the majority of all ganglion cells: first, the distribution
of retinal ganglion cells across the retina, which is used to
determine which photoreceptors converge into one retinal
ganglion cell and, thus, how many DVS pixels converge into one
input neuron for our SNN. Second, the mechanism by which
retinal ganglion cells fire and, thus, the algorithm that generates
the input spike trains for the SNN.

Pooling of DVS Output Into 128 Input Neurons of the

SNN System
Despite large differences across individuals, there are roughly
100 million photoreceptor cells on the retina and around 1
million retinal ganglion cells providing information transmission
to the brain (Curcio et al., 1990). Thus, on average, one ganglion
cell integrates information from roughly 100 photoreceptor
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cells. However, the number of photoreceptors converging into
one ganglion cell depends highly on the retinal location of
the photoreceptors. Ganglion cells connecting to the fovea
centralis, the small central spot of the retina specialized in
sharp and detailed vision, receive information from only a
single photoreceptor cell, implying that information from these
photoreceptors is transmitted directly to the brain without
any pooling (Purves, 2012). The receptive fields of ganglion
cells increase with distance from the fovea and ganglion cells
connecting to peripheral parts of the retina integrate the signals
of many photoreceptors at once (Croner and Kaplan, 1995).

The way our encoding algorithm pools information from
multiple DVS pixels into single spike trains adapts this property
of detailed information transmission from central parts of the
retina and averaging over larger numbers of photoreceptors in
the periphery. Overall, the algorithm generates 128 spike trains
that will serve as input for the SNN. Each spike train represents
one retinal ganglion cell with its own receptive field on the
128× 128-pixel output of the DVS (Figure 1).

In our algorithm, the central 8 × 8 pixels of the DVS output
represent the fovea (Figure 1A), and for each of these central
64 pixels, there is a single ganglion cell only considering the
output of that single pixel. Furthermore, there are four groups
of 16 ganglion cells each, with receptive fields that increase
from the center to the periphery. The first group consists of the
central 16 × 16 pixels, divided into 16 squares that integrate
an area of four by four pixels each (Figure 1B). The next
group consists of the central 32 × 32 pixels, again divided
into 16 squares, this time with an area of 8 × 8 pixels each
(Figure 1C). The same happens for the central 64 × 64 pixels
(Figure 1D) and the total of 128 × 128 pixels (Figure 1E),
resulting in 16 squares per group, of size 16 × 16 and 32 × 32,
respectively. In this pooling mechanism, an average of 170.5
pixels converge into one ganglion cell. The size of the receptive
fields can easily be adapted to higher or non-square video
resolutions.

Having set the distribution of the ganglion cells across the DVS
output, the next step is to determine how the information of the
DVS pixels is encoded into spike trains for the ganglion cells.

Firing Mechanism
The Dynamic Vision Sensor provides a very high temporal
resolution of up to 1 µs. Preserving is detailed temporal
information is desirable from a computational point of view,
but as described below we reduce this resolution to 10ms to
maintain biological plausibility. While some spike encoding
algorithms like Poisson models focus merely on the spike
count within a given time interval and disregard the exact
spike timing, it has been shown that the spike timing of
mammalian retinal ganglion cells conveys several times more
information than the spike count (Berry et al., 1997; van Rullen
and Thorpe, 2001; Uzzell and Chichilnisky, 2004). Furthermore,
retinal ganglion cells fire very briefly as a response to specific
stimuli rather than emitting a high frequency of background
firing. Spikes emitted by retinal ganglion cells of rabbits and
salamanders, presented with random flicker, covered less than
5% of the total stimulus time (Berry et al., 1997). The maximum

firing rate of retinal ganglion cells varies between different
animal species and depends on the type of visual stimuli.
Transient peak rates of up to 250Hz have been observed
in retinal ganglion cells of mice (Krieger et al., 2017), but
for the sustained firing of human retinal ganglion cells, an
upper bound of 100Hz can be reasonably assumed (Nelson,
1995).

As described in section The Dynamic Vision Sensor, the DVS
output consists of a series of events, including their timing in
microseconds and their location in pixel coordinates. In fact,
each event also includes a polarity of +1 or −1, depending
on whether the event indicates a pixel becoming brighter or
darker. Our encoding algorithm ignores the event polarity, but
it might be worthwhile for future experiments to consider a
translation of positive and negative events into positive and
negative spikes.

Our spike encoding algorithm is illustrated in Figure 2. In
the first step, the algorithm takes the time series of the DVS
and groups it into windows of 10,000 µs or 10ms. The new
time series consists of 10ms steps, and for every ganglion cell, it
must be decided at which of these steps the cell will fire. Since
each time step represents 10ms of video data, the maximum
firing rate of the ganglion cells cannot exceed 100Hz. The
encoding for the central 64 pixels that represent the fovea is
straightforward: if there is at least one event for a pixel at time
step ti, the ganglion cell that corresponds to that pixel will fire
at ti. There are no parameters to tune for these central 64 pixels
and the spike trains of the ganglion cells that correspond to
these pixels are completely determined by the DVS output. For
the 64 ganglion cells that integrate the events of multiple DVS
pixels, the situation is slightly different. For each of these cells,
the algorithm counts how many events occurred in each time
window within the receptive field of that ganglion cell. If the
number of events from pixels within the receptive field of cell
Cj at time step ti exceeds a certain threshold, Cj will fire at
ti.

Theoretically, this threshold can be set for each ganglion
cell individually, but since the 16 cells of each group have
receptive fields of the same size, our algorithm assigns the
same threshold to all 16 cells of a group, resulting in a
total of 4 thresholds that can be tuned. Clearly, the value
of the thresholds will determine the average spike rate of
the final spike trains, with higher thresholds leading to fewer
spikes, and it is possible to imitate biological evidence about
spike rates under certain stimuli. We discuss the tuning of
the thresholds in more detail in section Model Design and
Implementation.

Inspired by the structure and organization of retinal ganglion
cells, our algorithm pools 128× 128 DVS pixels into 128 ganglion
cells that will serve as input neurons for the SNN. The algorithm
compresses the microsecond resolution of the DVS output into
time steps of 10ms, but it preserves the timing of the DVS
events instead of generating a Poisson process with random
spike timing. The next section describes the structure of a brain-
like SNN architecture called NeuCube, and our imitation of
the retinotopic mapping of retinal ganglion cells into the visual
cortex.
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FIGURE 1 | Pooling of 128 × 128 DVS pixels into 128 ganglion cells. 64 foveal ganglion cells that correspond to the central 64 DVS pixels (A) and four groups of 16

ganglion cells each with increasing size of receptive fields toward the periphery (B–E). The image seen by the DVS camera is marked with a blue frame and the

receptive fields are marked with orange frames.

FIGURE 2 | Encoding of spike trains from DVS output. The DVS time series is grouped into windows of 10ms. For each time step, the DVS events within the

receptive fields of all 128 ganglion cells are counted. If the number of DVS events within the receptive field of one ganglion cell exceeds a certain threshold, the cell

fires at that time step.

The Brain-Like SNN Neucube and the
Proposed Retinotopic Mapping
The NeuCube SNN architecture incorporates several different
principles of SNN and combines them into a single model for
mapping, learning, and understanding of spatio-temporal data

(Kasabov, 2014). Signals are processed along successive stages as

shown in Figure 3. Before going into detail about the learning

algorithms used by NeuCube, we want to focus on the three-
dimensional structure of NeuCube and the bio-inspired way we

mapped the 128 input neurons into this structure. Our system
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FIGURE 3 | A schematic diagram of a general NeuCube architecture, consisting of: input encoding module; NeuCube module; output function module. Our system

only makes use of the NeuCube module and the output function module.

uses a NeuCube initialized with 732 neurons, using the MNI
coordinates of neurons from the primary visual cortex (V1,
Brodman area 17), taken from the Atlas of the Human Brain
(downloaded together with the xjView toolbox: http://www.
alivelearn.net/xjview). The number of neurons is only bounded
by computational limitations; it is possible to add further neurons
from the secondary or tertiary visual cortex or to represent the
whole brain. Initial connections between the neurons are based
on the “small-world” paradigm, where random connections are
formed within a pre-defined maximum distance of each neuron,
80% of the time as excitatory and 20% of the time as inhibitory
connections. The mapping of the 128 input neurons into the 732
neurons of NeuCube mimics two important characteristics of
the human visual cortex: cortical magnification and retinotopic
mapping (Figure 4).

Cortical magnification describes the overrepresentation of
foveal signals inside the primary visual cortex. Although the fovea
has a diameter of only 1.2mm (Purves, 2012), its signals are

processed by almost 50% of all neurons in V1 (Krantz, 2012;

Born et al., 2015). Therefore, we chose exactly 64 of our 128 input
neurons to correspond to the central 64 DVS pixels with a one-to-
one relationship. This way, 50% of input neurons automatically
correspond to the central pixels of the DVS, just like 50% of the
primary visual cortex correspond to the central photoreceptors
on the retina.

The second characteristic of the primary visual cortex that
we adopted in our mapping is the preservation of spatial
relationships between photoreceptors on the retina and their
neural representation in the primary visual cortex, the so-called
retinotopy (Rosa, 2002). Signals from the top left of our visual
field are mapped to the bottom right of V1 and vice versa.
What humans see is flipped upside down and mirrored, but
objects that appear next to each other in the visual field will
still be represented next to each other in V1. Both the foveal
as well as the peripheral ganglion cells follow this principle,
although foveal signals are mapped into the posterior part and
peripheral signals into the anterior part of V1 (Purves, 2012).
Figure 5 shows how the principle of retinotopy is applied to
the mapping of the 128 input neurons to the 732 neurons of
NeuCube.

FIGURE 4 | Retinotopic organization of the primary visual cortex. Up to 50%

of the primary visual cortex processes foveal signals (cortical magnification).

Signals from the top left of the visual field are mapped to the bottom right of

the visual cortex (retinotopy). Source: Jaygandhi786 (2015).

Unsupervised and Supervised Learning of
Dynamic Visual Patterns in the Neucube
Architecture
Learning in the NeuCube is performed in two stages: in
the first step, unsupervised learning is performed to modify
the initial connection weights. In our system we use pair-
based multiplicative spike-timing-dependent plasticity (STDP,
van Rossum et al., 2000), but in principle, the NeuCube
architecture allows for a flexible implementation of different
learning algorithms. The SNN will learn to activate the same
groups of spiking neurons when similar input stimuli are
presented and to change existing connections that preserve
the spatio-temporal patterns of the input data (Kasabov and
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FIGURE 5 | Retinotopic mapping of 128 input neurons to NeuCube, initialized with 732 neurons, using the MNI coordinates of neurons from the primary visual cortex,

taken from the Atlas of the Human Brain.

Capecci, 2015). Previous works have shown that STDP is well
suited to train neurons to respond to discriminative visual
features (Masquelier and Thorpe, 2007). The neurons become
selective to successive coincidences of particular patterns and
learn to detect them robustly even in the presence of noise
(Masquelier et al., 2009). Our approach using the NeuCube
differs from these works mainly in the structure of the network,
which is not based on layers, but rather a three-dimensional
network shaped like the primary visual cortex. However, our
results are similar to those works in that certain neurons and
connections can be identified that seem to play a major role
in discriminating between the different classes. NeuCube allows
for a visualization of the learning process and we discuss how
the visualization can be used for a better understanding of the
data and the neural processes after presenting our experimental
results.

In the second step, supervised learning is applied to the
spiking neurons in the output classification module, where the
same spike trains used for the unsupervised training are now
propagated again through the trained SNN and output neurons
are generated and trained to classify the spiking activity of
the SNN into pre-defined classes (Kasabov and Capecci, 2015).
Again, the NeuCube architecture allows for the application
of different algorithms for the evolving classifier. The output
function we used is called the dynamic evolving SNN algorithm
(deSNN, Kasabov et al., 2013), which makes use of rank-order
learning (Thorpe and Gautrais, 1999). This kind of evolving
classifier is computationally inexpensive and puts emphasis on
the order in which input spikes arrive, making it suitable for on-
line learning and early prediction of temporal events (Kasabov,
2014). Similar to previous works on image recognition based
on reward-modulated STDP (Mozafari et al., 2017), the deSNN
algorithm uses a “highest” layer of neurons to discriminate
between classes. While Mozafari et al. (2017) used an existing
layer of output neurons, the deSNN algorithm creates and trains
one new output neuron per sample by connecting it to all 732

neurons in the network and propagating the signal through the
network once more. The connection weights that are learned in
this process are then classified using a K-nearest neighbor (KNN)
algorithm and the labels that are known for all the samples. Here
our method differs from the aforementioned (Mozafari et al.,
2017) in that we do not apply “anti-STDP” for misclassified
samples before applying KNN. This means that the results of the
deSNN’s decisions are not fed back into the network since we
create a new output neuron for each sample.

For a more detailed description of the NeuCube architecture
see Kasabov (2014).

Summary of the Proposed Methodology
The methodology we propose for dynamic visual recognition
consists of the following steps:

(1) Event-based video recording with DVS.
(2) Pooling and encoding of DVS output into spike trains for the

input neurons of the SNN.
(3) Training NeuCube on the spike data using unsupervised

learning, e.g., STDP.
(4) Training of an output classifier in a supervised mode.
(5) Validating the classification results.
(6) Repeating steps (2–5) for different parameter values to

optimize the classification performance. Recording the model
with the best performance.

(7) Visualizing the trained SNN and analyzing its connectivity and
spiking activity for a better understanding of the data and the
involved brain processes.

We present the application of this method on a benchmarking
experiment with the MNIST-DVS dataset for spike-
based dynamic visual recognition and go into further
detail about the tuning of parameters and analysis of
the SNN.
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BENCHMARKING ON THE MNIST-DVS
DATASET

Description of the MNIST-DVS Dataset
The MNIST dataset of handwritten digits (Lecun et al., 1998)
has been one of the most popular benchmarking datasets for
image recognition for over 20 years. With the advent of spiking
neural networks, MNIST has naturally been used as a benchmark
for spike-based visual recognition systems (Brader et al., 2007;
Querlioz et al., 2013; Diehl and Cook, 2015; Zhao et al., 2015;
Kheradpisheh et al., 2017). However, these works only account
for the recognition of the static MNIST pictures and do not
aim toward dynamic visual recognition of moving objects. An
important part of the functioning of spiking neural networks is
the dimension of time within the spike trains and on datasets that
also have such a temporal dimension, spiking neural networks
might be superior to classical artificial neural networks.

The NE15-MNIST database (Neuromorphic Engineering
2015 on MNIST, Serrano-Gotarredona and Linares-Barranco,
2015; Liu et al., 2016) that we used for our study is based
on the original MNIST dataset. NE15-MNIST consists of four
subsets that all aim to provide a benchmark for spike-based
visual recognition. While the Poissonian and the FoCal subsets
are synthetically generated from static MNIST images, the other
two subsets are based on 128 × 128 pixel DVS recordings of
the MNIST images. The MNIST-FLASH-DVS subset contains
DVS recordings of MNIST digits that are flashed on a screen.
Because we were interested in dynamic visual recognition of
moving objects, we decided to work on the MNIST-DVS subset
that consists of DVS recordings of MNIST digits that move back
and forth across a screen and thereby produce temporal contrast
and DVS events on the digits’ edges.

The MNIST-DVS dataset is available online (Yousefzadeh
et al., 2015). It consists of 30,000 recordings of 10,000 original
MNIST digits recorded at three different scales each (scale-4,
scale-8, and scale-16). Each recording has a time length of about
2.5 s, during which the digit moves twice from a position at the
bottom left of the middle of the screen to the top right and back.
The files are provided in the jAER format (Delbruck, 2008) and
the dataset includes Matlab scripts for a conversion to Matlab
arrays and three kinds of data preprocessing: removal of a 75Hz
timestamp harmonic produced by the LCD screen, stabilization
of the digits on the center of the screen and removal of the event
polarity information.

Previous classification results on the MNIST-DVS dataset are
shown in Table 1. Henderson et al. (2015) derive a new event-
based learning scheme and apply it to a layered feedforward
spiking neural network, which is trained self-supervised for

classification of the MNIST-DVS digits. Zhao et al. (2015) use a
composite system, consisting of a convolutional spiking neural

network for feature extraction and a network of tempotron

neurons for spike-based classification. While these two systems
are fully event-driven, Stromatias et al. (2017) use a combination
of a spiking neural network and a conventional artificial neural
network. A convolutional SNN is used to capture the temporal
dynamics of the DVS data and create a new, frame-based dataset,
which is fed into a fully-connected artificial neural network. The

supervised learning itself then takes place in this non-spiking
network, using a stochastic gradient descent algorithm. In our
concluding remarks we suggest how this approach could be
combined with our model to maintain the high classification
accuracies while providing greater biological plausibility.

Model Design and Implementation
The only preprocessing we applied to the data was the removal of
the 75Hz timestamp harmonic. Stabilizing the video data would
have been contrary to our intention to develop a system for
dynamic visual recognition, and in fact, preliminary experiments
suggested that the system would perform better on the original
unstabilized videos. To run our spike encoding algorithm on the
data, we used the script provided with the dataset to convert the
jAER files into Matlab arrays.

The pooling of the DVS spikes into 128 input spike trains
(ganglion cells) for the SNN, as described within section The
Proposed System Architecture, remained the same throughout
all experiments. Inside the spike encoding algorithm, only those
four thresholds were changed that determine how many pixels
within the receptive field of a ganglion cell must fire within one
time step to make the ganglion cell itself emit a spike. As a
first step, we wanted to find out how the system would perform
differently when these thresholds and, thus, the average spike
rate of the input data for the SNN, were changed. As described
in section Firing Mechanism, the ganglion cells’ receptive fields
decrease from the periphery toward the center. Starting from
the periphery, ganglion cells in group 1 integrate the signal of
32 × 32 = 1.024 DVS pixels, cells in group 2 from 16 × 16 =

256 pixels, cells in group 3 from 8 × 8 = 64 pixels, and cells in
group 4 from 4 × 4 = 16 pixels. Assigning the same percentage
threshold to all four groups would result in very low or no activity
in the peripheral ganglion cells, e.g., with a threshold of 10% it
would take only two DVS events within the receptive field of a
ganglion cell in group 4 to trigger a spike, but 103 DVS events
within the receptive field of a ganglion cell in group 1. Especially
with the MNIST-DVS dataset, where DVS events only occur at
the edges of the moving digits and not in larger blobs, this would
make the peripheral ganglion cells redundant. On the other hand,
increasing the thresholds too much from group to group toward
the center would put more emphasis on the peripheral parts of
the video than intended.

We carefully watched the MNIST-DVS videos and compared
the distribution of DVS events with the average spike rates for the
groups of ganglion cells that were produced by different spiking
thresholds. We found that increasing the percentage thresholds
by a factor of two from group to group toward the center would
preserve the distribution of DVS events relatively well and not
put too much emphasis on any single group. Figure 6 shows
the average spike rates for 1,000 scale-8 videos (100 per digit),
produced by thresholds of 0.5% for group 1, 1% for group 2,
2% for group 3 and 4% for group 4. Since time is discrete in
our model, we measure the average spike rates in %, dividing the
number of time steps in which a cell fired by the total number of
time steps. Most spikes occur in groups 2 and 3, consistent with
the general distribution of DVS events in the scale-8 videos. The
total spike average of the samples shown in Figure 6 is 27.57%.
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TABLE 1 | Previous classification results on the MNIST-DVS dataset.

Network type Learning algorithm Total number of

samples used

Train-test-ratio Classification on

test set (%)

Henderson et al., 2015 Feedforward SNN A new scheme for

spike-based learning

10.000 (scale not

mentioned)

90–10 87.41

Zhao et al., 2015 Composite system, including

convolution, motion detector, feature

spike conversion, and SNN classifier

Tempotron learning 10.000 (scale-4) 90–10 88.14

Stromatias et al., 2017 Composite system, including

convolutional SNN, non-spiking fully

connected classifier, and spiking

output layer

Stochastic Gradient

Descent (inside the

non-spiking classifier)

10.000 (scale-16) 80–20 97.95

We altered the thresholds to get clearly distinguishable total
spike averages.Table 2 shows four different choices of thresholds,
resulting in average spike rates of roughly 7, 14, 26, and 32%
(exact numbers vary between different video scales). The last
row represents the maximal achievable average spike rate with
a threshold of 0% for each group. In that case, every ganglion cell
fires if there is at least one DVS event in its receptive field at a
given time step.

The mapping of the input spikes into the SNN NeuCube
was done according to the proposed retinotopic mapping
and it remained the same throughout all experiments. In all
experiments NeuCube was initialized with 732 leaky integrate
and fire neurons (LIF), representing the primary visual cortex.
For future experiments with higher video resolutions and more
input neurons, NeuCube can easily be extended to include
neurons that represent the secondary and the tertiary visual
cortex. Initial connections are formed following “small-world”
connectivity with random connections within a predefined
maximum distance from each neuron. This maximum distance
was set to 2.5 in all experiments.

As described previously, unsupervised learning using STDP
is performed first to learn spatio-temporal patterns by forming
new connections between neurons, before the output classifier
is trained in a supervised manner using the dynamic evolving
SNN (deSNN) algorithm (Kasabov et al., 2013). The NeuCube
architecture is a stochastic model and, therefore, sensitive to
parameter settings. To find the best values for the major
parameters that influence the system’s performance, we applied
a grid search method that tests the system on different
combinations of parameters within a predefined range and used
those parameter values that resulted in the best classification
accuracy. For the firing threshold, the refractory time and the
potential leak rate of the LIF neurons we used values of 0.5, 6,
and 0.002, respectively. The STDP learning parameter was set to
0.01. The variables Mod and Drift of the deSNN classifier were
set to 0.8 and 0.005. See Kasabov and Capecci (2015) for a more
detailed explanation of these parameters.

Experimental Results
To compare the system’s performance, we performed 10-fold
cross-validation on 1,000 videos (first 100 of each digit), with
900 videos used for training and 100 for testing in each
fold, for different video scales and average spike rates. Table 3

summarizes the results. As a general trend, with few exceptions,
the classification accuracy increased together with the average
spike rate of the input neurons. For all video scales, the
classification accuracy also increased when the system was run
on all 10,000 videos of a given scale. The best classification
results were achieved with all 10,000 videos of one scale,
encoded with the highest possible spike rate (0% as spike
encoding threshold for all four groups). Classification accuracies
were 90.56, 92.03, and 86.09% % for scale-4, scale-8, and
scale-16, respectively. The best accuracy in a single run with
90% of randomly selected data samples for training and the
remaining 10% for testing was 92.90% for 10,000 scale-8 videos
with the highest possible spike rate. This result is comparable
to previous results on the MNIST-DVS dataset, presented in
Table 1.

The lower accuracies on the scale-4 and the scale-16 samples
reflect the fact that in these videos, the MNIST digits fill out
either the whole screen (scale-16) or only a very little region in
the center (scale-4). For the scale-4 digits, the signals transmitted
by ganglion cells from groups 1, 2, and 3 are mostly noise and
do not contain much information about the digits. In the scale-
16 videos, there is almost no activity in the central region of the
screen and, thus, no information is transmitted by the 64 foveal
ganglion cells. Since our method puts heavy emphasis on the
center of the video (50% of the input neurons represent data from
only the central 64 pixels), performance on the scale-16 videos is
lower.

Model Interpretation for a Better
Understanding of the Processes Inside the
Visual Cortex
The main purpose of the above experiments, carried out on
the MNIST-DVS dataset, is to confirm the system’s classification
performance on a benchmark dataset, and the moving digits
do not represent a real-life scene. However, we want to
show how the SNN can be analyzed after being trained, to
see how its connectivity changes in response to the data.
Figure 7 compares the connectivity of the SNN before and after
unsupervised training on 1,000 scale-4 videos with the highest
possible spike rate. Blue and red lines represent positive and
negative connections, respectively. We can notice that some of
the randomly created initial connections disappear during the
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FIGURE 6 | Top: Average spike rates of 1,000 scale-8 videos (100 per digit) resulting from encoding-thresholds of 0.5, 1, 2, and 4% for the four groups of retinal

ganglion cells, respectively (from periphery to center). Average spike rates are measured in %, dividing the average number of time steps in which the cells of a given

group fired by the total number of time steps. The total average spike rate is 27.57%. Bottom: Example of encoded spike trains for one sample (digit 0, scale-8,

sample #1). Neurons 1–16, 17–32, 33–48, and 49–64 represent the four groups of ganglion cells from the periphery to the center; neurons 65–128 represent the

foveal ganglion cells. The spike pattern of the foveal ganglion cells clearly represents the two times that the digit moves across the center of the screen.

training process. Instead, many new negative connections are
created, mostly between neurons in the region that represents the
posterior part of the primary visual cortex, where signals from
the foveal ganglion cells arrive. Some of the new connections
connect neurons over a long distance, especially in the very
posterior part of the SNN, where a gap between neurons
prevents the initial formation of “small-world” connections. As
can be seen in Figure 5, the neurons on both sides of this
gap represent adjacent DVS pixels, and by bridging this gap,
the new connections allow for communication between these
neurons. A comparison with the connectivity after training
the SNN on 1,000 scale-16 videos shows that slightly fewer

connections are formed between neurons processing foveal
information since the scale-16 videos contain less DVS events
in the foveal region. This effect is due to the acquisition
hardware used and could be compensated for by the simulation
of saccadic eye movements inside the encoding algorithm. In
a biological retina, these rapid eye movements ensure that the
fovea centralis focuses on salient features instead of constantly
covering a less important area of the visual field. We discuss
this possible improvement of the encoding algorithm in the next
section.

There is also a visible difference between connections created
for different digits. Figure 8 shows the status of the network after
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TABLE 2 | Different choices of spike thresholds within the spike encoding

algorithm and corresponding average spike rates.

Spike threshold in % Approximate average

spike rate (%)

Group 1 Group 2 Group 3 Group 4

5 10 20 40 5

2.5 5 10 20 13

0.5 1 2 4 26

0 0 0 0 32

unsupervised training using only digits 1, 5, and 8, respectively.
Interestingly, the connections created for digits 5 and 8 look
similar, just like the digits themselves have a similar shape. The
connections created after training on digit 1, on the other hand,
look distinctly different. We can, therefore, conclude that the
visual characteristics of the digits are preserved in our system,
just like they are in the human visual cortex.

DISCUSSION OF THE SYSTEM’S
ADVANTAGES AND LIMITATIONS

The proposed system achieves a classification performance on the
benchmark MNIST-DVS dataset that can keep up with previous
works on this dataset and is superior to those works that used a
spiking neural network classifier. Every part of the system, the
DVS sensor, the algorithm for encoding the DVS output into
spike trains, and the SNN NeuCube adopt features from the
human visual system. This allows for future experiments where
the same stimuli are presented to humans and the proposed
system and brain processes visualized by neuroimaging methods
can be compared to the network processes of the SNN, which can
be easily visualized within the NeuCube architecture.

Another advantage of the proposed system is the high
flexibility of the SNN’s three-dimensional structure. The
NeuCube architecture is not restricted to consist of neurons that
represent only the visual cortex. For example, one could map
aural stimuli to input neurons representing the auditory cortex,
to obtain a model that processes aural and visual information
at the same time in a brain-like way. The integration of other
kinds of data, such as tactile or olfactory information, within a
multimodal model is conceivable as well.

We found that the system’s classification performance
increases together with the average spike rates of the 128 input
neurons. To account for the findings of Berry et al. (1997) in
retinal ganglion cells of rabbits and salamanders, we started our
experiments with low spike rates of approximately 5%, but the
classification accuracies were very low in these cases. However,
the reported firing rates of rabbit and salamander ganglion cells
were measured during the presentation of random flicker, which
might yield very different firing behavior than stimuli like the
moving digits. Single cell recordings of retinal ganglion cells
could provide more evidence about the firing rates under specific
stimuli. The parameters of the spike encoding algorithm that
determine the average spike rates can then easily be tuned to

TABLE 3 | Results of 10-fold cross validation for different video scales and

average spike rates.

Video scale Number of

samples

Average spike

rate (%)

Classification

accuracy (%)

Scale-4 1,000 7.85 63.80

“ 1,000 13.94 77.10

“ 1,000 25.77 75.50

“ 1,000 31.77 83.40

“ 10,000 31.98 90.56

Scale-8 1,000 5.29 66.40

“ 1,000 13.49 83.00

“ 1,000 27.57 84.20

“ 1,000 32.96 86.20

“ 10,000 32.93 92.03

Scale-16 1,000 3.81 60.50

“ 1,000 12.64 82.90

“ 1,000 26.94 78.60

“ 1,000 31.72 77.50

“ 10,000 31.79 86.09

mimic the behavior of real retinal ganglion cells and it would
be interesting to see if classification accuracy increases when the
average spike rates conform to the biological evidence.

Since so much is known about the human visual system and
we aimed to develop a biologically plausible, yet computationally
feasible implementation, there are many details not included
in our model. There already exist very advanced mathematical
models for the function of retinal ganglion cells (Wei and Ren,
2013) and our spike encoding algorithm has by far not touched
every detail of them. The receptive field of each ganglion cell,
for example, is split into a center region and a surrounding
region with opposite behavior toward light (Nelson, 1995). In
so-called on-center cells, the center region is stimulated, whereas
the surrounding region is inhibited when exposed to light. So-
called off-center cells exhibit converse behavior. Including the
function of on- and off-center ganglion cells inside the spike
encoding algorithm would highly increase the model’s biological
plausibility, but also its computational complexity. Another
computational restriction of our model is that the random
initial creation of excitatory and inhibitory connections causes a
violation of Dale’s Principle, which states that all axonal branches
of a neuron perform the same chemical reaction.

One shortcoming of the DVS when compared to the human
retina is its inability to process colors. The DVS only encodes
temporal changes in brightness that signal motion (Delbruck,
2008), similar to the rod photoreceptors on the retina and the
functionality of the magnocellular fibers in the optical nerve
(Purves, 2012). However, the cone photoreceptors on the retina
as well as the comparatively large amount of parvocellular fibers
in the optic nerve are not modeled by the DVS despite their
importance for detecting and transmitting information about
color and details of the perceived objects (Purves, 2012). This
means that all object recognition approaches using DVS input are
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FIGURE 7 | Connectivity of the SNN before (left) and after training on 1,000 scale-4 samples (middle) and 1,000 scale-16 samples (right). During training, new

connections are created while others vanish, representing relations between spiking neurons that evolve as a response to the spatio-temporal patterns of the data.

FIGURE 8 | Connectivity of the SNN after unsupervised training on 1,000 scale-8 samples each for the three digits 1 (left), 5 (center), and 8 (right). There is a visible

difference between the connections, corresponding to the visual characteristics of the digits.

somewhat limited because the DVS only captures signals that the
human visual system would use to detect motion and distances
to objects, but not those signals necessary for recognizing objects
and details.

The proposed system puts strong emphasis on the central
part of the videos in both the encoding of DVS events to spike
trains and the representation inside the SNN. This is justified
by analogous features of the fovea centralis in the center of
the human retina, responsible for focused vision. However,
there is no evidence that there exist retinal ganglion cells with
large receptive fields in the human retina that cover the fovea
centralis in a redundant manner as in our system. Further, our
system does not account for the very fast and simultaneous
movement of human eyes, called saccades. Saccades help to scan
a broader part of the visual field with the fovea and integrate
this information into a detailed map (Purves, 2012). Human
eye movement is also controlled by the visual grasp reflex that
directs the eyes toward salient events in the periphery of the
visual field (Monsell and Driver, 2000). These mechanisms for
eye movement could be implemented in the spike encoding
algorithm by changing the coordinates for the pooling of
DVS pixels for each time step, and thereby virtually moving
the center of the visual field. However, this would require
additional features to save the movement and integrate it into
the SNN.

CONCLUSION

This paper presents a new methodology for dynamic visual
recognition, inspired by different features of the human visual
system. The proposed system is designed to take data from a
DVS silicon retina and encodes them into spike trains using
an algorithm that mimics the organization and function of
retinal ganglion cells. The spike trains are then fed into the
brain-like SNN NeuCube, following the retinotopic mapping of
photoreceptors from the retina into their neural representations
in the primary visual cortex. Two stages of learning, unsupervised
and supervised, are performed by NeuCube to extract spatio-
temporal patterns from the data and perform a classification task.
Results on the benchmark MNIST-DVS dataset have shown that
the system can keep up with the classification performance of
other methods for dynamic visual recognition. Furthermore, it
is possible to dynamically visualize and analyze the activity inside
the SNN for a better understanding of the data and the process of
their deep learning in the model.

Due to the promising benchmark results and the benefit of the
visualization tools for an in-depth understanding of the data and
the network processes, we endorse further research on the system.
In particular, we suggest the exploration of new learning methods
inside NeuCube and of different algorithms for the encoding of
DVS data into spike trains.
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To date, the highest classification accuracy on the MNIST-
DVS dataset has been achieved by Stromatias et al. (2017), who
used a spiking convolutional neural network to create a new
frame-based dataset, which captures the dynamics of the DVS
output and serves as input for a fully-connected classifier that
uses stochastic gradient descent. The non-spiking classifier is
then mapped to a spiking output layer of LIF neurons. As they
mention in their paper, the non-spiking classifier and the spiking
output layer can be used with any spiking neural network that
has already extracted features from the data in an unsupervised
manner. We propose to explore how the connectivity or spiking
activity of the NeuCube after the unsupervised learning stage
could be used to create a similar frame-based dataset, and how the
classifier used by Stromatias et al. (2017) would perform on such a
dataset. This way, the biological plausibility of ourmodel could be
combined with current state-of-the-art classification algorithms.

We also encourage the development of further benchmark
datasets for spike-based visual recognition, e.g., spiking versions
of the KTH and theWeizmann datasets of human actions (Laptev
and Caputo, 2005; Gorelick et al., 2007). Since the NeuCube
architecture is not bound to only consist of neurons representing
the visual cortex, future directions can include the integration of
our system for visual recognition inside a broader, multimodal
methodology, e.g., for the biologically plausible processing of
visual and aural data at the same time within the same system.
The used DVS format for visual data encoding into spike trains is

not a restriction for the proposed SNN method for retinotopic

mapping. Learning and other encoding methods for different
types of visual data are envisaged to be explored in the future.
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Vision Research Laboratory, School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel

The goal of our research was to develop a compound computational model that predicts

the “opposite” effects of the alternating aftereffects stimuli, such as the “color dove

illusion” (Barkan and Spitzer, 2017), and the “filling in the afterimage after the image”

(van Lier et al., 2009). The model is based on a filling-in mechanism, through a diffusion

equation where the color and intensity of the perceived surface are obtained through

a diffusion process of color from the stimulus edges. The model solves the diffusion

equation with boundary conditions that takes the locations of the chromatic edges of

the chromatic inducer (chromatic stimulus) and the achromatic remaining contours into

account. These contours (edges) trigger the diffusion process. The same calculations are

done for both types of afterimage effects, with the only difference related to the location of

the remaining contour. While a gradient toward the inducing color produces a perception

of the complementary color, an opposite gradient yields the perception of the same color

as that of the chromatic inducer. Furthermore, we show that the same computational

model can also predict new alternating aftereffects stimuli, such as the spiral stimulus,

and the averaging of colors in alternating afterimage stimuli described by Anstis et al.

(2012). The suggested model is able to predict most of the additional properties related

to the “conflicting” phenomena that have been recently described in the literature, and

thus supports the idea that a shared visual mechanism is responsible for both the positive

and the negative effects.

Keywords: afterimage effects, filling-in, diffusion, visual system mechanism, computational model

INTRODUCTION

This study concerns two non-classical afterimage illusions, both involving a chromatic stimulus
i.e., a chromatic inducer that is presented for a short duration of time, and is then followed by the
presentation of an achromatic remaining contour thatmay overlap with the inner or outer border of
the chromatic region of the inducer. The location of this remaining contour, can determine whether
the perceived filling-in color will be the same as, or complementary to, the chromatic inducer. Two
famous examples of these phenomena are: the “Filling-in the Afterimage after the image effect”
(van Lier et al., 2009), and the color dove illusion (Barkan and Spitzer, 2009, 2017; Macknik and
Martinez-Conde, 2010). Both phenomena involve a filling-in process of surfaces between edges,
and the effects are obtained with a narrow spatial inducing area and relatively short induction time.
Since these two phenomena yield complementary perceived colors, derived from the very same
inducer, we refer to them as “conflicting” effects.
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In the “Filling in the Afterimage after the image” (van Lier
et al., 2009) illusion, the inducing stimulus is a chromatic shape
that may have two or more colors. After the chromatic inducing
stimulus is removed, an outline contour matching one of the
shape colors is presented. The complementary afterimage color
perceived depends on the shape and the location of the drawn
outline contour (van Lier et al., 2009), (Figure 1, second column).
Since the color inside the contour in the perceived afterimage
is complementary to the color of the inducing stimulus, we
henceforth, refer to this illusion as a “negative effect.”

It should be noted that this negative effect is not a simple
variation of the “classical” negative afterimage, where, when
a stimulus is removed after a relatively long (20-30 seconds)
exposure, the observer perceives the opposite chromaticity
(complementary color DeValois and Webster, 2011). It should
also be noted that the colors in the classical afterimage are
perceived only in the retinotopic area that was induced.

In the color dove illusion (Barkan and Spitzer, 2009, 2017), the
inducing stimulus is a shape surrounded by a colored area or strip
(red in Figure 1, first row). After the chromatic inducing stimulus
is removed, an outline contour matching the original inducing
stimulus is presented (Figure 1, second row). This gives rise to
the perception of an afterimage (Figure 1, third row) filled with a
color similar to that in the inducing stimulus (although weaker),
and not the complementary color as in the negative effect. Such
an effect has also been reported with objects of different shapes
(Hazenberg and van Lier, 2013). Since the perceived color inside
the shape is similar to that presented in the inducing stimulus, we
henceforth refer to this illusion as a “positive effect,” (Figure 1,
first column).

A similar positive aftereffect was previously investigated by
Anstis et al. (1978) who suggested that the positive chromatic
afterimage effect is a result of the synergy of two known visual
mechanisms: simultaneous contrast (Gerrits and Vendrik, 1970;
Anstis et al., 1978) and colored afterimage (Daw, 1962; Wyszecki,
1986; Shimojo et al., 2001).

The alternating effects differ from a classical afterimage in
their temporal and spatial properties. A classical afterimage
requires a relatively long exposure time and a large spatial area
of induction, in order to obtain a filling-in effect in a small
region with the complementary color (Anstis et al., 1978). In the
phenomena described here, preliminary results indicate that the
positive effect is not abolished even if the area of the chromatic
inducer is spatially thin (Hazenberg and van Lier, 2013; Barkan
and Spitzer, 2017. This is in contrast to the explanation given
by Anstis et al. (1978), since psychophysically, when the area of
a chromatic inducer is thin, the effect of simultaneous contrast
is not manifested (preliminary results). The positive and the
negative effects are also distinguished from the classical aftereffect
(Anstis et al., 1978), in their temporal properties. The duration of
the alternating stimuli can be very short (500ms), a period of time
that is insufficient to obtain the classical afterimage effect (Anstis
et al., 1978; van Lier et al., 2009; Barkan and Spitzer, 2017).

A further distinguishing characteristic of these phenomena
is that, in addition to the temporal and spatial differences from
the classic afterimage effect, the color in both the positive and
negative effects is perceived in new areas that have not been

induced or adapted previously (van Lier et al., 2009). It has to be
noted that even though the positive and the negative effects share
several common properties, they are still phenotypically different
and therefore they can be seen as “conflicting effects.”

Hazenberg and van Lier (2013) investigated “alternating
watercolors,” which have the spatial and the chromatic structure
as of the classical watercolor stimuli. These types of stimuli can
be considered as the positive and the negative stimuli, while
the same classical watercolor stimulus is used as the chromatic
inducer stimuli for both positive and negative aftereffects. In this
case, the remaining contours are located at the inner or the outer
contours of the chromatic edges of the inducer stimulus. The
reported results (Hazenberg and van Lier (2013) indicated that
the positive and negative effects were affected differently by a
number of parameters including the luminance of the area inside
the shape and the luminance of the remaining contour.

At present, the visual mechanisms responsible for the
recently described positive and negative effects are still unknown
and there are no successful computational models for the
phenomena. This is less surprising in view of the fact that there
remains a lack of consensus concerning the mechanism of even
the classical afterimage, despite the wealth of research in the
literature. The physiological mechanisms commonly proposed
as responsible for the classical negative afterimages range
from bleaching of cone photo-pigments to cortical adaptation
(Williams and Macleod, 1979; Shimojo et al., 2001; Clair et al.,
2007; van Lier et al., 2009; Zaidi et al., 2012; Webster, 2015; Zeki
et al., 2017). A recent paper suggested a different mechanism to
the van Lier et al. (2009) effect and attributed the filling-in process
to the perception of transparency cue and cortical mechanisms
(On and van Boxtel, 2017).

Additional recent research (Zaidi et al., 2012) has suggested
that the classical and the negative afterimage effects are derived
from the retinal ganglion mechanism, which yields the neuronal
rebound effect. According to this mechanism, the ganglion

FIGURE 1 | Demonstration of two “conflicting” alternating aftereffects, “The

Color Dove illusion” (Positive effect, left column) and the Von Lier et al. Illusion

(Negative effect, right columns). The first row shows the inducing stimulus, the

second row shows the drawn contours presented at time t2, and the third row

represents the resulting perceived afterimage.
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neurons can fire bursts if inhibited and then released from
inhibition (Spitzer et al., 1993; Grunfeld and Spitzer, 1995;
Francis, 2010; Zaidi et al., 2012). It should be noted that while
the rebound effect may modulate the creation of complementary
colors, it cannot be responsible for the either the negative or
positive effects in their entirety.

Previous computational models have been reported to
describe both the complementary perceived color and the
filling-in components (Grossberg and Todorovic, 1988; Francis
and Rothmayer, 2003; Francis and Ericson, 2004; Francis and
Schoonveld, 2005; Wede and Francis, 2006, 2007; Van Horn
and Francis, 2008) . These models were based on the original
“Form And Color And Depth” FACADE) model (Grossberg and
Mingolla, 1985), which described two main visual processing
systems: a boundary contour system (BCS) that processes
boundary or edge information, and a feature contour system
(FCS) that uses information from the BCS to control the
spreading (filling-in) of surface properties, such as color and
brightness. According to the FACADE model, the filling-in stage
requires the FCS networks to diffuse signals containing feature
information about color and brightness across the surface, while
boundaries in the BCS block the spreading.

The FACADE model and its variations succeed in predicting
the afterimage effects of the MacKay modal complementary
afterimages (MCAI) phenomena (MacKay, 1957; Vidyasagar
et al., 1999). This effect involves sequential viewing of two
orthogonally related patterns (the first one a constant pattern
and the second one a flickering contrast reversal pattern). The
result is an afterimage percept that is related to the first pattern
(Francis and Rothmayer, 2003; Francis and Ericson, 2004; Francis
and Schoonveld, 2005; Wede and Francis, 2006, 2007; Van Horn
and Francis, 2008). A number of studies have examined the
different spatial and temporal properties of the MCAI effect, for
example the spatial and temporal frequency of the two gratings
from the first and second presentations (Francis and Rothmayer,
2003), the gap width (Francis and Ericson, 2004), the split
gratings (Francis and Schoonveld, 2005), duration between the
two grating presentations and the blank presentation (Wede and
Francis, 2006), attentional properties (Wede and Francis, 2007),
and the role of the difference orientations of the constant and
the flickering grating (Van Horn and Francis, 2008). Francis and
colleagues confronted their computational model’s prediction
with the perceived results.

It should be noted that the MCAI and its variations discussed
in these Francis papers are not necessarily related to the positive
and negative aftereffects phenomena described in our current
report. The main differences between the MCAI (MacKay,
1957; Vidyasagar et al., 1999) phenomena and the positive
and the negative effects concern the different types of the
stimulus components, at these two groups of effects. The stimulus
differences related to the orientation gratings and contrast
reversal flickering patterns used to produce the MCAI effect
versus the chromatic shape of inducer and remaining contour
that trigger the positive and negative effects. These differences in
the type of stimuli might imply distinct mechanisms that involve
additional different components, even though both models can
basically be attributed to diffusion processes.

Francis (2010) applied a similar diffusion model to that
described previously in Francis and Rothmayer (2003) in order
to address the negative effect of van Lier’s illusion (van Lier
et al., 2009), and succeeded with the model’s predictions. At
a later stage, Kim and Francis (2011) conducted a series of
psychophysical experiments designed to prove that a simple
diffusionmodel (Francis, 2010) cannot account for the additional
properties characterize the negative after effect. They tested the
hypothesis, for example, that a contour traps the perceived
afterimage color, by adding additional remaining contours. Their
model simulations predicted that these additional remaining
contours would block the spread of a color to the middle of the
surface, Figure 4.

However, contrary to Francis’s predictions (Francis, 2010), the
results of the psychophysical experiments showed that additional
remaining contours blocked color spreading only when they
overlapped with the inducer edges, but not when they were drawn
away from the inducer edges (Kim and Francis, 2011), Figure 4.
More important to our discussion is the fact that FACADEmodel
did not and cannot model the positive effect. In this study,
we present a computational model that can predict both the
negative and the positive effects, and postulate that these effects
are derived from the same mechanism. We also test whether the
model can predict additional afterimage phenomena beyond the
two described effects.

MODEL

The following sections describe a unified computational model
that can predict the two known “conflicting” (opposite)
phenomena, the positive “color dove illusion” and the negative
“filling-in afterimage after the image” illusion. The model is
also able to predict additional variations of the positive and the
negative effects. We suggest here, that despite differences in their
spatial and temporal properties, these two types of phenomena
are produced by a very similar (mutual) mechanism. The model
considers several crucial factors for the perceived temporal effects
and these are presented in Figure 2.

Model Assumptions
The model is based on the following assumptions: (a) An edge
triggers a diffusion process in its complementary color. (b)
A contour can be a perceived contour and not necessarily a
physical spectral gradient. (c) The diffusion process depends on
the correspondence between the chromatic stimulus gradients
and the remaining contours. (d). The positive and the negative
effects are always present, while the dominant perceived color is
determined by the location of the remaining contours.

The Stimulus: The Chromatic Inducer and
the Remaining Contours
The input of the model is composed of two temporal
components, the first one is a chromatic stimulus, I0 in Figure 2,
and the second one relates to the remaining contours I1a and
I1b in Figure 2. The remaining contours can appear in different
possible locations, and these locations determine whether the
perceived result will be a positive effect or a negative effect.
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FIGURE 2 | Schematic diagram of the presented model. (A) The chromatic stimulus (I0) at t0 and the two options for the remaining contour [the outer contour - I1a
(upper box) and the inner contour – I1b (lower box)]. (B) The chromatic gradients of the chromatic stimulus and their reversed chromatic gradients. (C) The diffusion

process for the outer contour (upper box) and the diffusion process for the inner contour (lower box). (D) The perceived afterimages according to the outer remaining

contour (negative effect, Ipa) and to the inner remaining contour (positive effect, Ipb ).

Chromatic Gradients
The building blocks of the model are designed to simulate
components of the visual system, and in this case, the
opponent and double-opponent receptive fields. The color
coding opponent receptive fields encode color contrast, but not
spatial contrast. In other words, the color opponent receptive
fields are able to differentiate between colors, but cannot detect
spatial gradients or edges (Barkan et al., 2008). The double
opponent receptive fields, however, are sensitive to both spatial
and chromatic gradients and have color opponent receptive fields
both at the center and in the surround receptive field regions
(Shapley and Hawken, 2011). This opponency in both spatial and
chromatic properties produces a spatio-chromatic edge detector.

For the sake of simplicity, we compute the opponent response
of the opponent receptive fields as color-opponent only, where,
in this simplified case, each chromatic encoder contains the
same spatial resolution. This is computed by an opponent
color-transformation (Sande et al., 2010), Equation (1). This
transformation converts each pixel of the image I0, in each
chromatic channel R,G, and B into opponent color-space, via
the transformation matrix O (Sande et al., 2010). IOPPONENT =

OPPONENT{RGB} as follows:

IOPPONENT =
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OBW



 =
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2
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2
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3
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3
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B



 (1)

where ORG, OYB, OBW are the new channels of the transformed
image IOPPONENT . R, G, and B are the red, green and blue
channels of I, respectively.

In order to implement the double-opponent response, DO,
on an image, we subtract the surround, Osurround, region of

the receptive fields from its center, Ocenter , at the same spatial
location:

DO = Ocenter − Osurround

The structure of the double opponent receptive field can be
seen as a filter which performs as a second derivative in both
spatial and chromatic domains (Conway, 2001; Conway and
Livingstone, 2006). For the sake of simplicity and clarity of
the calculations, we use a discrete Laplace operator, L, which
is commonly used as an approximation to the Difference of
Gaussian (DOG) function (Marr, 1982). The discrete Laplace
operator, L is (Weickert, 1998):

L =





0 −1
4 0

−1
4 1 −1

4
0 −1

4 0



 (2)

The responses of the relevant receptive fields, DOresponse, of
the color coding receptive fields to the aftereffect stimuli are
presented in Equation (3). The double-opponent DOresponse

response is calculated as a convolution of each opponent channel
of IOPPONENT with the discrete Laplace operator Equation (2).

DOresponse(stimulus on) = ∇
2IOP ≈ IOP ∗ L (3)

Figure 2B demonstrates the responses of the receptive fields to
the original stimulus (Figure 2A) at time t0, Equation (3).

The Perceived Gradients—The Responses
of the Receptive Fields to the Aftereffects
The model suggests that after the chromatic stimulus disappears,
the chromatic gradients obtain the opposite sign. We refer
to this condition as “off response,” a term commonly used
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in electrophysiology (Kandel et al., 2012). The physiological
mechanism behind this behavior is still a matter of discussion
(Williams and Macleod, 1979; Spitzer et al., 1993; Shimojo et al.,
2001; Clair et al., 2007; van Lier et al., 2009; Francis, 2010; Zaidi
et al., 2012; Webster, 2015; Zeki et al., 2017). This response
has also been termed the rebound response and a variety of
models and mechanisms have been suggested to explain how
this rebound phenomenon yields a reversed type of response
(Spitzer et al., 1993; Grunfeld and Spitzer, 1995; Francis, 2010;
Zaidi et al., 2012). Figure 2B demonstrates the responses of the
simulated receptive fields before and after the chromatic stimulus
is removed at times t0 and t1, Equation (4).

DOresponse(stimulus off ) = IOP ∗ (−L) (4)

In other words, in this case, the sign of the chromatic gradient,
DOresponse, is reversed. Note that the disappearance of the
chromatic stimulus, which causes the sign of the edge to be
reversed, is in accordance to the model’s assumption (section
Model Assumptions, A). There are also experimental results that
support this assumption (Zaidi et al., 2012).

This operation of edge reversal is realized in the model
through reversing the sign of the DO receptive field responses,
Equation (3). This reversed chromatic gradient triggers the
diffusion process, Figure 2C, Equation (5).

Filling-in as a Diffusion Process
The diffusion process is expressed by the diffusion (or heat)
Equation (5), (Weickert, 1998). The model assumes that the
suggested diffusion of the filling in process is similar to the
physical diffusion where the signals spread in all directions, until
“blocked” by contours or edges. This type of filling-in process
is referred in the literature as the “isomorphic filling-in theory”
(von der Heydt et al., 2003). The choice of such a type of filling-in
infers that the borders (chromatic or achromatic) do not function
primarily as blockers, but instead that the borders play a role
as heat sources for the diffusion. When the direction of the
diffusion spread is in the opposite direction (colliding) to that
of an additional heat source, the spread will actually be blocked
by the heat source. These principles are applied in our model
through the famous diffusion equation (Weickert, 1998), as in the
following equation:

∂I(x, y, t)

∂t
− D∇2I

(

x, y, t
)

= hc (5)

where I
(

x, y, t
)

denote the image in a space-time location
(

x, y, t
)

,
D is the diffusion (or heat) coefficient, and hc represents a heat
source. The time course of the perceived image is assumed to
be very fast, in accordance with previous reports (van Lier et al.,
2009; Barkan and Spitzer, 2017). This time course is also termed
“immediate filling-in” (von der Heydt et al., 2003).

Following this assumption, for the sake of simplicity, we can
ignore the fast dynamic stages of the diffusion equation, and
therefore compute only the steady-state stage of the diffusion
process. Consequently, the diffusion (heat) Equation (5) is
reduced to the Poisson Equation (6).

∇
2I

(

x, y, t
)

= −hc (6)

THE CHROMATIC EDGES AND THE
REMAINING CONTOURS

In order to maintain and enhance and/or byproduct to trap this
diffusion effect there is a “requirement” for a border. The model
suggests that the chromatic diffusion can be “trapped” only when
the achromatic remaining contour, ∂�1 Figure 2A, overlaps the
original edges of the chromatic stimulus, DOresponse. Support for
this assumption is also provided from the psychophysical results
of Kim and Francis (2011).

Whether the reminding contour ∂�1, is an inner or an
outer contour, for example (Figure 2), determines the perceived
color of the effect. When the remaining contour is the outer
contour, the reversed contour, i.e.; the complementary contour,
[Figure 2A, Equation (4)] triggers a diffusion color that is
complementary to the color of the inducer, i.e. red in the specific
case of Figure 2B. The outer contour, ∂�1, determines that
the fill-in color will be complementary to the inducer (negative
effect), whereas the inner contour, ∂�2, determines that the fill-
in color will be the same color as that of the inducer (positive
effect). It has to be noted that the mechanism detects the
chromatic edges, and does not treat the inner or outer edges
separately. The configuration and the locations of the remaining
contours, and not the model, determine the predicted perceived
colors.

It is clear that a remaining contour that overlaps the
chromatic gradient plays a role as a diffusion trigger and
at the same time as a “blocker.” However, our preliminary
results suggest that the original chromatic gradient, DOresponse,
also plays a role as a diffusion trigger and “blocker,” even
though it has a weaker effect when it does not overlap the
remaining contours. This observation is also supported by
findings of Hazenberg and van Lier (2013). They concluded
that the chromatic border in the negative effect “apparently
prevented the colored afterimage of the chromatic contour from
spreading.”

This minor effect of additional blockage, derived from the
chromatic edges, has been integrated into the model by applying
different weight functions to each chromatic and achromatic
border. The model assumes that the remaining contour also
plays a role as an enhancer to the reversed chromatic edges,
−DOresponse. Therefore, if the remaining edge, ∂�1, overlaps the
original gradient edge (the chromatic gradients of the inducing
stimulus,−DOresponse), it will enhance these chromatic edges. The
mathematical expression of this role is expressed by the weight
functions α and β :

∇
2Op = −DOresponse · (α∂�1 + β) , where α > β (7)

where Op is the perceived image in the opponent color-space
(Sande et al., 2010) and α and β are constants, but can be further
extended to be functions.

Solving Equation (7) yields a response to the perceived
afterimage Op given the reversed gradients −DOresponse

(

x, y, i
)

,
Equation (4), according to specific initial constraint. Figure 2D
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represents the perceived afterimage, Op, but with an additional
technical stage of transforming the opponent color space Op to
the RGB color space, IP(rgb), Equation (11).

The interpretation of the solution as suggested above is that
a very similar mechanism is responsible for both the negative
and the positive effects, although it is possible that the two
phenomena do not stem from the exact same visual mechanism.
The model may separate the positive and the negative effects to
two channels. One channel is for the chromatic area, where the
negative effect is more dominant, while the other channel serves
the achromatic area, where the positive effect is more dominant.
Since the negative effect is given by a response from the chromatic
induced region, whereas with positive effect there is a perceived
response to an area that has not been induced with color, we
assumed that the weight function of the negative effect should
be higher than the positive effect (Equation 10). This separation
can be justified by analogy to the visual system. The existence
of separated Magno, Parvo, and Konio visual pathways in the
visual system suggests that separating chromatic and achromatic
calculations in this way may be a true reflection of the visual
system processing (Shevell, 2003).

We implanted the two separated channels for the positive
and negative effects by calculating the diffusion Equation (5),
separately for the chromatic and achromatic zones in the original
image (I0). The positive effect Op,positive occurs in the achromatic
zones of the initial image I0, Figure 2A and the negative effect
Op,negative occurs in the chromatic zones of the initial image I0,
Figure 2A. Accordingly, the equation is solved separately for the
negative effect Op,negative and for the positive effect , Op,positive,
(see the section above). The simulation result is calculated as:

∇
2Op,negative(x, y, i) = −DOresponse(x, y, i) · (α∂�1 + β) in�

(8)

∇
2Op,negative(x, y, i) = −DOresponse(x, y, i) · (α∂�1 + β) in�

(9)

i = RG,YB,WB, where each opponent channel is solved
separately.

Op =
Op,positive + Op,negative

maxall_channels
{

Ip,positive
}

+maxall_channels
{

Ip,negative
}

(10)

IP(rgb) = OPPONENT−1
{Op} (11)

where maxall_channels {I} is the maximum value of all channels in
the image I (max {I} is a scalar). α and β present the weights
of the remaining contours and the chromatic stimulus edges,
accordingly.

In order to calculate the perceived afterimage from both the
negative Op,negative and the positive Op,positive effects, Equations
(8–10), we need to define (a) boundary conditions, and (b) the
initial values. We shall henceforth denote the inducing stimulus
(the original color image) by I0, where � is an area in the image

I0, and ∂� is the border of �, Figure 2A. I1 is the remaining
contour image and ∂�1or ∂�2 are the remaining contours (the
remaining boundaries, although the boundaries in I1 might be
different from those in I0. Therefore, the chromatic edges, ∂�,
do not necessarily overlap the remaining contours ∂�1or ∂�2).
The boundary conditions of the perceived image Ip and the initial
state (initial conditions) are chosen to be an achromatic white
color on the output image border. Thus, the boundary condition
is Op|border = 1, Figure 2A and the initial image is a blank white
image (R = G = B = 1). These conditions are selected in order
to enable the generation of the perceived afterimage on a white
image as in the original stimuli (Barkan and Spitzer, 2009; van
Lier et al., 2009), Figure 2D.

RESULTS

Simulation Details
The simulations are produced by assigning the conditions
(boundary conditions and initial values) as described above, and
applying the Gauss-Seidel method. The simulations are solved in
a similar way to that reported in “Methods for Solving Equations”
(Simchony et al., 1990) or “Poisson Image Editing” (Pérez et al.,
2003). The simulations are implemented by MATLAB software.

The only parameters in the model are α and β, which
present the weights of the remaining contours and the chromatic
stimulus edges, accordingly. The Parameters were chosen as
following: α = 1.3 and β = 0.1, as results of trial and error. These
parameters are constant for all the simulations; beside in the
Supplementary Figure 1 where we intended to slightly enhance
the result for demonstration.

Model’s Simulation and Predictions
The simulation results are divided into three parts. The first
part presents the model predictions for both the negative and
the positive afterimage phenomena, (Barkan and Spitzer, 2009;
van Lier et al., 2009). The second part presents the predictions
of the model for two remaining edge variations, as presented
in previous studies (Francis, 2010; Kim and Francis, 2011). The
third part presents the model predictions for additional aspects
of the afterimage phenomenon, where one relates to the color
perceived when the remaining edge of the image is not complete
(open boundaries, spiral image), and the second relates to spatial
averaging of colors, (Anstis et al., 2012).

Negative and Positive Afterimages
We tested the model on the same stimuli as in the study of
van Lier et al. (2009) (Figure 3 first row), and for the general
case of the chromatic stimuli I0, Figure 2. Figure 3 presents
the model’s predictions for a single colored ring as inducer
(second and third rows). It can be seen that the model correctly
predicts that the remaining contours can generate a negative
or a positive effect depending on their location. Of note, the
model correctly predicted the filling-in process of the achromatic
area with respect to both negative and positive effects, with the
results in accordance with the psychophysical findings reported
previously (van Lier et al., 2009; Hazenberg and van Lier, 2013).
Having different weight functions for the positive and negative
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FIGURE 3 | The model predictions for the negative and the positive effects. (A) The chromatic stimulus. (B) The remaining contours. (C) The simulation results. The

first row presents the van Lier et al. (2009) stimuli, e.g., the negative effect (stars) and the model prediction for these stimuli. The second row, in the negative effect

block, presents a general case of the negative effect, which displays only one chromatic inducer. The third row represents the model predictions for a general case of

the positive effect (instead of the “color dove illusion”).

effects (Equation 11) enables us to control the predicted effect
of a stronger diffusion in the inner than in the outer region of
the remaining contours (Figure 3). These studies showed that
the perceived afterimage has the complementary color when the
outer contour is remained, (Figure 3, second row), while the
same color is perceived when the inner contour is remained
(Figure 3, third row).

The Role of the Remaining Edges
Comparison to Previous Results
We also tested our model on the same variations of the van Lier
et al. (2009), stars stimulus that were tested by Francis (2010)
and Kim and Francis (2011). These variations are related to the
location and shape of the remaining contour. Figure 4 presents
a comparison between the predictions of our model and that
of Francis for two possibilities of drawn remaining contours,
(Figures 4C,D, respectively). In one case, the remaining edges
overlap the chromatic gradients (Figure 4, First row), which exist
in the inducing stimuli, while in the second case, there is no
overlap (Figure 4, second row).

The predictions of both models yielded the same results when
the boundaries overlapped (Figure 4, first row, C,D), and these
results agree with the experimental perceived results reported
previously (Kim and Francis, 2011). However, the predictions of
the models differed when the boundaries were non-overlapping.
Figure 4 second row shows that the inner rectangle is reddish
(Figure 4D) according to our model, but gray according to
the predictions of Francis’ model’s (Figure 4C). Notably, the
psychophysical findings (Kim and Francis, 2011) support our
model, which predicts that remaining contours that do not
overlap the chromatic gradient, do not block the diffusion
process.

Model Predictions for a New Stimulus With Different

Variations of Remaining Edges
Having successfully tested our model on previously described
stimuli, we proceeded to further challenge the simulations with
new spiral stimuli, which have not been described previously
or experimentally tested. The new stimuli can simultaneously
generate both positive and negative effects because they have both
inner and outer borders. This type of stimulus enables us to test a
critical property regarding the effect of closed or open remaining
edges, on the relevant aftereffects.

The model’s results for the spiral stimuli, indicated that the
dominant color perceived in the afterimage depends on whether
the remaining edges are the inner or outer edge, (first and second
rows of Figure 5, respectively). The dominant color, predicted
by our model, can therefore be either complementary or similar
to that of the inducer color, where the outer border produces
a dominant positive effect, while the inner border produces
a dominant negative effect, (Figure 5C). These predictions are
supported by preliminary psychophysical results (Manuscript in
preparation).

As a further test, we examined the ability of our model
to predict the psychophysical results of the aftereffects that
can be perceived from performing spatial averaging within the
remaining contours (Anstis et al., 2012). This question was tested
by our model simulation under two configurations representing
variations of the negative and positive effects (Figures 6, 7).
While the negative stimuli are as previously reported (Anstis
et al., 2012), the positive stimuli are new and are designed to
induce the positive effect. Figures 6, 7 demonstrate the model’s
predictions for the negative and positive versions of averaging
effect, respectively. Note that only the positive configuration
(Figure 7) induces a classical filling-in, since this is the only
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FIGURE 4 | A comparison of our model’s predictions to that of Francis for the

two locations for the remaining edge that Francis tested experimentally.

(A) The chromatic stimulus. (B) The remaining contours. (C) The simulation

results as reported in (Francis, 2010; Kim and Francis, 2011). (D) The

simulation results of the suggested model. In the first row, the inner drawn

contours (B) overlap the chromatic gradients that exist in the inducing stimulus

(A). In the second row, the inner drawn contours do not overlap the chromatic

gradients of the inducing stimulus. The results in (D) are in agreement with

psycho-physical experiments (Kim and Francis, 2011).

FIGURE 5 | The model predictions for the spiral stimuls with variations in the

remaining contours. (A) The chromatic stimulus. (B) The remaining contours.

(C) Model’s predictions. In this figure, the chromatic stimulus is the same in all

the rows, column (A), but the remaining contours are different. In the first row,

the drawn contour is a full spiral. In the second row, the outer edge of the

spiral shape is presented and in the third row the drawn contour is the inner

edge of the spiral shape, column (B). Our model predicts that both cyan and

red colors are dominant in the full spiral (first row). When the remaining contour

is the outer one, the dominant percieved color is reddish (second row), while,

when the remaining contour is on the inner side, the dominant color is cyan

(third row).

configuration where there is an achromatic area that can be filled
with color.

DISCUSSION

The suggested model involves several stages that can be regarded
as a cascade of component mechanisms and responses, i.e., a

FIGURE 6 | Model predictions for averaging of negative afterimage colors

(Anstis et al., 2012). (A) The chromatic stimulus. (B) The remaining contours

with two different locations. (C) The model’s predictions. It appears that colors

of the remaining contours determine the role of color averaging.

FIGURE 7 | Model predictions for averaging of negative and positive

afterimage colors. (A) The chromatic stimuli with different color combinations

(different rows). (B) The remaining contour (identical in all the rows). (C) The

model’s predictions which show that a different “perceived” color is obtained

as a result of the chromatic combination of the inducer. It can be seen that

there is also an averaging of colors in the positive effect with these new

averaging color stimuli.

short duration chromatic stimulus, cessation of this stimulus,
creation of complementary chromatic edges which trigger a
diffusion process. The suggested model predicts afterimage
phenomena, which some of them might appear as “opposite
(“conflicting”) effects,” through the same mechanism and
therefore the same equations.

We present here a model that is able to predict both the
negative and the positive effects, i.e., where the illusionary filled-
in color is either the same color or is complementary to that of the
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inducer. The model, therefore can also predict both the famous
“filling-in the afterimage after the image” illusion and the “color
dove illusion” (van Lier et al., 2009; Barkan and Spitzer, 2017).
In addition, the model can also predict both the positive and the
negative versions of the effect in shapes that possess non-closed
remaining edges and successfully predicted a recently reported
predominantly negative afterimage effect related to averaging of
colors (Anstis et al., 2012), Figure 6.

It might be claimed that diffusionmodels have been previously
suggested to predict the aftereffect in general, and also to
predict the alternating aftereffect (Grossberg and Mingolla, 1985;
Grossberg and Todorovic, 1988; Francis and Rothmayer, 2003;
Francis and Ericson, 2004; Francis and Schoonveld, 2005; Wede
and Francis, 2006; Van Horn and Francis, 2008). However, in
contrast to previous models, such as FACADE, in our model
the trigger for the diffusion mechanism is a “heat source,”
which implements the diffusion (or heat) equation with a “heat
source,” Poisson equation (Weickert, 1998). In other words,
in our model, the edges are the only trigger for the diffusion
process, and have no other role, for example as direct blockers
to the diffusion process, as presented in the FACADE model
(Grossberg and Mingolla, 1985; Grossberg and Todorovic, 1988;
Francis and Rothmayer, 2003; Francis and Ericson, 2004; Francis
and Schoonveld, 2005; Wede and Francis, 2006; Van Horn and
Francis, 2008). This difference in rationale between FACADE
and our model leads to a different structure of diffusion models,
(Equation 7). While the FACADE model is composed of two
separated components 1) Boundary contour system (BCS) 2)
Feature contour system (FCS), our model is consisted of a
single component. This component includes both borders and
diffusion mechanism, which are computed in the same process
(Equation 7). It is not surprising that such differences give rise to
different model predictions in the two types of models, as will be
described below.

The model described by Francis (2010) succeeded in
predicting the negative effect (van Lier et al., 2009), in which
the visual afterimage could spread across regions that were not
colored in the inducing stimulus. He also could show, by the
application of the FACADE model (Grossberg and Mingolla,
1985), that the perceived color and shape of the afterimage could
be manipulated by remaining contours that apparently trapped
the spread of afterimage color signals. However, this model also
mistakenly predicts that a remaining edge will block the spread
of color even if there is no overlap with the chromatic gradient
edge border (Figure 1B in: Francis, 2010). This prediction
is in disagreement with the psychophysical findings of the
experiments conducted by Kim and Francis (2011). In contrast,
our simulations indicate that the diffusion process is not blocked
when the achromatic remaining contours do not overlap the
chromatic contours.

In addition, as already claimed in the introduction, Francis’s
model cannot predict the positive effect, since his model assumes
that the spread of complementary color across a surface will
be blocked by the remaining contour. According to the Francis
model (Francis, 2010), the positive effect is predicted to be
negated, due to the role of the remaining contour which prevents
diffusion of the color to the inner part of the shape. Consequently,

the model cannot predict the possibility of obtaining result that
shows perception of the same color as of the inducer at a different
spatial location. Our model, on the other hand, can predict the
positive effect (Figure 3), since it assumes that the main role of
the contours is to trigger the diffusion process and not primarily
aimed to block the diffusion process.

It should be clarified that the FACADE model has been
implemented with a number of different diffusion algorithms.
Francis, for example, implemented the filling-in process by using
a Connected-Component algorithm (Francis and Rothmayer,
2003; Francis, 2010). In the FACADE models the diffusion
process is implemented with iterative algorithm, whereas each
pixel is averaged with adjacent pixels only if the neighbors are
not edges (Grossberg and Todorovic, 1988; Francis and Ericson,
2004; Francis and Schoonveld, 2005; Wede and Francis, 2006;
Van Horn and Francis, 2008). In additional studies (Francis
and Ericson, 2004; Francis and Schoonveld, 2005) the diffusion
model was extended in order to predict additional properties that
are related to the MCAI effect. Consequently, the investigators
suggested a “non-diffusion” filling-in mechanism, built from
directional operations. It has to be noted that in order to
predict the MCAI effect a special component was added to
the FACADE model, which express the inhibition between
orthogonal oriented grids (Francis and Ericson, 2004; Francis
and Schoonveld, 2005; Wede and Francis, 2006; Van Horn
and Francis, 2008). One important question is whether any of
these previous diffusion implementations of the FACADE model
(Grossberg and Mingolla, 1985; Grossberg and Todorovic, 1988;
Francis and Rothmayer, 2003; Francis and Ericson, 2004; Francis
and Schoonveld, 2005; Wede and Francis, 2006; Van Horn and
Francis, 2008; Francis, 2010) can successfully predict the positive
effect and its variations.

Since the FACADE models mentioned above share the same
BCS, which trap the diffusion process and prevent diffusion of
the color to the inner part of the shape, they wrongly predict the
blockage of the diffusion process in the inner shape, as described
experimentally (Kim and Francis, 2011). They also cannot predict
the possibility of obtaining the same color as the inducer at
different spatial locations and thus cannot predict the positive
effect.

While both types of model (ours and the FACADE) assume
that the filling-in process is performed by the isomorphic
diffusion mechanisms, other groups have suggested that the
symbolic mechanismmight determine the diffusion process (von
der Heydt et al., 2003; Komatsu, 2006; On and van Boxtel, 2017).
According to the symbolic theory, “early visual areas extract only
the contrast information at the surface border, while the color and
shape of the surface are reconstructed in higher areas on the basis
of this information” (Komatsu, 2006). Komatsu (2006) reported,
however, that neuronal activity of V1 and V2 plays a role in most
of the filling-in phenomena such as filling-in at the blind spot, the
Craik–O’Brien–Cornsweet illusion, or neon color spreading.

A recent experimental study (On and van Boxtel, 2017)
suggested a symbolic mechanism for the negative effect seen in
the “stars” of van Lier et al. (2009).” They hypothesized that
transparency cues play an important role in the filling-in process
of the negative effect and attempted to validate this suggestion
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FIGURE 8 | Our model prediction for a star stimulus that does not contains

transparency cues and does not yield a filling effect (On and van Boxtel, 2017).

This stimulus figured in an experimental study that claimed that the filling does

not play a role in the negative aftereffect (Discussion). (A) The chromatic

stimulus. (B) The remaining contour. (C) The model’s prediction. Note that the

complementary color is evident only at the vertices of the star and does not

diffuse to the central hexadecagon of the star.

through psychophysical experiments. Their results indicated that
transparency clues are a prerequisite for the perceived filling-in
effect. When the transparency cues were eliminated by removing
one color from the star, the new stimulus contained only one
color (Figure 1B, in: On and van Boxtel, 2017, Figure 8), and the
filling-in effect indeed vanished. However, there is a different and
even simpler explanation that can explain their psychophysical
results.

Figure 8 demonstrates our model’s prediction for this specific
star stimulus. The rationale for this correct prediction is based
on the fact that if a combination of the negative and the positive
effects act on the same spatial location they cancel each other
out, as a result of the simultaneous induction of complementary
colors in the same spatial location, Figure 8, (Hazenberg and van
Lier, 2013). The original star stimulus of van Lier et al. (2009)
consisted of a similar combination of negative and the positive
effects, although in this case the two effects enhanced each other.
This enhancement was due to the fact that the stars contain two
complementary colors (cyan and reddish). When the cyan four-
point-star is located inside the remaining contour, the negative
effect is produced and the perceived complementary color is
reddish. In this case, however, because this reddish four-point-
star is located outside the remaining contour, it gives rise to the
positive effect, where the perceived color would also be reddish.
As a result, the perceived reddish color is enhanced, as a result of
the combination of the positive and the negative effects.

It is interesting to consider the stages of analysis of the
proposed model as related to components of the visual system.
The formation of a complementary or opponent chromatic edge
following the cessation of chromatic stimulus (Figure 2) has
recently been described in the literature as being attributable to
a rebound response (Off response), evoked as a burst of spikes
from neurons released from the period of inhibition (Spitzer
et al., 1993; Grunfeld and Spitzer, 1995; Francis, 2010; Zaidi et al.,
2012). The mechanism by which this produces the perception
of the complementary color was suggested to be through cross
inhibition between opponent channels (Grossberg, 1972; Francis,
2010), or through fast adaptation from the first order (Spitzer

and Semo, 2002; Spitzer and Barkan, 2005). The mechanism
suggested for the rebound model of Grunfeld and Spitzer (1995)
includes the parameters required for the rebound effect, such
as the duration of adaptation, the rate and the intensity of the
offset of the stimulus. The current model does not include these
additional stimulus parameters, but we plan to include these
parameters in future.

The development of a further stage of the model has to
be discussed in relation to the visual system and to other
models. After the rebound response creates the complementary
color, the diffusion process is triggered by different components
in each model. According to the FACADE model (Grossberg
and Mingolla, 1985; Grossberg and Todorovic, 1988; Francis
and Rothmayer, 2003; Francis and Ericson, 2004; Francis and
Schoonveld, 2005; Wede and Francis, 2006; Van Horn and
Francis, 2008), the trigger for the diffusion process is the color of
the surface at each location. This was described as “color spreads
all across the surface within the boundary” (Kim and Francis,
2011). In contrast, in our model, the borders (the chromatic
edges, i.e., double opponent, in the chromatic stimulus and the
remaining contours, as a modulation to the chromatic edges) are
the trigger for the diffusion process (Equation 7).

The experimental results of Hazenberg and van Lier (2013)
appear to support our model with regard to the trigger
for the diffusion process. These researchers demonstrated
experimentally that the location of remaining contour that
overlaps the chromatic edge can determine whether the result will
be a positive or a negative effect. In fact, our model suggests that
the perceived chromatic edge triggers an isomorphic filling-in
process, according to isomorphic filling-in theory (von der Heydt
et al., 2003). It should be noted that the idea that an afterimage of
the chromatic contours triggers the isomorphic diffusion process
has been raised previously by Hazenberg and van Lier (2013).
It has also been suggested that the color signals in this type of
filling-in process, spread in all directions except across borders
formed by contour activity (Gerrits and Vendrik, 1970; Cohen
andGrossberg, 1984; Arrington, 1994; von der Heydt et al., 2003).
The role of the remaining contour is therefore in agreement
with the previous suggestion that the contours act as diffusion
barriers (Cohen and Grossberg, 1984; von der Heydt et al., 2003).
However, according to the current model, this remaining contour
is effective as a barrier only when it overlaps with the original
chromatic edge of the inducer stimulus. Our model therefore
suggests that the remaining contour fulfills two functions: a.
enhancing the effect of the inverted chromatic edge Equation
(4), b. trapping the diffusion. This dual role is supported by the
isomorphic filling-in theory of von der Heydt et al. (2003) who
suggested that the chromatic or achromatic receptive field plays a
role in the filling-in process. The chromatic-edge receptive fields
receive additional activation through horizontal connections
(Gilbert and Wiesel, 1979), which keep the border activity high.
Their suggestion is general and was not specifically related to the
visual effects discussed here (the positive and negative effects).

In addition to the crucial role of the remaining contour,
which overlap the chromatic gradients, the chromatic edges
(by themselves) also play a role in the perceived afterimage,
(Equation 11). This assumption was supported by the findings
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of Hazenberg and van Lier (2013), who reported that the filling-
in process, (in their version for the positive effect), should be
influenced less by the chromatic gradients (Anstis et al., 1978;
Hazenberg and van Lier, 2013).

Since the model takes into account the role of the chromatic
edges, albeit with less weight than the remaining contour, it
predicts that the diffusion at the negative effect will be partially
blocked by the original chromatic gradient of the inducing
stimulus. As a result, it predicts that the diffusion will not spread
to the central area in the negative effect stimuli, Figure 3.

Our model predicts that if a border does not exist in the
original inducing stimulus, it will not block the diffusion process,
as found psychophysically (Kim and Francis, 2011). After
conducting psychophysical experiments, Kim and Francis (2011)
formulated a qualitative rule that additional contours block color
spreading when these contours overlap the inducer edges, but not
when they are separated (Supplementary Figure 1). It has to be
noted that our model’s predictions of these results also agree with
the qualitative arguments of Hazenberg and van Lier (2013) that
there has to be a match (or overlap) between the chromatic edges
and the remaining contours. This is derived from a repeated
activation of orientation selective neurons that also code for color
(von der Heydt et al., 2003).

We also investigated the question of whether it is necessary
for the remaining contour to be closed or whether an open
spiral stimulus, (Figure 5) can produce the effect. Preliminary
results are in agreement with our model predictions that the
effect can exist in open boundary conditions (Figure 5). It should
be noted that Francis’s simulations cannot predict the negative
effect on open boundary conditions, such as in the spiral stimulus
(Figure 5), because his model depends on a boundary that
traps the spread of color (Francis, 2010). However, by applying
a previous diffusion model as in Grossberg and Todorovic
(1988), a correct prediction can be achieved, but only for the
negative parts of the spiral illusion (i.e., only the configuration
where the inner border of the spiral is displayed, third row of
Figure 5). This is because this case involves a difusion process
rather than a Connected Component algorithm as in the Francis
implementation (Francis and Rothmayer, 2003; Francis, 2010).
However, this modification still cannot predict the positive effect
in the spiral illusion (second row of Figure 5).

A further question was whether the aftereffects can be
perceived from spatial averaging within the area of remaining
contours. Anstis et al. (2012) showed that colors can undergo
spatial averaging within, but not across, contours but tested this
effect only on the negative aftereffect. Our model’s simulations
(Figures 6, 7) are with agreement to the experiments conducted
by Anstis et al. (2012). We believe that even if the Francis model
was able to predict this averaging effect, it could only work on the
negative configuration of the effect.

Our results thus far suggest that the same basic mechanism
is responsible for both the negative and the positive effects,
but there remains a question as to whether there are additional
mechanism’s components that differentiate between these two
mechanisms. The recent study of Hazenberg and van Lier
(2013) can shed a light on this issue, since they investigated
several properties of the positive and the negative effects on the

afterimage watercolor stimuli. Specifically, they examined the
role of the intensity of the inner area of the inducer stimulus
and the remaining contour with reference to the positive and the
negative effects.

The results of their study indicated that the filling-in effect
was stronger in the negative effect under conditions where the
inner area of the inducer stimulus was gray (iso-luminance
with the chromatic borders) rather than white. This preference
was not found in the positive effect. Hazenberg and van Lier
(2013) interpreted these findings as the result of the influence
of the luminance border between the inner chromatic contour
and the interior area. This luminance border was presumed
to prevent the colored afterimage of the chromatic contour
from spreading. However, under iso-luminance conditions, the
luminance borders do not exist, and indeed, the filling-in process
is more prominently perceived. Our model can be modified,
by taking into account a combination of the chromatic and
the achromatic gradients of the chromatic stimulus, in order to
predict this influence on the inner area intensity. Due to the
differences related to the positive and negative effects, our model
predicts that the negative effect will be more prominent with
regard to the degree of saturation, while the positive effect will
be more prominent in its ability to perform a filling-in task. This
prediction should be confirmed by psychophysical experiments.

In order to test the role of the intensity of the remaining
contour Hazenberg and van Lier (2013) used thick contours
colored either light or dark gray as the remaining contours. They
reported that the filling-in effect was perceived only when the
contours were gray and not black, and only in case of the positive
effect (i.e., where the perceived color is the same as the inducer).

We now suggest that according to our model (Figure 3), both
gray and black contours can create a complementary color effect,
but only in the near vicinity of the chromatic border in the
original chromatic stimulus. It is possible that the lack of filling-
in color in the positive effect (Figure 8 in: Hazenberg and van
Lier, 2013), was a consequence of the contour thickness of the
remaining contours, since in the positive effect, the color has to
diffuse through the remaining contour. The border contrast with
a gray contour is weaker, and therefore reveals a partial filling-in
effect. We suggest that the negative effect was not observed in the
reported experiments (Hazenberg and van Lier, 2013) because
they were looking mainly at the central area of the stimulus.
Such a filling-in color is not expected in the inner white area
(Figure 7 in: Hazenberg and van Lier, 2013) because it is blocked
by the luminance border, which contributes to the blockage of the
filling-in process [Equation (7), Figure 3].

Additional factors thatmight affect the degree of the aftereffect
e.g., include the size of the inducer and induced area, the
shape curvature of the chromatic edge, and the exposure
duration of the chromatic stimulus. These factors should be
separately investigated experimentally for their influence on the
positive and the negative effects. Psychophysical experiments
are important in order to detect differences in the mechanisms
acting in these two types of effects. In addition, psychophysical
experiment are required for cases where the remaining contours
that trigger the filling-in effect are illusory contours, such as
those in the Kanizsa effect and the Neon color spreading effects
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(Van Tuijl, 1975; Kanizsa, 1976). This should be tested separately
for the positive and negative effects. Our model predicts that
for an illusory contour stimulus (which replaces the achromatic
remaining contour), the chromatic and the illusory remaining
contour have to overlap. However, we believe that themechanism
which creates the illusory contour (as produced in a Kanizsa
illusion) is different from the filling-in mechanism. [Different
computational models suggested in the literature for the Kanizsa
illusion (Grossberg andMingolla, 1985, 1987; Heitger et al., 1998;
Ron and Spitzer, 2011)]. In order to include the prediction of
the filling-in effect triggered by illusory contours, we will need
to combine the different mechanisms of the illusory contours
and the filling-in mechanism, and will therefore need to add an
additional model component to detect the illusory contours.

The MCAI Effect (MacKay, 1957; Vidyasagar et al., 1999)
is an alternating aftereffect but it differs from the positive and
the negative aftereffects, as it contains an additional component,
which relates to a different mechanism. This component enables
oriented adaptation in the MCAI oriented stimulus (more
specifically, of the flickering grid in the relevant stimulus). We
expect that our filling-in model will predict this MCAI effect, but
only if an additional component, which describes such oriented
adaption mechanism (of the MCAI effect), will be added to the
model.

Even though the present model does not permit predictions
of the behavior of all the free parameters that play a role in
the negative and positive effects, this is the first time that a
computational model has been able to make crucial predictions

on both the positive and the negative effects. In other words, our
model succeeds in predicting apparently conflicting phenomena,
i.e., those producing the complementary or same color aftereffect,
and implies that the same mechanisms function in both effects
despite the different manifestations. An important conclusion of
this study is that a different appearance does not necessarily infer
a difference in the causative mechanisms and driving forces.

The proposed model has several possible applications with
the potential to be an applicable algorithm for the restoration of
corrupted old images and videos, for example. Such an algorithm
may be able to make an educated guess for filling-in color, based
on partial information, such as having only remaining contours.
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Boundary completion is one of the desired properties of a robust object boundary

detection model, since in real-word images the object boundaries are commonly not

fully and clearly seen. An extreme example of boundary completion occurs in images

with illusory contours, where the visual system completes boundaries in locations without

intensity gradient. Most illusory contour models extract special image features, such as

L and T junctions, while the task is known to be a difficult issue in real-world images.

The proposed model uses a functional optimization approach, in which a cost value

is assigned to any boundary arrangement to find the arrangement with minimal cost.

The functional accounts for basic object properties, such as alignment with the image,

object boundary continuity, and boundary simplicity. The encoding of these properties

in the functional does not require special features extraction, since the alignment with

the image only requires extraction of the image edges. The boundary arrangement is

represented by a border ownership map, holding object boundary segments in discrete

locations and directions. The model finds multiple possible image interpretations, which

are ranked according to the probability that they are supposed to be perceived. This is

achieved by using a novel approach to represent the different image interpretations by

multiple functional local minima. The model is successfully applied to objects with real

and illusory contours. In the case of Kanizsa illusion the model predicts both illusory and

real (pacman) image interpretations. The model is a proof of concept and is currently

restricted to synthetic gray-scale images with solid regions.

Keywords: figure ground segregation, illusory contours, functional minimization, multiple perceptions,

computational Gestalt

INTRODUCTION

An important and non-trivial task in process of image understanding is the detection of object
boundaries, also termed figure-ground segregation or image segmentation. This task is especially
difficult in conditions where the object boundary is not fully visible. The human visual system,
in many cases, is able to construct the whole object boundary (Kanizsa, 1955). An extreme
example of such a completion is demonstrated by illusory contours (Figures 1A,B), where the
visual system “creates” object boundaries in locations without any intensity gradient (Schumann,
1900; Ehrenstein, 1925; Kanizsa, 1955; Gregory, 1972; Kennedy and Lee, 1976; Day and Jory, 1980;
Prazdny, 1983; Bradley, 1987; Kennedy, 1988).

While numerous models for performing image segmentation have been reported (Leclerc,
1989; Nitzberg and Mumford, 1990; Pal and Pal, 1993), relatively few are designed to
incorporate illusory contours. Most of the models are capable of generating illusory contours by
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FIGURE 1 | (A) An illusory rectangle is perceived between the halves of the donut (Schumann, 1900). (B) An illusory triangle that occludes three solid circles is

perceived (Kanizsa, 1955). (C) Some special image features that are found at specific points in input image and are used for generating illusory contours, see text. The

dashed line circles represent a piece of image and the special feature location is at the center of the circle. Example of L-junction and line-end are shown in Kanizsa

triangle B. The features location is indicated by dash line circle.

extracting special image features, such as L-junctions, T-
junctions, and line-ends (Figure 1C), and using them as key-
points to create the illusory contours (Finkel and Edelman, 1989;
Guy and Medioni, 1993; Williams and Hanson, 1994; Gove et al.,
1995; Williams and Jacobs, 1995; review: Lesher, 1995; Kumaran
et al., 1996; Heitger et al., 1998; Kogo et al., 2002; Ron and
Spitzer, 2011). This approach is supported by psychophysical
evidence that the existence of special image features are required
for illusory contours to emerge (Rubin, 2001). Many of these
models exploit neurophysiological knowledge about neuronal
mechanisms of the visual system. For example, in the model
of Heitger et al. (1998), the responses of end stopped cells that
detect L-junctions and line-ends are grouped and added to
the responses of simple cells, which detect image edges (image
intensity gradient) to produce the illusory contour.

The special features extraction is a difficult task in real world
images, since in order to decide which junctions are significant
relative to others, the structure of the scene in the image needs to
be understood (Nitzberg and Mumford, 1990). In addition, the
fact that only a small fraction of the image is exploited for special
feature extraction (image region around the special feature point)
makes this approach less robust.

A widely accepted explanation of illusory contours is
the perception of relative depth, where the illusory contour
represents the boundary of an object located at an other depth
than the region around it (Kanizsa, 1955; Coren, 1972; Gregory,
1972; Lesher, 1995). According to this point of view, the illusory
contours are just regular object boundaries, with the object
intensity being the same as that of the background. The object
with the illusory contour is revealed by the objects that are being
occluded behind it, as in Figure 1B. The special image features,
such as L-junctions and line ends, can provide a clue for object
occlusion. Extracting special features, however, means making
a specific effort for illusory contours detection. In this case the
illusory contours are not treated as the regular contours. We
prefer not to extract special features and to use instead a common
way to detect both real and illusory object boundaries. Detection
of illusory contours without using special image features is very
challenging, since it requires the prediction of contours ex nihilo,
without using the occlusion clues.

An approach that has the potential of not extracting special
image features is the functional optimization, used by some
boundary detection models capable of generating illusory
contours (Kass et al., 1988; Madarasmi et al., 1994; Williams
and Hanson, 1994; Geiger et al., 1996; Saund, 1999; Gao et al.,
2007). The functional is used to give a score for each contour
configuration, and the final contours are not “constructed” by
the model, but rather “come out” as the minimizer of the
functional. Special features extraction is not necessarily required
in these models, since the demand that the resultant boundaries
will match the input image can be expressed in the functional
without the special features extraction. An additional significant
advantage of functional optimization approach is that giving
a preference score to a given contour configuration is much
simpler than constructing the correct contour configuration.
The optimization approach is a computational realization of
the Gestalt psychology (Koffka, 1935), since it derives the
contours from some contour configuration preference rules
(“grouping rules” in Gestalt psychology). By this it accounts
for both real and illusory contours based on a general unified
approach.

Kass et al. (1988) applied snakes algorithm of energy
minimizing splines to track image edges. The continuity and
elasticity properties of the snakes enable the illusory contours
to emerge. This model indeed does not extract special image
features, however, it is not fully automatic, since user interaction
is required to draw the initial contour. One might argue that
some automatic initial contours such as small circles matrix
can be used, however in this case illusory contours will be
extracted even for images that actually lack them. For example,
the model will predict illusory contours for a Kanizsa illusion
configuration with solid circle inducing elements, although in
this case the illusory contour is not perceived. Currently there
is no fully automatic boundary detection model that does
not require special features extraction for illusory contours
generation.

The proposed model is a proof of concept and is restricted to
gray scale images with solid non-textured regions and without
lines. The stress in the model is not on the way used to encode
the Gestalt rules, nor on the rules themselves, but on the mere
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possibility by predicting real and illusory boundaries based solely
on general boundary formation rules.

METHODS

Model Rational
The basic idea of the model was inspired by the assumption that
object detection is one of the intelligent tasks performed by the
visual system. This task uses a set of simple assumptions, based
on our natural perception of an object’s appearance, to provide
the most reasonable “explanation” of what is presented in the
image. With several possible perceptions of what we see, a critical
question is what makes us prefer one perception over another?
Especially we are interested to reveal the reason for perception
of illusory contours. As an example, let us consider the Kanizsa
triangle (Kanizsa, 1955) in Figure 2 and examine the factors
responsible for the perception of an illusory contour in this case.

The perception in Figure 2A is that of three “pacman” objects
and the perception in Figure 2B is of a triangular object above
three circular objects. In the pacman perception the boundary
of each pacman has three corners (or bends)–two convex and
one concave. On the other hand, in the triangle perception
instead of three bends per pacman there is only one, since the
circle is perceived as continuing under the triangle. Moreover,
the concave bend in the circle center is replaced by a convex
bend of the triangle vertex. The conclusion is that in the illusory
interpretation the object’s boundary is less bent and the bends
are more convex. Both criteria can be derived from preference
of simplest description (van Tuijl, 1975). The preference for
convex bends also explains why in the image containing a square
(Figure 7D), we perceive a square object more readily than a
square hole.

Although the functional optimization approach enables us to
avoid special features extraction, it has the drawback of having a
tremendous search space of the possible solutions. To overcome
this issue, we use an “economic” boundary representation called
a border ownership map, holding boundary segments in discrete
locations and discrete directions. Our representation is inspired
by the neural findings of Zhou et al. (2000) who discovered V1
visual cortical cells that respond to an edge only when the object
is located on one of the edge sides. This ability was already termed
border ownership by Nakayama and Shimojo (1990). Using the
border ownership map makes the free variable of the problem
much smaller than using, for example, contour parametrization.

An additional difficulty is that the functional that accounts
for several object boundary properties and depends on many
variables has a large number of local minima. To overcome this,
the functional was smoothed and the functional minimizers were
found by gradual relaxation technique (Lee, 1995). This reduces
the number of minima by smoothing out the shallowminima and
finding only prominent stable minima.

In the proposed model we define a functional that accounts
for basic object properties, such as boundary continuity and
convexity, and demands the object boundaries to match the
input image. The object boundaries are found as the minimizer
of the functional. The illusory contours are predicted in same
way as the real contours, by being the most probable object

FIGURE 2 | Illustration of two interpretations of the Kanizsa triangle. (A) Three

objects having shape of a pacman. The dashed lines represent the perceived

objects. Boundary bends are marked by small circles, red for concave and

green for convex. Only one of the pacmans is marked to avoid burden.

(B) Illusory triangle occluding three circular objects. The circular objects are

perceived as being occluded by the triangular object. The dash-dot arc marks

the circular object part behind the triangular object.

boundaries matching the input image. This is the first time
that the perception of illusory contours from a general object
boundary detection task is shown computationally.

The minimizers of the functional are compared to the
expected perception, known from psychophysical evidence. Due
to the suggestion that the visual system is actually finding the
best solution to object formation rules, we are not necessarily
obliged to use the mechanisms of the visual system (which are
also not fully known), to find that solution. It has to be noted
that in spite of this the model exploits some of the physiological
knowledge of low-level mechanisms of the visual system, such
as simplification of visual cell receptive fields that perform
edge detection [section Border ownership at image edges (FA)],
logical “and” operation (Appendix section 1.2) and cell response
grouping (Appendix section 1.1). In addition, the model includes
the crucial component of the border ownership map, section
Boundary Representation.

Using functional minimization in the model has an additional
important benefit. Usually, there are several possible object
configurations that can explain a single image (Figure 2).
Multiple image interpretations are present even in a simplest
image of a white square on black background (Figure 7D).
This image can be interpreted as a white square object over
a black background, or as a black frame with a square hole
through which a white background is seen. The illusory Kanizsa
triangle (Figure 1B), also has several possible interpretations.
The most prominent is the illusory interpretation of a white
triangle occluding three black solid circles and a black boundary
triangle (Ringach and Shapley, 1996). An additional easily
perceived interpretation does not include an illusory triangle, but
consists of three cut-out circles, “pacmans”, and three V-shaped
figures. For real-world images there may be numerous plausible
configurations of objects. The desired interpretation may be
chosen, for example, by applying a higher level knowledge,
like object recognition. The ability to predict multiple possible
perceptions of the image is therefore a desired property of a
robust boundary detection model. The multiple possible image
interpretations, that are described above, are represented in our
model by multiple minima of the functional.
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FIGURE 3 | Border ownership map illustration. (A) Schematic illustration. The bold arrows are the border ownership vectors, while the vector length indicates the

edge strength and the vector direction indicates the edge direction. The length of the ownership vector represents the probability that there is an object edge that

passes through the vector origin in orientation perpendicular to the vector. The object is located on the side pointed by the border ownership vector. l is the discrete

direction index, ranging from 0 to (L− 1). Here and in all other border ownership maps L = 12. At each coordinate there is a border ownership vector for all possible

directions, although for sake of clarity only some of the vectors are shown here. The dashed lines represent the discrete grid over the image of a square (the dark

area). The dotted diagonal lines going out of the origin of l = 0 vector which show all the possible discrete directions. The ellipse around the vector origin illustrates the

area in which the object edge is represented by the border ownership vector that is relevant. This resembles the receptive field of a V1 neuron (Hubel and Wiesel,

1959). (B) The output of border ownership map of the model for an input of a square object image. The border ownership vectors point inside the square (solid line).

The vector with the greatest length at a point is directed perpendicular to the square edge.

Model Overview
The model consists of four main parts:

1. Encoding of object boundaries.
2. The cost functional, specifying a cost value for each object

boundaries configuration.
3. A method to identify object boundaries with minimal cost.
4. A method of finding multiple functional minima,

corresponding to different image perceptions.

The main challenge of identifying illusory contours as a solution
of a minimization problem is occupying the huge size of the
solutions space.We attacked this problem by choosing a compact
boundaries representation method and by applying various types
of smoothing to the functional, in order to reduce the number of
local minima. The smoothing leaves only the stable minima. A
method was invented to find different local minima of the cost
functional, section Finding Multiple Local Minima. Each local
minimum corresponds to a possible image interpretation, with
a lower cost for a more probable (pop-out) interpretation.

The variables notation below is that the subscript of a variable
describes the discrete coordinate on which this variable is
measured. For example, fxy is a filter intensity at coordinate

(

x, y
)

,
for integer x and y. There are no continuous coordinates in the
model. We omit the comma between the coordinates for brevity.
The superscript of a variable is part of the variable name. For
example, σX is a constant. In the following we describe the model
parts in more detail.

Boundary Representation
The border ownership map (Figure 3A), represents the
probability that an object edge passes through a discrete

coordinate in some discrete direction. The orientation of the
object edge is perpendicular to the discrete direction, and the
object resides on the side that is pointed by the pointed direction.
As an example, Figure 3B represents the border ownership
map of a square object. At each discrete coordinate, the border
ownership is specified for a discrete set of equally distributed L
orientations (Figure 3A). Note that for opposite directions there
are two different border ownership values. The border ownership
is not strictly a probability value. Only the relative values of
border ownership are important. We choose to interpret positive
and negative values of border ownership in the same way, since
in the minimization process additional effort is required to
avoid negative values. To achieve this interpretation, the border
ownership always appears squared in the functional.

Cost Functional
The functional that depends on the border ownership map is
designed to measure to what extent the expected properties of
the object boundaries configuration are followed. Each property
is allocated a cost functional component and the overall cost
functional is a weighed sum of all the components.

F
(−→
b

)

= αAFA
(−→
b

)

+ αRFR
(−→
b

)

+ αVFV
(−→
b

)

+ αNFN
(−→
b

)

+ αCFC
(−→
b

)

+ αEFE
(−→
b

)

(1)

Where Ftype are the cost functional components that are
dependent on the border ownership map

−→
b =

{

bxyl
}

x,y,l
(2)
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FIGURE 4 | (A) Illustration of cost component FA, which is inducing border ownership in a direction perpendicular to the image edge. When a border ownership is of

length denoted by 1 (pink arrow) in the image, the cost is as pointed in point 1 on the chart. For bigger border ownership denoted by 2 (pink arrow) in the image, the

cost is as pointed in point 2, and is lower than the cost at point 1. (B) Illustration of border ownership limitation cost component FR. The cost increases with

increasing the vector value of the border ownership in order to limit the infinite growth of the vector value, due to cost component FA. The polynomial degree of FA in

(A) is 2, while the polynomial degree of FR is 4, which makes sure that the border ownership value will be limited. (C) Illustration of cost component FV , which gives

penalty to border ownership in places with no edge in the image. The cost increases with increasing border ownership at a location with no edge in the image.

(D) Cost component FN discourages border ownership in opposite directions, since an object is expected to be only on one side of the edge.

and αtype are weight parameters. x, y are discrete coordinates and
l is the discrete direction index. The first three components FA,
FR and FV are responsible for appearance of border ownership at
image edges. The other components are responsible for encoding
the expected object boundary properties, and therefore depend
only on the border ownership map and not on the input image.
The component FN is designed to make sure that the object is
located only on one side of a boundary. FC is responsible for
object boundary continuity. FE gives penalty for bending in the
object boundary, while concave bends receive a greater penalty,
section Model Rational. The cost components are visualized
in Figures 4, 5 and are described in the following paragraph.
Since the full definition of the components FC and FE is more
complicated and occupy larger volume, their details are provided
in Appendix in Supplementary Material.

Border Ownership at Image Edges (FA)
This chapter describes how border ownership is induced from
image edges. In the case of an intensity edge in the input
image with a specific orientation, the border ownership in
the perpendicular direction is encouraged. Since we do not
know on which side of the edge the object is situated, the
border ownerships are encouraged in both directions which
are perpendicular to the edge. The cost component sums
multiplication of the border ownership bxyl by the intensity of
edge in the image in an orientation perpendicular to l, termed

Axyl. This “encourages” border ownership perpendicular to the
edge in input image (Figure 4A).

FA =
1

T

∑

x,y,l

−Axyl
2bxyl

2 (3)

where

Axyl = Ixy ∗ f
A
xyl (4)

The operation marked by ∗ is a discrete cross-correlation (or
filtering), given by:

Ixy ∗ f
A
xyl =

∑

x′ ,y′

I(x+x′)(y+y′)f
A
x′y′l (5)

The filter f A
xyl

detects an image edge at point
(

x, y
)

and orientation

perpendicular to l. It is defined by rotation of function f Axy by 2π
l
L .

f Axy =
1

2πσA2
s (x) e

−
x2+y2

2σA
2 (6)

where function s (x) is a sign function, giving zero for values close
to zero

s (x) =

{

0, |x| ≤ 0.001
x
|x| , else

(7)
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FIGURE 5 | (A) Illustration of object edge continuity component FC. The value E is the strength of the object boundary edge originating from a specific location point.

The chart presents the cost component value as a function of the originating edge strength E. The originating edge strength 1 is less than the strength of the ending

edge, Ee, hence a positive cost is assigned. Edge strength 2 is the same as the ending edge strength, thus the cost is zero. (B) Illustration of how the continuity is

preserved in case of object boundary occlusion by additional object. The vertical edge is occluded below by an object with a horizontal edge. The occluding edge

serves as the originating edge of the occluded ending edge. In this case no discontinuity is indicated by the continuity cost component FC. (C) Illustration of the cost

component accounting for object edge bending, FE . The object edge defined by vector marked 1 can continue by one of the edges marked by 2, 3, or 4. The costs

for these three continuations are depicted in the chart. Note that the contribution of the convex continuation 2 is smaller than of the concave continuation 4, although

both deviate by 90◦ from the straight continuation 3. The contribution of the straight continuation 3 is zero, since there is no boundary bending in this case.

and σA is a constant. The constant T is used to normalize the cost
to be per coordinate and orientation and is given by:

T = IXIYL (8)

where IX and IY are the width and height of the input image.
The border ownership value bxyl in (3) is squared in order to have
same cost for positive and negative values of border ownership,
section Boundary Representation.

Border Ownership Is Limited (FR)
If FA was the only component of the functional, the border
ownership at image edges would grow infinitely to make the cost
lower. The following cost component is added to ensure that the
value of border ownership is limited:

FR =
1

T

∑

x,y,l

bxyl
4 (9)

The reason for taking the border ownership to power 4 is to make
FR stronger than FA at high border ownership values. The cost
component FR is illustrated in Figure 4B.

Suppress Border Ownership in the Absence of Image

Edge (FV )
An illusory contour introduces border ownership also at places
with no intensity gradient in the image. To avoid spurious
illusory contours, this component adds a penalty for boundary
ownership in places with no edge in the input image (Figure 4C).

FV =
1

T

∑

x,y,l

εV

Axyl
2 + εV

bxyl
2 (10)

where εV is a small constant and Axyl is intensity of edge in

the image (4), used in component FA. Note that the equation
and the rational of FA (3) and FV are similar, but have opposite
trends, such that a large edge leads to lower cost, while a small
edge causes a higher cost. The only functional components that
depend on input image are FA and FV . They depend only on
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image edges and not on special image features, as required in
previous models, section Introduction.

Object on One Side (FN)
The model assumes that the object usually resides on only
one side of an edge. Hence, if there is border ownership
in a specific direction, the border ownership in the opposite
direction is discouraged (Figure 4D). If there is a significant
border ownership in direction l, border ownership in opposite
direction l+ L

2 is not expected, section Boundary Representation.
Border ownership is also not expected in directions close
to l + L

2 , therefore, we add a cost for border ownership

vectors with deviation m from l + L
2 . We also consider

border ownership in spatial vicinity to the border ownership
vector origin

(

x, y
)

by filtering the border ownership map
in space. The filtered border ownership map is termed
BN
xyl
.

FN =
1

TTN

∑

x,y,l

L
4−1
∑

m=−
(

L
4−1

)

cos2
(

2π
m

L

)

BNxylB
N
xy

(

l+ L
2+m

) (11)

where

BNxyl = bxyl
2
∗ fNxy (12)

and

fNxy =
1

2πσN2
e
−

x2+y2

2σN
2 (13)

For a larger deviationm, the cost increase should be smaller, thus
a weight factor cos2

(

2π m
L

)

is added accordingly. The maximum

deviation considered is L
4 − 1, since this is the maximum angle

which is less than π
2 . The term TN (11) is used to normalize the

contributions from all deviations and is given by

TN
=

L
4−1
∑

m=−
(

L
4−1

)

cos2
(

2π
m

L

)

(14)

Object Boundary Continuity (FC)
One of the basic properties of an object is the continuity
of its boundary, thus the boundary is not expected to end
abruptly, unless it is occluded by the boundary of another
object. To encourage object boundary continuity, we require that
when an object edge ends at a coordinate, there should be an
object edge originating from the same coordinate (Figure 5A).
The occluding object edge plays the role of the originating
edge to the occluded object ending edge, in case of occlusion
(Figure 5B). The main innovation of the model is the mere
possibility to predict illusory contours without special features
extraction, following the functional optimization approach.
Since the full details of this component are quite lengthy and
the exact functional definition is not the main aim of the
model, this component details are provided in Appendix section
1.1.

Object Boundary Bending (FE)
We concluded in section Model Rational that the preferred
perception is the one with fewer bends, and if there are
bends, then convex bends are preferable. Taking this preference
into account, we will assign a positive cost for bends in the
object boundary, with an increased penalty for concave bends
(Figure 5C). The details of this component are also lengthy,
hence they are provided in Appendix section 1.2.

Cost Functional Smoothing
The cost functional (1), accounting for several object boundary
properties and depending on many variables, has a large number
of local minima, while not all of them represent expected image
interpretations. The problem is then how to “get rid” of these
redundant local minima. We assume that the redundant local
minima are shallower than desirable ones. To avoid trapping
in shallow local minima, four types of smoothing methods are
applied, as described in the following sections.

Border Ownership Map Smoothing in Angle and

Space
To make the cost functional less sensitive to small changes in

border ownership, the border ownership map
−→
b is smoothed

in angle and space. The result
−→
b

S
is used as input to the cost

functional (1).

bSxyl =







L
2

∑

j=−
(

L
2−1

)

bxy(l+j)f
SA
j






∗ f SXxy (15)

where f SAj and f SXxy are Gaussians in angle (A) and space (X)

coordinates, respectively:

f SAj =
1

βSA
e
−

j2

2σSA
2 (16)

f SXxy =
1

2πσ SX2
e
−

x2+y2

2σSX
2 (17)

with σ SA and σ SX constants, and βSA is a normalization constant:

βSA =

L
2

∑

m=−
(

L
2−1

)

e
− m2

2σSA
2 (18)

Spatial Filters Smoothing
The cost functional calculation uses various spatial filters. To
make the cost smoother and less dependent on the discrete grid
step, we sum up the cost components on multiple spatial scales.

Gtype
=

1

N

N−1
∑

n=0

F
type
n (19)

where N is the number of scales and F
type
n is the same as Ftype (1),

except that it uses spatial filters derived by scaling the original
filters by factor

µn (20)
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where µ > 1 is a scaling constant. The smoothed components
Gtype (17) are used in the functional instead of the components
Ftype (1).

Ramp Function Smoothing
The ramp function

r (x) =

{

0, x ≤ 0
x, x > 0

(21)

is used in components FC and FE to account for positive and
not negative values. There are two benefits in smoothing the
ramp function r (x). The first is that the smoothed function
is differentiable at x = 0 and the second is that the cost
functional also becomes smoother, which reduces the number
of local minima. The smoothed function is obtained by filtering
r (x) through a Gaussian function:

1
√

2πσRP2
e
− x2

2σRP
2 (22)

Where σRP is a constant.

Gradual Relaxation-Find the Minimum at Coarse to

Fine Scale
In order to avoid trapping into shallow local minima, the
minimum is found first on a coarse and then at a finer scale,
a method called gradual relaxation (Lee, 1995). This is done by
first finding the minimum of the functional on a broad scale.
Then, the border ownership found is used as the initial point for
finding the minimum on a finer scale. This process is repeated
until the desired detailed scale is reached. The details of this
process are as follows. A scale parameter s is initially set to s0 >
0. To proceed to a more detailed scale, the scale parameter s
is multiplied by constant sR with 0 < sR < 1. The process
is finished when the desired resolution of sM is reached. For
the scale sM the smoothed functional is close to the functional
without smoothing. The scale parameter s influences the model
as follows.

The border ownership smoothing scale σ SX (17) is multiplied
by:

sB0 + sBSs (23)

where sB0 and sBS are constants. The scaleµn (20) of spatial filters
smoothing, is multiplied by:

sX0 + sXSs (24)

where sX0 and sXS are constants. The width of Gaussian (22) used
for the ramp function smoothing is multiplied by:

sR0 + sRSs (25)

where sR0, sRS are constants.

Finding the Local Minimum
The search for a minimum starts from a random border
ownership map

−→
b R, with component values selected from a

uniform random distribution, in the range [0.01, 0.02]. The
reason for starting with a random border ownership rather
than a zero vector is to avoid being trapped in a saddle point.
For each scale parameter s, section Gradual Relaxation-Find
the Minimum at Coarse to Fine Scale, the method used to
search for the local minimum is a variant of a gradient descent
(Curry, 1944). Suppose that at gradient descent iteration i, the

current border ownership map is
−→
b i. We find the derivative

of cost functional at
−→
b i with respect to each border ownership

component bxyl:

−→
D =

∂F

∂
−→
b

(−→
b i

)

=

{

∂F

∂bxyl

(−→
b i

)

}

x,y,l

(26)

−→
D is a matrix pointing in the direction of the greatest
increase of F (1). To move toward the minimum of F, we

need to move in the opposite direction −
−→
D . The functional

F near the minimum is roughly second order, see Appendix
section 1.3. Based on this, we approximate the values of

F along −
−→
D by a parabola and move to its minimum.

The details of this process are specified in Appendix section
1.3.

Finding Multiple Local Minima
The multiple local minima of the cost functional correspond
to different interpretations of the image, section Introduction.
Although there are several well established methods for finding
a single minimum of a functional, there are relatively few
studies on how to find multiple minima. The main question
is how to escape from the first local minimum, in which
the minimization process stopped. We attack this problem
by positioning a “repulsive particle” in the location of the
first local minimum. Here by location we mean the border
ownership map of the minimum. The repulsive particle acts
like an electric charge that repulses the border ownership
map that is being searched and prevents it from coming
too close to the repulsive particle location. This is achieved
by adding to the cost functional (1) a component that
increases for border ownership maps that are close to the
first local minimum. This component is described in details
in Appendix section 1.4, and it resembles an electric potential.
The process of finding multiple local minima is performed as
follows.

The gradient descent starts from some random border

ownership
−→
b R, section Finding the Local Minimum, to obtain

a local minimum for border ownership
−→
b 1, (Figure 6). To

find additional local minimum we place a repulsive particle

at the
−→
b 1 position (red

−→
b 1 in Figure 6) and reinitiate the

search for new local minimum from
−→
b R. Suppose that now

the new local minimum is
−→
b 2′ (magenta

−→
b 2′ ). The repulsive

particle at
−→
b 1 causes

−→
b 2′ to be pulled out further from
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FIGURE 6 | The method for finding multiple local minima of a functional. We

start from a random particle
−→
b R (green) and reach a minimum at

−→
b 1 (red). The

force that is responsible for moving the particle from
−→
b R is caused by the cost

functional (arrow 1 black). The particle
−→
b 1 is then replaced by an immovable

repulsive particle at the same location. When the process is restarted with a

new particle from
−→
b R (black), the repulsive particle at

−→
b 1 pushes the particle

at
−→
b R (red arrow 2) toward a new minimum

−→
b 2. However, due to the

repulsive force (red arrow 4) the particle is pushed beyond the new minimum
−→
b 2, and arrives at location

−→
b 2′ (black). To find a local minimum, which is not

influenced by the repulsive particle, the repulsive particle at
−→
b 1 is removed

and a new minimum search starts from
−→
b 2′ . This particle is pushed to a new

minimum at
−→
b 2 (magenta) by the cost functional force (arrow 3 black).

the actual local minimum of the cost functional. To find the
actual local minimum, we start a new search for the minimum
of the functional without repulsive particle component from

location
−→
b 2′ . Suppose the search reached the minimum for

−→
b 2.
If

−→
b 2 is sufficiently far from

−→
b 1, then

−→
b 2 is added as a

new interpretation and a repulsive particle is added at
−→
b 2. To

measure how close
−→
b 1 is to

−→
b 2, the following simple distance

measure is used:

1

T

∑

x,y,l

∣

∣

∣
b1xyl

2
− b2xyl

2
∣

∣

∣
(27)

where T is defined in (8). If this distance is above a specific

threshold level dT , the particles are considered different. If
−→
b 2

is close to
−→
b 1 (27), then the optimization is trapped into a local

minimum that has been already identified. Since the search was
trapped twice in the same local minimum, we try to increase the
force of the repulsive particle. This is achieved by multiplying the
repulsive term by a constant factor τ > 1. In order to avoid

the same location
−→
b 2′ again, an additional repulsive particle is

added at the
−→
b 2′ location, and the search for the minimum is

repeated from a start point at
−→
b R (Figure 6). After finding this

minimum we perform a new search, but without the repulsive
particle component, in order to find the actual local minimum of
the original functional. If a new particle is found, then the new
particle is added as additional interpretation. The repulsive force
is returned to its initial strength (withoutmultiplication by τ ) and

a search for a new particle is performed. If, on the other hand,
no new particle is found, the repulsive force factor is multiplied
again by τ . The repulsive force multiplication factor is increased
until a maximum factor τmax is reached. If even for themaximum
multiplication factor no new particle is found, then the process of
finding multiple local minima is stopped.

Retrieving Object Shape by Contour
Evolution
At this stage, the output of the model is a border ownership map
(2) that assigns border ownership strength values to each discrete
location and direction. To show that the actual object shape can
be easily and automatically retrieved from the border ownership
map, we designed a simple contour evolution algorithm that finds
the top-most object in the scene. The contour evolution method
finds a contour which maximizes a given functional that depends
on the contour. The way to find the maximizing contour is by
moving some initial contour toward the contour that brings the
functional to maximum. In the level set approach, the contour
is represented by the intersection of a two dimensional function
ψ with x-y plane, that is by the zero-level of the function ψ .
The contour motion is described and performed in terms of the
function ψ . For further details see Osher and Sethian (1988).

We start with a simple small object (e.g., circular contour)
which is adjacent to the border ownership vector with the
biggest value. The contour representing the object boundary is
then moved to maximize the border ownership vectors having
direction perpendicular to the contour. Following Malladi et al.
(1995), the contour dynamics is defined by:

−→
C t =

(

k− v
)

g
−→
N (28)

−→
C t is the velocity of moving the contour

−→
C .

−→
N is the contour

normal vector, pointing toward the inner area of the object.
The contour is moved in direction of the normal. The velocity
magnitude is defined by

(

k− v
)

g, (28). This function is designed
to cause the contour to grow until it reaches the highest value of
border ownership vectors and to keep the contour as simple as
possible. The term k is the contour curvature and the operation
of including this term makes the contour tend to be as straight
as possible. This is because a point with positive curvature,
that is a convex point, the contour is “encouraged” to move
inside, which decreases the curvature. For negative curvature
the contour is “encouraged” to move outwards, decreasing the
absolute curvature and again making the contour more straight.
v is a constant called the balloon force, giving the contour the
tendency to grow. The contour friction term g causes the contour
to stop when it reaches a high value of border ownership vectors
in the direction perpendicular to the contour. g is a threshold of
another function h:

gxy =

{

0, hxy < gT

hxy, else
(29)

hxy =
1

(

1+
qxy
R2

) (30)
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where R is a constant and qxy measures the strength of the border
ownership in a direction roughly perpendicular to the contour.
hxy is designed such that it will be small in locations where the
value of the border ownership perpendicular to the contour is
high. Since hxy is small in this locations, gxy will be zero and the
contour evolution will stop. qxy is given by:

qxy =

L
∑

l=1

wlbxyl
2 (31)

The weighting factor wl measures how close the direction l is to
the direction of the contour normal:

wl = e
−

βl
2

2σQ
2 (32)

where σQ is a constant, and βl is the angle between the direction
of index l and the contour normal, pointing toward the inner area
of the object:

βl = cos−1
(

−→u l ·
−→
N

)

(33)

And−→u l is the unit vector in direction of index l:

−→u l = (cosαl, sinαl) , αl = 2π
l

L
(34)

Further details of the approach in field of level set curve evolution
can be supplied from Osher and Sethian (1988).

RESULTS

The model was tested on various simple synthetic gray scale
images with non-textured regions. The same set of model
parameters were used for all tests and stimuli. The parameters
were chosen by trial and error.

The first image contains two adjacent regions separated by a
straight line (Figure 7A). Two local minima were found for this
image, one corresponding to a black object on the right side over
white background (Figure 7B), and the other one found relating
to a white object on the left side over the black background
(Figure 7C). Note that the two interpretations have equal cost
−53.1, since there is no preference for the object to be on the
right or on the left side.

The next tested image was a square (Figure 7D), also having
two interpretations. The first interpretation was of a square object
(Figure 7E), and the second interpretation was of a frame with
a square hole (Figure 7F). The square object interpretation has
cost −117, while the square hole in a frame interpretation has
a higher cost −102. This is consistent with the fact that the
square interpretation is perceived more readily than the square
hole interpretation, section Model Rational . In all results the
interpretations are presented ordered from lower to higher cost.
The model behaves in the same manner for a larger square with
size of 20 pixels (results are not shown). For a more complex
image of an object with both convex and concave vertexes

(Figure 7G), the model identifies two interpretations, the first
corresponding to a C-shaped object (Figure 7H), and the second
to a frame with a C-shaped hole (Figure 7I).

The main goal of the study was to show the possibility to
detect objects with illusory contours without extracting special
image features. To show this, the model was applied on Kanizsa
squares with different sizes. One of the essential factors that
determines the strength of the illusory contour is the ratio
between the visible edge length and the total edge length,
termed support ratio (Shipley and Kellman, 1992; Figure 8A).
The illusory object is perceived when the support ratio values
are close to 1. The model was tested on images corresponding
to a broad range of support ratios. The first example is of a
prominent illusory contour image (Figure 8A), with a relatively
high support ratio of 0.67. The first interpretation, having
the smallest cost −67.3, is the interpretation of an illusory
square (Figures 8B,C). The second interpretation, having a
higher cost −64.6, is of four pacemans (Figure 9). These two
interpretations are consistent with our expectations from the
model.

Additional higher cost interpretations have been found, and
are not presented here. The smallest support ratio for which the
illusory square is still detected for this pacman radius is 0.57.
Figure 10 shows the first interpretation for this support ratio. For
a smaller support ratio of 0.53 the first interpretation is of four
pacmans (the border ownership map is not shown, but has the
same structure as the interpretation in Figure 9). For this support
ratio there is no illusory interpretation at all, as expected.

To ensure that the illusory square border ownership map
(Figure 10), can be interpreted as a square over four circles we
applied a level set optimization method to extract the nearest
object, section Retrieving object shape by contour evolution.
The result of object extraction is shown in Figure 11. It shows
detection of the square object with a partially illusory boundary.

DISCUSSION

The proposed model successfully extracts both real and illusory
contours in various synthetic images (Figures 7–10). The model
is generic and was not specifically designed to detect illusory
contours, while special image features are not extracted. The
illusory contour detection was achieved by introducing only
simple desired object properties, and the illusory parts of the
object boundary were generated as the most reasonable image
“description” obtained by the functional minimization. The
model shows the possibility to view the illusory contours as
derived from general object detection task, performed by the
visual system. Although this idea is not new (Gregory, 1972), this
is the first time that the possibility to derive illusory contours
from general object boundary detection task has been proved
computationally.

Moreover, the multiple possible image perceptions were
predicted here and ranked by perception probability. In case of
the Kanizsa square illusion image, the most probable perception
predicted by the model is of an illusory square (Figures 8B,C),
and the second perception is of four pacman objects (Figure 9).
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FIGURE 7 | (A) The simplest input image, with size 20 × 20 pixels. (B) The border ownership map of the first model interpretation of the image (A). The object is

located on the right side of the edge that is between the white and the black area in the input image. In all border ownership maps shown in following figures, the

edges in the input image are marked by green lines for reference. The border ownership vectors with a value above 80% of the maximum border ownership vector

value in the current map are colored magenta. Other border ownership vectors are black. The small red crosses depict the discrete grid of the input image. Note that

only part of the border ownership map is shown, in order to make the view clearer. (C) The second model interpretation represents an object on the left side of the

boundary between the white and the black regions in the input image (A). (D) Input image with white square 8 × 8 pixels on black background. (E) The first model

interpretation of the image in (D) represents a white square object on black background. The interpretation has a lowest cost −117. (F) The second model

interpretation of the image in (D) represents a black frame with a square hole through which a white background is seen. This interpretation has cost−102, higher than

the first interpretation, meaning it is less probable. (G) Input image of a C-shaped object. A similar image was applied in the original study of border ownership

neurons (Zhou et al., 2000). (H) The first model interpretation of image (G) represents a C-shaped object. (I) The second model interpretation of image (G) represents

a C-shaped hole in a frame.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 106128

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Yankelovich and Spitzer Illusory Contours Without Special Features

Both predictions are consist with psychophysical findings (Rubin,
2001). Detecting different plausible solutions of a problem by
finding multiple local minima of the functional is a novel
approach.

There are numerous models that predict illusory contours in
the Kanizsa square image (Williams and Hanson, 1994; Heitger
et al., 1998; Kogo et al., 2002; Ron and Spitzer, 2011). The
presented model approach, however, is essentially different from
most of the models, since it is not oriented to detect illusory
contours or locations of object occlusion. The model defines
general preference rules of object boundaries and finds a stable
minimizer to these rules. The illusory contours come out “by
the way” as the minimizer of the problem. Since the essential
approach of the model is the prediction of illusory contours
based on general boundary detection approach, the model results
cannot be compared to models that use specific mechanism of
constructing illusory contours. The fact that the model does
not use a general boundary detection approach is manifested by
extraction of special image features.

Most of the existing models do extract special image features.
For example,Madarasmi et al. (1994) use stochasticminimization
of a functional to predict real and illusory contours of objects
at different depth planes. The model is successfully applied to
Kanizsa square illusion, where it detects both the illusory square
and the overlapped inducer objects. The model, however, extracts

special image features, namely L and T junctions, and only a
single image interpretation is predicted. On the other hand, the
model of Kass et al. (1988) detects real and illusory contours using
energy minimizing splines. The model does not require special
features extraction and both edge induced and line-end induced
illusory contours are detected. However, the model is not fully
automatic, since user interaction is required to draw the initial
contour, section Introduction. In addition, only a single image
interpretation is predicted in their model.

The functional optimization is usually used to obtain the best
solution to a problem and only the global minimum is considered
important (Figueiredo et al., 2003). Local minima are often
considered to be disruptive and efforts are made to avoid them
(Lee, 1995). The idea of a functional that has multiple minima is
strongly related to the Gestalt psychology concept of Pragnantz:
a simple and stable grouping (Koffka, 1935). Since the simplicity
is measured by the cost functional, a local minimum of the
functional indeed represents a simple and stable interpretation.
Moreover, the values of the functional achieved at the different
minima provide a general method, to compare the solutions
at these minima. The multiple interpretations of the image are
found in our model as the multiple stable minima of a functional.
Thus, expressing multiple plausible solutions of a problem as
multiple local minima of a functional is a new approach in the
framework of functional optimization.

FIGURE 8 | (A) The Kanizsa illusory square. In this image the support ratio is 0.67. (The support ratio is defined as r/h, where r is the radius of the pacman and h is

half the size of the illusory square). (B) The first model interpretation representing the square object, with partially illusory contours, occluding four circular objects. (C)

Zoom-in into illusory boundary region between two pacmans, marked with dotted square in (B).
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FIGURE 9 | The second model interpretation of image in Figure 8A

represents four pacman objects.

FIGURE 10 | The first illusory interpretation of Kanizsa square image with

support ratio 0.57.

The method used to avoid minima that were already found in
a functional section Finding multiple local minima, is related to
the filled function method (Renpu, 1990), which has been used
to find the global minimizer of a functional. In their method,
an identified local minimum is replaced by a maximum in the

FIGURE 11 | An optimization test showing that a square object can be

determined from the border ownership map, found by the model. The object

extraction is for the first interpretation of Kanizsa square with support ratio

0.57 (Figure 10). Four optimization stages at different number of iterations are

shown. In the images, the white region is the object at the depicted iteration.

The green lines show the input image edges, which are shown for reference.

functional. The main difference between the methods is the
nature of the change in the function. The filled function depends
on the functional in a complicated way, while in the proposed
method the repulsive term is just added to the cost functional.
In addition, our minimization is always initiated from the same
point, while according to their method it requires trial over a set
of directions, which is less efficient computationally.

The level set approach method section Retrieving object shape
by contour evolution, can be used not only to find the top-most
object boundary, but also the boundary of additional objects. To
perform this, the initial small object should be placed adjacent to
part of the boundary of the other object. This can enable us, for
example, to complete the boundary of an occluded object.

The constants in the model were chosen by trial and error.
Since the presented model proposes new a approach to the
boundary detection task and contains a lot of complexity at this
stage already, it is hard to also make it a fully robust model.
Previous new conception models also did not supply a parameter
sensitivity test at the first stage (Geiger et al., 1996). In any case,
the same set of parameters were used for all experiments, hence
we assume and experienced that the model is not very sensitive
to parameter choice.

The proposed proof of concept model is restricted to gray
scale images with solid non-textured regions and without lines.
The model in its current version is not applicable yet for
contour integration and detection of illusory lines such as
defined by abutted gratings, since the model does not include
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components dealing with lines or texture. Dealing with such
type of images will require us to extend the measure of
“description length” in the functional (van Tuijl, 1975) to
include textured regions. It is very interesting to compare the
model to available psychophysical data, like classification images
obtained from human participants (Murray et al., 2005), however
this is currently out of scope of the presented preliminary
model.

Future work is planned to develop a robust model for object
detection in real-world images. For this purpose, the object
boundary based approach of current model should probably be
replaced by an area based approach. We expect that this change
will make the model much simpler, since, for example, matching
the image by regions does not require even extraction of edges in

the image. This change can also enable us to account for region
based effects in the Kanizsa illusion (Kanizsa, 1976; Grossberg
and Mingolla, 1987; Spehar, 2000; Ron and Spitzer, 2011).
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Subjective image quality databases are a major source of raw data on how the visual

system works in naturalistic environments. These databases describe the sensitivity of

many observers to a wide range of distortions of different nature and intensity seen

on top of a variety of natural images. Data of this kind seems to open a number of

possibilities for the vision scientist to check the models in realistic scenarios. However,

while these natural databases are great benchmarks for models developed in some other

way (e.g., by using the well-controlled artificial stimuli of traditional psychophysics), they

should be carefully used when trying to fit vision models. Given the high dimensionality

of the image space, it is very likely that some basic phenomena are under-represented

in the database. Therefore, a model fitted on these large-scale natural databases will

not reproduce these under-represented basic phenomena that could otherwise be easily

illustrated with well selected artificial stimuli. In this work we study a specific example of

the above statement. A standard cortical model using wavelets and divisive normalization

tuned to reproduce subjective opinion on a large image quality dataset fails to reproduce

basic cross-masking. Here we outline a solution for this problem by using artificial stimuli

and by proposing a modification that makes the model easier to tune. Then, we show

that the modified model is still competitive in the large-scale database. Our simulations

with these artificial stimuli show that when using steerable wavelets, the conventional unit

norm Gaussian kernels in divisive normalization should be multiplied by high-pass filters

to reproduce basic trends in masking. Basic visual phenomena may be misrepresented

in large natural image datasets but this can be solved with model-interpretable stimuli.

This is an additional argument in praise of artifice in line with Rust and Movshon (2005).

Keywords: natural stimuli, artificial stimuli, subjective image quality databases, wavelet + divisive normalization,

contrast masking

1. INTRODUCTION

In the age of big data one may think that machine learning applied to representative databases
will automatically lead to accurate models of the problem at hand. For instance, the problem
of modeling the perceptual difference between images showed up in the discussion of eventual
challenges at the NIPS-11 Metric Learning Workshop (Shakhnarovich et al., 2011). However,
despite its interesting implications in visual neuroscience, the subjective metric of the image space
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was dismissed as a trivial regression problem because there are
subjectively-rated image quality databases that can be used as
training set for supervised learning.

Subjective image and video quality databases (such as VQEG,
LIVE, TID, CID, CSIQ)1 certainly are a major source of raw data
on how the visual system works in naturalistic environments.
These databases describe the sensitivity of many observers to a
wide range of distortions (of different nature and with different
suprathreshold intensities) seen on top of a variety of natural
images. These databases seem to open a number of possibilities
to check the models in realistic scenarios.

Following a tradition that links the image quality assessment
problem in engineering with human visual system models
(Sakrison, 1977; Watson, 1993; Wang and Bovik, 2009; Bodrogi
et al., 2016), these subjectively rated image databases have been
used to fit models coming from classical psychophysics or
physiology (Watson and Malo, 2002; Laparra et al., 2010; Malo
and Laparra, 2010; Bertalmio et al., 2017). Given the similarity
between these biological models (Carandini and Heeger, 2012)
and feed-forward convolutional neural nets (Goodfellow et al.,
2016), an interesting analogy is possible. Fitting the biological
models to reproduce the opinion of the observers in the
database is algorithmically equivalent to the learning stage in
deep networks. This deep-learning-like use of the databases is a
convenient way to train a physiologically-founded architecture to
reproduce a psychophysical goal (Berardino et al., 2017; Laparra
et al., 2017; Martinez-Garcia et al., 2018). When using these
biologically-founded approaches, the parameters found have
a straightforward interpretation as for instance the frequency
bandwidth of the system or the extent of the interaction between
sensors tuned to different features.

On the other hand, pure machine-learning (data-driven)
approaches have also been used to predict subjective opinion.
In this case, after extracting features with reasonable statistical
meaning or perceptual inspiration, generic regression techniques
are applied (Moorthy and Bovik, 2010, 2011; Saad et al.,
2010, 2012, 2014), even though this regression has no
biological grounds.

1.1. Eventual Problems With Databases
The problem with the above uses of naturalistic image databases
is the conventional concern about training sets in machine
learning: is the training set a balanced representation of the range
of behaviors to be explained?

If it is not the case, the resulting model may be biased
by the dataset and it will have generalization problems. This
overfitting risk has been recognized by the authors of image
quality metrics based on generic regression (Saad et al., 2012).
Perceptually meaningful architectures impose certain constraints
on the flexibility of the model, as opposed to generic regressors.
These constraints could be seen as a sort of Occam’s Razor
in favor of lower-dimensional models. However, even in the
biologically meaningful cases, there is a risk that the model found

1A non exhaustive list of references and links to subjective quality databases

includes (Webster et al., 2001; Ponomarenko et al., 2009, 2015; Larson and

Chandler, 2010; Pedersen, 2015; Ghadiyaram and Bovik, 2016).

by fitting the naturalistic database misses well-known texture
perception facts.

Accordingly, Laparra et al. (2010) and Malo and Laparra
(2010) used artificial stimuli after the learning stage to check
the Contrast Sensitivity Function and some properties of visual
masking. Similarly, in Ma et al. (2018) after training the deep
network in the dataset they have to show model-related stimuli
to human observers to check if the results are meaningful (and
discard eventual over-fitting).

1.2. The Regression Hypothesis

Questioned
In this work we question the hypothesis suggested at the NIPS
Metric Learning Workshop (Shakhnarovich et al., 2011) that
assumes that pure regression on naturalistic databases will lead
to sensible vision models.

Of course, training whatever regression model with
subjectively rated natural images to predict human opinion
is a perfectly fine approach to tackle the restricted image
quality problem. Actually, sometimes disregarding any prior
knowledge about how the visual system works is seen as a plus
(Bosse et al., 2018): the quantitative solution to this specific
problem may gain nothing from understanding the elements of
a successful regression model in terms of properties of actual
vision mechanisms.

However, from a broader perspective, models intended to
understand the behavior of the visual system should be more
ambitious: they should be interpretable in terms of the underlying
mechanisms and be able to reproduce other behavior. Our
message here is that large-scale naturalistic databases should
not be the only source of information when trying to fit
vision models. Given the high dimensionality of the image
space, it is very likely that some basic phenomena (e.g., the
visibility of certain distortions in certain environments) are
under-represented in the database. As a result, the model is
not forced to reproduce these under-represented phenomena.
And more importantly, the use of model-interpretable artificial
stimuli is useful to determine the values of specific parameters in
the model.

In particular, we study a specific example of the generalization
risk suggested above and the benefits of model-based artificial
stimuli. We show that a wavelet+divisive normalization layer
of a standard cascade of linear+nonlinear layers fitted to
maximize the correlation with subjective opinion on a large
image quality database (Martinez-Garcia et al., 2018), fails
to reproduce basic cross-masking. Here we point out the
problem and we outline a solution using well selected
artificial stimuli. Then, we show that the model corrected to
account for these extra artificial tests is also a competitive
explanation for the large-scale naturalistic database. This
example is interesting because showing convincing Maximum
Differentiation stimuli, as done in Berardino et al. (2017),
Martinez-Garcia et al. (2018), and Ma et al. (2018), may not
be enough to guarantee that the model reproduces related
behaviors and points out the need to explicitly check with
artificial stimuli.
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1.3. In Praise of Artifice: Interpretable

Models and Interpretable Stimuli
In line with Rust and Movshon (2005), our results in this
work, namely pointing out the misrepresentation of basic visual
phenomena in subjectively-rated natural image databases and
the proposed procedure to fix it, are additional arguments
in praise of artifice: the artificial model-motivated stimuli
in classical visual neuroscience are helpful to (a) point
out the problems that remain in models fitted to natural
image databases, and (b) to suggest intuitive modifications of
the models.

Regarding interpretable models, we propose a modification
for the considered Divisive Normalization (Carandini and
Heeger, 2012) that stabilizes its behavior. As a result of
this stabilization, the model is easy to tune (even by hand)
to qualitatively reproduce cross-masking. Interestingly, as a
consequence of this modification and analysis with artificial
stimuli, we show that the conventional unit-norm kernels in
divisive normalization may have to be re-weighted depending on
the selected wavelets.

It is important to note that the observations made in this work
are not restricted to the specific image quality problem. Following
seminal ideas based on information theory (Attneave, 1954;
Barlow, 1959), theoretical neuroscience considers explanations
of sensory systems based on statistical learning as alternative
to physiological and psychophysical descriptions (Dayan and
Abbott, 2005). Therefore, the points made below on natural
image datasets, artificial stimuli from interpretable models, and
optimization goals in statistical learning, also apply to a wider
range of computational explanations.

The paper is organized as follows: section 2 describes the
visual stimuli and introduces the cortical models considered
in the work. First it illustrates the intuition that can be
obtained from proper artificial stimuli as opposed to the not-
so-obvious interpretation of natural stimuli. Then, it presents
the structure of wavelet-like responses in V1 cortex and two
standard neural interaction models: Model A (intra-band), and
Model B (inter-band). Section 3 shows that despite Model A

is tuned to maximize the correlation with subjective opinion
in a large-scale naturalistic image quality database it fails
to reproduce basic properties of visual masking. Simulations
with artificial stimuli allow intuitive tuning of Model B to
get the correct contrast response curves while preserving the
success on the large-scale naturalistic database. Finally, as
suggested by the failure-and-solution example considered in
this work, in section 4 we discuss the opportunities and
precautions of the use of natural image databases to fit
vision models, and the relevance of artificial stimuli based on
interpretable models.

2. MATERIALS AND METHODS

Here we present the visual stimuli and the cortical interaction
models considered throughout the work. The use of model-
inspired artificial stimuli is critical to point out the limitations
of simple models and to tune the parameters of more
general models.

2.1. Natural vs. Artificial Stimuli
Figure 1 shows a representative subset of the kind of patterns
subjectively rated in image quality databases. This specific
example comes from the TID2008 database (Ponomarenko
et al., 2008). In these databases, natural scenes (photographic
images with uncontrolled content) are corrupted by noise
sources of different nature. Some of the noise sources are
stationary and signal independent, while others are spatially
variant and depend on the background. Ratings depend on
the visibility of the distortion seen on top of the natural
background. The considered distortions come in different
suprathreshold intensities. In some cases these intensities
have controlled (linearly spaced) energy or contrast, but in
general, they come from arbitrary scales. Examples include
different compression ratio or color quantization coarseness
with no obvious psychophysical meaning. This is because the
motivation of the original databases (e.g., VQEG or LIVE)
was the assessment of distortions occurring in image processing
applications (e.g., transmission errors in digital communication)
and not necessarily to be a tool for vision science. More recent
databases include more accurate control of luminance and color
of both the backgrounds and the distortions (Pedersen, 2015),
or report the intensities of the distortions in JND units (Alam
et al., 2014). Perceptual ratings in such diverse sets certainly
provide a great ground truth to check vision science models in
naturalistic conditions.

However, the result of such variety is that the backgrounds
and the tests seen on top have no clear interpretation in terms
of specific perceptual mechanisms or controlled statistics in a
representation with physiological meaning. Even though not
specifically directed against subjectively rated databases, this was
also the main drawback pointed out in Rust and Movshon
(2005) against the use of generic natural images in vision
science experiments.

In this work we go a step further in that criticism:
due to the uncontrolled nature of the natural scenes and
the somewhat arbitrary distortions found in these databases,
the different aspects of a specific perceptual phenomenon
are not fully represented in the database. Therefore, these
databases should be used carefully when training models because
this misrepresentation will have consequences when fitting
the models.

For instance, let’s consider pattern masking (Foley, 1994;
Watson and Solomon, 1997). It is true that some distortions in
the databases introduce relatively more noise in high contrast
regions, which seems appropriate to illustrate masking. This is
the case of the JPEG or JPEG2000 artifacts, or the so called
masked noise in the TID database. See for instance the third
example in the first row of Figure 1. These deviations on top of
high contrast regions are less visible than equivalent deviations
of the same energy on top of flat backgrounds. This difference
in visibility is due to the inhibitory effect of surround in
masking (Foley, 1994; Watson and Solomon, 1997). Actually,
perceptual improvements of image coding standards critically
depend on using better masking models that allow using less
bits in those regions (Malo et al., 2000a, 2001, 2006; Taubman
and Marcellin, 2001). Appropriate prediction of the visibility of
these distortions in the database should come from an accurate
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FIGURE 1 | Natural scenarios and complex distortions. The isolated image at the left is an example of a natural background (uncontrolled scene) to be distorted by a

variety of degradations of different nature. The images in the array illustrate the kind of stimuli rated by the observers in image quality databases. The score of the

degraded images is related to the visibility of the corresponding distortion (the test) seen on top of the original image (the background). The reported subjective ratings

constitute the ground truth that should be predicted by vision models from the variation of the responses due to the distortions.

model of texture masking. However, a systematic set of examples
illustrating the different aspects of masking is certainly not
present in the databases. For example, there are no stimuli
showing crossmasking between different frequencies in different
backgrounds. Therefore, this phenomenon is under-represented
in the database.

Such basic texture perception facts can be easily illustrated
using artificial stimuli. Artificial stimuli can be designed with
a specific perceptual phenomenon in mind, and using patterns
which have specific consequences in models, e.g., stimulation of
certain sensors of the model. Model/phenomenon-based stimuli
is the standard way in classical psychophysics and physiology.
Figure 2 is an example of the power of well controlled artificial
stimuli: it represents a number of major texture perception
phenomena in a single figure.

This figure shows two basic tests (low-frequency vertical and
high-frequency horizontal) of increasing contrast from left to
right. These series of tests are, respectively, shown on top of (a)
no background, and (b) on top of backgrounds of controlled
frequency and orientation.

First, of course we can see that the visibility of the tests (or
the response of the mechanisms that mediate visibility) increases
with contrast, from left to right. This is why even the trivial
Euclidean distance between the original and the distorted images
is positively correlated with subjective opinion of distortion.

Second, the visibility, or the responses, depend(s) on the
frequency of the test. Note that the lower frequency test is
more visible than the high frequency test at reading distance.
This illustrates the effect of the Contrast Sensitivity Function
(Campbell and Robson, 1968).

Third, the response increase is non-linear with contrast. Note
that for lower contrasts (e.g., from the second picture to the
third in the series) the increase in visibility is bigger than for
higher contrasts (e.g., between the pictures at the right-end). This
means that the slope of the mechanisms mediating the response
is high for lower amplitudes and saturates afterwards. This sort of

Weber-like behavior for contrast is a distinct feature of contrast
masking (Legge, 1981).

Finally, the visibility (or response) decreases with the
background energy depending on the spatio-frequency similarity
between test and background. Note for instance that the low
frequency test is less visible on top of the low frequency
background than on top of the high frequency background.
Important for the example considered throughout this paper,
note that the visibility of the high frequency test behaves the
other way around: it is bigger on top of the low frequency
test. Moreover, this masking effect is bigger for bigger contrasts
of the background. This adaptivity of the nonlinearity is a
distinct feature of the masking effect (Foley, 1994; Watson
and Solomon, 1997), and more importantly, it is a distinct
feature of real neurons (Carandini and Heeger, 1994, 2012)
with regard to the simplified neurons used in deep learning
(Goodfellow et al., 2016).

As a result, just by looking at Figure 2, one may imagine
how the visibility (or response) curves vs. the contrast of the
test should be for the series of stimuli presented. Figure 3

shows an experimental example of the kind of response curves
obtained in actual neurons in masking situations. Note the
saturation of the response curves and how they are attenuated
when the background is similar to the test. Even this qualitative
behavior highlighted in green (saturation and attenuation)
may be used to discard models that do not reproduce the
expected behavior, i.e., that do not agree with what we
are seeing.

More importantly, the relative visibility of these artificial
stimuli can also be used to intuitively tune the parameters of
a model to better reproduce the visible behavior. This can be
done because these artificial stimuli were crafted to have a clear
interpretation in a standard model of texture vision: a set of V1-
like wavelet neurons (oriented receptive fields tuned to different
frequency scales). Figure 4 illustrates this fact: note how the
test patterns considered in the figure mainly stimulate a specific
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FIGURE 2 | Artificial stimuli. Several texture phenomena illustrated in a single figure (see text for details). Here the tests are the 9 patterns in the gray frames. These

tests increase in contrast from the frame at the left to the frame at the right. The visibility of the tests (a) nonlinearly increases with the contrast from left to right; (b) the

visibility depends on the frequency of the tests, low frequency at the top panel and high frequency at the bottom panel; and (c) the visibility of the tests depends on the

background (cross-masking).

FIGURE 3 | Experimental response of V1 neurons (mean firing rate) in masking situations. Adapted from (Cavanaugh, 2000; Schwartz and Simoncelli, 2001). At the

left (A) test and mask do have the same spatio-frequency characteristics. At the right (C) test is substantially different from the mask. Note the decay in the responses,

compare the curves in green circles, when test and background share properties (B) as opposed to the case where they do not (D).

subband of a 3-scale 4-orientation steerable wavelet pyramid
(Simoncelli et al., 1992), which is a commonly used model of V1
sensors. As a result, it is easy to select the set of sensors that will
drive the visibility descriptor in the model: see the highlighted
wavelet coefficients in the diagrams at the right of Figure 4.

The same intuitive energy distribution over the pyramid is

true for the backgrounds, which stimulate the corresponding

subband (scale and orientation). As a result, given the
distribution of test and backgrounds in the pyramid, it is easy

to propose intuitive cross-band inhibition schemes to lead to the

required decays in the response.
The intuitions obtained from artificial model-oriented stimuli

about response curves and eventual-crossmasking schemes are

fundamental both to criticize the results obtained from blind

learning from a database, and to propose intuitive improvements
of the model.

2.2. Cortical Interaction Models: Structure

and Response
In this work we analyze the behavior of standard retina-cortex
models that follow the program suggested in Carandini and
Heeger (2012) i.e., cascades of isomorphic linear+nonlinear
layers, each focused on a different psychophysical factor:

Layer S(1) linear spectral integration to compute luminance
and opponent tristimulus channels, and nonlinear
brightness/color response.

Layer S(2) definition of local contrast by using linear filters and
divisive normalization.
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FIGURE 4 | Advantages of artificial stimuli. Model-related construction of stimuli simplifies the reproduction of results form model outputs and the interpretation of

results. In this example, frequency and orientation of tests and backgrounds in the artificial stimuli at the left (A) are selected to stimulate specific subbands of the

model, see highlighted regions in the wavelet transform at the central panel (B). Therefore, it is easy to select the sensors that mediate the visibility of the tests, see the

coefficients in white in the wavelet diagram at the right panel (C).

Layer S(3) linear LGN-like contrast sensitivity filter
and nonlinear local energy masking in the
spatial domain.

Layer S(4) linear V1-like wavelet decomposition and nonlinear
divisive normalization to account for orientation
and scale-dependent masking.

This family of models represents a system, S, that depends
on some parameters, 2, and applies a series of transforms on
the input radiance vector, x0, to get a series of intermediate
response vectors, xi,

x0

S(1)

==

S(x0,2)

&&
x1

S(2)

==x
2

S(3)

==x
3

S(4)

==x
4 (1)

Each layer in this sequence accounts for the corresponding
psychophysical phenomenon outlined above and is the
concatenation of a linear transform L and a nonlinear
transformN :

· · · xi−1

S(i)

>>
L(i)

//yi
N (i)

//xi · · · (2)

Here, in each layer we use convolutional filters for the linear
part and the canonical Divisive Normalization for the nonlinear

part. The mathematics of this type of models required to set their
parameters are detailed in Martinez-Garcia et al. (2018).

In this kind of models the psychophysical behavior (visibility
of a test) is obtained from the behavior of individual units
(increment of responses) through some sort of summation. The
visibility of a test, 1x0, seen on top of a background, x0,
is given by the perceptual distance between background and
background+test. Specifically, this perceptual distance, dp, may be
computed through the q norm of the vector with the increment
of responses in the last neural layer (Watson and Solomon, 1997;
Laparra et al., 2010; Martinez-Garcia et al., 2018). In the 4-layer
model of Equation 1, we have ‖1x4‖q:

dp(x
0, x0 + 1x0) = ‖1x4‖q =





∑

j

|1x4j |
q





1
q

(3)

There is a variety of summation schemes: one may choose to
use different summation exponents for different features (e.g.,
splitting the sum over j in space, frequency, and orientation), and
order of summation matters if the exponents for the different
features are not the same. Besides, there is no clear consensus
on the value of the summation exponents either (Graham, 1989):
the default quadratic summation choice, q = 2 (Teo and
Heeger, 1994; Martinez-Garcia et al., 2018), has been questioned
proposing bigger (Watson and Solomon, 1997; Laparra et al.,
2010) and smaller (Laparra et al., 2017) summation exponents.

More important than all the above technicalities, the key
points in Equation (3) are: (a) it clearly relates the visibility with
the response of the units, and (b) for q ≥ 2, the visibility is
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driven by the response of the units that undergo bigger variation,
|1x4j |, such as the ones highlighted in Figure 4. Therefore, in this

kind of models, analyzing the visibility curves or the response
curves of the units tuned to the test is qualitatively the same. In
the simulations we do the latter since we are interested in direct
observation of the effect of the interaction parameters on the
curves; and this is more clear when looking at the response of
selected subsets of units as those highlighted in Figure 4.

In this work we compare two specific examples of this family
of models. These two models will be referred to as Model A and
Model B. They have identical layers 1–3, and they only differ in
the nonlinear part of the fourth layer: the stage describing the
interaction between cortical oriented receptive fields. InModel A

we only consider interactions between the sensors tuned to the
same subband (scale and orientation) because we proved that
this simple scheme is appropriate to obtain good performance
in subjectively rated databases (Laparra et al., 2010; Malo and
Laparra, 2010). In Model B on top of the intra-band relation we
also considered inter-band relations according to a standard unit-
norm Gaussian kernel over space, scale and orientation (Watson
and Solomon, 1997). Additionally to the classical inter-band
generalization we also included extra weights and a stabilization
constant that makes themodel easier to understand. The software
implementingModel A andModel B is available at “http://isp.uv.
es/docs/BioMultiLayer_L_NL_a_and_b.zip”.

Let’s consider the differences between the models in more
detail. Assuming that the output of the wavelet filter-bank
is the vector y, and assuming that the vector of energies of
the coefficients is obtained by coefficient-wise rectification and
exponentiation, e = |y|γ , the vector of responses after divisive
normalization in the last layer ofModel A is:

x = sign(y)⊙
e

b+H · e
(4)

where ⊙ stands for element-wise Hadamard product and the
division is also an element-wise Hadamard quotient where the
energy of each linear response is divided by a linear combination
of the energies of the neighboring coefficients in the wavelet
pyramid. This linear combination (that attenuates the response)
is given by the matrix-on-vector product H · e. Note that, for
simplicity, in Equation 4 we omitted the indices referring to the
4th layer [as opposed to the more verbose formulation in the
Appendix (Supplementary Material)].

The i-th row of this matrix, H, tells us how the responses of
neighbor sensors in the vector e attenuate the response of the i-th
sensor in the numerator, ei. The attenuating effect of these linear
combinations is moderated by the semisaturation constants in
vector b.

The structure of these vectors and matrices is relevant to
understand the behavior on the stimuli. First, one must consider
that all the vectors, y, e, and x, have wavelet-like structure.
Figure 4 shows this subband structure for specific artificial
stimuli and Figure 5 shows it for natural stimuli.

The i-th coefficient has a 4-dimensional spatio-frequency
meaning, i ≡ (pi, fi,φi), where p is a two-dimensional location,
f is the modulus of the spatial frequency, and φ is orientation.

In Model A we only consider Gaussian intra-band relations.
This means that interactions in H decay with spatial distance
and it is zero between sensors tuned to different frequency and
orientation. This implies a block-diagonal structure in H with
zeros in the off-diagonal blocks. In Martinez-Garcia et al. (2018)
the norm or each Gaussian neighborhood (or row) in H was
optimized to maximize the correlation with subjective opinion.

It is important to stress that the specific distribution of
responses of natural images over the subbands of the response
vector (green line in Figure 5) is critical to reproduce the
good behavior of the model on the database. Note that this
is not a regular (linear) wavelet transform, but the (nonlinear)
response vector. Therefore, this distribution tells us both about
the statistics of natural images and about the behavior of the
visual system. On the one hand, natural images have relatively
more energy in the low-frequency end. But, on the other hand,
it is visually relevant that the response of sensors tuned to the
high frequency details is much lower than the response of the
sensors tuned to the low frequency details. The latter is in line
with the different visibility of the artificial stimuli of different
frequency shown in Figure 2, and it is probably due to the
effect of the Contrast Sensitivity Function (CSF) in earlier stages
of the model. This is important because keeping this relative
magnitude between subbands is crucial to have good alignment
with subjective opinion in the large-scale database.

In the case of Model B, we consider (a) a more general
interaction kernel in the divisive normalization, and (b) a
constant diagonal matrix to control the dynamic range of the
responses. Specifically, the vector of responses is:

x = sign(y)⊙

[

κ ⊙
b+HG · e⋆

e⋆

]

⊙
e

b+HG · e
. (5)

Here the response still follows a nonlinear divisive normalization
because e⋆ is just a fixed vector (not a variable), and hence the
term in brackets is just another constant vector. In Model B,
followingWatson and Solomon (1997), we consider a generalized
interaction kernel HG that consists of separable Gaussian
functions which depend on the distance between the location
of the sensors, Hp, and on the difference between their scales
and orientations, Hf and Hφ . Moreover, we extend the unit-
norm Gaussian kernel already proposed inWatson and Solomon
(1997) with additional weights in case extra inter-band tuning
is needed:

HG = Dc ·
[

Hp ⊙Hf ⊙Hφ ⊙ Cint

]

·Dw, (6)

where Cint is a subband-wise full matrix,Dw is a diagonal matrix
with vector w in the diagonal, and the normalization of each
row of the kernel is controlled by a diagonal matrix Dc, which
contains the vector of normalization constants, c, in the diagonal.
This means that the elements ci normalize each interaction
neighborhood, and the elements wj control the relative relevance
of the energies ej before these are considered for the interaction.

In addition to the generalized kernel, the other distinct
difference of Model B is the extra constant K(e⋆) =
[

κ ⊙
b+HG·e

⋆

e⋆

]

. This constant has a relevant qualitative rationale:
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FIGURE 5 | Response of Model A to natural images. Given a luminance distribution, input image (A), the initial layers of the model (retina-to-LGN) compute a filtered

version of brightness contrast with adaptation to lower contrasts due to divisive normalization. That is why the contrast in the input to the 4th layer, image (B), is more

uniform than in the input image. Finally, the linear part of the 4th layer, wavelet diagram (C), computes a multi-scale / multi-orientation decomposition and then, these

responses nonlinearly interact as given by Equation (4), final responses in wavelet diagram (D). The structure of a representative vector of responses depicted at the

bottom is relevant to understand the assumed interactions and the eventual modifications that may be required. As usual in the wavelet literature (Simoncelli and

Adelson, 1990), data in the vector are organized from high-frequency (fine scales at the left) to low-frequency (coarse scales at the right), wavelet vector (E). Abscissas

indicate the wavelet coefficient. The specific scale of the ordinate axis is not relevant. Solid vertical lines in red indicate the limits of the different scales. Within each

scale, the dashed lines in pink indicate the limits of the different orientations. The different coefficients within each scale/orientation block correspond to different

spatial locations. The line in green shows the average amplitude per subband for a set of natural images. As discussed in the text, this specific energy distribution per

scale is relevant for the good performance of the model.

it keeps the response bounded regardless of the choice for the
other parameters.

Note that, when the input energy, e, arrives to the reference
value, e⋆, the response of Model B reduces to the vector κ

regardless of model parameters. This simplifies the qualitative
control of the dynamic range of the system because one may
set a desired output κ (e.g., certain amplitudes per subband)
for some relevant reference input e⋆ regardless of the other
parameters. This stabilization constant, K(e⋆), does not modify
the qualitative effect of the relevant parameters of the divisive
normalization, but, as it constraints the dynamic range, it allows
the modeler to freely play with the relevant parameters γ , b, and
HG, and still preserve the relative amplitude of the subbands.
And this freedom is particularly critical to understand the kind
of modifications needed in the parameters to reproduce certain
experimental trend.

Here we propose that e⋆ is related to the average energy of the
input to this nonlinear neural layer. Similarly, we propose to set
the global scaling factor, κ , according to a desired dynamic range
in the output of this neural layer. These stabilization settings
simplify the use of the model thus allowing to get the desired
qualitative behavior even modifying the parameters by hand.
Interestingly, this freedom to explore will reveal the modulation
required in the conventional unit-norm Gaussian kernel.

3. RESULTS

In this section we show the performance of Model A and
Model B in two scenarios: (a) reproducing subjective opinion
in large-scale naturalistic databases using quadratic summation
in Equation 3, and (b) obtaining meaningful contrast response
curves for artificial stimuli.

The parameters of Model A are those obtained in Martinez-
Garcia et al. (2018) to provide the best possible fit to the
mean opinion scores on a large natural image database. These
parameters ofModel A are kept fixed throughout the simulations
in this section. On the contrary, in the case of Model B, we start
from a base-line situation in which we import the parameters
fromModel A, but afterwards, this naive guess is fine tuned to get
reasonable response curves for the artificial stimuli considered
above. Our goal is checking if the models account for the trends
of masking described in Figures 2, 3: we are not fitting actual
experimental data but just refuting models that do not follow the
qualitative trend.

In this model verification context, the fine tuning of
Model B is done by hand: we just want to stress that while
Model A cannot account for specific inter-band interactions,
the interpretability of Model B when using the proper artificial
stimuli makes it very easy to tune. And this intuitive tuning is
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possible thanks to the stabilization effect of the constant K(e⋆)
proposed above.

Nevertheless, it is important to stress that the Jacobian
with regard to the parameters of Model B given in appendix
(Supplementary Material) are implemented in the code
associated to the paper. Therefore, despite the exploration of
the responses in this section will be just qualitative, the code
of Model B is ready for gradient descent tuning if one decides
to measure the contrast incremental thresholds for the proper
artificial stimuli.

Accurate control of spatial frequency, luminance, contrast
and appropriate rendering of artificial stimuli can be done using
the generic routines of VistaLab (Malo and Gutiérrez, 2014).
In order to do so, one has to take into account a sensible
sampling frequency (e.g., bigger than 60 cpd to avoid aliasing
at visible frequencies) and the corresponding central frequencies
and orientations of the selected wavelet filters in the model. The
specific software used in this paper to generate the stimuli and
to compute the response curves is available at: “http://isp.uv.es/
docs/ArtificeReloaded.zip”.

3.1. Success of "Model A" in Naturalistic

Databases
Optimization of the width and amplitude of the Gaussian kernel,
H, in each subband as well as the semisaturation parameters
b in each subband of Model A led to the results in Figure 6.
This was referred to as optimization phase I in Martinez-Garcia
et al. (2018). Even though optimization phase II using the
full variability in b led to higher correlations, here we restrict
ourselves to optimization phase I because we want to keep the
number of parameters small. Note that b has 2.5·104 elements but
restricting to a single semisaturation per subband we only have 14
free parameters. In the optimization phase I only 1/25 of the TID
database was used in the training.

As stated above, spatial-only intra-band relations leads to
symmetric block diagonal kernels. Optimization acted on the
width and amplitude of these kernels per subband. Similarly,
optimization lead to bigger semisaturation for low frequencies
except for the low-pass residual.

The performance of the resulting model on the naturalistic
database is certainly good: compare the correlation of Model A

with subjective opinion in Figure 6 as opposed to the widely
used Structural SIMilarity index (Wang et al., 2004), in red,
considered here just as useful reference. Given the improvement
in correlation with regard to SSIM, one can certainly say that
Model A is highly successful in predicting the visibility of
uncontrolled distortions seen on naturalistic backgrounds.

3.2. Relative Failure of "Model A" With

Artificial Stimuli
Despite the reasonable formulation ofModel A and its successful
performance in reproducing subjective opinion in large-scale
naturalistic databases, a simple simulation with the kind of
artificial stimuli presented in section 2.1 shows that it does not
reproduce all the aspects of basic visual masking.

Specifically, we computed the response curves of the
highlighted neurons in Figure 4 for low-frequency and high-
frequency tests like those illustrated in Figure 2 as a function
of their contrast. We considered four different contrasts for the
background. Different orientations of the background (vertical,
diagonal and horizontal) were also considered.

Figure 7 presents the results of such simulation. This figure
highlights some of the good features of Model A, but also
its shortcomings.

On the positive side we have the following. First, the response
increases with contrast as expected. Second, the response for
the low frequency test is bigger than the response for the
high frequency test (see the scale of the ordinate axis for
the high frequency response). This is in agreement with the
CSF. Third, the response saturates with contrast as expected.
And also, increasing the contrast of the background decreases
the responses.

However, contrarily to what we can see when looking at the
artificial stimuli, the response for the high frequency test does
not decay more on top of high frequency backgrounds. While
the decay behavior is qualitatively ok for the low-frequency test,
definitely it is not ok for the high-frequency test. Compare the
decays of the signal at the circles highlighted in red in Figure 7:
the response of the sensors tuned to high-frequency test decays
by the same amount when they are presented on top of low-
frequency backgrounds than when the background also has high-
frequency. Themodel is failing here despite its good performance
in the large database.

3.3. Success of "Model B"With Natural and

Artificial Stimuli
The starting point of our heuristic exploration withModel B is a
straightforward translation of Model A into Model B. We will
refer to this as Model B naive. This starting point consists of
importing the values of the parameters from Model A except
for the modulations depending on the scale and orientation.
Following Watson and Solomon (1997) we assumed reasonable
interaction lengths of one octave (for scales) and 30 degrees (for
orientation). We used no extra weights to break the symmetry
(Cint = 1 is an all-ones matrix, and Cw = I is the identity). And
the values for c and b also come fromModel A. The parameters of
this Model B naive are shown in Figure 8 (left panels). The idea
of this starting point,Model B naive, is reproducing the behavior
ofModel A to build on from there.

Results in Figure 9 (top) and Figure 10 (left) show that
Model B naive certainly reproduces the behavior of Model A:
both the success in the natural image database and the relative
failure with artificial stimuli.

On top of kernel generalization, there is a second relevant
intuition: modifications in the kernel may be ineffective if the
semisaturation constants are too high. Note that the denominator
of Divisive Normalization, Equation 4, is a balance between the
linear combination H · e and the vector b. This means that some
elements of b should be reduced for the subbands where we want
to act. Increasing the corresponding elements of vector c, leads to
a similar effect.
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FIGURE 6 | Parameters of MODEL-A (left, A,B) and performance on large scale naturalistic database (right, C,D). The parameters are: the interaction kernel H (matrix

on top, A), and the semisaturation per subband vector, b. The structure of b is the same as a wavelet vectors in Figure 5. The kernel H describes how each wavelet

coefficient interacts with the others, therefore, we included the solid and dashed lines in red and pink to highlight the limits between the subbands. The resulting

submatrices describe the intra- and inter-subband interactions. The figures on top of the scatter plots are the Pearson, Spearman, and Kendall correlations. Here

performance of Model A in plot (C) is compared with SSIM (Wang et al., 2004) in (D) just because it is the de-facto standard in image quality assessment.

With these intuitions one can start playing with HG and
b. However, while the effect of the low-frequency is easy
to reduce using the above ideas (thus solving the problem
highlighted in red in Figure 7), the relative amplitude between
the responses to low and high frequency inputs is also easily lost.
This quickly ruins the low-pass CSF-like behavior and reduces
the performance on the large-scale database. We should not
lose the relative amplitudes of the responses of Model A to
natural images (i.e., green lines in Figure 5) to keep its good
performance. UnfortunatelyModel A is unstable under this kind
of modifications making it difficult to tune. That is why it is

necessary to include the constant
[

κ ⊙
b+HG·e

⋆

e⋆

]

in Model B to

control the dynamic range of the responses.
Figure 8 (right panel) shows the fine-tuned parameters

according to the heuristic suggested above: reduce semisaturation
in certain bands and control the amplitude of the kernel in certain
bands. This heuristic comes from the meaning of the blocks
in the kernel and from the subbands that are activated by the
different artificial stimuli. Note that we strongly reduced b and we
applied bigger reductions for the high-frequency bands (which
corresponds to the sensors we want to fix). In the same vein we
increased the values for the global scale of the kernels of high
frequencies c while reducing substantially these amplitudes for
low-frequencies to preserve previous behavior, which was ok for
low-frequencies. Finally, and more importantly, we moderated
the effect of the low-frequencies in masking by using small
weights for the low-frequency scales in w, while increasing the
values for high frequency. Note how this reduces the columns
corresponding to the low-frequency subbands in the final kernel
HG, and the other way around for the high-frequency scales.

This implies a bigger effect of high-frequency backgrounds in the
attenuation of high-frequency sensors and reduces the effect of
the low-frequency.

Results in Figure 9 show that this fine-tuning fixes the
qualitative problem detected inModel A, which was also present
inModel B naive. We successfully modified the response of high-
frequency sensors: see the decay in the green circles compared
to the behavior in the red circles. Moreover, we introduced no
major difference in the low-frequency responses, which already
were qualitatively correct.

Moreover, Figure 10 shows that the fine-tuned version of
Model B not only works better for artificial stimuli but it also
preserves the success in the natural image database. The latter
is probably due to the positive effect of setting the relative
magnitude of the responses in Model B as in Model A using the
appropriate K(e⋆) (setting the output κ for the average input e⋆).

It is interesting to stress that the solution to get the right
qualitative behavior in the responses didn’t require any extra
weight in Cint, which remained an all-ones matrix. We only
operated row-wise and column-wise with the diagonal matrices
Dc andDw, respectively.

In summary, in order to fix the qualitative problems of
Model A with masking of high-frequency patterns, the obvious
use of generalized unit-norm inter-band kernels, as in Watson
and Solomon (1997), was not enough: we had to consider the
activation of the different subbands due to controlled artificial
stimuli to tune the weights in the left- and right- diagonal
matrices that modulate the unit-norm Gaussian kernels HG =

Dc ·
[

Hp ⊙Hf ⊙Hφ

]

·Dw. It was necessary to include high-pass
filters in c and w (see Figure 8, fine-tuned) to moderate the effect
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FIGURE 7 | Relative success and failures of Model A optimized on the large-scale database. Model-related stimuli such as the low-frequency and high-frequency

tests shown on the top panel simplify the reproduction of results form model outputs and allow simple visual interpretation of results. In this simulation the response

curves at the bottom panel are computed from the variation of the responses of the low-frequency and high-frequency sensors of the 4th layer highlighted in green in

Figure 4. In each case, the variation of the response is registered as the contrast of the corresponding stimulus is increased. That is why we plot 1x4 vs. the contrast

of the input, C. The different line styles represent the response for different contrast of the background, Cb. Simple visual inspection of the stimuli is enough to discard

some of the predicted curves (e.g., those in red circles): the low frequency backgrounds do not mask the high frequency test more than the high frequency

backgrounds.

of the low-frequency backgrounds on the masking of sensors
tuned to high-frequencies.

The need of these extra filters can be interpreted in a
interesting way: there should be a balanced correspondence
between the linear filters and the interaction neighborhoods in
the nonlinearity. Note that different choices for the filters to

model the linear receptive fields in the cortex imply different
energy distributions over the subbands2. In this situation, if the

2For instance, analyzing images by choosing Gabors or different wavelets, and by

choosing different ways to sample the retinal and the frequency spaces, definitely

leads to different distributions of the energy over the subbands.
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FIGURE 8 | Parameters of diferent versions of Model B. Left panel shows the parameters for the first guess of Model B: the interaction matrix, the semisaturation

vector, b, and the right and left filters (vectors w and c in Equation 6). This first-guess is called naive because the semisaturation and amplitudes of the kernel were

imported directly from Model A in Martinez-Garcia et al. (2018). The panel at the right shows the corresponding parameters for the fine-tuned version of Model B,

once we explored a range of values to fix the response curves. See text for details on how the parameters were tuned to get the desired responses.

energy in certain subband is overemphasized by the choice of the
filters, the interaction neighborhoods should discount this fact.

Of course, more accurate tuning of Model B on
actual exhaustive contrast incremental data of different
tests+backgrounds may lead to more sophisticated weights
in Cint. However, the simple toy simulation presented here
using artificial stimuli with clear interpretation was enough
to (a) discard Model A, (b) to point out the balance problem
between the assumed linear cortical filters and the assumed
interaction kernel in divisive normalization, and even (c) to
propose an intuitive solution for the problem.

4. DISCUSSION

The relevant question is: is the failure of Model A something that
we could have expected? And the unfortunate answer is, yes: the
failure is not surprising given the (almost necessarily) imbalanced
nature of large-scale databases. Note that it is not only that
Model A is somewhat rigid3, the fundamental problem is that the
specific phenomenon is not present in the database with enough
frequency or intensity to force the model to reproduce it in the
learning stage.

Of course, this problem is hard to solve because it is not
obvious to decide in advance the kind of phenomena (and
the right amount of each one) that should be present in
the database(s): as a result, databases are almost necessarily
imbalanced and biased by the original intention of the creators
of the database.

Here we made a full analysis (problem and route-to-solution)
on texture masking, but note that focus on masking was just

3It is true that Model A only included intra-band relations, but note also that,

even though we wanted to introduce more general kernels in Model B for future

developments, the solution to the qualitative problem considered here basically

came from including Dw in H (not from sophisticated cross-subband weights).

The other ingredients, b and c were already present inModel A.

one important but arbitrary example to stress the main message.
There are equivalent limitations affecting other parts of the
optimized model that may come from the specific features of the
database. For instance, the luminance-to-brightness transform
(first layer in models A and B) is known to be strongly nonlinear
and highly adaptive (Wyszecki and Stiles, 1982; Fairchild, 2013).
It can be modeled using the canonical divisive normalization
(Hillis and Brainard, 2005; Abrams et al., 2007) but also
other alternative nonlinearities (Cyriac et al., 2016), and this
nonlinearity has been shown to have relevant statistical effects
(Laughlin, 1983; Laparra et al., 2012; Laparra and Malo, 2015;
Kane and Bertalmio, 2016). However, when fitting layers 1st
and 4th simultaneously to reproduce subjective opinion over
the naturalistic database in Martinez-Garcia et al. (2018), even
though we found a consistent increase in correlation, in the end,
the behavior for the first layer turned out to be almost linear. The
constant controlling the effect of the anchor luminance turned
out to be very high. As a result, the nonlinear effect of the
luminance is small. Again, one of the reasons for this result may
be that the low dynamic range of the database did not require a
stronger nonlinearity at the front-end given the rest of the layers.
Similar effects could be obtained with the nonlinearities of color
channels if the statistics is biased (MacLeod, 2003; Laparra and
Malo, 2015).

The case studied here is not only a praise of artificial
stimuli, but also a praise of interpretable models. When models
are interpretable, it is easier to fix their problems from their
failures on synthetic model-interpretable stimuli. For example,
the solution we described here based on considering extra
interaction between the sensors is not limited to divisive models
of adaptation. Following Bertalmio et al. (2017), it may be also
applied to other interpretable models such as the subtractive
Wilson-Cowan equations (Wilson and Cowan, 1972; Bertalmio
and Cowan, 2009). In this subtractive case one should tune
the matrix that describes the relations between sensors. This
kind of intuitive modifications in the architecture of the models
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FIGURE 9 | Responses of different versions of Model B for the artificial stimuli. Curves correspond to the same stimuli considered in Figure 7.
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FIGURE 10 | Performance of different versions of Model B on the natural image database. The difference in correlation is not statistically significant according to the

F-test used in Watson and Malo (2002), and the trend of the scatter plot is qualitatively the same.

would have been more difficult, if possible at all, with non-
parametric data-driven methods. In fact, there is an active
debate about the actual scientific gain of non-interpretable
models, such as blind regression (Castelvecchi, 2016;
Bohannon, 2017).

Finally, the masking curves considered in this paper also
illustrate the fact that beyond the limitations of the database
or the limitations of the architecture, the learning goal is
also an issue. Note that, even using the same database and
model, different learning goals may have different predictive
power. For instance, other learning goals applied to natural
images also give rise to cross-masking. Examples include
information maximization (Schwartz and Simoncelli, 2001; Malo
and Gutiérrez, 2006), and error minimization (Laparra andMalo,
2015). A systematic comparison between these different learning
goals on the same database for a wide range of frequencies is
still needed.

4.1. Consequence for Linear + Nonlinear

Models: The Filter-Kernel Balance
Related to model interpretability, the results of our exploration
with artificial stimuli suggests an interesting conclusion when
dealing with linear+nonlinear models:matching linear filters and
non-linear interaction is not trivial. Remember the wavelet-kernel
balance problem described at the end of the results. Therefore, in
building these models, one should not take filters and kernels off
the shelf.

One may take this balance problem as another routinary
parameter to tune. However, this balance problem may actually
question the nature of divisive normalization in terms of other
models. For instance, in Malo and Bertalmio (2018) we show
that the divisive normalization may be seen as the stationary
solution of lower-level Wilson-Cowan dynamics that do use a
sensible unit-normGaussian interaction between units. This kind
of questions are only raised, and solutions may be proposed,
when testing interpretable models with model-related stimuli.

4.2. Using Naturalistic Databases Is Always

a Problem?
Our criticism of naturalistic databases because their eventual
imbalance and the problem in interpreting complicated stimuli
in terms of models does not mean that we claim for an absolute
rejection of these naturalistic databases. The case we studied here
only suggests that one should not use the databases blindly as the
only source of information, but in appropriate combination with
well-selected artificial stimuli.

The use of carefully selected artificial stimuli may be
considered as a safety-check of biological plausibility. Of course,
our intention with the case studied here was not exhausting the
search possibilities to claim that we obtained some sort of optimal
solution. Instead, we just wanted to stress the fact that using
the appropriate stimuli it is easy to propose modifications of the
model that go in the right (biologically meaningful) direction,
and still represent a competitive solution for the naturalistic
database. This is an intuitive way to jump to other local minima
which may be more biologically plausible in a very different
region of the parameter space.

A sensible procedure would be alternating different learning
epochs using natural and artificial data: while the large-
scale naturalistic databases coming from the image processing
community may enforce the main trends of the system, the
specific small-scale artificial stimuli coming from the vision
science community will fine-tune that first order approximation
so that the resulting model has the appropriate features revealed
by more specific experiments. In this context, standardization
efforts such as those done by the CIE and the OSA organizations
are really important tomake this double-check. Examples include
the data supporting the standard color observer (Smith and
Guild, 1931; Stockman, 2017) and the standard spatial observer
(Ahumada, 1996).

From a more general perspective, image processing
applications do have a fundamental interest in visual neuroscience
because these applications put into a broader context the relative
relevance of the different phenomena described by classical
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psychophysics or physiology. For instance, one can check the
variations in performance by testing vision models of different
complexity, e.g., with or without this or that nonlinearity
accounting for some specific perceptual effect/ability. This
approach oriented to check different perceptual modules in
specific applications has been applied in image quality databases
(Watson and Malo, 2002), but also in other domains such as
perceptual image and video compression (Malo et al., 2000a,b,
2001, 2006), or in perceptual image denoising and enhancement
(Gutiérrez et al., 2006; Bertalmio, 2014). These different
applications show the relative relevance of improvements in
masking models with regard to better CSFs or including more
sensible motion estimation models in front of better texture
perception models.

4.3. Are All the Databases Created Equal?
The case analyzed in this work illustrates the effect of (naively)
using a database where texture masking is probably under-
represented. The lesson to learn is that one has to take into
account the phenomena for which database was created, or,
equivalently, the absence of specific phenomena to address.

With this in mind, one could imagine what kind of artificial
stimuli are needed to improve the results. Or alternatively, which
other naturalistic databases are required as complementary
check since they are more focused on other kind of
perceptual behavior.

Some examples to illustrate this point: databases with
controlled observation distance or accurate chromatic calibration
such as Pedersen (2015) are more appropriate to set the spatial
frequency bandwidth of the models in achromatic and chromatic
channels. Databases with spectrally controlled illumination pairs
(Laparra et al., 2012; Gutmann et al., 2014; Laparra and Malo,
2015) are appropriate to address chromatic adaptation models.
Databases with high-dynamic range (Korshunov et al., 2015;
Cerda-Company et al., 2016) will be more appropriate to point
out the need of the nonlinearity of brightness perception. Finally,
databases where visibility of incremental patterns was carefully
controlled in contrast terms (Alam et al., 2014) are the best option
to fit masking models as opposed to generic subjectively-rated
image distortion databases.

4.4. Final Remarks
Previous literature (Rust and Movshon, 2005) criticized the use
of too complex natural stimuli in vision science experiments
because the statistics of such stimuli are difficult to control
and conclusions may be biased by the interaction between this
poorly controlled input and the complexities of the neural model
under consideration.

In line with such precautions on the use of natural stimuli,
here we make a different point: the general criticism to blind
use of machine learning in large-scale databases (related to the
proper balance in the data) also applies when using subjectively
rated image databases to fit vision models. Using a variety of
natural scenarios and distortions cannot guarantee that specific

behaviors are properly represented, thus remaining hidden in the
vast amount of data. In such situation, models that seem to have
the right structure may miss these basic phenomena. Instead of
trying to explicitly include model-oriented artificial stimuli in
the large database to fix the unbalance, it is easier to address the
issue by using the model-oriented artificial stimuli in illustrative
experiments specifically intended to test some parameters of
the model.

The case study considered here suggests that artificial stimuli,
motivated by specific phenomena or by features of the model,
may help both to (a) stress the problems that remain in models
fitted to imbalanced natural image databases, and (b) to suggest
modifications in themodels. Incidentally, this is also an argument
in favor of interpretable parametric models as opposed to
data-driven pure-regression models. A sensible procedure to fit
general purpose vision models would be alternating different
fitting strategies using (a) uncontrolled natural stimuli, but
also (b) well-controlled artificial stimuli to check the biological
plausibility at each point.

In conclusion, predicting subjective distances between images
may be a trivial regression problem, but using these large-
scale databases to fit plausible models may take more than
that: for instance, a vision scientist in the loop doing the
proper fine-tuning of interpretable models using the classical
artificial stimuli.
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We propose a computational model of vision that describes the integration of

cross-modal sensory information between the olfactory and visual systems in zebrafish

based on the principles of the statistical extreme value theory. The integration of

olfacto-retinal information is mediated by the centrifugal pathway that originates from

the olfactory bulb and terminates in the neural retina. Motivation for using extreme value

theory stems from physiological evidence suggesting that extremes and not the mean

of the cell responses direct cellular activity in the vertebrate brain. We argue that the

visual system, as measured by retinal ganglion cell responses in spikes/sec, follows an

extreme value process for sensory integration and the increase in visual sensitivity from

the olfactory input can be better modeled using extreme value distributions. As zebrafish

maintains high evolutionary proximity to mammals, our model can be extended to other

vertebrates as well.

Keywords: cross-modal sensory integration, statistical extreme value theory, classification, olfaction, vision,

zebrafish

1. INTRODUCTION

The brain perceives the external world through an integration of stimuli received from different
sensory modalities like vision, olfaction, and audition via the centrifugal pathway. A recent study
taking inspiration from Cajal’s original work on brain mapping (Gire et al., 2013) describes
current knowledge of the centrifugal olfactory and visual pathways in mammalian species as
being incomplete. While, for instance, the signaling pathways mediating brain feedback in human
olfaction have been characterized, the origins and effects of signals to visual system functions
remain to be examined. In this work, we seek to understand the modulation of the circuits between
sensory modalities. A crucial observation, yielding from our own work, points to how due to
olfacto-visual sensory integration, measures of visual performance or behavior in response to
multi-sensory input are enhanced, when a stimulus in onemodality is ambiguous or undetermined.
In fact, in all vertebrate species (e.g., teleost, reptiles, birds, rodents, primates) examined thus far, the
retina receives brain feedback through the centrifugal visual pathways (Harter andAine, 1984;Mick
et al., 1993; Gastiner et al., 2004). Depending on the species under consideration, the centrifugal
pathways may originate from different parts of brain, such as the pre-tectal cortex, isthmo-optic
nucleus, thalamus, or olfactory bulb.
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In zebrafish (Danio rerio), the olfacto-retinal centrifugal
(ORC) pathway originates from terminalis neurons (TNs) in the
olfactory bulb (OB) and terminates in retina. TNs (Figure 1A)
synthesize gonadotropin-releasing hormone (GnRH) as a major
neurotransmitter. In the retina, TN fibers synapse with
dopaminergic interplexiform cells (DA-IPCs), retinal ganglion
cells (RGCs), and possibly other retinal cell types. Insights
from relatively recent research (Li and Dowling, 2000; Huang
et al., 2005) have shown that the function of the ORC pathway
is directly regulated by the olfactory input. TN input alters
GnRH signaling transduction and decreases dopamine release
in the retina, thereby increasing outer retinal sensitivity and
inner retinal activity (e.g., firing of ganglion cells). Specifically,
the olfactory input mediated by the ORC pathway decreases
the light threshold (i.e., the minimum light intensity required
to fire evoked action potentials) of retinal ganglion cells, and
thereby increases retinal sensitivity. Together, the olfactory input
amplifies behavioral visual sensitivity (Maaswinkel and Li, 2003).

Zebrafish maintain high evolutionary proximity to mammals,
and their retinas share great similarities to humans (e.g.,
structure, cellular organization, neural circuitry and signaling
transmission) (Li, 2001; Vacaru et al., 2014). While much
progress has been made to understand the anatomy of cross-
modal circuitry in zebrafish, our knowledge of the underlying
regulatory mechanism and physiological roles of centrifugal
input to the retina is still in its nascent stage. Interestingly,
Huang et al. (2005) demonstrate how the visual sensitivity
in zebrafish is increased in the presence of olfactory signals
whereas disrupting the ORC pathway impairs visual function. An
important observation found in that work reveals the importance
of olfactory signals for vision. According to Huang et al.
(2005), under normal conditions the minimum threshold light
intensity to invoke a retinal ganglion cell response (measured
in spikes/sec) in a dark-adapted zebrafish embryo may decrease
1–2 log units after olfactory stimulation. This demonstrates the
dramatic impact of olfactory signals on vision.

Such a sudden gain in visual sensitivity through olfactory
stimulation is an intriguing target for a computational model.
We argue that visual sensitivity follows the statistical Extreme
Value Theory (EVT). The mean visual sensitivity does not clearly
explain the increased sensitivity due to olfactory signals since
that scenario is able to sense a stimulus that is an extreme
aberration from the norm, i.e., retinal ganglion cell responses
without any olfactory stimulation. EVT lays solid groundwork
for modeling as it is independent of the underlying distribution
of data (all of the cell responses) and is only applicable to the
tails of the distribution (the extremes) such that samples which
have the least, or no possible, probability of occurrence under
a central tendency model are distinguished, providing greater
discrimination while requiring few statistical assumptions.

At a deeper level, one can ask the following question: is there
a theoretical justification for using EVT for neural modeling?
Our key insight is that the characterization of the firing behavior
of a neuron as repeated integration/thresholding within a
circuit suggests positive answers to these questions. Neurons
are generally modeled as an electro-chemical process integrating
input (ions) and eventually crossing a threshold whereby they

fire and release ions. We posit that this inherently leads to
an EVT-based model because the distribution of samples that
exceed a threshold T likely yields an extreme value distribution
(EVD). If all neurons use a fixed threshold T, the inputs to
subsequent neurons in the circuit must follow an EVD, with
each neuron integrating data from such a distribution and
thresholding it. Thus, EVT can provide a plausible consistent
multi-layer neuron model.

Beyond the merits of cultivating a better understanding of
the operation of cross-modal sensory information integration in
vertebrates, there is the possibility that an accurate computational
model for this phenomenon could translate into a general
algorithm for pattern recognition tasks in computer science. A
direct application of this method lies in the development of novel
information fusion algorithms that leverage inputs frommultiple
sensory modalities, i.e., vision and audition (Nagrani et al., 2018).
Another practical application is the invention of innovative
sensors capable of detecting changes in the environment and
then re-configuring on the fly to change operational parameters
and power consumption requirements. Currently, sensors are
typically designed to sense a single type of physical property such
as temperature, pressure, radiation, motion or proximity. But
with a biologically-consistent model they could be remodeled
to use multiple observations from the environment for more
agile operation. The work presented in this article is in this
spirit of leveraging biological observations to forward engineer
algorithms that can operate in a general context.

In the following sections, we provide a detailed explanation
of our work. Section 2 describes the single unit cell recording
procedure from which our analysis is derived and the definition
of EVT from which the proposed model is based. Section
3 goes on to describe the exact specification of that model.
Section 4 describes our experiments and Section 5 presents the
corresponding results. Finally Section 6 concludes by putting this
research into a larger biological and computational context.

2. MATERIALS AND METHODS

In this section, we explain the methods we use that are crucial for
understanding our computational model of cross-modal sensory
information integration. This includes the physical experiments
that were conducted to collect the source data, as well as the
formal elements of EVT.

2.1. Single-Unit Recordings and Odor

Stimulation
This research builds upon the previous work of Huang et al.
(2005). An overview is provided in Figure 1B. Traces of RGC
are recorded before and after odor stimulation (the sites of odor
treatment are indicated by numbers 1 and 2 in Figure 1B),
or when dopamine and/or GnRH signaling transduction
is manipulated by the application of receptor agonists or
antagonists (indicated by numbers 3–8 in Figure 1B). For
electrophysiological recordings, zebrafish were anesthetized with
0.04% 3-amino benzoic acid and immobilized by intraperitoneal
injections of 3 5 µl of 0.5 mg ml−1 gallamine triethiodide
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FIGURE 1 | (A) A fluorescent image of zebrafish brain (dorsal view, anterior is up) showing the terminalis neurons and axons (arrows). (B) A schematic diagram

showing the experimental setup for RGC recordings in response to olfactory and TN stimulation. The numbers correspond with the following conditions: 1, 2–sham or

odor stimulation; 3, 4–activation or inhibition of dopamine receptors; 5, 6–activation or inhibition of GnRH receptors; 7, 8–manipulation of both dopamine and GnRH

receptors. (C) An overview of EVT. Prior work (Tanaka, 1996; Leopold et al., 2006; Freiwald et al., 2009) suggests that it may be the extremes (red dots), and not the

mean (black dots near the center of the circle), that produce strong responses in the brain.

dissolved in phosphate-buffered saline (PBS), and then placed
on a wet sponge with most of the body covered by a wet paper
towel. A slow stream of system water (distilled water with ocean
salt added, 3 g gal−1, pH 7.0) was directed into the mouth
to keep the fish oxygenized. The eye was slightly pulled out
of its socket and held in place by glass rods, thus exposing
the optic nerve. Single-unit RGC responses (determined by the
spike waveform) were recorded from the optic nerve by using a
Tungsten microelectrode (resistance, 5 10M�). Electrical signals
were filtered with a band pass filter between 30 and 3, 000 Hz.

To test the effect of olfactory stimulation on visual sensitivity,
we measured the light threshold required to evoke RGC
responses before and after olfactory stimulation. Each fish was
dark adapted for 30 min before the first RGC recording was
made. The light stimuli (full-field dim white light, generated by
a halogen bulb) were directed to the fish eye via a mirror system.
The intensity of the unattenuated light beam (log I = 0) measured
in front of the fish eye was 670 µW cm−2 (Optical Power Meter,
UDT Instruments, MD, USA). To determine the threshold, the
light intensity was first set below threshold level (e.g., log I =
−6.0) and then increased by 0.5 log-unit steps until the first light-
evoked RGC responses were recorded (criteria, 20% above or

below the rate of spontaneous firing). This light intensity was
noted as the threshold. For each recording, 10 stimuli (600 ms
flashes) were delivered at 3 s intervals.

Amino acids (methionine) were chosen to stimulate the
olfactory neurons to activate the ORC pathway. Previous studies
have demonstrated that amino acids are strong odors for
zebrafish (Edwards and Michel, 2002). Among the amino acids
tested in zebrafish, methionine produced the most obvious
and dose-dependent responses on visual function (Maaswinkel
and Li, 2003). In this study, odors (methionine, 0.5, 2,
and 5 mM; total 8 10 µl per stimulation) were delivered
to the nostril through a glass pipette. The light threshold
required to evoke RGC responses was measured before the
application of methionine, and was measured again within
10 s following the application of methionine. Thereafter, the
measurement was repeated at 1 min intervals for 10 min.
In total, 24 cells were recorded. 24 animals were used in
this process with 1 cell/animal for the recordings. Among
these 24 animals, in response to odor stimulation, 17 showed
increased visual sensitivity. In the remaining 7 animals, 6
showed no changes in visual sensitivity and 1 showed decreased
visual sensitivity.
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2.2. Extreme Value Theory
The extreme value theorem (Coles, 2001) that underpins EVT
(Figure 1C) is very similar to the central limit theorem (Jaynes,
2003). Both theorems involve limiting behaviors of distributions
of independent and identically distributed random variables
as n, the number of random variables, tends to ∞. However
while the central limit theorem is concerned with the behavior
of entire distributions of random variables, the extreme value
theorem only applies to the random variables at the tails of
those distributions.

To state this difference precisely, if x1, x2, ... , xn represent the
i.i.d. random variables from a distribution, then the central limit
theorem describes the limiting behavior of x1, x2, ... , xn while
the extreme value theorem describes the limiting behavior of the
extremes: max(x1, x2, ... , xn) or min(x1, x2, ... , xn) (Coles, 2001).
It encompasses a number of distributions that apply to extrema.

An extreme value distribution is a limiting model for the
maximums and minimums of a dataset. A limiting distribution
simply models how large (or small) the data to be modeled will
probably get. It is widely used in applications where there is
interest in not only estimating the average, but also the maximum
or minimum (Weibull, 1951, 1952; Galambos, 1994; Castillo
et al., 2005). For example, when designing a dam, engineersmight
not only be interested in the average yearly flood which foretells
the amount of water to be stored in the reservoir, but also in the
maximum flood, the maximum intensity of earthquakes in the
region during the past decade, or maximum strength of concrete
to be used in building the dam to mitigate the possibility of a
disaster. Castillo et al. (2005) list a number of applications where
extreme value distributions can be used.

Now that the preliminaries have been covered,
we can formally define an extreme value theorem
(Fisher and Tippett, 1928):

Let (s1, s2, ..., sn) be a sequence of independent and identically
distributed samples and let Mn = max(s1, s2, ..., sn). If a sequence
of pairs of real numbers (an, bn) exists such that each an > 0 and

lim
x→∞

P

(

Mn − bn

an
≤ x

)

= F(x) (1)

then if F(x) is a non-degenerate distribution function, it belongs
to one of three extreme value distributions: Gumbel, Fréchet or
Reverse Weibull.

In contrast to the Gumbel or Fréchet distributions which
are used for unbounded data, the Weibull distribution applies
to data that are bounded from below and when the shape (k)
and scale (λ) parameters are positive (the Reverse Weibull is
simply the opposite of the Weibull’s non-degenerate distribution
function). Moreover, the Weibull is used for modeling minima.
In order to use it for modeling data that fall in the upper tail of
a distribution, a minor adjustment needs to be made by flipping
the data such that maxima become minima before applying the
Weibull distribution. The probability distribution function of the
two-parameter Weibull distribution is given as:

f (x; λ, k) =

{

k
λ
( x
λ
)k−1e−( x

λ
)k , if x ≥ 1

0, if x < 0
(2)

Note that there are other types of extreme value theorems
one can make use of, such as the Pickands-Balkema-de Haam
Theorem (Pickands, 1975). We limit ourselves to the theorem in
Equation (1) in this work for the modeling of explicit tail data,
but we will invoke the Pareto distribution, which is derived from
the Pickands-Balkema-de Haam Theorem, in the modeling of the
overall distribution. This is described below in the next section.

3. A MODEL FOR CROSS-MODAL

SENSORY INFORMATION INTEGRATION

Now that the relevant background has been introduced, we
formally define our computational model for cross-modal
sensory information integration (Figure 2). It is motivated by the
following hypothesis: The tuning curves for RGC responses with
and without olfactory signals are different. The extreme values in
the tails of the distributions underlying those curves contribute to
the determination of the visual sensitivity of zebrafish and should
not be discarded as outliers.

The single unit recordings that we used for our experiments
can be regarded as samples from a large population. One way
to infer more about the population statistics is to extrapolate
from the available samples by fitting distributions to them and
sampling additional data. However, fitting a known distribution
to available data can be difficult because of limited sample sizes,
leaving one to make a “best guess” based on prior information
about the behavior of large sample statistics. The best guess can
come frommaking an assumption (for example, a null hypothesis
as a starting place), or a more rigorous method of model selection
using some metric.

If n represents the sample size, n → ∞ with the number
of RGC responses acquired from an animal as it senses its
environment over time. And the distribution of mean RGC
responses calculated throughout an animal’s entire lifecycle
becomes Gaussian. This assumption directly follows from the
central limit theorem. So perhaps the underlying distribution
of measured responses is also Gaussian (a typical assumption
in such modeling). Because our experiments involve two
different sets of RGC responses, with and without olfaction,
we can hypothesize that each set is normally distributed with
varying parameters. This null hypothesis can be tested through
commonly used measures of normality, failing which it can be
rejected and we can look for alternative distributions using a
model selection approach.

In statistical modeling, statisticians are often faced with the
task of selecting a suitable model (a distribution, in our case)
among a set of viable and finite candidates. There are several
metrics or selection criteria one can use to determine the best
explanatory model given the data. The Bayesian Information
Criterion (BIC) (Schwarz et al., 1978; Neath and Cavanaugh,
2012) serves as a canonical method for model selection when
priors are hard to state precisely. In a large sample setting the
model found by BIC is equivalent to the candidate model that is
a posteriori most probable, given the available data. It primarily
amounts to maximizing the likelihood function separately for
each candidate model and then choosing the one for which the
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FIGURE 2 | An overview of the proposed computational model of cross-modal sensory information integration. The red curve represents the RGC responses when an

olfactory stimulus is present and the green curve represents the responses when there is no olfactory stimulus present. The first step represents the data collection

effort from the wet-bench experiments. The second and third steps include fitting distributions to the data collected in order to draw samples for further processing.

The fourth step represents fitting a Weibull distribution in order to model the underlying difference between visual sensitivity when olfactory input (i.e., additional

sensory information) is present as opposed to when it is not. The final step is identifying an indicator function, I(x) that toggles between the two distributions based on

the sensory input received.

log likelihood is the largest, with a fixed penalty term for guessing
the wrong model.

To identify a good distribution to fit to non-normally
distributed empirical data, we used a Matlab implementation of
BIC1. A large set of valid parametric distributions were fit to the
data and sorted using the output of the BIC metric to compare
the goodness of the fits. The overall process returns a set of
fitted distributions with their respective parameters. The list of
distributions that were tried includes: Beta, Birnbaum-Saunders,
Exponential, Extreme Value, Gamma, Generalized Extreme
Value, Generalized Pareto, Inverse Gaussian, Logistic, Log-
Logistic, Log-Normal, Nakagami, Rayleigh, Rician, t Location-
Scale, andWeibull. It was assumed that all data were continuous.

1github.com/dcherian/tools/blob/master/misc/allfitdist.m

Our initial assumption that the overall data representing
RGC responses without olfactory signals are normally distributed
was rejected by the normality tests at the 1% significance
level (a detailed description of the normality tests is given
in section 4). Using the BIC method, the distribution that fit
accurately to the overall RGC response data without olfactory
stimulation was found to be the Generalized Pareto distribution
(see Supplementary Material). Interestingly, this distribution is
considered to be in the EVT family. The null hypothesis that
the overall RGC responses with olfactory stimulus are normally
distributed was not rejected at the 1% significance level by the
normality tests, thus we fit a Gaussian distribution to that data.

Suppose we have n observations, or number of RGC
responses. If xi represents the i-th RGC response where i ∈ (1,
2, ... , n), the population statistics (mean µ and variance σ 2) of
the RGC response data with olfactory signal are found as the
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unbiased estimates of the distribution parameters and are given
by the following equations:

µ =

n
∑

i=1

xi

n
(3)

σ 2
=

1

n− 1

n
∑

i=1

(xi − µ)2 for all i ∈ (1, 2, 3, ..., n) (4)

The probability density function for the Generalized Pareto
distribution with shape parameter k, scale parameter σ and
threshold parameter τ is given by the following equation:

y = f
(

x | k, σ , τ
)

=

(

1

σ

){

1+ k
(x− τ)

σ

}−1− 1
k

(5)

We used maximum likelihood to estimate the parameters k and
σ from the two-parameter Generalized Pareto distribution by
fitting RGC responses without olfaction2.

Having access to a model of the entire population facilitates
generative sampling, which in turn allows for better tail
modeling, and support for heightened visual sensitivity under
certain conditions. Such generative processes in the brain
may be responsible for a number of different phenomena,
as they facilitate generalization in learning from limited
sampling (Rao et al., 2002). We use random sampling and the
Metropolis-Hastings algorithm, a Markov chain Monte Carlo
(MCMC) sampling method (Hastings, 1970) to generate in total
100, 000 simulated RGC responses with and without olfaction,
respectively. The maximum (or the minimum) RGC response
values within these samples follow an EVD. For our analysis,
we concentrate only on the maximum RGC responses from the
distributions described above because the lowest possible RGC
response can be 0 spikes per second, indicating no response. Since
the RGC responses (both with and without olfactory signals) can
be assumed to be i.i.d samples from continuous distributions that
are bounded from below, the Weibull distribution is the correct
choice for modeling them. We expect the Weibull cumulative
distribution curves (CDFs) for RGC responses with and without
olfaction to be widely separated and the threshold RGC response
value for an olfactory signal to shift sensitivity leftward (see
Figure 3 for an example), indicating that the cells are now more
sensitive. This effect, replicated within the model, would confirm
in a more rigorous sense that the presence of olfactory signals
increases the fish’s sensitivity toward its surrounding and almost
endows it with night vision that would be otherwise impossible
in absence of those signals.

This process is analogous to the super-additivity phenomenon
in the multi-sensory superior colliculus of higher-order

2For finding the maximum likelihood estimates of the Generalized Pareto

distribution, we used the Matlab function gpfit, which only returns the estimates

of the shape k and scale σ parameters of a two-parameter Generalized Pareto

distribution. The function makedist was then used to create a probability

distribution object reflecting where samples are taken from, using the parameters

k and σ .

organisms like mammals, where the presence of two weak
sensory signals from the environment enhances the animal’s
neural response toward that environment (Holmes and Spence,
2005). The RGC threshold value represents an average RGC
response for visual sensitivity, which changes throughout
an animal’s entire life-cycle as it adapts to an ever-changing
environment. However, the threshold varies (decreases or
increases) in the presence or absence of a sensory stimulus
other than visual input. This leads us to the possibility of the
existence of some decision making mechanism in the fish’s brain
that toggles between two different distributions to adjust the
tuning of the RGCs based on sensory input. Mathematically,
this decision making procedure can be implemented as an
indicator function I(x). If θ represents the parameters of an
RGC distribution, i.e., the prior information available for RGC
responses with or without olfactory signals and x represents a
new RGC response due to a stimulus from the environment
such that x ∈ Rn (here n = 22, as we successfully retrieved 22
dimensions representing RGC spikes over time after stimulation
of the olfactory neurons from the wet-bench experiments of
Huang et al. For further explanation, see section 4), then the
indicator function I(x) can be represented as:

I (x | θ) =

{

1, if olfactory signal is present
0, otherwise

(6)

We speculate that the actual neural computation for the overall
phenomenon is far more complex and is not restricted to just two
modalities. However, given the recordings available for this study,
we limit our model to just one particular circuit.

3.1. Choices for an Indicator Function
For the indicator function, we address the following problem:
given a set of vectors representing RGC responses in spikes/s
with and without olfactory signals, is it possible for an indicator
function to identify whether a new RGC response has been
triggered after an olfactory signal or not? Our intuition behind
using an indicator function is that such a process exists in some
capacity in the brain where the presence of one signal enhances
the other signal, thereby eliciting responses much different from
the situation when the signal is not present. In essence, this
task can be formulated as a binary classification problem with
two possible outcomes: presence or absence of olfactory signals.
Ideally, any discrimitative supervised learning method can easily
solve the problem. For our analysis, we examine the utility of
support vector machines and an artificial neural network which,
to some extent, mimics the functions of a biological neuron and
is closer to the mechanism that the brain uses to process such
signals. The motivation for choosing these particular classifiers
is their simplicity—we desire an indicator function with an
efficient training regime that can operate over thousands of
multi-dimensional data points, such as a large collection of RGC
responses. Other classifiers (e.g., decision trees, random forests,
logistic regression) may also be suitable.

3.1.1. Support Vector Machine

The Support Vector Machine (SVM) is a supervised learning
approach that is widely used for classification and regression
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analysis (Cortes and Vapnik, 1995). Since our data is numeric and
high-dimensional, SVM is a natural choice as it has been found
to be extremely efficient in high-dimensional spaces for large-
scale classification problems. SVMs use a subset of training points
in the decision function, which form the “support vectors” that
define the decision boundary between classes. As a consequence,
it has been found to be memory efficient and has fast execution
times if the data are normalized. For analysis, we assumed our
data to be linearly separable and used a linear SVM formulation.
We normalize all data using min-max normalization.

An SVM model with a set of labeled training data tries to find
an optimal hyperplane for classifying new samples based on some
constraints. Given a training dataset, D = (xi, yi) of sizem with xi
= (x1, x2, ..., xm), an n-dimensional feature/attribute vector, and
label yi = -1 or +1, formally the SVM classifier can be defined as a
quadratic optimization problem solving the following equation:

min ‖w‖2 s.t yi(w
Txi + b) ≥ 1 for all i (7)

where w = (w1, w2, ..., wn) is a weight vector and b is the bias.
An important consideration when training an SVM model is

the parameter C that dictates the trade-off between having a wide
margin and correctly classifying training data.

min ‖w‖2 + C

m
∑

1

ξi s.t yi(w
Txi + b) ≥ (1− ξi), ξi ≥ 0 for all i

(8)
A larger value of C implies a smaller number of mis-classified
training samples and is prone to overfitting.

3.1.2. Artificial Neural Network

We also consider a multi-layer perceptron (MLP) neural network
as the indicator function. Similar to SVM, MLP is a supervised
learning algorithm that learns a non-linear mapping from input
x ∈ Rn, where n represents the number of dimensions, to y ∈

Rm where m can be any number m < n, depending on the
number of classes in the training dataset. However, unlike SVMs,
a simple MLP includes one or more hidden layers consisting
of artificial neurons. The hidden layers act as feature detectors
and gradually discover the salient features of the training data
through backpropagation (Rumelhart et al., 1986;Werbos, 1990).
Each neuron includes a non-linear and differential activation
function and is connected to every neuron in the previous
layer exhibiting a high degree of connectivity between layers.
As a result, due to the distributed nature of non-linearities,
the learning process is difficult to visualize. However, neural
networks are usually assumed to be non-parametric functions,
i.e., they can be used as function approximators without having
any prior information about the distribution of input or training
dataset and hence are well suited to represent the indicator
function. If x represents a p-dimensional input vector such that
x = (x1, x2, x3, ..., xp) with y = (+1,−1) as labels and g :R 7→ R

as the activation function, then the equation for a single neuron
is given by:

y = g

(

b+

p
∑

i=1

wixi

)

(9)

where w =
[

w1,w2,w3, ...,wp

]

represents the weights learned
through backpropagation.

4. EXPERIMENTS

4.1. Data Collection and Representation
As stated above, the first step in building a computational
model of this nature is to attempt to define the underlying
distribution of the data one is trying to explore. We use the
data from a study by Huang et al. (2005) for our analysis.
The data consists of single unit RGC responses measured in
spikes/sec before and after olfactory stimulation under varying
light intensity (see Figure 2 from Huang et al.). In terms of
raw data organization, it is primarily a histogram with the
x-axis representing the visual sensitivity of fish binned into
approximately 22 positions representing a timestamp and their
corresponding frequency measured in spikes/sec on the y-axis.
Under normal conditions, the minimum threshold light intensity
to invoke a retinal ganglion cell response in a dark-adapted
zebrafish embryo is 10−5. However, with olfactory stimulation
with methionine, the threshold light intensity decreases to 10−6.
We calculated the minimum RGC response threshold to be at 75
spikes/s. Hence, the data can be separated into two parts: one
with olfactory stimulus and the other without it. In total, there
were 22 RGC responses across time with olfactory stimulus and
29 without olfactory stimulation.

4.2. Experiment 1
The first experiment was to check whether the raw data we
collected from the experiments confirms our hypothesis that
the EVT can be applied to build an accurate model. We
posit that since the RGC responses with olfactory stimulation
represent extreme aberration from the baseline and are non-
negative integers, the Weibull distribution is the right candidate
for modeling our data. But how differently does our data fit
with the Weibull distribution vs. a central tendency model like
the Gaussian distribution? We explore this by comparing the
CDFs of the Weibull and Gaussian distributions with parameters
derived from our data.

4.3. Tests of Normality and Synthetic Data

Generation
Using the data collected from wet-bench experiments as a basis,
we simulated an expansive data space by fitting distributions
over the original data. The goal was to generate as much
evidence as possible for statistical inference. However, in order
to fit distributions to generate more samples from the existing
data, we need to make some assumptions about the underlying
distribution. Initially, as described above in section 3, we assumed
a null hypothesis that the distribution of RGC responses in
a zebrafish throughout its entire lifecycle is Gaussian. Since
our work involves two different sets of RGC responses—one
with olfactory stimulus and the other without it—under this
assumption the distributions underlying each should be Gaussian
with different parameters. To test this, we performed several
commonly used tests of normality: the Kolmogorov Smirnov
test (Massey, 1951), the Shapiro-Wilk test (Shapiro and Wilk,
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1965), and a Lilliefors test (Lilliefors, 1967, 1969; Conover and
Conover, 1980)3. Due to the small sample size (n = 22 or 29),
we preferred the Shapiro-Wilk test over Kolmogorov-Smirnov
and Lilliefors. For datasets that failed the normality test, The
BIC selection criterion was deployed to find another distribution
with the best fit. Afterwards, we generated 100, 000 non-negative
samples of RGC responses from the respective distributions for
further analysis.

4.4. Experiment 2
The second experiment was to check whether the points we
sampled confirm our hypothesis that the EVT can be applied
in a generative scenario. In order to verify this, we fit a Weibull
distribution to the top n RGC responses to understand how the
curves vary when olfactory input is present as opposed to when
it is not. The value n was selected via empirical observation.
The sampling methods used were: random sampling andMCMC
sampling. Since EVDs like the Weibull only apply to samples
at the tails of distributions, it is independent of the underlying
distribution of the data as a whole. Hence, irrespective of
the overall data distribution and sampling process, the results
of Experiment 2 for the Weibull distributions for the top n
responses should ideally be similar to Experiment 1. We expect
the Weibull cumulative distribution functions for data with
and without olfactory stimulus to be widely separated, with the
curve for data with olfaction shifting leftward, giving higher
probability scores to RGC responses that would be improbable
under conditions where olfaction is not engaged.

4.5. Experiment 3
Additionally, we wanted to corroborate whether we can define
a deterministic indicator function such that given some RGC
response it is possible for the function to identify if an olfactory
stimulus is present or not. In essence, this task becomes a
binary classification problem where the presence of olfactory
signals can be labeled as 1 and the absence as 0. As described
above in section 3, we use a linear SVM or a multi-layer
perceptron as our binary classifier. For consistency in the
operation of the indicator function, we limit the dimensionality
of all vectors to the dimensionality of RGC responses with
olfactory stimulus (n = 22). We use the 100,000 samples we
generated for each scenario (with olfactory stimulus and without
olfactory stimulus), dividing the sets into 80% training and 20%
testing partitions.

In summary, the entire modeling effort is encapsulated in the
following steps (also depicted in Figure 2):

1. Data collection and representation. This step consists
of collecting and representing data based on the wet-
bench experiments for control (without any stimulation)

3We used the following Matlab implementations of the normality tests: lillietest

(for the Lilliefors test), swtest (from Matlab central for the Shapiro-Wilk test),

kstest (for the one-sample Kolmogorov-Smirnov test). Each of these tests returns

a decision (1 or 0) for the null hypothesis that the data comes from a distribution

in the normal family, against the alternative that it does not come from such a

distribution. A result of 1 rejects the null hypothesis at the 5% significance level

(default). For our experiments, we set the significance level to 1%.

and experimental (with olfactory stimulation) zebrafish as a
histogram and collecting the statistics for further analysis.

2. Experiment 1. This first test consists of an experiment
to evaluate our hypothesis that EVT applies with the raw
data collected in step 1. We fit Gaussian distributions (to
the entire collection of data with and without olfaction
individually) and Weibull distributions (to the top-n RGC
responses from the two datasets). The value n was selected via
empirical observation.

3. Tests of normality and synthetic data generation. Here we
begin by assuming that the distribution of RGC responses
in a zebrafish throughout its entire life cycle is normal, and
attempt to falsify that assumption via tests of normality.
The appropriate distributions are subsequently fit to the
data to generate 100, 000 synthetic samples. The data with
olfactory stimulus follows the Gaussian distribution, whereas
the underlying distribution for data without olfactory stimulus
is Generalized Pareto.

4. Experiment 2. Similar to Experiment 1 but instead uses
100, 000 generated samples and only Weibull distributions
fit to the top-n samples generated to examine how olfactory
signals influence visual sensitivity as reflected by the CDF
curves for the two scenarios. The value n is selected through
empirical observation.

5. Experiment 3. This experiment involves identifying an
indicator function I(x) that can distinguish when an olfactory
stimulus is present and when it is not. Here this function
is a deterministic binary classifier, either a linear SVM or a
multi-layer perceptron.

5. RESULTS

5.1. Experiment 1
Figure 3 depicts the result of Experiment 1, which was
conducted to examine the difference between central tendency
modeling and EVT modeling. The data for this experiment were
what was directly collected from the wet-bench experiments
for both control (without olfaction) and experimental (with
olfaction) zebrafish.

As can be seen in the figure, with olfactory stimulation the
visual sensitivity in zebrafish shifts leftward, making the RGC
responses below the normal threshold of 75 spikes/s probable,
as indicated by the physiology experiments of Huang et al.
(2005). Moreover, if we look closely, the Weibull distributions
(represented by the red and blue solid and dashed lines) are a
better fit to the data because the RGC responses with olfactory
stimulation represent a set of extreme responses as opposed to
RGC responses without any stimulation. If we fix our attention
at the threshold RGC response at 75 spikes/s, the Weibull curves
provide a better explanation for getting an RGC response below
75 spikes/sec for olfactory stimulation in comparison to the
normal distribution, which makes those values more improbable.
In other words, the tuning becomes more sensitive if we use
the Weibull distribution. We plotted the curves by varying n
(n = 3, 8) of the top-n RGC responses. The tuning becomes more
sensitive as n becomes smaller.
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FIGURE 3 | Experiment 1. Cumulative Distribution Functions for zebrafish with and without olfactory stimulation at light intensity 10−5 and 10−6, respectively. The

curves depict the difference between central tendency modeling (green) and EVT modeling (red and blue). As can be seen, tuning becomes more sensitive when the

Weibull distribution is used. The number of maximal RGC responses taken is either 3 or 8 (indicated within the parentheses). Best viewed in color.

5.2. Tests of Normality and Synthetic Data

Generation
The null hypothesis that the data without olfactory stimulus are
normally distributed was rejected at the 1% significance level
for all of the tests. However, the other assumption of normality
for data with olfactory stimulus was not rejected at the 1%
significance level. Based on these results, we fit a Gaussian
distribution to the data with olfactory stimulus. Using the BIC
selection criterion to find the best fit, the distribution for the data
without olfactory stimulus was determined to be Generalized
Pareto. We then collected non-negative samples simulating RGC
responses via random sampling or MCMC sampling (100, 000
samples from each sampling method), to be used for fitting a
Weibull distribution to the top n samples in order to understand
how the curves vary when olfactory input is present (i.e., when
the overall distribution is Gaussian) as opposed to when it is not
(i.e., when the overall distribution is Pareto).

5.3. Experiment 2
Figures 4, 5 show the models of visual sensitivity calculated
over the simulated data from random sampling and MCMC
sampling4. Similar results are achieved for both sampling
methods. An important observation to note here is that tuning
is always more sensitive when olfactory stimulus is present. The
values of n in this experiment are much larger (n = 50, 250)
due to the increased availability of data, but still represent a
small number of points from the tail of the overall distribution.
The CDF curves for data with and without olfactory stimulation

4We ran experiments 1 and 2 ten times. In each of those trials, the leftward shift of

the distribution after olfactory stimulation was preserved.

are widely separated and the width of separation increases as n
grows larger. This reflects how the visual sensitivity threshold
can change throughout a fish’s life cycle as it is exposed to an
ever-changing environment and acquires new RGC responses
for modulating its internalized model of visual sensitivity. Note
that zebrafish build new cells within their nervous systems via a
neurogenesis process, meaning the number of responses available
at a point in time can change in a non-stimulus dependent way.
Our proposed model supports this phenomenon.

5.4. Experiment 3
With respect to testing the possible indicator functions I(x), we
began by considering a linear binary SVM classifier trained using
80, 000 generated samples and tested using 20, 000 generated
samples. With random sampling, we achieved a testing accuracy
of 95.5 (± 0.163) percent, but with MCMC sampling accuracy
decreased to 93.925 (± 0.123) percent. With a multi-layer
perceptron classifier, the accuracy dropped to 95.25 (± 0.007)
percent using the same training-testing split and data from
MCMC sampling5. The success of this experiment establishes
that the two different classes of RGC responses are separable.
Thus it is possible, in a statistical learning sense, to have a
mechanism to toggle between RGC tuning configurations when
an olfactory stimulus is present and when it is not. One possibility
for why the classification was successful in these experiments
is that the indicator function implicitly learns that the data are
distributed differently in the two classes (Generalized Pareto for
data without olfactory stimulus and Gaussian for the data with
olfactory stimulus). That the two classes of data are distributed

5Each of these experiments was run ten times. The numbers in parentheses

represent standard error.
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FIGURE 4 | Experiment 2. Cumulative Distribution Functions for zebrafish with and without olfactory stimulation at light intensity 10−5 and 10−6, respectively, with

data points generated through random sampling. The curves labeled “Control” in the legend describe the Weibull distributions (as represented by the solid blue and

red lines) without olfactory stimulus. As can be seen, tuning is most sensitive when an olfactory stimulus is involved. Best viewed in color.

FIGURE 5 | Experiment 2. Cumulative Distribution Functions for zebrafish with and without olfactory stimulation at light intensity 10−5 and 10−6, respectively, with

data points generated through MCMC sampling. The curves labeled “Control” in the legend describe the Weibull distributions (as represented by solid blue and red

lines) without olfactory stimulus. The result is very similar to random sampling—the tuning is more sensitive when an olfactory stimulus is involved. Best viewed in color.
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differently lends further support to our hypothesis that an
indicator function is involved in the integration of cross-modal
sensory information—the distributional difference facilitates a
very straightforward pattern recognition process to separate
the classes.

6. DISCUSSION

As vertebrates evolved over centuries, sensory organs adapted
with the ever-changing environment. In many vertebrate species,
at any given time the brain integrates and processes multi-
sensory information. In humans, for example, the functions of
the olfactory and visual systems are influenced by sensory input
from each organ. Most mammals have specialized multimodal
neurons in the superior colliculus that are capable of integrating
multiple stimuli from the environment and providing a uniform
reaction. In lower vertebrates such as fish, however, such
advanced mechanisms are absent. In zebrafish, the integration
of sensory information from the olfactory system facilitates
signaling transduction in the visual pathway. As a consequence,
retinal neural activities such as the firing of retinal ganglion
cells are increased. This is particularly important for wild type
animals that live under natural environmental conditions. For
example, zebrafish normally mate in the early morning hours
before the sun comes up, during which time the light illumination
is low. It is conceivable that under such conditions stimulation
of olfactory neurons may increase visual sensitivity and thereby
facilitate the process of mating. While the system mechanisms
underlying this olfacto-retinal sensory integration have been well
characterized, statistical models that describe the phenomenon
at the cellular level have not been described. In this paper, we
have described a computational model that supports the research
into how the visual system integrates information from other
sensory modalities.

The idea of building computational models for multisensory
input has been explored previously (Anastasio et al., 2000;
Driver and Noesselt, 2008; Angelaki et al., 2009). When it
comes to determining the statistical relationship between sensory
responses among different sensory organs, the Bayesian model
has been a preferred framework. However, almost all of the
existing work focuses on higher vertebrates such as mammals.
Angelaki et al. (2009) attempted to reconcile the difference
between the traditional physiological studies on multisensory
integration with computational and psychological studies using
Bayesian inference on the visual-vestibular system for the
perception of self-motion in macaques. They describe how the
multimodal neurons represent probablistic information defined
by multiple stimuli and propose that special neurons accomplish
near optimal cue integration through a linear summation of
input signals.

With respect to models of simpler animals, Wessnitzer
and Webb (2006) explore multimodal sensory integration
for navigation from the physiological perspective of the
insect’s nervous system. In zebrafish, using a similar linear
model (Hughes et al., 1998) the contribution of different
types of cone photoreceptor cells to photopic spectral visual

sensitivity was determined. This was done by re-modeling
the electroretinographic data recorded from the cornea, which
include absorbance spectrum of four types of cone photoreceptor
cells (cone cells that are sensitive to ultra-violet light, blue
light, green light, and red light, respectively) given as the visual
pigment template for the appropriate maximum absorption,
neural signals obtained from different cone cell types, relative
fraction of the individual cone cells across the retina, and
linear gains for each cone type (Cameron, 2002). The model
incorporates the first-order cellular and biophysical aspects of
cone photoreceptor cells and thereby predicts the second-order
physiological functions of cone cell-mediated visual sensitivity.
Using this model, linear gains that represent the strength of
four different types of cone cell-derived neural signals onto
four different inferred cone processes in the whole retina can
be assessed.

Turning to extreme value theory, the objective of nearly all
extant models in computational neuroscience has been to discard
the extreme values located at the tails of distributions as noise
and concentrate on the mean or average. However, evidence
suggests that extremes, and not means, of cell responses direct
activity in the brain. For example, the ability of primates, like
macaque monkeys, to identify individual faces can be localized
to a group of special neurons that fire in response to specific
regions of the face (Freiwald et al., 2009). An interesting finding
that came out of that study was that neurons were tuned to the
geometry of extreme facial features. Previous investigations along
this line concentrated on how the brain fundamentally adapts
itself to the statistics of the sensory world, extracting relevant
information from sensory inputs by modeling the distribution
of inputs that are encountered by the organism (Simoncelli and
Olshausen, 2001; Simoncelli, 2003). This led to the advent of
“sparse coding” which attempts to explain how neurons encode
sensory information using a small number of active neurons at
any given point in time (Olshausen and Field, 1997). A direct
extension of this work suggests that sparse coding is an all-
pervasive phenomenon used by all types of sensory neurons in
different modalities across different species (Olshausen and Field,
2004). EVT builds upon these concepts but is more specialized.

Much prior work related to EVT modeling has focused on
various non-biological applications from trend detection
in ground-level ozone (Smith, 1989) to quantifying
extreme precipitation levels using Generalized Pareto
distributions (Cooley et al., 2007). Other applications of EVT
include, but are not limited to, finance, telecommunications,
the environment (Finkenstadt and Rootzén, 2003), and
hydrology (Katz et al., 2002). Recent work in computer vision
and machine learning has extensively used the concept of
EVT (Shi et al., 2008; Broadwater and Chellappa, 2010; Scheirer
et al., 2011, 2014; Fragoso et al., 2013). For instance, for biometric
verification systems, Shi et al. (2008) used the Generalized Pareto
Distribution to model the genuine and impostor scores and
made a significant observation that the tails of each score
distribution contain the most relevant information that helps
in defining each distribution considered for prediction and
the associated decision boundaries, which are often difficult
to model.
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Our research extends this theory to multi-sensory inputs
through a model that demonstrates strong neural fidelity. With
a biologically-consistent information fusion algorithm based on
retinal circuits in the zebrafish, we believe that we have access
to a better general solution to the problem at hand and possibly
many other information processing problems of interest. In
this article, we have developed a neural computation model
that simulates the process of multi-organ sensory integration
and predicts the consequence of sensory integration in higher-
order brain functions. In contrast to Gaussian modeling, we
propose that EVT models of the extrema found in the tails
of the data can form a powerful basis for cross-modal sensory
information integration, facilitating heightened sensitivity in
targeted modalities that have been influenced by a stimulus
in the environment. This resulted in the development of a
computational EVT-based framework for multi-organ sensory
integration in the zebrafish that is not only an explanatory model
in neuroscience, but also shows promise for applications in
machine learning and neuromorphic systems.
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The goal of our research was to develop a compound computational model with the

ability to predict different variations of the “watercolor effects” and additional filling-in

effects that are triggered by edges. The model is based on a filling-in mechanism

solved by a Poisson equation, which considers the different gradients as “heat sources”

after the gradients modification. The biased (modified) contours (edges) are ranked and

determined according to their dominancy across the different chromatic and achromatic

channels. The color and intensity of the perceived surface are calculated through a

diffusive filling-in process of color triggered by the enhanced and biased edges of

stimulus formed as a result of oriented double-opponent receptive fields. The model can

successfully predict both the assimilative and non-assimilative watercolor effects, as well

as a number of “conflicting” visual effects. Furthermore, the model can also predict the

classic Craik–O’Brien–Cornsweet (COC) effect. In summary, our proposed computational

model is able to predict most of the “conflicting” filling-in effects that derive from edges

that have been recently described in the literature, and thus supports the theory that a

shared visual mechanism is responsible for the vast variety of the “conflicting” filling-in

effects that derive from edges.

Keywords: computational models, watercolor effect, filling-in, diffusion process, visual system mechanism

INTRODUCTION

One of the most important goals of the higher levels of visual system processing is to reconstruct an
appropriate representation of a surface after edge detection is performed by early vision. Such tasks
are attributed to the opponent receptive fields in the retina and in the lateral geniculate nucleus
(LGN). The visual system processing involves the cortical double-opponent as well as the simple
and complex receptive fields, which perform non-oriented and oriented edge detection of both
chromatic and non-chromatic edges (von der Heydt et al., 2003).

There are a number of visual phenomena and illusions that can provide information about
the mechanisms that enable the reconstruction of surfaces from their edges. These include the
watercolor illusions (Pinna et al., 2001) and the Craik-O’Brien-Cornsweet illusion (Cornsweet,
1970). In this study we will concentrate mainly on developing a computational model for the
watercolor illusions to include a prediction of “conflicting” watercolor effects.

The Watercolor Effect described in the literature refers to a phenomenon involving assimilative
color spreading into an achromatic area, produced by a pair of heterochromatic contours
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surrounding an achromatic surface area (Pinna et al., 2001;
Pinna, 2008; Devinck and Spillmann, 2009). The coloration
extends up to about 45◦ (visual degree) and is approximately
uniform (Pinna et al., 2001).

There have been many studies that investigated the chromatic
and the luminance parameters required for the two inducing
contours and for the inducing contours and background of
the watercolor effect (Pinna et al., 2001; Devinck et al., 2005,
2006, 2014; Pinna and Grossberg, 2005; Pinna and Reeves, 2006;
Tanca et al., 2010; Cao et al., 2011; Devinck and Knoblauch,
2012; Hazenberg and van Lier, 2013; Coia and Crognale, 2014;
Coia et al., 2014). The conclusion was that even though many
color combinations can produce the effect, the strongest result is
induced by a combination of complementary colors. The studies
of Pinna et al. (2001),Devinck et al. (2005, 2006) characterized
these findings as assimilation effects (i.e., the perceived color is
similar to the color of the nearest inducer). Reversing the colors of
the two inducing contours, reverses the resulting perceived colors
accordingly (Pinna, 2008).

However, a non-assimilation effect of coloration has also been
discussed (Pinna, 2006; Kitaoka, 2007). Pinna (2006) reported
that if one of the inducers is achromatic, while the other is
chromatic, the induced color can be complementary to that
of the chromatic inducer. Kitaoka (2007) demonstrated that a
combination of red-magenta or green-cyan can give rise to a
yellowish coloration, indicating that the perceived effect may
not be completely attributable to assimilation effects. Indeed, an
achromatic watercolor effect has been recently proved to exist,
albeit with a lower magnitude than the chromatic watercolor
effect (Cao et al., 2011).

The only computational model that has been reported to
explain the watercolor effect is called the “Form And Color
And Depth” (FACADE) model (Grossberg and Mingolla, 1985)
and is based on neurophysiological evidence from neurons in
the cortical areas V1–V4 (Pinna and Grossberg, 2005). This
model also attempts to explain a number of other visual
phenomena including the Kaniza illusion (Kanizsa, 1976), neon
color spreading (van Tuijl and Leeuwenberg, 1979), simultaneous
contrast, and assimilation effects. FACADE describes two main
visual processing systems: a boundary contour system (BCS) that
processes boundary or edge information; and a feature contour
system (FCS) that uses information from the BCS to control
the spreading (filling-in) of surface properties such as color and
brightness. According to this model, higher contrast boundaries
in the BCS inhibit lower-contrast boundaries thereby enabling
color to flow out through weaker boundaries.

A number of studies have proposed the FACADE model as a
possible mechanism for predicting the watercolor effect since it
explains some of the properties of the phenomenon (Grossberg
et al., 2005; Pinna and Grossberg, 2005; Pinna, 2006; Tanca
et al., 2010). However, neither the mathematical equations of
the FACADE model nor other previous studies have succeeded
in simulating and predicting all the experimental findings
concerning the watercolor effect. Moreover, the FACADE model
cannot predict the non-assimilative version of the watercolor
effect (Pinna et al., 2001; Kitaoka, 2007; Hazenberg and van
Lier, 2013; Kimura and Kuroki, 2014a). Kitaoka (2007) observed

that in the non-assimilative watercolor effect, the induced color
becomes more prominent when the outer contour has a higher
luminance (and thus a lower-contrast with respect to the white
background) than the inner contour. In this case, the BCS in
the FACADE model would be expected to inhibit the boundaries
of the lower-contrast outer contour and permit the color of the
outer contour to spread out. This prediction is not supported by
the actual perceived color as demonstrated in Figure 5, where
a yellowish color spreads in and there is no perceived magenta
color that spreads out, as the FACADE model would predict.

At present, the visual mechanisms responsible for the
watercolor effect are still unknown and the watercolor effect
“presents a significant challenge to any complete model of
chromatic assimilation” (Devinck et al., 2014).

In their study on the watercolor effect, Knoblauch et al.
(Devinck et al., 2014) summarized the requirements for a future
computational model: “In a hierarchical model, two other steps
need to be considered, surface detection then color filling-in.”

In this study, we present a computational model, which
detects edges through biological receptive fields, modifies them,
and then applies them as a trigger for a diffusive filling-in process.
The objective of the model is to predict both the assimilative and
the non-assimilative configurations of the watercolor effect.

COMPUTATIONAL MODEL

The main building blocks of the model are: (A) The inducing
stimulus (B) The chromatic and achromatic opponent receptive
fields (RFs). (C) The oriented double-opponent RFs, which
detect chromatic and achromatic edges. (D) Calculation of
the modification value through determination of the dominant
chromatic/achromatic stimulus edge among several edges, which
have different spatial scales. (E) Calculation of the new modified
edges that trigger a diffusive filling-in process. (F) The filling-
in process, performed by solving the Poisson equation. (G)
The perceived afterimage of both the assimilative and the non-
assimilative watercolor effects (Figures 1A-G).

Model Assumptions
The model is based on the following assumptions: (A) The visual
system needs to reconstruct surfaces that are not represented in
the early vision stages, which perform chromatic and achromatic
edge detection (in the retina and the cortical V1 and V2 areas). In
addition, we assume that in cases such as the watercolor stimuli,
the visual system performs filling-in processes in order to make
an “educated guess” and to reconstruct surfaces. (B) Each edge
triggers a diffusion process and determines its color (Cohen-
Duwek and Spitzer, 2018). (C) The trigger for the diffusion
process is determined by the interactions between the gradients
of the image, i.e., the gradients between the inner contour (IC)
and the outer contour (OC), the gradients between the IC and
the background, and between the OC and the background. The
exact contribution of each gradient is determined automatically
according to the chromatic and achromatic stimulus. (D) The
visual system uses separated chromatic opponent channels [L/M,
(L+M)/S and achromatic], in order to process each contrast
color pathway separately (Kandel et al., 2012). This assumption
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FIGURE 1 | The Flowchart of the suggested filling-in model. (A) The chromatic stimulus. (B) The opponent RFs, which are used as the first derivative in the chromatic

and chromatic channels. (C) The oriented RFs, which represent the real chromatic gradients of the stimulus. (D) The calculation of weight function W for the

modification of the gradients. (E) The calculation of the triggers for the filling-in process, i.e., the real and the modified edges where each of them exists in the x and y

directions. (F) The filling-in process, calculated by the Poisson equation. (G) The solution of the diffusion equation yields to the perceived image.

is in agreement with experimental studies which claimed that
the (L/M) and S-cones are regulated differently with respect to
the watercolor effect (Devinck et al., 2005; Kimura and Kuroki,
2014a,b). (E) The chromatic channels are mediated by the
Luminance channel (the achromatic channel). This assumption
is supported by the observation that there is color spreading in
response to a stimulus where both the IC and OC have the same
color (hue) but a different luminance (Devinck et al., 2006).

Rationale for the Model
The early stages of the visual system, the retina, and the early
visual areas V1 and V2, have receptive fields (RFs) that mainly
detect edges. In the retina, for example, the opponent receptive
fields perform a Difference of Gaussian (DOG) operation, which
is approximately a second spatial derivative while the chromatic
retinal opponent RFs performs derivatives on the color domain.
The simple and complex RFs in the V1 and V2 areas perform
oriented edge detection. It has been assumed that at higher visual
processing levels, the system acts to reconstruct the surfaces that
are not represented (lacked) by the early visual areas. In order to
perceive the physical world and not only its edges/gradients, the

system (visual system) needs to reconstruct the image from its
edges (von der Heydt et al., 2003). Tomimic the original surfaces,
the system could use the image’s original gradients (in a similar
fashion to that used in the engineering world, i.e., by solving
the Poisson equation or by any parallel method (Bertalmio
et al., 2000; Pérez et al., 2003). However, we now believe that
in addition, the visual system also performs additional tasks,
which can be regarded as “educated guesses” in order to enhance
important information in the scene. Examples of such “educated
guesses” include: edge completion, detection of occluded objects
in the image, and the interpretation of specific gradients as
indicative of adjacent surfaces. The watercolor stimulus is such
an example of specific edges, where the visual system supplies a
guess regarding the chromatic surface. We suggest here, that this
educated guess calculation is achieved bymodifying the gradients
and modifying the weights of the image gradients. In addition,
we describe a set of rules that determine how the weights are
calculated in the context of the stimulus.

In order to produce the chromatic (or the achromatic)
diffusion process, the visual system needs to enhance or change
the original gradients in order to obtain an image which creates
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the perception and avoids a return to the original image. Based on
psychophysical findings, the model assumes that the chromatic
edges, which determine the filling-in effect, are significantly
influenced by the intensity and by the chromaticity of the
contours (IC and OC) (Pinna et al., 2001; Devinck et al., 2005,
2006; Pinna and Grossberg, 2005; Pinna and Reeves, 2006; Cao
et al., 2011; Hazenberg and van Lier, 2013; Coia and Crognale,
2014; Kimura and Kuroki, 2014a,b).

The Watercolor Stimulus
The input of the model comprises the watercolor stimulus and
its variations, which are composed of a pair of heterochromatic
contours surrounding achromatic surface areas, Figure 1A.

Chromatic and Achromatic Opponent RF
The first component of the model (Figure 1B) is designed to
simulate the opponent receptive fields (Nicholls et al., 2001).
The spatial response profile of the retinal ganglion RF is
expressed by the commonly used DOG. The “center” signals for
the three spectral regions, L, M, and S, (Long, Medium, and
Short wavelength sensitivity, respectively) that feed the retinal
ganglion cells, are defined as the integral of the cone quantum
catches, Lcone,Mcone, and Scone with a Gaussian decaying
spatial weight function (Shapley and Enroth-Cugell, 1984; Spitzer
and Barkan, 2005):

ic = icone ∗ fc; i ǫ {L,M, S}

is = icone ∗ fs; i ǫ {L,M, S} (1)

fj =

exp

(

−(x2+y2)

ρ2
j

)

πρ2j
, j ∈ {c, s}

Where Lc,Mc and Sc represent the response of the center area
of the receptive field of each cell type, Equation 1. Ls,Ms, and Ss
represent the surround sub-region of these receptive fields. ρc and
ρs represents the radius of the center and the surround regions,
of the receptive field of the color-coding cells, respectively. fc and
fs are the center and surround Gaussian profiles, respectively and
∗ represents the convolution operation.

For the center-surround cells, the opponent responses are
expressed as: OPL+M− , OPS+(L+M)− and Y (for the summation
of the L, M, and S channels) in order to express the
Luminance channel.

OPRG : OPL+M− = Lc −Ms (Red− Green channel)

OPBY : OPS+(L+M)− = Sc − (L+M)s (Blue− YellowChannel)

(2)

Y = Lc +Mc + Sc (Luminance channel)

Where Lc,Mc, sc, Ls,Ms, and Sc are the cell responses to the
receptive filled sub-regions: center and surround, Equation (1).

Oriented Double-Opponent RF
The color coding of the opponent receptive fields, Equation
(2), encodes color contrast, but not spatial contrast. In
other words, the color opponent receptive fields are able to

differentiate between colors, but cannot detect spatial gradients
or edges (Conway, 2001; Spitzer and Barkan, 2005; Conway and
Livingstone, 2006; Conway et al., 2010). The double opponent
receptive fields, however, are sensitive to both spatial and
chromatic gradients (Spitzer and Barkan, 2005) since they have
color opponent receptive fields both at the center and in the
surround RF regions (Shapley and Hawken, 2011). A large
number of studies have reported that many double-opponent
neurons are also orientation-selective (Thorell et al., 1984;
Conway, 2001; Johnson et al., 2001, 2008; Horwitz et al., 2007;
Solomon and Lennie, 2007; Conway et al., 2010). Accordingly,
the model takes into account the oriented double opponent RF,
ODO, to the three opponent RF channels, OPL+M− ,OPS+(L+M)− ,
and Y (Conway and Livingstone, 2006), Equation (2). We
modeled this chromatic RF structure, ODOL+M− , ODOS+(L+M)−

and OY by a convolution between the Gabor function and
the opponent responses, Equation (3), Figure 1C. It should be
noted that previous work indicates that by using the linear
Gabor function, we neglect some non-linearities e.g., half wave
rectification in the simple cells and full rectification in the
complex cells, in the neuronal responses (Movshon et al., 1978;
Spitzer and Hochstein, 1985).

ODOL+M− = OPL+M− ∗Gaborodd,θ ,σ

ODOS+(L+M)− = OPS+(L+ M)− ∗Gaborodd,θ ,σ (3)

OY = Y ∗Gaborodd,θ ,σ

Gaborodd,θ ,σ = exp(
−

(

x′2 + y′2
)

2σ 2
)sin(2πx′) (4)

Gaboreven,θ ,σ = exp(
−

(

x′2 + y′2
)

2σ 2
)cos(2π x′)

Where : x′ = xcos (θ) + ysin(θ)

y′ = −xsin (θ) + ycos(θ)

This opponency in both spatial and chromatic
properties produces a spatio-oriented-chromatic edge
detector, Equation (3).

Where θ represents the orientation of the normal to the
parallel stripes of a Gabor function and σ is the standard
deviation of the Gaussian envelope of the Gabor function.

Gradient Weights
We chose to express this property of gradient modification by
adding weighted functions to the Oriented-double-opponent
RF (Figure 1D). The model modifies the original gradients
(Equation 3) by multiplying the double-opponent responses
by the weight function, Equation (6), Figure 1D. In order to
calculate the weight functions, several Gabor-filters on different
scales [different standard deviations, σ , Equation (5)] are
calculated and the maximum response to a specific Gabor RF
scale is chosen as the weight function for each channel separately,
Equation (6). This maximum response represents the dominant
gradient in the image, which is used by the model to determine
the strongest effect on the diffusion process. This determination
of the strongest effect (i.e., the strongest edge in the stimulus) is
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in agreement with previously reported psychophysical findings
(Pinna et al., 2001; Devinck et al., 2005, 2006; Kimura and Kuroki,
2014a,b). The multiplication operation of the chosen weight is
done with a 2D Gabor filter, Equation (5). (It should be noted
that we could also obtain good results by making a summation of
the responses from all scales).

RRG,i =
∣

∣OPRG ∗Gaboreven (θ , σi)
∣

∣

RBY ,i =
∣

∣OPBY ∗Gaboreven (θ , σi)
∣

∣ (5)

RLuminance,i =
∣

∣Y ∗Gaboreven (θ , σi)
∣

∣

Where σi represents different standard deviations of the Gaussian
envelope (different scales).

WRG(i, j) = max {RRG,1(i, j),RRG,2(i, j), . . . ,RRG,N(i, j)}

WBY (i, j) = max {RBY ,1(i, j),RBY ,2(i, j), . . . ,RBY ,N(i, j)} (6)

WY (i, j) = max{RLuminance,1(i, j),RLuminance,2(i, j), . . . ,

RLuminance,N(i, j)}

WhereWRG,WBY , andWLum are the maximal responses among
the several scales at each channel.

This calculation is done separately for both the chromatic
channels and the achromatic channels (RG, BY, and Y). After
determining which scale yields the strongest response at each
channel, the three responses are summarized across the channels,
Equation (7), to reflect a combination of all the edges in each
spatial location. In other words, the weight function W, for
each spatial location in the image (or stimulus), is taken as
the normalized sum of the maxima, values from the strongest
response scale, across all the channels, Equation (7).

W = WRG +WBY +WY (7)

This calculation procedure can detect the middle chromatic (or
achromatic) edge between the two contours (IC and OC), which
are the triggers for the diffusion process. This detection is possible
because in most cases, the dominant edge is a coarse edge, which
contains the edge that is adjacent to the inner and the outer
region. The center of this coarse region is often the edge between
the two chromatic contours in the watercolor stimuli.

The Diffusion Triggers (Second Derivative)
The trigger for the diffusion process consists of the sum of
two components: the modification component (β) and the
“real” (α) oriented double-opponent RF component, Equation
(8). These modification components are added separately for
each orientation directions and then, the modified gradients
are convolved again with an odd Gabor filter (in the same
orientation, θ), Equation (10), in order to perform a second
derivative. Both derivative direction (x and y axis, θ = 0 and
θ = π

2 ) are then summarized in order to create the divergence,
Equation (10), Figure 1F, which is then used as the trigger for
the diffusion process in all the required directions, Equation
(10), across each of the channels. The trigger for the diffusion
process is the oriented-double-opponent response, Equation (3),

multiplied by the weight function (W) in each individual channel,
Figure 1E, Equation (8).

TrigRG = ODORG · (α + βW(x, y))

TrigBY = ODOBY · (α + βW) (8)

TrigY = OY · (α + βW)

Where α and β are constants and α > β. TrigRG, TrigBY , and TrigY
are the diffusion triggers in each channel.

Note that the results of the above equations change only the
weights of the ODO (Equation 3) responses, and therefore their
spatial properties and polarities are retained. According to the
suggested model, the prominent gradient makes the strongest
contribution to the filling-in process, Equation (7). However, the
other two gradients also contribute to the filling-in process, due
to the chromatic and achromatic strength of their gradients. This
consideration of the different gradients is in agreement with the
Weber contrast rule (Kimura and Kuroki, 2014a).

Filling-In Process
The filling-in process is expressed by the diffusion (or heat)
Equation (10) (Weickert, 1998), and is determined according
to the weighted triggers, Equation (8), Figure 1E. The model
assumes that the filling-in process represents “isomorphic
diffusion” (von der Heydt et al., 2003; Cohen-Duwek and
Spitzer, 2018), although it does not necessarily negate other
possible filling-in mechanisms, such as “edge integration” (Rudd,
2014). This filling-in process is reminiscent of the physical
diffusion process, where the signals spread in all directions, until
“blocked” by another heat source (image edges). We would like
to emphasize that this type of filling-in infers that the borders
(chromatic or achromatic) do not function primarily as blockers,
but instead they act as heat sources that can trigger the diffusion.
We would like to emphasize that this type of filling-in infers that
the borders (chromatic or achromatic) do not function primarily
as blockers, but instead they act as heat sources that can trigger
the diffusion, and then spread in opposite directions and thus
trap the diffused color. The diffusion spread, therefore, will be
blocked by the heat source, in such a case. These principles are
applied in our model through the well-known diffusion equation
(Weickert, 1998):

∂I
(

x, y, t
)

∂t
− D∇2I

(

x, y, t
)

= hs = −div
(

Trigc
)

;

where c = {L+M−, S+(L+M)−, Y} (9)

where I
(

x, y, t
)

denotes the image in a space-time location
(

x, y, t
)

, D is the diffusion (or heat) coefficient, and hs represents
a heat source. The time course of the perceived image is assumed
to be very fast, in accordance with previous reports (Pinna et al.,
2001). This time course is also termed “immediate filling-in” (von
der Heydt et al., 2003).

Following this assumption, for the sake of simplicity, we can
ignore the fast-dynamic stages of the diffusion equation, and
therefore compute only the steady-state stage of the diffusion
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FIGURE 2 | Illustration of the calculation of the edges for the “heat sources” filling-in process from the stimulus gradients. (A) 1-D achromatic stimulus with white and

black contours. (B) The second derivative of the stimulus (A), with a negative sign. (C) The modified second derivative of the stimulus (A). The arrows indicate the

direction and the color of the diffusion process. The higher heat sources (the gradients in the middle) have a greater influence on the filling-in process.

process. Consequently, the diffusion (heat) Equation (5) is
reduced to the Poisson Equation (10).

D∇2I = −hs = div
(

Trigc
)

; where c = {RG, BY, Y} (10)

D∇2I = div((α + βW) ·ODO) (11)

The “heat sources” are the weighted second derivative of an
opponent channel; Figure 1E (weighted oriented-double-
opponent). The heat equation (diffusion equation) with
heat sources requires second derivatives, reflecting the “heat
generation rate” which is the second derivatives of a heat source.
Because the edges are playing a role as heat sources, the values
near the edges do not decay over time. Since the two adjacent
edges operate as heat sources with opposite signs, the conclusion
is that they are operating with opposite directions, and therefore
the diffusion process of one color (one heat source) cannot
diffuse to the “other” direction. This approach is not consistent
with previous reports that the edges function as borders that
prevent the colors from spreading (Cohen and Grossberg, 1984;
Grossberg and Mingolla, 1985, 1987; Pinna and Grossberg,
2005). In the suggested model the derivatives trigger a positive
diffusion process toward one side of the spatial derivative and
a “negative diffusion” process to the other side of the spatial
derivative, Figure 2 demonstrates this type of diffusion, which is
considered separately for each color channel.

METHODS

In this section we describe each stage of the model’s
implementation in detail.

Opponent RF
For the sake of simplicity, we compute the opponent response
of the opponent receptive fields as color-opponent only, where
each chromatic encoder has the same spatial resolution. This is
computed by an opponent color-transformation (van de Sande
et al., 2010), Equation (12). This transformation converts each
pixel of the image I0, in each chromatic channel R,G, and B into
opponent color-space, via the transformation matrix O (van de
Sande et al., 2010). In order to obtainmore perceptual value in the
luminance channel, we have slightly modified the transformation

matrix O, and use a = 0.2989, b = 0.5870, and c = 0.1140,
instead of using a = b = c = 1/

√
3 as originally reported

(van de Sande et al., 2010). These values are taken from the Y
channel in YUV (or YIQ) color space. The Y represents the Luma
information: Y = 0.2989R + 0.5870B + 0.1140C. IOPPONENT =

OPPONENT{RGB} as follows:

IOPPONENT =





ORG

OYB

OY



 =





1/
√
2 −1/

√
2 0

1/
√
6 1/

√
6 −2/

√
6

a b c









R
G
B



 (12)

Another perceptual option for the opponent transformation
matrix is to use the transformation presented by Wandell (1995),

IOPPONENT = MOpponentW{MLMS {MXYZ {RGB}}}

MXYZ =





0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505





MLMS =





0.2430 0.8560 −0.0440
−0.3910 1.1650 0.0870
0.0100 −0.0080 0.5630



 (13)

MOpponentW =





1 0 0
−0.59 0.80 −0.12
−0.34 −0.11 0.93





IOPPONENT =





OY

ORG

OYB



 =





0.2814 0.6938 0.0638
−0.0971 0.1458 −0.0250
−0.0930 −0.2529 0.4665









R
G
B





(14)

These matrix values are calculated from the linear conversion
of the RGB color space to the XYZ color space, which is then
converted to the LMS color space to which we apply the opponent
transformation fromWandell (1995), Equation (13).

where ORG, OYB, and OY, Equations (12–14) are the
new channels of the transformed image IOPPONENT. R, G,
and B are the red, green, and blue channels of the input
image I, respectively.
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Oriented Opponent and
Double-Opponent RF
The oriented opponent RFs are modulated as convolution
between each opponent channel and an odd Gabor function,
Equation (4). For the sake of simplicity, we discretized the Gabor
function and instead of computing the exact Gabor functions,
we used a discrete derivative filter in two directions, vertical (y-
axis, θ = 0), and horizontal (x-axis, θ = π

2 ), Equations (15–16)
(Gonzalez and Woods, 2002).

Gaborodd,x ≈ Godd,x = [−1, 1] ; Gaborodd,y ≈ Godd,y = [
−1

1
] (15)

Gaboreven,x ≈ Goeven,x = [−1, 2,−1] ; Gaboreven,y ≈ Geven,y = [

−1

2

−1

]

(16)

The above discretization of the Gabor filters: Godd,x and Godd,y

also represent the discrete gradient operator ∇ :

∇I = (∇xI,∇yI) = (I ∗ Godd,x, I ∗ Godd,y) (17)

The structure of the oriented-double-opponent receptive field
can be seen as a filter which acts as a second derivative in both
the spatial and chromatic domains.

Weights of Modified Edges
In order to calculate the response of an opponent channel to a
Gabor RF on different scales, Equation (5), we use a Gaussian
Pyramid (Adelson et al., 1984). In this way, the image is down-
sampled instead of up-sampling the Gabor filter.

Rc,i =
∣

∣GaussianPyramid{OPc}σi ∗ Gaboreven (θ)
∣

∣ (18)

Filling-In Process
The divergence operator, div Equation (10), is computed as:

div (F) =
∂F

∂x
+

∂F

∂y
= F ∗ Godd,x + F ∗ Godd,y (19)

Where F is an image input.
Therefore, Equation (10) can be written as:

△Iop = ∇
2Iop = div(Trig) = Trigx ∗ Godd,x + Trigy ∗ Godd,y

(20)

Parameters
We performed a set of simulations in order to determine the
constants α and β . We found that increasing the β parameter
(increasing the weight of the modified gradient, ODO, Equation
8) increases the saturation of the predicted result (since the level
of the relevant gradient is increased). This means that choosing
a higher value for β increases the saturation of the filled-in
predicted color and also increases its intensity while preserving
its hue. The α parameter affects the magnitude of the original
gradient of the original stimulus. We arrived at the conclusion
that the ratio between α and β determines the level of the filled-in
predicted saturation. In all the simulations presented here α = 1
and β = 0.5.

Comparison to Psychophysical Findings
In order to compare the predictions of the model to
psychophysical findings we created sets of images that contain the
same color values that have been used in previous psychophysical
experiments (Devinck et al., 2005; Kimura and Kuroki, 2014b).
Each color value used in the stimulus was converted from the CIE
Lu’v’ 1976 color space to the sRGB color space, in order to create
the input images for the model. The model was then applied to
each image stimulus, and the predicted colors were calculated and
converted back to the CIE Lu’v’ 1976 color space. These CIE Lu’v’
1976 color values are presented in the results section.

RESULTS

The results present the simulations of the model through its
equations (according to the Methods section) implemented by
MATLAB software. The model’s equations were solved in a
similar way to that reported in “Methods for Solving Equations”
(Simchony et al., 1990) but another option was through “Poisson
Image Editing” (Pérez et al., 2003).

Model’s Simulation and Predictions
The model and simulation results (Figure 1G) are divided into
three parts. The first part presents the model predictions for the
assimilative (classic) watercolor effect. The second part presents
the predictions of the model for the non-assimilative (non-
classic) watercolor effect, while the third part presents the model
predictions that relate to additional properties of the watercolor
effect: the influence of the background luminance, and the effect
of the inner color luminance on the perceived hue and the
perceived brightness (Devinck et al., 2005, 2006; Cao et al., 2011;
Kimura and Kuroki, 2014a,b).

Predictions—Assimilative (Classic) Watercolor Effect
The model simulations were tested on a large number of classic
stimuli with a variety of chromatic thin polygonal curves (e.g.,
star shapes) that produce the watercolor effect. Figure 3 shows
that the model succeeded in predicting the correct coloration
of the classic assimilative watercolor effect. Note that the most
of the assimilative watercolor effects present the complementary
colors of the IC and the OC (the IC and the OC color are
complementary in these stimuli). Our model indeed predicts a
strong filling-in color response to such stimuli, Figures 3A–C.

Figure 3 demonstrates that the filling-in perceived color is
more prominent in the predicted result (right side), which
represents the model prediction for the corresponding stimulus,
i.e., the original stimuli (left side). The filling-in effect of the
stimuli with orange and purple polygonal edges were obtained
as expected, Figure 3A, as well as a reddish color and cyan,
Figure 3B. The level of saturation in the simulation results
can be controlled by the parameters α and β , Equation (8).
We also tested our model with achromatic watercolor stimulus.
Figure 3C shows that the model correctly predicts a perceived
darker or lighter inner area, according to the luminance of the
inner contour.
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Comparison to psychophysical findings
We confronted our model predictions with quantitative
psychophysical results (Devinck et al., 2005). Figure 4 presents

FIGURE 3 | The model’s predictions for assimilative watercolor stimuli. (A) The

classic watercolor stimulus (left) and the model’s predictions (right). (B)

Additional example of an assimilative watercolor stimulus (left), with different

colors, and the model’s predictions (right). (C) An example of achromatic

watercolor stimulus (left) and the model’s predictions (right). Our model

predicts that in the assimilative watercolor stimuli, the inner contour color is

spread to the inner area of the stars.

the predictions of the model in CIE Lu’v’ (1976) coordinates
instead of RGB images, see Methods. In order to enable
the comparison between the model predictions and the
psychophysical results, we applied the same set of colors as
described in Devinck et al. (2005), as parameters to our model,
see Methods.

Figure 4 demonstrates the comparison of the model
prediction with Devinck et al. (2005) findings, which tested
the assimilative effect on three pairs of colors: Orange and
Purple, Red and Green, and Blue and Yellow. Note that, the
psychophysical findings are obtained from a hue cancellation
test and therefore represent the complementary colors of the
perceived colors; however, our results represent the predicted
perceived colors. Most of the predicted colors, Figure 4A, are
in agreement with the psychophysical findings, Figure 4B. Only
in the orange and the purple stimuli pair the predicted color is
slightly more yellowish then in the psychophysical findings for
the IC: Orange OC: Purple stimulus (Figure 4A top left) and
slightly more bluish then in the psychophysical findings for the
IC: Purple OC: Orange stimulus (Figure 4A top right).

Predictions—Non-assimilative (Non-classic)

Watercolor Effect
We also tested two known versions of the non-assimilative
watercolor effect (Pinna, 2006; Kimura and Kuroki, 2014a). In

FIGURE 4 | Comparison between the predictions of the model and the psychophysical findings of the assimilative effect, both presented in u’v’ (CIELu’v’ 1976) color

space. The prediction of the model (A) and the chromatic cancelation data (B) that are taken from Devinck et al. (2005). Each row (A,B) presents a pair of IC and OC

colors, which are orange–purple, red–green, and blue–yellow, respectively. The colored dots (A) represent the predicted results. The colored lines (A) represent the

hue line of the IC contour color that was used in each pair of contours.
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FIGURE 5 | The model’s predictions for non-assimilative watercolor stimuli.

Each row presents different color variation of the inner and outer contours

(A–C). Column I presents color configurations which produce a perceived

non-assimilative effect, while column II presents color configurations that

produce a perceived assimilative effect, even though the diffused perceived

color does not reflect the color of the inner contour only. The colors predicted

by the model are yellowish in the non-assimilative configurations (I), and

blueish in the opposite assimilative configuration (II).

this case, we chose to test the three chromatic stimuli colors
as tested originally by Kimura and Kuroki (2014a) for the
non-assimilative watercolor effect. The stimuli in these versions
have chromatic and achromatic edges/contours (Figure 5A) or
specific pairs of colors (Figures 5B,C).

Kimura and Kuroki (2014a,b) psychophysically tested
stimuli similar to those in Figures 5A,B and found that the
induced colors were yellowish. The psychophysical results also
demonstrated that a stimulus such as that in Figure 5A (left star),
yielded a complementary color (yellowish) to the OC (bluish).
Our model correctly predicts these complementary perceived
coloration effects (filling-in effect), Figure 5A (left star).

Again, in accordance with psychophysical findings, our
model could also correctly predict the influence exerted by the
location of the chromatic contours, as to whether the same or
complementary filling-in color is perceived in the inner area
(Pinna, 2006; Kimura and Kuroki, 2014a), Figure 5A.

Kimura and Kuroki (2014a) observed that the perceived
colors were not necessarily the “same” as or “complementary”
to the IC/OC, but could be a combination of the IC and OC
colors, Figures 5B,C (left stars). In agreement, the model results
(Figure 5II) show indeed that the perceived color is determined
by combination of the outer and the inner contours. In Figure 5B
(left star), for example, the red IC contributes the same (red)
color to the coloration effect, while the magenta OC contributes
its complementary color (green). An additive combination of red
and green colors yields a perceived yellowish coloration (Berns,
2000). These results are consistent with the model principles
and Equations [Filling-in process; Equation (10)], such that both
the IC and OC contours contribute as triggers to the filling-in
process. The model correctly predicts the general trend that has
been shown in previously reported experimental results (Pinna
and Reeves, 2006) where the perceived chromatic filling-in color

was determined by the combined influence of the chromatic and
achromatic edges.

Comparison to psychophysical findings
Furthermore, we confronted our model predictions with
quantitative psychophysical results (Kimura and Kuroki, 2014b).
In order to enable the comparison between the model predictions
and the non-assimilative watercolor effect experiment results,
we applied the same set of colors as described in the results
of Kimura and Kuroki (2014b), as parameters to our model,
see Methods.

The psychophysical experiments of Kimura and Kuroki
(2014b) investigate both the assimilative and the non-assimilative
effects as well as the role of intensity in the perceived effect.
Figure 6 presents the model predictions and the results of
Kimura and Kuroki (2014b) on a large repertoire of stimuli.

Figure 6 presents the predicted (A) and experimental results
(B) of stimuli that share the same IC color at each sub-figure
while the experiment tested 8 different OC colors. The top row
presents the results for the red IC color and the bottom row
presents the result for the achromatic IC color, while the outer
color was presented with different chromatic colors. Left column
presents the result when the IC color has a higher luminance level
and the right column present the results when the IC color has a
lower luminance level.

The stimuli with higher luminance of the red IC (Figure 6B)
yielded perceived colors which were ranged from red to orange.
Therefore, this trend of results shows an assimilative reddish
color effect. The predicted result (Figure 6A) shows assimilate
effects in adjustment to the red line. However, the perceived
color is more reddish than orange as in the experimental results
(Figure 6B). The stimuli with lower luminance of the red IC
(Figure 6B) yielded an oval shape adjacent to the -S line. Our
result also predicts an oval shape, but the shape is adjacent to
the L line. It will be discussed in Discussion. The stimuli with
higher luminance of the achromatic IC yielded a small magnitude
of the perceived effects, in both the experimental (Figure 6B) and
the predicted (Figure 6A) results. However, in the experimental
results the effects slightly tend to be yellowish, while in the
predicted results the effect is almost invisible (no filling-in effect).
The stimuli with lower luminance of the achromatic IC also
yielded a yellowish perceived color in the experimental results. In
the predicted result the predicted colors are the complementary
colors of the OC. It has to be noted that the achromatic
configuration of the experimental result were tested also in
additional studies such as Pinna (2006) and Hazenberg and van
Lier (2013), and their trend of results are in better agreement with
the prediction of the model (Figure 6A), see Discussion.

The Role of the Luminance Contrast Between the IC

and the OC
Having discussed the model’s predictions to highly saturated
stimuli from the literature with different variations of chromatic
properties (Figures 3, 5) we then tested the model’s predictions
for stimuli with different luminance as well as different chromatic
properties. Devinck et al. (2005) and Pinna et al. (2001)
showed that the magnitude of the filling-in effect increases with
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FIGURE 6 | Comparison between the predictions of the model and the psychophysical findings for the assimilative and non-assimilative effects. The prediction of the

model (A) and the chromatic cancelation data (B) where done for 8 different colors of the OC, similarly as Figure 4 Kimura and Kuroki (2014b). Top row (A,B)

presents the experimental (B) and the predicted (A) results to stimuli with red IC. Bottom row present the experimental (B) and the predicted (A) results to stimuli with

achromatic IC and the 8 different colors for the OC. In the left Column at each subfigure (A,B) the luminance of the IC is higher than the luminance of the OC. In the

right column at each subfigure (A,B) the luminance of the IC is lower than the luminance of the OC as in Kimura and Kuroki (2014b).

FIGURE 7 | The role of the luminance level of the IC and the OC. In both

stimuli (I,II) the hue of the IC is reddish and the hue of the OC is bluish, but with

a different level of luminance intensity. In stimulus I, the IC has a low luminance

level (dark red), while the OC has a high level of intensity. The predicted color is

yellowish (I right), thus the perceived effect is a non-assimilative effect. In

stimulus II, the IC has a high luminance level, while the OC has a low intensity

(dark blue). The predicted color is reddish (II right), thus the perceived result is

due to an assimilative effect.

increasing luminance contrast between the relevant contours.
Our model predicts this effect of luminance contrast between
the IC and OC. Figure 7 presents the model predictions to a
“switching” effect (non-assimilative: Figure 7I vs. assimilative:
Figure 7II) whereby the luminance contrast determines whether
the perceived effect will be assimilative or non- assimilative
(Kimura and Kuroki, 2014a). Even though the IC color in
both stars is reddish and the OC color blueish, the predicted
colors are different (pale yellowish in the left star and pale
reddish in the right star), Figure 7. It should be noted that
in this case, the model’s prediction is in agreement with
the experimental results of Kimura and Kuroki (2014a) that
showed that the luminance condition suitable for the non-
assimilative color spreading is the reverse (in their Weber

contrast) of the assimilative color spreading. We argue that
these experimental findings (Kimura and Kuroki, 2014a) shed
a new light on the common assumption in the literature
that assimilative and non-assimilative are different effects and
are derived from different mechanisms (Kimura and Kuroki,
2014a,b). This topic will be discussed in more detail in
the Discussion.

An additional important finding relates to the claim that only
the assimilative type of watercolor effect is possible when the IC
and the OC have the same level of luminance (Devinck et al.,
2005). Accordingly, ourmodel predicts that the assimilative effect
should be perceived under such iso-luminance conditions and
also predicts that the effect will be weaker than when the IC and
the OC have different luminance values.

The Role of the Luminance Contrast Between the

Background and the Contour
Several experimental studies that tested the role of background
luminance on the perceived watercolor effect (Devinck et al.,
2005; Cao et al., 2011; Kimura and Kuroki, 2014a) reported that
the luminance contrast between the IC and the background, and
between the OC and the background have a significant influence
on the perceived effect.

Figure 8A presents the model’s predictions for a response to
the same stimuli used by Kimura and Kuroki (2014a), indicating
that when the background is white (high luminance), the
perceived color is yellowish. In contrast, when the background
is darker (low luminance, Figures 8A,B), there is a tendency to
a more greenish perceived color. This is because a change in the
luminance of the background produces a change in the contrast
between the contours (IC and OC) and the background, which in
turn, influences the perceived effect. Importantly, the changes in
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FIGURE 8 | The influences of the background luminance and the luminance

ratio between the IC and the OC on the predicted filling-in colors. The left

column (Stimulus) presents the original stimuli. The right column (Prediction)

presents the model’s predictions. The IC/OC ratio is higher in rows (A) than in

rows (B), because the IC is darker in (B) than in (A). When the IC is darker (B),

the predicted color is greenish (more prominent in the predicted images,

Prediction), while when the IC is lighter (A) the predicted color is yellowish,

when the background luminance is high (A: upper left, Prediction) and

greenish when the background is darker.

perceived color predicted by the model were in accordance with
the experimental results (Kimura and Kuroki, 2014a).

Figure 8B demonstrates that there are three options for
luminance contrast that play a role in the watercolor effect.
The first one is the contrast between the IC and the OC,
the second, the contrast between the IC and the background,
and the third one is the contrast between the OC and the
background. In Figure 8B the luminance of the IC is lower
than in Figure 8A. As a result, the perceived filling-in color
appears greenish in the stimulus with the white background (high
background luminance). In contrast, the perceived filling-in
color in Figure 8A appears yellowish. These perceived coloration
effects were intensified in the model’s simulation (Figure 6 right)
and support the suggestion that both the background and the
luminance ratio between the IC and the OC contribute to the
perceived effect. These predictions are in agreement with the
psychophysical findings of Kimura and Kuroki (2014a).

DISCUSSION

We present here a generic computational model that describes
the mechanisms of the visual system that activate the creation of
chromatic surfaces from chromatic and achromatic edges. Our
hypothesis was that these mechanisms can be revealed through a
study of visual phenomena and illusions, such as the assimilative
and non-assimilative watercolor effect and the Craik–O’Brien–
Cornsweet (COC) illusions. The suggested model can be divided

into two stages (or components). The first component determines
the dominancy of the edges that trigger a diffusive filling-in
process. The second component performs the diffusive filling-in
process, which triggers the diffusion by heat sources. This process
is modeled by the Poisson equation. The diffusion process is
actually the same mechanism described for the afterimage effect
(Cohen-Duwek and Spitzer, 2018).

In order to test the hypothesis, we developed a computational
model that is able to predict both the assimilative and the non-
assimilative watercolor effects. The model predictions, which are
supported by psychophysical experiments (Pinna et al., 2001;
Devinck et al., 2005, 2006; Pinna and Grossberg, 2005; Pinna
and Reeves, 2006; Cao et al., 2011; Coia and Crognale, 2014;
Kimura and Kuroki, 2014a,b), argue that both the assimilative
and non-assimilative watercolor effects are derived from the
same visual mechanism. In addition, the model can successfully
predict quantitatively and qualitatively the psychophysical results
reported by many researchers, such as the influence of the
background luminance, contour intensities, contour saturations,
and the relationship between them (Pinna et al., 2001; Devinck
et al., 2005, 2006; Pinna and Grossberg, 2005; Pinna and Reeves,
2006; Cao et al., 2011; Coia and Crognale, 2014; Kimura and
Kuroki, 2014a,b).

Comparison to Other Models
The only computational model in the literature, that is relevant
to the watercolor effects, is the FACADE model (Pinna and
Grossberg, 2005). In a more recent publication of Pinna and
Grossberg (2005), the FACADE model was challenged by testing
several stimulus parameters acting in the watercolor effect, such
as the role of the contrast between the IC and the OC, the
role of the background luminance, and different shape variations
of the stimulus. While the FACADE model could predict the
results of the stimuli on the assimilative watercolor effect it
was not designed to, and indeed was unable to, predict the
non-assimilative watercolor effect and its properties.

The FACADE model comprises two components. The first
component, the BCS, detects the borders that block the diffusion
process. The second component, the FCS, spreads the color to
all directions until it is blocked by edges. The FACADE model
is unable to predict the non-assimilative effect first because the
spread of color is derived from the chromatic surface itself, and
there is no mechanism that creates complementary colors. A
second reason is that the border, which is detected by the BCS,
prevents the OC color of the watercolor effect from spreading
inside the inner area of the stimulus.

The ability of the FACADE model to predict only the
assimilative effects (Pinna and Grossberg, 2005; Pinna, 2006;
Cao et al., 2011; Kimura and Kuroki, 2014a,b) has contributed
significantly to the general consensus in the literature that
the assimilative and non-assimilative effects are derived from
different mechanisms. In contrast, Kimura and Kuroki (2014a)
found strong psychophysical evidence that assimilative and non-
assimilative effects both share the same Weber contrast rule
under specific psychophysical constraints. However, despite these
Weber rules, they concluded that the effects might still involve
different mechanisms.
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Unlike FACADE, two factors allow our model to predict the
non-assimilative watercolor effect. First, each edge in the stimulus
triggers a diffusion process. Therefore, each edge contributes
to the achromatic areas i.e., the inner area and the outer area.
The color adjacent to the achromatic area contributes its color
i.e., triggers a diffusion process of the same color, to this area;
while the color in the other side of the edge contributes the
complementary color to the same area. In other words, the
color in the outer side of an edge triggers a diffusion process of
its complementary color. The reason why the complementary
color is obtained from the model is explained in the Model
section. The exact colors that will be spread are calculated by
the responses of the double-opponent RFs, Equations (8–10).
The resultant colors, are therefore not necessarily exactly the
“same” or “complementary” to the IC/OC, but rather a linear
combination of the colors of the IC and the OC. In addition, the
model assumes that the main role of the contours is to trigger
the diffusion process as “heat sources,” (Equation 10), and not as
primarily designed to block the diffusion process.

It could be claimed that additional computational models that
have been suggested for edge integration should be regarded here
as competitors, which can explain this filling-in mechanism of
chromatic and achromatic surfaces. Rudd (2014) summarized
and discussed several computational models designed to perform
the edge integration function in the visual system. He argued
against the idea that the filling-in effect results from the activation
of a low visual spatial frequency channel, due to the fact that the
spatial extent of the filling-in effect is far larger than the area or
distance spanned by the lowest spatial frequency filters in human
vision (about 0.5 cycle/degree) (Wilson andGelb, 1984). It should
be noted that the watercolor effect has been shown to spread over
45◦ (Pinna et al., 2001), a spatial range that is not consistent with
a low spatial frequency of the visual system.

Although Rudd (2014) also argued against the diffusive filling-
in mechanism, we believe that his justification was based on
the specific diffusive FACADE model suggested by Grossberg
and his colleagues (Grossberg and Mingolla, 1987; Grossberg,
1997; Pinna and Grossberg, 2005). According to FACADE, the
chromatic edges function as borders to block the diffusive
process. If the watercolor stimulus is open (unclosed boundaries),
the FACADE model predicts that the color would leak from
the open ends, which, in reality, does not occur. In contrast,
our diffusive computational model does not fail in such a case.
Figure 9 demonstrates that our model successfully predicts this
effect, because the edges in our model are used as triggers,
Equation (10), rather than borders for diffusion.

Rudd (2014) suggested a qualitative “Edge integration” model,
through long range receptive fields in area V4 (Roe et al., 2012).
Rudd suggested that lightness and darkness “edge integration”
cells in V4 could integrate the responses of V1 simple receptive
fields with a light or dark direction toward the center of the V4
receptive field. An additional neuron in the higher level of the
visual pathway hierarchy then integrates these receptive fields,
and performs a subtraction operation between the lightness
and the darkness “edge integration” receptive fields. This model
qualitatively predicts specific induction effects [Figures 2, 9 in
Rudd (2014)] but fails to predict classic filling-in effects, such

FIGURE 9 | The watercolor effect with open boundaries. The left column

(Stimulus) presents the original watercolor stimulus with open boundaries

(Pinna et al., 2001). The second column (Prediction) presents the model’s

prediction. Even with open boundaries, the filling-in is perceived (Stimulus), as

correctly predicted by the model (Prediction).

as the watercolor illusion that manifest filling-in in all directions
and over very wide spatial regions.

Since Rudd (2014) related the induction effects to filling-
in phenomena, he supplied an additional argument against
the diffusive filling-in model, which is based on the model
of Grossberg (Grossberg and Mingolla, 1987; Grossberg, 1997;
Pinna and Grossberg, 2005). This argument is related to the
FACADE model’s failure to predict the specific induction effects,
[Figure 2 in Rudd (2014)] and Figure 9.

There is currently a disagreement in the literature as to
whether these specific induction effects are the result of a filling-
in mechanism, an adaptation mechanism of the first order
(Spitzer and Barkan, 2005), or a local or (remote) contrast
mechanism (Blakeslee and McCourt, 1999, 2001, 2003, 2008).
We argue that a visual effect may not necessarily be determined
by a single dominant mechanism, and that several mechanisms
could be involved. Different mechanisms could give rise to
contradicting effects on one hand, or alternatively could work
in synergy to enhance the perceived effect. An interesting
question is whether this induction effect can also be predicted
by our proposed model. Figure 10 demonstrates that our filling-
in model can predict the first order variation of the specific
induction effect, [Figure 2 in (Rudd, 2014)]. Since this effect is
predicted by our filling-in model, and also by an adaptation of
the first order model (Spitzer and Barkan, 2005), we believe that
the induction effect can be attributed to both mechanisms.

Experimental results show that the size of the inducer areas
and the size of the induced area play a crucial role in the perceived
induction effect (Shevell and Wei, 1998). The suggested filling-in
model is based on edges that trigger a diffusion process, therefore
the size of the induced area and the size of the inducer area do
not play a role in our filling-in model. However, these two spatial
factors do play a major role in the adaptation of the first order
mechanism (Spitzer and Barkan, 2005).

We believe that there is a certain confusion in the literature
regarding the source and the mechanisms of the induction and
the filling-in effects. Kingdom (2011), for example, argued in
his review that: “. . . ‘filling-in’ of uniform regions is mediated
by neural spreading has been seriously challenged by two sets
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FIGURE 10 | Induction effect and the model’s prediction. (A) The original induction stimulus from Rudd (2014) (Stimulus), and the model’s prediction (Prediction). The

second row (B) presents the luminance of the original image (orange line) and the predicted perceived luminance (at blue line) along the orange and blue axes in (A).

The predicted perceived luminance [demonstrated along the blue line in (A)] is higher than the original luminance [demonstrated along the orange line in (A)] in the left

disk (including the inner circle and the outer ring of the disk), and shows a lower level of luminance than the original value in the right disk.

of findings: 1. That brightness induction is near-instantaneous
and 2. That the Craik–Cornsweet–O’Brien illusion is dependent
on the presence of residual low-frequency information and is
not disrupted by the addition of luminance noise. ‘Filling-in’
should at best therefore be considered as a metaphor for the
representation. . . ”. We argue that these claims are problematic,
based on different psychophysical results (Pinna et al., 2001),
and also query the feasibility of a mechanism, which is based on
spatial filtering.

Kingdom (2011) assumed that these two effects of induction
and other filling-in effects (the COC effect) derive from the
same mechanism. For this reason, he argued against a diffusive
filling-in mechanism, since a diffusive process requires more
time. Kingdom (2011) also based his arguments on the findings
reported by Blakeslee and McCourt (2008) that the temporal
response of the induction effect (simultaneous contrast) lagged
by<1ms. In contrast, Pinna et al. (2001) found that the temporal
response of the watercolor effect is about 100ms. We believe
that there is no contradiction between the two temporal results
(Pinna et al., 2001; Blakeslee and McCourt, 2008), since they are
associated with two different mechanisms, namely induction and
the diffusive filling-in process. The first mechanism (induction
of the first order) (Spitzer and Semo, 2002; Spitzer and Barkan,
2005; Tsofe et al., 2009; Kingdom, 2011) occurs in/at early visual

areas, such as the retina, while the second mechanism (COC
or watercolor, diffusive filling-in) occurs in a higher visual area.
In addition, the spatial filling-in spread of 45◦, reported for
the watercolor illusion cannot be explained by any receptive
field or low-spatial frequency channel of the visual system
(Rudd, 2014).

In this context, we contend that positive and negative
aftereffects (such as in “color dove illusion” and the “stars”
illusion) (van Lier et al., 2009; Barkan and Spitzer, 2017), are
perceived as a result of a diffusive filling-in process that cannot
be explained by any spatial filtering mechanism. The reasons for
this are: (1) The perceived color is obtained in an area that has
not been stimulated by any color, at the time that the color is
perceived [aftereffect with filling-in as in the “color dove illusion”
and Van Lier “stars” (van Lier et al., 2009; Barkan and Spitzer,
2017)]. (2) The location of the achromatic reminder contour
determines and triggers the perceived color. The filling-in model
proposed here shares the same diffusion component, Equation
(10), as suggested for the positive and the negative aftereffects
(Cohen-Duwek and Spitzer, 2018). Although Kingdom (2011)
supported the description of the filling-in and induction events
by the filter models of Blakeslee and McCourt (2008), their
model cannot predict the assimilative and the non-assimilative
watercolor effects, or the aftereffects.
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Predictions for Watercolor Properties
Having discussed the options of various alternative models for
the “filling-in” phenomena, we were interested to test our model’s
predictions with studies that define general properties and rules
for the watercolor effect, although without a computational
model (Kimura and Kuroki, 2014a). We have already described
the success of our model in correctly predicting experimental
results (Kimura and Kuroki, 2014a) demonstrating crucial
properties regarding the strength of the watercolor effect and
its relation to the assimilative and non-assimilative effects.
We explain below how the basic structure of the suggested
model can explain these findings, without requiring any
additional components.

Complementary colors: Several studies have demonstrated
that a maximal filling-in response is perceived when the IC
and the OC have complementary colors (Pinna et al., 2001;
Devinck et al., 2006) and it should be noted that the model
correctly predicts this trend, Figure 6. This can be explained
by the model equations (Equations 3–10), through solving the
Poisson equation. The IC triggers an assimilative filling-in (of
the same color as the IC) toward the inner area, while the OC
triggers a non-assimilative filling-in, with the opposite color to
the IC contour (Figure 2, i.e., its complementary color), toward
the inner area. According to the model, if the color of the OC is
complementary to the color of the IC, the combination of colors
that diffuse to the inner area will be the same as the color of the
IC (assimilative color) and complementary to the color of the OC,
which makes it the same color as the IC again. Consequently, the
perceived color is enhanced.

Luminance contrast: Several studies have reported that the
magnitude of the filling-in effect increases with increasing
luminance contrast between the IC and OC contours (Pinna
et al., 2001; Devinck et al., 2005; Devinck and Knoblauch, 2012).
This property of the luminance contrast is treated similarly to
the chromatic channels. The weights of the modified gradients
calculation, Equations (7–8), gives greater dominancy to the
gradients between the IC and the OC. It is therefore not
surprising that the model correctly predicts the importance of
the luminance contrast, between the IC and the OC, in the
watercolor effect.

Saturation: Devinck et al. (2006) showed that increasing the
saturation of the outer and inner contours increases the shift in
chromaticity of the filling-in effect. This information is included
in the model through the chromatic opponent channel, Equation
(3). Higher color saturation is expressed as a higher response in
the chromatic opponent channels. This property has been tested
and the model predictions show good agreement with the results
of experimental studies.

Weber rule – IC contrast/OC contrast: Kimura and Kuroki
(2014a) reported that the ratio between the IC luminance
contrast and the OC luminance contrast determines the
perceived filling-in effect, Figure 8. The IC contrast is the Weber
contrast of the chromatic IC luminance and the background
luminance, while the OC contrast is the Weber contrast of
the chromatic OC luminance and the background luminance,
Equation (21). Note that since the background is achromatic, this
Weber contrast is related only to the luminance domain. Kimura

and Kuroki (2014a) argued that if the IC contrast is smaller than
the OC contrast, an assimilative effect is perceived, Equation (21).
In contrast, if the IC contrast is larger than the OC contrast, a
non-assimilative effect is perceived, Equation (21).
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Where LIC, LOC, and LBkg are the luminances of the IC, OC, and
the background, respectively.

Our model was tested with a variety of stimuli with
different luminance backgrounds, different chromatic
contours (Figures 8A,B), and different Weber ratios. Figure 8
demonstrates the predictions of the Weber contrast rule with
non-assimilative effect. Additional stimuli were tested, but
showed a smaller perceived effect. Interestingly, the Weber
contrast rule and the predictions of our model do not necessarily
always yield the exact assimilative or non-assimilative colors,
but rather a different color as found experimentally (Kimura
and Kuroki, 2014a). For example, the stimuli in Figures 8A,B

have the same colors (red and magenta), but because the IC in
Figure 8A has a higher luminance than the IC in Figure 8B,
this gives rise to a yellowish color in Figure 8A but a greenish
color in Figure 8B. Note that despite the difference in luminance
levels, both effects share the same trend of Weber contrast rule,
and thus both appear as non-assimilative effects. The model’s
predictions are in agreement with the Weber contrast rules
(Kimura and Kuroki, 2014a), Figure 8. This demonstrates that
both the model and the Weber contrast rule can predict in
which contrast configuration the perceived effect is assimilative
or non-assimilative.

Let us explain how our model can predict this Weber contrast
rule. If an IC has a high value of Weber contrast, the “heat
source” located on the edge between the IC and the background
has the highest value and the diffusion process from this edge
has a strong influence on the perceived color. Accordingly, the
color spreading from this “heat source” (the edge between the
IC and the background) to the inner area has the same color
as the color of the background (white Figure 8A), and the
complementary color of the IC (cyan—the complementary color
of the red IC), Figure 8A. The cyan color, which is a combination
of green and blue, contributes to this bluish-greenish perceived
effect (Figure 8B).

We were interested in whether the Weber contrast rule is
applicable to the achromatic watercolor stimuli. Cao et al. (2011)
conducted a psychophysical study in order to investigate the
influence of the luminances of the IC, OC, and the background
on the perceived achromatic watercolor effect. They found that
the filling-in effect disappeared when the luminance of the OC
was between the luminances of the IC and the background.
Kimura and Kuroki (2014a) reported that the findings of Cao
et al. (2011) are consistent with their psychophysical findings,
and also with their suggestion for the role of the Weber contrast
rule. The prediction of ourmodel (Figure 11) is also in agreement
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FIGURE 11 | The model’s predictions for chromatic watercolor stimuli. In the

left column (Stimulus I), the luminance of the OC (gray) lies between that of the

IC (black) and the background (white). On the right side, (Stimulus II) the

luminance of the IC lies between that of the OC and the background. The

predicted filling-in luminance inside the left stimulus (Prediction I) is lower than

the predicted filling-in luminance inside the right stimulus (Prediction II). Note

that the Weber contrast of the OC is smaller than the Weber contrast of the IC

in the left stimulus (I), and larger than the Weber contrast of the IC in the right

stimulus (II). The topic is discussed in the Discussion section of the text.

with the Kimura and Kuroki (2014a) findings. In Figure 11,
the luminance of the OC lies between that of the IC and the
background. In terms of the Weber contrast rule, the Weber
contrast of the OC is smaller than that of the IC. Therefore,
such a configuration should lead to a non-assimilative perceived
effect. However, since the perceived color inside the star is darker
than the background (Figure 8I); this might be seen as a diffusive
effect of the IC color (“assimilative” effect), which is black.
According to our model, the perceived color is a combination
of the same color as the IC (black) and the complementary
color of the OC (gray, which is the complementary of gray),
therefore, the model correctly predicts this effect. Accordingly,
the terms “assimilative” and “non-assimilative” watercolor effects
are not the precise terms regarding the perceived colors of the
achromatic watercolor stimuli. It should be noted that there
might be a dependency of the perceived effect on the stimulus
size. This property should be further investigated experimentally.

Not all experimental studies agree about the perceived color
in the non-assimilative watercolor effect (Pinna, 2006; Kimura
and Kuroki, 2014b). Kimura and Kuroki (2014b), for example,
claim that if the luminance of the IC is low (very dark
IC), the perceived filling-in effect is predominantly yellow,
regardless of the OC color. Kimura reported this finding
to be inconsistent with previous results reported by Pinna
(2006), which described a complementary color filling-in effect
with black IC and chromatic OC combinations. Additional
experimental study supports the results of Pinna (2006) and the
idea that complementary colors are perceived, when the IC color
is dark (Hazenberg and van Lier, 2013). Themodel results predict
that the perceived colors are predominantly complementary to
the OC colors, when the IC is dark. Even though the predicted
results, Figure 6, are predominantly complementary to the OC
colors, when the IC color is dark red, the predicted colors are
slightly shifted to the red IC color. When the IC is achromatic the
predicted colors, Figure 6, are the complementary colors to the
OC colors.

Our model, thus, supports the findings of Pinna (2006) and
Hazenberg and van Lier (2013), Figure 6, and is not in agreement

with Kimura and Kuroki (2014b) because the chromatic OC
triggers a filling-in effect that is complementary to the inner area,
and therefore the perceived color will be complementary to the
OC (the IC is achromatic and so does not contribute any color
to the effect).

Model’s Predictions for the COC Effect
Although our model is mainly concerned with the predictions of
the watercolor illusions, there are a number of other examples
of filling-in effects, including the COC effect. We believe that
the COC effect is driven solely by a diffusion mechanism,
since the physical stimulus in this effect is only an edge. The
model prediction for the COC effect, which is demonstrated in
Figure 12, uses the same set of parameters as the watercolor
illusions (Figures 3, 5, 7–9, 11). Our suggestion that both
phenomena (watercolor and COC) are related to the same visual
mechanism, is in agreement with (Devinck et al., 2005; Todorovi,
2006; Cao et al., 2011) who showed that the watercolor stimulus
profile is a discrete version of the COC stimulus profile. The
success of the model prediction of the COC effect supports
the suggestion that both effects (which are physically built only
from edges) share the same “heat sources” diffusion mechanism,
which is triggered by edges. The COC effect can actually be
considered as a simpler case of the diffusive filling-in effect than
the watercolor effects.

There are three main classes of computational models that
have been used to investigate the COC effect. The first class is
called the “Diffusive models” (Grossberg and Mingolla, 1987).
Grossberg and Mingolla (1987) showed that the FACADE model
can correctly predict the COC effect. Nevertheless, the FACADE
model, in this case, can predict the COC effect when the stimulus
contains open boundaries, but only through using an additional
component that detects illusory contours, Figure 12. The illusory
contours component will detect the illusory edges around the
COC stimulus (Figure 12), and will prevent the color from
spreading. However, this component is not necessary for the
watercolor illusion, which can contain open boundaries. Figure 9
presents, for example, open boundaries, and it can be seen that
there is no perceived effect of edge completion (illusory contour).
It has to be noted that the suggested model does not include
a component that detects illusory contours, and therefore our
model does not predict filling-in effects that involve illusory
contours e.g., “Neon Color Spreading.” Our model suggests
that the illusory contours components are not necessary for the
watercolor mechanism.

The second class of models is termed the “Spatial filtering
models,” where these models utilize low-frequencies spatial filters
in order to predict the filling-in effects (Morrone et al., 1986;
Burr, 1987; Morrone and Burr, 1988; Ross et al., 1989; Blakeslee
andMcCourt, 1999, 2001, 2003, 2004, 2005; Dakin and Bex, 2003;
Blakeslee et al., 2005; Kingdom, 2011). We argue that the spatial
filtering approach has limitations in predicting the COC effect
because the filling-in can be spread to sizes which cannot be
explained by the sizes of the receptive fields that exist in the
LGN or V1–V2 cortical areas. In addition, the COC effect can be
obtained from edges that are built only from ODOG (Oriented
Difference of Gaussian) filters (Blakeslee and McCourt, 1999).
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FIGURE 12 | The model’s ability to predict the Craik–O’Brien–Cornsweet (COC) effect. The left image (A) represents the original COC effect (Stimulus, left), and the

model’s prediction (Prediction, right). The lower row (B) presents the luminance of the original stimulus (orange line) and predicted perceived luminance (blue line)

along the orange and blue axes in (A).

The third class of models is termed the “Empirical models.”
These models are designed to estimate the most likely reflectance
values based on the pattern of the luminances observed in the
image, together with learnt image statistics (Purves and Lotto,
2003; Brown and Friston, 2012). Typically, such an Empirical
approach may explain why we perceive these visual effects,
but cannot explain the neuronal mechanisms that lead to the
perceived effects.

Neuronal Sources of the Filling-In Effect
Studies designed to identify the neuronal source of the filling-in
effects that are triggered by edges, e.g., the watercolor and the
COC effects, can shed additional light on the possible neuronal
mechanisms. A recent fMRI study (Hong and Tong, 2017)
compared the responses of the visual areas (V1–V4) to real
colored surfaces and to illusory filled-in surfaces, such as occur
in the afterimage effect of van Lier “stars”(van Lier et al., 2009).
Hong and Tong (2017) found a high correlation between the two
types of stimuli, the real and the illusory, only in areas V3 and V4.
They, therefore concluded that the perception of filled-in surface
color occurs in the higher areas of the visual cortex.

Rudd (2014) suggested an “edge integration” model that
works through long range receptive fields in area V4 (Roe et al.,
2012). Both the qualitative (Rudd, 2014) model and (Hong and
Tong, 2017) experiments support the idea that the source of the
filling-in mechanism is located in V4. It has to be noted that our
computational model can be regarded as this diffusion process
but also does not contradict a mechanism of edge integration that
can be derived from long range receptive fields (Rudd, 2014). This
“edge integration”mechanism can also be symbolic and appear as
a diffusion process.

As already discussed, we argue that both the watercolor
effect and the COC effect share the same visual mechanism;
therefore, we would expect to identify a similar neuronal source
for both effects. A literature survey of experimental studies
that investigated these sources revealed a lack of consensus
regarding the neuronal source of the COC effect. A few studies
reported that the effect occurs in low visual areas: the LGN,
V1 and V2 (MacEvoy and Paradiso, 2001; Roe et al., 2005;
Cornelissen et al., 2006; Huang and Paradiso, 2008), while other
studies showed evidence that the effect occurs in higher areas
of the visual system such as the V3 and caudal intraparietal
sulcus (Perna et al., 2005). It is possible that there is no
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complete overlap between the cortical areas responsible for
the COC effect and the watercolor effect, since the watercolor
effect commonly involves color, while the COC effect involves
achromatic stimuli.

Our model succeeds in predicting apparently conflicting
perceived filling-in triggered-by-edges phenomena, e.g., the
assimilative and the non-assimilative watercolor effects. The
suggested mechanism is a filling-in process which is based on
reconstruction of an image from its modified edges. The diffusion
process, thus, is calculated by solving the heat equation with
heat sources (Poisson equation). The edge of the trigger stimulus
are modified by the model according to rules of dominancy,
and computed as the heat sources in the Poisson equation. We
therefore suggest that this model can predict all the filling-
in-triggered-by-edges effect in both the spatial and temporal
domains (Cohen-Duwek and Spitzer, 2018).

The challenge of “The interaction of the mechanisms
underlying boundary and surface perception is an essential
problem for vision scientists” has been presented previously (Cao
et al., 2011). Here we introduce a new computational model that
describes and predicts how any boundary can “create” surfaces by
a filling-in process.
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Pupil size fluctuations during stationary scotopic conditions may convey information
about the cortical state activity at rest. An important link between neuronal network state
modulation and pupil fluctuations is the cholinergic and noradrenergic neuromodulatory
tone, which is active at cortical level and in the peripheral terminals of the autonomic
nervous system (ANS). This work aimed at studying the low- and high-frequency
coupled oscillators in the autonomic spectrum (0–0.45 Hz) which, reportedly, drive the
spontaneous pupillary fluctuations. To assess the interaction between the oscillators, we
focused on the patterns of their trajectories in the phase-space. Firstly, the frequency
spectrum of the pupil signal was determined by empirical mode decomposition.
Secondly, cross-recurrence quantification analysis was used to unfold the non-linear
dynamics. The global and local patterns of recurrence of the trajectories were estimated
by two parameters: determinism and entropy. An elliptic region in the entropy-
determinism plane (95% prediction area) yielded health-related values of entropy and
determinism. We hypothesize that the data points inside the ellipse would likely
represent balanced activity in the ANS. Interestingly, the Epworth Sleepiness Scale
scores scaled up along with the entropy and determinism parameters. Although
other non-linear methods like Short Time Fourier Transform and wavelets are usually
applied for analyzing the pupillary oscillations, they rely on strong assumptions like the
stationarity of the signal or the a priori knowledge of the shape of the single basis
wave. Instead, the cross-recurrence analysis of the non-linear dynamics of the pupil
size oscillations is an adaptable diagnostic tool for identifying the different weight of the
autonomic nervous system components in the modulation of pupil size changes at rest
in non-luminance conditions.

Keywords: pupil diameter, cross-recurrence quantification analysis, empirical mode decomposition, Epworth
Sleepiness Scale, Gaussian-copula

Abbreviations: ANS, autonomic nervous system; CRQA, cross-recurrence quantification analysis; DET, percentage of
determinism calculated from the cross-recurrence analysis; EmbDim, embedding dimension, a hyper-parameter to be
estimated for the CRQA; EMD, empirical mode decomposition; ENT, entropy calculated from the cross-recurrence analysis;
ESS, Epworth Sleepiness Scale; FAN, fixed amount of nearest neighbor; HF, high-frequency component in the ANS spectrum;
IMFs, intrinsic mode functions extracted through the EMD; LF, low-frequency component in the ANS spectrum; MUSIC,
multiple signal classification algorithm; R, neighborhood radius, a hyper-parameter to be estimated for the CRQA; RQA,
recurrence quantification analysis; TD, time delay, a hyper-parameter to be estimated for the CRQA.
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INTRODUCTION

The pupil controls the amount of light radiations reaching the
retina, by modulating its diameter through the interaction of two
muscles under sympathetic-parasympathetic control. The pupil
constriction is regulated by the contraction of the iris sphincter
muscle receiving parasympathetic innervation mainly through
cholinergic fibers. The pupil dilatation is instead related to the
contraction of the radial muscle of the iris, under sympathetic
control (Loewenfeld and Lowenstein, 1993). Due to the well-
known neuroanatomical substrate, the clinical examination of the
pupillary light reflex is considered an indicator of the optic nerve
conduction, brainstem integrity, vigilance and coma. In recent
years, studies in rodents and non-human primates found a tight
coupling between pupil size and cortical state even during quiet
wakefulness, suggesting a non-luminance mediated system for
pupil size variations, associated to neural network oscillations.
Studies combining electrophysiology, optical imaging and neural
networks modeling, indicated that the link between brain state
activity and pupil size is related to the neuro-modulatory effect
of the noradrenergic and cholinergic systems (Murphy et al.,
2014; Costa and Rudebeck, 2016; Joshi et al., 2016; Eckstein et al.,
2017). In this respect, a direct relationship between pupil size and
moment-to-moment fluctuations in the activity of noradrenergic
neurons of the brainstem locus coeruleus (LC) has been verified
(Aston-Jones and Cohen, 2005; Nassar et al., 2012). Other
forebrain nuclei and cortical areas connected to LC are activated
during spontaneous and event driven pupil size changes (Wang
and Munoz, 2015; Joshi et al., 2016) suggesting a circuit for pupil
response, linked to arousal, attention and perception systems
(Jones, 2004; Naber et al., 2013; Wang and Munoz, 2015; Fazlali
et al., 2016; Reimer et al., 2016; Larsen and Waters, 2018). Overall,
these studies outline a new role for the pupil size monitoring as
a reliable and non-invasive peripheral marker of rapid brain state
changes (Hartmann and Fischer, 2014; Schwalm and Jubal, 2017).

From a methodological point of view, a challenge in
the analysis of the pupil size variations is the identification
of specific patterns that may be representative of changes
in the cortical state activity. Different methods have been
proposed to assess the pupillary spontaneous oscillations in
isoluminant–non-accommodation inducing conditions or in
the dark (Lüdtke et al., 1998; Pong and Fuchs, 2000; Zénon
et al., 2014; Zénon, 2017). According to the assumptions those
methods meet, we distinguish: stationary and linear assumption
meeting methods, non-linear assumption meeting methods and
non-linear and non-stationary assumption meeting methods.
Like other physiological non-stationary signals, under steady
stimulation, the pupillary oscillatory signal is expected to show
non-linear and chaotic patterns (Poon and Merrill, 1997; Morad
et al., 2000; Wilhelm et al., 2001; Merritt et al., 2004; Muppidi
et al., 2013; Regen et al., 2013). The non-linear methods
assume that the dynamics of the pupil size follow the rules of
deterministic chaos rather than a stochastic or linear process
(Rosenberg and Kroll, 1999). Common non-linear methods for
the analysis of pupillary oscillations imply the use of the Short
Time Fourier Transform (Nowak et al., 2008) and wavelets
transformations (Henson and Emuh, 2010; Nowak et al., 2013;

Reiner and Gelfeld, 2014). These methods assume an underlying
stationary signal or require an a priori knowledge of the shape
of the single basis wave; assumptions that do not well reflect
the pupillary dynamics (Onorati et al., 2016). Among the most
recent proposed non-linear and non-stationary meeting methods
for the analysis of the pupil oscillations, there are the Hilbert
Huang Transform, the EMD (Ruiz-Pinales et al., 2016; Villalobos-
Castaldi et al., 2016), and the recurrence plots (Mesin et al.,
2013, 2014; Monaco et al., 2014). The Hilbert-Huang transform
is a frequency domain transformation, with the advantage of
maintaining a good temporal and frequency resolution. Through
the EMD, the original signal is split into components with
slowly varying amplitude and phase, also known as IMFs.
By applying a Hilbert transform to the IMF, instantaneous
frequencies are generated as functions of time that give sharp
identifications of embedded structures (Barnhart, 2011; Ruiz-
Pinales et al., 2016; Villalobos-Castaldi et al., 2016). The RQA
consists in taking single physiological measurements, projecting
them into multidimensional space by embedding procedures
and in identifying correlations that are not apparent in one-
dimensional time series. This method provides quantitative
indexes related to the number and duration of recurrences of
the trajectory of a dynamical system in the phase space (Marwan,
2008; Webber and Marwan, 2015). Then, by applying the cross-
recurrence analysis (CRQA) which is a bivariate extension of the
RQA, we can investigate the dynamic interactions among the
systems modulating pupil size oscillations. The use of CRQA
has the advantage to better capture the recurring properties of
a dynamic system given by the interaction over time of streams
of information (Marwan, 2008; Coco and Dale, 2014). For this
purpose, the EMD and CRQA were applied in succession. The
main goal of our analysis was the identification of specific
frequency components of the oscillatory signal comprised in the
range of ANS, that could be quantified by couples of DET and
ENT lying within the 95% prediction ellipse. Our result suggests
that, in awake healthy subjects at rest, pupils oscillate in darkness
with high frequency (HF) and low frequency (LF) components
that are in the range of ANS, suggesting a balance between
noradrenergic/cholinergic tone. Moreover, the position of the
points on the ENT-DET plane seems to be related to the ESS
score, and therefore, could give insights into the sleepiness state.

MATERIALS AND METHODS

Participants
Twenty-six healthy subjects participated to the study
(average age 36 ± 13 years old). The participants did not
have neurological deficits or serious refractive problems.
Moreover, the participants did not assume caffeine in the
2 h preceding the data collection (Wilhelm et al., 2014),
and they reported to have slept more than 6 h in the night
before the recording (average sleep hours 7.2 ± 0.1). The
data collection was performed always between 3 and 6
pm. All subjects gave their written informed consent and
the study respected the Declaration of Helsinki and was
approved by the local Ethics Committee (Comitato Etico Locale
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Azienda Ospedaliera Universitaria Senese, EVAlab protocol
CEL no. 48/2010).

Experimental Setting
Pupil diameter recordings were performed monocularly with
an ASL 504 eye-tracker device (Applied Science Laboratories,
Bedford, MA, United States) sampling at a mean frequency
of 240 Hz. The remote eye-tracker was placed at 650 mm far
from the eye of the participant. The relative position of the
subject’s head with respect to the eye-tracker was kept still by
mean of a chinrest.

Acquisition Protocol
Prior the data collection, the subjects were administered with an
test ESS to investigate their vigilance state. ESS scores less than 11
are normally associated to subjects having normal sleepy state,
while ESS scores greater than 11 suggested excessive daytime
sleepiness (Parkes et al., 1998). ESS is a common used self-
assessment questionnaire for the tiredness evaluation, hence it
can turn to be a bias-prone measurement.

All the recordings were performed in a quiet light-controlled
environment. To avoid the stimulation of pupillary light reflex,
the subject was instructed to look straight for 15 min in
a complete dark room (0 lux), similarly to the procedure
adopted by Lüdtke et al. (1998). To reduce mental activity and
cognitive load, subjects were instructed to try not to think to
anything and to relax.

Data Processing
The flow chart of procedure employed to analyze the
pupillary frequency balancing between the sympathetic and
parasympathetic systems is shown in Figure 1. The pupil
diameter data was exported in comma separated values format
files and analyzed offline through Matlab (The Mathworks). The
signal was de-blinked. Signal instances with the pupil diameter
equal to zero were marked as blinks and removed from the
signal. The remaining signal was then linearly interpolated.
Moreover, machine artifacts introduced by the eye-tracker device
due to failures to detect the pupil, were removed using Hampel
filtering and low-pass filtered with a cut-off frequency (f0) of
2 Hz. The Hampel function computes the median of the data
within moving windows. The width of the filter window (w) was
determined accordingly to the ratio of the sample frequency (fs)
over the cut-off frequency f0 (Equation 1):

w = 0.44 · fs/f0 (1)

The variation of pupil size was computed with respect to
a baseline value of the pupil estimated for each participant.
Specifically, the baseline value of the pupil diameter signal was
determined as the maximum value of the pupil size attained
in the first 60 s of the signal in darkness (baseline), when the
signal was expected to be more stable. The mean or the median
of the pupil size were possible alternative reference values.
However, taking the maximum value as reference enabled us to
normalize the signal on the basis of a really observed value and to
preserve the dynamics of the phenomenon. A baseline-corrected

FIGURE 1 | The flow chart presents the major procedures adopted for the
analysis of the pupil size oscillation, from the data pre-treatment (deblink and
artifact removal) and normalization, to the final drawing of the prediction
ellipse. Data points of the prediction region in the entropy-determination plane
underwent a further classification analysis and a pairwise comparison of the
identified clusters was also done.

FIGURE 2 | The time course of the pupil % change of an healthy subject.
Negative values indicate a restriction of the pupil size with respect to the
baseline value.

pupil diameter time series was then calculated as the diameter
percentage change with respect to the value gathered in the basal
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FIGURE 3 | The panels represent the HF and LF components extracted from the pupil % change time series of an healthy subject. The IMFs obtained through the
application of the EMD technique whose frequency content was inside the range [0.15 – 0.45 Hz] were aggregated and form the HF component of the ANS activity
(lower panel), while the IMFs in the range [0 – 0.15 Hz] gave rise to the LF component (upper panel).

condition (Equation 2).

%change =
Xt − Baseline

Baseline
· 100 (2)

where Xt is the pupil diameter recorded at time t. The baseline
correction provided the removal of inter-subject variability
in pupil size percentage change of the pupil diameter signal
(Lowenstein et al., 1963; Figure 2).

Data Analysis
A cubic spline interpolation was used for compressing the
percentage change time series with a resolution of five data
points per second, which satisfied the Nyquist criterion (for
the given 2 Hz cut-off frequency). The EMD was applied to
the cubic spline interpolation of the percentage change time
series in the autonomic frequency band ranging from 0 to
0.45 Hz (Huang et al., 1998). Since we were interested in
a global spectral characterization of the IMFs derived from
the EMD, the spectral content of the IMFs was estimated
through MUSIC algorithms (Schmidt, 1986). The IMFs having
most of the power in the autonomic frequency band were
retained. The IMFs were then aggregated accordingly to the
HF (0.15–0.45 Hz) and LF (0–0.15 Hz) ranges related to the
parasympathetic and sympathetic systems activity (Cabrerizo
et al., 2014; Figure 3). A CRQA was performed (Marwan and
Kurths, 2002; Marwan, 2016) to assess the similarity between
the dynamics of the parasympathetic and sympathetic processes
by comparing the interaction between the LF and the HF
components in the phase space. Three hyper-parameters must
be set in the CRQA: EmbDim, TD, and the neighborhood
radius (R). A symplectic geometry-based algorithm was used
for estimating the EmbDim (Lei et al., 2002). The TD value
was chosen as the one within the range (0: w/EmbDim) that

maximized the sample entropy of the percentage change of
pupil size. A FAN was taken as the neighborhood criterion,
such that the cross-recurrence point density had a fixed
predetermined value of 20%.

Two main parameters from CRQA were considered: the
determinism (DET), which quantifies the fraction of periodic
structures in the trajectories of the LF and HF dynamics
in the phase space, and the entropy (ENT), which is the
Shannon entropy of the diagonal line length distribution.
Periodic signals are expected to yield high values of DET
and small values of ENT (Marwan et al., 2007). To enlarge
the sample size enough to apply clustering procedures on the
DET-ENT plane and to investigate more carefully for possible
highlights of this method on the analysis of the balancing
of the sympathetic and parasympathetic systems thorough
the analysis of the oscillations of the pupil diameter, we
employed the Gaussian-copula simulation approach. Hence,
firstly the association among age, ESS, ENT, and DET
was measured by the Pearson’s correlation matrix. Then, a
Gaussian-copula which maintained the dependence structure was
used to generate one-hundred correlated multivariate data of
those variables.

The percentage of pupil size change of each of the simulated
data was then represented as a point on the DET-ENT plane.

Statistical Analysis
On the simulated dataset the Doornik-Hansen multivariate
normality test (Doornik and Hansen, 2008) was performed to
verify the null hypothesis that the points in the DET-ENT plane
were generated from a bivariate Gaussian distribution. The 95%
prediction ellipse was calculated around the mean of observed
points in the DET-ENT plane. Equations 3–4 indicate the formula
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for determining the length of the two semi-axes:

ax = 2 · 2

√
λ2 ·

(nobs − 1) · nvar · f (1− α, nvar, nobs − nvar)

nobs − nvar
(3)

ay = 2 · 2

√
λ2 ·

(nobs − 1) · nvar · f (1− α, nvar, nobs − nvar)

nobs − nvar
(4)

where ax and ay are the major and minor semi-axes of the
ellipse, nvar is the number of variables (=2), nobs is the number
of the observations (=100), λ1 and λ2 are the eigenvalues (in
descending order) obtained from the spectral decomposition of
the covariance matrix of ENT and DET, f is the pdf of the F
distribution for the given significance α level and degrees of
freedom (nvar , nobs-nvar). The orientation of the ellipse is given
(in radians) by the direction of the eigenvector associated to the
largest eigenvalue:

θ = atan
(

vy

vx

)
(5)

where atan is the inverse tangent function, and vx and vy are
the components of the eigenvector corresponding to the largest
eigenvalue. The coordinates of the points [Px, Py] laying on the
ellipse contour are calculated as follows:

Px = xc +
[ax

2
· cos (t) · cos (ϑ)−

ay

2
· sin (t) · sin (ϑ)

]
(6)

Py = yc +
[ax

2
· cos (t) · sin (ϑ)+

ay

2
· sin (t) · cos (ϑ)

]
(7)

where xc and yc are the coordinates of the center of the ellipse,
and t ranges in the interval [0, 2π].

The prediction region can provide the regulatory reference
points for assessing if the underlying slow oscillations in the
autonomic band of a new observed pupil size time series have the
characteristics of a normal pattern.

Afterward, unsupervised clustering through K-means method
with two clusters and a L1-norm distance function was
applied within the elliptic prediction area. The two clusters
were compared in covariance matrices and means vectors.
Accordingly, the Box’s M-test was considered for verifying the
homogeneity of the covariance matrices, and the Hotelling’s T2

test was used for testing the means. The variables age, ESS and
% change associated to each cluster were separately compared
through the Mann-Whitney unpaired test.

All statistical tests were two-sided and performed on Matlab
with a 5% level of significance.

RESULTS

Self-organized adaptive systems like the brain generate complex
signals which are inherently non-linear and non-stationary.
Furthermore, unstable, weak, and state-dependent phase-locking
characterizes the coupling between the biological oscillators

TABLE 1 | Sampling distributions of age, Epworth Sleepiness Scale, entropy,
determinism, and average pupil change.

Age ESS Entropy % Determinism % Change

24 3 1.08 52.34 −0.38

24 5 0.97 49.64 0.85

24 5 0.96 56.69 3.97

24 6 1.00 57.39 −2.36

24 13 1.03 46.94 −1.69

24 14 0.90 48.86 −2.00

25 6 0.86 37.91 −1.57

25 14 0.92 43.09 0.30

27 2 0.84 38.14 1.94

27 7 0.86 50.49 0.74

27 9 1.00 37.73 −3.35

28 3 0.89 41.85 −1.37

28 4 0.83 41.29 0.19

29 5 0.87 42.43 1.72

29 10 0.83 37.35 −1.37

29 13 0.97 56.99 1.39

31 5 0.72 29.79 1.43

33 8 0.83 44.9 −2.02

46 7 0.88 39.78 −2.60

46 9 0.99 46.22 −0.40

49 6 0.77 45.12 1.16

50 3 0.90 38.35 −3.46

51 4 0.95 35.6 0.33

56 7 1.00 51.47 2.34

62 14 0.94 56.19 2.07

63 8 1.04 50.69 −0.08

(Shockley et al., 2002). Since the couplings between biological
signals could also be predominantly transient, the canonical
techniques of signal analysis, which basically rely on the
assumption of stationary signals, are not appropriate. More
importantly, the autonomic control of the spontaneous pupil
fluctuations is expected to have non-linear/chaotic dynamics
which can be well explored by recurrence analysis methods,
whose domain is in the phase-space trajectories (Mesin et al.,
2013). For these reasons, we chose the cross-recurrence method
to analyze the spectral components of the ANS activity
controlling the pupil fluctuations.

The EMD method was applied to the time series of pupil size
variations to extract the low and high frequency components
of the signal, which were found in the range of the ANS band.
In fact, the EMD procedure, which is known to deal with non-
linear and non-stationary signals like the pupil size oscillations,
is a data driven method that overcomes the limitation of basis
function shape typical of the wavelet decomposition method
(Gonalves et al., 2007). The CRQA was then performed over the
high and low frequency components and two parameters, i.e.,
entropy (ENT) and determinism (DET), were retained as the
major features which quantified the non-linear dynamics of the
high- and LF coupled oscillators in the autonomic band.

In Table 1 the sampling distributions of age, ESS scores,
ENT, DET and average pupil change are reported. The sample
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TABLE 2 | Values of age, Epworth Sleepiness Scale, entropy, determinism, and average pupil change generated from a Gaussian-copula.

Age ESS Entropy % Determinism % Change Age ESS Entropy % Determinism % Change

24 1 0.76 33.90 −2.02 29 5 0.83 31.97 −1.37

24 7 0.91 51.04 −1.94 29 5 1.00 51.30 0.29

24 11 0.86 43.69 −1.37 29 6 0.96 37.97 −0.40

24 9 0.90 41.85 −1.37 29 4 0.89 37.76 −1.75

24 10 0.84 45.84 −3.04 29 6 0.91 43.87 −1.37

24 6 0.95 38.26 −3.55 29 7 0.83 41.42 −3.45

24 4 0.97 49.38 −1.37 29 3 0.88 42.35 0.42

24 5 0.93 41.80 −3.42 29 3 0.91 39.35 −2.02

24 8 0.89 44.10 −2.01 29 7 0.83 42.78 1.84

24 5 1.04 50.81 −2.01 29 5 0.87 38.07 0.48

24 9 0.84 41.36 −1.92 30 4 0.86 37.73 0.76

24 3 0.92 38.32 −3.42 31 6 0.83 36.60 −0.39

24 6 0.99 50.99 −1.37 31 14 0.97 56.78 2.23

24 14 0.81 39.87 −3.47 32 9 0.94 45.02 −0.39

24 4 0.83 35.69 −3.44 32 14 0.84 45.25 −1.55

24 3 0.77 36.14 −2.54 34 8 0.96 45.95 −0.39

24 14 0.97 51.16 −2.49 36 4 0.85 37.75 −3.36

24 12 0.97 57.02 −1.98 41 13 0.86 51.06 0.30

24 5 1.00 56.28 −1.37 41 6 0.83 35.96 −1.37

24 5 1.03 56.53 0.20 41 5 0.87 43.81 1.34

24 13 1.00 51.29 −2.28 42 2 0.90 38.30 2.15

24 5 1.00 50.54 1.71 43 6 0.89 46.47 1.52

25 5 0.87 41.70 −1.87 46 6 0.94 51.45 1.63

25 14 1.08 57.34 −2.48 46 3 0.68 37.74 1.39

25 14 0.83 41.76 −1.42 46 3 1.00 45.27 0.06

25 8 0.90 37.86 −2.92 46 7 1.00 52.01 0.31

26 3 0.93 38.25 −1.38 46 14 1.03 56.75 1.93

27 9 0.97 54.93 −2.01 46 14 1.00 52.63 −1.47

27 4 0.74 30.17 −1.67 46 6 0.89 50.60 1.42

27 2 0.88 49.28 1.39 46 14 0.83 37.84 −1.75

27 6 0.81 44.77 −1.04 46 5 1.00 54.86 −1.64

27 4 0.86 36.67 −2.27 47 3 0.92 38.32 0.33

27 3 0.75 33.77 0.74 47 8 0.90 56.60 1.76

27 5 0.88 39.46 0.31 48 4 0.89 46.61 1.42

27 3 1.00 41.90 −0.43 49 3 0.83 37.95 1.41

27 3 0.83 37.81 0.71 49 9 0.95 45.01 −2.25

27 6 0.83 37.51 −3.07 49 9 0.83 40.07 0.47

28 3 0.86 45.83 2.08 50 3 0.99 38.08 −2.01

28 7 0.95 43.95 −1.75 50 3 0.84 31.53 0.84

28 3 0.93 38.87 0.08 50 7 1.00 56.82 1.96

28 5 0.84 38.25 1.05 51 7 0.88 45.02 2.03

28 3 0.88 39.49 2.02 51 13 0.97 38.15 1.47

28 3 0.67 34.75 −0.67 51 7 0.73 37.41 2.03

28 5 0.83 28.51 −2.04 52 3 0.89 44.98 1.96

28 3 0.90 45.54 1.56 53 8 1.08 56.66 2.05

28 8 0.87 38.23 −2.39 56 14 1.05 57.08 1.15

28 7 0.89 38.19 0.03 56 7 0.96 41.81 −0.09

29 3 0.68 25.23 −1.04 60 5 0.92 42.09 −1.57

29 9 0.88 45.97 0.19 61 5 1.01 44.96 1.08

29 12 1.00 50.96 1.70 63 7 1.02 57.21 2.28

declared a normal level of diurnal drowsiness (ESS: mean = 7.3;
SD = 3.7). Five subjects (four of age lower than 30, and one
of age greater than 60) reported relatively high ESS scores

(>10). The cross-recurrence analysis returned low values both
for ENT (mean = 0.92; SD = 0.09) and for DET (mean = 45.28%;
SD = 7.46%). The percentage of pupil change in the sample (%
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FIGURE 4 | The contour of the ellipse envelopes the region in the
entropy-determinism space where new measured combinations of entropy
(ENT) and determinism (DET) will fall with a 95% probability. The null
hypothesis that the two variables are generated from a bivariate normal
distribution was verified through the Doornik-Hansen test. Values of DET in
the y-axis have been rescaled in the range [0 – 1]. A K-means algorithm was
used to characterize sub-areas within the prediction ellipse and two distinct
clusters were found out. The thick black crosses indicate the centres of the
clusters. Cluster 2 (squares) exhibited significant higher combination of ENT
and DET than cluster 1 (circles). In addition the ESS resulted greater in
cluster 2 compared to cluster 1. This finding suggested that the ENT-DET
bivariate distribution inherently conveys information about the drowsiness level
of the subjects.

TABLE 3 | Parameters of the 95% prediction ellipse in the ENT-DET plane.

Center (0.90, 0.44)

Semiaxis (x) 0.53

Semiaxis (y) 0.20

Angle (rad) 0.69

Angle (degree) 39◦44’

Hyper-volume 0.08

Perimeter 0.12

Eccentricity 0.92

change) (mean =−0.16%; SD = 1.91%) indicated an overall slight
loss of pupil size with respect to the baseline, but high variability
of the fluctuations as well.

We firstly analyzed the possible association among the
observed age, ESS, ENT, and DET. Based on the results, the DET
and ENT variables were not significantly correlated to the age and
the ESS score of the participants. Instead, a significant correlation
between ENT and DET was found (r = 0.58, p = 0.002).

The bivariate distribution of ENT and DET obtained
from Gaussian-copula simulated points (Table 2) is depicted
in Figure 4, together with the 95% prediction ellipse. The
simulated values of ENT (mean = 0.90; SD = 0.09) and DET
(mean = 43.66%; SD = 7.43%) were consistent with the values
observed in the sample.

The major parameters of the prediction ellipse are displayed
in Table 3. The coordinates of the center of the ellipse are the
means of the simulated ENT and DET vectors. The axes of the

TABLE 4 | Normative intervals of determinism by ranges of entropy.

Entropy % Determinism

0.70–0.75 24–40

0.75–0.80 24–46

0.80–0.85 24–51

0.85–0.90 26–55

0.90–0.95 29–58

0.95–1.00 33–60

1.00–1.05 38–60

1.05–1.10 45–60

TABLE 5 | Descriptive statistics of the clusters identified within the
prediction ellipse.

Cluster 1 Cluster 2

Mean SD Mean SD

Age 33.1 10.2 36.3 12.4

ESS 5.7 3.2 8.2 3.7

Entropy 0.86 0.07 0.98 0.05

% Determinism 39 4 52 4

% Change −0.69 1.77 −0.12 1.64

ellipse indicate the magnitude of the inertia along the directions
of ENT and DET. The interval estimations of ENT and DET
were obtained through Equations 6 and 7. Table 4 displays the
expected intervals of determinism for equally spaced intervals
(0.05 bits) of entropy.

Through the K-means procedure, two clusters of points were
identified within the prediction ellipse and their descriptive
statistics is shown in Table 5.

The generated ENT-DET values underwent the Doornik-
Hansen multinormality test. The hypothesis of bivariate normal
distribution was not rejected (DH statistic = 6.97, p = 0.14).

The covariance matrices of the clusters were not significantly
different (Box’s M-test = 3.2; p = 0.37). The result of the Hotelling
T2 test indicated that the bivariate ENT-DET means vectors
between the clusters were significantly different (T2 = 200.8;
p < 0.0001). The two clusters exhibited also significant different
ESS scores (U-test = 701.5; p = 0.002), whilst they did not
differ in age (U-test = 1073; p = 0.64), nor in % change (U-
test = 933.5; p = 0.14).

DISCUSSION

The analysis of the pupil size oscillations is a promising
diagnostic tool, enabling improvements in the identification
of cortical state changes. Variations of cortical state activity
during wakefulness have a strong influence on neural, perceptual
and behavioral responses. Pupil diameter varies not only in
response to variation of luminance and accommodation, but
also during changes in alertness, attention, mental effort and
decision making, suggesting a direct link between pupil size
variation and cortical state changes (Preuschoff et al., 2011;
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Nassar et al., 2012; Naber et al., 2013; Alnæs et al., 2014;
de Gee et al., 2014). Changes in the cortical state are associated
to well characterized variations of the cortical signal frequency.
Specifically, in awake rodents the investigation of local field
potentials demonstrated the prevalence of LF fluctuations during
periods of quiet resting. However, the initiation of locomotion
or whisking was related to the suppression of low frequency
components and increased high frequency oscillations (Poulet
et al., 2012; Eggermann et al., 2014, McGinley et al., 2015b).
This transition between slow and fast cortical activity was also
observed across cortical regions (Poulet and Crochet, 2019).
Electrophysiological studies have revealed that pupil constriction
is associated to slow and synchronous cortical responses
and inattentive behavior. Conversely, the cortical activation
during task engagement or locomotion shows a persistent
desynchronized neuronal activity associated to the dilatation
of the pupil (Reimer et al., 2014, 2016; McGinley et al., 2015b;
Schwalm and Jubal, 2017). Pupil size fluctuations and cortical
state variations are modulated by the central noradrenergic and
cholinergic pathways. Thus, monitoring pupil dynamics could
be a reliable proxy of the changes in cortical states (Reimer
et al., 2014, 2016; McGinley et al., 2015a,b). More specifically,
the release of acetylcholine (Ach) from the basal forebrain and
noradrenaline (NA) from LC have been shown to drive both
the state of cortical connectivity and the pattern of the pupil
size oscillations also in resting conditions (Reimer et al., 2016;
Schwalm and Jubal, 2017). At the peripheral level, both Ach
and NA are neurotransmitters of the ANS (parasympathetic
and sympathetic systems, respectively) also controlling the pupil
diameter. Overall, these premises encourage exploring new and
reliable techniques for pupil dynamics monitoring that allow
the identification of parameters attributable to NA and Ach
modulatory effect in various cortical state changes.

We propose here, a method that can be used as a
quantitative measurement of the non-linear dynamics of the
pupil fluctuations. We applied a cross-recurrence technique for
estimating determinism (DET) and entropy (ENT) features and
their distribution, in order to quantify the degree of coupling
between the oscillators of the low (LF) and high frequency
(HF) components of the pupillary signal. To the best of our
knowledge this is the first study on the use of the ENT-DET
plane for analyzing the dynamical systems associated to pupil size
fluctuation during stationary scotopic visual conditions.

In our cohort of subjects, we observed low levels of
determinism (<60%) and entropy (<1). This is consistent
with spontaneous physiological signals recorded from healthy
subjects, which are expected to be highly complex. Actually, low
determinism can be associated to increase in the uncertainty
of the signals, and hence to increase in the signal chaotic
properties (i.e., complexity). In facts, complex systems are
typically highly ordered. Therefore, they tend to preserve low
entropy and counteract the second law of thermodynamics
(free energy principle). A de-complexification process occurs
when free-running physiological signals present sustained loss of
complexity. The loss of complexity leads to less ordered states

with higher entropy and with stronger coupling of the oscillators
controlling the expression of the signal. This degradation in
complexity is typically observed in pathological conditions or
advanced aging. Therefore, the major result of this study is the
identification of a normative elliptical region in the ENT-DET
plane for the pupillary oscillators that could be compared with
data from group of patients with neurodegenerative diseases. We
hypothesize that the occurrence of points outside of the defined
elliptical prediction region may signal potential pathological
conditions related to alterations in the ANS. As secondary
outcome, we observed that, within the elliptical region of
confidence, clusters of points with different characteristics of
ENT-DET highly differed also in their ESS scores. This finding
suggests that the location of the points in the ENT-DET plane
can also reveal alterations in the sleepiness state.

Our results indicate that in resting wakefulness conditions,
without the influence of light and accommodation, pupil
size oscillations are under the effect of a balanced
cholinergic/noradrenergic tone. We believe that the employed
CRQA-based method may help to lay the groundwork for
studying the LF and HF components of the pupil, which may be
related to neuronal network state of the brain at rest. Importantly,
it consists in a non-invasive procedure that could be easily
adopted in clinical context and for diagnostic assessment such
as neurodegenerative conditions. Furthermore, this method is
adaptable to different experimental conditions (e.g., variations
of the visual stimulus, recording during cognitive tasks, etc)
provided that the opportune frequency components are dug out
from the signal. The joint recording of the pupil size fluctuations
along with other physiological signals (e.g., heart rate variability,
EEG, etc) would improve the method, since the study of possible
time-dependent and/or frequency-related changes in autonomic
functions would be facilitated by this integration.
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Today, face biometric systems are becoming widely accepted as a standard method

for identity authentication in many security settings. For example, their deployment in

automated border control gates plays a crucial role in accurate document authentication

and reduced traveler flow rates in congested border zones. The proliferation of such

systems is further spurred by the advent of portable devices. On the one hand, modern

smartphone and tablet cameras have in-built user authentication applications while on

the other hand, their displays are being consistently exploited for face spoofing. Similar

to biometric systems of other physiological biometric identifiers, face biometric systems

have their own unique set of potential vulnerabilities. In this work, these vulnerabilities

(presentation attacks) are being explored via a biologically-inspired presentation attack

detection model which is termed “BIOPAD.” Our model employs Gabor features in a

feedforward hierarchical structure of layers that progressively process and train from

visual information of people’s faces, along with their presentation attacks, in the visible

and near-infrared spectral regions. BIOPAD’s performance is directly compared with

other popular biologically-inspired layered models such as the “Hierarchical Model

And X” (HMAX) that applies similar handcrafted features, and Convolutional Neural

Networks (CNN) that discover low-level features through stochastic descent training.

BIOPAD shows superior performance to both HMAX and CNN in all of the three

presentation attack databases examined and these results were consistent in two

different classifiers (Support Vector Machine and k-nearest neighbor). In certain cases,

our findings have shown that BIOPAD can produce authentication rates with 99%

accuracy. Finally, we further introduce a new presentation attack database with visible

and near-infrared information for direct comparisons. Overall, BIOPAD’s operation, which

is to fuse information from different spectral bands at both feature and score levels for the

purpose of face presentation attack detection, has never been attempted before with a

biologically-inspired algorithm. Obtained detection rates are promising and confirm that

near-infrared visual information significantly assists in overcoming presentation attacks.

Keywords: face biometrics, presentation attack detection, anti-spoofing, multiple sensor fusion,

biologically-inspired biometrics

INTRODUCTION

Biometrics have a long history of existence and usage in various security environments. Modern
biometric systems utilize a variety of physiological characteristics also known as “biological
identifiers.” For example, non-intrusive biometric patterns extracted from a finger, palm, iris,
voice, gait (and their fusion in multimodal biometric systems), can provide a wealth of identity
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information about a person. Face biometrics in particular,
pose a challenging practical problem in computer vision due
to dynamic changes in their settings such as fluctuations in
illumination, pose, facial expressions, aging, clothing accessories,
and other facial feature changes such as tattoos, scars, wrinkles
and piercings. The main advantage of face biometric applications
is that they can be deployed in diverse environments at low
cost (in many cases, a simple RGB camera is sufficient) without
necessitating substantial participation and inconvenience from
the public. Public acceptance of face biometrics is also the
highest amongst all other biological identifiers. Modern day
applications making extensive use of face biometric systems
include, mobile phone authentication, border or customs
control, visual surveillance, police work, and human-computer
interaction. Regardless of the numerous practical challenges in
this field, face biometrics still remain a heavily researched topic
in security systems.

Face biometric systems are susceptible to intentional changes
in facial appearance or falsification of photos in official
documents known as, “presentation attacks.” For example,
impostors may acquire a high quality face image of an individual
and manipulate it either printed on paper, on a mask or even
on a smartphone display to deceive security camera checkpoints.
The significant reduction in high-definition portable camera size
also means that impostors have easy access to tiny digital cameras
that discretely or secretively capture face images of unsuspecting
individuals. Moreover, with the vast online availability of face
images in public or social media, it is relatively easy to
acquire and reproduce a person’s image without their consent.
“Presentation Attack Detection (PAD)” or less formally known
“anti-spoofing,” engulfs the detection of all spoofing attempts
made on biometric systems. Therefore, accurate and fast PAD is
an important problem for authentication systems across many
platforms and applications (Galbally et al., 2015) in the fight
against malicious security system attacks. Basic face presentation
attacks often are: (a) printed face on a paper sheet. Sometimes
a printed face is shown with eyes cropped out so that the
impostor’s eyes blink underneath. (b) Digital face displayed
on a screen from digital devices such as tablets, smartphones,
and laptops. This kind of face presentation attacks can be
static or video. In video attacks facial movements, eye blinking,
mouth/lip movements or expressions are usually simulated
through a short video sequence. (c) A 3D mask (paper, silicon,
cast, rubber etc.) specifically molded for a targeted face. In
addition, impostors may also try identity spoofing by using
more sophisticated appearance alteration techniques or their
combinations: (1) Glasses corrective or otherwise and/or contact
lenses with possible color change. (2) Hairstyle, change in color,
cut/trim, hair extensions etc. (3) Make-up or fake facial scars.
(4) Real and/or fake facial hair. (5) Facial prosthetics and/or
plastic surgery.

Presentation attacks in images can be detected from anomalies
in image characteristics such as liveness, reflectance, texture,
quality, and spectral information. Sensor-based approaches
are considered efficient strategies to investigate such image
characteristics and naturally involve the usage (and fusion) of
various camera sensors that capture minute discrepancies. A

sensor-based method that uses a light field camera sensor with
26 different focus measures together with image descriptors
(Raghavendra et al., 2015) reported promising PAD scores. With
the aid of infrared sensors authors in Prokoski and Riedel (2002)
analyzed facial thermograms for rapid, and varied illumination
environments. Similar thermography methods were presented
in Hermosilla et al. (2012) and Seal et al. (2013). Motion-based
techniques are mostly employed in video sequences to detect
motion anomalies between frames. Some representative methods
of this type of PAD algorithms used Eulerian Video Motion
Magnification (Wu et al., 2012), Optical Flow (Anjos et al., 2014),
and non-rigid motion with face-background fusion analysis (Yan
et al., 2012). Liveness-based approaches extract image features
that focus on the liveness phenomena of a particular subject.
Using this approach, algorithms scan liveness patterns in certain
facial parts such as facial expressions, mouth or headmovements,
eye blinking, and facial vein maps (Pan et al., 2008; Chakraborty
and Das, 2014). Texture based methods investigate texture,
structure and overall shape information of faces. In conventional
terms, commonly used texture-based methods rely on Local
Binary Patterns (Maatta et al., 2011; Chingovska et al., 2012;
Kose et al., 2015), Difference of Gaussians (Zhang et al., 2012)
and Fourier frequency analysis (Li et al., 2004). For quality
characteristics, a notable image quality method in Galbally et al.
(2014) proposed 25 different image quality metrics as extracted
between real and fake images in order to train classifiers which
are then used for the detection of potential attacks.

In today’s society, face perception is extremely important. In
the distant past, our very survival in the wild depended on our
ability to collaborate collectively as species. As a consequence,
the human brain over the millennia has evolved to perform facial
perception in an effortless, rapid and efficient manner (Ramon
et al., 2011). The ever increasing requirements in complexity,
power and processing speed, have motivated the biometric
research community to explore new ways of optimizing facial
biometric systems. Therefore, it should not come as a surprise
that biology has recently become a valuable source of inspiration
for fast, power efficient and alternative methods (Meyers and
Wolf, 2008; Wang et al., 2013).

The fundamental biologically-motivated vision architecture
consists of alternating hierarchical layers mimicking the early
processing stages of the primary visual cortex (Hubel and
Wiesel, 1967). It is established from past research that as
visual stimuli are transmitted up the cortical layers (from V1–
V4), visual information progressively exhibits a combination of
selectivity and invariance to object translations such as size,
position, rotation, depth etc. In the past, there have been many
vision models and variants inspired from this approach such
as the “Neocognitron” (Fukushima et al., 1980), “Convolutional
neural network” (LeCun et al., 1998), and “Hierarchical model
and X” (Riesenhuber and Poggio, 2000). Over the years,
these models have performed incredibly well in many object
perception tasks and today are recognized as equal alternatives
to statistical techniques. In face perception, biologically-inspired
methodologies have been applied successfully for some years and
have proven reliable as well as accurate (Lyons et al., 1998; Wang
and Chua, 2005; Perlibakas, 2006; Rose, 2006; Meyers and Wolf,
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2008; Pisharady and Martin, 2012; Li et al., 2013; Slavkovic et al.,
2013; Wang et al., 2013).

There are many common characteristics in biologically-
motivated algorithms and perhaps the most important aspect
is the extensive use of texture-based features in either 2D
or 3D images. Reasons for designing a biologically-inspired
model would be its projected efficiency, parallelization and speed
in extremely demanding biometric situations. Contemporary
state-of-the-art methods are efficient in selected environments
with high availability of data but sifting each frame with
laborious and lengthy CNN training, sliding windows or
pixel-by-pixel approaches requires an incredible amount of
available resources such as storage capacity, processing speed and
power. Nevertheless, biologically-inspired systems have almost
entirely been expressed by deep learning CNN architectures.
In Lakshminarayana et al. (2017), spatio-temporal mappings of
faces extraction is followed by a CNN schema, and discriminative
features for liveness detection were subsequently acquired. This
approach produced impressive results on the databases examined
but their setup relied solely on video sequences which penalize
processing speed and are not always available in the real world,
especially in border control areas where a single image should
suffice. Other CNN models (Alotaibi and Mahmood, 2017;
Atoum et al., 2017; Wang et al., 2017) explored depth perception
prior to application of a CNN that distinguished original vs.
impostor access attempts. In Alotaibi and Mahmood (2017),
depth information was produced with a non-linear diffusion
method based on an additive operator splitting scheme. Even
though only a single image was required in this work, the use
of only one database (and the high error rates in the Replay-
Attack database) did not entirely reveal the potential of this
approach. Another CNN approach was presented in Atoum et al.
(2017) where a two-stream CNN setup for face anti-spoofing was
employed by extracting local image features and holistic depth
maps from face frames of video sequences. Experimentation
with this CNN setup showed reliable results with a significant
cost on practicality i.e., training two separate CNNs along
with all intermediate processing steps. In Wang et al. (2017),
a representation joining together 2D textual information and
depth information for face anti-spoofing was presented. Texture
features were learned from facial image regions using a CNN and
face depth representation was extracted from Kinect images. The
high error rates and limited experimentation procedure made
their findings rather questionable. Finally, in Liu et al. (2018)
a CNN-RNN (Recursive Neural Network) model was used to
acquire face depth information with pixel-wise supervision, by
estimating remote photoplethysmography signals together with
sequence-wise supervision. The accuracy of this method relied
heavily on the number of frames per video which makes this
approach computationally heavy.

Overall, Convolutional Neural Network approaches and
the manner in which they are executed or accelerated in
hardware is a big subject of debate in our world today. They
require large amounts of resources in hardware, software and
energy to be effectively trained. However, since end-users have
different hardware/software configurations, no particular effort
was given to hardware optimization or software acceleration.

The investigation of a biologically-inspired PAD secure system
was developed as part of two funded projects, the European
project ABC4EU and the Spanish national project BIOINPAD.
End-users in both projects (i.e., the Spanish national police,
Estonian police, Rumanian Border Guard) were interested in a
new approach to the PAD problem.

Over the years, bio-inspired systems have received significant
interest from the computer vision community because their
solutions can relate to real-world human experiences. Thus,
the main research contribution of this work has been the
introduction of a system that handles video presentation attack
detection from a biologically-inspired perspective. A system
that has a straightforward and simple architecture able to cope
with visual information from a single frame at high precision
rates. Our design focus has been the development of a bio-
inspired systemwith a clear structure and relatively little effort. In
addition, this paper summarizes precision rate results obtained
during our research and compares them against other known
models to enhance the comparative scope and understanding.
The system has been evaluated with different databases in the
visible, and near-infrared (and their fusion) spectral regions.
This is illustrated over several sections of this article which
is organized in the following way. In section Methodology
and BIOPAD’s structure, definitions and methodology that
have led us to the development of the BIOPAD model are
discussed, followed by a detailed explanation of the model’s
structure. Furthermore, in that section, we demonstrate the
biologically-inspired techniques used, the model’s general layout,
and individual layer functionality. Section Experiments describes
all databases used (section Databases), explains our biometric
evaluation procedures (section Presentation attack results) and
analyses all experiments conducted for the BIOPAD, Hierarchical
Model And X (HMAX) and CNN (AlexNet) models. Section
Experiments is further divided into visible (section Visible
spectrum experiments) and near-infrared (section Near-infrared
experiments and cross-spectral fusion) experiments for a better
comparison between the two approaches explored. Finally,
the last section summarizes all of our conclusions in this
research work.

METHODOLOGY AND BIOPAD’S
STRUCTURE

In the first part of this section, the overall layered structure
is described, followed by the biologically-inspired concepts
that have been used as core mechanisms in BIOPAD. In the
last section, each layer is individually explored, along a full
explanation of its operation in a pseudo-like manner.

Center-Surround and Infrared Channels
Mammals perceive incoming photons through the retina in their
eyes. The number of individual photoreceptors in the retina of
the human eye varies from person to person and in the same
person from time to time, but on average each eye consists of∼5
million cones, 120 million rods and 100 thousand photosensitive
retinal ganglion cells (Goldstein, 2010).
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FIGURE 1 | Examples of on-center and off-center receptive fields for color opponency channels. Plus sign indicates whether the particular color is on and the

minus off.

In the human retinae, rod photoreceptors peak at ∼500 nm,
they are slow response receptors, come in small numbers, possess
large receptive fields, and are suitable for dark environments i.e.,
night time. However, cone receptive fields are narrower and are
tuned to different wavelengths of light. They are considerably
greater in numbers than rods and hence, are responsible for visual
acuity. Bipolar retinal cells bear the task of unifying incoming
visual information from cones and rods (Engel et al., 1997).
Furthermore, on-center and off-center bipolar cells operate in
a center-surround process between red-green and blue-yellow
wavelengths. For example, on-center Green-Red (RG) bipolar
cells are going to maximally respond when red hits the center of
their receptive field only and are inhibited when green is at their
surrounding region. Vice versa, this operation is reversed for
an off-center RG bipolar cell where excitation only occurs when
the detectable green wavelength is incident in the surrounding
region. As shown in Figure 1, this can be further applied for the
blue-yellow and lightness channels. The color opponent space is
defined by the following equations (Van De Sande et al., 2010):

O1 = (R− G)/
√
2 (1)

O2 = (R+ G− 2B)/
√
6 (2)

O3 = (R+ G+ B)/
√
3 (3)

The O3 opponent channel is the intensity channel and color
information is conveyed by channels O1 and O2. In BIOPAD,
when the input image is in RGB, all three opponent channels
are processed simultaneously and in order to make use of the
available infrared information, an additional channel NIR is
added in the fourth channel dimension.

The use of infrared or thermal imaging alongside the visible
spectrum, has been the subject of investigation many times in

the past (Kong et al., 2005) and Gabor filters with near-infrared
data have been applied together with computer vision algorithms
(Prokoski and Riedel, 2002; Singh et al., 2009; Zhang et al., 2010;
Chen and Ross, 2013; Shoja Ghiass et al., 2014). However, the
use of infrared spectra in presentation attack detection using a
biologically-motivated model, to our knowledge, is a first with
this research work.

The actual infrared range of wavelengths can be huge,
spanning from 7 microns all the way up to 300 microns and
generally these bands, are undetectable to the human eye.
However, there is evidence that infrared wavelengths up to 10
microns under certain circumstances are detectable by humans
as visible light (Palczewska et al., 2014). From a biological
perspective, the exact mechanism of near-infrared perception in
the visual cortex is unknown. In BIOPAD and at low feature
level, it is treated as an additional channel input from the retina,
with a range of normalized pixel values as provided by the sensor
(Figure 2). Infrared data acquisition and sensor information is
shown in section Presentation attack results.

Area V1—Edge Detection
As visual signals travel to the primary visual cortex through the
lateral geniculate nucleus, area V1 orientation selective simple
cells process incoming information (Hubel and Wiesel, 1967)
from the retinae and perform basic edge detection operations
for all subsequent visual tasks. They serve as the building block
units of biological vision. It is already well-established from
literature that orientation selectivity in V1 simple cells can be
precisely matched by Gabor filters (Marcelja, 1980; Daugman,
1985; Webster and De Valois, 1985).

A Gabor filter is a linear filter which is defined as the product
of a sinusoid with a 2D Gaussian envelope and for values in pixel

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2019 | Volume 13 | Article 34195

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tsitiridis et al. Bio-Inspired Presentation Attack Detection

coordinates (x, y), it is expressed as:

G
(

x, y
)

= exp

(

−
X2 + γ 2Y2

2σ 2

)

cos

(

2π

λ

)

X (4)

X = x cos θ − y sin θ (5)

Y = −x sin θ + y cos θ (6)

In Equation 5, γ is the aspect ratio and in this work is set
to 0.3. Parameter λ is known as the wavelength of the cosine
factor and together with the effective width, parameter σ, specify
the spatial tuning accuracy of the Gabor filter. Ideally, to
optimize the extraction of contour features from V1 units for
a particular set of objects, some form of learning is necessary
to isolate an optimum range of filters. However, this process
adds complexity and it is time-consuming since it requires
a huge number of samples, as experiments on convolutional
neural networks have shown in literature. In order to avoid this
step, Gabor filter parameters are hardcoded directly into our
model following parameterization sets that have been identified
from past studies. Two different parameterization settings have
been considered (Serre and Riesenhuber, 2004; Lei et al., 2007;
Serrano et al., 2011). Our preliminary experiments have shown
that the two particular Gabor filter parameterization ranges,
have no noticeable effect on PAD results. Thus, we chose the
parameterization values given (Serrano et al., 2011).

Additionally, it is known that V1 cell receptive field sizes
vary considerably (McAdams and Reid, 2005; Rust et al., 2005;
Serre et al., 2007) to provide a range of thin to coarse spatial
frequencies. Similarly, four different receptive field sizes were
used here with pixel dimensions 3 × 3, 5 × 5, 7 × 7, and 9
× 9. Coarser features are handled by area V2, explained in the
next section.

Area V2—Texture Features
In general, the significance of textural information is sometimes
neglected or even downplayed in past biologically-inspired
vision models. In face biometrics, as explained previously in
the introductory section, there is a long list of texture-based
presentation attack detection models and texture information is
considered a crucial feature against attacks.

The role of cortical area V2 in basic shape and texture
perception is essential. V2 cells share many of the edge
properties found in V1. Nevertheless, V2 cell selectivity has
broader receptive fields and is attuned to more complex features
compared with V1 cells (Hegdé and Van Essen, 2000; Schmid
et al., 2014). In addition to broader spatial features, this
layer processes textural information and is therefore capable
of expressing the different nature of surfaces. This is a crucial
advantage in face presentation attack detection where there is a
wealth of information hidden within the texture of faces, facial
features or face attacks. For example, texture of beards, skin,
and glasses can prove a valuable feature against spoofing attacks
mimicking their nature.

V2 cells are effectively expressed by a sinusoidal grating cell
operator though other shape characteristics also correspond well
(Hegdé and Van Essen, 2000). The grating cell operator has not
only shown great biological plausibility with respect to actual V2

texture processes but has also proven superior to Gabor filters
in texture related tasks (Grigorescu et al., 2002). Its response
is relatively weak to single bars but in contrast, it responds
maximally to periodic patterns.

The approach used here (Petkov and Kruizinga, 1997)
consists of two stages. In the first stage grating subunits
generate on-center and off-center cells responding to periodicity
much like retina cells. In the following stage, grating cell
responses of a particular orientation and periodicity are added
together, a process also known in neurons as spatial summation
(Movshon et al., 1978).

A certain response Gr of a grating subunit at position
(x, y), with orientation θ and periodicity λ is given by
Petkov and Kruizinga (1997):

Gr
(

x, y
)

θ,λ
=

{

1, if ∀ n, M
(

x, y
)

θ,λ, n
≥ ρM(x, y)θ,λ

0, if ∃ n, M
(

x, y
)

θ,λ, n
< ρM(x, y)θ,λ

(7)

where n ∈ {-3 . . . 2}, ρ is the threshold parameter between 0 and
1 (typically 0.9). The maximum activities of M at a given location
(x, y) and for a particular selection of θ , λ, n, are calculated as
followed (Petkov and Kruizinga, 1997):

M
(

x, y
)

θ ,λ, n
=max







s
(

x′, y′
)

θ ,λ,ϕn
|

n λ
2 cosθ≤x′−x<(n+1) λ

2 cos θ

n λ
2 sinθ≤y′−y< (n+1) λ

2 sin θ

(8)

φn =

{

0, n = −3,−1, 1
π , n = −2, 0, 2

(9)

and

M
(

x, y
)

θ ,λ,n
=max

(

M
(

x, y
)

θ,λ, n

)

(10)

The responses at M(x, y)θ ,λ,n in Equation 9, are simple cell
responses with symmetric receptive fields along a line segment
3λ. Essentially this means that there are three peak responses
for each grating subunit at point (x, y) at a given orientation θ.
This line segment is split in λ/2 intervals. The particular position
of each interval defines the response of on-center and off-center
cells. In other words, a grating cell subunit is maximally activated
when on-center and off-center cells of the same orientation and
spatial frequency are activated at point (x, y). In Equation 10, φn

is the phase offset and for values between 0 and π, it corresponds
to symmetric center-on and center-off operations, respectively.

In the second part of V2 grating cell design, a response
w of grating cell centered on (x, y) along orientation θ and
periodicity λ, is the weighted summation of grating subunits with
orientations θ and θ + π , as given below:

w(x, y)λ, θ=

∫

exp

(

−

(

x−x′
)2

+(y−y′)2

2 (βσ)2

)

(

Gr
(

x′, y′
)

θ,λ
+Gr

(

x, y
)

θ+π ,λ

)

dx′dy′, θ∈ [0,π ) (11)

Parameter β is the summation area size with a typical value of 5.
In our experiments the number of simple cells were empirically
chosen at 3 and all other parameter values were set at default
values according to Petkov and Kruizinga (1997).
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FIGURE 2 | The proposed model structure. Several layers L1 to L5 progressively process spatial and spectral facial features. All participants gave written informed

consent for the publication of this manuscript.

BIOPAD Structure
Light waves are being continuously perceived by our eyes
and every generated electrical impulse passes via the lateral
geniculate nucleus of our brain to arrive at the first neurons
in the striate cortex (Hubel and Wiesel, 1967). Countless
neurons organized in progressive layers then process this
information through cascades of cerebral layer modules each
intended for a specific operation. Broadly, visual areas in
the human brain after visual area V2 follow the dorsal and
ventral visual pathways, the “where” and “what” pathways
(Schneider, 1969; Ungerleider and Mishkin, 1982). The two
streams are layers along two distinct cerebral paths that
localize and analyse meaningful information in constant
neuronal communication.

BIOPAD’s structure mimics the basic visual areas V1 and
V2 in the primary visual cortex in a bottom-up fashion
(Figure 2). Its operation relies on the early stages of biological
visual cognition, without any external biases or influences.
The design successively processes extracted biologically-inspired
features reducing their dimensionality to an extent that
they can be used with classifiers that determine original
from fake access attempts. Furthermore, through successive
biologically-motivated filtering BIOPAD’s main strength lies
in its ability to transform extracted features into higher
dimensional vectors in a simple way that maximizes the
separation between them. For example, an important difference
between BIOPAD and HMAX is that the latter model’s main
focus is view-invariant representation of objects irrespective

of their size, position, rotation and illumination. Conversely,
BIOPAD’s purpose is the detection of face spoofing attempts
and to this end, invariance properties such as size and
position could be valuable with future extensions. Even
though invariance properties are generally meaningful in face
recognition (Yokono and Poggio, 2004; Perlibakas, 2006; Rolls,
2012), in this particular scenario of face presentation attack
detection they add unnecessary complexity or processing delays
and are therefore not explored further. More specifically,
BIOPAD’s proposed structure is separated in the following
layers (Figure 2):

Input Layer: The purpose of the input layer is to prepare
image information by scaling down all input RGB images to a
minimum of 300 pixels for the shortest edge in order to preserve
the image’s aspect ratio. This particular image size was chosen as
a good compromise between speed/time and computational cost.

Layer L1: This layer plays the role of the lateral geniculate
nucleus and separates visual stimuli in the appropriate double-
opponency channels (bipolar cells) as given in section Area V1—
Edge detection while scaling all pixel values to the same range
between 0 and 1.

Layer L2a: Gabor filter operations perform edge detection
according to parameterization values given in section Area V2—
Texture features producing feature maps for each channel. It is
important to note that after obtaining filtered outputs from all
Gabor filters (in total 192) for each double-opponency channel,
a maximum operator is applied so that a particular maximum
response of L2a vectors (x1 . . . xm) in a neighborhood j is
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given by:

r = argmax j(xj) (12)

The maximum operator is a well-known non-linear biological
property exhibited by certain visual cells at low levels of visual
cognition that assists in pooling visual inputs from previous
layers (Riesenhuber and Poggio, 1999; Lampl et al., 2004)
to greater receptive fields. This hierarchical process gradually
projects meaningful visuospatial information to higher cortical
layers in the mammalian brain (Figures 3a,b).

Layer L2b: In this layer grating cell operations are performed
according to the settings given in section BIOPAD structure.
Subsequently, grating outputs are spatially summed with outputs
from L2a, in order to form a single L2 output for each of the
three double-opponency channels. Spatial summation is another
property of the visual cortex and like the maximum operator it is
intended to linearly combine presynaptic inputs into outputs for
higher layers (Movshon et al., 1978). Spatial summation is used
in this layer in order to preserve the spatial integrity and sensitive
texture information in faces (Figure 3c).

Layer L3: The three double-opponency channels after spatial
summation (Figure 3d), contain both edge and texture features.
The information of these channels along with the RG-BY spectral
channels from L1 that contain the spectral differences of each
image, are aggregated into spatial histograms with a window size
of 20 units and bin size of 10. These values were empirically
selected after experimentation as ideal for the particular layer
dimensions. These spatial histograms have been used before in
the context of face recognition but with lower level features at L1
(Zhang et al., 2005). Here, they are employed at an intermediate
level of feature processing and with various types of biological-
like features. It is further important to note here that since
all these spatio-spectral channels carry different types of visual
information, they are never mixed together.

Layer L4: In this layer all L3 information from the previous
layer is simply concatenated and sorted in a multidimensional
vector for either the training or testing phase, without any further
processing. Vector dimensions vary according to the size of
the dataset and choice of parameters within the model. For
example, if from the previous L3 settings spatial histograms
are performed over larger regions or if the input image
layer of the image is set to smaller dimensions (for faster
processing speeds), then the total number of vectors extracted
will be smaller. Moreover, if the total number of images in
the dataset changes, so does the vector dimension size, i.e.,
md×np, where m are the vectors extracted from previous
layers with length d and n are the columns of vectors per
image p.

Layer L5: Supervised classification takes place in
this layer and any classifiers used can be trained with
the extracted feature vector from L4. Training data
are selected by following the 10-fold cross-validation
technique. The supervised classifiers chosen for this
work were a Support Vector Machine (SVM) with
a linear kernel and k-Nearest Neighbor (KNN) with
Euclidean distance.

BIOPAD’s overall operation is further demonstrated with a
pseudo-code approach below:

RGB Data Setup
Each PAD database consists of single RGB frame
samples for a particular person’s authentic video
sequence and their presentation attacks. The PAD
image database is then split in 70% training samples
(Tr) 30% samples for testing (Ts) with cross-validation
in 10-folds.

if RGB case train then,

for each random Tr sample of each fold do,

(1) Input: Load a m × n Tr sample and scale to 300 pixels for the shortest

edge.

(2) Center-surround: Convert RGB space to O1, O2, O3 channel

opponent space using Equations (2–4) thus obtain opponency frame

Or of the same dimensions.

for each opponency channel O1 (red –green differences), O2

(blue–yellow) and O3(lightness) do,

(3) Process V1: Load 3x3, 5x5, 7x7, 9x9 Gabor filters (Gf ) parameterised

with σ =1, and λ = 4, 5.6, 7.9, 11.31, 15.99, 22.61 in total 192 filters

then.

• L1Tr = Or · Gf , where L1Tr is a multidimensional array of

m × n ×192 convolved versions of the Tr frame with V1-Gabor

like filters.

• Extract the maximum response using Equation (12) at every position

along the dimension of convolutions to obtain a new matrix L1M
• Normalize L1M with zero mean and unit variance.

(4) Process V2: Load grating filters (Gr ) using θ = 0–360◦ in 45◦ steps, λ =

5.42, ρ = 0.9, and β = 5.

• L2Tr = Or · Gr , where L2Tr is a multidimensional array of m × n ×

θ convolved versions of the Tr frame with V2 -grating filters.

• Extract the maximum response using Equations (10–12) at every

position along the dimension of convolutions to obtain a new

matrix L2M.

• Normalize L2M with zero mean and unit variance.

(5) Spatial summation of L1M and L2M features yielding an array of the

same size as the input.

(6) Spatial histograms on summation output from step 5, with a fixed

window size of 20x20 L3 units and bin size of 10, then concatenate

histograms into a column of 5920 L4 vectors for each sample

(7) Train classifier after all Tr have been processed through steps (1–6).

else if RGB case test then,

for each random Ts sample of each fold do,

repeat steps (1-6) as above and use 5920 column vectors of Ts to extract

predictions from the trained classifier

RGB and NIR Data Setup
The FRAV database consists of RGB and NIR single samples
for a particular person’s authentic video sequence and their
presentation attacks. The PAD image database is then split in
70% training samples (Tr) 30% samples for testing (Ts) with
cross-validation in 10-folds, maintaining RGB and NIR original
sample ratios.
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if RGB and NIR case train then,

for each random Tr sample of each fold, do

repeat steps (1-2) and (3-6). At L1 for each opponency channel O1

(red –green differences), O2 (blue – yellow), O3(lightness), NIR (near-infrared)

extract 7100 L4 column vectors for each Tr sample during classifier training.

else if RGB and NIR case test then,

for each random Ts sample of each fold do,

repeat steps (1-2) and (3-6). At L1 for each opponency channel O1

(red –green differences), O2 (blue – yellow), O3(lightness), NIR (near-infrared)

extract 7100 L4 column vectors of Ts for predictions obtained from the

trained classifier.

EXPERIMENTS

It is important to note that in all experiments for both the
genuine access and impostor attacks, only one photo per
person was used from the entire video sequences. The databases
employed in this work and their different spoofing attacks
are explained in section Databases. Section Presentation attack
results presents the obtained results in conventional biometric
evaluation measures. The remaining part of this section is
further divided into experiments in the visible and near-infrared
spectrum. In this subsection, the different spectra are examined
individually and subsequently, their cross-spectral fusion at
feature, and score levels. Since our model currently does not
perform any liveness detection method, successive video frames
are not being considered. For the purpose of homogeneity

and statistical accuracy between datasets, train and test data
were divided with the cross-validation technique, bypassing the
original train/test data split of some databases as has been
explained in the previous section in more detail.

Databases
The Facial Recognition and Artificial Vision (FRAV) group’s
“attack” database addresses several critical issues compared to
other available face PAD databases. The number and type of
attacks can vary significantly in each facial presentation attack
database and by large, databases of the past never included a large
sample of known threats. In addition to the sample of individuals
examined being relatively small, little attention was paid in
the multitude of human characteristics often occurring within
human populations e.g., beards, glasses, eye color, haircuts etc. At
the same time, sensor equipment is often limited and out-dated
to contemporary technology products found in the market today.
These shortcomings necessitated the creation of an up-to-date
PAD facial database according to ISO/IEC and ICAO standards
with a larger statistical sample, multi-sensor information and
inclusion of all basic attacks. This database serves as a simulation
stepping stone for experimentation ahead for any real-world
situation and supplements the list of existing databases found
publicly. The introduction of this new database from our group
offers the following main characteristics and contributions:

• The largest PAD-ready facial database to date with 185
different individuals of both genders and various age groups.

• The largest collection of sensor data aimed at PAD
algorithms. Four different types of sensors namely Intel’s

FIGURE 3 | A genuine access attempt vs. a photo-print attack. Top row shows the progressive process of a genuine photo attempt. Bottom row shows the printed

photo attack. Column (A) shows the input layer images. Column (B) the L2a layer as processed from edge detection Gabor filters, column (C) the L2b layer

processed from texture grating cells and column (D) the combined layers L2a and L2b after spatial summation. The richness and depth of edge-texture information in

the original image (top row) is apparent. All participants gave written informed consent for the publication of this manuscript.
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Realsense F200, FLIR ONE mobile phone thermal sensor, Sony
A6000 ILCE-A6000 and a HIKVISION surveillance camera and
therefore covering a range of spectral bands in the visible, near-
infrared (at 860 nm) and infrared (800–1500 nm).

• Various spoofing attack scenarios examined, which include
the following types of spoofing attacks:

1. Printed photo attacks with high resolution A4 paper.
2. Mask attacks from printed paper.
3. Mask attacks from printer paper with eye areas exposed an eye

blinking effect.
4. Video attack with a tablet electronic device.
5. 3D Mask attack (to this day limited but will be expanded in

the future)

Lastly, particular attention was paid at uniformly illuminating all
faces using artificial lighting. Two T4 fluorescent tubes operating
at 6,000 K−12 Watts each, evenly distributing multi-directional
light to all subjects. Figure 4 illustrates all of the presentation
attack types explored in the FRAV “attack” database for a given
subject using RGB and NIR sensor information.

The CASIA Face Anti-Spoofing (Zhang et al., 2012) database
is a database from the Chinese Academy of Sciences (CASIA)
Center for Biometrics and Security Research (CASIA-CBSR).
This database contains videos at 10 s of real-access and spoofing
attacks of 50 different subjects, divided into train and test sets
with no overlap. All samples were captured with three devices

at different resolutions: (a) low resolution with an old 640 ×

480 webcam, (b) normal resolution with a more up-to-date
640 × 480 webcam and c) high resolution with a 1920x 1080
Sony NEX-5 camera. Three different attacks were considered,
(a) warped, spoofing attacks are performed with curved copper
paper hardcopies of high-resolution digital photographs from
genuine users, (b) cut, attacks are performed using hardcopies
of high-resolution digital photographs from genuine users, with
the eye areas cut out to simulate eye blinking, c) video, genuine
user videos are replayed in front of the capturing device using
a tablet.

The MSU Mobile Face Spoofing Database or MFSD (Wen
et al., 2015) for face spoof attacks, consists of 280 video clips
of photo and video attack attempts of 35 different users. This
database was produced at the Michigan State University Pattern
Recognition and Image Processing (PRIP) Lab, in East Lansing,
US. The MSU database has the following properties, (a) mobile
phones were used to acquire both genuine faces and spoofing
attacks, (b) printed photos were generated as high-definition
prints and their authors claim that these have much better quality
than printed photos in other databases of this kind. Two types
of cameras were used in this database, (a) built-in camera in
MacBook Air at a resolution of 640 × 480, and (b) front-facing
camera in the Google Nexus 5 Android phone at a resolution
of 720 × 480. Spoofing attacks were generated using a Canon
SLR camera, recording at 18.0M pixel photographs and 1,080

FIGURE 4 | An example of a subject from the FRAV “attack” database. Top row left to right: Genuine access RGB photo, RGB Printed photo attack, RGB printed

mask attack, RGB printed mask with eyes exposed attack, RGB tablet attack. Bottom row left to right: Genuine access NIR photo, NIR printed photo attack, NIR

printed mask attack, NIR printed mask with eyes exposed attack, NIR tablet attack. All participants gave written informed consent for the publication of

this manuscript.
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p high-definition video clips and iPhone 5S back-facing camera,
recording 1,080 p video clips.

Presentation Attack Results
BIOPAD was evaluated with three different databases, FRAV-
attack, CASIA, andMFSD. The main concern of our experiments
was the detection success rate of spoofing attacks made by
potential impostors. In simple terms, the system was required
to effectively differentiate between fake and genuine access
attempts. This was treated as a two-class classification problem.
The applied biometric evaluation procedures are defined for the
spoofing False Acceptance Rate (sFAR) and False Rejection Rate
(FRR) as:

sFAR =
Impostor attacks seen as genuine

Total number of attacks
(13)

FRR =
Rejected genuine access attempts

Total number of genuine access attempts
(14)

Moreover, presentation attack detection is further presented
according to SC37ISO/IEC JTC1 Biometrics (2014) with an
additional measure, Average Classification Error Rate (ACER).
The average of impostor attacks incorrectly classified as genuine
attempts and normal presentation incorrectly classified as
impostor attacks is given by:

ACER =
sFAR+ FRR

2
(15)

Train and test data were partitioned using the k-fold cross
validation technique. All scores were obtained using 10-folds and
in order to further testify performance scores, and L4 feature
vectors were essentially classified using two different schemas.
A Support Vector Machine (SVM) classifier with two different
kernels linear, Radial Basis Function (RBF) and a k-nearest
neighbor (KNN) classifier of n = 2 nearest neighbors with
Euclidean distance as a distance measure. In reality, the number
of neighbors varies according to the dataset but for the two class
problem here out of all n values examined, two produced the best
average on all datasets as found through cross-validation. In the
beginning, BIOPAD was examined only on the RGB images of
all three databases and then on both RGB/Near-Infrared (NIR)
images at feature-score levels for the FRAV attack database only
since infrared data is unavailable for the other databases.

Visible Spectrum Experiments
Accuracy rates are defined as the number of images for each
database correctly classified as genuine or fake, i.e., true positives
and true negatives. The average classification accuracy scores
and standard deviation values from all trials in Tables 1, 2,
respectively, highlight the large differences between datasets and
classifiers. From Table 1 it can be deduced that BIOPAD analyses
presentation threats better thanHMAXunder all of the examined
databases. Depending on the choice of training and testing data
as provided by cross-validation, significant deviations in results
may occur. This is largely due to the relatively small sample
sizes in databases, especially in CASIA and MFSD, leading to
significant statistical variance. This has an obvious effect on the

TABLE 1 | The average detection percentages (%) of 10 trials with

cross-validation.

Dataset BIOPAD HMAX

SVM linear SVM RBF KNN SVM linear SVM RBF KNN

CASIA 92.75 90.13 57.37 90.25 88.63 63.50

MFSD 97.08 86.04 82.08 90 87.08 70.42

FRAV 98.91 98.71 94.71 96.57 93.91 81.23

TABLE 2 | The average standard deviation values (σ2) of 10 trials with

cross-validation.

Dataset BIOPAD HMAX

SVM linear SVM RBF KNN SVM linear SVM RBF KNN

CASIA 5.06 5.96 10.18 6.06 5.6 17.17

MFSD 3.82 3.68 9.97 7.84 9.86 11.23

FRAV 1.14 1.4 1.99 2.18 3.18 4.98

KNN classifier which portrays an unstable and low performance
with respect to SVM. The CASIA presentation attack database
produced the worst overall results in terms of PAD.

The highest performance has been achieved with the FRAV
“attack” database closely followed by the performance achieved
with theMFSD database. This is not entirely surprising since both
datasets consist of good quality images and high resolution print
attacks. The worst performance has been noticed when operating
with CASIA photos. The total average performance from all
datasets in the BIOPAD SVM linear case is at 96.24% while for
HMAX at 92.27%. HMAX is not a dedicated PAD algorithm, nor
has it been ever designed for such a purpose. Nevertheless, it can
be seen from Table 1 that HMAX has performed remarkably well
which beyond doubt proves the adaptability and capacity that
bio-inspired computer vision models have.

In Table 2, standard deviation values further paint a picture
of relationships between models and datasets. The highest
performance was observed in BIOPAD with SVM using the
FRAV database and the worst in HMAX KNN using CASIA.
Between them there is a sizeable difference of 16% indicating
the impact of choosing a particular scenario and classifier in
PAD performance. It is further noticeable from this table that
BIOPAD provides a more consistent set of results with SVM
linear being the overall winner in performance. The detection
accuracy rates inTable 1 provide an insight into the overall ability
of the PAD model to detect spoofing attacks. From these results
it is seen that the model can achieve a high detection rate at
almost 99% with a consistent standard deviation value of 1.14
for the SVM linear kernel case in the FRAV database. Overall,
the KNN classifier with the CASIA database has shown the worst
performance. While conclusions from Tables 1, 2 are useful,
biometric evaluation becomes more meaningful when measured
in terms of sFAR and FRR which can effectively capture the
nature of error.
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In addition to HMAX and for a more complete comparison
with BIOPAD, the selected databases were analyzed using
Convolutional Neural Network. Multiple lines of research have
been explored for CNN architectures in last two decades and a
huge number of different methods are proposed in references
(Canziani et al., 2016; Ramachandram and Taylor, 2017). In
this part of the experiments, the objective is to compare the
proposed bio-inspired method with a base line CNN model. The
architecture selected was based on the well-known LeNet method
(LeCun et al., 1998) with the improvements implemented in
AlexNet (Krizhevsky et al., 2012). AlexNet has been tested for
detecting presentation attacks using faces (Yang et al., 2014; Xu
et al., 2016; Lucena et al., 2017). The architecture of the net
is formed by eight layers, five convolutional and three fully-
connected. All results provided in Table 3 are the average of
10 trials.

Table 3 shows that error percentages are relatively small and
comparable with another state-of-the-art algorithm like CNN
that have been used in the past. The sFAR percentages for
the CASIA and MFSD databases are comparable but there
is a significant difference between the two databases in their
FRR percentages. Naturally, this is also reflected onto the
ACER percentages. The significant difference in FRR percentages
indicates the difficulty of distinguishing attacks from genuine
access attempts in the CASIA database. The error percentages
for the best classifier choice (SVM linear) appear particularly
improved for the FRAV attack database. In effect, this proves
the importance of image quality in terms of both verification
and presentation attack cases. Image quality is a consequence
of various reasons and is also reflected in PAD results seen in
Table 1. We further wanted to investigate the impact V1 and V2
edge and texture operations have on the overall performance of
presentation attack detection. These tests were only performed
for the SVM linear kernel case. It is worthwhile therefore
to examine the separate and combined effect of V1 and V2
operations which can be seen in Table 4 below in terms of
classification percentages. PAD scores rise when V1 and V2
feature vectors are combined together and standard deviation
values across all trials indicate better performance. While these
values are indicative in these early stages of experimentation,
a separate study on optimum parameterization for each layer
may yet reveal a more important relationship between edge and
texture features in presentation attack detection.

In order to better understand the intrinsic quality difference
of the databases used in this work, various metrics were explored.
There are numerous image quality metrics that have been
developed over the years such as mean square error, maximum
difference, normalized cross-correlation and peak signal-to-
noise ratio amongst many others. Some of these metrics in
fact have been successfully used as a separate PAD algorithm
(Galbally et al., 2014). The majority of quality metrics requires
the examined image to be subtracted from a reference image.
This produces accurate error results only when the images are
identical i.e., when the image content is identical. However, in
practice face databases are a collection of images from various
sensors at different angles. So in this particular case, sharpness
metrics capable of measuring the content quality from a single

TABLE 3 | AlexNet and BIOPAD average sFAR and FRR scores over 10 trials.

Dataset AlexNet BIOPAD

sFAR FRR ACER sFAR FRR ACER

CASIA 2.857 13.9 8.37 2.77 14.58 8.67

FRAV 2.98 17.34 10.16 0.85 2.43 1.64

MFSD 9.64 39.07 24.34 3.44 5 4.22

TABLE 4 | The average classification percentages (%) and standard deviation

values of 10 trials with cross-validation for V1 and V2 operations.

Dataset µ σ
2

V1 V1 and V2 V1 V1 and V2

CASIA 90 92.75 8.6 5.06

MFSD 95.63 97.08 6.25 3.82

FRAV 97.73 98.91 2.48 1.14

image would be more suitable and useful. Likewise as before
with quality metrics, there is a huge list of sharpness metrics
being used in literature today, e.g., absolute central moment,
image contrast and curvature, histogram entropy, steerable
filters, energy gradients etc. An in-depth database quality analysis
is beyond the scope of this work, and we have experimented
with several sharpness metrics noting similar responses from all.
Table 5, shows indicative sharpness results by using the spatial
frequency quality (Eskicioglu and Fisher, 1995) metric which has
been representatively chosen.

It is evident from the mean values (µ) in Table 5 that the
CASIA dataset on average does not possess the high quality
of spatial features seen in the MFSD and FRAV databases.
Furthermore, the MFSD dataset has produced the best scores,
however it should be highlighted that it does not have the
same variety of presentation attacks found in the FRAV “attack”
database nor the abundance of test subjects. The “Smartphone”
and “Tablet” attacks are a similar type of electronic device
attack and there is no provision of mask attack data. To
further understand the importance of the aforementioned better,
we employ the t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Van Der Maaten and Hinton, 2008) technique to
visualize and compare presentation attacks in each dataset.
L4 vectors as extracted from BIOPAD are used with t-SNE
technique at “default” value settings, i.e., 30 dimensions for its
principal component analysis part and 30 for the Gaussian kernel
perplexity factor, and shown in Figure 5.

In Figures 5A,C,E, real access attempts vs. impostor attacks
are visualized within the same space. These illustrations help
understand how genuine users distance from their attacks. It
can be easily observed in Figure 5A that for the CASIA dataset
real access attempts are scattered across the same space as
presentation attacks, making the classification process complex
and difficult to achieve. This is also confirmed by its reduced
detection rates. Different patterns are exhibited from results
in Figure 5B, where real access attempts occupy a denser area

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2019 | Volume 13 | Article 34202

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tsitiridis et al. Bio-Inspired Presentation Attack Detection

TABLE 5 | Direct comparison of spatial frequency quality index values for three datasets and for each of their presentation attacks.

Dataset Printed photo Printed mask Printed

Photo/Mask with Eye blinking

Smartphone Tablet Real users µ

CASIA 0.803 – 0.8957 – 1.0221 1.094 0.9538

MFSD 2.4191 – – 2.7054 2.9603 2.754 2.7097

FRAV 1.8275 1.6544 1.5081 – 1.4906 1.831 1.6623

FIGURE 5 | L4 vectors visualized with t-SNE for the three datasets. (A) real vs. impostors–CASIA database, (B) presentation attacks—CASIA database, (C) real vs.

impostors –MFSD database, (D) presentation attacks—MFSD database (E) real vs. impostors—FRAV “attack” database, and (F) presentation attacks—FRAV

“attack” database.

FIGURE 6 | HMAX vectors visualized with t-SNE for the three datasets in terms of real access attempts vs. impostors. (A) t-SNE for the CASIA dataset, (B) t-SNE for

the MFSD dataset, and (C) t-SNE for the FRAV “attack” dataset.

within the impostor attack zone and finally in Figure 5C, in
which real access attempts fall within a separate space. Looking
at the presentation attack images in all datasets closely, it is not
surprising to understand why these patterns occur. In Figure 5B,
mainly due to the low image sharpness in CASIA (Table 5) and
the nature of attack experiments, L4 vectors cover almost the
same range of values and dimensional space. As the separation
of presentation attacks and real access attempts improve in
Figures 5D,F so do the results in Table 1. Finally, in Figure 5F,
some real access attempts exhibit a noticeable overlap with their

respective presentation attacks, particularly within the printed
photo space, which is the main source of sFAR and FRR errors
for the FRAV database. Arguably, the presentation attack that, in
general, best matches genuine user information is the “printed
photo” attack which can be efficiently faced in the NIR spectrum
(section Near-infrared experiments and cross-spectral fusion).

Finally, comparing BIOPAD L4 vectors with HMAX vectors
using t-SNE (Figure 6), it can be noted that HMAX vectors do
not display the same amount of consistency in distinct areas
but rather vectors from all attacks appear merged and scattered
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TABLE 6 | BIOPAD detection rates and their standard deviation values over 10 trials.

Dataset SVM linear SVM RBF KNN σ2-SVM linear σ2-SVM RBF σ2-KNN

FRAV RGB 96.13 94.58 85.95 2.26 3.21 3.91

FRAV NIR 97.81 97.17 92.28 1.72 2.16 3.2

FRAV(RGB + NIR) Feature level 96.33 95.71 86.49 3.08 2.93 3.07

FRAV(RGB + NIR) Score level 96.97 95.87 89.11 1.99 2.68 3.55

FIGURE 7 | L4 vectors visualized with t-SNE for the FRAV “attack” database and its NIR information. (A) real vs. impostors—FRAV “attack” database with NIR

information only, and (B) presentation attacks—FRAV “attack” database with NIR information only, (C) real vs. impostors—FRAV “attack” database with RGB&NIR

information fused at feature level, and (D) presentation attacks—FRAV “attack” database with RGB&NIR information fused at feature level.

across the same area. HMAX lack of bio-inspired features capable
of processing texture and color information, leads to hardly
distinguishable classes. In effect, this has a toll in presentation
attack detection results (Table 1).

Near-Infrared Experiments and Cross-Spectral Fusion
BIOPAD experiments in the previous section have centered
on the visible spectral bands and have shown great promise.
Nonetheless, there were noticeable overlaps with certain
presentation attacks and so we wanted to further expand
BIOPAD’s capacity to cope with these attacks and minimize
the contribution of errors either directly from the subjects or
their ambience. For this reason, our experiments in this section
present a direct comparison between the performance for each
spectral band, then their fusion at feature and score levels i.e.,

fusion between the visible and NIR band. At feature level, NIR
is treated like an additional channel (Figure 2) and L4 vectors
from all bands are equally processed in the model. Conversely,
at score level visible—NIR bands are processed and classified
separately. However, after classification, vectors for each subject
are examined over all trials using the weighted sum score level
fusion technique in order make a decision on whether the subject
is genuine or not.

For this round of experiments, we only process the FRAV
“attack” dataset since NIR data is unavailable in other datasets
and to our knowledge the FRAV “attack” database is the only face
presentation attack dataset in literature. Originally, the FRAV
“attack” dataset consists of 185 different subjects and experiments
in the previous section were conducted under this sample. In
these experiments, available data for different subjects is changed
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to 157 individuals since there were failure-to-acquire instances
during database acquisition. All other setup parameters remain
unchanged as before.

In Table 6, the best results with the least standard deviation
values for BIOPAD across all classifiers were obtained by using
NIR images. The drop in performance in the visible spectrum
is nearly 1.5% for the SVM linear classifier case and this pattern
trend is consistent with other classifier settings. NIR superiority
in this type of presentation attack experiments can be further
viewed from their t-SNE results in Figures 7A,B, where it is
apparent that classes are well-separated. These representations
can be directly compared with the visible spectrum case
(Figures 5E,F) where there was a clear overlap between genuine
and impostor attacks leading to errors being introduced in
sFAR and FFR. The overlap between genuine access attempts
and printed photo attacks does not exist in the NIR case
and the “tablet” is completely neutralized since there isn’t any
useful attack information being projected at NIR. Fusing visual
information between the visible and NIR at feature level, caused
BIOPAD to lose slightly in detection rate performance with
respect to NIR only by ∼1.5%, also noticeable in standard
deviation values. Moreover, when visualized at feature level
and with the visible spectrum analyzed (Figures 7C,D), attack
patterns appear slightly improved to Figures 5E,F but otherwise
similar patterns are noticeable.

Furthermore, the performance between the different visual
information can be viewed from the Detection Error Tradeoff
(DET) curve as shown in Figure 8. The DET curve for the
FRAV “attack” illustrates the relationship within sFAR and FRR.
Naturally, sFAR and FRR confirm the same behavior seen in
the percentages, also presented in Table 6. As expected the
best curve is obtained by BIOPAD with NIR followed by RGB
+ NIR (feature level) and RGB. Equal error rate or Attack
Presentation Equal Error Rate (APEER) is a biometric security
system indicator that determines the threshold values for sFAR
and FRR. When these rates are equal, their common value
is known as the “equal error rate.” This value specifies the
proportion of false acceptances to false rejections. Low equal
error rates mean higher accuracy. In Figure 8, the difference
between APEERs in BIOPAD’s case is 4.15% and undoubtedly
shows that for the types of attacks present in the FRAV “attack”
database, the best acquisition method for PAD is with the use of
a NIR sensor.

CONCLUSIONS

In this article we presented a novel presentation attack
detection algorithm that relies on the extraction of edge and
texture biologically-inspired features, by mimicking biological
processes found in areas V1 and V2 of the human visual
cortex. This model termed as “BIOPAD,” reproduced impressive
presentation attack detection rates of up to 99% in certain
cases by only utilizing one photo per person and for all attacks
examined in the three datasets that were investigated. The main
contributions of this research work were to (a) Present a novel
biologically-inspired PAD algorithm which behaves comparably

FIGURE 8 | BIOPAD Detection Error Tradeoff curves of SVM linear classifier

for the FRAV “attack” database in NIR(red), RGB + NIR at feature level (blue)

and RGB (green). Attack Presentation Error Rate—APER.

to other state-of-the-art algorithms. (b) Introduce a new PAD
database called FRAV- “attack,” and (c) Introduce near-infrared
band information for PAD experimentation at feature and
score levels.

BIOPAD has been successful in surpassing other standard
biological-like techniques such as HMAX and CNN which
are considered state-of-the-art and benchmark models in
biologically-inspired vision research. In addition, the creation,
introduction and implementation of a new face presentation
attack database by our group termed as “FRAV attack,” extended
our investigation conclusions with high definition samples and
diverse scenarios for the most commonly used spoofing attacks.
The “FRAV attack” dataset which encompasses visual data that
span from visible to infrared, is expected to set future standards
for all new databases in face biometrics.

For the first time in literature, a biologically-inspired
algorithm has been directly applied with near-infrared
information, specifically for the purposes of face presentation
attack detection. As observed from the experimental analysis in
section Presentation attack results, BIOPAD features maximize
the separation between attacks and as a consequence increase
attack detection performance. The sFAR and FRR indicate that
BIOPAD error performance falls within acceptable limits and
it was further evident from our experiments that the nature
of data were better separated in classification by a SVM linear
classifier. However, future research in classification might reveal
classification schema more effective in dealing with incoming
data from multiple sensors.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 May 2019 | Volume 13 | Article 34205

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tsitiridis et al. Bio-Inspired Presentation Attack Detection

Our results have also shown that near infrared sensor
information is of extreme value and importance for presentation
attack detection, significantly outperforming visible spectrum
data. In our case, an increase in detection rate of almost 6% was
observed between the near-infrared and visible scenarios. While
the usefulness of near infrared information appears indisputable,
we have proposed data fusion from multiple sensors to minimize
errors from future elaborate attack methods that have not yet
been investigated. To this end, data fusion at feature and score
level indicate enhanced detection rates with respect to rates
obtained from the visible spectrum.

Overall, results were promising and BIOPAD can serve
as a foundation for further enhancements. Future work
will include refinement of the biological-like operations to
significantly increase performance and speed, optimization of
presentation attack detection for video, and real time processes
by incorporating biologically-inspired liveness detection
algorithms, experimentation with multiple sensors, different
types of novel and sophisticated presentation attacks, and
experimentation in dynamic—real world situations.
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Sensory input is inherently ambiguous but our brains achieve remarkable perceptual

stability. Prior experience and knowledge of the statistical properties of the world are

thought to play a key role in the stabilization process. Individual differences in responses

to ambiguous input and biases toward one or the other interpretation could modulate

the decision mechanism for perception. However, the role of perceptual bias and its

interaction with stimulus spatial properties such as regularity and element density remain

to be understood. To this end, we developed novel bi-stable moving visual stimuli in which

perception could be parametrically manipulated between two possible mutually exclusive

interpretations: transparently or coherently moving.We probed perceptual stability across

three composite stimulus element density levels with normal or degraded regularity using

a factorial design. We found that increased density led to the amplification of individual

biases and consequently to a stabilization of one interpretation over the alternative. This

effect was reduced for degraded regularity, demonstrating an interaction between density

and regularity. To understand how prior knowledge could be used by the brain in this

task, we compared the data with simulations coming from four different hierarchical

models of causal inference. These models made different assumptions about the use of

prior information by including conditional priors that either facilitated or inhibited motion

direction integration. An architecture that included a prior inhibiting motion direction

integration consistently outperformed the others. Our results support the hypothesis

that direction integration based on sensory likelihoods maybe the default processing

mode with conditional priors inhibiting integration employed in order to help motion

segmentation and transparency perception.

Keywords: visual perception, bias, bayesian, computational modeling, regularity, psychophysics, human

perception, motion perception
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INTRODUCTION

Our brains are subjected to ambiguous sensory inputs from
a variety of sources, yet the world that we perceive appears
stable and coherent. To constantly maintain such a percept,
dynamic sensory inputs are thought to be combined with
our prior knowledge and experience to form what should be
consistent neural representations (Knill and Richards, 1996;
Rao et al., 2002). Alternative percepts compete dynamically,
continuously resulting in changes to the dominant representation
driven by interactions taking place at several stages of the
cortical hierarchy. Perception can thus vary between multiple
outcomes by a myriad of possible mechanisms (Desimone and
Duncan, 1995; Beck and Kastner, 2009; Meso et al., 2016b).
Biased competition theory suggested that objects simultaneously
presented in the visual field compete for neural representation
and attention can bias this competition (Desimone and Duncan,
1995; Desimone, 1998; Beck and Kastner, 2009). When stimuli
are inherently more ambiguous, such internal processes become
more critical in perceptual selection and could govern the
outcome of the competition. However, the role of observer
bias and how that might interact with key visual stimulus
properties which may often control signal strength, remains
unexplored. Questions arise following evidence recently found
that the human visual system possesses internal templates for
regular patterns, indicating that regularity is a coded feature in
human vision (Morgan et al., 2012; Ouhnana et al., 2013).

Here, we developed novel bi-stable visual stimuli (Figure 1)
that exploited the significant role of plaid local elements
such as intersections (Stoner et al., 1990), to parametrically
manipulate perception between two possible interpretations,
coherent and transparently moving. We then probed perceptual
stability during the resulting ambiguous motion perception
across three stimulus density levels with normal or degraded
regularity using a factorial design. Further, a set of Bayesian
observer models based on the causal inference frame work
(Shams and Beierholm, 2010) were developed to perform a
perceptual task analogous to the experiments carried out in
order to support the investigation of the underlying mechanism.
Causal inference has been demonstrated to model perceptual
judgements of multisensory integration (Körding et al., 2007;
Sato et al., 2007) and fine motion direction judgments done using
discrimination (Stocker and Simoncelli, 2007). The approach
tackles the problem of having to decide whether two sensory
signals come from the same source (in which case they should
be integrated) or come from different sources (in which case
they should be segregated). These models typically have just four
parameters which correspond to the observer’s individual bias
toward one or the other of the of the alternatives; two parameters
capturing the sensory noise associated with the representation of
each competing alternative and finally a prior width parameter
which defines the extent of the influence the prior has across
the measurement space when it is applied. We implement the
models in the current experimental context to explore whether
performance changes across the density and regularity conditions
measured during the tasks are better explained by shifts in one or
both sensory likelihood parameters or in prior parameters.

MATERIALS AND METHODS

Participants and Apparatus
Five subjects (college students, four females) participated in all
the experiments, four of whom were naïve to the aims of the
study. All had normal or corrected-to-normal vision. The study
was approved by the ethical committee of the University of
Tuebingen. Before data collection, a written participant informed
consent was obtained from each subject.

The experiments were performed in a dimly lit room. The
stimuli were programmed using Matlab Psychophysics toolbox
(Brainard, 1997) and presented on a 17-inch CRT monitor
(iiyama, 21sd017) with a resolution of 1,280 × 1,024 and a
refresh rate of 100Hz. The monitor was gamma corrected with
a mean luminance of 15.6 cd/m2. The distance from the eyes of
the subject to the monitor was 43 cm. Responses from subjects
were acquired by using a bespoke 2-button response box (see
Procedures). Eyemovements weremonitored continuously using
an infrared video eye tracker (iView XTM Hi-speed, SMI).

Stimuli
The novel plaid stimuli in this study were designed to mimic
and manipulate the local elements—lines and intersections—
that are carrying the motion signals within the square line
plaid stimuli that have been used extensively in psychophysics
(Stoner et al., 1990). To achieve this, we decomposed the
original plaids into two different types of stimulus patches (see
Figures 1A–C; Supplementary Movies 1, 2): separated lines (SL)
and line intersections (LI). Although in what follows we refer to
these patches as apertures, it should be noted that their dynamic
content remained always the same (SL or LI) independent of the
position they were plotted. Thus, this allowed us to manipulate
the locations of these motion signals to be either consistent
with an underlying plaid or jittered in space. The mimicked
plaid from which these apertures were created, consisted of
two identical superimposed asymmetric line gratings (Hupé and
Rubin, 2003; Takahashi, 2004; Moreno-Bote et al., 2010) with
a directional difference of 120◦ (±60 with respect to vertical).
Stimulus directions were fixed with respect to the vertical rather
than being randomized during the task to avoid previously
reported idiosyncratic anisotropies in participant representations
of direction (Rauber and Treue, 1999) and to simplify simulated
categorical perceptual decisions during the modeling. The spatial
frequency of each narrow line grating was 1 cycle per degree, with
a duty cycle of 1 pixel or 0.03◦ and a speed of 2◦ per second.
In order to minimize the luminance effect of the intersection
for plaid stimuli (Stoner et al., 1990; Thiele and Stoner, 2003),
the luminance of the small intersections remained the same as
that of the line. The color of the lines was black (0.9 cd/m2)
and the background was gray (15.6 cd/m2). In Experiment 1
(Regular; Figure 1B) their positions were selected based on a
regular grid of locations where either intersections or single lines
would be expected in the classic plaid (see positions of red and
green dotted circles in Figure 1A). In Experiment 2 (Irregular;
Figure 1C), the possible positions of apertures were dynamically
jittered vertically from the grid locations (±0.025◦ of visual-
angle) and SL and LI could be located in any of the locations
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FIGURE 1 | Stimuli and Experimental design. (A) Illustration of moving stimuli. The line-plaid (composed of two overlaid drifting line gratings) can be analyzed as

containing two different local inputs and namely LI (red) and SL (green). Locations of lines at time t and t + 1t were plotted in black and gray, respectively, in each

aperture. Red and green dotted lines indicate exemplary positions of LI and SL apertures respectively. (B,C) Cartoon versions of regular and irregular stimuli. In the

regular condition (B) as the pattern moves up only SI or nothing can appear in SI apertures and likewise for the LI. In the irregular condition (C) the aperture locations

including their contents were jittered. Dotted lines indicate the locations of the apertures but were not visible (D) Experimental design. Subjects had to press a key on

the response box to start a trial. After that, a red fixation cross was shown on the center of the monitor for 1 s. The luminance is the same as the mean luminance of

the following trial to exclude the influences of luminance changing. A static image of the following trial was presented for 0.5 s to avoid transitional eye movements.

After that, the stimulus was shown for 1 s, and subjects had to report their perception by a button press. The trial ended with Gaussian noise presented for 0.5 s to

mask potential effects of previous stimuli in subsequent trials.

on the underlying grid abolishing the regularity of Experiment 1.
The diameter of each aperture was 0.2◦ of viewing-angle and 720
potential locations were used with no overlap over a stimulus area
with a 23◦diameter. A rhombus-shaped mask was applied upon
each aperture so that no terminators leading to the perception of
circular apertures would be seen (Pack et al., 2003). The vertical
and horizontal distance between the centers of adjacent apertures
was 0.5◦ and 0.28◦ of view-angle, respectively. A red fixation cross

(0.2◦ of visual-angle) was shown at the center of the stimuli. No
apertures were located within a circular area (2◦ of visual-angle

diameter) where the fixation was centered. The stimuli shared

some similarities with previously used multi-aperture stimuli but
also had some critical differences (Amano et al., 2009, 2012): (a)

within the apertures we used moving lines instead of drifting
Gabors, (b) in the regular condition aperture locations for lines
and intersections were selected according to the underlying
plaid pattern (Experiment 1), (c) the number of apertures was
systematically manipulated, and (d) the proportion of different
aperture types was used to parametrically change perception.

The total number of apertures was chosen based on three
density conditions: low, medium, and high; with 180, 340,
and 680, apertures, respectively. New random positions were
selected according to these numbers for each trial. In addition,

we parametrically manipulated the ratio between SL and LI
along 11 homogeneously spaced proportions within the range
of 0% to 100%.

Procedures
For both Experiments 1 and 2, subjects were instructed to press
a key on the response box to start a trial (see Figure 1D).
After that, a red fixation cross was shown on the center of
the monitor for 1 s. Before trial onset, background luminance
was slightly adjusted to the mean luminance depending on the
density condition to have a homogeneousmean luminance across
conditions and trials. First, a static image was presented for 0.5 s
to control for transitional eye movements. Then, the stimulus
started moving for 1 s, and subjects had to report their perception
(either coherent or transparent) during this period by pressing
one of two keys. They were instructed to do so as fast as possible
and according to their first impression. In order to avoid potential
adaptation effects, each trial was followed with a 0.5 s full field
Gaussian noise pattern withmean luminance equal to the average
of all trials. A method of constant stimuli was used and each
psychometric point came from 30 measurements for each of the
11 points along the parametric manipulation of the ratio of the
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different types of apertures for each subject. All conditions were
presented in a pseudo-randomized fashion.

At the beginning of each block, a standard nine-point eye
tracking calibration was performed. Subjects took a break after
each block. For training, subjects performed 4 blocks of 15 trials
before each experiment. They were instructed to fixate the center
of the screen and use a chin-rest to avoid head movements.

Theory and Models
Modeling transparent motion perception presents a challenge of
separating unlabeled signals which can come from one source
or from multiple sources, posing a computational problem
similar to that previously studied with vowel sounds (Sato et al.,
2007; Feldman et al., 2009). Here, we used the causal inference
framework which originates in multisensory perception and
considered the problem to be solved as an explicit two-step
hierarchical process with an initial unity vs. separation choice and
subsequent direction perception made subject to the influence
of the initial decision as a conditional estimate (Stocker and
Simoncelli, 2007; Zamboni et al., 2016). This class of models
typically has four parameters (Körding et al., 2007; Stocker and
Simoncelli, 2007): a participant bias parameter—which we did
not use in the current work for reasons explained later, two
sensory likelihood parameters corresponding to each alternative
sensory representation and a prior width parameter which
determines the extent to which the likelihoods can be shifted
along the measurement space.

An optimal Bayesian model would average over the
probability of both hypotheses (Körding et al., 2007; Sato
et al., 2007), which in this case would be, coherent dominated
by components given by H = hc and transparent dominated
by the plaid pattern given by H = hp, making a decision by
reading out from the averaged probability distribution. For a
difficult categorical perceptual decision associated with a global
percept with mutually exclusive alternatives like ambiguous
global motion, we followed previous work (Sato et al., 2007;
Stocker and Simoncelli, 2007; Zamboni et al., 2016), and used
an implementation in which the optimality of averaging was
sacrificed for a quick and self-consistent decision. In other
words, a categorical decision is made and this adjusts the shape
of the prior probabilities to influence the refined estimate of
the second stage. The visual stimulus contains a superimposed
distribution of multiple directions of components θs, from which
a sensory measurement of the perceived direction distribution
θm, is made by the visual system; an estimate contaminated by
Gaussian noise. Given the task at hand in which the alternatives,
hc (components dominate) and hp (single pattern dominates)
cannot mutually exist, we impose an assumption that ambiguity
resolution forces the system to commit to one alternative, and
its corresponding posterior distribution only, which is either
P(θ |hc) or P(θ |hp), illustrated in Figure 2 (Sato et al., 2007).

Three model variants made the following assumptions about
the prior: M1 assumed no additional hypothesis about the
direction space, i.e., a flat prior with all directions equally
likely, then estimation of maximum likelihood P(θm) and then
categorization of direction;M2 selectively applied a prior on trials
where an initial hierarchical step suggested motion integration of

the input was needed, consistent with the use of a slow speed
prior which has been shown to explain some cases of motion
perception (Weiss et al., 2002); The categorical decision in the
second step was based on the estimated maximum posterior
direction after multiplication with the excitatory prior (hp). M3
similarly computes a categorical decision from the maximum
posterior after multiplication with an inhibitory prior (hc) but
in contrast on trials which could not be selected by M2, where
component separation is suggested by early noisy computations,
which supports motion segregation. This novel configuration
implements a prior distribution centered diametrically opposite
to the average stimulus direction in the circular direction space
so that the average direction is inhibited. This is a viable
probability distribution configuration in a circular space. Note
that for simulations of configuration M2, no segregate priors
(i.e., M3) were applied on trials where integrate was chosen
and similarly, for the separate simulations under M3 prior no
integrate prior (i.e., M2) was applied to any trials. M4 is a control
condition which uses either prior (hc or hp) on each individual
trial following the initial estimate, a biologically implausible
architecture which we used to allow us to contrast conditions.

The probability of the alternative categorical hypotheses H,
is given by Equation (1) which includes all the respective
likelihoods and priors,

P (H|θm) = P(θm|H)P(H)/P(θm) (1)

Applying model averaging over the posterior distribution
(Stocker and Simoncelli, 2007) of each model results in
Equation (2):

∫

P (θs|θm) dθ = 1, (2)

P (θs|θm) = P
(

θs
∣

∣θm , H = hc
)

P
(

H = hc
∣

∣θm
)

+ P
(

θs
∣

∣θm , H = hp
)

P
(

H = hp
∣

∣θm
)

, (3)

where the composite posterior in Equation (3) is obtained by
adding both alternative posterior probabilities corresponding to
each perceptual alternative. We simplify Equation (3) which
includes the two separate posterior terms by using model
selection to propose an initial fast binary variable computation
χ (1, 2), (see simulations) corresponding to hypotheses H = hc
and H = hp, respectively, to hierarchically separate the early
discrimination and the estimation tasks (Luu and Stocker, 2018).
In each case, one alternative is selected and the remaining term is
set to a probability of zero (Stocker and Simoncelli, 2007). We
do not seek an optimal solution to Equations (3) and instead
following the lead from previous work sacrifice optimality for
consistency (Stocker and Simoncelli, 2007; Luu and Stocker,
2018). During simulations, we assign a decision value of χ = 1,
if the MLE is closer to the average (pattern direction) than the
component direction, and χ = 2 if the MLE is closer to the
transparent component direction (see Figure 4). This heuristic
crudely solves the “one vs. two” component problem and reduces
the number of free parameters used in this type of experiments
from four to three by avoiding the inclusion of a parameter for
bias. While individual differences in participant biases have been
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FIGURE 2 | Outline of Bayesian observer model. (a) The visual stimulus contains multiple directions of components θs, from which a sensory estimation was made as

θm with uncertainty. (b) LI is represented as a Gaussian probability density function (SLI) centered on the vector averaged (VA) direction (µ) in the direction space with

variance σp, while SL is similarly modeled as two Gaussian probability density functions (SSL ) centered on µ + 60◦ and µ – 60◦ respectively with same variance σc.

The likelihood P(θm |θ ) contains SLI and SSL, combining with the respective prior term P(θ |h) (c) to get the posterior distribution of P(θs |θm) (d). Prior settings are

different for M1–M4, see text for details. The prior terms P(θ |hp) and P(θ |hc ) are also both Gaussian terms centered on the VA direction which either enhance (hp) or

inhibit (hc) the pattern to support integration or segregation, respectively. (e) Decision is made based on a final direction using MAP estimation leading to categorical

perception (f).

previously found and modeled (Odegaard and Shams, 2016),
in the current work we expected there might be differences
within participants across our scene structure conditions and
so focused on the interaction between the role of sensory
representations and the strength of prior biases. Our heuristic
computation of χ similarly constrained all the participants’
categorical estimation.

The conditional inference is therefore computed on a given
trial according to either,

P (θ |θm,χ = 1) = P(θm|θ)P
(

θ
∣

∣hp
)

/P (θm) , (4)

in the coherent case where pattern motion is reported or,

P (θ |θm,χ = 2) = P(θm|θ)P
(

θ
∣

∣hc
)

/P (θm) , (5)

in the case of the transparent choice where the two components
are simultaneously perceived. In both Equations (4) and (5),
the likelihood term P(θm|θ) is identical and contains Gaussian
functions of two components and one pattern term whose width
captures the sensory noise, and these are shown together as

Equation (6).

P (θm|θ) =
AS
√
2π

exp

(

−
(θ − θS)

2

2σ 2
S

)

+
AS
√
2π

exp

(

−
(θ + θS)

2

2σ 2
S

)

+
AL

3
√
2π

exp

(

−
(θ)2

2σ 2
L

)

(6)

The average direction of the distribution in Equation (6) is
also the pattern direction, θL = 0. The relative scaling of
the Gaussian terms corresponding to the alternative percepts
is related by AS = 1-AL. The respective prior terms P(θ |hp)
and P(θ |hc) are both Gaussian terms centered on the average
direction θ=0 which either enhance (hp) or inhibit (hc) the
pattern to support integration or segregation, respectively.
These are given by Equations (7) and (8) and illustrated
in Figure 2.

P
(

θ
∣

∣hp
)

=
1

√
2π

exp

(

−
(θ)2

2σ 2
P

)

(7)

P
(

θ
∣

∣hc
)

= 1−

(

1
√
2π

exp

(

−
(θ)2

2σ 2
C

))

(8)
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FIGURE 3 | Estimation of bias and stability for regular (A–C) and irregular (D–F) experiments. (A,D) Cartoons of the stimuli across density conditions for the regular

(A) and irregular (D) experiments. (B,E) Fitted psychometric functions for each subject across density conditions for the regular (B) and irregular (E) experiments. The

error bar on each psychometric function is the standard error of mean estimated by bootstrapping processing by resampling 400 times. Confidence area (in gray) was

defined as where the probability of coherent or transparent perception was higher than 75%. (C,F) The direction and amplitudes of bias for each subject

corresponding to the conditions of (B) and (E), respectively.

FIGURE 4 | Statistical analysis of bias and perceptual stability. (A) Mean bias across subjects for each condition. Linear regression analysis shows a significant

correlation between bias and density for the regular but not for the irregular condition. (B) Perceptual stability index (PSI, see text) across subjects for each condition.

Significant linear correlation between PSI and density was found only for the regular but not for the irregular condition.

The prior which acts to enhance the vector average direction
of Equation (7) is consistent with a previously proposed slow
speed prior which has been demonstrated to explain illusory
perception for a range of ambiguous motion stimuli (Weiss
et al., 2002). The prior inhibiting the part of the direction
space where the average lies is a novel contribution in the
current work and is consistent with observations of motion
repulsion effects which push direction estimates away from the
averages of transparent component directions (Mahani et al.,
2005; Meso et al., 2016a). Simulated trials are used to generate
psychometric data to study the interaction of sensory motion
representations and prior distributions that is most consistent
with each participant’s performance.

Simulations
In each trial, assuming a two-step hierarchical process, an
MLE estimate based on reduced draws of direction samples of
Equation (6) (i.e., 20% of 5,000 used for the full simulation) was
used to compute χ based on the distance between the peak of
the direction distribution θMAX and the pattern/zero direction.
We note that we adopted the convention of making the vertical
direction the zero direction so that the component directions
flanked this on either side as ±60◦. Having fixed directions
rather than fully randomizing stimulus directions across space
over trials simplifies the process of computing the thresholds of
Equation (10). The initial estimation of χ varied with a logistic
type non-linear probability as the percentage of LI apertures went
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from 0 to 100. Slope depended on the likelihood parameters
and the PSE (P = 0.5) was influenced by the relative widths of
the pair of likelihoods. This step captures an implicit categorical
decision taken when the stimulus is interpreted at onset using
the formulation

θMAX = argmax(P(θm)) (9)

χ =

{

1, if −
θL
2 < θMAX < θL

2

2, if |θMAX| > θL
2

(10)

With χ determined, the posterior of Equation (3) is then
simulated using the model selection estimates of Equation (4) or
(5) which eliminate the redundant term. Five-thousands draws
of direction samples are then used for each trial, binned into
a discrete probability distribution with a 0.5◦ bin resolution.
A MAP estimation computes a direction θi for each single
trial i, from which a second forced choice decision for the
simulated trial is made. Transparent or coherent is selected based
on the maximum direction (T: θS/2<|θi| or C: θS/2>|θi|) in
a similar way to Equation (10). The estimates used to make
the categorical decisions assume symmetry across the direction
space for simplicity and therefore search for one peak which
could be near the pattern direction or within either transparent
component, both left and right.

Each simulated trial had a fixed set of stimulus parameters,
θS = 60◦ and θL = 0◦. The two sensory likelihood parameters
σS and σL along with the relevant prior parameters σP or σC
[for M2 or M3] were used to generate psychometric functions
for comparison to the empirical psychometric functions for each
participant under all six conditions. The best fitting parameters
[σS, σL and σP/σC] were obtained using an iterative Kullback-
Leibler minimization to search the simulated parameter space.
Fits to the data were compared across models using Akaike
information criterion (Akaike, 1981).

RESULTS

Human psychophysics experiments were performed using
novel bi-stable line-plaid stimuli (Figures 1B,C). Subjects were
instructed to report their perception of either a coherent pattern
moving upward, or two transparent surfaces sliding over each
other in leftward and rightward oblique directions (seeMethods).
Inspired by the geometric properties of typically used moving
line-plaids (Figure 1A) (Adelson and Movshon, 1982; Pack et al.,
2003) and the architecture of the visual system with very small
receptive fields (RFs) in early visual areas, we developed this
novel stimulus by decomposing the plaid into two types of
local stimulus elements we refer to as apertures: separated lines
(SL) and line intersections (LI). In this way, the stimuli could
mimic two basic inputs that the visual system could experience
locally: 1D- or 2D-motion (green/red apertures, respectively,
in Figure 1A) based on the dimensions of the features within
the aperture. We performed two experiments with the only
difference being the positioning of apertures: in Experiment 1
(regular, R) the structure of the mimicked plaid was maintained
(Figure 1B), whereas in Experiment 2 (irregular, I) the element
apertures were spatially jittered (Figure 1C). All subjects could

consistently fixate within a circular window with radius 0.4
degrees of visual angle (Figure S1). For each subject, we first
estimated the relative bias toward one of the two possible percepts
(transparent or coherent), by calculating the difference between
the 50% coherence threshold taken from its fitted psychometric
function and the same threshold calculated from the low-
density population trend that was used as a reference (Figure 3).
Interestingly, for higher stimulus densities we observed gradual
increases in the bias and this effect was more pronounced
in Experiment 1 (Regular) in comparison to Experiment 2
(Irregular). Statistical analysis was performed using a linear
mixed effects model approach with the bias as independent
variable and density and regularity as fixed effects. Subjects
were considered as a random effect thus allowing for different
intercepts in the model (Figure 4A). Statistical significance was
evaluated after parameter estimation using an F-test for the fixed
effects with density being significant (F(22) = 11.83, P = 0.0023)
while the interaction between density and regularity remained a
trend (F(22) = 3.32, P = 0.0822). Regularity as a main effect was
not significant (F(22) = 1.11, P = 0.3) indicating that on average
the two experiments showed comparable biases.

To obtain a quantitative estimate of the stability of the two
percepts for each condition, a perceptual stability index (PSI,
Figure 4B) was calculated for each subject as follows: first, we
defined as perceptually stable the stimuli that resulted in either
coherent or transparent perception with probability over 75%
(i.e., see the shaded areas in either side of the psychometric
curve with Pcoherent < 25% or Pcoherent > 75% in Figure 3).
Then, the PSI was calculated as the fraction of fitted data-
points within the side of the confidence area corresponding to
the dominant percept, and the rest of the points (Figure 4B).
Similar linear mixed effects modeling analysis as for the bias
was then performed with the PSI as independent variable. The
results showed a significant main effect of density (F(22) = 6.38,
P= 0.0193) as well as significant interaction between density and
regularity (F(22) = 5.55, P = 0.0278). Regularity as a main effect
was not significant (F(22) = 1.88, P = 0.18).

To study the relative contribution of prior experience and
sensory representation to the processing of the ambiguous
motion direction, we modeled the underlying motion perception
task using a Bayesian causal inference framework (Sato et al.,
2007; Stocker and Simoncelli, 2007; Shams and Beierholm,
2010). To this end, we used models of increasing complexity
(no prior, a transparent prior or a coherent prior, and as
a control a model with the use of both priors). In the
simplest model architecture (M1, no prior), the maximum
likelihood was estimated and categorized depending on whether
it was closer to the coherent or transparent direction. For
models M2 and M3, a hierarchical sequential computation
was assumed and on each simulated trial an initial noisy
direction estimate χ , was used to determine whether to apply
an excitatory (M2, run as a separate independent simulation
from M3) or an inhibitory (M3, run separate from M2)
prior, each of which required a single additional Gaussian
width parameter centered on the average direction. These
would have an effect of shifting posterior probabilities to bias
perception either toward coherent (M2) or transparent (M3).
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FIGURE 5 | (A) Example model fitting results from a representative subject. Empirical and model simulated psychometric functions were plotted for each experiment

and conditions. (B) The raw AIC scores of all models (see text). Each subjects (left) and box plot (median ± s.e.m., right). (C) Linear correlation between the sensory

representation of SL aperture and the amount of bias to transparent perception. Data points were collapsed across all density conditions of

regular/irregular experiments.

Last, in a control condition, a model M4 was simulated by
using the best fitting M2/3 parameters and therefore included
separate optimal priors for separation and integration. Motion
direction was represented as a linear combination of Gaussian
probability density functions representing the LI and SL aperture
direction and variance (Figure 2; also see Methods). The
set of models, M1–M4 were tasked with a forced choice
decision on whether each simulated trial corresponded to
transparent or coherent, over a number of conditions recreating
Experiments 1 and 2.

Example model-fitting results for a representative subject are
shown in Figure 5A (results for all subjects in Figure S2). We
then performed model comparison based on the Akaike criterion
measures (AIC, Akaike, 1981) to identify the optimal model
architecture. The AIC measurements use likelihoods from the
fitting residuals to determine which model provides the best
explanation for the data, giving a lower score for better fits
but penalizing models with more parameters. M3 (transparent
prior) was found to be the most appropriate model for the
data set based on AIC scores (Figure 5B). This suggests a
general tendency within the visual system toward separating
motion components unless there is strong sensory evidence
for integration into a single object (here provided by the line
intersections (LI) apertures).

Further, we analyzed the relationship between the best model
parameters of M3 and perceptual bias from empirical data
to investigate the potential insights into sensory mechanisms
of subjective biases. We found a significant linear correlation
between the bias and the variability of sensory representation
(Gaussian likelihoods) for SL apertures (r2 = 0.272, p <

0.05, Figure 5C) only for the regular experiment suggesting
that regularity influences the effectiveness of the sensory
representation by decreasing variance. There were no similar

trends in the fitted parameters for LI sensory likelihoods and the
prior (Figure S3).

DISCUSSION

In this study, we used bi-stable motion perception as a tool to
understand processes of perceptual stabilization in the human
brain. We used a Bayesian causal inference framework (Sato
et al., 2007; Stocker and Simoncelli, 2007; Shams and Beierholm,
2010) to model the internal decision process leading to one of
the two alternative interpretations with the aim to understand
the relative role of priors and sensory evidence in the selection
process. We found, counter-intuitively, that adding more motion
information by increasing the number of apertures increased
response biases in the task. Individuals’ tendencies to either
one or the other of the percepts were amplified substantially
when we increased the density of stimulus apertures. This
led to an increased inter-subject variability, with each subject
diverging from the population trend with a magnitude and
direction that was related to their original bias (Figure 4A).
Interestingly, this effect was largely abolished in the irregular
condition when the position of elements was jittered with
respect to their original location, indicating that this form of
contextual organization created by spatial regularity played a
major role in the amplification of the bias. As a measure
of the effect of bias amplification, we computed a perceptual
stability index and found that it linearly increased for higher
element density.

To further understand the brain processes leading to this
result, we adapted hierarchical motion perception models that
posit sequential stages of brain processing including local
motion detection, global combination of these local signals
and then an interpretation of the representation to support

Frontiers in Neuroscience | www.frontiersin.org 8 May 2019 | Volume 13 | Article 523216

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. Perceptual Bias Influenced by Regularity

categorical/qualitative decisions. This broad mechanistic view
is widely supported by evidence in the literature for both
psychophysics and physiology (Burr and Thompson, 2011;
Nishida, 2011). In the context of our work, the representation
of the local motion information can be reflected directly in the
neural responses in directionally selective areas such as MT/MST,
however, one of the classic difficulties of motion transparency
perception is how such a local representation can be transformed
into the qualitative percept (e.g., see Qian et al., 1994; Treue et al.,
2000; Meso and Zanker, 2009). To this end, and in particular
with respect to prior information encoded in the brain of each
participant, we built a battery of Bayesian models (M1–M4; see
Methods) with the task to probabilistically select one of the
two percepts on a trial-by-trial basis simulating the experiments.
These modeled the sensory representations of the 1D- and 2D-
motion input-signals as Gaussian processes each with separate
sigma likelihood parameters and, in addition, one of four
different prior probability configurations. M3 (which included a
segregation prior) provided the best model, suggesting that the
visual system selectively applies an inhibition within the direction
space to help separate components. Importantly, it should be
noted that M3 was the better model even in subjects that were
biased toward coherent percepts. We conjecture, that the brain
when faced with such tasks applies a conditional implementation
of separating priors on some critical trials (Zamboni et al.,
2016) and not an integrating one because integration might
arise naturally from overlapping signal distributions (Mahani
et al., 2005). The proposed hierarchical computation extends
recent findings in which participants performed an orientation
discrimination followed by an orientation estimation task, with
the discrimination found to influence the estimation task (Luu
and Stocker, 2018). A similar effect had been found for motion
stimuli (Zamboni et al., 2016) with a need for self-consistency
proposed as an explanation. We argue that this hierarchical two-
step computation might occur during our task, with an implicit
early categorical decision needed to resolve the ambiguity
resolution known to occur early in motion stimuli (Meso et al.,
2016a). In the implementedmodel, for simplicity, fixed directions
were explicitly associated with the categorical decisions. Similar
models could be implemented in the future in which, the
decision need not be based on the absolute directions but reached
based on the distribution of global motion directions after
pooling (i.e., a bimodal distribution would signify transparency
and a unimodal coherence). In that case, the future tested
priors could be adjusted and made independent of direction
for example by acting broadly as an attractor or repellant of
nearby directions.

Bias stands at the core of signal detection theory (SDT) when
applied to both living organisms and machines. In fact, (Green
and Swets, 1966), being the first to develop SDT approaches
in psychophysics, directly criticized previously used methods
for not being able to separate the sensitivity of subjects from
their potential biases. In addition to the principle problem
of detecting signal within noise, our brains also face the
problem of inherently ambiguous sensory inputs. Thus, to
make veridical interpretations of the outside world, the brain
needs to employ additional mechanisms such as attention and

prior experience (Knill and Richards, 1996; Desimone, 1998;
Rao et al., 2002; Beck and Kastner, 2009; Meso et al., 2016a).
One theory suggested that objects simultaneously presented in
the visual field compete and attention can bias the outcome
of this competition (Desimone and Duncan, 1995; Desimone,
1998; Beck and Kastner, 2009). Our results are consistent with
the general framework of the biased competition hypothesis;
however, attention does not seem to be the primary source of
the observed biases as there is no reason to expect attention
to vary systematically across the different density or regularity
conditions. The subjects had to continuously perform the
task of reporting their percepts in randomized trials within
blocks so attention should have remained largely constant.
Moreover, individual bias directions were independent of the
stimulus configuration (which was the same for all subjects)
precluding bottom-up stimulus driven attention effects. The
subject specific results suggested a strong influence of prior
experience or assumptions and thus we expected our modeling
results might reveal that some subjects would use a “coherence”
prior (M2) while others a “transparency” prior (M3). To
our surprise, M3 (in comparison to M2; Figure 5B) was a
better model for all our subjects, including those with biases
toward coherence. This suggests that the sensitivity of the
visual system of each participant to the two motion signals
(sensory σ ) was more important for determining bias direction
in comparison to the integration prior. We conjecture that
motion direction integration based on sensory likelihoods maybe
the default processing mode with conditional priors inhibiting
integration employed in order to help motion segmentation and
transparency perception.

Furthermore, bias in our experiments was increased with
stimulus element density. This was also an unexpected finding,
as previous studies have shown that increases in the density
of random-dot-kinematograms (RDKs) result in coherence
thresholds also decreasing (Barlow and Tripathy, 1997) or
being unaffected (Eagle and Rogers, 1997; Talcott et al.,
2000; Welchman and Harris, 2000). We note, however, that
RDK experiments are closer to the foundations of SDT (i.e.,
detecting signal within noise). We propose that in our scenario,
competition between the two motion representations may be
enhanced by density increments resulting in the observed
increase of the bias toward a preferred representation which
would act like a perceptual attractor, an area within the direction
space where probability increases at higher densities. This is
consistent with reports in previous literature where contrast-
based motion signal increases resulted in stronger 2D motion
attractors compared to 1D directions in a tri-stable ambiguous
motion stimulus (Meso et al., 2016b). In addition, research
with RDKs demonstrated that coherence thresholds in 5–6-
year olds were (a) much higher, and (b) decreased with dot
density in comparison to adults (Narasimhan and Giaschi, 2012).
In our view, this provides evidence for coherent perception
or integration as the earliest unelaborated default computation
and with perhaps the connectivity of the underlying neural
circuitry prone to changes by experience during development.
This could explain the different directions of the biases in
different subjects.
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Interestingly, the bias-amplification and the increases in the
perceptual stability index with density were largely abolished
in the irregular stimuli with jittered aperture positions. This is
consistent with previous work demonstrating the importance
of regularity (Morgan et al., 2012; Ouhnana et al., 2013)
which appears to play a role in the selection of stable neural
representations. Another interpretation is that reduction of
regularity eliminates in parallel the correspondence of the
single stimulus elements to the underlying patterns or “objects,”
interfering with their spatial integration. This is consistent with
studies that have demonstrated a precedence of global features
in visual perception (Beck and Kastner, 2005; Phillips et al.,
2015; Ding et al., 2017). Moreover, the profound influence
of position jitter on the bias indicates that the scale of the
integration cannot be completely local nor global as in that case
the regular/irregular conditions should not elicit an effect. These
results directly indicate that the motion integration mechanisms
contributing to individual biases are of “meso-scale” i.e., go
beyond single-neuron receptive fields (RFs) in V1 to scales
more typical for area V5/MT but not the very large RFs
found in size-invariant object selective areas like inferotemporal
cortex (IT).

Previous research has found strong evidence for active
perceptual stabilization mechanisms in the visual system, such
as reorganization of sensory representation during intermittent
viewing (Leopold et al., 2002); top-down modulation of beta-
band synchronization (Kloosterman et al., 2015); feedforward
inhibition (Bollimunta and Ditterich, 2012) arousal (Mather and
Sutherland, 2011; de Gee et al., 2014); and memory (Wimmer
and Shohamy, 2012). Our study suggests that bias serves as
an additional factor our brains actively use to stabilize our
perception of the world.
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Midget retinal ganglion cells (RGCs) make up the majority of foveal RGCs in the
primate retina. The receptive fields of midget RGCs exhibit both spectral and spatial
opponency and are implicated in both color and achromatic form vision, yet the exact
mechanisms linking their responses to visual perception remain unclear. Efforts to
develop color vision models that accurately predict all the features of human color
and form vision based on midget RGCs provide a case study connecting experimental
and theoretical neuroscience, drawing on diverse research areas such as anatomy,
physiology, psychophysics, and computer vision. Recent technological advances have
allowed researchers to test some predictions of color vision models in new and precise
ways, producing results that challenge traditional views. Here, we review the progress
in developing models of color-coding receptive fields that are consistent with human
psychophysics, the biology of the primate visual system and the response properties of
midget RGCs.

Keywords: primate retina, color vision, color perception, computational vision, linking hypotheses, cone
photoreceptor, retinal ganglion cells

INTRODUCTION

The first stage of visual processing occurs in the retina, an outpost of the brain located at the
back of the eye. Under photopic conditions, photons of light are absorbed by three types of cone
photoreceptor (Figure 1A), processed by five main classes of retinal neuron, then visual signals are
conveyed to the brain by the axons of retinal ganglion cells (RGCs; Wässle, 2004). Midget RGCs
make up a large majority of all RGCs in the central retina, where each L- and M-cone provides
the sole direct input to an ON and OFF midget RGC circuit (Figure 1C; Wässle et al., 1990, 1998;
Kolb and Marshak, 2003).

The midget RGC receptive field has a center-surround organization (Kuffler, 1953). In the
central retina, this receptive field compares the photon catch in the single L- or M-cone center to
the photon catch in neighboring L/M-cones in the surround (Figure 1C). Since this configuration
compares the activity of cones that differ in both spatial location and spectral sensitivity, midget
RGCs have been implicated in both color and spatial vision (Schiller et al., 1990; Martin et al.,
2011). Mammalian RGCs have been described as acting as feature detectors, with different types
showing specificity for motion, form or color conferred by the spatial, spectral, and temporal
characteristics of their receptive field (Field and Chichilnisky, 2007; Gollisch and Meister, 2010;
Baden et al., 2016). Here, we review evidence for the role of midget RGC receptive fields as the first
step for detection of two elementary visual features, (1) hue detectors which encode information
about spectral reflectances of surfaces as red, green, blue and yellow percepts, (2) high acuity edge
detectors which encode the boundaries of objects as required for form vision.
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Because their receptive fields exhibit both spectral and
spatial opponency, midget RGCs respond to both chromatic
and achromatic edges and thus confound the two (Wiesel and
Hubel, 1966). Like all RGCs, midget RGCs encode and transmit
information to the brain in binary, as all-or-nothing action
potentials. A downstream neuron has no way of knowing, from
an individual midget RGC’s response, whether the midget RGC
responses represent the chromatic or spatial structure of a
stimulus. At the level of perception, however, we can distinguish
between achromatic and equiluminant chromatic edges, even
though individual midget RGCs cannot. How and where the
spectral and spatial information encoded by midget RGCs
is extracted remains one of the most important unanswered
questions of primate vision.

Midget RGCs provide, arguably, the best model for linking
low-level receptive fields to perception. Understanding how color
and spatial information are encoded may provide insight into
general organizational principles employed by neural circuits to
parse specific features of a stimulus. Furthermore, restoration
of color and spatial vision are an important goal for retinal
prosthetics, some of which must replace the upstream circuitry
that defines the midget RGC receptive field (Yue et al., 2016).
Efforts to restore these fundamental aspects of visual perception
may benefit from a better understanding of how they are
computed in normal vision.

RECEPTIVE FIELDS

All receptive fields are built from the photoreceptor outputs
(Figure 1A). The photoreceptors’ output encodes a single
variable: the number of photons absorbed (Rushton, 1972; Baylor
et al., 1987). An important implication is that wavelength and
intensity are interchangeable and, under the right conditions, any
two lights differing in wavelength can be “substituted silently”
for each other (Estevez and Spekreijse, 1982). For example, the
probability of photon absorption by an M-cone is the same for
467 and 582 nm lights, thus the response of the M-cone shown in
Figure 1B to the two lights will be indistinguishable. Meanwhile,
a 535 nm light with twice the probability of photon absorption
can be matched by doubling the intensity of the 467 nm light.

The visual system extracts information about wavelength and
spatial contrast by virtue of receptive fields that compare the
outputs of multiple cones. The basic computation for extracting
wavelength is a comparison between cones of different spectral
types, while spatial contrast requires comparing neighboring
cones at different spatial locations, regardless of type (Calkins
and Sterling, 1999). The characteristics of receptive fields form
the foundation of each color vision model discussed here.

WHAT IS THE OPTIMAL RECEPTIVE
FIELD FOR SPATIAL VISION?

Because midget RGCs are implicated in high acuity form vision,
any discussion of their color-coding role must also include their
role in spatial-coding. The first step of spatial vision requires

delineating the boundaries of objects, essentially performing an
edge detection task.

Spatial Opponency
By comparing the relative activity of cones at different locations,
spatially opponent receptive fields signal spatial contrast rather
than raw quantal catch (Srinivasan et al., 1982). For low-
level edge detectors, circularly symmetric center and surround
receptive fields are optimal and will provide sensitivity to all
edges, regardless of their orientation (Marr and Hildreth, 1980).

Spectral Opponency
While spatial vision is sometimes assumed to operate only on
light intensity (Marr, 1982; Billock et al., 1996), equiluminant
edges are also common in natural scenes (Hansen and
Gegenfurtner, 2009). Accordingly, an optimal edge detector
would be sensitive to all edges regardless of whether the edge
is defined by a change in wavelength or intensity. Thus, an
optimal edge-detecting receptive field might not just be spatially
opponent, but also spectrally opponent. In this case, the purpose
of spectral opponency is not to signal the hue of a surface but
rather an edge defined by spectral contrast.

WHAT IS THE OPTIMAL COLOR-CODING
RECEPTIVE FIELD FOR HUE
PERCEPTION?

In the natural world, most colors we perceive are from lights
reflected from objects. The purpose of hue perception is to
provide information about the surface reflectance of objects,
which, in turn, tells us about their internal contents or state. For
example, we know the ripeness of fruit and when children are
getting sunburned from their surface colors. However, there are
significant challenges to this task. Individual cones themselves
are not selective for the distribution of wavelengths reflected
from a surface. If L-cones are active, light could be coming
from a red surface reflecting only long wavelengths, a yellow
surface reflecting both middle and long wavelengths, a violet
surface reflecting both short and long wavelengths or a white
surface reflecting all wavelengths. In addition, information from
any individual cone will be further confounded by the spectral
characteristics of the illuminant. For example, the amount of
illumination from blue sky light relative to direct sunlight
changes throughout the day. As a result, the illuminant color
can vary from blue to yellow (Foster, 2011; Pauers et al.,
2012; Spitschan et al., 2016; Woelders et al., 2018). The ideal
receptive fields for serving hue perception would be designed
to help extract surface spectral reflectance independent of
the illuminant. Here we discuss the features of theoretical
receptive fields optimized to overcome the challenges associated
with consistently signaling hue, independent of any underlying
neural substrates.

Spectrally Opponent
Color vision is the ability to discriminate between different
wavelengths, independent of intensity (Jacobs, 2018). Receptive
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FIGURE 1 | Color-coding receptive fields of the primate retina. (A) The normalized spectral sensitivities of human L-, M-, and S-cone photoreceptors.
(B) Demonstration of monochromatic lights that elicit the same probability of photon absorption, and thus elicit the same response from M-cones. On left, 467 and
582 nm lights are indistinguishable, despite a 115 nm difference. On the right, a 467 and 535 nm lights of different intensities can be confounded by adjusting the
intensity of the 467 nm light. (C) Circuit diagram of the upstream input to ON and OFF midget RGCs. (D) Same as in (C), but for the midget RGCs of a dichromat.
(E) Small bistratified RGC receptive field diagram illustrating the lack of perfectly coincident spectrally opponent receptive fields as required for pure color cells.

fields with spectrally opponent interactions can extract
wavelength information and thus carry color information
(Paulus and Kroger-Paulus, 1983; Neitz and Neitz, 2011; Chang
et al., 2013). However, cone opponent receptive fields are not
necessarily optimized for hue perception.

Spatially Coextensive
The first receptive field proposed to create a “pure color cell,”
was the single opponent receptive field, which exhibits spectral
opponency without any spatial opponency (Figure 2A). Also
called spatially co-extensive or Type II (Wiesel and Hubel, 1966;
Crook et al., 2009), this receptive field provides color selectivity,
the ability to extract spectral information unconfounded by
spatial information. Spatially co-extensive, spectrally opponent
receptive fields like Figure 2A would be theoretically color
selective in that they respond to chromatic stimuli, but not
achromatic patterns. However, these receptive fields act as simple
wavelength detectors and cannot compensate for the changes in
illuminant discussed above.

Double Opponency
To consistently signal hue, an optimal color-coding receptive field
must compensate for the changes in illuminant discussed above.
Double-opponent receptive fields, superimposing two opposing,
spectrally and spatially opponent receptive fields (Figure 2A)
have been proposed to help provide this color constancy (Daw,
1973; D’Zmura and Lennie, 1986). Double opponent receptive

fields exploit the fact that, in the natural world, hue typically
changes abruptly at object boundaries while illumination changes
slowly across a visual scene. When the center receives light
from the edge of an object surface, some light falling in the
surround is reflected from other objects in the scene under the
same illuminant. If the illuminant changes to have more long-
wavelength light, the increased L-cone stimulation in the center
is opposed by greater L-cone stimulation in the surround, and
ideally, the change in illumination is removed from the visual
signal. Thus, double opponent receptive fields confer sensitivity
to chromatic contrast at the edges of objects while remaining
relatively insensitive to global changes in illumination.

Trichromatic
Normal humans are trichromats and a special requirement of
optimal color coding for trichromats is that the receptive fields
must compare all three cone types. This is because for neurons
comparing only two out of the three cone types, a change in
activity in the unsampled cone will not change the hue signaled by
that neuron. For example, an L vs. M opponent neuron without
S-cone input, as in Figure 2A, cannot discriminate between a
red surface reflecting only long wavelengths and a violet surface
reflecting both long and short wavelengths (Fuld et al., 1981).

Low Spatial Resolution
If the ideal retina is composed of multiple types of feature
detectors, spatial constraints must be considered, and the relative
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FIGURE 2 | Models of receptive fields encoding form and color vision. (A) Diagrams of single and double opponent receptive fields. Adapted from Daw (1973).
(B) Putative receptive field formed by selective wiring. Adapted from Wiesel and Hubel (1966). (C) Edge detection performed by convolution of an image with an
achromatic center-surround receptive field, or Difference of Gaussians filter. (D) Circuit for “de-multiplexing” chromatic and achromatic information from midget RGC
receptive fields. Adapted from Derrico and Buchsbaum (1991). (E) Circuit proposed by the multi-stage color model (De Valois and De Valois, 1993). (F) Circuit
proposed by the parallel processing model (Neitz and Neitz, 2016).

density of any one type should be no higher than required to serve
its specific function. The color of a surface tends to be consistent
all across it. Thus, in contrast to spatial vision, that requires a
high density of detectors to capture the fine details of the shape
of objects, hue detectors can accurately capture surface colors
using a much lower resolution array of detectors. In summary,
the ideal trichromatic hue-encoding system is a relatively sparse
array of receptive fields with structures that are double-opponent
and receive input from all three types of cones.

INTERPRETING MIDGET RGC
RECEPTIVE FIELDS

Early models linking L vs. M midget RGCs to visual perception
focused on either spatial or spectral opponency in isolation.
Models focusing on their spectral opponency emphasized their
potential role in encoding red and green hues. In contrast,
models accounting only for achromatic spatial opponency lead
to the perspective that spectral opponency is an unintended

consequence of trichromacy and may be considered “poor
engineering” (Marr, 1982).

Are Midget RGC Receptive Fields
Optimal for Hue Perception?
The earliest models followed the first parvocellular LGN (P cell)
recordings (De Valois et al., 1966; Wiesel and Hubel, 1966),
which have similar receptive field properties as their L vs. M
midget RGC inputs. At the time, opponent process theory was
still highly controversial (Hurvich and Jameson, 1957) and the
discovery of color-opponent neurons in the visual system was
groundbreaking. The resulting hypothesis that the parvocellular
LGN projections of midget RGCs are responsible for red-green
hue perception arguably played a large role in shaping later
research. Further, spatial opponency and the resulting responses
to achromatic and spatially-structured stimuli were overlooked in
many accounts of the physiological basis of hue perception.

In emphasizing, the proposed role of midget RGCs in
mediating red-green hue percepts, it was argued that the optimal
color-coding receptive field, was one in which an L-cone is
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surrounded entirely by M-cones, or vice versa. This receptive
field, which would seem to require some cone-specific selective
wiring, maximizes the spectral difference between the center
and surround to maximally decorrelate the outputs of L-
and M-cones’ overlapping spectral sensitivities (Figure 1A;
Buchsbaum and Gottschalk, 1983; Párraga et al., 2002; Sun
et al., 2006). The “selective-wiring” model in Figure 2B was
challenged by theoretical studies demonstrating that mixed L/M-
cone receptive fields could generate sufficient spectral opponency
(Paulus and Kroger-Paulus, 1983; Lennie et al., 1991). Though
still debated by some (Lee, 1996; Wool et al., 2018), there is, at
most, only a slight functional bias toward selective wiring (Buzás
et al., 2006; Field et al., 2010).

A lack of selective wiring may be one argument against
the idea that midget RGCs are optimized for hue perception.
However, more importantly, from above, the ideal trichromatic
hue-encoding system is a relatively sparse array of receptive fields
with structures that are double-opponent and receive input from
all three types of cones. The common L vs. M midget RGCs
do not conform to any of these theoretical features of hue-
encoding neurons. While our theoretical discussion cannot rule
out a contribution to hue, we can conclude L vs. M midget RGCs,
by themselves, are “non-optimal” for hue perception.

Are Midget RGC Receptive Fields
Optimal for Spatial Vision?
Near the fovea, the midget RGC’s receptive field center represents
the cone providing direct input to the midget bipolar cell,
while the surround is formed by feedback from horizontal cells
contacting neighboring cones (Figure 1C; Verweij et al., 2003).
This feedback weights each cone’s response by the quantal catch
in neighboring cones, essentially subtracting out the mean light
level and allowing each individual cone feeding the center of
midget RGCs to encode spatial contrast (Jadzinsky and Baccus,
2013). In the central retina, midget RGCs set the limits of human
visual acuity (Rossi and Roorda, 2010).

Indeed, theoretical attempts to derive an optimal receptive
field for the first step of spatial vision have all converged on the
same circularly symmetric center-surround organization (Marr
and Hildreth, 1980; Srinivasan et al., 1982; Atick et al., 1992),
often modeled as a Difference of Gaussians (Enroth-Cugell and
Robson, 1966; Croner and Kaplan, 1995; Dacey et al., 2000).
As Figure 2C demonstrates, center-surround receptive fields are
ideal edge detectors for encoding spatial contrast.

In contrast to early ideas emphasizing their putative role
in color perception, more recent research into the evolution
of the primate visual system provides a useful context for
a modern understanding of L vs. M midget RGC function.
Though sometimes compared to the X-cells of the mammalian
retina, there is no true homolog to the midget circuit prior to
prosimians (Peng et al., 2019). The midget RGC circuitry evolved
before uniform trichromacy (Nathans, 1999). In dichromats,
for example, with only S- and L-cones, the midget RGC’s
antagonistic center-surround receptive field functions as an
achromatic edge detector by comparing the input of a single
L-cone to surrounding L-cones (Figure 1D).

Interim Conclusions
The receptive field structure of L vs. M midget RGCs is
consistent with a role in edge detection. Their ability to respond
to equiluminant edges defined only by wavelength differences
makes visible forms that would be otherwise invisible. Spectral
opponency can also increase the signal-to-noise ratio for edges
defined by both intensity and wavelength. The idea that spectral
opponency in L vs. M midget RGCs could enhance edge detection
rather than contribute to color perception raises an important
point. A response to wavelength changes does not imply a causal
role in hue perception. As introduced above, hue perception
requires detectors that will not respond to black-white edges.

In conclusion, while it may be arguable whether or not midget
L vs. M RGCs are ideal achromatic encoders, it is indisputable
that they are far from ideal for red-green hue encoding. This
leaves two major unanswered questions: what is the physiological
basis for hue perception and what role do midget RGCs play?
Several different theories involving both the spectral and spatial
aspects of midget RGC receptive fields have been proposed as
tentative answers to this question. We next review the two main
classes of explanation: multiplexing and parallel processing.

MULTIPLEXING MODELS

The first class of models share the idea that each individual
midget RGC does “double duty,” carrying information for
both color vision and achromatic spatial vision, which are
extracted by circuitry at higher levels of processing in the
geniculostriate pathway. It has been said that red-green and
black-white percepts are “de-multiplexed” by downstream
circuits (Boycott and Wässle, 1999; Lennie and Movshon, 2005).
The idea of multiplexing originated as an analog to attempts
to efficiently compress chromatic and spatial information
for color televisions (Ingling and Martinez-Uriegas, 1983;
Derrico and Buchsbaum, 1991).

The most common models, summarized in Figure 2D,
combine the outputs of midget RGCs to perform two
main transforms: one to extract spectral information by
removing spatial correlations and another to extract achromatic
spatial information by removing spectral information. The
achromatic channels (L + M) sum L- and M-center midget
RGC signals to serve as intensity contrast detectors. The
putative chromatic channels (L vs. M) difference L-ON-
center with M-ON center receptive fields to produce
spatially coincident spectrally opponent receptive fields,
as discussed above (Figure 2A). Accordingly, achromatic
spatial structure will be absent in the chromatic channel,
resulting in a low-pass chromatic filter, while the achromatic
channel will retain the band-pass spatial tuning necessary for
spatial vision.

A separate aspect of one of the best-known versions, the De
Valois and De Valois (1993) multi-stage color model, was the
need to reconcile the difference in cone inputs measured for L
vs. M cone-opponent neurons and the opponent receptive fields
required to account for hue perception, illustrated in Figure 3A.
The four fundamental hue sensations are often assumed to
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represent the responses of four groups of hue-encoding neurons.
Over the last 50 years, there have been different ideas about the
exact nature of the cone inputs to the four fundamental hues.
However, a convergence of modern evidence from experiments
directly measuring hue perception indicate that all three cone
types contribute to each hue in the following combinations: L+ S
vs. M for red-green and M + S vs. L for blue-yellow, respectively
(Figure 3A; Wooten and Werner, 1979; Drum, 1989; Webster
et al., 2000a; Schmidt et al., 2016).

One of the great insights of the DeValois and DeValois
model was that hue perception requires S-cone inputs to L
vs. M opponent pathways (Wooten and Werner, 1979; Drum,
1989; Webster et al., 2000b). As an ad hoc solution to the
discrepancy between L vs. M midget RGCs and the receptive
fields required for hue perception, their multi-stage color model
proposed that the necessary S-cone input to an L vs. M channel
is accomplished by mixing in the outputs of S-cone opponent
neurons (Figure 2E).

Evaluating the Double Duty Hypothesis
The DeValois and DeValois model was firmly based on the most
recent anatomical, psychophysical and physiological results of the
time, yet a number of assumptions were necessary where open
questions remained. We can now revisit these assumptions in
light of the research published in the 25 years since the multi-
stage model was first proposed. One example is their explanation
of how the required S-cone inputs from small bistratified RGCs
are added in the process of building cortical receptive fields
for hue perception. More recently, the classification of small
bistratified RGCs as single opponent “pure color cells” has been
called into question [compare Figures 1E, 2A (Field et al.,
2007; Tailby et al., 2010); but see Crook et al. (2009)]. Thus,
small bistratified RGCs and their S-ON projections may also
confound spatial and spectral information. Moreover, the S-cone
ON neurons were later identified as a part of the functionally
distinct koniocellular pathway (Martin et al., 1997) and there is
no direct evidence for specific circuits combining signals from the
koniocellular and parvocellular pathways.

While the theoretical L-M and L + M channels would
decorrelate the outputs of midget RGCs, it has been argued
that not all decorrelations are created equal (Pitkow and
Meister, 2012) and the benefits depend on how these channels
are implemented by neural circuitry. In general, however,
asking a neuron to perform two jobs simultaneously has
been said to ensure that both are done poorly (Sterling and
Laughlin, 2017). Moreover, there don’t appear to be any true
modern examples of multiplexing RGCs involving two functions
performed simultaneously. Perhaps the closest parallel is the fact
that the same RGCs serve both photopic and scotopic vision,
however, these functions are primarily performed separately
under different conditions (Field et al., 2009; Grimes et al., 2014).
Other examples of multiplexing RGCs involve one stimulus
dimension modulating the encoding of another (Deny et al.,
2017), however, this is different from two functions being
encoded simultaneously.

The “de-multiplexing” multi-stage models are the result of
speculation about the type of computation that would be required

to produce selective detectors for wavelength and spatial contrast
from combinations of spectrally opponent center-surround
neurons, however, they lack firm experimental evidence from
cortical physiology (Lee, 2008). They have also been criticized
from an image compression standpoint, with the argument
that decorrelation of chromatic and spatial information is best
done early, ideally before transmission through the optic nerve
(Derrico and Buchsbaum, 1991). In contrast, an effort to test de-
multiplexing models concluded the two dimensions cannot be
disentangled in the early visual system (Kingdom and Mullen,
1995). Moreover, the most successful models based on the
“double duty” hypothesis do not make predictions about both
spatial and spectral responses (Rider et al., 2018).

The assumption that different aspects of color vision are
all based on the same underlying neural substrates (e.g.,
L vs. M midget RGCs) has resulted in a tendency to
expect the visual system to somehow extract hue information
from the midget RGCs’ receptive field output. However, the
computational complexity required to separate chromatic from
spatial information at subsequent stages of visual processing
should not be underestimated. One higher stage is proposed
to decorrelate spatial and spectral information, a second higher
stage to add the required S-cone input (Figure 2E) and yet an
additional stage, that has not been incorporated into current de-
multiplexing models, to generate the double opponent receptive
field structure required to create neurons that are able to
contribute to invariant hue-encoding of spectral reflectance.

Multiplexing in the Light of Information
Coding in the Retina
The need to compress RGC axons down to a 2 mm cable
is often referred to as an “information bottleneck” within
the visual system. Proponents of multiplexing models might
claim superiority on this account: combining color and spatial
information into one RGC could reduce the number axons in the
optic nerve without reducing the transmission of information.
Indeed, there are about six to seven million cones in a human eye
and only about a million optic nerve fibers (Sterling and Laughlin,
2017). However, this represents the situation in the peripheral
retina where convergent input from a large number of cones to
each RGC results in a huge reduction in visual acuity relative to
what could be supported by the cone mosaic. The loss of spatial
information from this convergence is never recovered at higher
levels in the visual pathway.

At the time multiplexing models were first proposed, a
dominant view on the purpose of retinal function was to reduce
redundancy and compress visual information to fit through the
optic nerve, with the computations defining visual perception
occurring in the cortex (Barlow, 1961). However, contrary to
the idea of information compression, in the fovea there is a
divergence from cones to RGCs such that the ratio is about
3:1 RGCs:cone. Recent work in non-primate animal models has
contributed to a growing appreciation for the diversity of RGC
types (Wässle, 2004; Baden et al., 2016) and the sophisticated
computations occurring within the retina (Gollisch and Meister,
2010; Wienbar and Schwartz, 2018). Even near the primate fovea,
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FIGURE 3 | Experiments inspiring the revision of existing color models. (A) Spectral sensitivities and the corresponding cone inputs of the mechanisms responsible
for red, green, blue, and yellow hues. The data was obtained from a hue scaling experiment, where participants report the percentage of red, green, blue, and
yellow. Bottom: Averaged responses of color-opponent LGN neurons, which reflect their color-opponent RGC inputs. Both panels are replotted with wavelength
units from De Valois (2004). (B) Percepts associated with stimulating individual L- and M-cones in isolation may represent the responses of two types of individual
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many of the at least 20 different RGC types are represented
(Percival et al., 2013; Peng et al., 2019). What failed to be
appreciated in the early work on the primate retina is that,
with the exception of the midget RGCs, for which there are
two for every cone (one ON and one OFF), each of the twenty
or more RGC types represents a small percentage of the total.
Thus, the retina is a massively parallel processing machine with
many different types of RGCs carrying out diverse functions most
of which operate at low spatial acuity and require only sparse
representations. Thus, as discussed below, it seems plausible that,
consistent with the current understanding of the plan of the
retina, hue perception could be mediated by a relatively sparse
set of RGCs that serve as hue detectors.

Recent considerations of the metabolic cost of information
transmission have also questioned the efficiency of compressing
information into a smaller set of RGCs, and revealed a more
nuanced set of constraints defined not by the number of axons,
but by their diameter. RGC axon diameters scale linearly with
average firing rate (Perge et al., 2009, 2012). This relationship
forms the basis of a law of diminishing returns – metabolic cost
increases supralinearly with axon diameter while the information
per spike falls as spike rate increases (Rieke et al., 1997;
Koch et al., 2006).

A population of parallel neurons, each carrying as much
information as possible, is the most efficient coding scheme
(Laughlin, 2001). The midget RGC circuit, acting as an edge
contrast detector, is already a model of energy-efficient parallel
processing – each cone in the central retina contacts a single
ON and OFF midget bipolar cell (Figure 1C). This allows
baseline activity to remain low while the response ranges of
each ON and OFF cell are devoted to signaling increments
or decrements, respectively, in parallel (Berry et al., 1997).
Theoretically, multiplexing increments and decrements would

double the information per axon, thus halving the number of
axons while increasing axon diameter (and thus energetic cost)
fourfold (Sterling and Laughlin, 2017). Taking these costs into
account creates a strong pressure for more types of RGCs with
thinner axons and lower spike rates, consistent with a parallel
processing model.

PARALLEL PROCESSING MODELS

L vs. M midget RGCs receptive fields are near optimal for high
acuity spatial vision and are poorly suited for encoding hue. These
facts plus the computational complexity required to separate hue
from spatial information from L vs. M midget RGCs and a newer
understanding of information processing in the retina has led
to the suggestion of an alternative hypothesis: that the L vs. M
midget RGCs’ only serve spatial vision – the function for which
they are optimized – and they do not contribute to red-green hue
perception. According to this idea, the front-end computations
for hue perception are served, in parallel, by a second population
of RGCs that have receptive field properties that are specifically
optimized as hue detectors (Rodieck, 1991; Calkins and Sterling,
1999; Schmidt et al., 2014; Neitz and Neitz, 2016). The “pixel
density” of the L vs. M midget RGCs is high to serve high spatial
acuity but, as introduced above, the proposed parallel set of hue
detectors need to be only relatively sparse to recover surface
reflectance with much lower spatial acuity.

Separate Subtypes of Midget RGCs for
Hue and Spatial Vision
If L vs. M midget RGCs mediate spatial vision, which RGCs
encode color? To match the acuity of our hue perception, an
undiscovered RGC type would need roughly the sampling density
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of the S-cone mosaic (Mullen, 1985; Calkins and Sterling, 1999).
The lack of alternative hue encoders makes midget RGCs an
obvious candidate. We have proposed that the four fundamental
hues are encoded by a small subset of L vs. M midget RGCs
receiving input from neighboring S-cones (Figure 2F; Schmidt
et al., 2014). The resulting L + S vs. M and M + S vs. L
midget RGCs match the cone inputs for the four fundamental
hues, as well as a population of rare RGCs (De Monasterio and
Gouras, 1975; De Monasterio et al., 1975) and LGN neurons
(Derrington et al., 1984; Tailby et al., 2008). These rare RGCs
should not be ignored, as a potential hue-encoding RGC type
needs to be only ∼5–10% of foveal RGCs to match color acuity
(Calkins and Sterling, 1999).

Each S-cone has a surround created by S-cone-preferring
HII horizontal cells. Hue-encoding receptive fields are proposed
to arise from the superposition of the S-cone center-surround
receptive field with the L vs. M cone center-surround. These two
are predicted to be combined by feedforward synapses (Puller
et al., 2014) from HII horizontal cells to L vs. M midget bipolar
cells. The result simultaneously creates the S-cone input to L
vs. M opponent cells and double opponency required to create
nearly ideal hue-encoding RGCs (discussed in detail in Neitz and
Neitz, 2016). Indeed, computational models of such color-coding
midget RGCs can account for previously unexplained color
phenomena, such as unique hues and variations in hue
perception with L/M-cone ratios (Schmidt et al., 2016).

Key strengths of this parallel processing hypothesis are
its simplicity and specificity. All the key features of ideal
hue-encoding neurons are proposed to be created in the
retina simply by feed-forward from HII horizontal cells at
the level of the bipolar cells in a single step as opposed to
the idea of multiple stages at unspecified higher levels. The
predicted mechanism for a parallel set of double opponent
neurons includes specific cell types, neurotransmitters, and
biophysical mechanisms (Puller et al., 2014). While this level of
detail may invite additional criticism, it also generates testable
predictions that can be addressed by experiment. In contrast,
the DeValois and DeValois model specified the computations
for their “de-multiplexing” neurons, but not the underlying
neural substrates.

Recent Research Supporting Parallel
Processing Models
The parallel processing approach draws from the idea that each
RGC’s receptive field acts as a feature detector, tuned to extract
a specific type of visual information, such as direction, defocus,
edges or hue. From this perspective, L vs. M midget RGCs that
respond equally to red–green and black–white edges are not
multiplexing, nor even confounding, red–green and black–white
signals. Rather, they are reliably signaling a particular feature –
the presence or absence of an edge. Accordingly, hue-encoding
RGCs are signaling a different feature – the detection of a specific
spectral reflectance distribution (Figure 3A). Importantly, these
RGCs would not be directly responsible for percepts of hue and
edges, but instead we are proposing that they serve as front-end
mechanisms for making these computations.

A particularly influential line of evidence has been provided
by high-precision psychophysics experiments enabled by the
development of adaptive optics systems capable of delivering
small spots of light while simultaneously imaging the underlying
mosaic of cones (Harmening et al., 2014). Early experiments
investigating spatial acuity found individual midget RGCs set
the limit for spatial resolution (Rossi and Roorda, 2010).
These results are inconsistent with models proposing midget
RGC outputs are combined to “de-multiplex” color and
spatial information. The loss of spatial information from the
convergence in Figure 2D can never be recovered at higher levels
in the visual pathway.

The unprecedented precision provided by adaptive optics
imaging systems combined with recent advances in eye tracking
and cone type classification (Sabesan et al., 2015) have enabled
highly precise psychophysics experiments investigating the
percepts resulting from single cones (reviewed by Kling et al.,
2019). The responses are highly consistent and reflect activity
in the midget RGCs with single cone centers (Schmidt et al.,
2019). Consistent with parallel processing of hue and spatial
information by separate types of midget RGCs, stimulation of
most L/M-cones in the central retina results in percepts of white,
with only a small subset eliciting color percepts (Figure 3B;
Sabesan et al., 2016; Schmidt et al., 2018a,b). Further, the
homogeneity of the surrounding cone type had no effect on which
cones were associated with a perceived color, arguing against the
idea that midget RGCs with strong L vs. M opponency serve
hue perception. These experiments were the first to target stimuli
to single cones of a known type and represent a major advance
in linking perception to underlying neural substrates in awake,
behaving humans and the results will undoubtedly continue to
challenge long-held assumptions.

HOW DOES THE CORTEX USE
WAVELENGTH INFORMATION?

Hue perception is just one of many functions that uses
wavelength information. For example, the retina contains
photopigments such as melanopsin and neuropsin, which carry
additional wavelength information, but have no impact on the
dimensionality of color vision (Horiguchi et al., 2013; Buhr et al.,
2015). There are many examples of neurons carrying temporal,
spatial or spectral information that is not extracted for visual
perception, including color-opponent V1 neurons responding to
chromatic stimuli that are not perceived (Gur and Snodderly,
1997; Jiang et al., 2007).

In fact, many RGCs do not contribute to conscious perception
at all, but instead mediate functions such as visually guided
movements or circadian photoentrainment (for review, see
Neitz and Neitz, 2016). Wavelength information is extracted
by several types of spectrally opponent RGCs for many
functions other than color vision. For example, circadian rhythm
photoentrainment and the pupillary light reflex are mediated
by intrinsically photosensitive RGCs (reviewed in Do and Yau,
2010). Their receptive fields match the wavelength-encoding,
single opponent receptive fields discussed above (Figure 2A;
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Dacey et al., 2005) – ideal for measuring the changes in
chromaticity of ambient light throughout the day (Pauers et al.,
2012; Spitschan et al., 2017) but they do not contribute to
hue perception.

Several lines of evidence indicate that the ability to detect
red-green edges is a distinct feature encoded separately from
the ability to classify the appearance of lights as red or green.
For example, patients with cerebral achromatopsia who suffer
a total loss of hue perception, but still can detect chromatic
borders, perceive shape from color and discriminate the direction
in which colored patterns move (Cowey and Heywood, 1997).
The existence of multiple mechanisms and uses for wavelength
information also seems evident when comparing the cone inputs
mediating color detection and color appearance. The studies
identifying L + S vs. M and M + S vs. L as the cone inputs
to hue perception measured color appearance (Wooten and
Werner, 1979; Drum, 1989; Webster et al., 2000a; Schmidt
et al., 2016). However, the classic psychophysical experiments
that identified L vs. M and S vs. L + M as the “cardinal
directions of color space” (Krauskopf et al., 1982), measured
detection. Krauskopf et al. (1982) noted the disparity between
their cardinal directions and the red-green (L + S vs. M)
and blue-yellow (M + S vs. L) hue axes of color appearance
and later questioned the evidence for cardinal mechanisms
(Krauskopf, 1997).

There is common ground between multiplexing and
parallel processing models. In discussing the abundance of
chromatic cortical neurons, DeValois and DeValois argue
that only a few are responsible for the specification of color,
while the majority instead use color information to specify
the spatial (or other) characteristics of stimuli. A problem
was a lack of agreement on which cells were relevant for hue
perception. Though their proposed color transformations
were not consistent with the majority of published cortical
color tuning studies, DeValois and DeValois pointed out
inconsistencies in the literature and claimed one could
“cite some cortical study in support of (or against) almost
any suggestion about cortical color processing” (De Valois
and De Valois, 1993) We argue a similar situation exists
today in the retina where different studies can be sited in
support or against the existence of S-cone inputs to midget
RGCs [for example, compare the cone opponency reported
by De Monasterio and Gouras (1975), Sun et al. (2006),
and Field et al. (2010)].

FUTURE DIRECTIONS

Both the parallel processing and multiplexing models would
benefit from experiments linking the theories to their underlying
neural substrates. However, an overarching difficulty for
resolving the controversy over parallel vs. multiplexing theories
is that each point of view reflects a deep-seated theoretical
conviction. For those preferring the multiplexing view of L vs.
M midget RGCs, “If the color signal is extractable, it makes
little sense not to use it” (Billock et al., 1996). From a parallel
processing standpoint, encoding color and spatial vision, two of

the most fundamental aspects of visual perception, in a single
binary channel makes little sense (Calkins and Sterling, 1999) and
the information gained must outweigh the cost of extracting a
color signal (Laughlin et al., 1998).

Thus, further experiments to characterize the response
properties of visual neurons alone are not going to settle the
controversy. Initial surveys of cone inputs to neurons in the
retinal and LGN reported S-cone input to a subset of L vs.
M neurons (De Monasterio and Gouras, 1975; De Monasterio
et al., 1975; Derrington et al., 1984) and later surveys confirmed
these findings (Tailby et al., 2008; Field et al., 2010). However,
skeptics of the parallel processing models favor a study by
Sun et al. (2006) in which the authors recorded from a large
population of midget RGCs and concluded S-cone input was
unlikely (Sun et al., 2006). An underlying problem is that the
answers depend on how you ask the question. Results from
receptive field measurements are a function of stimulus choice.
For example, a full-field stimulus (Lee et al., 1998) may have
reduced S-cone responses by driving the antagonistic S-cone
surround receptive field mediated by HII horizontal cell feedback
(Dacey et al., 1996). Indeed, the Sun et al. (2006) experiments
did not detect S-OFF midget RGCs, despite a growing consensus
that these neurons make up 5–10% of OFF midget RGCs in
the macaque central retina (Klug et al., 2003; Field et al.,
2010; Tsukamoto and Omi, 2015; Patterson et al., 2019). Taken
together, these results further demonstrate the need to account
for both the spatial and spectral dimensions of midget RGC
receptive fields.

Consideration of underlying theoretical perspectives and
stimulus biases will be essential for designing future experiments
linking color vision models to their underlying neural substrates.
Also, a broader perspective may help answer the larger questions
about how our eye and brain process visual information.
Hopefully, future research using cutting-edge technologies
will provide satisfying explanations for long unanswered
mysteries of vision.
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